aboutsummaryrefslogtreecommitdiffstats
path: root/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'drivers')
-rw-r--r--drivers/scsi/Kconfig8
-rw-r--r--drivers/scsi/Makefile1
-rw-r--r--drivers/scsi/pm8001/Makefile12
-rw-r--r--drivers/scsi/pm8001/pm8001_chips.h89
-rw-r--r--drivers/scsi/pm8001/pm8001_ctl.c573
-rw-r--r--drivers/scsi/pm8001/pm8001_ctl.h67
-rw-r--r--drivers/scsi/pm8001/pm8001_defs.h112
-rw-r--r--drivers/scsi/pm8001/pm8001_hwi.c4371
-rw-r--r--drivers/scsi/pm8001/pm8001_hwi.h1011
-rw-r--r--drivers/scsi/pm8001/pm8001_init.c888
-rw-r--r--drivers/scsi/pm8001/pm8001_sas.c1104
-rw-r--r--drivers/scsi/pm8001/pm8001_sas.h480
12 files changed, 8716 insertions, 0 deletions
diff --git a/drivers/scsi/Kconfig b/drivers/scsi/Kconfig
index e11cca4c784c..2e4f7d0ee639 100644
--- a/drivers/scsi/Kconfig
+++ b/drivers/scsi/Kconfig
@@ -1818,6 +1818,14 @@ config SCSI_PMCRAID
1818 ---help--- 1818 ---help---
1819 This driver supports the PMC SIERRA MaxRAID adapters. 1819 This driver supports the PMC SIERRA MaxRAID adapters.
1820 1820
1821config SCSI_PM8001
1822 tristate "PMC-Sierra SPC 8001 SAS/SATA Based Host Adapter driver"
1823 depends on PCI && SCSI
1824 select SCSI_SAS_LIBSAS
1825 help
1826 This driver supports PMC-Sierra PCIE SAS/SATA 8x6G SPC 8001 chip
1827 based host adapters.
1828
1821config SCSI_SRP 1829config SCSI_SRP
1822 tristate "SCSI RDMA Protocol helper library" 1830 tristate "SCSI RDMA Protocol helper library"
1823 depends on SCSI && PCI 1831 depends on SCSI && PCI
diff --git a/drivers/scsi/Makefile b/drivers/scsi/Makefile
index 3ad61db5e3fa..53b1dac7e7d9 100644
--- a/drivers/scsi/Makefile
+++ b/drivers/scsi/Makefile
@@ -70,6 +70,7 @@ obj-$(CONFIG_SCSI_AIC79XX) += aic7xxx/
70obj-$(CONFIG_SCSI_AACRAID) += aacraid/ 70obj-$(CONFIG_SCSI_AACRAID) += aacraid/
71obj-$(CONFIG_SCSI_AIC7XXX_OLD) += aic7xxx_old.o 71obj-$(CONFIG_SCSI_AIC7XXX_OLD) += aic7xxx_old.o
72obj-$(CONFIG_SCSI_AIC94XX) += aic94xx/ 72obj-$(CONFIG_SCSI_AIC94XX) += aic94xx/
73obj-$(CONFIG_SCSI_PM8001) += pm8001/
73obj-$(CONFIG_SCSI_IPS) += ips.o 74obj-$(CONFIG_SCSI_IPS) += ips.o
74obj-$(CONFIG_SCSI_FD_MCS) += fd_mcs.o 75obj-$(CONFIG_SCSI_FD_MCS) += fd_mcs.o
75obj-$(CONFIG_SCSI_FUTURE_DOMAIN)+= fdomain.o 76obj-$(CONFIG_SCSI_FUTURE_DOMAIN)+= fdomain.o
diff --git a/drivers/scsi/pm8001/Makefile b/drivers/scsi/pm8001/Makefile
new file mode 100644
index 000000000000..52f04296171c
--- /dev/null
+++ b/drivers/scsi/pm8001/Makefile
@@ -0,0 +1,12 @@
1#
2# Kernel configuration file for the PM8001 SAS/SATA 8x6G based HBA driver
3#
4# Copyright (C) 2008-2009 USI Co., Ltd.
5
6
7obj-$(CONFIG_SCSI_PM8001) += pm8001.o
8pm8001-y += pm8001_init.o \
9 pm8001_sas.o \
10 pm8001_ctl.o \
11 pm8001_hwi.o
12
diff --git a/drivers/scsi/pm8001/pm8001_chips.h b/drivers/scsi/pm8001/pm8001_chips.h
new file mode 100644
index 000000000000..4efa4d0950e5
--- /dev/null
+++ b/drivers/scsi/pm8001/pm8001_chips.h
@@ -0,0 +1,89 @@
1/*
2 * PMC-Sierra SPC 8001 SAS/SATA based host adapters driver
3 *
4 * Copyright (c) 2008-2009 USI Co., Ltd.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * substantially similar to the "NO WARRANTY" disclaimer below
15 * ("Disclaimer") and any redistribution must be conditioned upon
16 * including a substantially similar Disclaimer requirement for further
17 * binary redistribution.
18 * 3. Neither the names of the above-listed copyright holders nor the names
19 * of any contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * Alternatively, this software may be distributed under the terms of the
23 * GNU General Public License ("GPL") version 2 as published by the Free
24 * Software Foundation.
25 *
26 * NO WARRANTY
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGES.
38 *
39 */
40
41#ifndef _PM8001_CHIPS_H_
42#define _PM8001_CHIPS_H_
43
44static inline u32 pm8001_read_32(void *virt_addr)
45{
46 return *((u32 *)virt_addr);
47}
48
49static inline void pm8001_write_32(void *addr, u32 offset, u32 val)
50{
51 *((u32 *)(addr + offset)) = val;
52}
53
54static inline u32 pm8001_cr32(struct pm8001_hba_info *pm8001_ha, u32 bar,
55 u32 offset)
56{
57 return readl(pm8001_ha->io_mem[bar].memvirtaddr + offset);
58}
59
60static inline void pm8001_cw32(struct pm8001_hba_info *pm8001_ha, u32 bar,
61 u32 addr, u32 val)
62{
63 writel(val, pm8001_ha->io_mem[bar].memvirtaddr + addr);
64}
65static inline u32 pm8001_mr32(void __iomem *addr, u32 offset)
66{
67 return readl(addr + offset);
68}
69static inline void pm8001_mw32(void __iomem *addr, u32 offset, u32 val)
70{
71 writel(val, addr + offset);
72}
73static inline u32 get_pci_bar_index(u32 pcibar)
74{
75 switch (pcibar) {
76 case 0x18:
77 case 0x1C:
78 return 1;
79 case 0x20:
80 return 2;
81 case 0x24:
82 return 3;
83 default:
84 return 0;
85 }
86}
87
88#endif /* _PM8001_CHIPS_H_ */
89
diff --git a/drivers/scsi/pm8001/pm8001_ctl.c b/drivers/scsi/pm8001/pm8001_ctl.c
new file mode 100644
index 000000000000..14b13acae6dd
--- /dev/null
+++ b/drivers/scsi/pm8001/pm8001_ctl.c
@@ -0,0 +1,573 @@
1/*
2 * PMC-Sierra SPC 8001 SAS/SATA based host adapters driver
3 *
4 * Copyright (c) 2008-2009 USI Co., Ltd.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * substantially similar to the "NO WARRANTY" disclaimer below
15 * ("Disclaimer") and any redistribution must be conditioned upon
16 * including a substantially similar Disclaimer requirement for further
17 * binary redistribution.
18 * 3. Neither the names of the above-listed copyright holders nor the names
19 * of any contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * Alternatively, this software may be distributed under the terms of the
23 * GNU General Public License ("GPL") version 2 as published by the Free
24 * Software Foundation.
25 *
26 * NO WARRANTY
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGES.
38 *
39 */
40#include <linux/firmware.h>
41#include "pm8001_sas.h"
42#include "pm8001_ctl.h"
43
44/* scsi host attributes */
45
46/**
47 * pm8001_ctl_mpi_interface_rev_show - MPI interface revision number
48 * @cdev: pointer to embedded class device
49 * @buf: the buffer returned
50 *
51 * A sysfs 'read-only' shost attribute.
52 */
53static ssize_t pm8001_ctl_mpi_interface_rev_show(struct device *cdev,
54 struct device_attribute *attr, char *buf)
55{
56 struct Scsi_Host *shost = class_to_shost(cdev);
57 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
58 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
59
60 return snprintf(buf, PAGE_SIZE, "%d\n",
61 pm8001_ha->main_cfg_tbl.interface_rev);
62}
63static
64DEVICE_ATTR(interface_rev, S_IRUGO, pm8001_ctl_mpi_interface_rev_show, NULL);
65
66/**
67 * pm8001_ctl_fw_version_show - firmware version
68 * @cdev: pointer to embedded class device
69 * @buf: the buffer returned
70 *
71 * A sysfs 'read-only' shost attribute.
72 */
73static ssize_t pm8001_ctl_fw_version_show(struct device *cdev,
74 struct device_attribute *attr, char *buf)
75{
76 struct Scsi_Host *shost = class_to_shost(cdev);
77 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
78 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
79
80 return snprintf(buf, PAGE_SIZE, "%02x.%02x.%02x.%02x\n",
81 (u8)(pm8001_ha->main_cfg_tbl.firmware_rev >> 24),
82 (u8)(pm8001_ha->main_cfg_tbl.firmware_rev >> 16),
83 (u8)(pm8001_ha->main_cfg_tbl.firmware_rev >> 8),
84 (u8)(pm8001_ha->main_cfg_tbl.firmware_rev));
85}
86static DEVICE_ATTR(fw_version, S_IRUGO, pm8001_ctl_fw_version_show, NULL);
87/**
88 * pm8001_ctl_max_out_io_show - max outstanding io supported
89 * @cdev: pointer to embedded class device
90 * @buf: the buffer returned
91 *
92 * A sysfs 'read-only' shost attribute.
93 */
94static ssize_t pm8001_ctl_max_out_io_show(struct device *cdev,
95 struct device_attribute *attr, char *buf)
96{
97 struct Scsi_Host *shost = class_to_shost(cdev);
98 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
99 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
100
101 return snprintf(buf, PAGE_SIZE, "%d\n",
102 pm8001_ha->main_cfg_tbl.max_out_io);
103}
104static DEVICE_ATTR(max_out_io, S_IRUGO, pm8001_ctl_max_out_io_show, NULL);
105/**
106 * pm8001_ctl_max_devices_show - max devices support
107 * @cdev: pointer to embedded class device
108 * @buf: the buffer returned
109 *
110 * A sysfs 'read-only' shost attribute.
111 */
112static ssize_t pm8001_ctl_max_devices_show(struct device *cdev,
113 struct device_attribute *attr, char *buf)
114{
115 struct Scsi_Host *shost = class_to_shost(cdev);
116 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
117 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
118
119 return snprintf(buf, PAGE_SIZE, "%04d\n",
120 (u16)(pm8001_ha->main_cfg_tbl.max_sgl >> 16));
121}
122static DEVICE_ATTR(max_devices, S_IRUGO, pm8001_ctl_max_devices_show, NULL);
123/**
124 * pm8001_ctl_max_sg_list_show - max sg list supported iff not 0.0 for no
125 * hardware limitation
126 * @cdev: pointer to embedded class device
127 * @buf: the buffer returned
128 *
129 * A sysfs 'read-only' shost attribute.
130 */
131static ssize_t pm8001_ctl_max_sg_list_show(struct device *cdev,
132 struct device_attribute *attr, char *buf)
133{
134 struct Scsi_Host *shost = class_to_shost(cdev);
135 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
136 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
137
138 return snprintf(buf, PAGE_SIZE, "%04d\n",
139 pm8001_ha->main_cfg_tbl.max_sgl & 0x0000FFFF);
140}
141static DEVICE_ATTR(max_sg_list, S_IRUGO, pm8001_ctl_max_sg_list_show, NULL);
142
143#define SAS_1_0 0x1
144#define SAS_1_1 0x2
145#define SAS_2_0 0x4
146
147static ssize_t
148show_sas_spec_support_status(unsigned int mode, char *buf)
149{
150 ssize_t len = 0;
151
152 if (mode & SAS_1_1)
153 len = sprintf(buf, "%s", "SAS1.1");
154 if (mode & SAS_2_0)
155 len += sprintf(buf + len, "%s%s", len ? ", " : "", "SAS2.0");
156 len += sprintf(buf + len, "\n");
157
158 return len;
159}
160
161/**
162 * pm8001_ctl_sas_spec_support_show - sas spec supported
163 * @cdev: pointer to embedded class device
164 * @buf: the buffer returned
165 *
166 * A sysfs 'read-only' shost attribute.
167 */
168static ssize_t pm8001_ctl_sas_spec_support_show(struct device *cdev,
169 struct device_attribute *attr, char *buf)
170{
171 unsigned int mode;
172 struct Scsi_Host *shost = class_to_shost(cdev);
173 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
174 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
175 mode = (pm8001_ha->main_cfg_tbl.ctrl_cap_flag & 0xfe000000)>>25;
176 return show_sas_spec_support_status(mode, buf);
177}
178static DEVICE_ATTR(sas_spec_support, S_IRUGO,
179 pm8001_ctl_sas_spec_support_show, NULL);
180
181/**
182 * pm8001_ctl_sas_address_show - sas address
183 * @cdev: pointer to embedded class device
184 * @buf: the buffer returned
185 *
186 * This is the controller sas address
187 *
188 * A sysfs 'read-only' shost attribute.
189 */
190static ssize_t pm8001_ctl_host_sas_address_show(struct device *cdev,
191 struct device_attribute *attr, char *buf)
192{
193 struct Scsi_Host *shost = class_to_shost(cdev);
194 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
195 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
196 return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
197 be64_to_cpu(*(__be64 *)pm8001_ha->sas_addr));
198}
199static DEVICE_ATTR(host_sas_address, S_IRUGO,
200 pm8001_ctl_host_sas_address_show, NULL);
201
202/**
203 * pm8001_ctl_logging_level_show - logging level
204 * @cdev: pointer to embedded class device
205 * @buf: the buffer returned
206 *
207 * A sysfs 'read/write' shost attribute.
208 */
209static ssize_t pm8001_ctl_logging_level_show(struct device *cdev,
210 struct device_attribute *attr, char *buf)
211{
212 struct Scsi_Host *shost = class_to_shost(cdev);
213 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
214 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
215
216 return snprintf(buf, PAGE_SIZE, "%08xh\n", pm8001_ha->logging_level);
217}
218static ssize_t pm8001_ctl_logging_level_store(struct device *cdev,
219 struct device_attribute *attr, const char *buf, size_t count)
220{
221 struct Scsi_Host *shost = class_to_shost(cdev);
222 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
223 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
224 int val = 0;
225
226 if (sscanf(buf, "%x", &val) != 1)
227 return -EINVAL;
228
229 pm8001_ha->logging_level = val;
230 return strlen(buf);
231}
232
233static DEVICE_ATTR(logging_level, S_IRUGO | S_IWUSR,
234 pm8001_ctl_logging_level_show, pm8001_ctl_logging_level_store);
235/**
236 * pm8001_ctl_aap_log_show - aap1 event log
237 * @cdev: pointer to embedded class device
238 * @buf: the buffer returned
239 *
240 * A sysfs 'read-only' shost attribute.
241 */
242static ssize_t pm8001_ctl_aap_log_show(struct device *cdev,
243 struct device_attribute *attr, char *buf)
244{
245 struct Scsi_Host *shost = class_to_shost(cdev);
246 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
247 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
248 int i;
249#define AAP1_MEMMAP(r, c) \
250 (*(u32 *)((u8*)pm8001_ha->memoryMap.region[AAP1].virt_ptr + (r) * 32 \
251 + (c)))
252
253 char *str = buf;
254 int max = 2;
255 for (i = 0; i < max; i++) {
256 str += sprintf(str, "0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x"
257 "0x%08x 0x%08x\n",
258 AAP1_MEMMAP(i, 0),
259 AAP1_MEMMAP(i, 4),
260 AAP1_MEMMAP(i, 8),
261 AAP1_MEMMAP(i, 12),
262 AAP1_MEMMAP(i, 16),
263 AAP1_MEMMAP(i, 20),
264 AAP1_MEMMAP(i, 24),
265 AAP1_MEMMAP(i, 28));
266 }
267
268 return str - buf;
269}
270static DEVICE_ATTR(aap_log, S_IRUGO, pm8001_ctl_aap_log_show, NULL);
271/**
272 * pm8001_ctl_aap_log_show - IOP event log
273 * @cdev: pointer to embedded class device
274 * @buf: the buffer returned
275 *
276 * A sysfs 'read-only' shost attribute.
277 */
278static ssize_t pm8001_ctl_iop_log_show(struct device *cdev,
279 struct device_attribute *attr, char *buf)
280{
281 struct Scsi_Host *shost = class_to_shost(cdev);
282 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
283 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
284#define IOP_MEMMAP(r, c) \
285 (*(u32 *)((u8*)pm8001_ha->memoryMap.region[IOP].virt_ptr + (r) * 32 \
286 + (c)))
287 int i;
288 char *str = buf;
289 int max = 2;
290 for (i = 0; i < max; i++) {
291 str += sprintf(str, "0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x"
292 "0x%08x 0x%08x\n",
293 IOP_MEMMAP(i, 0),
294 IOP_MEMMAP(i, 4),
295 IOP_MEMMAP(i, 8),
296 IOP_MEMMAP(i, 12),
297 IOP_MEMMAP(i, 16),
298 IOP_MEMMAP(i, 20),
299 IOP_MEMMAP(i, 24),
300 IOP_MEMMAP(i, 28));
301 }
302
303 return str - buf;
304}
305static DEVICE_ATTR(iop_log, S_IRUGO, pm8001_ctl_iop_log_show, NULL);
306
307#define FLASH_CMD_NONE 0x00
308#define FLASH_CMD_UPDATE 0x01
309#define FLASH_CMD_SET_NVMD 0x02
310
311struct flash_command {
312 u8 command[8];
313 int code;
314};
315
316static struct flash_command flash_command_table[] =
317{
318 {"set_nvmd", FLASH_CMD_SET_NVMD},
319 {"update", FLASH_CMD_UPDATE},
320 {"", FLASH_CMD_NONE} /* Last entry should be NULL. */
321};
322
323struct error_fw {
324 char *reason;
325 int err_code;
326};
327
328static struct error_fw flash_error_table[] =
329{
330 {"Failed to open fw image file", FAIL_OPEN_BIOS_FILE},
331 {"image header mismatch", FLASH_UPDATE_HDR_ERR},
332 {"image offset mismatch", FLASH_UPDATE_OFFSET_ERR},
333 {"image CRC Error", FLASH_UPDATE_CRC_ERR},
334 {"image length Error.", FLASH_UPDATE_LENGTH_ERR},
335 {"Failed to program flash chip", FLASH_UPDATE_HW_ERR},
336 {"Flash chip not supported.", FLASH_UPDATE_DNLD_NOT_SUPPORTED},
337 {"Flash update disabled.", FLASH_UPDATE_DISABLED},
338 {"Flash in progress", FLASH_IN_PROGRESS},
339 {"Image file size Error", FAIL_FILE_SIZE},
340 {"Input parameter error", FAIL_PARAMETERS},
341 {"Out of memory", FAIL_OUT_MEMORY},
342 {"OK", 0} /* Last entry err_code = 0. */
343};
344
345static int pm8001_set_nvmd(struct pm8001_hba_info *pm8001_ha)
346{
347 struct pm8001_ioctl_payload *payload;
348 DECLARE_COMPLETION_ONSTACK(completion);
349 u8 *ioctlbuffer = NULL;
350 u32 length = 0;
351 u32 ret = 0;
352
353 length = 1024 * 5 + sizeof(*payload) - 1;
354 ioctlbuffer = kzalloc(length, GFP_KERNEL);
355 if (!ioctlbuffer)
356 return -ENOMEM;
357 if ((pm8001_ha->fw_image->size <= 0) ||
358 (pm8001_ha->fw_image->size > 4096)) {
359 ret = FAIL_FILE_SIZE;
360 goto out;
361 }
362 payload = (struct pm8001_ioctl_payload *)ioctlbuffer;
363 memcpy((u8 *)payload->func_specific, (u8 *)pm8001_ha->fw_image->data,
364 pm8001_ha->fw_image->size);
365 payload->length = pm8001_ha->fw_image->size;
366 payload->id = 0;
367 pm8001_ha->nvmd_completion = &completion;
368 ret = PM8001_CHIP_DISP->set_nvmd_req(pm8001_ha, payload);
369 wait_for_completion(&completion);
370out:
371 kfree(ioctlbuffer);
372 return ret;
373}
374
375static int pm8001_update_flash(struct pm8001_hba_info *pm8001_ha)
376{
377 struct pm8001_ioctl_payload *payload;
378 DECLARE_COMPLETION_ONSTACK(completion);
379 u8 *ioctlbuffer = NULL;
380 u32 length = 0;
381 struct fw_control_info *fwControl;
382 u32 loopNumber, loopcount = 0;
383 u32 sizeRead = 0;
384 u32 partitionSize, partitionSizeTmp;
385 u32 ret = 0;
386 u32 partitionNumber = 0;
387 struct pm8001_fw_image_header *image_hdr;
388
389 length = 1024 * 16 + sizeof(*payload) - 1;
390 ioctlbuffer = kzalloc(length, GFP_KERNEL);
391 image_hdr = (struct pm8001_fw_image_header *)pm8001_ha->fw_image->data;
392 if (!ioctlbuffer)
393 return -ENOMEM;
394 if (pm8001_ha->fw_image->size < 28) {
395 ret = FAIL_FILE_SIZE;
396 goto out;
397 }
398
399 while (sizeRead < pm8001_ha->fw_image->size) {
400 partitionSizeTmp =
401 *(u32 *)((u8 *)&image_hdr->image_length + sizeRead);
402 partitionSize = be32_to_cpu(partitionSizeTmp);
403 loopcount = (partitionSize + HEADER_LEN)/IOCTL_BUF_SIZE;
404 if (loopcount % IOCTL_BUF_SIZE)
405 loopcount++;
406 if (loopcount == 0)
407 loopcount++;
408 for (loopNumber = 0; loopNumber < loopcount; loopNumber++) {
409 payload = (struct pm8001_ioctl_payload *)ioctlbuffer;
410 payload->length = 1024*16;
411 payload->id = 0;
412 fwControl =
413 (struct fw_control_info *)payload->func_specific;
414 fwControl->len = IOCTL_BUF_SIZE; /* IN */
415 fwControl->size = partitionSize + HEADER_LEN;/* IN */
416 fwControl->retcode = 0;/* OUT */
417 fwControl->offset = loopNumber * IOCTL_BUF_SIZE;/*OUT */
418
419 /* for the last chunk of data in case file size is not even with
420 4k, load only the rest*/
421 if (((loopcount-loopNumber) == 1) &&
422 ((partitionSize + HEADER_LEN) % IOCTL_BUF_SIZE)) {
423 fwControl->len =
424 (partitionSize + HEADER_LEN) % IOCTL_BUF_SIZE;
425 memcpy((u8 *)fwControl->buffer,
426 (u8 *)pm8001_ha->fw_image->data + sizeRead,
427 (partitionSize + HEADER_LEN) % IOCTL_BUF_SIZE);
428 sizeRead +=
429 (partitionSize + HEADER_LEN) % IOCTL_BUF_SIZE;
430 } else {
431 memcpy((u8 *)fwControl->buffer,
432 (u8 *)pm8001_ha->fw_image->data + sizeRead,
433 IOCTL_BUF_SIZE);
434 sizeRead += IOCTL_BUF_SIZE;
435 }
436
437 pm8001_ha->nvmd_completion = &completion;
438 ret = PM8001_CHIP_DISP->fw_flash_update_req(pm8001_ha, payload);
439 wait_for_completion(&completion);
440 if (ret || (fwControl->retcode > FLASH_UPDATE_IN_PROGRESS)) {
441 ret = fwControl->retcode;
442 kfree(ioctlbuffer);
443 ioctlbuffer = NULL;
444 break;
445 }
446 }
447 if (ret)
448 break;
449 partitionNumber++;
450}
451out:
452 kfree(ioctlbuffer);
453 return ret;
454}
455static ssize_t pm8001_store_update_fw(struct device *cdev,
456 struct device_attribute *attr,
457 const char *buf, size_t count)
458{
459 struct Scsi_Host *shost = class_to_shost(cdev);
460 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
461 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
462 char *cmd_ptr, *filename_ptr;
463 int res, i;
464 int flash_command = FLASH_CMD_NONE;
465 int err = 0;
466 if (!capable(CAP_SYS_ADMIN))
467 return -EACCES;
468
469 cmd_ptr = kzalloc(count*2, GFP_KERNEL);
470
471 if (!cmd_ptr) {
472 err = FAIL_OUT_MEMORY;
473 goto out;
474 }
475
476 filename_ptr = cmd_ptr + count;
477 res = sscanf(buf, "%s %s", cmd_ptr, filename_ptr);
478 if (res != 2) {
479 err = FAIL_PARAMETERS;
480 goto out1;
481 }
482
483 for (i = 0; flash_command_table[i].code != FLASH_CMD_NONE; i++) {
484 if (!memcmp(flash_command_table[i].command,
485 cmd_ptr, strlen(cmd_ptr))) {
486 flash_command = flash_command_table[i].code;
487 break;
488 }
489 }
490 if (flash_command == FLASH_CMD_NONE) {
491 err = FAIL_PARAMETERS;
492 goto out1;
493 }
494
495 if (pm8001_ha->fw_status == FLASH_IN_PROGRESS) {
496 err = FLASH_IN_PROGRESS;
497 goto out1;
498 }
499 err = request_firmware(&pm8001_ha->fw_image,
500 filename_ptr,
501 pm8001_ha->dev);
502
503 if (err) {
504 PM8001_FAIL_DBG(pm8001_ha,
505 pm8001_printk("Failed to load firmware image file %s,"
506 " error %d\n", filename_ptr, err));
507 err = FAIL_OPEN_BIOS_FILE;
508 goto out1;
509 }
510
511 switch (flash_command) {
512 case FLASH_CMD_UPDATE:
513 pm8001_ha->fw_status = FLASH_IN_PROGRESS;
514 err = pm8001_update_flash(pm8001_ha);
515 break;
516 case FLASH_CMD_SET_NVMD:
517 pm8001_ha->fw_status = FLASH_IN_PROGRESS;
518 err = pm8001_set_nvmd(pm8001_ha);
519 break;
520 default:
521 pm8001_ha->fw_status = FAIL_PARAMETERS;
522 err = FAIL_PARAMETERS;
523 break;
524 }
525 release_firmware(pm8001_ha->fw_image);
526out1:
527 kfree(cmd_ptr);
528out:
529 pm8001_ha->fw_status = err;
530
531 if (!err)
532 return count;
533 else
534 return -err;
535}
536
537static ssize_t pm8001_show_update_fw(struct device *cdev,
538 struct device_attribute *attr, char *buf)
539{
540 int i;
541 struct Scsi_Host *shost = class_to_shost(cdev);
542 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
543 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
544
545 for (i = 0; flash_error_table[i].err_code != 0; i++) {
546 if (flash_error_table[i].err_code == pm8001_ha->fw_status)
547 break;
548 }
549 if (pm8001_ha->fw_status != FLASH_IN_PROGRESS)
550 pm8001_ha->fw_status = FLASH_OK;
551
552 return snprintf(buf, PAGE_SIZE, "status=%x %s\n",
553 flash_error_table[i].err_code,
554 flash_error_table[i].reason);
555}
556
557static DEVICE_ATTR(update_fw, S_IRUGO|S_IWUGO,
558 pm8001_show_update_fw, pm8001_store_update_fw);
559struct device_attribute *pm8001_host_attrs[] = {
560 &dev_attr_interface_rev,
561 &dev_attr_fw_version,
562 &dev_attr_update_fw,
563 &dev_attr_aap_log,
564 &dev_attr_iop_log,
565 &dev_attr_max_out_io,
566 &dev_attr_max_devices,
567 &dev_attr_max_sg_list,
568 &dev_attr_sas_spec_support,
569 &dev_attr_logging_level,
570 &dev_attr_host_sas_address,
571 NULL,
572};
573
diff --git a/drivers/scsi/pm8001/pm8001_ctl.h b/drivers/scsi/pm8001/pm8001_ctl.h
new file mode 100644
index 000000000000..22644de26399
--- /dev/null
+++ b/drivers/scsi/pm8001/pm8001_ctl.h
@@ -0,0 +1,67 @@
1 /*
2 * PMC-Sierra SPC 8001 SAS/SATA based host adapters driver
3 *
4 * Copyright (c) 2008-2009 USI Co., Ltd.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * substantially similar to the "NO WARRANTY" disclaimer below
15 * ("Disclaimer") and any redistribution must be conditioned upon
16 * including a substantially similar Disclaimer requirement for further
17 * binary redistribution.
18 * 3. Neither the names of the above-listed copyright holders nor the names
19 * of any contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * Alternatively, this software may be distributed under the terms of the
23 * GNU General Public License ("GPL") version 2 as published by the Free
24 * Software Foundation.
25 *
26 * NO WARRANTY
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGES.
38 *
39 */
40
41#ifndef PM8001_CTL_H_INCLUDED
42#define PM8001_CTL_H_INCLUDED
43
44#define IOCTL_BUF_SIZE 4096
45#define HEADER_LEN 28
46#define SIZE_OFFSET 16
47
48struct pm8001_ioctl_payload {
49 u32 signature;
50 u16 major_function;
51 u16 minor_function;
52 u16 length;
53 u16 status;
54 u16 offset;
55 u16 id;
56 u8 func_specific[1];
57};
58
59#define FLASH_OK 0x000000
60#define FAIL_OPEN_BIOS_FILE 0x000100
61#define FAIL_FILE_SIZE 0x000a00
62#define FAIL_PARAMETERS 0x000b00
63#define FAIL_OUT_MEMORY 0x000c00
64#define FLASH_IN_PROGRESS 0x001000
65
66#endif /* PM8001_CTL_H_INCLUDED */
67
diff --git a/drivers/scsi/pm8001/pm8001_defs.h b/drivers/scsi/pm8001/pm8001_defs.h
new file mode 100644
index 000000000000..944afada61ee
--- /dev/null
+++ b/drivers/scsi/pm8001/pm8001_defs.h
@@ -0,0 +1,112 @@
1/*
2 * PMC-Sierra SPC 8001 SAS/SATA based host adapters driver
3 *
4 * Copyright (c) 2008-2009 USI Co., Ltd.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * substantially similar to the "NO WARRANTY" disclaimer below
15 * ("Disclaimer") and any redistribution must be conditioned upon
16 * including a substantially similar Disclaimer requirement for further
17 * binary redistribution.
18 * 3. Neither the names of the above-listed copyright holders nor the names
19 * of any contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * Alternatively, this software may be distributed under the terms of the
23 * GNU General Public License ("GPL") version 2 as published by the Free
24 * Software Foundation.
25 *
26 * NO WARRANTY
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGES.
38 *
39 */
40
41#ifndef _PM8001_DEFS_H_
42#define _PM8001_DEFS_H_
43
44enum chip_flavors {
45 chip_8001,
46};
47#define USI_MAX_MEMCNT 9
48#define PM8001_MAX_DMA_SG SG_ALL
49enum phy_speed {
50 PHY_SPEED_15 = 0x01,
51 PHY_SPEED_30 = 0x02,
52 PHY_SPEED_60 = 0x04,
53};
54
55enum data_direction {
56 DATA_DIR_NONE = 0x0, /* NO TRANSFER */
57 DATA_DIR_IN = 0x01, /* INBOUND */
58 DATA_DIR_OUT = 0x02, /* OUTBOUND */
59 DATA_DIR_BYRECIPIENT = 0x04, /* UNSPECIFIED */
60};
61
62enum port_type {
63 PORT_TYPE_SAS = (1L << 1),
64 PORT_TYPE_SATA = (1L << 0),
65};
66
67/* driver compile-time configuration */
68#define PM8001_MAX_CCB 512 /* max ccbs supported */
69#define PM8001_MAX_INB_NUM 1
70#define PM8001_MAX_OUTB_NUM 1
71#define PM8001_CAN_QUEUE 128 /* SCSI Queue depth */
72
73/* unchangeable hardware details */
74#define PM8001_MAX_PHYS 8 /* max. possible phys */
75#define PM8001_MAX_PORTS 8 /* max. possible ports */
76#define PM8001_MAX_DEVICES 1024 /* max supported device */
77
78enum memory_region_num {
79 AAP1 = 0x0, /* application acceleration processor */
80 IOP, /* IO processor */
81 CI, /* consumer index */
82 PI, /* producer index */
83 IB, /* inbound queue */
84 OB, /* outbound queue */
85 NVMD, /* NVM device */
86 DEV_MEM, /* memory for devices */
87 CCB_MEM, /* memory for command control block */
88};
89#define PM8001_EVENT_LOG_SIZE (128 * 1024)
90
91/*error code*/
92enum mpi_err {
93 MPI_IO_STATUS_SUCCESS = 0x0,
94 MPI_IO_STATUS_BUSY = 0x01,
95 MPI_IO_STATUS_FAIL = 0x02,
96};
97
98/**
99 * Phy Control constants
100 */
101enum phy_control_type {
102 PHY_LINK_RESET = 0x01,
103 PHY_HARD_RESET = 0x02,
104 PHY_NOTIFY_ENABLE_SPINUP = 0x10,
105};
106
107enum pm8001_hba_info_flags {
108 PM8001F_INIT_TIME = (1U << 0),
109 PM8001F_RUN_TIME = (1U << 1),
110};
111
112#endif
diff --git a/drivers/scsi/pm8001/pm8001_hwi.c b/drivers/scsi/pm8001/pm8001_hwi.c
new file mode 100644
index 000000000000..aa5756fe0574
--- /dev/null
+++ b/drivers/scsi/pm8001/pm8001_hwi.c
@@ -0,0 +1,4371 @@
1/*
2 * PMC-Sierra SPC 8001 SAS/SATA based host adapters driver
3 *
4 * Copyright (c) 2008-2009 USI Co., Ltd.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * substantially similar to the "NO WARRANTY" disclaimer below
15 * ("Disclaimer") and any redistribution must be conditioned upon
16 * including a substantially similar Disclaimer requirement for further
17 * binary redistribution.
18 * 3. Neither the names of the above-listed copyright holders nor the names
19 * of any contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * Alternatively, this software may be distributed under the terms of the
23 * GNU General Public License ("GPL") version 2 as published by the Free
24 * Software Foundation.
25 *
26 * NO WARRANTY
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGES.
38 *
39 */
40 #include "pm8001_sas.h"
41 #include "pm8001_hwi.h"
42 #include "pm8001_chips.h"
43 #include "pm8001_ctl.h"
44
45/**
46 * read_main_config_table - read the configure table and save it.
47 * @pm8001_ha: our hba card information
48 */
49static void __devinit read_main_config_table(struct pm8001_hba_info *pm8001_ha)
50{
51 void __iomem *address = pm8001_ha->main_cfg_tbl_addr;
52 pm8001_ha->main_cfg_tbl.signature = pm8001_mr32(address, 0x00);
53 pm8001_ha->main_cfg_tbl.interface_rev = pm8001_mr32(address, 0x04);
54 pm8001_ha->main_cfg_tbl.firmware_rev = pm8001_mr32(address, 0x08);
55 pm8001_ha->main_cfg_tbl.max_out_io = pm8001_mr32(address, 0x0C);
56 pm8001_ha->main_cfg_tbl.max_sgl = pm8001_mr32(address, 0x10);
57 pm8001_ha->main_cfg_tbl.ctrl_cap_flag = pm8001_mr32(address, 0x14);
58 pm8001_ha->main_cfg_tbl.gst_offset = pm8001_mr32(address, 0x18);
59 pm8001_ha->main_cfg_tbl.inbound_queue_offset =
60 pm8001_mr32(address, 0x1C);
61 pm8001_ha->main_cfg_tbl.outbound_queue_offset =
62 pm8001_mr32(address, 0x20);
63 pm8001_ha->main_cfg_tbl.hda_mode_flag =
64 pm8001_mr32(address, MAIN_HDA_FLAGS_OFFSET);
65
66 /* read analog Setting offset from the configuration table */
67 pm8001_ha->main_cfg_tbl.anolog_setup_table_offset =
68 pm8001_mr32(address, MAIN_ANALOG_SETUP_OFFSET);
69
70 /* read Error Dump Offset and Length */
71 pm8001_ha->main_cfg_tbl.fatal_err_dump_offset0 =
72 pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_OFFSET);
73 pm8001_ha->main_cfg_tbl.fatal_err_dump_length0 =
74 pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_LENGTH);
75 pm8001_ha->main_cfg_tbl.fatal_err_dump_offset1 =
76 pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_OFFSET);
77 pm8001_ha->main_cfg_tbl.fatal_err_dump_length1 =
78 pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_LENGTH);
79}
80
81/**
82 * read_general_status_table - read the general status table and save it.
83 * @pm8001_ha: our hba card information
84 */
85static void __devinit
86read_general_status_table(struct pm8001_hba_info *pm8001_ha)
87{
88 void __iomem *address = pm8001_ha->general_stat_tbl_addr;
89 pm8001_ha->gs_tbl.gst_len_mpistate = pm8001_mr32(address, 0x00);
90 pm8001_ha->gs_tbl.iq_freeze_state0 = pm8001_mr32(address, 0x04);
91 pm8001_ha->gs_tbl.iq_freeze_state1 = pm8001_mr32(address, 0x08);
92 pm8001_ha->gs_tbl.msgu_tcnt = pm8001_mr32(address, 0x0C);
93 pm8001_ha->gs_tbl.iop_tcnt = pm8001_mr32(address, 0x10);
94 pm8001_ha->gs_tbl.reserved = pm8001_mr32(address, 0x14);
95 pm8001_ha->gs_tbl.phy_state[0] = pm8001_mr32(address, 0x18);
96 pm8001_ha->gs_tbl.phy_state[1] = pm8001_mr32(address, 0x1C);
97 pm8001_ha->gs_tbl.phy_state[2] = pm8001_mr32(address, 0x20);
98 pm8001_ha->gs_tbl.phy_state[3] = pm8001_mr32(address, 0x24);
99 pm8001_ha->gs_tbl.phy_state[4] = pm8001_mr32(address, 0x28);
100 pm8001_ha->gs_tbl.phy_state[5] = pm8001_mr32(address, 0x2C);
101 pm8001_ha->gs_tbl.phy_state[6] = pm8001_mr32(address, 0x30);
102 pm8001_ha->gs_tbl.phy_state[7] = pm8001_mr32(address, 0x34);
103 pm8001_ha->gs_tbl.reserved1 = pm8001_mr32(address, 0x38);
104 pm8001_ha->gs_tbl.reserved2 = pm8001_mr32(address, 0x3C);
105 pm8001_ha->gs_tbl.reserved3 = pm8001_mr32(address, 0x40);
106 pm8001_ha->gs_tbl.recover_err_info[0] = pm8001_mr32(address, 0x44);
107 pm8001_ha->gs_tbl.recover_err_info[1] = pm8001_mr32(address, 0x48);
108 pm8001_ha->gs_tbl.recover_err_info[2] = pm8001_mr32(address, 0x4C);
109 pm8001_ha->gs_tbl.recover_err_info[3] = pm8001_mr32(address, 0x50);
110 pm8001_ha->gs_tbl.recover_err_info[4] = pm8001_mr32(address, 0x54);
111 pm8001_ha->gs_tbl.recover_err_info[5] = pm8001_mr32(address, 0x58);
112 pm8001_ha->gs_tbl.recover_err_info[6] = pm8001_mr32(address, 0x5C);
113 pm8001_ha->gs_tbl.recover_err_info[7] = pm8001_mr32(address, 0x60);
114}
115
116/**
117 * read_inbnd_queue_table - read the inbound queue table and save it.
118 * @pm8001_ha: our hba card information
119 */
120static void __devinit
121read_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha)
122{
123 int inbQ_num = 1;
124 int i;
125 void __iomem *address = pm8001_ha->inbnd_q_tbl_addr;
126 for (i = 0; i < inbQ_num; i++) {
127 u32 offset = i * 0x24;
128 pm8001_ha->inbnd_q_tbl[i].pi_pci_bar =
129 get_pci_bar_index(pm8001_mr32(address, (offset + 0x14)));
130 pm8001_ha->inbnd_q_tbl[i].pi_offset =
131 pm8001_mr32(address, (offset + 0x18));
132 }
133}
134
135/**
136 * read_outbnd_queue_table - read the outbound queue table and save it.
137 * @pm8001_ha: our hba card information
138 */
139static void __devinit
140read_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha)
141{
142 int outbQ_num = 1;
143 int i;
144 void __iomem *address = pm8001_ha->outbnd_q_tbl_addr;
145 for (i = 0; i < outbQ_num; i++) {
146 u32 offset = i * 0x24;
147 pm8001_ha->outbnd_q_tbl[i].ci_pci_bar =
148 get_pci_bar_index(pm8001_mr32(address, (offset + 0x14)));
149 pm8001_ha->outbnd_q_tbl[i].ci_offset =
150 pm8001_mr32(address, (offset + 0x18));
151 }
152}
153
154/**
155 * init_default_table_values - init the default table.
156 * @pm8001_ha: our hba card information
157 */
158static void __devinit
159init_default_table_values(struct pm8001_hba_info *pm8001_ha)
160{
161 int qn = 1;
162 int i;
163 u32 offsetib, offsetob;
164 void __iomem *addressib = pm8001_ha->inbnd_q_tbl_addr;
165 void __iomem *addressob = pm8001_ha->outbnd_q_tbl_addr;
166
167 pm8001_ha->main_cfg_tbl.inbound_q_nppd_hppd = 0;
168 pm8001_ha->main_cfg_tbl.outbound_hw_event_pid0_3 = 0;
169 pm8001_ha->main_cfg_tbl.outbound_hw_event_pid4_7 = 0;
170 pm8001_ha->main_cfg_tbl.outbound_ncq_event_pid0_3 = 0;
171 pm8001_ha->main_cfg_tbl.outbound_ncq_event_pid4_7 = 0;
172 pm8001_ha->main_cfg_tbl.outbound_tgt_ITNexus_event_pid0_3 = 0;
173 pm8001_ha->main_cfg_tbl.outbound_tgt_ITNexus_event_pid4_7 = 0;
174 pm8001_ha->main_cfg_tbl.outbound_tgt_ssp_event_pid0_3 = 0;
175 pm8001_ha->main_cfg_tbl.outbound_tgt_ssp_event_pid4_7 = 0;
176 pm8001_ha->main_cfg_tbl.outbound_tgt_smp_event_pid0_3 = 0;
177 pm8001_ha->main_cfg_tbl.outbound_tgt_smp_event_pid4_7 = 0;
178
179 pm8001_ha->main_cfg_tbl.upper_event_log_addr =
180 pm8001_ha->memoryMap.region[AAP1].phys_addr_hi;
181 pm8001_ha->main_cfg_tbl.lower_event_log_addr =
182 pm8001_ha->memoryMap.region[AAP1].phys_addr_lo;
183 pm8001_ha->main_cfg_tbl.event_log_size = PM8001_EVENT_LOG_SIZE;
184 pm8001_ha->main_cfg_tbl.event_log_option = 0x01;
185 pm8001_ha->main_cfg_tbl.upper_iop_event_log_addr =
186 pm8001_ha->memoryMap.region[IOP].phys_addr_hi;
187 pm8001_ha->main_cfg_tbl.lower_iop_event_log_addr =
188 pm8001_ha->memoryMap.region[IOP].phys_addr_lo;
189 pm8001_ha->main_cfg_tbl.iop_event_log_size = PM8001_EVENT_LOG_SIZE;
190 pm8001_ha->main_cfg_tbl.iop_event_log_option = 0x01;
191 pm8001_ha->main_cfg_tbl.fatal_err_interrupt = 0x01;
192 for (i = 0; i < qn; i++) {
193 pm8001_ha->inbnd_q_tbl[i].element_pri_size_cnt =
194 0x00000100 | (0x00000040 << 16) | (0x00<<30);
195 pm8001_ha->inbnd_q_tbl[i].upper_base_addr =
196 pm8001_ha->memoryMap.region[IB].phys_addr_hi;
197 pm8001_ha->inbnd_q_tbl[i].lower_base_addr =
198 pm8001_ha->memoryMap.region[IB].phys_addr_lo;
199 pm8001_ha->inbnd_q_tbl[i].base_virt =
200 (u8 *)pm8001_ha->memoryMap.region[IB].virt_ptr;
201 pm8001_ha->inbnd_q_tbl[i].total_length =
202 pm8001_ha->memoryMap.region[IB].total_len;
203 pm8001_ha->inbnd_q_tbl[i].ci_upper_base_addr =
204 pm8001_ha->memoryMap.region[CI].phys_addr_hi;
205 pm8001_ha->inbnd_q_tbl[i].ci_lower_base_addr =
206 pm8001_ha->memoryMap.region[CI].phys_addr_lo;
207 pm8001_ha->inbnd_q_tbl[i].ci_virt =
208 pm8001_ha->memoryMap.region[CI].virt_ptr;
209 offsetib = i * 0x20;
210 pm8001_ha->inbnd_q_tbl[i].pi_pci_bar =
211 get_pci_bar_index(pm8001_mr32(addressib,
212 (offsetib + 0x14)));
213 pm8001_ha->inbnd_q_tbl[i].pi_offset =
214 pm8001_mr32(addressib, (offsetib + 0x18));
215 pm8001_ha->inbnd_q_tbl[i].producer_idx = 0;
216 pm8001_ha->inbnd_q_tbl[i].consumer_index = 0;
217 }
218 for (i = 0; i < qn; i++) {
219 pm8001_ha->outbnd_q_tbl[i].element_size_cnt =
220 256 | (64 << 16) | (1<<30);
221 pm8001_ha->outbnd_q_tbl[i].upper_base_addr =
222 pm8001_ha->memoryMap.region[OB].phys_addr_hi;
223 pm8001_ha->outbnd_q_tbl[i].lower_base_addr =
224 pm8001_ha->memoryMap.region[OB].phys_addr_lo;
225 pm8001_ha->outbnd_q_tbl[i].base_virt =
226 (u8 *)pm8001_ha->memoryMap.region[OB].virt_ptr;
227 pm8001_ha->outbnd_q_tbl[i].total_length =
228 pm8001_ha->memoryMap.region[OB].total_len;
229 pm8001_ha->outbnd_q_tbl[i].pi_upper_base_addr =
230 pm8001_ha->memoryMap.region[PI].phys_addr_hi;
231 pm8001_ha->outbnd_q_tbl[i].pi_lower_base_addr =
232 pm8001_ha->memoryMap.region[PI].phys_addr_lo;
233 pm8001_ha->outbnd_q_tbl[i].interrup_vec_cnt_delay =
234 0 | (0 << 16) | (0 << 24);
235 pm8001_ha->outbnd_q_tbl[i].pi_virt =
236 pm8001_ha->memoryMap.region[PI].virt_ptr;
237 offsetob = i * 0x24;
238 pm8001_ha->outbnd_q_tbl[i].ci_pci_bar =
239 get_pci_bar_index(pm8001_mr32(addressob,
240 offsetob + 0x14));
241 pm8001_ha->outbnd_q_tbl[i].ci_offset =
242 pm8001_mr32(addressob, (offsetob + 0x18));
243 pm8001_ha->outbnd_q_tbl[i].consumer_idx = 0;
244 pm8001_ha->outbnd_q_tbl[i].producer_index = 0;
245 }
246}
247
248/**
249 * update_main_config_table - update the main default table to the HBA.
250 * @pm8001_ha: our hba card information
251 */
252static void __devinit
253update_main_config_table(struct pm8001_hba_info *pm8001_ha)
254{
255 void __iomem *address = pm8001_ha->main_cfg_tbl_addr;
256 pm8001_mw32(address, 0x24,
257 pm8001_ha->main_cfg_tbl.inbound_q_nppd_hppd);
258 pm8001_mw32(address, 0x28,
259 pm8001_ha->main_cfg_tbl.outbound_hw_event_pid0_3);
260 pm8001_mw32(address, 0x2C,
261 pm8001_ha->main_cfg_tbl.outbound_hw_event_pid4_7);
262 pm8001_mw32(address, 0x30,
263 pm8001_ha->main_cfg_tbl.outbound_ncq_event_pid0_3);
264 pm8001_mw32(address, 0x34,
265 pm8001_ha->main_cfg_tbl.outbound_ncq_event_pid4_7);
266 pm8001_mw32(address, 0x38,
267 pm8001_ha->main_cfg_tbl.outbound_tgt_ITNexus_event_pid0_3);
268 pm8001_mw32(address, 0x3C,
269 pm8001_ha->main_cfg_tbl.outbound_tgt_ITNexus_event_pid4_7);
270 pm8001_mw32(address, 0x40,
271 pm8001_ha->main_cfg_tbl.outbound_tgt_ssp_event_pid0_3);
272 pm8001_mw32(address, 0x44,
273 pm8001_ha->main_cfg_tbl.outbound_tgt_ssp_event_pid4_7);
274 pm8001_mw32(address, 0x48,
275 pm8001_ha->main_cfg_tbl.outbound_tgt_smp_event_pid0_3);
276 pm8001_mw32(address, 0x4C,
277 pm8001_ha->main_cfg_tbl.outbound_tgt_smp_event_pid4_7);
278 pm8001_mw32(address, 0x50,
279 pm8001_ha->main_cfg_tbl.upper_event_log_addr);
280 pm8001_mw32(address, 0x54,
281 pm8001_ha->main_cfg_tbl.lower_event_log_addr);
282 pm8001_mw32(address, 0x58, pm8001_ha->main_cfg_tbl.event_log_size);
283 pm8001_mw32(address, 0x5C, pm8001_ha->main_cfg_tbl.event_log_option);
284 pm8001_mw32(address, 0x60,
285 pm8001_ha->main_cfg_tbl.upper_iop_event_log_addr);
286 pm8001_mw32(address, 0x64,
287 pm8001_ha->main_cfg_tbl.lower_iop_event_log_addr);
288 pm8001_mw32(address, 0x68, pm8001_ha->main_cfg_tbl.iop_event_log_size);
289 pm8001_mw32(address, 0x6C,
290 pm8001_ha->main_cfg_tbl.iop_event_log_option);
291 pm8001_mw32(address, 0x70,
292 pm8001_ha->main_cfg_tbl.fatal_err_interrupt);
293}
294
295/**
296 * update_inbnd_queue_table - update the inbound queue table to the HBA.
297 * @pm8001_ha: our hba card information
298 */
299static void __devinit
300update_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha, int number)
301{
302 void __iomem *address = pm8001_ha->inbnd_q_tbl_addr;
303 u16 offset = number * 0x20;
304 pm8001_mw32(address, offset + 0x00,
305 pm8001_ha->inbnd_q_tbl[number].element_pri_size_cnt);
306 pm8001_mw32(address, offset + 0x04,
307 pm8001_ha->inbnd_q_tbl[number].upper_base_addr);
308 pm8001_mw32(address, offset + 0x08,
309 pm8001_ha->inbnd_q_tbl[number].lower_base_addr);
310 pm8001_mw32(address, offset + 0x0C,
311 pm8001_ha->inbnd_q_tbl[number].ci_upper_base_addr);
312 pm8001_mw32(address, offset + 0x10,
313 pm8001_ha->inbnd_q_tbl[number].ci_lower_base_addr);
314}
315
316/**
317 * update_outbnd_queue_table - update the outbound queue table to the HBA.
318 * @pm8001_ha: our hba card information
319 */
320static void __devinit
321update_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha, int number)
322{
323 void __iomem *address = pm8001_ha->outbnd_q_tbl_addr;
324 u16 offset = number * 0x24;
325 pm8001_mw32(address, offset + 0x00,
326 pm8001_ha->outbnd_q_tbl[number].element_size_cnt);
327 pm8001_mw32(address, offset + 0x04,
328 pm8001_ha->outbnd_q_tbl[number].upper_base_addr);
329 pm8001_mw32(address, offset + 0x08,
330 pm8001_ha->outbnd_q_tbl[number].lower_base_addr);
331 pm8001_mw32(address, offset + 0x0C,
332 pm8001_ha->outbnd_q_tbl[number].pi_upper_base_addr);
333 pm8001_mw32(address, offset + 0x10,
334 pm8001_ha->outbnd_q_tbl[number].pi_lower_base_addr);
335 pm8001_mw32(address, offset + 0x1C,
336 pm8001_ha->outbnd_q_tbl[number].interrup_vec_cnt_delay);
337}
338
339/**
340 * bar4_shift - function is called to shift BAR base address
341 * @pm8001_ha : our hba card infomation
342 * @shiftValue : shifting value in memory bar.
343 */
344static u32 bar4_shift(struct pm8001_hba_info *pm8001_ha, u32 shiftValue)
345{
346 u32 regVal;
347 u32 max_wait_count;
348
349 /* program the inbound AXI translation Lower Address */
350 pm8001_cw32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW, shiftValue);
351
352 /* confirm the setting is written */
353 max_wait_count = 1 * 1000 * 1000; /* 1 sec */
354 do {
355 udelay(1);
356 regVal = pm8001_cr32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW);
357 } while ((regVal != shiftValue) && (--max_wait_count));
358
359 if (!max_wait_count) {
360 PM8001_INIT_DBG(pm8001_ha,
361 pm8001_printk("TIMEOUT:SPC_IBW_AXI_TRANSLATION_LOW"
362 " = 0x%x\n", regVal));
363 return -1;
364 }
365 return 0;
366}
367
368/**
369 * mpi_set_phys_g3_with_ssc
370 * @pm8001_ha: our hba card information
371 * @SSCbit: set SSCbit to 0 to disable all phys ssc; 1 to enable all phys ssc.
372 */
373static void __devinit
374mpi_set_phys_g3_with_ssc(struct pm8001_hba_info *pm8001_ha, u32 SSCbit)
375{
376 u32 offset;
377 u32 value;
378 u32 i;
379
380#define SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR 0x00030000
381#define SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR 0x00040000
382#define SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET 0x1074
383#define SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET 0x1074
384#define PHY_SSC_BIT_SHIFT 13
385
386 /*
387 * Using shifted destination address 0x3_0000:0x1074 + 0x4000*N (N=0:3)
388 * Using shifted destination address 0x4_0000:0x1074 + 0x4000*(N-4) (N=4:7)
389 */
390 if (-1 == bar4_shift(pm8001_ha, SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR))
391 return;
392 /* set SSC bit of PHY 0 - 3 */
393 for (i = 0; i < 4; i++) {
394 offset = SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET + 0x4000 * i;
395 value = pm8001_cr32(pm8001_ha, 2, offset);
396 if (SSCbit)
397 value = value | (0x00000001 << PHY_SSC_BIT_SHIFT);
398 else
399 value = value & (~(0x00000001<<PHY_SSC_BIT_SHIFT));
400 pm8001_cw32(pm8001_ha, 2, offset, value);
401 }
402
403 /* shift membase 3 for SAS2_SETTINGS_LOCAL_PHY 4 - 7 */
404 if (-1 == bar4_shift(pm8001_ha, SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR))
405 return;
406
407 /* set SSC bit of PHY 4 - 7 */
408 for (i = 4; i < 8; i++) {
409 offset = SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET + 0x4000 * (i-4);
410 value = pm8001_cr32(pm8001_ha, 2, offset);
411 if (SSCbit)
412 value = value | (0x00000001 << PHY_SSC_BIT_SHIFT);
413 else
414 value = value & (~(0x00000001<<PHY_SSC_BIT_SHIFT));
415 pm8001_cw32(pm8001_ha, 2, offset, value);
416 }
417
418 /*set the shifted destination address to 0x0 to avoid error operation */
419 bar4_shift(pm8001_ha, 0x0);
420 return;
421}
422
423/**
424 * mpi_set_open_retry_interval_reg
425 * @pm8001_ha: our hba card information
426 * @interval - interval time for each OPEN_REJECT (RETRY). The units are in 1us.
427 */
428static void __devinit
429mpi_set_open_retry_interval_reg(struct pm8001_hba_info *pm8001_ha,
430 u32 interval)
431{
432 u32 offset;
433 u32 value;
434 u32 i;
435
436#define OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR 0x00030000
437#define OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR 0x00040000
438#define OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET 0x30B4
439#define OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET 0x30B4
440#define OPEN_RETRY_INTERVAL_REG_MASK 0x0000FFFF
441
442 value = interval & OPEN_RETRY_INTERVAL_REG_MASK;
443 /* shift bar and set the OPEN_REJECT(RETRY) interval time of PHY 0 -3.*/
444 if (-1 == bar4_shift(pm8001_ha,
445 OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR))
446 return;
447 for (i = 0; i < 4; i++) {
448 offset = OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET + 0x4000 * i;
449 pm8001_cw32(pm8001_ha, 2, offset, value);
450 }
451
452 if (-1 == bar4_shift(pm8001_ha,
453 OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR))
454 return;
455 for (i = 4; i < 8; i++) {
456 offset = OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET + 0x4000 * (i-4);
457 pm8001_cw32(pm8001_ha, 2, offset, value);
458 }
459 /*set the shifted destination address to 0x0 to avoid error operation */
460 bar4_shift(pm8001_ha, 0x0);
461 return;
462}
463
464/**
465 * mpi_init_check - check firmware initialization status.
466 * @pm8001_ha: our hba card information
467 */
468static int mpi_init_check(struct pm8001_hba_info *pm8001_ha)
469{
470 u32 max_wait_count;
471 u32 value;
472 u32 gst_len_mpistate;
473 /* Write bit0=1 to Inbound DoorBell Register to tell the SPC FW the
474 table is updated */
475 pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_UPDATE);
476 /* wait until Inbound DoorBell Clear Register toggled */
477 max_wait_count = 1 * 1000 * 1000;/* 1 sec */
478 do {
479 udelay(1);
480 value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET);
481 value &= SPC_MSGU_CFG_TABLE_UPDATE;
482 } while ((value != 0) && (--max_wait_count));
483
484 if (!max_wait_count)
485 return -1;
486 /* check the MPI-State for initialization */
487 gst_len_mpistate =
488 pm8001_mr32(pm8001_ha->general_stat_tbl_addr,
489 GST_GSTLEN_MPIS_OFFSET);
490 if (GST_MPI_STATE_INIT != (gst_len_mpistate & GST_MPI_STATE_MASK))
491 return -1;
492 /* check MPI Initialization error */
493 gst_len_mpistate = gst_len_mpistate >> 16;
494 if (0x0000 != gst_len_mpistate)
495 return -1;
496 return 0;
497}
498
499/**
500 * check_fw_ready - The LLDD check if the FW is ready, if not, return error.
501 * @pm8001_ha: our hba card information
502 */
503static int check_fw_ready(struct pm8001_hba_info *pm8001_ha)
504{
505 u32 value, value1;
506 u32 max_wait_count;
507 /* check error state */
508 value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
509 value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2);
510 /* check AAP error */
511 if (SCRATCH_PAD1_ERR == (value & SCRATCH_PAD_STATE_MASK)) {
512 /* error state */
513 value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0);
514 return -1;
515 }
516
517 /* check IOP error */
518 if (SCRATCH_PAD2_ERR == (value1 & SCRATCH_PAD_STATE_MASK)) {
519 /* error state */
520 value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3);
521 return -1;
522 }
523
524 /* bit 4-31 of scratch pad1 should be zeros if it is not
525 in error state*/
526 if (value & SCRATCH_PAD1_STATE_MASK) {
527 /* error case */
528 pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0);
529 return -1;
530 }
531
532 /* bit 2, 4-31 of scratch pad2 should be zeros if it is not
533 in error state */
534 if (value1 & SCRATCH_PAD2_STATE_MASK) {
535 /* error case */
536 return -1;
537 }
538
539 max_wait_count = 1 * 1000 * 1000;/* 1 sec timeout */
540
541 /* wait until scratch pad 1 and 2 registers in ready state */
542 do {
543 udelay(1);
544 value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1)
545 & SCRATCH_PAD1_RDY;
546 value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2)
547 & SCRATCH_PAD2_RDY;
548 if ((--max_wait_count) == 0)
549 return -1;
550 } while ((value != SCRATCH_PAD1_RDY) || (value1 != SCRATCH_PAD2_RDY));
551 return 0;
552}
553
554static void init_pci_device_addresses(struct pm8001_hba_info *pm8001_ha)
555{
556 void __iomem *base_addr;
557 u32 value;
558 u32 offset;
559 u32 pcibar;
560 u32 pcilogic;
561
562 value = pm8001_cr32(pm8001_ha, 0, 0x44);
563 offset = value & 0x03FFFFFF;
564 PM8001_INIT_DBG(pm8001_ha,
565 pm8001_printk("Scratchpad 0 Offset: %x \n", offset));
566 pcilogic = (value & 0xFC000000) >> 26;
567 pcibar = get_pci_bar_index(pcilogic);
568 PM8001_INIT_DBG(pm8001_ha,
569 pm8001_printk("Scratchpad 0 PCI BAR: %d \n", pcibar));
570 pm8001_ha->main_cfg_tbl_addr = base_addr =
571 pm8001_ha->io_mem[pcibar].memvirtaddr + offset;
572 pm8001_ha->general_stat_tbl_addr =
573 base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x18);
574 pm8001_ha->inbnd_q_tbl_addr =
575 base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x1C);
576 pm8001_ha->outbnd_q_tbl_addr =
577 base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x20);
578}
579
580/**
581 * pm8001_chip_init - the main init function that initialize whole PM8001 chip.
582 * @pm8001_ha: our hba card information
583 */
584static int __devinit pm8001_chip_init(struct pm8001_hba_info *pm8001_ha)
585{
586 /* check the firmware status */
587 if (-1 == check_fw_ready(pm8001_ha)) {
588 PM8001_FAIL_DBG(pm8001_ha,
589 pm8001_printk("Firmware is not ready!\n"));
590 return -EBUSY;
591 }
592
593 /* Initialize pci space address eg: mpi offset */
594 init_pci_device_addresses(pm8001_ha);
595 init_default_table_values(pm8001_ha);
596 read_main_config_table(pm8001_ha);
597 read_general_status_table(pm8001_ha);
598 read_inbnd_queue_table(pm8001_ha);
599 read_outbnd_queue_table(pm8001_ha);
600 /* update main config table ,inbound table and outbound table */
601 update_main_config_table(pm8001_ha);
602 update_inbnd_queue_table(pm8001_ha, 0);
603 update_outbnd_queue_table(pm8001_ha, 0);
604 mpi_set_phys_g3_with_ssc(pm8001_ha, 0);
605 mpi_set_open_retry_interval_reg(pm8001_ha, 7);
606 /* notify firmware update finished and check initialization status */
607 if (0 == mpi_init_check(pm8001_ha)) {
608 PM8001_INIT_DBG(pm8001_ha,
609 pm8001_printk("MPI initialize successful!\n"));
610 } else
611 return -EBUSY;
612 /*This register is a 16-bit timer with a resolution of 1us. This is the
613 timer used for interrupt delay/coalescing in the PCIe Application Layer.
614 Zero is not a valid value. A value of 1 in the register will cause the
615 interrupts to be normal. A value greater than 1 will cause coalescing
616 delays.*/
617 pm8001_cw32(pm8001_ha, 1, 0x0033c0, 0x1);
618 pm8001_cw32(pm8001_ha, 1, 0x0033c4, 0x0);
619 return 0;
620}
621
622static int mpi_uninit_check(struct pm8001_hba_info *pm8001_ha)
623{
624 u32 max_wait_count;
625 u32 value;
626 u32 gst_len_mpistate;
627 init_pci_device_addresses(pm8001_ha);
628 /* Write bit1=1 to Inbound DoorBell Register to tell the SPC FW the
629 table is stop */
630 pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_RESET);
631
632 /* wait until Inbound DoorBell Clear Register toggled */
633 max_wait_count = 1 * 1000 * 1000;/* 1 sec */
634 do {
635 udelay(1);
636 value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET);
637 value &= SPC_MSGU_CFG_TABLE_RESET;
638 } while ((value != 0) && (--max_wait_count));
639
640 if (!max_wait_count) {
641 PM8001_FAIL_DBG(pm8001_ha,
642 pm8001_printk("TIMEOUT:IBDB value/=0x%x\n", value));
643 return -1;
644 }
645
646 /* check the MPI-State for termination in progress */
647 /* wait until Inbound DoorBell Clear Register toggled */
648 max_wait_count = 1 * 1000 * 1000; /* 1 sec */
649 do {
650 udelay(1);
651 gst_len_mpistate =
652 pm8001_mr32(pm8001_ha->general_stat_tbl_addr,
653 GST_GSTLEN_MPIS_OFFSET);
654 if (GST_MPI_STATE_UNINIT ==
655 (gst_len_mpistate & GST_MPI_STATE_MASK))
656 break;
657 } while (--max_wait_count);
658 if (!max_wait_count) {
659 PM8001_FAIL_DBG(pm8001_ha,
660 pm8001_printk(" TIME OUT MPI State = 0x%x\n",
661 gst_len_mpistate & GST_MPI_STATE_MASK));
662 return -1;
663 }
664 return 0;
665}
666
667/**
668 * soft_reset_ready_check - Function to check FW is ready for soft reset.
669 * @pm8001_ha: our hba card information
670 */
671static u32 soft_reset_ready_check(struct pm8001_hba_info *pm8001_ha)
672{
673 u32 regVal, regVal1, regVal2;
674 if (mpi_uninit_check(pm8001_ha) != 0) {
675 PM8001_FAIL_DBG(pm8001_ha,
676 pm8001_printk("MPI state is not ready\n"));
677 return -1;
678 }
679 /* read the scratch pad 2 register bit 2 */
680 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2)
681 & SCRATCH_PAD2_FWRDY_RST;
682 if (regVal == SCRATCH_PAD2_FWRDY_RST) {
683 PM8001_INIT_DBG(pm8001_ha,
684 pm8001_printk("Firmware is ready for reset .\n"));
685 } else {
686 /* Trigger NMI twice via RB6 */
687 if (-1 == bar4_shift(pm8001_ha, RB6_ACCESS_REG)) {
688 PM8001_FAIL_DBG(pm8001_ha,
689 pm8001_printk("Shift Bar4 to 0x%x failed\n",
690 RB6_ACCESS_REG));
691 return -1;
692 }
693 pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET,
694 RB6_MAGIC_NUMBER_RST);
695 pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET, RB6_MAGIC_NUMBER_RST);
696 /* wait for 100 ms */
697 mdelay(100);
698 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) &
699 SCRATCH_PAD2_FWRDY_RST;
700 if (regVal != SCRATCH_PAD2_FWRDY_RST) {
701 regVal1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
702 regVal2 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2);
703 PM8001_FAIL_DBG(pm8001_ha,
704 pm8001_printk("TIMEOUT:MSGU_SCRATCH_PAD1"
705 "=0x%x, MSGU_SCRATCH_PAD2=0x%x\n",
706 regVal1, regVal2));
707 PM8001_FAIL_DBG(pm8001_ha,
708 pm8001_printk("SCRATCH_PAD0 value = 0x%x\n",
709 pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0)));
710 PM8001_FAIL_DBG(pm8001_ha,
711 pm8001_printk("SCRATCH_PAD3 value = 0x%x\n",
712 pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3)));
713 return -1;
714 }
715 }
716 return 0;
717}
718
719/**
720 * pm8001_chip_soft_rst - soft reset the PM8001 chip, so that the clear all
721 * the FW register status to the originated status.
722 * @pm8001_ha: our hba card information
723 * @signature: signature in host scratch pad0 register.
724 */
725static int
726pm8001_chip_soft_rst(struct pm8001_hba_info *pm8001_ha, u32 signature)
727{
728 u32 regVal, toggleVal;
729 u32 max_wait_count;
730 u32 regVal1, regVal2, regVal3;
731
732 /* step1: Check FW is ready for soft reset */
733 if (soft_reset_ready_check(pm8001_ha) != 0) {
734 PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("FW is not ready\n"));
735 return -1;
736 }
737
738 /* step 2: clear NMI status register on AAP1 and IOP, write the same
739 value to clear */
740 /* map 0x60000 to BAR4(0x20), BAR2(win) */
741 if (-1 == bar4_shift(pm8001_ha, MBIC_AAP1_ADDR_BASE)) {
742 PM8001_FAIL_DBG(pm8001_ha,
743 pm8001_printk("Shift Bar4 to 0x%x failed\n",
744 MBIC_AAP1_ADDR_BASE));
745 return -1;
746 }
747 regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP);
748 PM8001_INIT_DBG(pm8001_ha,
749 pm8001_printk("MBIC - NMI Enable VPE0 (IOP)= 0x%x\n", regVal));
750 pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP, 0x0);
751 /* map 0x70000 to BAR4(0x20), BAR2(win) */
752 if (-1 == bar4_shift(pm8001_ha, MBIC_IOP_ADDR_BASE)) {
753 PM8001_FAIL_DBG(pm8001_ha,
754 pm8001_printk("Shift Bar4 to 0x%x failed\n",
755 MBIC_IOP_ADDR_BASE));
756 return -1;
757 }
758 regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1);
759 PM8001_INIT_DBG(pm8001_ha,
760 pm8001_printk("MBIC - NMI Enable VPE0 (AAP1)= 0x%x\n", regVal));
761 pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1, 0x0);
762
763 regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE);
764 PM8001_INIT_DBG(pm8001_ha,
765 pm8001_printk("PCIE -Event Interrupt Enable = 0x%x\n", regVal));
766 pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE, 0x0);
767
768 regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT);
769 PM8001_INIT_DBG(pm8001_ha,
770 pm8001_printk("PCIE - Event Interrupt = 0x%x\n", regVal));
771 pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT, regVal);
772
773 regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE);
774 PM8001_INIT_DBG(pm8001_ha,
775 pm8001_printk("PCIE -Error Interrupt Enable = 0x%x\n", regVal));
776 pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE, 0x0);
777
778 regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT);
779 PM8001_INIT_DBG(pm8001_ha,
780 pm8001_printk("PCIE - Error Interrupt = 0x%x\n", regVal));
781 pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT, regVal);
782
783 /* read the scratch pad 1 register bit 2 */
784 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1)
785 & SCRATCH_PAD1_RST;
786 toggleVal = regVal ^ SCRATCH_PAD1_RST;
787
788 /* set signature in host scratch pad0 register to tell SPC that the
789 host performs the soft reset */
790 pm8001_cw32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_0, signature);
791
792 /* read required registers for confirmming */
793 /* map 0x0700000 to BAR4(0x20), BAR2(win) */
794 if (-1 == bar4_shift(pm8001_ha, GSM_ADDR_BASE)) {
795 PM8001_FAIL_DBG(pm8001_ha,
796 pm8001_printk("Shift Bar4 to 0x%x failed\n",
797 GSM_ADDR_BASE));
798 return -1;
799 }
800 PM8001_INIT_DBG(pm8001_ha,
801 pm8001_printk("GSM 0x0(0x00007b88)-GSM Configuration and"
802 " Reset = 0x%x\n",
803 pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)));
804
805 /* step 3: host read GSM Configuration and Reset register */
806 regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET);
807 /* Put those bits to low */
808 /* GSM XCBI offset = 0x70 0000
809 0x00 Bit 13 COM_SLV_SW_RSTB 1
810 0x00 Bit 12 QSSP_SW_RSTB 1
811 0x00 Bit 11 RAAE_SW_RSTB 1
812 0x00 Bit 9 RB_1_SW_RSTB 1
813 0x00 Bit 8 SM_SW_RSTB 1
814 */
815 regVal &= ~(0x00003b00);
816 /* host write GSM Configuration and Reset register */
817 pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal);
818 PM8001_INIT_DBG(pm8001_ha,
819 pm8001_printk("GSM 0x0 (0x00007b88 ==> 0x00004088) - GSM "
820 "Configuration and Reset is set to = 0x%x\n",
821 pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)));
822
823 /* step 4: */
824 /* disable GSM - Read Address Parity Check */
825 regVal1 = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK);
826 PM8001_INIT_DBG(pm8001_ha,
827 pm8001_printk("GSM 0x700038 - Read Address Parity Check "
828 "Enable = 0x%x\n", regVal1));
829 pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, 0x0);
830 PM8001_INIT_DBG(pm8001_ha,
831 pm8001_printk("GSM 0x700038 - Read Address Parity Check Enable"
832 "is set to = 0x%x\n",
833 pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK)));
834
835 /* disable GSM - Write Address Parity Check */
836 regVal2 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK);
837 PM8001_INIT_DBG(pm8001_ha,
838 pm8001_printk("GSM 0x700040 - Write Address Parity Check"
839 " Enable = 0x%x\n", regVal2));
840 pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, 0x0);
841 PM8001_INIT_DBG(pm8001_ha,
842 pm8001_printk("GSM 0x700040 - Write Address Parity Check "
843 "Enable is set to = 0x%x\n",
844 pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK)));
845
846 /* disable GSM - Write Data Parity Check */
847 regVal3 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK);
848 PM8001_INIT_DBG(pm8001_ha,
849 pm8001_printk("GSM 0x300048 - Write Data Parity Check"
850 " Enable = 0x%x\n", regVal3));
851 pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, 0x0);
852 PM8001_INIT_DBG(pm8001_ha,
853 pm8001_printk("GSM 0x300048 - Write Data Parity Check Enable"
854 "is set to = 0x%x\n",
855 pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK)));
856
857 /* step 5: delay 10 usec */
858 udelay(10);
859 /* step 5-b: set GPIO-0 output control to tristate anyway */
860 if (-1 == bar4_shift(pm8001_ha, GPIO_ADDR_BASE)) {
861 PM8001_INIT_DBG(pm8001_ha,
862 pm8001_printk("Shift Bar4 to 0x%x failed\n",
863 GPIO_ADDR_BASE));
864 return -1;
865 }
866 regVal = pm8001_cr32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET);
867 PM8001_INIT_DBG(pm8001_ha,
868 pm8001_printk("GPIO Output Control Register:"
869 " = 0x%x\n", regVal));
870 /* set GPIO-0 output control to tri-state */
871 regVal &= 0xFFFFFFFC;
872 pm8001_cw32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET, regVal);
873
874 /* Step 6: Reset the IOP and AAP1 */
875 /* map 0x00000 to BAR4(0x20), BAR2(win) */
876 if (-1 == bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) {
877 PM8001_FAIL_DBG(pm8001_ha,
878 pm8001_printk("SPC Shift Bar4 to 0x%x failed\n",
879 SPC_TOP_LEVEL_ADDR_BASE));
880 return -1;
881 }
882 regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
883 PM8001_INIT_DBG(pm8001_ha,
884 pm8001_printk("Top Register before resetting IOP/AAP1"
885 ":= 0x%x\n", regVal));
886 regVal &= ~(SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS);
887 pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
888
889 /* step 7: Reset the BDMA/OSSP */
890 regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
891 PM8001_INIT_DBG(pm8001_ha,
892 pm8001_printk("Top Register before resetting BDMA/OSSP"
893 ": = 0x%x\n", regVal));
894 regVal &= ~(SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP);
895 pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
896
897 /* step 8: delay 10 usec */
898 udelay(10);
899
900 /* step 9: bring the BDMA and OSSP out of reset */
901 regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
902 PM8001_INIT_DBG(pm8001_ha,
903 pm8001_printk("Top Register before bringing up BDMA/OSSP"
904 ":= 0x%x\n", regVal));
905 regVal |= (SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP);
906 pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
907
908 /* step 10: delay 10 usec */
909 udelay(10);
910
911 /* step 11: reads and sets the GSM Configuration and Reset Register */
912 /* map 0x0700000 to BAR4(0x20), BAR2(win) */
913 if (-1 == bar4_shift(pm8001_ha, GSM_ADDR_BASE)) {
914 PM8001_FAIL_DBG(pm8001_ha,
915 pm8001_printk("SPC Shift Bar4 to 0x%x failed\n",
916 GSM_ADDR_BASE));
917 return -1;
918 }
919 PM8001_INIT_DBG(pm8001_ha,
920 pm8001_printk("GSM 0x0 (0x00007b88)-GSM Configuration and "
921 "Reset = 0x%x\n", pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)));
922 regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET);
923 /* Put those bits to high */
924 /* GSM XCBI offset = 0x70 0000
925 0x00 Bit 13 COM_SLV_SW_RSTB 1
926 0x00 Bit 12 QSSP_SW_RSTB 1
927 0x00 Bit 11 RAAE_SW_RSTB 1
928 0x00 Bit 9 RB_1_SW_RSTB 1
929 0x00 Bit 8 SM_SW_RSTB 1
930 */
931 regVal |= (GSM_CONFIG_RESET_VALUE);
932 pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal);
933 PM8001_INIT_DBG(pm8001_ha,
934 pm8001_printk("GSM (0x00004088 ==> 0x00007b88) - GSM"
935 " Configuration and Reset is set to = 0x%x\n",
936 pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)));
937
938 /* step 12: Restore GSM - Read Address Parity Check */
939 regVal = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK);
940 /* just for debugging */
941 PM8001_INIT_DBG(pm8001_ha,
942 pm8001_printk("GSM 0x700038 - Read Address Parity Check Enable"
943 " = 0x%x\n", regVal));
944 pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, regVal1);
945 PM8001_INIT_DBG(pm8001_ha,
946 pm8001_printk("GSM 0x700038 - Read Address Parity"
947 " Check Enable is set to = 0x%x\n",
948 pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK)));
949 /* Restore GSM - Write Address Parity Check */
950 regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK);
951 pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, regVal2);
952 PM8001_INIT_DBG(pm8001_ha,
953 pm8001_printk("GSM 0x700040 - Write Address Parity Check"
954 " Enable is set to = 0x%x\n",
955 pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK)));
956 /* Restore GSM - Write Data Parity Check */
957 regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK);
958 pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, regVal3);
959 PM8001_INIT_DBG(pm8001_ha,
960 pm8001_printk("GSM 0x700048 - Write Data Parity Check Enable"
961 "is set to = 0x%x\n",
962 pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK)));
963
964 /* step 13: bring the IOP and AAP1 out of reset */
965 /* map 0x00000 to BAR4(0x20), BAR2(win) */
966 if (-1 == bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) {
967 PM8001_FAIL_DBG(pm8001_ha,
968 pm8001_printk("Shift Bar4 to 0x%x failed\n",
969 SPC_TOP_LEVEL_ADDR_BASE));
970 return -1;
971 }
972 regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET);
973 regVal |= (SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS);
974 pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal);
975
976 /* step 14: delay 10 usec - Normal Mode */
977 udelay(10);
978 /* check Soft Reset Normal mode or Soft Reset HDA mode */
979 if (signature == SPC_SOFT_RESET_SIGNATURE) {
980 /* step 15 (Normal Mode): wait until scratch pad1 register
981 bit 2 toggled */
982 max_wait_count = 2 * 1000 * 1000;/* 2 sec */
983 do {
984 udelay(1);
985 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) &
986 SCRATCH_PAD1_RST;
987 } while ((regVal != toggleVal) && (--max_wait_count));
988
989 if (!max_wait_count) {
990 regVal = pm8001_cr32(pm8001_ha, 0,
991 MSGU_SCRATCH_PAD_1);
992 PM8001_FAIL_DBG(pm8001_ha,
993 pm8001_printk("TIMEOUT : ToggleVal 0x%x,"
994 "MSGU_SCRATCH_PAD1 = 0x%x\n",
995 toggleVal, regVal));
996 PM8001_FAIL_DBG(pm8001_ha,
997 pm8001_printk("SCRATCH_PAD0 value = 0x%x\n",
998 pm8001_cr32(pm8001_ha, 0,
999 MSGU_SCRATCH_PAD_0)));
1000 PM8001_FAIL_DBG(pm8001_ha,
1001 pm8001_printk("SCRATCH_PAD2 value = 0x%x\n",
1002 pm8001_cr32(pm8001_ha, 0,
1003 MSGU_SCRATCH_PAD_2)));
1004 PM8001_FAIL_DBG(pm8001_ha,
1005 pm8001_printk("SCRATCH_PAD3 value = 0x%x\n",
1006 pm8001_cr32(pm8001_ha, 0,
1007 MSGU_SCRATCH_PAD_3)));
1008 return -1;
1009 }
1010
1011 /* step 16 (Normal) - Clear ODMR and ODCR */
1012 pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL);
1013 pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL);
1014
1015 /* step 17 (Normal Mode): wait for the FW and IOP to get
1016 ready - 1 sec timeout */
1017 /* Wait for the SPC Configuration Table to be ready */
1018 if (check_fw_ready(pm8001_ha) == -1) {
1019 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1);
1020 /* return error if MPI Configuration Table not ready */
1021 PM8001_INIT_DBG(pm8001_ha,
1022 pm8001_printk("FW not ready SCRATCH_PAD1"
1023 " = 0x%x\n", regVal));
1024 regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2);
1025 /* return error if MPI Configuration Table not ready */
1026 PM8001_INIT_DBG(pm8001_ha,
1027 pm8001_printk("FW not ready SCRATCH_PAD2"
1028 " = 0x%x\n", regVal));
1029 PM8001_INIT_DBG(pm8001_ha,
1030 pm8001_printk("SCRATCH_PAD0 value = 0x%x\n",
1031 pm8001_cr32(pm8001_ha, 0,
1032 MSGU_SCRATCH_PAD_0)));
1033 PM8001_INIT_DBG(pm8001_ha,
1034 pm8001_printk("SCRATCH_PAD3 value = 0x%x\n",
1035 pm8001_cr32(pm8001_ha, 0,
1036 MSGU_SCRATCH_PAD_3)));
1037 return -1;
1038 }
1039 }
1040
1041 PM8001_INIT_DBG(pm8001_ha,
1042 pm8001_printk("SPC soft reset Complete\n"));
1043 return 0;
1044}
1045
1046static void pm8001_hw_chip_rst(struct pm8001_hba_info *pm8001_ha)
1047{
1048 u32 i;
1049 u32 regVal;
1050 PM8001_INIT_DBG(pm8001_ha,
1051 pm8001_printk("chip reset start\n"));
1052
1053 /* do SPC chip reset. */
1054 regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET);
1055 regVal &= ~(SPC_REG_RESET_DEVICE);
1056 pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal);
1057
1058 /* delay 10 usec */
1059 udelay(10);
1060
1061 /* bring chip reset out of reset */
1062 regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET);
1063 regVal |= SPC_REG_RESET_DEVICE;
1064 pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal);
1065
1066 /* delay 10 usec */
1067 udelay(10);
1068
1069 /* wait for 20 msec until the firmware gets reloaded */
1070 i = 20;
1071 do {
1072 mdelay(1);
1073 } while ((--i) != 0);
1074
1075 PM8001_INIT_DBG(pm8001_ha,
1076 pm8001_printk("chip reset finished\n"));
1077}
1078
1079/**
1080 * pm8001_chip_iounmap - which maped when initilized.
1081 * @pm8001_ha: our hba card information
1082 */
1083static void pm8001_chip_iounmap(struct pm8001_hba_info *pm8001_ha)
1084{
1085 s8 bar, logical = 0;
1086 for (bar = 0; bar < 6; bar++) {
1087 /*
1088 ** logical BARs for SPC:
1089 ** bar 0 and 1 - logical BAR0
1090 ** bar 2 and 3 - logical BAR1
1091 ** bar4 - logical BAR2
1092 ** bar5 - logical BAR3
1093 ** Skip the appropriate assignments:
1094 */
1095 if ((bar == 1) || (bar == 3))
1096 continue;
1097 if (pm8001_ha->io_mem[logical].memvirtaddr) {
1098 iounmap(pm8001_ha->io_mem[logical].memvirtaddr);
1099 logical++;
1100 }
1101 }
1102}
1103
1104/**
1105 * pm8001_chip_interrupt_enable - enable PM8001 chip interrupt
1106 * @pm8001_ha: our hba card information
1107 */
1108static void
1109pm8001_chip_intx_interrupt_enable(struct pm8001_hba_info *pm8001_ha)
1110{
1111 pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL);
1112 pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL);
1113}
1114
1115 /**
1116 * pm8001_chip_intx_interrupt_disable- disable PM8001 chip interrupt
1117 * @pm8001_ha: our hba card information
1118 */
1119static void
1120pm8001_chip_intx_interrupt_disable(struct pm8001_hba_info *pm8001_ha)
1121{
1122 pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_MASK_ALL);
1123}
1124
1125/**
1126 * pm8001_chip_msix_interrupt_enable - enable PM8001 chip interrupt
1127 * @pm8001_ha: our hba card information
1128 */
1129static void
1130pm8001_chip_msix_interrupt_enable(struct pm8001_hba_info *pm8001_ha,
1131 u32 int_vec_idx)
1132{
1133 u32 msi_index;
1134 u32 value;
1135 msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE;
1136 msi_index += MSIX_TABLE_BASE;
1137 pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_ENABLE);
1138 value = (1 << int_vec_idx);
1139 pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, value);
1140
1141}
1142
1143/**
1144 * pm8001_chip_msix_interrupt_disable - disable PM8001 chip interrupt
1145 * @pm8001_ha: our hba card information
1146 */
1147static void
1148pm8001_chip_msix_interrupt_disable(struct pm8001_hba_info *pm8001_ha,
1149 u32 int_vec_idx)
1150{
1151 u32 msi_index;
1152 msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE;
1153 msi_index += MSIX_TABLE_BASE;
1154 pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_DISABLE);
1155
1156}
1157/**
1158 * pm8001_chip_interrupt_enable - enable PM8001 chip interrupt
1159 * @pm8001_ha: our hba card information
1160 */
1161static void
1162pm8001_chip_interrupt_enable(struct pm8001_hba_info *pm8001_ha)
1163{
1164#ifdef PM8001_USE_MSIX
1165 pm8001_chip_msix_interrupt_enable(pm8001_ha, 0);
1166 return;
1167#endif
1168 pm8001_chip_intx_interrupt_enable(pm8001_ha);
1169
1170}
1171
1172/**
1173 * pm8001_chip_intx_interrupt_disable- disable PM8001 chip interrupt
1174 * @pm8001_ha: our hba card information
1175 */
1176static void
1177pm8001_chip_interrupt_disable(struct pm8001_hba_info *pm8001_ha)
1178{
1179#ifdef PM8001_USE_MSIX
1180 pm8001_chip_msix_interrupt_disable(pm8001_ha, 0);
1181 return;
1182#endif
1183 pm8001_chip_intx_interrupt_disable(pm8001_ha);
1184
1185}
1186
1187/**
1188 * mpi_msg_free_get- get the free message buffer for transfer inbound queue.
1189 * @circularQ: the inbound queue we want to transfer to HBA.
1190 * @messageSize: the message size of this transfer, normally it is 64 bytes
1191 * @messagePtr: the pointer to message.
1192 */
1193static u32 mpi_msg_free_get(struct inbound_queue_table *circularQ,
1194 u16 messageSize, void **messagePtr)
1195{
1196 u32 offset, consumer_index;
1197 struct mpi_msg_hdr *msgHeader;
1198 u8 bcCount = 1; /* only support single buffer */
1199
1200 /* Checks is the requested message size can be allocated in this queue*/
1201 if (messageSize > 64) {
1202 *messagePtr = NULL;
1203 return -1;
1204 }
1205
1206 /* Stores the new consumer index */
1207 consumer_index = pm8001_read_32(circularQ->ci_virt);
1208 circularQ->consumer_index = cpu_to_le32(consumer_index);
1209 if (((circularQ->producer_idx + bcCount) % 256) ==
1210 circularQ->consumer_index) {
1211 *messagePtr = NULL;
1212 return -1;
1213 }
1214 /* get memory IOMB buffer address */
1215 offset = circularQ->producer_idx * 64;
1216 /* increment to next bcCount element */
1217 circularQ->producer_idx = (circularQ->producer_idx + bcCount) % 256;
1218 /* Adds that distance to the base of the region virtual address plus
1219 the message header size*/
1220 msgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt + offset);
1221 *messagePtr = ((void *)msgHeader) + sizeof(struct mpi_msg_hdr);
1222 return 0;
1223}
1224
1225/**
1226 * mpi_build_cmd- build the message queue for transfer, update the PI to FW
1227 * to tell the fw to get this message from IOMB.
1228 * @pm8001_ha: our hba card information
1229 * @circularQ: the inbound queue we want to transfer to HBA.
1230 * @opCode: the operation code represents commands which LLDD and fw recognized.
1231 * @payload: the command payload of each operation command.
1232 */
1233static u32 mpi_build_cmd(struct pm8001_hba_info *pm8001_ha,
1234 struct inbound_queue_table *circularQ,
1235 u32 opCode, void *payload)
1236{
1237 u32 Header = 0, hpriority = 0, bc = 1, category = 0x02;
1238 u32 responseQueue = 0;
1239 void *pMessage;
1240
1241 if (mpi_msg_free_get(circularQ, 64, &pMessage) < 0) {
1242 PM8001_IO_DBG(pm8001_ha,
1243 pm8001_printk("No free mpi buffer \n"));
1244 return -1;
1245 }
1246
1247 /*Copy to the payload*/
1248 memcpy(pMessage, payload, (64 - sizeof(struct mpi_msg_hdr)));
1249
1250 /*Build the header*/
1251 Header = ((1 << 31) | (hpriority << 30) | ((bc & 0x1f) << 24)
1252 | ((responseQueue & 0x3F) << 16)
1253 | ((category & 0xF) << 12) | (opCode & 0xFFF));
1254
1255 pm8001_write_32((pMessage - 4), 0, cpu_to_le32(Header));
1256 /*Update the PI to the firmware*/
1257 pm8001_cw32(pm8001_ha, circularQ->pi_pci_bar,
1258 circularQ->pi_offset, circularQ->producer_idx);
1259 PM8001_IO_DBG(pm8001_ha,
1260 pm8001_printk("after PI= %d CI= %d \n", circularQ->producer_idx,
1261 circularQ->consumer_index));
1262 return 0;
1263}
1264
1265static u32 mpi_msg_free_set(struct pm8001_hba_info *pm8001_ha,
1266 struct outbound_queue_table *circularQ, u8 bc)
1267{
1268 u32 producer_index;
1269 /* free the circular queue buffer elements associated with the message*/
1270 circularQ->consumer_idx = (circularQ->consumer_idx + bc) % 256;
1271 /* update the CI of outbound queue */
1272 pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar, circularQ->ci_offset,
1273 circularQ->consumer_idx);
1274 /* Update the producer index from SPC*/
1275 producer_index = pm8001_read_32(circularQ->pi_virt);
1276 circularQ->producer_index = cpu_to_le32(producer_index);
1277 PM8001_IO_DBG(pm8001_ha,
1278 pm8001_printk(" CI=%d PI=%d\n", circularQ->consumer_idx,
1279 circularQ->producer_index));
1280 return 0;
1281}
1282
1283/**
1284 * mpi_msg_consume- get the MPI message from outbound queue message table.
1285 * @pm8001_ha: our hba card information
1286 * @circularQ: the outbound queue table.
1287 * @messagePtr1: the message contents of this outbound message.
1288 * @pBC: the message size.
1289 */
1290static u32 mpi_msg_consume(struct pm8001_hba_info *pm8001_ha,
1291 struct outbound_queue_table *circularQ,
1292 void **messagePtr1, u8 *pBC)
1293{
1294 struct mpi_msg_hdr *msgHeader;
1295 __le32 msgHeader_tmp;
1296 u32 header_tmp;
1297 do {
1298 /* If there are not-yet-delivered messages ... */
1299 if (circularQ->producer_index != circularQ->consumer_idx) {
1300 PM8001_IO_DBG(pm8001_ha,
1301 pm8001_printk("process an IOMB\n"));
1302 /*Get the pointer to the circular queue buffer element*/
1303 msgHeader = (struct mpi_msg_hdr *)
1304 (circularQ->base_virt +
1305 circularQ->consumer_idx * 64);
1306 /* read header */
1307 header_tmp = pm8001_read_32(msgHeader);
1308 msgHeader_tmp = cpu_to_le32(header_tmp);
1309 if (0 != (msgHeader_tmp & 0x80000000)) {
1310 if (OPC_OUB_SKIP_ENTRY !=
1311 (msgHeader_tmp & 0xfff)) {
1312 *messagePtr1 =
1313 ((u8 *)msgHeader) +
1314 sizeof(struct mpi_msg_hdr);
1315 *pBC = (u8)((msgHeader_tmp >> 24) &
1316 0x1f);
1317 PM8001_IO_DBG(pm8001_ha,
1318 pm8001_printk("mpi_msg_consume"
1319 ": CI=%d PI=%d msgHeader=%x\n",
1320 circularQ->consumer_idx,
1321 circularQ->producer_index,
1322 msgHeader_tmp));
1323 return MPI_IO_STATUS_SUCCESS;
1324 } else {
1325 u32 producer_index;
1326 void *pi_virt = circularQ->pi_virt;
1327 /* free the circular queue buffer
1328 elements associated with the message*/
1329 circularQ->consumer_idx =
1330 (circularQ->consumer_idx +
1331 ((msgHeader_tmp >> 24) & 0x1f))
1332 % 256;
1333 /* update the CI of outbound queue */
1334 pm8001_cw32(pm8001_ha,
1335 circularQ->ci_pci_bar,
1336 circularQ->ci_offset,
1337 circularQ->consumer_idx);
1338 /* Update the producer index from SPC */
1339 producer_index =
1340 pm8001_read_32(pi_virt);
1341 circularQ->producer_index =
1342 cpu_to_le32(producer_index);
1343 }
1344 } else
1345 return MPI_IO_STATUS_FAIL;
1346 }
1347 } while (circularQ->producer_index != circularQ->consumer_idx);
1348 /* while we don't have any more not-yet-delivered message */
1349 /* report empty */
1350 return MPI_IO_STATUS_BUSY;
1351}
1352
1353static void pm8001_work_queue(struct work_struct *work)
1354{
1355 struct delayed_work *dw = container_of(work, struct delayed_work, work);
1356 struct pm8001_wq *wq = container_of(dw, struct pm8001_wq, work_q);
1357 struct pm8001_device *pm8001_dev;
1358 struct domain_device *dev;
1359
1360 switch (wq->handler) {
1361 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
1362 pm8001_dev = wq->data;
1363 dev = pm8001_dev->sas_device;
1364 pm8001_I_T_nexus_reset(dev);
1365 break;
1366 case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY:
1367 pm8001_dev = wq->data;
1368 dev = pm8001_dev->sas_device;
1369 pm8001_I_T_nexus_reset(dev);
1370 break;
1371 case IO_DS_IN_ERROR:
1372 pm8001_dev = wq->data;
1373 dev = pm8001_dev->sas_device;
1374 pm8001_I_T_nexus_reset(dev);
1375 break;
1376 case IO_DS_NON_OPERATIONAL:
1377 pm8001_dev = wq->data;
1378 dev = pm8001_dev->sas_device;
1379 pm8001_I_T_nexus_reset(dev);
1380 break;
1381 }
1382 list_del(&wq->entry);
1383 kfree(wq);
1384}
1385
1386static int pm8001_handle_event(struct pm8001_hba_info *pm8001_ha, void *data,
1387 int handler)
1388{
1389 struct pm8001_wq *wq;
1390 int ret = 0;
1391
1392 wq = kmalloc(sizeof(struct pm8001_wq), GFP_ATOMIC);
1393 if (wq) {
1394 wq->pm8001_ha = pm8001_ha;
1395 wq->data = data;
1396 wq->handler = handler;
1397 INIT_DELAYED_WORK(&wq->work_q, pm8001_work_queue);
1398 list_add_tail(&wq->entry, &pm8001_ha->wq_list);
1399 schedule_delayed_work(&wq->work_q, 0);
1400 } else
1401 ret = -ENOMEM;
1402
1403 return ret;
1404}
1405
1406/**
1407 * mpi_ssp_completion- process the event that FW response to the SSP request.
1408 * @pm8001_ha: our hba card information
1409 * @piomb: the message contents of this outbound message.
1410 *
1411 * When FW has completed a ssp request for example a IO request, after it has
1412 * filled the SG data with the data, it will trigger this event represent
1413 * that he has finished the job,please check the coresponding buffer.
1414 * So we will tell the caller who maybe waiting the result to tell upper layer
1415 * that the task has been finished.
1416 */
1417static int
1418mpi_ssp_completion(struct pm8001_hba_info *pm8001_ha , void *piomb)
1419{
1420 struct sas_task *t;
1421 struct pm8001_ccb_info *ccb;
1422 unsigned long flags;
1423 u32 status;
1424 u32 param;
1425 u32 tag;
1426 struct ssp_completion_resp *psspPayload;
1427 struct task_status_struct *ts;
1428 struct ssp_response_iu *iu;
1429 struct pm8001_device *pm8001_dev;
1430 psspPayload = (struct ssp_completion_resp *)(piomb + 4);
1431 status = le32_to_cpu(psspPayload->status);
1432 tag = le32_to_cpu(psspPayload->tag);
1433 ccb = &pm8001_ha->ccb_info[tag];
1434 pm8001_dev = ccb->device;
1435 param = le32_to_cpu(psspPayload->param);
1436
1437 PM8001_IO_DBG(pm8001_ha, pm8001_printk("OPC_OUB_SSP_COMP\n"));
1438 t = ccb->task;
1439
1440 if (status)
1441 PM8001_FAIL_DBG(pm8001_ha,
1442 pm8001_printk("sas IO status 0x%x\n", status));
1443 if (unlikely(!t || !t->lldd_task || !t->dev))
1444 return -1;
1445 ts = &t->task_status;
1446 switch (status) {
1447 case IO_SUCCESS:
1448 PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS"
1449 ",param = %d \n", param));
1450 if (param == 0) {
1451 ts->resp = SAS_TASK_COMPLETE;
1452 ts->stat = SAM_GOOD;
1453 } else {
1454 ts->resp = SAS_TASK_COMPLETE;
1455 ts->stat = SAS_PROTO_RESPONSE;
1456 ts->residual = param;
1457 iu = &psspPayload->ssp_resp_iu;
1458 sas_ssp_task_response(pm8001_ha->dev, t, iu);
1459 }
1460 if (pm8001_dev)
1461 pm8001_dev->running_req--;
1462 break;
1463 case IO_ABORTED:
1464 PM8001_IO_DBG(pm8001_ha,
1465 pm8001_printk("IO_ABORTED IOMB Tag \n"));
1466 ts->resp = SAS_TASK_COMPLETE;
1467 ts->stat = SAS_ABORTED_TASK;
1468 break;
1469 case IO_UNDERFLOW:
1470 /* SSP Completion with error */
1471 PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW"
1472 ",param = %d \n", param));
1473 ts->resp = SAS_TASK_COMPLETE;
1474 ts->stat = SAS_DATA_UNDERRUN;
1475 ts->residual = param;
1476 if (pm8001_dev)
1477 pm8001_dev->running_req--;
1478 break;
1479 case IO_NO_DEVICE:
1480 PM8001_IO_DBG(pm8001_ha,
1481 pm8001_printk("IO_NO_DEVICE\n"));
1482 ts->resp = SAS_TASK_UNDELIVERED;
1483 ts->stat = SAS_PHY_DOWN;
1484 break;
1485 case IO_XFER_ERROR_BREAK:
1486 PM8001_IO_DBG(pm8001_ha,
1487 pm8001_printk("IO_XFER_ERROR_BREAK\n"));
1488 ts->resp = SAS_TASK_COMPLETE;
1489 ts->stat = SAS_OPEN_REJECT;
1490 break;
1491 case IO_XFER_ERROR_PHY_NOT_READY:
1492 PM8001_IO_DBG(pm8001_ha,
1493 pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n"));
1494 ts->resp = SAS_TASK_COMPLETE;
1495 ts->stat = SAS_OPEN_REJECT;
1496 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
1497 break;
1498 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
1499 PM8001_IO_DBG(pm8001_ha,
1500 pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"));
1501 ts->resp = SAS_TASK_COMPLETE;
1502 ts->stat = SAS_OPEN_REJECT;
1503 ts->open_rej_reason = SAS_OREJ_EPROTO;
1504 break;
1505 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
1506 PM8001_IO_DBG(pm8001_ha,
1507 pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"));
1508 ts->resp = SAS_TASK_COMPLETE;
1509 ts->stat = SAS_OPEN_REJECT;
1510 ts->open_rej_reason = SAS_OREJ_UNKNOWN;
1511 break;
1512 case IO_OPEN_CNX_ERROR_BREAK:
1513 PM8001_IO_DBG(pm8001_ha,
1514 pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n"));
1515 ts->resp = SAS_TASK_COMPLETE;
1516 ts->stat = SAS_OPEN_REJECT;
1517 ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
1518 break;
1519 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
1520 PM8001_IO_DBG(pm8001_ha,
1521 pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"));
1522 ts->resp = SAS_TASK_COMPLETE;
1523 ts->stat = SAS_OPEN_REJECT;
1524 ts->open_rej_reason = SAS_OREJ_UNKNOWN;
1525 if (!t->uldd_task)
1526 pm8001_handle_event(pm8001_ha,
1527 pm8001_dev,
1528 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
1529 break;
1530 case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
1531 PM8001_IO_DBG(pm8001_ha,
1532 pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"));
1533 ts->resp = SAS_TASK_COMPLETE;
1534 ts->stat = SAS_OPEN_REJECT;
1535 ts->open_rej_reason = SAS_OREJ_BAD_DEST;
1536 break;
1537 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
1538 PM8001_IO_DBG(pm8001_ha,
1539 pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_"
1540 "NOT_SUPPORTED\n"));
1541 ts->resp = SAS_TASK_COMPLETE;
1542 ts->stat = SAS_OPEN_REJECT;
1543 ts->open_rej_reason = SAS_OREJ_CONN_RATE;
1544 break;
1545 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
1546 PM8001_IO_DBG(pm8001_ha,
1547 pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"));
1548 ts->resp = SAS_TASK_UNDELIVERED;
1549 ts->stat = SAS_OPEN_REJECT;
1550 ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
1551 break;
1552 case IO_XFER_ERROR_NAK_RECEIVED:
1553 PM8001_IO_DBG(pm8001_ha,
1554 pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n"));
1555 ts->resp = SAS_TASK_COMPLETE;
1556 ts->stat = SAS_OPEN_REJECT;
1557 break;
1558 case IO_XFER_ERROR_ACK_NAK_TIMEOUT:
1559 PM8001_IO_DBG(pm8001_ha,
1560 pm8001_printk("IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"));
1561 ts->resp = SAS_TASK_COMPLETE;
1562 ts->stat = SAS_NAK_R_ERR;
1563 break;
1564 case IO_XFER_ERROR_DMA:
1565 PM8001_IO_DBG(pm8001_ha,
1566 pm8001_printk("IO_XFER_ERROR_DMA\n"));
1567 ts->resp = SAS_TASK_COMPLETE;
1568 ts->stat = SAS_OPEN_REJECT;
1569 break;
1570 case IO_XFER_OPEN_RETRY_TIMEOUT:
1571 PM8001_IO_DBG(pm8001_ha,
1572 pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n"));
1573 ts->resp = SAS_TASK_COMPLETE;
1574 ts->stat = SAS_OPEN_REJECT;
1575 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
1576 break;
1577 case IO_XFER_ERROR_OFFSET_MISMATCH:
1578 PM8001_IO_DBG(pm8001_ha,
1579 pm8001_printk("IO_XFER_ERROR_OFFSET_MISMATCH\n"));
1580 ts->resp = SAS_TASK_COMPLETE;
1581 ts->stat = SAS_OPEN_REJECT;
1582 break;
1583 case IO_PORT_IN_RESET:
1584 PM8001_IO_DBG(pm8001_ha,
1585 pm8001_printk("IO_PORT_IN_RESET\n"));
1586 ts->resp = SAS_TASK_COMPLETE;
1587 ts->stat = SAS_OPEN_REJECT;
1588 break;
1589 case IO_DS_NON_OPERATIONAL:
1590 PM8001_IO_DBG(pm8001_ha,
1591 pm8001_printk("IO_DS_NON_OPERATIONAL\n"));
1592 ts->resp = SAS_TASK_COMPLETE;
1593 ts->stat = SAS_OPEN_REJECT;
1594 if (!t->uldd_task)
1595 pm8001_handle_event(pm8001_ha,
1596 pm8001_dev,
1597 IO_DS_NON_OPERATIONAL);
1598 break;
1599 case IO_DS_IN_RECOVERY:
1600 PM8001_IO_DBG(pm8001_ha,
1601 pm8001_printk("IO_DS_IN_RECOVERY\n"));
1602 ts->resp = SAS_TASK_COMPLETE;
1603 ts->stat = SAS_OPEN_REJECT;
1604 break;
1605 case IO_TM_TAG_NOT_FOUND:
1606 PM8001_IO_DBG(pm8001_ha,
1607 pm8001_printk("IO_TM_TAG_NOT_FOUND\n"));
1608 ts->resp = SAS_TASK_COMPLETE;
1609 ts->stat = SAS_OPEN_REJECT;
1610 break;
1611 case IO_SSP_EXT_IU_ZERO_LEN_ERROR:
1612 PM8001_IO_DBG(pm8001_ha,
1613 pm8001_printk("IO_SSP_EXT_IU_ZERO_LEN_ERROR\n"));
1614 ts->resp = SAS_TASK_COMPLETE;
1615 ts->stat = SAS_OPEN_REJECT;
1616 break;
1617 case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY:
1618 PM8001_IO_DBG(pm8001_ha,
1619 pm8001_printk("IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"));
1620 ts->resp = SAS_TASK_COMPLETE;
1621 ts->stat = SAS_OPEN_REJECT;
1622 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
1623 default:
1624 PM8001_IO_DBG(pm8001_ha,
1625 pm8001_printk("Unknown status 0x%x\n", status));
1626 /* not allowed case. Therefore, return failed status */
1627 ts->resp = SAS_TASK_COMPLETE;
1628 ts->stat = SAS_OPEN_REJECT;
1629 break;
1630 }
1631 PM8001_IO_DBG(pm8001_ha,
1632 pm8001_printk("scsi_satus = %x \n ",
1633 psspPayload->ssp_resp_iu.status));
1634 spin_lock_irqsave(&t->task_state_lock, flags);
1635 t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
1636 t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
1637 t->task_state_flags |= SAS_TASK_STATE_DONE;
1638 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
1639 spin_unlock_irqrestore(&t->task_state_lock, flags);
1640 PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("task 0x%p done with"
1641 " io_status 0x%x resp 0x%x "
1642 "stat 0x%x but aborted by upper layer!\n",
1643 t, status, ts->resp, ts->stat));
1644 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
1645 } else {
1646 spin_unlock_irqrestore(&t->task_state_lock, flags);
1647 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
1648 mb();/* in order to force CPU ordering */
1649 t->task_done(t);
1650 }
1651 return 0;
1652}
1653
1654/*See the comments for mpi_ssp_completion */
1655static int mpi_ssp_event(struct pm8001_hba_info *pm8001_ha , void *piomb)
1656{
1657 struct sas_task *t;
1658 unsigned long flags;
1659 struct task_status_struct *ts;
1660 struct pm8001_ccb_info *ccb;
1661 struct pm8001_device *pm8001_dev;
1662 struct ssp_event_resp *psspPayload =
1663 (struct ssp_event_resp *)(piomb + 4);
1664 u32 event = le32_to_cpu(psspPayload->event);
1665 u32 tag = le32_to_cpu(psspPayload->tag);
1666 u32 port_id = le32_to_cpu(psspPayload->port_id);
1667 u32 dev_id = le32_to_cpu(psspPayload->device_id);
1668
1669 ccb = &pm8001_ha->ccb_info[tag];
1670 t = ccb->task;
1671 pm8001_dev = ccb->device;
1672 if (event)
1673 PM8001_FAIL_DBG(pm8001_ha,
1674 pm8001_printk("sas IO status 0x%x\n", event));
1675 if (unlikely(!t || !t->lldd_task || !t->dev))
1676 return -1;
1677 ts = &t->task_status;
1678 PM8001_IO_DBG(pm8001_ha,
1679 pm8001_printk("port_id = %x,device_id = %x\n",
1680 port_id, dev_id));
1681 switch (event) {
1682 case IO_OVERFLOW:
1683 PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW\n");)
1684 ts->resp = SAS_TASK_COMPLETE;
1685 ts->stat = SAS_DATA_OVERRUN;
1686 ts->residual = 0;
1687 if (pm8001_dev)
1688 pm8001_dev->running_req--;
1689 break;
1690 case IO_XFER_ERROR_BREAK:
1691 PM8001_IO_DBG(pm8001_ha,
1692 pm8001_printk("IO_XFER_ERROR_BREAK\n"));
1693 ts->resp = SAS_TASK_COMPLETE;
1694 ts->stat = SAS_INTERRUPTED;
1695 break;
1696 case IO_XFER_ERROR_PHY_NOT_READY:
1697 PM8001_IO_DBG(pm8001_ha,
1698 pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n"));
1699 ts->resp = SAS_TASK_COMPLETE;
1700 ts->stat = SAS_OPEN_REJECT;
1701 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
1702 break;
1703 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
1704 PM8001_IO_DBG(pm8001_ha,
1705 pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT"
1706 "_SUPPORTED\n"));
1707 ts->resp = SAS_TASK_COMPLETE;
1708 ts->stat = SAS_OPEN_REJECT;
1709 ts->open_rej_reason = SAS_OREJ_EPROTO;
1710 break;
1711 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
1712 PM8001_IO_DBG(pm8001_ha,
1713 pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"));
1714 ts->resp = SAS_TASK_COMPLETE;
1715 ts->stat = SAS_OPEN_REJECT;
1716 ts->open_rej_reason = SAS_OREJ_UNKNOWN;
1717 break;
1718 case IO_OPEN_CNX_ERROR_BREAK:
1719 PM8001_IO_DBG(pm8001_ha,
1720 pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n"));
1721 ts->resp = SAS_TASK_COMPLETE;
1722 ts->stat = SAS_OPEN_REJECT;
1723 ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
1724 break;
1725 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
1726 PM8001_IO_DBG(pm8001_ha,
1727 pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"));
1728 ts->resp = SAS_TASK_COMPLETE;
1729 ts->stat = SAS_OPEN_REJECT;
1730 ts->open_rej_reason = SAS_OREJ_UNKNOWN;
1731 if (!t->uldd_task)
1732 pm8001_handle_event(pm8001_ha,
1733 pm8001_dev,
1734 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
1735 break;
1736 case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
1737 PM8001_IO_DBG(pm8001_ha,
1738 pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"));
1739 ts->resp = SAS_TASK_COMPLETE;
1740 ts->stat = SAS_OPEN_REJECT;
1741 ts->open_rej_reason = SAS_OREJ_BAD_DEST;
1742 break;
1743 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
1744 PM8001_IO_DBG(pm8001_ha,
1745 pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_"
1746 "NOT_SUPPORTED\n"));
1747 ts->resp = SAS_TASK_COMPLETE;
1748 ts->stat = SAS_OPEN_REJECT;
1749 ts->open_rej_reason = SAS_OREJ_CONN_RATE;
1750 break;
1751 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
1752 PM8001_IO_DBG(pm8001_ha,
1753 pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"));
1754 ts->resp = SAS_TASK_COMPLETE;
1755 ts->stat = SAS_OPEN_REJECT;
1756 ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
1757 break;
1758 case IO_XFER_ERROR_NAK_RECEIVED:
1759 PM8001_IO_DBG(pm8001_ha,
1760 pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n"));
1761 ts->resp = SAS_TASK_COMPLETE;
1762 ts->stat = SAS_OPEN_REJECT;
1763 break;
1764 case IO_XFER_ERROR_ACK_NAK_TIMEOUT:
1765 PM8001_IO_DBG(pm8001_ha,
1766 pm8001_printk("IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"));
1767 ts->resp = SAS_TASK_COMPLETE;
1768 ts->stat = SAS_NAK_R_ERR;
1769 break;
1770 case IO_XFER_OPEN_RETRY_TIMEOUT:
1771 PM8001_IO_DBG(pm8001_ha,
1772 pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n"));
1773 ts->resp = SAS_TASK_COMPLETE;
1774 ts->stat = SAS_OPEN_REJECT;
1775 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
1776 break;
1777 case IO_XFER_ERROR_UNEXPECTED_PHASE:
1778 PM8001_IO_DBG(pm8001_ha,
1779 pm8001_printk("IO_XFER_ERROR_UNEXPECTED_PHASE\n"));
1780 ts->resp = SAS_TASK_COMPLETE;
1781 ts->stat = SAS_DATA_OVERRUN;
1782 break;
1783 case IO_XFER_ERROR_XFER_RDY_OVERRUN:
1784 PM8001_IO_DBG(pm8001_ha,
1785 pm8001_printk("IO_XFER_ERROR_XFER_RDY_OVERRUN\n"));
1786 ts->resp = SAS_TASK_COMPLETE;
1787 ts->stat = SAS_DATA_OVERRUN;
1788 break;
1789 case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED:
1790 PM8001_IO_DBG(pm8001_ha,
1791 pm8001_printk("IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n"));
1792 ts->resp = SAS_TASK_COMPLETE;
1793 ts->stat = SAS_DATA_OVERRUN;
1794 break;
1795 case IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT:
1796 PM8001_IO_DBG(pm8001_ha,
1797 pm8001_printk("IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT\n"));
1798 ts->resp = SAS_TASK_COMPLETE;
1799 ts->stat = SAS_DATA_OVERRUN;
1800 break;
1801 case IO_XFER_ERROR_OFFSET_MISMATCH:
1802 PM8001_IO_DBG(pm8001_ha,
1803 pm8001_printk("IO_XFER_ERROR_OFFSET_MISMATCH\n"));
1804 ts->resp = SAS_TASK_COMPLETE;
1805 ts->stat = SAS_DATA_OVERRUN;
1806 break;
1807 case IO_XFER_ERROR_XFER_ZERO_DATA_LEN:
1808 PM8001_IO_DBG(pm8001_ha,
1809 pm8001_printk("IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n"));
1810 ts->resp = SAS_TASK_COMPLETE;
1811 ts->stat = SAS_DATA_OVERRUN;
1812 break;
1813 case IO_XFER_CMD_FRAME_ISSUED:
1814 PM8001_IO_DBG(pm8001_ha,
1815 pm8001_printk(" IO_XFER_CMD_FRAME_ISSUED\n"));
1816 return 0;
1817 default:
1818 PM8001_IO_DBG(pm8001_ha,
1819 pm8001_printk("Unknown status 0x%x\n", event));
1820 /* not allowed case. Therefore, return failed status */
1821 ts->resp = SAS_TASK_COMPLETE;
1822 ts->stat = SAS_DATA_OVERRUN;
1823 break;
1824 }
1825 spin_lock_irqsave(&t->task_state_lock, flags);
1826 t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
1827 t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
1828 t->task_state_flags |= SAS_TASK_STATE_DONE;
1829 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
1830 spin_unlock_irqrestore(&t->task_state_lock, flags);
1831 PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("task 0x%p done with"
1832 " event 0x%x resp 0x%x "
1833 "stat 0x%x but aborted by upper layer!\n",
1834 t, event, ts->resp, ts->stat));
1835 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
1836 } else {
1837 spin_unlock_irqrestore(&t->task_state_lock, flags);
1838 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
1839 mb();/* in order to force CPU ordering */
1840 t->task_done(t);
1841 }
1842 return 0;
1843}
1844
1845/*See the comments for mpi_ssp_completion */
1846static int
1847mpi_sata_completion(struct pm8001_hba_info *pm8001_ha, void *piomb)
1848{
1849 struct sas_task *t;
1850 struct pm8001_ccb_info *ccb;
1851 unsigned long flags;
1852 u32 param;
1853 u32 status;
1854 u32 tag;
1855 struct sata_completion_resp *psataPayload;
1856 struct task_status_struct *ts;
1857 struct ata_task_resp *resp ;
1858 u32 *sata_resp;
1859 struct pm8001_device *pm8001_dev;
1860
1861 psataPayload = (struct sata_completion_resp *)(piomb + 4);
1862 status = le32_to_cpu(psataPayload->status);
1863 tag = le32_to_cpu(psataPayload->tag);
1864
1865 ccb = &pm8001_ha->ccb_info[tag];
1866 param = le32_to_cpu(psataPayload->param);
1867 t = ccb->task;
1868 ts = &t->task_status;
1869 pm8001_dev = ccb->device;
1870 if (status)
1871 PM8001_FAIL_DBG(pm8001_ha,
1872 pm8001_printk("sata IO status 0x%x\n", status));
1873 if (unlikely(!t || !t->lldd_task || !t->dev))
1874 return -1;
1875
1876 switch (status) {
1877 case IO_SUCCESS:
1878 PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS\n"));
1879 if (param == 0) {
1880 ts->resp = SAS_TASK_COMPLETE;
1881 ts->stat = SAM_GOOD;
1882 } else {
1883 u8 len;
1884 ts->resp = SAS_TASK_COMPLETE;
1885 ts->stat = SAS_PROTO_RESPONSE;
1886 ts->residual = param;
1887 PM8001_IO_DBG(pm8001_ha,
1888 pm8001_printk("SAS_PROTO_RESPONSE len = %d\n",
1889 param));
1890 sata_resp = &psataPayload->sata_resp[0];
1891 resp = (struct ata_task_resp *)ts->buf;
1892 if (t->ata_task.dma_xfer == 0 &&
1893 t->data_dir == PCI_DMA_FROMDEVICE) {
1894 len = sizeof(struct pio_setup_fis);
1895 PM8001_IO_DBG(pm8001_ha,
1896 pm8001_printk("PIO read len = %d\n", len));
1897 } else if (t->ata_task.use_ncq) {
1898 len = sizeof(struct set_dev_bits_fis);
1899 PM8001_IO_DBG(pm8001_ha,
1900 pm8001_printk("FPDMA len = %d\n", len));
1901 } else {
1902 len = sizeof(struct dev_to_host_fis);
1903 PM8001_IO_DBG(pm8001_ha,
1904 pm8001_printk("other len = %d\n", len));
1905 }
1906 if (SAS_STATUS_BUF_SIZE >= sizeof(*resp)) {
1907 resp->frame_len = len;
1908 memcpy(&resp->ending_fis[0], sata_resp, len);
1909 ts->buf_valid_size = sizeof(*resp);
1910 } else
1911 PM8001_IO_DBG(pm8001_ha,
1912 pm8001_printk("response to large \n"));
1913 }
1914 if (pm8001_dev)
1915 pm8001_dev->running_req--;
1916 break;
1917 case IO_ABORTED:
1918 PM8001_IO_DBG(pm8001_ha,
1919 pm8001_printk("IO_ABORTED IOMB Tag \n"));
1920 ts->resp = SAS_TASK_COMPLETE;
1921 ts->stat = SAS_ABORTED_TASK;
1922 if (pm8001_dev)
1923 pm8001_dev->running_req--;
1924 break;
1925 /* following cases are to do cases */
1926 case IO_UNDERFLOW:
1927 /* SATA Completion with error */
1928 PM8001_IO_DBG(pm8001_ha,
1929 pm8001_printk("IO_UNDERFLOW param = %d\n", param));
1930 ts->resp = SAS_TASK_COMPLETE;
1931 ts->stat = SAS_DATA_UNDERRUN;
1932 ts->residual = param;
1933 if (pm8001_dev)
1934 pm8001_dev->running_req--;
1935 break;
1936 case IO_NO_DEVICE:
1937 PM8001_IO_DBG(pm8001_ha,
1938 pm8001_printk("IO_NO_DEVICE\n"));
1939 ts->resp = SAS_TASK_UNDELIVERED;
1940 ts->stat = SAS_PHY_DOWN;
1941 break;
1942 case IO_XFER_ERROR_BREAK:
1943 PM8001_IO_DBG(pm8001_ha,
1944 pm8001_printk("IO_XFER_ERROR_BREAK\n"));
1945 ts->resp = SAS_TASK_COMPLETE;
1946 ts->stat = SAS_INTERRUPTED;
1947 break;
1948 case IO_XFER_ERROR_PHY_NOT_READY:
1949 PM8001_IO_DBG(pm8001_ha,
1950 pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n"));
1951 ts->resp = SAS_TASK_COMPLETE;
1952 ts->stat = SAS_OPEN_REJECT;
1953 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
1954 break;
1955 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
1956 PM8001_IO_DBG(pm8001_ha,
1957 pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT"
1958 "_SUPPORTED\n"));
1959 ts->resp = SAS_TASK_COMPLETE;
1960 ts->stat = SAS_OPEN_REJECT;
1961 ts->open_rej_reason = SAS_OREJ_EPROTO;
1962 break;
1963 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
1964 PM8001_IO_DBG(pm8001_ha,
1965 pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"));
1966 ts->resp = SAS_TASK_COMPLETE;
1967 ts->stat = SAS_OPEN_REJECT;
1968 ts->open_rej_reason = SAS_OREJ_UNKNOWN;
1969 break;
1970 case IO_OPEN_CNX_ERROR_BREAK:
1971 PM8001_IO_DBG(pm8001_ha,
1972 pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n"));
1973 ts->resp = SAS_TASK_COMPLETE;
1974 ts->stat = SAS_OPEN_REJECT;
1975 ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
1976 break;
1977 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
1978 PM8001_IO_DBG(pm8001_ha,
1979 pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"));
1980 ts->resp = SAS_TASK_COMPLETE;
1981 ts->stat = SAS_DEV_NO_RESPONSE;
1982 if (!t->uldd_task) {
1983 pm8001_handle_event(pm8001_ha,
1984 pm8001_dev,
1985 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
1986 ts->resp = SAS_TASK_UNDELIVERED;
1987 ts->stat = SAS_QUEUE_FULL;
1988 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
1989 mb();/*in order to force CPU ordering*/
1990 t->task_done(t);
1991 return 0;
1992 }
1993 break;
1994 case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
1995 PM8001_IO_DBG(pm8001_ha,
1996 pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"));
1997 ts->resp = SAS_TASK_UNDELIVERED;
1998 ts->stat = SAS_OPEN_REJECT;
1999 ts->open_rej_reason = SAS_OREJ_BAD_DEST;
2000 if (!t->uldd_task) {
2001 pm8001_handle_event(pm8001_ha,
2002 pm8001_dev,
2003 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
2004 ts->resp = SAS_TASK_UNDELIVERED;
2005 ts->stat = SAS_QUEUE_FULL;
2006 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
2007 mb();/*ditto*/
2008 t->task_done(t);
2009 return 0;
2010 }
2011 break;
2012 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
2013 PM8001_IO_DBG(pm8001_ha,
2014 pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_"
2015 "NOT_SUPPORTED\n"));
2016 ts->resp = SAS_TASK_COMPLETE;
2017 ts->stat = SAS_OPEN_REJECT;
2018 ts->open_rej_reason = SAS_OREJ_CONN_RATE;
2019 break;
2020 case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY:
2021 PM8001_IO_DBG(pm8001_ha,
2022 pm8001_printk("IO_OPEN_CNX_ERROR_STP_RESOURCES"
2023 "_BUSY\n"));
2024 ts->resp = SAS_TASK_COMPLETE;
2025 ts->stat = SAS_DEV_NO_RESPONSE;
2026 if (!t->uldd_task) {
2027 pm8001_handle_event(pm8001_ha,
2028 pm8001_dev,
2029 IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY);
2030 ts->resp = SAS_TASK_UNDELIVERED;
2031 ts->stat = SAS_QUEUE_FULL;
2032 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
2033 mb();/* ditto*/
2034 t->task_done(t);
2035 return 0;
2036 }
2037 break;
2038 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
2039 PM8001_IO_DBG(pm8001_ha,
2040 pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"));
2041 ts->resp = SAS_TASK_COMPLETE;
2042 ts->stat = SAS_OPEN_REJECT;
2043 ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
2044 break;
2045 case IO_XFER_ERROR_NAK_RECEIVED:
2046 PM8001_IO_DBG(pm8001_ha,
2047 pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n"));
2048 ts->resp = SAS_TASK_COMPLETE;
2049 ts->stat = SAS_NAK_R_ERR;
2050 break;
2051 case IO_XFER_ERROR_ACK_NAK_TIMEOUT:
2052 PM8001_IO_DBG(pm8001_ha,
2053 pm8001_printk("IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"));
2054 ts->resp = SAS_TASK_COMPLETE;
2055 ts->stat = SAS_NAK_R_ERR;
2056 break;
2057 case IO_XFER_ERROR_DMA:
2058 PM8001_IO_DBG(pm8001_ha,
2059 pm8001_printk("IO_XFER_ERROR_DMA\n"));
2060 ts->resp = SAS_TASK_COMPLETE;
2061 ts->stat = SAS_ABORTED_TASK;
2062 break;
2063 case IO_XFER_ERROR_SATA_LINK_TIMEOUT:
2064 PM8001_IO_DBG(pm8001_ha,
2065 pm8001_printk("IO_XFER_ERROR_SATA_LINK_TIMEOUT\n"));
2066 ts->resp = SAS_TASK_UNDELIVERED;
2067 ts->stat = SAS_DEV_NO_RESPONSE;
2068 break;
2069 case IO_XFER_ERROR_REJECTED_NCQ_MODE:
2070 PM8001_IO_DBG(pm8001_ha,
2071 pm8001_printk("IO_XFER_ERROR_REJECTED_NCQ_MODE\n"));
2072 ts->resp = SAS_TASK_COMPLETE;
2073 ts->stat = SAS_DATA_UNDERRUN;
2074 break;
2075 case IO_XFER_OPEN_RETRY_TIMEOUT:
2076 PM8001_IO_DBG(pm8001_ha,
2077 pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n"));
2078 ts->resp = SAS_TASK_COMPLETE;
2079 ts->stat = SAS_OPEN_TO;
2080 break;
2081 case IO_PORT_IN_RESET:
2082 PM8001_IO_DBG(pm8001_ha,
2083 pm8001_printk("IO_PORT_IN_RESET\n"));
2084 ts->resp = SAS_TASK_COMPLETE;
2085 ts->stat = SAS_DEV_NO_RESPONSE;
2086 break;
2087 case IO_DS_NON_OPERATIONAL:
2088 PM8001_IO_DBG(pm8001_ha,
2089 pm8001_printk("IO_DS_NON_OPERATIONAL\n"));
2090 ts->resp = SAS_TASK_COMPLETE;
2091 ts->stat = SAS_DEV_NO_RESPONSE;
2092 if (!t->uldd_task) {
2093 pm8001_handle_event(pm8001_ha, pm8001_dev,
2094 IO_DS_NON_OPERATIONAL);
2095 ts->resp = SAS_TASK_UNDELIVERED;
2096 ts->stat = SAS_QUEUE_FULL;
2097 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
2098 mb();/*ditto*/
2099 t->task_done(t);
2100 return 0;
2101 }
2102 break;
2103 case IO_DS_IN_RECOVERY:
2104 PM8001_IO_DBG(pm8001_ha,
2105 pm8001_printk(" IO_DS_IN_RECOVERY\n"));
2106 ts->resp = SAS_TASK_COMPLETE;
2107 ts->stat = SAS_DEV_NO_RESPONSE;
2108 break;
2109 case IO_DS_IN_ERROR:
2110 PM8001_IO_DBG(pm8001_ha,
2111 pm8001_printk("IO_DS_IN_ERROR\n"));
2112 ts->resp = SAS_TASK_COMPLETE;
2113 ts->stat = SAS_DEV_NO_RESPONSE;
2114 if (!t->uldd_task) {
2115 pm8001_handle_event(pm8001_ha, pm8001_dev,
2116 IO_DS_IN_ERROR);
2117 ts->resp = SAS_TASK_UNDELIVERED;
2118 ts->stat = SAS_QUEUE_FULL;
2119 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
2120 mb();/*ditto*/
2121 t->task_done(t);
2122 return 0;
2123 }
2124 break;
2125 case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY:
2126 PM8001_IO_DBG(pm8001_ha,
2127 pm8001_printk("IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"));
2128 ts->resp = SAS_TASK_COMPLETE;
2129 ts->stat = SAS_OPEN_REJECT;
2130 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
2131 default:
2132 PM8001_IO_DBG(pm8001_ha,
2133 pm8001_printk("Unknown status 0x%x\n", status));
2134 /* not allowed case. Therefore, return failed status */
2135 ts->resp = SAS_TASK_COMPLETE;
2136 ts->stat = SAS_DEV_NO_RESPONSE;
2137 break;
2138 }
2139 spin_lock_irqsave(&t->task_state_lock, flags);
2140 t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
2141 t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
2142 t->task_state_flags |= SAS_TASK_STATE_DONE;
2143 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
2144 spin_unlock_irqrestore(&t->task_state_lock, flags);
2145 PM8001_FAIL_DBG(pm8001_ha,
2146 pm8001_printk("task 0x%p done with io_status 0x%x"
2147 " resp 0x%x stat 0x%x but aborted by upper layer!\n",
2148 t, status, ts->resp, ts->stat));
2149 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
2150 } else {
2151 spin_unlock_irqrestore(&t->task_state_lock, flags);
2152 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
2153 mb();/* ditto */
2154 t->task_done(t);
2155 }
2156 return 0;
2157}
2158
2159/*See the comments for mpi_ssp_completion */
2160static int mpi_sata_event(struct pm8001_hba_info *pm8001_ha , void *piomb)
2161{
2162 struct sas_task *t;
2163 unsigned long flags;
2164 struct task_status_struct *ts;
2165 struct pm8001_ccb_info *ccb;
2166 struct pm8001_device *pm8001_dev;
2167 struct sata_event_resp *psataPayload =
2168 (struct sata_event_resp *)(piomb + 4);
2169 u32 event = le32_to_cpu(psataPayload->event);
2170 u32 tag = le32_to_cpu(psataPayload->tag);
2171 u32 port_id = le32_to_cpu(psataPayload->port_id);
2172 u32 dev_id = le32_to_cpu(psataPayload->device_id);
2173
2174 ccb = &pm8001_ha->ccb_info[tag];
2175 t = ccb->task;
2176 pm8001_dev = ccb->device;
2177 if (event)
2178 PM8001_FAIL_DBG(pm8001_ha,
2179 pm8001_printk("sata IO status 0x%x\n", event));
2180 if (unlikely(!t || !t->lldd_task || !t->dev))
2181 return -1;
2182 ts = &t->task_status;
2183 PM8001_IO_DBG(pm8001_ha,
2184 pm8001_printk("port_id = %x,device_id = %x\n",
2185 port_id, dev_id));
2186 switch (event) {
2187 case IO_OVERFLOW:
2188 PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW\n"));
2189 ts->resp = SAS_TASK_COMPLETE;
2190 ts->stat = SAS_DATA_OVERRUN;
2191 ts->residual = 0;
2192 if (pm8001_dev)
2193 pm8001_dev->running_req--;
2194 break;
2195 case IO_XFER_ERROR_BREAK:
2196 PM8001_IO_DBG(pm8001_ha,
2197 pm8001_printk("IO_XFER_ERROR_BREAK\n"));
2198 ts->resp = SAS_TASK_COMPLETE;
2199 ts->stat = SAS_INTERRUPTED;
2200 break;
2201 case IO_XFER_ERROR_PHY_NOT_READY:
2202 PM8001_IO_DBG(pm8001_ha,
2203 pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n"));
2204 ts->resp = SAS_TASK_COMPLETE;
2205 ts->stat = SAS_OPEN_REJECT;
2206 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
2207 break;
2208 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
2209 PM8001_IO_DBG(pm8001_ha,
2210 pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT"
2211 "_SUPPORTED\n"));
2212 ts->resp = SAS_TASK_COMPLETE;
2213 ts->stat = SAS_OPEN_REJECT;
2214 ts->open_rej_reason = SAS_OREJ_EPROTO;
2215 break;
2216 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
2217 PM8001_IO_DBG(pm8001_ha,
2218 pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"));
2219 ts->resp = SAS_TASK_COMPLETE;
2220 ts->stat = SAS_OPEN_REJECT;
2221 ts->open_rej_reason = SAS_OREJ_UNKNOWN;
2222 break;
2223 case IO_OPEN_CNX_ERROR_BREAK:
2224 PM8001_IO_DBG(pm8001_ha,
2225 pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n"));
2226 ts->resp = SAS_TASK_COMPLETE;
2227 ts->stat = SAS_OPEN_REJECT;
2228 ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
2229 break;
2230 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
2231 PM8001_IO_DBG(pm8001_ha,
2232 pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"));
2233 ts->resp = SAS_TASK_UNDELIVERED;
2234 ts->stat = SAS_DEV_NO_RESPONSE;
2235 if (!t->uldd_task) {
2236 pm8001_handle_event(pm8001_ha,
2237 pm8001_dev,
2238 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
2239 ts->resp = SAS_TASK_COMPLETE;
2240 ts->stat = SAS_QUEUE_FULL;
2241 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
2242 mb();/*ditto*/
2243 t->task_done(t);
2244 return 0;
2245 }
2246 break;
2247 case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
2248 PM8001_IO_DBG(pm8001_ha,
2249 pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"));
2250 ts->resp = SAS_TASK_UNDELIVERED;
2251 ts->stat = SAS_OPEN_REJECT;
2252 ts->open_rej_reason = SAS_OREJ_BAD_DEST;
2253 break;
2254 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
2255 PM8001_IO_DBG(pm8001_ha,
2256 pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_"
2257 "NOT_SUPPORTED\n"));
2258 ts->resp = SAS_TASK_COMPLETE;
2259 ts->stat = SAS_OPEN_REJECT;
2260 ts->open_rej_reason = SAS_OREJ_CONN_RATE;
2261 break;
2262 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
2263 PM8001_IO_DBG(pm8001_ha,
2264 pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"));
2265 ts->resp = SAS_TASK_COMPLETE;
2266 ts->stat = SAS_OPEN_REJECT;
2267 ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
2268 break;
2269 case IO_XFER_ERROR_NAK_RECEIVED:
2270 PM8001_IO_DBG(pm8001_ha,
2271 pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n"));
2272 ts->resp = SAS_TASK_COMPLETE;
2273 ts->stat = SAS_NAK_R_ERR;
2274 break;
2275 case IO_XFER_ERROR_PEER_ABORTED:
2276 PM8001_IO_DBG(pm8001_ha,
2277 pm8001_printk("IO_XFER_ERROR_PEER_ABORTED\n"));
2278 ts->resp = SAS_TASK_COMPLETE;
2279 ts->stat = SAS_NAK_R_ERR;
2280 break;
2281 case IO_XFER_ERROR_REJECTED_NCQ_MODE:
2282 PM8001_IO_DBG(pm8001_ha,
2283 pm8001_printk("IO_XFER_ERROR_REJECTED_NCQ_MODE\n"));
2284 ts->resp = SAS_TASK_COMPLETE;
2285 ts->stat = SAS_DATA_UNDERRUN;
2286 break;
2287 case IO_XFER_OPEN_RETRY_TIMEOUT:
2288 PM8001_IO_DBG(pm8001_ha,
2289 pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n"));
2290 ts->resp = SAS_TASK_COMPLETE;
2291 ts->stat = SAS_OPEN_TO;
2292 break;
2293 case IO_XFER_ERROR_UNEXPECTED_PHASE:
2294 PM8001_IO_DBG(pm8001_ha,
2295 pm8001_printk("IO_XFER_ERROR_UNEXPECTED_PHASE\n"));
2296 ts->resp = SAS_TASK_COMPLETE;
2297 ts->stat = SAS_OPEN_TO;
2298 break;
2299 case IO_XFER_ERROR_XFER_RDY_OVERRUN:
2300 PM8001_IO_DBG(pm8001_ha,
2301 pm8001_printk("IO_XFER_ERROR_XFER_RDY_OVERRUN\n"));
2302 ts->resp = SAS_TASK_COMPLETE;
2303 ts->stat = SAS_OPEN_TO;
2304 break;
2305 case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED:
2306 PM8001_IO_DBG(pm8001_ha,
2307 pm8001_printk("IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n"));
2308 ts->resp = SAS_TASK_COMPLETE;
2309 ts->stat = SAS_OPEN_TO;
2310 break;
2311 case IO_XFER_ERROR_OFFSET_MISMATCH:
2312 PM8001_IO_DBG(pm8001_ha,
2313 pm8001_printk("IO_XFER_ERROR_OFFSET_MISMATCH\n"));
2314 ts->resp = SAS_TASK_COMPLETE;
2315 ts->stat = SAS_OPEN_TO;
2316 break;
2317 case IO_XFER_ERROR_XFER_ZERO_DATA_LEN:
2318 PM8001_IO_DBG(pm8001_ha,
2319 pm8001_printk("IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n"));
2320 ts->resp = SAS_TASK_COMPLETE;
2321 ts->stat = SAS_OPEN_TO;
2322 break;
2323 case IO_XFER_CMD_FRAME_ISSUED:
2324 PM8001_IO_DBG(pm8001_ha,
2325 pm8001_printk("IO_XFER_CMD_FRAME_ISSUED\n"));
2326 break;
2327 case IO_XFER_PIO_SETUP_ERROR:
2328 PM8001_IO_DBG(pm8001_ha,
2329 pm8001_printk("IO_XFER_PIO_SETUP_ERROR\n"));
2330 ts->resp = SAS_TASK_COMPLETE;
2331 ts->stat = SAS_OPEN_TO;
2332 break;
2333 default:
2334 PM8001_IO_DBG(pm8001_ha,
2335 pm8001_printk("Unknown status 0x%x\n", event));
2336 /* not allowed case. Therefore, return failed status */
2337 ts->resp = SAS_TASK_COMPLETE;
2338 ts->stat = SAS_OPEN_TO;
2339 break;
2340 }
2341 spin_lock_irqsave(&t->task_state_lock, flags);
2342 t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
2343 t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
2344 t->task_state_flags |= SAS_TASK_STATE_DONE;
2345 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
2346 spin_unlock_irqrestore(&t->task_state_lock, flags);
2347 PM8001_FAIL_DBG(pm8001_ha,
2348 pm8001_printk("task 0x%p done with io_status 0x%x"
2349 " resp 0x%x stat 0x%x but aborted by upper layer!\n",
2350 t, event, ts->resp, ts->stat));
2351 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
2352 } else {
2353 spin_unlock_irqrestore(&t->task_state_lock, flags);
2354 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
2355 mb();/* in order to force CPU ordering */
2356 t->task_done(t);
2357 }
2358 return 0;
2359}
2360
2361/*See the comments for mpi_ssp_completion */
2362static int
2363mpi_smp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb)
2364{
2365 u32 param;
2366 struct sas_task *t;
2367 struct pm8001_ccb_info *ccb;
2368 unsigned long flags;
2369 u32 status;
2370 u32 tag;
2371 struct smp_completion_resp *psmpPayload;
2372 struct task_status_struct *ts;
2373 struct pm8001_device *pm8001_dev;
2374
2375 psmpPayload = (struct smp_completion_resp *)(piomb + 4);
2376 status = le32_to_cpu(psmpPayload->status);
2377 tag = le32_to_cpu(psmpPayload->tag);
2378
2379 ccb = &pm8001_ha->ccb_info[tag];
2380 param = le32_to_cpu(psmpPayload->param);
2381 t = ccb->task;
2382 ts = &t->task_status;
2383 pm8001_dev = ccb->device;
2384 if (status)
2385 PM8001_FAIL_DBG(pm8001_ha,
2386 pm8001_printk("smp IO status 0x%x\n", status));
2387 if (unlikely(!t || !t->lldd_task || !t->dev))
2388 return -1;
2389
2390 switch (status) {
2391 case IO_SUCCESS:
2392 PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS\n"));
2393 ts->resp = SAS_TASK_COMPLETE;
2394 ts->stat = SAM_GOOD;
2395 if (pm8001_dev)
2396 pm8001_dev->running_req--;
2397 break;
2398 case IO_ABORTED:
2399 PM8001_IO_DBG(pm8001_ha,
2400 pm8001_printk("IO_ABORTED IOMB\n"));
2401 ts->resp = SAS_TASK_COMPLETE;
2402 ts->stat = SAS_ABORTED_TASK;
2403 if (pm8001_dev)
2404 pm8001_dev->running_req--;
2405 break;
2406 case IO_OVERFLOW:
2407 PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW\n"));
2408 ts->resp = SAS_TASK_COMPLETE;
2409 ts->stat = SAS_DATA_OVERRUN;
2410 ts->residual = 0;
2411 if (pm8001_dev)
2412 pm8001_dev->running_req--;
2413 break;
2414 case IO_NO_DEVICE:
2415 PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_NO_DEVICE\n"));
2416 ts->resp = SAS_TASK_COMPLETE;
2417 ts->stat = SAS_PHY_DOWN;
2418 break;
2419 case IO_ERROR_HW_TIMEOUT:
2420 PM8001_IO_DBG(pm8001_ha,
2421 pm8001_printk("IO_ERROR_HW_TIMEOUT\n"));
2422 ts->resp = SAS_TASK_COMPLETE;
2423 ts->stat = SAM_BUSY;
2424 break;
2425 case IO_XFER_ERROR_BREAK:
2426 PM8001_IO_DBG(pm8001_ha,
2427 pm8001_printk("IO_XFER_ERROR_BREAK\n"));
2428 ts->resp = SAS_TASK_COMPLETE;
2429 ts->stat = SAM_BUSY;
2430 break;
2431 case IO_XFER_ERROR_PHY_NOT_READY:
2432 PM8001_IO_DBG(pm8001_ha,
2433 pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n"));
2434 ts->resp = SAS_TASK_COMPLETE;
2435 ts->stat = SAM_BUSY;
2436 break;
2437 case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED:
2438 PM8001_IO_DBG(pm8001_ha,
2439 pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"));
2440 ts->resp = SAS_TASK_COMPLETE;
2441 ts->stat = SAS_OPEN_REJECT;
2442 ts->open_rej_reason = SAS_OREJ_UNKNOWN;
2443 break;
2444 case IO_OPEN_CNX_ERROR_ZONE_VIOLATION:
2445 PM8001_IO_DBG(pm8001_ha,
2446 pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"));
2447 ts->resp = SAS_TASK_COMPLETE;
2448 ts->stat = SAS_OPEN_REJECT;
2449 ts->open_rej_reason = SAS_OREJ_UNKNOWN;
2450 break;
2451 case IO_OPEN_CNX_ERROR_BREAK:
2452 PM8001_IO_DBG(pm8001_ha,
2453 pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n"));
2454 ts->resp = SAS_TASK_COMPLETE;
2455 ts->stat = SAS_OPEN_REJECT;
2456 ts->open_rej_reason = SAS_OREJ_RSVD_CONT0;
2457 break;
2458 case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS:
2459 PM8001_IO_DBG(pm8001_ha,
2460 pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"));
2461 ts->resp = SAS_TASK_COMPLETE;
2462 ts->stat = SAS_OPEN_REJECT;
2463 ts->open_rej_reason = SAS_OREJ_UNKNOWN;
2464 pm8001_handle_event(pm8001_ha,
2465 pm8001_dev,
2466 IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS);
2467 break;
2468 case IO_OPEN_CNX_ERROR_BAD_DESTINATION:
2469 PM8001_IO_DBG(pm8001_ha,
2470 pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"));
2471 ts->resp = SAS_TASK_COMPLETE;
2472 ts->stat = SAS_OPEN_REJECT;
2473 ts->open_rej_reason = SAS_OREJ_BAD_DEST;
2474 break;
2475 case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED:
2476 PM8001_IO_DBG(pm8001_ha,
2477 pm8001_printk("IO_OPEN_CNX_ERROR_CONNECTION_RATE_"
2478 "NOT_SUPPORTED\n"));
2479 ts->resp = SAS_TASK_COMPLETE;
2480 ts->stat = SAS_OPEN_REJECT;
2481 ts->open_rej_reason = SAS_OREJ_CONN_RATE;
2482 break;
2483 case IO_OPEN_CNX_ERROR_WRONG_DESTINATION:
2484 PM8001_IO_DBG(pm8001_ha,
2485 pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"));
2486 ts->resp = SAS_TASK_COMPLETE;
2487 ts->stat = SAS_OPEN_REJECT;
2488 ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
2489 break;
2490 case IO_XFER_ERROR_RX_FRAME:
2491 PM8001_IO_DBG(pm8001_ha,
2492 pm8001_printk("IO_XFER_ERROR_RX_FRAME\n"));
2493 ts->resp = SAS_TASK_COMPLETE;
2494 ts->stat = SAS_DEV_NO_RESPONSE;
2495 break;
2496 case IO_XFER_OPEN_RETRY_TIMEOUT:
2497 PM8001_IO_DBG(pm8001_ha,
2498 pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n"));
2499 ts->resp = SAS_TASK_COMPLETE;
2500 ts->stat = SAS_OPEN_REJECT;
2501 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
2502 break;
2503 case IO_ERROR_INTERNAL_SMP_RESOURCE:
2504 PM8001_IO_DBG(pm8001_ha,
2505 pm8001_printk("IO_ERROR_INTERNAL_SMP_RESOURCE\n"));
2506 ts->resp = SAS_TASK_COMPLETE;
2507 ts->stat = SAS_QUEUE_FULL;
2508 break;
2509 case IO_PORT_IN_RESET:
2510 PM8001_IO_DBG(pm8001_ha,
2511 pm8001_printk("IO_PORT_IN_RESET\n"));
2512 ts->resp = SAS_TASK_COMPLETE;
2513 ts->stat = SAS_OPEN_REJECT;
2514 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
2515 break;
2516 case IO_DS_NON_OPERATIONAL:
2517 PM8001_IO_DBG(pm8001_ha,
2518 pm8001_printk("IO_DS_NON_OPERATIONAL\n"));
2519 ts->resp = SAS_TASK_COMPLETE;
2520 ts->stat = SAS_DEV_NO_RESPONSE;
2521 break;
2522 case IO_DS_IN_RECOVERY:
2523 PM8001_IO_DBG(pm8001_ha,
2524 pm8001_printk("IO_DS_IN_RECOVERY\n"));
2525 ts->resp = SAS_TASK_COMPLETE;
2526 ts->stat = SAS_OPEN_REJECT;
2527 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
2528 break;
2529 case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY:
2530 PM8001_IO_DBG(pm8001_ha,
2531 pm8001_printk("IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"));
2532 ts->resp = SAS_TASK_COMPLETE;
2533 ts->stat = SAS_OPEN_REJECT;
2534 ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
2535 break;
2536 default:
2537 PM8001_IO_DBG(pm8001_ha,
2538 pm8001_printk("Unknown status 0x%x\n", status));
2539 ts->resp = SAS_TASK_COMPLETE;
2540 ts->stat = SAS_DEV_NO_RESPONSE;
2541 /* not allowed case. Therefore, return failed status */
2542 break;
2543 }
2544 spin_lock_irqsave(&t->task_state_lock, flags);
2545 t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
2546 t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
2547 t->task_state_flags |= SAS_TASK_STATE_DONE;
2548 if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) {
2549 spin_unlock_irqrestore(&t->task_state_lock, flags);
2550 PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("task 0x%p done with"
2551 " io_status 0x%x resp 0x%x "
2552 "stat 0x%x but aborted by upper layer!\n",
2553 t, status, ts->resp, ts->stat));
2554 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
2555 } else {
2556 spin_unlock_irqrestore(&t->task_state_lock, flags);
2557 pm8001_ccb_task_free(pm8001_ha, t, ccb, tag);
2558 mb();/* in order to force CPU ordering */
2559 t->task_done(t);
2560 }
2561 return 0;
2562}
2563
2564static void
2565mpi_set_dev_state_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
2566{
2567 struct set_dev_state_resp *pPayload =
2568 (struct set_dev_state_resp *)(piomb + 4);
2569 u32 tag = le32_to_cpu(pPayload->tag);
2570 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
2571 struct pm8001_device *pm8001_dev = ccb->device;
2572 u32 status = le32_to_cpu(pPayload->status);
2573 u32 device_id = le32_to_cpu(pPayload->device_id);
2574 u8 pds = le32_to_cpu(pPayload->pds_nds) | PDS_BITS;
2575 u8 nds = le32_to_cpu(pPayload->pds_nds) | NDS_BITS;
2576 PM8001_MSG_DBG(pm8001_ha, pm8001_printk("Set device id = 0x%x state "
2577 "from 0x%x to 0x%x status = 0x%x!\n",
2578 device_id, pds, nds, status));
2579 complete(pm8001_dev->setds_completion);
2580 ccb->task = NULL;
2581 ccb->ccb_tag = 0xFFFFFFFF;
2582 pm8001_ccb_free(pm8001_ha, tag);
2583}
2584
2585static void
2586mpi_set_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
2587{
2588 struct get_nvm_data_resp *pPayload =
2589 (struct get_nvm_data_resp *)(piomb + 4);
2590 u32 tag = le32_to_cpu(pPayload->tag);
2591 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
2592 u32 dlen_status = le32_to_cpu(pPayload->dlen_status);
2593 complete(pm8001_ha->nvmd_completion);
2594 PM8001_MSG_DBG(pm8001_ha, pm8001_printk("Set nvm data complete!\n"));
2595 if ((dlen_status & NVMD_STAT) != 0) {
2596 PM8001_FAIL_DBG(pm8001_ha,
2597 pm8001_printk("Set nvm data error!\n"));
2598 return;
2599 }
2600 ccb->task = NULL;
2601 ccb->ccb_tag = 0xFFFFFFFF;
2602 pm8001_ccb_free(pm8001_ha, tag);
2603}
2604
2605static void
2606mpi_get_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
2607{
2608 struct fw_control_ex *fw_control_context;
2609 struct get_nvm_data_resp *pPayload =
2610 (struct get_nvm_data_resp *)(piomb + 4);
2611 u32 tag = le32_to_cpu(pPayload->tag);
2612 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
2613 u32 dlen_status = le32_to_cpu(pPayload->dlen_status);
2614 u32 ir_tds_bn_dps_das_nvm =
2615 le32_to_cpu(pPayload->ir_tda_bn_dps_das_nvm);
2616 void *virt_addr = pm8001_ha->memoryMap.region[NVMD].virt_ptr;
2617 fw_control_context = ccb->fw_control_context;
2618
2619 PM8001_MSG_DBG(pm8001_ha, pm8001_printk("Get nvm data complete!\n"));
2620 if ((dlen_status & NVMD_STAT) != 0) {
2621 PM8001_FAIL_DBG(pm8001_ha,
2622 pm8001_printk("Get nvm data error!\n"));
2623 complete(pm8001_ha->nvmd_completion);
2624 return;
2625 }
2626
2627 if (ir_tds_bn_dps_das_nvm & IPMode) {
2628 /* indirect mode - IR bit set */
2629 PM8001_MSG_DBG(pm8001_ha,
2630 pm8001_printk("Get NVMD success, IR=1\n"));
2631 if ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == TWI_DEVICE) {
2632 if (ir_tds_bn_dps_das_nvm == 0x80a80200) {
2633 memcpy(pm8001_ha->sas_addr,
2634 ((u8 *)virt_addr + 4),
2635 SAS_ADDR_SIZE);
2636 PM8001_MSG_DBG(pm8001_ha,
2637 pm8001_printk("Get SAS address"
2638 " from VPD successfully!\n"));
2639 }
2640 } else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == C_SEEPROM)
2641 || ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == VPD_FLASH) ||
2642 ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == EXPAN_ROM)) {
2643 ;
2644 } else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == AAP1_RDUMP)
2645 || ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == IOP_RDUMP)) {
2646 ;
2647 } else {
2648 /* Should not be happened*/
2649 PM8001_MSG_DBG(pm8001_ha,
2650 pm8001_printk("(IR=1)Wrong Device type 0x%x\n",
2651 ir_tds_bn_dps_das_nvm));
2652 }
2653 } else /* direct mode */{
2654 PM8001_MSG_DBG(pm8001_ha,
2655 pm8001_printk("Get NVMD success, IR=0, dataLen=%d\n",
2656 (dlen_status & NVMD_LEN) >> 24));
2657 }
2658 memcpy((void *)(fw_control_context->usrAddr),
2659 (void *)(pm8001_ha->memoryMap.region[NVMD].virt_ptr),
2660 fw_control_context->len);
2661 complete(pm8001_ha->nvmd_completion);
2662 ccb->task = NULL;
2663 ccb->ccb_tag = 0xFFFFFFFF;
2664 pm8001_ccb_free(pm8001_ha, tag);
2665}
2666
2667static int mpi_local_phy_ctl(struct pm8001_hba_info *pm8001_ha, void *piomb)
2668{
2669 struct local_phy_ctl_resp *pPayload =
2670 (struct local_phy_ctl_resp *)(piomb + 4);
2671 u32 status = le32_to_cpu(pPayload->status);
2672 u32 phy_id = le32_to_cpu(pPayload->phyop_phyid) & ID_BITS;
2673 u32 phy_op = le32_to_cpu(pPayload->phyop_phyid) & OP_BITS;
2674 if (status != 0) {
2675 PM8001_MSG_DBG(pm8001_ha,
2676 pm8001_printk("%x phy execute %x phy op failed! \n",
2677 phy_id, phy_op));
2678 } else
2679 PM8001_MSG_DBG(pm8001_ha,
2680 pm8001_printk("%x phy execute %x phy op success! \n",
2681 phy_id, phy_op));
2682 return 0;
2683}
2684
2685/**
2686 * pm8001_bytes_dmaed - one of the interface function communication with libsas
2687 * @pm8001_ha: our hba card information
2688 * @i: which phy that received the event.
2689 *
2690 * when HBA driver received the identify done event or initiate FIS received
2691 * event(for SATA), it will invoke this function to notify the sas layer that
2692 * the sas toplogy has formed, please discover the the whole sas domain,
2693 * while receive a broadcast(change) primitive just tell the sas
2694 * layer to discover the changed domain rather than the whole domain.
2695 */
2696static void pm8001_bytes_dmaed(struct pm8001_hba_info *pm8001_ha, int i)
2697{
2698 struct pm8001_phy *phy = &pm8001_ha->phy[i];
2699 struct asd_sas_phy *sas_phy = &phy->sas_phy;
2700 struct sas_ha_struct *sas_ha;
2701 if (!phy->phy_attached)
2702 return;
2703
2704 sas_ha = pm8001_ha->sas;
2705 if (sas_phy->phy) {
2706 struct sas_phy *sphy = sas_phy->phy;
2707 sphy->negotiated_linkrate = sas_phy->linkrate;
2708 sphy->minimum_linkrate = phy->minimum_linkrate;
2709 sphy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
2710 sphy->maximum_linkrate = phy->maximum_linkrate;
2711 sphy->maximum_linkrate_hw = phy->maximum_linkrate;
2712 }
2713
2714 if (phy->phy_type & PORT_TYPE_SAS) {
2715 struct sas_identify_frame *id;
2716 id = (struct sas_identify_frame *)phy->frame_rcvd;
2717 id->dev_type = phy->identify.device_type;
2718 id->initiator_bits = SAS_PROTOCOL_ALL;
2719 id->target_bits = phy->identify.target_port_protocols;
2720 } else if (phy->phy_type & PORT_TYPE_SATA) {
2721 /*Nothing*/
2722 }
2723 PM8001_MSG_DBG(pm8001_ha, pm8001_printk("phy %d byte dmaded.\n", i));
2724
2725 sas_phy->frame_rcvd_size = phy->frame_rcvd_size;
2726 pm8001_ha->sas->notify_port_event(sas_phy, PORTE_BYTES_DMAED);
2727}
2728
2729/* Get the link rate speed */
2730static void get_lrate_mode(struct pm8001_phy *phy, u8 link_rate)
2731{
2732 struct sas_phy *sas_phy = phy->sas_phy.phy;
2733
2734 switch (link_rate) {
2735 case PHY_SPEED_60:
2736 phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS;
2737 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS;
2738 break;
2739 case PHY_SPEED_30:
2740 phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS;
2741 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS;
2742 break;
2743 case PHY_SPEED_15:
2744 phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS;
2745 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS;
2746 break;
2747 }
2748 sas_phy->negotiated_linkrate = phy->sas_phy.linkrate;
2749 sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_6_0_GBPS;
2750 sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
2751 sas_phy->maximum_linkrate = SAS_LINK_RATE_6_0_GBPS;
2752 sas_phy->minimum_linkrate = SAS_LINK_RATE_1_5_GBPS;
2753}
2754
2755/**
2756 * asd_get_attached_sas_addr -- extract/generate attached SAS address
2757 * @phy: pointer to asd_phy
2758 * @sas_addr: pointer to buffer where the SAS address is to be written
2759 *
2760 * This function extracts the SAS address from an IDENTIFY frame
2761 * received. If OOB is SATA, then a SAS address is generated from the
2762 * HA tables.
2763 *
2764 * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame
2765 * buffer.
2766 */
2767static void pm8001_get_attached_sas_addr(struct pm8001_phy *phy,
2768 u8 *sas_addr)
2769{
2770 if (phy->sas_phy.frame_rcvd[0] == 0x34
2771 && phy->sas_phy.oob_mode == SATA_OOB_MODE) {
2772 struct pm8001_hba_info *pm8001_ha = phy->sas_phy.ha->lldd_ha;
2773 /* FIS device-to-host */
2774 u64 addr = be64_to_cpu(*(__be64 *)pm8001_ha->sas_addr);
2775 addr += phy->sas_phy.id;
2776 *(__be64 *)sas_addr = cpu_to_be64(addr);
2777 } else {
2778 struct sas_identify_frame *idframe =
2779 (void *) phy->sas_phy.frame_rcvd;
2780 memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE);
2781 }
2782}
2783
2784/**
2785 * pm8001_hw_event_ack_req- For PM8001,some events need to acknowage to FW.
2786 * @pm8001_ha: our hba card information
2787 * @Qnum: the outbound queue message number.
2788 * @SEA: source of event to ack
2789 * @port_id: port id.
2790 * @phyId: phy id.
2791 * @param0: parameter 0.
2792 * @param1: parameter 1.
2793 */
2794static void pm8001_hw_event_ack_req(struct pm8001_hba_info *pm8001_ha,
2795 u32 Qnum, u32 SEA, u32 port_id, u32 phyId, u32 param0, u32 param1)
2796{
2797 struct hw_event_ack_req payload;
2798 u32 opc = OPC_INB_SAS_HW_EVENT_ACK;
2799
2800 struct inbound_queue_table *circularQ;
2801
2802 memset((u8 *)&payload, 0, sizeof(payload));
2803 circularQ = &pm8001_ha->inbnd_q_tbl[Qnum];
2804 payload.tag = 1;
2805 payload.sea_phyid_portid = cpu_to_le32(((SEA & 0xFFFF) << 8) |
2806 ((phyId & 0x0F) << 4) | (port_id & 0x0F));
2807 payload.param0 = cpu_to_le32(param0);
2808 payload.param1 = cpu_to_le32(param1);
2809 mpi_build_cmd(pm8001_ha, circularQ, opc, &payload);
2810}
2811
2812static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha,
2813 u32 phyId, u32 phy_op);
2814
2815/**
2816 * hw_event_sas_phy_up -FW tells me a SAS phy up event.
2817 * @pm8001_ha: our hba card information
2818 * @piomb: IO message buffer
2819 */
2820static void
2821hw_event_sas_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb)
2822{
2823 struct hw_event_resp *pPayload =
2824 (struct hw_event_resp *)(piomb + 4);
2825 u32 lr_evt_status_phyid_portid =
2826 le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
2827 u8 link_rate =
2828 (u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28);
2829 u8 phy_id =
2830 (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
2831 struct sas_ha_struct *sas_ha = pm8001_ha->sas;
2832 struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
2833 unsigned long flags;
2834 u8 deviceType = pPayload->sas_identify.dev_type;
2835
2836 PM8001_MSG_DBG(pm8001_ha,
2837 pm8001_printk("HW_EVENT_SAS_PHY_UP \n"));
2838
2839 switch (deviceType) {
2840 case SAS_PHY_UNUSED:
2841 PM8001_MSG_DBG(pm8001_ha,
2842 pm8001_printk("device type no device.\n"));
2843 break;
2844 case SAS_END_DEVICE:
2845 PM8001_MSG_DBG(pm8001_ha, pm8001_printk("end device.\n"));
2846 pm8001_chip_phy_ctl_req(pm8001_ha, phy_id,
2847 PHY_NOTIFY_ENABLE_SPINUP);
2848 get_lrate_mode(phy, link_rate);
2849 break;
2850 case SAS_EDGE_EXPANDER_DEVICE:
2851 PM8001_MSG_DBG(pm8001_ha,
2852 pm8001_printk("expander device.\n"));
2853 get_lrate_mode(phy, link_rate);
2854 break;
2855 case SAS_FANOUT_EXPANDER_DEVICE:
2856 PM8001_MSG_DBG(pm8001_ha,
2857 pm8001_printk("fanout expander device.\n"));
2858 get_lrate_mode(phy, link_rate);
2859 break;
2860 default:
2861 PM8001_MSG_DBG(pm8001_ha,
2862 pm8001_printk("unkown device type(%x)\n", deviceType));
2863 break;
2864 }
2865 phy->phy_type |= PORT_TYPE_SAS;
2866 phy->identify.device_type = deviceType;
2867 phy->phy_attached = 1;
2868 if (phy->identify.device_type == SAS_END_DEV)
2869 phy->identify.target_port_protocols = SAS_PROTOCOL_SSP;
2870 else if (phy->identify.device_type != NO_DEVICE)
2871 phy->identify.target_port_protocols = SAS_PROTOCOL_SMP;
2872 phy->sas_phy.oob_mode = SAS_OOB_MODE;
2873 sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE);
2874 spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
2875 memcpy(phy->frame_rcvd, &pPayload->sas_identify,
2876 sizeof(struct sas_identify_frame)-4);
2877 phy->frame_rcvd_size = sizeof(struct sas_identify_frame) - 4;
2878 pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
2879 spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
2880 if (pm8001_ha->flags == PM8001F_RUN_TIME)
2881 mdelay(200);/*delay a moment to wait disk to spinup*/
2882 pm8001_bytes_dmaed(pm8001_ha, phy_id);
2883}
2884
2885/**
2886 * hw_event_sata_phy_up -FW tells me a SATA phy up event.
2887 * @pm8001_ha: our hba card information
2888 * @piomb: IO message buffer
2889 */
2890static void
2891hw_event_sata_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb)
2892{
2893 struct hw_event_resp *pPayload =
2894 (struct hw_event_resp *)(piomb + 4);
2895 u32 lr_evt_status_phyid_portid =
2896 le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
2897 u8 link_rate =
2898 (u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28);
2899 u8 phy_id =
2900 (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
2901 struct sas_ha_struct *sas_ha = pm8001_ha->sas;
2902 struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
2903 unsigned long flags;
2904 get_lrate_mode(phy, link_rate);
2905 phy->phy_type |= PORT_TYPE_SATA;
2906 phy->phy_attached = 1;
2907 phy->sas_phy.oob_mode = SATA_OOB_MODE;
2908 sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE);
2909 spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
2910 memcpy(phy->frame_rcvd, ((u8 *)&pPayload->sata_fis - 4),
2911 sizeof(struct dev_to_host_fis));
2912 phy->frame_rcvd_size = sizeof(struct dev_to_host_fis);
2913 phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
2914 phy->identify.device_type = SATA_DEV;
2915 pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
2916 spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
2917 pm8001_bytes_dmaed(pm8001_ha, phy_id);
2918}
2919
2920/**
2921 * hw_event_phy_down -we should notify the libsas the phy is down.
2922 * @pm8001_ha: our hba card information
2923 * @piomb: IO message buffer
2924 */
2925static void
2926hw_event_phy_down(struct pm8001_hba_info *pm8001_ha, void *piomb)
2927{
2928 struct hw_event_resp *pPayload =
2929 (struct hw_event_resp *)(piomb + 4);
2930 u32 lr_evt_status_phyid_portid =
2931 le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
2932 u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F);
2933 u8 phy_id =
2934 (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
2935 u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate);
2936 u8 portstate = (u8)(npip_portstate & 0x0000000F);
2937
2938 switch (portstate) {
2939 case PORT_VALID:
2940 break;
2941 case PORT_INVALID:
2942 PM8001_MSG_DBG(pm8001_ha,
2943 pm8001_printk(" PortInvalid portID %d \n", port_id));
2944 PM8001_MSG_DBG(pm8001_ha,
2945 pm8001_printk(" Last phy Down and port invalid\n"));
2946 pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN,
2947 port_id, phy_id, 0, 0);
2948 break;
2949 case PORT_IN_RESET:
2950 PM8001_MSG_DBG(pm8001_ha,
2951 pm8001_printk(" PortInReset portID %d \n", port_id));
2952 break;
2953 case PORT_NOT_ESTABLISHED:
2954 PM8001_MSG_DBG(pm8001_ha,
2955 pm8001_printk(" phy Down and PORT_NOT_ESTABLISHED\n"));
2956 break;
2957 case PORT_LOSTCOMM:
2958 PM8001_MSG_DBG(pm8001_ha,
2959 pm8001_printk(" phy Down and PORT_LOSTCOMM\n"));
2960 PM8001_MSG_DBG(pm8001_ha,
2961 pm8001_printk(" Last phy Down and port invalid\n"));
2962 pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN,
2963 port_id, phy_id, 0, 0);
2964 break;
2965 default:
2966 PM8001_MSG_DBG(pm8001_ha,
2967 pm8001_printk(" phy Down and(default) = %x\n",
2968 portstate));
2969 break;
2970
2971 }
2972}
2973
2974/**
2975 * mpi_reg_resp -process register device ID response.
2976 * @pm8001_ha: our hba card information
2977 * @piomb: IO message buffer
2978 *
2979 * when sas layer find a device it will notify LLDD, then the driver register
2980 * the domain device to FW, this event is the return device ID which the FW
2981 * has assigned, from now,inter-communication with FW is no longer using the
2982 * SAS address, use device ID which FW assigned.
2983 */
2984static int mpi_reg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
2985{
2986 u32 status;
2987 u32 device_id;
2988 u32 htag;
2989 struct pm8001_ccb_info *ccb;
2990 struct pm8001_device *pm8001_dev;
2991 struct dev_reg_resp *registerRespPayload =
2992 (struct dev_reg_resp *)(piomb + 4);
2993
2994 htag = le32_to_cpu(registerRespPayload->tag);
2995 ccb = &pm8001_ha->ccb_info[registerRespPayload->tag];
2996 pm8001_dev = ccb->device;
2997 status = le32_to_cpu(registerRespPayload->status);
2998 device_id = le32_to_cpu(registerRespPayload->device_id);
2999 PM8001_MSG_DBG(pm8001_ha,
3000 pm8001_printk(" register device is status = %d\n", status));
3001 switch (status) {
3002 case DEVREG_SUCCESS:
3003 PM8001_MSG_DBG(pm8001_ha, pm8001_printk("DEVREG_SUCCESS\n"));
3004 pm8001_dev->device_id = device_id;
3005 break;
3006 case DEVREG_FAILURE_OUT_OF_RESOURCE:
3007 PM8001_MSG_DBG(pm8001_ha,
3008 pm8001_printk("DEVREG_FAILURE_OUT_OF_RESOURCE\n"));
3009 break;
3010 case DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED:
3011 PM8001_MSG_DBG(pm8001_ha,
3012 pm8001_printk("DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED\n"));
3013 break;
3014 case DEVREG_FAILURE_INVALID_PHY_ID:
3015 PM8001_MSG_DBG(pm8001_ha,
3016 pm8001_printk("DEVREG_FAILURE_INVALID_PHY_ID\n"));
3017 break;
3018 case DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED:
3019 PM8001_MSG_DBG(pm8001_ha,
3020 pm8001_printk("DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED\n"));
3021 break;
3022 case DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE:
3023 PM8001_MSG_DBG(pm8001_ha,
3024 pm8001_printk("DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE\n"));
3025 break;
3026 case DEVREG_FAILURE_PORT_NOT_VALID_STATE:
3027 PM8001_MSG_DBG(pm8001_ha,
3028 pm8001_printk("DEVREG_FAILURE_PORT_NOT_VALID_STATE\n"));
3029 break;
3030 case DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID:
3031 PM8001_MSG_DBG(pm8001_ha,
3032 pm8001_printk("DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID\n"));
3033 break;
3034 default:
3035 PM8001_MSG_DBG(pm8001_ha,
3036 pm8001_printk("DEVREG_FAILURE_DEVICE_TYPE_NOT_UNSORPORTED\n"));
3037 break;
3038 }
3039 complete(pm8001_dev->dcompletion);
3040 ccb->task = NULL;
3041 ccb->ccb_tag = 0xFFFFFFFF;
3042 pm8001_ccb_free(pm8001_ha, htag);
3043 return 0;
3044}
3045
3046static int mpi_dereg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
3047{
3048 u32 status;
3049 u32 device_id;
3050 struct dev_reg_resp *registerRespPayload =
3051 (struct dev_reg_resp *)(piomb + 4);
3052
3053 status = le32_to_cpu(registerRespPayload->status);
3054 device_id = le32_to_cpu(registerRespPayload->device_id);
3055 if (status != 0)
3056 PM8001_MSG_DBG(pm8001_ha,
3057 pm8001_printk(" deregister device failed ,status = %x"
3058 ", device_id = %x\n", status, device_id));
3059 return 0;
3060}
3061
3062static int
3063mpi_fw_flash_update_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
3064{
3065 u32 status;
3066 struct fw_control_ex fw_control_context;
3067 struct fw_flash_Update_resp *ppayload =
3068 (struct fw_flash_Update_resp *)(piomb + 4);
3069 u32 tag = le32_to_cpu(ppayload->tag);
3070 struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag];
3071 status = le32_to_cpu(ppayload->status);
3072 memcpy(&fw_control_context,
3073 ccb->fw_control_context,
3074 sizeof(fw_control_context));
3075 switch (status) {
3076 case FLASH_UPDATE_COMPLETE_PENDING_REBOOT:
3077 PM8001_MSG_DBG(pm8001_ha,
3078 pm8001_printk(": FLASH_UPDATE_COMPLETE_PENDING_REBOOT\n"));
3079 break;
3080 case FLASH_UPDATE_IN_PROGRESS:
3081 PM8001_MSG_DBG(pm8001_ha,
3082 pm8001_printk(": FLASH_UPDATE_IN_PROGRESS\n"));
3083 break;
3084 case FLASH_UPDATE_HDR_ERR:
3085 PM8001_MSG_DBG(pm8001_ha,
3086 pm8001_printk(": FLASH_UPDATE_HDR_ERR\n"));
3087 break;
3088 case FLASH_UPDATE_OFFSET_ERR:
3089 PM8001_MSG_DBG(pm8001_ha,
3090 pm8001_printk(": FLASH_UPDATE_OFFSET_ERR\n"));
3091 break;
3092 case FLASH_UPDATE_CRC_ERR:
3093 PM8001_MSG_DBG(pm8001_ha,
3094 pm8001_printk(": FLASH_UPDATE_CRC_ERR\n"));
3095 break;
3096 case FLASH_UPDATE_LENGTH_ERR:
3097 PM8001_MSG_DBG(pm8001_ha,
3098 pm8001_printk(": FLASH_UPDATE_LENGTH_ERR\n"));
3099 break;
3100 case FLASH_UPDATE_HW_ERR:
3101 PM8001_MSG_DBG(pm8001_ha,
3102 pm8001_printk(": FLASH_UPDATE_HW_ERR\n"));
3103 break;
3104 case FLASH_UPDATE_DNLD_NOT_SUPPORTED:
3105 PM8001_MSG_DBG(pm8001_ha,
3106 pm8001_printk(": FLASH_UPDATE_DNLD_NOT_SUPPORTED\n"));
3107 break;
3108 case FLASH_UPDATE_DISABLED:
3109 PM8001_MSG_DBG(pm8001_ha,
3110 pm8001_printk(": FLASH_UPDATE_DISABLED\n"));
3111 break;
3112 default:
3113 PM8001_MSG_DBG(pm8001_ha,
3114 pm8001_printk("No matched status = %d\n", status));
3115 break;
3116 }
3117 ccb->fw_control_context->fw_control->retcode = status;
3118 pci_free_consistent(pm8001_ha->pdev,
3119 fw_control_context.len,
3120 fw_control_context.virtAddr,
3121 fw_control_context.phys_addr);
3122 complete(pm8001_ha->nvmd_completion);
3123 ccb->task = NULL;
3124 ccb->ccb_tag = 0xFFFFFFFF;
3125 pm8001_ccb_free(pm8001_ha, tag);
3126 return 0;
3127}
3128
3129static int
3130mpi_general_event(struct pm8001_hba_info *pm8001_ha , void *piomb)
3131{
3132 u32 status;
3133 int i;
3134 struct general_event_resp *pPayload =
3135 (struct general_event_resp *)(piomb + 4);
3136 status = le32_to_cpu(pPayload->status);
3137 PM8001_MSG_DBG(pm8001_ha,
3138 pm8001_printk(" status = 0x%x\n", status));
3139 for (i = 0; i < GENERAL_EVENT_PAYLOAD; i++)
3140 PM8001_MSG_DBG(pm8001_ha,
3141 pm8001_printk("inb_IOMB_payload[0x%x] 0x%x, \n", i,
3142 pPayload->inb_IOMB_payload[i]));
3143 return 0;
3144}
3145
3146static int
3147mpi_task_abort_resp(struct pm8001_hba_info *pm8001_ha, void *piomb)
3148{
3149 struct sas_task *t;
3150 struct pm8001_ccb_info *ccb;
3151 unsigned long flags;
3152 u32 status ;
3153 u32 tag, scp;
3154 struct task_status_struct *ts;
3155
3156 struct task_abort_resp *pPayload =
3157 (struct task_abort_resp *)(piomb + 4);
3158 ccb = &pm8001_ha->ccb_info[pPayload->tag];
3159 t = ccb->task;
3160 ts = &t->task_status;
3161
3162 if (t == NULL)
3163 return -1;
3164
3165 status = le32_to_cpu(pPayload->status);
3166 tag = le32_to_cpu(pPayload->tag);
3167 scp = le32_to_cpu(pPayload->scp);
3168 PM8001_IO_DBG(pm8001_ha,
3169 pm8001_printk(" status = 0x%x\n", status));
3170 if (status != 0)
3171 PM8001_FAIL_DBG(pm8001_ha,
3172 pm8001_printk("task abort failed tag = 0x%x,"
3173 " scp= 0x%x\n", tag, scp));
3174 switch (status) {
3175 case IO_SUCCESS:
3176 PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS\n"));
3177 ts->resp = SAS_TASK_COMPLETE;
3178 ts->stat = SAM_GOOD;
3179 break;
3180 case IO_NOT_VALID:
3181 PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_NOT_VALID\n"));
3182 ts->resp = TMF_RESP_FUNC_FAILED;
3183 break;
3184 }
3185 spin_lock_irqsave(&t->task_state_lock, flags);
3186 t->task_state_flags &= ~SAS_TASK_STATE_PENDING;
3187 t->task_state_flags &= ~SAS_TASK_AT_INITIATOR;
3188 t->task_state_flags |= SAS_TASK_STATE_DONE;
3189 spin_unlock_irqrestore(&t->task_state_lock, flags);
3190 pm8001_ccb_task_free(pm8001_ha, t, ccb, pPayload->tag);
3191 mb();
3192 t->task_done(t);
3193 return 0;
3194}
3195
3196/**
3197 * mpi_hw_event -The hw event has come.
3198 * @pm8001_ha: our hba card information
3199 * @piomb: IO message buffer
3200 */
3201static int mpi_hw_event(struct pm8001_hba_info *pm8001_ha, void* piomb)
3202{
3203 unsigned long flags;
3204 struct hw_event_resp *pPayload =
3205 (struct hw_event_resp *)(piomb + 4);
3206 u32 lr_evt_status_phyid_portid =
3207 le32_to_cpu(pPayload->lr_evt_status_phyid_portid);
3208 u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F);
3209 u8 phy_id =
3210 (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4);
3211 u16 eventType =
3212 (u16)((lr_evt_status_phyid_portid & 0x00FFFF00) >> 8);
3213 u8 status =
3214 (u8)((lr_evt_status_phyid_portid & 0x0F000000) >> 24);
3215 struct sas_ha_struct *sas_ha = pm8001_ha->sas;
3216 struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
3217 struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
3218 PM8001_MSG_DBG(pm8001_ha,
3219 pm8001_printk("outbound queue HW event & event type : "));
3220 switch (eventType) {
3221 case HW_EVENT_PHY_START_STATUS:
3222 PM8001_MSG_DBG(pm8001_ha,
3223 pm8001_printk("HW_EVENT_PHY_START_STATUS"
3224 " status = %x\n", status));
3225 if (status == 0) {
3226 phy->phy_state = 1;
3227 if (pm8001_ha->flags == PM8001F_RUN_TIME)
3228 complete(phy->enable_completion);
3229 }
3230 break;
3231 case HW_EVENT_SAS_PHY_UP:
3232 PM8001_MSG_DBG(pm8001_ha,
3233 pm8001_printk("HW_EVENT_PHY_START_STATUS \n"));
3234 hw_event_sas_phy_up(pm8001_ha, piomb);
3235 break;
3236 case HW_EVENT_SATA_PHY_UP:
3237 PM8001_MSG_DBG(pm8001_ha,
3238 pm8001_printk("HW_EVENT_SATA_PHY_UP \n"));
3239 hw_event_sata_phy_up(pm8001_ha, piomb);
3240 break;
3241 case HW_EVENT_PHY_STOP_STATUS:
3242 PM8001_MSG_DBG(pm8001_ha,
3243 pm8001_printk("HW_EVENT_PHY_STOP_STATUS "
3244 "status = %x\n", status));
3245 if (status == 0)
3246 phy->phy_state = 0;
3247 break;
3248 case HW_EVENT_SATA_SPINUP_HOLD:
3249 PM8001_MSG_DBG(pm8001_ha,
3250 pm8001_printk("HW_EVENT_SATA_SPINUP_HOLD \n"));
3251 sas_ha->notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD);
3252 break;
3253 case HW_EVENT_PHY_DOWN:
3254 PM8001_MSG_DBG(pm8001_ha,
3255 pm8001_printk("HW_EVENT_PHY_DOWN \n"));
3256 sas_ha->notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL);
3257 phy->phy_attached = 0;
3258 phy->phy_state = 0;
3259 hw_event_phy_down(pm8001_ha, piomb);
3260 break;
3261 case HW_EVENT_PORT_INVALID:
3262 PM8001_MSG_DBG(pm8001_ha,
3263 pm8001_printk("HW_EVENT_PORT_INVALID\n"));
3264 sas_phy_disconnected(sas_phy);
3265 phy->phy_attached = 0;
3266 sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
3267 break;
3268 /* the broadcast change primitive received, tell the LIBSAS this event
3269 to revalidate the sas domain*/
3270 case HW_EVENT_BROADCAST_CHANGE:
3271 PM8001_MSG_DBG(pm8001_ha,
3272 pm8001_printk("HW_EVENT_BROADCAST_CHANGE\n"));
3273 pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_BROADCAST_CHANGE,
3274 port_id, phy_id, 1, 0);
3275 spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
3276 sas_phy->sas_prim = HW_EVENT_BROADCAST_CHANGE;
3277 spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
3278 sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD);
3279 break;
3280 case HW_EVENT_PHY_ERROR:
3281 PM8001_MSG_DBG(pm8001_ha,
3282 pm8001_printk("HW_EVENT_PHY_ERROR\n"));
3283 sas_phy_disconnected(&phy->sas_phy);
3284 phy->phy_attached = 0;
3285 sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR);
3286 break;
3287 case HW_EVENT_BROADCAST_EXP:
3288 PM8001_MSG_DBG(pm8001_ha,
3289 pm8001_printk("HW_EVENT_BROADCAST_EXP\n"));
3290 spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
3291 sas_phy->sas_prim = HW_EVENT_BROADCAST_EXP;
3292 spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
3293 sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD);
3294 break;
3295 case HW_EVENT_LINK_ERR_INVALID_DWORD:
3296 PM8001_MSG_DBG(pm8001_ha,
3297 pm8001_printk("HW_EVENT_LINK_ERR_INVALID_DWORD\n"));
3298 pm8001_hw_event_ack_req(pm8001_ha, 0,
3299 HW_EVENT_LINK_ERR_INVALID_DWORD, port_id, phy_id, 0, 0);
3300 sas_phy_disconnected(sas_phy);
3301 phy->phy_attached = 0;
3302 sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
3303 break;
3304 case HW_EVENT_LINK_ERR_DISPARITY_ERROR:
3305 PM8001_MSG_DBG(pm8001_ha,
3306 pm8001_printk("HW_EVENT_LINK_ERR_DISPARITY_ERROR\n"));
3307 pm8001_hw_event_ack_req(pm8001_ha, 0,
3308 HW_EVENT_LINK_ERR_DISPARITY_ERROR,
3309 port_id, phy_id, 0, 0);
3310 sas_phy_disconnected(sas_phy);
3311 phy->phy_attached = 0;
3312 sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
3313 break;
3314 case HW_EVENT_LINK_ERR_CODE_VIOLATION:
3315 PM8001_MSG_DBG(pm8001_ha,
3316 pm8001_printk("HW_EVENT_LINK_ERR_CODE_VIOLATION\n"));
3317 pm8001_hw_event_ack_req(pm8001_ha, 0,
3318 HW_EVENT_LINK_ERR_CODE_VIOLATION,
3319 port_id, phy_id, 0, 0);
3320 sas_phy_disconnected(sas_phy);
3321 phy->phy_attached = 0;
3322 sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
3323 break;
3324 case HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH:
3325 PM8001_MSG_DBG(pm8001_ha,
3326 pm8001_printk("HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH\n"));
3327 pm8001_hw_event_ack_req(pm8001_ha, 0,
3328 HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH,
3329 port_id, phy_id, 0, 0);
3330 sas_phy_disconnected(sas_phy);
3331 phy->phy_attached = 0;
3332 sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
3333 break;
3334 case HW_EVENT_MALFUNCTION:
3335 PM8001_MSG_DBG(pm8001_ha,
3336 pm8001_printk("HW_EVENT_MALFUNCTION\n"));
3337 break;
3338 case HW_EVENT_BROADCAST_SES:
3339 PM8001_MSG_DBG(pm8001_ha,
3340 pm8001_printk("HW_EVENT_BROADCAST_SES\n"));
3341 spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
3342 sas_phy->sas_prim = HW_EVENT_BROADCAST_SES;
3343 spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
3344 sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD);
3345 break;
3346 case HW_EVENT_INBOUND_CRC_ERROR:
3347 PM8001_MSG_DBG(pm8001_ha,
3348 pm8001_printk("HW_EVENT_INBOUND_CRC_ERROR\n"));
3349 pm8001_hw_event_ack_req(pm8001_ha, 0,
3350 HW_EVENT_INBOUND_CRC_ERROR,
3351 port_id, phy_id, 0, 0);
3352 break;
3353 case HW_EVENT_HARD_RESET_RECEIVED:
3354 PM8001_MSG_DBG(pm8001_ha,
3355 pm8001_printk("HW_EVENT_HARD_RESET_RECEIVED\n"));
3356 sas_ha->notify_port_event(sas_phy, PORTE_HARD_RESET);
3357 break;
3358 case HW_EVENT_ID_FRAME_TIMEOUT:
3359 PM8001_MSG_DBG(pm8001_ha,
3360 pm8001_printk("HW_EVENT_ID_FRAME_TIMEOUT\n"));
3361 sas_phy_disconnected(sas_phy);
3362 phy->phy_attached = 0;
3363 sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
3364 break;
3365 case HW_EVENT_LINK_ERR_PHY_RESET_FAILED:
3366 PM8001_MSG_DBG(pm8001_ha,
3367 pm8001_printk("HW_EVENT_LINK_ERR_PHY_RESET_FAILED \n"));
3368 pm8001_hw_event_ack_req(pm8001_ha, 0,
3369 HW_EVENT_LINK_ERR_PHY_RESET_FAILED,
3370 port_id, phy_id, 0, 0);
3371 sas_phy_disconnected(sas_phy);
3372 phy->phy_attached = 0;
3373 sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
3374 break;
3375 case HW_EVENT_PORT_RESET_TIMER_TMO:
3376 PM8001_MSG_DBG(pm8001_ha,
3377 pm8001_printk("HW_EVENT_PORT_RESET_TIMER_TMO \n"));
3378 sas_phy_disconnected(sas_phy);
3379 phy->phy_attached = 0;
3380 sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
3381 break;
3382 case HW_EVENT_PORT_RECOVERY_TIMER_TMO:
3383 PM8001_MSG_DBG(pm8001_ha,
3384 pm8001_printk("HW_EVENT_PORT_RECOVERY_TIMER_TMO \n"));
3385 sas_phy_disconnected(sas_phy);
3386 phy->phy_attached = 0;
3387 sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
3388 break;
3389 case HW_EVENT_PORT_RECOVER:
3390 PM8001_MSG_DBG(pm8001_ha,
3391 pm8001_printk("HW_EVENT_PORT_RECOVER \n"));
3392 break;
3393 case HW_EVENT_PORT_RESET_COMPLETE:
3394 PM8001_MSG_DBG(pm8001_ha,
3395 pm8001_printk("HW_EVENT_PORT_RESET_COMPLETE \n"));
3396 break;
3397 case EVENT_BROADCAST_ASYNCH_EVENT:
3398 PM8001_MSG_DBG(pm8001_ha,
3399 pm8001_printk("EVENT_BROADCAST_ASYNCH_EVENT\n"));
3400 break;
3401 default:
3402 PM8001_MSG_DBG(pm8001_ha,
3403 pm8001_printk("Unknown event type = %x\n", eventType));
3404 break;
3405 }
3406 return 0;
3407}
3408
3409/**
3410 * process_one_iomb - process one outbound Queue memory block
3411 * @pm8001_ha: our hba card information
3412 * @piomb: IO message buffer
3413 */
3414static void process_one_iomb(struct pm8001_hba_info *pm8001_ha, void *piomb)
3415{
3416 u32 pHeader = (u32)*(u32 *)piomb;
3417 u8 opc = (u8)((le32_to_cpu(pHeader)) & 0xFFF);
3418
3419 PM8001_MSG_DBG(pm8001_ha, pm8001_printk("process_one_iomb:\n"));
3420
3421 switch (opc) {
3422 case OPC_OUB_ECHO:
3423 PM8001_MSG_DBG(pm8001_ha, pm8001_printk("OPC_OUB_ECHO \n"));
3424 break;
3425 case OPC_OUB_HW_EVENT:
3426 PM8001_MSG_DBG(pm8001_ha,
3427 pm8001_printk("OPC_OUB_HW_EVENT \n"));
3428 mpi_hw_event(pm8001_ha, piomb);
3429 break;
3430 case OPC_OUB_SSP_COMP:
3431 PM8001_MSG_DBG(pm8001_ha,
3432 pm8001_printk("OPC_OUB_SSP_COMP \n"));
3433 mpi_ssp_completion(pm8001_ha, piomb);
3434 break;
3435 case OPC_OUB_SMP_COMP:
3436 PM8001_MSG_DBG(pm8001_ha,
3437 pm8001_printk("OPC_OUB_SMP_COMP \n"));
3438 mpi_smp_completion(pm8001_ha, piomb);
3439 break;
3440 case OPC_OUB_LOCAL_PHY_CNTRL:
3441 PM8001_MSG_DBG(pm8001_ha,
3442 pm8001_printk("OPC_OUB_LOCAL_PHY_CNTRL\n"));
3443 mpi_local_phy_ctl(pm8001_ha, piomb);
3444 break;
3445 case OPC_OUB_DEV_REGIST:
3446 PM8001_MSG_DBG(pm8001_ha,
3447 pm8001_printk("OPC_OUB_DEV_REGIST \n"));
3448 mpi_reg_resp(pm8001_ha, piomb);
3449 break;
3450 case OPC_OUB_DEREG_DEV:
3451 PM8001_MSG_DBG(pm8001_ha,
3452 pm8001_printk("unresgister the deviece \n"));
3453 mpi_dereg_resp(pm8001_ha, piomb);
3454 break;
3455 case OPC_OUB_GET_DEV_HANDLE:
3456 PM8001_MSG_DBG(pm8001_ha,
3457 pm8001_printk("OPC_OUB_GET_DEV_HANDLE \n"));
3458 break;
3459 case OPC_OUB_SATA_COMP:
3460 PM8001_MSG_DBG(pm8001_ha,
3461 pm8001_printk("OPC_OUB_SATA_COMP \n"));
3462 mpi_sata_completion(pm8001_ha, piomb);
3463 break;
3464 case OPC_OUB_SATA_EVENT:
3465 PM8001_MSG_DBG(pm8001_ha,
3466 pm8001_printk("OPC_OUB_SATA_EVENT \n"));
3467 mpi_sata_event(pm8001_ha, piomb);
3468 break;
3469 case OPC_OUB_SSP_EVENT:
3470 PM8001_MSG_DBG(pm8001_ha,
3471 pm8001_printk("OPC_OUB_SSP_EVENT\n"));
3472 mpi_ssp_event(pm8001_ha, piomb);
3473 break;
3474 case OPC_OUB_DEV_HANDLE_ARRIV:
3475 PM8001_MSG_DBG(pm8001_ha,
3476 pm8001_printk("OPC_OUB_DEV_HANDLE_ARRIV\n"));
3477 /*This is for target*/
3478 break;
3479 case OPC_OUB_SSP_RECV_EVENT:
3480 PM8001_MSG_DBG(pm8001_ha,
3481 pm8001_printk("OPC_OUB_SSP_RECV_EVENT\n"));
3482 /*This is for target*/
3483 break;
3484 case OPC_OUB_DEV_INFO:
3485 PM8001_MSG_DBG(pm8001_ha,
3486 pm8001_printk("OPC_OUB_DEV_INFO\n"));
3487 break;
3488 case OPC_OUB_FW_FLASH_UPDATE:
3489 PM8001_MSG_DBG(pm8001_ha,
3490 pm8001_printk("OPC_OUB_FW_FLASH_UPDATE\n"));
3491 mpi_fw_flash_update_resp(pm8001_ha, piomb);
3492 break;
3493 case OPC_OUB_GPIO_RESPONSE:
3494 PM8001_MSG_DBG(pm8001_ha,
3495 pm8001_printk("OPC_OUB_GPIO_RESPONSE\n"));
3496 break;
3497 case OPC_OUB_GPIO_EVENT:
3498 PM8001_MSG_DBG(pm8001_ha,
3499 pm8001_printk("OPC_OUB_GPIO_EVENT\n"));
3500 break;
3501 case OPC_OUB_GENERAL_EVENT:
3502 PM8001_MSG_DBG(pm8001_ha,
3503 pm8001_printk("OPC_OUB_GENERAL_EVENT\n"));
3504 mpi_general_event(pm8001_ha, piomb);
3505 break;
3506 case OPC_OUB_SSP_ABORT_RSP:
3507 PM8001_MSG_DBG(pm8001_ha,
3508 pm8001_printk("OPC_OUB_SSP_ABORT_RSP\n"));
3509 mpi_task_abort_resp(pm8001_ha, piomb);
3510 break;
3511 case OPC_OUB_SATA_ABORT_RSP:
3512 PM8001_MSG_DBG(pm8001_ha,
3513 pm8001_printk("OPC_OUB_SATA_ABORT_RSP\n"));
3514 mpi_task_abort_resp(pm8001_ha, piomb);
3515 break;
3516 case OPC_OUB_SAS_DIAG_MODE_START_END:
3517 PM8001_MSG_DBG(pm8001_ha,
3518 pm8001_printk("OPC_OUB_SAS_DIAG_MODE_START_END\n"));
3519 break;
3520 case OPC_OUB_SAS_DIAG_EXECUTE:
3521 PM8001_MSG_DBG(pm8001_ha,
3522 pm8001_printk("OPC_OUB_SAS_DIAG_EXECUTE\n"));
3523 break;
3524 case OPC_OUB_GET_TIME_STAMP:
3525 PM8001_MSG_DBG(pm8001_ha,
3526 pm8001_printk("OPC_OUB_GET_TIME_STAMP\n"));
3527 break;
3528 case OPC_OUB_SAS_HW_EVENT_ACK:
3529 PM8001_MSG_DBG(pm8001_ha,
3530 pm8001_printk("OPC_OUB_SAS_HW_EVENT_ACK\n"));
3531 break;
3532 case OPC_OUB_PORT_CONTROL:
3533 PM8001_MSG_DBG(pm8001_ha,
3534 pm8001_printk("OPC_OUB_PORT_CONTROL\n"));
3535 break;
3536 case OPC_OUB_SMP_ABORT_RSP:
3537 PM8001_MSG_DBG(pm8001_ha,
3538 pm8001_printk("OPC_OUB_SMP_ABORT_RSP\n"));
3539 mpi_task_abort_resp(pm8001_ha, piomb);
3540 break;
3541 case OPC_OUB_GET_NVMD_DATA:
3542 PM8001_MSG_DBG(pm8001_ha,
3543 pm8001_printk("OPC_OUB_GET_NVMD_DATA\n"));
3544 mpi_get_nvmd_resp(pm8001_ha, piomb);
3545 break;
3546 case OPC_OUB_SET_NVMD_DATA:
3547 PM8001_MSG_DBG(pm8001_ha,
3548 pm8001_printk("OPC_OUB_SET_NVMD_DATA\n"));
3549 mpi_set_nvmd_resp(pm8001_ha, piomb);
3550 break;
3551 case OPC_OUB_DEVICE_HANDLE_REMOVAL:
3552 PM8001_MSG_DBG(pm8001_ha,
3553 pm8001_printk("OPC_OUB_DEVICE_HANDLE_REMOVAL\n"));
3554 break;
3555 case OPC_OUB_SET_DEVICE_STATE:
3556 PM8001_MSG_DBG(pm8001_ha,
3557 pm8001_printk("OPC_OUB_SET_DEVICE_STATE\n"));
3558 mpi_set_dev_state_resp(pm8001_ha, piomb);
3559 break;
3560 case OPC_OUB_GET_DEVICE_STATE:
3561 PM8001_MSG_DBG(pm8001_ha,
3562 pm8001_printk("OPC_OUB_GET_DEVICE_STATE\n"));
3563 break;
3564 case OPC_OUB_SET_DEV_INFO:
3565 PM8001_MSG_DBG(pm8001_ha,
3566 pm8001_printk("OPC_OUB_SET_DEV_INFO\n"));
3567 break;
3568 case OPC_OUB_SAS_RE_INITIALIZE:
3569 PM8001_MSG_DBG(pm8001_ha,
3570 pm8001_printk("OPC_OUB_SAS_RE_INITIALIZE\n"));
3571 break;
3572 default:
3573 PM8001_MSG_DBG(pm8001_ha,
3574 pm8001_printk("Unknown outbound Queue IOMB OPC = %x\n",
3575 opc));
3576 break;
3577 }
3578}
3579
3580static int process_oq(struct pm8001_hba_info *pm8001_ha)
3581{
3582 struct outbound_queue_table *circularQ;
3583 void *pMsg1 = NULL;
3584 u8 bc = 0;
3585 u32 ret = MPI_IO_STATUS_FAIL, processedMsgCount = 0;
3586
3587 circularQ = &pm8001_ha->outbnd_q_tbl[0];
3588 do {
3589 ret = mpi_msg_consume(pm8001_ha, circularQ, &pMsg1, &bc);
3590 if (MPI_IO_STATUS_SUCCESS == ret) {
3591 /* process the outbound message */
3592 process_one_iomb(pm8001_ha, (void *)((u8 *)pMsg1 - 4));
3593 /* free the message from the outbound circular buffer */
3594 mpi_msg_free_set(pm8001_ha, circularQ, bc);
3595 processedMsgCount++;
3596 }
3597 if (MPI_IO_STATUS_BUSY == ret) {
3598 u32 producer_idx;
3599 /* Update the producer index from SPC */
3600 producer_idx = pm8001_read_32(circularQ->pi_virt);
3601 circularQ->producer_index = cpu_to_le32(producer_idx);
3602 if (circularQ->producer_index ==
3603 circularQ->consumer_idx)
3604 /* OQ is empty */
3605 break;
3606 }
3607 } while (100 > processedMsgCount);/*end message processing if hit the
3608 count*/
3609 return ret;
3610}
3611
3612/* PCI_DMA_... to our direction translation. */
3613static const u8 data_dir_flags[] = {
3614 [PCI_DMA_BIDIRECTIONAL] = DATA_DIR_BYRECIPIENT,/* UNSPECIFIED */
3615 [PCI_DMA_TODEVICE] = DATA_DIR_OUT,/* OUTBOUND */
3616 [PCI_DMA_FROMDEVICE] = DATA_DIR_IN,/* INBOUND */
3617 [PCI_DMA_NONE] = DATA_DIR_NONE,/* NO TRANSFER */
3618};
3619static void
3620pm8001_chip_make_sg(struct scatterlist *scatter, int nr, void *prd)
3621{
3622 int i;
3623 struct scatterlist *sg;
3624 struct pm8001_prd *buf_prd = prd;
3625
3626 for_each_sg(scatter, sg, nr, i) {
3627 buf_prd->addr = cpu_to_le64(sg_dma_address(sg));
3628 buf_prd->im_len.len = cpu_to_le32(sg_dma_len(sg));
3629 buf_prd->im_len.e = 0;
3630 buf_prd++;
3631 }
3632}
3633
3634static void build_smp_cmd(u32 deviceID, u32 hTag, struct smp_req *psmp_cmd)
3635{
3636 psmp_cmd->tag = cpu_to_le32(hTag);
3637 psmp_cmd->device_id = cpu_to_le32(deviceID);
3638 psmp_cmd->len_ip_ir = cpu_to_le32(1|(1 << 1));
3639}
3640
3641/**
3642 * pm8001_chip_smp_req - send a SMP task to FW
3643 * @pm8001_ha: our hba card information.
3644 * @ccb: the ccb information this request used.
3645 */
3646static int pm8001_chip_smp_req(struct pm8001_hba_info *pm8001_ha,
3647 struct pm8001_ccb_info *ccb)
3648{
3649 int elem, rc;
3650 struct sas_task *task = ccb->task;
3651 struct domain_device *dev = task->dev;
3652 struct pm8001_device *pm8001_dev = dev->lldd_dev;
3653 struct scatterlist *sg_req, *sg_resp;
3654 u32 req_len, resp_len;
3655 struct smp_req smp_cmd;
3656 u32 opc;
3657 struct inbound_queue_table *circularQ;
3658
3659 memset(&smp_cmd, 0, sizeof(smp_cmd));
3660 /*
3661 * DMA-map SMP request, response buffers
3662 */
3663 sg_req = &task->smp_task.smp_req;
3664 elem = dma_map_sg(pm8001_ha->dev, sg_req, 1, PCI_DMA_TODEVICE);
3665 if (!elem)
3666 return -ENOMEM;
3667 req_len = sg_dma_len(sg_req);
3668
3669 sg_resp = &task->smp_task.smp_resp;
3670 elem = dma_map_sg(pm8001_ha->dev, sg_resp, 1, PCI_DMA_FROMDEVICE);
3671 if (!elem) {
3672 rc = -ENOMEM;
3673 goto err_out;
3674 }
3675 resp_len = sg_dma_len(sg_resp);
3676 /* must be in dwords */
3677 if ((req_len & 0x3) || (resp_len & 0x3)) {
3678 rc = -EINVAL;
3679 goto err_out_2;
3680 }
3681
3682 opc = OPC_INB_SMP_REQUEST;
3683 circularQ = &pm8001_ha->inbnd_q_tbl[0];
3684 smp_cmd.tag = cpu_to_le32(ccb->ccb_tag);
3685 smp_cmd.long_smp_req.long_req_addr =
3686 cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_req));
3687 smp_cmd.long_smp_req.long_req_size =
3688 cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-4);
3689 smp_cmd.long_smp_req.long_resp_addr =
3690 cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_resp));
3691 smp_cmd.long_smp_req.long_resp_size =
3692 cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_resp)-4);
3693 build_smp_cmd(pm8001_dev->device_id, smp_cmd.tag, &smp_cmd);
3694 mpi_build_cmd(pm8001_ha, circularQ, opc, (u32 *)&smp_cmd);
3695 return 0;
3696
3697err_out_2:
3698 dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_resp, 1,
3699 PCI_DMA_FROMDEVICE);
3700err_out:
3701 dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_req, 1,
3702 PCI_DMA_TODEVICE);
3703 return rc;
3704}
3705
3706/**
3707 * pm8001_chip_ssp_io_req - send a SSP task to FW
3708 * @pm8001_ha: our hba card information.
3709 * @ccb: the ccb information this request used.
3710 */
3711static int pm8001_chip_ssp_io_req(struct pm8001_hba_info *pm8001_ha,
3712 struct pm8001_ccb_info *ccb)
3713{
3714 struct sas_task *task = ccb->task;
3715 struct domain_device *dev = task->dev;
3716 struct pm8001_device *pm8001_dev = dev->lldd_dev;
3717 struct ssp_ini_io_start_req ssp_cmd;
3718 u32 tag = ccb->ccb_tag;
3719 __le64 phys_addr;
3720 struct inbound_queue_table *circularQ;
3721 u32 opc = OPC_INB_SSPINIIOSTART;
3722 memset(&ssp_cmd, 0, sizeof(ssp_cmd));
3723 memcpy(ssp_cmd.ssp_iu.lun, task->ssp_task.LUN, 8);
3724 ssp_cmd.dir_m_tlr = data_dir_flags[task->data_dir] << 8 | 0x0;/*0 for
3725 SAS 1.1 compatible TLR*/
3726 ssp_cmd.data_len = cpu_to_le32(task->total_xfer_len);
3727 ssp_cmd.device_id = cpu_to_le32(pm8001_dev->device_id);
3728 ssp_cmd.tag = cpu_to_le32(tag);
3729 if (task->ssp_task.enable_first_burst)
3730 ssp_cmd.ssp_iu.efb_prio_attr |= 0x80;
3731 ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_prio << 3);
3732 ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_attr & 7);
3733 memcpy(ssp_cmd.ssp_iu.cdb, task->ssp_task.cdb, 16);
3734 circularQ = &pm8001_ha->inbnd_q_tbl[0];
3735
3736 /* fill in PRD (scatter/gather) table, if any */
3737 if (task->num_scatter > 1) {
3738 pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd);
3739 phys_addr = cpu_to_le64(ccb->ccb_dma_handle +
3740 offsetof(struct pm8001_ccb_info, buf_prd[0]));
3741 ssp_cmd.addr_low = lower_32_bits(phys_addr);
3742 ssp_cmd.addr_high = upper_32_bits(phys_addr);
3743 ssp_cmd.esgl = cpu_to_le32(1<<31);
3744 } else if (task->num_scatter == 1) {
3745 __le64 dma_addr = cpu_to_le64(sg_dma_address(task->scatter));
3746 ssp_cmd.addr_low = lower_32_bits(dma_addr);
3747 ssp_cmd.addr_high = upper_32_bits(dma_addr);
3748 ssp_cmd.len = cpu_to_le32(task->total_xfer_len);
3749 ssp_cmd.esgl = 0;
3750 } else if (task->num_scatter == 0) {
3751 ssp_cmd.addr_low = 0;
3752 ssp_cmd.addr_high = 0;
3753 ssp_cmd.len = cpu_to_le32(task->total_xfer_len);
3754 ssp_cmd.esgl = 0;
3755 }
3756 mpi_build_cmd(pm8001_ha, circularQ, opc, &ssp_cmd);
3757 return 0;
3758}
3759
3760static int pm8001_chip_sata_req(struct pm8001_hba_info *pm8001_ha,
3761 struct pm8001_ccb_info *ccb)
3762{
3763 struct sas_task *task = ccb->task;
3764 struct domain_device *dev = task->dev;
3765 struct pm8001_device *pm8001_ha_dev = dev->lldd_dev;
3766 u32 tag = ccb->ccb_tag;
3767 struct sata_start_req sata_cmd;
3768 u32 hdr_tag, ncg_tag = 0;
3769 __le64 phys_addr;
3770 u32 ATAP = 0x0;
3771 u32 dir;
3772 struct inbound_queue_table *circularQ;
3773 u32 opc = OPC_INB_SATA_HOST_OPSTART;
3774 memset(&sata_cmd, 0, sizeof(sata_cmd));
3775 circularQ = &pm8001_ha->inbnd_q_tbl[0];
3776 if (task->data_dir == PCI_DMA_NONE) {
3777 ATAP = 0x04; /* no data*/
3778 PM8001_IO_DBG(pm8001_ha, pm8001_printk("no data \n"));
3779 } else if (likely(!task->ata_task.device_control_reg_update)) {
3780 if (task->ata_task.dma_xfer) {
3781 ATAP = 0x06; /* DMA */
3782 PM8001_IO_DBG(pm8001_ha, pm8001_printk("DMA \n"));
3783 } else {
3784 ATAP = 0x05; /* PIO*/
3785 PM8001_IO_DBG(pm8001_ha, pm8001_printk("PIO \n"));
3786 }
3787 if (task->ata_task.use_ncq &&
3788 dev->sata_dev.command_set != ATAPI_COMMAND_SET) {
3789 ATAP = 0x07; /* FPDMA */
3790 PM8001_IO_DBG(pm8001_ha, pm8001_printk("FPDMA \n"));
3791 }
3792 }
3793 if (task->ata_task.use_ncq && pm8001_get_ncq_tag(task, &hdr_tag))
3794 ncg_tag = cpu_to_le32(hdr_tag);
3795 dir = data_dir_flags[task->data_dir] << 8;
3796 sata_cmd.tag = cpu_to_le32(tag);
3797 sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id);
3798 sata_cmd.data_len = cpu_to_le32(task->total_xfer_len);
3799 sata_cmd.ncqtag_atap_dir_m =
3800 cpu_to_le32(((ncg_tag & 0xff)<<16)|((ATAP & 0x3f) << 10) | dir);
3801 sata_cmd.sata_fis = task->ata_task.fis;
3802 if (likely(!task->ata_task.device_control_reg_update))
3803 sata_cmd.sata_fis.flags |= 0x80;/* C=1: update ATA cmd reg */
3804 sata_cmd.sata_fis.flags &= 0xF0;/* PM_PORT field shall be 0 */
3805 /* fill in PRD (scatter/gather) table, if any */
3806 if (task->num_scatter > 1) {
3807 pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd);
3808 phys_addr = cpu_to_le64(ccb->ccb_dma_handle +
3809 offsetof(struct pm8001_ccb_info, buf_prd[0]));
3810 sata_cmd.addr_low = lower_32_bits(phys_addr);
3811 sata_cmd.addr_high = upper_32_bits(phys_addr);
3812 sata_cmd.esgl = cpu_to_le32(1 << 31);
3813 } else if (task->num_scatter == 1) {
3814 __le64 dma_addr = cpu_to_le64(sg_dma_address(task->scatter));
3815 sata_cmd.addr_low = lower_32_bits(dma_addr);
3816 sata_cmd.addr_high = upper_32_bits(dma_addr);
3817 sata_cmd.len = cpu_to_le32(task->total_xfer_len);
3818 sata_cmd.esgl = 0;
3819 } else if (task->num_scatter == 0) {
3820 sata_cmd.addr_low = 0;
3821 sata_cmd.addr_high = 0;
3822 sata_cmd.len = cpu_to_le32(task->total_xfer_len);
3823 sata_cmd.esgl = 0;
3824 }
3825 mpi_build_cmd(pm8001_ha, circularQ, opc, &sata_cmd);
3826 return 0;
3827}
3828
3829/**
3830 * pm8001_chip_phy_start_req - start phy via PHY_START COMMAND
3831 * @pm8001_ha: our hba card information.
3832 * @num: the inbound queue number
3833 * @phy_id: the phy id which we wanted to start up.
3834 */
3835static int
3836pm8001_chip_phy_start_req(struct pm8001_hba_info *pm8001_ha, u8 phy_id)
3837{
3838 struct phy_start_req payload;
3839 struct inbound_queue_table *circularQ;
3840 u32 tag = 0x01;
3841 u32 opcode = OPC_INB_PHYSTART;
3842 circularQ = &pm8001_ha->inbnd_q_tbl[0];
3843 memset(&payload, 0, sizeof(payload));
3844 payload.tag = cpu_to_le32(tag);
3845 /*
3846 ** [0:7] PHY Identifier
3847 ** [8:11] link rate 1.5G, 3G, 6G
3848 ** [12:13] link mode 01b SAS mode; 10b SATA mode; 11b both
3849 ** [14] 0b disable spin up hold; 1b enable spin up hold
3850 */
3851 payload.ase_sh_lm_slr_phyid = cpu_to_le32(SPINHOLD_DISABLE |
3852 LINKMODE_AUTO | LINKRATE_15 |
3853 LINKRATE_30 | LINKRATE_60 | phy_id);
3854 payload.sas_identify.dev_type = SAS_END_DEV;
3855 payload.sas_identify.initiator_bits = SAS_PROTOCOL_ALL;
3856 memcpy(payload.sas_identify.sas_addr,
3857 pm8001_ha->sas_addr, SAS_ADDR_SIZE);
3858 payload.sas_identify.phy_id = phy_id;
3859 mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload);
3860 return 0;
3861}
3862
3863/**
3864 * pm8001_chip_phy_stop_req - start phy via PHY_STOP COMMAND
3865 * @pm8001_ha: our hba card information.
3866 * @num: the inbound queue number
3867 * @phy_id: the phy id which we wanted to start up.
3868 */
3869static int pm8001_chip_phy_stop_req(struct pm8001_hba_info *pm8001_ha,
3870 u8 phy_id)
3871{
3872 struct phy_stop_req payload;
3873 struct inbound_queue_table *circularQ;
3874 u32 tag = 0x01;
3875 u32 opcode = OPC_INB_PHYSTOP;
3876 circularQ = &pm8001_ha->inbnd_q_tbl[0];
3877 memset(&payload, 0, sizeof(payload));
3878 payload.tag = cpu_to_le32(tag);
3879 payload.phy_id = cpu_to_le32(phy_id);
3880 mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload);
3881 return 0;
3882}
3883
3884/**
3885 * see comments on mpi_reg_resp.
3886 */
3887static int pm8001_chip_reg_dev_req(struct pm8001_hba_info *pm8001_ha,
3888 struct pm8001_device *pm8001_dev, u32 flag)
3889{
3890 struct reg_dev_req payload;
3891 u32 opc;
3892 u32 stp_sspsmp_sata = 0x4;
3893 struct inbound_queue_table *circularQ;
3894 u32 linkrate, phy_id;
3895 u32 rc, tag = 0xdeadbeef;
3896 struct pm8001_ccb_info *ccb;
3897 u8 retryFlag = 0x1;
3898 u16 firstBurstSize = 0;
3899 u16 ITNT = 2000;
3900 struct domain_device *dev = pm8001_dev->sas_device;
3901 struct domain_device *parent_dev = dev->parent;
3902 circularQ = &pm8001_ha->inbnd_q_tbl[0];
3903
3904 memset(&payload, 0, sizeof(payload));
3905 rc = pm8001_tag_alloc(pm8001_ha, &tag);
3906 if (rc)
3907 return rc;
3908 ccb = &pm8001_ha->ccb_info[tag];
3909 ccb->device = pm8001_dev;
3910 ccb->ccb_tag = tag;
3911 payload.tag = cpu_to_le32(tag);
3912 if (flag == 1)
3913 stp_sspsmp_sata = 0x02; /*direct attached sata */
3914 else {
3915 if (pm8001_dev->dev_type == SATA_DEV)
3916 stp_sspsmp_sata = 0x00; /* stp*/
3917 else if (pm8001_dev->dev_type == SAS_END_DEV ||
3918 pm8001_dev->dev_type == EDGE_DEV ||
3919 pm8001_dev->dev_type == FANOUT_DEV)
3920 stp_sspsmp_sata = 0x01; /*ssp or smp*/
3921 }
3922 if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type))
3923 phy_id = parent_dev->ex_dev.ex_phy->phy_id;
3924 else
3925 phy_id = pm8001_dev->attached_phy;
3926 opc = OPC_INB_REG_DEV;
3927 linkrate = (pm8001_dev->sas_device->linkrate < dev->port->linkrate) ?
3928 pm8001_dev->sas_device->linkrate : dev->port->linkrate;
3929 payload.phyid_portid =
3930 cpu_to_le32(((pm8001_dev->sas_device->port->id) & 0x0F) |
3931 ((phy_id & 0x0F) << 4));
3932 payload.dtype_dlr_retry = cpu_to_le32((retryFlag & 0x01) |
3933 ((linkrate & 0x0F) * 0x1000000) |
3934 ((stp_sspsmp_sata & 0x03) * 0x10000000));
3935 payload.firstburstsize_ITNexustimeout =
3936 cpu_to_le32(ITNT | (firstBurstSize * 0x10000));
3937 memcpy(&payload.sas_addr_hi, pm8001_dev->sas_device->sas_addr,
3938 SAS_ADDR_SIZE);
3939 mpi_build_cmd(pm8001_ha, circularQ, opc, &payload);
3940 return 0;
3941}
3942
3943/**
3944 * see comments on mpi_reg_resp.
3945 */
3946static int pm8001_chip_dereg_dev_req(struct pm8001_hba_info *pm8001_ha,
3947 u32 device_id)
3948{
3949 struct dereg_dev_req payload;
3950 u32 opc = OPC_INB_DEREG_DEV_HANDLE;
3951 struct inbound_queue_table *circularQ;
3952
3953 circularQ = &pm8001_ha->inbnd_q_tbl[0];
3954 memset((u8 *)&payload, 0, sizeof(payload));
3955 payload.tag = 1;
3956 payload.device_id = cpu_to_le32(device_id);
3957 PM8001_MSG_DBG(pm8001_ha,
3958 pm8001_printk("unregister device device_id = %d\n", device_id));
3959 mpi_build_cmd(pm8001_ha, circularQ, opc, &payload);
3960 return 0;
3961}
3962
3963/**
3964 * pm8001_chip_phy_ctl_req - support the local phy operation
3965 * @pm8001_ha: our hba card information.
3966 * @num: the inbound queue number
3967 * @phy_id: the phy id which we wanted to operate
3968 * @phy_op:
3969 */
3970static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha,
3971 u32 phyId, u32 phy_op)
3972{
3973 struct local_phy_ctl_req payload;
3974 struct inbound_queue_table *circularQ;
3975 u32 opc = OPC_INB_LOCAL_PHY_CONTROL;
3976 memset((u8 *)&payload, 0, sizeof(payload));
3977 circularQ = &pm8001_ha->inbnd_q_tbl[0];
3978 payload.tag = 1;
3979 payload.phyop_phyid =
3980 cpu_to_le32(((phy_op & 0xff) << 8) | (phyId & 0x0F));
3981 mpi_build_cmd(pm8001_ha, circularQ, opc, &payload);
3982 return 0;
3983}
3984
3985static u32 pm8001_chip_is_our_interupt(struct pm8001_hba_info *pm8001_ha)
3986{
3987 u32 value;
3988#ifdef PM8001_USE_MSIX
3989 return 1;
3990#endif
3991 value = pm8001_cr32(pm8001_ha, 0, MSGU_ODR);
3992 if (value)
3993 return 1;
3994 return 0;
3995
3996}
3997
3998/**
3999 * pm8001_chip_isr - PM8001 isr handler.
4000 * @pm8001_ha: our hba card information.
4001 * @irq: irq number.
4002 * @stat: stat.
4003 */
4004static void
4005pm8001_chip_isr(struct pm8001_hba_info *pm8001_ha)
4006{
4007 pm8001_chip_interrupt_disable(pm8001_ha);
4008 process_oq(pm8001_ha);
4009 pm8001_chip_interrupt_enable(pm8001_ha);
4010}
4011
4012static int send_task_abort(struct pm8001_hba_info *pm8001_ha, u32 opc,
4013 u32 dev_id, u8 flag, u32 task_tag, u32 cmd_tag)
4014{
4015 struct task_abort_req task_abort;
4016 struct inbound_queue_table *circularQ;
4017
4018 circularQ = &pm8001_ha->inbnd_q_tbl[0];
4019 memset(&task_abort, 0, sizeof(task_abort));
4020 if (ABORT_SINGLE == (flag & ABORT_MASK)) {
4021 task_abort.abort_all = 0;
4022 task_abort.device_id = cpu_to_le32(dev_id);
4023 task_abort.tag_to_abort = cpu_to_le32(task_tag);
4024 task_abort.tag = cpu_to_le32(cmd_tag);
4025 } else if (ABORT_ALL == (flag & ABORT_MASK)) {
4026 task_abort.abort_all = cpu_to_le32(1);
4027 task_abort.device_id = cpu_to_le32(dev_id);
4028 task_abort.tag = cpu_to_le32(cmd_tag);
4029 }
4030 mpi_build_cmd(pm8001_ha, circularQ, opc, &task_abort);
4031 return 0;
4032}
4033
4034/**
4035 * pm8001_chip_abort_task - SAS abort task when error or exception happened.
4036 * @task: the task we wanted to aborted.
4037 * @flag: the abort flag.
4038 */
4039static int pm8001_chip_abort_task(struct pm8001_hba_info *pm8001_ha,
4040 struct pm8001_device *pm8001_dev, u8 flag, u32 task_tag, u32 cmd_tag)
4041{
4042 u32 opc, device_id;
4043 int rc = TMF_RESP_FUNC_FAILED;
4044 PM8001_IO_DBG(pm8001_ha, pm8001_printk("Abort tag[%x]", task_tag));
4045 if (pm8001_dev->dev_type == SAS_END_DEV)
4046 opc = OPC_INB_SSP_ABORT;
4047 else if (pm8001_dev->dev_type == SATA_DEV)
4048 opc = OPC_INB_SATA_ABORT;
4049 else
4050 opc = OPC_INB_SMP_ABORT;/* SMP */
4051 device_id = pm8001_dev->device_id;
4052 rc = send_task_abort(pm8001_ha, opc, device_id, flag,
4053 task_tag, cmd_tag);
4054 if (rc != TMF_RESP_FUNC_COMPLETE)
4055 PM8001_IO_DBG(pm8001_ha, pm8001_printk("rc= %d\n", rc));
4056 return rc;
4057}
4058
4059/**
4060 * pm8001_chip_ssp_tm_req - built the task managment command.
4061 * @pm8001_ha: our hba card information.
4062 * @ccb: the ccb information.
4063 * @tmf: task management function.
4064 */
4065static int pm8001_chip_ssp_tm_req(struct pm8001_hba_info *pm8001_ha,
4066 struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf)
4067{
4068 struct sas_task *task = ccb->task;
4069 struct domain_device *dev = task->dev;
4070 struct pm8001_device *pm8001_dev = dev->lldd_dev;
4071 u32 opc = OPC_INB_SSPINITMSTART;
4072 struct inbound_queue_table *circularQ;
4073 struct ssp_ini_tm_start_req sspTMCmd;
4074
4075 memset(&sspTMCmd, 0, sizeof(sspTMCmd));
4076 sspTMCmd.device_id = cpu_to_le32(pm8001_dev->device_id);
4077 sspTMCmd.relate_tag = cpu_to_le32(tmf->tag_of_task_to_be_managed);
4078 sspTMCmd.tmf = cpu_to_le32(tmf->tmf);
4079 sspTMCmd.ds_ads_m = cpu_to_le32(1 << 2);
4080 memcpy(sspTMCmd.lun, task->ssp_task.LUN, 8);
4081 sspTMCmd.tag = cpu_to_le32(ccb->ccb_tag);
4082 circularQ = &pm8001_ha->inbnd_q_tbl[0];
4083 mpi_build_cmd(pm8001_ha, circularQ, opc, &sspTMCmd);
4084 return 0;
4085}
4086
4087static int pm8001_chip_get_nvmd_req(struct pm8001_hba_info *pm8001_ha,
4088 void *payload)
4089{
4090 u32 opc = OPC_INB_GET_NVMD_DATA;
4091 u32 nvmd_type;
4092 u32 rc;
4093 u32 tag;
4094 struct pm8001_ccb_info *ccb;
4095 struct inbound_queue_table *circularQ;
4096 struct get_nvm_data_req nvmd_req;
4097 struct fw_control_ex *fw_control_context;
4098 struct pm8001_ioctl_payload *ioctl_payload = payload;
4099
4100 nvmd_type = ioctl_payload->minor_function;
4101 fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL);
4102 fw_control_context->usrAddr = (u8 *)&ioctl_payload->func_specific[0];
4103 fw_control_context->len = ioctl_payload->length;
4104 circularQ = &pm8001_ha->inbnd_q_tbl[0];
4105 memset(&nvmd_req, 0, sizeof(nvmd_req));
4106 rc = pm8001_tag_alloc(pm8001_ha, &tag);
4107 if (rc)
4108 return rc;
4109 ccb = &pm8001_ha->ccb_info[tag];
4110 ccb->ccb_tag = tag;
4111 ccb->fw_control_context = fw_control_context;
4112 nvmd_req.tag = cpu_to_le32(tag);
4113
4114 switch (nvmd_type) {
4115 case TWI_DEVICE: {
4116 u32 twi_addr, twi_page_size;
4117 twi_addr = 0xa8;
4118 twi_page_size = 2;
4119
4120 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 |
4121 twi_page_size << 8 | TWI_DEVICE);
4122 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
4123 nvmd_req.resp_addr_hi =
4124 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
4125 nvmd_req.resp_addr_lo =
4126 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
4127 break;
4128 }
4129 case C_SEEPROM: {
4130 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM);
4131 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
4132 nvmd_req.resp_addr_hi =
4133 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
4134 nvmd_req.resp_addr_lo =
4135 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
4136 break;
4137 }
4138 case VPD_FLASH: {
4139 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH);
4140 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
4141 nvmd_req.resp_addr_hi =
4142 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
4143 nvmd_req.resp_addr_lo =
4144 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
4145 break;
4146 }
4147 case EXPAN_ROM: {
4148 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM);
4149 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
4150 nvmd_req.resp_addr_hi =
4151 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
4152 nvmd_req.resp_addr_lo =
4153 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
4154 break;
4155 }
4156 default:
4157 break;
4158 }
4159 mpi_build_cmd(pm8001_ha, circularQ, opc, &nvmd_req);
4160 return 0;
4161}
4162
4163static int pm8001_chip_set_nvmd_req(struct pm8001_hba_info *pm8001_ha,
4164 void *payload)
4165{
4166 u32 opc = OPC_INB_SET_NVMD_DATA;
4167 u32 nvmd_type;
4168 u32 rc;
4169 u32 tag;
4170 struct pm8001_ccb_info *ccb;
4171 struct inbound_queue_table *circularQ;
4172 struct set_nvm_data_req nvmd_req;
4173 struct fw_control_ex *fw_control_context;
4174 struct pm8001_ioctl_payload *ioctl_payload = payload;
4175
4176 nvmd_type = ioctl_payload->minor_function;
4177 fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL);
4178 circularQ = &pm8001_ha->inbnd_q_tbl[0];
4179 memcpy(pm8001_ha->memoryMap.region[NVMD].virt_ptr,
4180 ioctl_payload->func_specific,
4181 ioctl_payload->length);
4182 memset(&nvmd_req, 0, sizeof(nvmd_req));
4183 rc = pm8001_tag_alloc(pm8001_ha, &tag);
4184 if (rc)
4185 return rc;
4186 ccb = &pm8001_ha->ccb_info[tag];
4187 ccb->fw_control_context = fw_control_context;
4188 ccb->ccb_tag = tag;
4189 nvmd_req.tag = cpu_to_le32(tag);
4190 switch (nvmd_type) {
4191 case TWI_DEVICE: {
4192 u32 twi_addr, twi_page_size;
4193 twi_addr = 0xa8;
4194 twi_page_size = 2;
4195 nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
4196 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 |
4197 twi_page_size << 8 | TWI_DEVICE);
4198 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
4199 nvmd_req.resp_addr_hi =
4200 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
4201 nvmd_req.resp_addr_lo =
4202 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
4203 break;
4204 }
4205 case C_SEEPROM:
4206 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM);
4207 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
4208 nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
4209 nvmd_req.resp_addr_hi =
4210 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
4211 nvmd_req.resp_addr_lo =
4212 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
4213 break;
4214 case VPD_FLASH:
4215 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH);
4216 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
4217 nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
4218 nvmd_req.resp_addr_hi =
4219 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
4220 nvmd_req.resp_addr_lo =
4221 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
4222 break;
4223 case EXPAN_ROM:
4224 nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM);
4225 nvmd_req.resp_len = cpu_to_le32(ioctl_payload->length);
4226 nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98);
4227 nvmd_req.resp_addr_hi =
4228 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi);
4229 nvmd_req.resp_addr_lo =
4230 cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo);
4231 break;
4232 default:
4233 break;
4234 }
4235 mpi_build_cmd(pm8001_ha, circularQ, opc, &nvmd_req);
4236 return 0;
4237}
4238
4239/**
4240 * pm8001_chip_fw_flash_update_build - support the firmware update operation
4241 * @pm8001_ha: our hba card information.
4242 * @fw_flash_updata_info: firmware flash update param
4243 */
4244static int
4245pm8001_chip_fw_flash_update_build(struct pm8001_hba_info *pm8001_ha,
4246 void *fw_flash_updata_info, u32 tag)
4247{
4248 struct fw_flash_Update_req payload;
4249 struct fw_flash_updata_info *info;
4250 struct inbound_queue_table *circularQ;
4251 u32 opc = OPC_INB_FW_FLASH_UPDATE;
4252
4253 memset((u8 *)&payload, 0, sizeof(struct fw_flash_Update_req));
4254 circularQ = &pm8001_ha->inbnd_q_tbl[0];
4255 info = fw_flash_updata_info;
4256 payload.tag = cpu_to_le32(tag);
4257 payload.cur_image_len = cpu_to_le32(info->cur_image_len);
4258 payload.cur_image_offset = cpu_to_le32(info->cur_image_offset);
4259 payload.total_image_len = cpu_to_le32(info->total_image_len);
4260 payload.len = info->sgl.im_len.len ;
4261 payload.sgl_addr_lo = lower_32_bits(info->sgl.addr);
4262 payload.sgl_addr_hi = upper_32_bits(info->sgl.addr);
4263 mpi_build_cmd(pm8001_ha, circularQ, opc, &payload);
4264 return 0;
4265}
4266
4267static int
4268pm8001_chip_fw_flash_update_req(struct pm8001_hba_info *pm8001_ha,
4269 void *payload)
4270{
4271 struct fw_flash_updata_info flash_update_info;
4272 struct fw_control_info *fw_control;
4273 struct fw_control_ex *fw_control_context;
4274 u32 rc;
4275 u32 tag;
4276 struct pm8001_ccb_info *ccb;
4277 void *buffer = NULL;
4278 dma_addr_t phys_addr;
4279 u32 phys_addr_hi;
4280 u32 phys_addr_lo;
4281 struct pm8001_ioctl_payload *ioctl_payload = payload;
4282
4283 fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL);
4284 fw_control = (struct fw_control_info *)&ioctl_payload->func_specific[0];
4285 if (fw_control->len != 0) {
4286 if (pm8001_mem_alloc(pm8001_ha->pdev,
4287 (void **)&buffer,
4288 &phys_addr,
4289 &phys_addr_hi,
4290 &phys_addr_lo,
4291 fw_control->len, 0) != 0) {
4292 PM8001_FAIL_DBG(pm8001_ha,
4293 pm8001_printk("Mem alloc failure\n"));
4294 return -ENOMEM;
4295 }
4296 }
4297 memset((void *)buffer, 0, fw_control->len);
4298 memcpy((void *)buffer, fw_control->buffer, fw_control->len);
4299 flash_update_info.sgl.addr = cpu_to_le64(phys_addr);
4300 flash_update_info.sgl.im_len.len = cpu_to_le32(fw_control->len);
4301 flash_update_info.sgl.im_len.e = 0;
4302 flash_update_info.cur_image_offset = fw_control->offset;
4303 flash_update_info.cur_image_len = fw_control->len;
4304 flash_update_info.total_image_len = fw_control->size;
4305 fw_control_context->fw_control = fw_control;
4306 fw_control_context->virtAddr = buffer;
4307 fw_control_context->len = fw_control->len;
4308 rc = pm8001_tag_alloc(pm8001_ha, &tag);
4309 if (rc)
4310 return rc;
4311 ccb = &pm8001_ha->ccb_info[tag];
4312 ccb->fw_control_context = fw_control_context;
4313 ccb->ccb_tag = tag;
4314 pm8001_chip_fw_flash_update_build(pm8001_ha, &flash_update_info, tag);
4315 return 0;
4316}
4317
4318static int
4319pm8001_chip_set_dev_state_req(struct pm8001_hba_info *pm8001_ha,
4320 struct pm8001_device *pm8001_dev, u32 state)
4321{
4322 struct set_dev_state_req payload;
4323 struct inbound_queue_table *circularQ;
4324 struct pm8001_ccb_info *ccb;
4325 u32 rc;
4326 u32 tag;
4327 u32 opc = OPC_INB_SET_DEVICE_STATE;
4328 memset((u8 *)&payload, 0, sizeof(payload));
4329 rc = pm8001_tag_alloc(pm8001_ha, &tag);
4330 if (rc)
4331 return -1;
4332 ccb = &pm8001_ha->ccb_info[tag];
4333 ccb->ccb_tag = tag;
4334 ccb->device = pm8001_dev;
4335 circularQ = &pm8001_ha->inbnd_q_tbl[0];
4336 payload.tag = cpu_to_le32(tag);
4337 payload.device_id = cpu_to_le32(pm8001_dev->device_id);
4338 payload.nds = cpu_to_le32(state);
4339 mpi_build_cmd(pm8001_ha, circularQ, opc, &payload);
4340 return 0;
4341
4342}
4343
4344const struct pm8001_dispatch pm8001_8001_dispatch = {
4345 .name = "pmc8001",
4346 .chip_init = pm8001_chip_init,
4347 .chip_soft_rst = pm8001_chip_soft_rst,
4348 .chip_rst = pm8001_hw_chip_rst,
4349 .chip_iounmap = pm8001_chip_iounmap,
4350 .isr = pm8001_chip_isr,
4351 .is_our_interupt = pm8001_chip_is_our_interupt,
4352 .isr_process_oq = process_oq,
4353 .interrupt_enable = pm8001_chip_interrupt_enable,
4354 .interrupt_disable = pm8001_chip_interrupt_disable,
4355 .make_prd = pm8001_chip_make_sg,
4356 .smp_req = pm8001_chip_smp_req,
4357 .ssp_io_req = pm8001_chip_ssp_io_req,
4358 .sata_req = pm8001_chip_sata_req,
4359 .phy_start_req = pm8001_chip_phy_start_req,
4360 .phy_stop_req = pm8001_chip_phy_stop_req,
4361 .reg_dev_req = pm8001_chip_reg_dev_req,
4362 .dereg_dev_req = pm8001_chip_dereg_dev_req,
4363 .phy_ctl_req = pm8001_chip_phy_ctl_req,
4364 .task_abort = pm8001_chip_abort_task,
4365 .ssp_tm_req = pm8001_chip_ssp_tm_req,
4366 .get_nvmd_req = pm8001_chip_get_nvmd_req,
4367 .set_nvmd_req = pm8001_chip_set_nvmd_req,
4368 .fw_flash_update_req = pm8001_chip_fw_flash_update_req,
4369 .set_dev_state_req = pm8001_chip_set_dev_state_req,
4370};
4371
diff --git a/drivers/scsi/pm8001/pm8001_hwi.h b/drivers/scsi/pm8001/pm8001_hwi.h
new file mode 100644
index 000000000000..3690a2ba0eb2
--- /dev/null
+++ b/drivers/scsi/pm8001/pm8001_hwi.h
@@ -0,0 +1,1011 @@
1/*
2 * PMC-Sierra SPC 8001 SAS/SATA based host adapters driver
3 *
4 * Copyright (c) 2008-2009 USI Co., Ltd.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * substantially similar to the "NO WARRANTY" disclaimer below
15 * ("Disclaimer") and any redistribution must be conditioned upon
16 * including a substantially similar Disclaimer requirement for further
17 * binary redistribution.
18 * 3. Neither the names of the above-listed copyright holders nor the names
19 * of any contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * Alternatively, this software may be distributed under the terms of the
23 * GNU General Public License ("GPL") version 2 as published by the Free
24 * Software Foundation.
25 *
26 * NO WARRANTY
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGES.
38 *
39 */
40#ifndef _PMC8001_REG_H_
41#define _PMC8001_REG_H_
42
43#include <linux/types.h>
44#include <scsi/libsas.h>
45
46
47/* for Request Opcode of IOMB */
48#define OPC_INB_ECHO 1 /* 0x000 */
49#define OPC_INB_PHYSTART 4 /* 0x004 */
50#define OPC_INB_PHYSTOP 5 /* 0x005 */
51#define OPC_INB_SSPINIIOSTART 6 /* 0x006 */
52#define OPC_INB_SSPINITMSTART 7 /* 0x007 */
53#define OPC_INB_SSPINIEXTIOSTART 8 /* 0x008 */
54#define OPC_INB_DEV_HANDLE_ACCEPT 9 /* 0x009 */
55#define OPC_INB_SSPTGTIOSTART 10 /* 0x00A */
56#define OPC_INB_SSPTGTRSPSTART 11 /* 0x00B */
57#define OPC_INB_SSPINIEDCIOSTART 12 /* 0x00C */
58#define OPC_INB_SSPINIEXTEDCIOSTART 13 /* 0x00D */
59#define OPC_INB_SSPTGTEDCIOSTART 14 /* 0x00E */
60#define OPC_INB_SSP_ABORT 15 /* 0x00F */
61#define OPC_INB_DEREG_DEV_HANDLE 16 /* 0x010 */
62#define OPC_INB_GET_DEV_HANDLE 17 /* 0x011 */
63#define OPC_INB_SMP_REQUEST 18 /* 0x012 */
64/* SMP_RESPONSE is removed */
65#define OPC_INB_SMP_RESPONSE 19 /* 0x013 */
66#define OPC_INB_SMP_ABORT 20 /* 0x014 */
67#define OPC_INB_REG_DEV 22 /* 0x016 */
68#define OPC_INB_SATA_HOST_OPSTART 23 /* 0x017 */
69#define OPC_INB_SATA_ABORT 24 /* 0x018 */
70#define OPC_INB_LOCAL_PHY_CONTROL 25 /* 0x019 */
71#define OPC_INB_GET_DEV_INFO 26 /* 0x01A */
72#define OPC_INB_FW_FLASH_UPDATE 32 /* 0x020 */
73#define OPC_INB_GPIO 34 /* 0x022 */
74#define OPC_INB_SAS_DIAG_MODE_START_END 35 /* 0x023 */
75#define OPC_INB_SAS_DIAG_EXECUTE 36 /* 0x024 */
76#define OPC_INB_SAS_HW_EVENT_ACK 37 /* 0x025 */
77#define OPC_INB_GET_TIME_STAMP 38 /* 0x026 */
78#define OPC_INB_PORT_CONTROL 39 /* 0x027 */
79#define OPC_INB_GET_NVMD_DATA 40 /* 0x028 */
80#define OPC_INB_SET_NVMD_DATA 41 /* 0x029 */
81#define OPC_INB_SET_DEVICE_STATE 42 /* 0x02A */
82#define OPC_INB_GET_DEVICE_STATE 43 /* 0x02B */
83#define OPC_INB_SET_DEV_INFO 44 /* 0x02C */
84#define OPC_INB_SAS_RE_INITIALIZE 45 /* 0x02D */
85
86/* for Response Opcode of IOMB */
87#define OPC_OUB_ECHO 1 /* 0x001 */
88#define OPC_OUB_HW_EVENT 4 /* 0x004 */
89#define OPC_OUB_SSP_COMP 5 /* 0x005 */
90#define OPC_OUB_SMP_COMP 6 /* 0x006 */
91#define OPC_OUB_LOCAL_PHY_CNTRL 7 /* 0x007 */
92#define OPC_OUB_DEV_REGIST 10 /* 0x00A */
93#define OPC_OUB_DEREG_DEV 11 /* 0x00B */
94#define OPC_OUB_GET_DEV_HANDLE 12 /* 0x00C */
95#define OPC_OUB_SATA_COMP 13 /* 0x00D */
96#define OPC_OUB_SATA_EVENT 14 /* 0x00E */
97#define OPC_OUB_SSP_EVENT 15 /* 0x00F */
98#define OPC_OUB_DEV_HANDLE_ARRIV 16 /* 0x010 */
99/* SMP_RECEIVED Notification is removed */
100#define OPC_OUB_SMP_RECV_EVENT 17 /* 0x011 */
101#define OPC_OUB_SSP_RECV_EVENT 18 /* 0x012 */
102#define OPC_OUB_DEV_INFO 19 /* 0x013 */
103#define OPC_OUB_FW_FLASH_UPDATE 20 /* 0x014 */
104#define OPC_OUB_GPIO_RESPONSE 22 /* 0x016 */
105#define OPC_OUB_GPIO_EVENT 23 /* 0x017 */
106#define OPC_OUB_GENERAL_EVENT 24 /* 0x018 */
107#define OPC_OUB_SSP_ABORT_RSP 26 /* 0x01A */
108#define OPC_OUB_SATA_ABORT_RSP 27 /* 0x01B */
109#define OPC_OUB_SAS_DIAG_MODE_START_END 28 /* 0x01C */
110#define OPC_OUB_SAS_DIAG_EXECUTE 29 /* 0x01D */
111#define OPC_OUB_GET_TIME_STAMP 30 /* 0x01E */
112#define OPC_OUB_SAS_HW_EVENT_ACK 31 /* 0x01F */
113#define OPC_OUB_PORT_CONTROL 32 /* 0x020 */
114#define OPC_OUB_SKIP_ENTRY 33 /* 0x021 */
115#define OPC_OUB_SMP_ABORT_RSP 34 /* 0x022 */
116#define OPC_OUB_GET_NVMD_DATA 35 /* 0x023 */
117#define OPC_OUB_SET_NVMD_DATA 36 /* 0x024 */
118#define OPC_OUB_DEVICE_HANDLE_REMOVAL 37 /* 0x025 */
119#define OPC_OUB_SET_DEVICE_STATE 38 /* 0x026 */
120#define OPC_OUB_GET_DEVICE_STATE 39 /* 0x027 */
121#define OPC_OUB_SET_DEV_INFO 40 /* 0x028 */
122#define OPC_OUB_SAS_RE_INITIALIZE 41 /* 0x029 */
123
124/* for phy start*/
125#define SPINHOLD_DISABLE (0x00 << 14)
126#define SPINHOLD_ENABLE (0x01 << 14)
127#define LINKMODE_SAS (0x01 << 12)
128#define LINKMODE_DSATA (0x02 << 12)
129#define LINKMODE_AUTO (0x03 << 12)
130#define LINKRATE_15 (0x01 << 8)
131#define LINKRATE_30 (0x02 << 8)
132#define LINKRATE_60 (0x04 << 8)
133
134struct mpi_msg_hdr{
135 __le32 header; /* Bits [11:0] - Message operation code */
136 /* Bits [15:12] - Message Category */
137 /* Bits [21:16] - Outboundqueue ID for the
138 operation completion message */
139 /* Bits [23:22] - Reserved */
140 /* Bits [28:24] - Buffer Count, indicates how
141 many buffer are allocated for the massage */
142 /* Bits [30:29] - Reserved */
143 /* Bits [31] - Message Valid bit */
144} __attribute__((packed, aligned(4)));
145
146
147/*
148 * brief the data structure of PHY Start Command
149 * use to describe enable the phy (64 bytes)
150 */
151struct phy_start_req {
152 __le32 tag;
153 __le32 ase_sh_lm_slr_phyid;
154 struct sas_identify_frame sas_identify;
155 u32 reserved[5];
156} __attribute__((packed, aligned(4)));
157
158
159/*
160 * brief the data structure of PHY Start Command
161 * use to disable the phy (64 bytes)
162 */
163struct phy_stop_req {
164 __le32 tag;
165 __le32 phy_id;
166 u32 reserved[13];
167} __attribute__((packed, aligned(4)));
168
169
170/* set device bits fis - device to host */
171struct set_dev_bits_fis {
172 u8 fis_type; /* 0xA1*/
173 u8 n_i_pmport;
174 /* b7 : n Bit. Notification bit. If set device needs attention. */
175 /* b6 : i Bit. Interrupt Bit */
176 /* b5-b4: reserved2 */
177 /* b3-b0: PM Port */
178 u8 status;
179 u8 error;
180 u32 _r_a;
181} __attribute__ ((packed));
182/* PIO setup FIS - device to host */
183struct pio_setup_fis {
184 u8 fis_type; /* 0x5f */
185 u8 i_d_pmPort;
186 /* b7 : reserved */
187 /* b6 : i bit. Interrupt bit */
188 /* b5 : d bit. data transfer direction. set to 1 for device to host
189 xfer */
190 /* b4 : reserved */
191 /* b3-b0: PM Port */
192 u8 status;
193 u8 error;
194 u8 lbal;
195 u8 lbam;
196 u8 lbah;
197 u8 device;
198 u8 lbal_exp;
199 u8 lbam_exp;
200 u8 lbah_exp;
201 u8 _r_a;
202 u8 sector_count;
203 u8 sector_count_exp;
204 u8 _r_b;
205 u8 e_status;
206 u8 _r_c[2];
207 u8 transfer_count;
208} __attribute__ ((packed));
209
210/*
211 * brief the data structure of SATA Completion Response
212 * use to discribe the sata task response (64 bytes)
213 */
214struct sata_completion_resp {
215 __le32 tag;
216 __le32 status;
217 __le32 param;
218 u32 sata_resp[12];
219} __attribute__((packed, aligned(4)));
220
221
222/*
223 * brief the data structure of SAS HW Event Notification
224 * use to alert the host about the hardware event(64 bytes)
225 */
226struct hw_event_resp {
227 __le32 lr_evt_status_phyid_portid;
228 __le32 evt_param;
229 __le32 npip_portstate;
230 struct sas_identify_frame sas_identify;
231 struct dev_to_host_fis sata_fis;
232} __attribute__((packed, aligned(4)));
233
234
235/*
236 * brief the data structure of REGISTER DEVICE Command
237 * use to describe MPI REGISTER DEVICE Command (64 bytes)
238 */
239
240struct reg_dev_req {
241 __le32 tag;
242 __le32 phyid_portid;
243 __le32 dtype_dlr_retry;
244 __le32 firstburstsize_ITNexustimeout;
245 u32 sas_addr_hi;
246 u32 sas_addr_low;
247 __le32 upper_device_id;
248 u32 reserved[8];
249} __attribute__((packed, aligned(4)));
250
251
252/*
253 * brief the data structure of DEREGISTER DEVICE Command
254 * use to request spc to remove all internal resources associated
255 * with the device id (64 bytes)
256 */
257
258struct dereg_dev_req {
259 __le32 tag;
260 __le32 device_id;
261 u32 reserved[13];
262} __attribute__((packed, aligned(4)));
263
264
265/*
266 * brief the data structure of DEVICE_REGISTRATION Response
267 * use to notify the completion of the device registration (64 bytes)
268 */
269
270struct dev_reg_resp {
271 __le32 tag;
272 __le32 status;
273 __le32 device_id;
274 u32 reserved[12];
275} __attribute__((packed, aligned(4)));
276
277
278/*
279 * brief the data structure of Local PHY Control Command
280 * use to issue PHY CONTROL to local phy (64 bytes)
281 */
282struct local_phy_ctl_req {
283 __le32 tag;
284 __le32 phyop_phyid;
285 u32 reserved1[13];
286} __attribute__((packed, aligned(4)));
287
288
289/**
290 * brief the data structure of Local Phy Control Response
291 * use to describe MPI Local Phy Control Response (64 bytes)
292 */
293struct local_phy_ctl_resp {
294 __le32 tag;
295 __le32 phyop_phyid;
296 __le32 status;
297 u32 reserved[12];
298} __attribute__((packed, aligned(4)));
299
300
301#define OP_BITS 0x0000FF00
302#define ID_BITS 0x0000000F
303
304/*
305 * brief the data structure of PORT Control Command
306 * use to control port properties (64 bytes)
307 */
308
309struct port_ctl_req {
310 __le32 tag;
311 __le32 portop_portid;
312 __le32 param0;
313 __le32 param1;
314 u32 reserved1[11];
315} __attribute__((packed, aligned(4)));
316
317
318/*
319 * brief the data structure of HW Event Ack Command
320 * use to acknowledge receive HW event (64 bytes)
321 */
322
323struct hw_event_ack_req {
324 __le32 tag;
325 __le32 sea_phyid_portid;
326 __le32 param0;
327 __le32 param1;
328 u32 reserved1[11];
329} __attribute__((packed, aligned(4)));
330
331
332/*
333 * brief the data structure of SSP Completion Response
334 * use to indicate a SSP Completion (n bytes)
335 */
336struct ssp_completion_resp {
337 __le32 tag;
338 __le32 status;
339 __le32 param;
340 __le32 ssptag_rescv_rescpad;
341 struct ssp_response_iu ssp_resp_iu;
342 __le32 residual_count;
343} __attribute__((packed, aligned(4)));
344
345
346#define SSP_RESCV_BIT 0x00010000
347
348/*
349 * brief the data structure of SATA EVNET esponse
350 * use to indicate a SATA Completion (64 bytes)
351 */
352
353struct sata_event_resp {
354 __le32 tag;
355 __le32 event;
356 __le32 port_id;
357 __le32 device_id;
358 u32 reserved[11];
359} __attribute__((packed, aligned(4)));
360
361/*
362 * brief the data structure of SSP EVNET esponse
363 * use to indicate a SSP Completion (64 bytes)
364 */
365
366struct ssp_event_resp {
367 __le32 tag;
368 __le32 event;
369 __le32 port_id;
370 __le32 device_id;
371 u32 reserved[11];
372} __attribute__((packed, aligned(4)));
373
374/**
375 * brief the data structure of General Event Notification Response
376 * use to describe MPI General Event Notification Response (64 bytes)
377 */
378struct general_event_resp {
379 __le32 status;
380 __le32 inb_IOMB_payload[14];
381} __attribute__((packed, aligned(4)));
382
383
384#define GENERAL_EVENT_PAYLOAD 14
385#define OPCODE_BITS 0x00000fff
386
387/*
388 * brief the data structure of SMP Request Command
389 * use to describe MPI SMP REQUEST Command (64 bytes)
390 */
391struct smp_req {
392 __le32 tag;
393 __le32 device_id;
394 __le32 len_ip_ir;
395 /* Bits [0] - Indirect response */
396 /* Bits [1] - Indirect Payload */
397 /* Bits [15:2] - Reserved */
398 /* Bits [23:16] - direct payload Len */
399 /* Bits [31:24] - Reserved */
400 u8 smp_req16[16];
401 union {
402 u8 smp_req[32];
403 struct {
404 __le64 long_req_addr;/* sg dma address, LE */
405 __le32 long_req_size;/* LE */
406 u32 _r_a;
407 __le64 long_resp_addr;/* sg dma address, LE */
408 __le32 long_resp_size;/* LE */
409 u32 _r_b;
410 } long_smp_req;/* sequencer extension */
411 };
412} __attribute__((packed, aligned(4)));
413/*
414 * brief the data structure of SMP Completion Response
415 * use to describe MPI SMP Completion Response (64 bytes)
416 */
417struct smp_completion_resp {
418 __le32 tag;
419 __le32 status;
420 __le32 param;
421 __le32 _r_a[12];
422} __attribute__((packed, aligned(4)));
423
424/*
425 *brief the data structure of SSP SMP SATA Abort Command
426 * use to describe MPI SSP SMP & SATA Abort Command (64 bytes)
427 */
428struct task_abort_req {
429 __le32 tag;
430 __le32 device_id;
431 __le32 tag_to_abort;
432 __le32 abort_all;
433 u32 reserved[11];
434} __attribute__((packed, aligned(4)));
435
436/* These flags used for SSP SMP & SATA Abort */
437#define ABORT_MASK 0x3
438#define ABORT_SINGLE 0x0
439#define ABORT_ALL 0x1
440
441/**
442 * brief the data structure of SSP SATA SMP Abort Response
443 * use to describe SSP SMP & SATA Abort Response ( 64 bytes)
444 */
445struct task_abort_resp {
446 __le32 tag;
447 __le32 status;
448 __le32 scp;
449 u32 reserved[12];
450} __attribute__((packed, aligned(4)));
451
452
453/**
454 * brief the data structure of SAS Diagnostic Start/End Command
455 * use to describe MPI SAS Diagnostic Start/End Command (64 bytes)
456 */
457struct sas_diag_start_end_req {
458 __le32 tag;
459 __le32 operation_phyid;
460 u32 reserved[13];
461} __attribute__((packed, aligned(4)));
462
463
464/**
465 * brief the data structure of SAS Diagnostic Execute Command
466 * use to describe MPI SAS Diagnostic Execute Command (64 bytes)
467 */
468struct sas_diag_execute_req{
469 __le32 tag;
470 __le32 cmdtype_cmddesc_phyid;
471 __le32 pat1_pat2;
472 __le32 threshold;
473 __le32 codepat_errmsk;
474 __le32 pmon;
475 __le32 pERF1CTL;
476 u32 reserved[8];
477} __attribute__((packed, aligned(4)));
478
479
480#define SAS_DIAG_PARAM_BYTES 24
481
482/*
483 * brief the data structure of Set Device State Command
484 * use to describe MPI Set Device State Command (64 bytes)
485 */
486struct set_dev_state_req {
487 __le32 tag;
488 __le32 device_id;
489 __le32 nds;
490 u32 reserved[12];
491} __attribute__((packed, aligned(4)));
492
493
494/*
495 * brief the data structure of SATA Start Command
496 * use to describe MPI SATA IO Start Command (64 bytes)
497 */
498
499struct sata_start_req {
500 __le32 tag;
501 __le32 device_id;
502 __le32 data_len;
503 __le32 ncqtag_atap_dir_m;
504 struct host_to_dev_fis sata_fis;
505 u32 reserved1;
506 u32 reserved2;
507 u32 addr_low;
508 u32 addr_high;
509 __le32 len;
510 __le32 esgl;
511} __attribute__((packed, aligned(4)));
512
513/**
514 * brief the data structure of SSP INI TM Start Command
515 * use to describe MPI SSP INI TM Start Command (64 bytes)
516 */
517struct ssp_ini_tm_start_req {
518 __le32 tag;
519 __le32 device_id;
520 __le32 relate_tag;
521 __le32 tmf;
522 u8 lun[8];
523 __le32 ds_ads_m;
524 u32 reserved[8];
525} __attribute__((packed, aligned(4)));
526
527
528struct ssp_info_unit {
529 u8 lun[8];/* SCSI Logical Unit Number */
530 u8 reserved1;/* reserved */
531 u8 efb_prio_attr;
532 /* B7 : enabledFirstBurst */
533 /* B6-3 : taskPriority */
534 /* B2-0 : taskAttribute */
535 u8 reserved2; /* reserved */
536 u8 additional_cdb_len;
537 /* B7-2 : additional_cdb_len */
538 /* B1-0 : reserved */
539 u8 cdb[16];/* The SCSI CDB up to 16 bytes length */
540} __attribute__((packed, aligned(4)));
541
542
543/**
544 * brief the data structure of SSP INI IO Start Command
545 * use to describe MPI SSP INI IO Start Command (64 bytes)
546 */
547struct ssp_ini_io_start_req {
548 __le32 tag;
549 __le32 device_id;
550 __le32 data_len;
551 __le32 dir_m_tlr;
552 struct ssp_info_unit ssp_iu;
553 __le32 addr_low;
554 __le32 addr_high;
555 __le32 len;
556 __le32 esgl;
557} __attribute__((packed, aligned(4)));
558
559
560/**
561 * brief the data structure of Firmware download
562 * use to describe MPI FW DOWNLOAD Command (64 bytes)
563 */
564struct fw_flash_Update_req {
565 __le32 tag;
566 __le32 cur_image_offset;
567 __le32 cur_image_len;
568 __le32 total_image_len;
569 u32 reserved0[7];
570 __le32 sgl_addr_lo;
571 __le32 sgl_addr_hi;
572 __le32 len;
573 __le32 ext_reserved;
574} __attribute__((packed, aligned(4)));
575
576
577#define FWFLASH_IOMB_RESERVED_LEN 0x07
578/**
579 * brief the data structure of FW_FLASH_UPDATE Response
580 * use to describe MPI FW_FLASH_UPDATE Response (64 bytes)
581 *
582 */
583struct fw_flash_Update_resp {
584 dma_addr_t tag;
585 __le32 status;
586 u32 reserved[13];
587} __attribute__((packed, aligned(4)));
588
589
590/**
591 * brief the data structure of Get NVM Data Command
592 * use to get data from NVM in HBA(64 bytes)
593 */
594struct get_nvm_data_req {
595 __le32 tag;
596 __le32 len_ir_vpdd;
597 __le32 vpd_offset;
598 u32 reserved[8];
599 __le32 resp_addr_lo;
600 __le32 resp_addr_hi;
601 __le32 resp_len;
602 u32 reserved1;
603} __attribute__((packed, aligned(4)));
604
605
606struct set_nvm_data_req {
607 __le32 tag;
608 __le32 len_ir_vpdd;
609 __le32 vpd_offset;
610 u32 reserved[8];
611 __le32 resp_addr_lo;
612 __le32 resp_addr_hi;
613 __le32 resp_len;
614 u32 reserved1;
615} __attribute__((packed, aligned(4)));
616
617
618#define TWI_DEVICE 0x0
619#define C_SEEPROM 0x1
620#define VPD_FLASH 0x4
621#define AAP1_RDUMP 0x5
622#define IOP_RDUMP 0x6
623#define EXPAN_ROM 0x7
624
625#define IPMode 0x80000000
626#define NVMD_TYPE 0x0000000F
627#define NVMD_STAT 0x0000FFFF
628#define NVMD_LEN 0xFF000000
629/**
630 * brief the data structure of Get NVMD Data Response
631 * use to describe MPI Get NVMD Data Response (64 bytes)
632 */
633struct get_nvm_data_resp {
634 __le32 tag;
635 __le32 ir_tda_bn_dps_das_nvm;
636 __le32 dlen_status;
637 __le32 nvm_data[12];
638} __attribute__((packed, aligned(4)));
639
640
641/**
642 * brief the data structure of SAS Diagnostic Start/End Response
643 * use to describe MPI SAS Diagnostic Start/End Response (64 bytes)
644 *
645 */
646struct sas_diag_start_end_resp {
647 __le32 tag;
648 __le32 status;
649 u32 reserved[13];
650} __attribute__((packed, aligned(4)));
651
652
653/**
654 * brief the data structure of SAS Diagnostic Execute Response
655 * use to describe MPI SAS Diagnostic Execute Response (64 bytes)
656 *
657 */
658struct sas_diag_execute_resp {
659 __le32 tag;
660 __le32 cmdtype_cmddesc_phyid;
661 __le32 Status;
662 __le32 ReportData;
663 u32 reserved[11];
664} __attribute__((packed, aligned(4)));
665
666
667/**
668 * brief the data structure of Set Device State Response
669 * use to describe MPI Set Device State Response (64 bytes)
670 *
671 */
672struct set_dev_state_resp {
673 __le32 tag;
674 __le32 status;
675 __le32 device_id;
676 __le32 pds_nds;
677 u32 reserved[11];
678} __attribute__((packed, aligned(4)));
679
680
681#define NDS_BITS 0x0F
682#define PDS_BITS 0xF0
683
684/*
685 * HW Events type
686 */
687
688#define HW_EVENT_RESET_START 0x01
689#define HW_EVENT_CHIP_RESET_COMPLETE 0x02
690#define HW_EVENT_PHY_STOP_STATUS 0x03
691#define HW_EVENT_SAS_PHY_UP 0x04
692#define HW_EVENT_SATA_PHY_UP 0x05
693#define HW_EVENT_SATA_SPINUP_HOLD 0x06
694#define HW_EVENT_PHY_DOWN 0x07
695#define HW_EVENT_PORT_INVALID 0x08
696#define HW_EVENT_BROADCAST_CHANGE 0x09
697#define HW_EVENT_PHY_ERROR 0x0A
698#define HW_EVENT_BROADCAST_SES 0x0B
699#define HW_EVENT_INBOUND_CRC_ERROR 0x0C
700#define HW_EVENT_HARD_RESET_RECEIVED 0x0D
701#define HW_EVENT_MALFUNCTION 0x0E
702#define HW_EVENT_ID_FRAME_TIMEOUT 0x0F
703#define HW_EVENT_BROADCAST_EXP 0x10
704#define HW_EVENT_PHY_START_STATUS 0x11
705#define HW_EVENT_LINK_ERR_INVALID_DWORD 0x12
706#define HW_EVENT_LINK_ERR_DISPARITY_ERROR 0x13
707#define HW_EVENT_LINK_ERR_CODE_VIOLATION 0x14
708#define HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH 0x15
709#define HW_EVENT_LINK_ERR_PHY_RESET_FAILED 0x16
710#define HW_EVENT_PORT_RECOVERY_TIMER_TMO 0x17
711#define HW_EVENT_PORT_RECOVER 0x18
712#define HW_EVENT_PORT_RESET_TIMER_TMO 0x19
713#define HW_EVENT_PORT_RESET_COMPLETE 0x20
714#define EVENT_BROADCAST_ASYNCH_EVENT 0x21
715
716/* port state */
717#define PORT_NOT_ESTABLISHED 0x00
718#define PORT_VALID 0x01
719#define PORT_LOSTCOMM 0x02
720#define PORT_IN_RESET 0x04
721#define PORT_INVALID 0x08
722
723/*
724 * SSP/SMP/SATA IO Completion Status values
725 */
726
727#define IO_SUCCESS 0x00
728#define IO_ABORTED 0x01
729#define IO_OVERFLOW 0x02
730#define IO_UNDERFLOW 0x03
731#define IO_FAILED 0x04
732#define IO_ABORT_RESET 0x05
733#define IO_NOT_VALID 0x06
734#define IO_NO_DEVICE 0x07
735#define IO_ILLEGAL_PARAMETER 0x08
736#define IO_LINK_FAILURE 0x09
737#define IO_PROG_ERROR 0x0A
738#define IO_EDC_IN_ERROR 0x0B
739#define IO_EDC_OUT_ERROR 0x0C
740#define IO_ERROR_HW_TIMEOUT 0x0D
741#define IO_XFER_ERROR_BREAK 0x0E
742#define IO_XFER_ERROR_PHY_NOT_READY 0x0F
743#define IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED 0x10
744#define IO_OPEN_CNX_ERROR_ZONE_VIOLATION 0x11
745#define IO_OPEN_CNX_ERROR_BREAK 0x12
746#define IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS 0x13
747#define IO_OPEN_CNX_ERROR_BAD_DESTINATION 0x14
748#define IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED 0x15
749#define IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY 0x16
750#define IO_OPEN_CNX_ERROR_WRONG_DESTINATION 0x17
751#define IO_OPEN_CNX_ERROR_UNKNOWN_ERROR 0x18
752#define IO_XFER_ERROR_NAK_RECEIVED 0x19
753#define IO_XFER_ERROR_ACK_NAK_TIMEOUT 0x1A
754#define IO_XFER_ERROR_PEER_ABORTED 0x1B
755#define IO_XFER_ERROR_RX_FRAME 0x1C
756#define IO_XFER_ERROR_DMA 0x1D
757#define IO_XFER_ERROR_CREDIT_TIMEOUT 0x1E
758#define IO_XFER_ERROR_SATA_LINK_TIMEOUT 0x1F
759#define IO_XFER_ERROR_SATA 0x20
760#define IO_XFER_ERROR_ABORTED_DUE_TO_SRST 0x22
761#define IO_XFER_ERROR_REJECTED_NCQ_MODE 0x21
762#define IO_XFER_ERROR_ABORTED_NCQ_MODE 0x23
763#define IO_XFER_OPEN_RETRY_TIMEOUT 0x24
764#define IO_XFER_SMP_RESP_CONNECTION_ERROR 0x25
765#define IO_XFER_ERROR_UNEXPECTED_PHASE 0x26
766#define IO_XFER_ERROR_XFER_RDY_OVERRUN 0x27
767#define IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED 0x28
768
769#define IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT 0x30
770#define IO_XFER_ERROR_CMD_ISSUE_BREAK_BEFORE_ACK_NAK 0x31
771#define IO_XFER_ERROR_CMD_ISSUE_PHY_DOWN_BEFORE_ACK_NAK 0x32
772
773#define IO_XFER_ERROR_OFFSET_MISMATCH 0x34
774#define IO_XFER_ERROR_XFER_ZERO_DATA_LEN 0x35
775#define IO_XFER_CMD_FRAME_ISSUED 0x36
776#define IO_ERROR_INTERNAL_SMP_RESOURCE 0x37
777#define IO_PORT_IN_RESET 0x38
778#define IO_DS_NON_OPERATIONAL 0x39
779#define IO_DS_IN_RECOVERY 0x3A
780#define IO_TM_TAG_NOT_FOUND 0x3B
781#define IO_XFER_PIO_SETUP_ERROR 0x3C
782#define IO_SSP_EXT_IU_ZERO_LEN_ERROR 0x3D
783#define IO_DS_IN_ERROR 0x3E
784#define IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY 0x3F
785#define IO_ABORT_IN_PROGRESS 0x40
786#define IO_ABORT_DELAYED 0x41
787#define IO_INVALID_LENGTH 0x42
788
789/* WARNING: This error code must always be the last number.
790 * If you add error code, modify this code also
791 * It is used as an index
792 */
793#define IO_ERROR_UNKNOWN_GENERIC 0x43
794
795/* MSGU CONFIGURATION TABLE*/
796
797#define SPC_MSGU_CFG_TABLE_UPDATE 0x01/* Inbound doorbell bit0 */
798#define SPC_MSGU_CFG_TABLE_RESET 0x02/* Inbound doorbell bit1 */
799#define SPC_MSGU_CFG_TABLE_FREEZE 0x04/* Inbound doorbell bit2 */
800#define SPC_MSGU_CFG_TABLE_UNFREEZE 0x08/* Inbound doorbell bit4 */
801#define MSGU_IBDB_SET 0x04
802#define MSGU_HOST_INT_STATUS 0x08
803#define MSGU_HOST_INT_MASK 0x0C
804#define MSGU_IOPIB_INT_STATUS 0x18
805#define MSGU_IOPIB_INT_MASK 0x1C
806#define MSGU_IBDB_CLEAR 0x20/* RevB - Host not use */
807#define MSGU_MSGU_CONTROL 0x24
808#define MSGU_ODR 0x3C/* RevB */
809#define MSGU_ODCR 0x40/* RevB */
810#define MSGU_SCRATCH_PAD_0 0x44
811#define MSGU_SCRATCH_PAD_1 0x48
812#define MSGU_SCRATCH_PAD_2 0x4C
813#define MSGU_SCRATCH_PAD_3 0x50
814#define MSGU_HOST_SCRATCH_PAD_0 0x54
815#define MSGU_HOST_SCRATCH_PAD_1 0x58
816#define MSGU_HOST_SCRATCH_PAD_2 0x5C
817#define MSGU_HOST_SCRATCH_PAD_3 0x60
818#define MSGU_HOST_SCRATCH_PAD_4 0x64
819#define MSGU_HOST_SCRATCH_PAD_5 0x68
820#define MSGU_HOST_SCRATCH_PAD_6 0x6C
821#define MSGU_HOST_SCRATCH_PAD_7 0x70
822#define MSGU_ODMR 0x74/* RevB */
823
824/* bit definition for ODMR register */
825#define ODMR_MASK_ALL 0xFFFFFFFF/* mask all
826 interrupt vector */
827#define ODMR_CLEAR_ALL 0/* clear all
828 interrupt vector */
829/* bit definition for ODCR register */
830#define ODCR_CLEAR_ALL 0xFFFFFFFF /* mask all
831 interrupt vector*/
832/* MSIX Interupts */
833#define MSIX_TABLE_OFFSET 0x2000
834#define MSIX_TABLE_ELEMENT_SIZE 0x10
835#define MSIX_INTERRUPT_CONTROL_OFFSET 0xC
836#define MSIX_TABLE_BASE (MSIX_TABLE_OFFSET + MSIX_INTERRUPT_CONTROL_OFFSET)
837#define MSIX_INTERRUPT_DISABLE 0x1
838#define MSIX_INTERRUPT_ENABLE 0x0
839
840
841/* state definition for Scratch Pad1 register */
842#define SCRATCH_PAD1_POR 0x00 /* power on reset state */
843#define SCRATCH_PAD1_SFR 0x01 /* soft reset state */
844#define SCRATCH_PAD1_ERR 0x02 /* error state */
845#define SCRATCH_PAD1_RDY 0x03 /* ready state */
846#define SCRATCH_PAD1_RST 0x04 /* soft reset toggle flag */
847#define SCRATCH_PAD1_AAP1RDY_RST 0x08 /* AAP1 ready for soft reset */
848#define SCRATCH_PAD1_STATE_MASK 0xFFFFFFF0 /* ScratchPad1
849 Mask, bit1-0 State, bit2 Soft Reset, bit3 FW RDY for Soft Reset */
850#define SCRATCH_PAD1_RESERVED 0x000003F8 /* Scratch Pad1
851 Reserved bit 3 to 9 */
852
853 /* state definition for Scratch Pad2 register */
854#define SCRATCH_PAD2_POR 0x00 /* power on state */
855#define SCRATCH_PAD2_SFR 0x01 /* soft reset state */
856#define SCRATCH_PAD2_ERR 0x02 /* error state */
857#define SCRATCH_PAD2_RDY 0x03 /* ready state */
858#define SCRATCH_PAD2_FWRDY_RST 0x04 /* FW ready for soft reset flag*/
859#define SCRATCH_PAD2_IOPRDY_RST 0x08 /* IOP ready for soft reset */
860#define SCRATCH_PAD2_STATE_MASK 0xFFFFFFF4 /* ScratchPad 2
861 Mask, bit1-0 State */
862#define SCRATCH_PAD2_RESERVED 0x000003FC /* Scratch Pad1
863 Reserved bit 2 to 9 */
864
865#define SCRATCH_PAD_ERROR_MASK 0xFFFFFC00 /* Error mask bits */
866#define SCRATCH_PAD_STATE_MASK 0x00000003 /* State Mask bits */
867
868/* main configuration offset - byte offset */
869#define MAIN_SIGNATURE_OFFSET 0x00/* DWORD 0x00 */
870#define MAIN_INTERFACE_REVISION 0x04/* DWORD 0x01 */
871#define MAIN_FW_REVISION 0x08/* DWORD 0x02 */
872#define MAIN_MAX_OUTSTANDING_IO_OFFSET 0x0C/* DWORD 0x03 */
873#define MAIN_MAX_SGL_OFFSET 0x10/* DWORD 0x04 */
874#define MAIN_CNTRL_CAP_OFFSET 0x14/* DWORD 0x05 */
875#define MAIN_GST_OFFSET 0x18/* DWORD 0x06 */
876#define MAIN_IBQ_OFFSET 0x1C/* DWORD 0x07 */
877#define MAIN_OBQ_OFFSET 0x20/* DWORD 0x08 */
878#define MAIN_IQNPPD_HPPD_OFFSET 0x24/* DWORD 0x09 */
879#define MAIN_OB_HW_EVENT_PID03_OFFSET 0x28/* DWORD 0x0A */
880#define MAIN_OB_HW_EVENT_PID47_OFFSET 0x2C/* DWORD 0x0B */
881#define MAIN_OB_NCQ_EVENT_PID03_OFFSET 0x30/* DWORD 0x0C */
882#define MAIN_OB_NCQ_EVENT_PID47_OFFSET 0x34/* DWORD 0x0D */
883#define MAIN_TITNX_EVENT_PID03_OFFSET 0x38/* DWORD 0x0E */
884#define MAIN_TITNX_EVENT_PID47_OFFSET 0x3C/* DWORD 0x0F */
885#define MAIN_OB_SSP_EVENT_PID03_OFFSET 0x40/* DWORD 0x10 */
886#define MAIN_OB_SSP_EVENT_PID47_OFFSET 0x44/* DWORD 0x11 */
887#define MAIN_OB_SMP_EVENT_PID03_OFFSET 0x48/* DWORD 0x12 */
888#define MAIN_OB_SMP_EVENT_PID47_OFFSET 0x4C/* DWORD 0x13 */
889#define MAIN_EVENT_LOG_ADDR_HI 0x50/* DWORD 0x14 */
890#define MAIN_EVENT_LOG_ADDR_LO 0x54/* DWORD 0x15 */
891#define MAIN_EVENT_LOG_BUFF_SIZE 0x58/* DWORD 0x16 */
892#define MAIN_EVENT_LOG_OPTION 0x5C/* DWORD 0x17 */
893#define MAIN_IOP_EVENT_LOG_ADDR_HI 0x60/* DWORD 0x18 */
894#define MAIN_IOP_EVENT_LOG_ADDR_LO 0x64/* DWORD 0x19 */
895#define MAIN_IOP_EVENT_LOG_BUFF_SIZE 0x68/* DWORD 0x1A */
896#define MAIN_IOP_EVENT_LOG_OPTION 0x6C/* DWORD 0x1B */
897#define MAIN_FATAL_ERROR_INTERRUPT 0x70/* DWORD 0x1C */
898#define MAIN_FATAL_ERROR_RDUMP0_OFFSET 0x74/* DWORD 0x1D */
899#define MAIN_FATAL_ERROR_RDUMP0_LENGTH 0x78/* DWORD 0x1E */
900#define MAIN_FATAL_ERROR_RDUMP1_OFFSET 0x7C/* DWORD 0x1F */
901#define MAIN_FATAL_ERROR_RDUMP1_LENGTH 0x80/* DWORD 0x20 */
902#define MAIN_HDA_FLAGS_OFFSET 0x84/* DWORD 0x21 */
903#define MAIN_ANALOG_SETUP_OFFSET 0x88/* DWORD 0x22 */
904
905/* Gereral Status Table offset - byte offset */
906#define GST_GSTLEN_MPIS_OFFSET 0x00
907#define GST_IQ_FREEZE_STATE0_OFFSET 0x04
908#define GST_IQ_FREEZE_STATE1_OFFSET 0x08
909#define GST_MSGUTCNT_OFFSET 0x0C
910#define GST_IOPTCNT_OFFSET 0x10
911#define GST_PHYSTATE_OFFSET 0x18
912#define GST_PHYSTATE0_OFFSET 0x18
913#define GST_PHYSTATE1_OFFSET 0x1C
914#define GST_PHYSTATE2_OFFSET 0x20
915#define GST_PHYSTATE3_OFFSET 0x24
916#define GST_PHYSTATE4_OFFSET 0x28
917#define GST_PHYSTATE5_OFFSET 0x2C
918#define GST_PHYSTATE6_OFFSET 0x30
919#define GST_PHYSTATE7_OFFSET 0x34
920#define GST_RERRINFO_OFFSET 0x44
921
922/* General Status Table - MPI state */
923#define GST_MPI_STATE_UNINIT 0x00
924#define GST_MPI_STATE_INIT 0x01
925#define GST_MPI_STATE_TERMINATION 0x02
926#define GST_MPI_STATE_ERROR 0x03
927#define GST_MPI_STATE_MASK 0x07
928
929#define MBIC_NMI_ENABLE_VPE0_IOP 0x000418
930#define MBIC_NMI_ENABLE_VPE0_AAP1 0x000418
931/* PCIE registers - BAR2(0x18), BAR1(win) 0x010000 */
932#define PCIE_EVENT_INTERRUPT_ENABLE 0x003040
933#define PCIE_EVENT_INTERRUPT 0x003044
934#define PCIE_ERROR_INTERRUPT_ENABLE 0x003048
935#define PCIE_ERROR_INTERRUPT 0x00304C
936/* signature defintion for host scratch pad0 register */
937#define SPC_SOFT_RESET_SIGNATURE 0x252acbcd
938/* Signature for Soft Reset */
939
940/* SPC Reset register - BAR4(0x20), BAR2(win) (need dynamic mapping) */
941#define SPC_REG_RESET 0x000000/* reset register */
942
943/* bit difination for SPC_RESET register */
944#define SPC_REG_RESET_OSSP 0x00000001
945#define SPC_REG_RESET_RAAE 0x00000002
946#define SPC_REG_RESET_PCS_SPBC 0x00000004
947#define SPC_REG_RESET_PCS_IOP_SS 0x00000008
948#define SPC_REG_RESET_PCS_AAP1_SS 0x00000010
949#define SPC_REG_RESET_PCS_AAP2_SS 0x00000020
950#define SPC_REG_RESET_PCS_LM 0x00000040
951#define SPC_REG_RESET_PCS 0x00000080
952#define SPC_REG_RESET_GSM 0x00000100
953#define SPC_REG_RESET_DDR2 0x00010000
954#define SPC_REG_RESET_BDMA_CORE 0x00020000
955#define SPC_REG_RESET_BDMA_SXCBI 0x00040000
956#define SPC_REG_RESET_PCIE_AL_SXCBI 0x00080000
957#define SPC_REG_RESET_PCIE_PWR 0x00100000
958#define SPC_REG_RESET_PCIE_SFT 0x00200000
959#define SPC_REG_RESET_PCS_SXCBI 0x00400000
960#define SPC_REG_RESET_LMS_SXCBI 0x00800000
961#define SPC_REG_RESET_PMIC_SXCBI 0x01000000
962#define SPC_REG_RESET_PMIC_CORE 0x02000000
963#define SPC_REG_RESET_PCIE_PC_SXCBI 0x04000000
964#define SPC_REG_RESET_DEVICE 0x80000000
965
966/* registers for BAR Shifting - BAR2(0x18), BAR1(win) */
967#define SPC_IBW_AXI_TRANSLATION_LOW 0x003258
968
969#define MBIC_AAP1_ADDR_BASE 0x060000
970#define MBIC_IOP_ADDR_BASE 0x070000
971#define GSM_ADDR_BASE 0x0700000
972/* Dynamic map through Bar4 - 0x00700000 */
973#define GSM_CONFIG_RESET 0x00000000
974#define RAM_ECC_DB_ERR 0x00000018
975#define GSM_READ_ADDR_PARITY_INDIC 0x00000058
976#define GSM_WRITE_ADDR_PARITY_INDIC 0x00000060
977#define GSM_WRITE_DATA_PARITY_INDIC 0x00000068
978#define GSM_READ_ADDR_PARITY_CHECK 0x00000038
979#define GSM_WRITE_ADDR_PARITY_CHECK 0x00000040
980#define GSM_WRITE_DATA_PARITY_CHECK 0x00000048
981
982#define RB6_ACCESS_REG 0x6A0000
983#define HDAC_EXEC_CMD 0x0002
984#define HDA_C_PA 0xcb
985#define HDA_SEQ_ID_BITS 0x00ff0000
986#define HDA_GSM_OFFSET_BITS 0x00FFFFFF
987#define MBIC_AAP1_ADDR_BASE 0x060000
988#define MBIC_IOP_ADDR_BASE 0x070000
989#define GSM_ADDR_BASE 0x0700000
990#define SPC_TOP_LEVEL_ADDR_BASE 0x000000
991#define GSM_CONFIG_RESET_VALUE 0x00003b00
992#define GPIO_ADDR_BASE 0x00090000
993#define GPIO_GPIO_0_0UTPUT_CTL_OFFSET 0x0000010c
994
995/* RB6 offset */
996#define SPC_RB6_OFFSET 0x80C0
997/* Magic number of soft reset for RB6 */
998#define RB6_MAGIC_NUMBER_RST 0x1234
999
1000/* Device Register status */
1001#define DEVREG_SUCCESS 0x00
1002#define DEVREG_FAILURE_OUT_OF_RESOURCE 0x01
1003#define DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED 0x02
1004#define DEVREG_FAILURE_INVALID_PHY_ID 0x03
1005#define DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED 0x04
1006#define DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE 0x05
1007#define DEVREG_FAILURE_PORT_NOT_VALID_STATE 0x06
1008#define DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID 0x07
1009
1010#endif
1011
diff --git a/drivers/scsi/pm8001/pm8001_init.c b/drivers/scsi/pm8001/pm8001_init.c
new file mode 100644
index 000000000000..811b5d36d5f0
--- /dev/null
+++ b/drivers/scsi/pm8001/pm8001_init.c
@@ -0,0 +1,888 @@
1/*
2 * PMC-Sierra SPC 8001 SAS/SATA based host adapters driver
3 *
4 * Copyright (c) 2008-2009 USI Co., Ltd.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * substantially similar to the "NO WARRANTY" disclaimer below
15 * ("Disclaimer") and any redistribution must be conditioned upon
16 * including a substantially similar Disclaimer requirement for further
17 * binary redistribution.
18 * 3. Neither the names of the above-listed copyright holders nor the names
19 * of any contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * Alternatively, this software may be distributed under the terms of the
23 * GNU General Public License ("GPL") version 2 as published by the Free
24 * Software Foundation.
25 *
26 * NO WARRANTY
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGES.
38 *
39 */
40
41#include "pm8001_sas.h"
42#include "pm8001_chips.h"
43
44static struct scsi_transport_template *pm8001_stt;
45
46static const struct pm8001_chip_info pm8001_chips[] = {
47 [chip_8001] = { 8, &pm8001_8001_dispatch,},
48};
49static int pm8001_id;
50
51LIST_HEAD(hba_list);
52
53/**
54 * The main structure which LLDD must register for scsi core.
55 */
56static struct scsi_host_template pm8001_sht = {
57 .module = THIS_MODULE,
58 .name = DRV_NAME,
59 .queuecommand = sas_queuecommand,
60 .target_alloc = sas_target_alloc,
61 .slave_configure = pm8001_slave_configure,
62 .slave_destroy = sas_slave_destroy,
63 .scan_finished = pm8001_scan_finished,
64 .scan_start = pm8001_scan_start,
65 .change_queue_depth = sas_change_queue_depth,
66 .change_queue_type = sas_change_queue_type,
67 .bios_param = sas_bios_param,
68 .can_queue = 1,
69 .cmd_per_lun = 1,
70 .this_id = -1,
71 .sg_tablesize = SG_ALL,
72 .max_sectors = SCSI_DEFAULT_MAX_SECTORS,
73 .use_clustering = ENABLE_CLUSTERING,
74 .eh_device_reset_handler = sas_eh_device_reset_handler,
75 .eh_bus_reset_handler = sas_eh_bus_reset_handler,
76 .slave_alloc = pm8001_slave_alloc,
77 .target_destroy = sas_target_destroy,
78 .ioctl = sas_ioctl,
79 .shost_attrs = pm8001_host_attrs,
80};
81
82/**
83 * Sas layer call this function to execute specific task.
84 */
85static struct sas_domain_function_template pm8001_transport_ops = {
86 .lldd_dev_found = pm8001_dev_found,
87 .lldd_dev_gone = pm8001_dev_gone,
88
89 .lldd_execute_task = pm8001_queue_command,
90 .lldd_control_phy = pm8001_phy_control,
91
92 .lldd_abort_task = pm8001_abort_task,
93 .lldd_abort_task_set = pm8001_abort_task_set,
94 .lldd_clear_aca = pm8001_clear_aca,
95 .lldd_clear_task_set = pm8001_clear_task_set,
96 .lldd_I_T_nexus_reset = pm8001_I_T_nexus_reset,
97 .lldd_lu_reset = pm8001_lu_reset,
98 .lldd_query_task = pm8001_query_task,
99};
100
101/**
102 *pm8001_phy_init - initiate our adapter phys
103 *@pm8001_ha: our hba structure.
104 *@phy_id: phy id.
105 */
106static void __devinit pm8001_phy_init(struct pm8001_hba_info *pm8001_ha,
107 int phy_id)
108{
109 struct pm8001_phy *phy = &pm8001_ha->phy[phy_id];
110 struct asd_sas_phy *sas_phy = &phy->sas_phy;
111 phy->phy_state = 0;
112 phy->pm8001_ha = pm8001_ha;
113 sas_phy->enabled = (phy_id < pm8001_ha->chip->n_phy) ? 1 : 0;
114 sas_phy->class = SAS;
115 sas_phy->iproto = SAS_PROTOCOL_ALL;
116 sas_phy->tproto = 0;
117 sas_phy->type = PHY_TYPE_PHYSICAL;
118 sas_phy->role = PHY_ROLE_INITIATOR;
119 sas_phy->oob_mode = OOB_NOT_CONNECTED;
120 sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
121 sas_phy->id = phy_id;
122 sas_phy->sas_addr = &pm8001_ha->sas_addr[0];
123 sas_phy->frame_rcvd = &phy->frame_rcvd[0];
124 sas_phy->ha = (struct sas_ha_struct *)pm8001_ha->shost->hostdata;
125 sas_phy->lldd_phy = phy;
126}
127
128/**
129 *pm8001_free - free hba
130 *@pm8001_ha: our hba structure.
131 *
132 */
133static void pm8001_free(struct pm8001_hba_info *pm8001_ha)
134{
135 int i;
136 struct pm8001_wq *wq;
137
138 if (!pm8001_ha)
139 return;
140
141 for (i = 0; i < USI_MAX_MEMCNT; i++) {
142 if (pm8001_ha->memoryMap.region[i].virt_ptr != NULL) {
143 pci_free_consistent(pm8001_ha->pdev,
144 pm8001_ha->memoryMap.region[i].element_size,
145 pm8001_ha->memoryMap.region[i].virt_ptr,
146 pm8001_ha->memoryMap.region[i].phys_addr);
147 }
148 }
149 PM8001_CHIP_DISP->chip_iounmap(pm8001_ha);
150 if (pm8001_ha->shost)
151 scsi_host_put(pm8001_ha->shost);
152 list_for_each_entry(wq, &pm8001_ha->wq_list, entry)
153 cancel_delayed_work(&wq->work_q);
154 kfree(pm8001_ha->tags);
155 kfree(pm8001_ha);
156}
157
158#ifdef PM8001_USE_TASKLET
159static void pm8001_tasklet(unsigned long opaque)
160{
161 struct pm8001_hba_info *pm8001_ha;
162 pm8001_ha = (struct pm8001_hba_info *)opaque;;
163 if (unlikely(!pm8001_ha))
164 BUG_ON(1);
165 PM8001_CHIP_DISP->isr(pm8001_ha);
166}
167#endif
168
169
170 /**
171 * pm8001_interrupt - when HBA originate a interrupt,we should invoke this
172 * dispatcher to handle each case.
173 * @irq: irq number.
174 * @opaque: the passed general host adapter struct
175 */
176static irqreturn_t pm8001_interrupt(int irq, void *opaque)
177{
178 struct pm8001_hba_info *pm8001_ha;
179 irqreturn_t ret = IRQ_HANDLED;
180 struct sas_ha_struct *sha = opaque;
181 pm8001_ha = sha->lldd_ha;
182 if (unlikely(!pm8001_ha))
183 return IRQ_NONE;
184 if (!PM8001_CHIP_DISP->is_our_interupt(pm8001_ha))
185 return IRQ_NONE;
186#ifdef PM8001_USE_TASKLET
187 tasklet_schedule(&pm8001_ha->tasklet);
188#else
189 ret = PM8001_CHIP_DISP->isr(pm8001_ha);
190#endif
191 return ret;
192}
193
194/**
195 * pm8001_alloc - initiate our hba structure and 6 DMAs area.
196 * @pm8001_ha:our hba structure.
197 *
198 */
199static int __devinit pm8001_alloc(struct pm8001_hba_info *pm8001_ha)
200{
201 int i;
202 spin_lock_init(&pm8001_ha->lock);
203 for (i = 0; i < pm8001_ha->chip->n_phy; i++)
204 pm8001_phy_init(pm8001_ha, i);
205
206 pm8001_ha->tags = kmalloc(sizeof(*pm8001_ha->tags)*PM8001_MAX_DEVICES,
207 GFP_KERNEL);
208
209 /* MPI Memory region 1 for AAP Event Log for fw */
210 pm8001_ha->memoryMap.region[AAP1].num_elements = 1;
211 pm8001_ha->memoryMap.region[AAP1].element_size = PM8001_EVENT_LOG_SIZE;
212 pm8001_ha->memoryMap.region[AAP1].total_len = PM8001_EVENT_LOG_SIZE;
213 pm8001_ha->memoryMap.region[AAP1].alignment = 32;
214
215 /* MPI Memory region 2 for IOP Event Log for fw */
216 pm8001_ha->memoryMap.region[IOP].num_elements = 1;
217 pm8001_ha->memoryMap.region[IOP].element_size = PM8001_EVENT_LOG_SIZE;
218 pm8001_ha->memoryMap.region[IOP].total_len = PM8001_EVENT_LOG_SIZE;
219 pm8001_ha->memoryMap.region[IOP].alignment = 32;
220
221 /* MPI Memory region 3 for consumer Index of inbound queues */
222 pm8001_ha->memoryMap.region[CI].num_elements = 1;
223 pm8001_ha->memoryMap.region[CI].element_size = 4;
224 pm8001_ha->memoryMap.region[CI].total_len = 4;
225 pm8001_ha->memoryMap.region[CI].alignment = 4;
226
227 /* MPI Memory region 4 for producer Index of outbound queues */
228 pm8001_ha->memoryMap.region[PI].num_elements = 1;
229 pm8001_ha->memoryMap.region[PI].element_size = 4;
230 pm8001_ha->memoryMap.region[PI].total_len = 4;
231 pm8001_ha->memoryMap.region[PI].alignment = 4;
232
233 /* MPI Memory region 5 inbound queues */
234 pm8001_ha->memoryMap.region[IB].num_elements = 256;
235 pm8001_ha->memoryMap.region[IB].element_size = 64;
236 pm8001_ha->memoryMap.region[IB].total_len = 256 * 64;
237 pm8001_ha->memoryMap.region[IB].alignment = 64;
238
239 /* MPI Memory region 6 inbound queues */
240 pm8001_ha->memoryMap.region[OB].num_elements = 256;
241 pm8001_ha->memoryMap.region[OB].element_size = 64;
242 pm8001_ha->memoryMap.region[OB].total_len = 256 * 64;
243 pm8001_ha->memoryMap.region[OB].alignment = 64;
244
245 /* Memory region write DMA*/
246 pm8001_ha->memoryMap.region[NVMD].num_elements = 1;
247 pm8001_ha->memoryMap.region[NVMD].element_size = 4096;
248 pm8001_ha->memoryMap.region[NVMD].total_len = 4096;
249 /* Memory region for devices*/
250 pm8001_ha->memoryMap.region[DEV_MEM].num_elements = 1;
251 pm8001_ha->memoryMap.region[DEV_MEM].element_size = PM8001_MAX_DEVICES *
252 sizeof(struct pm8001_device);
253 pm8001_ha->memoryMap.region[DEV_MEM].total_len = PM8001_MAX_DEVICES *
254 sizeof(struct pm8001_device);
255
256 /* Memory region for ccb_info*/
257 pm8001_ha->memoryMap.region[CCB_MEM].num_elements = 1;
258 pm8001_ha->memoryMap.region[CCB_MEM].element_size = PM8001_MAX_CCB *
259 sizeof(struct pm8001_ccb_info);
260 pm8001_ha->memoryMap.region[CCB_MEM].total_len = PM8001_MAX_CCB *
261 sizeof(struct pm8001_ccb_info);
262
263 for (i = 0; i < USI_MAX_MEMCNT; i++) {
264 if (pm8001_mem_alloc(pm8001_ha->pdev,
265 &pm8001_ha->memoryMap.region[i].virt_ptr,
266 &pm8001_ha->memoryMap.region[i].phys_addr,
267 &pm8001_ha->memoryMap.region[i].phys_addr_hi,
268 &pm8001_ha->memoryMap.region[i].phys_addr_lo,
269 pm8001_ha->memoryMap.region[i].total_len,
270 pm8001_ha->memoryMap.region[i].alignment) != 0) {
271 PM8001_FAIL_DBG(pm8001_ha,
272 pm8001_printk("Mem%d alloc failed\n",
273 i));
274 goto err_out;
275 }
276 }
277
278 pm8001_ha->devices = pm8001_ha->memoryMap.region[DEV_MEM].virt_ptr;
279 for (i = 0; i < PM8001_MAX_DEVICES; i++) {
280 pm8001_ha->devices[i].dev_type = NO_DEVICE;
281 pm8001_ha->devices[i].id = i;
282 pm8001_ha->devices[i].device_id = PM8001_MAX_DEVICES;
283 pm8001_ha->devices[i].running_req = 0;
284 }
285 pm8001_ha->ccb_info = pm8001_ha->memoryMap.region[CCB_MEM].virt_ptr;
286 for (i = 0; i < PM8001_MAX_CCB; i++) {
287 pm8001_ha->ccb_info[i].ccb_dma_handle =
288 pm8001_ha->memoryMap.region[CCB_MEM].phys_addr +
289 i * sizeof(struct pm8001_ccb_info);
290 ++pm8001_ha->tags_num;
291 }
292 pm8001_ha->flags = PM8001F_INIT_TIME;
293 /* Initialize tags */
294 pm8001_tag_init(pm8001_ha);
295 return 0;
296err_out:
297 return 1;
298}
299
300/**
301 * pm8001_ioremap - remap the pci high physical address to kernal virtual
302 * address so that we can access them.
303 * @pm8001_ha:our hba structure.
304 */
305static int pm8001_ioremap(struct pm8001_hba_info *pm8001_ha)
306{
307 u32 bar;
308 u32 logicalBar = 0;
309 struct pci_dev *pdev;
310
311 pdev = pm8001_ha->pdev;
312 /* map pci mem (PMC pci base 0-3)*/
313 for (bar = 0; bar < 6; bar++) {
314 /*
315 ** logical BARs for SPC:
316 ** bar 0 and 1 - logical BAR0
317 ** bar 2 and 3 - logical BAR1
318 ** bar4 - logical BAR2
319 ** bar5 - logical BAR3
320 ** Skip the appropriate assignments:
321 */
322 if ((bar == 1) || (bar == 3))
323 continue;
324 if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
325 pm8001_ha->io_mem[logicalBar].membase =
326 pci_resource_start(pdev, bar);
327 pm8001_ha->io_mem[logicalBar].membase &=
328 (u32)PCI_BASE_ADDRESS_MEM_MASK;
329 pm8001_ha->io_mem[logicalBar].memsize =
330 pci_resource_len(pdev, bar);
331 pm8001_ha->io_mem[logicalBar].memvirtaddr =
332 ioremap(pm8001_ha->io_mem[logicalBar].membase,
333 pm8001_ha->io_mem[logicalBar].memsize);
334 PM8001_INIT_DBG(pm8001_ha,
335 pm8001_printk("PCI: bar %d, logicalBar %d "
336 "virt_addr=%lx,len=%d\n", bar, logicalBar,
337 (unsigned long)
338 pm8001_ha->io_mem[logicalBar].memvirtaddr,
339 pm8001_ha->io_mem[logicalBar].memsize));
340 } else {
341 pm8001_ha->io_mem[logicalBar].membase = 0;
342 pm8001_ha->io_mem[logicalBar].memsize = 0;
343 pm8001_ha->io_mem[logicalBar].memvirtaddr = 0;
344 }
345 logicalBar++;
346 }
347 return 0;
348}
349
350/**
351 * pm8001_pci_alloc - initialize our ha card structure
352 * @pdev: pci device.
353 * @ent: ent
354 * @shost: scsi host struct which has been initialized before.
355 */
356static struct pm8001_hba_info *__devinit
357pm8001_pci_alloc(struct pci_dev *pdev, u32 chip_id, struct Scsi_Host *shost)
358{
359 struct pm8001_hba_info *pm8001_ha;
360 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
361
362
363 pm8001_ha = sha->lldd_ha;
364 if (!pm8001_ha)
365 return NULL;
366
367 pm8001_ha->pdev = pdev;
368 pm8001_ha->dev = &pdev->dev;
369 pm8001_ha->chip_id = chip_id;
370 pm8001_ha->chip = &pm8001_chips[pm8001_ha->chip_id];
371 pm8001_ha->irq = pdev->irq;
372 pm8001_ha->sas = sha;
373 pm8001_ha->shost = shost;
374 pm8001_ha->id = pm8001_id++;
375 INIT_LIST_HEAD(&pm8001_ha->wq_list);
376 pm8001_ha->logging_level = 0x01;
377 sprintf(pm8001_ha->name, "%s%d", DRV_NAME, pm8001_ha->id);
378#ifdef PM8001_USE_TASKLET
379 tasklet_init(&pm8001_ha->tasklet, pm8001_tasklet,
380 (unsigned long)pm8001_ha);
381#endif
382 pm8001_ioremap(pm8001_ha);
383 if (!pm8001_alloc(pm8001_ha))
384 return pm8001_ha;
385 pm8001_free(pm8001_ha);
386 return NULL;
387}
388
389/**
390 * pci_go_44 - pm8001 specified, its DMA is 44 bit rather than 64 bit
391 * @pdev: pci device.
392 */
393static int pci_go_44(struct pci_dev *pdev)
394{
395 int rc;
396
397 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(44))) {
398 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(44));
399 if (rc) {
400 rc = pci_set_consistent_dma_mask(pdev,
401 DMA_BIT_MASK(32));
402 if (rc) {
403 dev_printk(KERN_ERR, &pdev->dev,
404 "44-bit DMA enable failed\n");
405 return rc;
406 }
407 }
408 } else {
409 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
410 if (rc) {
411 dev_printk(KERN_ERR, &pdev->dev,
412 "32-bit DMA enable failed\n");
413 return rc;
414 }
415 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
416 if (rc) {
417 dev_printk(KERN_ERR, &pdev->dev,
418 "32-bit consistent DMA enable failed\n");
419 return rc;
420 }
421 }
422 return rc;
423}
424
425/**
426 * pm8001_prep_sas_ha_init - allocate memory in general hba struct && init them.
427 * @shost: scsi host which has been allocated outside.
428 * @chip_info: our ha struct.
429 */
430static int __devinit pm8001_prep_sas_ha_init(struct Scsi_Host * shost,
431 const struct pm8001_chip_info *chip_info)
432{
433 int phy_nr, port_nr;
434 struct asd_sas_phy **arr_phy;
435 struct asd_sas_port **arr_port;
436 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
437
438 phy_nr = chip_info->n_phy;
439 port_nr = phy_nr;
440 memset(sha, 0x00, sizeof(*sha));
441 arr_phy = kcalloc(phy_nr, sizeof(void *), GFP_KERNEL);
442 if (!arr_phy)
443 goto exit;
444 arr_port = kcalloc(port_nr, sizeof(void *), GFP_KERNEL);
445 if (!arr_port)
446 goto exit_free2;
447
448 sha->sas_phy = arr_phy;
449 sha->sas_port = arr_port;
450 sha->lldd_ha = kzalloc(sizeof(struct pm8001_hba_info), GFP_KERNEL);
451 if (!sha->lldd_ha)
452 goto exit_free1;
453
454 shost->transportt = pm8001_stt;
455 shost->max_id = PM8001_MAX_DEVICES;
456 shost->max_lun = 8;
457 shost->max_channel = 0;
458 shost->unique_id = pm8001_id;
459 shost->max_cmd_len = 16;
460 shost->can_queue = PM8001_CAN_QUEUE;
461 shost->cmd_per_lun = 32;
462 return 0;
463exit_free1:
464 kfree(arr_port);
465exit_free2:
466 kfree(arr_phy);
467exit:
468 return -1;
469}
470
471/**
472 * pm8001_post_sas_ha_init - initialize general hba struct defined in libsas
473 * @shost: scsi host which has been allocated outside
474 * @chip_info: our ha struct.
475 */
476static void __devinit pm8001_post_sas_ha_init(struct Scsi_Host *shost,
477 const struct pm8001_chip_info *chip_info)
478{
479 int i = 0;
480 struct pm8001_hba_info *pm8001_ha;
481 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
482
483 pm8001_ha = sha->lldd_ha;
484 for (i = 0; i < chip_info->n_phy; i++) {
485 sha->sas_phy[i] = &pm8001_ha->phy[i].sas_phy;
486 sha->sas_port[i] = &pm8001_ha->port[i].sas_port;
487 }
488 sha->sas_ha_name = DRV_NAME;
489 sha->dev = pm8001_ha->dev;
490
491 sha->lldd_module = THIS_MODULE;
492 sha->sas_addr = &pm8001_ha->sas_addr[0];
493 sha->num_phys = chip_info->n_phy;
494 sha->lldd_max_execute_num = 1;
495 sha->lldd_queue_size = PM8001_CAN_QUEUE;
496 sha->core.shost = shost;
497}
498
499/**
500 * pm8001_init_sas_add - initialize sas address
501 * @chip_info: our ha struct.
502 *
503 * Currently we just set the fixed SAS address to our HBA,for manufacture,
504 * it should read from the EEPROM
505 */
506static void pm8001_init_sas_add(struct pm8001_hba_info *pm8001_ha)
507{
508 u8 i;
509#ifdef PM8001_READ_VPD
510 DECLARE_COMPLETION_ONSTACK(completion);
511 pm8001_ha->nvmd_completion = &completion;
512 PM8001_CHIP_DISP->get_nvmd_req(pm8001_ha, 0, 0);
513 wait_for_completion(&completion);
514 for (i = 0; i < pm8001_ha->chip->n_phy; i++) {
515 memcpy(&pm8001_ha->phy[i].dev_sas_addr, pm8001_ha->sas_addr,
516 SAS_ADDR_SIZE);
517 PM8001_INIT_DBG(pm8001_ha,
518 pm8001_printk("phy %d sas_addr = %x \n", i,
519 (u64)pm8001_ha->phy[i].dev_sas_addr));
520 }
521#else
522 for (i = 0; i < pm8001_ha->chip->n_phy; i++) {
523 pm8001_ha->phy[i].dev_sas_addr = 0x500e004010000004ULL;
524 pm8001_ha->phy[i].dev_sas_addr =
525 cpu_to_be64((u64)
526 (*(u64 *)&pm8001_ha->phy[i].dev_sas_addr));
527 }
528 memcpy(pm8001_ha->sas_addr, &pm8001_ha->phy[0].dev_sas_addr,
529 SAS_ADDR_SIZE);
530#endif
531}
532
533#ifdef PM8001_USE_MSIX
534/**
535 * pm8001_setup_msix - enable MSI-X interrupt
536 * @chip_info: our ha struct.
537 * @irq_handler: irq_handler
538 */
539static u32 pm8001_setup_msix(struct pm8001_hba_info *pm8001_ha,
540 irq_handler_t irq_handler)
541{
542 u32 i = 0, j = 0;
543 u32 number_of_intr = 1;
544 int flag = 0;
545 u32 max_entry;
546 int rc;
547 max_entry = sizeof(pm8001_ha->msix_entries) /
548 sizeof(pm8001_ha->msix_entries[0]);
549 flag |= IRQF_DISABLED;
550 for (i = 0; i < max_entry ; i++)
551 pm8001_ha->msix_entries[i].entry = i;
552 rc = pci_enable_msix(pm8001_ha->pdev, pm8001_ha->msix_entries,
553 number_of_intr);
554 pm8001_ha->number_of_intr = number_of_intr;
555 if (!rc) {
556 for (i = 0; i < number_of_intr; i++) {
557 if (request_irq(pm8001_ha->msix_entries[i].vector,
558 irq_handler, flag, DRV_NAME,
559 SHOST_TO_SAS_HA(pm8001_ha->shost))) {
560 for (j = 0; j < i; j++)
561 free_irq(
562 pm8001_ha->msix_entries[j].vector,
563 SHOST_TO_SAS_HA(pm8001_ha->shost));
564 pci_disable_msix(pm8001_ha->pdev);
565 break;
566 }
567 }
568 }
569 return rc;
570}
571#endif
572
573/**
574 * pm8001_request_irq - register interrupt
575 * @chip_info: our ha struct.
576 */
577static u32 pm8001_request_irq(struct pm8001_hba_info *pm8001_ha)
578{
579 struct pci_dev *pdev;
580 irq_handler_t irq_handler = pm8001_interrupt;
581 u32 rc;
582
583 pdev = pm8001_ha->pdev;
584
585#ifdef PM8001_USE_MSIX
586 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
587 return pm8001_setup_msix(pm8001_ha, irq_handler);
588 else
589 goto intx;
590#endif
591
592intx:
593 /* intialize the INT-X interrupt */
594 rc = request_irq(pdev->irq, irq_handler, IRQF_SHARED, DRV_NAME,
595 SHOST_TO_SAS_HA(pm8001_ha->shost));
596 return rc;
597}
598
599/**
600 * pm8001_pci_probe - probe supported device
601 * @pdev: pci device which kernel has been prepared for.
602 * @ent: pci device id
603 *
604 * This function is the main initialization function, when register a new
605 * pci driver it is invoked, all struct an hardware initilization should be done
606 * here, also, register interrupt
607 */
608static int __devinit pm8001_pci_probe(struct pci_dev *pdev,
609 const struct pci_device_id *ent)
610{
611 unsigned int rc;
612 u32 pci_reg;
613 struct pm8001_hba_info *pm8001_ha;
614 struct Scsi_Host *shost = NULL;
615 const struct pm8001_chip_info *chip;
616
617 dev_printk(KERN_INFO, &pdev->dev,
618 "pm8001: driver version %s\n", DRV_VERSION);
619 rc = pci_enable_device(pdev);
620 if (rc)
621 goto err_out_enable;
622 pci_set_master(pdev);
623 /*
624 * Enable pci slot busmaster by setting pci command register.
625 * This is required by FW for Cyclone card.
626 */
627
628 pci_read_config_dword(pdev, PCI_COMMAND, &pci_reg);
629 pci_reg |= 0x157;
630 pci_write_config_dword(pdev, PCI_COMMAND, pci_reg);
631 rc = pci_request_regions(pdev, DRV_NAME);
632 if (rc)
633 goto err_out_disable;
634 rc = pci_go_44(pdev);
635 if (rc)
636 goto err_out_regions;
637
638 shost = scsi_host_alloc(&pm8001_sht, sizeof(void *));
639 if (!shost) {
640 rc = -ENOMEM;
641 goto err_out_regions;
642 }
643 chip = &pm8001_chips[ent->driver_data];
644 SHOST_TO_SAS_HA(shost) =
645 kcalloc(1, sizeof(struct sas_ha_struct), GFP_KERNEL);
646 if (!SHOST_TO_SAS_HA(shost)) {
647 rc = -ENOMEM;
648 goto err_out_free_host;
649 }
650
651 rc = pm8001_prep_sas_ha_init(shost, chip);
652 if (rc) {
653 rc = -ENOMEM;
654 goto err_out_free;
655 }
656 pci_set_drvdata(pdev, SHOST_TO_SAS_HA(shost));
657 pm8001_ha = pm8001_pci_alloc(pdev, chip_8001, shost);
658 if (!pm8001_ha) {
659 rc = -ENOMEM;
660 goto err_out_free;
661 }
662 list_add_tail(&pm8001_ha->list, &hba_list);
663 PM8001_CHIP_DISP->chip_soft_rst(pm8001_ha, 0x252acbcd);
664 rc = PM8001_CHIP_DISP->chip_init(pm8001_ha);
665 if (rc)
666 goto err_out_ha_free;
667
668 rc = scsi_add_host(shost, &pdev->dev);
669 if (rc)
670 goto err_out_ha_free;
671 rc = pm8001_request_irq(pm8001_ha);
672 if (rc)
673 goto err_out_shost;
674
675 PM8001_CHIP_DISP->interrupt_enable(pm8001_ha);
676 pm8001_init_sas_add(pm8001_ha);
677 pm8001_post_sas_ha_init(shost, chip);
678 rc = sas_register_ha(SHOST_TO_SAS_HA(shost));
679 if (rc)
680 goto err_out_shost;
681 scsi_scan_host(pm8001_ha->shost);
682 return 0;
683
684err_out_shost:
685 scsi_remove_host(pm8001_ha->shost);
686err_out_ha_free:
687 pm8001_free(pm8001_ha);
688err_out_free:
689 kfree(SHOST_TO_SAS_HA(shost));
690err_out_free_host:
691 kfree(shost);
692err_out_regions:
693 pci_release_regions(pdev);
694err_out_disable:
695 pci_disable_device(pdev);
696err_out_enable:
697 return rc;
698}
699
700static void __devexit pm8001_pci_remove(struct pci_dev *pdev)
701{
702 struct sas_ha_struct *sha = pci_get_drvdata(pdev);
703 struct pm8001_hba_info *pm8001_ha;
704 int i;
705 pm8001_ha = sha->lldd_ha;
706 pci_set_drvdata(pdev, NULL);
707 sas_unregister_ha(sha);
708 sas_remove_host(pm8001_ha->shost);
709 list_del(&pm8001_ha->list);
710 scsi_remove_host(pm8001_ha->shost);
711 PM8001_CHIP_DISP->interrupt_disable(pm8001_ha);
712 PM8001_CHIP_DISP->chip_soft_rst(pm8001_ha, 0x252acbcd);
713
714#ifdef PM8001_USE_MSIX
715 for (i = 0; i < pm8001_ha->number_of_intr; i++)
716 synchronize_irq(pm8001_ha->msix_entries[i].vector);
717 for (i = 0; i < pm8001_ha->number_of_intr; i++)
718 free_irq(pm8001_ha->msix_entries[i].vector, sha);
719 pci_disable_msix(pdev);
720#else
721 free_irq(pm8001_ha->irq, sha);
722#endif
723#ifdef PM8001_USE_TASKLET
724 tasklet_kill(&pm8001_ha->tasklet);
725#endif
726 pm8001_free(pm8001_ha);
727 kfree(sha->sas_phy);
728 kfree(sha->sas_port);
729 kfree(sha);
730 pci_release_regions(pdev);
731 pci_disable_device(pdev);
732}
733
734/**
735 * pm8001_pci_suspend - power management suspend main entry point
736 * @pdev: PCI device struct
737 * @state: PM state change to (usually PCI_D3)
738 *
739 * Returns 0 success, anything else error.
740 */
741static int pm8001_pci_suspend(struct pci_dev *pdev, pm_message_t state)
742{
743 struct sas_ha_struct *sha = pci_get_drvdata(pdev);
744 struct pm8001_hba_info *pm8001_ha;
745 int i , pos;
746 u32 device_state;
747 pm8001_ha = sha->lldd_ha;
748 flush_scheduled_work();
749 scsi_block_requests(pm8001_ha->shost);
750 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
751 if (pos == 0) {
752 printk(KERN_ERR " PCI PM not supported\n");
753 return -ENODEV;
754 }
755 PM8001_CHIP_DISP->interrupt_disable(pm8001_ha);
756 PM8001_CHIP_DISP->chip_soft_rst(pm8001_ha, 0x252acbcd);
757#ifdef PM8001_USE_MSIX
758 for (i = 0; i < pm8001_ha->number_of_intr; i++)
759 synchronize_irq(pm8001_ha->msix_entries[i].vector);
760 for (i = 0; i < pm8001_ha->number_of_intr; i++)
761 free_irq(pm8001_ha->msix_entries[i].vector, sha);
762 pci_disable_msix(pdev);
763#else
764 free_irq(pm8001_ha->irq, sha);
765#endif
766#ifdef PM8001_USE_TASKLET
767 tasklet_kill(&pm8001_ha->tasklet);
768#endif
769 device_state = pci_choose_state(pdev, state);
770 pm8001_printk("pdev=0x%p, slot=%s, entering "
771 "operating state [D%d]\n", pdev,
772 pm8001_ha->name, device_state);
773 pci_save_state(pdev);
774 pci_disable_device(pdev);
775 pci_set_power_state(pdev, device_state);
776 return 0;
777}
778
779/**
780 * pm8001_pci_resume - power management resume main entry point
781 * @pdev: PCI device struct
782 *
783 * Returns 0 success, anything else error.
784 */
785static int pm8001_pci_resume(struct pci_dev *pdev)
786{
787 struct sas_ha_struct *sha = pci_get_drvdata(pdev);
788 struct pm8001_hba_info *pm8001_ha;
789 int rc;
790 u32 device_state;
791 pm8001_ha = sha->lldd_ha;
792 device_state = pdev->current_state;
793
794 pm8001_printk("pdev=0x%p, slot=%s, resuming from previous "
795 "operating state [D%d]\n", pdev, pm8001_ha->name, device_state);
796
797 pci_set_power_state(pdev, PCI_D0);
798 pci_enable_wake(pdev, PCI_D0, 0);
799 pci_restore_state(pdev);
800 rc = pci_enable_device(pdev);
801 if (rc) {
802 pm8001_printk("slot=%s Enable device failed during resume\n",
803 pm8001_ha->name);
804 goto err_out_enable;
805 }
806
807 pci_set_master(pdev);
808 rc = pci_go_44(pdev);
809 if (rc)
810 goto err_out_disable;
811
812 PM8001_CHIP_DISP->chip_soft_rst(pm8001_ha, 0x252acbcd);
813 rc = PM8001_CHIP_DISP->chip_init(pm8001_ha);
814 if (rc)
815 goto err_out_disable;
816 PM8001_CHIP_DISP->interrupt_disable(pm8001_ha);
817 rc = pm8001_request_irq(pm8001_ha);
818 if (rc)
819 goto err_out_disable;
820 #ifdef PM8001_USE_TASKLET
821 tasklet_init(&pm8001_ha->tasklet, pm8001_tasklet,
822 (unsigned long)pm8001_ha);
823 #endif
824 PM8001_CHIP_DISP->interrupt_enable(pm8001_ha);
825 scsi_unblock_requests(pm8001_ha->shost);
826 return 0;
827
828err_out_disable:
829 scsi_remove_host(pm8001_ha->shost);
830 pci_disable_device(pdev);
831err_out_enable:
832 return rc;
833}
834
835static struct pci_device_id __devinitdata pm8001_pci_table[] = {
836 {
837 PCI_VDEVICE(PMC_Sierra, 0x8001), chip_8001
838 },
839 {
840 PCI_DEVICE(0x117c, 0x0042),
841 .driver_data = chip_8001
842 },
843 {} /* terminate list */
844};
845
846static struct pci_driver pm8001_pci_driver = {
847 .name = DRV_NAME,
848 .id_table = pm8001_pci_table,
849 .probe = pm8001_pci_probe,
850 .remove = __devexit_p(pm8001_pci_remove),
851 .suspend = pm8001_pci_suspend,
852 .resume = pm8001_pci_resume,
853};
854
855/**
856 * pm8001_init - initialize scsi transport template
857 */
858static int __init pm8001_init(void)
859{
860 int rc;
861 pm8001_id = 0;
862 pm8001_stt = sas_domain_attach_transport(&pm8001_transport_ops);
863 if (!pm8001_stt)
864 return -ENOMEM;
865 rc = pci_register_driver(&pm8001_pci_driver);
866 if (rc)
867 goto err_out;
868 return 0;
869err_out:
870 sas_release_transport(pm8001_stt);
871 return rc;
872}
873
874static void __exit pm8001_exit(void)
875{
876 pci_unregister_driver(&pm8001_pci_driver);
877 sas_release_transport(pm8001_stt);
878}
879
880module_init(pm8001_init);
881module_exit(pm8001_exit);
882
883MODULE_AUTHOR("Jack Wang <jack_wang@usish.com>");
884MODULE_DESCRIPTION("PMC-Sierra PM8001 SAS/SATA controller driver");
885MODULE_VERSION(DRV_VERSION);
886MODULE_LICENSE("GPL");
887MODULE_DEVICE_TABLE(pci, pm8001_pci_table);
888
diff --git a/drivers/scsi/pm8001/pm8001_sas.c b/drivers/scsi/pm8001/pm8001_sas.c
new file mode 100644
index 000000000000..7bf30fa6963a
--- /dev/null
+++ b/drivers/scsi/pm8001/pm8001_sas.c
@@ -0,0 +1,1104 @@
1/*
2 * PMC-Sierra SPC 8001 SAS/SATA based host adapters driver
3 *
4 * Copyright (c) 2008-2009 USI Co., Ltd.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * substantially similar to the "NO WARRANTY" disclaimer below
15 * ("Disclaimer") and any redistribution must be conditioned upon
16 * including a substantially similar Disclaimer requirement for further
17 * binary redistribution.
18 * 3. Neither the names of the above-listed copyright holders nor the names
19 * of any contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * Alternatively, this software may be distributed under the terms of the
23 * GNU General Public License ("GPL") version 2 as published by the Free
24 * Software Foundation.
25 *
26 * NO WARRANTY
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGES.
38 *
39 */
40
41#include "pm8001_sas.h"
42
43/**
44 * pm8001_find_tag - from sas task to find out tag that belongs to this task
45 * @task: the task sent to the LLDD
46 * @tag: the found tag associated with the task
47 */
48static int pm8001_find_tag(struct sas_task *task, u32 *tag)
49{
50 if (task->lldd_task) {
51 struct pm8001_ccb_info *ccb;
52 ccb = task->lldd_task;
53 *tag = ccb->ccb_tag;
54 return 1;
55 }
56 return 0;
57}
58
59/**
60 * pm8001_tag_clear - clear the tags bitmap
61 * @pm8001_ha: our hba struct
62 * @tag: the found tag associated with the task
63 */
64static void pm8001_tag_clear(struct pm8001_hba_info *pm8001_ha, u32 tag)
65{
66 void *bitmap = pm8001_ha->tags;
67 clear_bit(tag, bitmap);
68}
69
70static void pm8001_tag_free(struct pm8001_hba_info *pm8001_ha, u32 tag)
71{
72 pm8001_tag_clear(pm8001_ha, tag);
73}
74
75static void pm8001_tag_set(struct pm8001_hba_info *pm8001_ha, u32 tag)
76{
77 void *bitmap = pm8001_ha->tags;
78 set_bit(tag, bitmap);
79}
80
81/**
82 * pm8001_tag_alloc - allocate a empty tag for task used.
83 * @pm8001_ha: our hba struct
84 * @tag_out: the found empty tag .
85 */
86inline int pm8001_tag_alloc(struct pm8001_hba_info *pm8001_ha, u32 *tag_out)
87{
88 unsigned int index, tag;
89 void *bitmap = pm8001_ha->tags;
90
91 index = find_first_zero_bit(bitmap, pm8001_ha->tags_num);
92 tag = index;
93 if (tag >= pm8001_ha->tags_num)
94 return -SAS_QUEUE_FULL;
95 pm8001_tag_set(pm8001_ha, tag);
96 *tag_out = tag;
97 return 0;
98}
99
100void pm8001_tag_init(struct pm8001_hba_info *pm8001_ha)
101{
102 int i;
103 for (i = 0; i < pm8001_ha->tags_num; ++i)
104 pm8001_tag_clear(pm8001_ha, i);
105}
106
107 /**
108 * pm8001_mem_alloc - allocate memory for pm8001.
109 * @pdev: pci device.
110 * @virt_addr: the allocated virtual address
111 * @pphys_addr_hi: the physical address high byte address.
112 * @pphys_addr_lo: the physical address low byte address.
113 * @mem_size: memory size.
114 */
115int pm8001_mem_alloc(struct pci_dev *pdev, void **virt_addr,
116 dma_addr_t *pphys_addr, u32 *pphys_addr_hi,
117 u32 *pphys_addr_lo, u32 mem_size, u32 align)
118{
119 caddr_t mem_virt_alloc;
120 dma_addr_t mem_dma_handle;
121 u64 phys_align;
122 u64 align_offset = 0;
123 if (align)
124 align_offset = (dma_addr_t)align - 1;
125 mem_virt_alloc =
126 pci_alloc_consistent(pdev, mem_size + align, &mem_dma_handle);
127 if (!mem_virt_alloc) {
128 pm8001_printk("memory allocation error\n");
129 return -1;
130 }
131 memset((void *)mem_virt_alloc, 0, mem_size+align);
132 *pphys_addr = mem_dma_handle;
133 phys_align = (*pphys_addr + align_offset) & ~align_offset;
134 *virt_addr = (void *)mem_virt_alloc + phys_align - *pphys_addr;
135 *pphys_addr_hi = upper_32_bits(phys_align);
136 *pphys_addr_lo = lower_32_bits(phys_align);
137 return 0;
138}
139/**
140 * pm8001_find_ha_by_dev - from domain device which come from sas layer to
141 * find out our hba struct.
142 * @dev: the domain device which from sas layer.
143 */
144static
145struct pm8001_hba_info *pm8001_find_ha_by_dev(struct domain_device *dev)
146{
147 struct sas_ha_struct *sha = dev->port->ha;
148 struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
149 return pm8001_ha;
150}
151
152/**
153 * pm8001_phy_control - this function should be registered to
154 * sas_domain_function_template to provide libsas used, note: this is just
155 * control the HBA phy rather than other expander phy if you want control
156 * other phy, you should use SMP command.
157 * @sas_phy: which phy in HBA phys.
158 * @func: the operation.
159 * @funcdata: always NULL.
160 */
161int pm8001_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func,
162 void *funcdata)
163{
164 int rc = 0, phy_id = sas_phy->id;
165 struct pm8001_hba_info *pm8001_ha = NULL;
166 struct sas_phy_linkrates *rates;
167 DECLARE_COMPLETION_ONSTACK(completion);
168 pm8001_ha = sas_phy->ha->lldd_ha;
169 pm8001_ha->phy[phy_id].enable_completion = &completion;
170 switch (func) {
171 case PHY_FUNC_SET_LINK_RATE:
172 rates = funcdata;
173 if (rates->minimum_linkrate) {
174 pm8001_ha->phy[phy_id].minimum_linkrate =
175 rates->minimum_linkrate;
176 }
177 if (rates->maximum_linkrate) {
178 pm8001_ha->phy[phy_id].maximum_linkrate =
179 rates->maximum_linkrate;
180 }
181 if (pm8001_ha->phy[phy_id].phy_state == 0) {
182 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id);
183 wait_for_completion(&completion);
184 }
185 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
186 PHY_LINK_RESET);
187 break;
188 case PHY_FUNC_HARD_RESET:
189 if (pm8001_ha->phy[phy_id].phy_state == 0) {
190 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id);
191 wait_for_completion(&completion);
192 }
193 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
194 PHY_HARD_RESET);
195 break;
196 case PHY_FUNC_LINK_RESET:
197 if (pm8001_ha->phy[phy_id].phy_state == 0) {
198 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id);
199 wait_for_completion(&completion);
200 }
201 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
202 PHY_LINK_RESET);
203 break;
204 case PHY_FUNC_RELEASE_SPINUP_HOLD:
205 PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
206 PHY_LINK_RESET);
207 break;
208 case PHY_FUNC_DISABLE:
209 PM8001_CHIP_DISP->phy_stop_req(pm8001_ha, phy_id);
210 break;
211 default:
212 rc = -EOPNOTSUPP;
213 }
214 msleep(300);
215 return rc;
216}
217
218int pm8001_slave_alloc(struct scsi_device *scsi_dev)
219{
220 struct domain_device *dev = sdev_to_domain_dev(scsi_dev);
221 if (dev_is_sata(dev)) {
222 /* We don't need to rescan targets
223 * if REPORT_LUNS request is failed
224 */
225 if (scsi_dev->lun > 0)
226 return -ENXIO;
227 scsi_dev->tagged_supported = 1;
228 }
229 return sas_slave_alloc(scsi_dev);
230}
231
232/**
233 * pm8001_scan_start - we should enable all HBA phys by sending the phy_start
234 * command to HBA.
235 * @shost: the scsi host data.
236 */
237void pm8001_scan_start(struct Scsi_Host *shost)
238{
239 int i;
240 struct pm8001_hba_info *pm8001_ha;
241 struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
242 pm8001_ha = sha->lldd_ha;
243 for (i = 0; i < pm8001_ha->chip->n_phy; ++i)
244 PM8001_CHIP_DISP->phy_start_req(pm8001_ha, i);
245}
246
247int pm8001_scan_finished(struct Scsi_Host *shost, unsigned long time)
248{
249 /* give the phy enabling interrupt event time to come in (1s
250 * is empirically about all it takes) */
251 if (time < HZ)
252 return 0;
253 /* Wait for discovery to finish */
254 scsi_flush_work(shost);
255 return 1;
256}
257
258/**
259 * pm8001_task_prep_smp - the dispatcher function, prepare data for smp task
260 * @pm8001_ha: our hba card information
261 * @ccb: the ccb which attached to smp task
262 */
263static int pm8001_task_prep_smp(struct pm8001_hba_info *pm8001_ha,
264 struct pm8001_ccb_info *ccb)
265{
266 return PM8001_CHIP_DISP->smp_req(pm8001_ha, ccb);
267}
268
269u32 pm8001_get_ncq_tag(struct sas_task *task, u32 *tag)
270{
271 struct ata_queued_cmd *qc = task->uldd_task;
272 if (qc) {
273 if (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
274 qc->tf.command == ATA_CMD_FPDMA_READ) {
275 *tag = qc->tag;
276 return 1;
277 }
278 }
279 return 0;
280}
281
282/**
283 * pm8001_task_prep_ata - the dispatcher function, prepare data for sata task
284 * @pm8001_ha: our hba card information
285 * @ccb: the ccb which attached to sata task
286 */
287static int pm8001_task_prep_ata(struct pm8001_hba_info *pm8001_ha,
288 struct pm8001_ccb_info *ccb)
289{
290 return PM8001_CHIP_DISP->sata_req(pm8001_ha, ccb);
291}
292
293/**
294 * pm8001_task_prep_ssp_tm - the dispatcher function, prepare task management data
295 * @pm8001_ha: our hba card information
296 * @ccb: the ccb which attached to TM
297 * @tmf: the task management IU
298 */
299static int pm8001_task_prep_ssp_tm(struct pm8001_hba_info *pm8001_ha,
300 struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf)
301{
302 return PM8001_CHIP_DISP->ssp_tm_req(pm8001_ha, ccb, tmf);
303}
304
305/**
306 * pm8001_task_prep_ssp - the dispatcher function,prepare ssp data for ssp task
307 * @pm8001_ha: our hba card information
308 * @ccb: the ccb which attached to ssp task
309 */
310static int pm8001_task_prep_ssp(struct pm8001_hba_info *pm8001_ha,
311 struct pm8001_ccb_info *ccb)
312{
313 return PM8001_CHIP_DISP->ssp_io_req(pm8001_ha, ccb);
314}
315int pm8001_slave_configure(struct scsi_device *sdev)
316{
317 struct domain_device *dev = sdev_to_domain_dev(sdev);
318 int ret = sas_slave_configure(sdev);
319 if (ret)
320 return ret;
321 if (dev_is_sata(dev)) {
322 #ifdef PM8001_DISABLE_NCQ
323 struct ata_port *ap = dev->sata_dev.ap;
324 struct ata_device *adev = ap->link.device;
325 adev->flags |= ATA_DFLAG_NCQ_OFF;
326 scsi_adjust_queue_depth(sdev, MSG_SIMPLE_TAG, 1);
327 #endif
328 }
329 return 0;
330}
331/**
332 * pm8001_task_exec -execute the task which come from upper level, send the
333 * command or data to DMA area and then increase CI,for queuecommand(ssp),
334 * it is from upper layer and for smp command,it is from libsas,
335 * for ata command it is from libata.
336 * @task: the task to be execute.
337 * @num: if can_queue great than 1, the task can be queued up. for SMP task,
338 * we always execute one one time.
339 * @gfp_flags: gfp_flags.
340 * @is tmf: if it is task management task.
341 * @tmf: the task management IU
342 */
343#define DEV_IS_GONE(pm8001_dev) \
344 ((!pm8001_dev || (pm8001_dev->dev_type == NO_DEVICE)))
345static int pm8001_task_exec(struct sas_task *task, const int num,
346 gfp_t gfp_flags, int is_tmf, struct pm8001_tmf_task *tmf)
347{
348 struct domain_device *dev = task->dev;
349 struct pm8001_hba_info *pm8001_ha;
350 struct pm8001_device *pm8001_dev;
351 struct sas_task *t = task;
352 struct pm8001_ccb_info *ccb;
353 u32 tag = 0xdeadbeef, rc, n_elem = 0;
354 u32 n = num;
355 unsigned long flags = 0;
356
357 if (!dev->port) {
358 struct task_status_struct *tsm = &t->task_status;
359 tsm->resp = SAS_TASK_UNDELIVERED;
360 tsm->stat = SAS_PHY_DOWN;
361 if (dev->dev_type != SATA_DEV)
362 t->task_done(t);
363 return 0;
364 }
365 pm8001_ha = pm8001_find_ha_by_dev(task->dev);
366 PM8001_IO_DBG(pm8001_ha, pm8001_printk("pm8001_task_exec device \n "));
367 spin_lock_irqsave(&pm8001_ha->lock, flags);
368 do {
369 dev = t->dev;
370 pm8001_dev = dev->lldd_dev;
371 if (DEV_IS_GONE(pm8001_dev)) {
372 if (pm8001_dev) {
373 PM8001_IO_DBG(pm8001_ha,
374 pm8001_printk("device %d not ready.\n",
375 pm8001_dev->device_id));
376 } else {
377 PM8001_IO_DBG(pm8001_ha,
378 pm8001_printk("device %016llx not "
379 "ready.\n", SAS_ADDR(dev->sas_addr)));
380 }
381 rc = SAS_PHY_DOWN;
382 goto out_done;
383 }
384 rc = pm8001_tag_alloc(pm8001_ha, &tag);
385 if (rc)
386 goto err_out;
387 ccb = &pm8001_ha->ccb_info[tag];
388
389 if (!sas_protocol_ata(t->task_proto)) {
390 if (t->num_scatter) {
391 n_elem = dma_map_sg(pm8001_ha->dev,
392 t->scatter,
393 t->num_scatter,
394 t->data_dir);
395 if (!n_elem) {
396 rc = -ENOMEM;
397 goto err_out;
398 }
399 }
400 } else {
401 n_elem = t->num_scatter;
402 }
403
404 t->lldd_task = NULL;
405 ccb->n_elem = n_elem;
406 ccb->ccb_tag = tag;
407 ccb->task = t;
408 switch (t->task_proto) {
409 case SAS_PROTOCOL_SMP:
410 rc = pm8001_task_prep_smp(pm8001_ha, ccb);
411 break;
412 case SAS_PROTOCOL_SSP:
413 if (is_tmf)
414 rc = pm8001_task_prep_ssp_tm(pm8001_ha,
415 ccb, tmf);
416 else
417 rc = pm8001_task_prep_ssp(pm8001_ha, ccb);
418 break;
419 case SAS_PROTOCOL_SATA:
420 case SAS_PROTOCOL_STP:
421 case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
422 rc = pm8001_task_prep_ata(pm8001_ha, ccb);
423 break;
424 default:
425 dev_printk(KERN_ERR, pm8001_ha->dev,
426 "unknown sas_task proto: 0x%x\n",
427 t->task_proto);
428 rc = -EINVAL;
429 break;
430 }
431
432 if (rc) {
433 PM8001_IO_DBG(pm8001_ha,
434 pm8001_printk("rc is %x\n", rc));
435 goto err_out_tag;
436 }
437 t->lldd_task = ccb;
438 /* TODO: select normal or high priority */
439 spin_lock(&t->task_state_lock);
440 t->task_state_flags |= SAS_TASK_AT_INITIATOR;
441 spin_unlock(&t->task_state_lock);
442 pm8001_dev->running_req++;
443 if (n > 1)
444 t = list_entry(t->list.next, struct sas_task, list);
445 } while (--n);
446 rc = 0;
447 goto out_done;
448
449err_out_tag:
450 pm8001_tag_free(pm8001_ha, tag);
451err_out:
452 dev_printk(KERN_ERR, pm8001_ha->dev, "pm8001 exec failed[%d]!\n", rc);
453 if (!sas_protocol_ata(t->task_proto))
454 if (n_elem)
455 dma_unmap_sg(pm8001_ha->dev, t->scatter, n_elem,
456 t->data_dir);
457out_done:
458 spin_unlock_irqrestore(&pm8001_ha->lock, flags);
459 return rc;
460}
461
462/**
463 * pm8001_queue_command - register for upper layer used, all IO commands sent
464 * to HBA are from this interface.
465 * @task: the task to be execute.
466 * @num: if can_queue great than 1, the task can be queued up. for SMP task,
467 * we always execute one one time
468 * @gfp_flags: gfp_flags
469 */
470int pm8001_queue_command(struct sas_task *task, const int num,
471 gfp_t gfp_flags)
472{
473 return pm8001_task_exec(task, num, gfp_flags, 0, NULL);
474}
475
476void pm8001_ccb_free(struct pm8001_hba_info *pm8001_ha, u32 ccb_idx)
477{
478 pm8001_tag_clear(pm8001_ha, ccb_idx);
479}
480
481/**
482 * pm8001_ccb_task_free - free the sg for ssp and smp command, free the ccb.
483 * @pm8001_ha: our hba card information
484 * @ccb: the ccb which attached to ssp task
485 * @task: the task to be free.
486 * @ccb_idx: ccb index.
487 */
488void pm8001_ccb_task_free(struct pm8001_hba_info *pm8001_ha,
489 struct sas_task *task, struct pm8001_ccb_info *ccb, u32 ccb_idx)
490{
491 if (!ccb->task)
492 return;
493 if (!sas_protocol_ata(task->task_proto))
494 if (ccb->n_elem)
495 dma_unmap_sg(pm8001_ha->dev, task->scatter,
496 task->num_scatter, task->data_dir);
497
498 switch (task->task_proto) {
499 case SAS_PROTOCOL_SMP:
500 dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_resp, 1,
501 PCI_DMA_FROMDEVICE);
502 dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_req, 1,
503 PCI_DMA_TODEVICE);
504 break;
505
506 case SAS_PROTOCOL_SATA:
507 case SAS_PROTOCOL_STP:
508 case SAS_PROTOCOL_SSP:
509 default:
510 /* do nothing */
511 break;
512 }
513 task->lldd_task = NULL;
514 ccb->task = NULL;
515 ccb->ccb_tag = 0xFFFFFFFF;
516 pm8001_ccb_free(pm8001_ha, ccb_idx);
517}
518
519 /**
520 * pm8001_alloc_dev - find the empty pm8001_device structure, allocate and
521 * return it for use.
522 * @pm8001_ha: our hba card information
523 */
524struct pm8001_device *pm8001_alloc_dev(struct pm8001_hba_info *pm8001_ha)
525{
526 u32 dev;
527 for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) {
528 if (pm8001_ha->devices[dev].dev_type == NO_DEVICE) {
529 pm8001_ha->devices[dev].id = dev;
530 return &pm8001_ha->devices[dev];
531 }
532 }
533 if (dev == PM8001_MAX_DEVICES) {
534 PM8001_FAIL_DBG(pm8001_ha,
535 pm8001_printk("max support %d devices, ignore ..\n",
536 PM8001_MAX_DEVICES));
537 }
538 return NULL;
539}
540
541static void pm8001_free_dev(struct pm8001_device *pm8001_dev)
542{
543 u32 id = pm8001_dev->id;
544 memset(pm8001_dev, 0, sizeof(*pm8001_dev));
545 pm8001_dev->id = id;
546 pm8001_dev->dev_type = NO_DEVICE;
547 pm8001_dev->device_id = PM8001_MAX_DEVICES;
548 pm8001_dev->sas_device = NULL;
549}
550
551/**
552 * pm8001_dev_found_notify - when libsas find a sas domain device, it should
553 * tell the LLDD that device is found, and then LLDD register this device to
554 * HBA FW by the command "OPC_INB_REG_DEV", after that the HBA will assign
555 * a device ID(according to device's sas address) and returned it to LLDD.from
556 * now on, we communicate with HBA FW with the device ID which HBA assigned
557 * rather than sas address. it is the neccessary step for our HBA but it is
558 * the optional for other HBA driver.
559 * @dev: the device structure which sas layer used.
560 */
561static int pm8001_dev_found_notify(struct domain_device *dev)
562{
563 unsigned long flags = 0;
564 int res = 0;
565 struct pm8001_hba_info *pm8001_ha = NULL;
566 struct domain_device *parent_dev = dev->parent;
567 struct pm8001_device *pm8001_device;
568 DECLARE_COMPLETION_ONSTACK(completion);
569 u32 flag = 0;
570 pm8001_ha = pm8001_find_ha_by_dev(dev);
571 spin_lock_irqsave(&pm8001_ha->lock, flags);
572
573 pm8001_device = pm8001_alloc_dev(pm8001_ha);
574 pm8001_device->sas_device = dev;
575 if (!pm8001_device) {
576 res = -1;
577 goto found_out;
578 }
579 dev->lldd_dev = pm8001_device;
580 pm8001_device->dev_type = dev->dev_type;
581 pm8001_device->dcompletion = &completion;
582 if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) {
583 int phy_id;
584 struct ex_phy *phy;
585 for (phy_id = 0; phy_id < parent_dev->ex_dev.num_phys;
586 phy_id++) {
587 phy = &parent_dev->ex_dev.ex_phy[phy_id];
588 if (SAS_ADDR(phy->attached_sas_addr)
589 == SAS_ADDR(dev->sas_addr)) {
590 pm8001_device->attached_phy = phy_id;
591 break;
592 }
593 }
594 if (phy_id == parent_dev->ex_dev.num_phys) {
595 PM8001_FAIL_DBG(pm8001_ha,
596 pm8001_printk("Error: no attached dev:%016llx"
597 " at ex:%016llx.\n", SAS_ADDR(dev->sas_addr),
598 SAS_ADDR(parent_dev->sas_addr)));
599 res = -1;
600 }
601 } else {
602 if (dev->dev_type == SATA_DEV) {
603 pm8001_device->attached_phy =
604 dev->rphy->identify.phy_identifier;
605 flag = 1; /* directly sata*/
606 }
607 } /*register this device to HBA*/
608 PM8001_DISC_DBG(pm8001_ha, pm8001_printk("Found device \n"));
609 PM8001_CHIP_DISP->reg_dev_req(pm8001_ha, pm8001_device, flag);
610 spin_unlock_irqrestore(&pm8001_ha->lock, flags);
611 wait_for_completion(&completion);
612 if (dev->dev_type == SAS_END_DEV)
613 msleep(50);
614 pm8001_ha->flags = PM8001F_RUN_TIME ;
615 return 0;
616found_out:
617 spin_unlock_irqrestore(&pm8001_ha->lock, flags);
618 return res;
619}
620
621int pm8001_dev_found(struct domain_device *dev)
622{
623 return pm8001_dev_found_notify(dev);
624}
625
626/**
627 * pm8001_alloc_task - allocate a task structure for TMF
628 */
629static struct sas_task *pm8001_alloc_task(void)
630{
631 struct sas_task *task = kzalloc(sizeof(*task), GFP_KERNEL);
632 if (task) {
633 INIT_LIST_HEAD(&task->list);
634 spin_lock_init(&task->task_state_lock);
635 task->task_state_flags = SAS_TASK_STATE_PENDING;
636 init_timer(&task->timer);
637 init_completion(&task->completion);
638 }
639 return task;
640}
641
642static void pm8001_free_task(struct sas_task *task)
643{
644 if (task) {
645 BUG_ON(!list_empty(&task->list));
646 kfree(task);
647 }
648}
649
650static void pm8001_task_done(struct sas_task *task)
651{
652 if (!del_timer(&task->timer))
653 return;
654 complete(&task->completion);
655}
656
657static void pm8001_tmf_timedout(unsigned long data)
658{
659 struct sas_task *task = (struct sas_task *)data;
660
661 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
662 complete(&task->completion);
663}
664
665#define PM8001_TASK_TIMEOUT 20
666/**
667 * pm8001_exec_internal_tmf_task - when errors or exception happened, we may
668 * want to do something, for example abort issued task which result in this
669 * execption, this is by calling this function, note it is also with the task
670 * execute interface.
671 * @dev: the wanted device.
672 * @tmf: which task management wanted to be take.
673 * @para_len: para_len.
674 * @parameter: ssp task parameter.
675 */
676static int pm8001_exec_internal_tmf_task(struct domain_device *dev,
677 void *parameter, u32 para_len, struct pm8001_tmf_task *tmf)
678{
679 int res, retry;
680 struct sas_task *task = NULL;
681 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev);
682
683 for (retry = 0; retry < 3; retry++) {
684 task = pm8001_alloc_task();
685 if (!task)
686 return -ENOMEM;
687
688 task->dev = dev;
689 task->task_proto = dev->tproto;
690 memcpy(&task->ssp_task, parameter, para_len);
691 task->task_done = pm8001_task_done;
692 task->timer.data = (unsigned long)task;
693 task->timer.function = pm8001_tmf_timedout;
694 task->timer.expires = jiffies + PM8001_TASK_TIMEOUT*HZ;
695 add_timer(&task->timer);
696
697 res = pm8001_task_exec(task, 1, GFP_KERNEL, 1, tmf);
698
699 if (res) {
700 del_timer(&task->timer);
701 PM8001_FAIL_DBG(pm8001_ha,
702 pm8001_printk("Executing internal task "
703 "failed\n"));
704 goto ex_err;
705 }
706 wait_for_completion(&task->completion);
707 res = -TMF_RESP_FUNC_FAILED;
708 /* Even TMF timed out, return direct. */
709 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
710 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
711 PM8001_FAIL_DBG(pm8001_ha,
712 pm8001_printk("TMF task[%x]timeout.\n",
713 tmf->tmf));
714 goto ex_err;
715 }
716 }
717
718 if (task->task_status.resp == SAS_TASK_COMPLETE &&
719 task->task_status.stat == SAM_GOOD) {
720 res = TMF_RESP_FUNC_COMPLETE;
721 break;
722 }
723
724 if (task->task_status.resp == SAS_TASK_COMPLETE &&
725 task->task_status.stat == SAS_DATA_UNDERRUN) {
726 /* no error, but return the number of bytes of
727 * underrun */
728 res = task->task_status.residual;
729 break;
730 }
731
732 if (task->task_status.resp == SAS_TASK_COMPLETE &&
733 task->task_status.stat == SAS_DATA_OVERRUN) {
734 PM8001_FAIL_DBG(pm8001_ha,
735 pm8001_printk("Blocked task error.\n"));
736 res = -EMSGSIZE;
737 break;
738 } else {
739 PM8001_IO_DBG(pm8001_ha,
740 pm8001_printk(" Task to dev %016llx response: 0x%x"
741 "status 0x%x\n",
742 SAS_ADDR(dev->sas_addr),
743 task->task_status.resp,
744 task->task_status.stat));
745 pm8001_free_task(task);
746 task = NULL;
747 }
748 }
749ex_err:
750 BUG_ON(retry == 3 && task != NULL);
751 if (task != NULL)
752 pm8001_free_task(task);
753 return res;
754}
755
756static int
757pm8001_exec_internal_task_abort(struct pm8001_hba_info *pm8001_ha,
758 struct pm8001_device *pm8001_dev, struct domain_device *dev, u32 flag,
759 u32 task_tag)
760{
761 int res, retry;
762 u32 rc, ccb_tag;
763 struct pm8001_ccb_info *ccb;
764 struct sas_task *task = NULL;
765
766 for (retry = 0; retry < 3; retry++) {
767 task = pm8001_alloc_task();
768 if (!task)
769 return -ENOMEM;
770
771 task->dev = dev;
772 task->task_proto = dev->tproto;
773 task->task_done = pm8001_task_done;
774 task->timer.data = (unsigned long)task;
775 task->timer.function = pm8001_tmf_timedout;
776 task->timer.expires = jiffies + PM8001_TASK_TIMEOUT*HZ;
777 add_timer(&task->timer);
778
779 rc = pm8001_tag_alloc(pm8001_ha, &ccb_tag);
780 if (rc)
781 return rc;
782 ccb = &pm8001_ha->ccb_info[ccb_tag];
783 ccb->device = pm8001_dev;
784 ccb->ccb_tag = ccb_tag;
785 ccb->task = task;
786
787 res = PM8001_CHIP_DISP->task_abort(pm8001_ha,
788 pm8001_dev, flag, task_tag, ccb_tag);
789
790 if (res) {
791 del_timer(&task->timer);
792 PM8001_FAIL_DBG(pm8001_ha,
793 pm8001_printk("Executing internal task "
794 "failed\n"));
795 goto ex_err;
796 }
797 wait_for_completion(&task->completion);
798 res = TMF_RESP_FUNC_FAILED;
799 /* Even TMF timed out, return direct. */
800 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
801 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
802 PM8001_FAIL_DBG(pm8001_ha,
803 pm8001_printk("TMF task timeout.\n"));
804 goto ex_err;
805 }
806 }
807
808 if (task->task_status.resp == SAS_TASK_COMPLETE &&
809 task->task_status.stat == SAM_GOOD) {
810 res = TMF_RESP_FUNC_COMPLETE;
811 break;
812
813 } else {
814 PM8001_IO_DBG(pm8001_ha,
815 pm8001_printk(" Task to dev %016llx response: "
816 "0x%x status 0x%x\n",
817 SAS_ADDR(dev->sas_addr),
818 task->task_status.resp,
819 task->task_status.stat));
820 pm8001_free_task(task);
821 task = NULL;
822 }
823 }
824ex_err:
825 BUG_ON(retry == 3 && task != NULL);
826 if (task != NULL)
827 pm8001_free_task(task);
828 return res;
829}
830
831/**
832 * pm8001_dev_gone_notify - see the comments for "pm8001_dev_found_notify"
833 * @dev: the device structure which sas layer used.
834 */
835static void pm8001_dev_gone_notify(struct domain_device *dev)
836{
837 unsigned long flags = 0;
838 u32 tag;
839 struct pm8001_hba_info *pm8001_ha;
840 struct pm8001_device *pm8001_dev = dev->lldd_dev;
841 u32 device_id = pm8001_dev->device_id;
842 pm8001_ha = pm8001_find_ha_by_dev(dev);
843 spin_lock_irqsave(&pm8001_ha->lock, flags);
844 pm8001_tag_alloc(pm8001_ha, &tag);
845 if (pm8001_dev) {
846 PM8001_DISC_DBG(pm8001_ha,
847 pm8001_printk("found dev[%d:%x] is gone.\n",
848 pm8001_dev->device_id, pm8001_dev->dev_type));
849 if (pm8001_dev->running_req) {
850 spin_unlock_irqrestore(&pm8001_ha->lock, flags);
851 pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev ,
852 dev, 1, 0);
853 spin_lock_irqsave(&pm8001_ha->lock, flags);
854 }
855 PM8001_CHIP_DISP->dereg_dev_req(pm8001_ha, device_id);
856 pm8001_free_dev(pm8001_dev);
857 } else {
858 PM8001_DISC_DBG(pm8001_ha,
859 pm8001_printk("Found dev has gone.\n"));
860 }
861 dev->lldd_dev = NULL;
862 spin_unlock_irqrestore(&pm8001_ha->lock, flags);
863}
864
865void pm8001_dev_gone(struct domain_device *dev)
866{
867 pm8001_dev_gone_notify(dev);
868}
869
870static int pm8001_issue_ssp_tmf(struct domain_device *dev,
871 u8 *lun, struct pm8001_tmf_task *tmf)
872{
873 struct sas_ssp_task ssp_task;
874 if (!(dev->tproto & SAS_PROTOCOL_SSP))
875 return TMF_RESP_FUNC_ESUPP;
876
877 strncpy((u8 *)&ssp_task.LUN, lun, 8);
878 return pm8001_exec_internal_tmf_task(dev, &ssp_task, sizeof(ssp_task),
879 tmf);
880}
881
882/**
883 * Standard mandates link reset for ATA (type 0) and hard reset for
884 * SSP (type 1) , only for RECOVERY
885 */
886int pm8001_I_T_nexus_reset(struct domain_device *dev)
887{
888 int rc = TMF_RESP_FUNC_FAILED;
889 struct pm8001_device *pm8001_dev;
890 struct pm8001_hba_info *pm8001_ha;
891 struct sas_phy *phy;
892 if (!dev || !dev->lldd_dev)
893 return -1;
894
895 pm8001_dev = dev->lldd_dev;
896 pm8001_ha = pm8001_find_ha_by_dev(dev);
897 phy = sas_find_local_phy(dev);
898
899 if (dev_is_sata(dev)) {
900 DECLARE_COMPLETION_ONSTACK(completion_setstate);
901 rc = sas_phy_reset(phy, 1);
902 msleep(2000);
903 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev ,
904 dev, 1, 0);
905 pm8001_dev->setds_completion = &completion_setstate;
906 rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha,
907 pm8001_dev, 0x01);
908 wait_for_completion(&completion_setstate);
909 } else{
910 rc = sas_phy_reset(phy, 1);
911 msleep(2000);
912 }
913 PM8001_EH_DBG(pm8001_ha, pm8001_printk(" for device[%x]:rc=%d\n",
914 pm8001_dev->device_id, rc));
915 return rc;
916}
917
918/* mandatory SAM-3, the task reset the specified LUN*/
919int pm8001_lu_reset(struct domain_device *dev, u8 *lun)
920{
921 int rc = TMF_RESP_FUNC_FAILED;
922 struct pm8001_tmf_task tmf_task;
923 struct pm8001_device *pm8001_dev = dev->lldd_dev;
924 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev);
925 if (dev_is_sata(dev)) {
926 struct sas_phy *phy = sas_find_local_phy(dev);
927 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev ,
928 dev, 1, 0);
929 rc = sas_phy_reset(phy, 1);
930 rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha,
931 pm8001_dev, 0x01);
932 msleep(2000);
933 } else {
934 tmf_task.tmf = TMF_LU_RESET;
935 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
936 }
937 /* If failed, fall-through I_T_Nexus reset */
938 PM8001_EH_DBG(pm8001_ha, pm8001_printk("for device[%x]:rc=%d\n",
939 pm8001_dev->device_id, rc));
940 return rc;
941}
942
943/* optional SAM-3 */
944int pm8001_query_task(struct sas_task *task)
945{
946 u32 tag = 0xdeadbeef;
947 int i = 0;
948 struct scsi_lun lun;
949 struct pm8001_tmf_task tmf_task;
950 int rc = TMF_RESP_FUNC_FAILED;
951 if (unlikely(!task || !task->lldd_task || !task->dev))
952 return rc;
953
954 if (task->task_proto & SAS_PROTOCOL_SSP) {
955 struct scsi_cmnd *cmnd = task->uldd_task;
956 struct domain_device *dev = task->dev;
957 struct pm8001_hba_info *pm8001_ha =
958 pm8001_find_ha_by_dev(dev);
959
960 int_to_scsilun(cmnd->device->lun, &lun);
961 rc = pm8001_find_tag(task, &tag);
962 if (rc == 0) {
963 rc = TMF_RESP_FUNC_FAILED;
964 return rc;
965 }
966 PM8001_EH_DBG(pm8001_ha, pm8001_printk("Query:["));
967 for (i = 0; i < 16; i++)
968 printk(KERN_INFO "%02x ", cmnd->cmnd[i]);
969 printk(KERN_INFO "]\n");
970 tmf_task.tmf = TMF_QUERY_TASK;
971 tmf_task.tag_of_task_to_be_managed = tag;
972
973 rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task);
974 switch (rc) {
975 /* The task is still in Lun, release it then */
976 case TMF_RESP_FUNC_SUCC:
977 PM8001_EH_DBG(pm8001_ha,
978 pm8001_printk("The task is still in Lun \n"));
979 /* The task is not in Lun or failed, reset the phy */
980 case TMF_RESP_FUNC_FAILED:
981 case TMF_RESP_FUNC_COMPLETE:
982 PM8001_EH_DBG(pm8001_ha,
983 pm8001_printk("The task is not in Lun or failed,"
984 " reset the phy \n"));
985 break;
986 }
987 }
988 pm8001_printk(":rc= %d\n", rc);
989 return rc;
990}
991
992/* mandatory SAM-3, still need free task/ccb info, abord the specified task */
993int pm8001_abort_task(struct sas_task *task)
994{
995 unsigned long flags;
996 u32 tag = 0xdeadbeef;
997 u32 device_id;
998 struct domain_device *dev ;
999 struct pm8001_hba_info *pm8001_ha = NULL;
1000 struct pm8001_ccb_info *ccb;
1001 struct scsi_lun lun;
1002 struct pm8001_device *pm8001_dev;
1003 struct pm8001_tmf_task tmf_task;
1004 int rc = TMF_RESP_FUNC_FAILED;
1005 if (unlikely(!task || !task->lldd_task || !task->dev))
1006 return rc;
1007 spin_lock_irqsave(&task->task_state_lock, flags);
1008 if (task->task_state_flags & SAS_TASK_STATE_DONE) {
1009 spin_unlock_irqrestore(&task->task_state_lock, flags);
1010 rc = TMF_RESP_FUNC_COMPLETE;
1011 goto out;
1012 }
1013 spin_unlock_irqrestore(&task->task_state_lock, flags);
1014 if (task->task_proto & SAS_PROTOCOL_SSP) {
1015 struct scsi_cmnd *cmnd = task->uldd_task;
1016 dev = task->dev;
1017 ccb = task->lldd_task;
1018 pm8001_dev = dev->lldd_dev;
1019 pm8001_ha = pm8001_find_ha_by_dev(dev);
1020 int_to_scsilun(cmnd->device->lun, &lun);
1021 rc = pm8001_find_tag(task, &tag);
1022 if (rc == 0) {
1023 printk(KERN_INFO "No such tag in %s\n", __func__);
1024 rc = TMF_RESP_FUNC_FAILED;
1025 return rc;
1026 }
1027 device_id = pm8001_dev->device_id;
1028 PM8001_EH_DBG(pm8001_ha,
1029 pm8001_printk("abort io to device_id = %d\n", device_id));
1030 tmf_task.tmf = TMF_ABORT_TASK;
1031 tmf_task.tag_of_task_to_be_managed = tag;
1032 rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task);
1033 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev,
1034 pm8001_dev->sas_device, 0, tag);
1035 } else if (task->task_proto & SAS_PROTOCOL_SATA ||
1036 task->task_proto & SAS_PROTOCOL_STP) {
1037 dev = task->dev;
1038 pm8001_dev = dev->lldd_dev;
1039 pm8001_ha = pm8001_find_ha_by_dev(dev);
1040 rc = pm8001_find_tag(task, &tag);
1041 if (rc == 0) {
1042 printk(KERN_INFO "No such tag in %s\n", __func__);
1043 rc = TMF_RESP_FUNC_FAILED;
1044 return rc;
1045 }
1046 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev,
1047 pm8001_dev->sas_device, 0, tag);
1048 } else if (task->task_proto & SAS_PROTOCOL_SMP) {
1049 /* SMP */
1050 dev = task->dev;
1051 pm8001_dev = dev->lldd_dev;
1052 pm8001_ha = pm8001_find_ha_by_dev(dev);
1053 rc = pm8001_find_tag(task, &tag);
1054 if (rc == 0) {
1055 printk(KERN_INFO "No such tag in %s\n", __func__);
1056 rc = TMF_RESP_FUNC_FAILED;
1057 return rc;
1058 }
1059 rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev,
1060 pm8001_dev->sas_device, 0, tag);
1061
1062 }
1063out:
1064 if (rc != TMF_RESP_FUNC_COMPLETE)
1065 pm8001_printk("rc= %d\n", rc);
1066 return rc;
1067}
1068
1069int pm8001_abort_task_set(struct domain_device *dev, u8 *lun)
1070{
1071 int rc = TMF_RESP_FUNC_FAILED;
1072 struct pm8001_tmf_task tmf_task;
1073
1074 tmf_task.tmf = TMF_ABORT_TASK_SET;
1075 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
1076 return rc;
1077}
1078
1079int pm8001_clear_aca(struct domain_device *dev, u8 *lun)
1080{
1081 int rc = TMF_RESP_FUNC_FAILED;
1082 struct pm8001_tmf_task tmf_task;
1083
1084 tmf_task.tmf = TMF_CLEAR_ACA;
1085 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
1086
1087 return rc;
1088}
1089
1090int pm8001_clear_task_set(struct domain_device *dev, u8 *lun)
1091{
1092 int rc = TMF_RESP_FUNC_FAILED;
1093 struct pm8001_tmf_task tmf_task;
1094 struct pm8001_device *pm8001_dev = dev->lldd_dev;
1095 struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev);
1096
1097 PM8001_EH_DBG(pm8001_ha,
1098 pm8001_printk("I_T_L_Q clear task set[%x]\n",
1099 pm8001_dev->device_id));
1100 tmf_task.tmf = TMF_CLEAR_TASK_SET;
1101 rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
1102 return rc;
1103}
1104
diff --git a/drivers/scsi/pm8001/pm8001_sas.h b/drivers/scsi/pm8001/pm8001_sas.h
new file mode 100644
index 000000000000..14c676bbb533
--- /dev/null
+++ b/drivers/scsi/pm8001/pm8001_sas.h
@@ -0,0 +1,480 @@
1/*
2 * PMC-Sierra SPC 8001 SAS/SATA based host adapters driver
3 *
4 * Copyright (c) 2008-2009 USI Co., Ltd.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * substantially similar to the "NO WARRANTY" disclaimer below
15 * ("Disclaimer") and any redistribution must be conditioned upon
16 * including a substantially similar Disclaimer requirement for further
17 * binary redistribution.
18 * 3. Neither the names of the above-listed copyright holders nor the names
19 * of any contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * Alternatively, this software may be distributed under the terms of the
23 * GNU General Public License ("GPL") version 2 as published by the Free
24 * Software Foundation.
25 *
26 * NO WARRANTY
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
35 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
36 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGES.
38 *
39 */
40
41#ifndef _PM8001_SAS_H_
42#define _PM8001_SAS_H_
43
44#include <linux/kernel.h>
45#include <linux/module.h>
46#include <linux/spinlock.h>
47#include <linux/delay.h>
48#include <linux/types.h>
49#include <linux/ctype.h>
50#include <linux/dma-mapping.h>
51#include <linux/pci.h>
52#include <linux/interrupt.h>
53#include <linux/smp_lock.h>
54#include <scsi/libsas.h>
55#include <scsi/scsi_tcq.h>
56#include <scsi/sas_ata.h>
57#include <asm/atomic.h>
58#include "pm8001_defs.h"
59
60#define DRV_NAME "pm8001"
61#define DRV_VERSION "0.1.36"
62#define PM8001_FAIL_LOGGING 0x01 /* libsas EH function logging */
63#define PM8001_INIT_LOGGING 0x02 /* driver init logging */
64#define PM8001_DISC_LOGGING 0x04 /* discovery layer logging */
65#define PM8001_IO_LOGGING 0x08 /* I/O path logging */
66#define PM8001_EH_LOGGING 0x10 /* Error message logging */
67#define PM8001_IOCTL_LOGGING 0x20 /* IOCTL message logging */
68#define PM8001_MSG_LOGGING 0x40 /* misc message logging */
69#define pm8001_printk(format, arg...) printk(KERN_INFO "%s %d:" format,\
70 __func__, __LINE__, ## arg)
71#define PM8001_CHECK_LOGGING(HBA, LEVEL, CMD) \
72do { \
73 if (unlikely(HBA->logging_level & LEVEL)) \
74 do { \
75 CMD; \
76 } while (0); \
77} while (0);
78
79#define PM8001_EH_DBG(HBA, CMD) \
80 PM8001_CHECK_LOGGING(HBA, PM8001_EH_LOGGING, CMD)
81
82#define PM8001_INIT_DBG(HBA, CMD) \
83 PM8001_CHECK_LOGGING(HBA, PM8001_INIT_LOGGING, CMD)
84
85#define PM8001_DISC_DBG(HBA, CMD) \
86 PM8001_CHECK_LOGGING(HBA, PM8001_DISC_LOGGING, CMD)
87
88#define PM8001_IO_DBG(HBA, CMD) \
89 PM8001_CHECK_LOGGING(HBA, PM8001_IO_LOGGING, CMD)
90
91#define PM8001_FAIL_DBG(HBA, CMD) \
92 PM8001_CHECK_LOGGING(HBA, PM8001_FAIL_LOGGING, CMD)
93
94#define PM8001_IOCTL_DBG(HBA, CMD) \
95 PM8001_CHECK_LOGGING(HBA, PM8001_IOCTL_LOGGING, CMD)
96
97#define PM8001_MSG_DBG(HBA, CMD) \
98 PM8001_CHECK_LOGGING(HBA, PM8001_MSG_LOGGING, CMD)
99
100
101#define PM8001_USE_TASKLET
102#define PM8001_USE_MSIX
103
104
105#define DEV_IS_EXPANDER(type) ((type == EDGE_DEV) || (type == FANOUT_DEV))
106
107#define PM8001_NAME_LENGTH 32/* generic length of strings */
108extern struct list_head hba_list;
109extern const struct pm8001_dispatch pm8001_8001_dispatch;
110
111struct pm8001_hba_info;
112struct pm8001_ccb_info;
113struct pm8001_device;
114struct pm8001_tmf_task;
115struct pm8001_dispatch {
116 char *name;
117 int (*chip_init)(struct pm8001_hba_info *pm8001_ha);
118 int (*chip_soft_rst)(struct pm8001_hba_info *pm8001_ha, u32 signature);
119 void (*chip_rst)(struct pm8001_hba_info *pm8001_ha);
120 int (*chip_ioremap)(struct pm8001_hba_info *pm8001_ha);
121 void (*chip_iounmap)(struct pm8001_hba_info *pm8001_ha);
122 void (*isr)(struct pm8001_hba_info *pm8001_ha);
123 u32 (*is_our_interupt)(struct pm8001_hba_info *pm8001_ha);
124 int (*isr_process_oq)(struct pm8001_hba_info *pm8001_ha);
125 void (*interrupt_enable)(struct pm8001_hba_info *pm8001_ha);
126 void (*interrupt_disable)(struct pm8001_hba_info *pm8001_ha);
127 void (*make_prd)(struct scatterlist *scatter, int nr, void *prd);
128 int (*smp_req)(struct pm8001_hba_info *pm8001_ha,
129 struct pm8001_ccb_info *ccb);
130 int (*ssp_io_req)(struct pm8001_hba_info *pm8001_ha,
131 struct pm8001_ccb_info *ccb);
132 int (*sata_req)(struct pm8001_hba_info *pm8001_ha,
133 struct pm8001_ccb_info *ccb);
134 int (*phy_start_req)(struct pm8001_hba_info *pm8001_ha, u8 phy_id);
135 int (*phy_stop_req)(struct pm8001_hba_info *pm8001_ha, u8 phy_id);
136 int (*reg_dev_req)(struct pm8001_hba_info *pm8001_ha,
137 struct pm8001_device *pm8001_dev, u32 flag);
138 int (*dereg_dev_req)(struct pm8001_hba_info *pm8001_ha, u32 device_id);
139 int (*phy_ctl_req)(struct pm8001_hba_info *pm8001_ha,
140 u32 phy_id, u32 phy_op);
141 int (*task_abort)(struct pm8001_hba_info *pm8001_ha,
142 struct pm8001_device *pm8001_dev, u8 flag, u32 task_tag,
143 u32 cmd_tag);
144 int (*ssp_tm_req)(struct pm8001_hba_info *pm8001_ha,
145 struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf);
146 int (*get_nvmd_req)(struct pm8001_hba_info *pm8001_ha, void *payload);
147 int (*set_nvmd_req)(struct pm8001_hba_info *pm8001_ha, void *payload);
148 int (*fw_flash_update_req)(struct pm8001_hba_info *pm8001_ha,
149 void *payload);
150 int (*set_dev_state_req)(struct pm8001_hba_info *pm8001_ha,
151 struct pm8001_device *pm8001_dev, u32 state);
152 int (*sas_diag_start_end_req)(struct pm8001_hba_info *pm8001_ha,
153 u32 state);
154 int (*sas_diag_execute_req)(struct pm8001_hba_info *pm8001_ha,
155 u32 state);
156};
157
158struct pm8001_chip_info {
159 u32 n_phy;
160 const struct pm8001_dispatch *dispatch;
161};
162#define PM8001_CHIP_DISP (pm8001_ha->chip->dispatch)
163
164struct pm8001_port {
165 struct asd_sas_port sas_port;
166};
167
168struct pm8001_phy {
169 struct pm8001_hba_info *pm8001_ha;
170 struct pm8001_port *port;
171 struct asd_sas_phy sas_phy;
172 struct sas_identify identify;
173 struct scsi_device *sdev;
174 u64 dev_sas_addr;
175 u32 phy_type;
176 struct completion *enable_completion;
177 u32 frame_rcvd_size;
178 u8 frame_rcvd[32];
179 u8 phy_attached;
180 u8 phy_state;
181 enum sas_linkrate minimum_linkrate;
182 enum sas_linkrate maximum_linkrate;
183};
184
185struct pm8001_device {
186 enum sas_dev_type dev_type;
187 struct domain_device *sas_device;
188 u32 attached_phy;
189 u32 id;
190 struct completion *dcompletion;
191 struct completion *setds_completion;
192 u32 device_id;
193 u32 running_req;
194};
195
196struct pm8001_prd_imt {
197 __le32 len;
198 __le32 e;
199};
200
201struct pm8001_prd {
202 __le64 addr; /* 64-bit buffer address */
203 struct pm8001_prd_imt im_len; /* 64-bit length */
204} __attribute__ ((packed));
205/*
206 * CCB(Command Control Block)
207 */
208struct pm8001_ccb_info {
209 struct list_head entry;
210 struct sas_task *task;
211 u32 n_elem;
212 u32 ccb_tag;
213 dma_addr_t ccb_dma_handle;
214 struct pm8001_device *device;
215 struct pm8001_prd buf_prd[PM8001_MAX_DMA_SG];
216 struct fw_control_ex *fw_control_context;
217};
218
219struct mpi_mem {
220 void *virt_ptr;
221 dma_addr_t phys_addr;
222 u32 phys_addr_hi;
223 u32 phys_addr_lo;
224 u32 total_len;
225 u32 num_elements;
226 u32 element_size;
227 u32 alignment;
228};
229
230struct mpi_mem_req {
231 /* The number of element in the mpiMemory array */
232 u32 count;
233 /* The array of structures that define memroy regions*/
234 struct mpi_mem region[USI_MAX_MEMCNT];
235};
236
237struct main_cfg_table {
238 u32 signature;
239 u32 interface_rev;
240 u32 firmware_rev;
241 u32 max_out_io;
242 u32 max_sgl;
243 u32 ctrl_cap_flag;
244 u32 gst_offset;
245 u32 inbound_queue_offset;
246 u32 outbound_queue_offset;
247 u32 inbound_q_nppd_hppd;
248 u32 outbound_hw_event_pid0_3;
249 u32 outbound_hw_event_pid4_7;
250 u32 outbound_ncq_event_pid0_3;
251 u32 outbound_ncq_event_pid4_7;
252 u32 outbound_tgt_ITNexus_event_pid0_3;
253 u32 outbound_tgt_ITNexus_event_pid4_7;
254 u32 outbound_tgt_ssp_event_pid0_3;
255 u32 outbound_tgt_ssp_event_pid4_7;
256 u32 outbound_tgt_smp_event_pid0_3;
257 u32 outbound_tgt_smp_event_pid4_7;
258 u32 upper_event_log_addr;
259 u32 lower_event_log_addr;
260 u32 event_log_size;
261 u32 event_log_option;
262 u32 upper_iop_event_log_addr;
263 u32 lower_iop_event_log_addr;
264 u32 iop_event_log_size;
265 u32 iop_event_log_option;
266 u32 fatal_err_interrupt;
267 u32 fatal_err_dump_offset0;
268 u32 fatal_err_dump_length0;
269 u32 fatal_err_dump_offset1;
270 u32 fatal_err_dump_length1;
271 u32 hda_mode_flag;
272 u32 anolog_setup_table_offset;
273};
274struct general_status_table {
275 u32 gst_len_mpistate;
276 u32 iq_freeze_state0;
277 u32 iq_freeze_state1;
278 u32 msgu_tcnt;
279 u32 iop_tcnt;
280 u32 reserved;
281 u32 phy_state[8];
282 u32 reserved1;
283 u32 reserved2;
284 u32 reserved3;
285 u32 recover_err_info[8];
286};
287struct inbound_queue_table {
288 u32 element_pri_size_cnt;
289 u32 upper_base_addr;
290 u32 lower_base_addr;
291 u32 ci_upper_base_addr;
292 u32 ci_lower_base_addr;
293 u32 pi_pci_bar;
294 u32 pi_offset;
295 u32 total_length;
296 void *base_virt;
297 void *ci_virt;
298 u32 reserved;
299 __le32 consumer_index;
300 u32 producer_idx;
301};
302struct outbound_queue_table {
303 u32 element_size_cnt;
304 u32 upper_base_addr;
305 u32 lower_base_addr;
306 void *base_virt;
307 u32 pi_upper_base_addr;
308 u32 pi_lower_base_addr;
309 u32 ci_pci_bar;
310 u32 ci_offset;
311 u32 total_length;
312 void *pi_virt;
313 u32 interrup_vec_cnt_delay;
314 u32 dinterrup_to_pci_offset;
315 __le32 producer_index;
316 u32 consumer_idx;
317};
318struct pm8001_hba_memspace {
319 void __iomem *memvirtaddr;
320 u64 membase;
321 u32 memsize;
322};
323struct pm8001_hba_info {
324 char name[PM8001_NAME_LENGTH];
325 struct list_head list;
326 unsigned long flags;
327 spinlock_t lock;/* host-wide lock */
328 struct pci_dev *pdev;/* our device */
329 struct device *dev;
330 struct pm8001_hba_memspace io_mem[6];
331 struct mpi_mem_req memoryMap;
332 void __iomem *msg_unit_tbl_addr;/*Message Unit Table Addr*/
333 void __iomem *main_cfg_tbl_addr;/*Main Config Table Addr*/
334 void __iomem *general_stat_tbl_addr;/*General Status Table Addr*/
335 void __iomem *inbnd_q_tbl_addr;/*Inbound Queue Config Table Addr*/
336 void __iomem *outbnd_q_tbl_addr;/*Outbound Queue Config Table Addr*/
337 struct main_cfg_table main_cfg_tbl;
338 struct general_status_table gs_tbl;
339 struct inbound_queue_table inbnd_q_tbl[PM8001_MAX_INB_NUM];
340 struct outbound_queue_table outbnd_q_tbl[PM8001_MAX_OUTB_NUM];
341 u8 sas_addr[SAS_ADDR_SIZE];
342 struct sas_ha_struct *sas;/* SCSI/SAS glue */
343 struct Scsi_Host *shost;
344 u32 chip_id;
345 const struct pm8001_chip_info *chip;
346 struct completion *nvmd_completion;
347 int tags_num;
348 unsigned long *tags;
349 struct pm8001_phy phy[PM8001_MAX_PHYS];
350 struct pm8001_port port[PM8001_MAX_PHYS];
351 u32 id;
352 u32 irq;
353 struct pm8001_device *devices;
354 struct pm8001_ccb_info *ccb_info;
355#ifdef PM8001_USE_MSIX
356 struct msix_entry msix_entries[16];/*for msi-x interrupt*/
357 int number_of_intr;/*will be used in remove()*/
358#endif
359#ifdef PM8001_USE_TASKLET
360 struct tasklet_struct tasklet;
361#endif
362 struct list_head wq_list;
363 u32 logging_level;
364 u32 fw_status;
365 const struct firmware *fw_image;
366};
367
368struct pm8001_wq {
369 struct delayed_work work_q;
370 struct pm8001_hba_info *pm8001_ha;
371 void *data;
372 int handler;
373 struct list_head entry;
374};
375
376struct pm8001_fw_image_header {
377 u8 vender_id[8];
378 u8 product_id;
379 u8 hardware_rev;
380 u8 dest_partition;
381 u8 reserved;
382 u8 fw_rev[4];
383 __be32 image_length;
384 __be32 image_crc;
385 __be32 startup_entry;
386} __attribute__((packed, aligned(4)));
387
388/* define task management IU */
389struct pm8001_tmf_task {
390 u8 tmf;
391 u32 tag_of_task_to_be_managed;
392};
393/**
394 * FW Flash Update status values
395 */
396#define FLASH_UPDATE_COMPLETE_PENDING_REBOOT 0x00
397#define FLASH_UPDATE_IN_PROGRESS 0x01
398#define FLASH_UPDATE_HDR_ERR 0x02
399#define FLASH_UPDATE_OFFSET_ERR 0x03
400#define FLASH_UPDATE_CRC_ERR 0x04
401#define FLASH_UPDATE_LENGTH_ERR 0x05
402#define FLASH_UPDATE_HW_ERR 0x06
403#define FLASH_UPDATE_DNLD_NOT_SUPPORTED 0x10
404#define FLASH_UPDATE_DISABLED 0x11
405
406/**
407 * brief param structure for firmware flash update.
408 */
409struct fw_flash_updata_info {
410 u32 cur_image_offset;
411 u32 cur_image_len;
412 u32 total_image_len;
413 struct pm8001_prd sgl;
414};
415
416struct fw_control_info {
417 u32 retcode;/*ret code (status)*/
418 u32 phase;/*ret code phase*/
419 u32 phaseCmplt;/*percent complete for the current
420 update phase */
421 u32 version;/*Hex encoded firmware version number*/
422 u32 offset;/*Used for downloading firmware */
423 u32 len; /*len of buffer*/
424 u32 size;/* Used in OS VPD and Trace get size
425 operations.*/
426 u32 reserved;/* padding required for 64 bit
427 alignment */
428 u8 buffer[1];/* Start of buffer */
429};
430struct fw_control_ex {
431 struct fw_control_info *fw_control;
432 void *buffer;/* keep buffer pointer to be
433 freed when the responce comes*/
434 void *virtAddr;/* keep virtual address of the data */
435 void *usrAddr;/* keep virtual address of the
436 user data */
437 dma_addr_t phys_addr;
438 u32 len; /* len of buffer */
439 void *payload; /* pointer to IOCTL Payload */
440 u8 inProgress;/*if 1 - the IOCTL request is in
441 progress */
442 void *param1;
443 void *param2;
444 void *param3;
445};
446
447/******************** function prototype *********************/
448int pm8001_tag_alloc(struct pm8001_hba_info *pm8001_ha, u32 *tag_out);
449void pm8001_tag_init(struct pm8001_hba_info *pm8001_ha);
450u32 pm8001_get_ncq_tag(struct sas_task *task, u32 *tag);
451void pm8001_ccb_free(struct pm8001_hba_info *pm8001_ha, u32 ccb_idx);
452void pm8001_ccb_task_free(struct pm8001_hba_info *pm8001_ha,
453 struct sas_task *task, struct pm8001_ccb_info *ccb, u32 ccb_idx);
454int pm8001_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func,
455 void *funcdata);
456int pm8001_slave_alloc(struct scsi_device *scsi_dev);
457int pm8001_slave_configure(struct scsi_device *sdev);
458void pm8001_scan_start(struct Scsi_Host *shost);
459int pm8001_scan_finished(struct Scsi_Host *shost, unsigned long time);
460int pm8001_queue_command(struct sas_task *task, const int num,
461 gfp_t gfp_flags);
462int pm8001_abort_task(struct sas_task *task);
463int pm8001_abort_task_set(struct domain_device *dev, u8 *lun);
464int pm8001_clear_aca(struct domain_device *dev, u8 *lun);
465int pm8001_clear_task_set(struct domain_device *dev, u8 *lun);
466int pm8001_dev_found(struct domain_device *dev);
467void pm8001_dev_gone(struct domain_device *dev);
468int pm8001_lu_reset(struct domain_device *dev, u8 *lun);
469int pm8001_I_T_nexus_reset(struct domain_device *dev);
470int pm8001_query_task(struct sas_task *task);
471int pm8001_mem_alloc(struct pci_dev *pdev, void **virt_addr,
472 dma_addr_t *pphys_addr, u32 *pphys_addr_hi, u32 *pphys_addr_lo,
473 u32 mem_size, u32 align);
474
475
476/* ctl shared API */
477extern struct device_attribute *pm8001_host_attrs[];
478
479#endif
480