diff options
Diffstat (limited to 'drivers')
-rw-r--r-- | drivers/dma/Kconfig | 11 | ||||
-rw-r--r-- | drivers/dma/Makefile | 1 | ||||
-rw-r--r-- | drivers/dma/ppc4xx/Makefile | 1 | ||||
-rw-r--r-- | drivers/dma/ppc4xx/adma.c | 5027 | ||||
-rw-r--r-- | drivers/dma/ppc4xx/adma.h | 195 | ||||
-rw-r--r-- | drivers/dma/ppc4xx/dma.h | 223 | ||||
-rw-r--r-- | drivers/dma/ppc4xx/xor.h | 110 |
7 files changed, 5568 insertions, 0 deletions
diff --git a/drivers/dma/Kconfig b/drivers/dma/Kconfig index 24cdd20fe462..fe93d70f2e37 100644 --- a/drivers/dma/Kconfig +++ b/drivers/dma/Kconfig | |||
@@ -116,6 +116,17 @@ config COH901318 | |||
116 | help | 116 | help |
117 | Enable support for ST-Ericsson COH 901 318 DMA. | 117 | Enable support for ST-Ericsson COH 901 318 DMA. |
118 | 118 | ||
119 | config AMCC_PPC440SPE_ADMA | ||
120 | tristate "AMCC PPC440SPe ADMA support" | ||
121 | depends on 440SPe || 440SP | ||
122 | select DMA_ENGINE | ||
123 | select ARCH_HAS_ASYNC_TX_FIND_CHANNEL | ||
124 | help | ||
125 | Enable support for the AMCC PPC440SPe RAID engines. | ||
126 | |||
127 | config ARCH_HAS_ASYNC_TX_FIND_CHANNEL | ||
128 | bool | ||
129 | |||
119 | config DMA_ENGINE | 130 | config DMA_ENGINE |
120 | bool | 131 | bool |
121 | 132 | ||
diff --git a/drivers/dma/Makefile b/drivers/dma/Makefile index 4db768e09cf3..807053d48232 100644 --- a/drivers/dma/Makefile +++ b/drivers/dma/Makefile | |||
@@ -11,3 +11,4 @@ obj-$(CONFIG_MX3_IPU) += ipu/ | |||
11 | obj-$(CONFIG_TXX9_DMAC) += txx9dmac.o | 11 | obj-$(CONFIG_TXX9_DMAC) += txx9dmac.o |
12 | obj-$(CONFIG_SH_DMAE) += shdma.o | 12 | obj-$(CONFIG_SH_DMAE) += shdma.o |
13 | obj-$(CONFIG_COH901318) += coh901318.o coh901318_lli.o | 13 | obj-$(CONFIG_COH901318) += coh901318.o coh901318_lli.o |
14 | obj-$(CONFIG_AMCC_PPC440SPE_ADMA) += ppc4xx/ | ||
diff --git a/drivers/dma/ppc4xx/Makefile b/drivers/dma/ppc4xx/Makefile new file mode 100644 index 000000000000..b3d259b3e52a --- /dev/null +++ b/drivers/dma/ppc4xx/Makefile | |||
@@ -0,0 +1 @@ | |||
obj-$(CONFIG_AMCC_PPC440SPE_ADMA) += adma.o | |||
diff --git a/drivers/dma/ppc4xx/adma.c b/drivers/dma/ppc4xx/adma.c new file mode 100644 index 000000000000..0a3478e910f0 --- /dev/null +++ b/drivers/dma/ppc4xx/adma.c | |||
@@ -0,0 +1,5027 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2006-2009 DENX Software Engineering. | ||
3 | * | ||
4 | * Author: Yuri Tikhonov <yur@emcraft.com> | ||
5 | * | ||
6 | * Further porting to arch/powerpc by | ||
7 | * Anatolij Gustschin <agust@denx.de> | ||
8 | * | ||
9 | * This program is free software; you can redistribute it and/or modify it | ||
10 | * under the terms of the GNU General Public License as published by the Free | ||
11 | * Software Foundation; either version 2 of the License, or (at your option) | ||
12 | * any later version. | ||
13 | * | ||
14 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
15 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
16 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
17 | * more details. | ||
18 | * | ||
19 | * You should have received a copy of the GNU General Public License along with | ||
20 | * this program; if not, write to the Free Software Foundation, Inc., 59 | ||
21 | * Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
22 | * | ||
23 | * The full GNU General Public License is included in this distribution in the | ||
24 | * file called COPYING. | ||
25 | */ | ||
26 | |||
27 | /* | ||
28 | * This driver supports the asynchrounous DMA copy and RAID engines available | ||
29 | * on the AMCC PPC440SPe Processors. | ||
30 | * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x) | ||
31 | * ADMA driver written by D.Williams. | ||
32 | */ | ||
33 | |||
34 | #include <linux/init.h> | ||
35 | #include <linux/module.h> | ||
36 | #include <linux/async_tx.h> | ||
37 | #include <linux/delay.h> | ||
38 | #include <linux/dma-mapping.h> | ||
39 | #include <linux/spinlock.h> | ||
40 | #include <linux/interrupt.h> | ||
41 | #include <linux/uaccess.h> | ||
42 | #include <linux/proc_fs.h> | ||
43 | #include <linux/of.h> | ||
44 | #include <linux/of_platform.h> | ||
45 | #include <asm/dcr.h> | ||
46 | #include <asm/dcr-regs.h> | ||
47 | #include "adma.h" | ||
48 | |||
49 | enum ppc_adma_init_code { | ||
50 | PPC_ADMA_INIT_OK = 0, | ||
51 | PPC_ADMA_INIT_MEMRES, | ||
52 | PPC_ADMA_INIT_MEMREG, | ||
53 | PPC_ADMA_INIT_ALLOC, | ||
54 | PPC_ADMA_INIT_COHERENT, | ||
55 | PPC_ADMA_INIT_CHANNEL, | ||
56 | PPC_ADMA_INIT_IRQ1, | ||
57 | PPC_ADMA_INIT_IRQ2, | ||
58 | PPC_ADMA_INIT_REGISTER | ||
59 | }; | ||
60 | |||
61 | static char *ppc_adma_errors[] = { | ||
62 | [PPC_ADMA_INIT_OK] = "ok", | ||
63 | [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource", | ||
64 | [PPC_ADMA_INIT_MEMREG] = "failed to request memory region", | ||
65 | [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev " | ||
66 | "structure", | ||
67 | [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for " | ||
68 | "hardware descriptors", | ||
69 | [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel", | ||
70 | [PPC_ADMA_INIT_IRQ1] = "failed to request first irq", | ||
71 | [PPC_ADMA_INIT_IRQ2] = "failed to request second irq", | ||
72 | [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device", | ||
73 | }; | ||
74 | |||
75 | static enum ppc_adma_init_code | ||
76 | ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM]; | ||
77 | |||
78 | struct ppc_dma_chan_ref { | ||
79 | struct dma_chan *chan; | ||
80 | struct list_head node; | ||
81 | }; | ||
82 | |||
83 | /* The list of channels exported by ppc440spe ADMA */ | ||
84 | struct list_head | ||
85 | ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list); | ||
86 | |||
87 | /* This flag is set when want to refetch the xor chain in the interrupt | ||
88 | * handler | ||
89 | */ | ||
90 | static u32 do_xor_refetch; | ||
91 | |||
92 | /* Pointer to DMA0, DMA1 CP/CS FIFO */ | ||
93 | static void *ppc440spe_dma_fifo_buf; | ||
94 | |||
95 | /* Pointers to last submitted to DMA0, DMA1 CDBs */ | ||
96 | static struct ppc440spe_adma_desc_slot *chan_last_sub[3]; | ||
97 | static struct ppc440spe_adma_desc_slot *chan_first_cdb[3]; | ||
98 | |||
99 | /* Pointer to last linked and submitted xor CB */ | ||
100 | static struct ppc440spe_adma_desc_slot *xor_last_linked; | ||
101 | static struct ppc440spe_adma_desc_slot *xor_last_submit; | ||
102 | |||
103 | /* This array is used in data-check operations for storing a pattern */ | ||
104 | static char ppc440spe_qword[16]; | ||
105 | |||
106 | static atomic_t ppc440spe_adma_err_irq_ref; | ||
107 | static dcr_host_t ppc440spe_mq_dcr_host; | ||
108 | static unsigned int ppc440spe_mq_dcr_len; | ||
109 | |||
110 | /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up | ||
111 | * the block size in transactions, then we do not allow to activate more than | ||
112 | * only one RXOR transactions simultaneously. So use this var to store | ||
113 | * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is | ||
114 | * set) or not (PPC440SPE_RXOR_RUN is clear). | ||
115 | */ | ||
116 | static unsigned long ppc440spe_rxor_state; | ||
117 | |||
118 | /* These are used in enable & check routines | ||
119 | */ | ||
120 | static u32 ppc440spe_r6_enabled; | ||
121 | static struct ppc440spe_adma_chan *ppc440spe_r6_tchan; | ||
122 | static struct completion ppc440spe_r6_test_comp; | ||
123 | |||
124 | static int ppc440spe_adma_dma2rxor_prep_src( | ||
125 | struct ppc440spe_adma_desc_slot *desc, | ||
126 | struct ppc440spe_rxor *cursor, int index, | ||
127 | int src_cnt, u32 addr); | ||
128 | static void ppc440spe_adma_dma2rxor_set_src( | ||
129 | struct ppc440spe_adma_desc_slot *desc, | ||
130 | int index, dma_addr_t addr); | ||
131 | static void ppc440spe_adma_dma2rxor_set_mult( | ||
132 | struct ppc440spe_adma_desc_slot *desc, | ||
133 | int index, u8 mult); | ||
134 | |||
135 | #ifdef ADMA_LL_DEBUG | ||
136 | #define ADMA_LL_DBG(x) ({ if (1) x; 0; }) | ||
137 | #else | ||
138 | #define ADMA_LL_DBG(x) ({ if (0) x; 0; }) | ||
139 | #endif | ||
140 | |||
141 | static void print_cb(struct ppc440spe_adma_chan *chan, void *block) | ||
142 | { | ||
143 | struct dma_cdb *cdb; | ||
144 | struct xor_cb *cb; | ||
145 | int i; | ||
146 | |||
147 | switch (chan->device->id) { | ||
148 | case 0: | ||
149 | case 1: | ||
150 | cdb = block; | ||
151 | |||
152 | pr_debug("CDB at %p [%d]:\n" | ||
153 | "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n" | ||
154 | "\t sg1u 0x%08x sg1l 0x%08x\n" | ||
155 | "\t sg2u 0x%08x sg2l 0x%08x\n" | ||
156 | "\t sg3u 0x%08x sg3l 0x%08x\n", | ||
157 | cdb, chan->device->id, | ||
158 | cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt), | ||
159 | le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l), | ||
160 | le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l), | ||
161 | le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l) | ||
162 | ); | ||
163 | break; | ||
164 | case 2: | ||
165 | cb = block; | ||
166 | |||
167 | pr_debug("CB at %p [%d]:\n" | ||
168 | "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n" | ||
169 | "\t cbtah 0x%08x cbtal 0x%08x\n" | ||
170 | "\t cblah 0x%08x cblal 0x%08x\n", | ||
171 | cb, chan->device->id, | ||
172 | cb->cbc, cb->cbbc, cb->cbs, | ||
173 | cb->cbtah, cb->cbtal, | ||
174 | cb->cblah, cb->cblal); | ||
175 | for (i = 0; i < 16; i++) { | ||
176 | if (i && !cb->ops[i].h && !cb->ops[i].l) | ||
177 | continue; | ||
178 | pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n", | ||
179 | i, cb->ops[i].h, cb->ops[i].l); | ||
180 | } | ||
181 | break; | ||
182 | } | ||
183 | } | ||
184 | |||
185 | static void print_cb_list(struct ppc440spe_adma_chan *chan, | ||
186 | struct ppc440spe_adma_desc_slot *iter) | ||
187 | { | ||
188 | for (; iter; iter = iter->hw_next) | ||
189 | print_cb(chan, iter->hw_desc); | ||
190 | } | ||
191 | |||
192 | static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src, | ||
193 | unsigned int src_cnt) | ||
194 | { | ||
195 | int i; | ||
196 | |||
197 | pr_debug("\n%s(%d):\nsrc: ", __func__, id); | ||
198 | for (i = 0; i < src_cnt; i++) | ||
199 | pr_debug("\t0x%016llx ", src[i]); | ||
200 | pr_debug("dst:\n\t0x%016llx\n", dst); | ||
201 | } | ||
202 | |||
203 | static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src, | ||
204 | unsigned int src_cnt) | ||
205 | { | ||
206 | int i; | ||
207 | |||
208 | pr_debug("\n%s(%d):\nsrc: ", __func__, id); | ||
209 | for (i = 0; i < src_cnt; i++) | ||
210 | pr_debug("\t0x%016llx ", src[i]); | ||
211 | pr_debug("dst: "); | ||
212 | for (i = 0; i < 2; i++) | ||
213 | pr_debug("\t0x%016llx ", dst[i]); | ||
214 | } | ||
215 | |||
216 | static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src, | ||
217 | unsigned int src_cnt, | ||
218 | const unsigned char *scf) | ||
219 | { | ||
220 | int i; | ||
221 | |||
222 | pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id); | ||
223 | if (scf) { | ||
224 | for (i = 0; i < src_cnt; i++) | ||
225 | pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]); | ||
226 | } else { | ||
227 | for (i = 0; i < src_cnt; i++) | ||
228 | pr_debug("\t0x%016llx(no) ", src[i]); | ||
229 | } | ||
230 | |||
231 | pr_debug("dst: "); | ||
232 | for (i = 0; i < 2; i++) | ||
233 | pr_debug("\t0x%016llx ", src[src_cnt + i]); | ||
234 | } | ||
235 | |||
236 | /****************************************************************************** | ||
237 | * Command (Descriptor) Blocks low-level routines | ||
238 | ******************************************************************************/ | ||
239 | /** | ||
240 | * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT | ||
241 | * pseudo operation | ||
242 | */ | ||
243 | static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc, | ||
244 | struct ppc440spe_adma_chan *chan) | ||
245 | { | ||
246 | struct xor_cb *p; | ||
247 | |||
248 | switch (chan->device->id) { | ||
249 | case PPC440SPE_XOR_ID: | ||
250 | p = desc->hw_desc; | ||
251 | memset(desc->hw_desc, 0, sizeof(struct xor_cb)); | ||
252 | /* NOP with Command Block Complete Enable */ | ||
253 | p->cbc = XOR_CBCR_CBCE_BIT; | ||
254 | break; | ||
255 | case PPC440SPE_DMA0_ID: | ||
256 | case PPC440SPE_DMA1_ID: | ||
257 | memset(desc->hw_desc, 0, sizeof(struct dma_cdb)); | ||
258 | /* NOP with interrupt */ | ||
259 | set_bit(PPC440SPE_DESC_INT, &desc->flags); | ||
260 | break; | ||
261 | default: | ||
262 | printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id, | ||
263 | __func__); | ||
264 | break; | ||
265 | } | ||
266 | } | ||
267 | |||
268 | /** | ||
269 | * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR | ||
270 | * pseudo operation | ||
271 | */ | ||
272 | static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc) | ||
273 | { | ||
274 | memset(desc->hw_desc, 0, sizeof(struct xor_cb)); | ||
275 | desc->hw_next = NULL; | ||
276 | desc->src_cnt = 0; | ||
277 | desc->dst_cnt = 1; | ||
278 | } | ||
279 | |||
280 | /** | ||
281 | * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation | ||
282 | */ | ||
283 | static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc, | ||
284 | int src_cnt, unsigned long flags) | ||
285 | { | ||
286 | struct xor_cb *hw_desc = desc->hw_desc; | ||
287 | |||
288 | memset(desc->hw_desc, 0, sizeof(struct xor_cb)); | ||
289 | desc->hw_next = NULL; | ||
290 | desc->src_cnt = src_cnt; | ||
291 | desc->dst_cnt = 1; | ||
292 | |||
293 | hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt; | ||
294 | if (flags & DMA_PREP_INTERRUPT) | ||
295 | /* Enable interrupt on completion */ | ||
296 | hw_desc->cbc |= XOR_CBCR_CBCE_BIT; | ||
297 | } | ||
298 | |||
299 | /** | ||
300 | * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ | ||
301 | * operation in DMA2 controller | ||
302 | */ | ||
303 | static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc, | ||
304 | int dst_cnt, int src_cnt, unsigned long flags) | ||
305 | { | ||
306 | struct xor_cb *hw_desc = desc->hw_desc; | ||
307 | |||
308 | memset(desc->hw_desc, 0, sizeof(struct xor_cb)); | ||
309 | desc->hw_next = NULL; | ||
310 | desc->src_cnt = src_cnt; | ||
311 | desc->dst_cnt = dst_cnt; | ||
312 | memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags)); | ||
313 | desc->descs_per_op = 0; | ||
314 | |||
315 | hw_desc->cbc = XOR_CBCR_TGT_BIT; | ||
316 | if (flags & DMA_PREP_INTERRUPT) | ||
317 | /* Enable interrupt on completion */ | ||
318 | hw_desc->cbc |= XOR_CBCR_CBCE_BIT; | ||
319 | } | ||
320 | |||
321 | #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE | ||
322 | #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1) | ||
323 | #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1) | ||
324 | |||
325 | /** | ||
326 | * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation | ||
327 | * with DMA0/1 | ||
328 | */ | ||
329 | static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc, | ||
330 | int dst_cnt, int src_cnt, unsigned long flags, | ||
331 | unsigned long op) | ||
332 | { | ||
333 | struct dma_cdb *hw_desc; | ||
334 | struct ppc440spe_adma_desc_slot *iter; | ||
335 | u8 dopc; | ||
336 | |||
337 | /* Common initialization of a PQ descriptors chain */ | ||
338 | set_bits(op, &desc->flags); | ||
339 | desc->src_cnt = src_cnt; | ||
340 | desc->dst_cnt = dst_cnt; | ||
341 | |||
342 | /* WXOR MULTICAST if both P and Q are being computed | ||
343 | * MV_SG1_SG2 if Q only | ||
344 | */ | ||
345 | dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ? | ||
346 | DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2; | ||
347 | |||
348 | list_for_each_entry(iter, &desc->group_list, chain_node) { | ||
349 | hw_desc = iter->hw_desc; | ||
350 | memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); | ||
351 | |||
352 | if (likely(!list_is_last(&iter->chain_node, | ||
353 | &desc->group_list))) { | ||
354 | /* set 'next' pointer */ | ||
355 | iter->hw_next = list_entry(iter->chain_node.next, | ||
356 | struct ppc440spe_adma_desc_slot, chain_node); | ||
357 | clear_bit(PPC440SPE_DESC_INT, &iter->flags); | ||
358 | } else { | ||
359 | /* this is the last descriptor. | ||
360 | * this slot will be pasted from ADMA level | ||
361 | * each time it wants to configure parameters | ||
362 | * of the transaction (src, dst, ...) | ||
363 | */ | ||
364 | iter->hw_next = NULL; | ||
365 | if (flags & DMA_PREP_INTERRUPT) | ||
366 | set_bit(PPC440SPE_DESC_INT, &iter->flags); | ||
367 | else | ||
368 | clear_bit(PPC440SPE_DESC_INT, &iter->flags); | ||
369 | } | ||
370 | } | ||
371 | |||
372 | /* Set OPS depending on WXOR/RXOR type of operation */ | ||
373 | if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) { | ||
374 | /* This is a WXOR only chain: | ||
375 | * - first descriptors are for zeroing destinations | ||
376 | * if PPC440SPE_ZERO_P/Q set; | ||
377 | * - descriptors remained are for GF-XOR operations. | ||
378 | */ | ||
379 | iter = list_first_entry(&desc->group_list, | ||
380 | struct ppc440spe_adma_desc_slot, | ||
381 | chain_node); | ||
382 | |||
383 | if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) { | ||
384 | hw_desc = iter->hw_desc; | ||
385 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | ||
386 | iter = list_first_entry(&iter->chain_node, | ||
387 | struct ppc440spe_adma_desc_slot, | ||
388 | chain_node); | ||
389 | } | ||
390 | |||
391 | if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) { | ||
392 | hw_desc = iter->hw_desc; | ||
393 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | ||
394 | iter = list_first_entry(&iter->chain_node, | ||
395 | struct ppc440spe_adma_desc_slot, | ||
396 | chain_node); | ||
397 | } | ||
398 | |||
399 | list_for_each_entry_from(iter, &desc->group_list, chain_node) { | ||
400 | hw_desc = iter->hw_desc; | ||
401 | hw_desc->opc = dopc; | ||
402 | } | ||
403 | } else { | ||
404 | /* This is either RXOR-only or mixed RXOR/WXOR */ | ||
405 | |||
406 | /* The first 1 or 2 slots in chain are always RXOR, | ||
407 | * if need to calculate P & Q, then there are two | ||
408 | * RXOR slots; if only P or only Q, then there is one | ||
409 | */ | ||
410 | iter = list_first_entry(&desc->group_list, | ||
411 | struct ppc440spe_adma_desc_slot, | ||
412 | chain_node); | ||
413 | hw_desc = iter->hw_desc; | ||
414 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | ||
415 | |||
416 | if (desc->dst_cnt == DMA_DEST_MAX_NUM) { | ||
417 | iter = list_first_entry(&iter->chain_node, | ||
418 | struct ppc440spe_adma_desc_slot, | ||
419 | chain_node); | ||
420 | hw_desc = iter->hw_desc; | ||
421 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | ||
422 | } | ||
423 | |||
424 | /* The remaining descs (if any) are WXORs */ | ||
425 | if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) { | ||
426 | iter = list_first_entry(&iter->chain_node, | ||
427 | struct ppc440spe_adma_desc_slot, | ||
428 | chain_node); | ||
429 | list_for_each_entry_from(iter, &desc->group_list, | ||
430 | chain_node) { | ||
431 | hw_desc = iter->hw_desc; | ||
432 | hw_desc->opc = dopc; | ||
433 | } | ||
434 | } | ||
435 | } | ||
436 | } | ||
437 | |||
438 | /** | ||
439 | * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor | ||
440 | * for PQ_ZERO_SUM operation | ||
441 | */ | ||
442 | static void ppc440spe_desc_init_dma01pqzero_sum( | ||
443 | struct ppc440spe_adma_desc_slot *desc, | ||
444 | int dst_cnt, int src_cnt) | ||
445 | { | ||
446 | struct dma_cdb *hw_desc; | ||
447 | struct ppc440spe_adma_desc_slot *iter; | ||
448 | int i = 0; | ||
449 | u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST : | ||
450 | DMA_CDB_OPC_MV_SG1_SG2; | ||
451 | /* | ||
452 | * Initialize starting from 2nd or 3rd descriptor dependent | ||
453 | * on dst_cnt. First one or two slots are for cloning P | ||
454 | * and/or Q to chan->pdest and/or chan->qdest as we have | ||
455 | * to preserve original P/Q. | ||
456 | */ | ||
457 | iter = list_first_entry(&desc->group_list, | ||
458 | struct ppc440spe_adma_desc_slot, chain_node); | ||
459 | iter = list_entry(iter->chain_node.next, | ||
460 | struct ppc440spe_adma_desc_slot, chain_node); | ||
461 | |||
462 | if (dst_cnt > 1) { | ||
463 | iter = list_entry(iter->chain_node.next, | ||
464 | struct ppc440spe_adma_desc_slot, chain_node); | ||
465 | } | ||
466 | /* initialize each source descriptor in chain */ | ||
467 | list_for_each_entry_from(iter, &desc->group_list, chain_node) { | ||
468 | hw_desc = iter->hw_desc; | ||
469 | memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); | ||
470 | iter->src_cnt = 0; | ||
471 | iter->dst_cnt = 0; | ||
472 | |||
473 | /* This is a ZERO_SUM operation: | ||
474 | * - <src_cnt> descriptors starting from 2nd or 3rd | ||
475 | * descriptor are for GF-XOR operations; | ||
476 | * - remaining <dst_cnt> descriptors are for checking the result | ||
477 | */ | ||
478 | if (i++ < src_cnt) | ||
479 | /* MV_SG1_SG2 if only Q is being verified | ||
480 | * MULTICAST if both P and Q are being verified | ||
481 | */ | ||
482 | hw_desc->opc = dopc; | ||
483 | else | ||
484 | /* DMA_CDB_OPC_DCHECK128 operation */ | ||
485 | hw_desc->opc = DMA_CDB_OPC_DCHECK128; | ||
486 | |||
487 | if (likely(!list_is_last(&iter->chain_node, | ||
488 | &desc->group_list))) { | ||
489 | /* set 'next' pointer */ | ||
490 | iter->hw_next = list_entry(iter->chain_node.next, | ||
491 | struct ppc440spe_adma_desc_slot, | ||
492 | chain_node); | ||
493 | } else { | ||
494 | /* this is the last descriptor. | ||
495 | * this slot will be pasted from ADMA level | ||
496 | * each time it wants to configure parameters | ||
497 | * of the transaction (src, dst, ...) | ||
498 | */ | ||
499 | iter->hw_next = NULL; | ||
500 | /* always enable interrupt generation since we get | ||
501 | * the status of pqzero from the handler | ||
502 | */ | ||
503 | set_bit(PPC440SPE_DESC_INT, &iter->flags); | ||
504 | } | ||
505 | } | ||
506 | desc->src_cnt = src_cnt; | ||
507 | desc->dst_cnt = dst_cnt; | ||
508 | } | ||
509 | |||
510 | /** | ||
511 | * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation | ||
512 | */ | ||
513 | static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc, | ||
514 | unsigned long flags) | ||
515 | { | ||
516 | struct dma_cdb *hw_desc = desc->hw_desc; | ||
517 | |||
518 | memset(desc->hw_desc, 0, sizeof(struct dma_cdb)); | ||
519 | desc->hw_next = NULL; | ||
520 | desc->src_cnt = 1; | ||
521 | desc->dst_cnt = 1; | ||
522 | |||
523 | if (flags & DMA_PREP_INTERRUPT) | ||
524 | set_bit(PPC440SPE_DESC_INT, &desc->flags); | ||
525 | else | ||
526 | clear_bit(PPC440SPE_DESC_INT, &desc->flags); | ||
527 | |||
528 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | ||
529 | } | ||
530 | |||
531 | /** | ||
532 | * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation | ||
533 | */ | ||
534 | static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc, | ||
535 | int value, unsigned long flags) | ||
536 | { | ||
537 | struct dma_cdb *hw_desc = desc->hw_desc; | ||
538 | |||
539 | memset(desc->hw_desc, 0, sizeof(struct dma_cdb)); | ||
540 | desc->hw_next = NULL; | ||
541 | desc->src_cnt = 1; | ||
542 | desc->dst_cnt = 1; | ||
543 | |||
544 | if (flags & DMA_PREP_INTERRUPT) | ||
545 | set_bit(PPC440SPE_DESC_INT, &desc->flags); | ||
546 | else | ||
547 | clear_bit(PPC440SPE_DESC_INT, &desc->flags); | ||
548 | |||
549 | hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value); | ||
550 | hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value); | ||
551 | hw_desc->opc = DMA_CDB_OPC_DFILL128; | ||
552 | } | ||
553 | |||
554 | /** | ||
555 | * ppc440spe_desc_set_src_addr - set source address into the descriptor | ||
556 | */ | ||
557 | static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc, | ||
558 | struct ppc440spe_adma_chan *chan, | ||
559 | int src_idx, dma_addr_t addrh, | ||
560 | dma_addr_t addrl) | ||
561 | { | ||
562 | struct dma_cdb *dma_hw_desc; | ||
563 | struct xor_cb *xor_hw_desc; | ||
564 | phys_addr_t addr64, tmplow, tmphi; | ||
565 | |||
566 | switch (chan->device->id) { | ||
567 | case PPC440SPE_DMA0_ID: | ||
568 | case PPC440SPE_DMA1_ID: | ||
569 | if (!addrh) { | ||
570 | addr64 = addrl; | ||
571 | tmphi = (addr64 >> 32); | ||
572 | tmplow = (addr64 & 0xFFFFFFFF); | ||
573 | } else { | ||
574 | tmphi = addrh; | ||
575 | tmplow = addrl; | ||
576 | } | ||
577 | dma_hw_desc = desc->hw_desc; | ||
578 | dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow); | ||
579 | dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi); | ||
580 | break; | ||
581 | case PPC440SPE_XOR_ID: | ||
582 | xor_hw_desc = desc->hw_desc; | ||
583 | xor_hw_desc->ops[src_idx].l = addrl; | ||
584 | xor_hw_desc->ops[src_idx].h |= addrh; | ||
585 | break; | ||
586 | } | ||
587 | } | ||
588 | |||
589 | /** | ||
590 | * ppc440spe_desc_set_src_mult - set source address mult into the descriptor | ||
591 | */ | ||
592 | static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc, | ||
593 | struct ppc440spe_adma_chan *chan, u32 mult_index, | ||
594 | int sg_index, unsigned char mult_value) | ||
595 | { | ||
596 | struct dma_cdb *dma_hw_desc; | ||
597 | struct xor_cb *xor_hw_desc; | ||
598 | u32 *psgu; | ||
599 | |||
600 | switch (chan->device->id) { | ||
601 | case PPC440SPE_DMA0_ID: | ||
602 | case PPC440SPE_DMA1_ID: | ||
603 | dma_hw_desc = desc->hw_desc; | ||
604 | |||
605 | switch (sg_index) { | ||
606 | /* for RXOR operations set multiplier | ||
607 | * into source cued address | ||
608 | */ | ||
609 | case DMA_CDB_SG_SRC: | ||
610 | psgu = &dma_hw_desc->sg1u; | ||
611 | break; | ||
612 | /* for WXOR operations set multiplier | ||
613 | * into destination cued address(es) | ||
614 | */ | ||
615 | case DMA_CDB_SG_DST1: | ||
616 | psgu = &dma_hw_desc->sg2u; | ||
617 | break; | ||
618 | case DMA_CDB_SG_DST2: | ||
619 | psgu = &dma_hw_desc->sg3u; | ||
620 | break; | ||
621 | default: | ||
622 | BUG(); | ||
623 | } | ||
624 | |||
625 | *psgu |= cpu_to_le32(mult_value << mult_index); | ||
626 | break; | ||
627 | case PPC440SPE_XOR_ID: | ||
628 | xor_hw_desc = desc->hw_desc; | ||
629 | break; | ||
630 | default: | ||
631 | BUG(); | ||
632 | } | ||
633 | } | ||
634 | |||
635 | /** | ||
636 | * ppc440spe_desc_set_dest_addr - set destination address into the descriptor | ||
637 | */ | ||
638 | static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc, | ||
639 | struct ppc440spe_adma_chan *chan, | ||
640 | dma_addr_t addrh, dma_addr_t addrl, | ||
641 | u32 dst_idx) | ||
642 | { | ||
643 | struct dma_cdb *dma_hw_desc; | ||
644 | struct xor_cb *xor_hw_desc; | ||
645 | phys_addr_t addr64, tmphi, tmplow; | ||
646 | u32 *psgu, *psgl; | ||
647 | |||
648 | switch (chan->device->id) { | ||
649 | case PPC440SPE_DMA0_ID: | ||
650 | case PPC440SPE_DMA1_ID: | ||
651 | if (!addrh) { | ||
652 | addr64 = addrl; | ||
653 | tmphi = (addr64 >> 32); | ||
654 | tmplow = (addr64 & 0xFFFFFFFF); | ||
655 | } else { | ||
656 | tmphi = addrh; | ||
657 | tmplow = addrl; | ||
658 | } | ||
659 | dma_hw_desc = desc->hw_desc; | ||
660 | |||
661 | psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u; | ||
662 | psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l; | ||
663 | |||
664 | *psgl = cpu_to_le32((u32)tmplow); | ||
665 | *psgu |= cpu_to_le32((u32)tmphi); | ||
666 | break; | ||
667 | case PPC440SPE_XOR_ID: | ||
668 | xor_hw_desc = desc->hw_desc; | ||
669 | xor_hw_desc->cbtal = addrl; | ||
670 | xor_hw_desc->cbtah |= addrh; | ||
671 | break; | ||
672 | } | ||
673 | } | ||
674 | |||
675 | /** | ||
676 | * ppc440spe_desc_set_byte_count - set number of data bytes involved | ||
677 | * into the operation | ||
678 | */ | ||
679 | static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc, | ||
680 | struct ppc440spe_adma_chan *chan, | ||
681 | u32 byte_count) | ||
682 | { | ||
683 | struct dma_cdb *dma_hw_desc; | ||
684 | struct xor_cb *xor_hw_desc; | ||
685 | |||
686 | switch (chan->device->id) { | ||
687 | case PPC440SPE_DMA0_ID: | ||
688 | case PPC440SPE_DMA1_ID: | ||
689 | dma_hw_desc = desc->hw_desc; | ||
690 | dma_hw_desc->cnt = cpu_to_le32(byte_count); | ||
691 | break; | ||
692 | case PPC440SPE_XOR_ID: | ||
693 | xor_hw_desc = desc->hw_desc; | ||
694 | xor_hw_desc->cbbc = byte_count; | ||
695 | break; | ||
696 | } | ||
697 | } | ||
698 | |||
699 | /** | ||
700 | * ppc440spe_desc_set_rxor_block_size - set RXOR block size | ||
701 | */ | ||
702 | static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count) | ||
703 | { | ||
704 | /* assume that byte_count is aligned on the 512-boundary; | ||
705 | * thus write it directly to the register (bits 23:31 are | ||
706 | * reserved there). | ||
707 | */ | ||
708 | dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count); | ||
709 | } | ||
710 | |||
711 | /** | ||
712 | * ppc440spe_desc_set_dcheck - set CHECK pattern | ||
713 | */ | ||
714 | static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc, | ||
715 | struct ppc440spe_adma_chan *chan, u8 *qword) | ||
716 | { | ||
717 | struct dma_cdb *dma_hw_desc; | ||
718 | |||
719 | switch (chan->device->id) { | ||
720 | case PPC440SPE_DMA0_ID: | ||
721 | case PPC440SPE_DMA1_ID: | ||
722 | dma_hw_desc = desc->hw_desc; | ||
723 | iowrite32(qword[0], &dma_hw_desc->sg3l); | ||
724 | iowrite32(qword[4], &dma_hw_desc->sg3u); | ||
725 | iowrite32(qword[8], &dma_hw_desc->sg2l); | ||
726 | iowrite32(qword[12], &dma_hw_desc->sg2u); | ||
727 | break; | ||
728 | default: | ||
729 | BUG(); | ||
730 | } | ||
731 | } | ||
732 | |||
733 | /** | ||
734 | * ppc440spe_xor_set_link - set link address in xor CB | ||
735 | */ | ||
736 | static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc, | ||
737 | struct ppc440spe_adma_desc_slot *next_desc) | ||
738 | { | ||
739 | struct xor_cb *xor_hw_desc = prev_desc->hw_desc; | ||
740 | |||
741 | if (unlikely(!next_desc || !(next_desc->phys))) { | ||
742 | printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n", | ||
743 | __func__, next_desc, | ||
744 | next_desc ? next_desc->phys : 0); | ||
745 | BUG(); | ||
746 | } | ||
747 | |||
748 | xor_hw_desc->cbs = 0; | ||
749 | xor_hw_desc->cblal = next_desc->phys; | ||
750 | xor_hw_desc->cblah = 0; | ||
751 | xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT; | ||
752 | } | ||
753 | |||
754 | /** | ||
755 | * ppc440spe_desc_set_link - set the address of descriptor following this | ||
756 | * descriptor in chain | ||
757 | */ | ||
758 | static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan, | ||
759 | struct ppc440spe_adma_desc_slot *prev_desc, | ||
760 | struct ppc440spe_adma_desc_slot *next_desc) | ||
761 | { | ||
762 | unsigned long flags; | ||
763 | struct ppc440spe_adma_desc_slot *tail = next_desc; | ||
764 | |||
765 | if (unlikely(!prev_desc || !next_desc || | ||
766 | (prev_desc->hw_next && prev_desc->hw_next != next_desc))) { | ||
767 | /* If previous next is overwritten something is wrong. | ||
768 | * though we may refetch from append to initiate list | ||
769 | * processing; in this case - it's ok. | ||
770 | */ | ||
771 | printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; " | ||
772 | "prev->hw_next=0x%p\n", __func__, prev_desc, | ||
773 | next_desc, prev_desc ? prev_desc->hw_next : 0); | ||
774 | BUG(); | ||
775 | } | ||
776 | |||
777 | local_irq_save(flags); | ||
778 | |||
779 | /* do s/w chaining both for DMA and XOR descriptors */ | ||
780 | prev_desc->hw_next = next_desc; | ||
781 | |||
782 | switch (chan->device->id) { | ||
783 | case PPC440SPE_DMA0_ID: | ||
784 | case PPC440SPE_DMA1_ID: | ||
785 | break; | ||
786 | case PPC440SPE_XOR_ID: | ||
787 | /* bind descriptor to the chain */ | ||
788 | while (tail->hw_next) | ||
789 | tail = tail->hw_next; | ||
790 | xor_last_linked = tail; | ||
791 | |||
792 | if (prev_desc == xor_last_submit) | ||
793 | /* do not link to the last submitted CB */ | ||
794 | break; | ||
795 | ppc440spe_xor_set_link(prev_desc, next_desc); | ||
796 | break; | ||
797 | } | ||
798 | |||
799 | local_irq_restore(flags); | ||
800 | } | ||
801 | |||
802 | /** | ||
803 | * ppc440spe_desc_get_src_addr - extract the source address from the descriptor | ||
804 | */ | ||
805 | static u32 ppc440spe_desc_get_src_addr(struct ppc440spe_adma_desc_slot *desc, | ||
806 | struct ppc440spe_adma_chan *chan, int src_idx) | ||
807 | { | ||
808 | struct dma_cdb *dma_hw_desc; | ||
809 | struct xor_cb *xor_hw_desc; | ||
810 | |||
811 | switch (chan->device->id) { | ||
812 | case PPC440SPE_DMA0_ID: | ||
813 | case PPC440SPE_DMA1_ID: | ||
814 | dma_hw_desc = desc->hw_desc; | ||
815 | /* May have 0, 1, 2, or 3 sources */ | ||
816 | switch (dma_hw_desc->opc) { | ||
817 | case DMA_CDB_OPC_NO_OP: | ||
818 | case DMA_CDB_OPC_DFILL128: | ||
819 | return 0; | ||
820 | case DMA_CDB_OPC_DCHECK128: | ||
821 | if (unlikely(src_idx)) { | ||
822 | printk(KERN_ERR "%s: try to get %d source for" | ||
823 | " DCHECK128\n", __func__, src_idx); | ||
824 | BUG(); | ||
825 | } | ||
826 | return le32_to_cpu(dma_hw_desc->sg1l); | ||
827 | case DMA_CDB_OPC_MULTICAST: | ||
828 | case DMA_CDB_OPC_MV_SG1_SG2: | ||
829 | if (unlikely(src_idx > 2)) { | ||
830 | printk(KERN_ERR "%s: try to get %d source from" | ||
831 | " DMA descr\n", __func__, src_idx); | ||
832 | BUG(); | ||
833 | } | ||
834 | if (src_idx) { | ||
835 | if (le32_to_cpu(dma_hw_desc->sg1u) & | ||
836 | DMA_CUED_XOR_WIN_MSK) { | ||
837 | u8 region; | ||
838 | |||
839 | if (src_idx == 1) | ||
840 | return le32_to_cpu( | ||
841 | dma_hw_desc->sg1l) + | ||
842 | desc->unmap_len; | ||
843 | |||
844 | region = (le32_to_cpu( | ||
845 | dma_hw_desc->sg1u)) >> | ||
846 | DMA_CUED_REGION_OFF; | ||
847 | |||
848 | region &= DMA_CUED_REGION_MSK; | ||
849 | switch (region) { | ||
850 | case DMA_RXOR123: | ||
851 | return le32_to_cpu( | ||
852 | dma_hw_desc->sg1l) + | ||
853 | (desc->unmap_len << 1); | ||
854 | case DMA_RXOR124: | ||
855 | return le32_to_cpu( | ||
856 | dma_hw_desc->sg1l) + | ||
857 | (desc->unmap_len * 3); | ||
858 | case DMA_RXOR125: | ||
859 | return le32_to_cpu( | ||
860 | dma_hw_desc->sg1l) + | ||
861 | (desc->unmap_len << 2); | ||
862 | default: | ||
863 | printk(KERN_ERR | ||
864 | "%s: try to" | ||
865 | " get src3 for region %02x" | ||
866 | "PPC440SPE_DESC_RXOR12?\n", | ||
867 | __func__, region); | ||
868 | BUG(); | ||
869 | } | ||
870 | } else { | ||
871 | printk(KERN_ERR | ||
872 | "%s: try to get %d" | ||
873 | " source for non-cued descr\n", | ||
874 | __func__, src_idx); | ||
875 | BUG(); | ||
876 | } | ||
877 | } | ||
878 | return le32_to_cpu(dma_hw_desc->sg1l); | ||
879 | default: | ||
880 | printk(KERN_ERR "%s: unknown OPC 0x%02x\n", | ||
881 | __func__, dma_hw_desc->opc); | ||
882 | BUG(); | ||
883 | } | ||
884 | return le32_to_cpu(dma_hw_desc->sg1l); | ||
885 | case PPC440SPE_XOR_ID: | ||
886 | /* May have up to 16 sources */ | ||
887 | xor_hw_desc = desc->hw_desc; | ||
888 | return xor_hw_desc->ops[src_idx].l; | ||
889 | } | ||
890 | return 0; | ||
891 | } | ||
892 | |||
893 | /** | ||
894 | * ppc440spe_desc_get_dest_addr - extract the destination address from the | ||
895 | * descriptor | ||
896 | */ | ||
897 | static u32 ppc440spe_desc_get_dest_addr(struct ppc440spe_adma_desc_slot *desc, | ||
898 | struct ppc440spe_adma_chan *chan, int idx) | ||
899 | { | ||
900 | struct dma_cdb *dma_hw_desc; | ||
901 | struct xor_cb *xor_hw_desc; | ||
902 | |||
903 | switch (chan->device->id) { | ||
904 | case PPC440SPE_DMA0_ID: | ||
905 | case PPC440SPE_DMA1_ID: | ||
906 | dma_hw_desc = desc->hw_desc; | ||
907 | |||
908 | if (likely(!idx)) | ||
909 | return le32_to_cpu(dma_hw_desc->sg2l); | ||
910 | return le32_to_cpu(dma_hw_desc->sg3l); | ||
911 | case PPC440SPE_XOR_ID: | ||
912 | xor_hw_desc = desc->hw_desc; | ||
913 | return xor_hw_desc->cbtal; | ||
914 | } | ||
915 | return 0; | ||
916 | } | ||
917 | |||
918 | /** | ||
919 | * ppc440spe_desc_get_src_num - extract the number of source addresses from | ||
920 | * the descriptor | ||
921 | */ | ||
922 | static u32 ppc440spe_desc_get_src_num(struct ppc440spe_adma_desc_slot *desc, | ||
923 | struct ppc440spe_adma_chan *chan) | ||
924 | { | ||
925 | struct dma_cdb *dma_hw_desc; | ||
926 | struct xor_cb *xor_hw_desc; | ||
927 | |||
928 | switch (chan->device->id) { | ||
929 | case PPC440SPE_DMA0_ID: | ||
930 | case PPC440SPE_DMA1_ID: | ||
931 | dma_hw_desc = desc->hw_desc; | ||
932 | |||
933 | switch (dma_hw_desc->opc) { | ||
934 | case DMA_CDB_OPC_NO_OP: | ||
935 | case DMA_CDB_OPC_DFILL128: | ||
936 | return 0; | ||
937 | case DMA_CDB_OPC_DCHECK128: | ||
938 | return 1; | ||
939 | case DMA_CDB_OPC_MV_SG1_SG2: | ||
940 | case DMA_CDB_OPC_MULTICAST: | ||
941 | /* | ||
942 | * Only for RXOR operations we have more than | ||
943 | * one source | ||
944 | */ | ||
945 | if (le32_to_cpu(dma_hw_desc->sg1u) & | ||
946 | DMA_CUED_XOR_WIN_MSK) { | ||
947 | /* RXOR op, there are 2 or 3 sources */ | ||
948 | if (((le32_to_cpu(dma_hw_desc->sg1u) >> | ||
949 | DMA_CUED_REGION_OFF) & | ||
950 | DMA_CUED_REGION_MSK) == DMA_RXOR12) { | ||
951 | /* RXOR 1-2 */ | ||
952 | return 2; | ||
953 | } else { | ||
954 | /* RXOR 1-2-3/1-2-4/1-2-5 */ | ||
955 | return 3; | ||
956 | } | ||
957 | } | ||
958 | return 1; | ||
959 | default: | ||
960 | printk(KERN_ERR "%s: unknown OPC 0x%02x\n", | ||
961 | __func__, dma_hw_desc->opc); | ||
962 | BUG(); | ||
963 | } | ||
964 | case PPC440SPE_XOR_ID: | ||
965 | /* up to 16 sources */ | ||
966 | xor_hw_desc = desc->hw_desc; | ||
967 | return xor_hw_desc->cbc & XOR_CDCR_OAC_MSK; | ||
968 | default: | ||
969 | BUG(); | ||
970 | } | ||
971 | return 0; | ||
972 | } | ||
973 | |||
974 | /** | ||
975 | * ppc440spe_desc_get_dst_num - get the number of destination addresses in | ||
976 | * this descriptor | ||
977 | */ | ||
978 | static u32 ppc440spe_desc_get_dst_num(struct ppc440spe_adma_desc_slot *desc, | ||
979 | struct ppc440spe_adma_chan *chan) | ||
980 | { | ||
981 | struct dma_cdb *dma_hw_desc; | ||
982 | |||
983 | switch (chan->device->id) { | ||
984 | case PPC440SPE_DMA0_ID: | ||
985 | case PPC440SPE_DMA1_ID: | ||
986 | /* May be 1 or 2 destinations */ | ||
987 | dma_hw_desc = desc->hw_desc; | ||
988 | switch (dma_hw_desc->opc) { | ||
989 | case DMA_CDB_OPC_NO_OP: | ||
990 | case DMA_CDB_OPC_DCHECK128: | ||
991 | return 0; | ||
992 | case DMA_CDB_OPC_MV_SG1_SG2: | ||
993 | case DMA_CDB_OPC_DFILL128: | ||
994 | return 1; | ||
995 | case DMA_CDB_OPC_MULTICAST: | ||
996 | if (desc->dst_cnt == 2) | ||
997 | return 2; | ||
998 | else | ||
999 | return 1; | ||
1000 | default: | ||
1001 | printk(KERN_ERR "%s: unknown OPC 0x%02x\n", | ||
1002 | __func__, dma_hw_desc->opc); | ||
1003 | BUG(); | ||
1004 | } | ||
1005 | case PPC440SPE_XOR_ID: | ||
1006 | /* Always only 1 destination */ | ||
1007 | return 1; | ||
1008 | default: | ||
1009 | BUG(); | ||
1010 | } | ||
1011 | return 0; | ||
1012 | } | ||
1013 | |||
1014 | /** | ||
1015 | * ppc440spe_desc_get_link - get the address of the descriptor that | ||
1016 | * follows this one | ||
1017 | */ | ||
1018 | static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc, | ||
1019 | struct ppc440spe_adma_chan *chan) | ||
1020 | { | ||
1021 | if (!desc->hw_next) | ||
1022 | return 0; | ||
1023 | |||
1024 | return desc->hw_next->phys; | ||
1025 | } | ||
1026 | |||
1027 | /** | ||
1028 | * ppc440spe_desc_is_aligned - check alignment | ||
1029 | */ | ||
1030 | static inline int ppc440spe_desc_is_aligned( | ||
1031 | struct ppc440spe_adma_desc_slot *desc, int num_slots) | ||
1032 | { | ||
1033 | return (desc->idx & (num_slots - 1)) ? 0 : 1; | ||
1034 | } | ||
1035 | |||
1036 | /** | ||
1037 | * ppc440spe_chan_xor_slot_count - get the number of slots necessary for | ||
1038 | * XOR operation | ||
1039 | */ | ||
1040 | static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt, | ||
1041 | int *slots_per_op) | ||
1042 | { | ||
1043 | int slot_cnt; | ||
1044 | |||
1045 | /* each XOR descriptor provides up to 16 source operands */ | ||
1046 | slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS; | ||
1047 | |||
1048 | if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT)) | ||
1049 | return slot_cnt; | ||
1050 | |||
1051 | printk(KERN_ERR "%s: len %d > max %d !!\n", | ||
1052 | __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT); | ||
1053 | BUG(); | ||
1054 | return slot_cnt; | ||
1055 | } | ||
1056 | |||
1057 | /** | ||
1058 | * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for | ||
1059 | * DMA2 PQ operation | ||
1060 | */ | ||
1061 | static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs, | ||
1062 | int src_cnt, size_t len) | ||
1063 | { | ||
1064 | signed long long order = 0; | ||
1065 | int state = 0; | ||
1066 | int addr_count = 0; | ||
1067 | int i; | ||
1068 | for (i = 1; i < src_cnt; i++) { | ||
1069 | dma_addr_t cur_addr = srcs[i]; | ||
1070 | dma_addr_t old_addr = srcs[i-1]; | ||
1071 | switch (state) { | ||
1072 | case 0: | ||
1073 | if (cur_addr == old_addr + len) { | ||
1074 | /* direct RXOR */ | ||
1075 | order = 1; | ||
1076 | state = 1; | ||
1077 | if (i == src_cnt-1) | ||
1078 | addr_count++; | ||
1079 | } else if (old_addr == cur_addr + len) { | ||
1080 | /* reverse RXOR */ | ||
1081 | order = -1; | ||
1082 | state = 1; | ||
1083 | if (i == src_cnt-1) | ||
1084 | addr_count++; | ||
1085 | } else { | ||
1086 | state = 3; | ||
1087 | } | ||
1088 | break; | ||
1089 | case 1: | ||
1090 | if (i == src_cnt-2 || (order == -1 | ||
1091 | && cur_addr != old_addr - len)) { | ||
1092 | order = 0; | ||
1093 | state = 0; | ||
1094 | addr_count++; | ||
1095 | } else if (cur_addr == old_addr + len*order) { | ||
1096 | state = 2; | ||
1097 | if (i == src_cnt-1) | ||
1098 | addr_count++; | ||
1099 | } else if (cur_addr == old_addr + 2*len) { | ||
1100 | state = 2; | ||
1101 | if (i == src_cnt-1) | ||
1102 | addr_count++; | ||
1103 | } else if (cur_addr == old_addr + 3*len) { | ||
1104 | state = 2; | ||
1105 | if (i == src_cnt-1) | ||
1106 | addr_count++; | ||
1107 | } else { | ||
1108 | order = 0; | ||
1109 | state = 0; | ||
1110 | addr_count++; | ||
1111 | } | ||
1112 | break; | ||
1113 | case 2: | ||
1114 | order = 0; | ||
1115 | state = 0; | ||
1116 | addr_count++; | ||
1117 | break; | ||
1118 | } | ||
1119 | if (state == 3) | ||
1120 | break; | ||
1121 | } | ||
1122 | if (src_cnt <= 1 || (state != 1 && state != 2)) { | ||
1123 | pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n", | ||
1124 | __func__, src_cnt, state, addr_count, order); | ||
1125 | for (i = 0; i < src_cnt; i++) | ||
1126 | pr_err("\t[%d] 0x%llx \n", i, srcs[i]); | ||
1127 | BUG(); | ||
1128 | } | ||
1129 | |||
1130 | return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS; | ||
1131 | } | ||
1132 | |||
1133 | |||
1134 | /****************************************************************************** | ||
1135 | * ADMA channel low-level routines | ||
1136 | ******************************************************************************/ | ||
1137 | |||
1138 | static u32 | ||
1139 | ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan); | ||
1140 | static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan); | ||
1141 | |||
1142 | /** | ||
1143 | * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine | ||
1144 | */ | ||
1145 | static void ppc440spe_adma_device_clear_eot_status( | ||
1146 | struct ppc440spe_adma_chan *chan) | ||
1147 | { | ||
1148 | struct dma_regs *dma_reg; | ||
1149 | struct xor_regs *xor_reg; | ||
1150 | u8 *p = chan->device->dma_desc_pool_virt; | ||
1151 | struct dma_cdb *cdb; | ||
1152 | u32 rv, i; | ||
1153 | |||
1154 | switch (chan->device->id) { | ||
1155 | case PPC440SPE_DMA0_ID: | ||
1156 | case PPC440SPE_DMA1_ID: | ||
1157 | /* read FIFO to ack */ | ||
1158 | dma_reg = chan->device->dma_reg; | ||
1159 | while ((rv = ioread32(&dma_reg->csfpl))) { | ||
1160 | i = rv & DMA_CDB_ADDR_MSK; | ||
1161 | cdb = (struct dma_cdb *)&p[i - | ||
1162 | (u32)chan->device->dma_desc_pool]; | ||
1163 | |||
1164 | /* Clear opcode to ack. This is necessary for | ||
1165 | * ZeroSum operations only | ||
1166 | */ | ||
1167 | cdb->opc = 0; | ||
1168 | |||
1169 | if (test_bit(PPC440SPE_RXOR_RUN, | ||
1170 | &ppc440spe_rxor_state)) { | ||
1171 | /* probably this is a completed RXOR op, | ||
1172 | * get pointer to CDB using the fact that | ||
1173 | * physical and virtual addresses of CDB | ||
1174 | * in pools have the same offsets | ||
1175 | */ | ||
1176 | if (le32_to_cpu(cdb->sg1u) & | ||
1177 | DMA_CUED_XOR_BASE) { | ||
1178 | /* this is a RXOR */ | ||
1179 | clear_bit(PPC440SPE_RXOR_RUN, | ||
1180 | &ppc440spe_rxor_state); | ||
1181 | } | ||
1182 | } | ||
1183 | |||
1184 | if (rv & DMA_CDB_STATUS_MSK) { | ||
1185 | /* ZeroSum check failed | ||
1186 | */ | ||
1187 | struct ppc440spe_adma_desc_slot *iter; | ||
1188 | dma_addr_t phys = rv & ~DMA_CDB_MSK; | ||
1189 | |||
1190 | /* | ||
1191 | * Update the status of corresponding | ||
1192 | * descriptor. | ||
1193 | */ | ||
1194 | list_for_each_entry(iter, &chan->chain, | ||
1195 | chain_node) { | ||
1196 | if (iter->phys == phys) | ||
1197 | break; | ||
1198 | } | ||
1199 | /* | ||
1200 | * if cannot find the corresponding | ||
1201 | * slot it's a bug | ||
1202 | */ | ||
1203 | BUG_ON(&iter->chain_node == &chan->chain); | ||
1204 | |||
1205 | if (iter->xor_check_result) { | ||
1206 | if (test_bit(PPC440SPE_DESC_PCHECK, | ||
1207 | &iter->flags)) { | ||
1208 | *iter->xor_check_result |= | ||
1209 | SUM_CHECK_P_RESULT; | ||
1210 | } else | ||
1211 | if (test_bit(PPC440SPE_DESC_QCHECK, | ||
1212 | &iter->flags)) { | ||
1213 | *iter->xor_check_result |= | ||
1214 | SUM_CHECK_Q_RESULT; | ||
1215 | } else | ||
1216 | BUG(); | ||
1217 | } | ||
1218 | } | ||
1219 | } | ||
1220 | |||
1221 | rv = ioread32(&dma_reg->dsts); | ||
1222 | if (rv) { | ||
1223 | pr_err("DMA%d err status: 0x%x\n", | ||
1224 | chan->device->id, rv); | ||
1225 | /* write back to clear */ | ||
1226 | iowrite32(rv, &dma_reg->dsts); | ||
1227 | } | ||
1228 | break; | ||
1229 | case PPC440SPE_XOR_ID: | ||
1230 | /* reset status bits to ack */ | ||
1231 | xor_reg = chan->device->xor_reg; | ||
1232 | rv = ioread32be(&xor_reg->sr); | ||
1233 | iowrite32be(rv, &xor_reg->sr); | ||
1234 | |||
1235 | if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) { | ||
1236 | if (rv & XOR_IE_RPTIE_BIT) { | ||
1237 | /* Read PLB Timeout Error. | ||
1238 | * Try to resubmit the CB | ||
1239 | */ | ||
1240 | u32 val = ioread32be(&xor_reg->ccbalr); | ||
1241 | |||
1242 | iowrite32be(val, &xor_reg->cblalr); | ||
1243 | |||
1244 | val = ioread32be(&xor_reg->crsr); | ||
1245 | iowrite32be(val | XOR_CRSR_XAE_BIT, | ||
1246 | &xor_reg->crsr); | ||
1247 | } else | ||
1248 | pr_err("XOR ERR 0x%x status\n", rv); | ||
1249 | break; | ||
1250 | } | ||
1251 | |||
1252 | /* if the XORcore is idle, but there are unprocessed CBs | ||
1253 | * then refetch the s/w chain here | ||
1254 | */ | ||
1255 | if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) && | ||
1256 | do_xor_refetch) | ||
1257 | ppc440spe_chan_append(chan); | ||
1258 | break; | ||
1259 | } | ||
1260 | } | ||
1261 | |||
1262 | /** | ||
1263 | * ppc440spe_chan_is_busy - get the channel status | ||
1264 | */ | ||
1265 | static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan) | ||
1266 | { | ||
1267 | struct dma_regs *dma_reg; | ||
1268 | struct xor_regs *xor_reg; | ||
1269 | int busy = 0; | ||
1270 | |||
1271 | switch (chan->device->id) { | ||
1272 | case PPC440SPE_DMA0_ID: | ||
1273 | case PPC440SPE_DMA1_ID: | ||
1274 | dma_reg = chan->device->dma_reg; | ||
1275 | /* if command FIFO's head and tail pointers are equal and | ||
1276 | * status tail is the same as command, then channel is free | ||
1277 | */ | ||
1278 | if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) || | ||
1279 | ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp)) | ||
1280 | busy = 1; | ||
1281 | break; | ||
1282 | case PPC440SPE_XOR_ID: | ||
1283 | /* use the special status bit for the XORcore | ||
1284 | */ | ||
1285 | xor_reg = chan->device->xor_reg; | ||
1286 | busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0; | ||
1287 | break; | ||
1288 | } | ||
1289 | |||
1290 | return busy; | ||
1291 | } | ||
1292 | |||
1293 | /** | ||
1294 | * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain | ||
1295 | */ | ||
1296 | static void ppc440spe_chan_set_first_xor_descriptor( | ||
1297 | struct ppc440spe_adma_chan *chan, | ||
1298 | struct ppc440spe_adma_desc_slot *next_desc) | ||
1299 | { | ||
1300 | struct xor_regs *xor_reg = chan->device->xor_reg; | ||
1301 | |||
1302 | if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) | ||
1303 | printk(KERN_INFO "%s: Warn: XORcore is running " | ||
1304 | "when try to set the first CDB!\n", | ||
1305 | __func__); | ||
1306 | |||
1307 | xor_last_submit = xor_last_linked = next_desc; | ||
1308 | |||
1309 | iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr); | ||
1310 | |||
1311 | iowrite32be(next_desc->phys, &xor_reg->cblalr); | ||
1312 | iowrite32be(0, &xor_reg->cblahr); | ||
1313 | iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT, | ||
1314 | &xor_reg->cbcr); | ||
1315 | |||
1316 | chan->hw_chain_inited = 1; | ||
1317 | } | ||
1318 | |||
1319 | /** | ||
1320 | * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO. | ||
1321 | * called with irqs disabled | ||
1322 | */ | ||
1323 | static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan, | ||
1324 | struct ppc440spe_adma_desc_slot *desc) | ||
1325 | { | ||
1326 | u32 pcdb; | ||
1327 | struct dma_regs *dma_reg = chan->device->dma_reg; | ||
1328 | |||
1329 | pcdb = desc->phys; | ||
1330 | if (!test_bit(PPC440SPE_DESC_INT, &desc->flags)) | ||
1331 | pcdb |= DMA_CDB_NO_INT; | ||
1332 | |||
1333 | chan_last_sub[chan->device->id] = desc; | ||
1334 | |||
1335 | ADMA_LL_DBG(print_cb(chan, desc->hw_desc)); | ||
1336 | |||
1337 | iowrite32(pcdb, &dma_reg->cpfpl); | ||
1338 | } | ||
1339 | |||
1340 | /** | ||
1341 | * ppc440spe_chan_append - update the h/w chain in the channel | ||
1342 | */ | ||
1343 | static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan) | ||
1344 | { | ||
1345 | struct xor_regs *xor_reg; | ||
1346 | struct ppc440spe_adma_desc_slot *iter; | ||
1347 | struct xor_cb *xcb; | ||
1348 | u32 cur_desc; | ||
1349 | unsigned long flags; | ||
1350 | |||
1351 | local_irq_save(flags); | ||
1352 | |||
1353 | switch (chan->device->id) { | ||
1354 | case PPC440SPE_DMA0_ID: | ||
1355 | case PPC440SPE_DMA1_ID: | ||
1356 | cur_desc = ppc440spe_chan_get_current_descriptor(chan); | ||
1357 | |||
1358 | if (likely(cur_desc)) { | ||
1359 | iter = chan_last_sub[chan->device->id]; | ||
1360 | BUG_ON(!iter); | ||
1361 | } else { | ||
1362 | /* first peer */ | ||
1363 | iter = chan_first_cdb[chan->device->id]; | ||
1364 | BUG_ON(!iter); | ||
1365 | ppc440spe_dma_put_desc(chan, iter); | ||
1366 | chan->hw_chain_inited = 1; | ||
1367 | } | ||
1368 | |||
1369 | /* is there something new to append */ | ||
1370 | if (!iter->hw_next) | ||
1371 | break; | ||
1372 | |||
1373 | /* flush descriptors from the s/w queue to fifo */ | ||
1374 | list_for_each_entry_continue(iter, &chan->chain, chain_node) { | ||
1375 | ppc440spe_dma_put_desc(chan, iter); | ||
1376 | if (!iter->hw_next) | ||
1377 | break; | ||
1378 | } | ||
1379 | break; | ||
1380 | case PPC440SPE_XOR_ID: | ||
1381 | /* update h/w links and refetch */ | ||
1382 | if (!xor_last_submit->hw_next) | ||
1383 | break; | ||
1384 | |||
1385 | xor_reg = chan->device->xor_reg; | ||
1386 | /* the last linked CDB has to generate an interrupt | ||
1387 | * that we'd be able to append the next lists to h/w | ||
1388 | * regardless of the XOR engine state at the moment of | ||
1389 | * appending of these next lists | ||
1390 | */ | ||
1391 | xcb = xor_last_linked->hw_desc; | ||
1392 | xcb->cbc |= XOR_CBCR_CBCE_BIT; | ||
1393 | |||
1394 | if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) { | ||
1395 | /* XORcore is idle. Refetch now */ | ||
1396 | do_xor_refetch = 0; | ||
1397 | ppc440spe_xor_set_link(xor_last_submit, | ||
1398 | xor_last_submit->hw_next); | ||
1399 | |||
1400 | ADMA_LL_DBG(print_cb_list(chan, | ||
1401 | xor_last_submit->hw_next)); | ||
1402 | |||
1403 | xor_last_submit = xor_last_linked; | ||
1404 | iowrite32be(ioread32be(&xor_reg->crsr) | | ||
1405 | XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT, | ||
1406 | &xor_reg->crsr); | ||
1407 | } else { | ||
1408 | /* XORcore is running. Refetch later in the handler */ | ||
1409 | do_xor_refetch = 1; | ||
1410 | } | ||
1411 | |||
1412 | break; | ||
1413 | } | ||
1414 | |||
1415 | local_irq_restore(flags); | ||
1416 | } | ||
1417 | |||
1418 | /** | ||
1419 | * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor | ||
1420 | */ | ||
1421 | static u32 | ||
1422 | ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan) | ||
1423 | { | ||
1424 | struct dma_regs *dma_reg; | ||
1425 | struct xor_regs *xor_reg; | ||
1426 | |||
1427 | if (unlikely(!chan->hw_chain_inited)) | ||
1428 | /* h/w descriptor chain is not initialized yet */ | ||
1429 | return 0; | ||
1430 | |||
1431 | switch (chan->device->id) { | ||
1432 | case PPC440SPE_DMA0_ID: | ||
1433 | case PPC440SPE_DMA1_ID: | ||
1434 | dma_reg = chan->device->dma_reg; | ||
1435 | return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK); | ||
1436 | case PPC440SPE_XOR_ID: | ||
1437 | xor_reg = chan->device->xor_reg; | ||
1438 | return ioread32be(&xor_reg->ccbalr); | ||
1439 | } | ||
1440 | return 0; | ||
1441 | } | ||
1442 | |||
1443 | /** | ||
1444 | * ppc440spe_chan_run - enable the channel | ||
1445 | */ | ||
1446 | static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan) | ||
1447 | { | ||
1448 | struct xor_regs *xor_reg; | ||
1449 | |||
1450 | switch (chan->device->id) { | ||
1451 | case PPC440SPE_DMA0_ID: | ||
1452 | case PPC440SPE_DMA1_ID: | ||
1453 | /* DMAs are always enabled, do nothing */ | ||
1454 | break; | ||
1455 | case PPC440SPE_XOR_ID: | ||
1456 | /* drain write buffer */ | ||
1457 | xor_reg = chan->device->xor_reg; | ||
1458 | |||
1459 | /* fetch descriptor pointed to in <link> */ | ||
1460 | iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT, | ||
1461 | &xor_reg->crsr); | ||
1462 | break; | ||
1463 | } | ||
1464 | } | ||
1465 | |||
1466 | /****************************************************************************** | ||
1467 | * ADMA device level | ||
1468 | ******************************************************************************/ | ||
1469 | |||
1470 | static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan); | ||
1471 | static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan); | ||
1472 | |||
1473 | static dma_cookie_t | ||
1474 | ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx); | ||
1475 | |||
1476 | static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx, | ||
1477 | dma_addr_t addr, int index); | ||
1478 | static void | ||
1479 | ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx, | ||
1480 | dma_addr_t addr, int index); | ||
1481 | |||
1482 | static void | ||
1483 | ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx, | ||
1484 | dma_addr_t *paddr, unsigned long flags); | ||
1485 | static void | ||
1486 | ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx, | ||
1487 | dma_addr_t addr, int index); | ||
1488 | static void | ||
1489 | ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx, | ||
1490 | unsigned char mult, int index, int dst_pos); | ||
1491 | static void | ||
1492 | ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx, | ||
1493 | dma_addr_t paddr, dma_addr_t qaddr); | ||
1494 | |||
1495 | static struct page *ppc440spe_rxor_srcs[32]; | ||
1496 | |||
1497 | /** | ||
1498 | * ppc440spe_can_rxor - check if the operands may be processed with RXOR | ||
1499 | */ | ||
1500 | static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len) | ||
1501 | { | ||
1502 | int i, order = 0, state = 0; | ||
1503 | int idx = 0; | ||
1504 | |||
1505 | if (unlikely(!(src_cnt > 1))) | ||
1506 | return 0; | ||
1507 | |||
1508 | BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs)); | ||
1509 | |||
1510 | /* Skip holes in the source list before checking */ | ||
1511 | for (i = 0; i < src_cnt; i++) { | ||
1512 | if (!srcs[i]) | ||
1513 | continue; | ||
1514 | ppc440spe_rxor_srcs[idx++] = srcs[i]; | ||
1515 | } | ||
1516 | src_cnt = idx; | ||
1517 | |||
1518 | for (i = 1; i < src_cnt; i++) { | ||
1519 | char *cur_addr = page_address(ppc440spe_rxor_srcs[i]); | ||
1520 | char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]); | ||
1521 | |||
1522 | switch (state) { | ||
1523 | case 0: | ||
1524 | if (cur_addr == old_addr + len) { | ||
1525 | /* direct RXOR */ | ||
1526 | order = 1; | ||
1527 | state = 1; | ||
1528 | } else if (old_addr == cur_addr + len) { | ||
1529 | /* reverse RXOR */ | ||
1530 | order = -1; | ||
1531 | state = 1; | ||
1532 | } else | ||
1533 | goto out; | ||
1534 | break; | ||
1535 | case 1: | ||
1536 | if ((i == src_cnt - 2) || | ||
1537 | (order == -1 && cur_addr != old_addr - len)) { | ||
1538 | order = 0; | ||
1539 | state = 0; | ||
1540 | } else if ((cur_addr == old_addr + len * order) || | ||
1541 | (cur_addr == old_addr + 2 * len) || | ||
1542 | (cur_addr == old_addr + 3 * len)) { | ||
1543 | state = 2; | ||
1544 | } else { | ||
1545 | order = 0; | ||
1546 | state = 0; | ||
1547 | } | ||
1548 | break; | ||
1549 | case 2: | ||
1550 | order = 0; | ||
1551 | state = 0; | ||
1552 | break; | ||
1553 | } | ||
1554 | } | ||
1555 | |||
1556 | out: | ||
1557 | if (state == 1 || state == 2) | ||
1558 | return 1; | ||
1559 | |||
1560 | return 0; | ||
1561 | } | ||
1562 | |||
1563 | /** | ||
1564 | * ppc440spe_adma_device_estimate - estimate the efficiency of processing | ||
1565 | * the operation given on this channel. It's assumed that 'chan' is | ||
1566 | * capable to process 'cap' type of operation. | ||
1567 | * @chan: channel to use | ||
1568 | * @cap: type of transaction | ||
1569 | * @dst_lst: array of destination pointers | ||
1570 | * @dst_cnt: number of destination operands | ||
1571 | * @src_lst: array of source pointers | ||
1572 | * @src_cnt: number of source operands | ||
1573 | * @src_sz: size of each source operand | ||
1574 | */ | ||
1575 | static int ppc440spe_adma_estimate(struct dma_chan *chan, | ||
1576 | enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt, | ||
1577 | struct page **src_lst, int src_cnt, size_t src_sz) | ||
1578 | { | ||
1579 | int ef = 1; | ||
1580 | |||
1581 | if (cap == DMA_PQ || cap == DMA_PQ_VAL) { | ||
1582 | /* If RAID-6 capabilities were not activated don't try | ||
1583 | * to use them | ||
1584 | */ | ||
1585 | if (unlikely(!ppc440spe_r6_enabled)) | ||
1586 | return -1; | ||
1587 | } | ||
1588 | /* In the current implementation of ppc440spe ADMA driver it | ||
1589 | * makes sense to pick out only pq case, because it may be | ||
1590 | * processed: | ||
1591 | * (1) either using Biskup method on DMA2; | ||
1592 | * (2) or on DMA0/1. | ||
1593 | * Thus we give a favour to (1) if the sources are suitable; | ||
1594 | * else let it be processed on one of the DMA0/1 engines. | ||
1595 | * In the sum_product case where destination is also the | ||
1596 | * source process it on DMA0/1 only. | ||
1597 | */ | ||
1598 | if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) { | ||
1599 | |||
1600 | if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1]) | ||
1601 | ef = 0; /* sum_product case, process on DMA0/1 */ | ||
1602 | else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz)) | ||
1603 | ef = 3; /* override (DMA0/1 + idle) */ | ||
1604 | else | ||
1605 | ef = 0; /* can't process on DMA2 if !rxor */ | ||
1606 | } | ||
1607 | |||
1608 | /* channel idleness increases the priority */ | ||
1609 | if (likely(ef) && | ||
1610 | !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan))) | ||
1611 | ef++; | ||
1612 | |||
1613 | return ef; | ||
1614 | } | ||
1615 | |||
1616 | struct dma_chan * | ||
1617 | ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap, | ||
1618 | struct page **dst_lst, int dst_cnt, struct page **src_lst, | ||
1619 | int src_cnt, size_t src_sz) | ||
1620 | { | ||
1621 | struct dma_chan *best_chan = NULL; | ||
1622 | struct ppc_dma_chan_ref *ref; | ||
1623 | int best_rank = -1; | ||
1624 | |||
1625 | if (unlikely(!src_sz)) | ||
1626 | return NULL; | ||
1627 | if (src_sz > PAGE_SIZE) { | ||
1628 | /* | ||
1629 | * should a user of the api ever pass > PAGE_SIZE requests | ||
1630 | * we sort out cases where temporary page-sized buffers | ||
1631 | * are used. | ||
1632 | */ | ||
1633 | switch (cap) { | ||
1634 | case DMA_PQ: | ||
1635 | if (src_cnt == 1 && dst_lst[1] == src_lst[0]) | ||
1636 | return NULL; | ||
1637 | if (src_cnt == 2 && dst_lst[1] == src_lst[1]) | ||
1638 | return NULL; | ||
1639 | break; | ||
1640 | case DMA_PQ_VAL: | ||
1641 | case DMA_XOR_VAL: | ||
1642 | return NULL; | ||
1643 | default: | ||
1644 | break; | ||
1645 | } | ||
1646 | } | ||
1647 | |||
1648 | list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) { | ||
1649 | if (dma_has_cap(cap, ref->chan->device->cap_mask)) { | ||
1650 | int rank; | ||
1651 | |||
1652 | rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst, | ||
1653 | dst_cnt, src_lst, src_cnt, src_sz); | ||
1654 | if (rank > best_rank) { | ||
1655 | best_rank = rank; | ||
1656 | best_chan = ref->chan; | ||
1657 | } | ||
1658 | } | ||
1659 | } | ||
1660 | |||
1661 | return best_chan; | ||
1662 | } | ||
1663 | EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel); | ||
1664 | |||
1665 | /** | ||
1666 | * ppc440spe_get_group_entry - get group entry with index idx | ||
1667 | * @tdesc: is the last allocated slot in the group. | ||
1668 | */ | ||
1669 | static struct ppc440spe_adma_desc_slot * | ||
1670 | ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx) | ||
1671 | { | ||
1672 | struct ppc440spe_adma_desc_slot *iter = tdesc->group_head; | ||
1673 | int i = 0; | ||
1674 | |||
1675 | if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) { | ||
1676 | printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n", | ||
1677 | __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt); | ||
1678 | BUG(); | ||
1679 | } | ||
1680 | |||
1681 | list_for_each_entry(iter, &tdesc->group_list, chain_node) { | ||
1682 | if (i++ == entry_idx) | ||
1683 | break; | ||
1684 | } | ||
1685 | return iter; | ||
1686 | } | ||
1687 | |||
1688 | /** | ||
1689 | * ppc440spe_adma_free_slots - flags descriptor slots for reuse | ||
1690 | * @slot: Slot to free | ||
1691 | * Caller must hold &ppc440spe_chan->lock while calling this function | ||
1692 | */ | ||
1693 | static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot, | ||
1694 | struct ppc440spe_adma_chan *chan) | ||
1695 | { | ||
1696 | int stride = slot->slots_per_op; | ||
1697 | |||
1698 | while (stride--) { | ||
1699 | slot->slots_per_op = 0; | ||
1700 | slot = list_entry(slot->slot_node.next, | ||
1701 | struct ppc440spe_adma_desc_slot, | ||
1702 | slot_node); | ||
1703 | } | ||
1704 | } | ||
1705 | |||
1706 | static void ppc440spe_adma_unmap(struct ppc440spe_adma_chan *chan, | ||
1707 | struct ppc440spe_adma_desc_slot *desc) | ||
1708 | { | ||
1709 | u32 src_cnt, dst_cnt; | ||
1710 | dma_addr_t addr; | ||
1711 | |||
1712 | /* | ||
1713 | * get the number of sources & destination | ||
1714 | * included in this descriptor and unmap | ||
1715 | * them all | ||
1716 | */ | ||
1717 | src_cnt = ppc440spe_desc_get_src_num(desc, chan); | ||
1718 | dst_cnt = ppc440spe_desc_get_dst_num(desc, chan); | ||
1719 | |||
1720 | /* unmap destinations */ | ||
1721 | if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) { | ||
1722 | while (dst_cnt--) { | ||
1723 | addr = ppc440spe_desc_get_dest_addr( | ||
1724 | desc, chan, dst_cnt); | ||
1725 | dma_unmap_page(chan->device->dev, | ||
1726 | addr, desc->unmap_len, | ||
1727 | DMA_FROM_DEVICE); | ||
1728 | } | ||
1729 | } | ||
1730 | |||
1731 | /* unmap sources */ | ||
1732 | if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) { | ||
1733 | while (src_cnt--) { | ||
1734 | addr = ppc440spe_desc_get_src_addr( | ||
1735 | desc, chan, src_cnt); | ||
1736 | dma_unmap_page(chan->device->dev, | ||
1737 | addr, desc->unmap_len, | ||
1738 | DMA_TO_DEVICE); | ||
1739 | } | ||
1740 | } | ||
1741 | } | ||
1742 | |||
1743 | /** | ||
1744 | * ppc440spe_adma_run_tx_complete_actions - call functions to be called | ||
1745 | * upon completion | ||
1746 | */ | ||
1747 | static dma_cookie_t ppc440spe_adma_run_tx_complete_actions( | ||
1748 | struct ppc440spe_adma_desc_slot *desc, | ||
1749 | struct ppc440spe_adma_chan *chan, | ||
1750 | dma_cookie_t cookie) | ||
1751 | { | ||
1752 | int i; | ||
1753 | |||
1754 | BUG_ON(desc->async_tx.cookie < 0); | ||
1755 | if (desc->async_tx.cookie > 0) { | ||
1756 | cookie = desc->async_tx.cookie; | ||
1757 | desc->async_tx.cookie = 0; | ||
1758 | |||
1759 | /* call the callback (must not sleep or submit new | ||
1760 | * operations to this channel) | ||
1761 | */ | ||
1762 | if (desc->async_tx.callback) | ||
1763 | desc->async_tx.callback( | ||
1764 | desc->async_tx.callback_param); | ||
1765 | |||
1766 | /* unmap dma addresses | ||
1767 | * (unmap_single vs unmap_page?) | ||
1768 | * | ||
1769 | * actually, ppc's dma_unmap_page() functions are empty, so | ||
1770 | * the following code is just for the sake of completeness | ||
1771 | */ | ||
1772 | if (chan && chan->needs_unmap && desc->group_head && | ||
1773 | desc->unmap_len) { | ||
1774 | struct ppc440spe_adma_desc_slot *unmap = | ||
1775 | desc->group_head; | ||
1776 | /* assume 1 slot per op always */ | ||
1777 | u32 slot_count = unmap->slot_cnt; | ||
1778 | |||
1779 | /* Run through the group list and unmap addresses */ | ||
1780 | for (i = 0; i < slot_count; i++) { | ||
1781 | BUG_ON(!unmap); | ||
1782 | ppc440spe_adma_unmap(chan, unmap); | ||
1783 | unmap = unmap->hw_next; | ||
1784 | } | ||
1785 | } | ||
1786 | } | ||
1787 | |||
1788 | /* run dependent operations */ | ||
1789 | dma_run_dependencies(&desc->async_tx); | ||
1790 | |||
1791 | return cookie; | ||
1792 | } | ||
1793 | |||
1794 | /** | ||
1795 | * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set) | ||
1796 | */ | ||
1797 | static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc, | ||
1798 | struct ppc440spe_adma_chan *chan) | ||
1799 | { | ||
1800 | /* the client is allowed to attach dependent operations | ||
1801 | * until 'ack' is set | ||
1802 | */ | ||
1803 | if (!async_tx_test_ack(&desc->async_tx)) | ||
1804 | return 0; | ||
1805 | |||
1806 | /* leave the last descriptor in the chain | ||
1807 | * so we can append to it | ||
1808 | */ | ||
1809 | if (list_is_last(&desc->chain_node, &chan->chain) || | ||
1810 | desc->phys == ppc440spe_chan_get_current_descriptor(chan)) | ||
1811 | return 1; | ||
1812 | |||
1813 | if (chan->device->id != PPC440SPE_XOR_ID) { | ||
1814 | /* our DMA interrupt handler clears opc field of | ||
1815 | * each processed descriptor. For all types of | ||
1816 | * operations except for ZeroSum we do not actually | ||
1817 | * need ack from the interrupt handler. ZeroSum is a | ||
1818 | * special case since the result of this operation | ||
1819 | * is available from the handler only, so if we see | ||
1820 | * such type of descriptor (which is unprocessed yet) | ||
1821 | * then leave it in chain. | ||
1822 | */ | ||
1823 | struct dma_cdb *cdb = desc->hw_desc; | ||
1824 | if (cdb->opc == DMA_CDB_OPC_DCHECK128) | ||
1825 | return 1; | ||
1826 | } | ||
1827 | |||
1828 | dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n", | ||
1829 | desc->phys, desc->idx, desc->slots_per_op); | ||
1830 | |||
1831 | list_del(&desc->chain_node); | ||
1832 | ppc440spe_adma_free_slots(desc, chan); | ||
1833 | return 0; | ||
1834 | } | ||
1835 | |||
1836 | /** | ||
1837 | * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine | ||
1838 | * which runs through the channel CDBs list until reach the descriptor | ||
1839 | * currently processed. When routine determines that all CDBs of group | ||
1840 | * are completed then corresponding callbacks (if any) are called and slots | ||
1841 | * are freed. | ||
1842 | */ | ||
1843 | static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan) | ||
1844 | { | ||
1845 | struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL; | ||
1846 | dma_cookie_t cookie = 0; | ||
1847 | u32 current_desc = ppc440spe_chan_get_current_descriptor(chan); | ||
1848 | int busy = ppc440spe_chan_is_busy(chan); | ||
1849 | int seen_current = 0, slot_cnt = 0, slots_per_op = 0; | ||
1850 | |||
1851 | dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n", | ||
1852 | chan->device->id, __func__); | ||
1853 | |||
1854 | if (!current_desc) { | ||
1855 | /* There were no transactions yet, so | ||
1856 | * nothing to clean | ||
1857 | */ | ||
1858 | return; | ||
1859 | } | ||
1860 | |||
1861 | /* free completed slots from the chain starting with | ||
1862 | * the oldest descriptor | ||
1863 | */ | ||
1864 | list_for_each_entry_safe(iter, _iter, &chan->chain, | ||
1865 | chain_node) { | ||
1866 | dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d " | ||
1867 | "busy: %d this_desc: %#llx next_desc: %#x " | ||
1868 | "cur: %#x ack: %d\n", | ||
1869 | iter->async_tx.cookie, iter->idx, busy, iter->phys, | ||
1870 | ppc440spe_desc_get_link(iter, chan), current_desc, | ||
1871 | async_tx_test_ack(&iter->async_tx)); | ||
1872 | prefetch(_iter); | ||
1873 | prefetch(&_iter->async_tx); | ||
1874 | |||
1875 | /* do not advance past the current descriptor loaded into the | ||
1876 | * hardware channel,subsequent descriptors are either in process | ||
1877 | * or have not been submitted | ||
1878 | */ | ||
1879 | if (seen_current) | ||
1880 | break; | ||
1881 | |||
1882 | /* stop the search if we reach the current descriptor and the | ||
1883 | * channel is busy, or if it appears that the current descriptor | ||
1884 | * needs to be re-read (i.e. has been appended to) | ||
1885 | */ | ||
1886 | if (iter->phys == current_desc) { | ||
1887 | BUG_ON(seen_current++); | ||
1888 | if (busy || ppc440spe_desc_get_link(iter, chan)) { | ||
1889 | /* not all descriptors of the group have | ||
1890 | * been completed; exit. | ||
1891 | */ | ||
1892 | break; | ||
1893 | } | ||
1894 | } | ||
1895 | |||
1896 | /* detect the start of a group transaction */ | ||
1897 | if (!slot_cnt && !slots_per_op) { | ||
1898 | slot_cnt = iter->slot_cnt; | ||
1899 | slots_per_op = iter->slots_per_op; | ||
1900 | if (slot_cnt <= slots_per_op) { | ||
1901 | slot_cnt = 0; | ||
1902 | slots_per_op = 0; | ||
1903 | } | ||
1904 | } | ||
1905 | |||
1906 | if (slot_cnt) { | ||
1907 | if (!group_start) | ||
1908 | group_start = iter; | ||
1909 | slot_cnt -= slots_per_op; | ||
1910 | } | ||
1911 | |||
1912 | /* all the members of a group are complete */ | ||
1913 | if (slots_per_op != 0 && slot_cnt == 0) { | ||
1914 | struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter; | ||
1915 | int end_of_chain = 0; | ||
1916 | |||
1917 | /* clean up the group */ | ||
1918 | slot_cnt = group_start->slot_cnt; | ||
1919 | grp_iter = group_start; | ||
1920 | list_for_each_entry_safe_from(grp_iter, _grp_iter, | ||
1921 | &chan->chain, chain_node) { | ||
1922 | |||
1923 | cookie = ppc440spe_adma_run_tx_complete_actions( | ||
1924 | grp_iter, chan, cookie); | ||
1925 | |||
1926 | slot_cnt -= slots_per_op; | ||
1927 | end_of_chain = ppc440spe_adma_clean_slot( | ||
1928 | grp_iter, chan); | ||
1929 | if (end_of_chain && slot_cnt) { | ||
1930 | /* Should wait for ZeroSum completion */ | ||
1931 | if (cookie > 0) | ||
1932 | chan->completed_cookie = cookie; | ||
1933 | return; | ||
1934 | } | ||
1935 | |||
1936 | if (slot_cnt == 0 || end_of_chain) | ||
1937 | break; | ||
1938 | } | ||
1939 | |||
1940 | /* the group should be complete at this point */ | ||
1941 | BUG_ON(slot_cnt); | ||
1942 | |||
1943 | slots_per_op = 0; | ||
1944 | group_start = NULL; | ||
1945 | if (end_of_chain) | ||
1946 | break; | ||
1947 | else | ||
1948 | continue; | ||
1949 | } else if (slots_per_op) /* wait for group completion */ | ||
1950 | continue; | ||
1951 | |||
1952 | cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan, | ||
1953 | cookie); | ||
1954 | |||
1955 | if (ppc440spe_adma_clean_slot(iter, chan)) | ||
1956 | break; | ||
1957 | } | ||
1958 | |||
1959 | BUG_ON(!seen_current); | ||
1960 | |||
1961 | if (cookie > 0) { | ||
1962 | chan->completed_cookie = cookie; | ||
1963 | pr_debug("\tcompleted cookie %d\n", cookie); | ||
1964 | } | ||
1965 | |||
1966 | } | ||
1967 | |||
1968 | /** | ||
1969 | * ppc440spe_adma_tasklet - clean up watch-dog initiator | ||
1970 | */ | ||
1971 | static void ppc440spe_adma_tasklet(unsigned long data) | ||
1972 | { | ||
1973 | struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data; | ||
1974 | |||
1975 | spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING); | ||
1976 | __ppc440spe_adma_slot_cleanup(chan); | ||
1977 | spin_unlock(&chan->lock); | ||
1978 | } | ||
1979 | |||
1980 | /** | ||
1981 | * ppc440spe_adma_slot_cleanup - clean up scheduled initiator | ||
1982 | */ | ||
1983 | static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan) | ||
1984 | { | ||
1985 | spin_lock_bh(&chan->lock); | ||
1986 | __ppc440spe_adma_slot_cleanup(chan); | ||
1987 | spin_unlock_bh(&chan->lock); | ||
1988 | } | ||
1989 | |||
1990 | /** | ||
1991 | * ppc440spe_adma_alloc_slots - allocate free slots (if any) | ||
1992 | */ | ||
1993 | static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots( | ||
1994 | struct ppc440spe_adma_chan *chan, int num_slots, | ||
1995 | int slots_per_op) | ||
1996 | { | ||
1997 | struct ppc440spe_adma_desc_slot *iter = NULL, *_iter; | ||
1998 | struct ppc440spe_adma_desc_slot *alloc_start = NULL; | ||
1999 | struct list_head chain = LIST_HEAD_INIT(chain); | ||
2000 | int slots_found, retry = 0; | ||
2001 | |||
2002 | |||
2003 | BUG_ON(!num_slots || !slots_per_op); | ||
2004 | /* start search from the last allocated descrtiptor | ||
2005 | * if a contiguous allocation can not be found start searching | ||
2006 | * from the beginning of the list | ||
2007 | */ | ||
2008 | retry: | ||
2009 | slots_found = 0; | ||
2010 | if (retry == 0) | ||
2011 | iter = chan->last_used; | ||
2012 | else | ||
2013 | iter = list_entry(&chan->all_slots, | ||
2014 | struct ppc440spe_adma_desc_slot, | ||
2015 | slot_node); | ||
2016 | list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots, | ||
2017 | slot_node) { | ||
2018 | prefetch(_iter); | ||
2019 | prefetch(&_iter->async_tx); | ||
2020 | if (iter->slots_per_op) { | ||
2021 | slots_found = 0; | ||
2022 | continue; | ||
2023 | } | ||
2024 | |||
2025 | /* start the allocation if the slot is correctly aligned */ | ||
2026 | if (!slots_found++) | ||
2027 | alloc_start = iter; | ||
2028 | |||
2029 | if (slots_found == num_slots) { | ||
2030 | struct ppc440spe_adma_desc_slot *alloc_tail = NULL; | ||
2031 | struct ppc440spe_adma_desc_slot *last_used = NULL; | ||
2032 | |||
2033 | iter = alloc_start; | ||
2034 | while (num_slots) { | ||
2035 | int i; | ||
2036 | /* pre-ack all but the last descriptor */ | ||
2037 | if (num_slots != slots_per_op) | ||
2038 | async_tx_ack(&iter->async_tx); | ||
2039 | |||
2040 | list_add_tail(&iter->chain_node, &chain); | ||
2041 | alloc_tail = iter; | ||
2042 | iter->async_tx.cookie = 0; | ||
2043 | iter->hw_next = NULL; | ||
2044 | iter->flags = 0; | ||
2045 | iter->slot_cnt = num_slots; | ||
2046 | iter->xor_check_result = NULL; | ||
2047 | for (i = 0; i < slots_per_op; i++) { | ||
2048 | iter->slots_per_op = slots_per_op - i; | ||
2049 | last_used = iter; | ||
2050 | iter = list_entry(iter->slot_node.next, | ||
2051 | struct ppc440spe_adma_desc_slot, | ||
2052 | slot_node); | ||
2053 | } | ||
2054 | num_slots -= slots_per_op; | ||
2055 | } | ||
2056 | alloc_tail->group_head = alloc_start; | ||
2057 | alloc_tail->async_tx.cookie = -EBUSY; | ||
2058 | list_splice(&chain, &alloc_tail->group_list); | ||
2059 | chan->last_used = last_used; | ||
2060 | return alloc_tail; | ||
2061 | } | ||
2062 | } | ||
2063 | if (!retry++) | ||
2064 | goto retry; | ||
2065 | |||
2066 | /* try to free some slots if the allocation fails */ | ||
2067 | tasklet_schedule(&chan->irq_tasklet); | ||
2068 | return NULL; | ||
2069 | } | ||
2070 | |||
2071 | /** | ||
2072 | * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots | ||
2073 | */ | ||
2074 | static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan) | ||
2075 | { | ||
2076 | struct ppc440spe_adma_chan *ppc440spe_chan; | ||
2077 | struct ppc440spe_adma_desc_slot *slot = NULL; | ||
2078 | char *hw_desc; | ||
2079 | int i, db_sz; | ||
2080 | int init; | ||
2081 | |||
2082 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); | ||
2083 | init = ppc440spe_chan->slots_allocated ? 0 : 1; | ||
2084 | chan->chan_id = ppc440spe_chan->device->id; | ||
2085 | |||
2086 | /* Allocate descriptor slots */ | ||
2087 | i = ppc440spe_chan->slots_allocated; | ||
2088 | if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID) | ||
2089 | db_sz = sizeof(struct dma_cdb); | ||
2090 | else | ||
2091 | db_sz = sizeof(struct xor_cb); | ||
2092 | |||
2093 | for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) { | ||
2094 | slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot), | ||
2095 | GFP_KERNEL); | ||
2096 | if (!slot) { | ||
2097 | printk(KERN_INFO "SPE ADMA Channel only initialized" | ||
2098 | " %d descriptor slots", i--); | ||
2099 | break; | ||
2100 | } | ||
2101 | |||
2102 | hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt; | ||
2103 | slot->hw_desc = (void *) &hw_desc[i * db_sz]; | ||
2104 | dma_async_tx_descriptor_init(&slot->async_tx, chan); | ||
2105 | slot->async_tx.tx_submit = ppc440spe_adma_tx_submit; | ||
2106 | INIT_LIST_HEAD(&slot->chain_node); | ||
2107 | INIT_LIST_HEAD(&slot->slot_node); | ||
2108 | INIT_LIST_HEAD(&slot->group_list); | ||
2109 | slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz; | ||
2110 | slot->idx = i; | ||
2111 | |||
2112 | spin_lock_bh(&ppc440spe_chan->lock); | ||
2113 | ppc440spe_chan->slots_allocated++; | ||
2114 | list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots); | ||
2115 | spin_unlock_bh(&ppc440spe_chan->lock); | ||
2116 | } | ||
2117 | |||
2118 | if (i && !ppc440spe_chan->last_used) { | ||
2119 | ppc440spe_chan->last_used = | ||
2120 | list_entry(ppc440spe_chan->all_slots.next, | ||
2121 | struct ppc440spe_adma_desc_slot, | ||
2122 | slot_node); | ||
2123 | } | ||
2124 | |||
2125 | dev_dbg(ppc440spe_chan->device->common.dev, | ||
2126 | "ppc440spe adma%d: allocated %d descriptor slots\n", | ||
2127 | ppc440spe_chan->device->id, i); | ||
2128 | |||
2129 | /* initialize the channel and the chain with a null operation */ | ||
2130 | if (init) { | ||
2131 | switch (ppc440spe_chan->device->id) { | ||
2132 | case PPC440SPE_DMA0_ID: | ||
2133 | case PPC440SPE_DMA1_ID: | ||
2134 | ppc440spe_chan->hw_chain_inited = 0; | ||
2135 | /* Use WXOR for self-testing */ | ||
2136 | if (!ppc440spe_r6_tchan) | ||
2137 | ppc440spe_r6_tchan = ppc440spe_chan; | ||
2138 | break; | ||
2139 | case PPC440SPE_XOR_ID: | ||
2140 | ppc440spe_chan_start_null_xor(ppc440spe_chan); | ||
2141 | break; | ||
2142 | default: | ||
2143 | BUG(); | ||
2144 | } | ||
2145 | ppc440spe_chan->needs_unmap = 1; | ||
2146 | } | ||
2147 | |||
2148 | return (i > 0) ? i : -ENOMEM; | ||
2149 | } | ||
2150 | |||
2151 | /** | ||
2152 | * ppc440spe_desc_assign_cookie - assign a cookie | ||
2153 | */ | ||
2154 | static dma_cookie_t ppc440spe_desc_assign_cookie( | ||
2155 | struct ppc440spe_adma_chan *chan, | ||
2156 | struct ppc440spe_adma_desc_slot *desc) | ||
2157 | { | ||
2158 | dma_cookie_t cookie = chan->common.cookie; | ||
2159 | |||
2160 | cookie++; | ||
2161 | if (cookie < 0) | ||
2162 | cookie = 1; | ||
2163 | chan->common.cookie = desc->async_tx.cookie = cookie; | ||
2164 | return cookie; | ||
2165 | } | ||
2166 | |||
2167 | /** | ||
2168 | * ppc440spe_rxor_set_region_data - | ||
2169 | */ | ||
2170 | static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc, | ||
2171 | u8 xor_arg_no, u32 mask) | ||
2172 | { | ||
2173 | struct xor_cb *xcb = desc->hw_desc; | ||
2174 | |||
2175 | xcb->ops[xor_arg_no].h |= mask; | ||
2176 | } | ||
2177 | |||
2178 | /** | ||
2179 | * ppc440spe_rxor_set_src - | ||
2180 | */ | ||
2181 | static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc, | ||
2182 | u8 xor_arg_no, dma_addr_t addr) | ||
2183 | { | ||
2184 | struct xor_cb *xcb = desc->hw_desc; | ||
2185 | |||
2186 | xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE; | ||
2187 | xcb->ops[xor_arg_no].l = addr; | ||
2188 | } | ||
2189 | |||
2190 | /** | ||
2191 | * ppc440spe_rxor_set_mult - | ||
2192 | */ | ||
2193 | static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc, | ||
2194 | u8 xor_arg_no, u8 idx, u8 mult) | ||
2195 | { | ||
2196 | struct xor_cb *xcb = desc->hw_desc; | ||
2197 | |||
2198 | xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8); | ||
2199 | } | ||
2200 | |||
2201 | /** | ||
2202 | * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold | ||
2203 | * has been achieved | ||
2204 | */ | ||
2205 | static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan) | ||
2206 | { | ||
2207 | dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n", | ||
2208 | chan->device->id, chan->pending); | ||
2209 | |||
2210 | if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) { | ||
2211 | chan->pending = 0; | ||
2212 | ppc440spe_chan_append(chan); | ||
2213 | } | ||
2214 | } | ||
2215 | |||
2216 | /** | ||
2217 | * ppc440spe_adma_tx_submit - submit new descriptor group to the channel | ||
2218 | * (it's not necessary that descriptors will be submitted to the h/w | ||
2219 | * chains too right now) | ||
2220 | */ | ||
2221 | static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx) | ||
2222 | { | ||
2223 | struct ppc440spe_adma_desc_slot *sw_desc; | ||
2224 | struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan); | ||
2225 | struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail; | ||
2226 | int slot_cnt; | ||
2227 | int slots_per_op; | ||
2228 | dma_cookie_t cookie; | ||
2229 | |||
2230 | sw_desc = tx_to_ppc440spe_adma_slot(tx); | ||
2231 | |||
2232 | group_start = sw_desc->group_head; | ||
2233 | slot_cnt = group_start->slot_cnt; | ||
2234 | slots_per_op = group_start->slots_per_op; | ||
2235 | |||
2236 | spin_lock_bh(&chan->lock); | ||
2237 | |||
2238 | cookie = ppc440spe_desc_assign_cookie(chan, sw_desc); | ||
2239 | |||
2240 | if (unlikely(list_empty(&chan->chain))) { | ||
2241 | /* first peer */ | ||
2242 | list_splice_init(&sw_desc->group_list, &chan->chain); | ||
2243 | chan_first_cdb[chan->device->id] = group_start; | ||
2244 | } else { | ||
2245 | /* isn't first peer, bind CDBs to chain */ | ||
2246 | old_chain_tail = list_entry(chan->chain.prev, | ||
2247 | struct ppc440spe_adma_desc_slot, | ||
2248 | chain_node); | ||
2249 | list_splice_init(&sw_desc->group_list, | ||
2250 | &old_chain_tail->chain_node); | ||
2251 | /* fix up the hardware chain */ | ||
2252 | ppc440spe_desc_set_link(chan, old_chain_tail, group_start); | ||
2253 | } | ||
2254 | |||
2255 | /* increment the pending count by the number of operations */ | ||
2256 | chan->pending += slot_cnt / slots_per_op; | ||
2257 | ppc440spe_adma_check_threshold(chan); | ||
2258 | spin_unlock_bh(&chan->lock); | ||
2259 | |||
2260 | dev_dbg(chan->device->common.dev, | ||
2261 | "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n", | ||
2262 | chan->device->id, __func__, | ||
2263 | sw_desc->async_tx.cookie, sw_desc->idx, sw_desc); | ||
2264 | |||
2265 | return cookie; | ||
2266 | } | ||
2267 | |||
2268 | /** | ||
2269 | * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation | ||
2270 | */ | ||
2271 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt( | ||
2272 | struct dma_chan *chan, unsigned long flags) | ||
2273 | { | ||
2274 | struct ppc440spe_adma_chan *ppc440spe_chan; | ||
2275 | struct ppc440spe_adma_desc_slot *sw_desc, *group_start; | ||
2276 | int slot_cnt, slots_per_op; | ||
2277 | |||
2278 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); | ||
2279 | |||
2280 | dev_dbg(ppc440spe_chan->device->common.dev, | ||
2281 | "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id, | ||
2282 | __func__); | ||
2283 | |||
2284 | spin_lock_bh(&ppc440spe_chan->lock); | ||
2285 | slot_cnt = slots_per_op = 1; | ||
2286 | sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, | ||
2287 | slots_per_op); | ||
2288 | if (sw_desc) { | ||
2289 | group_start = sw_desc->group_head; | ||
2290 | ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan); | ||
2291 | group_start->unmap_len = 0; | ||
2292 | sw_desc->async_tx.flags = flags; | ||
2293 | } | ||
2294 | spin_unlock_bh(&ppc440spe_chan->lock); | ||
2295 | |||
2296 | return sw_desc ? &sw_desc->async_tx : NULL; | ||
2297 | } | ||
2298 | |||
2299 | /** | ||
2300 | * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation | ||
2301 | */ | ||
2302 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy( | ||
2303 | struct dma_chan *chan, dma_addr_t dma_dest, | ||
2304 | dma_addr_t dma_src, size_t len, unsigned long flags) | ||
2305 | { | ||
2306 | struct ppc440spe_adma_chan *ppc440spe_chan; | ||
2307 | struct ppc440spe_adma_desc_slot *sw_desc, *group_start; | ||
2308 | int slot_cnt, slots_per_op; | ||
2309 | |||
2310 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); | ||
2311 | |||
2312 | if (unlikely(!len)) | ||
2313 | return NULL; | ||
2314 | |||
2315 | BUG_ON(unlikely(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT)); | ||
2316 | |||
2317 | spin_lock_bh(&ppc440spe_chan->lock); | ||
2318 | |||
2319 | dev_dbg(ppc440spe_chan->device->common.dev, | ||
2320 | "ppc440spe adma%d: %s len: %u int_en %d\n", | ||
2321 | ppc440spe_chan->device->id, __func__, len, | ||
2322 | flags & DMA_PREP_INTERRUPT ? 1 : 0); | ||
2323 | slot_cnt = slots_per_op = 1; | ||
2324 | sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, | ||
2325 | slots_per_op); | ||
2326 | if (sw_desc) { | ||
2327 | group_start = sw_desc->group_head; | ||
2328 | ppc440spe_desc_init_memcpy(group_start, flags); | ||
2329 | ppc440spe_adma_set_dest(group_start, dma_dest, 0); | ||
2330 | ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0); | ||
2331 | ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len); | ||
2332 | sw_desc->unmap_len = len; | ||
2333 | sw_desc->async_tx.flags = flags; | ||
2334 | } | ||
2335 | spin_unlock_bh(&ppc440spe_chan->lock); | ||
2336 | |||
2337 | return sw_desc ? &sw_desc->async_tx : NULL; | ||
2338 | } | ||
2339 | |||
2340 | /** | ||
2341 | * ppc440spe_adma_prep_dma_memset - prepare CDB for a MEMSET operation | ||
2342 | */ | ||
2343 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memset( | ||
2344 | struct dma_chan *chan, dma_addr_t dma_dest, int value, | ||
2345 | size_t len, unsigned long flags) | ||
2346 | { | ||
2347 | struct ppc440spe_adma_chan *ppc440spe_chan; | ||
2348 | struct ppc440spe_adma_desc_slot *sw_desc, *group_start; | ||
2349 | int slot_cnt, slots_per_op; | ||
2350 | |||
2351 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); | ||
2352 | |||
2353 | if (unlikely(!len)) | ||
2354 | return NULL; | ||
2355 | |||
2356 | BUG_ON(unlikely(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT)); | ||
2357 | |||
2358 | spin_lock_bh(&ppc440spe_chan->lock); | ||
2359 | |||
2360 | dev_dbg(ppc440spe_chan->device->common.dev, | ||
2361 | "ppc440spe adma%d: %s cal: %u len: %u int_en %d\n", | ||
2362 | ppc440spe_chan->device->id, __func__, value, len, | ||
2363 | flags & DMA_PREP_INTERRUPT ? 1 : 0); | ||
2364 | |||
2365 | slot_cnt = slots_per_op = 1; | ||
2366 | sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, | ||
2367 | slots_per_op); | ||
2368 | if (sw_desc) { | ||
2369 | group_start = sw_desc->group_head; | ||
2370 | ppc440spe_desc_init_memset(group_start, value, flags); | ||
2371 | ppc440spe_adma_set_dest(group_start, dma_dest, 0); | ||
2372 | ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len); | ||
2373 | sw_desc->unmap_len = len; | ||
2374 | sw_desc->async_tx.flags = flags; | ||
2375 | } | ||
2376 | spin_unlock_bh(&ppc440spe_chan->lock); | ||
2377 | |||
2378 | return sw_desc ? &sw_desc->async_tx : NULL; | ||
2379 | } | ||
2380 | |||
2381 | /** | ||
2382 | * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation | ||
2383 | */ | ||
2384 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor( | ||
2385 | struct dma_chan *chan, dma_addr_t dma_dest, | ||
2386 | dma_addr_t *dma_src, u32 src_cnt, size_t len, | ||
2387 | unsigned long flags) | ||
2388 | { | ||
2389 | struct ppc440spe_adma_chan *ppc440spe_chan; | ||
2390 | struct ppc440spe_adma_desc_slot *sw_desc, *group_start; | ||
2391 | int slot_cnt, slots_per_op; | ||
2392 | |||
2393 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); | ||
2394 | |||
2395 | ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id, | ||
2396 | dma_dest, dma_src, src_cnt)); | ||
2397 | if (unlikely(!len)) | ||
2398 | return NULL; | ||
2399 | BUG_ON(unlikely(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT)); | ||
2400 | |||
2401 | dev_dbg(ppc440spe_chan->device->common.dev, | ||
2402 | "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n", | ||
2403 | ppc440spe_chan->device->id, __func__, src_cnt, len, | ||
2404 | flags & DMA_PREP_INTERRUPT ? 1 : 0); | ||
2405 | |||
2406 | spin_lock_bh(&ppc440spe_chan->lock); | ||
2407 | slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op); | ||
2408 | sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, | ||
2409 | slots_per_op); | ||
2410 | if (sw_desc) { | ||
2411 | group_start = sw_desc->group_head; | ||
2412 | ppc440spe_desc_init_xor(group_start, src_cnt, flags); | ||
2413 | ppc440spe_adma_set_dest(group_start, dma_dest, 0); | ||
2414 | while (src_cnt--) | ||
2415 | ppc440spe_adma_memcpy_xor_set_src(group_start, | ||
2416 | dma_src[src_cnt], src_cnt); | ||
2417 | ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len); | ||
2418 | sw_desc->unmap_len = len; | ||
2419 | sw_desc->async_tx.flags = flags; | ||
2420 | } | ||
2421 | spin_unlock_bh(&ppc440spe_chan->lock); | ||
2422 | |||
2423 | return sw_desc ? &sw_desc->async_tx : NULL; | ||
2424 | } | ||
2425 | |||
2426 | static inline void | ||
2427 | ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc, | ||
2428 | int src_cnt); | ||
2429 | static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor); | ||
2430 | |||
2431 | /** | ||
2432 | * ppc440spe_adma_init_dma2rxor_slot - | ||
2433 | */ | ||
2434 | static void ppc440spe_adma_init_dma2rxor_slot( | ||
2435 | struct ppc440spe_adma_desc_slot *desc, | ||
2436 | dma_addr_t *src, int src_cnt) | ||
2437 | { | ||
2438 | int i; | ||
2439 | |||
2440 | /* initialize CDB */ | ||
2441 | for (i = 0; i < src_cnt; i++) { | ||
2442 | ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i, | ||
2443 | desc->src_cnt, (u32)src[i]); | ||
2444 | } | ||
2445 | } | ||
2446 | |||
2447 | /** | ||
2448 | * ppc440spe_dma01_prep_mult - | ||
2449 | * for Q operation where destination is also the source | ||
2450 | */ | ||
2451 | static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult( | ||
2452 | struct ppc440spe_adma_chan *ppc440spe_chan, | ||
2453 | dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, | ||
2454 | const unsigned char *scf, size_t len, unsigned long flags) | ||
2455 | { | ||
2456 | struct ppc440spe_adma_desc_slot *sw_desc = NULL; | ||
2457 | unsigned long op = 0; | ||
2458 | int slot_cnt; | ||
2459 | |||
2460 | set_bit(PPC440SPE_DESC_WXOR, &op); | ||
2461 | slot_cnt = 2; | ||
2462 | |||
2463 | spin_lock_bh(&ppc440spe_chan->lock); | ||
2464 | |||
2465 | /* use WXOR, each descriptor occupies one slot */ | ||
2466 | sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); | ||
2467 | if (sw_desc) { | ||
2468 | struct ppc440spe_adma_chan *chan; | ||
2469 | struct ppc440spe_adma_desc_slot *iter; | ||
2470 | struct dma_cdb *hw_desc; | ||
2471 | |||
2472 | chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); | ||
2473 | set_bits(op, &sw_desc->flags); | ||
2474 | sw_desc->src_cnt = src_cnt; | ||
2475 | sw_desc->dst_cnt = dst_cnt; | ||
2476 | /* First descriptor, zero data in the destination and copy it | ||
2477 | * to q page using MULTICAST transfer. | ||
2478 | */ | ||
2479 | iter = list_first_entry(&sw_desc->group_list, | ||
2480 | struct ppc440spe_adma_desc_slot, | ||
2481 | chain_node); | ||
2482 | memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); | ||
2483 | /* set 'next' pointer */ | ||
2484 | iter->hw_next = list_entry(iter->chain_node.next, | ||
2485 | struct ppc440spe_adma_desc_slot, | ||
2486 | chain_node); | ||
2487 | clear_bit(PPC440SPE_DESC_INT, &iter->flags); | ||
2488 | hw_desc = iter->hw_desc; | ||
2489 | hw_desc->opc = DMA_CDB_OPC_MULTICAST; | ||
2490 | |||
2491 | ppc440spe_desc_set_dest_addr(iter, chan, | ||
2492 | DMA_CUED_XOR_BASE, dst[0], 0); | ||
2493 | ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1); | ||
2494 | ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, | ||
2495 | src[0]); | ||
2496 | ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); | ||
2497 | iter->unmap_len = len; | ||
2498 | |||
2499 | /* | ||
2500 | * Second descriptor, multiply data from the q page | ||
2501 | * and store the result in real destination. | ||
2502 | */ | ||
2503 | iter = list_first_entry(&iter->chain_node, | ||
2504 | struct ppc440spe_adma_desc_slot, | ||
2505 | chain_node); | ||
2506 | memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); | ||
2507 | iter->hw_next = NULL; | ||
2508 | if (flags & DMA_PREP_INTERRUPT) | ||
2509 | set_bit(PPC440SPE_DESC_INT, &iter->flags); | ||
2510 | else | ||
2511 | clear_bit(PPC440SPE_DESC_INT, &iter->flags); | ||
2512 | |||
2513 | hw_desc = iter->hw_desc; | ||
2514 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | ||
2515 | ppc440spe_desc_set_src_addr(iter, chan, 0, | ||
2516 | DMA_CUED_XOR_HB, dst[1]); | ||
2517 | ppc440spe_desc_set_dest_addr(iter, chan, | ||
2518 | DMA_CUED_XOR_BASE, dst[0], 0); | ||
2519 | |||
2520 | ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, | ||
2521 | DMA_CDB_SG_DST1, scf[0]); | ||
2522 | ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); | ||
2523 | iter->unmap_len = len; | ||
2524 | sw_desc->async_tx.flags = flags; | ||
2525 | } | ||
2526 | |||
2527 | spin_unlock_bh(&ppc440spe_chan->lock); | ||
2528 | |||
2529 | return sw_desc; | ||
2530 | } | ||
2531 | |||
2532 | /** | ||
2533 | * ppc440spe_dma01_prep_sum_product - | ||
2534 | * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also | ||
2535 | * the source. | ||
2536 | */ | ||
2537 | static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product( | ||
2538 | struct ppc440spe_adma_chan *ppc440spe_chan, | ||
2539 | dma_addr_t *dst, dma_addr_t *src, int src_cnt, | ||
2540 | const unsigned char *scf, size_t len, unsigned long flags) | ||
2541 | { | ||
2542 | struct ppc440spe_adma_desc_slot *sw_desc = NULL; | ||
2543 | unsigned long op = 0; | ||
2544 | int slot_cnt; | ||
2545 | |||
2546 | set_bit(PPC440SPE_DESC_WXOR, &op); | ||
2547 | slot_cnt = 3; | ||
2548 | |||
2549 | spin_lock_bh(&ppc440spe_chan->lock); | ||
2550 | |||
2551 | /* WXOR, each descriptor occupies one slot */ | ||
2552 | sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); | ||
2553 | if (sw_desc) { | ||
2554 | struct ppc440spe_adma_chan *chan; | ||
2555 | struct ppc440spe_adma_desc_slot *iter; | ||
2556 | struct dma_cdb *hw_desc; | ||
2557 | |||
2558 | chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); | ||
2559 | set_bits(op, &sw_desc->flags); | ||
2560 | sw_desc->src_cnt = src_cnt; | ||
2561 | sw_desc->dst_cnt = 1; | ||
2562 | /* 1st descriptor, src[1] data to q page and zero destination */ | ||
2563 | iter = list_first_entry(&sw_desc->group_list, | ||
2564 | struct ppc440spe_adma_desc_slot, | ||
2565 | chain_node); | ||
2566 | memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); | ||
2567 | iter->hw_next = list_entry(iter->chain_node.next, | ||
2568 | struct ppc440spe_adma_desc_slot, | ||
2569 | chain_node); | ||
2570 | clear_bit(PPC440SPE_DESC_INT, &iter->flags); | ||
2571 | hw_desc = iter->hw_desc; | ||
2572 | hw_desc->opc = DMA_CDB_OPC_MULTICAST; | ||
2573 | |||
2574 | ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, | ||
2575 | *dst, 0); | ||
2576 | ppc440spe_desc_set_dest_addr(iter, chan, 0, | ||
2577 | ppc440spe_chan->qdest, 1); | ||
2578 | ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, | ||
2579 | src[1]); | ||
2580 | ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); | ||
2581 | iter->unmap_len = len; | ||
2582 | |||
2583 | /* 2nd descriptor, multiply src[1] data and store the | ||
2584 | * result in destination */ | ||
2585 | iter = list_first_entry(&iter->chain_node, | ||
2586 | struct ppc440spe_adma_desc_slot, | ||
2587 | chain_node); | ||
2588 | memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); | ||
2589 | /* set 'next' pointer */ | ||
2590 | iter->hw_next = list_entry(iter->chain_node.next, | ||
2591 | struct ppc440spe_adma_desc_slot, | ||
2592 | chain_node); | ||
2593 | if (flags & DMA_PREP_INTERRUPT) | ||
2594 | set_bit(PPC440SPE_DESC_INT, &iter->flags); | ||
2595 | else | ||
2596 | clear_bit(PPC440SPE_DESC_INT, &iter->flags); | ||
2597 | |||
2598 | hw_desc = iter->hw_desc; | ||
2599 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | ||
2600 | ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, | ||
2601 | ppc440spe_chan->qdest); | ||
2602 | ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, | ||
2603 | *dst, 0); | ||
2604 | ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, | ||
2605 | DMA_CDB_SG_DST1, scf[1]); | ||
2606 | ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); | ||
2607 | iter->unmap_len = len; | ||
2608 | |||
2609 | /* | ||
2610 | * 3rd descriptor, multiply src[0] data and xor it | ||
2611 | * with destination | ||
2612 | */ | ||
2613 | iter = list_first_entry(&iter->chain_node, | ||
2614 | struct ppc440spe_adma_desc_slot, | ||
2615 | chain_node); | ||
2616 | memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); | ||
2617 | iter->hw_next = NULL; | ||
2618 | if (flags & DMA_PREP_INTERRUPT) | ||
2619 | set_bit(PPC440SPE_DESC_INT, &iter->flags); | ||
2620 | else | ||
2621 | clear_bit(PPC440SPE_DESC_INT, &iter->flags); | ||
2622 | |||
2623 | hw_desc = iter->hw_desc; | ||
2624 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | ||
2625 | ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, | ||
2626 | src[0]); | ||
2627 | ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, | ||
2628 | *dst, 0); | ||
2629 | ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, | ||
2630 | DMA_CDB_SG_DST1, scf[0]); | ||
2631 | ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); | ||
2632 | iter->unmap_len = len; | ||
2633 | sw_desc->async_tx.flags = flags; | ||
2634 | } | ||
2635 | |||
2636 | spin_unlock_bh(&ppc440spe_chan->lock); | ||
2637 | |||
2638 | return sw_desc; | ||
2639 | } | ||
2640 | |||
2641 | static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq( | ||
2642 | struct ppc440spe_adma_chan *ppc440spe_chan, | ||
2643 | dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, | ||
2644 | const unsigned char *scf, size_t len, unsigned long flags) | ||
2645 | { | ||
2646 | int slot_cnt; | ||
2647 | struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter; | ||
2648 | unsigned long op = 0; | ||
2649 | unsigned char mult = 1; | ||
2650 | |||
2651 | pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n", | ||
2652 | __func__, dst_cnt, src_cnt, len); | ||
2653 | /* select operations WXOR/RXOR depending on the | ||
2654 | * source addresses of operators and the number | ||
2655 | * of destinations (RXOR support only Q-parity calculations) | ||
2656 | */ | ||
2657 | set_bit(PPC440SPE_DESC_WXOR, &op); | ||
2658 | if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) { | ||
2659 | /* no active RXOR; | ||
2660 | * do RXOR if: | ||
2661 | * - there are more than 1 source, | ||
2662 | * - len is aligned on 512-byte boundary, | ||
2663 | * - source addresses fit to one of 4 possible regions. | ||
2664 | */ | ||
2665 | if (src_cnt > 1 && | ||
2666 | !(len & MQ0_CF2H_RXOR_BS_MASK) && | ||
2667 | (src[0] + len) == src[1]) { | ||
2668 | /* may do RXOR R1 R2 */ | ||
2669 | set_bit(PPC440SPE_DESC_RXOR, &op); | ||
2670 | if (src_cnt != 2) { | ||
2671 | /* may try to enhance region of RXOR */ | ||
2672 | if ((src[1] + len) == src[2]) { | ||
2673 | /* do RXOR R1 R2 R3 */ | ||
2674 | set_bit(PPC440SPE_DESC_RXOR123, | ||
2675 | &op); | ||
2676 | } else if ((src[1] + len * 2) == src[2]) { | ||
2677 | /* do RXOR R1 R2 R4 */ | ||
2678 | set_bit(PPC440SPE_DESC_RXOR124, &op); | ||
2679 | } else if ((src[1] + len * 3) == src[2]) { | ||
2680 | /* do RXOR R1 R2 R5 */ | ||
2681 | set_bit(PPC440SPE_DESC_RXOR125, | ||
2682 | &op); | ||
2683 | } else { | ||
2684 | /* do RXOR R1 R2 */ | ||
2685 | set_bit(PPC440SPE_DESC_RXOR12, | ||
2686 | &op); | ||
2687 | } | ||
2688 | } else { | ||
2689 | /* do RXOR R1 R2 */ | ||
2690 | set_bit(PPC440SPE_DESC_RXOR12, &op); | ||
2691 | } | ||
2692 | } | ||
2693 | |||
2694 | if (!test_bit(PPC440SPE_DESC_RXOR, &op)) { | ||
2695 | /* can not do this operation with RXOR */ | ||
2696 | clear_bit(PPC440SPE_RXOR_RUN, | ||
2697 | &ppc440spe_rxor_state); | ||
2698 | } else { | ||
2699 | /* can do; set block size right now */ | ||
2700 | ppc440spe_desc_set_rxor_block_size(len); | ||
2701 | } | ||
2702 | } | ||
2703 | |||
2704 | /* Number of necessary slots depends on operation type selected */ | ||
2705 | if (!test_bit(PPC440SPE_DESC_RXOR, &op)) { | ||
2706 | /* This is a WXOR only chain. Need descriptors for each | ||
2707 | * source to GF-XOR them with WXOR, and need descriptors | ||
2708 | * for each destination to zero them with WXOR | ||
2709 | */ | ||
2710 | slot_cnt = src_cnt; | ||
2711 | |||
2712 | if (flags & DMA_PREP_ZERO_P) { | ||
2713 | slot_cnt++; | ||
2714 | set_bit(PPC440SPE_ZERO_P, &op); | ||
2715 | } | ||
2716 | if (flags & DMA_PREP_ZERO_Q) { | ||
2717 | slot_cnt++; | ||
2718 | set_bit(PPC440SPE_ZERO_Q, &op); | ||
2719 | } | ||
2720 | } else { | ||
2721 | /* Need 1/2 descriptor for RXOR operation, and | ||
2722 | * need (src_cnt - (2 or 3)) for WXOR of sources | ||
2723 | * remained (if any) | ||
2724 | */ | ||
2725 | slot_cnt = dst_cnt; | ||
2726 | |||
2727 | if (flags & DMA_PREP_ZERO_P) | ||
2728 | set_bit(PPC440SPE_ZERO_P, &op); | ||
2729 | if (flags & DMA_PREP_ZERO_Q) | ||
2730 | set_bit(PPC440SPE_ZERO_Q, &op); | ||
2731 | |||
2732 | if (test_bit(PPC440SPE_DESC_RXOR12, &op)) | ||
2733 | slot_cnt += src_cnt - 2; | ||
2734 | else | ||
2735 | slot_cnt += src_cnt - 3; | ||
2736 | |||
2737 | /* Thus we have either RXOR only chain or | ||
2738 | * mixed RXOR/WXOR | ||
2739 | */ | ||
2740 | if (slot_cnt == dst_cnt) | ||
2741 | /* RXOR only chain */ | ||
2742 | clear_bit(PPC440SPE_DESC_WXOR, &op); | ||
2743 | } | ||
2744 | |||
2745 | spin_lock_bh(&ppc440spe_chan->lock); | ||
2746 | /* for both RXOR/WXOR each descriptor occupies one slot */ | ||
2747 | sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); | ||
2748 | if (sw_desc) { | ||
2749 | ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt, | ||
2750 | flags, op); | ||
2751 | |||
2752 | /* setup dst/src/mult */ | ||
2753 | pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n", | ||
2754 | __func__, dst[0], dst[1]); | ||
2755 | ppc440spe_adma_pq_set_dest(sw_desc, dst, flags); | ||
2756 | while (src_cnt--) { | ||
2757 | ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt], | ||
2758 | src_cnt); | ||
2759 | |||
2760 | /* NOTE: "Multi = 0 is equivalent to = 1" as it | ||
2761 | * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf | ||
2762 | * doesn't work for RXOR with DMA0/1! Instead, multi=0 | ||
2763 | * leads to zeroing source data after RXOR. | ||
2764 | * So, for P case set-up mult=1 explicitly. | ||
2765 | */ | ||
2766 | if (!(flags & DMA_PREP_PQ_DISABLE_Q)) | ||
2767 | mult = scf[src_cnt]; | ||
2768 | ppc440spe_adma_pq_set_src_mult(sw_desc, | ||
2769 | mult, src_cnt, dst_cnt - 1); | ||
2770 | } | ||
2771 | |||
2772 | /* Setup byte count foreach slot just allocated */ | ||
2773 | sw_desc->async_tx.flags = flags; | ||
2774 | list_for_each_entry(iter, &sw_desc->group_list, | ||
2775 | chain_node) { | ||
2776 | ppc440spe_desc_set_byte_count(iter, | ||
2777 | ppc440spe_chan, len); | ||
2778 | iter->unmap_len = len; | ||
2779 | } | ||
2780 | } | ||
2781 | spin_unlock_bh(&ppc440spe_chan->lock); | ||
2782 | |||
2783 | return sw_desc; | ||
2784 | } | ||
2785 | |||
2786 | static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq( | ||
2787 | struct ppc440spe_adma_chan *ppc440spe_chan, | ||
2788 | dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, | ||
2789 | const unsigned char *scf, size_t len, unsigned long flags) | ||
2790 | { | ||
2791 | int slot_cnt, descs_per_op; | ||
2792 | struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter; | ||
2793 | unsigned long op = 0; | ||
2794 | unsigned char mult = 1; | ||
2795 | |||
2796 | BUG_ON(!dst_cnt); | ||
2797 | /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n", | ||
2798 | __func__, dst_cnt, src_cnt, len);*/ | ||
2799 | |||
2800 | spin_lock_bh(&ppc440spe_chan->lock); | ||
2801 | descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len); | ||
2802 | if (descs_per_op < 0) { | ||
2803 | spin_unlock_bh(&ppc440spe_chan->lock); | ||
2804 | return NULL; | ||
2805 | } | ||
2806 | |||
2807 | /* depending on number of sources we have 1 or 2 RXOR chains */ | ||
2808 | slot_cnt = descs_per_op * dst_cnt; | ||
2809 | |||
2810 | sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); | ||
2811 | if (sw_desc) { | ||
2812 | op = slot_cnt; | ||
2813 | sw_desc->async_tx.flags = flags; | ||
2814 | list_for_each_entry(iter, &sw_desc->group_list, chain_node) { | ||
2815 | ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt, | ||
2816 | --op ? 0 : flags); | ||
2817 | ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, | ||
2818 | len); | ||
2819 | iter->unmap_len = len; | ||
2820 | |||
2821 | ppc440spe_init_rxor_cursor(&(iter->rxor_cursor)); | ||
2822 | iter->rxor_cursor.len = len; | ||
2823 | iter->descs_per_op = descs_per_op; | ||
2824 | } | ||
2825 | op = 0; | ||
2826 | list_for_each_entry(iter, &sw_desc->group_list, chain_node) { | ||
2827 | op++; | ||
2828 | if (op % descs_per_op == 0) | ||
2829 | ppc440spe_adma_init_dma2rxor_slot(iter, src, | ||
2830 | src_cnt); | ||
2831 | if (likely(!list_is_last(&iter->chain_node, | ||
2832 | &sw_desc->group_list))) { | ||
2833 | /* set 'next' pointer */ | ||
2834 | iter->hw_next = | ||
2835 | list_entry(iter->chain_node.next, | ||
2836 | struct ppc440spe_adma_desc_slot, | ||
2837 | chain_node); | ||
2838 | ppc440spe_xor_set_link(iter, iter->hw_next); | ||
2839 | } else { | ||
2840 | /* this is the last descriptor. */ | ||
2841 | iter->hw_next = NULL; | ||
2842 | } | ||
2843 | } | ||
2844 | |||
2845 | /* fixup head descriptor */ | ||
2846 | sw_desc->dst_cnt = dst_cnt; | ||
2847 | if (flags & DMA_PREP_ZERO_P) | ||
2848 | set_bit(PPC440SPE_ZERO_P, &sw_desc->flags); | ||
2849 | if (flags & DMA_PREP_ZERO_Q) | ||
2850 | set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags); | ||
2851 | |||
2852 | /* setup dst/src/mult */ | ||
2853 | ppc440spe_adma_pq_set_dest(sw_desc, dst, flags); | ||
2854 | |||
2855 | while (src_cnt--) { | ||
2856 | /* handle descriptors (if dst_cnt == 2) inside | ||
2857 | * the ppc440spe_adma_pq_set_srcxxx() functions | ||
2858 | */ | ||
2859 | ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt], | ||
2860 | src_cnt); | ||
2861 | if (!(flags & DMA_PREP_PQ_DISABLE_Q)) | ||
2862 | mult = scf[src_cnt]; | ||
2863 | ppc440spe_adma_pq_set_src_mult(sw_desc, | ||
2864 | mult, src_cnt, dst_cnt - 1); | ||
2865 | } | ||
2866 | } | ||
2867 | spin_unlock_bh(&ppc440spe_chan->lock); | ||
2868 | ppc440spe_desc_set_rxor_block_size(len); | ||
2869 | return sw_desc; | ||
2870 | } | ||
2871 | |||
2872 | /** | ||
2873 | * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation | ||
2874 | */ | ||
2875 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq( | ||
2876 | struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, | ||
2877 | unsigned int src_cnt, const unsigned char *scf, | ||
2878 | size_t len, unsigned long flags) | ||
2879 | { | ||
2880 | struct ppc440spe_adma_chan *ppc440spe_chan; | ||
2881 | struct ppc440spe_adma_desc_slot *sw_desc = NULL; | ||
2882 | int dst_cnt = 0; | ||
2883 | |||
2884 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); | ||
2885 | |||
2886 | ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id, | ||
2887 | dst, src, src_cnt)); | ||
2888 | BUG_ON(!len); | ||
2889 | BUG_ON(unlikely(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT)); | ||
2890 | BUG_ON(!src_cnt); | ||
2891 | |||
2892 | if (src_cnt == 1 && dst[1] == src[0]) { | ||
2893 | dma_addr_t dest[2]; | ||
2894 | |||
2895 | /* dst[1] is real destination (Q) */ | ||
2896 | dest[0] = dst[1]; | ||
2897 | /* this is the page to multicast source data to */ | ||
2898 | dest[1] = ppc440spe_chan->qdest; | ||
2899 | sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan, | ||
2900 | dest, 2, src, src_cnt, scf, len, flags); | ||
2901 | return sw_desc ? &sw_desc->async_tx : NULL; | ||
2902 | } | ||
2903 | |||
2904 | if (src_cnt == 2 && dst[1] == src[1]) { | ||
2905 | sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan, | ||
2906 | &dst[1], src, 2, scf, len, flags); | ||
2907 | return sw_desc ? &sw_desc->async_tx : NULL; | ||
2908 | } | ||
2909 | |||
2910 | if (!(flags & DMA_PREP_PQ_DISABLE_P)) { | ||
2911 | BUG_ON(!dst[0]); | ||
2912 | dst_cnt++; | ||
2913 | flags |= DMA_PREP_ZERO_P; | ||
2914 | } | ||
2915 | |||
2916 | if (!(flags & DMA_PREP_PQ_DISABLE_Q)) { | ||
2917 | BUG_ON(!dst[1]); | ||
2918 | dst_cnt++; | ||
2919 | flags |= DMA_PREP_ZERO_Q; | ||
2920 | } | ||
2921 | |||
2922 | BUG_ON(!dst_cnt); | ||
2923 | |||
2924 | dev_dbg(ppc440spe_chan->device->common.dev, | ||
2925 | "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n", | ||
2926 | ppc440spe_chan->device->id, __func__, src_cnt, len, | ||
2927 | flags & DMA_PREP_INTERRUPT ? 1 : 0); | ||
2928 | |||
2929 | switch (ppc440spe_chan->device->id) { | ||
2930 | case PPC440SPE_DMA0_ID: | ||
2931 | case PPC440SPE_DMA1_ID: | ||
2932 | sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan, | ||
2933 | dst, dst_cnt, src, src_cnt, scf, | ||
2934 | len, flags); | ||
2935 | break; | ||
2936 | |||
2937 | case PPC440SPE_XOR_ID: | ||
2938 | sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan, | ||
2939 | dst, dst_cnt, src, src_cnt, scf, | ||
2940 | len, flags); | ||
2941 | break; | ||
2942 | } | ||
2943 | |||
2944 | return sw_desc ? &sw_desc->async_tx : NULL; | ||
2945 | } | ||
2946 | |||
2947 | /** | ||
2948 | * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for | ||
2949 | * a PQ_ZERO_SUM operation | ||
2950 | */ | ||
2951 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum( | ||
2952 | struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, | ||
2953 | unsigned int src_cnt, const unsigned char *scf, size_t len, | ||
2954 | enum sum_check_flags *pqres, unsigned long flags) | ||
2955 | { | ||
2956 | struct ppc440spe_adma_chan *ppc440spe_chan; | ||
2957 | struct ppc440spe_adma_desc_slot *sw_desc, *iter; | ||
2958 | dma_addr_t pdest, qdest; | ||
2959 | int slot_cnt, slots_per_op, idst, dst_cnt; | ||
2960 | |||
2961 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); | ||
2962 | |||
2963 | if (flags & DMA_PREP_PQ_DISABLE_P) | ||
2964 | pdest = 0; | ||
2965 | else | ||
2966 | pdest = pq[0]; | ||
2967 | |||
2968 | if (flags & DMA_PREP_PQ_DISABLE_Q) | ||
2969 | qdest = 0; | ||
2970 | else | ||
2971 | qdest = pq[1]; | ||
2972 | |||
2973 | ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id, | ||
2974 | src, src_cnt, scf)); | ||
2975 | |||
2976 | /* Always use WXOR for P/Q calculations (two destinations). | ||
2977 | * Need 1 or 2 extra slots to verify results are zero. | ||
2978 | */ | ||
2979 | idst = dst_cnt = (pdest && qdest) ? 2 : 1; | ||
2980 | |||
2981 | /* One additional slot per destination to clone P/Q | ||
2982 | * before calculation (we have to preserve destinations). | ||
2983 | */ | ||
2984 | slot_cnt = src_cnt + dst_cnt * 2; | ||
2985 | slots_per_op = 1; | ||
2986 | |||
2987 | spin_lock_bh(&ppc440spe_chan->lock); | ||
2988 | sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, | ||
2989 | slots_per_op); | ||
2990 | if (sw_desc) { | ||
2991 | ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt); | ||
2992 | |||
2993 | /* Setup byte count for each slot just allocated */ | ||
2994 | sw_desc->async_tx.flags = flags; | ||
2995 | list_for_each_entry(iter, &sw_desc->group_list, chain_node) { | ||
2996 | ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, | ||
2997 | len); | ||
2998 | iter->unmap_len = len; | ||
2999 | } | ||
3000 | |||
3001 | if (pdest) { | ||
3002 | struct dma_cdb *hw_desc; | ||
3003 | struct ppc440spe_adma_chan *chan; | ||
3004 | |||
3005 | iter = sw_desc->group_head; | ||
3006 | chan = to_ppc440spe_adma_chan(iter->async_tx.chan); | ||
3007 | memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); | ||
3008 | iter->hw_next = list_entry(iter->chain_node.next, | ||
3009 | struct ppc440spe_adma_desc_slot, | ||
3010 | chain_node); | ||
3011 | hw_desc = iter->hw_desc; | ||
3012 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | ||
3013 | iter->src_cnt = 0; | ||
3014 | iter->dst_cnt = 0; | ||
3015 | ppc440spe_desc_set_dest_addr(iter, chan, 0, | ||
3016 | ppc440spe_chan->pdest, 0); | ||
3017 | ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest); | ||
3018 | ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, | ||
3019 | len); | ||
3020 | iter->unmap_len = 0; | ||
3021 | /* override pdest to preserve original P */ | ||
3022 | pdest = ppc440spe_chan->pdest; | ||
3023 | } | ||
3024 | if (qdest) { | ||
3025 | struct dma_cdb *hw_desc; | ||
3026 | struct ppc440spe_adma_chan *chan; | ||
3027 | |||
3028 | iter = list_first_entry(&sw_desc->group_list, | ||
3029 | struct ppc440spe_adma_desc_slot, | ||
3030 | chain_node); | ||
3031 | chan = to_ppc440spe_adma_chan(iter->async_tx.chan); | ||
3032 | |||
3033 | if (pdest) { | ||
3034 | iter = list_entry(iter->chain_node.next, | ||
3035 | struct ppc440spe_adma_desc_slot, | ||
3036 | chain_node); | ||
3037 | } | ||
3038 | |||
3039 | memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); | ||
3040 | iter->hw_next = list_entry(iter->chain_node.next, | ||
3041 | struct ppc440spe_adma_desc_slot, | ||
3042 | chain_node); | ||
3043 | hw_desc = iter->hw_desc; | ||
3044 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; | ||
3045 | iter->src_cnt = 0; | ||
3046 | iter->dst_cnt = 0; | ||
3047 | ppc440spe_desc_set_dest_addr(iter, chan, 0, | ||
3048 | ppc440spe_chan->qdest, 0); | ||
3049 | ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest); | ||
3050 | ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, | ||
3051 | len); | ||
3052 | iter->unmap_len = 0; | ||
3053 | /* override qdest to preserve original Q */ | ||
3054 | qdest = ppc440spe_chan->qdest; | ||
3055 | } | ||
3056 | |||
3057 | /* Setup destinations for P/Q ops */ | ||
3058 | ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest); | ||
3059 | |||
3060 | /* Setup zero QWORDs into DCHECK CDBs */ | ||
3061 | idst = dst_cnt; | ||
3062 | list_for_each_entry_reverse(iter, &sw_desc->group_list, | ||
3063 | chain_node) { | ||
3064 | /* | ||
3065 | * The last CDB corresponds to Q-parity check, | ||
3066 | * the one before last CDB corresponds | ||
3067 | * P-parity check | ||
3068 | */ | ||
3069 | if (idst == DMA_DEST_MAX_NUM) { | ||
3070 | if (idst == dst_cnt) { | ||
3071 | set_bit(PPC440SPE_DESC_QCHECK, | ||
3072 | &iter->flags); | ||
3073 | } else { | ||
3074 | set_bit(PPC440SPE_DESC_PCHECK, | ||
3075 | &iter->flags); | ||
3076 | } | ||
3077 | } else { | ||
3078 | if (qdest) { | ||
3079 | set_bit(PPC440SPE_DESC_QCHECK, | ||
3080 | &iter->flags); | ||
3081 | } else { | ||
3082 | set_bit(PPC440SPE_DESC_PCHECK, | ||
3083 | &iter->flags); | ||
3084 | } | ||
3085 | } | ||
3086 | iter->xor_check_result = pqres; | ||
3087 | |||
3088 | /* | ||
3089 | * set it to zero, if check fail then result will | ||
3090 | * be updated | ||
3091 | */ | ||
3092 | *iter->xor_check_result = 0; | ||
3093 | ppc440spe_desc_set_dcheck(iter, ppc440spe_chan, | ||
3094 | ppc440spe_qword); | ||
3095 | |||
3096 | if (!(--dst_cnt)) | ||
3097 | break; | ||
3098 | } | ||
3099 | |||
3100 | /* Setup sources and mults for P/Q ops */ | ||
3101 | list_for_each_entry_continue_reverse(iter, &sw_desc->group_list, | ||
3102 | chain_node) { | ||
3103 | struct ppc440spe_adma_chan *chan; | ||
3104 | u32 mult_dst; | ||
3105 | |||
3106 | chan = to_ppc440spe_adma_chan(iter->async_tx.chan); | ||
3107 | ppc440spe_desc_set_src_addr(iter, chan, 0, | ||
3108 | DMA_CUED_XOR_HB, | ||
3109 | src[src_cnt - 1]); | ||
3110 | if (qdest) { | ||
3111 | mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 : | ||
3112 | DMA_CDB_SG_DST1; | ||
3113 | ppc440spe_desc_set_src_mult(iter, chan, | ||
3114 | DMA_CUED_MULT1_OFF, | ||
3115 | mult_dst, | ||
3116 | scf[src_cnt - 1]); | ||
3117 | } | ||
3118 | if (!(--src_cnt)) | ||
3119 | break; | ||
3120 | } | ||
3121 | } | ||
3122 | spin_unlock_bh(&ppc440spe_chan->lock); | ||
3123 | return sw_desc ? &sw_desc->async_tx : NULL; | ||
3124 | } | ||
3125 | |||
3126 | /** | ||
3127 | * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for | ||
3128 | * XOR ZERO_SUM operation | ||
3129 | */ | ||
3130 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum( | ||
3131 | struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, | ||
3132 | size_t len, enum sum_check_flags *result, unsigned long flags) | ||
3133 | { | ||
3134 | struct dma_async_tx_descriptor *tx; | ||
3135 | dma_addr_t pq[2]; | ||
3136 | |||
3137 | /* validate P, disable Q */ | ||
3138 | pq[0] = src[0]; | ||
3139 | pq[1] = 0; | ||
3140 | flags |= DMA_PREP_PQ_DISABLE_Q; | ||
3141 | |||
3142 | tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1], | ||
3143 | src_cnt - 1, 0, len, | ||
3144 | result, flags); | ||
3145 | return tx; | ||
3146 | } | ||
3147 | |||
3148 | /** | ||
3149 | * ppc440spe_adma_set_dest - set destination address into descriptor | ||
3150 | */ | ||
3151 | static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc, | ||
3152 | dma_addr_t addr, int index) | ||
3153 | { | ||
3154 | struct ppc440spe_adma_chan *chan; | ||
3155 | |||
3156 | BUG_ON(index >= sw_desc->dst_cnt); | ||
3157 | |||
3158 | chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); | ||
3159 | |||
3160 | switch (chan->device->id) { | ||
3161 | case PPC440SPE_DMA0_ID: | ||
3162 | case PPC440SPE_DMA1_ID: | ||
3163 | /* to do: support transfers lengths > | ||
3164 | * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT | ||
3165 | */ | ||
3166 | ppc440spe_desc_set_dest_addr(sw_desc->group_head, | ||
3167 | chan, 0, addr, index); | ||
3168 | break; | ||
3169 | case PPC440SPE_XOR_ID: | ||
3170 | sw_desc = ppc440spe_get_group_entry(sw_desc, index); | ||
3171 | ppc440spe_desc_set_dest_addr(sw_desc, | ||
3172 | chan, 0, addr, index); | ||
3173 | break; | ||
3174 | } | ||
3175 | } | ||
3176 | |||
3177 | static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter, | ||
3178 | struct ppc440spe_adma_chan *chan, dma_addr_t addr) | ||
3179 | { | ||
3180 | /* To clear destinations update the descriptor | ||
3181 | * (P or Q depending on index) as follows: | ||
3182 | * addr is destination (0 corresponds to SG2): | ||
3183 | */ | ||
3184 | ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0); | ||
3185 | |||
3186 | /* ... and the addr is source: */ | ||
3187 | ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr); | ||
3188 | |||
3189 | /* addr is always SG2 then the mult is always DST1 */ | ||
3190 | ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, | ||
3191 | DMA_CDB_SG_DST1, 1); | ||
3192 | } | ||
3193 | |||
3194 | /** | ||
3195 | * ppc440spe_adma_pq_set_dest - set destination address into descriptor | ||
3196 | * for the PQXOR operation | ||
3197 | */ | ||
3198 | static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc, | ||
3199 | dma_addr_t *addrs, unsigned long flags) | ||
3200 | { | ||
3201 | struct ppc440spe_adma_desc_slot *iter; | ||
3202 | struct ppc440spe_adma_chan *chan; | ||
3203 | dma_addr_t paddr, qaddr; | ||
3204 | dma_addr_t addr = 0, ppath, qpath; | ||
3205 | int index = 0, i; | ||
3206 | |||
3207 | chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); | ||
3208 | |||
3209 | if (flags & DMA_PREP_PQ_DISABLE_P) | ||
3210 | paddr = 0; | ||
3211 | else | ||
3212 | paddr = addrs[0]; | ||
3213 | |||
3214 | if (flags & DMA_PREP_PQ_DISABLE_Q) | ||
3215 | qaddr = 0; | ||
3216 | else | ||
3217 | qaddr = addrs[1]; | ||
3218 | |||
3219 | if (!paddr || !qaddr) | ||
3220 | addr = paddr ? paddr : qaddr; | ||
3221 | |||
3222 | switch (chan->device->id) { | ||
3223 | case PPC440SPE_DMA0_ID: | ||
3224 | case PPC440SPE_DMA1_ID: | ||
3225 | /* walk through the WXOR source list and set P/Q-destinations | ||
3226 | * for each slot: | ||
3227 | */ | ||
3228 | if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { | ||
3229 | /* This is WXOR-only chain; may have 1/2 zero descs */ | ||
3230 | if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) | ||
3231 | index++; | ||
3232 | if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) | ||
3233 | index++; | ||
3234 | |||
3235 | iter = ppc440spe_get_group_entry(sw_desc, index); | ||
3236 | if (addr) { | ||
3237 | /* one destination */ | ||
3238 | list_for_each_entry_from(iter, | ||
3239 | &sw_desc->group_list, chain_node) | ||
3240 | ppc440spe_desc_set_dest_addr(iter, chan, | ||
3241 | DMA_CUED_XOR_BASE, addr, 0); | ||
3242 | } else { | ||
3243 | /* two destinations */ | ||
3244 | list_for_each_entry_from(iter, | ||
3245 | &sw_desc->group_list, chain_node) { | ||
3246 | ppc440spe_desc_set_dest_addr(iter, chan, | ||
3247 | DMA_CUED_XOR_BASE, paddr, 0); | ||
3248 | ppc440spe_desc_set_dest_addr(iter, chan, | ||
3249 | DMA_CUED_XOR_BASE, qaddr, 1); | ||
3250 | } | ||
3251 | } | ||
3252 | |||
3253 | if (index) { | ||
3254 | /* To clear destinations update the descriptor | ||
3255 | * (1st,2nd, or both depending on flags) | ||
3256 | */ | ||
3257 | index = 0; | ||
3258 | if (test_bit(PPC440SPE_ZERO_P, | ||
3259 | &sw_desc->flags)) { | ||
3260 | iter = ppc440spe_get_group_entry( | ||
3261 | sw_desc, index++); | ||
3262 | ppc440spe_adma_pq_zero_op(iter, chan, | ||
3263 | paddr); | ||
3264 | } | ||
3265 | |||
3266 | if (test_bit(PPC440SPE_ZERO_Q, | ||
3267 | &sw_desc->flags)) { | ||
3268 | iter = ppc440spe_get_group_entry( | ||
3269 | sw_desc, index++); | ||
3270 | ppc440spe_adma_pq_zero_op(iter, chan, | ||
3271 | qaddr); | ||
3272 | } | ||
3273 | |||
3274 | return; | ||
3275 | } | ||
3276 | } else { | ||
3277 | /* This is RXOR-only or RXOR/WXOR mixed chain */ | ||
3278 | |||
3279 | /* If we want to include destination into calculations, | ||
3280 | * then make dest addresses cued with mult=1 (XOR). | ||
3281 | */ | ||
3282 | ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ? | ||
3283 | DMA_CUED_XOR_HB : | ||
3284 | DMA_CUED_XOR_BASE | | ||
3285 | (1 << DMA_CUED_MULT1_OFF); | ||
3286 | qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ? | ||
3287 | DMA_CUED_XOR_HB : | ||
3288 | DMA_CUED_XOR_BASE | | ||
3289 | (1 << DMA_CUED_MULT1_OFF); | ||
3290 | |||
3291 | /* Setup destination(s) in RXOR slot(s) */ | ||
3292 | iter = ppc440spe_get_group_entry(sw_desc, index++); | ||
3293 | ppc440spe_desc_set_dest_addr(iter, chan, | ||
3294 | paddr ? ppath : qpath, | ||
3295 | paddr ? paddr : qaddr, 0); | ||
3296 | if (!addr) { | ||
3297 | /* two destinations */ | ||
3298 | iter = ppc440spe_get_group_entry(sw_desc, | ||
3299 | index++); | ||
3300 | ppc440spe_desc_set_dest_addr(iter, chan, | ||
3301 | qpath, qaddr, 0); | ||
3302 | } | ||
3303 | |||
3304 | if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) { | ||
3305 | /* Setup destination(s) in remaining WXOR | ||
3306 | * slots | ||
3307 | */ | ||
3308 | iter = ppc440spe_get_group_entry(sw_desc, | ||
3309 | index); | ||
3310 | if (addr) { | ||
3311 | /* one destination */ | ||
3312 | list_for_each_entry_from(iter, | ||
3313 | &sw_desc->group_list, | ||
3314 | chain_node) | ||
3315 | ppc440spe_desc_set_dest_addr( | ||
3316 | iter, chan, | ||
3317 | DMA_CUED_XOR_BASE, | ||
3318 | addr, 0); | ||
3319 | |||
3320 | } else { | ||
3321 | /* two destinations */ | ||
3322 | list_for_each_entry_from(iter, | ||
3323 | &sw_desc->group_list, | ||
3324 | chain_node) { | ||
3325 | ppc440spe_desc_set_dest_addr( | ||
3326 | iter, chan, | ||
3327 | DMA_CUED_XOR_BASE, | ||
3328 | paddr, 0); | ||
3329 | ppc440spe_desc_set_dest_addr( | ||
3330 | iter, chan, | ||
3331 | DMA_CUED_XOR_BASE, | ||
3332 | qaddr, 1); | ||
3333 | } | ||
3334 | } | ||
3335 | } | ||
3336 | |||
3337 | } | ||
3338 | break; | ||
3339 | |||
3340 | case PPC440SPE_XOR_ID: | ||
3341 | /* DMA2 descriptors have only 1 destination, so there are | ||
3342 | * two chains - one for each dest. | ||
3343 | * If we want to include destination into calculations, | ||
3344 | * then make dest addresses cued with mult=1 (XOR). | ||
3345 | */ | ||
3346 | ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ? | ||
3347 | DMA_CUED_XOR_HB : | ||
3348 | DMA_CUED_XOR_BASE | | ||
3349 | (1 << DMA_CUED_MULT1_OFF); | ||
3350 | |||
3351 | qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ? | ||
3352 | DMA_CUED_XOR_HB : | ||
3353 | DMA_CUED_XOR_BASE | | ||
3354 | (1 << DMA_CUED_MULT1_OFF); | ||
3355 | |||
3356 | iter = ppc440spe_get_group_entry(sw_desc, 0); | ||
3357 | for (i = 0; i < sw_desc->descs_per_op; i++) { | ||
3358 | ppc440spe_desc_set_dest_addr(iter, chan, | ||
3359 | paddr ? ppath : qpath, | ||
3360 | paddr ? paddr : qaddr, 0); | ||
3361 | iter = list_entry(iter->chain_node.next, | ||
3362 | struct ppc440spe_adma_desc_slot, | ||
3363 | chain_node); | ||
3364 | } | ||
3365 | |||
3366 | if (!addr) { | ||
3367 | /* Two destinations; setup Q here */ | ||
3368 | iter = ppc440spe_get_group_entry(sw_desc, | ||
3369 | sw_desc->descs_per_op); | ||
3370 | for (i = 0; i < sw_desc->descs_per_op; i++) { | ||
3371 | ppc440spe_desc_set_dest_addr(iter, | ||
3372 | chan, qpath, qaddr, 0); | ||
3373 | iter = list_entry(iter->chain_node.next, | ||
3374 | struct ppc440spe_adma_desc_slot, | ||
3375 | chain_node); | ||
3376 | } | ||
3377 | } | ||
3378 | |||
3379 | break; | ||
3380 | } | ||
3381 | } | ||
3382 | |||
3383 | /** | ||
3384 | * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor | ||
3385 | * for the PQ_ZERO_SUM operation | ||
3386 | */ | ||
3387 | static void ppc440spe_adma_pqzero_sum_set_dest( | ||
3388 | struct ppc440spe_adma_desc_slot *sw_desc, | ||
3389 | dma_addr_t paddr, dma_addr_t qaddr) | ||
3390 | { | ||
3391 | struct ppc440spe_adma_desc_slot *iter, *end; | ||
3392 | struct ppc440spe_adma_chan *chan; | ||
3393 | dma_addr_t addr = 0; | ||
3394 | int idx; | ||
3395 | |||
3396 | chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); | ||
3397 | |||
3398 | /* walk through the WXOR source list and set P/Q-destinations | ||
3399 | * for each slot | ||
3400 | */ | ||
3401 | idx = (paddr && qaddr) ? 2 : 1; | ||
3402 | /* set end */ | ||
3403 | list_for_each_entry_reverse(end, &sw_desc->group_list, | ||
3404 | chain_node) { | ||
3405 | if (!(--idx)) | ||
3406 | break; | ||
3407 | } | ||
3408 | /* set start */ | ||
3409 | idx = (paddr && qaddr) ? 2 : 1; | ||
3410 | iter = ppc440spe_get_group_entry(sw_desc, idx); | ||
3411 | |||
3412 | if (paddr && qaddr) { | ||
3413 | /* two destinations */ | ||
3414 | list_for_each_entry_from(iter, &sw_desc->group_list, | ||
3415 | chain_node) { | ||
3416 | if (unlikely(iter == end)) | ||
3417 | break; | ||
3418 | ppc440spe_desc_set_dest_addr(iter, chan, | ||
3419 | DMA_CUED_XOR_BASE, paddr, 0); | ||
3420 | ppc440spe_desc_set_dest_addr(iter, chan, | ||
3421 | DMA_CUED_XOR_BASE, qaddr, 1); | ||
3422 | } | ||
3423 | } else { | ||
3424 | /* one destination */ | ||
3425 | addr = paddr ? paddr : qaddr; | ||
3426 | list_for_each_entry_from(iter, &sw_desc->group_list, | ||
3427 | chain_node) { | ||
3428 | if (unlikely(iter == end)) | ||
3429 | break; | ||
3430 | ppc440spe_desc_set_dest_addr(iter, chan, | ||
3431 | DMA_CUED_XOR_BASE, addr, 0); | ||
3432 | } | ||
3433 | } | ||
3434 | |||
3435 | /* The remaining descriptors are DATACHECK. These have no need in | ||
3436 | * destination. Actually, these destinations are used there | ||
3437 | * as sources for check operation. So, set addr as source. | ||
3438 | */ | ||
3439 | ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr); | ||
3440 | |||
3441 | if (!addr) { | ||
3442 | end = list_entry(end->chain_node.next, | ||
3443 | struct ppc440spe_adma_desc_slot, chain_node); | ||
3444 | ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr); | ||
3445 | } | ||
3446 | } | ||
3447 | |||
3448 | /** | ||
3449 | * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor | ||
3450 | */ | ||
3451 | static inline void ppc440spe_desc_set_xor_src_cnt( | ||
3452 | struct ppc440spe_adma_desc_slot *desc, | ||
3453 | int src_cnt) | ||
3454 | { | ||
3455 | struct xor_cb *hw_desc = desc->hw_desc; | ||
3456 | |||
3457 | hw_desc->cbc &= ~XOR_CDCR_OAC_MSK; | ||
3458 | hw_desc->cbc |= src_cnt; | ||
3459 | } | ||
3460 | |||
3461 | /** | ||
3462 | * ppc440spe_adma_pq_set_src - set source address into descriptor | ||
3463 | */ | ||
3464 | static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc, | ||
3465 | dma_addr_t addr, int index) | ||
3466 | { | ||
3467 | struct ppc440spe_adma_chan *chan; | ||
3468 | dma_addr_t haddr = 0; | ||
3469 | struct ppc440spe_adma_desc_slot *iter = NULL; | ||
3470 | |||
3471 | chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); | ||
3472 | |||
3473 | switch (chan->device->id) { | ||
3474 | case PPC440SPE_DMA0_ID: | ||
3475 | case PPC440SPE_DMA1_ID: | ||
3476 | /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain | ||
3477 | */ | ||
3478 | if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { | ||
3479 | /* RXOR-only or RXOR/WXOR operation */ | ||
3480 | int iskip = test_bit(PPC440SPE_DESC_RXOR12, | ||
3481 | &sw_desc->flags) ? 2 : 3; | ||
3482 | |||
3483 | if (index == 0) { | ||
3484 | /* 1st slot (RXOR) */ | ||
3485 | /* setup sources region (R1-2-3, R1-2-4, | ||
3486 | * or R1-2-5) | ||
3487 | */ | ||
3488 | if (test_bit(PPC440SPE_DESC_RXOR12, | ||
3489 | &sw_desc->flags)) | ||
3490 | haddr = DMA_RXOR12 << | ||
3491 | DMA_CUED_REGION_OFF; | ||
3492 | else if (test_bit(PPC440SPE_DESC_RXOR123, | ||
3493 | &sw_desc->flags)) | ||
3494 | haddr = DMA_RXOR123 << | ||
3495 | DMA_CUED_REGION_OFF; | ||
3496 | else if (test_bit(PPC440SPE_DESC_RXOR124, | ||
3497 | &sw_desc->flags)) | ||
3498 | haddr = DMA_RXOR124 << | ||
3499 | DMA_CUED_REGION_OFF; | ||
3500 | else if (test_bit(PPC440SPE_DESC_RXOR125, | ||
3501 | &sw_desc->flags)) | ||
3502 | haddr = DMA_RXOR125 << | ||
3503 | DMA_CUED_REGION_OFF; | ||
3504 | else | ||
3505 | BUG(); | ||
3506 | haddr |= DMA_CUED_XOR_BASE; | ||
3507 | iter = ppc440spe_get_group_entry(sw_desc, 0); | ||
3508 | } else if (index < iskip) { | ||
3509 | /* 1st slot (RXOR) | ||
3510 | * shall actually set source address only once | ||
3511 | * instead of first <iskip> | ||
3512 | */ | ||
3513 | iter = NULL; | ||
3514 | } else { | ||
3515 | /* 2nd/3d and next slots (WXOR); | ||
3516 | * skip first slot with RXOR | ||
3517 | */ | ||
3518 | haddr = DMA_CUED_XOR_HB; | ||
3519 | iter = ppc440spe_get_group_entry(sw_desc, | ||
3520 | index - iskip + sw_desc->dst_cnt); | ||
3521 | } | ||
3522 | } else { | ||
3523 | int znum = 0; | ||
3524 | |||
3525 | /* WXOR-only operation; skip first slots with | ||
3526 | * zeroing destinations | ||
3527 | */ | ||
3528 | if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) | ||
3529 | znum++; | ||
3530 | if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) | ||
3531 | znum++; | ||
3532 | |||
3533 | haddr = DMA_CUED_XOR_HB; | ||
3534 | iter = ppc440spe_get_group_entry(sw_desc, | ||
3535 | index + znum); | ||
3536 | } | ||
3537 | |||
3538 | if (likely(iter)) { | ||
3539 | ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr); | ||
3540 | |||
3541 | if (!index && | ||
3542 | test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) && | ||
3543 | sw_desc->dst_cnt == 2) { | ||
3544 | /* if we have two destinations for RXOR, then | ||
3545 | * setup source in the second descr too | ||
3546 | */ | ||
3547 | iter = ppc440spe_get_group_entry(sw_desc, 1); | ||
3548 | ppc440spe_desc_set_src_addr(iter, chan, 0, | ||
3549 | haddr, addr); | ||
3550 | } | ||
3551 | } | ||
3552 | break; | ||
3553 | |||
3554 | case PPC440SPE_XOR_ID: | ||
3555 | /* DMA2 may do Biskup */ | ||
3556 | iter = sw_desc->group_head; | ||
3557 | if (iter->dst_cnt == 2) { | ||
3558 | /* both P & Q calculations required; set P src here */ | ||
3559 | ppc440spe_adma_dma2rxor_set_src(iter, index, addr); | ||
3560 | |||
3561 | /* this is for Q */ | ||
3562 | iter = ppc440spe_get_group_entry(sw_desc, | ||
3563 | sw_desc->descs_per_op); | ||
3564 | } | ||
3565 | ppc440spe_adma_dma2rxor_set_src(iter, index, addr); | ||
3566 | break; | ||
3567 | } | ||
3568 | } | ||
3569 | |||
3570 | /** | ||
3571 | * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor | ||
3572 | */ | ||
3573 | static void ppc440spe_adma_memcpy_xor_set_src( | ||
3574 | struct ppc440spe_adma_desc_slot *sw_desc, | ||
3575 | dma_addr_t addr, int index) | ||
3576 | { | ||
3577 | struct ppc440spe_adma_chan *chan; | ||
3578 | |||
3579 | chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); | ||
3580 | sw_desc = sw_desc->group_head; | ||
3581 | |||
3582 | if (likely(sw_desc)) | ||
3583 | ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr); | ||
3584 | } | ||
3585 | |||
3586 | /** | ||
3587 | * ppc440spe_adma_dma2rxor_inc_addr - | ||
3588 | */ | ||
3589 | static void ppc440spe_adma_dma2rxor_inc_addr( | ||
3590 | struct ppc440spe_adma_desc_slot *desc, | ||
3591 | struct ppc440spe_rxor *cursor, int index, int src_cnt) | ||
3592 | { | ||
3593 | cursor->addr_count++; | ||
3594 | if (index == src_cnt - 1) { | ||
3595 | ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count); | ||
3596 | } else if (cursor->addr_count == XOR_MAX_OPS) { | ||
3597 | ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count); | ||
3598 | cursor->addr_count = 0; | ||
3599 | cursor->desc_count++; | ||
3600 | } | ||
3601 | } | ||
3602 | |||
3603 | /** | ||
3604 | * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB | ||
3605 | */ | ||
3606 | static int ppc440spe_adma_dma2rxor_prep_src( | ||
3607 | struct ppc440spe_adma_desc_slot *hdesc, | ||
3608 | struct ppc440spe_rxor *cursor, int index, | ||
3609 | int src_cnt, u32 addr) | ||
3610 | { | ||
3611 | int rval = 0; | ||
3612 | u32 sign; | ||
3613 | struct ppc440spe_adma_desc_slot *desc = hdesc; | ||
3614 | int i; | ||
3615 | |||
3616 | for (i = 0; i < cursor->desc_count; i++) { | ||
3617 | desc = list_entry(hdesc->chain_node.next, | ||
3618 | struct ppc440spe_adma_desc_slot, | ||
3619 | chain_node); | ||
3620 | } | ||
3621 | |||
3622 | switch (cursor->state) { | ||
3623 | case 0: | ||
3624 | if (addr == cursor->addrl + cursor->len) { | ||
3625 | /* direct RXOR */ | ||
3626 | cursor->state = 1; | ||
3627 | cursor->xor_count++; | ||
3628 | if (index == src_cnt-1) { | ||
3629 | ppc440spe_rxor_set_region(desc, | ||
3630 | cursor->addr_count, | ||
3631 | DMA_RXOR12 << DMA_CUED_REGION_OFF); | ||
3632 | ppc440spe_adma_dma2rxor_inc_addr( | ||
3633 | desc, cursor, index, src_cnt); | ||
3634 | } | ||
3635 | } else if (cursor->addrl == addr + cursor->len) { | ||
3636 | /* reverse RXOR */ | ||
3637 | cursor->state = 1; | ||
3638 | cursor->xor_count++; | ||
3639 | set_bit(cursor->addr_count, &desc->reverse_flags[0]); | ||
3640 | if (index == src_cnt-1) { | ||
3641 | ppc440spe_rxor_set_region(desc, | ||
3642 | cursor->addr_count, | ||
3643 | DMA_RXOR12 << DMA_CUED_REGION_OFF); | ||
3644 | ppc440spe_adma_dma2rxor_inc_addr( | ||
3645 | desc, cursor, index, src_cnt); | ||
3646 | } | ||
3647 | } else { | ||
3648 | printk(KERN_ERR "Cannot build " | ||
3649 | "DMA2 RXOR command block.\n"); | ||
3650 | BUG(); | ||
3651 | } | ||
3652 | break; | ||
3653 | case 1: | ||
3654 | sign = test_bit(cursor->addr_count, | ||
3655 | desc->reverse_flags) | ||
3656 | ? -1 : 1; | ||
3657 | if (index == src_cnt-2 || (sign == -1 | ||
3658 | && addr != cursor->addrl - 2*cursor->len)) { | ||
3659 | cursor->state = 0; | ||
3660 | cursor->xor_count = 1; | ||
3661 | cursor->addrl = addr; | ||
3662 | ppc440spe_rxor_set_region(desc, | ||
3663 | cursor->addr_count, | ||
3664 | DMA_RXOR12 << DMA_CUED_REGION_OFF); | ||
3665 | ppc440spe_adma_dma2rxor_inc_addr( | ||
3666 | desc, cursor, index, src_cnt); | ||
3667 | } else if (addr == cursor->addrl + 2*sign*cursor->len) { | ||
3668 | cursor->state = 2; | ||
3669 | cursor->xor_count = 0; | ||
3670 | ppc440spe_rxor_set_region(desc, | ||
3671 | cursor->addr_count, | ||
3672 | DMA_RXOR123 << DMA_CUED_REGION_OFF); | ||
3673 | if (index == src_cnt-1) { | ||
3674 | ppc440spe_adma_dma2rxor_inc_addr( | ||
3675 | desc, cursor, index, src_cnt); | ||
3676 | } | ||
3677 | } else if (addr == cursor->addrl + 3*cursor->len) { | ||
3678 | cursor->state = 2; | ||
3679 | cursor->xor_count = 0; | ||
3680 | ppc440spe_rxor_set_region(desc, | ||
3681 | cursor->addr_count, | ||
3682 | DMA_RXOR124 << DMA_CUED_REGION_OFF); | ||
3683 | if (index == src_cnt-1) { | ||
3684 | ppc440spe_adma_dma2rxor_inc_addr( | ||
3685 | desc, cursor, index, src_cnt); | ||
3686 | } | ||
3687 | } else if (addr == cursor->addrl + 4*cursor->len) { | ||
3688 | cursor->state = 2; | ||
3689 | cursor->xor_count = 0; | ||
3690 | ppc440spe_rxor_set_region(desc, | ||
3691 | cursor->addr_count, | ||
3692 | DMA_RXOR125 << DMA_CUED_REGION_OFF); | ||
3693 | if (index == src_cnt-1) { | ||
3694 | ppc440spe_adma_dma2rxor_inc_addr( | ||
3695 | desc, cursor, index, src_cnt); | ||
3696 | } | ||
3697 | } else { | ||
3698 | cursor->state = 0; | ||
3699 | cursor->xor_count = 1; | ||
3700 | cursor->addrl = addr; | ||
3701 | ppc440spe_rxor_set_region(desc, | ||
3702 | cursor->addr_count, | ||
3703 | DMA_RXOR12 << DMA_CUED_REGION_OFF); | ||
3704 | ppc440spe_adma_dma2rxor_inc_addr( | ||
3705 | desc, cursor, index, src_cnt); | ||
3706 | } | ||
3707 | break; | ||
3708 | case 2: | ||
3709 | cursor->state = 0; | ||
3710 | cursor->addrl = addr; | ||
3711 | cursor->xor_count++; | ||
3712 | if (index) { | ||
3713 | ppc440spe_adma_dma2rxor_inc_addr( | ||
3714 | desc, cursor, index, src_cnt); | ||
3715 | } | ||
3716 | break; | ||
3717 | } | ||
3718 | |||
3719 | return rval; | ||
3720 | } | ||
3721 | |||
3722 | /** | ||
3723 | * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that | ||
3724 | * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call | ||
3725 | */ | ||
3726 | static void ppc440spe_adma_dma2rxor_set_src( | ||
3727 | struct ppc440spe_adma_desc_slot *desc, | ||
3728 | int index, dma_addr_t addr) | ||
3729 | { | ||
3730 | struct xor_cb *xcb = desc->hw_desc; | ||
3731 | int k = 0, op = 0, lop = 0; | ||
3732 | |||
3733 | /* get the RXOR operand which corresponds to index addr */ | ||
3734 | while (op <= index) { | ||
3735 | lop = op; | ||
3736 | if (k == XOR_MAX_OPS) { | ||
3737 | k = 0; | ||
3738 | desc = list_entry(desc->chain_node.next, | ||
3739 | struct ppc440spe_adma_desc_slot, chain_node); | ||
3740 | xcb = desc->hw_desc; | ||
3741 | |||
3742 | } | ||
3743 | if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) == | ||
3744 | (DMA_RXOR12 << DMA_CUED_REGION_OFF)) | ||
3745 | op += 2; | ||
3746 | else | ||
3747 | op += 3; | ||
3748 | } | ||
3749 | |||
3750 | BUG_ON(k < 1); | ||
3751 | |||
3752 | if (test_bit(k-1, desc->reverse_flags)) { | ||
3753 | /* reverse operand order; put last op in RXOR group */ | ||
3754 | if (index == op - 1) | ||
3755 | ppc440spe_rxor_set_src(desc, k - 1, addr); | ||
3756 | } else { | ||
3757 | /* direct operand order; put first op in RXOR group */ | ||
3758 | if (index == lop) | ||
3759 | ppc440spe_rxor_set_src(desc, k - 1, addr); | ||
3760 | } | ||
3761 | } | ||
3762 | |||
3763 | /** | ||
3764 | * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that | ||
3765 | * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call | ||
3766 | */ | ||
3767 | static void ppc440spe_adma_dma2rxor_set_mult( | ||
3768 | struct ppc440spe_adma_desc_slot *desc, | ||
3769 | int index, u8 mult) | ||
3770 | { | ||
3771 | struct xor_cb *xcb = desc->hw_desc; | ||
3772 | int k = 0, op = 0, lop = 0; | ||
3773 | |||
3774 | /* get the RXOR operand which corresponds to index mult */ | ||
3775 | while (op <= index) { | ||
3776 | lop = op; | ||
3777 | if (k == XOR_MAX_OPS) { | ||
3778 | k = 0; | ||
3779 | desc = list_entry(desc->chain_node.next, | ||
3780 | struct ppc440spe_adma_desc_slot, | ||
3781 | chain_node); | ||
3782 | xcb = desc->hw_desc; | ||
3783 | |||
3784 | } | ||
3785 | if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) == | ||
3786 | (DMA_RXOR12 << DMA_CUED_REGION_OFF)) | ||
3787 | op += 2; | ||
3788 | else | ||
3789 | op += 3; | ||
3790 | } | ||
3791 | |||
3792 | BUG_ON(k < 1); | ||
3793 | if (test_bit(k-1, desc->reverse_flags)) { | ||
3794 | /* reverse order */ | ||
3795 | ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult); | ||
3796 | } else { | ||
3797 | /* direct order */ | ||
3798 | ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult); | ||
3799 | } | ||
3800 | } | ||
3801 | |||
3802 | /** | ||
3803 | * ppc440spe_init_rxor_cursor - | ||
3804 | */ | ||
3805 | static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor) | ||
3806 | { | ||
3807 | memset(cursor, 0, sizeof(struct ppc440spe_rxor)); | ||
3808 | cursor->state = 2; | ||
3809 | } | ||
3810 | |||
3811 | /** | ||
3812 | * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into | ||
3813 | * descriptor for the PQXOR operation | ||
3814 | */ | ||
3815 | static void ppc440spe_adma_pq_set_src_mult( | ||
3816 | struct ppc440spe_adma_desc_slot *sw_desc, | ||
3817 | unsigned char mult, int index, int dst_pos) | ||
3818 | { | ||
3819 | struct ppc440spe_adma_chan *chan; | ||
3820 | u32 mult_idx, mult_dst; | ||
3821 | struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL; | ||
3822 | |||
3823 | chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); | ||
3824 | |||
3825 | switch (chan->device->id) { | ||
3826 | case PPC440SPE_DMA0_ID: | ||
3827 | case PPC440SPE_DMA1_ID: | ||
3828 | if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { | ||
3829 | int region = test_bit(PPC440SPE_DESC_RXOR12, | ||
3830 | &sw_desc->flags) ? 2 : 3; | ||
3831 | |||
3832 | if (index < region) { | ||
3833 | /* RXOR multipliers */ | ||
3834 | iter = ppc440spe_get_group_entry(sw_desc, | ||
3835 | sw_desc->dst_cnt - 1); | ||
3836 | if (sw_desc->dst_cnt == 2) | ||
3837 | iter1 = ppc440spe_get_group_entry( | ||
3838 | sw_desc, 0); | ||
3839 | |||
3840 | mult_idx = DMA_CUED_MULT1_OFF + (index << 3); | ||
3841 | mult_dst = DMA_CDB_SG_SRC; | ||
3842 | } else { | ||
3843 | /* WXOR multiplier */ | ||
3844 | iter = ppc440spe_get_group_entry(sw_desc, | ||
3845 | index - region + | ||
3846 | sw_desc->dst_cnt); | ||
3847 | mult_idx = DMA_CUED_MULT1_OFF; | ||
3848 | mult_dst = dst_pos ? DMA_CDB_SG_DST2 : | ||
3849 | DMA_CDB_SG_DST1; | ||
3850 | } | ||
3851 | } else { | ||
3852 | int znum = 0; | ||
3853 | |||
3854 | /* WXOR-only; | ||
3855 | * skip first slots with destinations (if ZERO_DST has | ||
3856 | * place) | ||
3857 | */ | ||
3858 | if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) | ||
3859 | znum++; | ||
3860 | if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) | ||
3861 | znum++; | ||
3862 | |||
3863 | iter = ppc440spe_get_group_entry(sw_desc, index + znum); | ||
3864 | mult_idx = DMA_CUED_MULT1_OFF; | ||
3865 | mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1; | ||
3866 | } | ||
3867 | |||
3868 | if (likely(iter)) { | ||
3869 | ppc440spe_desc_set_src_mult(iter, chan, | ||
3870 | mult_idx, mult_dst, mult); | ||
3871 | |||
3872 | if (unlikely(iter1)) { | ||
3873 | /* if we have two destinations for RXOR, then | ||
3874 | * we've just set Q mult. Set-up P now. | ||
3875 | */ | ||
3876 | ppc440spe_desc_set_src_mult(iter1, chan, | ||
3877 | mult_idx, mult_dst, 1); | ||
3878 | } | ||
3879 | |||
3880 | } | ||
3881 | break; | ||
3882 | |||
3883 | case PPC440SPE_XOR_ID: | ||
3884 | iter = sw_desc->group_head; | ||
3885 | if (sw_desc->dst_cnt == 2) { | ||
3886 | /* both P & Q calculations required; set P mult here */ | ||
3887 | ppc440spe_adma_dma2rxor_set_mult(iter, index, 1); | ||
3888 | |||
3889 | /* and then set Q mult */ | ||
3890 | iter = ppc440spe_get_group_entry(sw_desc, | ||
3891 | sw_desc->descs_per_op); | ||
3892 | } | ||
3893 | ppc440spe_adma_dma2rxor_set_mult(iter, index, mult); | ||
3894 | break; | ||
3895 | } | ||
3896 | } | ||
3897 | |||
3898 | /** | ||
3899 | * ppc440spe_adma_free_chan_resources - free the resources allocated | ||
3900 | */ | ||
3901 | static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan) | ||
3902 | { | ||
3903 | struct ppc440spe_adma_chan *ppc440spe_chan; | ||
3904 | struct ppc440spe_adma_desc_slot *iter, *_iter; | ||
3905 | int in_use_descs = 0; | ||
3906 | |||
3907 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); | ||
3908 | ppc440spe_adma_slot_cleanup(ppc440spe_chan); | ||
3909 | |||
3910 | spin_lock_bh(&ppc440spe_chan->lock); | ||
3911 | list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain, | ||
3912 | chain_node) { | ||
3913 | in_use_descs++; | ||
3914 | list_del(&iter->chain_node); | ||
3915 | } | ||
3916 | list_for_each_entry_safe_reverse(iter, _iter, | ||
3917 | &ppc440spe_chan->all_slots, slot_node) { | ||
3918 | list_del(&iter->slot_node); | ||
3919 | kfree(iter); | ||
3920 | ppc440spe_chan->slots_allocated--; | ||
3921 | } | ||
3922 | ppc440spe_chan->last_used = NULL; | ||
3923 | |||
3924 | dev_dbg(ppc440spe_chan->device->common.dev, | ||
3925 | "ppc440spe adma%d %s slots_allocated %d\n", | ||
3926 | ppc440spe_chan->device->id, | ||
3927 | __func__, ppc440spe_chan->slots_allocated); | ||
3928 | spin_unlock_bh(&ppc440spe_chan->lock); | ||
3929 | |||
3930 | /* one is ok since we left it on there on purpose */ | ||
3931 | if (in_use_descs > 1) | ||
3932 | printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n", | ||
3933 | in_use_descs - 1); | ||
3934 | } | ||
3935 | |||
3936 | /** | ||
3937 | * ppc440spe_adma_is_complete - poll the status of an ADMA transaction | ||
3938 | * @chan: ADMA channel handle | ||
3939 | * @cookie: ADMA transaction identifier | ||
3940 | */ | ||
3941 | static enum dma_status ppc440spe_adma_is_complete(struct dma_chan *chan, | ||
3942 | dma_cookie_t cookie, dma_cookie_t *done, dma_cookie_t *used) | ||
3943 | { | ||
3944 | struct ppc440spe_adma_chan *ppc440spe_chan; | ||
3945 | dma_cookie_t last_used; | ||
3946 | dma_cookie_t last_complete; | ||
3947 | enum dma_status ret; | ||
3948 | |||
3949 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); | ||
3950 | last_used = chan->cookie; | ||
3951 | last_complete = ppc440spe_chan->completed_cookie; | ||
3952 | |||
3953 | if (done) | ||
3954 | *done = last_complete; | ||
3955 | if (used) | ||
3956 | *used = last_used; | ||
3957 | |||
3958 | ret = dma_async_is_complete(cookie, last_complete, last_used); | ||
3959 | if (ret == DMA_SUCCESS) | ||
3960 | return ret; | ||
3961 | |||
3962 | ppc440spe_adma_slot_cleanup(ppc440spe_chan); | ||
3963 | |||
3964 | last_used = chan->cookie; | ||
3965 | last_complete = ppc440spe_chan->completed_cookie; | ||
3966 | |||
3967 | if (done) | ||
3968 | *done = last_complete; | ||
3969 | if (used) | ||
3970 | *used = last_used; | ||
3971 | |||
3972 | return dma_async_is_complete(cookie, last_complete, last_used); | ||
3973 | } | ||
3974 | |||
3975 | /** | ||
3976 | * ppc440spe_adma_eot_handler - end of transfer interrupt handler | ||
3977 | */ | ||
3978 | static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data) | ||
3979 | { | ||
3980 | struct ppc440spe_adma_chan *chan = data; | ||
3981 | |||
3982 | dev_dbg(chan->device->common.dev, | ||
3983 | "ppc440spe adma%d: %s\n", chan->device->id, __func__); | ||
3984 | |||
3985 | tasklet_schedule(&chan->irq_tasklet); | ||
3986 | ppc440spe_adma_device_clear_eot_status(chan); | ||
3987 | |||
3988 | return IRQ_HANDLED; | ||
3989 | } | ||
3990 | |||
3991 | /** | ||
3992 | * ppc440spe_adma_err_handler - DMA error interrupt handler; | ||
3993 | * do the same things as a eot handler | ||
3994 | */ | ||
3995 | static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data) | ||
3996 | { | ||
3997 | struct ppc440spe_adma_chan *chan = data; | ||
3998 | |||
3999 | dev_dbg(chan->device->common.dev, | ||
4000 | "ppc440spe adma%d: %s\n", chan->device->id, __func__); | ||
4001 | |||
4002 | tasklet_schedule(&chan->irq_tasklet); | ||
4003 | ppc440spe_adma_device_clear_eot_status(chan); | ||
4004 | |||
4005 | return IRQ_HANDLED; | ||
4006 | } | ||
4007 | |||
4008 | /** | ||
4009 | * ppc440spe_test_callback - called when test operation has been done | ||
4010 | */ | ||
4011 | static void ppc440spe_test_callback(void *unused) | ||
4012 | { | ||
4013 | complete(&ppc440spe_r6_test_comp); | ||
4014 | } | ||
4015 | |||
4016 | /** | ||
4017 | * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w | ||
4018 | */ | ||
4019 | static void ppc440spe_adma_issue_pending(struct dma_chan *chan) | ||
4020 | { | ||
4021 | struct ppc440spe_adma_chan *ppc440spe_chan; | ||
4022 | |||
4023 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); | ||
4024 | dev_dbg(ppc440spe_chan->device->common.dev, | ||
4025 | "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id, | ||
4026 | __func__, ppc440spe_chan->pending); | ||
4027 | |||
4028 | if (ppc440spe_chan->pending) { | ||
4029 | ppc440spe_chan->pending = 0; | ||
4030 | ppc440spe_chan_append(ppc440spe_chan); | ||
4031 | } | ||
4032 | } | ||
4033 | |||
4034 | /** | ||
4035 | * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines | ||
4036 | * use FIFOs (as opposite to chains used in XOR) so this is a XOR | ||
4037 | * specific operation) | ||
4038 | */ | ||
4039 | static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan) | ||
4040 | { | ||
4041 | struct ppc440spe_adma_desc_slot *sw_desc, *group_start; | ||
4042 | dma_cookie_t cookie; | ||
4043 | int slot_cnt, slots_per_op; | ||
4044 | |||
4045 | dev_dbg(chan->device->common.dev, | ||
4046 | "ppc440spe adma%d: %s\n", chan->device->id, __func__); | ||
4047 | |||
4048 | spin_lock_bh(&chan->lock); | ||
4049 | slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op); | ||
4050 | sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op); | ||
4051 | if (sw_desc) { | ||
4052 | group_start = sw_desc->group_head; | ||
4053 | list_splice_init(&sw_desc->group_list, &chan->chain); | ||
4054 | async_tx_ack(&sw_desc->async_tx); | ||
4055 | ppc440spe_desc_init_null_xor(group_start); | ||
4056 | |||
4057 | cookie = chan->common.cookie; | ||
4058 | cookie++; | ||
4059 | if (cookie <= 1) | ||
4060 | cookie = 2; | ||
4061 | |||
4062 | /* initialize the completed cookie to be less than | ||
4063 | * the most recently used cookie | ||
4064 | */ | ||
4065 | chan->completed_cookie = cookie - 1; | ||
4066 | chan->common.cookie = sw_desc->async_tx.cookie = cookie; | ||
4067 | |||
4068 | /* channel should not be busy */ | ||
4069 | BUG_ON(ppc440spe_chan_is_busy(chan)); | ||
4070 | |||
4071 | /* set the descriptor address */ | ||
4072 | ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc); | ||
4073 | |||
4074 | /* run the descriptor */ | ||
4075 | ppc440spe_chan_run(chan); | ||
4076 | } else | ||
4077 | printk(KERN_ERR "ppc440spe adma%d" | ||
4078 | " failed to allocate null descriptor\n", | ||
4079 | chan->device->id); | ||
4080 | spin_unlock_bh(&chan->lock); | ||
4081 | } | ||
4082 | |||
4083 | /** | ||
4084 | * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully. | ||
4085 | * For this we just perform one WXOR operation with the same source | ||
4086 | * and destination addresses, the GF-multiplier is 1; so if RAID-6 | ||
4087 | * capabilities are enabled then we'll get src/dst filled with zero. | ||
4088 | */ | ||
4089 | static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan) | ||
4090 | { | ||
4091 | struct ppc440spe_adma_desc_slot *sw_desc, *iter; | ||
4092 | struct page *pg; | ||
4093 | char *a; | ||
4094 | dma_addr_t dma_addr, addrs[2]; | ||
4095 | unsigned long op = 0; | ||
4096 | int rval = 0; | ||
4097 | |||
4098 | set_bit(PPC440SPE_DESC_WXOR, &op); | ||
4099 | |||
4100 | pg = alloc_page(GFP_KERNEL); | ||
4101 | if (!pg) | ||
4102 | return -ENOMEM; | ||
4103 | |||
4104 | spin_lock_bh(&chan->lock); | ||
4105 | sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1); | ||
4106 | if (sw_desc) { | ||
4107 | /* 1 src, 1 dsr, int_ena, WXOR */ | ||
4108 | ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op); | ||
4109 | list_for_each_entry(iter, &sw_desc->group_list, chain_node) { | ||
4110 | ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE); | ||
4111 | iter->unmap_len = PAGE_SIZE; | ||
4112 | } | ||
4113 | } else { | ||
4114 | rval = -EFAULT; | ||
4115 | spin_unlock_bh(&chan->lock); | ||
4116 | goto exit; | ||
4117 | } | ||
4118 | spin_unlock_bh(&chan->lock); | ||
4119 | |||
4120 | /* Fill the test page with ones */ | ||
4121 | memset(page_address(pg), 0xFF, PAGE_SIZE); | ||
4122 | dma_addr = dma_map_page(chan->device->dev, pg, 0, | ||
4123 | PAGE_SIZE, DMA_BIDIRECTIONAL); | ||
4124 | |||
4125 | /* Setup addresses */ | ||
4126 | ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0); | ||
4127 | ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0); | ||
4128 | addrs[0] = dma_addr; | ||
4129 | addrs[1] = 0; | ||
4130 | ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q); | ||
4131 | |||
4132 | async_tx_ack(&sw_desc->async_tx); | ||
4133 | sw_desc->async_tx.callback = ppc440spe_test_callback; | ||
4134 | sw_desc->async_tx.callback_param = NULL; | ||
4135 | |||
4136 | init_completion(&ppc440spe_r6_test_comp); | ||
4137 | |||
4138 | ppc440spe_adma_tx_submit(&sw_desc->async_tx); | ||
4139 | ppc440spe_adma_issue_pending(&chan->common); | ||
4140 | |||
4141 | wait_for_completion(&ppc440spe_r6_test_comp); | ||
4142 | |||
4143 | /* Now check if the test page is zeroed */ | ||
4144 | a = page_address(pg); | ||
4145 | if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) { | ||
4146 | /* page is zero - RAID-6 enabled */ | ||
4147 | rval = 0; | ||
4148 | } else { | ||
4149 | /* RAID-6 was not enabled */ | ||
4150 | rval = -EINVAL; | ||
4151 | } | ||
4152 | exit: | ||
4153 | __free_page(pg); | ||
4154 | return rval; | ||
4155 | } | ||
4156 | |||
4157 | static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev) | ||
4158 | { | ||
4159 | switch (adev->id) { | ||
4160 | case PPC440SPE_DMA0_ID: | ||
4161 | case PPC440SPE_DMA1_ID: | ||
4162 | dma_cap_set(DMA_MEMCPY, adev->common.cap_mask); | ||
4163 | dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask); | ||
4164 | dma_cap_set(DMA_MEMSET, adev->common.cap_mask); | ||
4165 | dma_cap_set(DMA_PQ, adev->common.cap_mask); | ||
4166 | dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask); | ||
4167 | dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask); | ||
4168 | break; | ||
4169 | case PPC440SPE_XOR_ID: | ||
4170 | dma_cap_set(DMA_XOR, adev->common.cap_mask); | ||
4171 | dma_cap_set(DMA_PQ, adev->common.cap_mask); | ||
4172 | dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask); | ||
4173 | adev->common.cap_mask = adev->common.cap_mask; | ||
4174 | break; | ||
4175 | } | ||
4176 | |||
4177 | /* Set base routines */ | ||
4178 | adev->common.device_alloc_chan_resources = | ||
4179 | ppc440spe_adma_alloc_chan_resources; | ||
4180 | adev->common.device_free_chan_resources = | ||
4181 | ppc440spe_adma_free_chan_resources; | ||
4182 | adev->common.device_is_tx_complete = ppc440spe_adma_is_complete; | ||
4183 | adev->common.device_issue_pending = ppc440spe_adma_issue_pending; | ||
4184 | |||
4185 | /* Set prep routines based on capability */ | ||
4186 | if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) { | ||
4187 | adev->common.device_prep_dma_memcpy = | ||
4188 | ppc440spe_adma_prep_dma_memcpy; | ||
4189 | } | ||
4190 | if (dma_has_cap(DMA_MEMSET, adev->common.cap_mask)) { | ||
4191 | adev->common.device_prep_dma_memset = | ||
4192 | ppc440spe_adma_prep_dma_memset; | ||
4193 | } | ||
4194 | if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) { | ||
4195 | adev->common.max_xor = XOR_MAX_OPS; | ||
4196 | adev->common.device_prep_dma_xor = | ||
4197 | ppc440spe_adma_prep_dma_xor; | ||
4198 | } | ||
4199 | if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) { | ||
4200 | switch (adev->id) { | ||
4201 | case PPC440SPE_DMA0_ID: | ||
4202 | dma_set_maxpq(&adev->common, | ||
4203 | DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0); | ||
4204 | break; | ||
4205 | case PPC440SPE_DMA1_ID: | ||
4206 | dma_set_maxpq(&adev->common, | ||
4207 | DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0); | ||
4208 | break; | ||
4209 | case PPC440SPE_XOR_ID: | ||
4210 | adev->common.max_pq = XOR_MAX_OPS * 3; | ||
4211 | break; | ||
4212 | } | ||
4213 | adev->common.device_prep_dma_pq = | ||
4214 | ppc440spe_adma_prep_dma_pq; | ||
4215 | } | ||
4216 | if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) { | ||
4217 | switch (adev->id) { | ||
4218 | case PPC440SPE_DMA0_ID: | ||
4219 | adev->common.max_pq = DMA0_FIFO_SIZE / | ||
4220 | sizeof(struct dma_cdb); | ||
4221 | break; | ||
4222 | case PPC440SPE_DMA1_ID: | ||
4223 | adev->common.max_pq = DMA1_FIFO_SIZE / | ||
4224 | sizeof(struct dma_cdb); | ||
4225 | break; | ||
4226 | } | ||
4227 | adev->common.device_prep_dma_pq_val = | ||
4228 | ppc440spe_adma_prep_dma_pqzero_sum; | ||
4229 | } | ||
4230 | if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) { | ||
4231 | switch (adev->id) { | ||
4232 | case PPC440SPE_DMA0_ID: | ||
4233 | adev->common.max_xor = DMA0_FIFO_SIZE / | ||
4234 | sizeof(struct dma_cdb); | ||
4235 | break; | ||
4236 | case PPC440SPE_DMA1_ID: | ||
4237 | adev->common.max_xor = DMA1_FIFO_SIZE / | ||
4238 | sizeof(struct dma_cdb); | ||
4239 | break; | ||
4240 | } | ||
4241 | adev->common.device_prep_dma_xor_val = | ||
4242 | ppc440spe_adma_prep_dma_xor_zero_sum; | ||
4243 | } | ||
4244 | if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) { | ||
4245 | adev->common.device_prep_dma_interrupt = | ||
4246 | ppc440spe_adma_prep_dma_interrupt; | ||
4247 | } | ||
4248 | pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: " | ||
4249 | "( %s%s%s%s%s%s%s)\n", | ||
4250 | dev_name(adev->dev), | ||
4251 | dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "", | ||
4252 | dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "", | ||
4253 | dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "", | ||
4254 | dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "", | ||
4255 | dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "", | ||
4256 | dma_has_cap(DMA_MEMSET, adev->common.cap_mask) ? "memset " : "", | ||
4257 | dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : ""); | ||
4258 | } | ||
4259 | |||
4260 | static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev, | ||
4261 | struct ppc440spe_adma_chan *chan, | ||
4262 | int *initcode) | ||
4263 | { | ||
4264 | struct device_node *np; | ||
4265 | int ret; | ||
4266 | |||
4267 | np = container_of(adev->dev, struct of_device, dev)->node; | ||
4268 | if (adev->id != PPC440SPE_XOR_ID) { | ||
4269 | adev->err_irq = irq_of_parse_and_map(np, 1); | ||
4270 | if (adev->err_irq == NO_IRQ) { | ||
4271 | dev_warn(adev->dev, "no err irq resource?\n"); | ||
4272 | *initcode = PPC_ADMA_INIT_IRQ2; | ||
4273 | adev->err_irq = -ENXIO; | ||
4274 | } else | ||
4275 | atomic_inc(&ppc440spe_adma_err_irq_ref); | ||
4276 | } else { | ||
4277 | adev->err_irq = -ENXIO; | ||
4278 | } | ||
4279 | |||
4280 | adev->irq = irq_of_parse_and_map(np, 0); | ||
4281 | if (adev->irq == NO_IRQ) { | ||
4282 | dev_err(adev->dev, "no irq resource\n"); | ||
4283 | *initcode = PPC_ADMA_INIT_IRQ1; | ||
4284 | ret = -ENXIO; | ||
4285 | goto err_irq_map; | ||
4286 | } | ||
4287 | dev_dbg(adev->dev, "irq %d, err irq %d\n", | ||
4288 | adev->irq, adev->err_irq); | ||
4289 | |||
4290 | ret = request_irq(adev->irq, ppc440spe_adma_eot_handler, | ||
4291 | 0, dev_driver_string(adev->dev), chan); | ||
4292 | if (ret) { | ||
4293 | dev_err(adev->dev, "can't request irq %d\n", | ||
4294 | adev->irq); | ||
4295 | *initcode = PPC_ADMA_INIT_IRQ1; | ||
4296 | ret = -EIO; | ||
4297 | goto err_req1; | ||
4298 | } | ||
4299 | |||
4300 | /* only DMA engines have a separate error IRQ | ||
4301 | * so it's Ok if err_irq < 0 in XOR engine case. | ||
4302 | */ | ||
4303 | if (adev->err_irq > 0) { | ||
4304 | /* both DMA engines share common error IRQ */ | ||
4305 | ret = request_irq(adev->err_irq, | ||
4306 | ppc440spe_adma_err_handler, | ||
4307 | IRQF_SHARED, | ||
4308 | dev_driver_string(adev->dev), | ||
4309 | chan); | ||
4310 | if (ret) { | ||
4311 | dev_err(adev->dev, "can't request irq %d\n", | ||
4312 | adev->err_irq); | ||
4313 | *initcode = PPC_ADMA_INIT_IRQ2; | ||
4314 | ret = -EIO; | ||
4315 | goto err_req2; | ||
4316 | } | ||
4317 | } | ||
4318 | |||
4319 | if (adev->id == PPC440SPE_XOR_ID) { | ||
4320 | /* enable XOR engine interrupts */ | ||
4321 | iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT | | ||
4322 | XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT, | ||
4323 | &adev->xor_reg->ier); | ||
4324 | } else { | ||
4325 | u32 mask, enable; | ||
4326 | |||
4327 | np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe"); | ||
4328 | if (!np) { | ||
4329 | pr_err("%s: can't find I2O device tree node\n", | ||
4330 | __func__); | ||
4331 | ret = -ENODEV; | ||
4332 | goto err_req2; | ||
4333 | } | ||
4334 | adev->i2o_reg = of_iomap(np, 0); | ||
4335 | if (!adev->i2o_reg) { | ||
4336 | pr_err("%s: failed to map I2O registers\n", __func__); | ||
4337 | of_node_put(np); | ||
4338 | ret = -EINVAL; | ||
4339 | goto err_req2; | ||
4340 | } | ||
4341 | of_node_put(np); | ||
4342 | /* Unmask 'CS FIFO Attention' interrupts and | ||
4343 | * enable generating interrupts on errors | ||
4344 | */ | ||
4345 | enable = (adev->id == PPC440SPE_DMA0_ID) ? | ||
4346 | ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) : | ||
4347 | ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM); | ||
4348 | mask = ioread32(&adev->i2o_reg->iopim) & enable; | ||
4349 | iowrite32(mask, &adev->i2o_reg->iopim); | ||
4350 | } | ||
4351 | return 0; | ||
4352 | |||
4353 | err_req2: | ||
4354 | free_irq(adev->irq, chan); | ||
4355 | err_req1: | ||
4356 | irq_dispose_mapping(adev->irq); | ||
4357 | err_irq_map: | ||
4358 | if (adev->err_irq > 0) { | ||
4359 | if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) | ||
4360 | irq_dispose_mapping(adev->err_irq); | ||
4361 | } | ||
4362 | return ret; | ||
4363 | } | ||
4364 | |||
4365 | static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev, | ||
4366 | struct ppc440spe_adma_chan *chan) | ||
4367 | { | ||
4368 | u32 mask, disable; | ||
4369 | |||
4370 | if (adev->id == PPC440SPE_XOR_ID) { | ||
4371 | /* disable XOR engine interrupts */ | ||
4372 | mask = ioread32be(&adev->xor_reg->ier); | ||
4373 | mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT | | ||
4374 | XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT); | ||
4375 | iowrite32be(mask, &adev->xor_reg->ier); | ||
4376 | } else { | ||
4377 | /* disable DMAx engine interrupts */ | ||
4378 | disable = (adev->id == PPC440SPE_DMA0_ID) ? | ||
4379 | (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) : | ||
4380 | (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM); | ||
4381 | mask = ioread32(&adev->i2o_reg->iopim) | disable; | ||
4382 | iowrite32(mask, &adev->i2o_reg->iopim); | ||
4383 | } | ||
4384 | free_irq(adev->irq, chan); | ||
4385 | irq_dispose_mapping(adev->irq); | ||
4386 | if (adev->err_irq > 0) { | ||
4387 | free_irq(adev->err_irq, chan); | ||
4388 | if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) { | ||
4389 | irq_dispose_mapping(adev->err_irq); | ||
4390 | iounmap(adev->i2o_reg); | ||
4391 | } | ||
4392 | } | ||
4393 | } | ||
4394 | |||
4395 | /** | ||
4396 | * ppc440spe_adma_probe - probe the asynch device | ||
4397 | */ | ||
4398 | static int __devinit ppc440spe_adma_probe(struct of_device *ofdev, | ||
4399 | const struct of_device_id *match) | ||
4400 | { | ||
4401 | struct device_node *np = ofdev->node; | ||
4402 | struct resource res; | ||
4403 | struct ppc440spe_adma_device *adev; | ||
4404 | struct ppc440spe_adma_chan *chan; | ||
4405 | struct ppc_dma_chan_ref *ref, *_ref; | ||
4406 | int ret = 0, initcode = PPC_ADMA_INIT_OK; | ||
4407 | const u32 *idx; | ||
4408 | int len; | ||
4409 | void *regs; | ||
4410 | u32 id, pool_size; | ||
4411 | |||
4412 | if (of_device_is_compatible(np, "amcc,xor-accelerator")) { | ||
4413 | id = PPC440SPE_XOR_ID; | ||
4414 | /* As far as the XOR engine is concerned, it does not | ||
4415 | * use FIFOs but uses linked list. So there is no dependency | ||
4416 | * between pool size to allocate and the engine configuration. | ||
4417 | */ | ||
4418 | pool_size = PAGE_SIZE << 1; | ||
4419 | } else { | ||
4420 | /* it is DMA0 or DMA1 */ | ||
4421 | idx = of_get_property(np, "cell-index", &len); | ||
4422 | if (!idx || (len != sizeof(u32))) { | ||
4423 | dev_err(&ofdev->dev, "Device node %s has missing " | ||
4424 | "or invalid cell-index property\n", | ||
4425 | np->full_name); | ||
4426 | return -EINVAL; | ||
4427 | } | ||
4428 | id = *idx; | ||
4429 | /* DMA0,1 engines use FIFO to maintain CDBs, so we | ||
4430 | * should allocate the pool accordingly to size of this | ||
4431 | * FIFO. Thus, the pool size depends on the FIFO depth: | ||
4432 | * how much CDBs pointers the FIFO may contain then so | ||
4433 | * much CDBs we should provide in the pool. | ||
4434 | * That is | ||
4435 | * CDB size = 32B; | ||
4436 | * CDBs number = (DMA0_FIFO_SIZE >> 3); | ||
4437 | * Pool size = CDBs number * CDB size = | ||
4438 | * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2. | ||
4439 | */ | ||
4440 | pool_size = (id == PPC440SPE_DMA0_ID) ? | ||
4441 | DMA0_FIFO_SIZE : DMA1_FIFO_SIZE; | ||
4442 | pool_size <<= 2; | ||
4443 | } | ||
4444 | |||
4445 | if (of_address_to_resource(np, 0, &res)) { | ||
4446 | dev_err(&ofdev->dev, "failed to get memory resource\n"); | ||
4447 | initcode = PPC_ADMA_INIT_MEMRES; | ||
4448 | ret = -ENODEV; | ||
4449 | goto out; | ||
4450 | } | ||
4451 | |||
4452 | if (!request_mem_region(res.start, resource_size(&res), | ||
4453 | dev_driver_string(&ofdev->dev))) { | ||
4454 | dev_err(&ofdev->dev, "failed to request memory region " | ||
4455 | "(0x%016llx-0x%016llx)\n", | ||
4456 | (u64)res.start, (u64)res.end); | ||
4457 | initcode = PPC_ADMA_INIT_MEMREG; | ||
4458 | ret = -EBUSY; | ||
4459 | goto out; | ||
4460 | } | ||
4461 | |||
4462 | /* create a device */ | ||
4463 | adev = kzalloc(sizeof(*adev), GFP_KERNEL); | ||
4464 | if (!adev) { | ||
4465 | dev_err(&ofdev->dev, "failed to allocate device\n"); | ||
4466 | initcode = PPC_ADMA_INIT_ALLOC; | ||
4467 | ret = -ENOMEM; | ||
4468 | goto err_adev_alloc; | ||
4469 | } | ||
4470 | |||
4471 | adev->id = id; | ||
4472 | adev->pool_size = pool_size; | ||
4473 | /* allocate coherent memory for hardware descriptors */ | ||
4474 | adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev, | ||
4475 | adev->pool_size, &adev->dma_desc_pool, | ||
4476 | GFP_KERNEL); | ||
4477 | if (adev->dma_desc_pool_virt == NULL) { | ||
4478 | dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent " | ||
4479 | "memory for hardware descriptors\n", | ||
4480 | adev->pool_size); | ||
4481 | initcode = PPC_ADMA_INIT_COHERENT; | ||
4482 | ret = -ENOMEM; | ||
4483 | goto err_dma_alloc; | ||
4484 | } | ||
4485 | dev_dbg(&ofdev->dev, "allocted descriptor pool virt 0x%p phys 0x%llx\n", | ||
4486 | adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool); | ||
4487 | |||
4488 | regs = ioremap(res.start, resource_size(&res)); | ||
4489 | if (!regs) { | ||
4490 | dev_err(&ofdev->dev, "failed to ioremap regs!\n"); | ||
4491 | goto err_regs_alloc; | ||
4492 | } | ||
4493 | |||
4494 | if (adev->id == PPC440SPE_XOR_ID) { | ||
4495 | adev->xor_reg = regs; | ||
4496 | /* Reset XOR */ | ||
4497 | iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr); | ||
4498 | iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr); | ||
4499 | } else { | ||
4500 | size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ? | ||
4501 | DMA0_FIFO_SIZE : DMA1_FIFO_SIZE; | ||
4502 | adev->dma_reg = regs; | ||
4503 | /* DMAx_FIFO_SIZE is defined in bytes, | ||
4504 | * <fsiz> - is defined in number of CDB pointers (8byte). | ||
4505 | * DMA FIFO Length = CSlength + CPlength, where | ||
4506 | * CSlength = CPlength = (fsiz + 1) * 8. | ||
4507 | */ | ||
4508 | iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2), | ||
4509 | &adev->dma_reg->fsiz); | ||
4510 | /* Configure DMA engine */ | ||
4511 | iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN, | ||
4512 | &adev->dma_reg->cfg); | ||
4513 | /* Clear Status */ | ||
4514 | iowrite32(~0, &adev->dma_reg->dsts); | ||
4515 | } | ||
4516 | |||
4517 | adev->dev = &ofdev->dev; | ||
4518 | adev->common.dev = &ofdev->dev; | ||
4519 | INIT_LIST_HEAD(&adev->common.channels); | ||
4520 | dev_set_drvdata(&ofdev->dev, adev); | ||
4521 | |||
4522 | /* create a channel */ | ||
4523 | chan = kzalloc(sizeof(*chan), GFP_KERNEL); | ||
4524 | if (!chan) { | ||
4525 | dev_err(&ofdev->dev, "can't allocate channel structure\n"); | ||
4526 | initcode = PPC_ADMA_INIT_CHANNEL; | ||
4527 | ret = -ENOMEM; | ||
4528 | goto err_chan_alloc; | ||
4529 | } | ||
4530 | |||
4531 | spin_lock_init(&chan->lock); | ||
4532 | INIT_LIST_HEAD(&chan->chain); | ||
4533 | INIT_LIST_HEAD(&chan->all_slots); | ||
4534 | chan->device = adev; | ||
4535 | chan->common.device = &adev->common; | ||
4536 | list_add_tail(&chan->common.device_node, &adev->common.channels); | ||
4537 | tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet, | ||
4538 | (unsigned long)chan); | ||
4539 | |||
4540 | /* allocate and map helper pages for async validation or | ||
4541 | * async_mult/async_sum_product operations on DMA0/1. | ||
4542 | */ | ||
4543 | if (adev->id != PPC440SPE_XOR_ID) { | ||
4544 | chan->pdest_page = alloc_page(GFP_KERNEL); | ||
4545 | chan->qdest_page = alloc_page(GFP_KERNEL); | ||
4546 | if (!chan->pdest_page || | ||
4547 | !chan->qdest_page) { | ||
4548 | if (chan->pdest_page) | ||
4549 | __free_page(chan->pdest_page); | ||
4550 | if (chan->qdest_page) | ||
4551 | __free_page(chan->qdest_page); | ||
4552 | ret = -ENOMEM; | ||
4553 | goto err_page_alloc; | ||
4554 | } | ||
4555 | chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0, | ||
4556 | PAGE_SIZE, DMA_BIDIRECTIONAL); | ||
4557 | chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0, | ||
4558 | PAGE_SIZE, DMA_BIDIRECTIONAL); | ||
4559 | } | ||
4560 | |||
4561 | ref = kmalloc(sizeof(*ref), GFP_KERNEL); | ||
4562 | if (ref) { | ||
4563 | ref->chan = &chan->common; | ||
4564 | INIT_LIST_HEAD(&ref->node); | ||
4565 | list_add_tail(&ref->node, &ppc440spe_adma_chan_list); | ||
4566 | } else { | ||
4567 | dev_err(&ofdev->dev, "failed to allocate channel reference!\n"); | ||
4568 | ret = -ENOMEM; | ||
4569 | goto err_ref_alloc; | ||
4570 | } | ||
4571 | |||
4572 | ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode); | ||
4573 | if (ret) | ||
4574 | goto err_irq; | ||
4575 | |||
4576 | ppc440spe_adma_init_capabilities(adev); | ||
4577 | |||
4578 | ret = dma_async_device_register(&adev->common); | ||
4579 | if (ret) { | ||
4580 | initcode = PPC_ADMA_INIT_REGISTER; | ||
4581 | dev_err(&ofdev->dev, "failed to register dma device\n"); | ||
4582 | goto err_dev_reg; | ||
4583 | } | ||
4584 | |||
4585 | goto out; | ||
4586 | |||
4587 | err_dev_reg: | ||
4588 | ppc440spe_adma_release_irqs(adev, chan); | ||
4589 | err_irq: | ||
4590 | list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) { | ||
4591 | if (chan == to_ppc440spe_adma_chan(ref->chan)) { | ||
4592 | list_del(&ref->node); | ||
4593 | kfree(ref); | ||
4594 | } | ||
4595 | } | ||
4596 | err_ref_alloc: | ||
4597 | if (adev->id != PPC440SPE_XOR_ID) { | ||
4598 | dma_unmap_page(&ofdev->dev, chan->pdest, | ||
4599 | PAGE_SIZE, DMA_BIDIRECTIONAL); | ||
4600 | dma_unmap_page(&ofdev->dev, chan->qdest, | ||
4601 | PAGE_SIZE, DMA_BIDIRECTIONAL); | ||
4602 | __free_page(chan->pdest_page); | ||
4603 | __free_page(chan->qdest_page); | ||
4604 | } | ||
4605 | err_page_alloc: | ||
4606 | kfree(chan); | ||
4607 | err_chan_alloc: | ||
4608 | if (adev->id == PPC440SPE_XOR_ID) | ||
4609 | iounmap(adev->xor_reg); | ||
4610 | else | ||
4611 | iounmap(adev->dma_reg); | ||
4612 | err_regs_alloc: | ||
4613 | dma_free_coherent(adev->dev, adev->pool_size, | ||
4614 | adev->dma_desc_pool_virt, | ||
4615 | adev->dma_desc_pool); | ||
4616 | err_dma_alloc: | ||
4617 | kfree(adev); | ||
4618 | err_adev_alloc: | ||
4619 | release_mem_region(res.start, resource_size(&res)); | ||
4620 | out: | ||
4621 | if (id < PPC440SPE_ADMA_ENGINES_NUM) | ||
4622 | ppc440spe_adma_devices[id] = initcode; | ||
4623 | |||
4624 | return ret; | ||
4625 | } | ||
4626 | |||
4627 | /** | ||
4628 | * ppc440spe_adma_remove - remove the asynch device | ||
4629 | */ | ||
4630 | static int __devexit ppc440spe_adma_remove(struct of_device *ofdev) | ||
4631 | { | ||
4632 | struct ppc440spe_adma_device *adev = dev_get_drvdata(&ofdev->dev); | ||
4633 | struct device_node *np = ofdev->node; | ||
4634 | struct resource res; | ||
4635 | struct dma_chan *chan, *_chan; | ||
4636 | struct ppc_dma_chan_ref *ref, *_ref; | ||
4637 | struct ppc440spe_adma_chan *ppc440spe_chan; | ||
4638 | |||
4639 | dev_set_drvdata(&ofdev->dev, NULL); | ||
4640 | if (adev->id < PPC440SPE_ADMA_ENGINES_NUM) | ||
4641 | ppc440spe_adma_devices[adev->id] = -1; | ||
4642 | |||
4643 | dma_async_device_unregister(&adev->common); | ||
4644 | |||
4645 | list_for_each_entry_safe(chan, _chan, &adev->common.channels, | ||
4646 | device_node) { | ||
4647 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); | ||
4648 | ppc440spe_adma_release_irqs(adev, ppc440spe_chan); | ||
4649 | tasklet_kill(&ppc440spe_chan->irq_tasklet); | ||
4650 | if (adev->id != PPC440SPE_XOR_ID) { | ||
4651 | dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest, | ||
4652 | PAGE_SIZE, DMA_BIDIRECTIONAL); | ||
4653 | dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest, | ||
4654 | PAGE_SIZE, DMA_BIDIRECTIONAL); | ||
4655 | __free_page(ppc440spe_chan->pdest_page); | ||
4656 | __free_page(ppc440spe_chan->qdest_page); | ||
4657 | } | ||
4658 | list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, | ||
4659 | node) { | ||
4660 | if (ppc440spe_chan == | ||
4661 | to_ppc440spe_adma_chan(ref->chan)) { | ||
4662 | list_del(&ref->node); | ||
4663 | kfree(ref); | ||
4664 | } | ||
4665 | } | ||
4666 | list_del(&chan->device_node); | ||
4667 | kfree(ppc440spe_chan); | ||
4668 | } | ||
4669 | |||
4670 | dma_free_coherent(adev->dev, adev->pool_size, | ||
4671 | adev->dma_desc_pool_virt, adev->dma_desc_pool); | ||
4672 | if (adev->id == PPC440SPE_XOR_ID) | ||
4673 | iounmap(adev->xor_reg); | ||
4674 | else | ||
4675 | iounmap(adev->dma_reg); | ||
4676 | of_address_to_resource(np, 0, &res); | ||
4677 | release_mem_region(res.start, resource_size(&res)); | ||
4678 | kfree(adev); | ||
4679 | return 0; | ||
4680 | } | ||
4681 | |||
4682 | /* | ||
4683 | * /sys driver interface to enable h/w RAID-6 capabilities | ||
4684 | * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/ | ||
4685 | * directory are "devices", "enable" and "poly". | ||
4686 | * "devices" shows available engines. | ||
4687 | * "enable" is used to enable RAID-6 capabilities or to check | ||
4688 | * whether these has been activated. | ||
4689 | * "poly" allows setting/checking used polynomial (for PPC440SPe only). | ||
4690 | */ | ||
4691 | |||
4692 | static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf) | ||
4693 | { | ||
4694 | ssize_t size = 0; | ||
4695 | int i; | ||
4696 | |||
4697 | for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) { | ||
4698 | if (ppc440spe_adma_devices[i] == -1) | ||
4699 | continue; | ||
4700 | size += snprintf(buf + size, PAGE_SIZE - size, | ||
4701 | "PPC440SP(E)-ADMA.%d: %s\n", i, | ||
4702 | ppc_adma_errors[ppc440spe_adma_devices[i]]); | ||
4703 | } | ||
4704 | return size; | ||
4705 | } | ||
4706 | |||
4707 | static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf) | ||
4708 | { | ||
4709 | return snprintf(buf, PAGE_SIZE, | ||
4710 | "PPC440SP(e) RAID-6 capabilities are %sABLED.\n", | ||
4711 | ppc440spe_r6_enabled ? "EN" : "DIS"); | ||
4712 | } | ||
4713 | |||
4714 | static ssize_t store_ppc440spe_r6enable(struct device_driver *dev, | ||
4715 | const char *buf, size_t count) | ||
4716 | { | ||
4717 | unsigned long val; | ||
4718 | |||
4719 | if (!count || count > 11) | ||
4720 | return -EINVAL; | ||
4721 | |||
4722 | if (!ppc440spe_r6_tchan) | ||
4723 | return -EFAULT; | ||
4724 | |||
4725 | /* Write a key */ | ||
4726 | sscanf(buf, "%lx", &val); | ||
4727 | dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val); | ||
4728 | isync(); | ||
4729 | |||
4730 | /* Verify whether it really works now */ | ||
4731 | if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) { | ||
4732 | pr_info("PPC440SP(e) RAID-6 has been activated " | ||
4733 | "successfully\n"); | ||
4734 | ppc440spe_r6_enabled = 1; | ||
4735 | } else { | ||
4736 | pr_info("PPC440SP(e) RAID-6 hasn't been activated!" | ||
4737 | " Error key ?\n"); | ||
4738 | ppc440spe_r6_enabled = 0; | ||
4739 | } | ||
4740 | return count; | ||
4741 | } | ||
4742 | |||
4743 | static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf) | ||
4744 | { | ||
4745 | ssize_t size = 0; | ||
4746 | u32 reg; | ||
4747 | |||
4748 | #ifdef CONFIG_440SP | ||
4749 | /* 440SP has fixed polynomial */ | ||
4750 | reg = 0x4d; | ||
4751 | #else | ||
4752 | reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL); | ||
4753 | reg >>= MQ0_CFBHL_POLY; | ||
4754 | reg &= 0xFF; | ||
4755 | #endif | ||
4756 | |||
4757 | size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver " | ||
4758 | "uses 0x1%02x polynomial.\n", reg); | ||
4759 | return size; | ||
4760 | } | ||
4761 | |||
4762 | static ssize_t store_ppc440spe_r6poly(struct device_driver *dev, | ||
4763 | const char *buf, size_t count) | ||
4764 | { | ||
4765 | unsigned long reg, val; | ||
4766 | |||
4767 | #ifdef CONFIG_440SP | ||
4768 | /* 440SP uses default 0x14D polynomial only */ | ||
4769 | return -EINVAL; | ||
4770 | #endif | ||
4771 | |||
4772 | if (!count || count > 6) | ||
4773 | return -EINVAL; | ||
4774 | |||
4775 | /* e.g., 0x14D or 0x11D */ | ||
4776 | sscanf(buf, "%lx", &val); | ||
4777 | |||
4778 | if (val & ~0x1FF) | ||
4779 | return -EINVAL; | ||
4780 | |||
4781 | val &= 0xFF; | ||
4782 | reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL); | ||
4783 | reg &= ~(0xFF << MQ0_CFBHL_POLY); | ||
4784 | reg |= val << MQ0_CFBHL_POLY; | ||
4785 | dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg); | ||
4786 | |||
4787 | return count; | ||
4788 | } | ||
4789 | |||
4790 | static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL); | ||
4791 | static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable, | ||
4792 | store_ppc440spe_r6enable); | ||
4793 | static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly, | ||
4794 | store_ppc440spe_r6poly); | ||
4795 | |||
4796 | /* | ||
4797 | * Common initialisation for RAID engines; allocate memory for | ||
4798 | * DMAx FIFOs, perform configuration common for all DMA engines. | ||
4799 | * Further DMA engine specific configuration is done at probe time. | ||
4800 | */ | ||
4801 | static int ppc440spe_configure_raid_devices(void) | ||
4802 | { | ||
4803 | struct device_node *np; | ||
4804 | struct resource i2o_res; | ||
4805 | struct i2o_regs __iomem *i2o_reg; | ||
4806 | dcr_host_t i2o_dcr_host; | ||
4807 | unsigned int dcr_base, dcr_len; | ||
4808 | int i, ret; | ||
4809 | |||
4810 | np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe"); | ||
4811 | if (!np) { | ||
4812 | pr_err("%s: can't find I2O device tree node\n", | ||
4813 | __func__); | ||
4814 | return -ENODEV; | ||
4815 | } | ||
4816 | |||
4817 | if (of_address_to_resource(np, 0, &i2o_res)) { | ||
4818 | of_node_put(np); | ||
4819 | return -EINVAL; | ||
4820 | } | ||
4821 | |||
4822 | i2o_reg = of_iomap(np, 0); | ||
4823 | if (!i2o_reg) { | ||
4824 | pr_err("%s: failed to map I2O registers\n", __func__); | ||
4825 | of_node_put(np); | ||
4826 | return -EINVAL; | ||
4827 | } | ||
4828 | |||
4829 | /* Get I2O DCRs base */ | ||
4830 | dcr_base = dcr_resource_start(np, 0); | ||
4831 | dcr_len = dcr_resource_len(np, 0); | ||
4832 | if (!dcr_base && !dcr_len) { | ||
4833 | pr_err("%s: can't get DCR registers base/len!\n", | ||
4834 | np->full_name); | ||
4835 | of_node_put(np); | ||
4836 | iounmap(i2o_reg); | ||
4837 | return -ENODEV; | ||
4838 | } | ||
4839 | |||
4840 | i2o_dcr_host = dcr_map(np, dcr_base, dcr_len); | ||
4841 | if (!DCR_MAP_OK(i2o_dcr_host)) { | ||
4842 | pr_err("%s: failed to map DCRs!\n", np->full_name); | ||
4843 | of_node_put(np); | ||
4844 | iounmap(i2o_reg); | ||
4845 | return -ENODEV; | ||
4846 | } | ||
4847 | of_node_put(np); | ||
4848 | |||
4849 | /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share | ||
4850 | * the base address of FIFO memory space. | ||
4851 | * Actually we need twice more physical memory than programmed in the | ||
4852 | * <fsiz> register (because there are two FIFOs for each DMA: CP and CS) | ||
4853 | */ | ||
4854 | ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1, | ||
4855 | GFP_KERNEL); | ||
4856 | if (!ppc440spe_dma_fifo_buf) { | ||
4857 | pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__); | ||
4858 | iounmap(i2o_reg); | ||
4859 | dcr_unmap(i2o_dcr_host, dcr_len); | ||
4860 | return -ENOMEM; | ||
4861 | } | ||
4862 | |||
4863 | /* | ||
4864 | * Configure h/w | ||
4865 | */ | ||
4866 | /* Reset I2O/DMA */ | ||
4867 | mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA); | ||
4868 | mtdcri(SDR0, DCRN_SDR0_SRST, 0); | ||
4869 | |||
4870 | /* Setup the base address of mmaped registers */ | ||
4871 | dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32)); | ||
4872 | dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) | | ||
4873 | I2O_REG_ENABLE); | ||
4874 | dcr_unmap(i2o_dcr_host, dcr_len); | ||
4875 | |||
4876 | /* Setup FIFO memory space base address */ | ||
4877 | iowrite32(0, &i2o_reg->ifbah); | ||
4878 | iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal); | ||
4879 | |||
4880 | /* set zero FIFO size for I2O, so the whole | ||
4881 | * ppc440spe_dma_fifo_buf is used by DMAs. | ||
4882 | * DMAx_FIFOs will be configured while probe. | ||
4883 | */ | ||
4884 | iowrite32(0, &i2o_reg->ifsiz); | ||
4885 | iounmap(i2o_reg); | ||
4886 | |||
4887 | /* To prepare WXOR/RXOR functionality we need access to | ||
4888 | * Memory Queue Module DCRs (finally it will be enabled | ||
4889 | * via /sys interface of the ppc440spe ADMA driver). | ||
4890 | */ | ||
4891 | np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe"); | ||
4892 | if (!np) { | ||
4893 | pr_err("%s: can't find MQ device tree node\n", | ||
4894 | __func__); | ||
4895 | ret = -ENODEV; | ||
4896 | goto out_free; | ||
4897 | } | ||
4898 | |||
4899 | /* Get MQ DCRs base */ | ||
4900 | dcr_base = dcr_resource_start(np, 0); | ||
4901 | dcr_len = dcr_resource_len(np, 0); | ||
4902 | if (!dcr_base && !dcr_len) { | ||
4903 | pr_err("%s: can't get DCR registers base/len!\n", | ||
4904 | np->full_name); | ||
4905 | ret = -ENODEV; | ||
4906 | goto out_mq; | ||
4907 | } | ||
4908 | |||
4909 | ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len); | ||
4910 | if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) { | ||
4911 | pr_err("%s: failed to map DCRs!\n", np->full_name); | ||
4912 | ret = -ENODEV; | ||
4913 | goto out_mq; | ||
4914 | } | ||
4915 | of_node_put(np); | ||
4916 | ppc440spe_mq_dcr_len = dcr_len; | ||
4917 | |||
4918 | /* Set HB alias */ | ||
4919 | dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB); | ||
4920 | |||
4921 | /* Set: | ||
4922 | * - LL transaction passing limit to 1; | ||
4923 | * - Memory controller cycle limit to 1; | ||
4924 | * - Galois Polynomial to 0x14d (default) | ||
4925 | */ | ||
4926 | dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, | ||
4927 | (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) | | ||
4928 | (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY)); | ||
4929 | |||
4930 | atomic_set(&ppc440spe_adma_err_irq_ref, 0); | ||
4931 | for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) | ||
4932 | ppc440spe_adma_devices[i] = -1; | ||
4933 | |||
4934 | return 0; | ||
4935 | |||
4936 | out_mq: | ||
4937 | of_node_put(np); | ||
4938 | out_free: | ||
4939 | kfree(ppc440spe_dma_fifo_buf); | ||
4940 | return ret; | ||
4941 | } | ||
4942 | |||
4943 | static struct of_device_id __devinitdata ppc440spe_adma_of_match[] = { | ||
4944 | { .compatible = "ibm,dma-440spe", }, | ||
4945 | { .compatible = "amcc,xor-accelerator", }, | ||
4946 | {}, | ||
4947 | }; | ||
4948 | MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match); | ||
4949 | |||
4950 | static struct of_platform_driver ppc440spe_adma_driver = { | ||
4951 | .match_table = ppc440spe_adma_of_match, | ||
4952 | .probe = ppc440spe_adma_probe, | ||
4953 | .remove = __devexit_p(ppc440spe_adma_remove), | ||
4954 | .driver = { | ||
4955 | .name = "PPC440SP(E)-ADMA", | ||
4956 | .owner = THIS_MODULE, | ||
4957 | }, | ||
4958 | }; | ||
4959 | |||
4960 | static __init int ppc440spe_adma_init(void) | ||
4961 | { | ||
4962 | int ret; | ||
4963 | |||
4964 | ret = ppc440spe_configure_raid_devices(); | ||
4965 | if (ret) | ||
4966 | return ret; | ||
4967 | |||
4968 | ret = of_register_platform_driver(&ppc440spe_adma_driver); | ||
4969 | if (ret) { | ||
4970 | pr_err("%s: failed to register platform driver\n", | ||
4971 | __func__); | ||
4972 | goto out_reg; | ||
4973 | } | ||
4974 | |||
4975 | /* Initialization status */ | ||
4976 | ret = driver_create_file(&ppc440spe_adma_driver.driver, | ||
4977 | &driver_attr_devices); | ||
4978 | if (ret) | ||
4979 | goto out_dev; | ||
4980 | |||
4981 | /* RAID-6 h/w enable entry */ | ||
4982 | ret = driver_create_file(&ppc440spe_adma_driver.driver, | ||
4983 | &driver_attr_enable); | ||
4984 | if (ret) | ||
4985 | goto out_en; | ||
4986 | |||
4987 | /* GF polynomial to use */ | ||
4988 | ret = driver_create_file(&ppc440spe_adma_driver.driver, | ||
4989 | &driver_attr_poly); | ||
4990 | if (!ret) | ||
4991 | return ret; | ||
4992 | |||
4993 | driver_remove_file(&ppc440spe_adma_driver.driver, | ||
4994 | &driver_attr_enable); | ||
4995 | out_en: | ||
4996 | driver_remove_file(&ppc440spe_adma_driver.driver, | ||
4997 | &driver_attr_devices); | ||
4998 | out_dev: | ||
4999 | /* User will not be able to enable h/w RAID-6 */ | ||
5000 | pr_err("%s: failed to create RAID-6 driver interface\n", | ||
5001 | __func__); | ||
5002 | of_unregister_platform_driver(&ppc440spe_adma_driver); | ||
5003 | out_reg: | ||
5004 | dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len); | ||
5005 | kfree(ppc440spe_dma_fifo_buf); | ||
5006 | return ret; | ||
5007 | } | ||
5008 | |||
5009 | static void __exit ppc440spe_adma_exit(void) | ||
5010 | { | ||
5011 | driver_remove_file(&ppc440spe_adma_driver.driver, | ||
5012 | &driver_attr_poly); | ||
5013 | driver_remove_file(&ppc440spe_adma_driver.driver, | ||
5014 | &driver_attr_enable); | ||
5015 | driver_remove_file(&ppc440spe_adma_driver.driver, | ||
5016 | &driver_attr_devices); | ||
5017 | of_unregister_platform_driver(&ppc440spe_adma_driver); | ||
5018 | dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len); | ||
5019 | kfree(ppc440spe_dma_fifo_buf); | ||
5020 | } | ||
5021 | |||
5022 | arch_initcall(ppc440spe_adma_init); | ||
5023 | module_exit(ppc440spe_adma_exit); | ||
5024 | |||
5025 | MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>"); | ||
5026 | MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver"); | ||
5027 | MODULE_LICENSE("GPL"); | ||
diff --git a/drivers/dma/ppc4xx/adma.h b/drivers/dma/ppc4xx/adma.h new file mode 100644 index 000000000000..8ada5a812e3b --- /dev/null +++ b/drivers/dma/ppc4xx/adma.h | |||
@@ -0,0 +1,195 @@ | |||
1 | /* | ||
2 | * 2006-2009 (C) DENX Software Engineering. | ||
3 | * | ||
4 | * Author: Yuri Tikhonov <yur@emcraft.com> | ||
5 | * | ||
6 | * This file is licensed under the terms of the GNU General Public License | ||
7 | * version 2. This program is licensed "as is" without any warranty of | ||
8 | * any kind, whether express or implied. | ||
9 | */ | ||
10 | |||
11 | #ifndef _PPC440SPE_ADMA_H | ||
12 | #define _PPC440SPE_ADMA_H | ||
13 | |||
14 | #include <linux/types.h> | ||
15 | #include "dma.h" | ||
16 | #include "xor.h" | ||
17 | |||
18 | #define to_ppc440spe_adma_chan(chan) \ | ||
19 | container_of(chan, struct ppc440spe_adma_chan, common) | ||
20 | #define to_ppc440spe_adma_device(dev) \ | ||
21 | container_of(dev, struct ppc440spe_adma_device, common) | ||
22 | #define tx_to_ppc440spe_adma_slot(tx) \ | ||
23 | container_of(tx, struct ppc440spe_adma_desc_slot, async_tx) | ||
24 | |||
25 | /* Default polynomial (for 440SP is only available) */ | ||
26 | #define PPC440SPE_DEFAULT_POLY 0x4d | ||
27 | |||
28 | #define PPC440SPE_ADMA_ENGINES_NUM (XOR_ENGINES_NUM + DMA_ENGINES_NUM) | ||
29 | |||
30 | #define PPC440SPE_ADMA_WATCHDOG_MSEC 3 | ||
31 | #define PPC440SPE_ADMA_THRESHOLD 1 | ||
32 | |||
33 | #define PPC440SPE_DMA0_ID 0 | ||
34 | #define PPC440SPE_DMA1_ID 1 | ||
35 | #define PPC440SPE_XOR_ID 2 | ||
36 | |||
37 | #define PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT 0xFFFFFFUL | ||
38 | /* this is the XOR_CBBCR width */ | ||
39 | #define PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT (1 << 31) | ||
40 | #define PPC440SPE_ADMA_ZERO_SUM_MAX_BYTE_COUNT PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT | ||
41 | |||
42 | #define PPC440SPE_RXOR_RUN 0 | ||
43 | |||
44 | #define MQ0_CF2H_RXOR_BS_MASK 0x1FF | ||
45 | |||
46 | #undef ADMA_LL_DEBUG | ||
47 | |||
48 | /** | ||
49 | * struct ppc440spe_adma_device - internal representation of an ADMA device | ||
50 | * @dev: device | ||
51 | * @dma_reg: base for DMAx register access | ||
52 | * @xor_reg: base for XOR register access | ||
53 | * @i2o_reg: base for I2O register access | ||
54 | * @id: HW ADMA Device selector | ||
55 | * @dma_desc_pool_virt: base of DMA descriptor region (CPU address) | ||
56 | * @dma_desc_pool: base of DMA descriptor region (DMA address) | ||
57 | * @pool_size: size of the pool | ||
58 | * @irq: DMAx or XOR irq number | ||
59 | * @err_irq: DMAx error irq number | ||
60 | * @common: embedded struct dma_device | ||
61 | */ | ||
62 | struct ppc440spe_adma_device { | ||
63 | struct device *dev; | ||
64 | struct dma_regs __iomem *dma_reg; | ||
65 | struct xor_regs __iomem *xor_reg; | ||
66 | struct i2o_regs __iomem *i2o_reg; | ||
67 | int id; | ||
68 | void *dma_desc_pool_virt; | ||
69 | dma_addr_t dma_desc_pool; | ||
70 | size_t pool_size; | ||
71 | int irq; | ||
72 | int err_irq; | ||
73 | struct dma_device common; | ||
74 | }; | ||
75 | |||
76 | /** | ||
77 | * struct ppc440spe_adma_chan - internal representation of an ADMA channel | ||
78 | * @lock: serializes enqueue/dequeue operations to the slot pool | ||
79 | * @device: parent device | ||
80 | * @chain: device chain view of the descriptors | ||
81 | * @common: common dmaengine channel object members | ||
82 | * @all_slots: complete domain of slots usable by the channel | ||
83 | * @pending: allows batching of hardware operations | ||
84 | * @completed_cookie: identifier for the most recently completed operation | ||
85 | * @slots_allocated: records the actual size of the descriptor slot pool | ||
86 | * @hw_chain_inited: h/w descriptor chain initialization flag | ||
87 | * @irq_tasklet: bottom half where ppc440spe_adma_slot_cleanup runs | ||
88 | * @needs_unmap: if buffers should not be unmapped upon final processing | ||
89 | * @pdest_page: P destination page for async validate operation | ||
90 | * @qdest_page: Q destination page for async validate operation | ||
91 | * @pdest: P dma addr for async validate operation | ||
92 | * @qdest: Q dma addr for async validate operation | ||
93 | */ | ||
94 | struct ppc440spe_adma_chan { | ||
95 | spinlock_t lock; | ||
96 | struct ppc440spe_adma_device *device; | ||
97 | struct list_head chain; | ||
98 | struct dma_chan common; | ||
99 | struct list_head all_slots; | ||
100 | struct ppc440spe_adma_desc_slot *last_used; | ||
101 | int pending; | ||
102 | dma_cookie_t completed_cookie; | ||
103 | int slots_allocated; | ||
104 | int hw_chain_inited; | ||
105 | struct tasklet_struct irq_tasklet; | ||
106 | u8 needs_unmap; | ||
107 | struct page *pdest_page; | ||
108 | struct page *qdest_page; | ||
109 | dma_addr_t pdest; | ||
110 | dma_addr_t qdest; | ||
111 | }; | ||
112 | |||
113 | struct ppc440spe_rxor { | ||
114 | u32 addrl; | ||
115 | u32 addrh; | ||
116 | int len; | ||
117 | int xor_count; | ||
118 | int addr_count; | ||
119 | int desc_count; | ||
120 | int state; | ||
121 | }; | ||
122 | |||
123 | /** | ||
124 | * struct ppc440spe_adma_desc_slot - PPC440SPE-ADMA software descriptor | ||
125 | * @phys: hardware address of the hardware descriptor chain | ||
126 | * @group_head: first operation in a transaction | ||
127 | * @hw_next: pointer to the next descriptor in chain | ||
128 | * @async_tx: support for the async_tx api | ||
129 | * @slot_node: node on the iop_adma_chan.all_slots list | ||
130 | * @chain_node: node on the op_adma_chan.chain list | ||
131 | * @group_list: list of slots that make up a multi-descriptor transaction | ||
132 | * for example transfer lengths larger than the supported hw max | ||
133 | * @unmap_len: transaction bytecount | ||
134 | * @hw_desc: virtual address of the hardware descriptor chain | ||
135 | * @stride: currently chained or not | ||
136 | * @idx: pool index | ||
137 | * @slot_cnt: total slots used in an transaction (group of operations) | ||
138 | * @src_cnt: number of sources set in this descriptor | ||
139 | * @dst_cnt: number of destinations set in the descriptor | ||
140 | * @slots_per_op: number of slots per operation | ||
141 | * @descs_per_op: number of slot per P/Q operation see comment | ||
142 | * for ppc440spe_prep_dma_pqxor function | ||
143 | * @flags: desc state/type | ||
144 | * @reverse_flags: 1 if a corresponding rxor address uses reversed address order | ||
145 | * @xor_check_result: result of zero sum | ||
146 | * @crc32_result: result crc calculation | ||
147 | */ | ||
148 | struct ppc440spe_adma_desc_slot { | ||
149 | dma_addr_t phys; | ||
150 | struct ppc440spe_adma_desc_slot *group_head; | ||
151 | struct ppc440spe_adma_desc_slot *hw_next; | ||
152 | struct dma_async_tx_descriptor async_tx; | ||
153 | struct list_head slot_node; | ||
154 | struct list_head chain_node; /* node in channel ops list */ | ||
155 | struct list_head group_list; /* list */ | ||
156 | unsigned int unmap_len; | ||
157 | void *hw_desc; | ||
158 | u16 stride; | ||
159 | u16 idx; | ||
160 | u16 slot_cnt; | ||
161 | u8 src_cnt; | ||
162 | u8 dst_cnt; | ||
163 | u8 slots_per_op; | ||
164 | u8 descs_per_op; | ||
165 | unsigned long flags; | ||
166 | unsigned long reverse_flags[8]; | ||
167 | |||
168 | #define PPC440SPE_DESC_INT 0 /* generate interrupt on complete */ | ||
169 | #define PPC440SPE_ZERO_P 1 /* clear P destionaion */ | ||
170 | #define PPC440SPE_ZERO_Q 2 /* clear Q destination */ | ||
171 | #define PPC440SPE_COHERENT 3 /* src/dst are coherent */ | ||
172 | |||
173 | #define PPC440SPE_DESC_WXOR 4 /* WXORs are in chain */ | ||
174 | #define PPC440SPE_DESC_RXOR 5 /* RXOR is in chain */ | ||
175 | |||
176 | #define PPC440SPE_DESC_RXOR123 8 /* CDB for RXOR123 operation */ | ||
177 | #define PPC440SPE_DESC_RXOR124 9 /* CDB for RXOR124 operation */ | ||
178 | #define PPC440SPE_DESC_RXOR125 10 /* CDB for RXOR125 operation */ | ||
179 | #define PPC440SPE_DESC_RXOR12 11 /* CDB for RXOR12 operation */ | ||
180 | #define PPC440SPE_DESC_RXOR_REV 12 /* CDB has srcs in reversed order */ | ||
181 | |||
182 | #define PPC440SPE_DESC_PCHECK 13 | ||
183 | #define PPC440SPE_DESC_QCHECK 14 | ||
184 | |||
185 | #define PPC440SPE_DESC_RXOR_MSK 0x3 | ||
186 | |||
187 | struct ppc440spe_rxor rxor_cursor; | ||
188 | |||
189 | union { | ||
190 | u32 *xor_check_result; | ||
191 | u32 *crc32_result; | ||
192 | }; | ||
193 | }; | ||
194 | |||
195 | #endif /* _PPC440SPE_ADMA_H */ | ||
diff --git a/drivers/dma/ppc4xx/dma.h b/drivers/dma/ppc4xx/dma.h new file mode 100644 index 000000000000..bcde2df2f373 --- /dev/null +++ b/drivers/dma/ppc4xx/dma.h | |||
@@ -0,0 +1,223 @@ | |||
1 | /* | ||
2 | * 440SPe's DMA engines support header file | ||
3 | * | ||
4 | * 2006-2009 (C) DENX Software Engineering. | ||
5 | * | ||
6 | * Author: Yuri Tikhonov <yur@emcraft.com> | ||
7 | * | ||
8 | * This file is licensed under the term of the GNU General Public License | ||
9 | * version 2. The program licensed "as is" without any warranty of any | ||
10 | * kind, whether express or implied. | ||
11 | */ | ||
12 | |||
13 | #ifndef _PPC440SPE_DMA_H | ||
14 | #define _PPC440SPE_DMA_H | ||
15 | |||
16 | #include <linux/types.h> | ||
17 | |||
18 | /* Number of elements in the array with statical CDBs */ | ||
19 | #define MAX_STAT_DMA_CDBS 16 | ||
20 | /* Number of DMA engines available on the contoller */ | ||
21 | #define DMA_ENGINES_NUM 2 | ||
22 | |||
23 | /* Maximum h/w supported number of destinations */ | ||
24 | #define DMA_DEST_MAX_NUM 2 | ||
25 | |||
26 | /* FIFO's params */ | ||
27 | #define DMA0_FIFO_SIZE 0x1000 | ||
28 | #define DMA1_FIFO_SIZE 0x1000 | ||
29 | #define DMA_FIFO_ENABLE (1<<12) | ||
30 | |||
31 | /* DMA Configuration Register. Data Transfer Engine PLB Priority: */ | ||
32 | #define DMA_CFG_DXEPR_LP (0<<26) | ||
33 | #define DMA_CFG_DXEPR_HP (3<<26) | ||
34 | #define DMA_CFG_DXEPR_HHP (2<<26) | ||
35 | #define DMA_CFG_DXEPR_HHHP (1<<26) | ||
36 | |||
37 | /* DMA Configuration Register. DMA FIFO Manager PLB Priority: */ | ||
38 | #define DMA_CFG_DFMPP_LP (0<<23) | ||
39 | #define DMA_CFG_DFMPP_HP (3<<23) | ||
40 | #define DMA_CFG_DFMPP_HHP (2<<23) | ||
41 | #define DMA_CFG_DFMPP_HHHP (1<<23) | ||
42 | |||
43 | /* DMA Configuration Register. Force 64-byte Alignment */ | ||
44 | #define DMA_CFG_FALGN (1 << 19) | ||
45 | |||
46 | /*UIC0:*/ | ||
47 | #define D0CPF_INT (1<<12) | ||
48 | #define D0CSF_INT (1<<11) | ||
49 | #define D1CPF_INT (1<<10) | ||
50 | #define D1CSF_INT (1<<9) | ||
51 | /*UIC1:*/ | ||
52 | #define DMAE_INT (1<<9) | ||
53 | |||
54 | /* I2O IOP Interrupt Mask Register */ | ||
55 | #define I2O_IOPIM_P0SNE (1<<3) | ||
56 | #define I2O_IOPIM_P0EM (1<<5) | ||
57 | #define I2O_IOPIM_P1SNE (1<<6) | ||
58 | #define I2O_IOPIM_P1EM (1<<8) | ||
59 | |||
60 | /* DMA CDB fields */ | ||
61 | #define DMA_CDB_MSK (0xF) | ||
62 | #define DMA_CDB_64B_ADDR (1<<2) | ||
63 | #define DMA_CDB_NO_INT (1<<3) | ||
64 | #define DMA_CDB_STATUS_MSK (0x3) | ||
65 | #define DMA_CDB_ADDR_MSK (0xFFFFFFF0) | ||
66 | |||
67 | /* DMA CDB OpCodes */ | ||
68 | #define DMA_CDB_OPC_NO_OP (0x00) | ||
69 | #define DMA_CDB_OPC_MV_SG1_SG2 (0x01) | ||
70 | #define DMA_CDB_OPC_MULTICAST (0x05) | ||
71 | #define DMA_CDB_OPC_DFILL128 (0x24) | ||
72 | #define DMA_CDB_OPC_DCHECK128 (0x23) | ||
73 | |||
74 | #define DMA_CUED_XOR_BASE (0x10000000) | ||
75 | #define DMA_CUED_XOR_HB (0x00000008) | ||
76 | |||
77 | #ifdef CONFIG_440SP | ||
78 | #define DMA_CUED_MULT1_OFF 0 | ||
79 | #define DMA_CUED_MULT2_OFF 8 | ||
80 | #define DMA_CUED_MULT3_OFF 16 | ||
81 | #define DMA_CUED_REGION_OFF 24 | ||
82 | #define DMA_CUED_XOR_WIN_MSK (0xFC000000) | ||
83 | #else | ||
84 | #define DMA_CUED_MULT1_OFF 2 | ||
85 | #define DMA_CUED_MULT2_OFF 10 | ||
86 | #define DMA_CUED_MULT3_OFF 18 | ||
87 | #define DMA_CUED_REGION_OFF 26 | ||
88 | #define DMA_CUED_XOR_WIN_MSK (0xF0000000) | ||
89 | #endif | ||
90 | |||
91 | #define DMA_CUED_REGION_MSK 0x3 | ||
92 | #define DMA_RXOR123 0x0 | ||
93 | #define DMA_RXOR124 0x1 | ||
94 | #define DMA_RXOR125 0x2 | ||
95 | #define DMA_RXOR12 0x3 | ||
96 | |||
97 | /* S/G addresses */ | ||
98 | #define DMA_CDB_SG_SRC 1 | ||
99 | #define DMA_CDB_SG_DST1 2 | ||
100 | #define DMA_CDB_SG_DST2 3 | ||
101 | |||
102 | /* | ||
103 | * DMAx engines Command Descriptor Block Type | ||
104 | */ | ||
105 | struct dma_cdb { | ||
106 | /* | ||
107 | * Basic CDB structure (Table 20-17, p.499, 440spe_um_1_22.pdf) | ||
108 | */ | ||
109 | u8 pad0[2]; /* reserved */ | ||
110 | u8 attr; /* attributes */ | ||
111 | u8 opc; /* opcode */ | ||
112 | u32 sg1u; /* upper SG1 address */ | ||
113 | u32 sg1l; /* lower SG1 address */ | ||
114 | u32 cnt; /* SG count, 3B used */ | ||
115 | u32 sg2u; /* upper SG2 address */ | ||
116 | u32 sg2l; /* lower SG2 address */ | ||
117 | u32 sg3u; /* upper SG3 address */ | ||
118 | u32 sg3l; /* lower SG3 address */ | ||
119 | }; | ||
120 | |||
121 | /* | ||
122 | * DMAx hardware registers (p.515 in 440SPe UM 1.22) | ||
123 | */ | ||
124 | struct dma_regs { | ||
125 | u32 cpfpl; | ||
126 | u32 cpfph; | ||
127 | u32 csfpl; | ||
128 | u32 csfph; | ||
129 | u32 dsts; | ||
130 | u32 cfg; | ||
131 | u8 pad0[0x8]; | ||
132 | u16 cpfhp; | ||
133 | u16 cpftp; | ||
134 | u16 csfhp; | ||
135 | u16 csftp; | ||
136 | u8 pad1[0x8]; | ||
137 | u32 acpl; | ||
138 | u32 acph; | ||
139 | u32 s1bpl; | ||
140 | u32 s1bph; | ||
141 | u32 s2bpl; | ||
142 | u32 s2bph; | ||
143 | u32 s3bpl; | ||
144 | u32 s3bph; | ||
145 | u8 pad2[0x10]; | ||
146 | u32 earl; | ||
147 | u32 earh; | ||
148 | u8 pad3[0x8]; | ||
149 | u32 seat; | ||
150 | u32 sead; | ||
151 | u32 op; | ||
152 | u32 fsiz; | ||
153 | }; | ||
154 | |||
155 | /* | ||
156 | * I2O hardware registers (p.528 in 440SPe UM 1.22) | ||
157 | */ | ||
158 | struct i2o_regs { | ||
159 | u32 ists; | ||
160 | u32 iseat; | ||
161 | u32 isead; | ||
162 | u8 pad0[0x14]; | ||
163 | u32 idbel; | ||
164 | u8 pad1[0xc]; | ||
165 | u32 ihis; | ||
166 | u32 ihim; | ||
167 | u8 pad2[0x8]; | ||
168 | u32 ihiq; | ||
169 | u32 ihoq; | ||
170 | u8 pad3[0x8]; | ||
171 | u32 iopis; | ||
172 | u32 iopim; | ||
173 | u32 iopiq; | ||
174 | u8 iopoq; | ||
175 | u8 pad4[3]; | ||
176 | u16 iiflh; | ||
177 | u16 iiflt; | ||
178 | u16 iiplh; | ||
179 | u16 iiplt; | ||
180 | u16 ioflh; | ||
181 | u16 ioflt; | ||
182 | u16 ioplh; | ||
183 | u16 ioplt; | ||
184 | u32 iidc; | ||
185 | u32 ictl; | ||
186 | u32 ifcpp; | ||
187 | u8 pad5[0x4]; | ||
188 | u16 mfac0; | ||
189 | u16 mfac1; | ||
190 | u16 mfac2; | ||
191 | u16 mfac3; | ||
192 | u16 mfac4; | ||
193 | u16 mfac5; | ||
194 | u16 mfac6; | ||
195 | u16 mfac7; | ||
196 | u16 ifcfh; | ||
197 | u16 ifcht; | ||
198 | u8 pad6[0x4]; | ||
199 | u32 iifmc; | ||
200 | u32 iodb; | ||
201 | u32 iodbc; | ||
202 | u32 ifbal; | ||
203 | u32 ifbah; | ||
204 | u32 ifsiz; | ||
205 | u32 ispd0; | ||
206 | u32 ispd1; | ||
207 | u32 ispd2; | ||
208 | u32 ispd3; | ||
209 | u32 ihipl; | ||
210 | u32 ihiph; | ||
211 | u32 ihopl; | ||
212 | u32 ihoph; | ||
213 | u32 iiipl; | ||
214 | u32 iiiph; | ||
215 | u32 iiopl; | ||
216 | u32 iioph; | ||
217 | u32 ifcpl; | ||
218 | u32 ifcph; | ||
219 | u8 pad7[0x8]; | ||
220 | u32 iopt; | ||
221 | }; | ||
222 | |||
223 | #endif /* _PPC440SPE_DMA_H */ | ||
diff --git a/drivers/dma/ppc4xx/xor.h b/drivers/dma/ppc4xx/xor.h new file mode 100644 index 000000000000..daed7384daac --- /dev/null +++ b/drivers/dma/ppc4xx/xor.h | |||
@@ -0,0 +1,110 @@ | |||
1 | /* | ||
2 | * 440SPe's XOR engines support header file | ||
3 | * | ||
4 | * 2006-2009 (C) DENX Software Engineering. | ||
5 | * | ||
6 | * Author: Yuri Tikhonov <yur@emcraft.com> | ||
7 | * | ||
8 | * This file is licensed under the term of the GNU General Public License | ||
9 | * version 2. The program licensed "as is" without any warranty of any | ||
10 | * kind, whether express or implied. | ||
11 | */ | ||
12 | |||
13 | #ifndef _PPC440SPE_XOR_H | ||
14 | #define _PPC440SPE_XOR_H | ||
15 | |||
16 | #include <linux/types.h> | ||
17 | |||
18 | /* Number of XOR engines available on the contoller */ | ||
19 | #define XOR_ENGINES_NUM 1 | ||
20 | |||
21 | /* Number of operands supported in the h/w */ | ||
22 | #define XOR_MAX_OPS 16 | ||
23 | |||
24 | /* | ||
25 | * XOR Command Block Control Register bits | ||
26 | */ | ||
27 | #define XOR_CBCR_LNK_BIT (1<<31) /* link present */ | ||
28 | #define XOR_CBCR_TGT_BIT (1<<30) /* target present */ | ||
29 | #define XOR_CBCR_CBCE_BIT (1<<29) /* command block compete enable */ | ||
30 | #define XOR_CBCR_RNZE_BIT (1<<28) /* result not zero enable */ | ||
31 | #define XOR_CBCR_XNOR_BIT (1<<15) /* XOR/XNOR */ | ||
32 | #define XOR_CDCR_OAC_MSK (0x7F) /* operand address count */ | ||
33 | |||
34 | /* | ||
35 | * XORCore Status Register bits | ||
36 | */ | ||
37 | #define XOR_SR_XCP_BIT (1<<31) /* core processing */ | ||
38 | #define XOR_SR_ICB_BIT (1<<17) /* invalid CB */ | ||
39 | #define XOR_SR_IC_BIT (1<<16) /* invalid command */ | ||
40 | #define XOR_SR_IPE_BIT (1<<15) /* internal parity error */ | ||
41 | #define XOR_SR_RNZ_BIT (1<<2) /* result not Zero */ | ||
42 | #define XOR_SR_CBC_BIT (1<<1) /* CB complete */ | ||
43 | #define XOR_SR_CBLC_BIT (1<<0) /* CB list complete */ | ||
44 | |||
45 | /* | ||
46 | * XORCore Control Set and Reset Register bits | ||
47 | */ | ||
48 | #define XOR_CRSR_XASR_BIT (1<<31) /* soft reset */ | ||
49 | #define XOR_CRSR_XAE_BIT (1<<30) /* enable */ | ||
50 | #define XOR_CRSR_RCBE_BIT (1<<29) /* refetch CB enable */ | ||
51 | #define XOR_CRSR_PAUS_BIT (1<<28) /* pause */ | ||
52 | #define XOR_CRSR_64BA_BIT (1<<27) /* 64/32 CB format */ | ||
53 | #define XOR_CRSR_CLP_BIT (1<<25) /* continue list processing */ | ||
54 | |||
55 | /* | ||
56 | * XORCore Interrupt Enable Register | ||
57 | */ | ||
58 | #define XOR_IE_ICBIE_BIT (1<<17) /* Invalid Command Block IRQ Enable */ | ||
59 | #define XOR_IE_ICIE_BIT (1<<16) /* Invalid Command IRQ Enable */ | ||
60 | #define XOR_IE_RPTIE_BIT (1<<14) /* Read PLB Timeout Error IRQ Enable */ | ||
61 | #define XOR_IE_CBCIE_BIT (1<<1) /* CB complete interrupt enable */ | ||
62 | #define XOR_IE_CBLCI_BIT (1<<0) /* CB list complete interrupt enable */ | ||
63 | |||
64 | /* | ||
65 | * XOR Accelerator engine Command Block Type | ||
66 | */ | ||
67 | struct xor_cb { | ||
68 | /* | ||
69 | * Basic 64-bit format XOR CB (Table 19-1, p.463, 440spe_um_1_22.pdf) | ||
70 | */ | ||
71 | u32 cbc; /* control */ | ||
72 | u32 cbbc; /* byte count */ | ||
73 | u32 cbs; /* status */ | ||
74 | u8 pad0[4]; /* reserved */ | ||
75 | u32 cbtah; /* target address high */ | ||
76 | u32 cbtal; /* target address low */ | ||
77 | u32 cblah; /* link address high */ | ||
78 | u32 cblal; /* link address low */ | ||
79 | struct { | ||
80 | u32 h; | ||
81 | u32 l; | ||
82 | } __attribute__ ((packed)) ops[16]; | ||
83 | } __attribute__ ((packed)); | ||
84 | |||
85 | /* | ||
86 | * XOR hardware registers Table 19-3, UM 1.22 | ||
87 | */ | ||
88 | struct xor_regs { | ||
89 | u32 op_ar[16][2]; /* operand address[0]-high,[1]-low registers */ | ||
90 | u8 pad0[352]; /* reserved */ | ||
91 | u32 cbcr; /* CB control register */ | ||
92 | u32 cbbcr; /* CB byte count register */ | ||
93 | u32 cbsr; /* CB status register */ | ||
94 | u8 pad1[4]; /* reserved */ | ||
95 | u32 cbtahr; /* operand target address high register */ | ||
96 | u32 cbtalr; /* operand target address low register */ | ||
97 | u32 cblahr; /* CB link address high register */ | ||
98 | u32 cblalr; /* CB link address low register */ | ||
99 | u32 crsr; /* control set register */ | ||
100 | u32 crrr; /* control reset register */ | ||
101 | u32 ccbahr; /* current CB address high register */ | ||
102 | u32 ccbalr; /* current CB address low register */ | ||
103 | u32 plbr; /* PLB configuration register */ | ||
104 | u32 ier; /* interrupt enable register */ | ||
105 | u32 pecr; /* parity error count register */ | ||
106 | u32 sr; /* status register */ | ||
107 | u32 revidr; /* revision ID register */ | ||
108 | }; | ||
109 | |||
110 | #endif /* _PPC440SPE_XOR_H */ | ||