aboutsummaryrefslogtreecommitdiffstats
path: root/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'drivers')
-rw-r--r--drivers/char/bsr.c2
-rw-r--r--drivers/infiniband/hw/cxgb4/t4.h5
-rw-r--r--drivers/misc/Kconfig1
-rw-r--r--drivers/misc/Makefile1
-rw-r--r--drivers/misc/carma/Kconfig17
-rw-r--r--drivers/misc/carma/Makefile2
-rw-r--r--drivers/misc/carma/carma-fpga-program.c1141
-rw-r--r--drivers/misc/carma/carma-fpga.c1433
-rw-r--r--drivers/of/irq.c2
9 files changed, 2598 insertions, 6 deletions
diff --git a/drivers/char/bsr.c b/drivers/char/bsr.c
index a4a6c2f044b5..cf39bc08ce08 100644
--- a/drivers/char/bsr.c
+++ b/drivers/char/bsr.c
@@ -295,7 +295,7 @@ static int bsr_create_devs(struct device_node *bn)
295static int __init bsr_init(void) 295static int __init bsr_init(void)
296{ 296{
297 struct device_node *np; 297 struct device_node *np;
298 dev_t bsr_dev = MKDEV(bsr_major, 0); 298 dev_t bsr_dev;
299 int ret = -ENODEV; 299 int ret = -ENODEV;
300 int result; 300 int result;
301 301
diff --git a/drivers/infiniband/hw/cxgb4/t4.h b/drivers/infiniband/hw/cxgb4/t4.h
index 24af12fc8228..c0221eec8817 100644
--- a/drivers/infiniband/hw/cxgb4/t4.h
+++ b/drivers/infiniband/hw/cxgb4/t4.h
@@ -269,11 +269,8 @@ struct t4_swsqe {
269 269
270static inline pgprot_t t4_pgprot_wc(pgprot_t prot) 270static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
271{ 271{
272#if defined(__i386__) || defined(__x86_64__) 272#if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
273 return pgprot_writecombine(prot); 273 return pgprot_writecombine(prot);
274#elif defined(CONFIG_PPC64)
275 return __pgprot((pgprot_val(prot) | _PAGE_NO_CACHE) &
276 ~(pgprot_t)_PAGE_GUARDED);
277#else 274#else
278 return pgprot_noncached(prot); 275 return pgprot_noncached(prot);
279#endif 276#endif
diff --git a/drivers/misc/Kconfig b/drivers/misc/Kconfig
index 4e007c6a4b44..d80dcdee88f3 100644
--- a/drivers/misc/Kconfig
+++ b/drivers/misc/Kconfig
@@ -481,5 +481,6 @@ source "drivers/misc/cb710/Kconfig"
481source "drivers/misc/iwmc3200top/Kconfig" 481source "drivers/misc/iwmc3200top/Kconfig"
482source "drivers/misc/ti-st/Kconfig" 482source "drivers/misc/ti-st/Kconfig"
483source "drivers/misc/lis3lv02d/Kconfig" 483source "drivers/misc/lis3lv02d/Kconfig"
484source "drivers/misc/carma/Kconfig"
484 485
485endif # MISC_DEVICES 486endif # MISC_DEVICES
diff --git a/drivers/misc/Makefile b/drivers/misc/Makefile
index f5468602961f..848e8464faab 100644
--- a/drivers/misc/Makefile
+++ b/drivers/misc/Makefile
@@ -44,3 +44,4 @@ obj-$(CONFIG_PCH_PHUB) += pch_phub.o
44obj-y += ti-st/ 44obj-y += ti-st/
45obj-$(CONFIG_AB8500_PWM) += ab8500-pwm.o 45obj-$(CONFIG_AB8500_PWM) += ab8500-pwm.o
46obj-y += lis3lv02d/ 46obj-y += lis3lv02d/
47obj-y += carma/
diff --git a/drivers/misc/carma/Kconfig b/drivers/misc/carma/Kconfig
new file mode 100644
index 000000000000..c90370ed712b
--- /dev/null
+++ b/drivers/misc/carma/Kconfig
@@ -0,0 +1,17 @@
1config CARMA_FPGA
2 tristate "CARMA DATA-FPGA Access Driver"
3 depends on FSL_SOC && PPC_83xx && MEDIA_SUPPORT && HAS_DMA && FSL_DMA
4 select VIDEOBUF_DMA_SG
5 default n
6 help
7 Say Y here to include support for communicating with the data
8 processing FPGAs on the OVRO CARMA board.
9
10config CARMA_FPGA_PROGRAM
11 tristate "CARMA DATA-FPGA Programmer"
12 depends on FSL_SOC && PPC_83xx && MEDIA_SUPPORT && HAS_DMA && FSL_DMA
13 select VIDEOBUF_DMA_SG
14 default n
15 help
16 Say Y here to include support for programming the data processing
17 FPGAs on the OVRO CARMA board.
diff --git a/drivers/misc/carma/Makefile b/drivers/misc/carma/Makefile
new file mode 100644
index 000000000000..ff36ac2ce534
--- /dev/null
+++ b/drivers/misc/carma/Makefile
@@ -0,0 +1,2 @@
1obj-$(CONFIG_CARMA_FPGA) += carma-fpga.o
2obj-$(CONFIG_CARMA_FPGA_PROGRAM) += carma-fpga-program.o
diff --git a/drivers/misc/carma/carma-fpga-program.c b/drivers/misc/carma/carma-fpga-program.c
new file mode 100644
index 000000000000..7ce6065dc20e
--- /dev/null
+++ b/drivers/misc/carma/carma-fpga-program.c
@@ -0,0 +1,1141 @@
1/*
2 * CARMA Board DATA-FPGA Programmer
3 *
4 * Copyright (c) 2009-2011 Ira W. Snyder <iws@ovro.caltech.edu>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
10 */
11
12#include <linux/dma-mapping.h>
13#include <linux/of_platform.h>
14#include <linux/completion.h>
15#include <linux/miscdevice.h>
16#include <linux/dmaengine.h>
17#include <linux/interrupt.h>
18#include <linux/highmem.h>
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/mutex.h>
22#include <linux/delay.h>
23#include <linux/init.h>
24#include <linux/leds.h>
25#include <linux/slab.h>
26#include <linux/kref.h>
27#include <linux/fs.h>
28#include <linux/io.h>
29
30#include <media/videobuf-dma-sg.h>
31
32/* MPC8349EMDS specific get_immrbase() */
33#include <sysdev/fsl_soc.h>
34
35static const char drv_name[] = "carma-fpga-program";
36
37/*
38 * Firmware images are always this exact size
39 *
40 * 12849552 bytes for a CARMA Digitizer Board (EP2S90 FPGAs)
41 * 18662880 bytes for a CARMA Correlator Board (EP2S130 FPGAs)
42 */
43#define FW_SIZE_EP2S90 12849552
44#define FW_SIZE_EP2S130 18662880
45
46struct fpga_dev {
47 struct miscdevice miscdev;
48
49 /* Reference count */
50 struct kref ref;
51
52 /* Device Registers */
53 struct device *dev;
54 void __iomem *regs;
55 void __iomem *immr;
56
57 /* Freescale DMA Device */
58 struct dma_chan *chan;
59
60 /* Interrupts */
61 int irq, status;
62 struct completion completion;
63
64 /* FPGA Bitfile */
65 struct mutex lock;
66
67 struct videobuf_dmabuf vb;
68 bool vb_allocated;
69
70 /* max size and written bytes */
71 size_t fw_size;
72 size_t bytes;
73};
74
75/*
76 * FPGA Bitfile Helpers
77 */
78
79/**
80 * fpga_drop_firmware_data() - drop the bitfile image from memory
81 * @priv: the driver's private data structure
82 *
83 * LOCKING: must hold priv->lock
84 */
85static void fpga_drop_firmware_data(struct fpga_dev *priv)
86{
87 videobuf_dma_free(&priv->vb);
88 priv->vb_allocated = false;
89 priv->bytes = 0;
90}
91
92/*
93 * Private Data Reference Count
94 */
95
96static void fpga_dev_remove(struct kref *ref)
97{
98 struct fpga_dev *priv = container_of(ref, struct fpga_dev, ref);
99
100 /* free any firmware image that was not programmed */
101 fpga_drop_firmware_data(priv);
102
103 mutex_destroy(&priv->lock);
104 kfree(priv);
105}
106
107/*
108 * LED Trigger (could be a seperate module)
109 */
110
111/*
112 * NOTE: this whole thing does have the problem that whenever the led's are
113 * NOTE: first set to use the fpga trigger, they could be in the wrong state
114 */
115
116DEFINE_LED_TRIGGER(ledtrig_fpga);
117
118static void ledtrig_fpga_programmed(bool enabled)
119{
120 if (enabled)
121 led_trigger_event(ledtrig_fpga, LED_FULL);
122 else
123 led_trigger_event(ledtrig_fpga, LED_OFF);
124}
125
126/*
127 * FPGA Register Helpers
128 */
129
130/* Register Definitions */
131#define FPGA_CONFIG_CONTROL 0x40
132#define FPGA_CONFIG_STATUS 0x44
133#define FPGA_CONFIG_FIFO_SIZE 0x48
134#define FPGA_CONFIG_FIFO_USED 0x4C
135#define FPGA_CONFIG_TOTAL_BYTE_COUNT 0x50
136#define FPGA_CONFIG_CUR_BYTE_COUNT 0x54
137
138#define FPGA_FIFO_ADDRESS 0x3000
139
140static int fpga_fifo_size(void __iomem *regs)
141{
142 return ioread32be(regs + FPGA_CONFIG_FIFO_SIZE);
143}
144
145#define CFG_STATUS_ERR_MASK 0xfffe
146
147static int fpga_config_error(void __iomem *regs)
148{
149 return ioread32be(regs + FPGA_CONFIG_STATUS) & CFG_STATUS_ERR_MASK;
150}
151
152static int fpga_fifo_empty(void __iomem *regs)
153{
154 return ioread32be(regs + FPGA_CONFIG_FIFO_USED) == 0;
155}
156
157static void fpga_fifo_write(void __iomem *regs, u32 val)
158{
159 iowrite32be(val, regs + FPGA_FIFO_ADDRESS);
160}
161
162static void fpga_set_byte_count(void __iomem *regs, u32 count)
163{
164 iowrite32be(count, regs + FPGA_CONFIG_TOTAL_BYTE_COUNT);
165}
166
167#define CFG_CTL_ENABLE (1 << 0)
168#define CFG_CTL_RESET (1 << 1)
169#define CFG_CTL_DMA (1 << 2)
170
171static void fpga_programmer_enable(struct fpga_dev *priv, bool dma)
172{
173 u32 val;
174
175 val = (dma) ? (CFG_CTL_ENABLE | CFG_CTL_DMA) : CFG_CTL_ENABLE;
176 iowrite32be(val, priv->regs + FPGA_CONFIG_CONTROL);
177}
178
179static void fpga_programmer_disable(struct fpga_dev *priv)
180{
181 iowrite32be(0x0, priv->regs + FPGA_CONFIG_CONTROL);
182}
183
184static void fpga_dump_registers(struct fpga_dev *priv)
185{
186 u32 control, status, size, used, total, curr;
187
188 /* good status: do nothing */
189 if (priv->status == 0)
190 return;
191
192 /* Dump all status registers */
193 control = ioread32be(priv->regs + FPGA_CONFIG_CONTROL);
194 status = ioread32be(priv->regs + FPGA_CONFIG_STATUS);
195 size = ioread32be(priv->regs + FPGA_CONFIG_FIFO_SIZE);
196 used = ioread32be(priv->regs + FPGA_CONFIG_FIFO_USED);
197 total = ioread32be(priv->regs + FPGA_CONFIG_TOTAL_BYTE_COUNT);
198 curr = ioread32be(priv->regs + FPGA_CONFIG_CUR_BYTE_COUNT);
199
200 dev_err(priv->dev, "Configuration failed, dumping status registers\n");
201 dev_err(priv->dev, "Control: 0x%.8x\n", control);
202 dev_err(priv->dev, "Status: 0x%.8x\n", status);
203 dev_err(priv->dev, "FIFO Size: 0x%.8x\n", size);
204 dev_err(priv->dev, "FIFO Used: 0x%.8x\n", used);
205 dev_err(priv->dev, "FIFO Total: 0x%.8x\n", total);
206 dev_err(priv->dev, "FIFO Curr: 0x%.8x\n", curr);
207}
208
209/*
210 * FPGA Power Supply Code
211 */
212
213#define CTL_PWR_CONTROL 0x2006
214#define CTL_PWR_STATUS 0x200A
215#define CTL_PWR_FAIL 0x200B
216
217#define PWR_CONTROL_ENABLE 0x01
218
219#define PWR_STATUS_ERROR_MASK 0x10
220#define PWR_STATUS_GOOD 0x0f
221
222/*
223 * Determine if the FPGA power is good for all supplies
224 */
225static bool fpga_power_good(struct fpga_dev *priv)
226{
227 u8 val;
228
229 val = ioread8(priv->regs + CTL_PWR_STATUS);
230 if (val & PWR_STATUS_ERROR_MASK)
231 return false;
232
233 return val == PWR_STATUS_GOOD;
234}
235
236/*
237 * Disable the FPGA power supplies
238 */
239static void fpga_disable_power_supplies(struct fpga_dev *priv)
240{
241 unsigned long start;
242 u8 val;
243
244 iowrite8(0x0, priv->regs + CTL_PWR_CONTROL);
245
246 /*
247 * Wait 500ms for the power rails to discharge
248 *
249 * Without this delay, the CTL-CPLD state machine can get into a
250 * state where it is waiting for the power-goods to assert, but they
251 * never do. This only happens when enabling and disabling the
252 * power sequencer very rapidly.
253 *
254 * The loop below will also wait for the power goods to de-assert,
255 * but testing has shown that they are always disabled by the time
256 * the sleep completes. However, omitting the sleep and only waiting
257 * for the power-goods to de-assert was not sufficient to ensure
258 * that the power sequencer would not wedge itself.
259 */
260 msleep(500);
261
262 start = jiffies;
263 while (time_before(jiffies, start + HZ)) {
264 val = ioread8(priv->regs + CTL_PWR_STATUS);
265 if (!(val & PWR_STATUS_GOOD))
266 break;
267
268 usleep_range(5000, 10000);
269 }
270
271 val = ioread8(priv->regs + CTL_PWR_STATUS);
272 if (val & PWR_STATUS_GOOD) {
273 dev_err(priv->dev, "power disable failed: "
274 "power goods: status 0x%.2x\n", val);
275 }
276
277 if (val & PWR_STATUS_ERROR_MASK) {
278 dev_err(priv->dev, "power disable failed: "
279 "alarm bit set: status 0x%.2x\n", val);
280 }
281}
282
283/**
284 * fpga_enable_power_supplies() - enable the DATA-FPGA power supplies
285 * @priv: the driver's private data structure
286 *
287 * Enable the DATA-FPGA power supplies, waiting up to 1 second for
288 * them to enable successfully.
289 *
290 * Returns 0 on success, -ERRNO otherwise
291 */
292static int fpga_enable_power_supplies(struct fpga_dev *priv)
293{
294 unsigned long start = jiffies;
295
296 if (fpga_power_good(priv)) {
297 dev_dbg(priv->dev, "power was already good\n");
298 return 0;
299 }
300
301 iowrite8(PWR_CONTROL_ENABLE, priv->regs + CTL_PWR_CONTROL);
302 while (time_before(jiffies, start + HZ)) {
303 if (fpga_power_good(priv))
304 return 0;
305
306 usleep_range(5000, 10000);
307 }
308
309 return fpga_power_good(priv) ? 0 : -ETIMEDOUT;
310}
311
312/*
313 * Determine if the FPGA power supplies are all enabled
314 */
315static bool fpga_power_enabled(struct fpga_dev *priv)
316{
317 u8 val;
318
319 val = ioread8(priv->regs + CTL_PWR_CONTROL);
320 if (val & PWR_CONTROL_ENABLE)
321 return true;
322
323 return false;
324}
325
326/*
327 * Determine if the FPGA's are programmed and running correctly
328 */
329static bool fpga_running(struct fpga_dev *priv)
330{
331 if (!fpga_power_good(priv))
332 return false;
333
334 /* Check the config done bit */
335 return ioread32be(priv->regs + FPGA_CONFIG_STATUS) & (1 << 18);
336}
337
338/*
339 * FPGA Programming Code
340 */
341
342/**
343 * fpga_program_block() - put a block of data into the programmer's FIFO
344 * @priv: the driver's private data structure
345 * @buf: the data to program
346 * @count: the length of data to program (must be a multiple of 4 bytes)
347 *
348 * Returns 0 on success, -ERRNO otherwise
349 */
350static int fpga_program_block(struct fpga_dev *priv, void *buf, size_t count)
351{
352 u32 *data = buf;
353 int size = fpga_fifo_size(priv->regs);
354 int i, len;
355 unsigned long timeout;
356
357 /* enforce correct data length for the FIFO */
358 BUG_ON(count % 4 != 0);
359
360 while (count > 0) {
361
362 /* Get the size of the block to write (maximum is FIFO_SIZE) */
363 len = min_t(size_t, count, size);
364 timeout = jiffies + HZ / 4;
365
366 /* Write the block */
367 for (i = 0; i < len / 4; i++)
368 fpga_fifo_write(priv->regs, data[i]);
369
370 /* Update the amounts left */
371 count -= len;
372 data += len / 4;
373
374 /* Wait for the fifo to empty */
375 while (true) {
376
377 if (fpga_fifo_empty(priv->regs)) {
378 break;
379 } else {
380 dev_dbg(priv->dev, "Fifo not empty\n");
381 cpu_relax();
382 }
383
384 if (fpga_config_error(priv->regs)) {
385 dev_err(priv->dev, "Error detected\n");
386 return -EIO;
387 }
388
389 if (time_after(jiffies, timeout)) {
390 dev_err(priv->dev, "Fifo drain timeout\n");
391 return -ETIMEDOUT;
392 }
393
394 usleep_range(5000, 10000);
395 }
396 }
397
398 return 0;
399}
400
401/**
402 * fpga_program_cpu() - program the DATA-FPGA's using the CPU
403 * @priv: the driver's private data structure
404 *
405 * This is useful when the DMA programming method fails. It is possible to
406 * wedge the Freescale DMA controller such that the DMA programming method
407 * always fails. This method has always succeeded.
408 *
409 * Returns 0 on success, -ERRNO otherwise
410 */
411static noinline int fpga_program_cpu(struct fpga_dev *priv)
412{
413 int ret;
414
415 /* Disable the programmer */
416 fpga_programmer_disable(priv);
417
418 /* Set the total byte count */
419 fpga_set_byte_count(priv->regs, priv->bytes);
420 dev_dbg(priv->dev, "total byte count %u bytes\n", priv->bytes);
421
422 /* Enable the controller for programming */
423 fpga_programmer_enable(priv, false);
424 dev_dbg(priv->dev, "enabled the controller\n");
425
426 /* Write each chunk of the FPGA bitfile to FPGA programmer */
427 ret = fpga_program_block(priv, priv->vb.vaddr, priv->bytes);
428 if (ret)
429 goto out_disable_controller;
430
431 /* Wait for the interrupt handler to signal that programming finished */
432 ret = wait_for_completion_timeout(&priv->completion, 2 * HZ);
433 if (!ret) {
434 dev_err(priv->dev, "Timed out waiting for completion\n");
435 ret = -ETIMEDOUT;
436 goto out_disable_controller;
437 }
438
439 /* Retrieve the status from the interrupt handler */
440 ret = priv->status;
441
442out_disable_controller:
443 fpga_programmer_disable(priv);
444 return ret;
445}
446
447#define FIFO_DMA_ADDRESS 0xf0003000
448#define FIFO_MAX_LEN 4096
449
450/**
451 * fpga_program_dma() - program the DATA-FPGA's using the DMA engine
452 * @priv: the driver's private data structure
453 *
454 * Program the DATA-FPGA's using the Freescale DMA engine. This requires that
455 * the engine is programmed such that the hardware DMA request lines can
456 * control the entire DMA transaction. The system controller FPGA then
457 * completely offloads the programming from the CPU.
458 *
459 * Returns 0 on success, -ERRNO otherwise
460 */
461static noinline int fpga_program_dma(struct fpga_dev *priv)
462{
463 struct videobuf_dmabuf *vb = &priv->vb;
464 struct dma_chan *chan = priv->chan;
465 struct dma_async_tx_descriptor *tx;
466 size_t num_pages, len, avail = 0;
467 struct dma_slave_config config;
468 struct scatterlist *sg;
469 struct sg_table table;
470 dma_cookie_t cookie;
471 int ret, i;
472
473 /* Disable the programmer */
474 fpga_programmer_disable(priv);
475
476 /* Allocate a scatterlist for the DMA destination */
477 num_pages = DIV_ROUND_UP(priv->bytes, FIFO_MAX_LEN);
478 ret = sg_alloc_table(&table, num_pages, GFP_KERNEL);
479 if (ret) {
480 dev_err(priv->dev, "Unable to allocate dst scatterlist\n");
481 ret = -ENOMEM;
482 goto out_return;
483 }
484
485 /*
486 * This is an ugly hack
487 *
488 * We fill in a scatterlist as if it were mapped for DMA. This is
489 * necessary because there exists no better structure for this
490 * inside the kernel code.
491 *
492 * As an added bonus, we can use the DMAEngine API for all of this,
493 * rather than inventing another extremely similar API.
494 */
495 avail = priv->bytes;
496 for_each_sg(table.sgl, sg, num_pages, i) {
497 len = min_t(size_t, avail, FIFO_MAX_LEN);
498 sg_dma_address(sg) = FIFO_DMA_ADDRESS;
499 sg_dma_len(sg) = len;
500
501 avail -= len;
502 }
503
504 /* Map the buffer for DMA */
505 ret = videobuf_dma_map(priv->dev, &priv->vb);
506 if (ret) {
507 dev_err(priv->dev, "Unable to map buffer for DMA\n");
508 goto out_free_table;
509 }
510
511 /*
512 * Configure the DMA channel to transfer FIFO_SIZE / 2 bytes per
513 * transaction, and then put it under external control
514 */
515 memset(&config, 0, sizeof(config));
516 config.direction = DMA_TO_DEVICE;
517 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
518 config.dst_maxburst = fpga_fifo_size(priv->regs) / 2 / 4;
519 ret = chan->device->device_control(chan, DMA_SLAVE_CONFIG,
520 (unsigned long)&config);
521 if (ret) {
522 dev_err(priv->dev, "DMA slave configuration failed\n");
523 goto out_dma_unmap;
524 }
525
526 ret = chan->device->device_control(chan, FSLDMA_EXTERNAL_START, 1);
527 if (ret) {
528 dev_err(priv->dev, "DMA external control setup failed\n");
529 goto out_dma_unmap;
530 }
531
532 /* setup and submit the DMA transaction */
533 tx = chan->device->device_prep_dma_sg(chan,
534 table.sgl, num_pages,
535 vb->sglist, vb->sglen, 0);
536 if (!tx) {
537 dev_err(priv->dev, "Unable to prep DMA transaction\n");
538 ret = -ENOMEM;
539 goto out_dma_unmap;
540 }
541
542 cookie = tx->tx_submit(tx);
543 if (dma_submit_error(cookie)) {
544 dev_err(priv->dev, "Unable to submit DMA transaction\n");
545 ret = -ENOMEM;
546 goto out_dma_unmap;
547 }
548
549 dma_async_memcpy_issue_pending(chan);
550
551 /* Set the total byte count */
552 fpga_set_byte_count(priv->regs, priv->bytes);
553 dev_dbg(priv->dev, "total byte count %u bytes\n", priv->bytes);
554
555 /* Enable the controller for DMA programming */
556 fpga_programmer_enable(priv, true);
557 dev_dbg(priv->dev, "enabled the controller\n");
558
559 /* Wait for the interrupt handler to signal that programming finished */
560 ret = wait_for_completion_timeout(&priv->completion, 2 * HZ);
561 if (!ret) {
562 dev_err(priv->dev, "Timed out waiting for completion\n");
563 ret = -ETIMEDOUT;
564 goto out_disable_controller;
565 }
566
567 /* Retrieve the status from the interrupt handler */
568 ret = priv->status;
569
570out_disable_controller:
571 fpga_programmer_disable(priv);
572out_dma_unmap:
573 videobuf_dma_unmap(priv->dev, vb);
574out_free_table:
575 sg_free_table(&table);
576out_return:
577 return ret;
578}
579
580/*
581 * Interrupt Handling
582 */
583
584static irqreturn_t fpga_irq(int irq, void *dev_id)
585{
586 struct fpga_dev *priv = dev_id;
587
588 /* Save the status */
589 priv->status = fpga_config_error(priv->regs) ? -EIO : 0;
590 dev_dbg(priv->dev, "INTERRUPT status %d\n", priv->status);
591 fpga_dump_registers(priv);
592
593 /* Disabling the programmer clears the interrupt */
594 fpga_programmer_disable(priv);
595
596 /* Notify any waiters */
597 complete(&priv->completion);
598
599 return IRQ_HANDLED;
600}
601
602/*
603 * SYSFS Helpers
604 */
605
606/**
607 * fpga_do_stop() - deconfigure (reset) the DATA-FPGA's
608 * @priv: the driver's private data structure
609 *
610 * LOCKING: must hold priv->lock
611 */
612static int fpga_do_stop(struct fpga_dev *priv)
613{
614 u32 val;
615
616 /* Set the led to unprogrammed */
617 ledtrig_fpga_programmed(false);
618
619 /* Pulse the config line to reset the FPGA's */
620 val = CFG_CTL_ENABLE | CFG_CTL_RESET;
621 iowrite32be(val, priv->regs + FPGA_CONFIG_CONTROL);
622 iowrite32be(0x0, priv->regs + FPGA_CONFIG_CONTROL);
623
624 return 0;
625}
626
627static noinline int fpga_do_program(struct fpga_dev *priv)
628{
629 int ret;
630
631 if (priv->bytes != priv->fw_size) {
632 dev_err(priv->dev, "Incorrect bitfile size: got %zu bytes, "
633 "should be %zu bytes\n",
634 priv->bytes, priv->fw_size);
635 return -EINVAL;
636 }
637
638 if (!fpga_power_enabled(priv)) {
639 dev_err(priv->dev, "Power not enabled\n");
640 return -EINVAL;
641 }
642
643 if (!fpga_power_good(priv)) {
644 dev_err(priv->dev, "Power not good\n");
645 return -EINVAL;
646 }
647
648 /* Set the LED to unprogrammed */
649 ledtrig_fpga_programmed(false);
650
651 /* Try to program the FPGA's using DMA */
652 ret = fpga_program_dma(priv);
653
654 /* If DMA failed or doesn't exist, try with CPU */
655 if (ret) {
656 dev_warn(priv->dev, "Falling back to CPU programming\n");
657 ret = fpga_program_cpu(priv);
658 }
659
660 if (ret) {
661 dev_err(priv->dev, "Unable to program FPGA's\n");
662 return ret;
663 }
664
665 /* Drop the firmware bitfile from memory */
666 fpga_drop_firmware_data(priv);
667
668 dev_dbg(priv->dev, "FPGA programming successful\n");
669 ledtrig_fpga_programmed(true);
670
671 return 0;
672}
673
674/*
675 * File Operations
676 */
677
678static int fpga_open(struct inode *inode, struct file *filp)
679{
680 /*
681 * The miscdevice layer puts our struct miscdevice into the
682 * filp->private_data field. We use this to find our private
683 * data and then overwrite it with our own private structure.
684 */
685 struct fpga_dev *priv = container_of(filp->private_data,
686 struct fpga_dev, miscdev);
687 unsigned int nr_pages;
688 int ret;
689
690 /* We only allow one process at a time */
691 ret = mutex_lock_interruptible(&priv->lock);
692 if (ret)
693 return ret;
694
695 filp->private_data = priv;
696 kref_get(&priv->ref);
697
698 /* Truncation: drop any existing data */
699 if (filp->f_flags & O_TRUNC)
700 priv->bytes = 0;
701
702 /* Check if we have already allocated a buffer */
703 if (priv->vb_allocated)
704 return 0;
705
706 /* Allocate a buffer to hold enough data for the bitfile */
707 nr_pages = DIV_ROUND_UP(priv->fw_size, PAGE_SIZE);
708 ret = videobuf_dma_init_kernel(&priv->vb, DMA_TO_DEVICE, nr_pages);
709 if (ret) {
710 dev_err(priv->dev, "unable to allocate data buffer\n");
711 mutex_unlock(&priv->lock);
712 kref_put(&priv->ref, fpga_dev_remove);
713 return ret;
714 }
715
716 priv->vb_allocated = true;
717 return 0;
718}
719
720static int fpga_release(struct inode *inode, struct file *filp)
721{
722 struct fpga_dev *priv = filp->private_data;
723
724 mutex_unlock(&priv->lock);
725 kref_put(&priv->ref, fpga_dev_remove);
726 return 0;
727}
728
729static ssize_t fpga_write(struct file *filp, const char __user *buf,
730 size_t count, loff_t *f_pos)
731{
732 struct fpga_dev *priv = filp->private_data;
733
734 /* FPGA bitfiles have an exact size: disallow anything else */
735 if (priv->bytes >= priv->fw_size)
736 return -ENOSPC;
737
738 count = min_t(size_t, priv->fw_size - priv->bytes, count);
739 if (copy_from_user(priv->vb.vaddr + priv->bytes, buf, count))
740 return -EFAULT;
741
742 priv->bytes += count;
743 return count;
744}
745
746static ssize_t fpga_read(struct file *filp, char __user *buf, size_t count,
747 loff_t *f_pos)
748{
749 struct fpga_dev *priv = filp->private_data;
750
751 count = min_t(size_t, priv->bytes - *f_pos, count);
752 if (copy_to_user(buf, priv->vb.vaddr + *f_pos, count))
753 return -EFAULT;
754
755 *f_pos += count;
756 return count;
757}
758
759static loff_t fpga_llseek(struct file *filp, loff_t offset, int origin)
760{
761 struct fpga_dev *priv = filp->private_data;
762 loff_t newpos;
763
764 /* only read-only opens are allowed to seek */
765 if ((filp->f_flags & O_ACCMODE) != O_RDONLY)
766 return -EINVAL;
767
768 switch (origin) {
769 case SEEK_SET: /* seek relative to the beginning of the file */
770 newpos = offset;
771 break;
772 case SEEK_CUR: /* seek relative to current position in the file */
773 newpos = filp->f_pos + offset;
774 break;
775 case SEEK_END: /* seek relative to the end of the file */
776 newpos = priv->fw_size - offset;
777 break;
778 default:
779 return -EINVAL;
780 }
781
782 /* check for sanity */
783 if (newpos > priv->fw_size)
784 return -EINVAL;
785
786 filp->f_pos = newpos;
787 return newpos;
788}
789
790static const struct file_operations fpga_fops = {
791 .open = fpga_open,
792 .release = fpga_release,
793 .write = fpga_write,
794 .read = fpga_read,
795 .llseek = fpga_llseek,
796};
797
798/*
799 * Device Attributes
800 */
801
802static ssize_t pfail_show(struct device *dev, struct device_attribute *attr,
803 char *buf)
804{
805 struct fpga_dev *priv = dev_get_drvdata(dev);
806 u8 val;
807
808 val = ioread8(priv->regs + CTL_PWR_FAIL);
809 return snprintf(buf, PAGE_SIZE, "0x%.2x\n", val);
810}
811
812static ssize_t pgood_show(struct device *dev, struct device_attribute *attr,
813 char *buf)
814{
815 struct fpga_dev *priv = dev_get_drvdata(dev);
816 return snprintf(buf, PAGE_SIZE, "%d\n", fpga_power_good(priv));
817}
818
819static ssize_t penable_show(struct device *dev, struct device_attribute *attr,
820 char *buf)
821{
822 struct fpga_dev *priv = dev_get_drvdata(dev);
823 return snprintf(buf, PAGE_SIZE, "%d\n", fpga_power_enabled(priv));
824}
825
826static ssize_t penable_store(struct device *dev, struct device_attribute *attr,
827 const char *buf, size_t count)
828{
829 struct fpga_dev *priv = dev_get_drvdata(dev);
830 unsigned long val;
831 int ret;
832
833 if (strict_strtoul(buf, 0, &val))
834 return -EINVAL;
835
836 if (val) {
837 ret = fpga_enable_power_supplies(priv);
838 if (ret)
839 return ret;
840 } else {
841 fpga_do_stop(priv);
842 fpga_disable_power_supplies(priv);
843 }
844
845 return count;
846}
847
848static ssize_t program_show(struct device *dev, struct device_attribute *attr,
849 char *buf)
850{
851 struct fpga_dev *priv = dev_get_drvdata(dev);
852 return snprintf(buf, PAGE_SIZE, "%d\n", fpga_running(priv));
853}
854
855static ssize_t program_store(struct device *dev, struct device_attribute *attr,
856 const char *buf, size_t count)
857{
858 struct fpga_dev *priv = dev_get_drvdata(dev);
859 unsigned long val;
860 int ret;
861
862 if (strict_strtoul(buf, 0, &val))
863 return -EINVAL;
864
865 /* We can't have an image writer and be programming simultaneously */
866 if (mutex_lock_interruptible(&priv->lock))
867 return -ERESTARTSYS;
868
869 /* Program or Reset the FPGA's */
870 ret = val ? fpga_do_program(priv) : fpga_do_stop(priv);
871 if (ret)
872 goto out_unlock;
873
874 /* Success */
875 ret = count;
876
877out_unlock:
878 mutex_unlock(&priv->lock);
879 return ret;
880}
881
882static DEVICE_ATTR(power_fail, S_IRUGO, pfail_show, NULL);
883static DEVICE_ATTR(power_good, S_IRUGO, pgood_show, NULL);
884static DEVICE_ATTR(power_enable, S_IRUGO | S_IWUSR,
885 penable_show, penable_store);
886
887static DEVICE_ATTR(program, S_IRUGO | S_IWUSR,
888 program_show, program_store);
889
890static struct attribute *fpga_attributes[] = {
891 &dev_attr_power_fail.attr,
892 &dev_attr_power_good.attr,
893 &dev_attr_power_enable.attr,
894 &dev_attr_program.attr,
895 NULL,
896};
897
898static const struct attribute_group fpga_attr_group = {
899 .attrs = fpga_attributes,
900};
901
902/*
903 * OpenFirmware Device Subsystem
904 */
905
906#define SYS_REG_VERSION 0x00
907#define SYS_REG_GEOGRAPHIC 0x10
908
909static bool dma_filter(struct dma_chan *chan, void *data)
910{
911 /*
912 * DMA Channel #0 is the only acceptable device
913 *
914 * This probably won't survive an unload/load cycle of the Freescale
915 * DMAEngine driver, but that won't be a problem
916 */
917 return chan->chan_id == 0 && chan->device->dev_id == 0;
918}
919
920static int fpga_of_remove(struct platform_device *op)
921{
922 struct fpga_dev *priv = dev_get_drvdata(&op->dev);
923 struct device *this_device = priv->miscdev.this_device;
924
925 sysfs_remove_group(&this_device->kobj, &fpga_attr_group);
926 misc_deregister(&priv->miscdev);
927
928 free_irq(priv->irq, priv);
929 irq_dispose_mapping(priv->irq);
930
931 /* make sure the power supplies are off */
932 fpga_disable_power_supplies(priv);
933
934 /* unmap registers */
935 iounmap(priv->immr);
936 iounmap(priv->regs);
937
938 dma_release_channel(priv->chan);
939
940 /* drop our reference to the private data structure */
941 kref_put(&priv->ref, fpga_dev_remove);
942 return 0;
943}
944
945/* CTL-CPLD Version Register */
946#define CTL_CPLD_VERSION 0x2000
947
948static int fpga_of_probe(struct platform_device *op,
949 const struct of_device_id *match)
950{
951 struct device_node *of_node = op->dev.of_node;
952 struct device *this_device;
953 struct fpga_dev *priv;
954 dma_cap_mask_t mask;
955 u32 ver;
956 int ret;
957
958 /* Allocate private data */
959 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
960 if (!priv) {
961 dev_err(&op->dev, "Unable to allocate private data\n");
962 ret = -ENOMEM;
963 goto out_return;
964 }
965
966 /* Setup the miscdevice */
967 priv->miscdev.minor = MISC_DYNAMIC_MINOR;
968 priv->miscdev.name = drv_name;
969 priv->miscdev.fops = &fpga_fops;
970
971 kref_init(&priv->ref);
972
973 dev_set_drvdata(&op->dev, priv);
974 priv->dev = &op->dev;
975 mutex_init(&priv->lock);
976 init_completion(&priv->completion);
977 videobuf_dma_init(&priv->vb);
978
979 dev_set_drvdata(priv->dev, priv);
980 dma_cap_zero(mask);
981 dma_cap_set(DMA_MEMCPY, mask);
982 dma_cap_set(DMA_INTERRUPT, mask);
983 dma_cap_set(DMA_SLAVE, mask);
984 dma_cap_set(DMA_SG, mask);
985
986 /* Get control of DMA channel #0 */
987 priv->chan = dma_request_channel(mask, dma_filter, NULL);
988 if (!priv->chan) {
989 dev_err(&op->dev, "Unable to acquire DMA channel #0\n");
990 ret = -ENODEV;
991 goto out_free_priv;
992 }
993
994 /* Remap the registers for use */
995 priv->regs = of_iomap(of_node, 0);
996 if (!priv->regs) {
997 dev_err(&op->dev, "Unable to ioremap registers\n");
998 ret = -ENOMEM;
999 goto out_dma_release_channel;
1000 }
1001
1002 /* Remap the IMMR for use */
1003 priv->immr = ioremap(get_immrbase(), 0x100000);
1004 if (!priv->immr) {
1005 dev_err(&op->dev, "Unable to ioremap IMMR\n");
1006 ret = -ENOMEM;
1007 goto out_unmap_regs;
1008 }
1009
1010 /*
1011 * Check that external DMA is configured
1012 *
1013 * U-Boot does this for us, but we should check it and bail out if
1014 * there is a problem. Failing to have this register setup correctly
1015 * will cause the DMA controller to transfer a single cacheline
1016 * worth of data, then wedge itself.
1017 */
1018 if ((ioread32be(priv->immr + 0x114) & 0xE00) != 0xE00) {
1019 dev_err(&op->dev, "External DMA control not configured\n");
1020 ret = -ENODEV;
1021 goto out_unmap_immr;
1022 }
1023
1024 /*
1025 * Check the CTL-CPLD version
1026 *
1027 * This driver uses the CTL-CPLD DATA-FPGA power sequencer, and we
1028 * don't want to run on any version of the CTL-CPLD that does not use
1029 * a compatible register layout.
1030 *
1031 * v2: changed register layout, added power sequencer
1032 * v3: added glitch filter on the i2c overcurrent/overtemp outputs
1033 */
1034 ver = ioread8(priv->regs + CTL_CPLD_VERSION);
1035 if (ver != 0x02 && ver != 0x03) {
1036 dev_err(&op->dev, "CTL-CPLD is not version 0x02 or 0x03!\n");
1037 ret = -ENODEV;
1038 goto out_unmap_immr;
1039 }
1040
1041 /* Set the exact size that the firmware image should be */
1042 ver = ioread32be(priv->regs + SYS_REG_VERSION);
1043 priv->fw_size = (ver & (1 << 18)) ? FW_SIZE_EP2S130 : FW_SIZE_EP2S90;
1044
1045 /* Find the correct IRQ number */
1046 priv->irq = irq_of_parse_and_map(of_node, 0);
1047 if (priv->irq == NO_IRQ) {
1048 dev_err(&op->dev, "Unable to find IRQ line\n");
1049 ret = -ENODEV;
1050 goto out_unmap_immr;
1051 }
1052
1053 /* Request the IRQ */
1054 ret = request_irq(priv->irq, fpga_irq, IRQF_SHARED, drv_name, priv);
1055 if (ret) {
1056 dev_err(&op->dev, "Unable to request IRQ %d\n", priv->irq);
1057 ret = -ENODEV;
1058 goto out_irq_dispose_mapping;
1059 }
1060
1061 /* Reset and stop the FPGA's, just in case */
1062 fpga_do_stop(priv);
1063
1064 /* Register the miscdevice */
1065 ret = misc_register(&priv->miscdev);
1066 if (ret) {
1067 dev_err(&op->dev, "Unable to register miscdevice\n");
1068 goto out_free_irq;
1069 }
1070
1071 /* Create the sysfs files */
1072 this_device = priv->miscdev.this_device;
1073 dev_set_drvdata(this_device, priv);
1074 ret = sysfs_create_group(&this_device->kobj, &fpga_attr_group);
1075 if (ret) {
1076 dev_err(&op->dev, "Unable to create sysfs files\n");
1077 goto out_misc_deregister;
1078 }
1079
1080 dev_info(priv->dev, "CARMA FPGA Programmer: %s rev%s with %s FPGAs\n",
1081 (ver & (1 << 17)) ? "Correlator" : "Digitizer",
1082 (ver & (1 << 16)) ? "B" : "A",
1083 (ver & (1 << 18)) ? "EP2S130" : "EP2S90");
1084
1085 return 0;
1086
1087out_misc_deregister:
1088 misc_deregister(&priv->miscdev);
1089out_free_irq:
1090 free_irq(priv->irq, priv);
1091out_irq_dispose_mapping:
1092 irq_dispose_mapping(priv->irq);
1093out_unmap_immr:
1094 iounmap(priv->immr);
1095out_unmap_regs:
1096 iounmap(priv->regs);
1097out_dma_release_channel:
1098 dma_release_channel(priv->chan);
1099out_free_priv:
1100 kref_put(&priv->ref, fpga_dev_remove);
1101out_return:
1102 return ret;
1103}
1104
1105static struct of_device_id fpga_of_match[] = {
1106 { .compatible = "carma,fpga-programmer", },
1107 {},
1108};
1109
1110static struct of_platform_driver fpga_of_driver = {
1111 .probe = fpga_of_probe,
1112 .remove = fpga_of_remove,
1113 .driver = {
1114 .name = drv_name,
1115 .of_match_table = fpga_of_match,
1116 .owner = THIS_MODULE,
1117 },
1118};
1119
1120/*
1121 * Module Init / Exit
1122 */
1123
1124static int __init fpga_init(void)
1125{
1126 led_trigger_register_simple("fpga", &ledtrig_fpga);
1127 return of_register_platform_driver(&fpga_of_driver);
1128}
1129
1130static void __exit fpga_exit(void)
1131{
1132 of_unregister_platform_driver(&fpga_of_driver);
1133 led_trigger_unregister_simple(ledtrig_fpga);
1134}
1135
1136MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
1137MODULE_DESCRIPTION("CARMA Board DATA-FPGA Programmer");
1138MODULE_LICENSE("GPL");
1139
1140module_init(fpga_init);
1141module_exit(fpga_exit);
diff --git a/drivers/misc/carma/carma-fpga.c b/drivers/misc/carma/carma-fpga.c
new file mode 100644
index 000000000000..3965821fef17
--- /dev/null
+++ b/drivers/misc/carma/carma-fpga.c
@@ -0,0 +1,1433 @@
1/*
2 * CARMA DATA-FPGA Access Driver
3 *
4 * Copyright (c) 2009-2011 Ira W. Snyder <iws@ovro.caltech.edu>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
10 */
11
12/*
13 * FPGA Memory Dump Format
14 *
15 * FPGA #0 control registers (32 x 32-bit words)
16 * FPGA #1 control registers (32 x 32-bit words)
17 * FPGA #2 control registers (32 x 32-bit words)
18 * FPGA #3 control registers (32 x 32-bit words)
19 * SYSFPGA control registers (32 x 32-bit words)
20 * FPGA #0 correlation array (NUM_CORL0 correlation blocks)
21 * FPGA #1 correlation array (NUM_CORL1 correlation blocks)
22 * FPGA #2 correlation array (NUM_CORL2 correlation blocks)
23 * FPGA #3 correlation array (NUM_CORL3 correlation blocks)
24 *
25 * Each correlation array consists of:
26 *
27 * Correlation Data (2 x NUM_LAGSn x 32-bit words)
28 * Pipeline Metadata (2 x NUM_METAn x 32-bit words)
29 * Quantization Counters (2 x NUM_QCNTn x 32-bit words)
30 *
31 * The NUM_CORLn, NUM_LAGSn, NUM_METAn, and NUM_QCNTn values come from
32 * the FPGA configuration registers. They do not change once the FPGA's
33 * have been programmed, they only change on re-programming.
34 */
35
36/*
37 * Basic Description:
38 *
39 * This driver is used to capture correlation spectra off of the four data
40 * processing FPGAs. The FPGAs are often reprogrammed at runtime, therefore
41 * this driver supports dynamic enable/disable of capture while the device
42 * remains open.
43 *
44 * The nominal capture rate is 64Hz (every 15.625ms). To facilitate this fast
45 * capture rate, all buffers are pre-allocated to avoid any potentially long
46 * running memory allocations while capturing.
47 *
48 * There are two lists and one pointer which are used to keep track of the
49 * different states of data buffers.
50 *
51 * 1) free list
52 * This list holds all empty data buffers which are ready to receive data.
53 *
54 * 2) inflight pointer
55 * This pointer holds the currently inflight data buffer. This buffer is having
56 * data copied into it by the DMA engine.
57 *
58 * 3) used list
59 * This list holds data buffers which have been filled, and are waiting to be
60 * read by userspace.
61 *
62 * All buffers start life on the free list, then move successively to the
63 * inflight pointer, and then to the used list. After they have been read by
64 * userspace, they are moved back to the free list. The cycle repeats as long
65 * as necessary.
66 *
67 * It should be noted that all buffers are mapped and ready for DMA when they
68 * are on any of the three lists. They are only unmapped when they are in the
69 * process of being read by userspace.
70 */
71
72/*
73 * Notes on the IRQ masking scheme:
74 *
75 * The IRQ masking scheme here is different than most other hardware. The only
76 * way for the DATA-FPGAs to detect if the kernel has taken too long to copy
77 * the data is if the status registers are not cleared before the next
78 * correlation data dump is ready.
79 *
80 * The interrupt line is connected to the status registers, such that when they
81 * are cleared, the interrupt is de-asserted. Therein lies our problem. We need
82 * to schedule a long-running DMA operation and return from the interrupt
83 * handler quickly, but we cannot clear the status registers.
84 *
85 * To handle this, the system controller FPGA has the capability to connect the
86 * interrupt line to a user-controlled GPIO pin. This pin is driven high
87 * (unasserted) and left that way. To mask the interrupt, we change the
88 * interrupt source to the GPIO pin. Tada, we hid the interrupt. :)
89 */
90
91#include <linux/of_platform.h>
92#include <linux/dma-mapping.h>
93#include <linux/miscdevice.h>
94#include <linux/interrupt.h>
95#include <linux/dmaengine.h>
96#include <linux/seq_file.h>
97#include <linux/highmem.h>
98#include <linux/debugfs.h>
99#include <linux/kernel.h>
100#include <linux/module.h>
101#include <linux/poll.h>
102#include <linux/init.h>
103#include <linux/slab.h>
104#include <linux/kref.h>
105#include <linux/io.h>
106
107#include <media/videobuf-dma-sg.h>
108
109/* system controller registers */
110#define SYS_IRQ_SOURCE_CTL 0x24
111#define SYS_IRQ_OUTPUT_EN 0x28
112#define SYS_IRQ_OUTPUT_DATA 0x2C
113#define SYS_IRQ_INPUT_DATA 0x30
114#define SYS_FPGA_CONFIG_STATUS 0x44
115
116/* GPIO IRQ line assignment */
117#define IRQ_CORL_DONE 0x10
118
119/* FPGA registers */
120#define MMAP_REG_VERSION 0x00
121#define MMAP_REG_CORL_CONF1 0x08
122#define MMAP_REG_CORL_CONF2 0x0C
123#define MMAP_REG_STATUS 0x48
124
125#define SYS_FPGA_BLOCK 0xF0000000
126
127#define DATA_FPGA_START 0x400000
128#define DATA_FPGA_SIZE 0x80000
129
130static const char drv_name[] = "carma-fpga";
131
132#define NUM_FPGA 4
133
134#define MIN_DATA_BUFS 8
135#define MAX_DATA_BUFS 64
136
137struct fpga_info {
138 unsigned int num_lag_ram;
139 unsigned int blk_size;
140};
141
142struct data_buf {
143 struct list_head entry;
144 struct videobuf_dmabuf vb;
145 size_t size;
146};
147
148struct fpga_device {
149 /* character device */
150 struct miscdevice miscdev;
151 struct device *dev;
152 struct mutex mutex;
153
154 /* reference count */
155 struct kref ref;
156
157 /* FPGA registers and information */
158 struct fpga_info info[NUM_FPGA];
159 void __iomem *regs;
160 int irq;
161
162 /* FPGA Physical Address/Size Information */
163 resource_size_t phys_addr;
164 size_t phys_size;
165
166 /* DMA structures */
167 struct sg_table corl_table;
168 unsigned int corl_nents;
169 struct dma_chan *chan;
170
171 /* Protection for all members below */
172 spinlock_t lock;
173
174 /* Device enable/disable flag */
175 bool enabled;
176
177 /* Correlation data buffers */
178 wait_queue_head_t wait;
179 struct list_head free;
180 struct list_head used;
181 struct data_buf *inflight;
182
183 /* Information about data buffers */
184 unsigned int num_dropped;
185 unsigned int num_buffers;
186 size_t bufsize;
187 struct dentry *dbg_entry;
188};
189
190struct fpga_reader {
191 struct fpga_device *priv;
192 struct data_buf *buf;
193 off_t buf_start;
194};
195
196static void fpga_device_release(struct kref *ref)
197{
198 struct fpga_device *priv = container_of(ref, struct fpga_device, ref);
199
200 /* the last reader has exited, cleanup the last bits */
201 mutex_destroy(&priv->mutex);
202 kfree(priv);
203}
204
205/*
206 * Data Buffer Allocation Helpers
207 */
208
209/**
210 * data_free_buffer() - free a single data buffer and all allocated memory
211 * @buf: the buffer to free
212 *
213 * This will free all of the pages allocated to the given data buffer, and
214 * then free the structure itself
215 */
216static void data_free_buffer(struct data_buf *buf)
217{
218 /* It is ok to free a NULL buffer */
219 if (!buf)
220 return;
221
222 /* free all memory */
223 videobuf_dma_free(&buf->vb);
224 kfree(buf);
225}
226
227/**
228 * data_alloc_buffer() - allocate and fill a data buffer with pages
229 * @bytes: the number of bytes required
230 *
231 * This allocates all space needed for a data buffer. It must be mapped before
232 * use in a DMA transaction using videobuf_dma_map().
233 *
234 * Returns NULL on failure
235 */
236static struct data_buf *data_alloc_buffer(const size_t bytes)
237{
238 unsigned int nr_pages;
239 struct data_buf *buf;
240 int ret;
241
242 /* calculate the number of pages necessary */
243 nr_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
244
245 /* allocate the buffer structure */
246 buf = kzalloc(sizeof(*buf), GFP_KERNEL);
247 if (!buf)
248 goto out_return;
249
250 /* initialize internal fields */
251 INIT_LIST_HEAD(&buf->entry);
252 buf->size = bytes;
253
254 /* allocate the videobuf */
255 videobuf_dma_init(&buf->vb);
256 ret = videobuf_dma_init_kernel(&buf->vb, DMA_FROM_DEVICE, nr_pages);
257 if (ret)
258 goto out_free_buf;
259
260 return buf;
261
262out_free_buf:
263 kfree(buf);
264out_return:
265 return NULL;
266}
267
268/**
269 * data_free_buffers() - free all allocated buffers
270 * @priv: the driver's private data structure
271 *
272 * Free all buffers allocated by the driver (except those currently in the
273 * process of being read by userspace).
274 *
275 * LOCKING: must hold dev->mutex
276 * CONTEXT: user
277 */
278static void data_free_buffers(struct fpga_device *priv)
279{
280 struct data_buf *buf, *tmp;
281
282 /* the device should be stopped, no DMA in progress */
283 BUG_ON(priv->inflight != NULL);
284
285 list_for_each_entry_safe(buf, tmp, &priv->free, entry) {
286 list_del_init(&buf->entry);
287 videobuf_dma_unmap(priv->dev, &buf->vb);
288 data_free_buffer(buf);
289 }
290
291 list_for_each_entry_safe(buf, tmp, &priv->used, entry) {
292 list_del_init(&buf->entry);
293 videobuf_dma_unmap(priv->dev, &buf->vb);
294 data_free_buffer(buf);
295 }
296
297 priv->num_buffers = 0;
298 priv->bufsize = 0;
299}
300
301/**
302 * data_alloc_buffers() - allocate 1 seconds worth of data buffers
303 * @priv: the driver's private data structure
304 *
305 * Allocate enough buffers for a whole second worth of data
306 *
307 * This routine will attempt to degrade nicely by succeeding even if a full
308 * second worth of data buffers could not be allocated, as long as a minimum
309 * number were allocated. In this case, it will print a message to the kernel
310 * log.
311 *
312 * The device must not be modifying any lists when this is called.
313 *
314 * CONTEXT: user
315 * LOCKING: must hold dev->mutex
316 *
317 * Returns 0 on success, -ERRNO otherwise
318 */
319static int data_alloc_buffers(struct fpga_device *priv)
320{
321 struct data_buf *buf;
322 int i, ret;
323
324 for (i = 0; i < MAX_DATA_BUFS; i++) {
325
326 /* allocate a buffer */
327 buf = data_alloc_buffer(priv->bufsize);
328 if (!buf)
329 break;
330
331 /* map it for DMA */
332 ret = videobuf_dma_map(priv->dev, &buf->vb);
333 if (ret) {
334 data_free_buffer(buf);
335 break;
336 }
337
338 /* add it to the list of free buffers */
339 list_add_tail(&buf->entry, &priv->free);
340 priv->num_buffers++;
341 }
342
343 /* Make sure we allocated the minimum required number of buffers */
344 if (priv->num_buffers < MIN_DATA_BUFS) {
345 dev_err(priv->dev, "Unable to allocate enough data buffers\n");
346 data_free_buffers(priv);
347 return -ENOMEM;
348 }
349
350 /* Warn if we are running in a degraded state, but do not fail */
351 if (priv->num_buffers < MAX_DATA_BUFS) {
352 dev_warn(priv->dev,
353 "Unable to allocate %d buffers, using %d buffers instead\n",
354 MAX_DATA_BUFS, i);
355 }
356
357 return 0;
358}
359
360/*
361 * DMA Operations Helpers
362 */
363
364/**
365 * fpga_start_addr() - get the physical address a DATA-FPGA
366 * @priv: the driver's private data structure
367 * @fpga: the DATA-FPGA number (zero based)
368 */
369static dma_addr_t fpga_start_addr(struct fpga_device *priv, unsigned int fpga)
370{
371 return priv->phys_addr + 0x400000 + (0x80000 * fpga);
372}
373
374/**
375 * fpga_block_addr() - get the physical address of a correlation data block
376 * @priv: the driver's private data structure
377 * @fpga: the DATA-FPGA number (zero based)
378 * @blknum: the correlation block number (zero based)
379 */
380static dma_addr_t fpga_block_addr(struct fpga_device *priv, unsigned int fpga,
381 unsigned int blknum)
382{
383 return fpga_start_addr(priv, fpga) + (0x10000 * (1 + blknum));
384}
385
386#define REG_BLOCK_SIZE (32 * 4)
387
388/**
389 * data_setup_corl_table() - create the scatterlist for correlation dumps
390 * @priv: the driver's private data structure
391 *
392 * Create the scatterlist for transferring a correlation dump from the
393 * DATA FPGAs. This structure will be reused for each buffer than needs
394 * to be filled with correlation data.
395 *
396 * Returns 0 on success, -ERRNO otherwise
397 */
398static int data_setup_corl_table(struct fpga_device *priv)
399{
400 struct sg_table *table = &priv->corl_table;
401 struct scatterlist *sg;
402 struct fpga_info *info;
403 int i, j, ret;
404
405 /* Calculate the number of entries needed */
406 priv->corl_nents = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
407 for (i = 0; i < NUM_FPGA; i++)
408 priv->corl_nents += priv->info[i].num_lag_ram;
409
410 /* Allocate the scatterlist table */
411 ret = sg_alloc_table(table, priv->corl_nents, GFP_KERNEL);
412 if (ret) {
413 dev_err(priv->dev, "unable to allocate DMA table\n");
414 return ret;
415 }
416
417 /* Add the DATA FPGA registers to the scatterlist */
418 sg = table->sgl;
419 for (i = 0; i < NUM_FPGA; i++) {
420 sg_dma_address(sg) = fpga_start_addr(priv, i);
421 sg_dma_len(sg) = REG_BLOCK_SIZE;
422 sg = sg_next(sg);
423 }
424
425 /* Add the SYS-FPGA registers to the scatterlist */
426 sg_dma_address(sg) = SYS_FPGA_BLOCK;
427 sg_dma_len(sg) = REG_BLOCK_SIZE;
428 sg = sg_next(sg);
429
430 /* Add the FPGA correlation data blocks to the scatterlist */
431 for (i = 0; i < NUM_FPGA; i++) {
432 info = &priv->info[i];
433 for (j = 0; j < info->num_lag_ram; j++) {
434 sg_dma_address(sg) = fpga_block_addr(priv, i, j);
435 sg_dma_len(sg) = info->blk_size;
436 sg = sg_next(sg);
437 }
438 }
439
440 /*
441 * All physical addresses and lengths are present in the structure
442 * now. It can be reused for every FPGA DATA interrupt
443 */
444 return 0;
445}
446
447/*
448 * FPGA Register Access Helpers
449 */
450
451static void fpga_write_reg(struct fpga_device *priv, unsigned int fpga,
452 unsigned int reg, u32 val)
453{
454 const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
455 iowrite32be(val, priv->regs + fpga_start + reg);
456}
457
458static u32 fpga_read_reg(struct fpga_device *priv, unsigned int fpga,
459 unsigned int reg)
460{
461 const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
462 return ioread32be(priv->regs + fpga_start + reg);
463}
464
465/**
466 * data_calculate_bufsize() - calculate the data buffer size required
467 * @priv: the driver's private data structure
468 *
469 * Calculate the total buffer size needed to hold a single block
470 * of correlation data
471 *
472 * CONTEXT: user
473 *
474 * Returns 0 on success, -ERRNO otherwise
475 */
476static int data_calculate_bufsize(struct fpga_device *priv)
477{
478 u32 num_corl, num_lags, num_meta, num_qcnt, num_pack;
479 u32 conf1, conf2, version;
480 u32 num_lag_ram, blk_size;
481 int i;
482
483 /* Each buffer starts with the 5 FPGA register areas */
484 priv->bufsize = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
485
486 /* Read and store the configuration data for each FPGA */
487 for (i = 0; i < NUM_FPGA; i++) {
488 version = fpga_read_reg(priv, i, MMAP_REG_VERSION);
489 conf1 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF1);
490 conf2 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF2);
491
492 /* minor version 2 and later */
493 if ((version & 0x000000FF) >= 2) {
494 num_corl = (conf1 & 0x000000F0) >> 4;
495 num_pack = (conf1 & 0x00000F00) >> 8;
496 num_lags = (conf1 & 0x00FFF000) >> 12;
497 num_meta = (conf1 & 0x7F000000) >> 24;
498 num_qcnt = (conf2 & 0x00000FFF) >> 0;
499 } else {
500 num_corl = (conf1 & 0x000000F0) >> 4;
501 num_pack = 1; /* implied */
502 num_lags = (conf1 & 0x000FFF00) >> 8;
503 num_meta = (conf1 & 0x7FF00000) >> 20;
504 num_qcnt = (conf2 & 0x00000FFF) >> 0;
505 }
506
507 num_lag_ram = (num_corl + num_pack - 1) / num_pack;
508 blk_size = ((num_pack * num_lags) + num_meta + num_qcnt) * 8;
509
510 priv->info[i].num_lag_ram = num_lag_ram;
511 priv->info[i].blk_size = blk_size;
512 priv->bufsize += num_lag_ram * blk_size;
513
514 dev_dbg(priv->dev, "FPGA %d NUM_CORL: %d\n", i, num_corl);
515 dev_dbg(priv->dev, "FPGA %d NUM_PACK: %d\n", i, num_pack);
516 dev_dbg(priv->dev, "FPGA %d NUM_LAGS: %d\n", i, num_lags);
517 dev_dbg(priv->dev, "FPGA %d NUM_META: %d\n", i, num_meta);
518 dev_dbg(priv->dev, "FPGA %d NUM_QCNT: %d\n", i, num_qcnt);
519 dev_dbg(priv->dev, "FPGA %d BLK_SIZE: %d\n", i, blk_size);
520 }
521
522 dev_dbg(priv->dev, "TOTAL BUFFER SIZE: %zu bytes\n", priv->bufsize);
523 return 0;
524}
525
526/*
527 * Interrupt Handling
528 */
529
530/**
531 * data_disable_interrupts() - stop the device from generating interrupts
532 * @priv: the driver's private data structure
533 *
534 * Hide interrupts by switching to GPIO interrupt source
535 *
536 * LOCKING: must hold dev->lock
537 */
538static void data_disable_interrupts(struct fpga_device *priv)
539{
540 /* hide the interrupt by switching the IRQ driver to GPIO */
541 iowrite32be(0x2F, priv->regs + SYS_IRQ_SOURCE_CTL);
542}
543
544/**
545 * data_enable_interrupts() - allow the device to generate interrupts
546 * @priv: the driver's private data structure
547 *
548 * Unhide interrupts by switching to the FPGA interrupt source. At the
549 * same time, clear the DATA-FPGA status registers.
550 *
551 * LOCKING: must hold dev->lock
552 */
553static void data_enable_interrupts(struct fpga_device *priv)
554{
555 /* clear the actual FPGA corl_done interrupt */
556 fpga_write_reg(priv, 0, MMAP_REG_STATUS, 0x0);
557 fpga_write_reg(priv, 1, MMAP_REG_STATUS, 0x0);
558 fpga_write_reg(priv, 2, MMAP_REG_STATUS, 0x0);
559 fpga_write_reg(priv, 3, MMAP_REG_STATUS, 0x0);
560
561 /* flush the writes */
562 fpga_read_reg(priv, 0, MMAP_REG_STATUS);
563
564 /* switch back to the external interrupt source */
565 iowrite32be(0x3F, priv->regs + SYS_IRQ_SOURCE_CTL);
566}
567
568/**
569 * data_dma_cb() - DMAEngine callback for DMA completion
570 * @data: the driver's private data structure
571 *
572 * Complete a DMA transfer from the DATA-FPGA's
573 *
574 * This is called via the DMA callback mechanism, and will handle moving the
575 * completed DMA transaction to the used list, and then wake any processes
576 * waiting for new data
577 *
578 * CONTEXT: any, softirq expected
579 */
580static void data_dma_cb(void *data)
581{
582 struct fpga_device *priv = data;
583 unsigned long flags;
584
585 spin_lock_irqsave(&priv->lock, flags);
586
587 /* If there is no inflight buffer, we've got a bug */
588 BUG_ON(priv->inflight == NULL);
589
590 /* Move the inflight buffer onto the used list */
591 list_move_tail(&priv->inflight->entry, &priv->used);
592 priv->inflight = NULL;
593
594 /* clear the FPGA status and re-enable interrupts */
595 data_enable_interrupts(priv);
596
597 spin_unlock_irqrestore(&priv->lock, flags);
598
599 /*
600 * We've changed both the inflight and used lists, so we need
601 * to wake up any processes that are blocking for those events
602 */
603 wake_up(&priv->wait);
604}
605
606/**
607 * data_submit_dma() - prepare and submit the required DMA to fill a buffer
608 * @priv: the driver's private data structure
609 * @buf: the data buffer
610 *
611 * Prepare and submit the necessary DMA transactions to fill a correlation
612 * data buffer.
613 *
614 * LOCKING: must hold dev->lock
615 * CONTEXT: hardirq only
616 *
617 * Returns 0 on success, -ERRNO otherwise
618 */
619static int data_submit_dma(struct fpga_device *priv, struct data_buf *buf)
620{
621 struct scatterlist *dst_sg, *src_sg;
622 unsigned int dst_nents, src_nents;
623 struct dma_chan *chan = priv->chan;
624 struct dma_async_tx_descriptor *tx;
625 dma_cookie_t cookie;
626 dma_addr_t dst, src;
627
628 dst_sg = buf->vb.sglist;
629 dst_nents = buf->vb.sglen;
630
631 src_sg = priv->corl_table.sgl;
632 src_nents = priv->corl_nents;
633
634 /*
635 * All buffers passed to this function should be ready and mapped
636 * for DMA already. Therefore, we don't need to do anything except
637 * submit it to the Freescale DMA Engine for processing
638 */
639
640 /* setup the scatterlist to scatterlist transfer */
641 tx = chan->device->device_prep_dma_sg(chan,
642 dst_sg, dst_nents,
643 src_sg, src_nents,
644 0);
645 if (!tx) {
646 dev_err(priv->dev, "unable to prep scatterlist DMA\n");
647 return -ENOMEM;
648 }
649
650 /* submit the transaction to the DMA controller */
651 cookie = tx->tx_submit(tx);
652 if (dma_submit_error(cookie)) {
653 dev_err(priv->dev, "unable to submit scatterlist DMA\n");
654 return -ENOMEM;
655 }
656
657 /* Prepare the re-read of the SYS-FPGA block */
658 dst = sg_dma_address(dst_sg) + (NUM_FPGA * REG_BLOCK_SIZE);
659 src = SYS_FPGA_BLOCK;
660 tx = chan->device->device_prep_dma_memcpy(chan, dst, src,
661 REG_BLOCK_SIZE,
662 DMA_PREP_INTERRUPT);
663 if (!tx) {
664 dev_err(priv->dev, "unable to prep SYS-FPGA DMA\n");
665 return -ENOMEM;
666 }
667
668 /* Setup the callback */
669 tx->callback = data_dma_cb;
670 tx->callback_param = priv;
671
672 /* submit the transaction to the DMA controller */
673 cookie = tx->tx_submit(tx);
674 if (dma_submit_error(cookie)) {
675 dev_err(priv->dev, "unable to submit SYS-FPGA DMA\n");
676 return -ENOMEM;
677 }
678
679 return 0;
680}
681
682#define CORL_DONE 0x1
683#define CORL_ERR 0x2
684
685static irqreturn_t data_irq(int irq, void *dev_id)
686{
687 struct fpga_device *priv = dev_id;
688 bool submitted = false;
689 struct data_buf *buf;
690 u32 status;
691 int i;
692
693 /* detect spurious interrupts via FPGA status */
694 for (i = 0; i < 4; i++) {
695 status = fpga_read_reg(priv, i, MMAP_REG_STATUS);
696 if (!(status & (CORL_DONE | CORL_ERR))) {
697 dev_err(priv->dev, "spurious irq detected (FPGA)\n");
698 return IRQ_NONE;
699 }
700 }
701
702 /* detect spurious interrupts via raw IRQ pin readback */
703 status = ioread32be(priv->regs + SYS_IRQ_INPUT_DATA);
704 if (status & IRQ_CORL_DONE) {
705 dev_err(priv->dev, "spurious irq detected (IRQ)\n");
706 return IRQ_NONE;
707 }
708
709 spin_lock(&priv->lock);
710
711 /* hide the interrupt by switching the IRQ driver to GPIO */
712 data_disable_interrupts(priv);
713
714 /* If there are no free buffers, drop this data */
715 if (list_empty(&priv->free)) {
716 priv->num_dropped++;
717 goto out;
718 }
719
720 buf = list_first_entry(&priv->free, struct data_buf, entry);
721 list_del_init(&buf->entry);
722 BUG_ON(buf->size != priv->bufsize);
723
724 /* Submit a DMA transfer to get the correlation data */
725 if (data_submit_dma(priv, buf)) {
726 dev_err(priv->dev, "Unable to setup DMA transfer\n");
727 list_move_tail(&buf->entry, &priv->free);
728 goto out;
729 }
730
731 /* Save the buffer for the DMA callback */
732 priv->inflight = buf;
733 submitted = true;
734
735 /* Start the DMA Engine */
736 dma_async_memcpy_issue_pending(priv->chan);
737
738out:
739 /* If no DMA was submitted, re-enable interrupts */
740 if (!submitted)
741 data_enable_interrupts(priv);
742
743 spin_unlock(&priv->lock);
744 return IRQ_HANDLED;
745}
746
747/*
748 * Realtime Device Enable Helpers
749 */
750
751/**
752 * data_device_enable() - enable the device for buffered dumping
753 * @priv: the driver's private data structure
754 *
755 * Enable the device for buffered dumping. Allocates buffers and hooks up
756 * the interrupt handler. When this finishes, data will come pouring in.
757 *
758 * LOCKING: must hold dev->mutex
759 * CONTEXT: user context only
760 *
761 * Returns 0 on success, -ERRNO otherwise
762 */
763static int data_device_enable(struct fpga_device *priv)
764{
765 u32 val;
766 int ret;
767
768 /* multiple enables are safe: they do nothing */
769 if (priv->enabled)
770 return 0;
771
772 /* check that the FPGAs are programmed */
773 val = ioread32be(priv->regs + SYS_FPGA_CONFIG_STATUS);
774 if (!(val & (1 << 18))) {
775 dev_err(priv->dev, "DATA-FPGAs are not enabled\n");
776 return -ENODATA;
777 }
778
779 /* read the FPGAs to calculate the buffer size */
780 ret = data_calculate_bufsize(priv);
781 if (ret) {
782 dev_err(priv->dev, "unable to calculate buffer size\n");
783 goto out_error;
784 }
785
786 /* allocate the correlation data buffers */
787 ret = data_alloc_buffers(priv);
788 if (ret) {
789 dev_err(priv->dev, "unable to allocate buffers\n");
790 goto out_error;
791 }
792
793 /* setup the source scatterlist for dumping correlation data */
794 ret = data_setup_corl_table(priv);
795 if (ret) {
796 dev_err(priv->dev, "unable to setup correlation DMA table\n");
797 goto out_error;
798 }
799
800 /* hookup the irq handler */
801 ret = request_irq(priv->irq, data_irq, IRQF_SHARED, drv_name, priv);
802 if (ret) {
803 dev_err(priv->dev, "unable to request IRQ handler\n");
804 goto out_error;
805 }
806
807 /* switch to the external FPGA IRQ line */
808 data_enable_interrupts(priv);
809
810 /* success, we're enabled */
811 priv->enabled = true;
812 return 0;
813
814out_error:
815 sg_free_table(&priv->corl_table);
816 priv->corl_nents = 0;
817
818 data_free_buffers(priv);
819 return ret;
820}
821
822/**
823 * data_device_disable() - disable the device for buffered dumping
824 * @priv: the driver's private data structure
825 *
826 * Disable the device for buffered dumping. Stops new DMA transactions from
827 * being generated, waits for all outstanding DMA to complete, and then frees
828 * all buffers.
829 *
830 * LOCKING: must hold dev->mutex
831 * CONTEXT: user only
832 *
833 * Returns 0 on success, -ERRNO otherwise
834 */
835static int data_device_disable(struct fpga_device *priv)
836{
837 int ret;
838
839 /* allow multiple disable */
840 if (!priv->enabled)
841 return 0;
842
843 /* switch to the internal GPIO IRQ line */
844 data_disable_interrupts(priv);
845
846 /* unhook the irq handler */
847 free_irq(priv->irq, priv);
848
849 /*
850 * wait for all outstanding DMA to complete
851 *
852 * Device interrupts are disabled, therefore another buffer cannot
853 * be marked inflight.
854 */
855 ret = wait_event_interruptible(priv->wait, priv->inflight == NULL);
856 if (ret)
857 return ret;
858
859 /* free the correlation table */
860 sg_free_table(&priv->corl_table);
861 priv->corl_nents = 0;
862
863 /*
864 * We are taking the spinlock not to protect priv->enabled, but instead
865 * to make sure that there are no readers in the process of altering
866 * the free or used lists while we are setting this flag.
867 */
868 spin_lock_irq(&priv->lock);
869 priv->enabled = false;
870 spin_unlock_irq(&priv->lock);
871
872 /* free all buffers: the free and used lists are not being changed */
873 data_free_buffers(priv);
874 return 0;
875}
876
877/*
878 * DEBUGFS Interface
879 */
880#ifdef CONFIG_DEBUG_FS
881
882/*
883 * Count the number of entries in the given list
884 */
885static unsigned int list_num_entries(struct list_head *list)
886{
887 struct list_head *entry;
888 unsigned int ret = 0;
889
890 list_for_each(entry, list)
891 ret++;
892
893 return ret;
894}
895
896static int data_debug_show(struct seq_file *f, void *offset)
897{
898 struct fpga_device *priv = f->private;
899 int ret;
900
901 /*
902 * Lock the mutex first, so that we get an accurate value for enable
903 * Lock the spinlock next, to get accurate list counts
904 */
905 ret = mutex_lock_interruptible(&priv->mutex);
906 if (ret)
907 return ret;
908
909 spin_lock_irq(&priv->lock);
910
911 seq_printf(f, "enabled: %d\n", priv->enabled);
912 seq_printf(f, "bufsize: %d\n", priv->bufsize);
913 seq_printf(f, "num_buffers: %d\n", priv->num_buffers);
914 seq_printf(f, "num_free: %d\n", list_num_entries(&priv->free));
915 seq_printf(f, "inflight: %d\n", priv->inflight != NULL);
916 seq_printf(f, "num_used: %d\n", list_num_entries(&priv->used));
917 seq_printf(f, "num_dropped: %d\n", priv->num_dropped);
918
919 spin_unlock_irq(&priv->lock);
920 mutex_unlock(&priv->mutex);
921 return 0;
922}
923
924static int data_debug_open(struct inode *inode, struct file *file)
925{
926 return single_open(file, data_debug_show, inode->i_private);
927}
928
929static const struct file_operations data_debug_fops = {
930 .owner = THIS_MODULE,
931 .open = data_debug_open,
932 .read = seq_read,
933 .llseek = seq_lseek,
934 .release = single_release,
935};
936
937static int data_debugfs_init(struct fpga_device *priv)
938{
939 priv->dbg_entry = debugfs_create_file(drv_name, S_IRUGO, NULL, priv,
940 &data_debug_fops);
941 if (IS_ERR(priv->dbg_entry))
942 return PTR_ERR(priv->dbg_entry);
943
944 return 0;
945}
946
947static void data_debugfs_exit(struct fpga_device *priv)
948{
949 debugfs_remove(priv->dbg_entry);
950}
951
952#else
953
954static inline int data_debugfs_init(struct fpga_device *priv)
955{
956 return 0;
957}
958
959static inline void data_debugfs_exit(struct fpga_device *priv)
960{
961}
962
963#endif /* CONFIG_DEBUG_FS */
964
965/*
966 * SYSFS Attributes
967 */
968
969static ssize_t data_en_show(struct device *dev, struct device_attribute *attr,
970 char *buf)
971{
972 struct fpga_device *priv = dev_get_drvdata(dev);
973 return snprintf(buf, PAGE_SIZE, "%u\n", priv->enabled);
974}
975
976static ssize_t data_en_set(struct device *dev, struct device_attribute *attr,
977 const char *buf, size_t count)
978{
979 struct fpga_device *priv = dev_get_drvdata(dev);
980 unsigned long enable;
981 int ret;
982
983 ret = strict_strtoul(buf, 0, &enable);
984 if (ret) {
985 dev_err(priv->dev, "unable to parse enable input\n");
986 return -EINVAL;
987 }
988
989 ret = mutex_lock_interruptible(&priv->mutex);
990 if (ret)
991 return ret;
992
993 if (enable)
994 ret = data_device_enable(priv);
995 else
996 ret = data_device_disable(priv);
997
998 if (ret) {
999 dev_err(priv->dev, "device %s failed\n",
1000 enable ? "enable" : "disable");
1001 count = ret;
1002 goto out_unlock;
1003 }
1004
1005out_unlock:
1006 mutex_unlock(&priv->mutex);
1007 return count;
1008}
1009
1010static DEVICE_ATTR(enable, S_IWUSR | S_IRUGO, data_en_show, data_en_set);
1011
1012static struct attribute *data_sysfs_attrs[] = {
1013 &dev_attr_enable.attr,
1014 NULL,
1015};
1016
1017static const struct attribute_group rt_sysfs_attr_group = {
1018 .attrs = data_sysfs_attrs,
1019};
1020
1021/*
1022 * FPGA Realtime Data Character Device
1023 */
1024
1025static int data_open(struct inode *inode, struct file *filp)
1026{
1027 /*
1028 * The miscdevice layer puts our struct miscdevice into the
1029 * filp->private_data field. We use this to find our private
1030 * data and then overwrite it with our own private structure.
1031 */
1032 struct fpga_device *priv = container_of(filp->private_data,
1033 struct fpga_device, miscdev);
1034 struct fpga_reader *reader;
1035 int ret;
1036
1037 /* allocate private data */
1038 reader = kzalloc(sizeof(*reader), GFP_KERNEL);
1039 if (!reader)
1040 return -ENOMEM;
1041
1042 reader->priv = priv;
1043 reader->buf = NULL;
1044
1045 filp->private_data = reader;
1046 ret = nonseekable_open(inode, filp);
1047 if (ret) {
1048 dev_err(priv->dev, "nonseekable-open failed\n");
1049 kfree(reader);
1050 return ret;
1051 }
1052
1053 /*
1054 * success, increase the reference count of the private data structure
1055 * so that it doesn't disappear if the device is unbound
1056 */
1057 kref_get(&priv->ref);
1058 return 0;
1059}
1060
1061static int data_release(struct inode *inode, struct file *filp)
1062{
1063 struct fpga_reader *reader = filp->private_data;
1064 struct fpga_device *priv = reader->priv;
1065
1066 /* free the per-reader structure */
1067 data_free_buffer(reader->buf);
1068 kfree(reader);
1069 filp->private_data = NULL;
1070
1071 /* decrement our reference count to the private data */
1072 kref_put(&priv->ref, fpga_device_release);
1073 return 0;
1074}
1075
1076static ssize_t data_read(struct file *filp, char __user *ubuf, size_t count,
1077 loff_t *f_pos)
1078{
1079 struct fpga_reader *reader = filp->private_data;
1080 struct fpga_device *priv = reader->priv;
1081 struct list_head *used = &priv->used;
1082 struct data_buf *dbuf;
1083 size_t avail;
1084 void *data;
1085 int ret;
1086
1087 /* check if we already have a partial buffer */
1088 if (reader->buf) {
1089 dbuf = reader->buf;
1090 goto have_buffer;
1091 }
1092
1093 spin_lock_irq(&priv->lock);
1094
1095 /* Block until there is at least one buffer on the used list */
1096 while (list_empty(used)) {
1097 spin_unlock_irq(&priv->lock);
1098
1099 if (filp->f_flags & O_NONBLOCK)
1100 return -EAGAIN;
1101
1102 ret = wait_event_interruptible(priv->wait, !list_empty(used));
1103 if (ret)
1104 return ret;
1105
1106 spin_lock_irq(&priv->lock);
1107 }
1108
1109 /* Grab the first buffer off of the used list */
1110 dbuf = list_first_entry(used, struct data_buf, entry);
1111 list_del_init(&dbuf->entry);
1112
1113 spin_unlock_irq(&priv->lock);
1114
1115 /* Buffers are always mapped: unmap it */
1116 videobuf_dma_unmap(priv->dev, &dbuf->vb);
1117
1118 /* save the buffer for later */
1119 reader->buf = dbuf;
1120 reader->buf_start = 0;
1121
1122have_buffer:
1123 /* Get the number of bytes available */
1124 avail = dbuf->size - reader->buf_start;
1125 data = dbuf->vb.vaddr + reader->buf_start;
1126
1127 /* Get the number of bytes we can transfer */
1128 count = min(count, avail);
1129
1130 /* Copy the data to the userspace buffer */
1131 if (copy_to_user(ubuf, data, count))
1132 return -EFAULT;
1133
1134 /* Update the amount of available space */
1135 avail -= count;
1136
1137 /*
1138 * If there is still some data available, save the buffer for the
1139 * next userspace call to read() and return
1140 */
1141 if (avail > 0) {
1142 reader->buf_start += count;
1143 reader->buf = dbuf;
1144 return count;
1145 }
1146
1147 /*
1148 * Get the buffer ready to be reused for DMA
1149 *
1150 * If it fails, we pretend that the read never happed and return
1151 * -EFAULT to userspace. The read will be retried.
1152 */
1153 ret = videobuf_dma_map(priv->dev, &dbuf->vb);
1154 if (ret) {
1155 dev_err(priv->dev, "unable to remap buffer for DMA\n");
1156 return -EFAULT;
1157 }
1158
1159 /* Lock against concurrent enable/disable */
1160 spin_lock_irq(&priv->lock);
1161
1162 /* the reader is finished with this buffer */
1163 reader->buf = NULL;
1164
1165 /*
1166 * One of two things has happened, the device is disabled, or the
1167 * device has been reconfigured underneath us. In either case, we
1168 * should just throw away the buffer.
1169 */
1170 if (!priv->enabled || dbuf->size != priv->bufsize) {
1171 videobuf_dma_unmap(priv->dev, &dbuf->vb);
1172 data_free_buffer(dbuf);
1173 goto out_unlock;
1174 }
1175
1176 /* The buffer is safe to reuse, so add it back to the free list */
1177 list_add_tail(&dbuf->entry, &priv->free);
1178
1179out_unlock:
1180 spin_unlock_irq(&priv->lock);
1181 return count;
1182}
1183
1184static unsigned int data_poll(struct file *filp, struct poll_table_struct *tbl)
1185{
1186 struct fpga_reader *reader = filp->private_data;
1187 struct fpga_device *priv = reader->priv;
1188 unsigned int mask = 0;
1189
1190 poll_wait(filp, &priv->wait, tbl);
1191
1192 if (!list_empty(&priv->used))
1193 mask |= POLLIN | POLLRDNORM;
1194
1195 return mask;
1196}
1197
1198static int data_mmap(struct file *filp, struct vm_area_struct *vma)
1199{
1200 struct fpga_reader *reader = filp->private_data;
1201 struct fpga_device *priv = reader->priv;
1202 unsigned long offset, vsize, psize, addr;
1203
1204 /* VMA properties */
1205 offset = vma->vm_pgoff << PAGE_SHIFT;
1206 vsize = vma->vm_end - vma->vm_start;
1207 psize = priv->phys_size - offset;
1208 addr = (priv->phys_addr + offset) >> PAGE_SHIFT;
1209
1210 /* Check against the FPGA region's physical memory size */
1211 if (vsize > psize) {
1212 dev_err(priv->dev, "requested mmap mapping too large\n");
1213 return -EINVAL;
1214 }
1215
1216 /* IO memory (stop cacheing) */
1217 vma->vm_flags |= VM_IO | VM_RESERVED;
1218 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1219
1220 return io_remap_pfn_range(vma, vma->vm_start, addr, vsize,
1221 vma->vm_page_prot);
1222}
1223
1224static const struct file_operations data_fops = {
1225 .owner = THIS_MODULE,
1226 .open = data_open,
1227 .release = data_release,
1228 .read = data_read,
1229 .poll = data_poll,
1230 .mmap = data_mmap,
1231 .llseek = no_llseek,
1232};
1233
1234/*
1235 * OpenFirmware Device Subsystem
1236 */
1237
1238static bool dma_filter(struct dma_chan *chan, void *data)
1239{
1240 /*
1241 * DMA Channel #0 is used for the FPGA Programmer, so ignore it
1242 *
1243 * This probably won't survive an unload/load cycle of the Freescale
1244 * DMAEngine driver, but that won't be a problem
1245 */
1246 if (chan->chan_id == 0 && chan->device->dev_id == 0)
1247 return false;
1248
1249 return true;
1250}
1251
1252static int data_of_probe(struct platform_device *op,
1253 const struct of_device_id *match)
1254{
1255 struct device_node *of_node = op->dev.of_node;
1256 struct device *this_device;
1257 struct fpga_device *priv;
1258 struct resource res;
1259 dma_cap_mask_t mask;
1260 int ret;
1261
1262 /* Allocate private data */
1263 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1264 if (!priv) {
1265 dev_err(&op->dev, "Unable to allocate device private data\n");
1266 ret = -ENOMEM;
1267 goto out_return;
1268 }
1269
1270 dev_set_drvdata(&op->dev, priv);
1271 priv->dev = &op->dev;
1272 kref_init(&priv->ref);
1273 mutex_init(&priv->mutex);
1274
1275 dev_set_drvdata(priv->dev, priv);
1276 spin_lock_init(&priv->lock);
1277 INIT_LIST_HEAD(&priv->free);
1278 INIT_LIST_HEAD(&priv->used);
1279 init_waitqueue_head(&priv->wait);
1280
1281 /* Setup the misc device */
1282 priv->miscdev.minor = MISC_DYNAMIC_MINOR;
1283 priv->miscdev.name = drv_name;
1284 priv->miscdev.fops = &data_fops;
1285
1286 /* Get the physical address of the FPGA registers */
1287 ret = of_address_to_resource(of_node, 0, &res);
1288 if (ret) {
1289 dev_err(&op->dev, "Unable to find FPGA physical address\n");
1290 ret = -ENODEV;
1291 goto out_free_priv;
1292 }
1293
1294 priv->phys_addr = res.start;
1295 priv->phys_size = resource_size(&res);
1296
1297 /* ioremap the registers for use */
1298 priv->regs = of_iomap(of_node, 0);
1299 if (!priv->regs) {
1300 dev_err(&op->dev, "Unable to ioremap registers\n");
1301 ret = -ENOMEM;
1302 goto out_free_priv;
1303 }
1304
1305 dma_cap_zero(mask);
1306 dma_cap_set(DMA_MEMCPY, mask);
1307 dma_cap_set(DMA_INTERRUPT, mask);
1308 dma_cap_set(DMA_SLAVE, mask);
1309 dma_cap_set(DMA_SG, mask);
1310
1311 /* Request a DMA channel */
1312 priv->chan = dma_request_channel(mask, dma_filter, NULL);
1313 if (!priv->chan) {
1314 dev_err(&op->dev, "Unable to request DMA channel\n");
1315 ret = -ENODEV;
1316 goto out_unmap_regs;
1317 }
1318
1319 /* Find the correct IRQ number */
1320 priv->irq = irq_of_parse_and_map(of_node, 0);
1321 if (priv->irq == NO_IRQ) {
1322 dev_err(&op->dev, "Unable to find IRQ line\n");
1323 ret = -ENODEV;
1324 goto out_release_dma;
1325 }
1326
1327 /* Drive the GPIO for FPGA IRQ high (no interrupt) */
1328 iowrite32be(IRQ_CORL_DONE, priv->regs + SYS_IRQ_OUTPUT_DATA);
1329
1330 /* Register the miscdevice */
1331 ret = misc_register(&priv->miscdev);
1332 if (ret) {
1333 dev_err(&op->dev, "Unable to register miscdevice\n");
1334 goto out_irq_dispose_mapping;
1335 }
1336
1337 /* Create the debugfs files */
1338 ret = data_debugfs_init(priv);
1339 if (ret) {
1340 dev_err(&op->dev, "Unable to create debugfs files\n");
1341 goto out_misc_deregister;
1342 }
1343
1344 /* Create the sysfs files */
1345 this_device = priv->miscdev.this_device;
1346 dev_set_drvdata(this_device, priv);
1347 ret = sysfs_create_group(&this_device->kobj, &rt_sysfs_attr_group);
1348 if (ret) {
1349 dev_err(&op->dev, "Unable to create sysfs files\n");
1350 goto out_data_debugfs_exit;
1351 }
1352
1353 dev_info(&op->dev, "CARMA FPGA Realtime Data Driver Loaded\n");
1354 return 0;
1355
1356out_data_debugfs_exit:
1357 data_debugfs_exit(priv);
1358out_misc_deregister:
1359 misc_deregister(&priv->miscdev);
1360out_irq_dispose_mapping:
1361 irq_dispose_mapping(priv->irq);
1362out_release_dma:
1363 dma_release_channel(priv->chan);
1364out_unmap_regs:
1365 iounmap(priv->regs);
1366out_free_priv:
1367 kref_put(&priv->ref, fpga_device_release);
1368out_return:
1369 return ret;
1370}
1371
1372static int data_of_remove(struct platform_device *op)
1373{
1374 struct fpga_device *priv = dev_get_drvdata(&op->dev);
1375 struct device *this_device = priv->miscdev.this_device;
1376
1377 /* remove all sysfs files, now the device cannot be re-enabled */
1378 sysfs_remove_group(&this_device->kobj, &rt_sysfs_attr_group);
1379
1380 /* remove all debugfs files */
1381 data_debugfs_exit(priv);
1382
1383 /* disable the device from generating data */
1384 data_device_disable(priv);
1385
1386 /* remove the character device to stop new readers from appearing */
1387 misc_deregister(&priv->miscdev);
1388
1389 /* cleanup everything not needed by readers */
1390 irq_dispose_mapping(priv->irq);
1391 dma_release_channel(priv->chan);
1392 iounmap(priv->regs);
1393
1394 /* release our reference */
1395 kref_put(&priv->ref, fpga_device_release);
1396 return 0;
1397}
1398
1399static struct of_device_id data_of_match[] = {
1400 { .compatible = "carma,carma-fpga", },
1401 {},
1402};
1403
1404static struct of_platform_driver data_of_driver = {
1405 .probe = data_of_probe,
1406 .remove = data_of_remove,
1407 .driver = {
1408 .name = drv_name,
1409 .of_match_table = data_of_match,
1410 .owner = THIS_MODULE,
1411 },
1412};
1413
1414/*
1415 * Module Init / Exit
1416 */
1417
1418static int __init data_init(void)
1419{
1420 return of_register_platform_driver(&data_of_driver);
1421}
1422
1423static void __exit data_exit(void)
1424{
1425 of_unregister_platform_driver(&data_of_driver);
1426}
1427
1428MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
1429MODULE_DESCRIPTION("CARMA DATA-FPGA Access Driver");
1430MODULE_LICENSE("GPL");
1431
1432module_init(data_init);
1433module_exit(data_exit);
diff --git a/drivers/of/irq.c b/drivers/of/irq.c
index 75b0d3cb7676..9f689f1da0fc 100644
--- a/drivers/of/irq.c
+++ b/drivers/of/irq.c
@@ -56,7 +56,7 @@ EXPORT_SYMBOL_GPL(irq_of_parse_and_map);
56 * Returns a pointer to the interrupt parent node, or NULL if the interrupt 56 * Returns a pointer to the interrupt parent node, or NULL if the interrupt
57 * parent could not be determined. 57 * parent could not be determined.
58 */ 58 */
59static struct device_node *of_irq_find_parent(struct device_node *child) 59struct device_node *of_irq_find_parent(struct device_node *child)
60{ 60{
61 struct device_node *p; 61 struct device_node *p;
62 const __be32 *parp; 62 const __be32 *parp;