diff options
Diffstat (limited to 'drivers')
-rw-r--r-- | drivers/infiniband/hw/ipath/ipath_sd7220.c | 1462 |
1 files changed, 1462 insertions, 0 deletions
diff --git a/drivers/infiniband/hw/ipath/ipath_sd7220.c b/drivers/infiniband/hw/ipath/ipath_sd7220.c new file mode 100644 index 000000000000..aa47eb549520 --- /dev/null +++ b/drivers/infiniband/hw/ipath/ipath_sd7220.c | |||
@@ -0,0 +1,1462 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved. | ||
3 | * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. | ||
4 | * | ||
5 | * This software is available to you under a choice of one of two | ||
6 | * licenses. You may choose to be licensed under the terms of the GNU | ||
7 | * General Public License (GPL) Version 2, available from the file | ||
8 | * COPYING in the main directory of this source tree, or the | ||
9 | * OpenIB.org BSD license below: | ||
10 | * | ||
11 | * Redistribution and use in source and binary forms, with or | ||
12 | * without modification, are permitted provided that the following | ||
13 | * conditions are met: | ||
14 | * | ||
15 | * - Redistributions of source code must retain the above | ||
16 | * copyright notice, this list of conditions and the following | ||
17 | * disclaimer. | ||
18 | * | ||
19 | * - Redistributions in binary form must reproduce the above | ||
20 | * copyright notice, this list of conditions and the following | ||
21 | * disclaimer in the documentation and/or other materials | ||
22 | * provided with the distribution. | ||
23 | * | ||
24 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
25 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
26 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
27 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||
28 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||
29 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
30 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
31 | * SOFTWARE. | ||
32 | */ | ||
33 | /* | ||
34 | * This file contains all of the code that is specific to the SerDes | ||
35 | * on the InfiniPath 7220 chip. | ||
36 | */ | ||
37 | |||
38 | #include <linux/pci.h> | ||
39 | #include <linux/delay.h> | ||
40 | |||
41 | #include "ipath_kernel.h" | ||
42 | #include "ipath_registers.h" | ||
43 | #include "ipath_7220.h" | ||
44 | |||
45 | /* | ||
46 | * The IBSerDesMappTable is a memory that holds values to be stored in | ||
47 | * various SerDes registers by IBC. It is not part of the normal kregs | ||
48 | * map and is used in exactly one place, hence the #define below. | ||
49 | */ | ||
50 | #define KR_IBSerDesMappTable (0x94000 / (sizeof(uint64_t))) | ||
51 | |||
52 | /* | ||
53 | * Below used for sdnum parameter, selecting one of the two sections | ||
54 | * used for PCIe, or the single SerDes used for IB. | ||
55 | */ | ||
56 | #define PCIE_SERDES0 0 | ||
57 | #define PCIE_SERDES1 1 | ||
58 | |||
59 | /* | ||
60 | * The EPB requires addressing in a particular form. EPB_LOC() is intended | ||
61 | * to make #definitions a little more readable. | ||
62 | */ | ||
63 | #define EPB_ADDR_SHF 8 | ||
64 | #define EPB_LOC(chn, elt, reg) \ | ||
65 | (((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \ | ||
66 | EPB_ADDR_SHF) | ||
67 | #define EPB_IB_QUAD0_CS_SHF (25) | ||
68 | #define EPB_IB_QUAD0_CS (1U << EPB_IB_QUAD0_CS_SHF) | ||
69 | #define EPB_IB_UC_CS_SHF (26) | ||
70 | #define EPB_PCIE_UC_CS_SHF (27) | ||
71 | #define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8)) | ||
72 | |||
73 | /* Forward declarations. */ | ||
74 | static int ipath_sd7220_reg_mod(struct ipath_devdata *dd, int sdnum, u32 loc, | ||
75 | u32 data, u32 mask); | ||
76 | static int ibsd_mod_allchnls(struct ipath_devdata *dd, int loc, int val, | ||
77 | int mask); | ||
78 | static int ipath_sd_trimdone_poll(struct ipath_devdata *dd); | ||
79 | static void ipath_sd_trimdone_monitor(struct ipath_devdata *dd, | ||
80 | const char *where); | ||
81 | static int ipath_sd_setvals(struct ipath_devdata *dd); | ||
82 | static int ipath_sd_early(struct ipath_devdata *dd); | ||
83 | static int ipath_sd_dactrim(struct ipath_devdata *dd); | ||
84 | /* Set the registers that IBC may muck with to their default "preset" values */ | ||
85 | int ipath_sd7220_presets(struct ipath_devdata *dd); | ||
86 | static int ipath_internal_presets(struct ipath_devdata *dd); | ||
87 | /* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */ | ||
88 | static int ipath_sd_trimself(struct ipath_devdata *dd, int val); | ||
89 | static int epb_access(struct ipath_devdata *dd, int sdnum, int claim); | ||
90 | |||
91 | void ipath_set_relock_poll(struct ipath_devdata *dd, int ibup); | ||
92 | |||
93 | /* | ||
94 | * Below keeps track of whether the "once per power-on" initialization has | ||
95 | * been done, because uC code Version 1.32.17 or higher allows the uC to | ||
96 | * be reset at will, and Automatic Equalization may require it. So the | ||
97 | * state of the reset "pin", as reflected in was_reset parameter to | ||
98 | * ipath_sd7220_init() is no longer valid. Instead, we check for the | ||
99 | * actual uC code having been loaded. | ||
100 | */ | ||
101 | static int ipath_ibsd_ucode_loaded(struct ipath_devdata *dd) | ||
102 | { | ||
103 | if (!dd->serdes_first_init_done && (ipath_sd7220_ib_vfy(dd) > 0)) | ||
104 | dd->serdes_first_init_done = 1; | ||
105 | return dd->serdes_first_init_done; | ||
106 | } | ||
107 | |||
108 | /* repeat #define for local use. "Real" #define is in ipath_iba7220.c */ | ||
109 | #define INFINIPATH_HWE_IB_UC_MEMORYPARITYERR 0x0000004000000000ULL | ||
110 | #define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF)) | ||
111 | #define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF)) | ||
112 | #define UC_PAR_CLR_D 8 | ||
113 | #define UC_PAR_CLR_M 0xC | ||
114 | #define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS) | ||
115 | #define START_EQ1(chan) EPB_LOC(chan, 7, 0x27) | ||
116 | |||
117 | void ipath_sd7220_clr_ibpar(struct ipath_devdata *dd) | ||
118 | { | ||
119 | int ret; | ||
120 | |||
121 | /* clear, then re-enable parity errs */ | ||
122 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, | ||
123 | UC_PAR_CLR_D, UC_PAR_CLR_M); | ||
124 | if (ret < 0) { | ||
125 | ipath_dev_err(dd, "Failed clearing IBSerDes Parity err\n"); | ||
126 | goto bail; | ||
127 | } | ||
128 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0, | ||
129 | UC_PAR_CLR_M); | ||
130 | |||
131 | ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); | ||
132 | udelay(4); | ||
133 | ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear, | ||
134 | INFINIPATH_HWE_IB_UC_MEMORYPARITYERR); | ||
135 | ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); | ||
136 | bail: | ||
137 | return; | ||
138 | } | ||
139 | |||
140 | /* | ||
141 | * After a reset or other unusual event, the epb interface may need | ||
142 | * to be re-synchronized, between the host and the uC. | ||
143 | * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected) | ||
144 | */ | ||
145 | #define IBSD_RESYNC_TRIES 3 | ||
146 | #define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS) | ||
147 | #define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS) | ||
148 | |||
149 | static int ipath_resync_ibepb(struct ipath_devdata *dd) | ||
150 | { | ||
151 | int ret, pat, tries, chn; | ||
152 | u32 loc; | ||
153 | |||
154 | ret = -1; | ||
155 | chn = 0; | ||
156 | for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) { | ||
157 | loc = IB_PGUDP(chn); | ||
158 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0); | ||
159 | if (ret < 0) { | ||
160 | ipath_dev_err(dd, "Failed read in resync\n"); | ||
161 | continue; | ||
162 | } | ||
163 | if (ret != 0xF0 && ret != 0x55 && tries == 0) | ||
164 | ipath_dev_err(dd, "unexpected pattern in resync\n"); | ||
165 | pat = ret ^ 0xA5; /* alternate F0 and 55 */ | ||
166 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF); | ||
167 | if (ret < 0) { | ||
168 | ipath_dev_err(dd, "Failed write in resync\n"); | ||
169 | continue; | ||
170 | } | ||
171 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0); | ||
172 | if (ret < 0) { | ||
173 | ipath_dev_err(dd, "Failed re-read in resync\n"); | ||
174 | continue; | ||
175 | } | ||
176 | if (ret != pat) { | ||
177 | ipath_dev_err(dd, "Failed compare1 in resync\n"); | ||
178 | continue; | ||
179 | } | ||
180 | loc = IB_CMUDONE(chn); | ||
181 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0); | ||
182 | if (ret < 0) { | ||
183 | ipath_dev_err(dd, "Failed CMUDONE rd in resync\n"); | ||
184 | continue; | ||
185 | } | ||
186 | if ((ret & 0x70) != ((chn << 4) | 0x40)) { | ||
187 | ipath_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n", | ||
188 | ret, chn); | ||
189 | continue; | ||
190 | } | ||
191 | if (++chn == 4) | ||
192 | break; /* Success */ | ||
193 | } | ||
194 | ipath_cdbg(VERBOSE, "Resync in %d tries\n", tries); | ||
195 | return (ret > 0) ? 0 : ret; | ||
196 | } | ||
197 | |||
198 | /* | ||
199 | * Localize the stuff that should be done to change IB uC reset | ||
200 | * returns <0 for errors. | ||
201 | */ | ||
202 | static int ipath_ibsd_reset(struct ipath_devdata *dd, int assert_rst) | ||
203 | { | ||
204 | u64 rst_val; | ||
205 | int ret = 0; | ||
206 | unsigned long flags; | ||
207 | |||
208 | rst_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibserdesctrl); | ||
209 | if (assert_rst) { | ||
210 | /* | ||
211 | * Vendor recommends "interrupting" uC before reset, to | ||
212 | * minimize possible glitches. | ||
213 | */ | ||
214 | spin_lock_irqsave(&dd->ipath_sdepb_lock, flags); | ||
215 | epb_access(dd, IB_7220_SERDES, 1); | ||
216 | rst_val |= 1ULL; | ||
217 | /* Squelch possible parity error from _asserting_ reset */ | ||
218 | ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrmask, | ||
219 | dd->ipath_hwerrmask & | ||
220 | ~INFINIPATH_HWE_IB_UC_MEMORYPARITYERR); | ||
221 | ipath_write_kreg(dd, dd->ipath_kregs->kr_ibserdesctrl, rst_val); | ||
222 | /* flush write, delay to ensure it took effect */ | ||
223 | ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); | ||
224 | udelay(2); | ||
225 | /* once it's reset, can remove interrupt */ | ||
226 | epb_access(dd, IB_7220_SERDES, -1); | ||
227 | spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags); | ||
228 | } else { | ||
229 | /* | ||
230 | * Before we de-assert reset, we need to deal with | ||
231 | * possible glitch on the Parity-error line. | ||
232 | * Suppress it around the reset, both in chip-level | ||
233 | * hwerrmask and in IB uC control reg. uC will allow | ||
234 | * it again during startup. | ||
235 | */ | ||
236 | u64 val; | ||
237 | rst_val &= ~(1ULL); | ||
238 | ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrmask, | ||
239 | dd->ipath_hwerrmask & | ||
240 | ~INFINIPATH_HWE_IB_UC_MEMORYPARITYERR); | ||
241 | |||
242 | ret = ipath_resync_ibepb(dd); | ||
243 | if (ret < 0) | ||
244 | ipath_dev_err(dd, "unable to re-sync IB EPB\n"); | ||
245 | |||
246 | /* set uC control regs to suppress parity errs */ | ||
247 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1); | ||
248 | if (ret < 0) | ||
249 | goto bail; | ||
250 | /* IB uC code past Version 1.32.17 allow suppression of wdog */ | ||
251 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, | ||
252 | 0x80); | ||
253 | if (ret < 0) { | ||
254 | ipath_dev_err(dd, "Failed to set WDOG disable\n"); | ||
255 | goto bail; | ||
256 | } | ||
257 | ipath_write_kreg(dd, dd->ipath_kregs->kr_ibserdesctrl, rst_val); | ||
258 | /* flush write, delay for startup */ | ||
259 | ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); | ||
260 | udelay(1); | ||
261 | /* clear, then re-enable parity errs */ | ||
262 | ipath_sd7220_clr_ibpar(dd); | ||
263 | val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_hwerrstatus); | ||
264 | if (val & INFINIPATH_HWE_IB_UC_MEMORYPARITYERR) { | ||
265 | ipath_dev_err(dd, "IBUC Parity still set after RST\n"); | ||
266 | dd->ipath_hwerrmask &= | ||
267 | ~INFINIPATH_HWE_IB_UC_MEMORYPARITYERR; | ||
268 | } | ||
269 | ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrmask, | ||
270 | dd->ipath_hwerrmask); | ||
271 | } | ||
272 | |||
273 | bail: | ||
274 | return ret; | ||
275 | } | ||
276 | |||
277 | static void ipath_sd_trimdone_monitor(struct ipath_devdata *dd, | ||
278 | const char *where) | ||
279 | { | ||
280 | int ret, chn, baduns; | ||
281 | u64 val; | ||
282 | |||
283 | if (!where) | ||
284 | where = "?"; | ||
285 | |||
286 | /* give time for reset to settle out in EPB */ | ||
287 | udelay(2); | ||
288 | |||
289 | ret = ipath_resync_ibepb(dd); | ||
290 | if (ret < 0) | ||
291 | ipath_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where); | ||
292 | |||
293 | /* Do "sacrificial read" to get EPB in sane state after reset */ | ||
294 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0); | ||
295 | if (ret < 0) | ||
296 | ipath_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where); | ||
297 | |||
298 | /* Check/show "summary" Trim-done bit in IBCStatus */ | ||
299 | val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus); | ||
300 | if (val & (1ULL << 11)) | ||
301 | ipath_cdbg(VERBOSE, "IBCS TRIMDONE set (%s)\n", where); | ||
302 | else | ||
303 | ipath_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where); | ||
304 | |||
305 | udelay(2); | ||
306 | |||
307 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80); | ||
308 | if (ret < 0) | ||
309 | ipath_dev_err(dd, "Failed Dummy RMW, (%s)\n", where); | ||
310 | udelay(10); | ||
311 | |||
312 | baduns = 0; | ||
313 | |||
314 | for (chn = 3; chn >= 0; --chn) { | ||
315 | /* Read CTRL reg for each channel to check TRIMDONE */ | ||
316 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, | ||
317 | IB_CTRL2(chn), 0, 0); | ||
318 | if (ret < 0) | ||
319 | ipath_dev_err(dd, "Failed checking TRIMDONE, chn %d" | ||
320 | " (%s)\n", chn, where); | ||
321 | |||
322 | if (!(ret & 0x10)) { | ||
323 | int probe; | ||
324 | baduns |= (1 << chn); | ||
325 | ipath_dev_err(dd, "TRIMDONE cleared on chn %d (%02X)." | ||
326 | " (%s)\n", chn, ret, where); | ||
327 | probe = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, | ||
328 | IB_PGUDP(0), 0, 0); | ||
329 | ipath_dev_err(dd, "probe is %d (%02X)\n", | ||
330 | probe, probe); | ||
331 | probe = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, | ||
332 | IB_CTRL2(chn), 0, 0); | ||
333 | ipath_dev_err(dd, "re-read: %d (%02X)\n", | ||
334 | probe, probe); | ||
335 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, | ||
336 | IB_CTRL2(chn), 0x10, 0x10); | ||
337 | if (ret < 0) | ||
338 | ipath_dev_err(dd, | ||
339 | "Err on TRIMDONE rewrite1\n"); | ||
340 | } | ||
341 | } | ||
342 | for (chn = 3; chn >= 0; --chn) { | ||
343 | /* Read CTRL reg for each channel to check TRIMDONE */ | ||
344 | if (baduns & (1 << chn)) { | ||
345 | ipath_dev_err(dd, | ||
346 | "Reseting TRIMDONE on chn %d (%s)\n", | ||
347 | chn, where); | ||
348 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, | ||
349 | IB_CTRL2(chn), 0x10, 0x10); | ||
350 | if (ret < 0) | ||
351 | ipath_dev_err(dd, "Failed re-setting " | ||
352 | "TRIMDONE, chn %d (%s)\n", | ||
353 | chn, where); | ||
354 | } | ||
355 | } | ||
356 | } | ||
357 | |||
358 | /* | ||
359 | * Below is portion of IBA7220-specific bringup_serdes() that actually | ||
360 | * deals with registers and memory within the SerDes itself. | ||
361 | * Post IB uC code version 1.32.17, was_reset being 1 is not really | ||
362 | * informative, so we double-check. | ||
363 | */ | ||
364 | int ipath_sd7220_init(struct ipath_devdata *dd, int was_reset) | ||
365 | { | ||
366 | int ret = 1; /* default to failure */ | ||
367 | int first_reset; | ||
368 | int val_stat; | ||
369 | |||
370 | if (!was_reset) { | ||
371 | /* entered with reset not asserted, we need to do it */ | ||
372 | ipath_ibsd_reset(dd, 1); | ||
373 | ipath_sd_trimdone_monitor(dd, "Driver-reload"); | ||
374 | } | ||
375 | |||
376 | /* Substitute our deduced value for was_reset */ | ||
377 | ret = ipath_ibsd_ucode_loaded(dd); | ||
378 | if (ret < 0) { | ||
379 | ret = 1; | ||
380 | goto done; | ||
381 | } | ||
382 | first_reset = !ret; /* First reset if IBSD uCode not yet loaded */ | ||
383 | |||
384 | /* | ||
385 | * Alter some regs per vendor latest doc, reset-defaults | ||
386 | * are not right for IB. | ||
387 | */ | ||
388 | ret = ipath_sd_early(dd); | ||
389 | if (ret < 0) { | ||
390 | ipath_dev_err(dd, "Failed to set IB SERDES early defaults\n"); | ||
391 | ret = 1; | ||
392 | goto done; | ||
393 | } | ||
394 | |||
395 | /* | ||
396 | * Set DAC manual trim IB. | ||
397 | * We only do this once after chip has been reset (usually | ||
398 | * same as once per system boot). | ||
399 | */ | ||
400 | if (first_reset) { | ||
401 | ret = ipath_sd_dactrim(dd); | ||
402 | if (ret < 0) { | ||
403 | ipath_dev_err(dd, "Failed IB SERDES DAC trim\n"); | ||
404 | ret = 1; | ||
405 | goto done; | ||
406 | } | ||
407 | } | ||
408 | |||
409 | /* | ||
410 | * Set various registers (DDS and RXEQ) that will be | ||
411 | * controlled by IBC (in 1.2 mode) to reasonable preset values | ||
412 | * Calling the "internal" version avoids the "check for needed" | ||
413 | * and "trimdone monitor" that might be counter-productive. | ||
414 | */ | ||
415 | ret = ipath_internal_presets(dd); | ||
416 | if (ret < 0) { | ||
417 | ipath_dev_err(dd, "Failed to set IB SERDES presets\n"); | ||
418 | ret = 1; | ||
419 | goto done; | ||
420 | } | ||
421 | ret = ipath_sd_trimself(dd, 0x80); | ||
422 | if (ret < 0) { | ||
423 | ipath_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n"); | ||
424 | ret = 1; | ||
425 | goto done; | ||
426 | } | ||
427 | |||
428 | /* Load image, then try to verify */ | ||
429 | ret = 0; /* Assume success */ | ||
430 | if (first_reset) { | ||
431 | int vfy; | ||
432 | int trim_done; | ||
433 | ipath_dbg("SerDes uC was reset, reloading PRAM\n"); | ||
434 | ret = ipath_sd7220_ib_load(dd); | ||
435 | if (ret < 0) { | ||
436 | ipath_dev_err(dd, "Failed to load IB SERDES image\n"); | ||
437 | ret = 1; | ||
438 | goto done; | ||
439 | } | ||
440 | |||
441 | /* Loaded image, try to verify */ | ||
442 | vfy = ipath_sd7220_ib_vfy(dd); | ||
443 | if (vfy != ret) { | ||
444 | ipath_dev_err(dd, "SERDES PRAM VFY failed\n"); | ||
445 | ret = 1; | ||
446 | goto done; | ||
447 | } | ||
448 | /* | ||
449 | * Loaded and verified. Almost good... | ||
450 | * hold "success" in ret | ||
451 | */ | ||
452 | ret = 0; | ||
453 | |||
454 | /* | ||
455 | * Prev steps all worked, continue bringup | ||
456 | * De-assert RESET to uC, only in first reset, to allow | ||
457 | * trimming. | ||
458 | * | ||
459 | * Since our default setup sets START_EQ1 to | ||
460 | * PRESET, we need to clear that for this very first run. | ||
461 | */ | ||
462 | ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38); | ||
463 | if (ret < 0) { | ||
464 | ipath_dev_err(dd, "Failed clearing START_EQ1\n"); | ||
465 | ret = 1; | ||
466 | goto done; | ||
467 | } | ||
468 | |||
469 | ipath_ibsd_reset(dd, 0); | ||
470 | /* | ||
471 | * If this is not the first reset, trimdone should be set | ||
472 | * already. | ||
473 | */ | ||
474 | trim_done = ipath_sd_trimdone_poll(dd); | ||
475 | /* | ||
476 | * Whether or not trimdone succeeded, we need to put the | ||
477 | * uC back into reset to avoid a possible fight with the | ||
478 | * IBC state-machine. | ||
479 | */ | ||
480 | ipath_ibsd_reset(dd, 1); | ||
481 | |||
482 | if (!trim_done) { | ||
483 | ipath_dev_err(dd, "No TRIMDONE seen\n"); | ||
484 | ret = 1; | ||
485 | goto done; | ||
486 | } | ||
487 | |||
488 | ipath_sd_trimdone_monitor(dd, "First-reset"); | ||
489 | /* Remember so we do not re-do the load, dactrim, etc. */ | ||
490 | dd->serdes_first_init_done = 1; | ||
491 | } | ||
492 | /* | ||
493 | * Setup for channel training and load values for | ||
494 | * RxEq and DDS in tables used by IBC in IB1.2 mode | ||
495 | */ | ||
496 | |||
497 | val_stat = ipath_sd_setvals(dd); | ||
498 | if (val_stat < 0) | ||
499 | ret = 1; | ||
500 | done: | ||
501 | /* start relock timer regardless, but start at 1 second */ | ||
502 | ipath_set_relock_poll(dd, -1); | ||
503 | return ret; | ||
504 | } | ||
505 | |||
506 | #define EPB_ACC_REQ 1 | ||
507 | #define EPB_ACC_GNT 0x100 | ||
508 | #define EPB_DATA_MASK 0xFF | ||
509 | #define EPB_RD (1ULL << 24) | ||
510 | #define EPB_TRANS_RDY (1ULL << 31) | ||
511 | #define EPB_TRANS_ERR (1ULL << 30) | ||
512 | #define EPB_TRANS_TRIES 5 | ||
513 | |||
514 | /* | ||
515 | * query, claim, release ownership of the EPB (External Parallel Bus) | ||
516 | * for a specified SERDES. | ||
517 | * the "claim" parameter is >0 to claim, <0 to release, 0 to query. | ||
518 | * Returns <0 for errors, >0 if we had ownership, else 0. | ||
519 | */ | ||
520 | static int epb_access(struct ipath_devdata *dd, int sdnum, int claim) | ||
521 | { | ||
522 | u16 acc; | ||
523 | u64 accval; | ||
524 | int owned = 0; | ||
525 | u64 oct_sel = 0; | ||
526 | |||
527 | switch (sdnum) { | ||
528 | case IB_7220_SERDES : | ||
529 | /* | ||
530 | * The IB SERDES "ownership" is fairly simple. A single each | ||
531 | * request/grant. | ||
532 | */ | ||
533 | acc = dd->ipath_kregs->kr_ib_epbacc; | ||
534 | break; | ||
535 | case PCIE_SERDES0 : | ||
536 | case PCIE_SERDES1 : | ||
537 | /* PCIe SERDES has two "octants", need to select which */ | ||
538 | acc = dd->ipath_kregs->kr_pcie_epbacc; | ||
539 | oct_sel = (2 << (sdnum - PCIE_SERDES0)); | ||
540 | break; | ||
541 | default : | ||
542 | return 0; | ||
543 | } | ||
544 | |||
545 | /* Make sure any outstanding transaction was seen */ | ||
546 | ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); | ||
547 | udelay(15); | ||
548 | |||
549 | accval = ipath_read_kreg32(dd, acc); | ||
550 | |||
551 | owned = !!(accval & EPB_ACC_GNT); | ||
552 | if (claim < 0) { | ||
553 | /* Need to release */ | ||
554 | u64 pollval; | ||
555 | /* | ||
556 | * The only writeable bits are the request and CS. | ||
557 | * Both should be clear | ||
558 | */ | ||
559 | u64 newval = 0; | ||
560 | ipath_write_kreg(dd, acc, newval); | ||
561 | /* First read after write is not trustworthy */ | ||
562 | pollval = ipath_read_kreg32(dd, acc); | ||
563 | udelay(5); | ||
564 | pollval = ipath_read_kreg32(dd, acc); | ||
565 | if (pollval & EPB_ACC_GNT) | ||
566 | owned = -1; | ||
567 | } else if (claim > 0) { | ||
568 | /* Need to claim */ | ||
569 | u64 pollval; | ||
570 | u64 newval = EPB_ACC_REQ | oct_sel; | ||
571 | ipath_write_kreg(dd, acc, newval); | ||
572 | /* First read after write is not trustworthy */ | ||
573 | pollval = ipath_read_kreg32(dd, acc); | ||
574 | udelay(5); | ||
575 | pollval = ipath_read_kreg32(dd, acc); | ||
576 | if (!(pollval & EPB_ACC_GNT)) | ||
577 | owned = -1; | ||
578 | } | ||
579 | return owned; | ||
580 | } | ||
581 | |||
582 | /* | ||
583 | * Lemma to deal with race condition of write..read to epb regs | ||
584 | */ | ||
585 | static int epb_trans(struct ipath_devdata *dd, u16 reg, u64 i_val, u64 *o_vp) | ||
586 | { | ||
587 | int tries; | ||
588 | u64 transval; | ||
589 | |||
590 | |||
591 | ipath_write_kreg(dd, reg, i_val); | ||
592 | /* Throw away first read, as RDY bit may be stale */ | ||
593 | transval = ipath_read_kreg64(dd, reg); | ||
594 | |||
595 | for (tries = EPB_TRANS_TRIES; tries; --tries) { | ||
596 | transval = ipath_read_kreg32(dd, reg); | ||
597 | if (transval & EPB_TRANS_RDY) | ||
598 | break; | ||
599 | udelay(5); | ||
600 | } | ||
601 | if (transval & EPB_TRANS_ERR) | ||
602 | return -1; | ||
603 | if (tries > 0 && o_vp) | ||
604 | *o_vp = transval; | ||
605 | return tries; | ||
606 | } | ||
607 | |||
608 | /** | ||
609 | * | ||
610 | * ipath_sd7220_reg_mod - modify SERDES register | ||
611 | * @dd: the infinipath device | ||
612 | * @sdnum: which SERDES to access | ||
613 | * @loc: location - channel, element, register, as packed by EPB_LOC() macro. | ||
614 | * @wd: Write Data - value to set in register | ||
615 | * @mask: ones where data should be spliced into reg. | ||
616 | * | ||
617 | * Basic register read/modify/write, with un-needed acesses elided. That is, | ||
618 | * a mask of zero will prevent write, while a mask of 0xFF will prevent read. | ||
619 | * returns current (presumed, if a write was done) contents of selected | ||
620 | * register, or <0 if errors. | ||
621 | */ | ||
622 | static int ipath_sd7220_reg_mod(struct ipath_devdata *dd, int sdnum, u32 loc, | ||
623 | u32 wd, u32 mask) | ||
624 | { | ||
625 | u16 trans; | ||
626 | u64 transval; | ||
627 | int owned; | ||
628 | int tries, ret; | ||
629 | unsigned long flags; | ||
630 | |||
631 | switch (sdnum) { | ||
632 | case IB_7220_SERDES : | ||
633 | trans = dd->ipath_kregs->kr_ib_epbtrans; | ||
634 | break; | ||
635 | case PCIE_SERDES0 : | ||
636 | case PCIE_SERDES1 : | ||
637 | trans = dd->ipath_kregs->kr_pcie_epbtrans; | ||
638 | break; | ||
639 | default : | ||
640 | return -1; | ||
641 | } | ||
642 | |||
643 | /* | ||
644 | * All access is locked in software (vs other host threads) and | ||
645 | * hardware (vs uC access). | ||
646 | */ | ||
647 | spin_lock_irqsave(&dd->ipath_sdepb_lock, flags); | ||
648 | |||
649 | owned = epb_access(dd, sdnum, 1); | ||
650 | if (owned < 0) { | ||
651 | spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags); | ||
652 | return -1; | ||
653 | } | ||
654 | ret = 0; | ||
655 | for (tries = EPB_TRANS_TRIES; tries; --tries) { | ||
656 | transval = ipath_read_kreg32(dd, trans); | ||
657 | if (transval & EPB_TRANS_RDY) | ||
658 | break; | ||
659 | udelay(5); | ||
660 | } | ||
661 | |||
662 | if (tries > 0) { | ||
663 | tries = 1; /* to make read-skip work */ | ||
664 | if (mask != 0xFF) { | ||
665 | /* | ||
666 | * Not a pure write, so need to read. | ||
667 | * loc encodes chip-select as well as address | ||
668 | */ | ||
669 | transval = loc | EPB_RD; | ||
670 | tries = epb_trans(dd, trans, transval, &transval); | ||
671 | } | ||
672 | if (tries > 0 && mask != 0) { | ||
673 | /* | ||
674 | * Not a pure read, so need to write. | ||
675 | */ | ||
676 | wd = (wd & mask) | (transval & ~mask); | ||
677 | transval = loc | (wd & EPB_DATA_MASK); | ||
678 | tries = epb_trans(dd, trans, transval, &transval); | ||
679 | } | ||
680 | } | ||
681 | /* else, failed to see ready, what error-handling? */ | ||
682 | |||
683 | /* | ||
684 | * Release bus. Failure is an error. | ||
685 | */ | ||
686 | if (epb_access(dd, sdnum, -1) < 0) | ||
687 | ret = -1; | ||
688 | else | ||
689 | ret = transval & EPB_DATA_MASK; | ||
690 | |||
691 | spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags); | ||
692 | if (tries <= 0) | ||
693 | ret = -1; | ||
694 | return ret; | ||
695 | } | ||
696 | |||
697 | #define EPB_ROM_R (2) | ||
698 | #define EPB_ROM_W (1) | ||
699 | /* | ||
700 | * Below, all uC-related, use appropriate UC_CS, depending | ||
701 | * on which SerDes is used. | ||
702 | */ | ||
703 | #define EPB_UC_CTL EPB_LOC(6, 0, 0) | ||
704 | #define EPB_MADDRL EPB_LOC(6, 0, 2) | ||
705 | #define EPB_MADDRH EPB_LOC(6, 0, 3) | ||
706 | #define EPB_ROMDATA EPB_LOC(6, 0, 4) | ||
707 | #define EPB_RAMDATA EPB_LOC(6, 0, 5) | ||
708 | |||
709 | /* Transfer date to/from uC Program RAM of IB or PCIe SerDes */ | ||
710 | static int ipath_sd7220_ram_xfer(struct ipath_devdata *dd, int sdnum, u32 loc, | ||
711 | u8 *buf, int cnt, int rd_notwr) | ||
712 | { | ||
713 | u16 trans; | ||
714 | u64 transval; | ||
715 | u64 csbit; | ||
716 | int owned; | ||
717 | int tries; | ||
718 | int sofar; | ||
719 | int addr; | ||
720 | int ret; | ||
721 | unsigned long flags; | ||
722 | const char *op; | ||
723 | |||
724 | /* Pick appropriate transaction reg and "Chip select" for this serdes */ | ||
725 | switch (sdnum) { | ||
726 | case IB_7220_SERDES : | ||
727 | csbit = 1ULL << EPB_IB_UC_CS_SHF; | ||
728 | trans = dd->ipath_kregs->kr_ib_epbtrans; | ||
729 | break; | ||
730 | case PCIE_SERDES0 : | ||
731 | case PCIE_SERDES1 : | ||
732 | /* PCIe SERDES has uC "chip select" in different bit, too */ | ||
733 | csbit = 1ULL << EPB_PCIE_UC_CS_SHF; | ||
734 | trans = dd->ipath_kregs->kr_pcie_epbtrans; | ||
735 | break; | ||
736 | default : | ||
737 | return -1; | ||
738 | } | ||
739 | |||
740 | op = rd_notwr ? "Rd" : "Wr"; | ||
741 | spin_lock_irqsave(&dd->ipath_sdepb_lock, flags); | ||
742 | |||
743 | owned = epb_access(dd, sdnum, 1); | ||
744 | if (owned < 0) { | ||
745 | spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags); | ||
746 | ipath_dbg("Could not get %s access to %s EPB: %X, loc %X\n", | ||
747 | op, (sdnum == IB_7220_SERDES) ? "IB" : "PCIe", | ||
748 | owned, loc); | ||
749 | return -1; | ||
750 | } | ||
751 | |||
752 | /* | ||
753 | * In future code, we may need to distinguish several address ranges, | ||
754 | * and select various memories based on this. For now, just trim | ||
755 | * "loc" (location including address and memory select) to | ||
756 | * "addr" (address within memory). we will only support PRAM | ||
757 | * The memory is 8KB. | ||
758 | */ | ||
759 | addr = loc & 0x1FFF; | ||
760 | for (tries = EPB_TRANS_TRIES; tries; --tries) { | ||
761 | transval = ipath_read_kreg32(dd, trans); | ||
762 | if (transval & EPB_TRANS_RDY) | ||
763 | break; | ||
764 | udelay(5); | ||
765 | } | ||
766 | |||
767 | sofar = 0; | ||
768 | if (tries <= 0) | ||
769 | ipath_dbg("No initial RDY on EPB access request\n"); | ||
770 | else { | ||
771 | /* | ||
772 | * Every "memory" access is doubly-indirect. | ||
773 | * We set two bytes of address, then read/write | ||
774 | * one or mores bytes of data. | ||
775 | */ | ||
776 | |||
777 | /* First, we set control to "Read" or "Write" */ | ||
778 | transval = csbit | EPB_UC_CTL | | ||
779 | (rd_notwr ? EPB_ROM_R : EPB_ROM_W); | ||
780 | tries = epb_trans(dd, trans, transval, &transval); | ||
781 | if (tries <= 0) | ||
782 | ipath_dbg("No EPB response to uC %s cmd\n", op); | ||
783 | while (tries > 0 && sofar < cnt) { | ||
784 | if (!sofar) { | ||
785 | /* Only set address at start of chunk */ | ||
786 | int addrbyte = (addr + sofar) >> 8; | ||
787 | transval = csbit | EPB_MADDRH | addrbyte; | ||
788 | tries = epb_trans(dd, trans, transval, | ||
789 | &transval); | ||
790 | if (tries <= 0) { | ||
791 | ipath_dbg("No EPB response ADDRH\n"); | ||
792 | break; | ||
793 | } | ||
794 | addrbyte = (addr + sofar) & 0xFF; | ||
795 | transval = csbit | EPB_MADDRL | addrbyte; | ||
796 | tries = epb_trans(dd, trans, transval, | ||
797 | &transval); | ||
798 | if (tries <= 0) { | ||
799 | ipath_dbg("No EPB response ADDRL\n"); | ||
800 | break; | ||
801 | } | ||
802 | } | ||
803 | |||
804 | if (rd_notwr) | ||
805 | transval = csbit | EPB_ROMDATA | EPB_RD; | ||
806 | else | ||
807 | transval = csbit | EPB_ROMDATA | buf[sofar]; | ||
808 | tries = epb_trans(dd, trans, transval, &transval); | ||
809 | if (tries <= 0) { | ||
810 | ipath_dbg("No EPB response DATA\n"); | ||
811 | break; | ||
812 | } | ||
813 | if (rd_notwr) | ||
814 | buf[sofar] = transval & EPB_DATA_MASK; | ||
815 | ++sofar; | ||
816 | } | ||
817 | /* Finally, clear control-bit for Read or Write */ | ||
818 | transval = csbit | EPB_UC_CTL; | ||
819 | tries = epb_trans(dd, trans, transval, &transval); | ||
820 | if (tries <= 0) | ||
821 | ipath_dbg("No EPB response to drop of uC %s cmd\n", op); | ||
822 | } | ||
823 | |||
824 | ret = sofar; | ||
825 | /* Release bus. Failure is an error */ | ||
826 | if (epb_access(dd, sdnum, -1) < 0) | ||
827 | ret = -1; | ||
828 | |||
829 | spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags); | ||
830 | if (tries <= 0) { | ||
831 | ipath_dbg("SERDES PRAM %s failed after %d bytes\n", op, sofar); | ||
832 | ret = -1; | ||
833 | } | ||
834 | return ret; | ||
835 | } | ||
836 | |||
837 | #define PROG_CHUNK 64 | ||
838 | |||
839 | int ipath_sd7220_prog_ld(struct ipath_devdata *dd, int sdnum, | ||
840 | u8 *img, int len, int offset) | ||
841 | { | ||
842 | int cnt, sofar, req; | ||
843 | |||
844 | sofar = 0; | ||
845 | while (sofar < len) { | ||
846 | req = len - sofar; | ||
847 | if (req > PROG_CHUNK) | ||
848 | req = PROG_CHUNK; | ||
849 | cnt = ipath_sd7220_ram_xfer(dd, sdnum, offset + sofar, | ||
850 | img + sofar, req, 0); | ||
851 | if (cnt < req) { | ||
852 | sofar = -1; | ||
853 | break; | ||
854 | } | ||
855 | sofar += req; | ||
856 | } | ||
857 | return sofar; | ||
858 | } | ||
859 | |||
860 | #define VFY_CHUNK 64 | ||
861 | #define SD_PRAM_ERROR_LIMIT 42 | ||
862 | |||
863 | int ipath_sd7220_prog_vfy(struct ipath_devdata *dd, int sdnum, | ||
864 | const u8 *img, int len, int offset) | ||
865 | { | ||
866 | int cnt, sofar, req, idx, errors; | ||
867 | unsigned char readback[VFY_CHUNK]; | ||
868 | |||
869 | errors = 0; | ||
870 | sofar = 0; | ||
871 | while (sofar < len) { | ||
872 | req = len - sofar; | ||
873 | if (req > VFY_CHUNK) | ||
874 | req = VFY_CHUNK; | ||
875 | cnt = ipath_sd7220_ram_xfer(dd, sdnum, sofar + offset, | ||
876 | readback, req, 1); | ||
877 | if (cnt < req) { | ||
878 | /* failed in read itself */ | ||
879 | sofar = -1; | ||
880 | break; | ||
881 | } | ||
882 | for (idx = 0; idx < cnt; ++idx) { | ||
883 | if (readback[idx] != img[idx+sofar]) | ||
884 | ++errors; | ||
885 | } | ||
886 | sofar += cnt; | ||
887 | } | ||
888 | return errors ? -errors : sofar; | ||
889 | } | ||
890 | |||
891 | /* IRQ not set up at this point in init, so we poll. */ | ||
892 | #define IB_SERDES_TRIM_DONE (1ULL << 11) | ||
893 | #define TRIM_TMO (30) | ||
894 | |||
895 | static int ipath_sd_trimdone_poll(struct ipath_devdata *dd) | ||
896 | { | ||
897 | int trim_tmo, ret; | ||
898 | uint64_t val; | ||
899 | |||
900 | /* | ||
901 | * Default to failure, so IBC will not start | ||
902 | * without IB_SERDES_TRIM_DONE. | ||
903 | */ | ||
904 | ret = 0; | ||
905 | for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) { | ||
906 | val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus); | ||
907 | if (val & IB_SERDES_TRIM_DONE) { | ||
908 | ipath_cdbg(VERBOSE, "TRIMDONE after %d\n", trim_tmo); | ||
909 | ret = 1; | ||
910 | break; | ||
911 | } | ||
912 | msleep(10); | ||
913 | } | ||
914 | if (trim_tmo >= TRIM_TMO) { | ||
915 | ipath_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo); | ||
916 | ret = 0; | ||
917 | } | ||
918 | return ret; | ||
919 | } | ||
920 | |||
921 | #define TX_FAST_ELT (9) | ||
922 | |||
923 | /* | ||
924 | * Set the "negotiation" values for SERDES. These are used by the IB1.2 | ||
925 | * link negotiation. Macros below are attempt to keep the values a | ||
926 | * little more human-editable. | ||
927 | * First, values related to Drive De-emphasis Settings. | ||
928 | */ | ||
929 | |||
930 | #define NUM_DDS_REGS 6 | ||
931 | #define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */ | ||
932 | |||
933 | #define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \ | ||
934 | { { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \ | ||
935 | (main_d << 3) | 4 | (ipre_d >> 2), \ | ||
936 | (main_s << 3) | 4 | (ipre_s >> 2), \ | ||
937 | ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \ | ||
938 | ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } } | ||
939 | |||
940 | static struct dds_init { | ||
941 | uint8_t reg_vals[NUM_DDS_REGS]; | ||
942 | } dds_init_vals[] = { | ||
943 | /* DDR(FDR) SDR(HDR) */ | ||
944 | /* Vendor recommends below for 3m cable */ | ||
945 | #define DDS_3M 0 | ||
946 | DDS_VAL(31, 19, 12, 0, 29, 22, 9, 0), | ||
947 | DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1), | ||
948 | DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0), | ||
949 | DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0), | ||
950 | DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0), | ||
951 | DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0), | ||
952 | DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0), | ||
953 | DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0), | ||
954 | DDS_VAL(31, 20, 11, 0, 28, 23, 8, 0), | ||
955 | DDS_VAL(31, 21, 10, 0, 27, 24, 7, 0), | ||
956 | DDS_VAL(31, 22, 9, 0, 26, 25, 6, 0), | ||
957 | DDS_VAL(30, 23, 8, 0, 25, 26, 5, 0), | ||
958 | DDS_VAL(29, 24, 7, 0, 23, 27, 4, 0), | ||
959 | /* Vendor recommends below for 1m cable */ | ||
960 | #define DDS_1M 13 | ||
961 | DDS_VAL(28, 25, 6, 0, 21, 28, 3, 0), | ||
962 | DDS_VAL(27, 26, 5, 0, 19, 29, 2, 0), | ||
963 | DDS_VAL(25, 27, 4, 0, 17, 30, 1, 0) | ||
964 | }; | ||
965 | |||
966 | /* | ||
967 | * Next, values related to Receive Equalization. | ||
968 | * In comments, FDR (Full) is IB DDR, HDR (Half) is IB SDR | ||
969 | */ | ||
970 | /* Hardware packs an element number and register address thus: */ | ||
971 | #define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4)) | ||
972 | #define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \ | ||
973 | {RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} } | ||
974 | |||
975 | #define RXEQ_VAL_ALL(elt, adr, val) \ | ||
976 | {RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} } | ||
977 | |||
978 | #define RXEQ_SDR_DFELTH 0 | ||
979 | #define RXEQ_SDR_TLTH 0 | ||
980 | #define RXEQ_SDR_G1CNT_Z1CNT 0x11 | ||
981 | #define RXEQ_SDR_ZCNT 23 | ||
982 | |||
983 | static struct rxeq_init { | ||
984 | u16 rdesc; /* in form used in SerDesDDSRXEQ */ | ||
985 | u8 rdata[4]; | ||
986 | } rxeq_init_vals[] = { | ||
987 | /* Set Rcv Eq. to Preset node */ | ||
988 | RXEQ_VAL_ALL(7, 0x27, 0x10), | ||
989 | /* Set DFELTHFDR/HDR thresholds */ | ||
990 | RXEQ_VAL(7, 8, 0, 0, 0, 0), /* FDR */ | ||
991 | RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */ | ||
992 | /* Set TLTHFDR/HDR theshold */ | ||
993 | RXEQ_VAL(7, 9, 2, 2, 2, 2), /* FDR */ | ||
994 | RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR */ | ||
995 | /* Set Preamp setting 2 (ZFR/ZCNT) */ | ||
996 | RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR */ | ||
997 | RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR */ | ||
998 | /* Set Preamp DC gain and Setting 1 (GFR/GHR) */ | ||
999 | RXEQ_VAL(7, 0x1E, 0x10, 0x10, 0x10, 0x10), /* FDR */ | ||
1000 | RXEQ_VAL(7, 0x1F, 0x10, 0x10, 0x10, 0x10), /* HDR */ | ||
1001 | /* Toggle RELOCK (in VCDL_CTRL0) to lock to data */ | ||
1002 | RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */ | ||
1003 | RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */ | ||
1004 | }; | ||
1005 | |||
1006 | /* There are 17 values from vendor, but IBC only accesses the first 16 */ | ||
1007 | #define DDS_ROWS (16) | ||
1008 | #define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals) | ||
1009 | |||
1010 | static int ipath_sd_setvals(struct ipath_devdata *dd) | ||
1011 | { | ||
1012 | int idx, midx; | ||
1013 | int min_idx; /* Minimum index for this portion of table */ | ||
1014 | uint32_t dds_reg_map; | ||
1015 | u64 __iomem *taddr, *iaddr; | ||
1016 | uint64_t data; | ||
1017 | uint64_t sdctl; | ||
1018 | |||
1019 | taddr = dd->ipath_kregbase + KR_IBSerDesMappTable; | ||
1020 | iaddr = dd->ipath_kregbase + dd->ipath_kregs->kr_ib_ddsrxeq; | ||
1021 | |||
1022 | /* | ||
1023 | * Init the DDS section of the table. | ||
1024 | * Each "row" of the table provokes NUM_DDS_REG writes, to the | ||
1025 | * registers indicated in DDS_REG_MAP. | ||
1026 | */ | ||
1027 | sdctl = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibserdesctrl); | ||
1028 | sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8); | ||
1029 | sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13); | ||
1030 | ipath_write_kreg(dd, dd->ipath_kregs->kr_ibserdesctrl, sdctl); | ||
1031 | |||
1032 | /* | ||
1033 | * Iterate down table within loop for each register to store. | ||
1034 | */ | ||
1035 | dds_reg_map = DDS_REG_MAP; | ||
1036 | for (idx = 0; idx < NUM_DDS_REGS; ++idx) { | ||
1037 | data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT; | ||
1038 | writeq(data, iaddr + idx); | ||
1039 | mmiowb(); | ||
1040 | ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); | ||
1041 | dds_reg_map >>= 4; | ||
1042 | for (midx = 0; midx < DDS_ROWS; ++midx) { | ||
1043 | u64 __iomem *daddr = taddr + ((midx << 4) + idx); | ||
1044 | data = dds_init_vals[midx].reg_vals[idx]; | ||
1045 | writeq(data, daddr); | ||
1046 | mmiowb(); | ||
1047 | ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); | ||
1048 | } /* End inner for (vals for this reg, each row) */ | ||
1049 | } /* end outer for (regs to be stored) */ | ||
1050 | |||
1051 | /* | ||
1052 | * Init the RXEQ section of the table. As explained above the table | ||
1053 | * rxeq_init_vals[], this runs in a different order, as the pattern | ||
1054 | * of register references is more complex, but there are only | ||
1055 | * four "data" values per register. | ||
1056 | */ | ||
1057 | min_idx = idx; /* RXEQ indices pick up where DDS left off */ | ||
1058 | taddr += 0x100; /* RXEQ data is in second half of table */ | ||
1059 | /* Iterate through RXEQ register addresses */ | ||
1060 | for (idx = 0; idx < RXEQ_ROWS; ++idx) { | ||
1061 | int didx; /* "destination" */ | ||
1062 | int vidx; | ||
1063 | |||
1064 | /* didx is offset by min_idx to address RXEQ range of regs */ | ||
1065 | didx = idx + min_idx; | ||
1066 | /* Store the next RXEQ register address */ | ||
1067 | writeq(rxeq_init_vals[idx].rdesc, iaddr + didx); | ||
1068 | mmiowb(); | ||
1069 | ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); | ||
1070 | /* Iterate through RXEQ values */ | ||
1071 | for (vidx = 0; vidx < 4; vidx++) { | ||
1072 | data = rxeq_init_vals[idx].rdata[vidx]; | ||
1073 | writeq(data, taddr + (vidx << 6) + idx); | ||
1074 | mmiowb(); | ||
1075 | ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); | ||
1076 | } | ||
1077 | } /* end outer for (Reg-writes for RXEQ) */ | ||
1078 | return 0; | ||
1079 | } | ||
1080 | |||
1081 | #define CMUCTRL5 EPB_LOC(7, 0, 0x15) | ||
1082 | #define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0) | ||
1083 | #define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5) | ||
1084 | #define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6) | ||
1085 | #define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8) | ||
1086 | #define START_EQ2(chan) EPB_LOC(chan, 7, 0x28) | ||
1087 | |||
1088 | static int ibsd_sto_noisy(struct ipath_devdata *dd, int loc, int val, int mask) | ||
1089 | { | ||
1090 | int ret = -1; | ||
1091 | int sloc; /* shifted loc, for messages */ | ||
1092 | |||
1093 | loc |= (1U << EPB_IB_QUAD0_CS_SHF); | ||
1094 | sloc = loc >> EPB_ADDR_SHF; | ||
1095 | |||
1096 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, mask); | ||
1097 | if (ret < 0) | ||
1098 | ipath_dev_err(dd, "Write failed: elt %d," | ||
1099 | " addr 0x%X, chnl %d, val 0x%02X, mask 0x%02X\n", | ||
1100 | (sloc & 0xF), (sloc >> 9) & 0x3f, (sloc >> 4) & 7, | ||
1101 | val & 0xFF, mask & 0xFF); | ||
1102 | return ret; | ||
1103 | } | ||
1104 | |||
1105 | /* | ||
1106 | * Repeat a "store" across all channels of the IB SerDes. | ||
1107 | * Although nominally it inherits the "read value" of the last | ||
1108 | * channel it modified, the only really useful return is <0 for | ||
1109 | * failure, >= 0 for success. The parameter 'loc' is assumed to | ||
1110 | * be the location for the channel-0 copy of the register to | ||
1111 | * be modified. | ||
1112 | */ | ||
1113 | static int ibsd_mod_allchnls(struct ipath_devdata *dd, int loc, int val, | ||
1114 | int mask) | ||
1115 | { | ||
1116 | int ret = -1; | ||
1117 | int chnl; | ||
1118 | |||
1119 | if (loc & EPB_GLOBAL_WR) { | ||
1120 | /* | ||
1121 | * Our caller has assured us that we can set all four | ||
1122 | * channels at once. Trust that. If mask is not 0xFF, | ||
1123 | * we will read the _specified_ channel for our starting | ||
1124 | * value. | ||
1125 | */ | ||
1126 | loc |= (1U << EPB_IB_QUAD0_CS_SHF); | ||
1127 | chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7; | ||
1128 | if (mask != 0xFF) { | ||
1129 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, | ||
1130 | loc & ~EPB_GLOBAL_WR, 0, 0); | ||
1131 | if (ret < 0) { | ||
1132 | int sloc = loc >> EPB_ADDR_SHF; | ||
1133 | ipath_dev_err(dd, "pre-read failed: elt %d," | ||
1134 | " addr 0x%X, chnl %d\n", (sloc & 0xF), | ||
1135 | (sloc >> 9) & 0x3f, chnl); | ||
1136 | return ret; | ||
1137 | } | ||
1138 | val = (ret & ~mask) | (val & mask); | ||
1139 | } | ||
1140 | loc &= ~(7 << (4+EPB_ADDR_SHF)); | ||
1141 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF); | ||
1142 | if (ret < 0) { | ||
1143 | int sloc = loc >> EPB_ADDR_SHF; | ||
1144 | ipath_dev_err(dd, "Global WR failed: elt %d," | ||
1145 | " addr 0x%X, val %02X\n", | ||
1146 | (sloc & 0xF), (sloc >> 9) & 0x3f, val); | ||
1147 | } | ||
1148 | return ret; | ||
1149 | } | ||
1150 | /* Clear "channel" and set CS so we can simply iterate */ | ||
1151 | loc &= ~(7 << (4+EPB_ADDR_SHF)); | ||
1152 | loc |= (1U << EPB_IB_QUAD0_CS_SHF); | ||
1153 | for (chnl = 0; chnl < 4; ++chnl) { | ||
1154 | int cloc; | ||
1155 | cloc = loc | (chnl << (4+EPB_ADDR_SHF)); | ||
1156 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask); | ||
1157 | if (ret < 0) { | ||
1158 | int sloc = loc >> EPB_ADDR_SHF; | ||
1159 | ipath_dev_err(dd, "Write failed: elt %d," | ||
1160 | " addr 0x%X, chnl %d, val 0x%02X," | ||
1161 | " mask 0x%02X\n", | ||
1162 | (sloc & 0xF), (sloc >> 9) & 0x3f, chnl, | ||
1163 | val & 0xFF, mask & 0xFF); | ||
1164 | break; | ||
1165 | } | ||
1166 | } | ||
1167 | return ret; | ||
1168 | } | ||
1169 | |||
1170 | /* | ||
1171 | * Set the Tx values normally modified by IBC in IB1.2 mode to default | ||
1172 | * values, as gotten from first row of init table. | ||
1173 | */ | ||
1174 | static int set_dds_vals(struct ipath_devdata *dd, struct dds_init *ddi) | ||
1175 | { | ||
1176 | int ret; | ||
1177 | int idx, reg, data; | ||
1178 | uint32_t regmap; | ||
1179 | |||
1180 | regmap = DDS_REG_MAP; | ||
1181 | for (idx = 0; idx < NUM_DDS_REGS; ++idx) { | ||
1182 | reg = (regmap & 0xF); | ||
1183 | regmap >>= 4; | ||
1184 | data = ddi->reg_vals[idx]; | ||
1185 | /* Vendor says RMW not needed for these regs, use 0xFF mask */ | ||
1186 | ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF); | ||
1187 | if (ret < 0) | ||
1188 | break; | ||
1189 | } | ||
1190 | return ret; | ||
1191 | } | ||
1192 | |||
1193 | /* | ||
1194 | * Set the Rx values normally modified by IBC in IB1.2 mode to default | ||
1195 | * values, as gotten from selected column of init table. | ||
1196 | */ | ||
1197 | static int set_rxeq_vals(struct ipath_devdata *dd, int vsel) | ||
1198 | { | ||
1199 | int ret; | ||
1200 | int ridx; | ||
1201 | int cnt = ARRAY_SIZE(rxeq_init_vals); | ||
1202 | |||
1203 | for (ridx = 0; ridx < cnt; ++ridx) { | ||
1204 | int elt, reg, val, loc; | ||
1205 | elt = rxeq_init_vals[ridx].rdesc & 0xF; | ||
1206 | reg = rxeq_init_vals[ridx].rdesc >> 4; | ||
1207 | loc = EPB_LOC(0, elt, reg); | ||
1208 | val = rxeq_init_vals[ridx].rdata[vsel]; | ||
1209 | /* mask of 0xFF, because hardware does full-byte store. */ | ||
1210 | ret = ibsd_mod_allchnls(dd, loc, val, 0xFF); | ||
1211 | if (ret < 0) | ||
1212 | break; | ||
1213 | } | ||
1214 | return ret; | ||
1215 | } | ||
1216 | |||
1217 | /* | ||
1218 | * Set the default values (row 0) for DDR Driver Demphasis. | ||
1219 | * we do this initially and whenever we turn off IB-1.2 | ||
1220 | * The "default" values for Rx equalization are also stored to | ||
1221 | * SerDes registers. Formerly (and still default), we used set 2. | ||
1222 | * For experimenting with cables and link-partners, we allow changing | ||
1223 | * that via a module parameter. | ||
1224 | */ | ||
1225 | static unsigned ipath_rxeq_set = 2; | ||
1226 | module_param_named(rxeq_default_set, ipath_rxeq_set, uint, | ||
1227 | S_IWUSR | S_IRUGO); | ||
1228 | MODULE_PARM_DESC(rxeq_default_set, | ||
1229 | "Which set [0..3] of Rx Equalization values is default"); | ||
1230 | |||
1231 | static int ipath_internal_presets(struct ipath_devdata *dd) | ||
1232 | { | ||
1233 | int ret = 0; | ||
1234 | |||
1235 | ret = set_dds_vals(dd, dds_init_vals + DDS_3M); | ||
1236 | |||
1237 | if (ret < 0) | ||
1238 | ipath_dev_err(dd, "Failed to set default DDS values\n"); | ||
1239 | ret = set_rxeq_vals(dd, ipath_rxeq_set & 3); | ||
1240 | if (ret < 0) | ||
1241 | ipath_dev_err(dd, "Failed to set default RXEQ values\n"); | ||
1242 | return ret; | ||
1243 | } | ||
1244 | |||
1245 | int ipath_sd7220_presets(struct ipath_devdata *dd) | ||
1246 | { | ||
1247 | int ret = 0; | ||
1248 | |||
1249 | if (!dd->ipath_presets_needed) | ||
1250 | return ret; | ||
1251 | dd->ipath_presets_needed = 0; | ||
1252 | /* Assert uC reset, so we don't clash with it. */ | ||
1253 | ipath_ibsd_reset(dd, 1); | ||
1254 | udelay(2); | ||
1255 | ipath_sd_trimdone_monitor(dd, "link-down"); | ||
1256 | |||
1257 | ret = ipath_internal_presets(dd); | ||
1258 | return ret; | ||
1259 | } | ||
1260 | |||
1261 | static int ipath_sd_trimself(struct ipath_devdata *dd, int val) | ||
1262 | { | ||
1263 | return ibsd_sto_noisy(dd, CMUCTRL5, val, 0xFF); | ||
1264 | } | ||
1265 | |||
1266 | static int ipath_sd_early(struct ipath_devdata *dd) | ||
1267 | { | ||
1268 | int ret = -1; /* Default failed */ | ||
1269 | int chnl; | ||
1270 | |||
1271 | for (chnl = 0; chnl < 4; ++chnl) { | ||
1272 | ret = ibsd_sto_noisy(dd, RXHSCTRL0(chnl), 0xD4, 0xFF); | ||
1273 | if (ret < 0) | ||
1274 | goto bail; | ||
1275 | } | ||
1276 | for (chnl = 0; chnl < 4; ++chnl) { | ||
1277 | ret = ibsd_sto_noisy(dd, VCDL_DAC2(chnl), 0x2D, 0xFF); | ||
1278 | if (ret < 0) | ||
1279 | goto bail; | ||
1280 | } | ||
1281 | /* more fine-tuning of what will be default */ | ||
1282 | for (chnl = 0; chnl < 4; ++chnl) { | ||
1283 | ret = ibsd_sto_noisy(dd, VCDL_CTRL2(chnl), 3, 0xF); | ||
1284 | if (ret < 0) | ||
1285 | goto bail; | ||
1286 | } | ||
1287 | for (chnl = 0; chnl < 4; ++chnl) { | ||
1288 | ret = ibsd_sto_noisy(dd, START_EQ1(chnl), 0x10, 0xFF); | ||
1289 | if (ret < 0) | ||
1290 | goto bail; | ||
1291 | } | ||
1292 | for (chnl = 0; chnl < 4; ++chnl) { | ||
1293 | ret = ibsd_sto_noisy(dd, START_EQ2(chnl), 0x30, 0xFF); | ||
1294 | if (ret < 0) | ||
1295 | goto bail; | ||
1296 | } | ||
1297 | bail: | ||
1298 | return ret; | ||
1299 | } | ||
1300 | |||
1301 | #define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E) | ||
1302 | #define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6) | ||
1303 | #define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF) | ||
1304 | |||
1305 | static int ipath_sd_dactrim(struct ipath_devdata *dd) | ||
1306 | { | ||
1307 | int ret = -1; /* Default failed */ | ||
1308 | int chnl; | ||
1309 | |||
1310 | for (chnl = 0; chnl < 4; ++chnl) { | ||
1311 | ret = ibsd_sto_noisy(dd, BACTRL(chnl), 0x40, 0xFF); | ||
1312 | if (ret < 0) | ||
1313 | goto bail; | ||
1314 | } | ||
1315 | for (chnl = 0; chnl < 4; ++chnl) { | ||
1316 | ret = ibsd_sto_noisy(dd, LDOUTCTRL1(chnl), 0x04, 0xFF); | ||
1317 | if (ret < 0) | ||
1318 | goto bail; | ||
1319 | } | ||
1320 | for (chnl = 0; chnl < 4; ++chnl) { | ||
1321 | ret = ibsd_sto_noisy(dd, RXHSSTATUS(chnl), 0x04, 0xFF); | ||
1322 | if (ret < 0) | ||
1323 | goto bail; | ||
1324 | } | ||
1325 | /* | ||
1326 | * delay for max possible number of steps, with slop. | ||
1327 | * Each step is about 4usec. | ||
1328 | */ | ||
1329 | udelay(415); | ||
1330 | for (chnl = 0; chnl < 4; ++chnl) { | ||
1331 | ret = ibsd_sto_noisy(dd, LDOUTCTRL1(chnl), 0x00, 0xFF); | ||
1332 | if (ret < 0) | ||
1333 | goto bail; | ||
1334 | } | ||
1335 | bail: | ||
1336 | return ret; | ||
1337 | } | ||
1338 | |||
1339 | #define RELOCK_FIRST_MS 3 | ||
1340 | #define RXLSPPM(chan) EPB_LOC(chan, 0, 2) | ||
1341 | void ipath_toggle_rclkrls(struct ipath_devdata *dd) | ||
1342 | { | ||
1343 | int loc = RXLSPPM(0) | EPB_GLOBAL_WR; | ||
1344 | int ret; | ||
1345 | |||
1346 | ret = ibsd_mod_allchnls(dd, loc, 0, 0x80); | ||
1347 | if (ret < 0) | ||
1348 | ipath_dev_err(dd, "RCLKRLS failed to clear D7\n"); | ||
1349 | else { | ||
1350 | udelay(1); | ||
1351 | ibsd_mod_allchnls(dd, loc, 0x80, 0x80); | ||
1352 | } | ||
1353 | /* And again for good measure */ | ||
1354 | udelay(1); | ||
1355 | ret = ibsd_mod_allchnls(dd, loc, 0, 0x80); | ||
1356 | if (ret < 0) | ||
1357 | ipath_dev_err(dd, "RCLKRLS failed to clear D7\n"); | ||
1358 | else { | ||
1359 | udelay(1); | ||
1360 | ibsd_mod_allchnls(dd, loc, 0x80, 0x80); | ||
1361 | } | ||
1362 | /* Now reset xgxs and IBC to complete the recovery */ | ||
1363 | dd->ipath_f_xgxs_reset(dd); | ||
1364 | } | ||
1365 | |||
1366 | /* | ||
1367 | * Shut down the timer that polls for relock occasions, if needed | ||
1368 | * this is "hooked" from ipath_7220_quiet_serdes(), which is called | ||
1369 | * just before ipath_shutdown_device() in ipath_driver.c shuts down all | ||
1370 | * the other timers | ||
1371 | */ | ||
1372 | void ipath_shutdown_relock_poll(struct ipath_devdata *dd) | ||
1373 | { | ||
1374 | struct ipath_relock *irp = &dd->ipath_relock_singleton; | ||
1375 | if (atomic_read(&irp->ipath_relock_timer_active)) { | ||
1376 | del_timer_sync(&irp->ipath_relock_timer); | ||
1377 | atomic_set(&irp->ipath_relock_timer_active, 0); | ||
1378 | } | ||
1379 | } | ||
1380 | |||
1381 | static unsigned ipath_relock_by_timer = 1; | ||
1382 | module_param_named(relock_by_timer, ipath_relock_by_timer, uint, | ||
1383 | S_IWUSR | S_IRUGO); | ||
1384 | MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up"); | ||
1385 | |||
1386 | static void ipath_run_relock(unsigned long opaque) | ||
1387 | { | ||
1388 | struct ipath_devdata *dd = (struct ipath_devdata *)opaque; | ||
1389 | struct ipath_relock *irp = &dd->ipath_relock_singleton; | ||
1390 | u64 val, ltstate; | ||
1391 | |||
1392 | if (!(dd->ipath_flags & IPATH_INITTED)) { | ||
1393 | /* Not yet up, just reenable the timer for later */ | ||
1394 | irp->ipath_relock_interval = HZ; | ||
1395 | mod_timer(&irp->ipath_relock_timer, jiffies + HZ); | ||
1396 | return; | ||
1397 | } | ||
1398 | |||
1399 | /* | ||
1400 | * Check link-training state for "stuck" state. | ||
1401 | * if found, try relock and schedule another try at | ||
1402 | * exponentially growing delay, maxed at one second. | ||
1403 | * if not stuck, our work is done. | ||
1404 | */ | ||
1405 | val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus); | ||
1406 | ltstate = ipath_ib_linktrstate(dd, val); | ||
1407 | |||
1408 | if (ltstate <= INFINIPATH_IBCS_LT_STATE_CFGWAITRMT | ||
1409 | && ltstate != INFINIPATH_IBCS_LT_STATE_LINKUP) { | ||
1410 | int timeoff; | ||
1411 | /* Not up yet. Try again, if allowed by module-param */ | ||
1412 | if (ipath_relock_by_timer) { | ||
1413 | if (dd->ipath_flags & IPATH_IB_AUTONEG_INPROG) | ||
1414 | ipath_cdbg(VERBOSE, "Skip RELOCK in AUTONEG\n"); | ||
1415 | else if (!(dd->ipath_flags & IPATH_IB_LINK_DISABLED)) { | ||
1416 | ipath_cdbg(VERBOSE, "RELOCK\n"); | ||
1417 | ipath_toggle_rclkrls(dd); | ||
1418 | } | ||
1419 | } | ||
1420 | /* re-set timer for next check */ | ||
1421 | timeoff = irp->ipath_relock_interval << 1; | ||
1422 | if (timeoff > HZ) | ||
1423 | timeoff = HZ; | ||
1424 | irp->ipath_relock_interval = timeoff; | ||
1425 | |||
1426 | mod_timer(&irp->ipath_relock_timer, jiffies + timeoff); | ||
1427 | } else { | ||
1428 | /* Up, so no more need to check so often */ | ||
1429 | mod_timer(&irp->ipath_relock_timer, jiffies + HZ); | ||
1430 | } | ||
1431 | } | ||
1432 | |||
1433 | void ipath_set_relock_poll(struct ipath_devdata *dd, int ibup) | ||
1434 | { | ||
1435 | struct ipath_relock *irp = &dd->ipath_relock_singleton; | ||
1436 | |||
1437 | if (ibup > 0) { | ||
1438 | /* we are now up, so relax timer to 1 second interval */ | ||
1439 | if (atomic_read(&irp->ipath_relock_timer_active)) | ||
1440 | mod_timer(&irp->ipath_relock_timer, jiffies + HZ); | ||
1441 | } else { | ||
1442 | /* Transition to down, (re-)set timer to short interval. */ | ||
1443 | int timeout; | ||
1444 | timeout = (HZ * ((ibup == -1) ? 1000 : RELOCK_FIRST_MS))/1000; | ||
1445 | if (timeout == 0) | ||
1446 | timeout = 1; | ||
1447 | /* If timer has not yet been started, do so. */ | ||
1448 | if (atomic_inc_return(&irp->ipath_relock_timer_active) == 1) { | ||
1449 | init_timer(&irp->ipath_relock_timer); | ||
1450 | irp->ipath_relock_timer.function = ipath_run_relock; | ||
1451 | irp->ipath_relock_timer.data = (unsigned long) dd; | ||
1452 | irp->ipath_relock_interval = timeout; | ||
1453 | irp->ipath_relock_timer.expires = jiffies + timeout; | ||
1454 | add_timer(&irp->ipath_relock_timer); | ||
1455 | } else { | ||
1456 | irp->ipath_relock_interval = timeout; | ||
1457 | mod_timer(&irp->ipath_relock_timer, jiffies + timeout); | ||
1458 | atomic_dec(&irp->ipath_relock_timer_active); | ||
1459 | } | ||
1460 | } | ||
1461 | } | ||
1462 | |||