diff options
Diffstat (limited to 'drivers')
-rwxr-xr-x | drivers/net/amd8111e.c | 24 | ||||
-rw-r--r-- | drivers/net/e100.c | 165 | ||||
-rw-r--r-- | drivers/net/e1000/e1000.h | 37 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_ethtool.c | 105 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_hw.c | 1987 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_hw.h | 570 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_main.c | 1147 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_osdep.h | 32 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_param.c | 3 | ||||
-rw-r--r-- | drivers/net/ixgb/ixgb.h | 2 | ||||
-rw-r--r-- | drivers/net/ixgb/ixgb_ee.c | 24 | ||||
-rw-r--r-- | drivers/net/ixgb/ixgb_ethtool.c | 4 | ||||
-rw-r--r-- | drivers/net/ixgb/ixgb_main.c | 153 | ||||
-rw-r--r-- | drivers/net/ixgb/ixgb_osdep.h | 3 | ||||
-rw-r--r-- | drivers/net/pcnet32.c | 7 | ||||
-rw-r--r-- | drivers/net/tulip/media.c | 1 |
16 files changed, 3397 insertions, 867 deletions
diff --git a/drivers/net/amd8111e.c b/drivers/net/amd8111e.c index f2e937abf7b4..b7dd7260cafb 100755 --- a/drivers/net/amd8111e.c +++ b/drivers/net/amd8111e.c | |||
@@ -738,6 +738,7 @@ static int amd8111e_rx_poll(struct net_device *dev, int * budget) | |||
738 | short vtag; | 738 | short vtag; |
739 | #endif | 739 | #endif |
740 | int rx_pkt_limit = dev->quota; | 740 | int rx_pkt_limit = dev->quota; |
741 | unsigned long flags; | ||
741 | 742 | ||
742 | do{ | 743 | do{ |
743 | /* process receive packets until we use the quota*/ | 744 | /* process receive packets until we use the quota*/ |
@@ -841,18 +842,19 @@ static int amd8111e_rx_poll(struct net_device *dev, int * budget) | |||
841 | /* Receive descriptor is empty now */ | 842 | /* Receive descriptor is empty now */ |
842 | dev->quota -= num_rx_pkt; | 843 | dev->quota -= num_rx_pkt; |
843 | *budget -= num_rx_pkt; | 844 | *budget -= num_rx_pkt; |
845 | |||
846 | spin_lock_irqsave(&lp->lock, flags); | ||
844 | netif_rx_complete(dev); | 847 | netif_rx_complete(dev); |
845 | /* enable receive interrupt */ | ||
846 | writel(VAL0|RINTEN0, mmio + INTEN0); | 848 | writel(VAL0|RINTEN0, mmio + INTEN0); |
847 | writel(VAL2 | RDMD0, mmio + CMD0); | 849 | writel(VAL2 | RDMD0, mmio + CMD0); |
850 | spin_unlock_irqrestore(&lp->lock, flags); | ||
848 | return 0; | 851 | return 0; |
852 | |||
849 | rx_not_empty: | 853 | rx_not_empty: |
850 | /* Do not call a netif_rx_complete */ | 854 | /* Do not call a netif_rx_complete */ |
851 | dev->quota -= num_rx_pkt; | 855 | dev->quota -= num_rx_pkt; |
852 | *budget -= num_rx_pkt; | 856 | *budget -= num_rx_pkt; |
853 | return 1; | 857 | return 1; |
854 | |||
855 | |||
856 | } | 858 | } |
857 | 859 | ||
858 | #else | 860 | #else |
@@ -1261,18 +1263,20 @@ static irqreturn_t amd8111e_interrupt(int irq, void *dev_id, struct pt_regs *reg | |||
1261 | struct net_device * dev = (struct net_device *) dev_id; | 1263 | struct net_device * dev = (struct net_device *) dev_id; |
1262 | struct amd8111e_priv *lp = netdev_priv(dev); | 1264 | struct amd8111e_priv *lp = netdev_priv(dev); |
1263 | void __iomem *mmio = lp->mmio; | 1265 | void __iomem *mmio = lp->mmio; |
1264 | unsigned int intr0; | 1266 | unsigned int intr0, intren0; |
1265 | unsigned int handled = 1; | 1267 | unsigned int handled = 1; |
1266 | 1268 | ||
1267 | if(dev == NULL) | 1269 | if(unlikely(dev == NULL)) |
1268 | return IRQ_NONE; | 1270 | return IRQ_NONE; |
1269 | 1271 | ||
1270 | if (regs) spin_lock (&lp->lock); | 1272 | spin_lock(&lp->lock); |
1273 | |||
1271 | /* disabling interrupt */ | 1274 | /* disabling interrupt */ |
1272 | writel(INTREN, mmio + CMD0); | 1275 | writel(INTREN, mmio + CMD0); |
1273 | 1276 | ||
1274 | /* Read interrupt status */ | 1277 | /* Read interrupt status */ |
1275 | intr0 = readl(mmio + INT0); | 1278 | intr0 = readl(mmio + INT0); |
1279 | intren0 = readl(mmio + INTEN0); | ||
1276 | 1280 | ||
1277 | /* Process all the INT event until INTR bit is clear. */ | 1281 | /* Process all the INT event until INTR bit is clear. */ |
1278 | 1282 | ||
@@ -1293,11 +1297,11 @@ static irqreturn_t amd8111e_interrupt(int irq, void *dev_id, struct pt_regs *reg | |||
1293 | /* Schedule a polling routine */ | 1297 | /* Schedule a polling routine */ |
1294 | __netif_rx_schedule(dev); | 1298 | __netif_rx_schedule(dev); |
1295 | } | 1299 | } |
1296 | else { | 1300 | else if (intren0 & RINTEN0) { |
1297 | printk("************Driver bug! \ | 1301 | printk("************Driver bug! \ |
1298 | interrupt while in poll\n"); | 1302 | interrupt while in poll\n"); |
1299 | /* Fix by disabling interrupts */ | 1303 | /* Fix by disable receive interrupts */ |
1300 | writel(RINT0, mmio + INT0); | 1304 | writel(RINTEN0, mmio + INTEN0); |
1301 | } | 1305 | } |
1302 | } | 1306 | } |
1303 | #else | 1307 | #else |
@@ -1321,7 +1325,7 @@ static irqreturn_t amd8111e_interrupt(int irq, void *dev_id, struct pt_regs *reg | |||
1321 | err_no_interrupt: | 1325 | err_no_interrupt: |
1322 | writel( VAL0 | INTREN,mmio + CMD0); | 1326 | writel( VAL0 | INTREN,mmio + CMD0); |
1323 | 1327 | ||
1324 | if (regs) spin_unlock(&lp->lock); | 1328 | spin_unlock(&lp->lock); |
1325 | 1329 | ||
1326 | return IRQ_RETVAL(handled); | 1330 | return IRQ_RETVAL(handled); |
1327 | } | 1331 | } |
diff --git a/drivers/net/e100.c b/drivers/net/e100.c index 1b68dd5a49b6..4a47df5a9ff9 100644 --- a/drivers/net/e100.c +++ b/drivers/net/e100.c | |||
@@ -155,9 +155,9 @@ | |||
155 | 155 | ||
156 | #define DRV_NAME "e100" | 156 | #define DRV_NAME "e100" |
157 | #define DRV_EXT "-NAPI" | 157 | #define DRV_EXT "-NAPI" |
158 | #define DRV_VERSION "3.3.6-k2"DRV_EXT | 158 | #define DRV_VERSION "3.4.8-k2"DRV_EXT |
159 | #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" | 159 | #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" |
160 | #define DRV_COPYRIGHT "Copyright(c) 1999-2004 Intel Corporation" | 160 | #define DRV_COPYRIGHT "Copyright(c) 1999-2005 Intel Corporation" |
161 | #define PFX DRV_NAME ": " | 161 | #define PFX DRV_NAME ": " |
162 | 162 | ||
163 | #define E100_WATCHDOG_PERIOD (2 * HZ) | 163 | #define E100_WATCHDOG_PERIOD (2 * HZ) |
@@ -210,11 +210,17 @@ static struct pci_device_id e100_id_table[] = { | |||
210 | INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), | 210 | INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), |
211 | INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), | 211 | INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), |
212 | INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), | 212 | INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), |
213 | INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), | ||
214 | INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), | ||
215 | INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), | ||
216 | INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), | ||
217 | INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), | ||
213 | INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), | 218 | INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), |
214 | INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), | 219 | INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), |
215 | INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), | 220 | INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), |
216 | INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), | 221 | INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), |
217 | INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), | 222 | INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), |
223 | INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), | ||
218 | { 0, } | 224 | { 0, } |
219 | }; | 225 | }; |
220 | MODULE_DEVICE_TABLE(pci, e100_id_table); | 226 | MODULE_DEVICE_TABLE(pci, e100_id_table); |
@@ -269,6 +275,12 @@ enum scb_status { | |||
269 | rus_mask = 0x3C, | 275 | rus_mask = 0x3C, |
270 | }; | 276 | }; |
271 | 277 | ||
278 | enum ru_state { | ||
279 | RU_SUSPENDED = 0, | ||
280 | RU_RUNNING = 1, | ||
281 | RU_UNINITIALIZED = -1, | ||
282 | }; | ||
283 | |||
272 | enum scb_stat_ack { | 284 | enum scb_stat_ack { |
273 | stat_ack_not_ours = 0x00, | 285 | stat_ack_not_ours = 0x00, |
274 | stat_ack_sw_gen = 0x04, | 286 | stat_ack_sw_gen = 0x04, |
@@ -510,7 +522,7 @@ struct nic { | |||
510 | struct rx *rx_to_use; | 522 | struct rx *rx_to_use; |
511 | struct rx *rx_to_clean; | 523 | struct rx *rx_to_clean; |
512 | struct rfd blank_rfd; | 524 | struct rfd blank_rfd; |
513 | int ru_running; | 525 | enum ru_state ru_running; |
514 | 526 | ||
515 | spinlock_t cb_lock ____cacheline_aligned; | 527 | spinlock_t cb_lock ____cacheline_aligned; |
516 | spinlock_t cmd_lock; | 528 | spinlock_t cmd_lock; |
@@ -539,6 +551,7 @@ struct nic { | |||
539 | struct timer_list watchdog; | 551 | struct timer_list watchdog; |
540 | struct timer_list blink_timer; | 552 | struct timer_list blink_timer; |
541 | struct mii_if_info mii; | 553 | struct mii_if_info mii; |
554 | struct work_struct tx_timeout_task; | ||
542 | enum loopback loopback; | 555 | enum loopback loopback; |
543 | 556 | ||
544 | struct mem *mem; | 557 | struct mem *mem; |
@@ -770,7 +783,7 @@ static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) | |||
770 | return 0; | 783 | return 0; |
771 | } | 784 | } |
772 | 785 | ||
773 | #define E100_WAIT_SCB_TIMEOUT 40 | 786 | #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ |
774 | static inline int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) | 787 | static inline int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) |
775 | { | 788 | { |
776 | unsigned long flags; | 789 | unsigned long flags; |
@@ -840,6 +853,10 @@ static inline int e100_exec_cb(struct nic *nic, struct sk_buff *skb, | |||
840 | * because the controller is too busy, so | 853 | * because the controller is too busy, so |
841 | * let's just queue the command and try again | 854 | * let's just queue the command and try again |
842 | * when another command is scheduled. */ | 855 | * when another command is scheduled. */ |
856 | if(err == -ENOSPC) { | ||
857 | //request a reset | ||
858 | schedule_work(&nic->tx_timeout_task); | ||
859 | } | ||
843 | break; | 860 | break; |
844 | } else { | 861 | } else { |
845 | nic->cuc_cmd = cuc_resume; | 862 | nic->cuc_cmd = cuc_resume; |
@@ -884,7 +901,7 @@ static void mdio_write(struct net_device *netdev, int addr, int reg, int data) | |||
884 | 901 | ||
885 | static void e100_get_defaults(struct nic *nic) | 902 | static void e100_get_defaults(struct nic *nic) |
886 | { | 903 | { |
887 | struct param_range rfds = { .min = 64, .max = 256, .count = 64 }; | 904 | struct param_range rfds = { .min = 16, .max = 256, .count = 64 }; |
888 | struct param_range cbs = { .min = 64, .max = 256, .count = 64 }; | 905 | struct param_range cbs = { .min = 64, .max = 256, .count = 64 }; |
889 | 906 | ||
890 | pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id); | 907 | pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id); |
@@ -899,8 +916,9 @@ static void e100_get_defaults(struct nic *nic) | |||
899 | /* Quadwords to DMA into FIFO before starting frame transmit */ | 916 | /* Quadwords to DMA into FIFO before starting frame transmit */ |
900 | nic->tx_threshold = 0xE0; | 917 | nic->tx_threshold = 0xE0; |
901 | 918 | ||
902 | nic->tx_command = cpu_to_le16(cb_tx | cb_i | cb_tx_sf | | 919 | /* no interrupt for every tx completion, delay = 256us if not 557*/ |
903 | ((nic->mac >= mac_82558_D101_A4) ? cb_cid : 0)); | 920 | nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | |
921 | ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); | ||
904 | 922 | ||
905 | /* Template for a freshly allocated RFD */ | 923 | /* Template for a freshly allocated RFD */ |
906 | nic->blank_rfd.command = cpu_to_le16(cb_el); | 924 | nic->blank_rfd.command = cpu_to_le16(cb_el); |
@@ -964,7 +982,8 @@ static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) | |||
964 | if(nic->flags & multicast_all) | 982 | if(nic->flags & multicast_all) |
965 | config->multicast_all = 0x1; /* 1=accept, 0=no */ | 983 | config->multicast_all = 0x1; /* 1=accept, 0=no */ |
966 | 984 | ||
967 | if(!(nic->flags & wol_magic)) | 985 | /* disable WoL when up */ |
986 | if(netif_running(nic->netdev) || !(nic->flags & wol_magic)) | ||
968 | config->magic_packet_disable = 0x1; /* 1=off, 0=on */ | 987 | config->magic_packet_disable = 0x1; /* 1=off, 0=on */ |
969 | 988 | ||
970 | if(nic->mac >= mac_82558_D101_A4) { | 989 | if(nic->mac >= mac_82558_D101_A4) { |
@@ -1203,7 +1222,9 @@ static void e100_update_stats(struct nic *nic) | |||
1203 | } | 1222 | } |
1204 | } | 1223 | } |
1205 | 1224 | ||
1206 | e100_exec_cmd(nic, cuc_dump_reset, 0); | 1225 | |
1226 | if(e100_exec_cmd(nic, cuc_dump_reset, 0)) | ||
1227 | DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n"); | ||
1207 | } | 1228 | } |
1208 | 1229 | ||
1209 | static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) | 1230 | static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) |
@@ -1279,12 +1300,15 @@ static inline void e100_xmit_prepare(struct nic *nic, struct cb *cb, | |||
1279 | struct sk_buff *skb) | 1300 | struct sk_buff *skb) |
1280 | { | 1301 | { |
1281 | cb->command = nic->tx_command; | 1302 | cb->command = nic->tx_command; |
1303 | /* interrupt every 16 packets regardless of delay */ | ||
1304 | if((nic->cbs_avail & ~15) == nic->cbs_avail) cb->command |= cb_i; | ||
1282 | cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); | 1305 | cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); |
1283 | cb->u.tcb.tcb_byte_count = 0; | 1306 | cb->u.tcb.tcb_byte_count = 0; |
1284 | cb->u.tcb.threshold = nic->tx_threshold; | 1307 | cb->u.tcb.threshold = nic->tx_threshold; |
1285 | cb->u.tcb.tbd_count = 1; | 1308 | cb->u.tcb.tbd_count = 1; |
1286 | cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, | 1309 | cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, |
1287 | skb->data, skb->len, PCI_DMA_TODEVICE)); | 1310 | skb->data, skb->len, PCI_DMA_TODEVICE)); |
1311 | // check for mapping failure? | ||
1288 | cb->u.tcb.tbd.size = cpu_to_le16(skb->len); | 1312 | cb->u.tcb.tbd.size = cpu_to_le16(skb->len); |
1289 | } | 1313 | } |
1290 | 1314 | ||
@@ -1297,7 +1321,8 @@ static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | |||
1297 | /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. | 1321 | /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. |
1298 | Issue a NOP command followed by a 1us delay before | 1322 | Issue a NOP command followed by a 1us delay before |
1299 | issuing the Tx command. */ | 1323 | issuing the Tx command. */ |
1300 | e100_exec_cmd(nic, cuc_nop, 0); | 1324 | if(e100_exec_cmd(nic, cuc_nop, 0)) |
1325 | DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n"); | ||
1301 | udelay(1); | 1326 | udelay(1); |
1302 | } | 1327 | } |
1303 | 1328 | ||
@@ -1415,12 +1440,18 @@ static int e100_alloc_cbs(struct nic *nic) | |||
1415 | return 0; | 1440 | return 0; |
1416 | } | 1441 | } |
1417 | 1442 | ||
1418 | static inline void e100_start_receiver(struct nic *nic) | 1443 | static inline void e100_start_receiver(struct nic *nic, struct rx *rx) |
1419 | { | 1444 | { |
1445 | if(!nic->rxs) return; | ||
1446 | if(RU_SUSPENDED != nic->ru_running) return; | ||
1447 | |||
1448 | /* handle init time starts */ | ||
1449 | if(!rx) rx = nic->rxs; | ||
1450 | |||
1420 | /* (Re)start RU if suspended or idle and RFA is non-NULL */ | 1451 | /* (Re)start RU if suspended or idle and RFA is non-NULL */ |
1421 | if(!nic->ru_running && nic->rx_to_clean->skb) { | 1452 | if(rx->skb) { |
1422 | e100_exec_cmd(nic, ruc_start, nic->rx_to_clean->dma_addr); | 1453 | e100_exec_cmd(nic, ruc_start, rx->dma_addr); |
1423 | nic->ru_running = 1; | 1454 | nic->ru_running = RU_RUNNING; |
1424 | } | 1455 | } |
1425 | } | 1456 | } |
1426 | 1457 | ||
@@ -1437,6 +1468,13 @@ static inline int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) | |||
1437 | rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, | 1468 | rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, |
1438 | RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); | 1469 | RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
1439 | 1470 | ||
1471 | if(pci_dma_mapping_error(rx->dma_addr)) { | ||
1472 | dev_kfree_skb_any(rx->skb); | ||
1473 | rx->skb = 0; | ||
1474 | rx->dma_addr = 0; | ||
1475 | return -ENOMEM; | ||
1476 | } | ||
1477 | |||
1440 | /* Link the RFD to end of RFA by linking previous RFD to | 1478 | /* Link the RFD to end of RFA by linking previous RFD to |
1441 | * this one, and clearing EL bit of previous. */ | 1479 | * this one, and clearing EL bit of previous. */ |
1442 | if(rx->prev->skb) { | 1480 | if(rx->prev->skb) { |
@@ -1471,7 +1509,7 @@ static inline int e100_rx_indicate(struct nic *nic, struct rx *rx, | |||
1471 | 1509 | ||
1472 | /* If data isn't ready, nothing to indicate */ | 1510 | /* If data isn't ready, nothing to indicate */ |
1473 | if(unlikely(!(rfd_status & cb_complete))) | 1511 | if(unlikely(!(rfd_status & cb_complete))) |
1474 | return -EAGAIN; | 1512 | return -ENODATA; |
1475 | 1513 | ||
1476 | /* Get actual data size */ | 1514 | /* Get actual data size */ |
1477 | actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; | 1515 | actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; |
@@ -1482,6 +1520,10 @@ static inline int e100_rx_indicate(struct nic *nic, struct rx *rx, | |||
1482 | pci_unmap_single(nic->pdev, rx->dma_addr, | 1520 | pci_unmap_single(nic->pdev, rx->dma_addr, |
1483 | RFD_BUF_LEN, PCI_DMA_FROMDEVICE); | 1521 | RFD_BUF_LEN, PCI_DMA_FROMDEVICE); |
1484 | 1522 | ||
1523 | /* this allows for a fast restart without re-enabling interrupts */ | ||
1524 | if(le16_to_cpu(rfd->command) & cb_el) | ||
1525 | nic->ru_running = RU_SUSPENDED; | ||
1526 | |||
1485 | /* Pull off the RFD and put the actual data (minus eth hdr) */ | 1527 | /* Pull off the RFD and put the actual data (minus eth hdr) */ |
1486 | skb_reserve(skb, sizeof(struct rfd)); | 1528 | skb_reserve(skb, sizeof(struct rfd)); |
1487 | skb_put(skb, actual_size); | 1529 | skb_put(skb, actual_size); |
@@ -1514,20 +1556,45 @@ static inline void e100_rx_clean(struct nic *nic, unsigned int *work_done, | |||
1514 | unsigned int work_to_do) | 1556 | unsigned int work_to_do) |
1515 | { | 1557 | { |
1516 | struct rx *rx; | 1558 | struct rx *rx; |
1559 | int restart_required = 0; | ||
1560 | struct rx *rx_to_start = NULL; | ||
1561 | |||
1562 | /* are we already rnr? then pay attention!!! this ensures that | ||
1563 | * the state machine progression never allows a start with a | ||
1564 | * partially cleaned list, avoiding a race between hardware | ||
1565 | * and rx_to_clean when in NAPI mode */ | ||
1566 | if(RU_SUSPENDED == nic->ru_running) | ||
1567 | restart_required = 1; | ||
1517 | 1568 | ||
1518 | /* Indicate newly arrived packets */ | 1569 | /* Indicate newly arrived packets */ |
1519 | for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { | 1570 | for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { |
1520 | if(e100_rx_indicate(nic, rx, work_done, work_to_do)) | 1571 | int err = e100_rx_indicate(nic, rx, work_done, work_to_do); |
1572 | if(-EAGAIN == err) { | ||
1573 | /* hit quota so have more work to do, restart once | ||
1574 | * cleanup is complete */ | ||
1575 | restart_required = 0; | ||
1576 | break; | ||
1577 | } else if(-ENODATA == err) | ||
1521 | break; /* No more to clean */ | 1578 | break; /* No more to clean */ |
1522 | } | 1579 | } |
1523 | 1580 | ||
1581 | /* save our starting point as the place we'll restart the receiver */ | ||
1582 | if(restart_required) | ||
1583 | rx_to_start = nic->rx_to_clean; | ||
1584 | |||
1524 | /* Alloc new skbs to refill list */ | 1585 | /* Alloc new skbs to refill list */ |
1525 | for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { | 1586 | for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { |
1526 | if(unlikely(e100_rx_alloc_skb(nic, rx))) | 1587 | if(unlikely(e100_rx_alloc_skb(nic, rx))) |
1527 | break; /* Better luck next time (see watchdog) */ | 1588 | break; /* Better luck next time (see watchdog) */ |
1528 | } | 1589 | } |
1529 | 1590 | ||
1530 | e100_start_receiver(nic); | 1591 | if(restart_required) { |
1592 | // ack the rnr? | ||
1593 | writeb(stat_ack_rnr, &nic->csr->scb.stat_ack); | ||
1594 | e100_start_receiver(nic, rx_to_start); | ||
1595 | if(work_done) | ||
1596 | (*work_done)++; | ||
1597 | } | ||
1531 | } | 1598 | } |
1532 | 1599 | ||
1533 | static void e100_rx_clean_list(struct nic *nic) | 1600 | static void e100_rx_clean_list(struct nic *nic) |
@@ -1535,6 +1602,8 @@ static void e100_rx_clean_list(struct nic *nic) | |||
1535 | struct rx *rx; | 1602 | struct rx *rx; |
1536 | unsigned int i, count = nic->params.rfds.count; | 1603 | unsigned int i, count = nic->params.rfds.count; |
1537 | 1604 | ||
1605 | nic->ru_running = RU_UNINITIALIZED; | ||
1606 | |||
1538 | if(nic->rxs) { | 1607 | if(nic->rxs) { |
1539 | for(rx = nic->rxs, i = 0; i < count; rx++, i++) { | 1608 | for(rx = nic->rxs, i = 0; i < count; rx++, i++) { |
1540 | if(rx->skb) { | 1609 | if(rx->skb) { |
@@ -1548,7 +1617,6 @@ static void e100_rx_clean_list(struct nic *nic) | |||
1548 | } | 1617 | } |
1549 | 1618 | ||
1550 | nic->rx_to_use = nic->rx_to_clean = NULL; | 1619 | nic->rx_to_use = nic->rx_to_clean = NULL; |
1551 | nic->ru_running = 0; | ||
1552 | } | 1620 | } |
1553 | 1621 | ||
1554 | static int e100_rx_alloc_list(struct nic *nic) | 1622 | static int e100_rx_alloc_list(struct nic *nic) |
@@ -1557,6 +1625,7 @@ static int e100_rx_alloc_list(struct nic *nic) | |||
1557 | unsigned int i, count = nic->params.rfds.count; | 1625 | unsigned int i, count = nic->params.rfds.count; |
1558 | 1626 | ||
1559 | nic->rx_to_use = nic->rx_to_clean = NULL; | 1627 | nic->rx_to_use = nic->rx_to_clean = NULL; |
1628 | nic->ru_running = RU_UNINITIALIZED; | ||
1560 | 1629 | ||
1561 | if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC))) | 1630 | if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC))) |
1562 | return -ENOMEM; | 1631 | return -ENOMEM; |
@@ -1572,6 +1641,7 @@ static int e100_rx_alloc_list(struct nic *nic) | |||
1572 | } | 1641 | } |
1573 | 1642 | ||
1574 | nic->rx_to_use = nic->rx_to_clean = nic->rxs; | 1643 | nic->rx_to_use = nic->rx_to_clean = nic->rxs; |
1644 | nic->ru_running = RU_SUSPENDED; | ||
1575 | 1645 | ||
1576 | return 0; | 1646 | return 0; |
1577 | } | 1647 | } |
@@ -1593,7 +1663,7 @@ static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs) | |||
1593 | 1663 | ||
1594 | /* We hit Receive No Resource (RNR); restart RU after cleaning */ | 1664 | /* We hit Receive No Resource (RNR); restart RU after cleaning */ |
1595 | if(stat_ack & stat_ack_rnr) | 1665 | if(stat_ack & stat_ack_rnr) |
1596 | nic->ru_running = 0; | 1666 | nic->ru_running = RU_SUSPENDED; |
1597 | 1667 | ||
1598 | e100_disable_irq(nic); | 1668 | e100_disable_irq(nic); |
1599 | netif_rx_schedule(netdev); | 1669 | netif_rx_schedule(netdev); |
@@ -1663,6 +1733,7 @@ static int e100_change_mtu(struct net_device *netdev, int new_mtu) | |||
1663 | return 0; | 1733 | return 0; |
1664 | } | 1734 | } |
1665 | 1735 | ||
1736 | #ifdef CONFIG_PM | ||
1666 | static int e100_asf(struct nic *nic) | 1737 | static int e100_asf(struct nic *nic) |
1667 | { | 1738 | { |
1668 | /* ASF can be enabled from eeprom */ | 1739 | /* ASF can be enabled from eeprom */ |
@@ -1671,6 +1742,7 @@ static int e100_asf(struct nic *nic) | |||
1671 | !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && | 1742 | !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && |
1672 | ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE)); | 1743 | ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE)); |
1673 | } | 1744 | } |
1745 | #endif | ||
1674 | 1746 | ||
1675 | static int e100_up(struct nic *nic) | 1747 | static int e100_up(struct nic *nic) |
1676 | { | 1748 | { |
@@ -1683,13 +1755,16 @@ static int e100_up(struct nic *nic) | |||
1683 | if((err = e100_hw_init(nic))) | 1755 | if((err = e100_hw_init(nic))) |
1684 | goto err_clean_cbs; | 1756 | goto err_clean_cbs; |
1685 | e100_set_multicast_list(nic->netdev); | 1757 | e100_set_multicast_list(nic->netdev); |
1686 | e100_start_receiver(nic); | 1758 | e100_start_receiver(nic, 0); |
1687 | mod_timer(&nic->watchdog, jiffies); | 1759 | mod_timer(&nic->watchdog, jiffies); |
1688 | if((err = request_irq(nic->pdev->irq, e100_intr, SA_SHIRQ, | 1760 | if((err = request_irq(nic->pdev->irq, e100_intr, SA_SHIRQ, |
1689 | nic->netdev->name, nic->netdev))) | 1761 | nic->netdev->name, nic->netdev))) |
1690 | goto err_no_irq; | 1762 | goto err_no_irq; |
1691 | e100_enable_irq(nic); | ||
1692 | netif_wake_queue(nic->netdev); | 1763 | netif_wake_queue(nic->netdev); |
1764 | netif_poll_enable(nic->netdev); | ||
1765 | /* enable ints _after_ enabling poll, preventing a race between | ||
1766 | * disable ints+schedule */ | ||
1767 | e100_enable_irq(nic); | ||
1693 | return 0; | 1768 | return 0; |
1694 | 1769 | ||
1695 | err_no_irq: | 1770 | err_no_irq: |
@@ -1703,11 +1778,13 @@ err_rx_clean_list: | |||
1703 | 1778 | ||
1704 | static void e100_down(struct nic *nic) | 1779 | static void e100_down(struct nic *nic) |
1705 | { | 1780 | { |
1781 | /* wait here for poll to complete */ | ||
1782 | netif_poll_disable(nic->netdev); | ||
1783 | netif_stop_queue(nic->netdev); | ||
1706 | e100_hw_reset(nic); | 1784 | e100_hw_reset(nic); |
1707 | free_irq(nic->pdev->irq, nic->netdev); | 1785 | free_irq(nic->pdev->irq, nic->netdev); |
1708 | del_timer_sync(&nic->watchdog); | 1786 | del_timer_sync(&nic->watchdog); |
1709 | netif_carrier_off(nic->netdev); | 1787 | netif_carrier_off(nic->netdev); |
1710 | netif_stop_queue(nic->netdev); | ||
1711 | e100_clean_cbs(nic); | 1788 | e100_clean_cbs(nic); |
1712 | e100_rx_clean_list(nic); | 1789 | e100_rx_clean_list(nic); |
1713 | } | 1790 | } |
@@ -1716,6 +1793,15 @@ static void e100_tx_timeout(struct net_device *netdev) | |||
1716 | { | 1793 | { |
1717 | struct nic *nic = netdev_priv(netdev); | 1794 | struct nic *nic = netdev_priv(netdev); |
1718 | 1795 | ||
1796 | /* Reset outside of interrupt context, to avoid request_irq | ||
1797 | * in interrupt context */ | ||
1798 | schedule_work(&nic->tx_timeout_task); | ||
1799 | } | ||
1800 | |||
1801 | static void e100_tx_timeout_task(struct net_device *netdev) | ||
1802 | { | ||
1803 | struct nic *nic = netdev_priv(netdev); | ||
1804 | |||
1719 | DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n", | 1805 | DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n", |
1720 | readb(&nic->csr->scb.status)); | 1806 | readb(&nic->csr->scb.status)); |
1721 | e100_down(netdev_priv(netdev)); | 1807 | e100_down(netdev_priv(netdev)); |
@@ -1749,7 +1835,7 @@ static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) | |||
1749 | mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, | 1835 | mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, |
1750 | BMCR_LOOPBACK); | 1836 | BMCR_LOOPBACK); |
1751 | 1837 | ||
1752 | e100_start_receiver(nic); | 1838 | e100_start_receiver(nic, 0); |
1753 | 1839 | ||
1754 | if(!(skb = dev_alloc_skb(ETH_DATA_LEN))) { | 1840 | if(!(skb = dev_alloc_skb(ETH_DATA_LEN))) { |
1755 | err = -ENOMEM; | 1841 | err = -ENOMEM; |
@@ -1869,7 +1955,6 @@ static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | |||
1869 | else | 1955 | else |
1870 | nic->flags &= ~wol_magic; | 1956 | nic->flags &= ~wol_magic; |
1871 | 1957 | ||
1872 | pci_enable_wake(nic->pdev, 0, nic->flags & (wol_magic | e100_asf(nic))); | ||
1873 | e100_exec_cb(nic, NULL, e100_configure); | 1958 | e100_exec_cb(nic, NULL, e100_configure); |
1874 | 1959 | ||
1875 | return 0; | 1960 | return 0; |
@@ -2223,6 +2308,7 @@ static int __devinit e100_probe(struct pci_dev *pdev, | |||
2223 | 2308 | ||
2224 | e100_get_defaults(nic); | 2309 | e100_get_defaults(nic); |
2225 | 2310 | ||
2311 | /* locks must be initialized before calling hw_reset */ | ||
2226 | spin_lock_init(&nic->cb_lock); | 2312 | spin_lock_init(&nic->cb_lock); |
2227 | spin_lock_init(&nic->cmd_lock); | 2313 | spin_lock_init(&nic->cmd_lock); |
2228 | 2314 | ||
@@ -2240,6 +2326,9 @@ static int __devinit e100_probe(struct pci_dev *pdev, | |||
2240 | nic->blink_timer.function = e100_blink_led; | 2326 | nic->blink_timer.function = e100_blink_led; |
2241 | nic->blink_timer.data = (unsigned long)nic; | 2327 | nic->blink_timer.data = (unsigned long)nic; |
2242 | 2328 | ||
2329 | INIT_WORK(&nic->tx_timeout_task, | ||
2330 | (void (*)(void *))e100_tx_timeout_task, netdev); | ||
2331 | |||
2243 | if((err = e100_alloc(nic))) { | 2332 | if((err = e100_alloc(nic))) { |
2244 | DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n"); | 2333 | DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n"); |
2245 | goto err_out_iounmap; | 2334 | goto err_out_iounmap; |
@@ -2263,7 +2352,8 @@ static int __devinit e100_probe(struct pci_dev *pdev, | |||
2263 | (nic->eeprom[eeprom_id] & eeprom_id_wol)) | 2352 | (nic->eeprom[eeprom_id] & eeprom_id_wol)) |
2264 | nic->flags |= wol_magic; | 2353 | nic->flags |= wol_magic; |
2265 | 2354 | ||
2266 | pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic))); | 2355 | /* ack any pending wake events, disable PME */ |
2356 | pci_enable_wake(pdev, 0, 0); | ||
2267 | 2357 | ||
2268 | strcpy(netdev->name, "eth%d"); | 2358 | strcpy(netdev->name, "eth%d"); |
2269 | if((err = register_netdev(netdev))) { | 2359 | if((err = register_netdev(netdev))) { |
@@ -2335,7 +2425,10 @@ static int e100_resume(struct pci_dev *pdev) | |||
2335 | 2425 | ||
2336 | pci_set_power_state(pdev, PCI_D0); | 2426 | pci_set_power_state(pdev, PCI_D0); |
2337 | pci_restore_state(pdev); | 2427 | pci_restore_state(pdev); |
2338 | e100_hw_init(nic); | 2428 | /* ack any pending wake events, disable PME */ |
2429 | pci_enable_wake(pdev, 0, 0); | ||
2430 | if(e100_hw_init(nic)) | ||
2431 | DPRINTK(HW, ERR, "e100_hw_init failed\n"); | ||
2339 | 2432 | ||
2340 | netif_device_attach(netdev); | 2433 | netif_device_attach(netdev); |
2341 | if(netif_running(netdev)) | 2434 | if(netif_running(netdev)) |
@@ -2345,6 +2438,21 @@ static int e100_resume(struct pci_dev *pdev) | |||
2345 | } | 2438 | } |
2346 | #endif | 2439 | #endif |
2347 | 2440 | ||
2441 | |||
2442 | static void e100_shutdown(struct device *dev) | ||
2443 | { | ||
2444 | struct pci_dev *pdev = container_of(dev, struct pci_dev, dev); | ||
2445 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2446 | struct nic *nic = netdev_priv(netdev); | ||
2447 | |||
2448 | #ifdef CONFIG_PM | ||
2449 | pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic))); | ||
2450 | #else | ||
2451 | pci_enable_wake(pdev, 0, nic->flags & (wol_magic)); | ||
2452 | #endif | ||
2453 | } | ||
2454 | |||
2455 | |||
2348 | static struct pci_driver e100_driver = { | 2456 | static struct pci_driver e100_driver = { |
2349 | .name = DRV_NAME, | 2457 | .name = DRV_NAME, |
2350 | .id_table = e100_id_table, | 2458 | .id_table = e100_id_table, |
@@ -2354,6 +2462,11 @@ static struct pci_driver e100_driver = { | |||
2354 | .suspend = e100_suspend, | 2462 | .suspend = e100_suspend, |
2355 | .resume = e100_resume, | 2463 | .resume = e100_resume, |
2356 | #endif | 2464 | #endif |
2465 | |||
2466 | .driver = { | ||
2467 | .shutdown = e100_shutdown, | ||
2468 | } | ||
2469 | |||
2357 | }; | 2470 | }; |
2358 | 2471 | ||
2359 | static int __init e100_init_module(void) | 2472 | static int __init e100_init_module(void) |
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h index 148930d4e9bd..af1e82c5b808 100644 --- a/drivers/net/e1000/e1000.h +++ b/drivers/net/e1000/e1000.h | |||
@@ -1,7 +1,7 @@ | |||
1 | /******************************************************************************* | 1 | /******************************************************************************* |
2 | 2 | ||
3 | 3 | ||
4 | Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. | 4 | Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. |
5 | 5 | ||
6 | This program is free software; you can redistribute it and/or modify it | 6 | This program is free software; you can redistribute it and/or modify it |
7 | under the terms of the GNU General Public License as published by the Free | 7 | under the terms of the GNU General Public License as published by the Free |
@@ -112,6 +112,8 @@ struct e1000_adapter; | |||
112 | #define E1000_MAX_82544_RXD 4096 | 112 | #define E1000_MAX_82544_RXD 4096 |
113 | 113 | ||
114 | /* Supported Rx Buffer Sizes */ | 114 | /* Supported Rx Buffer Sizes */ |
115 | #define E1000_RXBUFFER_128 128 /* Used for packet split */ | ||
116 | #define E1000_RXBUFFER_256 256 /* Used for packet split */ | ||
115 | #define E1000_RXBUFFER_2048 2048 | 117 | #define E1000_RXBUFFER_2048 2048 |
116 | #define E1000_RXBUFFER_4096 4096 | 118 | #define E1000_RXBUFFER_4096 4096 |
117 | #define E1000_RXBUFFER_8192 8192 | 119 | #define E1000_RXBUFFER_8192 8192 |
@@ -137,15 +139,19 @@ struct e1000_adapter; | |||
137 | /* How many Rx Buffers do we bundle into one write to the hardware ? */ | 139 | /* How many Rx Buffers do we bundle into one write to the hardware ? */ |
138 | #define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */ | 140 | #define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */ |
139 | 141 | ||
140 | #define AUTO_ALL_MODES 0 | 142 | #define AUTO_ALL_MODES 0 |
141 | #define E1000_EEPROM_82544_APM 0x0004 | 143 | #define E1000_EEPROM_82544_APM 0x0400 |
142 | #define E1000_EEPROM_APME 0x0400 | 144 | #define E1000_EEPROM_APME 0x0400 |
143 | 145 | ||
144 | #ifndef E1000_MASTER_SLAVE | 146 | #ifndef E1000_MASTER_SLAVE |
145 | /* Switch to override PHY master/slave setting */ | 147 | /* Switch to override PHY master/slave setting */ |
146 | #define E1000_MASTER_SLAVE e1000_ms_hw_default | 148 | #define E1000_MASTER_SLAVE e1000_ms_hw_default |
147 | #endif | 149 | #endif |
148 | 150 | ||
151 | #define E1000_MNG_VLAN_NONE -1 | ||
152 | /* Number of packet split data buffers (not including the header buffer) */ | ||
153 | #define PS_PAGE_BUFFERS MAX_PS_BUFFERS-1 | ||
154 | |||
149 | /* only works for sizes that are powers of 2 */ | 155 | /* only works for sizes that are powers of 2 */ |
150 | #define E1000_ROUNDUP(i, size) ((i) = (((i) + (size) - 1) & ~((size) - 1))) | 156 | #define E1000_ROUNDUP(i, size) ((i) = (((i) + (size) - 1) & ~((size) - 1))) |
151 | 157 | ||
@@ -159,6 +165,9 @@ struct e1000_buffer { | |||
159 | uint16_t next_to_watch; | 165 | uint16_t next_to_watch; |
160 | }; | 166 | }; |
161 | 167 | ||
168 | struct e1000_ps_page { struct page *ps_page[MAX_PS_BUFFERS]; }; | ||
169 | struct e1000_ps_page_dma { uint64_t ps_page_dma[MAX_PS_BUFFERS]; }; | ||
170 | |||
162 | struct e1000_desc_ring { | 171 | struct e1000_desc_ring { |
163 | /* pointer to the descriptor ring memory */ | 172 | /* pointer to the descriptor ring memory */ |
164 | void *desc; | 173 | void *desc; |
@@ -174,12 +183,19 @@ struct e1000_desc_ring { | |||
174 | unsigned int next_to_clean; | 183 | unsigned int next_to_clean; |
175 | /* array of buffer information structs */ | 184 | /* array of buffer information structs */ |
176 | struct e1000_buffer *buffer_info; | 185 | struct e1000_buffer *buffer_info; |
186 | /* arrays of page information for packet split */ | ||
187 | struct e1000_ps_page *ps_page; | ||
188 | struct e1000_ps_page_dma *ps_page_dma; | ||
177 | }; | 189 | }; |
178 | 190 | ||
179 | #define E1000_DESC_UNUSED(R) \ | 191 | #define E1000_DESC_UNUSED(R) \ |
180 | ((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \ | 192 | ((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \ |
181 | (R)->next_to_clean - (R)->next_to_use - 1) | 193 | (R)->next_to_clean - (R)->next_to_use - 1) |
182 | 194 | ||
195 | #define E1000_RX_DESC_PS(R, i) \ | ||
196 | (&(((union e1000_rx_desc_packet_split *)((R).desc))[i])) | ||
197 | #define E1000_RX_DESC_EXT(R, i) \ | ||
198 | (&(((union e1000_rx_desc_extended *)((R).desc))[i])) | ||
183 | #define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i])) | 199 | #define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i])) |
184 | #define E1000_RX_DESC(R, i) E1000_GET_DESC(R, i, e1000_rx_desc) | 200 | #define E1000_RX_DESC(R, i) E1000_GET_DESC(R, i, e1000_rx_desc) |
185 | #define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc) | 201 | #define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc) |
@@ -192,6 +208,7 @@ struct e1000_adapter { | |||
192 | struct timer_list watchdog_timer; | 208 | struct timer_list watchdog_timer; |
193 | struct timer_list phy_info_timer; | 209 | struct timer_list phy_info_timer; |
194 | struct vlan_group *vlgrp; | 210 | struct vlan_group *vlgrp; |
211 | uint16_t mng_vlan_id; | ||
195 | uint32_t bd_number; | 212 | uint32_t bd_number; |
196 | uint32_t rx_buffer_len; | 213 | uint32_t rx_buffer_len; |
197 | uint32_t part_num; | 214 | uint32_t part_num; |
@@ -228,14 +245,23 @@ struct e1000_adapter { | |||
228 | boolean_t detect_tx_hung; | 245 | boolean_t detect_tx_hung; |
229 | 246 | ||
230 | /* RX */ | 247 | /* RX */ |
248 | #ifdef CONFIG_E1000_NAPI | ||
249 | boolean_t (*clean_rx) (struct e1000_adapter *adapter, int *work_done, | ||
250 | int work_to_do); | ||
251 | #else | ||
252 | boolean_t (*clean_rx) (struct e1000_adapter *adapter); | ||
253 | #endif | ||
254 | void (*alloc_rx_buf) (struct e1000_adapter *adapter); | ||
231 | struct e1000_desc_ring rx_ring; | 255 | struct e1000_desc_ring rx_ring; |
232 | uint64_t hw_csum_err; | 256 | uint64_t hw_csum_err; |
233 | uint64_t hw_csum_good; | 257 | uint64_t hw_csum_good; |
234 | uint32_t rx_int_delay; | 258 | uint32_t rx_int_delay; |
235 | uint32_t rx_abs_int_delay; | 259 | uint32_t rx_abs_int_delay; |
236 | boolean_t rx_csum; | 260 | boolean_t rx_csum; |
261 | boolean_t rx_ps; | ||
237 | uint32_t gorcl; | 262 | uint32_t gorcl; |
238 | uint64_t gorcl_old; | 263 | uint64_t gorcl_old; |
264 | uint16_t rx_ps_bsize0; | ||
239 | 265 | ||
240 | /* Interrupt Throttle Rate */ | 266 | /* Interrupt Throttle Rate */ |
241 | uint32_t itr; | 267 | uint32_t itr; |
@@ -257,5 +283,8 @@ struct e1000_adapter { | |||
257 | 283 | ||
258 | 284 | ||
259 | int msg_enable; | 285 | int msg_enable; |
286 | #ifdef CONFIG_PCI_MSI | ||
287 | boolean_t have_msi; | ||
288 | #endif | ||
260 | }; | 289 | }; |
261 | #endif /* _E1000_H_ */ | 290 | #endif /* _E1000_H_ */ |
diff --git a/drivers/net/e1000/e1000_ethtool.c b/drivers/net/e1000/e1000_ethtool.c index 0a2ca7c73a41..237247f74df4 100644 --- a/drivers/net/e1000/e1000_ethtool.c +++ b/drivers/net/e1000/e1000_ethtool.c | |||
@@ -1,7 +1,7 @@ | |||
1 | /******************************************************************************* | 1 | /******************************************************************************* |
2 | 2 | ||
3 | 3 | ||
4 | Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. | 4 | Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. |
5 | 5 | ||
6 | This program is free software; you can redistribute it and/or modify it | 6 | This program is free software; you can redistribute it and/or modify it |
7 | under the terms of the GNU General Public License as published by the Free | 7 | under the terms of the GNU General Public License as published by the Free |
@@ -69,6 +69,7 @@ static const struct e1000_stats e1000_gstrings_stats[] = { | |||
69 | { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) }, | 69 | { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) }, |
70 | { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) }, | 70 | { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) }, |
71 | { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) }, | 71 | { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) }, |
72 | { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, | ||
72 | { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) }, | 73 | { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) }, |
73 | { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) }, | 74 | { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) }, |
74 | { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) }, | 75 | { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) }, |
@@ -593,7 +594,7 @@ e1000_set_ringparam(struct net_device *netdev, | |||
593 | tx_old = adapter->tx_ring; | 594 | tx_old = adapter->tx_ring; |
594 | rx_old = adapter->rx_ring; | 595 | rx_old = adapter->rx_ring; |
595 | 596 | ||
596 | if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) | 597 | if((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) |
597 | return -EINVAL; | 598 | return -EINVAL; |
598 | 599 | ||
599 | if(netif_running(adapter->netdev)) | 600 | if(netif_running(adapter->netdev)) |
@@ -784,8 +785,8 @@ e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data) | |||
784 | /* Hook up test interrupt handler just for this test */ | 785 | /* Hook up test interrupt handler just for this test */ |
785 | if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) { | 786 | if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) { |
786 | shared_int = FALSE; | 787 | shared_int = FALSE; |
787 | } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ, | 788 | } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ, |
788 | netdev->name, netdev)){ | 789 | netdev->name, netdev)){ |
789 | *data = 1; | 790 | *data = 1; |
790 | return -1; | 791 | return -1; |
791 | } | 792 | } |
@@ -842,10 +843,8 @@ e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data) | |||
842 | * test failed. | 843 | * test failed. |
843 | */ | 844 | */ |
844 | adapter->test_icr = 0; | 845 | adapter->test_icr = 0; |
845 | E1000_WRITE_REG(&adapter->hw, IMC, | 846 | E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF); |
846 | (~mask & 0x00007FFF)); | 847 | E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF); |
847 | E1000_WRITE_REG(&adapter->hw, ICS, | ||
848 | (~mask & 0x00007FFF)); | ||
849 | msec_delay(10); | 848 | msec_delay(10); |
850 | 849 | ||
851 | if(adapter->test_icr) { | 850 | if(adapter->test_icr) { |
@@ -919,7 +918,8 @@ e1000_setup_desc_rings(struct e1000_adapter *adapter) | |||
919 | 918 | ||
920 | /* Setup Tx descriptor ring and Tx buffers */ | 919 | /* Setup Tx descriptor ring and Tx buffers */ |
921 | 920 | ||
922 | txdr->count = 80; | 921 | if(!txdr->count) |
922 | txdr->count = E1000_DEFAULT_TXD; | ||
923 | 923 | ||
924 | size = txdr->count * sizeof(struct e1000_buffer); | 924 | size = txdr->count * sizeof(struct e1000_buffer); |
925 | if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) { | 925 | if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) { |
@@ -974,7 +974,8 @@ e1000_setup_desc_rings(struct e1000_adapter *adapter) | |||
974 | 974 | ||
975 | /* Setup Rx descriptor ring and Rx buffers */ | 975 | /* Setup Rx descriptor ring and Rx buffers */ |
976 | 976 | ||
977 | rxdr->count = 80; | 977 | if(!rxdr->count) |
978 | rxdr->count = E1000_DEFAULT_RXD; | ||
978 | 979 | ||
979 | size = rxdr->count * sizeof(struct e1000_buffer); | 980 | size = rxdr->count * sizeof(struct e1000_buffer); |
980 | if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) { | 981 | if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) { |
@@ -1008,7 +1009,7 @@ e1000_setup_desc_rings(struct e1000_adapter *adapter) | |||
1008 | struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); | 1009 | struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); |
1009 | struct sk_buff *skb; | 1010 | struct sk_buff *skb; |
1010 | 1011 | ||
1011 | if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, | 1012 | if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, |
1012 | GFP_KERNEL))) { | 1013 | GFP_KERNEL))) { |
1013 | ret_val = 6; | 1014 | ret_val = 6; |
1014 | goto err_nomem; | 1015 | goto err_nomem; |
@@ -1310,31 +1311,62 @@ e1000_run_loopback_test(struct e1000_adapter *adapter) | |||
1310 | struct e1000_desc_ring *txdr = &adapter->test_tx_ring; | 1311 | struct e1000_desc_ring *txdr = &adapter->test_tx_ring; |
1311 | struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; | 1312 | struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; |
1312 | struct pci_dev *pdev = adapter->pdev; | 1313 | struct pci_dev *pdev = adapter->pdev; |
1313 | int i, ret_val; | 1314 | int i, j, k, l, lc, good_cnt, ret_val=0; |
1315 | unsigned long time; | ||
1314 | 1316 | ||
1315 | E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1); | 1317 | E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1); |
1316 | 1318 | ||
1317 | for(i = 0; i < 64; i++) { | 1319 | /* Calculate the loop count based on the largest descriptor ring |
1318 | e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1024); | 1320 | * The idea is to wrap the largest ring a number of times using 64 |
1319 | pci_dma_sync_single_for_device(pdev, txdr->buffer_info[i].dma, | 1321 | * send/receive pairs during each loop |
1320 | txdr->buffer_info[i].length, | 1322 | */ |
1321 | PCI_DMA_TODEVICE); | ||
1322 | } | ||
1323 | E1000_WRITE_REG(&adapter->hw, TDT, i); | ||
1324 | |||
1325 | msec_delay(200); | ||
1326 | |||
1327 | i = 0; | ||
1328 | do { | ||
1329 | pci_dma_sync_single_for_cpu(pdev, rxdr->buffer_info[i].dma, | ||
1330 | rxdr->buffer_info[i].length, | ||
1331 | PCI_DMA_FROMDEVICE); | ||
1332 | |||
1333 | ret_val = e1000_check_lbtest_frame(rxdr->buffer_info[i].skb, | ||
1334 | 1024); | ||
1335 | i++; | ||
1336 | } while (ret_val != 0 && i < 64); | ||
1337 | 1323 | ||
1324 | if(rxdr->count <= txdr->count) | ||
1325 | lc = ((txdr->count / 64) * 2) + 1; | ||
1326 | else | ||
1327 | lc = ((rxdr->count / 64) * 2) + 1; | ||
1328 | |||
1329 | k = l = 0; | ||
1330 | for(j = 0; j <= lc; j++) { /* loop count loop */ | ||
1331 | for(i = 0; i < 64; i++) { /* send the packets */ | ||
1332 | e1000_create_lbtest_frame(txdr->buffer_info[i].skb, | ||
1333 | 1024); | ||
1334 | pci_dma_sync_single_for_device(pdev, | ||
1335 | txdr->buffer_info[k].dma, | ||
1336 | txdr->buffer_info[k].length, | ||
1337 | PCI_DMA_TODEVICE); | ||
1338 | if(unlikely(++k == txdr->count)) k = 0; | ||
1339 | } | ||
1340 | E1000_WRITE_REG(&adapter->hw, TDT, k); | ||
1341 | msec_delay(200); | ||
1342 | time = jiffies; /* set the start time for the receive */ | ||
1343 | good_cnt = 0; | ||
1344 | do { /* receive the sent packets */ | ||
1345 | pci_dma_sync_single_for_cpu(pdev, | ||
1346 | rxdr->buffer_info[l].dma, | ||
1347 | rxdr->buffer_info[l].length, | ||
1348 | PCI_DMA_FROMDEVICE); | ||
1349 | |||
1350 | ret_val = e1000_check_lbtest_frame( | ||
1351 | rxdr->buffer_info[l].skb, | ||
1352 | 1024); | ||
1353 | if(!ret_val) | ||
1354 | good_cnt++; | ||
1355 | if(unlikely(++l == rxdr->count)) l = 0; | ||
1356 | /* time + 20 msecs (200 msecs on 2.4) is more than | ||
1357 | * enough time to complete the receives, if it's | ||
1358 | * exceeded, break and error off | ||
1359 | */ | ||
1360 | } while (good_cnt < 64 && jiffies < (time + 20)); | ||
1361 | if(good_cnt != 64) { | ||
1362 | ret_val = 13; /* ret_val is the same as mis-compare */ | ||
1363 | break; | ||
1364 | } | ||
1365 | if(jiffies >= (time + 2)) { | ||
1366 | ret_val = 14; /* error code for time out error */ | ||
1367 | break; | ||
1368 | } | ||
1369 | } /* end loop count loop */ | ||
1338 | return ret_val; | 1370 | return ret_val; |
1339 | } | 1371 | } |
1340 | 1372 | ||
@@ -1354,13 +1386,12 @@ static int | |||
1354 | e1000_link_test(struct e1000_adapter *adapter, uint64_t *data) | 1386 | e1000_link_test(struct e1000_adapter *adapter, uint64_t *data) |
1355 | { | 1387 | { |
1356 | *data = 0; | 1388 | *data = 0; |
1357 | |||
1358 | if (adapter->hw.media_type == e1000_media_type_internal_serdes) { | 1389 | if (adapter->hw.media_type == e1000_media_type_internal_serdes) { |
1359 | int i = 0; | 1390 | int i = 0; |
1360 | adapter->hw.serdes_link_down = TRUE; | 1391 | adapter->hw.serdes_link_down = TRUE; |
1361 | 1392 | ||
1362 | /* on some blade server designs link establishment */ | 1393 | /* On some blade server designs, link establishment |
1363 | /* could take as long as 2-3 minutes. */ | 1394 | * could take as long as 2-3 minutes */ |
1364 | do { | 1395 | do { |
1365 | e1000_check_for_link(&adapter->hw); | 1396 | e1000_check_for_link(&adapter->hw); |
1366 | if (adapter->hw.serdes_link_down == FALSE) | 1397 | if (adapter->hw.serdes_link_down == FALSE) |
@@ -1368,9 +1399,11 @@ e1000_link_test(struct e1000_adapter *adapter, uint64_t *data) | |||
1368 | msec_delay(20); | 1399 | msec_delay(20); |
1369 | } while (i++ < 3750); | 1400 | } while (i++ < 3750); |
1370 | 1401 | ||
1371 | *data = 1; | 1402 | *data = 1; |
1372 | } else { | 1403 | } else { |
1373 | e1000_check_for_link(&adapter->hw); | 1404 | e1000_check_for_link(&adapter->hw); |
1405 | if(adapter->hw.autoneg) /* if auto_neg is set wait for it */ | ||
1406 | msec_delay(4000); | ||
1374 | 1407 | ||
1375 | if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) { | 1408 | if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) { |
1376 | *data = 1; | 1409 | *data = 1; |
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c index 786a9b935659..723589b28be5 100644 --- a/drivers/net/e1000/e1000_hw.c +++ b/drivers/net/e1000/e1000_hw.c | |||
@@ -1,7 +1,7 @@ | |||
1 | /******************************************************************************* | 1 | /******************************************************************************* |
2 | 2 | ||
3 | 3 | ||
4 | Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. | 4 | Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. |
5 | 5 | ||
6 | This program is free software; you can redistribute it and/or modify it | 6 | This program is free software; you can redistribute it and/or modify it |
7 | under the terms of the GNU General Public License as published by the Free | 7 | under the terms of the GNU General Public License as published by the Free |
@@ -63,10 +63,11 @@ static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count); | |||
63 | static int32_t e1000_acquire_eeprom(struct e1000_hw *hw); | 63 | static int32_t e1000_acquire_eeprom(struct e1000_hw *hw); |
64 | static void e1000_release_eeprom(struct e1000_hw *hw); | 64 | static void e1000_release_eeprom(struct e1000_hw *hw); |
65 | static void e1000_standby_eeprom(struct e1000_hw *hw); | 65 | static void e1000_standby_eeprom(struct e1000_hw *hw); |
66 | static int32_t e1000_id_led_init(struct e1000_hw * hw); | ||
67 | static int32_t e1000_set_vco_speed(struct e1000_hw *hw); | 66 | static int32_t e1000_set_vco_speed(struct e1000_hw *hw); |
68 | static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw); | 67 | static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw); |
69 | static int32_t e1000_set_phy_mode(struct e1000_hw *hw); | 68 | static int32_t e1000_set_phy_mode(struct e1000_hw *hw); |
69 | static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer); | ||
70 | static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length); | ||
70 | 71 | ||
71 | /* IGP cable length table */ | 72 | /* IGP cable length table */ |
72 | static const | 73 | static const |
@@ -80,6 +81,17 @@ uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = | |||
80 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, | 81 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, |
81 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; | 82 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; |
82 | 83 | ||
84 | static const | ||
85 | uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] = | ||
86 | { 8, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, | ||
87 | 22, 24, 27, 30, 32, 35, 37, 40, 42, 44, 47, 49, 51, 54, 56, 58, | ||
88 | 32, 35, 38, 41, 44, 47, 50, 53, 55, 58, 61, 63, 66, 69, 71, 74, | ||
89 | 43, 47, 51, 54, 58, 61, 64, 67, 71, 74, 77, 80, 82, 85, 88, 90, | ||
90 | 57, 62, 66, 70, 74, 77, 81, 85, 88, 91, 94, 97, 100, 103, 106, 108, | ||
91 | 73, 78, 82, 87, 91, 95, 98, 102, 105, 109, 112, 114, 117, 119, 122, 124, | ||
92 | 91, 96, 101, 105, 109, 113, 116, 119, 122, 125, 127, 128, 128, 128, 128, 128, | ||
93 | 108, 113, 117, 121, 124, 127, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}; | ||
94 | |||
83 | 95 | ||
84 | /****************************************************************************** | 96 | /****************************************************************************** |
85 | * Set the phy type member in the hw struct. | 97 | * Set the phy type member in the hw struct. |
@@ -91,10 +103,14 @@ e1000_set_phy_type(struct e1000_hw *hw) | |||
91 | { | 103 | { |
92 | DEBUGFUNC("e1000_set_phy_type"); | 104 | DEBUGFUNC("e1000_set_phy_type"); |
93 | 105 | ||
106 | if(hw->mac_type == e1000_undefined) | ||
107 | return -E1000_ERR_PHY_TYPE; | ||
108 | |||
94 | switch(hw->phy_id) { | 109 | switch(hw->phy_id) { |
95 | case M88E1000_E_PHY_ID: | 110 | case M88E1000_E_PHY_ID: |
96 | case M88E1000_I_PHY_ID: | 111 | case M88E1000_I_PHY_ID: |
97 | case M88E1011_I_PHY_ID: | 112 | case M88E1011_I_PHY_ID: |
113 | case M88E1111_I_PHY_ID: | ||
98 | hw->phy_type = e1000_phy_m88; | 114 | hw->phy_type = e1000_phy_m88; |
99 | break; | 115 | break; |
100 | case IGP01E1000_I_PHY_ID: | 116 | case IGP01E1000_I_PHY_ID: |
@@ -128,7 +144,6 @@ e1000_phy_init_script(struct e1000_hw *hw) | |||
128 | 144 | ||
129 | DEBUGFUNC("e1000_phy_init_script"); | 145 | DEBUGFUNC("e1000_phy_init_script"); |
130 | 146 | ||
131 | |||
132 | if(hw->phy_init_script) { | 147 | if(hw->phy_init_script) { |
133 | msec_delay(20); | 148 | msec_delay(20); |
134 | 149 | ||
@@ -271,6 +286,7 @@ e1000_set_mac_type(struct e1000_hw *hw) | |||
271 | case E1000_DEV_ID_82546GB_FIBER: | 286 | case E1000_DEV_ID_82546GB_FIBER: |
272 | case E1000_DEV_ID_82546GB_SERDES: | 287 | case E1000_DEV_ID_82546GB_SERDES: |
273 | case E1000_DEV_ID_82546GB_PCIE: | 288 | case E1000_DEV_ID_82546GB_PCIE: |
289 | case E1000_DEV_ID_82546GB_QUAD_COPPER: | ||
274 | hw->mac_type = e1000_82546_rev_3; | 290 | hw->mac_type = e1000_82546_rev_3; |
275 | break; | 291 | break; |
276 | case E1000_DEV_ID_82541EI: | 292 | case E1000_DEV_ID_82541EI: |
@@ -289,12 +305,19 @@ e1000_set_mac_type(struct e1000_hw *hw) | |||
289 | case E1000_DEV_ID_82547GI: | 305 | case E1000_DEV_ID_82547GI: |
290 | hw->mac_type = e1000_82547_rev_2; | 306 | hw->mac_type = e1000_82547_rev_2; |
291 | break; | 307 | break; |
308 | case E1000_DEV_ID_82573E: | ||
309 | case E1000_DEV_ID_82573E_IAMT: | ||
310 | hw->mac_type = e1000_82573; | ||
311 | break; | ||
292 | default: | 312 | default: |
293 | /* Should never have loaded on this device */ | 313 | /* Should never have loaded on this device */ |
294 | return -E1000_ERR_MAC_TYPE; | 314 | return -E1000_ERR_MAC_TYPE; |
295 | } | 315 | } |
296 | 316 | ||
297 | switch(hw->mac_type) { | 317 | switch(hw->mac_type) { |
318 | case e1000_82573: | ||
319 | hw->eeprom_semaphore_present = TRUE; | ||
320 | /* fall through */ | ||
298 | case e1000_82541: | 321 | case e1000_82541: |
299 | case e1000_82547: | 322 | case e1000_82547: |
300 | case e1000_82541_rev_2: | 323 | case e1000_82541_rev_2: |
@@ -360,6 +383,9 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
360 | uint32_t icr; | 383 | uint32_t icr; |
361 | uint32_t manc; | 384 | uint32_t manc; |
362 | uint32_t led_ctrl; | 385 | uint32_t led_ctrl; |
386 | uint32_t timeout; | ||
387 | uint32_t extcnf_ctrl; | ||
388 | int32_t ret_val; | ||
363 | 389 | ||
364 | DEBUGFUNC("e1000_reset_hw"); | 390 | DEBUGFUNC("e1000_reset_hw"); |
365 | 391 | ||
@@ -369,6 +395,15 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
369 | e1000_pci_clear_mwi(hw); | 395 | e1000_pci_clear_mwi(hw); |
370 | } | 396 | } |
371 | 397 | ||
398 | if(hw->bus_type == e1000_bus_type_pci_express) { | ||
399 | /* Prevent the PCI-E bus from sticking if there is no TLP connection | ||
400 | * on the last TLP read/write transaction when MAC is reset. | ||
401 | */ | ||
402 | if(e1000_disable_pciex_master(hw) != E1000_SUCCESS) { | ||
403 | DEBUGOUT("PCI-E Master disable polling has failed.\n"); | ||
404 | } | ||
405 | } | ||
406 | |||
372 | /* Clear interrupt mask to stop board from generating interrupts */ | 407 | /* Clear interrupt mask to stop board from generating interrupts */ |
373 | DEBUGOUT("Masking off all interrupts\n"); | 408 | DEBUGOUT("Masking off all interrupts\n"); |
374 | E1000_WRITE_REG(hw, IMC, 0xffffffff); | 409 | E1000_WRITE_REG(hw, IMC, 0xffffffff); |
@@ -393,10 +428,32 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
393 | 428 | ||
394 | /* Must reset the PHY before resetting the MAC */ | 429 | /* Must reset the PHY before resetting the MAC */ |
395 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 430 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
396 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); | 431 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); |
397 | msec_delay(5); | 432 | msec_delay(5); |
398 | } | 433 | } |
399 | 434 | ||
435 | /* Must acquire the MDIO ownership before MAC reset. | ||
436 | * Ownership defaults to firmware after a reset. */ | ||
437 | if(hw->mac_type == e1000_82573) { | ||
438 | timeout = 10; | ||
439 | |||
440 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); | ||
441 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | ||
442 | |||
443 | do { | ||
444 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); | ||
445 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); | ||
446 | |||
447 | if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) | ||
448 | break; | ||
449 | else | ||
450 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | ||
451 | |||
452 | msec_delay(2); | ||
453 | timeout--; | ||
454 | } while(timeout); | ||
455 | } | ||
456 | |||
400 | /* Issue a global reset to the MAC. This will reset the chip's | 457 | /* Issue a global reset to the MAC. This will reset the chip's |
401 | * transmit, receive, DMA, and link units. It will not effect | 458 | * transmit, receive, DMA, and link units. It will not effect |
402 | * the current PCI configuration. The global reset bit is self- | 459 | * the current PCI configuration. The global reset bit is self- |
@@ -450,6 +507,18 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
450 | /* Wait for EEPROM reload */ | 507 | /* Wait for EEPROM reload */ |
451 | msec_delay(20); | 508 | msec_delay(20); |
452 | break; | 509 | break; |
510 | case e1000_82573: | ||
511 | udelay(10); | ||
512 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | ||
513 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
514 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | ||
515 | E1000_WRITE_FLUSH(hw); | ||
516 | /* fall through */ | ||
517 | ret_val = e1000_get_auto_rd_done(hw); | ||
518 | if(ret_val) | ||
519 | /* We don't want to continue accessing MAC registers. */ | ||
520 | return ret_val; | ||
521 | break; | ||
453 | default: | 522 | default: |
454 | /* Wait for EEPROM reload (it happens automatically) */ | 523 | /* Wait for EEPROM reload (it happens automatically) */ |
455 | msec_delay(5); | 524 | msec_delay(5); |
@@ -457,7 +526,7 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
457 | } | 526 | } |
458 | 527 | ||
459 | /* Disable HW ARPs on ASF enabled adapters */ | 528 | /* Disable HW ARPs on ASF enabled adapters */ |
460 | if(hw->mac_type >= e1000_82540) { | 529 | if(hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) { |
461 | manc = E1000_READ_REG(hw, MANC); | 530 | manc = E1000_READ_REG(hw, MANC); |
462 | manc &= ~(E1000_MANC_ARP_EN); | 531 | manc &= ~(E1000_MANC_ARP_EN); |
463 | E1000_WRITE_REG(hw, MANC, manc); | 532 | E1000_WRITE_REG(hw, MANC, manc); |
@@ -510,6 +579,8 @@ e1000_init_hw(struct e1000_hw *hw) | |||
510 | uint16_t pcix_stat_hi_word; | 579 | uint16_t pcix_stat_hi_word; |
511 | uint16_t cmd_mmrbc; | 580 | uint16_t cmd_mmrbc; |
512 | uint16_t stat_mmrbc; | 581 | uint16_t stat_mmrbc; |
582 | uint32_t mta_size; | ||
583 | |||
513 | DEBUGFUNC("e1000_init_hw"); | 584 | DEBUGFUNC("e1000_init_hw"); |
514 | 585 | ||
515 | /* Initialize Identification LED */ | 586 | /* Initialize Identification LED */ |
@@ -524,8 +595,8 @@ e1000_init_hw(struct e1000_hw *hw) | |||
524 | 595 | ||
525 | /* Disabling VLAN filtering. */ | 596 | /* Disabling VLAN filtering. */ |
526 | DEBUGOUT("Initializing the IEEE VLAN\n"); | 597 | DEBUGOUT("Initializing the IEEE VLAN\n"); |
527 | E1000_WRITE_REG(hw, VET, 0); | 598 | if (hw->mac_type < e1000_82545_rev_3) |
528 | 599 | E1000_WRITE_REG(hw, VET, 0); | |
529 | e1000_clear_vfta(hw); | 600 | e1000_clear_vfta(hw); |
530 | 601 | ||
531 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | 602 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
@@ -553,14 +624,16 @@ e1000_init_hw(struct e1000_hw *hw) | |||
553 | 624 | ||
554 | /* Zero out the Multicast HASH table */ | 625 | /* Zero out the Multicast HASH table */ |
555 | DEBUGOUT("Zeroing the MTA\n"); | 626 | DEBUGOUT("Zeroing the MTA\n"); |
556 | for(i = 0; i < E1000_MC_TBL_SIZE; i++) | 627 | mta_size = E1000_MC_TBL_SIZE; |
628 | for(i = 0; i < mta_size; i++) | ||
557 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 629 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
558 | 630 | ||
559 | /* Set the PCI priority bit correctly in the CTRL register. This | 631 | /* Set the PCI priority bit correctly in the CTRL register. This |
560 | * determines if the adapter gives priority to receives, or if it | 632 | * determines if the adapter gives priority to receives, or if it |
561 | * gives equal priority to transmits and receives. | 633 | * gives equal priority to transmits and receives. Valid only on |
634 | * 82542 and 82543 silicon. | ||
562 | */ | 635 | */ |
563 | if(hw->dma_fairness) { | 636 | if(hw->dma_fairness && hw->mac_type <= e1000_82543) { |
564 | ctrl = E1000_READ_REG(hw, CTRL); | 637 | ctrl = E1000_READ_REG(hw, CTRL); |
565 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); | 638 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); |
566 | } | 639 | } |
@@ -598,9 +671,21 @@ e1000_init_hw(struct e1000_hw *hw) | |||
598 | if(hw->mac_type > e1000_82544) { | 671 | if(hw->mac_type > e1000_82544) { |
599 | ctrl = E1000_READ_REG(hw, TXDCTL); | 672 | ctrl = E1000_READ_REG(hw, TXDCTL); |
600 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; | 673 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; |
674 | switch (hw->mac_type) { | ||
675 | default: | ||
676 | break; | ||
677 | case e1000_82573: | ||
678 | ctrl |= E1000_TXDCTL_COUNT_DESC; | ||
679 | break; | ||
680 | } | ||
601 | E1000_WRITE_REG(hw, TXDCTL, ctrl); | 681 | E1000_WRITE_REG(hw, TXDCTL, ctrl); |
602 | } | 682 | } |
603 | 683 | ||
684 | if (hw->mac_type == e1000_82573) { | ||
685 | e1000_enable_tx_pkt_filtering(hw); | ||
686 | } | ||
687 | |||
688 | |||
604 | /* Clear all of the statistics registers (clear on read). It is | 689 | /* Clear all of the statistics registers (clear on read). It is |
605 | * important that we do this after we have tried to establish link | 690 | * important that we do this after we have tried to establish link |
606 | * because the symbol error count will increment wildly if there | 691 | * because the symbol error count will increment wildly if there |
@@ -679,7 +764,7 @@ e1000_setup_link(struct e1000_hw *hw) | |||
679 | * control setting, then the variable hw->fc will | 764 | * control setting, then the variable hw->fc will |
680 | * be initialized based on a value in the EEPROM. | 765 | * be initialized based on a value in the EEPROM. |
681 | */ | 766 | */ |
682 | if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data) < 0) { | 767 | if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data)) { |
683 | DEBUGOUT("EEPROM Read Error\n"); | 768 | DEBUGOUT("EEPROM Read Error\n"); |
684 | return -E1000_ERR_EEPROM; | 769 | return -E1000_ERR_EEPROM; |
685 | } | 770 | } |
@@ -736,6 +821,7 @@ e1000_setup_link(struct e1000_hw *hw) | |||
736 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); | 821 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); |
737 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); | 822 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
738 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); | 823 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); |
824 | |||
739 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); | 825 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); |
740 | 826 | ||
741 | /* Set the flow control receive threshold registers. Normally, | 827 | /* Set the flow control receive threshold registers. Normally, |
@@ -906,20 +992,18 @@ e1000_setup_fiber_serdes_link(struct e1000_hw *hw) | |||
906 | } | 992 | } |
907 | 993 | ||
908 | /****************************************************************************** | 994 | /****************************************************************************** |
909 | * Detects which PHY is present and the speed and duplex | 995 | * Make sure we have a valid PHY and change PHY mode before link setup. |
910 | * | 996 | * |
911 | * hw - Struct containing variables accessed by shared code | 997 | * hw - Struct containing variables accessed by shared code |
912 | ******************************************************************************/ | 998 | ******************************************************************************/ |
913 | static int32_t | 999 | static int32_t |
914 | e1000_setup_copper_link(struct e1000_hw *hw) | 1000 | e1000_copper_link_preconfig(struct e1000_hw *hw) |
915 | { | 1001 | { |
916 | uint32_t ctrl; | 1002 | uint32_t ctrl; |
917 | uint32_t led_ctrl; | ||
918 | int32_t ret_val; | 1003 | int32_t ret_val; |
919 | uint16_t i; | ||
920 | uint16_t phy_data; | 1004 | uint16_t phy_data; |
921 | 1005 | ||
922 | DEBUGFUNC("e1000_setup_copper_link"); | 1006 | DEBUGFUNC("e1000_copper_link_preconfig"); |
923 | 1007 | ||
924 | ctrl = E1000_READ_REG(hw, CTRL); | 1008 | ctrl = E1000_READ_REG(hw, CTRL); |
925 | /* With 82543, we need to force speed and duplex on the MAC equal to what | 1009 | /* With 82543, we need to force speed and duplex on the MAC equal to what |
@@ -933,7 +1017,9 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
933 | } else { | 1017 | } else { |
934 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); | 1018 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); |
935 | E1000_WRITE_REG(hw, CTRL, ctrl); | 1019 | E1000_WRITE_REG(hw, CTRL, ctrl); |
936 | e1000_phy_hw_reset(hw); | 1020 | ret_val = e1000_phy_hw_reset(hw); |
1021 | if(ret_val) | ||
1022 | return ret_val; | ||
937 | } | 1023 | } |
938 | 1024 | ||
939 | /* Make sure we have a valid PHY */ | 1025 | /* Make sure we have a valid PHY */ |
@@ -961,274 +1047,398 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
961 | hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) | 1047 | hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) |
962 | hw->phy_reset_disable = FALSE; | 1048 | hw->phy_reset_disable = FALSE; |
963 | 1049 | ||
964 | if(!hw->phy_reset_disable) { | 1050 | return E1000_SUCCESS; |
965 | if (hw->phy_type == e1000_phy_igp) { | 1051 | } |
966 | 1052 | ||
967 | ret_val = e1000_phy_reset(hw); | ||
968 | if(ret_val) { | ||
969 | DEBUGOUT("Error Resetting the PHY\n"); | ||
970 | return ret_val; | ||
971 | } | ||
972 | 1053 | ||
973 | /* Wait 10ms for MAC to configure PHY from eeprom settings */ | 1054 | /******************************************************************** |
974 | msec_delay(15); | 1055 | * Copper link setup for e1000_phy_igp series. |
1056 | * | ||
1057 | * hw - Struct containing variables accessed by shared code | ||
1058 | *********************************************************************/ | ||
1059 | static int32_t | ||
1060 | e1000_copper_link_igp_setup(struct e1000_hw *hw) | ||
1061 | { | ||
1062 | uint32_t led_ctrl; | ||
1063 | int32_t ret_val; | ||
1064 | uint16_t phy_data; | ||
975 | 1065 | ||
976 | /* Configure activity LED after PHY reset */ | 1066 | DEBUGFUNC("e1000_copper_link_igp_setup"); |
977 | led_ctrl = E1000_READ_REG(hw, LEDCTL); | ||
978 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | ||
979 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | ||
980 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | ||
981 | 1067 | ||
982 | /* disable lplu d3 during driver init */ | 1068 | if (hw->phy_reset_disable) |
983 | ret_val = e1000_set_d3_lplu_state(hw, FALSE); | 1069 | return E1000_SUCCESS; |
984 | if(ret_val) { | 1070 | |
985 | DEBUGOUT("Error Disabling LPLU D3\n"); | 1071 | ret_val = e1000_phy_reset(hw); |
986 | return ret_val; | 1072 | if (ret_val) { |
987 | } | 1073 | DEBUGOUT("Error Resetting the PHY\n"); |
1074 | return ret_val; | ||
1075 | } | ||
988 | 1076 | ||
989 | /* Configure mdi-mdix settings */ | 1077 | /* Wait 10ms for MAC to configure PHY from eeprom settings */ |
990 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, | 1078 | msec_delay(15); |
991 | &phy_data); | ||
992 | if(ret_val) | ||
993 | return ret_val; | ||
994 | 1079 | ||
995 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 1080 | /* Configure activity LED after PHY reset */ |
996 | hw->dsp_config_state = e1000_dsp_config_disabled; | 1081 | led_ctrl = E1000_READ_REG(hw, LEDCTL); |
997 | /* Force MDI for earlier revs of the IGP PHY */ | 1082 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
998 | phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | | 1083 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
999 | IGP01E1000_PSCR_FORCE_MDI_MDIX); | 1084 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); |
1000 | hw->mdix = 1; | ||
1001 | 1085 | ||
1002 | } else { | 1086 | /* disable lplu d3 during driver init */ |
1003 | hw->dsp_config_state = e1000_dsp_config_enabled; | 1087 | ret_val = e1000_set_d3_lplu_state(hw, FALSE); |
1004 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | 1088 | if (ret_val) { |
1005 | 1089 | DEBUGOUT("Error Disabling LPLU D3\n"); | |
1006 | switch (hw->mdix) { | 1090 | return ret_val; |
1007 | case 1: | 1091 | } |
1008 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
1009 | break; | ||
1010 | case 2: | ||
1011 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
1012 | break; | ||
1013 | case 0: | ||
1014 | default: | ||
1015 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; | ||
1016 | break; | ||
1017 | } | ||
1018 | } | ||
1019 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, | ||
1020 | phy_data); | ||
1021 | if(ret_val) | ||
1022 | return ret_val; | ||
1023 | 1092 | ||
1024 | /* set auto-master slave resolution settings */ | 1093 | /* disable lplu d0 during driver init */ |
1025 | if(hw->autoneg) { | 1094 | ret_val = e1000_set_d0_lplu_state(hw, FALSE); |
1026 | e1000_ms_type phy_ms_setting = hw->master_slave; | 1095 | if (ret_val) { |
1096 | DEBUGOUT("Error Disabling LPLU D0\n"); | ||
1097 | return ret_val; | ||
1098 | } | ||
1099 | /* Configure mdi-mdix settings */ | ||
1100 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | ||
1101 | if (ret_val) | ||
1102 | return ret_val; | ||
1027 | 1103 | ||
1028 | if(hw->ffe_config_state == e1000_ffe_config_active) | 1104 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
1029 | hw->ffe_config_state = e1000_ffe_config_enabled; | 1105 | hw->dsp_config_state = e1000_dsp_config_disabled; |
1106 | /* Force MDI for earlier revs of the IGP PHY */ | ||
1107 | phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX); | ||
1108 | hw->mdix = 1; | ||
1030 | 1109 | ||
1031 | if(hw->dsp_config_state == e1000_dsp_config_activated) | 1110 | } else { |
1032 | hw->dsp_config_state = e1000_dsp_config_enabled; | 1111 | hw->dsp_config_state = e1000_dsp_config_enabled; |
1112 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
1033 | 1113 | ||
1034 | /* when autonegotiation advertisment is only 1000Mbps then we | 1114 | switch (hw->mdix) { |
1035 | * should disable SmartSpeed and enable Auto MasterSlave | 1115 | case 1: |
1036 | * resolution as hardware default. */ | 1116 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
1037 | if(hw->autoneg_advertised == ADVERTISE_1000_FULL) { | 1117 | break; |
1038 | /* Disable SmartSpeed */ | 1118 | case 2: |
1039 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 1119 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; |
1040 | &phy_data); | 1120 | break; |
1041 | if(ret_val) | 1121 | case 0: |
1042 | return ret_val; | 1122 | default: |
1043 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 1123 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; |
1044 | ret_val = e1000_write_phy_reg(hw, | 1124 | break; |
1045 | IGP01E1000_PHY_PORT_CONFIG, | 1125 | } |
1046 | phy_data); | 1126 | } |
1047 | if(ret_val) | 1127 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
1048 | return ret_val; | 1128 | if(ret_val) |
1049 | /* Set auto Master/Slave resolution process */ | 1129 | return ret_val; |
1050 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | ||
1051 | if(ret_val) | ||
1052 | return ret_val; | ||
1053 | phy_data &= ~CR_1000T_MS_ENABLE; | ||
1054 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | ||
1055 | if(ret_val) | ||
1056 | return ret_val; | ||
1057 | } | ||
1058 | 1130 | ||
1059 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | 1131 | /* set auto-master slave resolution settings */ |
1060 | if(ret_val) | 1132 | if(hw->autoneg) { |
1061 | return ret_val; | 1133 | e1000_ms_type phy_ms_setting = hw->master_slave; |
1062 | 1134 | ||
1063 | /* load defaults for future use */ | 1135 | if(hw->ffe_config_state == e1000_ffe_config_active) |
1064 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? | 1136 | hw->ffe_config_state = e1000_ffe_config_enabled; |
1065 | ((phy_data & CR_1000T_MS_VALUE) ? | 1137 | |
1066 | e1000_ms_force_master : | 1138 | if(hw->dsp_config_state == e1000_dsp_config_activated) |
1067 | e1000_ms_force_slave) : | 1139 | hw->dsp_config_state = e1000_dsp_config_enabled; |
1068 | e1000_ms_auto; | 1140 | |
1069 | 1141 | /* when autonegotiation advertisment is only 1000Mbps then we | |
1070 | switch (phy_ms_setting) { | 1142 | * should disable SmartSpeed and enable Auto MasterSlave |
1071 | case e1000_ms_force_master: | 1143 | * resolution as hardware default. */ |
1072 | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | 1144 | if(hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
1073 | break; | 1145 | /* Disable SmartSpeed */ |
1074 | case e1000_ms_force_slave: | 1146 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
1075 | phy_data |= CR_1000T_MS_ENABLE; | 1147 | if(ret_val) |
1076 | phy_data &= ~(CR_1000T_MS_VALUE); | 1148 | return ret_val; |
1077 | break; | 1149 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
1078 | case e1000_ms_auto: | 1150 | ret_val = e1000_write_phy_reg(hw, |
1079 | phy_data &= ~CR_1000T_MS_ENABLE; | 1151 | IGP01E1000_PHY_PORT_CONFIG, |
1080 | default: | 1152 | phy_data); |
1081 | break; | 1153 | if(ret_val) |
1082 | } | 1154 | return ret_val; |
1083 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | 1155 | /* Set auto Master/Slave resolution process */ |
1084 | if(ret_val) | 1156 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
1085 | return ret_val; | 1157 | if(ret_val) |
1086 | } | 1158 | return ret_val; |
1087 | } else { | 1159 | phy_data &= ~CR_1000T_MS_ENABLE; |
1088 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | 1160 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
1089 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
1090 | &phy_data); | ||
1091 | if(ret_val) | 1161 | if(ret_val) |
1092 | return ret_val; | 1162 | return ret_val; |
1163 | } | ||
1093 | 1164 | ||
1094 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 1165 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
1166 | if(ret_val) | ||
1167 | return ret_val; | ||
1095 | 1168 | ||
1096 | /* Options: | 1169 | /* load defaults for future use */ |
1097 | * MDI/MDI-X = 0 (default) | 1170 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? |
1098 | * 0 - Auto for all speeds | 1171 | ((phy_data & CR_1000T_MS_VALUE) ? |
1099 | * 1 - MDI mode | 1172 | e1000_ms_force_master : |
1100 | * 2 - MDI-X mode | 1173 | e1000_ms_force_slave) : |
1101 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | 1174 | e1000_ms_auto; |
1102 | */ | ||
1103 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
1104 | 1175 | ||
1105 | switch (hw->mdix) { | 1176 | switch (phy_ms_setting) { |
1106 | case 1: | 1177 | case e1000_ms_force_master: |
1107 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | 1178 | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); |
1108 | break; | 1179 | break; |
1109 | case 2: | 1180 | case e1000_ms_force_slave: |
1110 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | 1181 | phy_data |= CR_1000T_MS_ENABLE; |
1111 | break; | 1182 | phy_data &= ~(CR_1000T_MS_VALUE); |
1112 | case 3: | 1183 | break; |
1113 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | 1184 | case e1000_ms_auto: |
1114 | break; | 1185 | phy_data &= ~CR_1000T_MS_ENABLE; |
1115 | case 0: | ||
1116 | default: | 1186 | default: |
1117 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | 1187 | break; |
1118 | break; | 1188 | } |
1119 | } | 1189 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
1190 | if(ret_val) | ||
1191 | return ret_val; | ||
1192 | } | ||
1120 | 1193 | ||
1121 | /* Options: | 1194 | return E1000_SUCCESS; |
1122 | * disable_polarity_correction = 0 (default) | 1195 | } |
1123 | * Automatic Correction for Reversed Cable Polarity | ||
1124 | * 0 - Disabled | ||
1125 | * 1 - Enabled | ||
1126 | */ | ||
1127 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | ||
1128 | if(hw->disable_polarity_correction == 1) | ||
1129 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | ||
1130 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
1131 | phy_data); | ||
1132 | if(ret_val) | ||
1133 | return ret_val; | ||
1134 | 1196 | ||
1135 | /* Force TX_CLK in the Extended PHY Specific Control Register | ||
1136 | * to 25MHz clock. | ||
1137 | */ | ||
1138 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | ||
1139 | &phy_data); | ||
1140 | if(ret_val) | ||
1141 | return ret_val; | ||
1142 | 1197 | ||
1143 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | 1198 | /******************************************************************** |
1199 | * Copper link setup for e1000_phy_m88 series. | ||
1200 | * | ||
1201 | * hw - Struct containing variables accessed by shared code | ||
1202 | *********************************************************************/ | ||
1203 | static int32_t | ||
1204 | e1000_copper_link_mgp_setup(struct e1000_hw *hw) | ||
1205 | { | ||
1206 | int32_t ret_val; | ||
1207 | uint16_t phy_data; | ||
1208 | |||
1209 | DEBUGFUNC("e1000_copper_link_mgp_setup"); | ||
1210 | |||
1211 | if(hw->phy_reset_disable) | ||
1212 | return E1000_SUCCESS; | ||
1213 | |||
1214 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | ||
1215 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1216 | if(ret_val) | ||
1217 | return ret_val; | ||
1218 | |||
1219 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
1220 | |||
1221 | /* Options: | ||
1222 | * MDI/MDI-X = 0 (default) | ||
1223 | * 0 - Auto for all speeds | ||
1224 | * 1 - MDI mode | ||
1225 | * 2 - MDI-X mode | ||
1226 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | ||
1227 | */ | ||
1228 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
1229 | |||
1230 | switch (hw->mdix) { | ||
1231 | case 1: | ||
1232 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | ||
1233 | break; | ||
1234 | case 2: | ||
1235 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | ||
1236 | break; | ||
1237 | case 3: | ||
1238 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | ||
1239 | break; | ||
1240 | case 0: | ||
1241 | default: | ||
1242 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | ||
1243 | break; | ||
1244 | } | ||
1245 | |||
1246 | /* Options: | ||
1247 | * disable_polarity_correction = 0 (default) | ||
1248 | * Automatic Correction for Reversed Cable Polarity | ||
1249 | * 0 - Disabled | ||
1250 | * 1 - Enabled | ||
1251 | */ | ||
1252 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | ||
1253 | if(hw->disable_polarity_correction == 1) | ||
1254 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | ||
1255 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1256 | if(ret_val) | ||
1257 | return ret_val; | ||
1144 | 1258 | ||
1145 | if (hw->phy_revision < M88E1011_I_REV_4) { | 1259 | /* Force TX_CLK in the Extended PHY Specific Control Register |
1146 | /* Configure Master and Slave downshift values */ | 1260 | * to 25MHz clock. |
1147 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | 1261 | */ |
1262 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | ||
1263 | if(ret_val) | ||
1264 | return ret_val; | ||
1265 | |||
1266 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
1267 | |||
1268 | if (hw->phy_revision < M88E1011_I_REV_4) { | ||
1269 | /* Configure Master and Slave downshift values */ | ||
1270 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | ||
1148 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | 1271 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
1149 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | 1272 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
1150 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | 1273 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
1151 | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | 1274 | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
1152 | phy_data); | 1275 | if(ret_val) |
1153 | if(ret_val) | 1276 | return ret_val; |
1154 | return ret_val; | 1277 | } |
1155 | } | ||
1156 | 1278 | ||
1157 | /* SW Reset the PHY so all changes take effect */ | 1279 | /* SW Reset the PHY so all changes take effect */ |
1158 | ret_val = e1000_phy_reset(hw); | 1280 | ret_val = e1000_phy_reset(hw); |
1159 | if(ret_val) { | 1281 | if(ret_val) { |
1160 | DEBUGOUT("Error Resetting the PHY\n"); | 1282 | DEBUGOUT("Error Resetting the PHY\n"); |
1161 | return ret_val; | 1283 | return ret_val; |
1162 | } | 1284 | } |
1285 | |||
1286 | return E1000_SUCCESS; | ||
1287 | } | ||
1288 | |||
1289 | /******************************************************************** | ||
1290 | * Setup auto-negotiation and flow control advertisements, | ||
1291 | * and then perform auto-negotiation. | ||
1292 | * | ||
1293 | * hw - Struct containing variables accessed by shared code | ||
1294 | *********************************************************************/ | ||
1295 | static int32_t | ||
1296 | e1000_copper_link_autoneg(struct e1000_hw *hw) | ||
1297 | { | ||
1298 | int32_t ret_val; | ||
1299 | uint16_t phy_data; | ||
1300 | |||
1301 | DEBUGFUNC("e1000_copper_link_autoneg"); | ||
1302 | |||
1303 | /* Perform some bounds checking on the hw->autoneg_advertised | ||
1304 | * parameter. If this variable is zero, then set it to the default. | ||
1305 | */ | ||
1306 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
1307 | |||
1308 | /* If autoneg_advertised is zero, we assume it was not defaulted | ||
1309 | * by the calling code so we set to advertise full capability. | ||
1310 | */ | ||
1311 | if(hw->autoneg_advertised == 0) | ||
1312 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
1313 | |||
1314 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | ||
1315 | ret_val = e1000_phy_setup_autoneg(hw); | ||
1316 | if(ret_val) { | ||
1317 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); | ||
1318 | return ret_val; | ||
1319 | } | ||
1320 | DEBUGOUT("Restarting Auto-Neg\n"); | ||
1321 | |||
1322 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and | ||
1323 | * the Auto Neg Restart bit in the PHY control register. | ||
1324 | */ | ||
1325 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | ||
1326 | if(ret_val) | ||
1327 | return ret_val; | ||
1328 | |||
1329 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | ||
1330 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | ||
1331 | if(ret_val) | ||
1332 | return ret_val; | ||
1333 | |||
1334 | /* Does the user want to wait for Auto-Neg to complete here, or | ||
1335 | * check at a later time (for example, callback routine). | ||
1336 | */ | ||
1337 | if(hw->wait_autoneg_complete) { | ||
1338 | ret_val = e1000_wait_autoneg(hw); | ||
1339 | if(ret_val) { | ||
1340 | DEBUGOUT("Error while waiting for autoneg to complete\n"); | ||
1341 | return ret_val; | ||
1163 | } | 1342 | } |
1343 | } | ||
1164 | 1344 | ||
1165 | /* Options: | 1345 | hw->get_link_status = TRUE; |
1166 | * autoneg = 1 (default) | ||
1167 | * PHY will advertise value(s) parsed from | ||
1168 | * autoneg_advertised and fc | ||
1169 | * autoneg = 0 | ||
1170 | * PHY will be set to 10H, 10F, 100H, or 100F | ||
1171 | * depending on value parsed from forced_speed_duplex. | ||
1172 | */ | ||
1173 | 1346 | ||
1174 | /* Is autoneg enabled? This is enabled by default or by software | 1347 | return E1000_SUCCESS; |
1175 | * override. If so, call e1000_phy_setup_autoneg routine to parse the | 1348 | } |
1176 | * autoneg_advertised and fc options. If autoneg is NOT enabled, then | ||
1177 | * the user should have provided a speed/duplex override. If so, then | ||
1178 | * call e1000_phy_force_speed_duplex to parse and set this up. | ||
1179 | */ | ||
1180 | if(hw->autoneg) { | ||
1181 | /* Perform some bounds checking on the hw->autoneg_advertised | ||
1182 | * parameter. If this variable is zero, then set it to the default. | ||
1183 | */ | ||
1184 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
1185 | 1349 | ||
1186 | /* If autoneg_advertised is zero, we assume it was not defaulted | ||
1187 | * by the calling code so we set to advertise full capability. | ||
1188 | */ | ||
1189 | if(hw->autoneg_advertised == 0) | ||
1190 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
1191 | 1350 | ||
1192 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | 1351 | /****************************************************************************** |
1193 | ret_val = e1000_phy_setup_autoneg(hw); | 1352 | * Config the MAC and the PHY after link is up. |
1194 | if(ret_val) { | 1353 | * 1) Set up the MAC to the current PHY speed/duplex |
1195 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); | 1354 | * if we are on 82543. If we |
1196 | return ret_val; | 1355 | * are on newer silicon, we only need to configure |
1197 | } | 1356 | * collision distance in the Transmit Control Register. |
1198 | DEBUGOUT("Restarting Auto-Neg\n"); | 1357 | * 2) Set up flow control on the MAC to that established with |
1358 | * the link partner. | ||
1359 | * 3) Config DSP to improve Gigabit link quality for some PHY revisions. | ||
1360 | * | ||
1361 | * hw - Struct containing variables accessed by shared code | ||
1362 | ******************************************************************************/ | ||
1363 | static int32_t | ||
1364 | e1000_copper_link_postconfig(struct e1000_hw *hw) | ||
1365 | { | ||
1366 | int32_t ret_val; | ||
1367 | DEBUGFUNC("e1000_copper_link_postconfig"); | ||
1368 | |||
1369 | if(hw->mac_type >= e1000_82544) { | ||
1370 | e1000_config_collision_dist(hw); | ||
1371 | } else { | ||
1372 | ret_val = e1000_config_mac_to_phy(hw); | ||
1373 | if(ret_val) { | ||
1374 | DEBUGOUT("Error configuring MAC to PHY settings\n"); | ||
1375 | return ret_val; | ||
1376 | } | ||
1377 | } | ||
1378 | ret_val = e1000_config_fc_after_link_up(hw); | ||
1379 | if(ret_val) { | ||
1380 | DEBUGOUT("Error Configuring Flow Control\n"); | ||
1381 | return ret_val; | ||
1382 | } | ||
1199 | 1383 | ||
1200 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and | 1384 | /* Config DSP to improve Giga link quality */ |
1201 | * the Auto Neg Restart bit in the PHY control register. | 1385 | if(hw->phy_type == e1000_phy_igp) { |
1202 | */ | 1386 | ret_val = e1000_config_dsp_after_link_change(hw, TRUE); |
1203 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 1387 | if(ret_val) { |
1204 | if(ret_val) | 1388 | DEBUGOUT("Error Configuring DSP after link up\n"); |
1205 | return ret_val; | 1389 | return ret_val; |
1390 | } | ||
1391 | } | ||
1392 | |||
1393 | return E1000_SUCCESS; | ||
1394 | } | ||
1206 | 1395 | ||
1207 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | 1396 | /****************************************************************************** |
1208 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | 1397 | * Detects which PHY is present and setup the speed and duplex |
1209 | if(ret_val) | 1398 | * |
1210 | return ret_val; | 1399 | * hw - Struct containing variables accessed by shared code |
1400 | ******************************************************************************/ | ||
1401 | static int32_t | ||
1402 | e1000_setup_copper_link(struct e1000_hw *hw) | ||
1403 | { | ||
1404 | int32_t ret_val; | ||
1405 | uint16_t i; | ||
1406 | uint16_t phy_data; | ||
1211 | 1407 | ||
1212 | /* Does the user want to wait for Auto-Neg to complete here, or | 1408 | DEBUGFUNC("e1000_setup_copper_link"); |
1213 | * check at a later time (for example, callback routine). | 1409 | |
1214 | */ | 1410 | /* Check if it is a valid PHY and set PHY mode if necessary. */ |
1215 | if(hw->wait_autoneg_complete) { | 1411 | ret_val = e1000_copper_link_preconfig(hw); |
1216 | ret_val = e1000_wait_autoneg(hw); | 1412 | if(ret_val) |
1217 | if(ret_val) { | 1413 | return ret_val; |
1218 | DEBUGOUT("Error while waiting for autoneg to complete\n"); | 1414 | |
1219 | return ret_val; | 1415 | if (hw->phy_type == e1000_phy_igp || |
1220 | } | 1416 | hw->phy_type == e1000_phy_igp_2) { |
1221 | } | 1417 | ret_val = e1000_copper_link_igp_setup(hw); |
1222 | hw->get_link_status = TRUE; | 1418 | if(ret_val) |
1223 | } else { | 1419 | return ret_val; |
1224 | DEBUGOUT("Forcing speed and duplex\n"); | 1420 | } else if (hw->phy_type == e1000_phy_m88) { |
1225 | ret_val = e1000_phy_force_speed_duplex(hw); | 1421 | ret_val = e1000_copper_link_mgp_setup(hw); |
1226 | if(ret_val) { | 1422 | if(ret_val) |
1227 | DEBUGOUT("Error Forcing Speed and Duplex\n"); | 1423 | return ret_val; |
1228 | return ret_val; | 1424 | } |
1229 | } | 1425 | |
1426 | if(hw->autoneg) { | ||
1427 | /* Setup autoneg and flow control advertisement | ||
1428 | * and perform autonegotiation */ | ||
1429 | ret_val = e1000_copper_link_autoneg(hw); | ||
1430 | if(ret_val) | ||
1431 | return ret_val; | ||
1432 | } else { | ||
1433 | /* PHY will be set to 10H, 10F, 100H,or 100F | ||
1434 | * depending on value from forced_speed_duplex. */ | ||
1435 | DEBUGOUT("Forcing speed and duplex\n"); | ||
1436 | ret_val = e1000_phy_force_speed_duplex(hw); | ||
1437 | if(ret_val) { | ||
1438 | DEBUGOUT("Error Forcing Speed and Duplex\n"); | ||
1439 | return ret_val; | ||
1230 | } | 1440 | } |
1231 | } /* !hw->phy_reset_disable */ | 1441 | } |
1232 | 1442 | ||
1233 | /* Check link status. Wait up to 100 microseconds for link to become | 1443 | /* Check link status. Wait up to 100 microseconds for link to become |
1234 | * valid. | 1444 | * valid. |
@@ -1242,37 +1452,11 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
1242 | return ret_val; | 1452 | return ret_val; |
1243 | 1453 | ||
1244 | if(phy_data & MII_SR_LINK_STATUS) { | 1454 | if(phy_data & MII_SR_LINK_STATUS) { |
1245 | /* We have link, so we need to finish the config process: | 1455 | /* Config the MAC and PHY after link is up */ |
1246 | * 1) Set up the MAC to the current PHY speed/duplex | 1456 | ret_val = e1000_copper_link_postconfig(hw); |
1247 | * if we are on 82543. If we | 1457 | if(ret_val) |
1248 | * are on newer silicon, we only need to configure | ||
1249 | * collision distance in the Transmit Control Register. | ||
1250 | * 2) Set up flow control on the MAC to that established with | ||
1251 | * the link partner. | ||
1252 | */ | ||
1253 | if(hw->mac_type >= e1000_82544) { | ||
1254 | e1000_config_collision_dist(hw); | ||
1255 | } else { | ||
1256 | ret_val = e1000_config_mac_to_phy(hw); | ||
1257 | if(ret_val) { | ||
1258 | DEBUGOUT("Error configuring MAC to PHY settings\n"); | ||
1259 | return ret_val; | ||
1260 | } | ||
1261 | } | ||
1262 | ret_val = e1000_config_fc_after_link_up(hw); | ||
1263 | if(ret_val) { | ||
1264 | DEBUGOUT("Error Configuring Flow Control\n"); | ||
1265 | return ret_val; | 1458 | return ret_val; |
1266 | } | 1459 | |
1267 | DEBUGOUT("Valid link established!!!\n"); | ||
1268 | |||
1269 | if(hw->phy_type == e1000_phy_igp) { | ||
1270 | ret_val = e1000_config_dsp_after_link_change(hw, TRUE); | ||
1271 | if(ret_val) { | ||
1272 | DEBUGOUT("Error Configuring DSP after link up\n"); | ||
1273 | return ret_val; | ||
1274 | } | ||
1275 | } | ||
1276 | DEBUGOUT("Valid link established!!!\n"); | 1460 | DEBUGOUT("Valid link established!!!\n"); |
1277 | return E1000_SUCCESS; | 1461 | return E1000_SUCCESS; |
1278 | } | 1462 | } |
@@ -1302,10 +1486,10 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) | |||
1302 | if(ret_val) | 1486 | if(ret_val) |
1303 | return ret_val; | 1487 | return ret_val; |
1304 | 1488 | ||
1305 | /* Read the MII 1000Base-T Control Register (Address 9). */ | 1489 | /* Read the MII 1000Base-T Control Register (Address 9). */ |
1306 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); | 1490 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); |
1307 | if(ret_val) | 1491 | if(ret_val) |
1308 | return ret_val; | 1492 | return ret_val; |
1309 | 1493 | ||
1310 | /* Need to parse both autoneg_advertised and fc and set up | 1494 | /* Need to parse both autoneg_advertised and fc and set up |
1311 | * the appropriate PHY registers. First we will parse for | 1495 | * the appropriate PHY registers. First we will parse for |
@@ -1417,7 +1601,7 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) | |||
1417 | 1601 | ||
1418 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | 1602 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
1419 | 1603 | ||
1420 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); | 1604 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); |
1421 | if(ret_val) | 1605 | if(ret_val) |
1422 | return ret_val; | 1606 | return ret_val; |
1423 | 1607 | ||
@@ -1678,6 +1862,11 @@ e1000_config_mac_to_phy(struct e1000_hw *hw) | |||
1678 | 1862 | ||
1679 | DEBUGFUNC("e1000_config_mac_to_phy"); | 1863 | DEBUGFUNC("e1000_config_mac_to_phy"); |
1680 | 1864 | ||
1865 | /* 82544 or newer MAC, Auto Speed Detection takes care of | ||
1866 | * MAC speed/duplex configuration.*/ | ||
1867 | if (hw->mac_type >= e1000_82544) | ||
1868 | return E1000_SUCCESS; | ||
1869 | |||
1681 | /* Read the Device Control Register and set the bits to Force Speed | 1870 | /* Read the Device Control Register and set the bits to Force Speed |
1682 | * and Duplex. | 1871 | * and Duplex. |
1683 | */ | 1872 | */ |
@@ -1688,45 +1877,25 @@ e1000_config_mac_to_phy(struct e1000_hw *hw) | |||
1688 | /* Set up duplex in the Device Control and Transmit Control | 1877 | /* Set up duplex in the Device Control and Transmit Control |
1689 | * registers depending on negotiated values. | 1878 | * registers depending on negotiated values. |
1690 | */ | 1879 | */ |
1691 | if (hw->phy_type == e1000_phy_igp) { | 1880 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
1692 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | 1881 | if(ret_val) |
1693 | &phy_data); | 1882 | return ret_val; |
1694 | if(ret_val) | ||
1695 | return ret_val; | ||
1696 | |||
1697 | if(phy_data & IGP01E1000_PSSR_FULL_DUPLEX) ctrl |= E1000_CTRL_FD; | ||
1698 | else ctrl &= ~E1000_CTRL_FD; | ||
1699 | |||
1700 | e1000_config_collision_dist(hw); | ||
1701 | 1883 | ||
1702 | /* Set up speed in the Device Control register depending on | 1884 | if(phy_data & M88E1000_PSSR_DPLX) |
1703 | * negotiated values. | 1885 | ctrl |= E1000_CTRL_FD; |
1704 | */ | 1886 | else |
1705 | if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | 1887 | ctrl &= ~E1000_CTRL_FD; |
1706 | IGP01E1000_PSSR_SPEED_1000MBPS) | ||
1707 | ctrl |= E1000_CTRL_SPD_1000; | ||
1708 | else if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | ||
1709 | IGP01E1000_PSSR_SPEED_100MBPS) | ||
1710 | ctrl |= E1000_CTRL_SPD_100; | ||
1711 | } else { | ||
1712 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
1713 | &phy_data); | ||
1714 | if(ret_val) | ||
1715 | return ret_val; | ||
1716 | 1888 | ||
1717 | if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD; | 1889 | e1000_config_collision_dist(hw); |
1718 | else ctrl &= ~E1000_CTRL_FD; | ||
1719 | 1890 | ||
1720 | e1000_config_collision_dist(hw); | 1891 | /* Set up speed in the Device Control register depending on |
1892 | * negotiated values. | ||
1893 | */ | ||
1894 | if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) | ||
1895 | ctrl |= E1000_CTRL_SPD_1000; | ||
1896 | else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) | ||
1897 | ctrl |= E1000_CTRL_SPD_100; | ||
1721 | 1898 | ||
1722 | /* Set up speed in the Device Control register depending on | ||
1723 | * negotiated values. | ||
1724 | */ | ||
1725 | if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) | ||
1726 | ctrl |= E1000_CTRL_SPD_1000; | ||
1727 | else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) | ||
1728 | ctrl |= E1000_CTRL_SPD_100; | ||
1729 | } | ||
1730 | /* Write the configured values back to the Device Control Reg. */ | 1899 | /* Write the configured values back to the Device Control Reg. */ |
1731 | E1000_WRITE_REG(hw, CTRL, ctrl); | 1900 | E1000_WRITE_REG(hw, CTRL, ctrl); |
1732 | return E1000_SUCCESS; | 1901 | return E1000_SUCCESS; |
@@ -2494,8 +2663,8 @@ e1000_read_phy_reg(struct e1000_hw *hw, | |||
2494 | 2663 | ||
2495 | DEBUGFUNC("e1000_read_phy_reg"); | 2664 | DEBUGFUNC("e1000_read_phy_reg"); |
2496 | 2665 | ||
2497 | 2666 | if((hw->phy_type == e1000_phy_igp || | |
2498 | if(hw->phy_type == e1000_phy_igp && | 2667 | hw->phy_type == e1000_phy_igp_2) && |
2499 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 2668 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
2500 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 2669 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
2501 | (uint16_t)reg_addr); | 2670 | (uint16_t)reg_addr); |
@@ -2600,8 +2769,8 @@ e1000_write_phy_reg(struct e1000_hw *hw, | |||
2600 | 2769 | ||
2601 | DEBUGFUNC("e1000_write_phy_reg"); | 2770 | DEBUGFUNC("e1000_write_phy_reg"); |
2602 | 2771 | ||
2603 | 2772 | if((hw->phy_type == e1000_phy_igp || | |
2604 | if(hw->phy_type == e1000_phy_igp && | 2773 | hw->phy_type == e1000_phy_igp_2) && |
2605 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 2774 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
2606 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 2775 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
2607 | (uint16_t)reg_addr); | 2776 | (uint16_t)reg_addr); |
@@ -2679,19 +2848,27 @@ e1000_write_phy_reg_ex(struct e1000_hw *hw, | |||
2679 | return E1000_SUCCESS; | 2848 | return E1000_SUCCESS; |
2680 | } | 2849 | } |
2681 | 2850 | ||
2851 | |||
2682 | /****************************************************************************** | 2852 | /****************************************************************************** |
2683 | * Returns the PHY to the power-on reset state | 2853 | * Returns the PHY to the power-on reset state |
2684 | * | 2854 | * |
2685 | * hw - Struct containing variables accessed by shared code | 2855 | * hw - Struct containing variables accessed by shared code |
2686 | ******************************************************************************/ | 2856 | ******************************************************************************/ |
2687 | void | 2857 | int32_t |
2688 | e1000_phy_hw_reset(struct e1000_hw *hw) | 2858 | e1000_phy_hw_reset(struct e1000_hw *hw) |
2689 | { | 2859 | { |
2690 | uint32_t ctrl, ctrl_ext; | 2860 | uint32_t ctrl, ctrl_ext; |
2691 | uint32_t led_ctrl; | 2861 | uint32_t led_ctrl; |
2862 | int32_t ret_val; | ||
2692 | 2863 | ||
2693 | DEBUGFUNC("e1000_phy_hw_reset"); | 2864 | DEBUGFUNC("e1000_phy_hw_reset"); |
2694 | 2865 | ||
2866 | /* In the case of the phy reset being blocked, it's not an error, we | ||
2867 | * simply return success without performing the reset. */ | ||
2868 | ret_val = e1000_check_phy_reset_block(hw); | ||
2869 | if (ret_val) | ||
2870 | return E1000_SUCCESS; | ||
2871 | |||
2695 | DEBUGOUT("Resetting Phy...\n"); | 2872 | DEBUGOUT("Resetting Phy...\n"); |
2696 | 2873 | ||
2697 | if(hw->mac_type > e1000_82543) { | 2874 | if(hw->mac_type > e1000_82543) { |
@@ -2727,6 +2904,11 @@ e1000_phy_hw_reset(struct e1000_hw *hw) | |||
2727 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 2904 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
2728 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | 2905 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); |
2729 | } | 2906 | } |
2907 | |||
2908 | /* Wait for FW to finish PHY configuration. */ | ||
2909 | ret_val = e1000_get_phy_cfg_done(hw); | ||
2910 | |||
2911 | return ret_val; | ||
2730 | } | 2912 | } |
2731 | 2913 | ||
2732 | /****************************************************************************** | 2914 | /****************************************************************************** |
@@ -2744,7 +2926,19 @@ e1000_phy_reset(struct e1000_hw *hw) | |||
2744 | 2926 | ||
2745 | DEBUGFUNC("e1000_phy_reset"); | 2927 | DEBUGFUNC("e1000_phy_reset"); |
2746 | 2928 | ||
2747 | if(hw->mac_type != e1000_82541_rev_2) { | 2929 | /* In the case of the phy reset being blocked, it's not an error, we |
2930 | * simply return success without performing the reset. */ | ||
2931 | ret_val = e1000_check_phy_reset_block(hw); | ||
2932 | if (ret_val) | ||
2933 | return E1000_SUCCESS; | ||
2934 | |||
2935 | switch (hw->mac_type) { | ||
2936 | case e1000_82541_rev_2: | ||
2937 | ret_val = e1000_phy_hw_reset(hw); | ||
2938 | if(ret_val) | ||
2939 | return ret_val; | ||
2940 | break; | ||
2941 | default: | ||
2748 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 2942 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
2749 | if(ret_val) | 2943 | if(ret_val) |
2750 | return ret_val; | 2944 | return ret_val; |
@@ -2755,9 +2949,10 @@ e1000_phy_reset(struct e1000_hw *hw) | |||
2755 | return ret_val; | 2949 | return ret_val; |
2756 | 2950 | ||
2757 | udelay(1); | 2951 | udelay(1); |
2758 | } else e1000_phy_hw_reset(hw); | 2952 | break; |
2953 | } | ||
2759 | 2954 | ||
2760 | if(hw->phy_type == e1000_phy_igp) | 2955 | if(hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) |
2761 | e1000_phy_init_script(hw); | 2956 | e1000_phy_init_script(hw); |
2762 | 2957 | ||
2763 | return E1000_SUCCESS; | 2958 | return E1000_SUCCESS; |
@@ -2811,6 +3006,9 @@ e1000_detect_gig_phy(struct e1000_hw *hw) | |||
2811 | case e1000_82547_rev_2: | 3006 | case e1000_82547_rev_2: |
2812 | if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; | 3007 | if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; |
2813 | break; | 3008 | break; |
3009 | case e1000_82573: | ||
3010 | if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE; | ||
3011 | break; | ||
2814 | default: | 3012 | default: |
2815 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); | 3013 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); |
2816 | return -E1000_ERR_CONFIG; | 3014 | return -E1000_ERR_CONFIG; |
@@ -2866,7 +3064,7 @@ e1000_phy_igp_get_info(struct e1000_hw *hw, | |||
2866 | 3064 | ||
2867 | /* The downshift status is checked only once, after link is established, | 3065 | /* The downshift status is checked only once, after link is established, |
2868 | * and it stored in the hw->speed_downgraded parameter. */ | 3066 | * and it stored in the hw->speed_downgraded parameter. */ |
2869 | phy_info->downshift = hw->speed_downgraded; | 3067 | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; |
2870 | 3068 | ||
2871 | /* IGP01E1000 does not need to support it. */ | 3069 | /* IGP01E1000 does not need to support it. */ |
2872 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; | 3070 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; |
@@ -2905,7 +3103,7 @@ e1000_phy_igp_get_info(struct e1000_hw *hw, | |||
2905 | if(ret_val) | 3103 | if(ret_val) |
2906 | return ret_val; | 3104 | return ret_val; |
2907 | 3105 | ||
2908 | /* transalte to old method */ | 3106 | /* Translate to old method */ |
2909 | average = (max_length + min_length) / 2; | 3107 | average = (max_length + min_length) / 2; |
2910 | 3108 | ||
2911 | if(average <= e1000_igp_cable_length_50) | 3109 | if(average <= e1000_igp_cable_length_50) |
@@ -2940,7 +3138,7 @@ e1000_phy_m88_get_info(struct e1000_hw *hw, | |||
2940 | 3138 | ||
2941 | /* The downshift status is checked only once, after link is established, | 3139 | /* The downshift status is checked only once, after link is established, |
2942 | * and it stored in the hw->speed_downgraded parameter. */ | 3140 | * and it stored in the hw->speed_downgraded parameter. */ |
2943 | phy_info->downshift = hw->speed_downgraded; | 3141 | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; |
2944 | 3142 | ||
2945 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 3143 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
2946 | if(ret_val) | 3144 | if(ret_val) |
@@ -3029,7 +3227,8 @@ e1000_phy_get_info(struct e1000_hw *hw, | |||
3029 | return -E1000_ERR_CONFIG; | 3227 | return -E1000_ERR_CONFIG; |
3030 | } | 3228 | } |
3031 | 3229 | ||
3032 | if(hw->phy_type == e1000_phy_igp) | 3230 | if(hw->phy_type == e1000_phy_igp || |
3231 | hw->phy_type == e1000_phy_igp_2) | ||
3033 | return e1000_phy_igp_get_info(hw, phy_info); | 3232 | return e1000_phy_igp_get_info(hw, phy_info); |
3034 | else | 3233 | else |
3035 | return e1000_phy_m88_get_info(hw, phy_info); | 3234 | return e1000_phy_m88_get_info(hw, phy_info); |
@@ -3055,11 +3254,12 @@ e1000_validate_mdi_setting(struct e1000_hw *hw) | |||
3055 | * | 3254 | * |
3056 | * hw - Struct containing variables accessed by shared code | 3255 | * hw - Struct containing variables accessed by shared code |
3057 | *****************************************************************************/ | 3256 | *****************************************************************************/ |
3058 | void | 3257 | int32_t |
3059 | e1000_init_eeprom_params(struct e1000_hw *hw) | 3258 | e1000_init_eeprom_params(struct e1000_hw *hw) |
3060 | { | 3259 | { |
3061 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 3260 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
3062 | uint32_t eecd = E1000_READ_REG(hw, EECD); | 3261 | uint32_t eecd = E1000_READ_REG(hw, EECD); |
3262 | int32_t ret_val = E1000_SUCCESS; | ||
3063 | uint16_t eeprom_size; | 3263 | uint16_t eeprom_size; |
3064 | 3264 | ||
3065 | DEBUGFUNC("e1000_init_eeprom_params"); | 3265 | DEBUGFUNC("e1000_init_eeprom_params"); |
@@ -3074,6 +3274,8 @@ e1000_init_eeprom_params(struct e1000_hw *hw) | |||
3074 | eeprom->opcode_bits = 3; | 3274 | eeprom->opcode_bits = 3; |
3075 | eeprom->address_bits = 6; | 3275 | eeprom->address_bits = 6; |
3076 | eeprom->delay_usec = 50; | 3276 | eeprom->delay_usec = 50; |
3277 | eeprom->use_eerd = FALSE; | ||
3278 | eeprom->use_eewr = FALSE; | ||
3077 | break; | 3279 | break; |
3078 | case e1000_82540: | 3280 | case e1000_82540: |
3079 | case e1000_82545: | 3281 | case e1000_82545: |
@@ -3090,6 +3292,8 @@ e1000_init_eeprom_params(struct e1000_hw *hw) | |||
3090 | eeprom->word_size = 64; | 3292 | eeprom->word_size = 64; |
3091 | eeprom->address_bits = 6; | 3293 | eeprom->address_bits = 6; |
3092 | } | 3294 | } |
3295 | eeprom->use_eerd = FALSE; | ||
3296 | eeprom->use_eewr = FALSE; | ||
3093 | break; | 3297 | break; |
3094 | case e1000_82541: | 3298 | case e1000_82541: |
3095 | case e1000_82541_rev_2: | 3299 | case e1000_82541_rev_2: |
@@ -3118,42 +3322,60 @@ e1000_init_eeprom_params(struct e1000_hw *hw) | |||
3118 | eeprom->address_bits = 6; | 3322 | eeprom->address_bits = 6; |
3119 | } | 3323 | } |
3120 | } | 3324 | } |
3325 | eeprom->use_eerd = FALSE; | ||
3326 | eeprom->use_eewr = FALSE; | ||
3327 | break; | ||
3328 | case e1000_82573: | ||
3329 | eeprom->type = e1000_eeprom_spi; | ||
3330 | eeprom->opcode_bits = 8; | ||
3331 | eeprom->delay_usec = 1; | ||
3332 | if (eecd & E1000_EECD_ADDR_BITS) { | ||
3333 | eeprom->page_size = 32; | ||
3334 | eeprom->address_bits = 16; | ||
3335 | } else { | ||
3336 | eeprom->page_size = 8; | ||
3337 | eeprom->address_bits = 8; | ||
3338 | } | ||
3339 | eeprom->use_eerd = TRUE; | ||
3340 | eeprom->use_eewr = TRUE; | ||
3341 | if(e1000_is_onboard_nvm_eeprom(hw) == FALSE) { | ||
3342 | eeprom->type = e1000_eeprom_flash; | ||
3343 | eeprom->word_size = 2048; | ||
3344 | |||
3345 | /* Ensure that the Autonomous FLASH update bit is cleared due to | ||
3346 | * Flash update issue on parts which use a FLASH for NVM. */ | ||
3347 | eecd &= ~E1000_EECD_AUPDEN; | ||
3348 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3349 | } | ||
3121 | break; | 3350 | break; |
3122 | default: | 3351 | default: |
3123 | break; | 3352 | break; |
3124 | } | 3353 | } |
3125 | 3354 | ||
3126 | if (eeprom->type == e1000_eeprom_spi) { | 3355 | if (eeprom->type == e1000_eeprom_spi) { |
3127 | eeprom->word_size = 64; | 3356 | /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to |
3128 | if (e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size) == 0) { | 3357 | * 32KB (incremented by powers of 2). |
3129 | eeprom_size &= EEPROM_SIZE_MASK; | 3358 | */ |
3130 | 3359 | if(hw->mac_type <= e1000_82547_rev_2) { | |
3131 | switch (eeprom_size) { | 3360 | /* Set to default value for initial eeprom read. */ |
3132 | case EEPROM_SIZE_16KB: | 3361 | eeprom->word_size = 64; |
3133 | eeprom->word_size = 8192; | 3362 | ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); |
3134 | break; | 3363 | if(ret_val) |
3135 | case EEPROM_SIZE_8KB: | 3364 | return ret_val; |
3136 | eeprom->word_size = 4096; | 3365 | eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; |
3137 | break; | 3366 | /* 256B eeprom size was not supported in earlier hardware, so we |
3138 | case EEPROM_SIZE_4KB: | 3367 | * bump eeprom_size up one to ensure that "1" (which maps to 256B) |
3139 | eeprom->word_size = 2048; | 3368 | * is never the result used in the shifting logic below. */ |
3140 | break; | 3369 | if(eeprom_size) |
3141 | case EEPROM_SIZE_2KB: | 3370 | eeprom_size++; |
3142 | eeprom->word_size = 1024; | 3371 | } else { |
3143 | break; | 3372 | eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
3144 | case EEPROM_SIZE_1KB: | 3373 | E1000_EECD_SIZE_EX_SHIFT); |
3145 | eeprom->word_size = 512; | ||
3146 | break; | ||
3147 | case EEPROM_SIZE_512B: | ||
3148 | eeprom->word_size = 256; | ||
3149 | break; | ||
3150 | case EEPROM_SIZE_128B: | ||
3151 | default: | ||
3152 | eeprom->word_size = 64; | ||
3153 | break; | ||
3154 | } | ||
3155 | } | 3374 | } |
3375 | |||
3376 | eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); | ||
3156 | } | 3377 | } |
3378 | return ret_val; | ||
3157 | } | 3379 | } |
3158 | 3380 | ||
3159 | /****************************************************************************** | 3381 | /****************************************************************************** |
@@ -3306,8 +3528,12 @@ e1000_acquire_eeprom(struct e1000_hw *hw) | |||
3306 | 3528 | ||
3307 | DEBUGFUNC("e1000_acquire_eeprom"); | 3529 | DEBUGFUNC("e1000_acquire_eeprom"); |
3308 | 3530 | ||
3531 | if(e1000_get_hw_eeprom_semaphore(hw)) | ||
3532 | return -E1000_ERR_EEPROM; | ||
3533 | |||
3309 | eecd = E1000_READ_REG(hw, EECD); | 3534 | eecd = E1000_READ_REG(hw, EECD); |
3310 | 3535 | ||
3536 | if (hw->mac_type != e1000_82573) { | ||
3311 | /* Request EEPROM Access */ | 3537 | /* Request EEPROM Access */ |
3312 | if(hw->mac_type > e1000_82544) { | 3538 | if(hw->mac_type > e1000_82544) { |
3313 | eecd |= E1000_EECD_REQ; | 3539 | eecd |= E1000_EECD_REQ; |
@@ -3326,6 +3552,7 @@ e1000_acquire_eeprom(struct e1000_hw *hw) | |||
3326 | return -E1000_ERR_EEPROM; | 3552 | return -E1000_ERR_EEPROM; |
3327 | } | 3553 | } |
3328 | } | 3554 | } |
3555 | } | ||
3329 | 3556 | ||
3330 | /* Setup EEPROM for Read/Write */ | 3557 | /* Setup EEPROM for Read/Write */ |
3331 | 3558 | ||
@@ -3443,6 +3670,8 @@ e1000_release_eeprom(struct e1000_hw *hw) | |||
3443 | eecd &= ~E1000_EECD_REQ; | 3670 | eecd &= ~E1000_EECD_REQ; |
3444 | E1000_WRITE_REG(hw, EECD, eecd); | 3671 | E1000_WRITE_REG(hw, EECD, eecd); |
3445 | } | 3672 | } |
3673 | |||
3674 | e1000_put_hw_eeprom_semaphore(hw); | ||
3446 | } | 3675 | } |
3447 | 3676 | ||
3448 | /****************************************************************************** | 3677 | /****************************************************************************** |
@@ -3504,8 +3733,10 @@ e1000_read_eeprom(struct e1000_hw *hw, | |||
3504 | { | 3733 | { |
3505 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 3734 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
3506 | uint32_t i = 0; | 3735 | uint32_t i = 0; |
3736 | int32_t ret_val; | ||
3507 | 3737 | ||
3508 | DEBUGFUNC("e1000_read_eeprom"); | 3738 | DEBUGFUNC("e1000_read_eeprom"); |
3739 | |||
3509 | /* A check for invalid values: offset too large, too many words, and not | 3740 | /* A check for invalid values: offset too large, too many words, and not |
3510 | * enough words. | 3741 | * enough words. |
3511 | */ | 3742 | */ |
@@ -3515,9 +3746,23 @@ e1000_read_eeprom(struct e1000_hw *hw, | |||
3515 | return -E1000_ERR_EEPROM; | 3746 | return -E1000_ERR_EEPROM; |
3516 | } | 3747 | } |
3517 | 3748 | ||
3518 | /* Prepare the EEPROM for reading */ | 3749 | /* FLASH reads without acquiring the semaphore are safe in 82573-based |
3519 | if(e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 3750 | * controllers. |
3520 | return -E1000_ERR_EEPROM; | 3751 | */ |
3752 | if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) || | ||
3753 | (hw->mac_type != e1000_82573)) { | ||
3754 | /* Prepare the EEPROM for reading */ | ||
3755 | if(e1000_acquire_eeprom(hw) != E1000_SUCCESS) | ||
3756 | return -E1000_ERR_EEPROM; | ||
3757 | } | ||
3758 | |||
3759 | if(eeprom->use_eerd == TRUE) { | ||
3760 | ret_val = e1000_read_eeprom_eerd(hw, offset, words, data); | ||
3761 | if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) || | ||
3762 | (hw->mac_type != e1000_82573)) | ||
3763 | e1000_release_eeprom(hw); | ||
3764 | return ret_val; | ||
3765 | } | ||
3521 | 3766 | ||
3522 | if(eeprom->type == e1000_eeprom_spi) { | 3767 | if(eeprom->type == e1000_eeprom_spi) { |
3523 | uint16_t word_in; | 3768 | uint16_t word_in; |
@@ -3569,6 +3814,132 @@ e1000_read_eeprom(struct e1000_hw *hw, | |||
3569 | } | 3814 | } |
3570 | 3815 | ||
3571 | /****************************************************************************** | 3816 | /****************************************************************************** |
3817 | * Reads a 16 bit word from the EEPROM using the EERD register. | ||
3818 | * | ||
3819 | * hw - Struct containing variables accessed by shared code | ||
3820 | * offset - offset of word in the EEPROM to read | ||
3821 | * data - word read from the EEPROM | ||
3822 | * words - number of words to read | ||
3823 | *****************************************************************************/ | ||
3824 | int32_t | ||
3825 | e1000_read_eeprom_eerd(struct e1000_hw *hw, | ||
3826 | uint16_t offset, | ||
3827 | uint16_t words, | ||
3828 | uint16_t *data) | ||
3829 | { | ||
3830 | uint32_t i, eerd = 0; | ||
3831 | int32_t error = 0; | ||
3832 | |||
3833 | for (i = 0; i < words; i++) { | ||
3834 | eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + | ||
3835 | E1000_EEPROM_RW_REG_START; | ||
3836 | |||
3837 | E1000_WRITE_REG(hw, EERD, eerd); | ||
3838 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); | ||
3839 | |||
3840 | if(error) { | ||
3841 | break; | ||
3842 | } | ||
3843 | data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA); | ||
3844 | |||
3845 | } | ||
3846 | |||
3847 | return error; | ||
3848 | } | ||
3849 | |||
3850 | /****************************************************************************** | ||
3851 | * Writes a 16 bit word from the EEPROM using the EEWR register. | ||
3852 | * | ||
3853 | * hw - Struct containing variables accessed by shared code | ||
3854 | * offset - offset of word in the EEPROM to read | ||
3855 | * data - word read from the EEPROM | ||
3856 | * words - number of words to read | ||
3857 | *****************************************************************************/ | ||
3858 | int32_t | ||
3859 | e1000_write_eeprom_eewr(struct e1000_hw *hw, | ||
3860 | uint16_t offset, | ||
3861 | uint16_t words, | ||
3862 | uint16_t *data) | ||
3863 | { | ||
3864 | uint32_t register_value = 0; | ||
3865 | uint32_t i = 0; | ||
3866 | int32_t error = 0; | ||
3867 | |||
3868 | for (i = 0; i < words; i++) { | ||
3869 | register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | | ||
3870 | ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) | | ||
3871 | E1000_EEPROM_RW_REG_START; | ||
3872 | |||
3873 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); | ||
3874 | if(error) { | ||
3875 | break; | ||
3876 | } | ||
3877 | |||
3878 | E1000_WRITE_REG(hw, EEWR, register_value); | ||
3879 | |||
3880 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); | ||
3881 | |||
3882 | if(error) { | ||
3883 | break; | ||
3884 | } | ||
3885 | } | ||
3886 | |||
3887 | return error; | ||
3888 | } | ||
3889 | |||
3890 | /****************************************************************************** | ||
3891 | * Polls the status bit (bit 1) of the EERD to determine when the read is done. | ||
3892 | * | ||
3893 | * hw - Struct containing variables accessed by shared code | ||
3894 | *****************************************************************************/ | ||
3895 | int32_t | ||
3896 | e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) | ||
3897 | { | ||
3898 | uint32_t attempts = 100000; | ||
3899 | uint32_t i, reg = 0; | ||
3900 | int32_t done = E1000_ERR_EEPROM; | ||
3901 | |||
3902 | for(i = 0; i < attempts; i++) { | ||
3903 | if(eerd == E1000_EEPROM_POLL_READ) | ||
3904 | reg = E1000_READ_REG(hw, EERD); | ||
3905 | else | ||
3906 | reg = E1000_READ_REG(hw, EEWR); | ||
3907 | |||
3908 | if(reg & E1000_EEPROM_RW_REG_DONE) { | ||
3909 | done = E1000_SUCCESS; | ||
3910 | break; | ||
3911 | } | ||
3912 | udelay(5); | ||
3913 | } | ||
3914 | |||
3915 | return done; | ||
3916 | } | ||
3917 | |||
3918 | /*************************************************************************** | ||
3919 | * Description: Determines if the onboard NVM is FLASH or EEPROM. | ||
3920 | * | ||
3921 | * hw - Struct containing variables accessed by shared code | ||
3922 | ****************************************************************************/ | ||
3923 | boolean_t | ||
3924 | e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) | ||
3925 | { | ||
3926 | uint32_t eecd = 0; | ||
3927 | |||
3928 | if(hw->mac_type == e1000_82573) { | ||
3929 | eecd = E1000_READ_REG(hw, EECD); | ||
3930 | |||
3931 | /* Isolate bits 15 & 16 */ | ||
3932 | eecd = ((eecd >> 15) & 0x03); | ||
3933 | |||
3934 | /* If both bits are set, device is Flash type */ | ||
3935 | if(eecd == 0x03) { | ||
3936 | return FALSE; | ||
3937 | } | ||
3938 | } | ||
3939 | return TRUE; | ||
3940 | } | ||
3941 | |||
3942 | /****************************************************************************** | ||
3572 | * Verifies that the EEPROM has a valid checksum | 3943 | * Verifies that the EEPROM has a valid checksum |
3573 | * | 3944 | * |
3574 | * hw - Struct containing variables accessed by shared code | 3945 | * hw - Struct containing variables accessed by shared code |
@@ -3585,6 +3956,25 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw) | |||
3585 | 3956 | ||
3586 | DEBUGFUNC("e1000_validate_eeprom_checksum"); | 3957 | DEBUGFUNC("e1000_validate_eeprom_checksum"); |
3587 | 3958 | ||
3959 | if ((hw->mac_type == e1000_82573) && | ||
3960 | (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) { | ||
3961 | /* Check bit 4 of word 10h. If it is 0, firmware is done updating | ||
3962 | * 10h-12h. Checksum may need to be fixed. */ | ||
3963 | e1000_read_eeprom(hw, 0x10, 1, &eeprom_data); | ||
3964 | if ((eeprom_data & 0x10) == 0) { | ||
3965 | /* Read 0x23 and check bit 15. This bit is a 1 when the checksum | ||
3966 | * has already been fixed. If the checksum is still wrong and this | ||
3967 | * bit is a 1, we need to return bad checksum. Otherwise, we need | ||
3968 | * to set this bit to a 1 and update the checksum. */ | ||
3969 | e1000_read_eeprom(hw, 0x23, 1, &eeprom_data); | ||
3970 | if ((eeprom_data & 0x8000) == 0) { | ||
3971 | eeprom_data |= 0x8000; | ||
3972 | e1000_write_eeprom(hw, 0x23, 1, &eeprom_data); | ||
3973 | e1000_update_eeprom_checksum(hw); | ||
3974 | } | ||
3975 | } | ||
3976 | } | ||
3977 | |||
3588 | for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | 3978 | for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
3589 | if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | 3979 | if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
3590 | DEBUGOUT("EEPROM Read Error\n"); | 3980 | DEBUGOUT("EEPROM Read Error\n"); |
@@ -3628,6 +4018,8 @@ e1000_update_eeprom_checksum(struct e1000_hw *hw) | |||
3628 | if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { | 4018 | if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { |
3629 | DEBUGOUT("EEPROM Write Error\n"); | 4019 | DEBUGOUT("EEPROM Write Error\n"); |
3630 | return -E1000_ERR_EEPROM; | 4020 | return -E1000_ERR_EEPROM; |
4021 | } else if (hw->eeprom.type == e1000_eeprom_flash) { | ||
4022 | e1000_commit_shadow_ram(hw); | ||
3631 | } | 4023 | } |
3632 | return E1000_SUCCESS; | 4024 | return E1000_SUCCESS; |
3633 | } | 4025 | } |
@@ -3663,6 +4055,10 @@ e1000_write_eeprom(struct e1000_hw *hw, | |||
3663 | return -E1000_ERR_EEPROM; | 4055 | return -E1000_ERR_EEPROM; |
3664 | } | 4056 | } |
3665 | 4057 | ||
4058 | /* 82573 reads only through eerd */ | ||
4059 | if(eeprom->use_eewr == TRUE) | ||
4060 | return e1000_write_eeprom_eewr(hw, offset, words, data); | ||
4061 | |||
3666 | /* Prepare the EEPROM for writing */ | 4062 | /* Prepare the EEPROM for writing */ |
3667 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 4063 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
3668 | return -E1000_ERR_EEPROM; | 4064 | return -E1000_ERR_EEPROM; |
@@ -3833,6 +4229,65 @@ e1000_write_eeprom_microwire(struct e1000_hw *hw, | |||
3833 | } | 4229 | } |
3834 | 4230 | ||
3835 | /****************************************************************************** | 4231 | /****************************************************************************** |
4232 | * Flushes the cached eeprom to NVM. This is done by saving the modified values | ||
4233 | * in the eeprom cache and the non modified values in the currently active bank | ||
4234 | * to the new bank. | ||
4235 | * | ||
4236 | * hw - Struct containing variables accessed by shared code | ||
4237 | * offset - offset of word in the EEPROM to read | ||
4238 | * data - word read from the EEPROM | ||
4239 | * words - number of words to read | ||
4240 | *****************************************************************************/ | ||
4241 | int32_t | ||
4242 | e1000_commit_shadow_ram(struct e1000_hw *hw) | ||
4243 | { | ||
4244 | uint32_t attempts = 100000; | ||
4245 | uint32_t eecd = 0; | ||
4246 | uint32_t flop = 0; | ||
4247 | uint32_t i = 0; | ||
4248 | int32_t error = E1000_SUCCESS; | ||
4249 | |||
4250 | /* The flop register will be used to determine if flash type is STM */ | ||
4251 | flop = E1000_READ_REG(hw, FLOP); | ||
4252 | |||
4253 | if (hw->mac_type == e1000_82573) { | ||
4254 | for (i=0; i < attempts; i++) { | ||
4255 | eecd = E1000_READ_REG(hw, EECD); | ||
4256 | if ((eecd & E1000_EECD_FLUPD) == 0) { | ||
4257 | break; | ||
4258 | } | ||
4259 | udelay(5); | ||
4260 | } | ||
4261 | |||
4262 | if (i == attempts) { | ||
4263 | return -E1000_ERR_EEPROM; | ||
4264 | } | ||
4265 | |||
4266 | /* If STM opcode located in bits 15:8 of flop, reset firmware */ | ||
4267 | if ((flop & 0xFF00) == E1000_STM_OPCODE) { | ||
4268 | E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET); | ||
4269 | } | ||
4270 | |||
4271 | /* Perform the flash update */ | ||
4272 | E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD); | ||
4273 | |||
4274 | for (i=0; i < attempts; i++) { | ||
4275 | eecd = E1000_READ_REG(hw, EECD); | ||
4276 | if ((eecd & E1000_EECD_FLUPD) == 0) { | ||
4277 | break; | ||
4278 | } | ||
4279 | udelay(5); | ||
4280 | } | ||
4281 | |||
4282 | if (i == attempts) { | ||
4283 | return -E1000_ERR_EEPROM; | ||
4284 | } | ||
4285 | } | ||
4286 | |||
4287 | return error; | ||
4288 | } | ||
4289 | |||
4290 | /****************************************************************************** | ||
3836 | * Reads the adapter's part number from the EEPROM | 4291 | * Reads the adapter's part number from the EEPROM |
3837 | * | 4292 | * |
3838 | * hw - Struct containing variables accessed by shared code | 4293 | * hw - Struct containing variables accessed by shared code |
@@ -3911,6 +4366,7 @@ void | |||
3911 | e1000_init_rx_addrs(struct e1000_hw *hw) | 4366 | e1000_init_rx_addrs(struct e1000_hw *hw) |
3912 | { | 4367 | { |
3913 | uint32_t i; | 4368 | uint32_t i; |
4369 | uint32_t rar_num; | ||
3914 | 4370 | ||
3915 | DEBUGFUNC("e1000_init_rx_addrs"); | 4371 | DEBUGFUNC("e1000_init_rx_addrs"); |
3916 | 4372 | ||
@@ -3919,9 +4375,10 @@ e1000_init_rx_addrs(struct e1000_hw *hw) | |||
3919 | 4375 | ||
3920 | e1000_rar_set(hw, hw->mac_addr, 0); | 4376 | e1000_rar_set(hw, hw->mac_addr, 0); |
3921 | 4377 | ||
4378 | rar_num = E1000_RAR_ENTRIES; | ||
3922 | /* Zero out the other 15 receive addresses. */ | 4379 | /* Zero out the other 15 receive addresses. */ |
3923 | DEBUGOUT("Clearing RAR[1-15]\n"); | 4380 | DEBUGOUT("Clearing RAR[1-15]\n"); |
3924 | for(i = 1; i < E1000_RAR_ENTRIES; i++) { | 4381 | for(i = 1; i < rar_num; i++) { |
3925 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 4382 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
3926 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 4383 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
3927 | } | 4384 | } |
@@ -3950,7 +4407,9 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, | |||
3950 | { | 4407 | { |
3951 | uint32_t hash_value; | 4408 | uint32_t hash_value; |
3952 | uint32_t i; | 4409 | uint32_t i; |
3953 | 4410 | uint32_t num_rar_entry; | |
4411 | uint32_t num_mta_entry; | ||
4412 | |||
3954 | DEBUGFUNC("e1000_mc_addr_list_update"); | 4413 | DEBUGFUNC("e1000_mc_addr_list_update"); |
3955 | 4414 | ||
3956 | /* Set the new number of MC addresses that we are being requested to use. */ | 4415 | /* Set the new number of MC addresses that we are being requested to use. */ |
@@ -3958,14 +4417,16 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, | |||
3958 | 4417 | ||
3959 | /* Clear RAR[1-15] */ | 4418 | /* Clear RAR[1-15] */ |
3960 | DEBUGOUT(" Clearing RAR[1-15]\n"); | 4419 | DEBUGOUT(" Clearing RAR[1-15]\n"); |
3961 | for(i = rar_used_count; i < E1000_RAR_ENTRIES; i++) { | 4420 | num_rar_entry = E1000_RAR_ENTRIES; |
4421 | for(i = rar_used_count; i < num_rar_entry; i++) { | ||
3962 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 4422 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
3963 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 4423 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
3964 | } | 4424 | } |
3965 | 4425 | ||
3966 | /* Clear the MTA */ | 4426 | /* Clear the MTA */ |
3967 | DEBUGOUT(" Clearing MTA\n"); | 4427 | DEBUGOUT(" Clearing MTA\n"); |
3968 | for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++) { | 4428 | num_mta_entry = E1000_NUM_MTA_REGISTERS; |
4429 | for(i = 0; i < num_mta_entry; i++) { | ||
3969 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 4430 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
3970 | } | 4431 | } |
3971 | 4432 | ||
@@ -3989,7 +4450,7 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, | |||
3989 | /* Place this multicast address in the RAR if there is room, * | 4450 | /* Place this multicast address in the RAR if there is room, * |
3990 | * else put it in the MTA | 4451 | * else put it in the MTA |
3991 | */ | 4452 | */ |
3992 | if(rar_used_count < E1000_RAR_ENTRIES) { | 4453 | if (rar_used_count < num_rar_entry) { |
3993 | e1000_rar_set(hw, | 4454 | e1000_rar_set(hw, |
3994 | mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)), | 4455 | mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)), |
3995 | rar_used_count); | 4456 | rar_used_count); |
@@ -4040,6 +4501,7 @@ e1000_hash_mc_addr(struct e1000_hw *hw, | |||
4040 | } | 4501 | } |
4041 | 4502 | ||
4042 | hash_value &= 0xFFF; | 4503 | hash_value &= 0xFFF; |
4504 | |||
4043 | return hash_value; | 4505 | return hash_value; |
4044 | } | 4506 | } |
4045 | 4507 | ||
@@ -4144,12 +4606,33 @@ void | |||
4144 | e1000_clear_vfta(struct e1000_hw *hw) | 4606 | e1000_clear_vfta(struct e1000_hw *hw) |
4145 | { | 4607 | { |
4146 | uint32_t offset; | 4608 | uint32_t offset; |
4147 | 4609 | uint32_t vfta_value = 0; | |
4148 | for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) | 4610 | uint32_t vfta_offset = 0; |
4149 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); | 4611 | uint32_t vfta_bit_in_reg = 0; |
4612 | |||
4613 | if (hw->mac_type == e1000_82573) { | ||
4614 | if (hw->mng_cookie.vlan_id != 0) { | ||
4615 | /* The VFTA is a 4096b bit-field, each identifying a single VLAN | ||
4616 | * ID. The following operations determine which 32b entry | ||
4617 | * (i.e. offset) into the array we want to set the VLAN ID | ||
4618 | * (i.e. bit) of the manageability unit. */ | ||
4619 | vfta_offset = (hw->mng_cookie.vlan_id >> | ||
4620 | E1000_VFTA_ENTRY_SHIFT) & | ||
4621 | E1000_VFTA_ENTRY_MASK; | ||
4622 | vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & | ||
4623 | E1000_VFTA_ENTRY_BIT_SHIFT_MASK); | ||
4624 | } | ||
4625 | } | ||
4626 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | ||
4627 | /* If the offset we want to clear is the same offset of the | ||
4628 | * manageability VLAN ID, then clear all bits except that of the | ||
4629 | * manageability unit */ | ||
4630 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; | ||
4631 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); | ||
4632 | } | ||
4150 | } | 4633 | } |
4151 | 4634 | ||
4152 | static int32_t | 4635 | int32_t |
4153 | e1000_id_led_init(struct e1000_hw * hw) | 4636 | e1000_id_led_init(struct e1000_hw * hw) |
4154 | { | 4637 | { |
4155 | uint32_t ledctl; | 4638 | uint32_t ledctl; |
@@ -4480,6 +4963,19 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw) | |||
4480 | temp = E1000_READ_REG(hw, MGTPRC); | 4963 | temp = E1000_READ_REG(hw, MGTPRC); |
4481 | temp = E1000_READ_REG(hw, MGTPDC); | 4964 | temp = E1000_READ_REG(hw, MGTPDC); |
4482 | temp = E1000_READ_REG(hw, MGTPTC); | 4965 | temp = E1000_READ_REG(hw, MGTPTC); |
4966 | |||
4967 | if(hw->mac_type <= e1000_82547_rev_2) return; | ||
4968 | |||
4969 | temp = E1000_READ_REG(hw, IAC); | ||
4970 | temp = E1000_READ_REG(hw, ICRXOC); | ||
4971 | temp = E1000_READ_REG(hw, ICRXPTC); | ||
4972 | temp = E1000_READ_REG(hw, ICRXATC); | ||
4973 | temp = E1000_READ_REG(hw, ICTXPTC); | ||
4974 | temp = E1000_READ_REG(hw, ICTXATC); | ||
4975 | temp = E1000_READ_REG(hw, ICTXQEC); | ||
4976 | temp = E1000_READ_REG(hw, ICTXQMTC); | ||
4977 | temp = E1000_READ_REG(hw, ICRXDMTC); | ||
4978 | |||
4483 | } | 4979 | } |
4484 | 4980 | ||
4485 | /****************************************************************************** | 4981 | /****************************************************************************** |
@@ -4646,6 +5142,11 @@ e1000_get_bus_info(struct e1000_hw *hw) | |||
4646 | hw->bus_speed = e1000_bus_speed_unknown; | 5142 | hw->bus_speed = e1000_bus_speed_unknown; |
4647 | hw->bus_width = e1000_bus_width_unknown; | 5143 | hw->bus_width = e1000_bus_width_unknown; |
4648 | break; | 5144 | break; |
5145 | case e1000_82573: | ||
5146 | hw->bus_type = e1000_bus_type_pci_express; | ||
5147 | hw->bus_speed = e1000_bus_speed_2500; | ||
5148 | hw->bus_width = e1000_bus_width_pciex_4; | ||
5149 | break; | ||
4649 | default: | 5150 | default: |
4650 | status = E1000_READ_REG(hw, STATUS); | 5151 | status = E1000_READ_REG(hw, STATUS); |
4651 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? | 5152 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? |
@@ -4749,6 +5250,7 @@ e1000_get_cable_length(struct e1000_hw *hw, | |||
4749 | 5250 | ||
4750 | /* Use old method for Phy older than IGP */ | 5251 | /* Use old method for Phy older than IGP */ |
4751 | if(hw->phy_type == e1000_phy_m88) { | 5252 | if(hw->phy_type == e1000_phy_m88) { |
5253 | |||
4752 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 5254 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
4753 | &phy_data); | 5255 | &phy_data); |
4754 | if(ret_val) | 5256 | if(ret_val) |
@@ -4865,7 +5367,8 @@ e1000_check_polarity(struct e1000_hw *hw, | |||
4865 | return ret_val; | 5367 | return ret_val; |
4866 | *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> | 5368 | *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> |
4867 | M88E1000_PSSR_REV_POLARITY_SHIFT; | 5369 | M88E1000_PSSR_REV_POLARITY_SHIFT; |
4868 | } else if(hw->phy_type == e1000_phy_igp) { | 5370 | } else if(hw->phy_type == e1000_phy_igp || |
5371 | hw->phy_type == e1000_phy_igp_2) { | ||
4869 | /* Read the Status register to check the speed */ | 5372 | /* Read the Status register to check the speed */ |
4870 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | 5373 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, |
4871 | &phy_data); | 5374 | &phy_data); |
@@ -4917,7 +5420,8 @@ e1000_check_downshift(struct e1000_hw *hw) | |||
4917 | 5420 | ||
4918 | DEBUGFUNC("e1000_check_downshift"); | 5421 | DEBUGFUNC("e1000_check_downshift"); |
4919 | 5422 | ||
4920 | if(hw->phy_type == e1000_phy_igp) { | 5423 | if(hw->phy_type == e1000_phy_igp || |
5424 | hw->phy_type == e1000_phy_igp_2) { | ||
4921 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, | 5425 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, |
4922 | &phy_data); | 5426 | &phy_data); |
4923 | if(ret_val) | 5427 | if(ret_val) |
@@ -4933,6 +5437,7 @@ e1000_check_downshift(struct e1000_hw *hw) | |||
4933 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> | 5437 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> |
4934 | M88E1000_PSSR_DOWNSHIFT_SHIFT; | 5438 | M88E1000_PSSR_DOWNSHIFT_SHIFT; |
4935 | } | 5439 | } |
5440 | |||
4936 | return E1000_SUCCESS; | 5441 | return E1000_SUCCESS; |
4937 | } | 5442 | } |
4938 | 5443 | ||
@@ -5047,7 +5552,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, | |||
5047 | if(ret_val) | 5552 | if(ret_val) |
5048 | return ret_val; | 5553 | return ret_val; |
5049 | 5554 | ||
5050 | msec_delay(20); | 5555 | msec_delay_irq(20); |
5051 | 5556 | ||
5052 | ret_val = e1000_write_phy_reg(hw, 0x0000, | 5557 | ret_val = e1000_write_phy_reg(hw, 0x0000, |
5053 | IGP01E1000_IEEE_FORCE_GIGA); | 5558 | IGP01E1000_IEEE_FORCE_GIGA); |
@@ -5071,7 +5576,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, | |||
5071 | if(ret_val) | 5576 | if(ret_val) |
5072 | return ret_val; | 5577 | return ret_val; |
5073 | 5578 | ||
5074 | msec_delay(20); | 5579 | msec_delay_irq(20); |
5075 | 5580 | ||
5076 | /* Now enable the transmitter */ | 5581 | /* Now enable the transmitter */ |
5077 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 5582 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
@@ -5096,7 +5601,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, | |||
5096 | if(ret_val) | 5601 | if(ret_val) |
5097 | return ret_val; | 5602 | return ret_val; |
5098 | 5603 | ||
5099 | msec_delay(20); | 5604 | msec_delay_irq(20); |
5100 | 5605 | ||
5101 | ret_val = e1000_write_phy_reg(hw, 0x0000, | 5606 | ret_val = e1000_write_phy_reg(hw, 0x0000, |
5102 | IGP01E1000_IEEE_FORCE_GIGA); | 5607 | IGP01E1000_IEEE_FORCE_GIGA); |
@@ -5112,7 +5617,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, | |||
5112 | if(ret_val) | 5617 | if(ret_val) |
5113 | return ret_val; | 5618 | return ret_val; |
5114 | 5619 | ||
5115 | msec_delay(20); | 5620 | msec_delay_irq(20); |
5116 | 5621 | ||
5117 | /* Now enable the transmitter */ | 5622 | /* Now enable the transmitter */ |
5118 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 5623 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
@@ -5187,22 +5692,36 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw, | |||
5187 | uint16_t phy_data; | 5692 | uint16_t phy_data; |
5188 | DEBUGFUNC("e1000_set_d3_lplu_state"); | 5693 | DEBUGFUNC("e1000_set_d3_lplu_state"); |
5189 | 5694 | ||
5190 | if(!((hw->mac_type == e1000_82541_rev_2) || | 5695 | if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2) |
5191 | (hw->mac_type == e1000_82547_rev_2))) | ||
5192 | return E1000_SUCCESS; | 5696 | return E1000_SUCCESS; |
5193 | 5697 | ||
5194 | /* During driver activity LPLU should not be used or it will attain link | 5698 | /* During driver activity LPLU should not be used or it will attain link |
5195 | * from the lowest speeds starting from 10Mbps. The capability is used for | 5699 | * from the lowest speeds starting from 10Mbps. The capability is used for |
5196 | * Dx transitions and states */ | 5700 | * Dx transitions and states */ |
5197 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); | 5701 | if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { |
5198 | if(ret_val) | 5702 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); |
5199 | return ret_val; | ||
5200 | |||
5201 | if(!active) { | ||
5202 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; | ||
5203 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | ||
5204 | if(ret_val) | 5703 | if(ret_val) |
5205 | return ret_val; | 5704 | return ret_val; |
5705 | } else { | ||
5706 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | ||
5707 | if(ret_val) | ||
5708 | return ret_val; | ||
5709 | } | ||
5710 | |||
5711 | if(!active) { | ||
5712 | if(hw->mac_type == e1000_82541_rev_2 || | ||
5713 | hw->mac_type == e1000_82547_rev_2) { | ||
5714 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; | ||
5715 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | ||
5716 | if(ret_val) | ||
5717 | return ret_val; | ||
5718 | } else { | ||
5719 | phy_data &= ~IGP02E1000_PM_D3_LPLU; | ||
5720 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | ||
5721 | phy_data); | ||
5722 | if (ret_val) | ||
5723 | return ret_val; | ||
5724 | } | ||
5206 | 5725 | ||
5207 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | 5726 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
5208 | * Dx states where the power conservation is most important. During | 5727 | * Dx states where the power conservation is most important. During |
@@ -5236,11 +5755,105 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw, | |||
5236 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || | 5755 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || |
5237 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { | 5756 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { |
5238 | 5757 | ||
5239 | phy_data |= IGP01E1000_GMII_FLEX_SPD; | 5758 | if(hw->mac_type == e1000_82541_rev_2 || |
5240 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | 5759 | hw->mac_type == e1000_82547_rev_2) { |
5760 | phy_data |= IGP01E1000_GMII_FLEX_SPD; | ||
5761 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | ||
5762 | if(ret_val) | ||
5763 | return ret_val; | ||
5764 | } else { | ||
5765 | phy_data |= IGP02E1000_PM_D3_LPLU; | ||
5766 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | ||
5767 | phy_data); | ||
5768 | if (ret_val) | ||
5769 | return ret_val; | ||
5770 | } | ||
5771 | |||
5772 | /* When LPLU is enabled we should disable SmartSpeed */ | ||
5773 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | ||
5774 | if(ret_val) | ||
5775 | return ret_val; | ||
5776 | |||
5777 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
5778 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); | ||
5241 | if(ret_val) | 5779 | if(ret_val) |
5242 | return ret_val; | 5780 | return ret_val; |
5243 | 5781 | ||
5782 | } | ||
5783 | return E1000_SUCCESS; | ||
5784 | } | ||
5785 | |||
5786 | /***************************************************************************** | ||
5787 | * | ||
5788 | * This function sets the lplu d0 state according to the active flag. When | ||
5789 | * activating lplu this function also disables smart speed and vise versa. | ||
5790 | * lplu will not be activated unless the device autonegotiation advertisment | ||
5791 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | ||
5792 | * hw: Struct containing variables accessed by shared code | ||
5793 | * active - true to enable lplu false to disable lplu. | ||
5794 | * | ||
5795 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | ||
5796 | * E1000_SUCCESS at any other case. | ||
5797 | * | ||
5798 | ****************************************************************************/ | ||
5799 | |||
5800 | int32_t | ||
5801 | e1000_set_d0_lplu_state(struct e1000_hw *hw, | ||
5802 | boolean_t active) | ||
5803 | { | ||
5804 | int32_t ret_val; | ||
5805 | uint16_t phy_data; | ||
5806 | DEBUGFUNC("e1000_set_d0_lplu_state"); | ||
5807 | |||
5808 | if(hw->mac_type <= e1000_82547_rev_2) | ||
5809 | return E1000_SUCCESS; | ||
5810 | |||
5811 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | ||
5812 | if(ret_val) | ||
5813 | return ret_val; | ||
5814 | |||
5815 | if (!active) { | ||
5816 | phy_data &= ~IGP02E1000_PM_D0_LPLU; | ||
5817 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | ||
5818 | if (ret_val) | ||
5819 | return ret_val; | ||
5820 | |||
5821 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | ||
5822 | * Dx states where the power conservation is most important. During | ||
5823 | * driver activity we should enable SmartSpeed, so performance is | ||
5824 | * maintained. */ | ||
5825 | if (hw->smart_speed == e1000_smart_speed_on) { | ||
5826 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5827 | &phy_data); | ||
5828 | if(ret_val) | ||
5829 | return ret_val; | ||
5830 | |||
5831 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
5832 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5833 | phy_data); | ||
5834 | if(ret_val) | ||
5835 | return ret_val; | ||
5836 | } else if (hw->smart_speed == e1000_smart_speed_off) { | ||
5837 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5838 | &phy_data); | ||
5839 | if (ret_val) | ||
5840 | return ret_val; | ||
5841 | |||
5842 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
5843 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5844 | phy_data); | ||
5845 | if(ret_val) | ||
5846 | return ret_val; | ||
5847 | } | ||
5848 | |||
5849 | |||
5850 | } else { | ||
5851 | |||
5852 | phy_data |= IGP02E1000_PM_D0_LPLU; | ||
5853 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | ||
5854 | if (ret_val) | ||
5855 | return ret_val; | ||
5856 | |||
5244 | /* When LPLU is enabled we should disable SmartSpeed */ | 5857 | /* When LPLU is enabled we should disable SmartSpeed */ |
5245 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | 5858 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
5246 | if(ret_val) | 5859 | if(ret_val) |
@@ -5318,6 +5931,338 @@ e1000_set_vco_speed(struct e1000_hw *hw) | |||
5318 | return E1000_SUCCESS; | 5931 | return E1000_SUCCESS; |
5319 | } | 5932 | } |
5320 | 5933 | ||
5934 | |||
5935 | /***************************************************************************** | ||
5936 | * This function reads the cookie from ARC ram. | ||
5937 | * | ||
5938 | * returns: - E1000_SUCCESS . | ||
5939 | ****************************************************************************/ | ||
5940 | int32_t | ||
5941 | e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer) | ||
5942 | { | ||
5943 | uint8_t i; | ||
5944 | uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET; | ||
5945 | uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH; | ||
5946 | |||
5947 | length = (length >> 2); | ||
5948 | offset = (offset >> 2); | ||
5949 | |||
5950 | for (i = 0; i < length; i++) { | ||
5951 | *((uint32_t *) buffer + i) = | ||
5952 | E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i); | ||
5953 | } | ||
5954 | return E1000_SUCCESS; | ||
5955 | } | ||
5956 | |||
5957 | |||
5958 | /***************************************************************************** | ||
5959 | * This function checks whether the HOST IF is enabled for command operaton | ||
5960 | * and also checks whether the previous command is completed. | ||
5961 | * It busy waits in case of previous command is not completed. | ||
5962 | * | ||
5963 | * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or | ||
5964 | * timeout | ||
5965 | * - E1000_SUCCESS for success. | ||
5966 | ****************************************************************************/ | ||
5967 | int32_t | ||
5968 | e1000_mng_enable_host_if(struct e1000_hw * hw) | ||
5969 | { | ||
5970 | uint32_t hicr; | ||
5971 | uint8_t i; | ||
5972 | |||
5973 | /* Check that the host interface is enabled. */ | ||
5974 | hicr = E1000_READ_REG(hw, HICR); | ||
5975 | if ((hicr & E1000_HICR_EN) == 0) { | ||
5976 | DEBUGOUT("E1000_HOST_EN bit disabled.\n"); | ||
5977 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
5978 | } | ||
5979 | /* check the previous command is completed */ | ||
5980 | for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { | ||
5981 | hicr = E1000_READ_REG(hw, HICR); | ||
5982 | if (!(hicr & E1000_HICR_C)) | ||
5983 | break; | ||
5984 | msec_delay_irq(1); | ||
5985 | } | ||
5986 | |||
5987 | if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { | ||
5988 | DEBUGOUT("Previous command timeout failed .\n"); | ||
5989 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
5990 | } | ||
5991 | return E1000_SUCCESS; | ||
5992 | } | ||
5993 | |||
5994 | /***************************************************************************** | ||
5995 | * This function writes the buffer content at the offset given on the host if. | ||
5996 | * It also does alignment considerations to do the writes in most efficient way. | ||
5997 | * Also fills up the sum of the buffer in *buffer parameter. | ||
5998 | * | ||
5999 | * returns - E1000_SUCCESS for success. | ||
6000 | ****************************************************************************/ | ||
6001 | int32_t | ||
6002 | e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer, | ||
6003 | uint16_t length, uint16_t offset, uint8_t *sum) | ||
6004 | { | ||
6005 | uint8_t *tmp; | ||
6006 | uint8_t *bufptr = buffer; | ||
6007 | uint32_t data; | ||
6008 | uint16_t remaining, i, j, prev_bytes; | ||
6009 | |||
6010 | /* sum = only sum of the data and it is not checksum */ | ||
6011 | |||
6012 | if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) { | ||
6013 | return -E1000_ERR_PARAM; | ||
6014 | } | ||
6015 | |||
6016 | tmp = (uint8_t *)&data; | ||
6017 | prev_bytes = offset & 0x3; | ||
6018 | offset &= 0xFFFC; | ||
6019 | offset >>= 2; | ||
6020 | |||
6021 | if (prev_bytes) { | ||
6022 | data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset); | ||
6023 | for (j = prev_bytes; j < sizeof(uint32_t); j++) { | ||
6024 | *(tmp + j) = *bufptr++; | ||
6025 | *sum += *(tmp + j); | ||
6026 | } | ||
6027 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data); | ||
6028 | length -= j - prev_bytes; | ||
6029 | offset++; | ||
6030 | } | ||
6031 | |||
6032 | remaining = length & 0x3; | ||
6033 | length -= remaining; | ||
6034 | |||
6035 | /* Calculate length in DWORDs */ | ||
6036 | length >>= 2; | ||
6037 | |||
6038 | /* The device driver writes the relevant command block into the | ||
6039 | * ram area. */ | ||
6040 | for (i = 0; i < length; i++) { | ||
6041 | for (j = 0; j < sizeof(uint32_t); j++) { | ||
6042 | *(tmp + j) = *bufptr++; | ||
6043 | *sum += *(tmp + j); | ||
6044 | } | ||
6045 | |||
6046 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); | ||
6047 | } | ||
6048 | if (remaining) { | ||
6049 | for (j = 0; j < sizeof(uint32_t); j++) { | ||
6050 | if (j < remaining) | ||
6051 | *(tmp + j) = *bufptr++; | ||
6052 | else | ||
6053 | *(tmp + j) = 0; | ||
6054 | |||
6055 | *sum += *(tmp + j); | ||
6056 | } | ||
6057 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); | ||
6058 | } | ||
6059 | |||
6060 | return E1000_SUCCESS; | ||
6061 | } | ||
6062 | |||
6063 | |||
6064 | /***************************************************************************** | ||
6065 | * This function writes the command header after does the checksum calculation. | ||
6066 | * | ||
6067 | * returns - E1000_SUCCESS for success. | ||
6068 | ****************************************************************************/ | ||
6069 | int32_t | ||
6070 | e1000_mng_write_cmd_header(struct e1000_hw * hw, | ||
6071 | struct e1000_host_mng_command_header * hdr) | ||
6072 | { | ||
6073 | uint16_t i; | ||
6074 | uint8_t sum; | ||
6075 | uint8_t *buffer; | ||
6076 | |||
6077 | /* Write the whole command header structure which includes sum of | ||
6078 | * the buffer */ | ||
6079 | |||
6080 | uint16_t length = sizeof(struct e1000_host_mng_command_header); | ||
6081 | |||
6082 | sum = hdr->checksum; | ||
6083 | hdr->checksum = 0; | ||
6084 | |||
6085 | buffer = (uint8_t *) hdr; | ||
6086 | i = length; | ||
6087 | while(i--) | ||
6088 | sum += buffer[i]; | ||
6089 | |||
6090 | hdr->checksum = 0 - sum; | ||
6091 | |||
6092 | length >>= 2; | ||
6093 | /* The device driver writes the relevant command block into the ram area. */ | ||
6094 | for (i = 0; i < length; i++) | ||
6095 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i)); | ||
6096 | |||
6097 | return E1000_SUCCESS; | ||
6098 | } | ||
6099 | |||
6100 | |||
6101 | /***************************************************************************** | ||
6102 | * This function indicates to ARC that a new command is pending which completes | ||
6103 | * one write operation by the driver. | ||
6104 | * | ||
6105 | * returns - E1000_SUCCESS for success. | ||
6106 | ****************************************************************************/ | ||
6107 | int32_t | ||
6108 | e1000_mng_write_commit( | ||
6109 | struct e1000_hw * hw) | ||
6110 | { | ||
6111 | uint32_t hicr; | ||
6112 | |||
6113 | hicr = E1000_READ_REG(hw, HICR); | ||
6114 | /* Setting this bit tells the ARC that a new command is pending. */ | ||
6115 | E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C); | ||
6116 | |||
6117 | return E1000_SUCCESS; | ||
6118 | } | ||
6119 | |||
6120 | |||
6121 | /***************************************************************************** | ||
6122 | * This function checks the mode of the firmware. | ||
6123 | * | ||
6124 | * returns - TRUE when the mode is IAMT or FALSE. | ||
6125 | ****************************************************************************/ | ||
6126 | boolean_t | ||
6127 | e1000_check_mng_mode( | ||
6128 | struct e1000_hw *hw) | ||
6129 | { | ||
6130 | uint32_t fwsm; | ||
6131 | |||
6132 | fwsm = E1000_READ_REG(hw, FWSM); | ||
6133 | |||
6134 | if((fwsm & E1000_FWSM_MODE_MASK) == | ||
6135 | (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | ||
6136 | return TRUE; | ||
6137 | |||
6138 | return FALSE; | ||
6139 | } | ||
6140 | |||
6141 | |||
6142 | /***************************************************************************** | ||
6143 | * This function writes the dhcp info . | ||
6144 | ****************************************************************************/ | ||
6145 | int32_t | ||
6146 | e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer, | ||
6147 | uint16_t length) | ||
6148 | { | ||
6149 | int32_t ret_val; | ||
6150 | struct e1000_host_mng_command_header hdr; | ||
6151 | |||
6152 | hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; | ||
6153 | hdr.command_length = length; | ||
6154 | hdr.reserved1 = 0; | ||
6155 | hdr.reserved2 = 0; | ||
6156 | hdr.checksum = 0; | ||
6157 | |||
6158 | ret_val = e1000_mng_enable_host_if(hw); | ||
6159 | if (ret_val == E1000_SUCCESS) { | ||
6160 | ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr), | ||
6161 | &(hdr.checksum)); | ||
6162 | if (ret_val == E1000_SUCCESS) { | ||
6163 | ret_val = e1000_mng_write_cmd_header(hw, &hdr); | ||
6164 | if (ret_val == E1000_SUCCESS) | ||
6165 | ret_val = e1000_mng_write_commit(hw); | ||
6166 | } | ||
6167 | } | ||
6168 | return ret_val; | ||
6169 | } | ||
6170 | |||
6171 | |||
6172 | /***************************************************************************** | ||
6173 | * This function calculates the checksum. | ||
6174 | * | ||
6175 | * returns - checksum of buffer contents. | ||
6176 | ****************************************************************************/ | ||
6177 | uint8_t | ||
6178 | e1000_calculate_mng_checksum(char *buffer, uint32_t length) | ||
6179 | { | ||
6180 | uint8_t sum = 0; | ||
6181 | uint32_t i; | ||
6182 | |||
6183 | if (!buffer) | ||
6184 | return 0; | ||
6185 | |||
6186 | for (i=0; i < length; i++) | ||
6187 | sum += buffer[i]; | ||
6188 | |||
6189 | return (uint8_t) (0 - sum); | ||
6190 | } | ||
6191 | |||
6192 | /***************************************************************************** | ||
6193 | * This function checks whether tx pkt filtering needs to be enabled or not. | ||
6194 | * | ||
6195 | * returns - TRUE for packet filtering or FALSE. | ||
6196 | ****************************************************************************/ | ||
6197 | boolean_t | ||
6198 | e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) | ||
6199 | { | ||
6200 | /* called in init as well as watchdog timer functions */ | ||
6201 | |||
6202 | int32_t ret_val, checksum; | ||
6203 | boolean_t tx_filter = FALSE; | ||
6204 | struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie); | ||
6205 | uint8_t *buffer = (uint8_t *) &(hw->mng_cookie); | ||
6206 | |||
6207 | if (e1000_check_mng_mode(hw)) { | ||
6208 | ret_val = e1000_mng_enable_host_if(hw); | ||
6209 | if (ret_val == E1000_SUCCESS) { | ||
6210 | ret_val = e1000_host_if_read_cookie(hw, buffer); | ||
6211 | if (ret_val == E1000_SUCCESS) { | ||
6212 | checksum = hdr->checksum; | ||
6213 | hdr->checksum = 0; | ||
6214 | if ((hdr->signature == E1000_IAMT_SIGNATURE) && | ||
6215 | checksum == e1000_calculate_mng_checksum((char *)buffer, | ||
6216 | E1000_MNG_DHCP_COOKIE_LENGTH)) { | ||
6217 | if (hdr->status & | ||
6218 | E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT) | ||
6219 | tx_filter = TRUE; | ||
6220 | } else | ||
6221 | tx_filter = TRUE; | ||
6222 | } else | ||
6223 | tx_filter = TRUE; | ||
6224 | } | ||
6225 | } | ||
6226 | |||
6227 | hw->tx_pkt_filtering = tx_filter; | ||
6228 | return tx_filter; | ||
6229 | } | ||
6230 | |||
6231 | /****************************************************************************** | ||
6232 | * Verifies the hardware needs to allow ARPs to be processed by the host | ||
6233 | * | ||
6234 | * hw - Struct containing variables accessed by shared code | ||
6235 | * | ||
6236 | * returns: - TRUE/FALSE | ||
6237 | * | ||
6238 | *****************************************************************************/ | ||
6239 | uint32_t | ||
6240 | e1000_enable_mng_pass_thru(struct e1000_hw *hw) | ||
6241 | { | ||
6242 | uint32_t manc; | ||
6243 | uint32_t fwsm, factps; | ||
6244 | |||
6245 | if (hw->asf_firmware_present) { | ||
6246 | manc = E1000_READ_REG(hw, MANC); | ||
6247 | |||
6248 | if (!(manc & E1000_MANC_RCV_TCO_EN) || | ||
6249 | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) | ||
6250 | return FALSE; | ||
6251 | if (e1000_arc_subsystem_valid(hw) == TRUE) { | ||
6252 | fwsm = E1000_READ_REG(hw, FWSM); | ||
6253 | factps = E1000_READ_REG(hw, FACTPS); | ||
6254 | |||
6255 | if (((fwsm & E1000_FWSM_MODE_MASK) == | ||
6256 | (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) && | ||
6257 | (factps & E1000_FACTPS_MNGCG)) | ||
6258 | return TRUE; | ||
6259 | } else | ||
6260 | if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) | ||
6261 | return TRUE; | ||
6262 | } | ||
6263 | return FALSE; | ||
6264 | } | ||
6265 | |||
5321 | static int32_t | 6266 | static int32_t |
5322 | e1000_polarity_reversal_workaround(struct e1000_hw *hw) | 6267 | e1000_polarity_reversal_workaround(struct e1000_hw *hw) |
5323 | { | 6268 | { |
@@ -5403,3 +6348,265 @@ e1000_polarity_reversal_workaround(struct e1000_hw *hw) | |||
5403 | return E1000_SUCCESS; | 6348 | return E1000_SUCCESS; |
5404 | } | 6349 | } |
5405 | 6350 | ||
6351 | /*************************************************************************** | ||
6352 | * | ||
6353 | * Disables PCI-Express master access. | ||
6354 | * | ||
6355 | * hw: Struct containing variables accessed by shared code | ||
6356 | * | ||
6357 | * returns: - none. | ||
6358 | * | ||
6359 | ***************************************************************************/ | ||
6360 | void | ||
6361 | e1000_set_pci_express_master_disable(struct e1000_hw *hw) | ||
6362 | { | ||
6363 | uint32_t ctrl; | ||
6364 | |||
6365 | DEBUGFUNC("e1000_set_pci_express_master_disable"); | ||
6366 | |||
6367 | if (hw->bus_type != e1000_bus_type_pci_express) | ||
6368 | return; | ||
6369 | |||
6370 | ctrl = E1000_READ_REG(hw, CTRL); | ||
6371 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | ||
6372 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
6373 | } | ||
6374 | |||
6375 | /*************************************************************************** | ||
6376 | * | ||
6377 | * Enables PCI-Express master access. | ||
6378 | * | ||
6379 | * hw: Struct containing variables accessed by shared code | ||
6380 | * | ||
6381 | * returns: - none. | ||
6382 | * | ||
6383 | ***************************************************************************/ | ||
6384 | void | ||
6385 | e1000_enable_pciex_master(struct e1000_hw *hw) | ||
6386 | { | ||
6387 | uint32_t ctrl; | ||
6388 | |||
6389 | DEBUGFUNC("e1000_enable_pciex_master"); | ||
6390 | |||
6391 | if (hw->bus_type != e1000_bus_type_pci_express) | ||
6392 | return; | ||
6393 | |||
6394 | ctrl = E1000_READ_REG(hw, CTRL); | ||
6395 | ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE; | ||
6396 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
6397 | } | ||
6398 | |||
6399 | /******************************************************************************* | ||
6400 | * | ||
6401 | * Disables PCI-Express master access and verifies there are no pending requests | ||
6402 | * | ||
6403 | * hw: Struct containing variables accessed by shared code | ||
6404 | * | ||
6405 | * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't | ||
6406 | * caused the master requests to be disabled. | ||
6407 | * E1000_SUCCESS master requests disabled. | ||
6408 | * | ||
6409 | ******************************************************************************/ | ||
6410 | int32_t | ||
6411 | e1000_disable_pciex_master(struct e1000_hw *hw) | ||
6412 | { | ||
6413 | int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */ | ||
6414 | |||
6415 | DEBUGFUNC("e1000_disable_pciex_master"); | ||
6416 | |||
6417 | if (hw->bus_type != e1000_bus_type_pci_express) | ||
6418 | return E1000_SUCCESS; | ||
6419 | |||
6420 | e1000_set_pci_express_master_disable(hw); | ||
6421 | |||
6422 | while(timeout) { | ||
6423 | if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) | ||
6424 | break; | ||
6425 | else | ||
6426 | udelay(100); | ||
6427 | timeout--; | ||
6428 | } | ||
6429 | |||
6430 | if(!timeout) { | ||
6431 | DEBUGOUT("Master requests are pending.\n"); | ||
6432 | return -E1000_ERR_MASTER_REQUESTS_PENDING; | ||
6433 | } | ||
6434 | |||
6435 | return E1000_SUCCESS; | ||
6436 | } | ||
6437 | |||
6438 | /******************************************************************************* | ||
6439 | * | ||
6440 | * Check for EEPROM Auto Read bit done. | ||
6441 | * | ||
6442 | * hw: Struct containing variables accessed by shared code | ||
6443 | * | ||
6444 | * returns: - E1000_ERR_RESET if fail to reset MAC | ||
6445 | * E1000_SUCCESS at any other case. | ||
6446 | * | ||
6447 | ******************************************************************************/ | ||
6448 | int32_t | ||
6449 | e1000_get_auto_rd_done(struct e1000_hw *hw) | ||
6450 | { | ||
6451 | int32_t timeout = AUTO_READ_DONE_TIMEOUT; | ||
6452 | |||
6453 | DEBUGFUNC("e1000_get_auto_rd_done"); | ||
6454 | |||
6455 | switch (hw->mac_type) { | ||
6456 | default: | ||
6457 | msec_delay(5); | ||
6458 | break; | ||
6459 | case e1000_82573: | ||
6460 | while(timeout) { | ||
6461 | if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break; | ||
6462 | else msec_delay(1); | ||
6463 | timeout--; | ||
6464 | } | ||
6465 | |||
6466 | if(!timeout) { | ||
6467 | DEBUGOUT("Auto read by HW from EEPROM has not completed.\n"); | ||
6468 | return -E1000_ERR_RESET; | ||
6469 | } | ||
6470 | break; | ||
6471 | } | ||
6472 | |||
6473 | return E1000_SUCCESS; | ||
6474 | } | ||
6475 | |||
6476 | /*************************************************************************** | ||
6477 | * Checks if the PHY configuration is done | ||
6478 | * | ||
6479 | * hw: Struct containing variables accessed by shared code | ||
6480 | * | ||
6481 | * returns: - E1000_ERR_RESET if fail to reset MAC | ||
6482 | * E1000_SUCCESS at any other case. | ||
6483 | * | ||
6484 | ***************************************************************************/ | ||
6485 | int32_t | ||
6486 | e1000_get_phy_cfg_done(struct e1000_hw *hw) | ||
6487 | { | ||
6488 | DEBUGFUNC("e1000_get_phy_cfg_done"); | ||
6489 | |||
6490 | /* Simply wait for 10ms */ | ||
6491 | msec_delay(10); | ||
6492 | |||
6493 | return E1000_SUCCESS; | ||
6494 | } | ||
6495 | |||
6496 | /*************************************************************************** | ||
6497 | * | ||
6498 | * Using the combination of SMBI and SWESMBI semaphore bits when resetting | ||
6499 | * adapter or Eeprom access. | ||
6500 | * | ||
6501 | * hw: Struct containing variables accessed by shared code | ||
6502 | * | ||
6503 | * returns: - E1000_ERR_EEPROM if fail to access EEPROM. | ||
6504 | * E1000_SUCCESS at any other case. | ||
6505 | * | ||
6506 | ***************************************************************************/ | ||
6507 | int32_t | ||
6508 | e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) | ||
6509 | { | ||
6510 | int32_t timeout; | ||
6511 | uint32_t swsm; | ||
6512 | |||
6513 | DEBUGFUNC("e1000_get_hw_eeprom_semaphore"); | ||
6514 | |||
6515 | if(!hw->eeprom_semaphore_present) | ||
6516 | return E1000_SUCCESS; | ||
6517 | |||
6518 | |||
6519 | /* Get the FW semaphore. */ | ||
6520 | timeout = hw->eeprom.word_size + 1; | ||
6521 | while(timeout) { | ||
6522 | swsm = E1000_READ_REG(hw, SWSM); | ||
6523 | swsm |= E1000_SWSM_SWESMBI; | ||
6524 | E1000_WRITE_REG(hw, SWSM, swsm); | ||
6525 | /* if we managed to set the bit we got the semaphore. */ | ||
6526 | swsm = E1000_READ_REG(hw, SWSM); | ||
6527 | if(swsm & E1000_SWSM_SWESMBI) | ||
6528 | break; | ||
6529 | |||
6530 | udelay(50); | ||
6531 | timeout--; | ||
6532 | } | ||
6533 | |||
6534 | if(!timeout) { | ||
6535 | /* Release semaphores */ | ||
6536 | e1000_put_hw_eeprom_semaphore(hw); | ||
6537 | DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n"); | ||
6538 | return -E1000_ERR_EEPROM; | ||
6539 | } | ||
6540 | |||
6541 | return E1000_SUCCESS; | ||
6542 | } | ||
6543 | |||
6544 | /*************************************************************************** | ||
6545 | * This function clears HW semaphore bits. | ||
6546 | * | ||
6547 | * hw: Struct containing variables accessed by shared code | ||
6548 | * | ||
6549 | * returns: - None. | ||
6550 | * | ||
6551 | ***************************************************************************/ | ||
6552 | void | ||
6553 | e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) | ||
6554 | { | ||
6555 | uint32_t swsm; | ||
6556 | |||
6557 | DEBUGFUNC("e1000_put_hw_eeprom_semaphore"); | ||
6558 | |||
6559 | if(!hw->eeprom_semaphore_present) | ||
6560 | return; | ||
6561 | |||
6562 | swsm = E1000_READ_REG(hw, SWSM); | ||
6563 | /* Release both semaphores. */ | ||
6564 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | ||
6565 | E1000_WRITE_REG(hw, SWSM, swsm); | ||
6566 | } | ||
6567 | |||
6568 | /****************************************************************************** | ||
6569 | * Checks if PHY reset is blocked due to SOL/IDER session, for example. | ||
6570 | * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to | ||
6571 | * the caller to figure out how to deal with it. | ||
6572 | * | ||
6573 | * hw - Struct containing variables accessed by shared code | ||
6574 | * | ||
6575 | * returns: - E1000_BLK_PHY_RESET | ||
6576 | * E1000_SUCCESS | ||
6577 | * | ||
6578 | *****************************************************************************/ | ||
6579 | int32_t | ||
6580 | e1000_check_phy_reset_block(struct e1000_hw *hw) | ||
6581 | { | ||
6582 | uint32_t manc = 0; | ||
6583 | if(hw->mac_type > e1000_82547_rev_2) | ||
6584 | manc = E1000_READ_REG(hw, MANC); | ||
6585 | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? | ||
6586 | E1000_BLK_PHY_RESET : E1000_SUCCESS; | ||
6587 | } | ||
6588 | |||
6589 | uint8_t | ||
6590 | e1000_arc_subsystem_valid(struct e1000_hw *hw) | ||
6591 | { | ||
6592 | uint32_t fwsm; | ||
6593 | |||
6594 | /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC | ||
6595 | * may not be provided a DMA clock when no manageability features are | ||
6596 | * enabled. We do not want to perform any reads/writes to these registers | ||
6597 | * if this is the case. We read FWSM to determine the manageability mode. | ||
6598 | */ | ||
6599 | switch (hw->mac_type) { | ||
6600 | case e1000_82573: | ||
6601 | fwsm = E1000_READ_REG(hw, FWSM); | ||
6602 | if((fwsm & E1000_FWSM_MODE_MASK) != 0) | ||
6603 | return TRUE; | ||
6604 | break; | ||
6605 | default: | ||
6606 | break; | ||
6607 | } | ||
6608 | return FALSE; | ||
6609 | } | ||
6610 | |||
6611 | |||
6612 | |||
diff --git a/drivers/net/e1000/e1000_hw.h b/drivers/net/e1000/e1000_hw.h index f397e637a3c5..a0263ee96c6b 100644 --- a/drivers/net/e1000/e1000_hw.h +++ b/drivers/net/e1000/e1000_hw.h | |||
@@ -1,7 +1,7 @@ | |||
1 | /******************************************************************************* | 1 | /******************************************************************************* |
2 | 2 | ||
3 | 3 | ||
4 | Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. | 4 | Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. |
5 | 5 | ||
6 | This program is free software; you can redistribute it and/or modify it | 6 | This program is free software; you can redistribute it and/or modify it |
7 | under the terms of the GNU General Public License as published by the Free | 7 | under the terms of the GNU General Public License as published by the Free |
@@ -57,6 +57,7 @@ typedef enum { | |||
57 | e1000_82541_rev_2, | 57 | e1000_82541_rev_2, |
58 | e1000_82547, | 58 | e1000_82547, |
59 | e1000_82547_rev_2, | 59 | e1000_82547_rev_2, |
60 | e1000_82573, | ||
60 | e1000_num_macs | 61 | e1000_num_macs |
61 | } e1000_mac_type; | 62 | } e1000_mac_type; |
62 | 63 | ||
@@ -64,6 +65,7 @@ typedef enum { | |||
64 | e1000_eeprom_uninitialized = 0, | 65 | e1000_eeprom_uninitialized = 0, |
65 | e1000_eeprom_spi, | 66 | e1000_eeprom_spi, |
66 | e1000_eeprom_microwire, | 67 | e1000_eeprom_microwire, |
68 | e1000_eeprom_flash, | ||
67 | e1000_num_eeprom_types | 69 | e1000_num_eeprom_types |
68 | } e1000_eeprom_type; | 70 | } e1000_eeprom_type; |
69 | 71 | ||
@@ -96,6 +98,7 @@ typedef enum { | |||
96 | e1000_bus_type_unknown = 0, | 98 | e1000_bus_type_unknown = 0, |
97 | e1000_bus_type_pci, | 99 | e1000_bus_type_pci, |
98 | e1000_bus_type_pcix, | 100 | e1000_bus_type_pcix, |
101 | e1000_bus_type_pci_express, | ||
99 | e1000_bus_type_reserved | 102 | e1000_bus_type_reserved |
100 | } e1000_bus_type; | 103 | } e1000_bus_type; |
101 | 104 | ||
@@ -107,6 +110,7 @@ typedef enum { | |||
107 | e1000_bus_speed_100, | 110 | e1000_bus_speed_100, |
108 | e1000_bus_speed_120, | 111 | e1000_bus_speed_120, |
109 | e1000_bus_speed_133, | 112 | e1000_bus_speed_133, |
113 | e1000_bus_speed_2500, | ||
110 | e1000_bus_speed_reserved | 114 | e1000_bus_speed_reserved |
111 | } e1000_bus_speed; | 115 | } e1000_bus_speed; |
112 | 116 | ||
@@ -115,6 +119,8 @@ typedef enum { | |||
115 | e1000_bus_width_unknown = 0, | 119 | e1000_bus_width_unknown = 0, |
116 | e1000_bus_width_32, | 120 | e1000_bus_width_32, |
117 | e1000_bus_width_64, | 121 | e1000_bus_width_64, |
122 | e1000_bus_width_pciex_1, | ||
123 | e1000_bus_width_pciex_4, | ||
118 | e1000_bus_width_reserved | 124 | e1000_bus_width_reserved |
119 | } e1000_bus_width; | 125 | } e1000_bus_width; |
120 | 126 | ||
@@ -196,6 +202,7 @@ typedef enum { | |||
196 | typedef enum { | 202 | typedef enum { |
197 | e1000_phy_m88 = 0, | 203 | e1000_phy_m88 = 0, |
198 | e1000_phy_igp, | 204 | e1000_phy_igp, |
205 | e1000_phy_igp_2, | ||
199 | e1000_phy_undefined = 0xFF | 206 | e1000_phy_undefined = 0xFF |
200 | } e1000_phy_type; | 207 | } e1000_phy_type; |
201 | 208 | ||
@@ -242,8 +249,19 @@ struct e1000_eeprom_info { | |||
242 | uint16_t address_bits; | 249 | uint16_t address_bits; |
243 | uint16_t delay_usec; | 250 | uint16_t delay_usec; |
244 | uint16_t page_size; | 251 | uint16_t page_size; |
252 | boolean_t use_eerd; | ||
253 | boolean_t use_eewr; | ||
245 | }; | 254 | }; |
246 | 255 | ||
256 | /* Flex ASF Information */ | ||
257 | #define E1000_HOST_IF_MAX_SIZE 2048 | ||
258 | |||
259 | typedef enum { | ||
260 | e1000_byte_align = 0, | ||
261 | e1000_word_align = 1, | ||
262 | e1000_dword_align = 2 | ||
263 | } e1000_align_type; | ||
264 | |||
247 | 265 | ||
248 | 266 | ||
249 | /* Error Codes */ | 267 | /* Error Codes */ |
@@ -254,11 +272,16 @@ struct e1000_eeprom_info { | |||
254 | #define E1000_ERR_PARAM 4 | 272 | #define E1000_ERR_PARAM 4 |
255 | #define E1000_ERR_MAC_TYPE 5 | 273 | #define E1000_ERR_MAC_TYPE 5 |
256 | #define E1000_ERR_PHY_TYPE 6 | 274 | #define E1000_ERR_PHY_TYPE 6 |
275 | #define E1000_ERR_RESET 9 | ||
276 | #define E1000_ERR_MASTER_REQUESTS_PENDING 10 | ||
277 | #define E1000_ERR_HOST_INTERFACE_COMMAND 11 | ||
278 | #define E1000_BLK_PHY_RESET 12 | ||
257 | 279 | ||
258 | /* Function prototypes */ | 280 | /* Function prototypes */ |
259 | /* Initialization */ | 281 | /* Initialization */ |
260 | int32_t e1000_reset_hw(struct e1000_hw *hw); | 282 | int32_t e1000_reset_hw(struct e1000_hw *hw); |
261 | int32_t e1000_init_hw(struct e1000_hw *hw); | 283 | int32_t e1000_init_hw(struct e1000_hw *hw); |
284 | int32_t e1000_id_led_init(struct e1000_hw * hw); | ||
262 | int32_t e1000_set_mac_type(struct e1000_hw *hw); | 285 | int32_t e1000_set_mac_type(struct e1000_hw *hw); |
263 | void e1000_set_media_type(struct e1000_hw *hw); | 286 | void e1000_set_media_type(struct e1000_hw *hw); |
264 | 287 | ||
@@ -275,7 +298,7 @@ int32_t e1000_force_mac_fc(struct e1000_hw *hw); | |||
275 | /* PHY */ | 298 | /* PHY */ |
276 | int32_t e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data); | 299 | int32_t e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data); |
277 | int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data); | 300 | int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data); |
278 | void e1000_phy_hw_reset(struct e1000_hw *hw); | 301 | int32_t e1000_phy_hw_reset(struct e1000_hw *hw); |
279 | int32_t e1000_phy_reset(struct e1000_hw *hw); | 302 | int32_t e1000_phy_reset(struct e1000_hw *hw); |
280 | int32_t e1000_detect_gig_phy(struct e1000_hw *hw); | 303 | int32_t e1000_detect_gig_phy(struct e1000_hw *hw); |
281 | int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); | 304 | int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); |
@@ -287,13 +310,86 @@ int32_t e1000_check_downshift(struct e1000_hw *hw); | |||
287 | int32_t e1000_validate_mdi_setting(struct e1000_hw *hw); | 310 | int32_t e1000_validate_mdi_setting(struct e1000_hw *hw); |
288 | 311 | ||
289 | /* EEPROM Functions */ | 312 | /* EEPROM Functions */ |
290 | void e1000_init_eeprom_params(struct e1000_hw *hw); | 313 | int32_t e1000_init_eeprom_params(struct e1000_hw *hw); |
314 | boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw); | ||
315 | int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); | ||
316 | int32_t e1000_write_eeprom_eewr(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); | ||
317 | int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd); | ||
318 | |||
319 | /* MNG HOST IF functions */ | ||
320 | uint32_t e1000_enable_mng_pass_thru(struct e1000_hw *hw); | ||
321 | |||
322 | #define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64 | ||
323 | #define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 /* Host Interface data length */ | ||
324 | |||
325 | #define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 /* Time in ms to process MNG command */ | ||
326 | #define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */ | ||
327 | #define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */ | ||
328 | #define E1000_MNG_IAMT_MODE 0x3 | ||
329 | #define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */ | ||
330 | |||
331 | #define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */ | ||
332 | #define E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT 0x2 /* DHCP parsing enabled */ | ||
333 | #define E1000_VFTA_ENTRY_SHIFT 0x5 | ||
334 | #define E1000_VFTA_ENTRY_MASK 0x7F | ||
335 | #define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F | ||
336 | |||
337 | struct e1000_host_mng_command_header { | ||
338 | uint8_t command_id; | ||
339 | uint8_t checksum; | ||
340 | uint16_t reserved1; | ||
341 | uint16_t reserved2; | ||
342 | uint16_t command_length; | ||
343 | }; | ||
344 | |||
345 | struct e1000_host_mng_command_info { | ||
346 | struct e1000_host_mng_command_header command_header; /* Command Head/Command Result Head has 4 bytes */ | ||
347 | uint8_t command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; /* Command data can length 0..0x658*/ | ||
348 | }; | ||
349 | #ifdef __BIG_ENDIAN | ||
350 | struct e1000_host_mng_dhcp_cookie{ | ||
351 | uint32_t signature; | ||
352 | uint16_t vlan_id; | ||
353 | uint8_t reserved0; | ||
354 | uint8_t status; | ||
355 | uint32_t reserved1; | ||
356 | uint8_t checksum; | ||
357 | uint8_t reserved3; | ||
358 | uint16_t reserved2; | ||
359 | }; | ||
360 | #else | ||
361 | struct e1000_host_mng_dhcp_cookie{ | ||
362 | uint32_t signature; | ||
363 | uint8_t status; | ||
364 | uint8_t reserved0; | ||
365 | uint16_t vlan_id; | ||
366 | uint32_t reserved1; | ||
367 | uint16_t reserved2; | ||
368 | uint8_t reserved3; | ||
369 | uint8_t checksum; | ||
370 | }; | ||
371 | #endif | ||
372 | |||
373 | int32_t e1000_mng_write_dhcp_info(struct e1000_hw *hw, uint8_t *buffer, | ||
374 | uint16_t length); | ||
375 | boolean_t e1000_check_mng_mode(struct e1000_hw *hw); | ||
376 | boolean_t e1000_enable_tx_pkt_filtering(struct e1000_hw *hw); | ||
377 | int32_t e1000_mng_enable_host_if(struct e1000_hw *hw); | ||
378 | int32_t e1000_mng_host_if_write(struct e1000_hw *hw, uint8_t *buffer, | ||
379 | uint16_t length, uint16_t offset, uint8_t *sum); | ||
380 | int32_t e1000_mng_write_cmd_header(struct e1000_hw* hw, | ||
381 | struct e1000_host_mng_command_header* hdr); | ||
382 | |||
383 | int32_t e1000_mng_write_commit(struct e1000_hw *hw); | ||
384 | |||
291 | int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data); | 385 | int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data); |
292 | int32_t e1000_validate_eeprom_checksum(struct e1000_hw *hw); | 386 | int32_t e1000_validate_eeprom_checksum(struct e1000_hw *hw); |
293 | int32_t e1000_update_eeprom_checksum(struct e1000_hw *hw); | 387 | int32_t e1000_update_eeprom_checksum(struct e1000_hw *hw); |
294 | int32_t e1000_write_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data); | 388 | int32_t e1000_write_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data); |
295 | int32_t e1000_read_part_num(struct e1000_hw *hw, uint32_t * part_num); | 389 | int32_t e1000_read_part_num(struct e1000_hw *hw, uint32_t * part_num); |
296 | int32_t e1000_read_mac_addr(struct e1000_hw * hw); | 390 | int32_t e1000_read_mac_addr(struct e1000_hw * hw); |
391 | int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask); | ||
392 | void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask); | ||
297 | 393 | ||
298 | /* Filters (multicast, vlan, receive) */ | 394 | /* Filters (multicast, vlan, receive) */ |
299 | void e1000_init_rx_addrs(struct e1000_hw *hw); | 395 | void e1000_init_rx_addrs(struct e1000_hw *hw); |
@@ -313,7 +409,6 @@ int32_t e1000_led_off(struct e1000_hw *hw); | |||
313 | /* Adaptive IFS Functions */ | 409 | /* Adaptive IFS Functions */ |
314 | 410 | ||
315 | /* Everything else */ | 411 | /* Everything else */ |
316 | uint32_t e1000_enable_mng_pass_thru(struct e1000_hw *hw); | ||
317 | void e1000_clear_hw_cntrs(struct e1000_hw *hw); | 412 | void e1000_clear_hw_cntrs(struct e1000_hw *hw); |
318 | void e1000_reset_adaptive(struct e1000_hw *hw); | 413 | void e1000_reset_adaptive(struct e1000_hw *hw); |
319 | void e1000_update_adaptive(struct e1000_hw *hw); | 414 | void e1000_update_adaptive(struct e1000_hw *hw); |
@@ -330,6 +425,19 @@ void e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value); | |||
330 | void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value); | 425 | void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value); |
331 | int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, boolean_t link_up); | 426 | int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, boolean_t link_up); |
332 | int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active); | 427 | int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active); |
428 | int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active); | ||
429 | void e1000_set_pci_express_master_disable(struct e1000_hw *hw); | ||
430 | void e1000_enable_pciex_master(struct e1000_hw *hw); | ||
431 | int32_t e1000_disable_pciex_master(struct e1000_hw *hw); | ||
432 | int32_t e1000_get_auto_rd_done(struct e1000_hw *hw); | ||
433 | int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw); | ||
434 | int32_t e1000_get_software_semaphore(struct e1000_hw *hw); | ||
435 | void e1000_release_software_semaphore(struct e1000_hw *hw); | ||
436 | int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); | ||
437 | int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw); | ||
438 | void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw); | ||
439 | int32_t e1000_commit_shadow_ram(struct e1000_hw *hw); | ||
440 | uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw); | ||
333 | 441 | ||
334 | #define E1000_READ_REG_IO(a, reg) \ | 442 | #define E1000_READ_REG_IO(a, reg) \ |
335 | e1000_read_reg_io((a), E1000_##reg) | 443 | e1000_read_reg_io((a), E1000_##reg) |
@@ -369,6 +477,10 @@ int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active); | |||
369 | #define E1000_DEV_ID_82546GB_SERDES 0x107B | 477 | #define E1000_DEV_ID_82546GB_SERDES 0x107B |
370 | #define E1000_DEV_ID_82546GB_PCIE 0x108A | 478 | #define E1000_DEV_ID_82546GB_PCIE 0x108A |
371 | #define E1000_DEV_ID_82547EI 0x1019 | 479 | #define E1000_DEV_ID_82547EI 0x1019 |
480 | #define E1000_DEV_ID_82573E 0x108B | ||
481 | #define E1000_DEV_ID_82573E_IAMT 0x108C | ||
482 | |||
483 | #define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 | ||
372 | 484 | ||
373 | #define NODE_ADDRESS_SIZE 6 | 485 | #define NODE_ADDRESS_SIZE 6 |
374 | #define ETH_LENGTH_OF_ADDRESS 6 | 486 | #define ETH_LENGTH_OF_ADDRESS 6 |
@@ -381,6 +493,7 @@ int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active); | |||
381 | #define E1000_REVISION_0 0 | 493 | #define E1000_REVISION_0 0 |
382 | #define E1000_REVISION_1 1 | 494 | #define E1000_REVISION_1 1 |
383 | #define E1000_REVISION_2 2 | 495 | #define E1000_REVISION_2 2 |
496 | #define E1000_REVISION_3 3 | ||
384 | 497 | ||
385 | #define SPEED_10 10 | 498 | #define SPEED_10 10 |
386 | #define SPEED_100 100 | 499 | #define SPEED_100 100 |
@@ -437,6 +550,7 @@ int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active); | |||
437 | E1000_IMS_RXSEQ | \ | 550 | E1000_IMS_RXSEQ | \ |
438 | E1000_IMS_LSC) | 551 | E1000_IMS_LSC) |
439 | 552 | ||
553 | |||
440 | /* Number of high/low register pairs in the RAR. The RAR (Receive Address | 554 | /* Number of high/low register pairs in the RAR. The RAR (Receive Address |
441 | * Registers) holds the directed and multicast addresses that we monitor. We | 555 | * Registers) holds the directed and multicast addresses that we monitor. We |
442 | * reserve one of these spots for our directed address, allowing us room for | 556 | * reserve one of these spots for our directed address, allowing us room for |
@@ -457,14 +571,74 @@ struct e1000_rx_desc { | |||
457 | uint16_t special; | 571 | uint16_t special; |
458 | }; | 572 | }; |
459 | 573 | ||
574 | /* Receive Descriptor - Extended */ | ||
575 | union e1000_rx_desc_extended { | ||
576 | struct { | ||
577 | uint64_t buffer_addr; | ||
578 | uint64_t reserved; | ||
579 | } read; | ||
580 | struct { | ||
581 | struct { | ||
582 | uint32_t mrq; /* Multiple Rx Queues */ | ||
583 | union { | ||
584 | uint32_t rss; /* RSS Hash */ | ||
585 | struct { | ||
586 | uint16_t ip_id; /* IP id */ | ||
587 | uint16_t csum; /* Packet Checksum */ | ||
588 | } csum_ip; | ||
589 | } hi_dword; | ||
590 | } lower; | ||
591 | struct { | ||
592 | uint32_t status_error; /* ext status/error */ | ||
593 | uint16_t length; | ||
594 | uint16_t vlan; /* VLAN tag */ | ||
595 | } upper; | ||
596 | } wb; /* writeback */ | ||
597 | }; | ||
598 | |||
599 | #define MAX_PS_BUFFERS 4 | ||
600 | /* Receive Descriptor - Packet Split */ | ||
601 | union e1000_rx_desc_packet_split { | ||
602 | struct { | ||
603 | /* one buffer for protocol header(s), three data buffers */ | ||
604 | uint64_t buffer_addr[MAX_PS_BUFFERS]; | ||
605 | } read; | ||
606 | struct { | ||
607 | struct { | ||
608 | uint32_t mrq; /* Multiple Rx Queues */ | ||
609 | union { | ||
610 | uint32_t rss; /* RSS Hash */ | ||
611 | struct { | ||
612 | uint16_t ip_id; /* IP id */ | ||
613 | uint16_t csum; /* Packet Checksum */ | ||
614 | } csum_ip; | ||
615 | } hi_dword; | ||
616 | } lower; | ||
617 | struct { | ||
618 | uint32_t status_error; /* ext status/error */ | ||
619 | uint16_t length0; /* length of buffer 0 */ | ||
620 | uint16_t vlan; /* VLAN tag */ | ||
621 | } middle; | ||
622 | struct { | ||
623 | uint16_t header_status; | ||
624 | uint16_t length[3]; /* length of buffers 1-3 */ | ||
625 | } upper; | ||
626 | uint64_t reserved; | ||
627 | } wb; /* writeback */ | ||
628 | }; | ||
629 | |||
460 | /* Receive Decriptor bit definitions */ | 630 | /* Receive Decriptor bit definitions */ |
461 | #define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ | 631 | #define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ |
462 | #define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ | 632 | #define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ |
463 | #define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ | 633 | #define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ |
464 | #define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ | 634 | #define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ |
635 | #define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum caculated */ | ||
465 | #define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ | 636 | #define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ |
466 | #define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ | 637 | #define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ |
467 | #define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ | 638 | #define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ |
639 | #define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */ | ||
640 | #define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */ | ||
641 | #define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */ | ||
468 | #define E1000_RXD_ERR_CE 0x01 /* CRC Error */ | 642 | #define E1000_RXD_ERR_CE 0x01 /* CRC Error */ |
469 | #define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ | 643 | #define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ |
470 | #define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ | 644 | #define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ |
@@ -474,9 +648,20 @@ struct e1000_rx_desc { | |||
474 | #define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ | 648 | #define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ |
475 | #define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ | 649 | #define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ |
476 | #define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */ | 650 | #define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */ |
477 | #define E1000_RXD_SPC_PRI_SHIFT 0x000D /* Priority is in upper 3 of 16 */ | 651 | #define E1000_RXD_SPC_PRI_SHIFT 13 |
478 | #define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */ | 652 | #define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */ |
479 | #define E1000_RXD_SPC_CFI_SHIFT 0x000C /* CFI is bit 12 */ | 653 | #define E1000_RXD_SPC_CFI_SHIFT 12 |
654 | |||
655 | #define E1000_RXDEXT_STATERR_CE 0x01000000 | ||
656 | #define E1000_RXDEXT_STATERR_SE 0x02000000 | ||
657 | #define E1000_RXDEXT_STATERR_SEQ 0x04000000 | ||
658 | #define E1000_RXDEXT_STATERR_CXE 0x10000000 | ||
659 | #define E1000_RXDEXT_STATERR_TCPE 0x20000000 | ||
660 | #define E1000_RXDEXT_STATERR_IPE 0x40000000 | ||
661 | #define E1000_RXDEXT_STATERR_RXE 0x80000000 | ||
662 | |||
663 | #define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000 | ||
664 | #define E1000_RXDPS_HDRSTAT_HDRLEN_MASK 0x000003FF | ||
480 | 665 | ||
481 | /* mask to determine if packets should be dropped due to frame errors */ | 666 | /* mask to determine if packets should be dropped due to frame errors */ |
482 | #define E1000_RXD_ERR_FRAME_ERR_MASK ( \ | 667 | #define E1000_RXD_ERR_FRAME_ERR_MASK ( \ |
@@ -486,6 +671,15 @@ struct e1000_rx_desc { | |||
486 | E1000_RXD_ERR_CXE | \ | 671 | E1000_RXD_ERR_CXE | \ |
487 | E1000_RXD_ERR_RXE) | 672 | E1000_RXD_ERR_RXE) |
488 | 673 | ||
674 | |||
675 | /* Same mask, but for extended and packet split descriptors */ | ||
676 | #define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ | ||
677 | E1000_RXDEXT_STATERR_CE | \ | ||
678 | E1000_RXDEXT_STATERR_SE | \ | ||
679 | E1000_RXDEXT_STATERR_SEQ | \ | ||
680 | E1000_RXDEXT_STATERR_CXE | \ | ||
681 | E1000_RXDEXT_STATERR_RXE) | ||
682 | |||
489 | /* Transmit Descriptor */ | 683 | /* Transmit Descriptor */ |
490 | struct e1000_tx_desc { | 684 | struct e1000_tx_desc { |
491 | uint64_t buffer_addr; /* Address of the descriptor's data buffer */ | 685 | uint64_t buffer_addr; /* Address of the descriptor's data buffer */ |
@@ -667,6 +861,7 @@ struct e1000_ffvt_entry { | |||
667 | #define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ | 861 | #define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ |
668 | #define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ | 862 | #define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ |
669 | #define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ | 863 | #define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ |
864 | #define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */ | ||
670 | #define E1000_RCTL 0x00100 /* RX Control - RW */ | 865 | #define E1000_RCTL 0x00100 /* RX Control - RW */ |
671 | #define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ | 866 | #define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ |
672 | #define E1000_TXCW 0x00178 /* TX Configuration Word - RW */ | 867 | #define E1000_TXCW 0x00178 /* TX Configuration Word - RW */ |
@@ -676,9 +871,23 @@ struct e1000_ffvt_entry { | |||
676 | #define E1000_TBT 0x00448 /* TX Burst Timer - RW */ | 871 | #define E1000_TBT 0x00448 /* TX Burst Timer - RW */ |
677 | #define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ | 872 | #define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ |
678 | #define E1000_LEDCTL 0x00E00 /* LED Control - RW */ | 873 | #define E1000_LEDCTL 0x00E00 /* LED Control - RW */ |
874 | #define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ | ||
875 | #define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ | ||
679 | #define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ | 876 | #define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ |
877 | #define E1000_PBS 0x01008 /* Packet Buffer Size */ | ||
878 | #define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ | ||
879 | #define E1000_FLASH_UPDATES 1000 | ||
880 | #define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */ | ||
881 | #define E1000_FLASHT 0x01028 /* FLASH Timer Register */ | ||
882 | #define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ | ||
883 | #define E1000_FLSWCTL 0x01030 /* FLASH control register */ | ||
884 | #define E1000_FLSWDATA 0x01034 /* FLASH data register */ | ||
885 | #define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */ | ||
886 | #define E1000_FLOP 0x0103C /* FLASH Opcode Register */ | ||
887 | #define E1000_ERT 0x02008 /* Early Rx Threshold - RW */ | ||
680 | #define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ | 888 | #define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ |
681 | #define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ | 889 | #define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ |
890 | #define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */ | ||
682 | #define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */ | 891 | #define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */ |
683 | #define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */ | 892 | #define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */ |
684 | #define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */ | 893 | #define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */ |
@@ -688,6 +897,7 @@ struct e1000_ffvt_entry { | |||
688 | #define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */ | 897 | #define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */ |
689 | #define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ | 898 | #define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ |
690 | #define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ | 899 | #define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ |
900 | #define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ | ||
691 | #define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ | 901 | #define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ |
692 | #define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ | 902 | #define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ |
693 | #define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ | 903 | #define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ |
@@ -703,6 +913,14 @@ struct e1000_ffvt_entry { | |||
703 | #define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */ | 913 | #define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */ |
704 | #define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */ | 914 | #define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */ |
705 | #define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ | 915 | #define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ |
916 | #define E1000_TARC0 0x03840 /* TX Arbitration Count (0) */ | ||
917 | #define E1000_TDBAL1 0x03900 /* TX Desc Base Address Low (1) - RW */ | ||
918 | #define E1000_TDBAH1 0x03904 /* TX Desc Base Address High (1) - RW */ | ||
919 | #define E1000_TDLEN1 0x03908 /* TX Desc Length (1) - RW */ | ||
920 | #define E1000_TDH1 0x03910 /* TX Desc Head (1) - RW */ | ||
921 | #define E1000_TDT1 0x03918 /* TX Desc Tail (1) - RW */ | ||
922 | #define E1000_TXDCTL1 0x03928 /* TX Descriptor Control (1) - RW */ | ||
923 | #define E1000_TARC1 0x03940 /* TX Arbitration Count (1) */ | ||
706 | #define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ | 924 | #define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ |
707 | #define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ | 925 | #define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ |
708 | #define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ | 926 | #define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ |
@@ -761,7 +979,17 @@ struct e1000_ffvt_entry { | |||
761 | #define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */ | 979 | #define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */ |
762 | #define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */ | 980 | #define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */ |
763 | #define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */ | 981 | #define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */ |
982 | #define E1000_IAC 0x4100 /* Interrupt Assertion Count */ | ||
983 | #define E1000_ICRXPTC 0x4104 /* Interrupt Cause Rx Packet Timer Expire Count */ | ||
984 | #define E1000_ICRXATC 0x4108 /* Interrupt Cause Rx Absolute Timer Expire Count */ | ||
985 | #define E1000_ICTXPTC 0x410C /* Interrupt Cause Tx Packet Timer Expire Count */ | ||
986 | #define E1000_ICTXATC 0x4110 /* Interrupt Cause Tx Absolute Timer Expire Count */ | ||
987 | #define E1000_ICTXQEC 0x4118 /* Interrupt Cause Tx Queue Empty Count */ | ||
988 | #define E1000_ICTXQMTC 0x411C /* Interrupt Cause Tx Queue Minimum Threshold Count */ | ||
989 | #define E1000_ICRXDMTC 0x4120 /* Interrupt Cause Rx Descriptor Minimum Threshold Count */ | ||
990 | #define E1000_ICRXOC 0x4124 /* Interrupt Cause Receiver Overrun Count */ | ||
764 | #define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */ | 991 | #define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */ |
992 | #define E1000_RFCTL 0x05008 /* Receive Filter Control*/ | ||
765 | #define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ | 993 | #define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ |
766 | #define E1000_RA 0x05400 /* Receive Address - RW Array */ | 994 | #define E1000_RA 0x05400 /* Receive Address - RW Array */ |
767 | #define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ | 995 | #define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ |
@@ -779,6 +1007,16 @@ struct e1000_ffvt_entry { | |||
779 | #define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ | 1007 | #define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ |
780 | #define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ | 1008 | #define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ |
781 | 1009 | ||
1010 | #define E1000_GCR 0x05B00 /* PCI-Ex Control */ | ||
1011 | #define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */ | ||
1012 | #define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */ | ||
1013 | #define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */ | ||
1014 | #define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */ | ||
1015 | #define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */ | ||
1016 | #define E1000_SWSM 0x05B50 /* SW Semaphore */ | ||
1017 | #define E1000_FWSM 0x05B54 /* FW Semaphore */ | ||
1018 | #define E1000_FFLT_DBG 0x05F04 /* Debug Register */ | ||
1019 | #define E1000_HICR 0x08F00 /* Host Inteface Control */ | ||
782 | /* Register Set (82542) | 1020 | /* Register Set (82542) |
783 | * | 1021 | * |
784 | * Some of the 82542 registers are located at different offsets than they are | 1022 | * Some of the 82542 registers are located at different offsets than they are |
@@ -829,6 +1067,18 @@ struct e1000_ffvt_entry { | |||
829 | #define E1000_82542_VFTA 0x00600 | 1067 | #define E1000_82542_VFTA 0x00600 |
830 | #define E1000_82542_LEDCTL E1000_LEDCTL | 1068 | #define E1000_82542_LEDCTL E1000_LEDCTL |
831 | #define E1000_82542_PBA E1000_PBA | 1069 | #define E1000_82542_PBA E1000_PBA |
1070 | #define E1000_82542_PBS E1000_PBS | ||
1071 | #define E1000_82542_EEMNGCTL E1000_EEMNGCTL | ||
1072 | #define E1000_82542_EEARBC E1000_EEARBC | ||
1073 | #define E1000_82542_FLASHT E1000_FLASHT | ||
1074 | #define E1000_82542_EEWR E1000_EEWR | ||
1075 | #define E1000_82542_FLSWCTL E1000_FLSWCTL | ||
1076 | #define E1000_82542_FLSWDATA E1000_FLSWDATA | ||
1077 | #define E1000_82542_FLSWCNT E1000_FLSWCNT | ||
1078 | #define E1000_82542_FLOP E1000_FLOP | ||
1079 | #define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL | ||
1080 | #define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE | ||
1081 | #define E1000_82542_ERT E1000_ERT | ||
832 | #define E1000_82542_RXDCTL E1000_RXDCTL | 1082 | #define E1000_82542_RXDCTL E1000_RXDCTL |
833 | #define E1000_82542_RADV E1000_RADV | 1083 | #define E1000_82542_RADV E1000_RADV |
834 | #define E1000_82542_RSRPD E1000_RSRPD | 1084 | #define E1000_82542_RSRPD E1000_RSRPD |
@@ -913,6 +1163,38 @@ struct e1000_ffvt_entry { | |||
913 | #define E1000_82542_FFMT E1000_FFMT | 1163 | #define E1000_82542_FFMT E1000_FFMT |
914 | #define E1000_82542_FFVT E1000_FFVT | 1164 | #define E1000_82542_FFVT E1000_FFVT |
915 | #define E1000_82542_HOST_IF E1000_HOST_IF | 1165 | #define E1000_82542_HOST_IF E1000_HOST_IF |
1166 | #define E1000_82542_IAM E1000_IAM | ||
1167 | #define E1000_82542_EEMNGCTL E1000_EEMNGCTL | ||
1168 | #define E1000_82542_PSRCTL E1000_PSRCTL | ||
1169 | #define E1000_82542_RAID E1000_RAID | ||
1170 | #define E1000_82542_TARC0 E1000_TARC0 | ||
1171 | #define E1000_82542_TDBAL1 E1000_TDBAL1 | ||
1172 | #define E1000_82542_TDBAH1 E1000_TDBAH1 | ||
1173 | #define E1000_82542_TDLEN1 E1000_TDLEN1 | ||
1174 | #define E1000_82542_TDH1 E1000_TDH1 | ||
1175 | #define E1000_82542_TDT1 E1000_TDT1 | ||
1176 | #define E1000_82542_TXDCTL1 E1000_TXDCTL1 | ||
1177 | #define E1000_82542_TARC1 E1000_TARC1 | ||
1178 | #define E1000_82542_RFCTL E1000_RFCTL | ||
1179 | #define E1000_82542_GCR E1000_GCR | ||
1180 | #define E1000_82542_GSCL_1 E1000_GSCL_1 | ||
1181 | #define E1000_82542_GSCL_2 E1000_GSCL_2 | ||
1182 | #define E1000_82542_GSCL_3 E1000_GSCL_3 | ||
1183 | #define E1000_82542_GSCL_4 E1000_GSCL_4 | ||
1184 | #define E1000_82542_FACTPS E1000_FACTPS | ||
1185 | #define E1000_82542_SWSM E1000_SWSM | ||
1186 | #define E1000_82542_FWSM E1000_FWSM | ||
1187 | #define E1000_82542_FFLT_DBG E1000_FFLT_DBG | ||
1188 | #define E1000_82542_IAC E1000_IAC | ||
1189 | #define E1000_82542_ICRXPTC E1000_ICRXPTC | ||
1190 | #define E1000_82542_ICRXATC E1000_ICRXATC | ||
1191 | #define E1000_82542_ICTXPTC E1000_ICTXPTC | ||
1192 | #define E1000_82542_ICTXATC E1000_ICTXATC | ||
1193 | #define E1000_82542_ICTXQEC E1000_ICTXQEC | ||
1194 | #define E1000_82542_ICTXQMTC E1000_ICTXQMTC | ||
1195 | #define E1000_82542_ICRXDMTC E1000_ICRXDMTC | ||
1196 | #define E1000_82542_ICRXOC E1000_ICRXOC | ||
1197 | #define E1000_82542_HICR E1000_HICR | ||
916 | 1198 | ||
917 | /* Statistics counters collected by the MAC */ | 1199 | /* Statistics counters collected by the MAC */ |
918 | struct e1000_hw_stats { | 1200 | struct e1000_hw_stats { |
@@ -974,11 +1256,21 @@ struct e1000_hw_stats { | |||
974 | uint64_t bptc; | 1256 | uint64_t bptc; |
975 | uint64_t tsctc; | 1257 | uint64_t tsctc; |
976 | uint64_t tsctfc; | 1258 | uint64_t tsctfc; |
1259 | uint64_t iac; | ||
1260 | uint64_t icrxptc; | ||
1261 | uint64_t icrxatc; | ||
1262 | uint64_t ictxptc; | ||
1263 | uint64_t ictxatc; | ||
1264 | uint64_t ictxqec; | ||
1265 | uint64_t ictxqmtc; | ||
1266 | uint64_t icrxdmtc; | ||
1267 | uint64_t icrxoc; | ||
977 | }; | 1268 | }; |
978 | 1269 | ||
979 | /* Structure containing variables used by the shared code (e1000_hw.c) */ | 1270 | /* Structure containing variables used by the shared code (e1000_hw.c) */ |
980 | struct e1000_hw { | 1271 | struct e1000_hw { |
981 | uint8_t __iomem *hw_addr; | 1272 | uint8_t *hw_addr; |
1273 | uint8_t *flash_address; | ||
982 | e1000_mac_type mac_type; | 1274 | e1000_mac_type mac_type; |
983 | e1000_phy_type phy_type; | 1275 | e1000_phy_type phy_type; |
984 | uint32_t phy_init_script; | 1276 | uint32_t phy_init_script; |
@@ -993,6 +1285,7 @@ struct e1000_hw { | |||
993 | e1000_ms_type original_master_slave; | 1285 | e1000_ms_type original_master_slave; |
994 | e1000_ffe_config ffe_config_state; | 1286 | e1000_ffe_config ffe_config_state; |
995 | uint32_t asf_firmware_present; | 1287 | uint32_t asf_firmware_present; |
1288 | uint32_t eeprom_semaphore_present; | ||
996 | unsigned long io_base; | 1289 | unsigned long io_base; |
997 | uint32_t phy_id; | 1290 | uint32_t phy_id; |
998 | uint32_t phy_revision; | 1291 | uint32_t phy_revision; |
@@ -1009,6 +1302,8 @@ struct e1000_hw { | |||
1009 | uint32_t ledctl_default; | 1302 | uint32_t ledctl_default; |
1010 | uint32_t ledctl_mode1; | 1303 | uint32_t ledctl_mode1; |
1011 | uint32_t ledctl_mode2; | 1304 | uint32_t ledctl_mode2; |
1305 | boolean_t tx_pkt_filtering; | ||
1306 | struct e1000_host_mng_dhcp_cookie mng_cookie; | ||
1012 | uint16_t phy_spd_default; | 1307 | uint16_t phy_spd_default; |
1013 | uint16_t autoneg_advertised; | 1308 | uint16_t autoneg_advertised; |
1014 | uint16_t pci_cmd_word; | 1309 | uint16_t pci_cmd_word; |
@@ -1047,16 +1342,24 @@ struct e1000_hw { | |||
1047 | boolean_t adaptive_ifs; | 1342 | boolean_t adaptive_ifs; |
1048 | boolean_t ifs_params_forced; | 1343 | boolean_t ifs_params_forced; |
1049 | boolean_t in_ifs_mode; | 1344 | boolean_t in_ifs_mode; |
1345 | boolean_t mng_reg_access_disabled; | ||
1050 | }; | 1346 | }; |
1051 | 1347 | ||
1052 | 1348 | ||
1053 | #define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */ | 1349 | #define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */ |
1054 | #define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */ | 1350 | #define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */ |
1351 | #define E1000_EEPROM_RW_REG_DATA 16 /* Offset to data in EEPROM read/write registers */ | ||
1352 | #define E1000_EEPROM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ | ||
1353 | #define E1000_EEPROM_RW_REG_START 1 /* First bit for telling part to start operation */ | ||
1354 | #define E1000_EEPROM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ | ||
1355 | #define E1000_EEPROM_POLL_WRITE 1 /* Flag for polling for write complete */ | ||
1356 | #define E1000_EEPROM_POLL_READ 0 /* Flag for polling for read complete */ | ||
1055 | /* Register Bit Masks */ | 1357 | /* Register Bit Masks */ |
1056 | /* Device Control */ | 1358 | /* Device Control */ |
1057 | #define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ | 1359 | #define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ |
1058 | #define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */ | 1360 | #define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */ |
1059 | #define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ | 1361 | #define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ |
1362 | #define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */ | ||
1060 | #define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ | 1363 | #define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ |
1061 | #define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */ | 1364 | #define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */ |
1062 | #define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */ | 1365 | #define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */ |
@@ -1070,6 +1373,7 @@ struct e1000_hw { | |||
1070 | #define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */ | 1373 | #define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */ |
1071 | #define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ | 1374 | #define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ |
1072 | #define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ | 1375 | #define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ |
1376 | #define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock indication in SDP[0] */ | ||
1073 | #define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ | 1377 | #define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ |
1074 | #define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ | 1378 | #define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ |
1075 | #define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ | 1379 | #define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ |
@@ -1089,6 +1393,7 @@ struct e1000_hw { | |||
1089 | #define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ | 1393 | #define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ |
1090 | #define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ | 1394 | #define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ |
1091 | #define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ | 1395 | #define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ |
1396 | #define E1000_STATUS_FUNC_SHIFT 2 | ||
1092 | #define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */ | 1397 | #define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */ |
1093 | #define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ | 1398 | #define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ |
1094 | #define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ | 1399 | #define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ |
@@ -1098,6 +1403,8 @@ struct e1000_hw { | |||
1098 | #define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ | 1403 | #define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ |
1099 | #define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ | 1404 | #define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ |
1100 | #define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ | 1405 | #define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ |
1406 | #define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */ | ||
1407 | #define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */ | ||
1101 | #define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */ | 1408 | #define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */ |
1102 | #define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ | 1409 | #define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ |
1103 | #define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ | 1410 | #define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ |
@@ -1128,6 +1435,18 @@ struct e1000_hw { | |||
1128 | #ifndef E1000_EEPROM_GRANT_ATTEMPTS | 1435 | #ifndef E1000_EEPROM_GRANT_ATTEMPTS |
1129 | #define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */ | 1436 | #define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */ |
1130 | #endif | 1437 | #endif |
1438 | #define E1000_EECD_AUTO_RD 0x00000200 /* EEPROM Auto Read done */ | ||
1439 | #define E1000_EECD_SIZE_EX_MASK 0x00007800 /* EEprom Size */ | ||
1440 | #define E1000_EECD_SIZE_EX_SHIFT 11 | ||
1441 | #define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */ | ||
1442 | #define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */ | ||
1443 | #define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */ | ||
1444 | #define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ | ||
1445 | #define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */ | ||
1446 | #define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */ | ||
1447 | #define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ | ||
1448 | #define E1000_STM_OPCODE 0xDB00 | ||
1449 | #define E1000_HICR_FW_RESET 0xC0 | ||
1131 | 1450 | ||
1132 | /* EEPROM Read */ | 1451 | /* EEPROM Read */ |
1133 | #define E1000_EERD_START 0x00000001 /* Start Read */ | 1452 | #define E1000_EERD_START 0x00000001 /* Start Read */ |
@@ -1171,6 +1490,8 @@ struct e1000_hw { | |||
1171 | #define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 | 1490 | #define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 |
1172 | #define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 | 1491 | #define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 |
1173 | #define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 | 1492 | #define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 |
1493 | #define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */ | ||
1494 | #define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */ | ||
1174 | 1495 | ||
1175 | /* MDI Control */ | 1496 | /* MDI Control */ |
1176 | #define E1000_MDIC_DATA_MASK 0x0000FFFF | 1497 | #define E1000_MDIC_DATA_MASK 0x0000FFFF |
@@ -1187,14 +1508,17 @@ struct e1000_hw { | |||
1187 | /* LED Control */ | 1508 | /* LED Control */ |
1188 | #define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F | 1509 | #define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F |
1189 | #define E1000_LEDCTL_LED0_MODE_SHIFT 0 | 1510 | #define E1000_LEDCTL_LED0_MODE_SHIFT 0 |
1511 | #define E1000_LEDCTL_LED0_BLINK_RATE 0x0000020 | ||
1190 | #define E1000_LEDCTL_LED0_IVRT 0x00000040 | 1512 | #define E1000_LEDCTL_LED0_IVRT 0x00000040 |
1191 | #define E1000_LEDCTL_LED0_BLINK 0x00000080 | 1513 | #define E1000_LEDCTL_LED0_BLINK 0x00000080 |
1192 | #define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00 | 1514 | #define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00 |
1193 | #define E1000_LEDCTL_LED1_MODE_SHIFT 8 | 1515 | #define E1000_LEDCTL_LED1_MODE_SHIFT 8 |
1516 | #define E1000_LEDCTL_LED1_BLINK_RATE 0x0002000 | ||
1194 | #define E1000_LEDCTL_LED1_IVRT 0x00004000 | 1517 | #define E1000_LEDCTL_LED1_IVRT 0x00004000 |
1195 | #define E1000_LEDCTL_LED1_BLINK 0x00008000 | 1518 | #define E1000_LEDCTL_LED1_BLINK 0x00008000 |
1196 | #define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000 | 1519 | #define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000 |
1197 | #define E1000_LEDCTL_LED2_MODE_SHIFT 16 | 1520 | #define E1000_LEDCTL_LED2_MODE_SHIFT 16 |
1521 | #define E1000_LEDCTL_LED2_BLINK_RATE 0x00200000 | ||
1198 | #define E1000_LEDCTL_LED2_IVRT 0x00400000 | 1522 | #define E1000_LEDCTL_LED2_IVRT 0x00400000 |
1199 | #define E1000_LEDCTL_LED2_BLINK 0x00800000 | 1523 | #define E1000_LEDCTL_LED2_BLINK 0x00800000 |
1200 | #define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000 | 1524 | #define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000 |
@@ -1238,6 +1562,10 @@ struct e1000_hw { | |||
1238 | #define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ | 1562 | #define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ |
1239 | #define E1000_ICR_TXD_LOW 0x00008000 | 1563 | #define E1000_ICR_TXD_LOW 0x00008000 |
1240 | #define E1000_ICR_SRPD 0x00010000 | 1564 | #define E1000_ICR_SRPD 0x00010000 |
1565 | #define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */ | ||
1566 | #define E1000_ICR_MNG 0x00040000 /* Manageability event */ | ||
1567 | #define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */ | ||
1568 | #define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */ | ||
1241 | 1569 | ||
1242 | /* Interrupt Cause Set */ | 1570 | /* Interrupt Cause Set */ |
1243 | #define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ | 1571 | #define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ |
@@ -1255,6 +1583,9 @@ struct e1000_hw { | |||
1255 | #define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ | 1583 | #define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ |
1256 | #define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW | 1584 | #define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW |
1257 | #define E1000_ICS_SRPD E1000_ICR_SRPD | 1585 | #define E1000_ICS_SRPD E1000_ICR_SRPD |
1586 | #define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */ | ||
1587 | #define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */ | ||
1588 | #define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */ | ||
1258 | 1589 | ||
1259 | /* Interrupt Mask Set */ | 1590 | /* Interrupt Mask Set */ |
1260 | #define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ | 1591 | #define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ |
@@ -1272,6 +1603,9 @@ struct e1000_hw { | |||
1272 | #define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ | 1603 | #define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ |
1273 | #define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW | 1604 | #define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW |
1274 | #define E1000_IMS_SRPD E1000_ICR_SRPD | 1605 | #define E1000_IMS_SRPD E1000_ICR_SRPD |
1606 | #define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */ | ||
1607 | #define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */ | ||
1608 | #define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */ | ||
1275 | 1609 | ||
1276 | /* Interrupt Mask Clear */ | 1610 | /* Interrupt Mask Clear */ |
1277 | #define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ | 1611 | #define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ |
@@ -1289,6 +1623,9 @@ struct e1000_hw { | |||
1289 | #define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ | 1623 | #define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ |
1290 | #define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW | 1624 | #define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW |
1291 | #define E1000_IMC_SRPD E1000_ICR_SRPD | 1625 | #define E1000_IMC_SRPD E1000_ICR_SRPD |
1626 | #define E1000_IMC_ACK E1000_ICR_ACK /* Receive Ack frame */ | ||
1627 | #define E1000_IMC_MNG E1000_ICR_MNG /* Manageability event */ | ||
1628 | #define E1000_IMC_DOCK E1000_ICR_DOCK /* Dock/Undock */ | ||
1292 | 1629 | ||
1293 | /* Receive Control */ | 1630 | /* Receive Control */ |
1294 | #define E1000_RCTL_RST 0x00000001 /* Software reset */ | 1631 | #define E1000_RCTL_RST 0x00000001 /* Software reset */ |
@@ -1301,6 +1638,8 @@ struct e1000_hw { | |||
1301 | #define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ | 1638 | #define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ |
1302 | #define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */ | 1639 | #define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */ |
1303 | #define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ | 1640 | #define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ |
1641 | #define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */ | ||
1642 | #define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ | ||
1304 | #define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ | 1643 | #define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ |
1305 | #define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */ | 1644 | #define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */ |
1306 | #define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */ | 1645 | #define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */ |
@@ -1327,6 +1666,34 @@ struct e1000_hw { | |||
1327 | #define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ | 1666 | #define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ |
1328 | #define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ | 1667 | #define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ |
1329 | #define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ | 1668 | #define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ |
1669 | #define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */ | ||
1670 | #define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */ | ||
1671 | |||
1672 | /* Use byte values for the following shift parameters | ||
1673 | * Usage: | ||
1674 | * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & | ||
1675 | * E1000_PSRCTL_BSIZE0_MASK) | | ||
1676 | * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & | ||
1677 | * E1000_PSRCTL_BSIZE1_MASK) | | ||
1678 | * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & | ||
1679 | * E1000_PSRCTL_BSIZE2_MASK) | | ||
1680 | * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; | ||
1681 | * E1000_PSRCTL_BSIZE3_MASK)) | ||
1682 | * where value0 = [128..16256], default=256 | ||
1683 | * value1 = [1024..64512], default=4096 | ||
1684 | * value2 = [0..64512], default=4096 | ||
1685 | * value3 = [0..64512], default=0 | ||
1686 | */ | ||
1687 | |||
1688 | #define E1000_PSRCTL_BSIZE0_MASK 0x0000007F | ||
1689 | #define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 | ||
1690 | #define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 | ||
1691 | #define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 | ||
1692 | |||
1693 | #define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ | ||
1694 | #define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ | ||
1695 | #define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ | ||
1696 | #define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ | ||
1330 | 1697 | ||
1331 | /* Receive Descriptor */ | 1698 | /* Receive Descriptor */ |
1332 | #define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */ | 1699 | #define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */ |
@@ -1341,6 +1708,23 @@ struct e1000_hw { | |||
1341 | #define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ | 1708 | #define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ |
1342 | #define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ | 1709 | #define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ |
1343 | 1710 | ||
1711 | /* Header split receive */ | ||
1712 | #define E1000_RFCTL_ISCSI_DIS 0x00000001 | ||
1713 | #define E1000_RFCTL_ISCSI_DWC_MASK 0x0000003E | ||
1714 | #define E1000_RFCTL_ISCSI_DWC_SHIFT 1 | ||
1715 | #define E1000_RFCTL_NFSW_DIS 0x00000040 | ||
1716 | #define E1000_RFCTL_NFSR_DIS 0x00000080 | ||
1717 | #define E1000_RFCTL_NFS_VER_MASK 0x00000300 | ||
1718 | #define E1000_RFCTL_NFS_VER_SHIFT 8 | ||
1719 | #define E1000_RFCTL_IPV6_DIS 0x00000400 | ||
1720 | #define E1000_RFCTL_IPV6_XSUM_DIS 0x00000800 | ||
1721 | #define E1000_RFCTL_ACK_DIS 0x00001000 | ||
1722 | #define E1000_RFCTL_ACKD_DIS 0x00002000 | ||
1723 | #define E1000_RFCTL_IPFRSP_DIS 0x00004000 | ||
1724 | #define E1000_RFCTL_EXTEN 0x00008000 | ||
1725 | #define E1000_RFCTL_IPV6_EX_DIS 0x00010000 | ||
1726 | #define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000 | ||
1727 | |||
1344 | /* Receive Descriptor Control */ | 1728 | /* Receive Descriptor Control */ |
1345 | #define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */ | 1729 | #define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */ |
1346 | #define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */ | 1730 | #define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */ |
@@ -1354,6 +1738,8 @@ struct e1000_hw { | |||
1354 | #define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ | 1738 | #define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ |
1355 | #define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */ | 1739 | #define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */ |
1356 | #define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ | 1740 | #define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ |
1741 | #define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc. | ||
1742 | still to be processed. */ | ||
1357 | 1743 | ||
1358 | /* Transmit Configuration Word */ | 1744 | /* Transmit Configuration Word */ |
1359 | #define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ | 1745 | #define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ |
@@ -1387,12 +1773,16 @@ struct e1000_hw { | |||
1387 | #define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */ | 1773 | #define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */ |
1388 | #define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ | 1774 | #define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ |
1389 | #define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */ | 1775 | #define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */ |
1776 | #define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ | ||
1390 | 1777 | ||
1391 | /* Receive Checksum Control */ | 1778 | /* Receive Checksum Control */ |
1392 | #define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */ | 1779 | #define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */ |
1393 | #define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ | 1780 | #define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ |
1394 | #define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ | 1781 | #define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ |
1395 | #define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */ | 1782 | #define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */ |
1783 | #define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ | ||
1784 | #define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ | ||
1785 | |||
1396 | 1786 | ||
1397 | /* Definitions for power management and wakeup registers */ | 1787 | /* Definitions for power management and wakeup registers */ |
1398 | /* Wake Up Control */ | 1788 | /* Wake Up Control */ |
@@ -1411,6 +1801,7 @@ struct e1000_hw { | |||
1411 | #define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ | 1801 | #define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ |
1412 | #define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ | 1802 | #define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ |
1413 | #define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ | 1803 | #define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ |
1804 | #define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */ | ||
1414 | #define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ | 1805 | #define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ |
1415 | #define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ | 1806 | #define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ |
1416 | #define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ | 1807 | #define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ |
@@ -1446,13 +1837,19 @@ struct e1000_hw { | |||
1446 | #define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ | 1837 | #define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ |
1447 | #define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery | 1838 | #define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery |
1448 | * Filtering */ | 1839 | * Filtering */ |
1840 | #define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */ | ||
1449 | #define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */ | 1841 | #define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */ |
1450 | #define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ | 1842 | #define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ |
1451 | #define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */ | 1843 | #define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */ |
1844 | #define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ | ||
1452 | #define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address | 1845 | #define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address |
1453 | * filtering */ | 1846 | * filtering */ |
1454 | #define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host | 1847 | #define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host |
1455 | * memory */ | 1848 | * memory */ |
1849 | #define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000 /* Enable IP address | ||
1850 | * filtering */ | ||
1851 | #define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */ | ||
1852 | #define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */ | ||
1456 | #define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */ | 1853 | #define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */ |
1457 | #define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */ | 1854 | #define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */ |
1458 | #define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */ | 1855 | #define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */ |
@@ -1463,11 +1860,97 @@ struct e1000_hw { | |||
1463 | #define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */ | 1860 | #define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */ |
1464 | #define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */ | 1861 | #define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */ |
1465 | 1862 | ||
1863 | /* SW Semaphore Register */ | ||
1864 | #define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ | ||
1865 | #define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ | ||
1866 | #define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */ | ||
1867 | #define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ | ||
1868 | |||
1869 | /* FW Semaphore Register */ | ||
1870 | #define E1000_FWSM_MODE_MASK 0x0000000E /* FW mode */ | ||
1871 | #define E1000_FWSM_MODE_SHIFT 1 | ||
1872 | #define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */ | ||
1873 | |||
1874 | /* FFLT Debug Register */ | ||
1875 | #define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */ | ||
1876 | |||
1877 | typedef enum { | ||
1878 | e1000_mng_mode_none = 0, | ||
1879 | e1000_mng_mode_asf, | ||
1880 | e1000_mng_mode_pt, | ||
1881 | e1000_mng_mode_ipmi, | ||
1882 | e1000_mng_mode_host_interface_only | ||
1883 | } e1000_mng_mode; | ||
1884 | |||
1885 | /* Host Inteface Control Register */ | ||
1886 | #define E1000_HICR_EN 0x00000001 /* Enable Bit - RO */ | ||
1887 | #define E1000_HICR_C 0x00000002 /* Driver sets this bit when done | ||
1888 | * to put command in RAM */ | ||
1889 | #define E1000_HICR_SV 0x00000004 /* Status Validity */ | ||
1890 | #define E1000_HICR_FWR 0x00000080 /* FW reset. Set by the Host */ | ||
1891 | |||
1892 | /* Host Interface Command Interface - Address range 0x8800-0x8EFF */ | ||
1893 | #define E1000_HI_MAX_DATA_LENGTH 252 /* Host Interface data length */ | ||
1894 | #define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Number of bytes in range */ | ||
1895 | #define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Number of dwords in range */ | ||
1896 | #define E1000_HI_COMMAND_TIMEOUT 500 /* Time in ms to process HI command */ | ||
1897 | |||
1898 | struct e1000_host_command_header { | ||
1899 | uint8_t command_id; | ||
1900 | uint8_t command_length; | ||
1901 | uint8_t command_options; /* I/F bits for command, status for return */ | ||
1902 | uint8_t checksum; | ||
1903 | }; | ||
1904 | struct e1000_host_command_info { | ||
1905 | struct e1000_host_command_header command_header; /* Command Head/Command Result Head has 4 bytes */ | ||
1906 | uint8_t command_data[E1000_HI_MAX_DATA_LENGTH]; /* Command data can length 0..252 */ | ||
1907 | }; | ||
1908 | |||
1909 | /* Host SMB register #0 */ | ||
1910 | #define E1000_HSMC0R_CLKIN 0x00000001 /* SMB Clock in */ | ||
1911 | #define E1000_HSMC0R_DATAIN 0x00000002 /* SMB Data in */ | ||
1912 | #define E1000_HSMC0R_DATAOUT 0x00000004 /* SMB Data out */ | ||
1913 | #define E1000_HSMC0R_CLKOUT 0x00000008 /* SMB Clock out */ | ||
1914 | |||
1915 | /* Host SMB register #1 */ | ||
1916 | #define E1000_HSMC1R_CLKIN E1000_HSMC0R_CLKIN | ||
1917 | #define E1000_HSMC1R_DATAIN E1000_HSMC0R_DATAIN | ||
1918 | #define E1000_HSMC1R_DATAOUT E1000_HSMC0R_DATAOUT | ||
1919 | #define E1000_HSMC1R_CLKOUT E1000_HSMC0R_CLKOUT | ||
1920 | |||
1921 | /* FW Status Register */ | ||
1922 | #define E1000_FWSTS_FWS_MASK 0x000000FF /* FW Status */ | ||
1923 | |||
1466 | /* Wake Up Packet Length */ | 1924 | /* Wake Up Packet Length */ |
1467 | #define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */ | 1925 | #define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */ |
1468 | 1926 | ||
1469 | #define E1000_MDALIGN 4096 | 1927 | #define E1000_MDALIGN 4096 |
1470 | 1928 | ||
1929 | #define E1000_GCR_BEM32 0x00400000 | ||
1930 | /* Function Active and Power State to MNG */ | ||
1931 | #define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003 | ||
1932 | #define E1000_FACTPS_LAN0_VALID 0x00000004 | ||
1933 | #define E1000_FACTPS_FUNC0_AUX_EN 0x00000008 | ||
1934 | #define E1000_FACTPS_FUNC1_POWER_STATE_MASK 0x000000C0 | ||
1935 | #define E1000_FACTPS_FUNC1_POWER_STATE_SHIFT 6 | ||
1936 | #define E1000_FACTPS_LAN1_VALID 0x00000100 | ||
1937 | #define E1000_FACTPS_FUNC1_AUX_EN 0x00000200 | ||
1938 | #define E1000_FACTPS_FUNC2_POWER_STATE_MASK 0x00003000 | ||
1939 | #define E1000_FACTPS_FUNC2_POWER_STATE_SHIFT 12 | ||
1940 | #define E1000_FACTPS_IDE_ENABLE 0x00004000 | ||
1941 | #define E1000_FACTPS_FUNC2_AUX_EN 0x00008000 | ||
1942 | #define E1000_FACTPS_FUNC3_POWER_STATE_MASK 0x000C0000 | ||
1943 | #define E1000_FACTPS_FUNC3_POWER_STATE_SHIFT 18 | ||
1944 | #define E1000_FACTPS_SP_ENABLE 0x00100000 | ||
1945 | #define E1000_FACTPS_FUNC3_AUX_EN 0x00200000 | ||
1946 | #define E1000_FACTPS_FUNC4_POWER_STATE_MASK 0x03000000 | ||
1947 | #define E1000_FACTPS_FUNC4_POWER_STATE_SHIFT 24 | ||
1948 | #define E1000_FACTPS_IPMI_ENABLE 0x04000000 | ||
1949 | #define E1000_FACTPS_FUNC4_AUX_EN 0x08000000 | ||
1950 | #define E1000_FACTPS_MNGCG 0x20000000 | ||
1951 | #define E1000_FACTPS_LAN_FUNC_SEL 0x40000000 | ||
1952 | #define E1000_FACTPS_PM_STATE_CHANGED 0x80000000 | ||
1953 | |||
1471 | /* EEPROM Commands - Microwire */ | 1954 | /* EEPROM Commands - Microwire */ |
1472 | #define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */ | 1955 | #define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */ |
1473 | #define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */ | 1956 | #define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */ |
@@ -1477,22 +1960,20 @@ struct e1000_hw { | |||
1477 | 1960 | ||
1478 | /* EEPROM Commands - SPI */ | 1961 | /* EEPROM Commands - SPI */ |
1479 | #define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ | 1962 | #define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ |
1480 | #define EEPROM_READ_OPCODE_SPI 0x3 /* EEPROM read opcode */ | 1963 | #define EEPROM_READ_OPCODE_SPI 0x03 /* EEPROM read opcode */ |
1481 | #define EEPROM_WRITE_OPCODE_SPI 0x2 /* EEPROM write opcode */ | 1964 | #define EEPROM_WRITE_OPCODE_SPI 0x02 /* EEPROM write opcode */ |
1482 | #define EEPROM_A8_OPCODE_SPI 0x8 /* opcode bit-3 = address bit-8 */ | 1965 | #define EEPROM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ |
1483 | #define EEPROM_WREN_OPCODE_SPI 0x6 /* EEPROM set Write Enable latch */ | 1966 | #define EEPROM_WREN_OPCODE_SPI 0x06 /* EEPROM set Write Enable latch */ |
1484 | #define EEPROM_WRDI_OPCODE_SPI 0x4 /* EEPROM reset Write Enable latch */ | 1967 | #define EEPROM_WRDI_OPCODE_SPI 0x04 /* EEPROM reset Write Enable latch */ |
1485 | #define EEPROM_RDSR_OPCODE_SPI 0x5 /* EEPROM read Status register */ | 1968 | #define EEPROM_RDSR_OPCODE_SPI 0x05 /* EEPROM read Status register */ |
1486 | #define EEPROM_WRSR_OPCODE_SPI 0x1 /* EEPROM write Status register */ | 1969 | #define EEPROM_WRSR_OPCODE_SPI 0x01 /* EEPROM write Status register */ |
1970 | #define EEPROM_ERASE4K_OPCODE_SPI 0x20 /* EEPROM ERASE 4KB */ | ||
1971 | #define EEPROM_ERASE64K_OPCODE_SPI 0xD8 /* EEPROM ERASE 64KB */ | ||
1972 | #define EEPROM_ERASE256_OPCODE_SPI 0xDB /* EEPROM ERASE 256B */ | ||
1487 | 1973 | ||
1488 | /* EEPROM Size definitions */ | 1974 | /* EEPROM Size definitions */ |
1489 | #define EEPROM_SIZE_16KB 0x1800 | 1975 | #define EEPROM_WORD_SIZE_SHIFT 6 |
1490 | #define EEPROM_SIZE_8KB 0x1400 | 1976 | #define EEPROM_SIZE_SHIFT 10 |
1491 | #define EEPROM_SIZE_4KB 0x1000 | ||
1492 | #define EEPROM_SIZE_2KB 0x0C00 | ||
1493 | #define EEPROM_SIZE_1KB 0x0800 | ||
1494 | #define EEPROM_SIZE_512B 0x0400 | ||
1495 | #define EEPROM_SIZE_128B 0x0000 | ||
1496 | #define EEPROM_SIZE_MASK 0x1C00 | 1977 | #define EEPROM_SIZE_MASK 0x1C00 |
1497 | 1978 | ||
1498 | /* EEPROM Word Offsets */ | 1979 | /* EEPROM Word Offsets */ |
@@ -1606,7 +2087,22 @@ struct e1000_hw { | |||
1606 | #define IFS_MIN 40 | 2087 | #define IFS_MIN 40 |
1607 | #define IFS_RATIO 4 | 2088 | #define IFS_RATIO 4 |
1608 | 2089 | ||
2090 | /* Extended Configuration Control and Size */ | ||
2091 | #define E1000_EXTCNF_CTRL_PCIE_WRITE_ENABLE 0x00000001 | ||
2092 | #define E1000_EXTCNF_CTRL_PHY_WRITE_ENABLE 0x00000002 | ||
2093 | #define E1000_EXTCNF_CTRL_D_UD_ENABLE 0x00000004 | ||
2094 | #define E1000_EXTCNF_CTRL_D_UD_LATENCY 0x00000008 | ||
2095 | #define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010 | ||
2096 | #define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 | ||
2097 | #define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040 | ||
2098 | #define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x1FFF0000 | ||
2099 | |||
2100 | #define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF | ||
2101 | #define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00 | ||
2102 | #define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000 | ||
2103 | |||
1609 | /* PBA constants */ | 2104 | /* PBA constants */ |
2105 | #define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */ | ||
1610 | #define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ | 2106 | #define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ |
1611 | #define E1000_PBA_22K 0x0016 | 2107 | #define E1000_PBA_22K 0x0016 |
1612 | #define E1000_PBA_24K 0x0018 | 2108 | #define E1000_PBA_24K 0x0018 |
@@ -1663,6 +2159,13 @@ struct e1000_hw { | |||
1663 | /* Number of milliseconds we wait for auto-negotiation to complete */ | 2159 | /* Number of milliseconds we wait for auto-negotiation to complete */ |
1664 | #define LINK_UP_TIMEOUT 500 | 2160 | #define LINK_UP_TIMEOUT 500 |
1665 | 2161 | ||
2162 | /* Number of 100 microseconds we wait for PCI Express master disable */ | ||
2163 | #define MASTER_DISABLE_TIMEOUT 800 | ||
2164 | /* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */ | ||
2165 | #define AUTO_READ_DONE_TIMEOUT 10 | ||
2166 | /* Number of milliseconds we wait for PHY configuration done after MAC reset */ | ||
2167 | #define PHY_CFG_TIMEOUT 40 | ||
2168 | |||
1666 | #define E1000_TX_BUFFER_SIZE ((uint32_t)1514) | 2169 | #define E1000_TX_BUFFER_SIZE ((uint32_t)1514) |
1667 | 2170 | ||
1668 | /* The carrier extension symbol, as received by the NIC. */ | 2171 | /* The carrier extension symbol, as received by the NIC. */ |
@@ -1763,6 +2266,7 @@ struct e1000_hw { | |||
1763 | #define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */ | 2266 | #define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */ |
1764 | #define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */ | 2267 | #define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */ |
1765 | #define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */ | 2268 | #define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */ |
2269 | #define IGP02E1000_PHY_POWER_MGMT 0x19 | ||
1766 | #define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */ | 2270 | #define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */ |
1767 | 2271 | ||
1768 | /* IGP01E1000 AGC Registers - stores the cable length values*/ | 2272 | /* IGP01E1000 AGC Registers - stores the cable length values*/ |
@@ -1771,12 +2275,20 @@ struct e1000_hw { | |||
1771 | #define IGP01E1000_PHY_AGC_C 0x1472 | 2275 | #define IGP01E1000_PHY_AGC_C 0x1472 |
1772 | #define IGP01E1000_PHY_AGC_D 0x1872 | 2276 | #define IGP01E1000_PHY_AGC_D 0x1872 |
1773 | 2277 | ||
2278 | /* IGP02E1000 AGC Registers for cable length values */ | ||
2279 | #define IGP02E1000_PHY_AGC_A 0x11B1 | ||
2280 | #define IGP02E1000_PHY_AGC_B 0x12B1 | ||
2281 | #define IGP02E1000_PHY_AGC_C 0x14B1 | ||
2282 | #define IGP02E1000_PHY_AGC_D 0x18B1 | ||
2283 | |||
1774 | /* IGP01E1000 DSP Reset Register */ | 2284 | /* IGP01E1000 DSP Reset Register */ |
1775 | #define IGP01E1000_PHY_DSP_RESET 0x1F33 | 2285 | #define IGP01E1000_PHY_DSP_RESET 0x1F33 |
1776 | #define IGP01E1000_PHY_DSP_SET 0x1F71 | 2286 | #define IGP01E1000_PHY_DSP_SET 0x1F71 |
1777 | #define IGP01E1000_PHY_DSP_FFE 0x1F35 | 2287 | #define IGP01E1000_PHY_DSP_FFE 0x1F35 |
1778 | 2288 | ||
1779 | #define IGP01E1000_PHY_CHANNEL_NUM 4 | 2289 | #define IGP01E1000_PHY_CHANNEL_NUM 4 |
2290 | #define IGP02E1000_PHY_CHANNEL_NUM 4 | ||
2291 | |||
1780 | #define IGP01E1000_PHY_AGC_PARAM_A 0x1171 | 2292 | #define IGP01E1000_PHY_AGC_PARAM_A 0x1171 |
1781 | #define IGP01E1000_PHY_AGC_PARAM_B 0x1271 | 2293 | #define IGP01E1000_PHY_AGC_PARAM_B 0x1271 |
1782 | #define IGP01E1000_PHY_AGC_PARAM_C 0x1471 | 2294 | #define IGP01E1000_PHY_AGC_PARAM_C 0x1471 |
@@ -2060,20 +2572,30 @@ struct e1000_hw { | |||
2060 | #define IGP01E1000_MSE_CHANNEL_B 0x0F00 | 2572 | #define IGP01E1000_MSE_CHANNEL_B 0x0F00 |
2061 | #define IGP01E1000_MSE_CHANNEL_A 0xF000 | 2573 | #define IGP01E1000_MSE_CHANNEL_A 0xF000 |
2062 | 2574 | ||
2575 | #define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ | ||
2576 | #define IGP02E1000_PM_D3_LPLU 0x0004 /* Enable LPLU in non-D0a modes */ | ||
2577 | #define IGP02E1000_PM_D0_LPLU 0x0002 /* Enable LPLU in D0a mode */ | ||
2578 | |||
2063 | /* IGP01E1000 DSP reset macros */ | 2579 | /* IGP01E1000 DSP reset macros */ |
2064 | #define DSP_RESET_ENABLE 0x0 | 2580 | #define DSP_RESET_ENABLE 0x0 |
2065 | #define DSP_RESET_DISABLE 0x2 | 2581 | #define DSP_RESET_DISABLE 0x2 |
2066 | #define E1000_MAX_DSP_RESETS 10 | 2582 | #define E1000_MAX_DSP_RESETS 10 |
2067 | 2583 | ||
2068 | /* IGP01E1000 AGC Registers */ | 2584 | /* IGP01E1000 & IGP02E1000 AGC Registers */ |
2069 | 2585 | ||
2070 | #define IGP01E1000_AGC_LENGTH_SHIFT 7 /* Coarse - 13:11, Fine - 10:7 */ | 2586 | #define IGP01E1000_AGC_LENGTH_SHIFT 7 /* Coarse - 13:11, Fine - 10:7 */ |
2587 | #define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Coarse - 15:13, Fine - 12:9 */ | ||
2588 | |||
2589 | /* IGP02E1000 AGC Register Length 9-bit mask */ | ||
2590 | #define IGP02E1000_AGC_LENGTH_MASK 0x7F | ||
2071 | 2591 | ||
2072 | /* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */ | 2592 | /* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */ |
2073 | #define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128 | 2593 | #define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128 |
2594 | #define IGP02E1000_AGC_LENGTH_TABLE_SIZE 128 | ||
2074 | 2595 | ||
2075 | /* The precision of the length is +/- 10 meters */ | 2596 | /* The precision error of the cable length is +/- 10 meters */ |
2076 | #define IGP01E1000_AGC_RANGE 10 | 2597 | #define IGP01E1000_AGC_RANGE 10 |
2598 | #define IGP02E1000_AGC_RANGE 10 | ||
2077 | 2599 | ||
2078 | /* IGP01E1000 PCS Initialization register */ | 2600 | /* IGP01E1000 PCS Initialization register */ |
2079 | /* bits 3:6 in the PCS registers stores the channels polarity */ | 2601 | /* bits 3:6 in the PCS registers stores the channels polarity */ |
@@ -2113,6 +2635,8 @@ struct e1000_hw { | |||
2113 | #define M88E1000_12_PHY_ID M88E1000_E_PHY_ID | 2635 | #define M88E1000_12_PHY_ID M88E1000_E_PHY_ID |
2114 | #define M88E1000_14_PHY_ID M88E1000_E_PHY_ID | 2636 | #define M88E1000_14_PHY_ID M88E1000_E_PHY_ID |
2115 | #define M88E1011_I_REV_4 0x04 | 2637 | #define M88E1011_I_REV_4 0x04 |
2638 | #define M88E1111_I_PHY_ID 0x01410CC0 | ||
2639 | #define L1LXT971A_PHY_ID 0x001378E0 | ||
2116 | 2640 | ||
2117 | /* Miscellaneous PHY bit definitions. */ | 2641 | /* Miscellaneous PHY bit definitions. */ |
2118 | #define PHY_PREAMBLE 0xFFFFFFFF | 2642 | #define PHY_PREAMBLE 0xFFFFFFFF |
diff --git a/drivers/net/e1000/e1000_main.c b/drivers/net/e1000/e1000_main.c index 82549a6fcfb3..325495b8b60c 100644 --- a/drivers/net/e1000/e1000_main.c +++ b/drivers/net/e1000/e1000_main.c | |||
@@ -1,7 +1,7 @@ | |||
1 | /******************************************************************************* | 1 | /******************************************************************************* |
2 | 2 | ||
3 | 3 | ||
4 | Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. | 4 | Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. |
5 | 5 | ||
6 | This program is free software; you can redistribute it and/or modify it | 6 | This program is free software; you can redistribute it and/or modify it |
7 | under the terms of the GNU General Public License as published by the Free | 7 | under the terms of the GNU General Public License as published by the Free |
@@ -29,33 +29,9 @@ | |||
29 | #include "e1000.h" | 29 | #include "e1000.h" |
30 | 30 | ||
31 | /* Change Log | 31 | /* Change Log |
32 | * 5.3.12 6/7/04 | 32 | * 6.0.44+ 2/15/05 |
33 | * - kcompat NETIF_MSG for older kernels (2.4.9) <sean.p.mcdermott@intel.com> | 33 | * o applied Anton's patch to resolve tx hang in hardware |
34 | * - if_mii support and associated kcompat for older kernels | 34 | * o Applied Andrew Mortons patch - e1000 stops working after resume |
35 | * - More errlogging support from Jon Mason <jonmason@us.ibm.com> | ||
36 | * - Fix TSO issues on PPC64 machines -- Jon Mason <jonmason@us.ibm.com> | ||
37 | * | ||
38 | * 5.7.1 12/16/04 | ||
39 | * - Resurrect 82547EI/GI related fix in e1000_intr to avoid deadlocks. This | ||
40 | * fix was removed as it caused system instability. The suspected cause of | ||
41 | * this is the called to e1000_irq_disable in e1000_intr. Inlined the | ||
42 | * required piece of e1000_irq_disable into e1000_intr - Anton Blanchard | ||
43 | * 5.7.0 12/10/04 | ||
44 | * - include fix to the condition that determines when to quit NAPI - Robert Olsson | ||
45 | * - use netif_poll_{disable/enable} to synchronize between NAPI and i/f up/down | ||
46 | * 5.6.5 11/01/04 | ||
47 | * - Enabling NETIF_F_SG without checksum offload is illegal - | ||
48 | John Mason <jdmason@us.ibm.com> | ||
49 | * 5.6.3 10/26/04 | ||
50 | * - Remove redundant initialization - Jamal Hadi | ||
51 | * - Reset buffer_info->dma in tx resource cleanup logic | ||
52 | * 5.6.2 10/12/04 | ||
53 | * - Avoid filling tx_ring completely - shemminger@osdl.org | ||
54 | * - Replace schedule_timeout() with msleep()/msleep_interruptible() - | ||
55 | * nacc@us.ibm.com | ||
56 | * - Sparse cleanup - shemminger@osdl.org | ||
57 | * - Fix tx resource cleanup logic | ||
58 | * - LLTX support - ak@suse.de and hadi@cyberus.ca | ||
59 | */ | 35 | */ |
60 | 36 | ||
61 | char e1000_driver_name[] = "e1000"; | 37 | char e1000_driver_name[] = "e1000"; |
@@ -65,7 +41,7 @@ char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; | |||
65 | #else | 41 | #else |
66 | #define DRIVERNAPI "-NAPI" | 42 | #define DRIVERNAPI "-NAPI" |
67 | #endif | 43 | #endif |
68 | #define DRV_VERSION "5.7.6-k2"DRIVERNAPI | 44 | #define DRV_VERSION "6.0.54-k2"DRIVERNAPI |
69 | char e1000_driver_version[] = DRV_VERSION; | 45 | char e1000_driver_version[] = DRV_VERSION; |
70 | char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation."; | 46 | char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation."; |
71 | 47 | ||
@@ -96,6 +72,7 @@ static struct pci_device_id e1000_pci_tbl[] = { | |||
96 | INTEL_E1000_ETHERNET_DEVICE(0x1017), | 72 | INTEL_E1000_ETHERNET_DEVICE(0x1017), |
97 | INTEL_E1000_ETHERNET_DEVICE(0x1018), | 73 | INTEL_E1000_ETHERNET_DEVICE(0x1018), |
98 | INTEL_E1000_ETHERNET_DEVICE(0x1019), | 74 | INTEL_E1000_ETHERNET_DEVICE(0x1019), |
75 | INTEL_E1000_ETHERNET_DEVICE(0x101A), | ||
99 | INTEL_E1000_ETHERNET_DEVICE(0x101D), | 76 | INTEL_E1000_ETHERNET_DEVICE(0x101D), |
100 | INTEL_E1000_ETHERNET_DEVICE(0x101E), | 77 | INTEL_E1000_ETHERNET_DEVICE(0x101E), |
101 | INTEL_E1000_ETHERNET_DEVICE(0x1026), | 78 | INTEL_E1000_ETHERNET_DEVICE(0x1026), |
@@ -110,6 +87,9 @@ static struct pci_device_id e1000_pci_tbl[] = { | |||
110 | INTEL_E1000_ETHERNET_DEVICE(0x107B), | 87 | INTEL_E1000_ETHERNET_DEVICE(0x107B), |
111 | INTEL_E1000_ETHERNET_DEVICE(0x107C), | 88 | INTEL_E1000_ETHERNET_DEVICE(0x107C), |
112 | INTEL_E1000_ETHERNET_DEVICE(0x108A), | 89 | INTEL_E1000_ETHERNET_DEVICE(0x108A), |
90 | INTEL_E1000_ETHERNET_DEVICE(0x108B), | ||
91 | INTEL_E1000_ETHERNET_DEVICE(0x108C), | ||
92 | INTEL_E1000_ETHERNET_DEVICE(0x1099), | ||
113 | /* required last entry */ | 93 | /* required last entry */ |
114 | {0,} | 94 | {0,} |
115 | }; | 95 | }; |
@@ -155,10 +135,14 @@ static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter); | |||
155 | static int e1000_clean(struct net_device *netdev, int *budget); | 135 | static int e1000_clean(struct net_device *netdev, int *budget); |
156 | static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter, | 136 | static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter, |
157 | int *work_done, int work_to_do); | 137 | int *work_done, int work_to_do); |
138 | static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, | ||
139 | int *work_done, int work_to_do); | ||
158 | #else | 140 | #else |
159 | static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter); | 141 | static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter); |
142 | static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter); | ||
160 | #endif | 143 | #endif |
161 | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter); | 144 | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter); |
145 | static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter); | ||
162 | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); | 146 | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); |
163 | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | 147 | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
164 | int cmd); | 148 | int cmd); |
@@ -286,7 +270,29 @@ e1000_irq_enable(struct e1000_adapter *adapter) | |||
286 | E1000_WRITE_FLUSH(&adapter->hw); | 270 | E1000_WRITE_FLUSH(&adapter->hw); |
287 | } | 271 | } |
288 | } | 272 | } |
289 | 273 | void | |
274 | e1000_update_mng_vlan(struct e1000_adapter *adapter) | ||
275 | { | ||
276 | struct net_device *netdev = adapter->netdev; | ||
277 | uint16_t vid = adapter->hw.mng_cookie.vlan_id; | ||
278 | uint16_t old_vid = adapter->mng_vlan_id; | ||
279 | if(adapter->vlgrp) { | ||
280 | if(!adapter->vlgrp->vlan_devices[vid]) { | ||
281 | if(adapter->hw.mng_cookie.status & | ||
282 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { | ||
283 | e1000_vlan_rx_add_vid(netdev, vid); | ||
284 | adapter->mng_vlan_id = vid; | ||
285 | } else | ||
286 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | ||
287 | |||
288 | if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) && | ||
289 | (vid != old_vid) && | ||
290 | !adapter->vlgrp->vlan_devices[old_vid]) | ||
291 | e1000_vlan_rx_kill_vid(netdev, old_vid); | ||
292 | } | ||
293 | } | ||
294 | } | ||
295 | |||
290 | int | 296 | int |
291 | e1000_up(struct e1000_adapter *adapter) | 297 | e1000_up(struct e1000_adapter *adapter) |
292 | { | 298 | { |
@@ -310,19 +316,33 @@ e1000_up(struct e1000_adapter *adapter) | |||
310 | e1000_configure_tx(adapter); | 316 | e1000_configure_tx(adapter); |
311 | e1000_setup_rctl(adapter); | 317 | e1000_setup_rctl(adapter); |
312 | e1000_configure_rx(adapter); | 318 | e1000_configure_rx(adapter); |
313 | e1000_alloc_rx_buffers(adapter); | 319 | adapter->alloc_rx_buf(adapter); |
314 | 320 | ||
321 | #ifdef CONFIG_PCI_MSI | ||
322 | if(adapter->hw.mac_type > e1000_82547_rev_2) { | ||
323 | adapter->have_msi = TRUE; | ||
324 | if((err = pci_enable_msi(adapter->pdev))) { | ||
325 | DPRINTK(PROBE, ERR, | ||
326 | "Unable to allocate MSI interrupt Error: %d\n", err); | ||
327 | adapter->have_msi = FALSE; | ||
328 | } | ||
329 | } | ||
330 | #endif | ||
315 | if((err = request_irq(adapter->pdev->irq, &e1000_intr, | 331 | if((err = request_irq(adapter->pdev->irq, &e1000_intr, |
316 | SA_SHIRQ | SA_SAMPLE_RANDOM, | 332 | SA_SHIRQ | SA_SAMPLE_RANDOM, |
317 | netdev->name, netdev))) | 333 | netdev->name, netdev))) { |
334 | DPRINTK(PROBE, ERR, | ||
335 | "Unable to allocate interrupt Error: %d\n", err); | ||
318 | return err; | 336 | return err; |
337 | } | ||
319 | 338 | ||
320 | mod_timer(&adapter->watchdog_timer, jiffies); | 339 | mod_timer(&adapter->watchdog_timer, jiffies); |
321 | e1000_irq_enable(adapter); | ||
322 | 340 | ||
323 | #ifdef CONFIG_E1000_NAPI | 341 | #ifdef CONFIG_E1000_NAPI |
324 | netif_poll_enable(netdev); | 342 | netif_poll_enable(netdev); |
325 | #endif | 343 | #endif |
344 | e1000_irq_enable(adapter); | ||
345 | |||
326 | return 0; | 346 | return 0; |
327 | } | 347 | } |
328 | 348 | ||
@@ -333,6 +353,11 @@ e1000_down(struct e1000_adapter *adapter) | |||
333 | 353 | ||
334 | e1000_irq_disable(adapter); | 354 | e1000_irq_disable(adapter); |
335 | free_irq(adapter->pdev->irq, netdev); | 355 | free_irq(adapter->pdev->irq, netdev); |
356 | #ifdef CONFIG_PCI_MSI | ||
357 | if(adapter->hw.mac_type > e1000_82547_rev_2 && | ||
358 | adapter->have_msi == TRUE) | ||
359 | pci_disable_msi(adapter->pdev); | ||
360 | #endif | ||
336 | del_timer_sync(&adapter->tx_fifo_stall_timer); | 361 | del_timer_sync(&adapter->tx_fifo_stall_timer); |
337 | del_timer_sync(&adapter->watchdog_timer); | 362 | del_timer_sync(&adapter->watchdog_timer); |
338 | del_timer_sync(&adapter->phy_info_timer); | 363 | del_timer_sync(&adapter->phy_info_timer); |
@@ -350,62 +375,93 @@ e1000_down(struct e1000_adapter *adapter) | |||
350 | e1000_clean_rx_ring(adapter); | 375 | e1000_clean_rx_ring(adapter); |
351 | 376 | ||
352 | /* If WoL is not enabled | 377 | /* If WoL is not enabled |
378 | * and management mode is not IAMT | ||
353 | * Power down the PHY so no link is implied when interface is down */ | 379 | * Power down the PHY so no link is implied when interface is down */ |
354 | if(!adapter->wol && adapter->hw.media_type == e1000_media_type_copper) { | 380 | if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 && |
381 | adapter->hw.media_type == e1000_media_type_copper && | ||
382 | !e1000_check_mng_mode(&adapter->hw) && | ||
383 | !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) { | ||
355 | uint16_t mii_reg; | 384 | uint16_t mii_reg; |
356 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); | 385 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); |
357 | mii_reg |= MII_CR_POWER_DOWN; | 386 | mii_reg |= MII_CR_POWER_DOWN; |
358 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); | 387 | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); |
388 | mdelay(1); | ||
359 | } | 389 | } |
360 | } | 390 | } |
361 | 391 | ||
362 | void | 392 | void |
363 | e1000_reset(struct e1000_adapter *adapter) | 393 | e1000_reset(struct e1000_adapter *adapter) |
364 | { | 394 | { |
365 | uint32_t pba; | 395 | struct net_device *netdev = adapter->netdev; |
396 | uint32_t pba, manc; | ||
397 | uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF; | ||
398 | uint16_t fc_low_water_mark = E1000_FC_LOW_DIFF; | ||
366 | 399 | ||
367 | /* Repartition Pba for greater than 9k mtu | 400 | /* Repartition Pba for greater than 9k mtu |
368 | * To take effect CTRL.RST is required. | 401 | * To take effect CTRL.RST is required. |
369 | */ | 402 | */ |
370 | 403 | ||
371 | if(adapter->hw.mac_type < e1000_82547) { | 404 | switch (adapter->hw.mac_type) { |
372 | if(adapter->rx_buffer_len > E1000_RXBUFFER_8192) | 405 | case e1000_82547: |
373 | pba = E1000_PBA_40K; | 406 | case e1000_82547_rev_2: |
374 | else | 407 | pba = E1000_PBA_30K; |
375 | pba = E1000_PBA_48K; | 408 | break; |
376 | } else { | 409 | case e1000_82573: |
377 | if(adapter->rx_buffer_len > E1000_RXBUFFER_8192) | 410 | pba = E1000_PBA_12K; |
378 | pba = E1000_PBA_22K; | 411 | break; |
379 | else | 412 | default: |
380 | pba = E1000_PBA_30K; | 413 | pba = E1000_PBA_48K; |
414 | break; | ||
415 | } | ||
416 | |||
417 | if((adapter->hw.mac_type != e1000_82573) && | ||
418 | (adapter->rx_buffer_len > E1000_RXBUFFER_8192)) { | ||
419 | pba -= 8; /* allocate more FIFO for Tx */ | ||
420 | /* send an XOFF when there is enough space in the | ||
421 | * Rx FIFO to hold one extra full size Rx packet | ||
422 | */ | ||
423 | fc_high_water_mark = netdev->mtu + ENET_HEADER_SIZE + | ||
424 | ETHERNET_FCS_SIZE + 1; | ||
425 | fc_low_water_mark = fc_high_water_mark + 8; | ||
426 | } | ||
427 | |||
428 | |||
429 | if(adapter->hw.mac_type == e1000_82547) { | ||
381 | adapter->tx_fifo_head = 0; | 430 | adapter->tx_fifo_head = 0; |
382 | adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; | 431 | adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; |
383 | adapter->tx_fifo_size = | 432 | adapter->tx_fifo_size = |
384 | (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; | 433 | (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; |
385 | atomic_set(&adapter->tx_fifo_stall, 0); | 434 | atomic_set(&adapter->tx_fifo_stall, 0); |
386 | } | 435 | } |
436 | |||
387 | E1000_WRITE_REG(&adapter->hw, PBA, pba); | 437 | E1000_WRITE_REG(&adapter->hw, PBA, pba); |
388 | 438 | ||
389 | /* flow control settings */ | 439 | /* flow control settings */ |
390 | adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) - | 440 | adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) - |
391 | E1000_FC_HIGH_DIFF; | 441 | fc_high_water_mark; |
392 | adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) - | 442 | adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) - |
393 | E1000_FC_LOW_DIFF; | 443 | fc_low_water_mark; |
394 | adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME; | 444 | adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME; |
395 | adapter->hw.fc_send_xon = 1; | 445 | adapter->hw.fc_send_xon = 1; |
396 | adapter->hw.fc = adapter->hw.original_fc; | 446 | adapter->hw.fc = adapter->hw.original_fc; |
397 | 447 | ||
448 | /* Allow time for pending master requests to run */ | ||
398 | e1000_reset_hw(&adapter->hw); | 449 | e1000_reset_hw(&adapter->hw); |
399 | if(adapter->hw.mac_type >= e1000_82544) | 450 | if(adapter->hw.mac_type >= e1000_82544) |
400 | E1000_WRITE_REG(&adapter->hw, WUC, 0); | 451 | E1000_WRITE_REG(&adapter->hw, WUC, 0); |
401 | if(e1000_init_hw(&adapter->hw)) | 452 | if(e1000_init_hw(&adapter->hw)) |
402 | DPRINTK(PROBE, ERR, "Hardware Error\n"); | 453 | DPRINTK(PROBE, ERR, "Hardware Error\n"); |
403 | 454 | e1000_update_mng_vlan(adapter); | |
404 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | 455 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
405 | E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE); | 456 | E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE); |
406 | 457 | ||
407 | e1000_reset_adaptive(&adapter->hw); | 458 | e1000_reset_adaptive(&adapter->hw); |
408 | e1000_phy_get_info(&adapter->hw, &adapter->phy_info); | 459 | e1000_phy_get_info(&adapter->hw, &adapter->phy_info); |
460 | if (adapter->en_mng_pt) { | ||
461 | manc = E1000_READ_REG(&adapter->hw, MANC); | ||
462 | manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST); | ||
463 | E1000_WRITE_REG(&adapter->hw, MANC, manc); | ||
464 | } | ||
409 | } | 465 | } |
410 | 466 | ||
411 | /** | 467 | /** |
@@ -426,15 +482,13 @@ e1000_probe(struct pci_dev *pdev, | |||
426 | { | 482 | { |
427 | struct net_device *netdev; | 483 | struct net_device *netdev; |
428 | struct e1000_adapter *adapter; | 484 | struct e1000_adapter *adapter; |
485 | unsigned long mmio_start, mmio_len; | ||
486 | uint32_t swsm; | ||
487 | |||
429 | static int cards_found = 0; | 488 | static int cards_found = 0; |
430 | unsigned long mmio_start; | 489 | int i, err, pci_using_dac; |
431 | int mmio_len; | ||
432 | int pci_using_dac; | ||
433 | int i; | ||
434 | int err; | ||
435 | uint16_t eeprom_data; | 490 | uint16_t eeprom_data; |
436 | uint16_t eeprom_apme_mask = E1000_EEPROM_APME; | 491 | uint16_t eeprom_apme_mask = E1000_EEPROM_APME; |
437 | |||
438 | if((err = pci_enable_device(pdev))) | 492 | if((err = pci_enable_device(pdev))) |
439 | return err; | 493 | return err; |
440 | 494 | ||
@@ -521,6 +575,9 @@ e1000_probe(struct pci_dev *pdev, | |||
521 | if((err = e1000_sw_init(adapter))) | 575 | if((err = e1000_sw_init(adapter))) |
522 | goto err_sw_init; | 576 | goto err_sw_init; |
523 | 577 | ||
578 | if((err = e1000_check_phy_reset_block(&adapter->hw))) | ||
579 | DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); | ||
580 | |||
524 | if(adapter->hw.mac_type >= e1000_82543) { | 581 | if(adapter->hw.mac_type >= e1000_82543) { |
525 | netdev->features = NETIF_F_SG | | 582 | netdev->features = NETIF_F_SG | |
526 | NETIF_F_HW_CSUM | | 583 | NETIF_F_HW_CSUM | |
@@ -533,6 +590,11 @@ e1000_probe(struct pci_dev *pdev, | |||
533 | if((adapter->hw.mac_type >= e1000_82544) && | 590 | if((adapter->hw.mac_type >= e1000_82544) && |
534 | (adapter->hw.mac_type != e1000_82547)) | 591 | (adapter->hw.mac_type != e1000_82547)) |
535 | netdev->features |= NETIF_F_TSO; | 592 | netdev->features |= NETIF_F_TSO; |
593 | |||
594 | #ifdef NETIF_F_TSO_IPV6 | ||
595 | if(adapter->hw.mac_type > e1000_82547_rev_2) | ||
596 | netdev->features |= NETIF_F_TSO_IPV6; | ||
597 | #endif | ||
536 | #endif | 598 | #endif |
537 | if(pci_using_dac) | 599 | if(pci_using_dac) |
538 | netdev->features |= NETIF_F_HIGHDMA; | 600 | netdev->features |= NETIF_F_HIGHDMA; |
@@ -540,6 +602,8 @@ e1000_probe(struct pci_dev *pdev, | |||
540 | /* hard_start_xmit is safe against parallel locking */ | 602 | /* hard_start_xmit is safe against parallel locking */ |
541 | netdev->features |= NETIF_F_LLTX; | 603 | netdev->features |= NETIF_F_LLTX; |
542 | 604 | ||
605 | adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw); | ||
606 | |||
543 | /* before reading the EEPROM, reset the controller to | 607 | /* before reading the EEPROM, reset the controller to |
544 | * put the device in a known good starting state */ | 608 | * put the device in a known good starting state */ |
545 | 609 | ||
@@ -555,7 +619,7 @@ e1000_probe(struct pci_dev *pdev, | |||
555 | 619 | ||
556 | /* copy the MAC address out of the EEPROM */ | 620 | /* copy the MAC address out of the EEPROM */ |
557 | 621 | ||
558 | if (e1000_read_mac_addr(&adapter->hw)) | 622 | if(e1000_read_mac_addr(&adapter->hw)) |
559 | DPRINTK(PROBE, ERR, "EEPROM Read Error\n"); | 623 | DPRINTK(PROBE, ERR, "EEPROM Read Error\n"); |
560 | memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); | 624 | memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); |
561 | 625 | ||
@@ -629,6 +693,17 @@ e1000_probe(struct pci_dev *pdev, | |||
629 | /* reset the hardware with the new settings */ | 693 | /* reset the hardware with the new settings */ |
630 | e1000_reset(adapter); | 694 | e1000_reset(adapter); |
631 | 695 | ||
696 | /* Let firmware know the driver has taken over */ | ||
697 | switch(adapter->hw.mac_type) { | ||
698 | case e1000_82573: | ||
699 | swsm = E1000_READ_REG(&adapter->hw, SWSM); | ||
700 | E1000_WRITE_REG(&adapter->hw, SWSM, | ||
701 | swsm | E1000_SWSM_DRV_LOAD); | ||
702 | break; | ||
703 | default: | ||
704 | break; | ||
705 | } | ||
706 | |||
632 | strcpy(netdev->name, "eth%d"); | 707 | strcpy(netdev->name, "eth%d"); |
633 | if((err = register_netdev(netdev))) | 708 | if((err = register_netdev(netdev))) |
634 | goto err_register; | 709 | goto err_register; |
@@ -664,7 +739,7 @@ e1000_remove(struct pci_dev *pdev) | |||
664 | { | 739 | { |
665 | struct net_device *netdev = pci_get_drvdata(pdev); | 740 | struct net_device *netdev = pci_get_drvdata(pdev); |
666 | struct e1000_adapter *adapter = netdev->priv; | 741 | struct e1000_adapter *adapter = netdev->priv; |
667 | uint32_t manc; | 742 | uint32_t manc, swsm; |
668 | 743 | ||
669 | flush_scheduled_work(); | 744 | flush_scheduled_work(); |
670 | 745 | ||
@@ -677,9 +752,21 @@ e1000_remove(struct pci_dev *pdev) | |||
677 | } | 752 | } |
678 | } | 753 | } |
679 | 754 | ||
755 | switch(adapter->hw.mac_type) { | ||
756 | case e1000_82573: | ||
757 | swsm = E1000_READ_REG(&adapter->hw, SWSM); | ||
758 | E1000_WRITE_REG(&adapter->hw, SWSM, | ||
759 | swsm & ~E1000_SWSM_DRV_LOAD); | ||
760 | break; | ||
761 | |||
762 | default: | ||
763 | break; | ||
764 | } | ||
765 | |||
680 | unregister_netdev(netdev); | 766 | unregister_netdev(netdev); |
681 | 767 | ||
682 | e1000_phy_hw_reset(&adapter->hw); | 768 | if(!e1000_check_phy_reset_block(&adapter->hw)) |
769 | e1000_phy_hw_reset(&adapter->hw); | ||
683 | 770 | ||
684 | iounmap(adapter->hw.hw_addr); | 771 | iounmap(adapter->hw.hw_addr); |
685 | pci_release_regions(pdev); | 772 | pci_release_regions(pdev); |
@@ -717,6 +804,7 @@ e1000_sw_init(struct e1000_adapter *adapter) | |||
717 | pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); | 804 | pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); |
718 | 805 | ||
719 | adapter->rx_buffer_len = E1000_RXBUFFER_2048; | 806 | adapter->rx_buffer_len = E1000_RXBUFFER_2048; |
807 | adapter->rx_ps_bsize0 = E1000_RXBUFFER_256; | ||
720 | hw->max_frame_size = netdev->mtu + | 808 | hw->max_frame_size = netdev->mtu + |
721 | ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; | 809 | ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
722 | hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; | 810 | hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; |
@@ -730,7 +818,10 @@ e1000_sw_init(struct e1000_adapter *adapter) | |||
730 | 818 | ||
731 | /* initialize eeprom parameters */ | 819 | /* initialize eeprom parameters */ |
732 | 820 | ||
733 | e1000_init_eeprom_params(hw); | 821 | if(e1000_init_eeprom_params(hw)) { |
822 | E1000_ERR("EEPROM initialization failed\n"); | ||
823 | return -EIO; | ||
824 | } | ||
734 | 825 | ||
735 | switch(hw->mac_type) { | 826 | switch(hw->mac_type) { |
736 | default: | 827 | default: |
@@ -795,6 +886,11 @@ e1000_open(struct net_device *netdev) | |||
795 | 886 | ||
796 | if((err = e1000_up(adapter))) | 887 | if((err = e1000_up(adapter))) |
797 | goto err_up; | 888 | goto err_up; |
889 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | ||
890 | if((adapter->hw.mng_cookie.status & | ||
891 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { | ||
892 | e1000_update_mng_vlan(adapter); | ||
893 | } | ||
798 | 894 | ||
799 | return E1000_SUCCESS; | 895 | return E1000_SUCCESS; |
800 | 896 | ||
@@ -830,14 +926,18 @@ e1000_close(struct net_device *netdev) | |||
830 | e1000_free_tx_resources(adapter); | 926 | e1000_free_tx_resources(adapter); |
831 | e1000_free_rx_resources(adapter); | 927 | e1000_free_rx_resources(adapter); |
832 | 928 | ||
929 | if((adapter->hw.mng_cookie.status & | ||
930 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { | ||
931 | e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | ||
932 | } | ||
833 | return 0; | 933 | return 0; |
834 | } | 934 | } |
835 | 935 | ||
836 | /** | 936 | /** |
837 | * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary | 937 | * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary |
838 | * @adapter: address of board private structure | 938 | * @adapter: address of board private structure |
839 | * @begin: address of beginning of memory | 939 | * @start: address of beginning of memory |
840 | * @end: address of end of memory | 940 | * @len: length of memory |
841 | **/ | 941 | **/ |
842 | static inline boolean_t | 942 | static inline boolean_t |
843 | e1000_check_64k_bound(struct e1000_adapter *adapter, | 943 | e1000_check_64k_bound(struct e1000_adapter *adapter, |
@@ -846,12 +946,10 @@ e1000_check_64k_bound(struct e1000_adapter *adapter, | |||
846 | unsigned long begin = (unsigned long) start; | 946 | unsigned long begin = (unsigned long) start; |
847 | unsigned long end = begin + len; | 947 | unsigned long end = begin + len; |
848 | 948 | ||
849 | /* first rev 82545 and 82546 need to not allow any memory | 949 | /* First rev 82545 and 82546 need to not allow any memory |
850 | * write location to cross a 64k boundary due to errata 23 */ | 950 | * write location to cross 64k boundary due to errata 23 */ |
851 | if (adapter->hw.mac_type == e1000_82545 || | 951 | if (adapter->hw.mac_type == e1000_82545 || |
852 | adapter->hw.mac_type == e1000_82546 ) { | 952 | adapter->hw.mac_type == e1000_82546) { |
853 | |||
854 | /* check buffer doesn't cross 64kB */ | ||
855 | return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE; | 953 | return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE; |
856 | } | 954 | } |
857 | 955 | ||
@@ -875,8 +973,8 @@ e1000_setup_tx_resources(struct e1000_adapter *adapter) | |||
875 | size = sizeof(struct e1000_buffer) * txdr->count; | 973 | size = sizeof(struct e1000_buffer) * txdr->count; |
876 | txdr->buffer_info = vmalloc(size); | 974 | txdr->buffer_info = vmalloc(size); |
877 | if(!txdr->buffer_info) { | 975 | if(!txdr->buffer_info) { |
878 | DPRINTK(PROBE, ERR, | 976 | DPRINTK(PROBE, ERR, |
879 | "Unable to Allocate Memory for the Transmit descriptor ring\n"); | 977 | "Unable to allocate memory for the transmit descriptor ring\n"); |
880 | return -ENOMEM; | 978 | return -ENOMEM; |
881 | } | 979 | } |
882 | memset(txdr->buffer_info, 0, size); | 980 | memset(txdr->buffer_info, 0, size); |
@@ -889,38 +987,38 @@ e1000_setup_tx_resources(struct e1000_adapter *adapter) | |||
889 | txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); | 987 | txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); |
890 | if(!txdr->desc) { | 988 | if(!txdr->desc) { |
891 | setup_tx_desc_die: | 989 | setup_tx_desc_die: |
892 | DPRINTK(PROBE, ERR, | ||
893 | "Unable to Allocate Memory for the Transmit descriptor ring\n"); | ||
894 | vfree(txdr->buffer_info); | 990 | vfree(txdr->buffer_info); |
991 | DPRINTK(PROBE, ERR, | ||
992 | "Unable to allocate memory for the transmit descriptor ring\n"); | ||
895 | return -ENOMEM; | 993 | return -ENOMEM; |
896 | } | 994 | } |
897 | 995 | ||
898 | /* fix for errata 23, cant cross 64kB boundary */ | 996 | /* Fix for errata 23, can't cross 64kB boundary */ |
899 | if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { | 997 | if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
900 | void *olddesc = txdr->desc; | 998 | void *olddesc = txdr->desc; |
901 | dma_addr_t olddma = txdr->dma; | 999 | dma_addr_t olddma = txdr->dma; |
902 | DPRINTK(TX_ERR,ERR,"txdr align check failed: %u bytes at %p\n", | 1000 | DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes " |
903 | txdr->size, txdr->desc); | 1001 | "at %p\n", txdr->size, txdr->desc); |
904 | /* try again, without freeing the previous */ | 1002 | /* Try again, without freeing the previous */ |
905 | txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); | 1003 | txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); |
906 | /* failed allocation, critial failure */ | ||
907 | if(!txdr->desc) { | 1004 | if(!txdr->desc) { |
1005 | /* Failed allocation, critical failure */ | ||
908 | pci_free_consistent(pdev, txdr->size, olddesc, olddma); | 1006 | pci_free_consistent(pdev, txdr->size, olddesc, olddma); |
909 | goto setup_tx_desc_die; | 1007 | goto setup_tx_desc_die; |
910 | } | 1008 | } |
911 | 1009 | ||
912 | if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { | 1010 | if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
913 | /* give up */ | 1011 | /* give up */ |
914 | pci_free_consistent(pdev, txdr->size, | 1012 | pci_free_consistent(pdev, txdr->size, txdr->desc, |
915 | txdr->desc, txdr->dma); | 1013 | txdr->dma); |
916 | pci_free_consistent(pdev, txdr->size, olddesc, olddma); | 1014 | pci_free_consistent(pdev, txdr->size, olddesc, olddma); |
917 | DPRINTK(PROBE, ERR, | 1015 | DPRINTK(PROBE, ERR, |
918 | "Unable to Allocate aligned Memory for the Transmit" | 1016 | "Unable to allocate aligned memory " |
919 | " descriptor ring\n"); | 1017 | "for the transmit descriptor ring\n"); |
920 | vfree(txdr->buffer_info); | 1018 | vfree(txdr->buffer_info); |
921 | return -ENOMEM; | 1019 | return -ENOMEM; |
922 | } else { | 1020 | } else { |
923 | /* free old, move on with the new one since its okay */ | 1021 | /* Free old allocation, new allocation was successful */ |
924 | pci_free_consistent(pdev, txdr->size, olddesc, olddma); | 1022 | pci_free_consistent(pdev, txdr->size, olddesc, olddma); |
925 | } | 1023 | } |
926 | } | 1024 | } |
@@ -1022,59 +1120,88 @@ e1000_setup_rx_resources(struct e1000_adapter *adapter) | |||
1022 | { | 1120 | { |
1023 | struct e1000_desc_ring *rxdr = &adapter->rx_ring; | 1121 | struct e1000_desc_ring *rxdr = &adapter->rx_ring; |
1024 | struct pci_dev *pdev = adapter->pdev; | 1122 | struct pci_dev *pdev = adapter->pdev; |
1025 | int size; | 1123 | int size, desc_len; |
1026 | 1124 | ||
1027 | size = sizeof(struct e1000_buffer) * rxdr->count; | 1125 | size = sizeof(struct e1000_buffer) * rxdr->count; |
1028 | rxdr->buffer_info = vmalloc(size); | 1126 | rxdr->buffer_info = vmalloc(size); |
1029 | if(!rxdr->buffer_info) { | 1127 | if(!rxdr->buffer_info) { |
1030 | DPRINTK(PROBE, ERR, | 1128 | DPRINTK(PROBE, ERR, |
1031 | "Unable to Allocate Memory for the Recieve descriptor ring\n"); | 1129 | "Unable to allocate memory for the receive descriptor ring\n"); |
1032 | return -ENOMEM; | 1130 | return -ENOMEM; |
1033 | } | 1131 | } |
1034 | memset(rxdr->buffer_info, 0, size); | 1132 | memset(rxdr->buffer_info, 0, size); |
1035 | 1133 | ||
1134 | size = sizeof(struct e1000_ps_page) * rxdr->count; | ||
1135 | rxdr->ps_page = kmalloc(size, GFP_KERNEL); | ||
1136 | if(!rxdr->ps_page) { | ||
1137 | vfree(rxdr->buffer_info); | ||
1138 | DPRINTK(PROBE, ERR, | ||
1139 | "Unable to allocate memory for the receive descriptor ring\n"); | ||
1140 | return -ENOMEM; | ||
1141 | } | ||
1142 | memset(rxdr->ps_page, 0, size); | ||
1143 | |||
1144 | size = sizeof(struct e1000_ps_page_dma) * rxdr->count; | ||
1145 | rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL); | ||
1146 | if(!rxdr->ps_page_dma) { | ||
1147 | vfree(rxdr->buffer_info); | ||
1148 | kfree(rxdr->ps_page); | ||
1149 | DPRINTK(PROBE, ERR, | ||
1150 | "Unable to allocate memory for the receive descriptor ring\n"); | ||
1151 | return -ENOMEM; | ||
1152 | } | ||
1153 | memset(rxdr->ps_page_dma, 0, size); | ||
1154 | |||
1155 | if(adapter->hw.mac_type <= e1000_82547_rev_2) | ||
1156 | desc_len = sizeof(struct e1000_rx_desc); | ||
1157 | else | ||
1158 | desc_len = sizeof(union e1000_rx_desc_packet_split); | ||
1159 | |||
1036 | /* Round up to nearest 4K */ | 1160 | /* Round up to nearest 4K */ |
1037 | 1161 | ||
1038 | rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); | 1162 | rxdr->size = rxdr->count * desc_len; |
1039 | E1000_ROUNDUP(rxdr->size, 4096); | 1163 | E1000_ROUNDUP(rxdr->size, 4096); |
1040 | 1164 | ||
1041 | rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); | 1165 | rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); |
1042 | 1166 | ||
1043 | if(!rxdr->desc) { | 1167 | if(!rxdr->desc) { |
1044 | setup_rx_desc_die: | 1168 | setup_rx_desc_die: |
1045 | DPRINTK(PROBE, ERR, | ||
1046 | "Unble to Allocate Memory for the Recieve descriptor ring\n"); | ||
1047 | vfree(rxdr->buffer_info); | 1169 | vfree(rxdr->buffer_info); |
1170 | kfree(rxdr->ps_page); | ||
1171 | kfree(rxdr->ps_page_dma); | ||
1172 | DPRINTK(PROBE, ERR, | ||
1173 | "Unable to allocate memory for the receive descriptor ring\n"); | ||
1048 | return -ENOMEM; | 1174 | return -ENOMEM; |
1049 | } | 1175 | } |
1050 | 1176 | ||
1051 | /* fix for errata 23, cant cross 64kB boundary */ | 1177 | /* Fix for errata 23, can't cross 64kB boundary */ |
1052 | if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { | 1178 | if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
1053 | void *olddesc = rxdr->desc; | 1179 | void *olddesc = rxdr->desc; |
1054 | dma_addr_t olddma = rxdr->dma; | 1180 | dma_addr_t olddma = rxdr->dma; |
1055 | DPRINTK(RX_ERR,ERR, | 1181 | DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes " |
1056 | "rxdr align check failed: %u bytes at %p\n", | 1182 | "at %p\n", rxdr->size, rxdr->desc); |
1057 | rxdr->size, rxdr->desc); | 1183 | /* Try again, without freeing the previous */ |
1058 | /* try again, without freeing the previous */ | ||
1059 | rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); | 1184 | rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); |
1060 | /* failed allocation, critial failure */ | ||
1061 | if(!rxdr->desc) { | 1185 | if(!rxdr->desc) { |
1186 | /* Failed allocation, critical failure */ | ||
1062 | pci_free_consistent(pdev, rxdr->size, olddesc, olddma); | 1187 | pci_free_consistent(pdev, rxdr->size, olddesc, olddma); |
1063 | goto setup_rx_desc_die; | 1188 | goto setup_rx_desc_die; |
1064 | } | 1189 | } |
1065 | 1190 | ||
1066 | if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { | 1191 | if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
1067 | /* give up */ | 1192 | /* give up */ |
1068 | pci_free_consistent(pdev, rxdr->size, | 1193 | pci_free_consistent(pdev, rxdr->size, rxdr->desc, |
1069 | rxdr->desc, rxdr->dma); | 1194 | rxdr->dma); |
1070 | pci_free_consistent(pdev, rxdr->size, olddesc, olddma); | 1195 | pci_free_consistent(pdev, rxdr->size, olddesc, olddma); |
1071 | DPRINTK(PROBE, ERR, | 1196 | DPRINTK(PROBE, ERR, |
1072 | "Unable to Allocate aligned Memory for the" | 1197 | "Unable to allocate aligned memory " |
1073 | " Receive descriptor ring\n"); | 1198 | "for the receive descriptor ring\n"); |
1074 | vfree(rxdr->buffer_info); | 1199 | vfree(rxdr->buffer_info); |
1200 | kfree(rxdr->ps_page); | ||
1201 | kfree(rxdr->ps_page_dma); | ||
1075 | return -ENOMEM; | 1202 | return -ENOMEM; |
1076 | } else { | 1203 | } else { |
1077 | /* free old, move on with the new one since its okay */ | 1204 | /* Free old allocation, new allocation was successful */ |
1078 | pci_free_consistent(pdev, rxdr->size, olddesc, olddma); | 1205 | pci_free_consistent(pdev, rxdr->size, olddesc, olddma); |
1079 | } | 1206 | } |
1080 | } | 1207 | } |
@@ -1087,14 +1214,15 @@ setup_rx_desc_die: | |||
1087 | } | 1214 | } |
1088 | 1215 | ||
1089 | /** | 1216 | /** |
1090 | * e1000_setup_rctl - configure the receive control register | 1217 | * e1000_setup_rctl - configure the receive control registers |
1091 | * @adapter: Board private structure | 1218 | * @adapter: Board private structure |
1092 | **/ | 1219 | **/ |
1093 | 1220 | ||
1094 | static void | 1221 | static void |
1095 | e1000_setup_rctl(struct e1000_adapter *adapter) | 1222 | e1000_setup_rctl(struct e1000_adapter *adapter) |
1096 | { | 1223 | { |
1097 | uint32_t rctl; | 1224 | uint32_t rctl, rfctl; |
1225 | uint32_t psrctl = 0; | ||
1098 | 1226 | ||
1099 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | 1227 | rctl = E1000_READ_REG(&adapter->hw, RCTL); |
1100 | 1228 | ||
@@ -1109,24 +1237,69 @@ e1000_setup_rctl(struct e1000_adapter *adapter) | |||
1109 | else | 1237 | else |
1110 | rctl &= ~E1000_RCTL_SBP; | 1238 | rctl &= ~E1000_RCTL_SBP; |
1111 | 1239 | ||
1240 | if (adapter->netdev->mtu <= ETH_DATA_LEN) | ||
1241 | rctl &= ~E1000_RCTL_LPE; | ||
1242 | else | ||
1243 | rctl |= E1000_RCTL_LPE; | ||
1244 | |||
1112 | /* Setup buffer sizes */ | 1245 | /* Setup buffer sizes */ |
1113 | rctl &= ~(E1000_RCTL_SZ_4096); | 1246 | if(adapter->hw.mac_type == e1000_82573) { |
1114 | rctl |= (E1000_RCTL_BSEX | E1000_RCTL_LPE); | 1247 | /* We can now specify buffers in 1K increments. |
1115 | switch (adapter->rx_buffer_len) { | 1248 | * BSIZE and BSEX are ignored in this case. */ |
1116 | case E1000_RXBUFFER_2048: | 1249 | rctl |= adapter->rx_buffer_len << 0x11; |
1117 | default: | 1250 | } else { |
1118 | rctl |= E1000_RCTL_SZ_2048; | 1251 | rctl &= ~E1000_RCTL_SZ_4096; |
1119 | rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE); | 1252 | rctl |= E1000_RCTL_BSEX; |
1120 | break; | 1253 | switch (adapter->rx_buffer_len) { |
1121 | case E1000_RXBUFFER_4096: | 1254 | case E1000_RXBUFFER_2048: |
1122 | rctl |= E1000_RCTL_SZ_4096; | 1255 | default: |
1123 | break; | 1256 | rctl |= E1000_RCTL_SZ_2048; |
1124 | case E1000_RXBUFFER_8192: | 1257 | rctl &= ~E1000_RCTL_BSEX; |
1125 | rctl |= E1000_RCTL_SZ_8192; | 1258 | break; |
1126 | break; | 1259 | case E1000_RXBUFFER_4096: |
1127 | case E1000_RXBUFFER_16384: | 1260 | rctl |= E1000_RCTL_SZ_4096; |
1128 | rctl |= E1000_RCTL_SZ_16384; | 1261 | break; |
1129 | break; | 1262 | case E1000_RXBUFFER_8192: |
1263 | rctl |= E1000_RCTL_SZ_8192; | ||
1264 | break; | ||
1265 | case E1000_RXBUFFER_16384: | ||
1266 | rctl |= E1000_RCTL_SZ_16384; | ||
1267 | break; | ||
1268 | } | ||
1269 | } | ||
1270 | |||
1271 | #ifdef CONFIG_E1000_PACKET_SPLIT | ||
1272 | /* 82571 and greater support packet-split where the protocol | ||
1273 | * header is placed in skb->data and the packet data is | ||
1274 | * placed in pages hanging off of skb_shinfo(skb)->nr_frags. | ||
1275 | * In the case of a non-split, skb->data is linearly filled, | ||
1276 | * followed by the page buffers. Therefore, skb->data is | ||
1277 | * sized to hold the largest protocol header. | ||
1278 | */ | ||
1279 | adapter->rx_ps = (adapter->hw.mac_type > e1000_82547_rev_2) | ||
1280 | && (adapter->netdev->mtu | ||
1281 | < ((3 * PAGE_SIZE) + adapter->rx_ps_bsize0)); | ||
1282 | #endif | ||
1283 | if(adapter->rx_ps) { | ||
1284 | /* Configure extra packet-split registers */ | ||
1285 | rfctl = E1000_READ_REG(&adapter->hw, RFCTL); | ||
1286 | rfctl |= E1000_RFCTL_EXTEN; | ||
1287 | /* disable IPv6 packet split support */ | ||
1288 | rfctl |= E1000_RFCTL_IPV6_DIS; | ||
1289 | E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl); | ||
1290 | |||
1291 | rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC; | ||
1292 | |||
1293 | psrctl |= adapter->rx_ps_bsize0 >> | ||
1294 | E1000_PSRCTL_BSIZE0_SHIFT; | ||
1295 | psrctl |= PAGE_SIZE >> | ||
1296 | E1000_PSRCTL_BSIZE1_SHIFT; | ||
1297 | psrctl |= PAGE_SIZE << | ||
1298 | E1000_PSRCTL_BSIZE2_SHIFT; | ||
1299 | psrctl |= PAGE_SIZE << | ||
1300 | E1000_PSRCTL_BSIZE3_SHIFT; | ||
1301 | |||
1302 | E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl); | ||
1130 | } | 1303 | } |
1131 | 1304 | ||
1132 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | 1305 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
@@ -1143,9 +1316,18 @@ static void | |||
1143 | e1000_configure_rx(struct e1000_adapter *adapter) | 1316 | e1000_configure_rx(struct e1000_adapter *adapter) |
1144 | { | 1317 | { |
1145 | uint64_t rdba = adapter->rx_ring.dma; | 1318 | uint64_t rdba = adapter->rx_ring.dma; |
1146 | uint32_t rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc); | 1319 | uint32_t rdlen, rctl, rxcsum; |
1147 | uint32_t rctl; | 1320 | |
1148 | uint32_t rxcsum; | 1321 | if(adapter->rx_ps) { |
1322 | rdlen = adapter->rx_ring.count * | ||
1323 | sizeof(union e1000_rx_desc_packet_split); | ||
1324 | adapter->clean_rx = e1000_clean_rx_irq_ps; | ||
1325 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; | ||
1326 | } else { | ||
1327 | rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc); | ||
1328 | adapter->clean_rx = e1000_clean_rx_irq; | ||
1329 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers; | ||
1330 | } | ||
1149 | 1331 | ||
1150 | /* disable receives while setting up the descriptors */ | 1332 | /* disable receives while setting up the descriptors */ |
1151 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | 1333 | rctl = E1000_READ_REG(&adapter->hw, RCTL); |
@@ -1172,13 +1354,27 @@ e1000_configure_rx(struct e1000_adapter *adapter) | |||
1172 | E1000_WRITE_REG(&adapter->hw, RDT, 0); | 1354 | E1000_WRITE_REG(&adapter->hw, RDT, 0); |
1173 | 1355 | ||
1174 | /* Enable 82543 Receive Checksum Offload for TCP and UDP */ | 1356 | /* Enable 82543 Receive Checksum Offload for TCP and UDP */ |
1175 | if((adapter->hw.mac_type >= e1000_82543) && | 1357 | if(adapter->hw.mac_type >= e1000_82543) { |
1176 | (adapter->rx_csum == TRUE)) { | ||
1177 | rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM); | 1358 | rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM); |
1178 | rxcsum |= E1000_RXCSUM_TUOFL; | 1359 | if(adapter->rx_csum == TRUE) { |
1360 | rxcsum |= E1000_RXCSUM_TUOFL; | ||
1361 | |||
1362 | /* Enable 82573 IPv4 payload checksum for UDP fragments | ||
1363 | * Must be used in conjunction with packet-split. */ | ||
1364 | if((adapter->hw.mac_type > e1000_82547_rev_2) && | ||
1365 | (adapter->rx_ps)) { | ||
1366 | rxcsum |= E1000_RXCSUM_IPPCSE; | ||
1367 | } | ||
1368 | } else { | ||
1369 | rxcsum &= ~E1000_RXCSUM_TUOFL; | ||
1370 | /* don't need to clear IPPCSE as it defaults to 0 */ | ||
1371 | } | ||
1179 | E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum); | 1372 | E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum); |
1180 | } | 1373 | } |
1181 | 1374 | ||
1375 | if (adapter->hw.mac_type == e1000_82573) | ||
1376 | E1000_WRITE_REG(&adapter->hw, ERT, 0x0100); | ||
1377 | |||
1182 | /* Enable Receives */ | 1378 | /* Enable Receives */ |
1183 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | 1379 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
1184 | } | 1380 | } |
@@ -1210,13 +1406,11 @@ static inline void | |||
1210 | e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, | 1406 | e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, |
1211 | struct e1000_buffer *buffer_info) | 1407 | struct e1000_buffer *buffer_info) |
1212 | { | 1408 | { |
1213 | struct pci_dev *pdev = adapter->pdev; | ||
1214 | |||
1215 | if(buffer_info->dma) { | 1409 | if(buffer_info->dma) { |
1216 | pci_unmap_page(pdev, | 1410 | pci_unmap_page(adapter->pdev, |
1217 | buffer_info->dma, | 1411 | buffer_info->dma, |
1218 | buffer_info->length, | 1412 | buffer_info->length, |
1219 | PCI_DMA_TODEVICE); | 1413 | PCI_DMA_TODEVICE); |
1220 | buffer_info->dma = 0; | 1414 | buffer_info->dma = 0; |
1221 | } | 1415 | } |
1222 | if(buffer_info->skb) { | 1416 | if(buffer_info->skb) { |
@@ -1241,7 +1435,7 @@ e1000_clean_tx_ring(struct e1000_adapter *adapter) | |||
1241 | /* Free all the Tx ring sk_buffs */ | 1435 | /* Free all the Tx ring sk_buffs */ |
1242 | 1436 | ||
1243 | if (likely(adapter->previous_buffer_info.skb != NULL)) { | 1437 | if (likely(adapter->previous_buffer_info.skb != NULL)) { |
1244 | e1000_unmap_and_free_tx_resource(adapter, | 1438 | e1000_unmap_and_free_tx_resource(adapter, |
1245 | &adapter->previous_buffer_info); | 1439 | &adapter->previous_buffer_info); |
1246 | } | 1440 | } |
1247 | 1441 | ||
@@ -1281,6 +1475,10 @@ e1000_free_rx_resources(struct e1000_adapter *adapter) | |||
1281 | 1475 | ||
1282 | vfree(rx_ring->buffer_info); | 1476 | vfree(rx_ring->buffer_info); |
1283 | rx_ring->buffer_info = NULL; | 1477 | rx_ring->buffer_info = NULL; |
1478 | kfree(rx_ring->ps_page); | ||
1479 | rx_ring->ps_page = NULL; | ||
1480 | kfree(rx_ring->ps_page_dma); | ||
1481 | rx_ring->ps_page_dma = NULL; | ||
1284 | 1482 | ||
1285 | pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); | 1483 | pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); |
1286 | 1484 | ||
@@ -1297,16 +1495,19 @@ e1000_clean_rx_ring(struct e1000_adapter *adapter) | |||
1297 | { | 1495 | { |
1298 | struct e1000_desc_ring *rx_ring = &adapter->rx_ring; | 1496 | struct e1000_desc_ring *rx_ring = &adapter->rx_ring; |
1299 | struct e1000_buffer *buffer_info; | 1497 | struct e1000_buffer *buffer_info; |
1498 | struct e1000_ps_page *ps_page; | ||
1499 | struct e1000_ps_page_dma *ps_page_dma; | ||
1300 | struct pci_dev *pdev = adapter->pdev; | 1500 | struct pci_dev *pdev = adapter->pdev; |
1301 | unsigned long size; | 1501 | unsigned long size; |
1302 | unsigned int i; | 1502 | unsigned int i, j; |
1303 | 1503 | ||
1304 | /* Free all the Rx ring sk_buffs */ | 1504 | /* Free all the Rx ring sk_buffs */ |
1305 | 1505 | ||
1306 | for(i = 0; i < rx_ring->count; i++) { | 1506 | for(i = 0; i < rx_ring->count; i++) { |
1307 | buffer_info = &rx_ring->buffer_info[i]; | 1507 | buffer_info = &rx_ring->buffer_info[i]; |
1308 | if(buffer_info->skb) { | 1508 | if(buffer_info->skb) { |
1309 | 1509 | ps_page = &rx_ring->ps_page[i]; | |
1510 | ps_page_dma = &rx_ring->ps_page_dma[i]; | ||
1310 | pci_unmap_single(pdev, | 1511 | pci_unmap_single(pdev, |
1311 | buffer_info->dma, | 1512 | buffer_info->dma, |
1312 | buffer_info->length, | 1513 | buffer_info->length, |
@@ -1314,11 +1515,25 @@ e1000_clean_rx_ring(struct e1000_adapter *adapter) | |||
1314 | 1515 | ||
1315 | dev_kfree_skb(buffer_info->skb); | 1516 | dev_kfree_skb(buffer_info->skb); |
1316 | buffer_info->skb = NULL; | 1517 | buffer_info->skb = NULL; |
1518 | |||
1519 | for(j = 0; j < PS_PAGE_BUFFERS; j++) { | ||
1520 | if(!ps_page->ps_page[j]) break; | ||
1521 | pci_unmap_single(pdev, | ||
1522 | ps_page_dma->ps_page_dma[j], | ||
1523 | PAGE_SIZE, PCI_DMA_FROMDEVICE); | ||
1524 | ps_page_dma->ps_page_dma[j] = 0; | ||
1525 | put_page(ps_page->ps_page[j]); | ||
1526 | ps_page->ps_page[j] = NULL; | ||
1527 | } | ||
1317 | } | 1528 | } |
1318 | } | 1529 | } |
1319 | 1530 | ||
1320 | size = sizeof(struct e1000_buffer) * rx_ring->count; | 1531 | size = sizeof(struct e1000_buffer) * rx_ring->count; |
1321 | memset(rx_ring->buffer_info, 0, size); | 1532 | memset(rx_ring->buffer_info, 0, size); |
1533 | size = sizeof(struct e1000_ps_page) * rx_ring->count; | ||
1534 | memset(rx_ring->ps_page, 0, size); | ||
1535 | size = sizeof(struct e1000_ps_page_dma) * rx_ring->count; | ||
1536 | memset(rx_ring->ps_page_dma, 0, size); | ||
1322 | 1537 | ||
1323 | /* Zero out the descriptor ring */ | 1538 | /* Zero out the descriptor ring */ |
1324 | 1539 | ||
@@ -1422,15 +1637,15 @@ e1000_set_multi(struct net_device *netdev) | |||
1422 | struct e1000_adapter *adapter = netdev->priv; | 1637 | struct e1000_adapter *adapter = netdev->priv; |
1423 | struct e1000_hw *hw = &adapter->hw; | 1638 | struct e1000_hw *hw = &adapter->hw; |
1424 | struct dev_mc_list *mc_ptr; | 1639 | struct dev_mc_list *mc_ptr; |
1640 | unsigned long flags; | ||
1425 | uint32_t rctl; | 1641 | uint32_t rctl; |
1426 | uint32_t hash_value; | 1642 | uint32_t hash_value; |
1427 | int i; | 1643 | int i; |
1428 | unsigned long flags; | ||
1429 | |||
1430 | /* Check for Promiscuous and All Multicast modes */ | ||
1431 | 1644 | ||
1432 | spin_lock_irqsave(&adapter->tx_lock, flags); | 1645 | spin_lock_irqsave(&adapter->tx_lock, flags); |
1433 | 1646 | ||
1647 | /* Check for Promiscuous and All Multicast modes */ | ||
1648 | |||
1434 | rctl = E1000_READ_REG(hw, RCTL); | 1649 | rctl = E1000_READ_REG(hw, RCTL); |
1435 | 1650 | ||
1436 | if(netdev->flags & IFF_PROMISC) { | 1651 | if(netdev->flags & IFF_PROMISC) { |
@@ -1556,6 +1771,11 @@ e1000_watchdog_task(struct e1000_adapter *adapter) | |||
1556 | uint32_t link; | 1771 | uint32_t link; |
1557 | 1772 | ||
1558 | e1000_check_for_link(&adapter->hw); | 1773 | e1000_check_for_link(&adapter->hw); |
1774 | if (adapter->hw.mac_type == e1000_82573) { | ||
1775 | e1000_enable_tx_pkt_filtering(&adapter->hw); | ||
1776 | if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id) | ||
1777 | e1000_update_mng_vlan(adapter); | ||
1778 | } | ||
1559 | 1779 | ||
1560 | if((adapter->hw.media_type == e1000_media_type_internal_serdes) && | 1780 | if((adapter->hw.media_type == e1000_media_type_internal_serdes) && |
1561 | !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE)) | 1781 | !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE)) |
@@ -1632,7 +1852,7 @@ e1000_watchdog_task(struct e1000_adapter *adapter) | |||
1632 | /* Cause software interrupt to ensure rx ring is cleaned */ | 1852 | /* Cause software interrupt to ensure rx ring is cleaned */ |
1633 | E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0); | 1853 | E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0); |
1634 | 1854 | ||
1635 | /* Force detection of hung controller every watchdog period*/ | 1855 | /* Force detection of hung controller every watchdog period */ |
1636 | adapter->detect_tx_hung = TRUE; | 1856 | adapter->detect_tx_hung = TRUE; |
1637 | 1857 | ||
1638 | /* Reset the timer */ | 1858 | /* Reset the timer */ |
@@ -1642,6 +1862,7 @@ e1000_watchdog_task(struct e1000_adapter *adapter) | |||
1642 | #define E1000_TX_FLAGS_CSUM 0x00000001 | 1862 | #define E1000_TX_FLAGS_CSUM 0x00000001 |
1643 | #define E1000_TX_FLAGS_VLAN 0x00000002 | 1863 | #define E1000_TX_FLAGS_VLAN 0x00000002 |
1644 | #define E1000_TX_FLAGS_TSO 0x00000004 | 1864 | #define E1000_TX_FLAGS_TSO 0x00000004 |
1865 | #define E1000_TX_FLAGS_IPV4 0x00000008 | ||
1645 | #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 | 1866 | #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 |
1646 | #define E1000_TX_FLAGS_VLAN_SHIFT 16 | 1867 | #define E1000_TX_FLAGS_VLAN_SHIFT 16 |
1647 | 1868 | ||
@@ -1652,7 +1873,7 @@ e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb) | |||
1652 | struct e1000_context_desc *context_desc; | 1873 | struct e1000_context_desc *context_desc; |
1653 | unsigned int i; | 1874 | unsigned int i; |
1654 | uint32_t cmd_length = 0; | 1875 | uint32_t cmd_length = 0; |
1655 | uint16_t ipcse, tucse, mss; | 1876 | uint16_t ipcse = 0, tucse, mss; |
1656 | uint8_t ipcss, ipcso, tucss, tucso, hdr_len; | 1877 | uint8_t ipcss, ipcso, tucss, tucso, hdr_len; |
1657 | int err; | 1878 | int err; |
1658 | 1879 | ||
@@ -1665,23 +1886,37 @@ e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb) | |||
1665 | 1886 | ||
1666 | hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2)); | 1887 | hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2)); |
1667 | mss = skb_shinfo(skb)->tso_size; | 1888 | mss = skb_shinfo(skb)->tso_size; |
1668 | skb->nh.iph->tot_len = 0; | 1889 | if(skb->protocol == ntohs(ETH_P_IP)) { |
1669 | skb->nh.iph->check = 0; | 1890 | skb->nh.iph->tot_len = 0; |
1670 | skb->h.th->check = ~csum_tcpudp_magic(skb->nh.iph->saddr, | 1891 | skb->nh.iph->check = 0; |
1671 | skb->nh.iph->daddr, | 1892 | skb->h.th->check = |
1672 | 0, | 1893 | ~csum_tcpudp_magic(skb->nh.iph->saddr, |
1673 | IPPROTO_TCP, | 1894 | skb->nh.iph->daddr, |
1674 | 0); | 1895 | 0, |
1896 | IPPROTO_TCP, | ||
1897 | 0); | ||
1898 | cmd_length = E1000_TXD_CMD_IP; | ||
1899 | ipcse = skb->h.raw - skb->data - 1; | ||
1900 | #ifdef NETIF_F_TSO_IPV6 | ||
1901 | } else if(skb->protocol == ntohs(ETH_P_IPV6)) { | ||
1902 | skb->nh.ipv6h->payload_len = 0; | ||
1903 | skb->h.th->check = | ||
1904 | ~csum_ipv6_magic(&skb->nh.ipv6h->saddr, | ||
1905 | &skb->nh.ipv6h->daddr, | ||
1906 | 0, | ||
1907 | IPPROTO_TCP, | ||
1908 | 0); | ||
1909 | ipcse = 0; | ||
1910 | #endif | ||
1911 | } | ||
1675 | ipcss = skb->nh.raw - skb->data; | 1912 | ipcss = skb->nh.raw - skb->data; |
1676 | ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data; | 1913 | ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data; |
1677 | ipcse = skb->h.raw - skb->data - 1; | ||
1678 | tucss = skb->h.raw - skb->data; | 1914 | tucss = skb->h.raw - skb->data; |
1679 | tucso = (void *)&(skb->h.th->check) - (void *)skb->data; | 1915 | tucso = (void *)&(skb->h.th->check) - (void *)skb->data; |
1680 | tucse = 0; | 1916 | tucse = 0; |
1681 | 1917 | ||
1682 | cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | | 1918 | cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | |
1683 | E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP | | 1919 | E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); |
1684 | (skb->len - (hdr_len))); | ||
1685 | 1920 | ||
1686 | i = adapter->tx_ring.next_to_use; | 1921 | i = adapter->tx_ring.next_to_use; |
1687 | context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i); | 1922 | context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i); |
@@ -1760,6 +1995,15 @@ e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb, | |||
1760 | if(unlikely(mss && !nr_frags && size == len && size > 8)) | 1995 | if(unlikely(mss && !nr_frags && size == len && size > 8)) |
1761 | size -= 4; | 1996 | size -= 4; |
1762 | #endif | 1997 | #endif |
1998 | /* work-around for errata 10 and it applies | ||
1999 | * to all controllers in PCI-X mode | ||
2000 | * The fix is to make sure that the first descriptor of a | ||
2001 | * packet is smaller than 2048 - 16 - 16 (or 2016) bytes | ||
2002 | */ | ||
2003 | if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) && | ||
2004 | (size > 2015) && count == 0)) | ||
2005 | size = 2015; | ||
2006 | |||
1763 | /* Workaround for potential 82544 hang in PCI-X. Avoid | 2007 | /* Workaround for potential 82544 hang in PCI-X. Avoid |
1764 | * terminating buffers within evenly-aligned dwords. */ | 2008 | * terminating buffers within evenly-aligned dwords. */ |
1765 | if(unlikely(adapter->pcix_82544 && | 2009 | if(unlikely(adapter->pcix_82544 && |
@@ -1840,7 +2084,10 @@ e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags) | |||
1840 | if(likely(tx_flags & E1000_TX_FLAGS_TSO)) { | 2084 | if(likely(tx_flags & E1000_TX_FLAGS_TSO)) { |
1841 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | | 2085 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | |
1842 | E1000_TXD_CMD_TSE; | 2086 | E1000_TXD_CMD_TSE; |
1843 | txd_upper |= (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8; | 2087 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
2088 | |||
2089 | if(likely(tx_flags & E1000_TX_FLAGS_IPV4)) | ||
2090 | txd_upper |= E1000_TXD_POPTS_IXSM << 8; | ||
1844 | } | 2091 | } |
1845 | 2092 | ||
1846 | if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) { | 2093 | if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) { |
@@ -1915,6 +2162,53 @@ no_fifo_stall_required: | |||
1915 | return 0; | 2162 | return 0; |
1916 | } | 2163 | } |
1917 | 2164 | ||
2165 | #define MINIMUM_DHCP_PACKET_SIZE 282 | ||
2166 | static inline int | ||
2167 | e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb) | ||
2168 | { | ||
2169 | struct e1000_hw *hw = &adapter->hw; | ||
2170 | uint16_t length, offset; | ||
2171 | if(vlan_tx_tag_present(skb)) { | ||
2172 | if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && | ||
2173 | ( adapter->hw.mng_cookie.status & | ||
2174 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) ) | ||
2175 | return 0; | ||
2176 | } | ||
2177 | if(htons(ETH_P_IP) == skb->protocol) { | ||
2178 | const struct iphdr *ip = skb->nh.iph; | ||
2179 | if(IPPROTO_UDP == ip->protocol) { | ||
2180 | struct udphdr *udp = (struct udphdr *)(skb->h.uh); | ||
2181 | if(ntohs(udp->dest) == 67) { | ||
2182 | offset = (uint8_t *)udp + 8 - skb->data; | ||
2183 | length = skb->len - offset; | ||
2184 | |||
2185 | return e1000_mng_write_dhcp_info(hw, | ||
2186 | (uint8_t *)udp + 8, length); | ||
2187 | } | ||
2188 | } | ||
2189 | } else if((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) { | ||
2190 | struct ethhdr *eth = (struct ethhdr *) skb->data; | ||
2191 | if((htons(ETH_P_IP) == eth->h_proto)) { | ||
2192 | const struct iphdr *ip = | ||
2193 | (struct iphdr *)((uint8_t *)skb->data+14); | ||
2194 | if(IPPROTO_UDP == ip->protocol) { | ||
2195 | struct udphdr *udp = | ||
2196 | (struct udphdr *)((uint8_t *)ip + | ||
2197 | (ip->ihl << 2)); | ||
2198 | if(ntohs(udp->dest) == 67) { | ||
2199 | offset = (uint8_t *)udp + 8 - skb->data; | ||
2200 | length = skb->len - offset; | ||
2201 | |||
2202 | return e1000_mng_write_dhcp_info(hw, | ||
2203 | (uint8_t *)udp + 8, | ||
2204 | length); | ||
2205 | } | ||
2206 | } | ||
2207 | } | ||
2208 | } | ||
2209 | return 0; | ||
2210 | } | ||
2211 | |||
1918 | #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) | 2212 | #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) |
1919 | static int | 2213 | static int |
1920 | e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | 2214 | e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) |
@@ -1939,7 +2233,7 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | |||
1939 | 2233 | ||
1940 | #ifdef NETIF_F_TSO | 2234 | #ifdef NETIF_F_TSO |
1941 | mss = skb_shinfo(skb)->tso_size; | 2235 | mss = skb_shinfo(skb)->tso_size; |
1942 | /* The controller does a simple calculation to | 2236 | /* The controller does a simple calculation to |
1943 | * make sure there is enough room in the FIFO before | 2237 | * make sure there is enough room in the FIFO before |
1944 | * initiating the DMA for each buffer. The calc is: | 2238 | * initiating the DMA for each buffer. The calc is: |
1945 | * 4 = ceil(buffer len/mss). To make sure we don't | 2239 | * 4 = ceil(buffer len/mss). To make sure we don't |
@@ -1952,7 +2246,7 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | |||
1952 | 2246 | ||
1953 | if((mss) || (skb->ip_summed == CHECKSUM_HW)) | 2247 | if((mss) || (skb->ip_summed == CHECKSUM_HW)) |
1954 | count++; | 2248 | count++; |
1955 | count++; /* for sentinel desc */ | 2249 | count++; |
1956 | #else | 2250 | #else |
1957 | if(skb->ip_summed == CHECKSUM_HW) | 2251 | if(skb->ip_summed == CHECKSUM_HW) |
1958 | count++; | 2252 | count++; |
@@ -1962,6 +2256,13 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | |||
1962 | if(adapter->pcix_82544) | 2256 | if(adapter->pcix_82544) |
1963 | count++; | 2257 | count++; |
1964 | 2258 | ||
2259 | /* work-around for errata 10 and it applies to all controllers | ||
2260 | * in PCI-X mode, so add one more descriptor to the count | ||
2261 | */ | ||
2262 | if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) && | ||
2263 | (len > 2015))) | ||
2264 | count++; | ||
2265 | |||
1965 | nr_frags = skb_shinfo(skb)->nr_frags; | 2266 | nr_frags = skb_shinfo(skb)->nr_frags; |
1966 | for(f = 0; f < nr_frags; f++) | 2267 | for(f = 0; f < nr_frags; f++) |
1967 | count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, | 2268 | count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, |
@@ -1975,6 +2276,9 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | |||
1975 | local_irq_restore(flags); | 2276 | local_irq_restore(flags); |
1976 | return NETDEV_TX_LOCKED; | 2277 | return NETDEV_TX_LOCKED; |
1977 | } | 2278 | } |
2279 | if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) ) | ||
2280 | e1000_transfer_dhcp_info(adapter, skb); | ||
2281 | |||
1978 | 2282 | ||
1979 | /* need: count + 2 desc gap to keep tail from touching | 2283 | /* need: count + 2 desc gap to keep tail from touching |
1980 | * head, otherwise try next time */ | 2284 | * head, otherwise try next time */ |
@@ -2011,6 +2315,12 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | |||
2011 | else if(likely(e1000_tx_csum(adapter, skb))) | 2315 | else if(likely(e1000_tx_csum(adapter, skb))) |
2012 | tx_flags |= E1000_TX_FLAGS_CSUM; | 2316 | tx_flags |= E1000_TX_FLAGS_CSUM; |
2013 | 2317 | ||
2318 | /* Old method was to assume IPv4 packet by default if TSO was enabled. | ||
2319 | * 82573 hardware supports TSO capabilities for IPv6 as well... | ||
2320 | * no longer assume, we must. */ | ||
2321 | if(likely(skb->protocol == ntohs(ETH_P_IP))) | ||
2322 | tx_flags |= E1000_TX_FLAGS_IPV4; | ||
2323 | |||
2014 | e1000_tx_queue(adapter, | 2324 | e1000_tx_queue(adapter, |
2015 | e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss), | 2325 | e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss), |
2016 | tx_flags); | 2326 | tx_flags); |
@@ -2077,7 +2387,6 @@ static int | |||
2077 | e1000_change_mtu(struct net_device *netdev, int new_mtu) | 2387 | e1000_change_mtu(struct net_device *netdev, int new_mtu) |
2078 | { | 2388 | { |
2079 | struct e1000_adapter *adapter = netdev->priv; | 2389 | struct e1000_adapter *adapter = netdev->priv; |
2080 | int old_mtu = adapter->rx_buffer_len; | ||
2081 | int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; | 2390 | int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
2082 | 2391 | ||
2083 | if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || | 2392 | if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || |
@@ -2086,29 +2395,45 @@ e1000_change_mtu(struct net_device *netdev, int new_mtu) | |||
2086 | return -EINVAL; | 2395 | return -EINVAL; |
2087 | } | 2396 | } |
2088 | 2397 | ||
2089 | if(max_frame <= MAXIMUM_ETHERNET_FRAME_SIZE) { | 2398 | #define MAX_STD_JUMBO_FRAME_SIZE 9216 |
2090 | adapter->rx_buffer_len = E1000_RXBUFFER_2048; | 2399 | /* might want this to be bigger enum check... */ |
2091 | 2400 | if (adapter->hw.mac_type == e1000_82573 && | |
2092 | } else if(adapter->hw.mac_type < e1000_82543) { | 2401 | max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { |
2093 | DPRINTK(PROBE, ERR, "Jumbo Frames not supported on 82542\n"); | 2402 | DPRINTK(PROBE, ERR, "Jumbo Frames not supported " |
2403 | "on 82573\n"); | ||
2094 | return -EINVAL; | 2404 | return -EINVAL; |
2405 | } | ||
2095 | 2406 | ||
2096 | } else if(max_frame <= E1000_RXBUFFER_4096) { | 2407 | if(adapter->hw.mac_type > e1000_82547_rev_2) { |
2097 | adapter->rx_buffer_len = E1000_RXBUFFER_4096; | 2408 | adapter->rx_buffer_len = max_frame; |
2098 | 2409 | E1000_ROUNDUP(adapter->rx_buffer_len, 1024); | |
2099 | } else if(max_frame <= E1000_RXBUFFER_8192) { | ||
2100 | adapter->rx_buffer_len = E1000_RXBUFFER_8192; | ||
2101 | |||
2102 | } else { | 2410 | } else { |
2103 | adapter->rx_buffer_len = E1000_RXBUFFER_16384; | 2411 | if(unlikely((adapter->hw.mac_type < e1000_82543) && |
2412 | (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) { | ||
2413 | DPRINTK(PROBE, ERR, "Jumbo Frames not supported " | ||
2414 | "on 82542\n"); | ||
2415 | return -EINVAL; | ||
2416 | |||
2417 | } else { | ||
2418 | if(max_frame <= E1000_RXBUFFER_2048) { | ||
2419 | adapter->rx_buffer_len = E1000_RXBUFFER_2048; | ||
2420 | } else if(max_frame <= E1000_RXBUFFER_4096) { | ||
2421 | adapter->rx_buffer_len = E1000_RXBUFFER_4096; | ||
2422 | } else if(max_frame <= E1000_RXBUFFER_8192) { | ||
2423 | adapter->rx_buffer_len = E1000_RXBUFFER_8192; | ||
2424 | } else if(max_frame <= E1000_RXBUFFER_16384) { | ||
2425 | adapter->rx_buffer_len = E1000_RXBUFFER_16384; | ||
2426 | } | ||
2427 | } | ||
2104 | } | 2428 | } |
2105 | 2429 | ||
2106 | if(old_mtu != adapter->rx_buffer_len && netif_running(netdev)) { | 2430 | netdev->mtu = new_mtu; |
2431 | |||
2432 | if(netif_running(netdev)) { | ||
2107 | e1000_down(adapter); | 2433 | e1000_down(adapter); |
2108 | e1000_up(adapter); | 2434 | e1000_up(adapter); |
2109 | } | 2435 | } |
2110 | 2436 | ||
2111 | netdev->mtu = new_mtu; | ||
2112 | adapter->hw.max_frame_size = max_frame; | 2437 | adapter->hw.max_frame_size = max_frame; |
2113 | 2438 | ||
2114 | return 0; | 2439 | return 0; |
@@ -2199,6 +2524,17 @@ e1000_update_stats(struct e1000_adapter *adapter) | |||
2199 | adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC); | 2524 | adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC); |
2200 | adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC); | 2525 | adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC); |
2201 | } | 2526 | } |
2527 | if(hw->mac_type > e1000_82547_rev_2) { | ||
2528 | adapter->stats.iac += E1000_READ_REG(hw, IAC); | ||
2529 | adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC); | ||
2530 | adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC); | ||
2531 | adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC); | ||
2532 | adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC); | ||
2533 | adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC); | ||
2534 | adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC); | ||
2535 | adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC); | ||
2536 | adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC); | ||
2537 | } | ||
2202 | 2538 | ||
2203 | /* Fill out the OS statistics structure */ | 2539 | /* Fill out the OS statistics structure */ |
2204 | 2540 | ||
@@ -2213,9 +2549,9 @@ e1000_update_stats(struct e1000_adapter *adapter) | |||
2213 | 2549 | ||
2214 | adapter->net_stats.rx_errors = adapter->stats.rxerrc + | 2550 | adapter->net_stats.rx_errors = adapter->stats.rxerrc + |
2215 | adapter->stats.crcerrs + adapter->stats.algnerrc + | 2551 | adapter->stats.crcerrs + adapter->stats.algnerrc + |
2216 | adapter->stats.rlec + adapter->stats.rnbc + | 2552 | adapter->stats.rlec + adapter->stats.mpc + |
2217 | adapter->stats.mpc + adapter->stats.cexterr; | 2553 | adapter->stats.cexterr; |
2218 | adapter->net_stats.rx_dropped = adapter->stats.rnbc; | 2554 | adapter->net_stats.rx_dropped = adapter->stats.mpc; |
2219 | adapter->net_stats.rx_length_errors = adapter->stats.rlec; | 2555 | adapter->net_stats.rx_length_errors = adapter->stats.rlec; |
2220 | adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; | 2556 | adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; |
2221 | adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; | 2557 | adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; |
@@ -2300,11 +2636,11 @@ e1000_intr(int irq, void *data, struct pt_regs *regs) | |||
2300 | */ | 2636 | */ |
2301 | if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){ | 2637 | if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){ |
2302 | atomic_inc(&adapter->irq_sem); | 2638 | atomic_inc(&adapter->irq_sem); |
2303 | E1000_WRITE_REG(&adapter->hw, IMC, ~0); | 2639 | E1000_WRITE_REG(hw, IMC, ~0); |
2304 | } | 2640 | } |
2305 | 2641 | ||
2306 | for(i = 0; i < E1000_MAX_INTR; i++) | 2642 | for(i = 0; i < E1000_MAX_INTR; i++) |
2307 | if(unlikely(!e1000_clean_rx_irq(adapter) & | 2643 | if(unlikely(!adapter->clean_rx(adapter) & |
2308 | !e1000_clean_tx_irq(adapter))) | 2644 | !e1000_clean_tx_irq(adapter))) |
2309 | break; | 2645 | break; |
2310 | 2646 | ||
@@ -2328,16 +2664,15 @@ e1000_clean(struct net_device *netdev, int *budget) | |||
2328 | int work_to_do = min(*budget, netdev->quota); | 2664 | int work_to_do = min(*budget, netdev->quota); |
2329 | int tx_cleaned; | 2665 | int tx_cleaned; |
2330 | int work_done = 0; | 2666 | int work_done = 0; |
2331 | 2667 | ||
2332 | tx_cleaned = e1000_clean_tx_irq(adapter); | 2668 | tx_cleaned = e1000_clean_tx_irq(adapter); |
2333 | e1000_clean_rx_irq(adapter, &work_done, work_to_do); | 2669 | adapter->clean_rx(adapter, &work_done, work_to_do); |
2334 | 2670 | ||
2335 | *budget -= work_done; | 2671 | *budget -= work_done; |
2336 | netdev->quota -= work_done; | 2672 | netdev->quota -= work_done; |
2337 | 2673 | ||
2338 | /* if no Tx and not enough Rx work done, exit the polling mode */ | 2674 | /* If no Tx and no Rx work done, exit the polling mode */ |
2339 | if((!tx_cleaned && (work_done < work_to_do)) || | 2675 | if ((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) { |
2340 | !netif_running(netdev)) { | ||
2341 | netif_rx_complete(netdev); | 2676 | netif_rx_complete(netdev); |
2342 | e1000_irq_enable(adapter); | 2677 | e1000_irq_enable(adapter); |
2343 | return 0; | 2678 | return 0; |
@@ -2367,11 +2702,10 @@ e1000_clean_tx_irq(struct e1000_adapter *adapter) | |||
2367 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | 2702 | eop_desc = E1000_TX_DESC(*tx_ring, eop); |
2368 | 2703 | ||
2369 | while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { | 2704 | while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { |
2370 | /* pre-mature writeback of Tx descriptors */ | 2705 | /* Premature writeback of Tx descriptors clear (free buffers |
2371 | /* clear (free buffers and unmap pci_mapping) */ | 2706 | * and unmap pci_mapping) previous_buffer_info */ |
2372 | /* previous_buffer_info */ | ||
2373 | if (likely(adapter->previous_buffer_info.skb != NULL)) { | 2707 | if (likely(adapter->previous_buffer_info.skb != NULL)) { |
2374 | e1000_unmap_and_free_tx_resource(adapter, | 2708 | e1000_unmap_and_free_tx_resource(adapter, |
2375 | &adapter->previous_buffer_info); | 2709 | &adapter->previous_buffer_info); |
2376 | } | 2710 | } |
2377 | 2711 | ||
@@ -2380,26 +2714,30 @@ e1000_clean_tx_irq(struct e1000_adapter *adapter) | |||
2380 | buffer_info = &tx_ring->buffer_info[i]; | 2714 | buffer_info = &tx_ring->buffer_info[i]; |
2381 | cleaned = (i == eop); | 2715 | cleaned = (i == eop); |
2382 | 2716 | ||
2383 | /* pre-mature writeback of Tx descriptors */ | 2717 | #ifdef NETIF_F_TSO |
2384 | /* save the cleaning of the this for the */ | 2718 | if (!(netdev->features & NETIF_F_TSO)) { |
2385 | /* next iteration */ | 2719 | #endif |
2386 | if (cleaned) { | 2720 | e1000_unmap_and_free_tx_resource(adapter, |
2387 | memcpy(&adapter->previous_buffer_info, | 2721 | buffer_info); |
2388 | buffer_info, | 2722 | #ifdef NETIF_F_TSO |
2389 | sizeof(struct e1000_buffer)); | ||
2390 | memset(buffer_info, | ||
2391 | 0, | ||
2392 | sizeof(struct e1000_buffer)); | ||
2393 | } else { | 2723 | } else { |
2394 | e1000_unmap_and_free_tx_resource(adapter, | 2724 | if (cleaned) { |
2395 | buffer_info); | 2725 | memcpy(&adapter->previous_buffer_info, |
2726 | buffer_info, | ||
2727 | sizeof(struct e1000_buffer)); | ||
2728 | memset(buffer_info, 0, | ||
2729 | sizeof(struct e1000_buffer)); | ||
2730 | } else { | ||
2731 | e1000_unmap_and_free_tx_resource( | ||
2732 | adapter, buffer_info); | ||
2733 | } | ||
2396 | } | 2734 | } |
2735 | #endif | ||
2397 | 2736 | ||
2398 | tx_desc->buffer_addr = 0; | 2737 | tx_desc->buffer_addr = 0; |
2399 | tx_desc->lower.data = 0; | 2738 | tx_desc->lower.data = 0; |
2400 | tx_desc->upper.data = 0; | 2739 | tx_desc->upper.data = 0; |
2401 | 2740 | ||
2402 | cleaned = (i == eop); | ||
2403 | if(unlikely(++i == tx_ring->count)) i = 0; | 2741 | if(unlikely(++i == tx_ring->count)) i = 0; |
2404 | } | 2742 | } |
2405 | 2743 | ||
@@ -2416,57 +2754,107 @@ e1000_clean_tx_irq(struct e1000_adapter *adapter) | |||
2416 | netif_wake_queue(netdev); | 2754 | netif_wake_queue(netdev); |
2417 | 2755 | ||
2418 | spin_unlock(&adapter->tx_lock); | 2756 | spin_unlock(&adapter->tx_lock); |
2419 | |||
2420 | if(adapter->detect_tx_hung) { | 2757 | if(adapter->detect_tx_hung) { |
2421 | /* detect a transmit hang in hardware, this serializes the | 2758 | |
2759 | /* Detect a transmit hang in hardware, this serializes the | ||
2422 | * check with the clearing of time_stamp and movement of i */ | 2760 | * check with the clearing of time_stamp and movement of i */ |
2423 | adapter->detect_tx_hung = FALSE; | 2761 | adapter->detect_tx_hung = FALSE; |
2424 | if(tx_ring->buffer_info[i].dma && | 2762 | if (tx_ring->buffer_info[i].dma && |
2425 | time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ) && | 2763 | time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ) |
2426 | !(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF)) | 2764 | && !(E1000_READ_REG(&adapter->hw, STATUS) & |
2765 | E1000_STATUS_TXOFF)) { | ||
2766 | |||
2767 | /* detected Tx unit hang */ | ||
2768 | i = tx_ring->next_to_clean; | ||
2769 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
2770 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | ||
2771 | DPRINTK(TX_ERR, ERR, "Detected Tx Unit Hang\n" | ||
2772 | " TDH <%x>\n" | ||
2773 | " TDT <%x>\n" | ||
2774 | " next_to_use <%x>\n" | ||
2775 | " next_to_clean <%x>\n" | ||
2776 | "buffer_info[next_to_clean]\n" | ||
2777 | " dma <%llx>\n" | ||
2778 | " time_stamp <%lx>\n" | ||
2779 | " next_to_watch <%x>\n" | ||
2780 | " jiffies <%lx>\n" | ||
2781 | " next_to_watch.status <%x>\n", | ||
2782 | E1000_READ_REG(&adapter->hw, TDH), | ||
2783 | E1000_READ_REG(&adapter->hw, TDT), | ||
2784 | tx_ring->next_to_use, | ||
2785 | i, | ||
2786 | tx_ring->buffer_info[i].dma, | ||
2787 | tx_ring->buffer_info[i].time_stamp, | ||
2788 | eop, | ||
2789 | jiffies, | ||
2790 | eop_desc->upper.fields.status); | ||
2427 | netif_stop_queue(netdev); | 2791 | netif_stop_queue(netdev); |
2792 | } | ||
2428 | } | 2793 | } |
2794 | #ifdef NETIF_F_TSO | ||
2795 | |||
2796 | if( unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && | ||
2797 | time_after(jiffies, adapter->previous_buffer_info.time_stamp + HZ))) | ||
2798 | e1000_unmap_and_free_tx_resource( | ||
2799 | adapter, &adapter->previous_buffer_info); | ||
2429 | 2800 | ||
2801 | #endif | ||
2430 | return cleaned; | 2802 | return cleaned; |
2431 | } | 2803 | } |
2432 | 2804 | ||
2433 | /** | 2805 | /** |
2434 | * e1000_rx_checksum - Receive Checksum Offload for 82543 | 2806 | * e1000_rx_checksum - Receive Checksum Offload for 82543 |
2435 | * @adapter: board private structure | 2807 | * @adapter: board private structure |
2436 | * @rx_desc: receive descriptor | 2808 | * @status_err: receive descriptor status and error fields |
2437 | * @sk_buff: socket buffer with received data | 2809 | * @csum: receive descriptor csum field |
2810 | * @sk_buff: socket buffer with received data | ||
2438 | **/ | 2811 | **/ |
2439 | 2812 | ||
2440 | static inline void | 2813 | static inline void |
2441 | e1000_rx_checksum(struct e1000_adapter *adapter, | 2814 | e1000_rx_checksum(struct e1000_adapter *adapter, |
2442 | struct e1000_rx_desc *rx_desc, | 2815 | uint32_t status_err, uint32_t csum, |
2443 | struct sk_buff *skb) | 2816 | struct sk_buff *skb) |
2444 | { | 2817 | { |
2818 | uint16_t status = (uint16_t)status_err; | ||
2819 | uint8_t errors = (uint8_t)(status_err >> 24); | ||
2820 | skb->ip_summed = CHECKSUM_NONE; | ||
2821 | |||
2445 | /* 82543 or newer only */ | 2822 | /* 82543 or newer only */ |
2446 | if(unlikely((adapter->hw.mac_type < e1000_82543) || | 2823 | if(unlikely(adapter->hw.mac_type < e1000_82543)) return; |
2447 | /* Ignore Checksum bit is set */ | 2824 | /* Ignore Checksum bit is set */ |
2448 | (rx_desc->status & E1000_RXD_STAT_IXSM) || | 2825 | if(unlikely(status & E1000_RXD_STAT_IXSM)) return; |
2449 | /* TCP Checksum has not been calculated */ | 2826 | /* TCP/UDP checksum error bit is set */ |
2450 | (!(rx_desc->status & E1000_RXD_STAT_TCPCS)))) { | 2827 | if(unlikely(errors & E1000_RXD_ERR_TCPE)) { |
2451 | skb->ip_summed = CHECKSUM_NONE; | ||
2452 | return; | ||
2453 | } | ||
2454 | |||
2455 | /* At this point we know the hardware did the TCP checksum */ | ||
2456 | /* now look at the TCP checksum error bit */ | ||
2457 | if(rx_desc->errors & E1000_RXD_ERR_TCPE) { | ||
2458 | /* let the stack verify checksum errors */ | 2828 | /* let the stack verify checksum errors */ |
2459 | skb->ip_summed = CHECKSUM_NONE; | ||
2460 | adapter->hw_csum_err++; | 2829 | adapter->hw_csum_err++; |
2830 | return; | ||
2831 | } | ||
2832 | /* TCP/UDP Checksum has not been calculated */ | ||
2833 | if(adapter->hw.mac_type <= e1000_82547_rev_2) { | ||
2834 | if(!(status & E1000_RXD_STAT_TCPCS)) | ||
2835 | return; | ||
2461 | } else { | 2836 | } else { |
2837 | if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) | ||
2838 | return; | ||
2839 | } | ||
2840 | /* It must be a TCP or UDP packet with a valid checksum */ | ||
2841 | if (likely(status & E1000_RXD_STAT_TCPCS)) { | ||
2462 | /* TCP checksum is good */ | 2842 | /* TCP checksum is good */ |
2463 | skb->ip_summed = CHECKSUM_UNNECESSARY; | 2843 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
2464 | adapter->hw_csum_good++; | 2844 | } else if (adapter->hw.mac_type > e1000_82547_rev_2) { |
2845 | /* IP fragment with UDP payload */ | ||
2846 | /* Hardware complements the payload checksum, so we undo it | ||
2847 | * and then put the value in host order for further stack use. | ||
2848 | */ | ||
2849 | csum = ntohl(csum ^ 0xFFFF); | ||
2850 | skb->csum = csum; | ||
2851 | skb->ip_summed = CHECKSUM_HW; | ||
2465 | } | 2852 | } |
2853 | adapter->hw_csum_good++; | ||
2466 | } | 2854 | } |
2467 | 2855 | ||
2468 | /** | 2856 | /** |
2469 | * e1000_clean_rx_irq - Send received data up the network stack | 2857 | * e1000_clean_rx_irq - Send received data up the network stack; legacy |
2470 | * @adapter: board private structure | 2858 | * @adapter: board private structure |
2471 | **/ | 2859 | **/ |
2472 | 2860 | ||
@@ -2513,7 +2901,7 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter) | |||
2513 | if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) { | 2901 | if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) { |
2514 | /* All receives must fit into a single buffer */ | 2902 | /* All receives must fit into a single buffer */ |
2515 | E1000_DBG("%s: Receive packet consumed multiple" | 2903 | E1000_DBG("%s: Receive packet consumed multiple" |
2516 | " buffers\n", netdev->name); | 2904 | " buffers\n", netdev->name); |
2517 | dev_kfree_skb_irq(skb); | 2905 | dev_kfree_skb_irq(skb); |
2518 | goto next_desc; | 2906 | goto next_desc; |
2519 | } | 2907 | } |
@@ -2539,15 +2927,17 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter) | |||
2539 | skb_put(skb, length - ETHERNET_FCS_SIZE); | 2927 | skb_put(skb, length - ETHERNET_FCS_SIZE); |
2540 | 2928 | ||
2541 | /* Receive Checksum Offload */ | 2929 | /* Receive Checksum Offload */ |
2542 | e1000_rx_checksum(adapter, rx_desc, skb); | 2930 | e1000_rx_checksum(adapter, |
2543 | 2931 | (uint32_t)(rx_desc->status) | | |
2932 | ((uint32_t)(rx_desc->errors) << 24), | ||
2933 | rx_desc->csum, skb); | ||
2544 | skb->protocol = eth_type_trans(skb, netdev); | 2934 | skb->protocol = eth_type_trans(skb, netdev); |
2545 | #ifdef CONFIG_E1000_NAPI | 2935 | #ifdef CONFIG_E1000_NAPI |
2546 | if(unlikely(adapter->vlgrp && | 2936 | if(unlikely(adapter->vlgrp && |
2547 | (rx_desc->status & E1000_RXD_STAT_VP))) { | 2937 | (rx_desc->status & E1000_RXD_STAT_VP))) { |
2548 | vlan_hwaccel_receive_skb(skb, adapter->vlgrp, | 2938 | vlan_hwaccel_receive_skb(skb, adapter->vlgrp, |
2549 | le16_to_cpu(rx_desc->special) & | 2939 | le16_to_cpu(rx_desc->special) & |
2550 | E1000_RXD_SPC_VLAN_MASK); | 2940 | E1000_RXD_SPC_VLAN_MASK); |
2551 | } else { | 2941 | } else { |
2552 | netif_receive_skb(skb); | 2942 | netif_receive_skb(skb); |
2553 | } | 2943 | } |
@@ -2570,16 +2960,142 @@ next_desc: | |||
2570 | 2960 | ||
2571 | rx_desc = E1000_RX_DESC(*rx_ring, i); | 2961 | rx_desc = E1000_RX_DESC(*rx_ring, i); |
2572 | } | 2962 | } |
2573 | |||
2574 | rx_ring->next_to_clean = i; | 2963 | rx_ring->next_to_clean = i; |
2964 | adapter->alloc_rx_buf(adapter); | ||
2965 | |||
2966 | return cleaned; | ||
2967 | } | ||
2968 | |||
2969 | /** | ||
2970 | * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split | ||
2971 | * @adapter: board private structure | ||
2972 | **/ | ||
2973 | |||
2974 | static boolean_t | ||
2975 | #ifdef CONFIG_E1000_NAPI | ||
2976 | e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, int *work_done, | ||
2977 | int work_to_do) | ||
2978 | #else | ||
2979 | e1000_clean_rx_irq_ps(struct e1000_adapter *adapter) | ||
2980 | #endif | ||
2981 | { | ||
2982 | struct e1000_desc_ring *rx_ring = &adapter->rx_ring; | ||
2983 | union e1000_rx_desc_packet_split *rx_desc; | ||
2984 | struct net_device *netdev = adapter->netdev; | ||
2985 | struct pci_dev *pdev = adapter->pdev; | ||
2986 | struct e1000_buffer *buffer_info; | ||
2987 | struct e1000_ps_page *ps_page; | ||
2988 | struct e1000_ps_page_dma *ps_page_dma; | ||
2989 | struct sk_buff *skb; | ||
2990 | unsigned int i, j; | ||
2991 | uint32_t length, staterr; | ||
2992 | boolean_t cleaned = FALSE; | ||
2993 | |||
2994 | i = rx_ring->next_to_clean; | ||
2995 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | ||
2996 | staterr = rx_desc->wb.middle.status_error; | ||
2997 | |||
2998 | while(staterr & E1000_RXD_STAT_DD) { | ||
2999 | buffer_info = &rx_ring->buffer_info[i]; | ||
3000 | ps_page = &rx_ring->ps_page[i]; | ||
3001 | ps_page_dma = &rx_ring->ps_page_dma[i]; | ||
3002 | #ifdef CONFIG_E1000_NAPI | ||
3003 | if(unlikely(*work_done >= work_to_do)) | ||
3004 | break; | ||
3005 | (*work_done)++; | ||
3006 | #endif | ||
3007 | cleaned = TRUE; | ||
3008 | pci_unmap_single(pdev, buffer_info->dma, | ||
3009 | buffer_info->length, | ||
3010 | PCI_DMA_FROMDEVICE); | ||
3011 | |||
3012 | skb = buffer_info->skb; | ||
3013 | |||
3014 | if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) { | ||
3015 | E1000_DBG("%s: Packet Split buffers didn't pick up" | ||
3016 | " the full packet\n", netdev->name); | ||
3017 | dev_kfree_skb_irq(skb); | ||
3018 | goto next_desc; | ||
3019 | } | ||
3020 | |||
3021 | if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) { | ||
3022 | dev_kfree_skb_irq(skb); | ||
3023 | goto next_desc; | ||
3024 | } | ||
3025 | |||
3026 | length = le16_to_cpu(rx_desc->wb.middle.length0); | ||
3027 | |||
3028 | if(unlikely(!length)) { | ||
3029 | E1000_DBG("%s: Last part of the packet spanning" | ||
3030 | " multiple descriptors\n", netdev->name); | ||
3031 | dev_kfree_skb_irq(skb); | ||
3032 | goto next_desc; | ||
3033 | } | ||
3034 | |||
3035 | /* Good Receive */ | ||
3036 | skb_put(skb, length); | ||
3037 | |||
3038 | for(j = 0; j < PS_PAGE_BUFFERS; j++) { | ||
3039 | if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j]))) | ||
3040 | break; | ||
3041 | |||
3042 | pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j], | ||
3043 | PAGE_SIZE, PCI_DMA_FROMDEVICE); | ||
3044 | ps_page_dma->ps_page_dma[j] = 0; | ||
3045 | skb_shinfo(skb)->frags[j].page = | ||
3046 | ps_page->ps_page[j]; | ||
3047 | ps_page->ps_page[j] = NULL; | ||
3048 | skb_shinfo(skb)->frags[j].page_offset = 0; | ||
3049 | skb_shinfo(skb)->frags[j].size = length; | ||
3050 | skb_shinfo(skb)->nr_frags++; | ||
3051 | skb->len += length; | ||
3052 | skb->data_len += length; | ||
3053 | } | ||
2575 | 3054 | ||
2576 | e1000_alloc_rx_buffers(adapter); | 3055 | e1000_rx_checksum(adapter, staterr, |
3056 | rx_desc->wb.lower.hi_dword.csum_ip.csum, skb); | ||
3057 | skb->protocol = eth_type_trans(skb, netdev); | ||
3058 | |||
3059 | #ifdef HAVE_RX_ZERO_COPY | ||
3060 | if(likely(rx_desc->wb.upper.header_status & | ||
3061 | E1000_RXDPS_HDRSTAT_HDRSP)) | ||
3062 | skb_shinfo(skb)->zero_copy = TRUE; | ||
3063 | #endif | ||
3064 | #ifdef CONFIG_E1000_NAPI | ||
3065 | if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) { | ||
3066 | vlan_hwaccel_receive_skb(skb, adapter->vlgrp, | ||
3067 | le16_to_cpu(rx_desc->wb.middle.vlan & | ||
3068 | E1000_RXD_SPC_VLAN_MASK)); | ||
3069 | } else { | ||
3070 | netif_receive_skb(skb); | ||
3071 | } | ||
3072 | #else /* CONFIG_E1000_NAPI */ | ||
3073 | if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) { | ||
3074 | vlan_hwaccel_rx(skb, adapter->vlgrp, | ||
3075 | le16_to_cpu(rx_desc->wb.middle.vlan & | ||
3076 | E1000_RXD_SPC_VLAN_MASK)); | ||
3077 | } else { | ||
3078 | netif_rx(skb); | ||
3079 | } | ||
3080 | #endif /* CONFIG_E1000_NAPI */ | ||
3081 | netdev->last_rx = jiffies; | ||
3082 | |||
3083 | next_desc: | ||
3084 | rx_desc->wb.middle.status_error &= ~0xFF; | ||
3085 | buffer_info->skb = NULL; | ||
3086 | if(unlikely(++i == rx_ring->count)) i = 0; | ||
3087 | |||
3088 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | ||
3089 | staterr = rx_desc->wb.middle.status_error; | ||
3090 | } | ||
3091 | rx_ring->next_to_clean = i; | ||
3092 | adapter->alloc_rx_buf(adapter); | ||
2577 | 3093 | ||
2578 | return cleaned; | 3094 | return cleaned; |
2579 | } | 3095 | } |
2580 | 3096 | ||
2581 | /** | 3097 | /** |
2582 | * e1000_alloc_rx_buffers - Replace used receive buffers | 3098 | * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended |
2583 | * @adapter: address of board private structure | 3099 | * @adapter: address of board private structure |
2584 | **/ | 3100 | **/ |
2585 | 3101 | ||
@@ -2592,43 +3108,43 @@ e1000_alloc_rx_buffers(struct e1000_adapter *adapter) | |||
2592 | struct e1000_rx_desc *rx_desc; | 3108 | struct e1000_rx_desc *rx_desc; |
2593 | struct e1000_buffer *buffer_info; | 3109 | struct e1000_buffer *buffer_info; |
2594 | struct sk_buff *skb; | 3110 | struct sk_buff *skb; |
2595 | unsigned int i, bufsz; | 3111 | unsigned int i; |
3112 | unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; | ||
2596 | 3113 | ||
2597 | i = rx_ring->next_to_use; | 3114 | i = rx_ring->next_to_use; |
2598 | buffer_info = &rx_ring->buffer_info[i]; | 3115 | buffer_info = &rx_ring->buffer_info[i]; |
2599 | 3116 | ||
2600 | while(!buffer_info->skb) { | 3117 | while(!buffer_info->skb) { |
2601 | bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; | ||
2602 | |||
2603 | skb = dev_alloc_skb(bufsz); | 3118 | skb = dev_alloc_skb(bufsz); |
3119 | |||
2604 | if(unlikely(!skb)) { | 3120 | if(unlikely(!skb)) { |
2605 | /* Better luck next round */ | 3121 | /* Better luck next round */ |
2606 | break; | 3122 | break; |
2607 | } | 3123 | } |
2608 | 3124 | ||
2609 | /* fix for errata 23, cant cross 64kB boundary */ | 3125 | /* Fix for errata 23, can't cross 64kB boundary */ |
2610 | if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { | 3126 | if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
2611 | struct sk_buff *oldskb = skb; | 3127 | struct sk_buff *oldskb = skb; |
2612 | DPRINTK(RX_ERR,ERR, | 3128 | DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes " |
2613 | "skb align check failed: %u bytes at %p\n", | 3129 | "at %p\n", bufsz, skb->data); |
2614 | bufsz, skb->data); | 3130 | /* Try again, without freeing the previous */ |
2615 | /* try again, without freeing the previous */ | ||
2616 | skb = dev_alloc_skb(bufsz); | 3131 | skb = dev_alloc_skb(bufsz); |
3132 | /* Failed allocation, critical failure */ | ||
2617 | if (!skb) { | 3133 | if (!skb) { |
2618 | dev_kfree_skb(oldskb); | 3134 | dev_kfree_skb(oldskb); |
2619 | break; | 3135 | break; |
2620 | } | 3136 | } |
3137 | |||
2621 | if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { | 3138 | if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
2622 | /* give up */ | 3139 | /* give up */ |
2623 | dev_kfree_skb(skb); | 3140 | dev_kfree_skb(skb); |
2624 | dev_kfree_skb(oldskb); | 3141 | dev_kfree_skb(oldskb); |
2625 | break; /* while !buffer_info->skb */ | 3142 | break; /* while !buffer_info->skb */ |
2626 | } else { | 3143 | } else { |
2627 | /* move on with the new one */ | 3144 | /* Use new allocation */ |
2628 | dev_kfree_skb(oldskb); | 3145 | dev_kfree_skb(oldskb); |
2629 | } | 3146 | } |
2630 | } | 3147 | } |
2631 | |||
2632 | /* Make buffer alignment 2 beyond a 16 byte boundary | 3148 | /* Make buffer alignment 2 beyond a 16 byte boundary |
2633 | * this will result in a 16 byte aligned IP header after | 3149 | * this will result in a 16 byte aligned IP header after |
2634 | * the 14 byte MAC header is removed | 3150 | * the 14 byte MAC header is removed |
@@ -2644,25 +3160,23 @@ e1000_alloc_rx_buffers(struct e1000_adapter *adapter) | |||
2644 | adapter->rx_buffer_len, | 3160 | adapter->rx_buffer_len, |
2645 | PCI_DMA_FROMDEVICE); | 3161 | PCI_DMA_FROMDEVICE); |
2646 | 3162 | ||
2647 | /* fix for errata 23, cant cross 64kB boundary */ | 3163 | /* Fix for errata 23, can't cross 64kB boundary */ |
2648 | if(!e1000_check_64k_bound(adapter, | 3164 | if (!e1000_check_64k_bound(adapter, |
2649 | (void *)(unsigned long)buffer_info->dma, | 3165 | (void *)(unsigned long)buffer_info->dma, |
2650 | adapter->rx_buffer_len)) { | 3166 | adapter->rx_buffer_len)) { |
2651 | DPRINTK(RX_ERR,ERR, | 3167 | DPRINTK(RX_ERR, ERR, |
2652 | "dma align check failed: %u bytes at %ld\n", | 3168 | "dma align check failed: %u bytes at %p\n", |
2653 | adapter->rx_buffer_len, (unsigned long)buffer_info->dma); | 3169 | adapter->rx_buffer_len, |
2654 | 3170 | (void *)(unsigned long)buffer_info->dma); | |
2655 | dev_kfree_skb(skb); | 3171 | dev_kfree_skb(skb); |
2656 | buffer_info->skb = NULL; | 3172 | buffer_info->skb = NULL; |
2657 | 3173 | ||
2658 | pci_unmap_single(pdev, | 3174 | pci_unmap_single(pdev, buffer_info->dma, |
2659 | buffer_info->dma, | ||
2660 | adapter->rx_buffer_len, | 3175 | adapter->rx_buffer_len, |
2661 | PCI_DMA_FROMDEVICE); | 3176 | PCI_DMA_FROMDEVICE); |
2662 | 3177 | ||
2663 | break; /* while !buffer_info->skb */ | 3178 | break; /* while !buffer_info->skb */ |
2664 | } | 3179 | } |
2665 | |||
2666 | rx_desc = E1000_RX_DESC(*rx_ring, i); | 3180 | rx_desc = E1000_RX_DESC(*rx_ring, i); |
2667 | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | 3181 | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
2668 | 3182 | ||
@@ -2672,7 +3186,6 @@ e1000_alloc_rx_buffers(struct e1000_adapter *adapter) | |||
2672 | * applicable for weak-ordered memory model archs, | 3186 | * applicable for weak-ordered memory model archs, |
2673 | * such as IA-64). */ | 3187 | * such as IA-64). */ |
2674 | wmb(); | 3188 | wmb(); |
2675 | |||
2676 | E1000_WRITE_REG(&adapter->hw, RDT, i); | 3189 | E1000_WRITE_REG(&adapter->hw, RDT, i); |
2677 | } | 3190 | } |
2678 | 3191 | ||
@@ -2684,6 +3197,95 @@ e1000_alloc_rx_buffers(struct e1000_adapter *adapter) | |||
2684 | } | 3197 | } |
2685 | 3198 | ||
2686 | /** | 3199 | /** |
3200 | * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split | ||
3201 | * @adapter: address of board private structure | ||
3202 | **/ | ||
3203 | |||
3204 | static void | ||
3205 | e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter) | ||
3206 | { | ||
3207 | struct e1000_desc_ring *rx_ring = &adapter->rx_ring; | ||
3208 | struct net_device *netdev = adapter->netdev; | ||
3209 | struct pci_dev *pdev = adapter->pdev; | ||
3210 | union e1000_rx_desc_packet_split *rx_desc; | ||
3211 | struct e1000_buffer *buffer_info; | ||
3212 | struct e1000_ps_page *ps_page; | ||
3213 | struct e1000_ps_page_dma *ps_page_dma; | ||
3214 | struct sk_buff *skb; | ||
3215 | unsigned int i, j; | ||
3216 | |||
3217 | i = rx_ring->next_to_use; | ||
3218 | buffer_info = &rx_ring->buffer_info[i]; | ||
3219 | ps_page = &rx_ring->ps_page[i]; | ||
3220 | ps_page_dma = &rx_ring->ps_page_dma[i]; | ||
3221 | |||
3222 | while(!buffer_info->skb) { | ||
3223 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | ||
3224 | |||
3225 | for(j = 0; j < PS_PAGE_BUFFERS; j++) { | ||
3226 | if(unlikely(!ps_page->ps_page[j])) { | ||
3227 | ps_page->ps_page[j] = | ||
3228 | alloc_page(GFP_ATOMIC); | ||
3229 | if(unlikely(!ps_page->ps_page[j])) | ||
3230 | goto no_buffers; | ||
3231 | ps_page_dma->ps_page_dma[j] = | ||
3232 | pci_map_page(pdev, | ||
3233 | ps_page->ps_page[j], | ||
3234 | 0, PAGE_SIZE, | ||
3235 | PCI_DMA_FROMDEVICE); | ||
3236 | } | ||
3237 | /* Refresh the desc even if buffer_addrs didn't | ||
3238 | * change because each write-back erases this info. | ||
3239 | */ | ||
3240 | rx_desc->read.buffer_addr[j+1] = | ||
3241 | cpu_to_le64(ps_page_dma->ps_page_dma[j]); | ||
3242 | } | ||
3243 | |||
3244 | skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN); | ||
3245 | |||
3246 | if(unlikely(!skb)) | ||
3247 | break; | ||
3248 | |||
3249 | /* Make buffer alignment 2 beyond a 16 byte boundary | ||
3250 | * this will result in a 16 byte aligned IP header after | ||
3251 | * the 14 byte MAC header is removed | ||
3252 | */ | ||
3253 | skb_reserve(skb, NET_IP_ALIGN); | ||
3254 | |||
3255 | skb->dev = netdev; | ||
3256 | |||
3257 | buffer_info->skb = skb; | ||
3258 | buffer_info->length = adapter->rx_ps_bsize0; | ||
3259 | buffer_info->dma = pci_map_single(pdev, skb->data, | ||
3260 | adapter->rx_ps_bsize0, | ||
3261 | PCI_DMA_FROMDEVICE); | ||
3262 | |||
3263 | rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); | ||
3264 | |||
3265 | if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) { | ||
3266 | /* Force memory writes to complete before letting h/w | ||
3267 | * know there are new descriptors to fetch. (Only | ||
3268 | * applicable for weak-ordered memory model archs, | ||
3269 | * such as IA-64). */ | ||
3270 | wmb(); | ||
3271 | /* Hardware increments by 16 bytes, but packet split | ||
3272 | * descriptors are 32 bytes...so we increment tail | ||
3273 | * twice as much. | ||
3274 | */ | ||
3275 | E1000_WRITE_REG(&adapter->hw, RDT, i<<1); | ||
3276 | } | ||
3277 | |||
3278 | if(unlikely(++i == rx_ring->count)) i = 0; | ||
3279 | buffer_info = &rx_ring->buffer_info[i]; | ||
3280 | ps_page = &rx_ring->ps_page[i]; | ||
3281 | ps_page_dma = &rx_ring->ps_page_dma[i]; | ||
3282 | } | ||
3283 | |||
3284 | no_buffers: | ||
3285 | rx_ring->next_to_use = i; | ||
3286 | } | ||
3287 | |||
3288 | /** | ||
2687 | * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. | 3289 | * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. |
2688 | * @adapter: | 3290 | * @adapter: |
2689 | **/ | 3291 | **/ |
@@ -2856,9 +3458,10 @@ void | |||
2856 | e1000_pci_set_mwi(struct e1000_hw *hw) | 3458 | e1000_pci_set_mwi(struct e1000_hw *hw) |
2857 | { | 3459 | { |
2858 | struct e1000_adapter *adapter = hw->back; | 3460 | struct e1000_adapter *adapter = hw->back; |
3461 | int ret_val = pci_set_mwi(adapter->pdev); | ||
2859 | 3462 | ||
2860 | int ret; | 3463 | if(ret_val) |
2861 | ret = pci_set_mwi(adapter->pdev); | 3464 | DPRINTK(PROBE, ERR, "Error in setting MWI\n"); |
2862 | } | 3465 | } |
2863 | 3466 | ||
2864 | void | 3467 | void |
@@ -2917,6 +3520,7 @@ e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp) | |||
2917 | rctl |= E1000_RCTL_VFE; | 3520 | rctl |= E1000_RCTL_VFE; |
2918 | rctl &= ~E1000_RCTL_CFIEN; | 3521 | rctl &= ~E1000_RCTL_CFIEN; |
2919 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | 3522 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
3523 | e1000_update_mng_vlan(adapter); | ||
2920 | } else { | 3524 | } else { |
2921 | /* disable VLAN tag insert/strip */ | 3525 | /* disable VLAN tag insert/strip */ |
2922 | ctrl = E1000_READ_REG(&adapter->hw, CTRL); | 3526 | ctrl = E1000_READ_REG(&adapter->hw, CTRL); |
@@ -2927,6 +3531,10 @@ e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp) | |||
2927 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | 3531 | rctl = E1000_READ_REG(&adapter->hw, RCTL); |
2928 | rctl &= ~E1000_RCTL_VFE; | 3532 | rctl &= ~E1000_RCTL_VFE; |
2929 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | 3533 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
3534 | if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) { | ||
3535 | e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | ||
3536 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | ||
3537 | } | ||
2930 | } | 3538 | } |
2931 | 3539 | ||
2932 | e1000_irq_enable(adapter); | 3540 | e1000_irq_enable(adapter); |
@@ -2937,7 +3545,10 @@ e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid) | |||
2937 | { | 3545 | { |
2938 | struct e1000_adapter *adapter = netdev->priv; | 3546 | struct e1000_adapter *adapter = netdev->priv; |
2939 | uint32_t vfta, index; | 3547 | uint32_t vfta, index; |
2940 | 3548 | if((adapter->hw.mng_cookie.status & | |
3549 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && | ||
3550 | (vid == adapter->mng_vlan_id)) | ||
3551 | return; | ||
2941 | /* add VID to filter table */ | 3552 | /* add VID to filter table */ |
2942 | index = (vid >> 5) & 0x7F; | 3553 | index = (vid >> 5) & 0x7F; |
2943 | vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); | 3554 | vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); |
@@ -2958,6 +3569,10 @@ e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid) | |||
2958 | 3569 | ||
2959 | e1000_irq_enable(adapter); | 3570 | e1000_irq_enable(adapter); |
2960 | 3571 | ||
3572 | if((adapter->hw.mng_cookie.status & | ||
3573 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && | ||
3574 | (vid == adapter->mng_vlan_id)) | ||
3575 | return; | ||
2961 | /* remove VID from filter table */ | 3576 | /* remove VID from filter table */ |
2962 | index = (vid >> 5) & 0x7F; | 3577 | index = (vid >> 5) & 0x7F; |
2963 | vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); | 3578 | vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); |
@@ -3004,8 +3619,7 @@ e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx) | |||
3004 | break; | 3619 | break; |
3005 | case SPEED_1000 + DUPLEX_HALF: /* not supported */ | 3620 | case SPEED_1000 + DUPLEX_HALF: /* not supported */ |
3006 | default: | 3621 | default: |
3007 | DPRINTK(PROBE, ERR, | 3622 | DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); |
3008 | "Unsupported Speed/Duplexity configuration\n"); | ||
3009 | return -EINVAL; | 3623 | return -EINVAL; |
3010 | } | 3624 | } |
3011 | return 0; | 3625 | return 0; |
@@ -3033,7 +3647,7 @@ e1000_suspend(struct pci_dev *pdev, uint32_t state) | |||
3033 | { | 3647 | { |
3034 | struct net_device *netdev = pci_get_drvdata(pdev); | 3648 | struct net_device *netdev = pci_get_drvdata(pdev); |
3035 | struct e1000_adapter *adapter = netdev->priv; | 3649 | struct e1000_adapter *adapter = netdev->priv; |
3036 | uint32_t ctrl, ctrl_ext, rctl, manc, status; | 3650 | uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm; |
3037 | uint32_t wufc = adapter->wol; | 3651 | uint32_t wufc = adapter->wol; |
3038 | 3652 | ||
3039 | netif_device_detach(netdev); | 3653 | netif_device_detach(netdev); |
@@ -3075,6 +3689,9 @@ e1000_suspend(struct pci_dev *pdev, uint32_t state) | |||
3075 | E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext); | 3689 | E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext); |
3076 | } | 3690 | } |
3077 | 3691 | ||
3692 | /* Allow time for pending master requests to run */ | ||
3693 | e1000_disable_pciex_master(&adapter->hw); | ||
3694 | |||
3078 | E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN); | 3695 | E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN); |
3079 | E1000_WRITE_REG(&adapter->hw, WUFC, wufc); | 3696 | E1000_WRITE_REG(&adapter->hw, WUFC, wufc); |
3080 | pci_enable_wake(pdev, 3, 1); | 3697 | pci_enable_wake(pdev, 3, 1); |
@@ -3099,6 +3716,16 @@ e1000_suspend(struct pci_dev *pdev, uint32_t state) | |||
3099 | } | 3716 | } |
3100 | } | 3717 | } |
3101 | 3718 | ||
3719 | switch(adapter->hw.mac_type) { | ||
3720 | case e1000_82573: | ||
3721 | swsm = E1000_READ_REG(&adapter->hw, SWSM); | ||
3722 | E1000_WRITE_REG(&adapter->hw, SWSM, | ||
3723 | swsm & ~E1000_SWSM_DRV_LOAD); | ||
3724 | break; | ||
3725 | default: | ||
3726 | break; | ||
3727 | } | ||
3728 | |||
3102 | pci_disable_device(pdev); | 3729 | pci_disable_device(pdev); |
3103 | 3730 | ||
3104 | state = (state > 0) ? 3 : 0; | 3731 | state = (state > 0) ? 3 : 0; |
@@ -3113,13 +3740,12 @@ e1000_resume(struct pci_dev *pdev) | |||
3113 | { | 3740 | { |
3114 | struct net_device *netdev = pci_get_drvdata(pdev); | 3741 | struct net_device *netdev = pci_get_drvdata(pdev); |
3115 | struct e1000_adapter *adapter = netdev->priv; | 3742 | struct e1000_adapter *adapter = netdev->priv; |
3116 | uint32_t manc, ret; | 3743 | uint32_t manc, ret, swsm; |
3117 | 3744 | ||
3118 | pci_set_power_state(pdev, 0); | 3745 | pci_set_power_state(pdev, 0); |
3119 | pci_restore_state(pdev); | 3746 | pci_restore_state(pdev); |
3120 | ret = pci_enable_device(pdev); | 3747 | ret = pci_enable_device(pdev); |
3121 | if (pdev->is_busmaster) | 3748 | pci_set_master(pdev); |
3122 | pci_set_master(pdev); | ||
3123 | 3749 | ||
3124 | pci_enable_wake(pdev, 3, 0); | 3750 | pci_enable_wake(pdev, 3, 0); |
3125 | pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */ | 3751 | pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */ |
@@ -3139,10 +3765,19 @@ e1000_resume(struct pci_dev *pdev) | |||
3139 | E1000_WRITE_REG(&adapter->hw, MANC, manc); | 3765 | E1000_WRITE_REG(&adapter->hw, MANC, manc); |
3140 | } | 3766 | } |
3141 | 3767 | ||
3768 | switch(adapter->hw.mac_type) { | ||
3769 | case e1000_82573: | ||
3770 | swsm = E1000_READ_REG(&adapter->hw, SWSM); | ||
3771 | E1000_WRITE_REG(&adapter->hw, SWSM, | ||
3772 | swsm | E1000_SWSM_DRV_LOAD); | ||
3773 | break; | ||
3774 | default: | ||
3775 | break; | ||
3776 | } | ||
3777 | |||
3142 | return 0; | 3778 | return 0; |
3143 | } | 3779 | } |
3144 | #endif | 3780 | #endif |
3145 | |||
3146 | #ifdef CONFIG_NET_POLL_CONTROLLER | 3781 | #ifdef CONFIG_NET_POLL_CONTROLLER |
3147 | /* | 3782 | /* |
3148 | * Polling 'interrupt' - used by things like netconsole to send skbs | 3783 | * Polling 'interrupt' - used by things like netconsole to send skbs |
@@ -3150,7 +3785,7 @@ e1000_resume(struct pci_dev *pdev) | |||
3150 | * the interrupt routine is executing. | 3785 | * the interrupt routine is executing. |
3151 | */ | 3786 | */ |
3152 | static void | 3787 | static void |
3153 | e1000_netpoll (struct net_device *netdev) | 3788 | e1000_netpoll(struct net_device *netdev) |
3154 | { | 3789 | { |
3155 | struct e1000_adapter *adapter = netdev->priv; | 3790 | struct e1000_adapter *adapter = netdev->priv; |
3156 | disable_irq(adapter->pdev->irq); | 3791 | disable_irq(adapter->pdev->irq); |
diff --git a/drivers/net/e1000/e1000_osdep.h b/drivers/net/e1000/e1000_osdep.h index 970c656a517c..aac64de61437 100644 --- a/drivers/net/e1000/e1000_osdep.h +++ b/drivers/net/e1000/e1000_osdep.h | |||
@@ -1,7 +1,7 @@ | |||
1 | /******************************************************************************* | 1 | /******************************************************************************* |
2 | 2 | ||
3 | 3 | ||
4 | Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. | 4 | Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. |
5 | 5 | ||
6 | This program is free software; you can redistribute it and/or modify it | 6 | This program is free software; you can redistribute it and/or modify it |
7 | under the terms of the GNU General Public License as published by the Free | 7 | under the terms of the GNU General Public License as published by the Free |
@@ -42,7 +42,12 @@ | |||
42 | #include <linux/sched.h> | 42 | #include <linux/sched.h> |
43 | 43 | ||
44 | #ifndef msec_delay | 44 | #ifndef msec_delay |
45 | #define msec_delay(x) msleep(x) | 45 | #define msec_delay(x) do { if(in_interrupt()) { \ |
46 | /* Don't mdelay in interrupt context! */ \ | ||
47 | BUG(); \ | ||
48 | } else { \ | ||
49 | msleep(x); \ | ||
50 | } } while(0) | ||
46 | 51 | ||
47 | /* Some workarounds require millisecond delays and are run during interrupt | 52 | /* Some workarounds require millisecond delays and are run during interrupt |
48 | * context. Most notably, when establishing link, the phy may need tweaking | 53 | * context. Most notably, when establishing link, the phy may need tweaking |
@@ -96,6 +101,29 @@ typedef enum { | |||
96 | (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ | 101 | (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ |
97 | ((offset) << 2))) | 102 | ((offset) << 2))) |
98 | 103 | ||
104 | #define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY | ||
105 | #define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY | ||
106 | |||
107 | #define E1000_WRITE_REG_ARRAY_WORD(a, reg, offset, value) ( \ | ||
108 | writew((value), ((a)->hw_addr + \ | ||
109 | (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ | ||
110 | ((offset) << 1)))) | ||
111 | |||
112 | #define E1000_READ_REG_ARRAY_WORD(a, reg, offset) ( \ | ||
113 | readw((a)->hw_addr + \ | ||
114 | (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ | ||
115 | ((offset) << 1))) | ||
116 | |||
117 | #define E1000_WRITE_REG_ARRAY_BYTE(a, reg, offset, value) ( \ | ||
118 | writeb((value), ((a)->hw_addr + \ | ||
119 | (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ | ||
120 | (offset)))) | ||
121 | |||
122 | #define E1000_READ_REG_ARRAY_BYTE(a, reg, offset) ( \ | ||
123 | readb((a)->hw_addr + \ | ||
124 | (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ | ||
125 | (offset))) | ||
126 | |||
99 | #define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS) | 127 | #define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS) |
100 | 128 | ||
101 | #endif /* _E1000_OSDEP_H_ */ | 129 | #endif /* _E1000_OSDEP_H_ */ |
diff --git a/drivers/net/e1000/e1000_param.c b/drivers/net/e1000/e1000_param.c index e914d09fe6f9..676247f9f1cc 100644 --- a/drivers/net/e1000/e1000_param.c +++ b/drivers/net/e1000/e1000_param.c | |||
@@ -1,7 +1,7 @@ | |||
1 | /******************************************************************************* | 1 | /******************************************************************************* |
2 | 2 | ||
3 | 3 | ||
4 | Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. | 4 | Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. |
5 | 5 | ||
6 | This program is free software; you can redistribute it and/or modify it | 6 | This program is free software; you can redistribute it and/or modify it |
7 | under the terms of the GNU General Public License as published by the Free | 7 | under the terms of the GNU General Public License as published by the Free |
@@ -478,7 +478,6 @@ e1000_check_options(struct e1000_adapter *adapter) | |||
478 | DPRINTK(PROBE, INFO, "%s set to dynamic mode\n", | 478 | DPRINTK(PROBE, INFO, "%s set to dynamic mode\n", |
479 | opt.name); | 479 | opt.name); |
480 | break; | 480 | break; |
481 | case -1: | ||
482 | default: | 481 | default: |
483 | e1000_validate_option(&adapter->itr, &opt, | 482 | e1000_validate_option(&adapter->itr, &opt, |
484 | adapter); | 483 | adapter); |
diff --git a/drivers/net/ixgb/ixgb.h b/drivers/net/ixgb/ixgb.h index 26c4f15f7fc0..f8d3385c7842 100644 --- a/drivers/net/ixgb/ixgb.h +++ b/drivers/net/ixgb/ixgb.h | |||
@@ -110,7 +110,7 @@ struct ixgb_adapter; | |||
110 | #define IXGB_TX_QUEUE_WAKE 16 | 110 | #define IXGB_TX_QUEUE_WAKE 16 |
111 | 111 | ||
112 | /* How many Rx Buffers do we bundle into one write to the hardware ? */ | 112 | /* How many Rx Buffers do we bundle into one write to the hardware ? */ |
113 | #define IXGB_RX_BUFFER_WRITE 16 /* Must be power of 2 */ | 113 | #define IXGB_RX_BUFFER_WRITE 4 /* Must be power of 2 */ |
114 | 114 | ||
115 | /* only works for sizes that are powers of 2 */ | 115 | /* only works for sizes that are powers of 2 */ |
116 | #define IXGB_ROUNDUP(i, size) ((i) = (((i) + (size) - 1) & ~((size) - 1))) | 116 | #define IXGB_ROUNDUP(i, size) ((i) = (((i) + (size) - 1) & ~((size) - 1))) |
diff --git a/drivers/net/ixgb/ixgb_ee.c b/drivers/net/ixgb/ixgb_ee.c index 653e99f919ce..3aae110c5560 100644 --- a/drivers/net/ixgb/ixgb_ee.c +++ b/drivers/net/ixgb/ixgb_ee.c | |||
@@ -411,7 +411,7 @@ ixgb_write_eeprom(struct ixgb_hw *hw, uint16_t offset, uint16_t data) | |||
411 | ixgb_cleanup_eeprom(hw); | 411 | ixgb_cleanup_eeprom(hw); |
412 | 412 | ||
413 | /* clear the init_ctrl_reg_1 to signify that the cache is invalidated */ | 413 | /* clear the init_ctrl_reg_1 to signify that the cache is invalidated */ |
414 | ee_map->init_ctrl_reg_1 = EEPROM_ICW1_SIGNATURE_CLEAR; | 414 | ee_map->init_ctrl_reg_1 = le16_to_cpu(EEPROM_ICW1_SIGNATURE_CLEAR); |
415 | 415 | ||
416 | return; | 416 | return; |
417 | } | 417 | } |
@@ -483,7 +483,7 @@ ixgb_get_eeprom_data(struct ixgb_hw *hw) | |||
483 | DEBUGOUT("ixgb_ee: Checksum invalid.\n"); | 483 | DEBUGOUT("ixgb_ee: Checksum invalid.\n"); |
484 | /* clear the init_ctrl_reg_1 to signify that the cache is | 484 | /* clear the init_ctrl_reg_1 to signify that the cache is |
485 | * invalidated */ | 485 | * invalidated */ |
486 | ee_map->init_ctrl_reg_1 = EEPROM_ICW1_SIGNATURE_CLEAR; | 486 | ee_map->init_ctrl_reg_1 = le16_to_cpu(EEPROM_ICW1_SIGNATURE_CLEAR); |
487 | return (FALSE); | 487 | return (FALSE); |
488 | } | 488 | } |
489 | 489 | ||
@@ -579,7 +579,7 @@ ixgb_get_ee_compatibility(struct ixgb_hw *hw) | |||
579 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; | 579 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; |
580 | 580 | ||
581 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) | 581 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) |
582 | return(ee_map->compatibility); | 582 | return (le16_to_cpu(ee_map->compatibility)); |
583 | 583 | ||
584 | return(0); | 584 | return(0); |
585 | } | 585 | } |
@@ -616,7 +616,7 @@ ixgb_get_ee_init_ctrl_reg_1(struct ixgb_hw *hw) | |||
616 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; | 616 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; |
617 | 617 | ||
618 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) | 618 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) |
619 | return(ee_map->init_ctrl_reg_1); | 619 | return (le16_to_cpu(ee_map->init_ctrl_reg_1)); |
620 | 620 | ||
621 | return(0); | 621 | return(0); |
622 | } | 622 | } |
@@ -635,7 +635,7 @@ ixgb_get_ee_init_ctrl_reg_2(struct ixgb_hw *hw) | |||
635 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; | 635 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; |
636 | 636 | ||
637 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) | 637 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) |
638 | return(ee_map->init_ctrl_reg_2); | 638 | return (le16_to_cpu(ee_map->init_ctrl_reg_2)); |
639 | 639 | ||
640 | return(0); | 640 | return(0); |
641 | } | 641 | } |
@@ -654,7 +654,7 @@ ixgb_get_ee_subsystem_id(struct ixgb_hw *hw) | |||
654 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; | 654 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; |
655 | 655 | ||
656 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) | 656 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) |
657 | return(ee_map->subsystem_id); | 657 | return (le16_to_cpu(ee_map->subsystem_id)); |
658 | 658 | ||
659 | return(0); | 659 | return(0); |
660 | } | 660 | } |
@@ -673,7 +673,7 @@ ixgb_get_ee_subvendor_id(struct ixgb_hw *hw) | |||
673 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; | 673 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; |
674 | 674 | ||
675 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) | 675 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) |
676 | return(ee_map->subvendor_id); | 676 | return (le16_to_cpu(ee_map->subvendor_id)); |
677 | 677 | ||
678 | return(0); | 678 | return(0); |
679 | } | 679 | } |
@@ -692,7 +692,7 @@ ixgb_get_ee_device_id(struct ixgb_hw *hw) | |||
692 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; | 692 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; |
693 | 693 | ||
694 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) | 694 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) |
695 | return(ee_map->device_id); | 695 | return (le16_to_cpu(ee_map->device_id)); |
696 | 696 | ||
697 | return(0); | 697 | return(0); |
698 | } | 698 | } |
@@ -711,7 +711,7 @@ ixgb_get_ee_vendor_id(struct ixgb_hw *hw) | |||
711 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; | 711 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; |
712 | 712 | ||
713 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) | 713 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) |
714 | return(ee_map->vendor_id); | 714 | return (le16_to_cpu(ee_map->vendor_id)); |
715 | 715 | ||
716 | return(0); | 716 | return(0); |
717 | } | 717 | } |
@@ -730,7 +730,7 @@ ixgb_get_ee_swdpins_reg(struct ixgb_hw *hw) | |||
730 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; | 730 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; |
731 | 731 | ||
732 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) | 732 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) |
733 | return(ee_map->swdpins_reg); | 733 | return (le16_to_cpu(ee_map->swdpins_reg)); |
734 | 734 | ||
735 | return(0); | 735 | return(0); |
736 | } | 736 | } |
@@ -749,7 +749,7 @@ ixgb_get_ee_d3_power(struct ixgb_hw *hw) | |||
749 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; | 749 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; |
750 | 750 | ||
751 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) | 751 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) |
752 | return(ee_map->d3_power); | 752 | return (le16_to_cpu(ee_map->d3_power)); |
753 | 753 | ||
754 | return(0); | 754 | return(0); |
755 | } | 755 | } |
@@ -768,7 +768,7 @@ ixgb_get_ee_d0_power(struct ixgb_hw *hw) | |||
768 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; | 768 | struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; |
769 | 769 | ||
770 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) | 770 | if(ixgb_check_and_get_eeprom_data(hw) == TRUE) |
771 | return(ee_map->d0_power); | 771 | return (le16_to_cpu(ee_map->d0_power)); |
772 | 772 | ||
773 | return(0); | 773 | return(0); |
774 | } | 774 | } |
diff --git a/drivers/net/ixgb/ixgb_ethtool.c b/drivers/net/ixgb/ixgb_ethtool.c index aea10e8aaa72..3fa113854eeb 100644 --- a/drivers/net/ixgb/ixgb_ethtool.c +++ b/drivers/net/ixgb/ixgb_ethtool.c | |||
@@ -252,7 +252,9 @@ ixgb_get_regs(struct net_device *netdev, | |||
252 | uint32_t *reg_start = reg; | 252 | uint32_t *reg_start = reg; |
253 | uint8_t i; | 253 | uint8_t i; |
254 | 254 | ||
255 | regs->version = (adapter->hw.device_id << 16) | adapter->hw.subsystem_id; | 255 | /* the 1 (one) below indicates an attempt at versioning, if the |
256 | * interface in ethtool or the driver this 1 should be incremented */ | ||
257 | regs->version = (1<<24) | hw->revision_id << 16 | hw->device_id; | ||
256 | 258 | ||
257 | /* General Registers */ | 259 | /* General Registers */ |
258 | *reg++ = IXGB_READ_REG(hw, CTRL0); /* 0 */ | 260 | *reg++ = IXGB_READ_REG(hw, CTRL0); /* 0 */ |
diff --git a/drivers/net/ixgb/ixgb_main.c b/drivers/net/ixgb/ixgb_main.c index 7d26623d8592..35f6a7c271a2 100644 --- a/drivers/net/ixgb/ixgb_main.c +++ b/drivers/net/ixgb/ixgb_main.c | |||
@@ -47,7 +47,7 @@ char ixgb_driver_string[] = "Intel(R) PRO/10GbE Network Driver"; | |||
47 | #else | 47 | #else |
48 | #define DRIVERNAPI "-NAPI" | 48 | #define DRIVERNAPI "-NAPI" |
49 | #endif | 49 | #endif |
50 | char ixgb_driver_version[] = "1.0.90-k2"DRIVERNAPI; | 50 | char ixgb_driver_version[] = "1.0.95-k2"DRIVERNAPI; |
51 | char ixgb_copyright[] = "Copyright (c) 1999-2005 Intel Corporation."; | 51 | char ixgb_copyright[] = "Copyright (c) 1999-2005 Intel Corporation."; |
52 | 52 | ||
53 | /* ixgb_pci_tbl - PCI Device ID Table | 53 | /* ixgb_pci_tbl - PCI Device ID Table |
@@ -103,6 +103,7 @@ static int ixgb_change_mtu(struct net_device *netdev, int new_mtu); | |||
103 | static int ixgb_set_mac(struct net_device *netdev, void *p); | 103 | static int ixgb_set_mac(struct net_device *netdev, void *p); |
104 | static irqreturn_t ixgb_intr(int irq, void *data, struct pt_regs *regs); | 104 | static irqreturn_t ixgb_intr(int irq, void *data, struct pt_regs *regs); |
105 | static boolean_t ixgb_clean_tx_irq(struct ixgb_adapter *adapter); | 105 | static boolean_t ixgb_clean_tx_irq(struct ixgb_adapter *adapter); |
106 | |||
106 | #ifdef CONFIG_IXGB_NAPI | 107 | #ifdef CONFIG_IXGB_NAPI |
107 | static int ixgb_clean(struct net_device *netdev, int *budget); | 108 | static int ixgb_clean(struct net_device *netdev, int *budget); |
108 | static boolean_t ixgb_clean_rx_irq(struct ixgb_adapter *adapter, | 109 | static boolean_t ixgb_clean_rx_irq(struct ixgb_adapter *adapter, |
@@ -120,33 +121,20 @@ static void ixgb_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid); | |||
120 | static void ixgb_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid); | 121 | static void ixgb_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid); |
121 | static void ixgb_restore_vlan(struct ixgb_adapter *adapter); | 122 | static void ixgb_restore_vlan(struct ixgb_adapter *adapter); |
122 | 123 | ||
123 | static int ixgb_notify_reboot(struct notifier_block *, unsigned long event, | ||
124 | void *ptr); | ||
125 | static int ixgb_suspend(struct pci_dev *pdev, uint32_t state); | ||
126 | |||
127 | #ifdef CONFIG_NET_POLL_CONTROLLER | 124 | #ifdef CONFIG_NET_POLL_CONTROLLER |
128 | /* for netdump / net console */ | 125 | /* for netdump / net console */ |
129 | static void ixgb_netpoll(struct net_device *dev); | 126 | static void ixgb_netpoll(struct net_device *dev); |
130 | #endif | 127 | #endif |
131 | 128 | ||
132 | struct notifier_block ixgb_notifier_reboot = { | ||
133 | .notifier_call = ixgb_notify_reboot, | ||
134 | .next = NULL, | ||
135 | .priority = 0 | ||
136 | }; | ||
137 | |||
138 | /* Exported from other modules */ | 129 | /* Exported from other modules */ |
139 | 130 | ||
140 | extern void ixgb_check_options(struct ixgb_adapter *adapter); | 131 | extern void ixgb_check_options(struct ixgb_adapter *adapter); |
141 | 132 | ||
142 | static struct pci_driver ixgb_driver = { | 133 | static struct pci_driver ixgb_driver = { |
143 | .name = ixgb_driver_name, | 134 | .name = ixgb_driver_name, |
144 | .id_table = ixgb_pci_tbl, | 135 | .id_table = ixgb_pci_tbl, |
145 | .probe = ixgb_probe, | 136 | .probe = ixgb_probe, |
146 | .remove = __devexit_p(ixgb_remove), | 137 | .remove = __devexit_p(ixgb_remove), |
147 | /* Power Managment Hooks */ | ||
148 | .suspend = NULL, | ||
149 | .resume = NULL | ||
150 | }; | 138 | }; |
151 | 139 | ||
152 | MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); | 140 | MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); |
@@ -169,17 +157,12 @@ MODULE_LICENSE("GPL"); | |||
169 | static int __init | 157 | static int __init |
170 | ixgb_init_module(void) | 158 | ixgb_init_module(void) |
171 | { | 159 | { |
172 | int ret; | ||
173 | printk(KERN_INFO "%s - version %s\n", | 160 | printk(KERN_INFO "%s - version %s\n", |
174 | ixgb_driver_string, ixgb_driver_version); | 161 | ixgb_driver_string, ixgb_driver_version); |
175 | 162 | ||
176 | printk(KERN_INFO "%s\n", ixgb_copyright); | 163 | printk(KERN_INFO "%s\n", ixgb_copyright); |
177 | 164 | ||
178 | ret = pci_module_init(&ixgb_driver); | 165 | return pci_module_init(&ixgb_driver); |
179 | if(ret >= 0) { | ||
180 | register_reboot_notifier(&ixgb_notifier_reboot); | ||
181 | } | ||
182 | return ret; | ||
183 | } | 166 | } |
184 | 167 | ||
185 | module_init(ixgb_init_module); | 168 | module_init(ixgb_init_module); |
@@ -194,7 +177,6 @@ module_init(ixgb_init_module); | |||
194 | static void __exit | 177 | static void __exit |
195 | ixgb_exit_module(void) | 178 | ixgb_exit_module(void) |
196 | { | 179 | { |
197 | unregister_reboot_notifier(&ixgb_notifier_reboot); | ||
198 | pci_unregister_driver(&ixgb_driver); | 180 | pci_unregister_driver(&ixgb_driver); |
199 | } | 181 | } |
200 | 182 | ||
@@ -224,8 +206,8 @@ ixgb_irq_enable(struct ixgb_adapter *adapter) | |||
224 | { | 206 | { |
225 | if(atomic_dec_and_test(&adapter->irq_sem)) { | 207 | if(atomic_dec_and_test(&adapter->irq_sem)) { |
226 | IXGB_WRITE_REG(&adapter->hw, IMS, | 208 | IXGB_WRITE_REG(&adapter->hw, IMS, |
227 | IXGB_INT_RXT0 | IXGB_INT_RXDMT0 | IXGB_INT_TXDW | | 209 | IXGB_INT_RXT0 | IXGB_INT_RXDMT0 | IXGB_INT_TXDW | |
228 | IXGB_INT_RXO | IXGB_INT_LSC); | 210 | IXGB_INT_LSC); |
229 | IXGB_WRITE_FLUSH(&adapter->hw); | 211 | IXGB_WRITE_FLUSH(&adapter->hw); |
230 | } | 212 | } |
231 | } | 213 | } |
@@ -1209,10 +1191,10 @@ ixgb_tso(struct ixgb_adapter *adapter, struct sk_buff *skb) | |||
1209 | | IXGB_CONTEXT_DESC_CMD_TSE | 1191 | | IXGB_CONTEXT_DESC_CMD_TSE |
1210 | | IXGB_CONTEXT_DESC_CMD_IP | 1192 | | IXGB_CONTEXT_DESC_CMD_IP |
1211 | | IXGB_CONTEXT_DESC_CMD_TCP | 1193 | | IXGB_CONTEXT_DESC_CMD_TCP |
1212 | | IXGB_CONTEXT_DESC_CMD_RS | ||
1213 | | IXGB_CONTEXT_DESC_CMD_IDE | 1194 | | IXGB_CONTEXT_DESC_CMD_IDE |
1214 | | (skb->len - (hdr_len))); | 1195 | | (skb->len - (hdr_len))); |
1215 | 1196 | ||
1197 | |||
1216 | if(++i == adapter->tx_ring.count) i = 0; | 1198 | if(++i == adapter->tx_ring.count) i = 0; |
1217 | adapter->tx_ring.next_to_use = i; | 1199 | adapter->tx_ring.next_to_use = i; |
1218 | 1200 | ||
@@ -1247,8 +1229,7 @@ ixgb_tx_csum(struct ixgb_adapter *adapter, struct sk_buff *skb) | |||
1247 | context_desc->mss = 0; | 1229 | context_desc->mss = 0; |
1248 | context_desc->cmd_type_len = | 1230 | context_desc->cmd_type_len = |
1249 | cpu_to_le32(IXGB_CONTEXT_DESC_TYPE | 1231 | cpu_to_le32(IXGB_CONTEXT_DESC_TYPE |
1250 | | IXGB_TX_DESC_CMD_RS | 1232 | | IXGB_TX_DESC_CMD_IDE); |
1251 | | IXGB_TX_DESC_CMD_IDE); | ||
1252 | 1233 | ||
1253 | if(++i == adapter->tx_ring.count) i = 0; | 1234 | if(++i == adapter->tx_ring.count) i = 0; |
1254 | adapter->tx_ring.next_to_use = i; | 1235 | adapter->tx_ring.next_to_use = i; |
@@ -1273,6 +1254,7 @@ ixgb_tx_map(struct ixgb_adapter *adapter, struct sk_buff *skb, | |||
1273 | 1254 | ||
1274 | unsigned int nr_frags = skb_shinfo(skb)->nr_frags; | 1255 | unsigned int nr_frags = skb_shinfo(skb)->nr_frags; |
1275 | unsigned int f; | 1256 | unsigned int f; |
1257 | |||
1276 | len -= skb->data_len; | 1258 | len -= skb->data_len; |
1277 | 1259 | ||
1278 | i = tx_ring->next_to_use; | 1260 | i = tx_ring->next_to_use; |
@@ -1526,14 +1508,33 @@ ixgb_change_mtu(struct net_device *netdev, int new_mtu) | |||
1526 | void | 1508 | void |
1527 | ixgb_update_stats(struct ixgb_adapter *adapter) | 1509 | ixgb_update_stats(struct ixgb_adapter *adapter) |
1528 | { | 1510 | { |
1511 | struct net_device *netdev = adapter->netdev; | ||
1512 | |||
1513 | if((netdev->flags & IFF_PROMISC) || (netdev->flags & IFF_ALLMULTI) || | ||
1514 | (netdev->mc_count > IXGB_MAX_NUM_MULTICAST_ADDRESSES)) { | ||
1515 | u64 multi = IXGB_READ_REG(&adapter->hw, MPRCL); | ||
1516 | u32 bcast_l = IXGB_READ_REG(&adapter->hw, BPRCL); | ||
1517 | u32 bcast_h = IXGB_READ_REG(&adapter->hw, BPRCH); | ||
1518 | u64 bcast = ((u64)bcast_h << 32) | bcast_l; | ||
1519 | |||
1520 | multi |= ((u64)IXGB_READ_REG(&adapter->hw, MPRCH) << 32); | ||
1521 | /* fix up multicast stats by removing broadcasts */ | ||
1522 | multi -= bcast; | ||
1523 | |||
1524 | adapter->stats.mprcl += (multi & 0xFFFFFFFF); | ||
1525 | adapter->stats.mprch += (multi >> 32); | ||
1526 | adapter->stats.bprcl += bcast_l; | ||
1527 | adapter->stats.bprch += bcast_h; | ||
1528 | } else { | ||
1529 | adapter->stats.mprcl += IXGB_READ_REG(&adapter->hw, MPRCL); | ||
1530 | adapter->stats.mprch += IXGB_READ_REG(&adapter->hw, MPRCH); | ||
1531 | adapter->stats.bprcl += IXGB_READ_REG(&adapter->hw, BPRCL); | ||
1532 | adapter->stats.bprch += IXGB_READ_REG(&adapter->hw, BPRCH); | ||
1533 | } | ||
1529 | adapter->stats.tprl += IXGB_READ_REG(&adapter->hw, TPRL); | 1534 | adapter->stats.tprl += IXGB_READ_REG(&adapter->hw, TPRL); |
1530 | adapter->stats.tprh += IXGB_READ_REG(&adapter->hw, TPRH); | 1535 | adapter->stats.tprh += IXGB_READ_REG(&adapter->hw, TPRH); |
1531 | adapter->stats.gprcl += IXGB_READ_REG(&adapter->hw, GPRCL); | 1536 | adapter->stats.gprcl += IXGB_READ_REG(&adapter->hw, GPRCL); |
1532 | adapter->stats.gprch += IXGB_READ_REG(&adapter->hw, GPRCH); | 1537 | adapter->stats.gprch += IXGB_READ_REG(&adapter->hw, GPRCH); |
1533 | adapter->stats.bprcl += IXGB_READ_REG(&adapter->hw, BPRCL); | ||
1534 | adapter->stats.bprch += IXGB_READ_REG(&adapter->hw, BPRCH); | ||
1535 | adapter->stats.mprcl += IXGB_READ_REG(&adapter->hw, MPRCL); | ||
1536 | adapter->stats.mprch += IXGB_READ_REG(&adapter->hw, MPRCH); | ||
1537 | adapter->stats.uprcl += IXGB_READ_REG(&adapter->hw, UPRCL); | 1538 | adapter->stats.uprcl += IXGB_READ_REG(&adapter->hw, UPRCL); |
1538 | adapter->stats.uprch += IXGB_READ_REG(&adapter->hw, UPRCH); | 1539 | adapter->stats.uprch += IXGB_READ_REG(&adapter->hw, UPRCH); |
1539 | adapter->stats.vprcl += IXGB_READ_REG(&adapter->hw, VPRCL); | 1540 | adapter->stats.vprcl += IXGB_READ_REG(&adapter->hw, VPRCL); |
@@ -1823,7 +1824,6 @@ ixgb_clean_rx_irq(struct ixgb_adapter *adapter) | |||
1823 | struct pci_dev *pdev = adapter->pdev; | 1824 | struct pci_dev *pdev = adapter->pdev; |
1824 | struct ixgb_rx_desc *rx_desc, *next_rxd; | 1825 | struct ixgb_rx_desc *rx_desc, *next_rxd; |
1825 | struct ixgb_buffer *buffer_info, *next_buffer, *next2_buffer; | 1826 | struct ixgb_buffer *buffer_info, *next_buffer, *next2_buffer; |
1826 | struct sk_buff *skb, *next_skb; | ||
1827 | uint32_t length; | 1827 | uint32_t length; |
1828 | unsigned int i, j; | 1828 | unsigned int i, j; |
1829 | boolean_t cleaned = FALSE; | 1829 | boolean_t cleaned = FALSE; |
@@ -1833,6 +1833,8 @@ ixgb_clean_rx_irq(struct ixgb_adapter *adapter) | |||
1833 | buffer_info = &rx_ring->buffer_info[i]; | 1833 | buffer_info = &rx_ring->buffer_info[i]; |
1834 | 1834 | ||
1835 | while(rx_desc->status & IXGB_RX_DESC_STATUS_DD) { | 1835 | while(rx_desc->status & IXGB_RX_DESC_STATUS_DD) { |
1836 | struct sk_buff *skb, *next_skb; | ||
1837 | u8 status; | ||
1836 | 1838 | ||
1837 | #ifdef CONFIG_IXGB_NAPI | 1839 | #ifdef CONFIG_IXGB_NAPI |
1838 | if(*work_done >= work_to_do) | 1840 | if(*work_done >= work_to_do) |
@@ -1840,7 +1842,9 @@ ixgb_clean_rx_irq(struct ixgb_adapter *adapter) | |||
1840 | 1842 | ||
1841 | (*work_done)++; | 1843 | (*work_done)++; |
1842 | #endif | 1844 | #endif |
1845 | status = rx_desc->status; | ||
1843 | skb = buffer_info->skb; | 1846 | skb = buffer_info->skb; |
1847 | |||
1844 | prefetch(skb->data); | 1848 | prefetch(skb->data); |
1845 | 1849 | ||
1846 | if(++i == rx_ring->count) i = 0; | 1850 | if(++i == rx_ring->count) i = 0; |
@@ -1855,7 +1859,6 @@ ixgb_clean_rx_irq(struct ixgb_adapter *adapter) | |||
1855 | next_skb = next_buffer->skb; | 1859 | next_skb = next_buffer->skb; |
1856 | prefetch(next_skb); | 1860 | prefetch(next_skb); |
1857 | 1861 | ||
1858 | |||
1859 | cleaned = TRUE; | 1862 | cleaned = TRUE; |
1860 | 1863 | ||
1861 | pci_unmap_single(pdev, | 1864 | pci_unmap_single(pdev, |
@@ -1865,7 +1868,7 @@ ixgb_clean_rx_irq(struct ixgb_adapter *adapter) | |||
1865 | 1868 | ||
1866 | length = le16_to_cpu(rx_desc->length); | 1869 | length = le16_to_cpu(rx_desc->length); |
1867 | 1870 | ||
1868 | if(unlikely(!(rx_desc->status & IXGB_RX_DESC_STATUS_EOP))) { | 1871 | if(unlikely(!(status & IXGB_RX_DESC_STATUS_EOP))) { |
1869 | 1872 | ||
1870 | /* All receives must fit into a single buffer */ | 1873 | /* All receives must fit into a single buffer */ |
1871 | 1874 | ||
@@ -1873,12 +1876,7 @@ ixgb_clean_rx_irq(struct ixgb_adapter *adapter) | |||
1873 | "length<%x>\n", length); | 1876 | "length<%x>\n", length); |
1874 | 1877 | ||
1875 | dev_kfree_skb_irq(skb); | 1878 | dev_kfree_skb_irq(skb); |
1876 | rx_desc->status = 0; | 1879 | goto rxdesc_done; |
1877 | buffer_info->skb = NULL; | ||
1878 | |||
1879 | rx_desc = next_rxd; | ||
1880 | buffer_info = next_buffer; | ||
1881 | continue; | ||
1882 | } | 1880 | } |
1883 | 1881 | ||
1884 | if (unlikely(rx_desc->errors | 1882 | if (unlikely(rx_desc->errors |
@@ -1887,12 +1885,7 @@ ixgb_clean_rx_irq(struct ixgb_adapter *adapter) | |||
1887 | IXGB_RX_DESC_ERRORS_RXE))) { | 1885 | IXGB_RX_DESC_ERRORS_RXE))) { |
1888 | 1886 | ||
1889 | dev_kfree_skb_irq(skb); | 1887 | dev_kfree_skb_irq(skb); |
1890 | rx_desc->status = 0; | 1888 | goto rxdesc_done; |
1891 | buffer_info->skb = NULL; | ||
1892 | |||
1893 | rx_desc = next_rxd; | ||
1894 | buffer_info = next_buffer; | ||
1895 | continue; | ||
1896 | } | 1889 | } |
1897 | 1890 | ||
1898 | /* Good Receive */ | 1891 | /* Good Receive */ |
@@ -1903,7 +1896,7 @@ ixgb_clean_rx_irq(struct ixgb_adapter *adapter) | |||
1903 | 1896 | ||
1904 | skb->protocol = eth_type_trans(skb, netdev); | 1897 | skb->protocol = eth_type_trans(skb, netdev); |
1905 | #ifdef CONFIG_IXGB_NAPI | 1898 | #ifdef CONFIG_IXGB_NAPI |
1906 | if(adapter->vlgrp && (rx_desc->status & IXGB_RX_DESC_STATUS_VP)) { | 1899 | if(adapter->vlgrp && (status & IXGB_RX_DESC_STATUS_VP)) { |
1907 | vlan_hwaccel_receive_skb(skb, adapter->vlgrp, | 1900 | vlan_hwaccel_receive_skb(skb, adapter->vlgrp, |
1908 | le16_to_cpu(rx_desc->special) & | 1901 | le16_to_cpu(rx_desc->special) & |
1909 | IXGB_RX_DESC_SPECIAL_VLAN_MASK); | 1902 | IXGB_RX_DESC_SPECIAL_VLAN_MASK); |
@@ -1911,7 +1904,7 @@ ixgb_clean_rx_irq(struct ixgb_adapter *adapter) | |||
1911 | netif_receive_skb(skb); | 1904 | netif_receive_skb(skb); |
1912 | } | 1905 | } |
1913 | #else /* CONFIG_IXGB_NAPI */ | 1906 | #else /* CONFIG_IXGB_NAPI */ |
1914 | if(adapter->vlgrp && (rx_desc->status & IXGB_RX_DESC_STATUS_VP)) { | 1907 | if(adapter->vlgrp && (status & IXGB_RX_DESC_STATUS_VP)) { |
1915 | vlan_hwaccel_rx(skb, adapter->vlgrp, | 1908 | vlan_hwaccel_rx(skb, adapter->vlgrp, |
1916 | le16_to_cpu(rx_desc->special) & | 1909 | le16_to_cpu(rx_desc->special) & |
1917 | IXGB_RX_DESC_SPECIAL_VLAN_MASK); | 1910 | IXGB_RX_DESC_SPECIAL_VLAN_MASK); |
@@ -1921,9 +1914,12 @@ ixgb_clean_rx_irq(struct ixgb_adapter *adapter) | |||
1921 | #endif /* CONFIG_IXGB_NAPI */ | 1914 | #endif /* CONFIG_IXGB_NAPI */ |
1922 | netdev->last_rx = jiffies; | 1915 | netdev->last_rx = jiffies; |
1923 | 1916 | ||
1917 | rxdesc_done: | ||
1918 | /* clean up descriptor, might be written over by hw */ | ||
1924 | rx_desc->status = 0; | 1919 | rx_desc->status = 0; |
1925 | buffer_info->skb = NULL; | 1920 | buffer_info->skb = NULL; |
1926 | 1921 | ||
1922 | /* use prefetched values */ | ||
1927 | rx_desc = next_rxd; | 1923 | rx_desc = next_rxd; |
1928 | buffer_info = next_buffer; | 1924 | buffer_info = next_buffer; |
1929 | } | 1925 | } |
@@ -1959,8 +1955,8 @@ ixgb_alloc_rx_buffers(struct ixgb_adapter *adapter) | |||
1959 | 1955 | ||
1960 | num_group_tail_writes = IXGB_RX_BUFFER_WRITE; | 1956 | num_group_tail_writes = IXGB_RX_BUFFER_WRITE; |
1961 | 1957 | ||
1962 | /* leave one descriptor unused */ | 1958 | /* leave three descriptors unused */ |
1963 | while(--cleancount > 0) { | 1959 | while(--cleancount > 2) { |
1964 | rx_desc = IXGB_RX_DESC(*rx_ring, i); | 1960 | rx_desc = IXGB_RX_DESC(*rx_ring, i); |
1965 | 1961 | ||
1966 | skb = dev_alloc_skb(adapter->rx_buffer_len + NET_IP_ALIGN); | 1962 | skb = dev_alloc_skb(adapter->rx_buffer_len + NET_IP_ALIGN); |
@@ -1987,6 +1983,10 @@ ixgb_alloc_rx_buffers(struct ixgb_adapter *adapter) | |||
1987 | PCI_DMA_FROMDEVICE); | 1983 | PCI_DMA_FROMDEVICE); |
1988 | 1984 | ||
1989 | rx_desc->buff_addr = cpu_to_le64(buffer_info->dma); | 1985 | rx_desc->buff_addr = cpu_to_le64(buffer_info->dma); |
1986 | /* guarantee DD bit not set now before h/w gets descriptor | ||
1987 | * this is the rest of the workaround for h/w double | ||
1988 | * writeback. */ | ||
1989 | rx_desc->status = 0; | ||
1990 | 1990 | ||
1991 | if((i & ~(num_group_tail_writes- 1)) == i) { | 1991 | if((i & ~(num_group_tail_writes- 1)) == i) { |
1992 | /* Force memory writes to complete before letting h/w | 1992 | /* Force memory writes to complete before letting h/w |
@@ -2099,54 +2099,6 @@ ixgb_restore_vlan(struct ixgb_adapter *adapter) | |||
2099 | } | 2099 | } |
2100 | } | 2100 | } |
2101 | 2101 | ||
2102 | /** | ||
2103 | * ixgb_notify_reboot - handles OS notification of reboot event. | ||
2104 | * @param nb notifier block, unused | ||
2105 | * @param event Event being passed to driver to act upon | ||
2106 | * @param p A pointer to our net device | ||
2107 | **/ | ||
2108 | static int | ||
2109 | ixgb_notify_reboot(struct notifier_block *nb, unsigned long event, void *p) | ||
2110 | { | ||
2111 | struct pci_dev *pdev = NULL; | ||
2112 | |||
2113 | switch(event) { | ||
2114 | case SYS_DOWN: | ||
2115 | case SYS_HALT: | ||
2116 | case SYS_POWER_OFF: | ||
2117 | while ((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) { | ||
2118 | if (pci_dev_driver(pdev) == &ixgb_driver) | ||
2119 | ixgb_suspend(pdev, 3); | ||
2120 | } | ||
2121 | } | ||
2122 | return NOTIFY_DONE; | ||
2123 | } | ||
2124 | |||
2125 | /** | ||
2126 | * ixgb_suspend - driver suspend function called from notify. | ||
2127 | * @param pdev pci driver structure used for passing to | ||
2128 | * @param state power state to enter | ||
2129 | **/ | ||
2130 | static int | ||
2131 | ixgb_suspend(struct pci_dev *pdev, uint32_t state) | ||
2132 | { | ||
2133 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2134 | struct ixgb_adapter *adapter = netdev->priv; | ||
2135 | |||
2136 | netif_device_detach(netdev); | ||
2137 | |||
2138 | if(netif_running(netdev)) | ||
2139 | ixgb_down(adapter, TRUE); | ||
2140 | |||
2141 | pci_save_state(pdev); | ||
2142 | |||
2143 | state = (state > 0) ? 3 : 0; | ||
2144 | pci_set_power_state(pdev, state); | ||
2145 | msec_delay(200); | ||
2146 | |||
2147 | return 0; | ||
2148 | } | ||
2149 | |||
2150 | #ifdef CONFIG_NET_POLL_CONTROLLER | 2102 | #ifdef CONFIG_NET_POLL_CONTROLLER |
2151 | /* | 2103 | /* |
2152 | * Polling 'interrupt' - used by things like netconsole to send skbs | 2104 | * Polling 'interrupt' - used by things like netconsole to send skbs |
@@ -2157,6 +2109,7 @@ ixgb_suspend(struct pci_dev *pdev, uint32_t state) | |||
2157 | static void ixgb_netpoll(struct net_device *dev) | 2109 | static void ixgb_netpoll(struct net_device *dev) |
2158 | { | 2110 | { |
2159 | struct ixgb_adapter *adapter = dev->priv; | 2111 | struct ixgb_adapter *adapter = dev->priv; |
2112 | |||
2160 | disable_irq(adapter->pdev->irq); | 2113 | disable_irq(adapter->pdev->irq); |
2161 | ixgb_intr(adapter->pdev->irq, dev, NULL); | 2114 | ixgb_intr(adapter->pdev->irq, dev, NULL); |
2162 | enable_irq(adapter->pdev->irq); | 2115 | enable_irq(adapter->pdev->irq); |
diff --git a/drivers/net/ixgb/ixgb_osdep.h b/drivers/net/ixgb/ixgb_osdep.h index 9eba92891901..dba20481ee80 100644 --- a/drivers/net/ixgb/ixgb_osdep.h +++ b/drivers/net/ixgb/ixgb_osdep.h | |||
@@ -45,8 +45,7 @@ | |||
45 | /* Don't mdelay in interrupt context! */ \ | 45 | /* Don't mdelay in interrupt context! */ \ |
46 | BUG(); \ | 46 | BUG(); \ |
47 | } else { \ | 47 | } else { \ |
48 | set_current_state(TASK_UNINTERRUPTIBLE); \ | 48 | msleep(x); \ |
49 | schedule_timeout((x * HZ)/1000 + 2); \ | ||
50 | } } while(0) | 49 | } } while(0) |
51 | #endif | 50 | #endif |
52 | 51 | ||
diff --git a/drivers/net/pcnet32.c b/drivers/net/pcnet32.c index 17947e6c8793..13f114876965 100644 --- a/drivers/net/pcnet32.c +++ b/drivers/net/pcnet32.c | |||
@@ -22,8 +22,8 @@ | |||
22 | *************************************************************************/ | 22 | *************************************************************************/ |
23 | 23 | ||
24 | #define DRV_NAME "pcnet32" | 24 | #define DRV_NAME "pcnet32" |
25 | #define DRV_VERSION "1.30i" | 25 | #define DRV_VERSION "1.30j" |
26 | #define DRV_RELDATE "06.28.2004" | 26 | #define DRV_RELDATE "29.04.2005" |
27 | #define PFX DRV_NAME ": " | 27 | #define PFX DRV_NAME ": " |
28 | 28 | ||
29 | static const char *version = | 29 | static const char *version = |
@@ -256,6 +256,7 @@ static int homepna[MAX_UNITS]; | |||
256 | * homepna for selecting HomePNA mode for PCNet/Home 79C978. | 256 | * homepna for selecting HomePNA mode for PCNet/Home 79C978. |
257 | * v1.30h 24 Jun 2004 Don Fry correctly select auto, speed, duplex in bcr32. | 257 | * v1.30h 24 Jun 2004 Don Fry correctly select auto, speed, duplex in bcr32. |
258 | * v1.30i 28 Jun 2004 Don Fry change to use module_param. | 258 | * v1.30i 28 Jun 2004 Don Fry change to use module_param. |
259 | * v1.30j 29 Apr 2005 Don Fry fix skb/map leak with loopback test. | ||
259 | */ | 260 | */ |
260 | 261 | ||
261 | 262 | ||
@@ -395,6 +396,7 @@ static void pcnet32_led_blink_callback(struct net_device *dev); | |||
395 | static int pcnet32_get_regs_len(struct net_device *dev); | 396 | static int pcnet32_get_regs_len(struct net_device *dev); |
396 | static void pcnet32_get_regs(struct net_device *dev, struct ethtool_regs *regs, | 397 | static void pcnet32_get_regs(struct net_device *dev, struct ethtool_regs *regs, |
397 | void *ptr); | 398 | void *ptr); |
399 | static void pcnet32_purge_tx_ring(struct net_device *dev); | ||
398 | 400 | ||
399 | enum pci_flags_bit { | 401 | enum pci_flags_bit { |
400 | PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4, | 402 | PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4, |
@@ -785,6 +787,7 @@ static int pcnet32_loopback_test(struct net_device *dev, uint64_t *data1) | |||
785 | } | 787 | } |
786 | 788 | ||
787 | clean_up: | 789 | clean_up: |
790 | pcnet32_purge_tx_ring(dev); | ||
788 | x = a->read_csr(ioaddr, 15) & 0xFFFF; | 791 | x = a->read_csr(ioaddr, 15) & 0xFFFF; |
789 | a->write_csr(ioaddr, 15, (x & ~0x0044)); /* reset bits 6 and 2 */ | 792 | a->write_csr(ioaddr, 15, (x & ~0x0044)); /* reset bits 6 and 2 */ |
790 | 793 | ||
diff --git a/drivers/net/tulip/media.c b/drivers/net/tulip/media.c index edae09a4b021..919c40cd635c 100644 --- a/drivers/net/tulip/media.c +++ b/drivers/net/tulip/media.c | |||
@@ -174,6 +174,7 @@ void tulip_mdio_write(struct net_device *dev, int phy_id, int location, int val) | |||
174 | break; | 174 | break; |
175 | } | 175 | } |
176 | spin_unlock_irqrestore(&tp->mii_lock, flags); | 176 | spin_unlock_irqrestore(&tp->mii_lock, flags); |
177 | return; | ||
177 | } | 178 | } |
178 | 179 | ||
179 | /* Establish sync by sending 32 logic ones. */ | 180 | /* Establish sync by sending 32 logic ones. */ |