diff options
Diffstat (limited to 'drivers')
-rw-r--r-- | drivers/net/Kconfig | 22 | ||||
-rw-r--r-- | drivers/net/Makefile | 1 | ||||
-rw-r--r-- | drivers/net/igb/Makefile | 37 | ||||
-rw-r--r-- | drivers/net/igb/e1000_82575.c | 1269 | ||||
-rw-r--r-- | drivers/net/igb/e1000_82575.h | 150 | ||||
-rw-r--r-- | drivers/net/igb/e1000_defines.h | 772 | ||||
-rw-r--r-- | drivers/net/igb/e1000_hw.h | 599 | ||||
-rw-r--r-- | drivers/net/igb/e1000_mac.c | 1505 | ||||
-rw-r--r-- | drivers/net/igb/e1000_mac.h | 98 | ||||
-rw-r--r-- | drivers/net/igb/e1000_nvm.c | 605 | ||||
-rw-r--r-- | drivers/net/igb/e1000_nvm.h | 40 | ||||
-rw-r--r-- | drivers/net/igb/e1000_phy.c | 1807 | ||||
-rw-r--r-- | drivers/net/igb/e1000_phy.h | 98 | ||||
-rw-r--r-- | drivers/net/igb/e1000_regs.h | 270 | ||||
-rw-r--r-- | drivers/net/igb/igb.h | 300 | ||||
-rw-r--r-- | drivers/net/igb/igb_ethtool.c | 1927 | ||||
-rw-r--r-- | drivers/net/igb/igb_main.c | 4138 |
17 files changed, 13638 insertions, 0 deletions
diff --git a/drivers/net/Kconfig b/drivers/net/Kconfig index f87d9ff3311a..af40ff434def 100644 --- a/drivers/net/Kconfig +++ b/drivers/net/Kconfig | |||
@@ -2019,6 +2019,28 @@ config IP1000 | |||
2019 | To compile this driver as a module, choose M here: the module | 2019 | To compile this driver as a module, choose M here: the module |
2020 | will be called ipg. This is recommended. | 2020 | will be called ipg. This is recommended. |
2021 | 2021 | ||
2022 | config IGB | ||
2023 | tristate "Intel(R) 82575 PCI-Express Gigabit Ethernet support" | ||
2024 | depends on PCI | ||
2025 | ---help--- | ||
2026 | This driver supports Intel(R) 82575 gigabit ethernet family of | ||
2027 | adapters. For more information on how to identify your adapter, go | ||
2028 | to the Adapter & Driver ID Guide at: | ||
2029 | |||
2030 | <http://support.intel.com/support/network/adapter/pro100/21397.htm> | ||
2031 | |||
2032 | For general information and support, go to the Intel support | ||
2033 | website at: | ||
2034 | |||
2035 | <http://support.intel.com> | ||
2036 | |||
2037 | More specific information on configuring the driver is in | ||
2038 | <file:Documentation/networking/e1000.txt>. | ||
2039 | |||
2040 | To compile this driver as a module, choose M here and read | ||
2041 | <file:Documentation/networking/net-modules.txt>. The module | ||
2042 | will be called igb. | ||
2043 | |||
2022 | source "drivers/net/ixp2000/Kconfig" | 2044 | source "drivers/net/ixp2000/Kconfig" |
2023 | 2045 | ||
2024 | config MYRI_SBUS | 2046 | config MYRI_SBUS |
diff --git a/drivers/net/Makefile b/drivers/net/Makefile index 79fe3f158af1..9fc7794e88ea 100644 --- a/drivers/net/Makefile +++ b/drivers/net/Makefile | |||
@@ -6,6 +6,7 @@ obj-$(CONFIG_E1000) += e1000/ | |||
6 | obj-$(CONFIG_E1000E) += e1000e/ | 6 | obj-$(CONFIG_E1000E) += e1000e/ |
7 | obj-$(CONFIG_IBM_EMAC) += ibm_emac/ | 7 | obj-$(CONFIG_IBM_EMAC) += ibm_emac/ |
8 | obj-$(CONFIG_IBM_NEW_EMAC) += ibm_newemac/ | 8 | obj-$(CONFIG_IBM_NEW_EMAC) += ibm_newemac/ |
9 | obj-$(CONFIG_IGB) += igb/ | ||
9 | obj-$(CONFIG_IXGBE) += ixgbe/ | 10 | obj-$(CONFIG_IXGBE) += ixgbe/ |
10 | obj-$(CONFIG_IXGB) += ixgb/ | 11 | obj-$(CONFIG_IXGB) += ixgb/ |
11 | obj-$(CONFIG_IP1000) += ipg.o | 12 | obj-$(CONFIG_IP1000) += ipg.o |
diff --git a/drivers/net/igb/Makefile b/drivers/net/igb/Makefile new file mode 100644 index 000000000000..1927b3fd6f05 --- /dev/null +++ b/drivers/net/igb/Makefile | |||
@@ -0,0 +1,37 @@ | |||
1 | ################################################################################ | ||
2 | # | ||
3 | # Intel 82575 PCI-Express Ethernet Linux driver | ||
4 | # Copyright(c) 1999 - 2007 Intel Corporation. | ||
5 | # | ||
6 | # This program is free software; you can redistribute it and/or modify it | ||
7 | # under the terms and conditions of the GNU General Public License, | ||
8 | # version 2, as published by the Free Software Foundation. | ||
9 | # | ||
10 | # This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | # more details. | ||
14 | # | ||
15 | # You should have received a copy of the GNU General Public License along with | ||
16 | # this program; if not, write to the Free Software Foundation, Inc., | ||
17 | # 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | # | ||
19 | # The full GNU General Public License is included in this distribution in | ||
20 | # the file called "COPYING". | ||
21 | # | ||
22 | # Contact Information: | ||
23 | # Linux NICS <linux.nics@intel.com> | ||
24 | # e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | # Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | # | ||
27 | ################################################################################ | ||
28 | |||
29 | # | ||
30 | # Makefile for the Intel(R) 82575 PCI-Express ethernet driver | ||
31 | # | ||
32 | |||
33 | obj-$(CONFIG_IGB) += igb.o | ||
34 | |||
35 | igb-objs := igb_main.o igb_ethtool.o e1000_82575.o \ | ||
36 | e1000_mac.o e1000_nvm.o e1000_phy.o | ||
37 | |||
diff --git a/drivers/net/igb/e1000_82575.c b/drivers/net/igb/e1000_82575.c new file mode 100644 index 000000000000..cda3ec879090 --- /dev/null +++ b/drivers/net/igb/e1000_82575.c | |||
@@ -0,0 +1,1269 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | /* e1000_82575 | ||
29 | * e1000_82576 | ||
30 | */ | ||
31 | |||
32 | #include <linux/types.h> | ||
33 | #include <linux/slab.h> | ||
34 | |||
35 | #include "e1000_mac.h" | ||
36 | #include "e1000_82575.h" | ||
37 | |||
38 | static s32 igb_get_invariants_82575(struct e1000_hw *); | ||
39 | static s32 igb_acquire_phy_82575(struct e1000_hw *); | ||
40 | static void igb_release_phy_82575(struct e1000_hw *); | ||
41 | static s32 igb_acquire_nvm_82575(struct e1000_hw *); | ||
42 | static void igb_release_nvm_82575(struct e1000_hw *); | ||
43 | static s32 igb_check_for_link_82575(struct e1000_hw *); | ||
44 | static s32 igb_get_cfg_done_82575(struct e1000_hw *); | ||
45 | static s32 igb_init_hw_82575(struct e1000_hw *); | ||
46 | static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *); | ||
47 | static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *); | ||
48 | static void igb_rar_set_82575(struct e1000_hw *, u8 *, u32); | ||
49 | static s32 igb_reset_hw_82575(struct e1000_hw *); | ||
50 | static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool); | ||
51 | static s32 igb_setup_copper_link_82575(struct e1000_hw *); | ||
52 | static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *); | ||
53 | static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16); | ||
54 | static void igb_clear_hw_cntrs_82575(struct e1000_hw *); | ||
55 | static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16); | ||
56 | static s32 igb_configure_pcs_link_82575(struct e1000_hw *); | ||
57 | static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *, | ||
58 | u16 *); | ||
59 | static s32 igb_get_phy_id_82575(struct e1000_hw *); | ||
60 | static void igb_release_swfw_sync_82575(struct e1000_hw *, u16); | ||
61 | static bool igb_sgmii_active_82575(struct e1000_hw *); | ||
62 | static s32 igb_reset_init_script_82575(struct e1000_hw *); | ||
63 | static s32 igb_read_mac_addr_82575(struct e1000_hw *); | ||
64 | |||
65 | |||
66 | struct e1000_dev_spec_82575 { | ||
67 | bool sgmii_active; | ||
68 | }; | ||
69 | |||
70 | static s32 igb_get_invariants_82575(struct e1000_hw *hw) | ||
71 | { | ||
72 | struct e1000_phy_info *phy = &hw->phy; | ||
73 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
74 | struct e1000_mac_info *mac = &hw->mac; | ||
75 | struct e1000_dev_spec_82575 *dev_spec; | ||
76 | u32 eecd; | ||
77 | s32 ret_val; | ||
78 | u16 size; | ||
79 | u32 ctrl_ext = 0; | ||
80 | |||
81 | switch (hw->device_id) { | ||
82 | case E1000_DEV_ID_82575EB_COPPER: | ||
83 | case E1000_DEV_ID_82575EB_FIBER_SERDES: | ||
84 | case E1000_DEV_ID_82575GB_QUAD_COPPER: | ||
85 | mac->type = e1000_82575; | ||
86 | break; | ||
87 | default: | ||
88 | return -E1000_ERR_MAC_INIT; | ||
89 | break; | ||
90 | } | ||
91 | |||
92 | /* MAC initialization */ | ||
93 | hw->dev_spec_size = sizeof(struct e1000_dev_spec_82575); | ||
94 | |||
95 | /* Device-specific structure allocation */ | ||
96 | hw->dev_spec = kzalloc(hw->dev_spec_size, GFP_KERNEL); | ||
97 | |||
98 | if (!hw->dev_spec) | ||
99 | return -ENOMEM; | ||
100 | |||
101 | dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec; | ||
102 | |||
103 | /* Set media type */ | ||
104 | /* | ||
105 | * The 82575 uses bits 22:23 for link mode. The mode can be changed | ||
106 | * based on the EEPROM. We cannot rely upon device ID. There | ||
107 | * is no distinguishable difference between fiber and internal | ||
108 | * SerDes mode on the 82575. There can be an external PHY attached | ||
109 | * on the SGMII interface. For this, we'll set sgmii_active to true. | ||
110 | */ | ||
111 | phy->media_type = e1000_media_type_copper; | ||
112 | dev_spec->sgmii_active = false; | ||
113 | |||
114 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
115 | if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) == | ||
116 | E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) { | ||
117 | hw->phy.media_type = e1000_media_type_internal_serdes; | ||
118 | ctrl_ext |= E1000_CTRL_I2C_ENA; | ||
119 | } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) { | ||
120 | dev_spec->sgmii_active = true; | ||
121 | ctrl_ext |= E1000_CTRL_I2C_ENA; | ||
122 | } else { | ||
123 | ctrl_ext &= ~E1000_CTRL_I2C_ENA; | ||
124 | } | ||
125 | wr32(E1000_CTRL_EXT, ctrl_ext); | ||
126 | |||
127 | /* Set mta register count */ | ||
128 | mac->mta_reg_count = 128; | ||
129 | /* Set rar entry count */ | ||
130 | mac->rar_entry_count = E1000_RAR_ENTRIES_82575; | ||
131 | /* Set if part includes ASF firmware */ | ||
132 | mac->asf_firmware_present = true; | ||
133 | /* Set if manageability features are enabled. */ | ||
134 | mac->arc_subsystem_valid = | ||
135 | (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK) | ||
136 | ? true : false; | ||
137 | |||
138 | /* physical interface link setup */ | ||
139 | mac->ops.setup_physical_interface = | ||
140 | (hw->phy.media_type == e1000_media_type_copper) | ||
141 | ? igb_setup_copper_link_82575 | ||
142 | : igb_setup_fiber_serdes_link_82575; | ||
143 | |||
144 | /* NVM initialization */ | ||
145 | eecd = rd32(E1000_EECD); | ||
146 | |||
147 | nvm->opcode_bits = 8; | ||
148 | nvm->delay_usec = 1; | ||
149 | switch (nvm->override) { | ||
150 | case e1000_nvm_override_spi_large: | ||
151 | nvm->page_size = 32; | ||
152 | nvm->address_bits = 16; | ||
153 | break; | ||
154 | case e1000_nvm_override_spi_small: | ||
155 | nvm->page_size = 8; | ||
156 | nvm->address_bits = 8; | ||
157 | break; | ||
158 | default: | ||
159 | nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; | ||
160 | nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; | ||
161 | break; | ||
162 | } | ||
163 | |||
164 | nvm->type = e1000_nvm_eeprom_spi; | ||
165 | |||
166 | size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> | ||
167 | E1000_EECD_SIZE_EX_SHIFT); | ||
168 | |||
169 | /* | ||
170 | * Added to a constant, "size" becomes the left-shift value | ||
171 | * for setting word_size. | ||
172 | */ | ||
173 | size += NVM_WORD_SIZE_BASE_SHIFT; | ||
174 | nvm->word_size = 1 << size; | ||
175 | |||
176 | /* setup PHY parameters */ | ||
177 | if (phy->media_type != e1000_media_type_copper) { | ||
178 | phy->type = e1000_phy_none; | ||
179 | return 0; | ||
180 | } | ||
181 | |||
182 | phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
183 | phy->reset_delay_us = 100; | ||
184 | |||
185 | /* PHY function pointers */ | ||
186 | if (igb_sgmii_active_82575(hw)) { | ||
187 | phy->ops.reset_phy = igb_phy_hw_reset_sgmii_82575; | ||
188 | phy->ops.read_phy_reg = igb_read_phy_reg_sgmii_82575; | ||
189 | phy->ops.write_phy_reg = igb_write_phy_reg_sgmii_82575; | ||
190 | } else { | ||
191 | phy->ops.reset_phy = igb_phy_hw_reset; | ||
192 | phy->ops.read_phy_reg = igb_read_phy_reg_igp; | ||
193 | phy->ops.write_phy_reg = igb_write_phy_reg_igp; | ||
194 | } | ||
195 | |||
196 | /* Set phy->phy_addr and phy->id. */ | ||
197 | ret_val = igb_get_phy_id_82575(hw); | ||
198 | if (ret_val) | ||
199 | return ret_val; | ||
200 | |||
201 | /* Verify phy id and set remaining function pointers */ | ||
202 | switch (phy->id) { | ||
203 | case M88E1111_I_PHY_ID: | ||
204 | phy->type = e1000_phy_m88; | ||
205 | phy->ops.get_phy_info = igb_get_phy_info_m88; | ||
206 | phy->ops.get_cable_length = igb_get_cable_length_m88; | ||
207 | phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; | ||
208 | break; | ||
209 | case IGP03E1000_E_PHY_ID: | ||
210 | phy->type = e1000_phy_igp_3; | ||
211 | phy->ops.get_phy_info = igb_get_phy_info_igp; | ||
212 | phy->ops.get_cable_length = igb_get_cable_length_igp_2; | ||
213 | phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp; | ||
214 | phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575; | ||
215 | phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state; | ||
216 | break; | ||
217 | default: | ||
218 | return -E1000_ERR_PHY; | ||
219 | } | ||
220 | |||
221 | return 0; | ||
222 | } | ||
223 | |||
224 | /** | ||
225 | * e1000_acquire_phy_82575 - Acquire rights to access PHY | ||
226 | * @hw: pointer to the HW structure | ||
227 | * | ||
228 | * Acquire access rights to the correct PHY. This is a | ||
229 | * function pointer entry point called by the api module. | ||
230 | **/ | ||
231 | static s32 igb_acquire_phy_82575(struct e1000_hw *hw) | ||
232 | { | ||
233 | u16 mask; | ||
234 | |||
235 | mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; | ||
236 | |||
237 | return igb_acquire_swfw_sync_82575(hw, mask); | ||
238 | } | ||
239 | |||
240 | /** | ||
241 | * e1000_release_phy_82575 - Release rights to access PHY | ||
242 | * @hw: pointer to the HW structure | ||
243 | * | ||
244 | * A wrapper to release access rights to the correct PHY. This is a | ||
245 | * function pointer entry point called by the api module. | ||
246 | **/ | ||
247 | static void igb_release_phy_82575(struct e1000_hw *hw) | ||
248 | { | ||
249 | u16 mask; | ||
250 | |||
251 | mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; | ||
252 | igb_release_swfw_sync_82575(hw, mask); | ||
253 | } | ||
254 | |||
255 | /** | ||
256 | * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii | ||
257 | * @hw: pointer to the HW structure | ||
258 | * @offset: register offset to be read | ||
259 | * @data: pointer to the read data | ||
260 | * | ||
261 | * Reads the PHY register at offset using the serial gigabit media independent | ||
262 | * interface and stores the retrieved information in data. | ||
263 | **/ | ||
264 | static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, | ||
265 | u16 *data) | ||
266 | { | ||
267 | struct e1000_phy_info *phy = &hw->phy; | ||
268 | u32 i, i2ccmd = 0; | ||
269 | |||
270 | if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { | ||
271 | hw_dbg(hw, "PHY Address %u is out of range\n", offset); | ||
272 | return -E1000_ERR_PARAM; | ||
273 | } | ||
274 | |||
275 | /* | ||
276 | * Set up Op-code, Phy Address, and register address in the I2CCMD | ||
277 | * register. The MAC will take care of interfacing with the | ||
278 | * PHY to retrieve the desired data. | ||
279 | */ | ||
280 | i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | | ||
281 | (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | | ||
282 | (E1000_I2CCMD_OPCODE_READ)); | ||
283 | |||
284 | wr32(E1000_I2CCMD, i2ccmd); | ||
285 | |||
286 | /* Poll the ready bit to see if the I2C read completed */ | ||
287 | for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { | ||
288 | udelay(50); | ||
289 | i2ccmd = rd32(E1000_I2CCMD); | ||
290 | if (i2ccmd & E1000_I2CCMD_READY) | ||
291 | break; | ||
292 | } | ||
293 | if (!(i2ccmd & E1000_I2CCMD_READY)) { | ||
294 | hw_dbg(hw, "I2CCMD Read did not complete\n"); | ||
295 | return -E1000_ERR_PHY; | ||
296 | } | ||
297 | if (i2ccmd & E1000_I2CCMD_ERROR) { | ||
298 | hw_dbg(hw, "I2CCMD Error bit set\n"); | ||
299 | return -E1000_ERR_PHY; | ||
300 | } | ||
301 | |||
302 | /* Need to byte-swap the 16-bit value. */ | ||
303 | *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); | ||
304 | |||
305 | return 0; | ||
306 | } | ||
307 | |||
308 | /** | ||
309 | * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii | ||
310 | * @hw: pointer to the HW structure | ||
311 | * @offset: register offset to write to | ||
312 | * @data: data to write at register offset | ||
313 | * | ||
314 | * Writes the data to PHY register at the offset using the serial gigabit | ||
315 | * media independent interface. | ||
316 | **/ | ||
317 | static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, | ||
318 | u16 data) | ||
319 | { | ||
320 | struct e1000_phy_info *phy = &hw->phy; | ||
321 | u32 i, i2ccmd = 0; | ||
322 | u16 phy_data_swapped; | ||
323 | |||
324 | if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { | ||
325 | hw_dbg(hw, "PHY Address %d is out of range\n", offset); | ||
326 | return -E1000_ERR_PARAM; | ||
327 | } | ||
328 | |||
329 | /* Swap the data bytes for the I2C interface */ | ||
330 | phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); | ||
331 | |||
332 | /* | ||
333 | * Set up Op-code, Phy Address, and register address in the I2CCMD | ||
334 | * register. The MAC will take care of interfacing with the | ||
335 | * PHY to retrieve the desired data. | ||
336 | */ | ||
337 | i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | | ||
338 | (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | | ||
339 | E1000_I2CCMD_OPCODE_WRITE | | ||
340 | phy_data_swapped); | ||
341 | |||
342 | wr32(E1000_I2CCMD, i2ccmd); | ||
343 | |||
344 | /* Poll the ready bit to see if the I2C read completed */ | ||
345 | for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { | ||
346 | udelay(50); | ||
347 | i2ccmd = rd32(E1000_I2CCMD); | ||
348 | if (i2ccmd & E1000_I2CCMD_READY) | ||
349 | break; | ||
350 | } | ||
351 | if (!(i2ccmd & E1000_I2CCMD_READY)) { | ||
352 | hw_dbg(hw, "I2CCMD Write did not complete\n"); | ||
353 | return -E1000_ERR_PHY; | ||
354 | } | ||
355 | if (i2ccmd & E1000_I2CCMD_ERROR) { | ||
356 | hw_dbg(hw, "I2CCMD Error bit set\n"); | ||
357 | return -E1000_ERR_PHY; | ||
358 | } | ||
359 | |||
360 | return 0; | ||
361 | } | ||
362 | |||
363 | /** | ||
364 | * e1000_get_phy_id_82575 - Retreive PHY addr and id | ||
365 | * @hw: pointer to the HW structure | ||
366 | * | ||
367 | * Retreives the PHY address and ID for both PHY's which do and do not use | ||
368 | * sgmi interface. | ||
369 | **/ | ||
370 | static s32 igb_get_phy_id_82575(struct e1000_hw *hw) | ||
371 | { | ||
372 | struct e1000_phy_info *phy = &hw->phy; | ||
373 | s32 ret_val = 0; | ||
374 | u16 phy_id; | ||
375 | |||
376 | /* | ||
377 | * For SGMII PHYs, we try the list of possible addresses until | ||
378 | * we find one that works. For non-SGMII PHYs | ||
379 | * (e.g. integrated copper PHYs), an address of 1 should | ||
380 | * work. The result of this function should mean phy->phy_addr | ||
381 | * and phy->id are set correctly. | ||
382 | */ | ||
383 | if (!(igb_sgmii_active_82575(hw))) { | ||
384 | phy->addr = 1; | ||
385 | ret_val = igb_get_phy_id(hw); | ||
386 | goto out; | ||
387 | } | ||
388 | |||
389 | /* | ||
390 | * The address field in the I2CCMD register is 3 bits and 0 is invalid. | ||
391 | * Therefore, we need to test 1-7 | ||
392 | */ | ||
393 | for (phy->addr = 1; phy->addr < 8; phy->addr++) { | ||
394 | ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); | ||
395 | if (ret_val == 0) { | ||
396 | hw_dbg(hw, "Vendor ID 0x%08X read at address %u\n", | ||
397 | phy_id, | ||
398 | phy->addr); | ||
399 | /* | ||
400 | * At the time of this writing, The M88 part is | ||
401 | * the only supported SGMII PHY product. | ||
402 | */ | ||
403 | if (phy_id == M88_VENDOR) | ||
404 | break; | ||
405 | } else { | ||
406 | hw_dbg(hw, "PHY address %u was unreadable\n", | ||
407 | phy->addr); | ||
408 | } | ||
409 | } | ||
410 | |||
411 | /* A valid PHY type couldn't be found. */ | ||
412 | if (phy->addr == 8) { | ||
413 | phy->addr = 0; | ||
414 | ret_val = -E1000_ERR_PHY; | ||
415 | goto out; | ||
416 | } | ||
417 | |||
418 | ret_val = igb_get_phy_id(hw); | ||
419 | |||
420 | out: | ||
421 | return ret_val; | ||
422 | } | ||
423 | |||
424 | /** | ||
425 | * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset | ||
426 | * @hw: pointer to the HW structure | ||
427 | * | ||
428 | * Resets the PHY using the serial gigabit media independent interface. | ||
429 | **/ | ||
430 | static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) | ||
431 | { | ||
432 | s32 ret_val; | ||
433 | |||
434 | /* | ||
435 | * This isn't a true "hard" reset, but is the only reset | ||
436 | * available to us at this time. | ||
437 | */ | ||
438 | |||
439 | hw_dbg(hw, "Soft resetting SGMII attached PHY...\n"); | ||
440 | |||
441 | /* | ||
442 | * SFP documentation requires the following to configure the SPF module | ||
443 | * to work on SGMII. No further documentation is given. | ||
444 | */ | ||
445 | ret_val = hw->phy.ops.write_phy_reg(hw, 0x1B, 0x8084); | ||
446 | if (ret_val) | ||
447 | goto out; | ||
448 | |||
449 | ret_val = igb_phy_sw_reset(hw); | ||
450 | |||
451 | out: | ||
452 | return ret_val; | ||
453 | } | ||
454 | |||
455 | /** | ||
456 | * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state | ||
457 | * @hw: pointer to the HW structure | ||
458 | * @active: true to enable LPLU, false to disable | ||
459 | * | ||
460 | * Sets the LPLU D0 state according to the active flag. When | ||
461 | * activating LPLU this function also disables smart speed | ||
462 | * and vice versa. LPLU will not be activated unless the | ||
463 | * device autonegotiation advertisement meets standards of | ||
464 | * either 10 or 10/100 or 10/100/1000 at all duplexes. | ||
465 | * This is a function pointer entry point only called by | ||
466 | * PHY setup routines. | ||
467 | **/ | ||
468 | static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) | ||
469 | { | ||
470 | struct e1000_phy_info *phy = &hw->phy; | ||
471 | s32 ret_val; | ||
472 | u16 data; | ||
473 | |||
474 | ret_val = hw->phy.ops.read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | ||
475 | &data); | ||
476 | if (ret_val) | ||
477 | goto out; | ||
478 | |||
479 | if (active) { | ||
480 | data |= IGP02E1000_PM_D0_LPLU; | ||
481 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
482 | IGP02E1000_PHY_POWER_MGMT, | ||
483 | data); | ||
484 | if (ret_val) | ||
485 | goto out; | ||
486 | |||
487 | /* When LPLU is enabled, we should disable SmartSpeed */ | ||
488 | ret_val = hw->phy.ops.read_phy_reg(hw, | ||
489 | IGP01E1000_PHY_PORT_CONFIG, | ||
490 | &data); | ||
491 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
492 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
493 | IGP01E1000_PHY_PORT_CONFIG, | ||
494 | data); | ||
495 | if (ret_val) | ||
496 | goto out; | ||
497 | } else { | ||
498 | data &= ~IGP02E1000_PM_D0_LPLU; | ||
499 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
500 | IGP02E1000_PHY_POWER_MGMT, | ||
501 | data); | ||
502 | /* | ||
503 | * LPLU and SmartSpeed are mutually exclusive. LPLU is used | ||
504 | * during Dx states where the power conservation is most | ||
505 | * important. During driver activity we should enable | ||
506 | * SmartSpeed, so performance is maintained. | ||
507 | */ | ||
508 | if (phy->smart_speed == e1000_smart_speed_on) { | ||
509 | ret_val = hw->phy.ops.read_phy_reg(hw, | ||
510 | IGP01E1000_PHY_PORT_CONFIG, | ||
511 | &data); | ||
512 | if (ret_val) | ||
513 | goto out; | ||
514 | |||
515 | data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
516 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
517 | IGP01E1000_PHY_PORT_CONFIG, | ||
518 | data); | ||
519 | if (ret_val) | ||
520 | goto out; | ||
521 | } else if (phy->smart_speed == e1000_smart_speed_off) { | ||
522 | ret_val = hw->phy.ops.read_phy_reg(hw, | ||
523 | IGP01E1000_PHY_PORT_CONFIG, | ||
524 | &data); | ||
525 | if (ret_val) | ||
526 | goto out; | ||
527 | |||
528 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
529 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
530 | IGP01E1000_PHY_PORT_CONFIG, | ||
531 | data); | ||
532 | if (ret_val) | ||
533 | goto out; | ||
534 | } | ||
535 | } | ||
536 | |||
537 | out: | ||
538 | return ret_val; | ||
539 | } | ||
540 | |||
541 | /** | ||
542 | * e1000_acquire_nvm_82575 - Request for access to EEPROM | ||
543 | * @hw: pointer to the HW structure | ||
544 | * | ||
545 | * Acquire the necessary semaphores for exclussive access to the EEPROM. | ||
546 | * Set the EEPROM access request bit and wait for EEPROM access grant bit. | ||
547 | * Return successful if access grant bit set, else clear the request for | ||
548 | * EEPROM access and return -E1000_ERR_NVM (-1). | ||
549 | **/ | ||
550 | static s32 igb_acquire_nvm_82575(struct e1000_hw *hw) | ||
551 | { | ||
552 | s32 ret_val; | ||
553 | |||
554 | ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); | ||
555 | if (ret_val) | ||
556 | goto out; | ||
557 | |||
558 | ret_val = igb_acquire_nvm(hw); | ||
559 | |||
560 | if (ret_val) | ||
561 | igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); | ||
562 | |||
563 | out: | ||
564 | return ret_val; | ||
565 | } | ||
566 | |||
567 | /** | ||
568 | * e1000_release_nvm_82575 - Release exclusive access to EEPROM | ||
569 | * @hw: pointer to the HW structure | ||
570 | * | ||
571 | * Stop any current commands to the EEPROM and clear the EEPROM request bit, | ||
572 | * then release the semaphores acquired. | ||
573 | **/ | ||
574 | static void igb_release_nvm_82575(struct e1000_hw *hw) | ||
575 | { | ||
576 | igb_release_nvm(hw); | ||
577 | igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); | ||
578 | } | ||
579 | |||
580 | /** | ||
581 | * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore | ||
582 | * @hw: pointer to the HW structure | ||
583 | * @mask: specifies which semaphore to acquire | ||
584 | * | ||
585 | * Acquire the SW/FW semaphore to access the PHY or NVM. The mask | ||
586 | * will also specify which port we're acquiring the lock for. | ||
587 | **/ | ||
588 | static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) | ||
589 | { | ||
590 | u32 swfw_sync; | ||
591 | u32 swmask = mask; | ||
592 | u32 fwmask = mask << 16; | ||
593 | s32 ret_val = 0; | ||
594 | s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ | ||
595 | |||
596 | while (i < timeout) { | ||
597 | if (igb_get_hw_semaphore(hw)) { | ||
598 | ret_val = -E1000_ERR_SWFW_SYNC; | ||
599 | goto out; | ||
600 | } | ||
601 | |||
602 | swfw_sync = rd32(E1000_SW_FW_SYNC); | ||
603 | if (!(swfw_sync & (fwmask | swmask))) | ||
604 | break; | ||
605 | |||
606 | /* | ||
607 | * Firmware currently using resource (fwmask) | ||
608 | * or other software thread using resource (swmask) | ||
609 | */ | ||
610 | igb_put_hw_semaphore(hw); | ||
611 | mdelay(5); | ||
612 | i++; | ||
613 | } | ||
614 | |||
615 | if (i == timeout) { | ||
616 | hw_dbg(hw, "Can't access resource, SW_FW_SYNC timeout.\n"); | ||
617 | ret_val = -E1000_ERR_SWFW_SYNC; | ||
618 | goto out; | ||
619 | } | ||
620 | |||
621 | swfw_sync |= swmask; | ||
622 | wr32(E1000_SW_FW_SYNC, swfw_sync); | ||
623 | |||
624 | igb_put_hw_semaphore(hw); | ||
625 | |||
626 | out: | ||
627 | return ret_val; | ||
628 | } | ||
629 | |||
630 | /** | ||
631 | * e1000_release_swfw_sync_82575 - Release SW/FW semaphore | ||
632 | * @hw: pointer to the HW structure | ||
633 | * @mask: specifies which semaphore to acquire | ||
634 | * | ||
635 | * Release the SW/FW semaphore used to access the PHY or NVM. The mask | ||
636 | * will also specify which port we're releasing the lock for. | ||
637 | **/ | ||
638 | static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) | ||
639 | { | ||
640 | u32 swfw_sync; | ||
641 | |||
642 | while (igb_get_hw_semaphore(hw) != 0); | ||
643 | /* Empty */ | ||
644 | |||
645 | swfw_sync = rd32(E1000_SW_FW_SYNC); | ||
646 | swfw_sync &= ~mask; | ||
647 | wr32(E1000_SW_FW_SYNC, swfw_sync); | ||
648 | |||
649 | igb_put_hw_semaphore(hw); | ||
650 | } | ||
651 | |||
652 | /** | ||
653 | * e1000_get_cfg_done_82575 - Read config done bit | ||
654 | * @hw: pointer to the HW structure | ||
655 | * | ||
656 | * Read the management control register for the config done bit for | ||
657 | * completion status. NOTE: silicon which is EEPROM-less will fail trying | ||
658 | * to read the config done bit, so an error is *ONLY* logged and returns | ||
659 | * 0. If we were to return with error, EEPROM-less silicon | ||
660 | * would not be able to be reset or change link. | ||
661 | **/ | ||
662 | static s32 igb_get_cfg_done_82575(struct e1000_hw *hw) | ||
663 | { | ||
664 | s32 timeout = PHY_CFG_TIMEOUT; | ||
665 | s32 ret_val = 0; | ||
666 | u32 mask = E1000_NVM_CFG_DONE_PORT_0; | ||
667 | |||
668 | if (hw->bus.func == 1) | ||
669 | mask = E1000_NVM_CFG_DONE_PORT_1; | ||
670 | |||
671 | while (timeout) { | ||
672 | if (rd32(E1000_EEMNGCTL) & mask) | ||
673 | break; | ||
674 | msleep(1); | ||
675 | timeout--; | ||
676 | } | ||
677 | if (!timeout) | ||
678 | hw_dbg(hw, "MNG configuration cycle has not completed.\n"); | ||
679 | |||
680 | /* If EEPROM is not marked present, init the PHY manually */ | ||
681 | if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) && | ||
682 | (hw->phy.type == e1000_phy_igp_3)) | ||
683 | igb_phy_init_script_igp3(hw); | ||
684 | |||
685 | return ret_val; | ||
686 | } | ||
687 | |||
688 | /** | ||
689 | * e1000_check_for_link_82575 - Check for link | ||
690 | * @hw: pointer to the HW structure | ||
691 | * | ||
692 | * If sgmii is enabled, then use the pcs register to determine link, otherwise | ||
693 | * use the generic interface for determining link. | ||
694 | **/ | ||
695 | static s32 igb_check_for_link_82575(struct e1000_hw *hw) | ||
696 | { | ||
697 | s32 ret_val; | ||
698 | u16 speed, duplex; | ||
699 | |||
700 | /* SGMII link check is done through the PCS register. */ | ||
701 | if ((hw->phy.media_type != e1000_media_type_copper) || | ||
702 | (igb_sgmii_active_82575(hw))) | ||
703 | ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed, | ||
704 | &duplex); | ||
705 | else | ||
706 | ret_val = igb_check_for_copper_link(hw); | ||
707 | |||
708 | return ret_val; | ||
709 | } | ||
710 | |||
711 | /** | ||
712 | * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex | ||
713 | * @hw: pointer to the HW structure | ||
714 | * @speed: stores the current speed | ||
715 | * @duplex: stores the current duplex | ||
716 | * | ||
717 | * Using the physical coding sub-layer (PCS), retreive the current speed and | ||
718 | * duplex, then store the values in the pointers provided. | ||
719 | **/ | ||
720 | static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed, | ||
721 | u16 *duplex) | ||
722 | { | ||
723 | struct e1000_mac_info *mac = &hw->mac; | ||
724 | u32 pcs; | ||
725 | |||
726 | /* Set up defaults for the return values of this function */ | ||
727 | mac->serdes_has_link = false; | ||
728 | *speed = 0; | ||
729 | *duplex = 0; | ||
730 | |||
731 | /* | ||
732 | * Read the PCS Status register for link state. For non-copper mode, | ||
733 | * the status register is not accurate. The PCS status register is | ||
734 | * used instead. | ||
735 | */ | ||
736 | pcs = rd32(E1000_PCS_LSTAT); | ||
737 | |||
738 | /* | ||
739 | * The link up bit determines when link is up on autoneg. The sync ok | ||
740 | * gets set once both sides sync up and agree upon link. Stable link | ||
741 | * can be determined by checking for both link up and link sync ok | ||
742 | */ | ||
743 | if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) { | ||
744 | mac->serdes_has_link = true; | ||
745 | |||
746 | /* Detect and store PCS speed */ | ||
747 | if (pcs & E1000_PCS_LSTS_SPEED_1000) { | ||
748 | *speed = SPEED_1000; | ||
749 | } else if (pcs & E1000_PCS_LSTS_SPEED_100) { | ||
750 | *speed = SPEED_100; | ||
751 | } else { | ||
752 | *speed = SPEED_10; | ||
753 | } | ||
754 | |||
755 | /* Detect and store PCS duplex */ | ||
756 | if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) { | ||
757 | *duplex = FULL_DUPLEX; | ||
758 | } else { | ||
759 | *duplex = HALF_DUPLEX; | ||
760 | } | ||
761 | } | ||
762 | |||
763 | return 0; | ||
764 | } | ||
765 | |||
766 | /** | ||
767 | * e1000_rar_set_82575 - Set receive address register | ||
768 | * @hw: pointer to the HW structure | ||
769 | * @addr: pointer to the receive address | ||
770 | * @index: receive address array register | ||
771 | * | ||
772 | * Sets the receive address array register at index to the address passed | ||
773 | * in by addr. | ||
774 | **/ | ||
775 | static void igb_rar_set_82575(struct e1000_hw *hw, u8 *addr, u32 index) | ||
776 | { | ||
777 | if (index < E1000_RAR_ENTRIES_82575) | ||
778 | igb_rar_set(hw, addr, index); | ||
779 | |||
780 | return; | ||
781 | } | ||
782 | |||
783 | /** | ||
784 | * e1000_reset_hw_82575 - Reset hardware | ||
785 | * @hw: pointer to the HW structure | ||
786 | * | ||
787 | * This resets the hardware into a known state. This is a | ||
788 | * function pointer entry point called by the api module. | ||
789 | **/ | ||
790 | static s32 igb_reset_hw_82575(struct e1000_hw *hw) | ||
791 | { | ||
792 | u32 ctrl, icr; | ||
793 | s32 ret_val; | ||
794 | |||
795 | /* | ||
796 | * Prevent the PCI-E bus from sticking if there is no TLP connection | ||
797 | * on the last TLP read/write transaction when MAC is reset. | ||
798 | */ | ||
799 | ret_val = igb_disable_pcie_master(hw); | ||
800 | if (ret_val) | ||
801 | hw_dbg(hw, "PCI-E Master disable polling has failed.\n"); | ||
802 | |||
803 | hw_dbg(hw, "Masking off all interrupts\n"); | ||
804 | wr32(E1000_IMC, 0xffffffff); | ||
805 | |||
806 | wr32(E1000_RCTL, 0); | ||
807 | wr32(E1000_TCTL, E1000_TCTL_PSP); | ||
808 | wrfl(); | ||
809 | |||
810 | msleep(10); | ||
811 | |||
812 | ctrl = rd32(E1000_CTRL); | ||
813 | |||
814 | hw_dbg(hw, "Issuing a global reset to MAC\n"); | ||
815 | wr32(E1000_CTRL, ctrl | E1000_CTRL_RST); | ||
816 | |||
817 | ret_val = igb_get_auto_rd_done(hw); | ||
818 | if (ret_val) { | ||
819 | /* | ||
820 | * When auto config read does not complete, do not | ||
821 | * return with an error. This can happen in situations | ||
822 | * where there is no eeprom and prevents getting link. | ||
823 | */ | ||
824 | hw_dbg(hw, "Auto Read Done did not complete\n"); | ||
825 | } | ||
826 | |||
827 | /* If EEPROM is not present, run manual init scripts */ | ||
828 | if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) | ||
829 | igb_reset_init_script_82575(hw); | ||
830 | |||
831 | /* Clear any pending interrupt events. */ | ||
832 | wr32(E1000_IMC, 0xffffffff); | ||
833 | icr = rd32(E1000_ICR); | ||
834 | |||
835 | igb_check_alt_mac_addr(hw); | ||
836 | |||
837 | return ret_val; | ||
838 | } | ||
839 | |||
840 | /** | ||
841 | * e1000_init_hw_82575 - Initialize hardware | ||
842 | * @hw: pointer to the HW structure | ||
843 | * | ||
844 | * This inits the hardware readying it for operation. | ||
845 | **/ | ||
846 | static s32 igb_init_hw_82575(struct e1000_hw *hw) | ||
847 | { | ||
848 | struct e1000_mac_info *mac = &hw->mac; | ||
849 | s32 ret_val; | ||
850 | u16 i, rar_count = mac->rar_entry_count; | ||
851 | |||
852 | /* Initialize identification LED */ | ||
853 | ret_val = igb_id_led_init(hw); | ||
854 | if (ret_val) { | ||
855 | hw_dbg(hw, "Error initializing identification LED\n"); | ||
856 | /* This is not fatal and we should not stop init due to this */ | ||
857 | } | ||
858 | |||
859 | /* Disabling VLAN filtering */ | ||
860 | hw_dbg(hw, "Initializing the IEEE VLAN\n"); | ||
861 | igb_clear_vfta(hw); | ||
862 | |||
863 | /* Setup the receive address */ | ||
864 | igb_init_rx_addrs(hw, rar_count); | ||
865 | /* Zero out the Multicast HASH table */ | ||
866 | hw_dbg(hw, "Zeroing the MTA\n"); | ||
867 | for (i = 0; i < mac->mta_reg_count; i++) | ||
868 | array_wr32(E1000_MTA, i, 0); | ||
869 | |||
870 | /* Setup link and flow control */ | ||
871 | ret_val = igb_setup_link(hw); | ||
872 | |||
873 | /* | ||
874 | * Clear all of the statistics registers (clear on read). It is | ||
875 | * important that we do this after we have tried to establish link | ||
876 | * because the symbol error count will increment wildly if there | ||
877 | * is no link. | ||
878 | */ | ||
879 | igb_clear_hw_cntrs_82575(hw); | ||
880 | |||
881 | return ret_val; | ||
882 | } | ||
883 | |||
884 | /** | ||
885 | * e1000_setup_copper_link_82575 - Configure copper link settings | ||
886 | * @hw: pointer to the HW structure | ||
887 | * | ||
888 | * Configures the link for auto-neg or forced speed and duplex. Then we check | ||
889 | * for link, once link is established calls to configure collision distance | ||
890 | * and flow control are called. | ||
891 | **/ | ||
892 | static s32 igb_setup_copper_link_82575(struct e1000_hw *hw) | ||
893 | { | ||
894 | u32 ctrl, led_ctrl; | ||
895 | s32 ret_val; | ||
896 | bool link; | ||
897 | |||
898 | ctrl = rd32(E1000_CTRL); | ||
899 | ctrl |= E1000_CTRL_SLU; | ||
900 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
901 | wr32(E1000_CTRL, ctrl); | ||
902 | |||
903 | switch (hw->phy.type) { | ||
904 | case e1000_phy_m88: | ||
905 | ret_val = igb_copper_link_setup_m88(hw); | ||
906 | break; | ||
907 | case e1000_phy_igp_3: | ||
908 | ret_val = igb_copper_link_setup_igp(hw); | ||
909 | /* Setup activity LED */ | ||
910 | led_ctrl = rd32(E1000_LEDCTL); | ||
911 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | ||
912 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | ||
913 | wr32(E1000_LEDCTL, led_ctrl); | ||
914 | break; | ||
915 | default: | ||
916 | ret_val = -E1000_ERR_PHY; | ||
917 | break; | ||
918 | } | ||
919 | |||
920 | if (ret_val) | ||
921 | goto out; | ||
922 | |||
923 | if (hw->mac.autoneg) { | ||
924 | /* | ||
925 | * Setup autoneg and flow control advertisement | ||
926 | * and perform autonegotiation. | ||
927 | */ | ||
928 | ret_val = igb_copper_link_autoneg(hw); | ||
929 | if (ret_val) | ||
930 | goto out; | ||
931 | } else { | ||
932 | /* | ||
933 | * PHY will be set to 10H, 10F, 100H or 100F | ||
934 | * depending on user settings. | ||
935 | */ | ||
936 | hw_dbg(hw, "Forcing Speed and Duplex\n"); | ||
937 | ret_val = igb_phy_force_speed_duplex(hw); | ||
938 | if (ret_val) { | ||
939 | hw_dbg(hw, "Error Forcing Speed and Duplex\n"); | ||
940 | goto out; | ||
941 | } | ||
942 | } | ||
943 | |||
944 | ret_val = igb_configure_pcs_link_82575(hw); | ||
945 | if (ret_val) | ||
946 | goto out; | ||
947 | |||
948 | /* | ||
949 | * Check link status. Wait up to 100 microseconds for link to become | ||
950 | * valid. | ||
951 | */ | ||
952 | ret_val = igb_phy_has_link(hw, | ||
953 | COPPER_LINK_UP_LIMIT, | ||
954 | 10, | ||
955 | &link); | ||
956 | if (ret_val) | ||
957 | goto out; | ||
958 | |||
959 | if (link) { | ||
960 | hw_dbg(hw, "Valid link established!!!\n"); | ||
961 | /* Config the MAC and PHY after link is up */ | ||
962 | igb_config_collision_dist(hw); | ||
963 | ret_val = igb_config_fc_after_link_up(hw); | ||
964 | } else { | ||
965 | hw_dbg(hw, "Unable to establish link!!!\n"); | ||
966 | } | ||
967 | |||
968 | out: | ||
969 | return ret_val; | ||
970 | } | ||
971 | |||
972 | /** | ||
973 | * e1000_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes | ||
974 | * @hw: pointer to the HW structure | ||
975 | * | ||
976 | * Configures speed and duplex for fiber and serdes links. | ||
977 | **/ | ||
978 | static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw) | ||
979 | { | ||
980 | u32 reg; | ||
981 | |||
982 | /* | ||
983 | * On the 82575, SerDes loopback mode persists until it is | ||
984 | * explicitly turned off or a power cycle is performed. A read to | ||
985 | * the register does not indicate its status. Therefore, we ensure | ||
986 | * loopback mode is disabled during initialization. | ||
987 | */ | ||
988 | wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); | ||
989 | |||
990 | /* Force link up, set 1gb, set both sw defined pins */ | ||
991 | reg = rd32(E1000_CTRL); | ||
992 | reg |= E1000_CTRL_SLU | | ||
993 | E1000_CTRL_SPD_1000 | | ||
994 | E1000_CTRL_FRCSPD | | ||
995 | E1000_CTRL_SWDPIN0 | | ||
996 | E1000_CTRL_SWDPIN1; | ||
997 | wr32(E1000_CTRL, reg); | ||
998 | |||
999 | /* Set switch control to serdes energy detect */ | ||
1000 | reg = rd32(E1000_CONNSW); | ||
1001 | reg |= E1000_CONNSW_ENRGSRC; | ||
1002 | wr32(E1000_CONNSW, reg); | ||
1003 | |||
1004 | /* | ||
1005 | * New SerDes mode allows for forcing speed or autonegotiating speed | ||
1006 | * at 1gb. Autoneg should be default set by most drivers. This is the | ||
1007 | * mode that will be compatible with older link partners and switches. | ||
1008 | * However, both are supported by the hardware and some drivers/tools. | ||
1009 | */ | ||
1010 | reg = rd32(E1000_PCS_LCTL); | ||
1011 | |||
1012 | reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | | ||
1013 | E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); | ||
1014 | |||
1015 | if (hw->mac.autoneg) { | ||
1016 | /* Set PCS register for autoneg */ | ||
1017 | reg |= E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ | ||
1018 | E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ | ||
1019 | E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ | ||
1020 | E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ | ||
1021 | hw_dbg(hw, "Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg); | ||
1022 | } else { | ||
1023 | /* Set PCS register for forced speed */ | ||
1024 | reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */ | ||
1025 | E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ | ||
1026 | E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ | ||
1027 | E1000_PCS_LCTL_FSD | /* Force Speed */ | ||
1028 | E1000_PCS_LCTL_FORCE_LINK; /* Force Link */ | ||
1029 | hw_dbg(hw, "Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg); | ||
1030 | } | ||
1031 | wr32(E1000_PCS_LCTL, reg); | ||
1032 | |||
1033 | return 0; | ||
1034 | } | ||
1035 | |||
1036 | /** | ||
1037 | * e1000_configure_pcs_link_82575 - Configure PCS link | ||
1038 | * @hw: pointer to the HW structure | ||
1039 | * | ||
1040 | * Configure the physical coding sub-layer (PCS) link. The PCS link is | ||
1041 | * only used on copper connections where the serialized gigabit media | ||
1042 | * independent interface (sgmii) is being used. Configures the link | ||
1043 | * for auto-negotiation or forces speed/duplex. | ||
1044 | **/ | ||
1045 | static s32 igb_configure_pcs_link_82575(struct e1000_hw *hw) | ||
1046 | { | ||
1047 | struct e1000_mac_info *mac = &hw->mac; | ||
1048 | u32 reg = 0; | ||
1049 | |||
1050 | if (hw->phy.media_type != e1000_media_type_copper || | ||
1051 | !(igb_sgmii_active_82575(hw))) | ||
1052 | goto out; | ||
1053 | |||
1054 | /* For SGMII, we need to issue a PCS autoneg restart */ | ||
1055 | reg = rd32(E1000_PCS_LCTL); | ||
1056 | |||
1057 | /* AN time out should be disabled for SGMII mode */ | ||
1058 | reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); | ||
1059 | |||
1060 | if (mac->autoneg) { | ||
1061 | /* Make sure forced speed and force link are not set */ | ||
1062 | reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); | ||
1063 | |||
1064 | /* | ||
1065 | * The PHY should be setup prior to calling this function. | ||
1066 | * All we need to do is restart autoneg and enable autoneg. | ||
1067 | */ | ||
1068 | reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE; | ||
1069 | } else { | ||
1070 | /* Set PCS regiseter for forced speed */ | ||
1071 | |||
1072 | /* Turn off bits for full duplex, speed, and autoneg */ | ||
1073 | reg &= ~(E1000_PCS_LCTL_FSV_1000 | | ||
1074 | E1000_PCS_LCTL_FSV_100 | | ||
1075 | E1000_PCS_LCTL_FDV_FULL | | ||
1076 | E1000_PCS_LCTL_AN_ENABLE); | ||
1077 | |||
1078 | /* Check for duplex first */ | ||
1079 | if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX) | ||
1080 | reg |= E1000_PCS_LCTL_FDV_FULL; | ||
1081 | |||
1082 | /* Now set speed */ | ||
1083 | if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) | ||
1084 | reg |= E1000_PCS_LCTL_FSV_100; | ||
1085 | |||
1086 | /* Force speed and force link */ | ||
1087 | reg |= E1000_PCS_LCTL_FSD | | ||
1088 | E1000_PCS_LCTL_FORCE_LINK | | ||
1089 | E1000_PCS_LCTL_FLV_LINK_UP; | ||
1090 | |||
1091 | hw_dbg(hw, | ||
1092 | "Wrote 0x%08X to PCS_LCTL to configure forced link\n", | ||
1093 | reg); | ||
1094 | } | ||
1095 | wr32(E1000_PCS_LCTL, reg); | ||
1096 | |||
1097 | out: | ||
1098 | return 0; | ||
1099 | } | ||
1100 | |||
1101 | /** | ||
1102 | * e1000_sgmii_active_82575 - Return sgmii state | ||
1103 | * @hw: pointer to the HW structure | ||
1104 | * | ||
1105 | * 82575 silicon has a serialized gigabit media independent interface (sgmii) | ||
1106 | * which can be enabled for use in the embedded applications. Simply | ||
1107 | * return the current state of the sgmii interface. | ||
1108 | **/ | ||
1109 | static bool igb_sgmii_active_82575(struct e1000_hw *hw) | ||
1110 | { | ||
1111 | struct e1000_dev_spec_82575 *dev_spec; | ||
1112 | bool ret_val; | ||
1113 | |||
1114 | if (hw->mac.type != e1000_82575) { | ||
1115 | ret_val = false; | ||
1116 | goto out; | ||
1117 | } | ||
1118 | |||
1119 | dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec; | ||
1120 | |||
1121 | ret_val = dev_spec->sgmii_active; | ||
1122 | |||
1123 | out: | ||
1124 | return ret_val; | ||
1125 | } | ||
1126 | |||
1127 | /** | ||
1128 | * e1000_reset_init_script_82575 - Inits HW defaults after reset | ||
1129 | * @hw: pointer to the HW structure | ||
1130 | * | ||
1131 | * Inits recommended HW defaults after a reset when there is no EEPROM | ||
1132 | * detected. This is only for the 82575. | ||
1133 | **/ | ||
1134 | static s32 igb_reset_init_script_82575(struct e1000_hw *hw) | ||
1135 | { | ||
1136 | if (hw->mac.type == e1000_82575) { | ||
1137 | hw_dbg(hw, "Running reset init script for 82575\n"); | ||
1138 | /* SerDes configuration via SERDESCTRL */ | ||
1139 | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C); | ||
1140 | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78); | ||
1141 | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23); | ||
1142 | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15); | ||
1143 | |||
1144 | /* CCM configuration via CCMCTL register */ | ||
1145 | igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00); | ||
1146 | igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00); | ||
1147 | |||
1148 | /* PCIe lanes configuration */ | ||
1149 | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC); | ||
1150 | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF); | ||
1151 | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05); | ||
1152 | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81); | ||
1153 | |||
1154 | /* PCIe PLL Configuration */ | ||
1155 | igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47); | ||
1156 | igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00); | ||
1157 | igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00); | ||
1158 | } | ||
1159 | |||
1160 | return 0; | ||
1161 | } | ||
1162 | |||
1163 | /** | ||
1164 | * e1000_read_mac_addr_82575 - Read device MAC address | ||
1165 | * @hw: pointer to the HW structure | ||
1166 | **/ | ||
1167 | static s32 igb_read_mac_addr_82575(struct e1000_hw *hw) | ||
1168 | { | ||
1169 | s32 ret_val = 0; | ||
1170 | |||
1171 | if (igb_check_alt_mac_addr(hw)) | ||
1172 | ret_val = igb_read_mac_addr(hw); | ||
1173 | |||
1174 | return ret_val; | ||
1175 | } | ||
1176 | |||
1177 | /** | ||
1178 | * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters | ||
1179 | * @hw: pointer to the HW structure | ||
1180 | * | ||
1181 | * Clears the hardware counters by reading the counter registers. | ||
1182 | **/ | ||
1183 | static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw) | ||
1184 | { | ||
1185 | u32 temp; | ||
1186 | |||
1187 | igb_clear_hw_cntrs_base(hw); | ||
1188 | |||
1189 | temp = rd32(E1000_PRC64); | ||
1190 | temp = rd32(E1000_PRC127); | ||
1191 | temp = rd32(E1000_PRC255); | ||
1192 | temp = rd32(E1000_PRC511); | ||
1193 | temp = rd32(E1000_PRC1023); | ||
1194 | temp = rd32(E1000_PRC1522); | ||
1195 | temp = rd32(E1000_PTC64); | ||
1196 | temp = rd32(E1000_PTC127); | ||
1197 | temp = rd32(E1000_PTC255); | ||
1198 | temp = rd32(E1000_PTC511); | ||
1199 | temp = rd32(E1000_PTC1023); | ||
1200 | temp = rd32(E1000_PTC1522); | ||
1201 | |||
1202 | temp = rd32(E1000_ALGNERRC); | ||
1203 | temp = rd32(E1000_RXERRC); | ||
1204 | temp = rd32(E1000_TNCRS); | ||
1205 | temp = rd32(E1000_CEXTERR); | ||
1206 | temp = rd32(E1000_TSCTC); | ||
1207 | temp = rd32(E1000_TSCTFC); | ||
1208 | |||
1209 | temp = rd32(E1000_MGTPRC); | ||
1210 | temp = rd32(E1000_MGTPDC); | ||
1211 | temp = rd32(E1000_MGTPTC); | ||
1212 | |||
1213 | temp = rd32(E1000_IAC); | ||
1214 | temp = rd32(E1000_ICRXOC); | ||
1215 | |||
1216 | temp = rd32(E1000_ICRXPTC); | ||
1217 | temp = rd32(E1000_ICRXATC); | ||
1218 | temp = rd32(E1000_ICTXPTC); | ||
1219 | temp = rd32(E1000_ICTXATC); | ||
1220 | temp = rd32(E1000_ICTXQEC); | ||
1221 | temp = rd32(E1000_ICTXQMTC); | ||
1222 | temp = rd32(E1000_ICRXDMTC); | ||
1223 | |||
1224 | temp = rd32(E1000_CBTMPC); | ||
1225 | temp = rd32(E1000_HTDPMC); | ||
1226 | temp = rd32(E1000_CBRMPC); | ||
1227 | temp = rd32(E1000_RPTHC); | ||
1228 | temp = rd32(E1000_HGPTC); | ||
1229 | temp = rd32(E1000_HTCBDPC); | ||
1230 | temp = rd32(E1000_HGORCL); | ||
1231 | temp = rd32(E1000_HGORCH); | ||
1232 | temp = rd32(E1000_HGOTCL); | ||
1233 | temp = rd32(E1000_HGOTCH); | ||
1234 | temp = rd32(E1000_LENERRS); | ||
1235 | |||
1236 | /* This register should not be read in copper configurations */ | ||
1237 | if (hw->phy.media_type == e1000_media_type_internal_serdes) | ||
1238 | temp = rd32(E1000_SCVPC); | ||
1239 | } | ||
1240 | |||
1241 | static struct e1000_mac_operations e1000_mac_ops_82575 = { | ||
1242 | .reset_hw = igb_reset_hw_82575, | ||
1243 | .init_hw = igb_init_hw_82575, | ||
1244 | .check_for_link = igb_check_for_link_82575, | ||
1245 | .rar_set = igb_rar_set_82575, | ||
1246 | .read_mac_addr = igb_read_mac_addr_82575, | ||
1247 | .get_speed_and_duplex = igb_get_speed_and_duplex_copper, | ||
1248 | }; | ||
1249 | |||
1250 | static struct e1000_phy_operations e1000_phy_ops_82575 = { | ||
1251 | .acquire_phy = igb_acquire_phy_82575, | ||
1252 | .get_cfg_done = igb_get_cfg_done_82575, | ||
1253 | .release_phy = igb_release_phy_82575, | ||
1254 | }; | ||
1255 | |||
1256 | static struct e1000_nvm_operations e1000_nvm_ops_82575 = { | ||
1257 | .acquire_nvm = igb_acquire_nvm_82575, | ||
1258 | .read_nvm = igb_read_nvm_eerd, | ||
1259 | .release_nvm = igb_release_nvm_82575, | ||
1260 | .write_nvm = igb_write_nvm_spi, | ||
1261 | }; | ||
1262 | |||
1263 | const struct e1000_info e1000_82575_info = { | ||
1264 | .get_invariants = igb_get_invariants_82575, | ||
1265 | .mac_ops = &e1000_mac_ops_82575, | ||
1266 | .phy_ops = &e1000_phy_ops_82575, | ||
1267 | .nvm_ops = &e1000_nvm_ops_82575, | ||
1268 | }; | ||
1269 | |||
diff --git a/drivers/net/igb/e1000_82575.h b/drivers/net/igb/e1000_82575.h new file mode 100644 index 000000000000..6604d96bd567 --- /dev/null +++ b/drivers/net/igb/e1000_82575.h | |||
@@ -0,0 +1,150 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #ifndef _E1000_82575_H_ | ||
29 | #define _E1000_82575_H_ | ||
30 | |||
31 | #define E1000_RAR_ENTRIES_82575 16 | ||
32 | |||
33 | /* SRRCTL bit definitions */ | ||
34 | #define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */ | ||
35 | #define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */ | ||
36 | #define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000 | ||
37 | #define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000 | ||
38 | |||
39 | #define E1000_MRQC_ENABLE_RSS_4Q 0x00000002 | ||
40 | #define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000 | ||
41 | #define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000 | ||
42 | #define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000 | ||
43 | |||
44 | #define E1000_EICR_TX_QUEUE ( \ | ||
45 | E1000_EICR_TX_QUEUE0 | \ | ||
46 | E1000_EICR_TX_QUEUE1 | \ | ||
47 | E1000_EICR_TX_QUEUE2 | \ | ||
48 | E1000_EICR_TX_QUEUE3) | ||
49 | |||
50 | #define E1000_EICR_RX_QUEUE ( \ | ||
51 | E1000_EICR_RX_QUEUE0 | \ | ||
52 | E1000_EICR_RX_QUEUE1 | \ | ||
53 | E1000_EICR_RX_QUEUE2 | \ | ||
54 | E1000_EICR_RX_QUEUE3) | ||
55 | |||
56 | #define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE | ||
57 | #define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE | ||
58 | |||
59 | /* Immediate Interrupt RX (A.K.A. Low Latency Interrupt) */ | ||
60 | |||
61 | /* Receive Descriptor - Advanced */ | ||
62 | union e1000_adv_rx_desc { | ||
63 | struct { | ||
64 | u64 pkt_addr; /* Packet buffer address */ | ||
65 | u64 hdr_addr; /* Header buffer address */ | ||
66 | } read; | ||
67 | struct { | ||
68 | struct { | ||
69 | struct { | ||
70 | u16 pkt_info; /* RSS type, Packet type */ | ||
71 | u16 hdr_info; /* Split Header, | ||
72 | * header buffer length */ | ||
73 | } lo_dword; | ||
74 | union { | ||
75 | u32 rss; /* RSS Hash */ | ||
76 | struct { | ||
77 | u16 ip_id; /* IP id */ | ||
78 | u16 csum; /* Packet Checksum */ | ||
79 | } csum_ip; | ||
80 | } hi_dword; | ||
81 | } lower; | ||
82 | struct { | ||
83 | u32 status_error; /* ext status/error */ | ||
84 | u16 length; /* Packet length */ | ||
85 | u16 vlan; /* VLAN tag */ | ||
86 | } upper; | ||
87 | } wb; /* writeback */ | ||
88 | }; | ||
89 | |||
90 | #define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0 | ||
91 | #define E1000_RXDADV_HDRBUFLEN_SHIFT 5 | ||
92 | |||
93 | /* RSS Hash results */ | ||
94 | |||
95 | /* RSS Packet Types as indicated in the receive descriptor */ | ||
96 | |||
97 | /* Transmit Descriptor - Advanced */ | ||
98 | union e1000_adv_tx_desc { | ||
99 | struct { | ||
100 | u64 buffer_addr; /* Address of descriptor's data buf */ | ||
101 | u32 cmd_type_len; | ||
102 | u32 olinfo_status; | ||
103 | } read; | ||
104 | struct { | ||
105 | u64 rsvd; /* Reserved */ | ||
106 | u32 nxtseq_seed; | ||
107 | u32 status; | ||
108 | } wb; | ||
109 | }; | ||
110 | |||
111 | /* Adv Transmit Descriptor Config Masks */ | ||
112 | #define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */ | ||
113 | #define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */ | ||
114 | #define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ | ||
115 | #define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */ | ||
116 | #define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */ | ||
117 | #define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */ | ||
118 | #define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */ | ||
119 | |||
120 | /* Context descriptors */ | ||
121 | struct e1000_adv_tx_context_desc { | ||
122 | u32 vlan_macip_lens; | ||
123 | u32 seqnum_seed; | ||
124 | u32 type_tucmd_mlhl; | ||
125 | u32 mss_l4len_idx; | ||
126 | }; | ||
127 | |||
128 | #define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */ | ||
129 | #define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */ | ||
130 | #define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */ | ||
131 | /* IPSec Encrypt Enable for ESP */ | ||
132 | #define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */ | ||
133 | #define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */ | ||
134 | /* Adv ctxt IPSec SA IDX mask */ | ||
135 | /* Adv ctxt IPSec ESP len mask */ | ||
136 | |||
137 | /* Additional Transmit Descriptor Control definitions */ | ||
138 | #define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Tx Queue */ | ||
139 | /* Tx Queue Arbitration Priority 0=low, 1=high */ | ||
140 | |||
141 | /* Additional Receive Descriptor Control definitions */ | ||
142 | #define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Rx Queue */ | ||
143 | |||
144 | /* Direct Cache Access (DCA) definitions */ | ||
145 | |||
146 | |||
147 | |||
148 | #define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* TX Desc writeback RO bit */ | ||
149 | |||
150 | #endif | ||
diff --git a/drivers/net/igb/e1000_defines.h b/drivers/net/igb/e1000_defines.h new file mode 100644 index 000000000000..8da9ffedc425 --- /dev/null +++ b/drivers/net/igb/e1000_defines.h | |||
@@ -0,0 +1,772 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #ifndef _E1000_DEFINES_H_ | ||
29 | #define _E1000_DEFINES_H_ | ||
30 | |||
31 | /* Number of Transmit and Receive Descriptors must be a multiple of 8 */ | ||
32 | #define REQ_TX_DESCRIPTOR_MULTIPLE 8 | ||
33 | #define REQ_RX_DESCRIPTOR_MULTIPLE 8 | ||
34 | |||
35 | /* Definitions for power management and wakeup registers */ | ||
36 | /* Wake Up Control */ | ||
37 | #define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ | ||
38 | |||
39 | /* Wake Up Filter Control */ | ||
40 | #define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ | ||
41 | #define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ | ||
42 | #define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ | ||
43 | #define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ | ||
44 | #define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ | ||
45 | #define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ | ||
46 | #define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ | ||
47 | #define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ | ||
48 | #define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ | ||
49 | #define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ | ||
50 | #define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ | ||
51 | #define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */ | ||
52 | #define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ | ||
53 | |||
54 | /* Wake Up Status */ | ||
55 | |||
56 | /* Wake Up Packet Length */ | ||
57 | |||
58 | /* Four Flexible Filters are supported */ | ||
59 | #define E1000_FLEXIBLE_FILTER_COUNT_MAX 4 | ||
60 | |||
61 | /* Each Flexible Filter is at most 128 (0x80) bytes in length */ | ||
62 | #define E1000_FLEXIBLE_FILTER_SIZE_MAX 128 | ||
63 | |||
64 | |||
65 | /* Extended Device Control */ | ||
66 | #define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */ | ||
67 | #define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */ | ||
68 | #define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */ | ||
69 | #define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */ | ||
70 | #define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ | ||
71 | #define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ | ||
72 | #define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 | ||
73 | #define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000 | ||
74 | #define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000 | ||
75 | #define E1000_CTRL_EXT_EIAME 0x01000000 | ||
76 | #define E1000_CTRL_EXT_IRCA 0x00000001 | ||
77 | /* Interrupt delay cancellation */ | ||
78 | /* Driver loaded bit for FW */ | ||
79 | #define E1000_CTRL_EXT_DRV_LOAD 0x10000000 | ||
80 | /* Interrupt acknowledge Auto-mask */ | ||
81 | /* Clear Interrupt timers after IMS clear */ | ||
82 | /* packet buffer parity error detection enabled */ | ||
83 | /* descriptor FIFO parity error detection enable */ | ||
84 | #define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */ | ||
85 | #define E1000_I2CCMD_REG_ADDR_SHIFT 16 | ||
86 | #define E1000_I2CCMD_PHY_ADDR_SHIFT 24 | ||
87 | #define E1000_I2CCMD_OPCODE_READ 0x08000000 | ||
88 | #define E1000_I2CCMD_OPCODE_WRITE 0x00000000 | ||
89 | #define E1000_I2CCMD_READY 0x20000000 | ||
90 | #define E1000_I2CCMD_ERROR 0x80000000 | ||
91 | #define E1000_MAX_SGMII_PHY_REG_ADDR 255 | ||
92 | #define E1000_I2CCMD_PHY_TIMEOUT 200 | ||
93 | |||
94 | /* Receive Decriptor bit definitions */ | ||
95 | #define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ | ||
96 | #define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ | ||
97 | #define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ | ||
98 | #define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ | ||
99 | #define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum caculated */ | ||
100 | #define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ | ||
101 | #define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */ | ||
102 | #define E1000_RXD_ERR_CE 0x01 /* CRC Error */ | ||
103 | #define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ | ||
104 | #define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ | ||
105 | #define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ | ||
106 | #define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ | ||
107 | #define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ | ||
108 | |||
109 | #define E1000_RXDEXT_STATERR_CE 0x01000000 | ||
110 | #define E1000_RXDEXT_STATERR_SE 0x02000000 | ||
111 | #define E1000_RXDEXT_STATERR_SEQ 0x04000000 | ||
112 | #define E1000_RXDEXT_STATERR_CXE 0x10000000 | ||
113 | #define E1000_RXDEXT_STATERR_TCPE 0x20000000 | ||
114 | #define E1000_RXDEXT_STATERR_IPE 0x40000000 | ||
115 | #define E1000_RXDEXT_STATERR_RXE 0x80000000 | ||
116 | |||
117 | /* mask to determine if packets should be dropped due to frame errors */ | ||
118 | #define E1000_RXD_ERR_FRAME_ERR_MASK ( \ | ||
119 | E1000_RXD_ERR_CE | \ | ||
120 | E1000_RXD_ERR_SE | \ | ||
121 | E1000_RXD_ERR_SEQ | \ | ||
122 | E1000_RXD_ERR_CXE | \ | ||
123 | E1000_RXD_ERR_RXE) | ||
124 | |||
125 | /* Same mask, but for extended and packet split descriptors */ | ||
126 | #define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ | ||
127 | E1000_RXDEXT_STATERR_CE | \ | ||
128 | E1000_RXDEXT_STATERR_SE | \ | ||
129 | E1000_RXDEXT_STATERR_SEQ | \ | ||
130 | E1000_RXDEXT_STATERR_CXE | \ | ||
131 | E1000_RXDEXT_STATERR_RXE) | ||
132 | |||
133 | #define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 | ||
134 | #define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 | ||
135 | #define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 | ||
136 | #define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 | ||
137 | #define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 | ||
138 | |||
139 | |||
140 | /* Management Control */ | ||
141 | #define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ | ||
142 | #define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ | ||
143 | #define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ | ||
144 | /* Enable Neighbor Discovery Filtering */ | ||
145 | #define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ | ||
146 | #define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ | ||
147 | /* Enable MAC address filtering */ | ||
148 | #define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 | ||
149 | /* Enable MNG packets to host memory */ | ||
150 | #define E1000_MANC_EN_MNG2HOST 0x00200000 | ||
151 | /* Enable IP address filtering */ | ||
152 | |||
153 | |||
154 | /* Receive Control */ | ||
155 | #define E1000_RCTL_EN 0x00000002 /* enable */ | ||
156 | #define E1000_RCTL_SBP 0x00000004 /* store bad packet */ | ||
157 | #define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */ | ||
158 | #define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */ | ||
159 | #define E1000_RCTL_LPE 0x00000020 /* long packet enable */ | ||
160 | #define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ | ||
161 | #define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ | ||
162 | #define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ | ||
163 | #define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ | ||
164 | #define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ | ||
165 | #define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ | ||
166 | /* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ | ||
167 | #define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */ | ||
168 | #define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */ | ||
169 | #define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ | ||
170 | #define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ | ||
171 | /* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ | ||
172 | #define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */ | ||
173 | #define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */ | ||
174 | #define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */ | ||
175 | #define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ | ||
176 | #define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ | ||
177 | #define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ | ||
178 | #define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ | ||
179 | |||
180 | /* | ||
181 | * Use byte values for the following shift parameters | ||
182 | * Usage: | ||
183 | * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & | ||
184 | * E1000_PSRCTL_BSIZE0_MASK) | | ||
185 | * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & | ||
186 | * E1000_PSRCTL_BSIZE1_MASK) | | ||
187 | * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & | ||
188 | * E1000_PSRCTL_BSIZE2_MASK) | | ||
189 | * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; | ||
190 | * E1000_PSRCTL_BSIZE3_MASK)) | ||
191 | * where value0 = [128..16256], default=256 | ||
192 | * value1 = [1024..64512], default=4096 | ||
193 | * value2 = [0..64512], default=4096 | ||
194 | * value3 = [0..64512], default=0 | ||
195 | */ | ||
196 | |||
197 | #define E1000_PSRCTL_BSIZE0_MASK 0x0000007F | ||
198 | #define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 | ||
199 | #define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 | ||
200 | #define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 | ||
201 | |||
202 | #define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ | ||
203 | #define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ | ||
204 | #define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ | ||
205 | #define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ | ||
206 | |||
207 | /* SWFW_SYNC Definitions */ | ||
208 | #define E1000_SWFW_EEP_SM 0x1 | ||
209 | #define E1000_SWFW_PHY0_SM 0x2 | ||
210 | #define E1000_SWFW_PHY1_SM 0x4 | ||
211 | |||
212 | /* FACTPS Definitions */ | ||
213 | /* Device Control */ | ||
214 | #define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ | ||
215 | #define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */ | ||
216 | #define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ | ||
217 | #define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ | ||
218 | #define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ | ||
219 | #define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ | ||
220 | #define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ | ||
221 | #define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ | ||
222 | #define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ | ||
223 | #define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ | ||
224 | /* Defined polarity of Dock/Undock indication in SDP[0] */ | ||
225 | /* Reset both PHY ports, through PHYRST_N pin */ | ||
226 | /* enable link status from external LINK_0 and LINK_1 pins */ | ||
227 | #define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ | ||
228 | #define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ | ||
229 | #define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ | ||
230 | #define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ | ||
231 | #define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ | ||
232 | #define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ | ||
233 | #define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ | ||
234 | #define E1000_CTRL_RST 0x04000000 /* Global reset */ | ||
235 | #define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ | ||
236 | #define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ | ||
237 | #define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ | ||
238 | #define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ | ||
239 | /* Initiate an interrupt to manageability engine */ | ||
240 | #define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */ | ||
241 | |||
242 | /* Bit definitions for the Management Data IO (MDIO) and Management Data | ||
243 | * Clock (MDC) pins in the Device Control Register. | ||
244 | */ | ||
245 | |||
246 | #define E1000_CONNSW_ENRGSRC 0x4 | ||
247 | #define E1000_PCS_LCTL_FLV_LINK_UP 1 | ||
248 | #define E1000_PCS_LCTL_FSV_100 2 | ||
249 | #define E1000_PCS_LCTL_FSV_1000 4 | ||
250 | #define E1000_PCS_LCTL_FDV_FULL 8 | ||
251 | #define E1000_PCS_LCTL_FSD 0x10 | ||
252 | #define E1000_PCS_LCTL_FORCE_LINK 0x20 | ||
253 | #define E1000_PCS_LCTL_AN_ENABLE 0x10000 | ||
254 | #define E1000_PCS_LCTL_AN_RESTART 0x20000 | ||
255 | #define E1000_PCS_LCTL_AN_TIMEOUT 0x40000 | ||
256 | |||
257 | #define E1000_PCS_LSTS_LINK_OK 1 | ||
258 | #define E1000_PCS_LSTS_SPEED_100 2 | ||
259 | #define E1000_PCS_LSTS_SPEED_1000 4 | ||
260 | #define E1000_PCS_LSTS_DUPLEX_FULL 8 | ||
261 | #define E1000_PCS_LSTS_SYNK_OK 0x10 | ||
262 | |||
263 | /* Device Status */ | ||
264 | #define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ | ||
265 | #define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ | ||
266 | #define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ | ||
267 | #define E1000_STATUS_FUNC_SHIFT 2 | ||
268 | #define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ | ||
269 | #define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ | ||
270 | #define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ | ||
271 | #define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ | ||
272 | /* Change in Dock/Undock state. Clear on write '0'. */ | ||
273 | /* Status of Master requests. */ | ||
274 | #define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 | ||
275 | /* BMC external code execution disabled */ | ||
276 | |||
277 | /* Constants used to intrepret the masked PCI-X bus speed. */ | ||
278 | |||
279 | #define SPEED_10 10 | ||
280 | #define SPEED_100 100 | ||
281 | #define SPEED_1000 1000 | ||
282 | #define HALF_DUPLEX 1 | ||
283 | #define FULL_DUPLEX 2 | ||
284 | |||
285 | |||
286 | #define ADVERTISE_10_HALF 0x0001 | ||
287 | #define ADVERTISE_10_FULL 0x0002 | ||
288 | #define ADVERTISE_100_HALF 0x0004 | ||
289 | #define ADVERTISE_100_FULL 0x0008 | ||
290 | #define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */ | ||
291 | #define ADVERTISE_1000_FULL 0x0020 | ||
292 | |||
293 | /* 1000/H is not supported, nor spec-compliant. */ | ||
294 | #define E1000_ALL_SPEED_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ | ||
295 | ADVERTISE_100_HALF | ADVERTISE_100_FULL | \ | ||
296 | ADVERTISE_1000_FULL) | ||
297 | #define E1000_ALL_NOT_GIG (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ | ||
298 | ADVERTISE_100_HALF | ADVERTISE_100_FULL) | ||
299 | #define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL) | ||
300 | #define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL) | ||
301 | #define E1000_ALL_FULL_DUPLEX (ADVERTISE_10_FULL | ADVERTISE_100_FULL | \ | ||
302 | ADVERTISE_1000_FULL) | ||
303 | #define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF) | ||
304 | |||
305 | #define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX | ||
306 | |||
307 | /* LED Control */ | ||
308 | #define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F | ||
309 | #define E1000_LEDCTL_LED0_MODE_SHIFT 0 | ||
310 | #define E1000_LEDCTL_LED0_IVRT 0x00000040 | ||
311 | #define E1000_LEDCTL_LED0_BLINK 0x00000080 | ||
312 | |||
313 | #define E1000_LEDCTL_MODE_LED_ON 0xE | ||
314 | #define E1000_LEDCTL_MODE_LED_OFF 0xF | ||
315 | |||
316 | /* Transmit Descriptor bit definitions */ | ||
317 | #define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ | ||
318 | #define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ | ||
319 | #define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ | ||
320 | #define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ | ||
321 | #define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ | ||
322 | #define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ | ||
323 | /* Extended desc bits for Linksec and timesync */ | ||
324 | |||
325 | /* Transmit Control */ | ||
326 | #define E1000_TCTL_EN 0x00000002 /* enable tx */ | ||
327 | #define E1000_TCTL_PSP 0x00000008 /* pad short packets */ | ||
328 | #define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ | ||
329 | #define E1000_TCTL_COLD 0x003ff000 /* collision distance */ | ||
330 | #define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ | ||
331 | |||
332 | /* Transmit Arbitration Count */ | ||
333 | |||
334 | /* SerDes Control */ | ||
335 | #define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400 | ||
336 | |||
337 | /* Receive Checksum Control */ | ||
338 | #define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ | ||
339 | #define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ | ||
340 | #define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ | ||
341 | |||
342 | /* Header split receive */ | ||
343 | |||
344 | /* Collision related configuration parameters */ | ||
345 | #define E1000_COLLISION_THRESHOLD 15 | ||
346 | #define E1000_CT_SHIFT 4 | ||
347 | #define E1000_COLLISION_DISTANCE 63 | ||
348 | #define E1000_COLD_SHIFT 12 | ||
349 | |||
350 | /* Ethertype field values */ | ||
351 | #define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ | ||
352 | |||
353 | #define MAX_JUMBO_FRAME_SIZE 0x3F00 | ||
354 | |||
355 | /* Extended Configuration Control and Size */ | ||
356 | #define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 | ||
357 | |||
358 | /* PBA constants */ | ||
359 | #define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ | ||
360 | #define E1000_PBA_24K 0x0018 | ||
361 | #define E1000_PBA_34K 0x0022 | ||
362 | |||
363 | #define IFS_MAX 80 | ||
364 | #define IFS_MIN 40 | ||
365 | #define IFS_RATIO 4 | ||
366 | #define IFS_STEP 10 | ||
367 | #define MIN_NUM_XMITS 1000 | ||
368 | |||
369 | /* SW Semaphore Register */ | ||
370 | #define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ | ||
371 | #define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ | ||
372 | |||
373 | /* Interrupt Cause Read */ | ||
374 | #define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ | ||
375 | #define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ | ||
376 | #define E1000_ICR_LSC 0x00000004 /* Link Status Change */ | ||
377 | #define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ | ||
378 | #define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ | ||
379 | #define E1000_ICR_RXO 0x00000040 /* rx overrun */ | ||
380 | #define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ | ||
381 | #define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */ | ||
382 | #define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */ | ||
383 | #define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ | ||
384 | #define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ | ||
385 | #define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ | ||
386 | #define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ | ||
387 | #define E1000_ICR_TXD_LOW 0x00008000 | ||
388 | #define E1000_ICR_SRPD 0x00010000 | ||
389 | #define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */ | ||
390 | #define E1000_ICR_MNG 0x00040000 /* Manageability event */ | ||
391 | #define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */ | ||
392 | /* If this bit asserted, the driver should claim the interrupt */ | ||
393 | #define E1000_ICR_INT_ASSERTED 0x80000000 | ||
394 | /* queue 0 Rx descriptor FIFO parity error */ | ||
395 | #define E1000_ICR_RXD_FIFO_PAR0 0x00100000 | ||
396 | /* queue 0 Tx descriptor FIFO parity error */ | ||
397 | #define E1000_ICR_TXD_FIFO_PAR0 0x00200000 | ||
398 | /* host arb read buffer parity error */ | ||
399 | #define E1000_ICR_HOST_ARB_PAR 0x00400000 | ||
400 | #define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */ | ||
401 | /* queue 1 Rx descriptor FIFO parity error */ | ||
402 | #define E1000_ICR_RXD_FIFO_PAR1 0x01000000 | ||
403 | /* queue 1 Tx descriptor FIFO parity error */ | ||
404 | #define E1000_ICR_TXD_FIFO_PAR1 0x02000000 | ||
405 | /* FW changed the status of DISSW bit in the FWSM */ | ||
406 | #define E1000_ICR_DSW 0x00000020 | ||
407 | /* LAN connected device generates an interrupt */ | ||
408 | #define E1000_ICR_PHYINT 0x00001000 | ||
409 | #define E1000_ICR_EPRST 0x00100000 /* ME handware reset occurs */ | ||
410 | |||
411 | /* Extended Interrupt Cause Read */ | ||
412 | #define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */ | ||
413 | #define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */ | ||
414 | #define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */ | ||
415 | #define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */ | ||
416 | #define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */ | ||
417 | #define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */ | ||
418 | #define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */ | ||
419 | #define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */ | ||
420 | #define E1000_EICR_TCP_TIMER 0x40000000 /* TCP Timer */ | ||
421 | #define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */ | ||
422 | /* TCP Timer */ | ||
423 | |||
424 | /* | ||
425 | * This defines the bits that are set in the Interrupt Mask | ||
426 | * Set/Read Register. Each bit is documented below: | ||
427 | * o RXT0 = Receiver Timer Interrupt (ring 0) | ||
428 | * o TXDW = Transmit Descriptor Written Back | ||
429 | * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) | ||
430 | * o RXSEQ = Receive Sequence Error | ||
431 | * o LSC = Link Status Change | ||
432 | */ | ||
433 | #define IMS_ENABLE_MASK ( \ | ||
434 | E1000_IMS_RXT0 | \ | ||
435 | E1000_IMS_TXDW | \ | ||
436 | E1000_IMS_RXDMT0 | \ | ||
437 | E1000_IMS_RXSEQ | \ | ||
438 | E1000_IMS_LSC) | ||
439 | |||
440 | /* Interrupt Mask Set */ | ||
441 | #define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ | ||
442 | #define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ | ||
443 | #define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ | ||
444 | #define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ | ||
445 | #define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ | ||
446 | /* queue 0 Rx descriptor FIFO parity error */ | ||
447 | /* queue 0 Tx descriptor FIFO parity error */ | ||
448 | /* host arb read buffer parity error */ | ||
449 | /* packet buffer parity error */ | ||
450 | /* queue 1 Rx descriptor FIFO parity error */ | ||
451 | /* queue 1 Tx descriptor FIFO parity error */ | ||
452 | |||
453 | /* Extended Interrupt Mask Set */ | ||
454 | #define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */ | ||
455 | #define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */ | ||
456 | |||
457 | /* Interrupt Cause Set */ | ||
458 | #define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ | ||
459 | #define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ | ||
460 | /* queue 0 Rx descriptor FIFO parity error */ | ||
461 | /* queue 0 Tx descriptor FIFO parity error */ | ||
462 | /* host arb read buffer parity error */ | ||
463 | /* packet buffer parity error */ | ||
464 | /* queue 1 Rx descriptor FIFO parity error */ | ||
465 | /* queue 1 Tx descriptor FIFO parity error */ | ||
466 | |||
467 | /* Extended Interrupt Cause Set */ | ||
468 | |||
469 | /* Transmit Descriptor Control */ | ||
470 | /* Enable the counting of descriptors still to be processed. */ | ||
471 | |||
472 | /* Flow Control Constants */ | ||
473 | #define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 | ||
474 | #define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 | ||
475 | #define FLOW_CONTROL_TYPE 0x8808 | ||
476 | |||
477 | /* 802.1q VLAN Packet Size */ | ||
478 | #define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */ | ||
479 | #define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ | ||
480 | |||
481 | /* Receive Address */ | ||
482 | /* | ||
483 | * Number of high/low register pairs in the RAR. The RAR (Receive Address | ||
484 | * Registers) holds the directed and multicast addresses that we monitor. | ||
485 | * Technically, we have 16 spots. However, we reserve one of these spots | ||
486 | * (RAR[15]) for our directed address used by controllers with | ||
487 | * manageability enabled, allowing us room for 15 multicast addresses. | ||
488 | */ | ||
489 | #define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ | ||
490 | |||
491 | /* Error Codes */ | ||
492 | #define E1000_ERR_NVM 1 | ||
493 | #define E1000_ERR_PHY 2 | ||
494 | #define E1000_ERR_CONFIG 3 | ||
495 | #define E1000_ERR_PARAM 4 | ||
496 | #define E1000_ERR_MAC_INIT 5 | ||
497 | #define E1000_ERR_RESET 9 | ||
498 | #define E1000_ERR_MASTER_REQUESTS_PENDING 10 | ||
499 | #define E1000_ERR_HOST_INTERFACE_COMMAND 11 | ||
500 | #define E1000_BLK_PHY_RESET 12 | ||
501 | #define E1000_ERR_SWFW_SYNC 13 | ||
502 | #define E1000_NOT_IMPLEMENTED 14 | ||
503 | |||
504 | /* Loop limit on how long we wait for auto-negotiation to complete */ | ||
505 | #define COPPER_LINK_UP_LIMIT 10 | ||
506 | #define PHY_AUTO_NEG_LIMIT 45 | ||
507 | #define PHY_FORCE_LIMIT 20 | ||
508 | /* Number of 100 microseconds we wait for PCI Express master disable */ | ||
509 | #define MASTER_DISABLE_TIMEOUT 800 | ||
510 | /* Number of milliseconds we wait for PHY configuration done after MAC reset */ | ||
511 | #define PHY_CFG_TIMEOUT 100 | ||
512 | /* Number of 2 milliseconds we wait for acquiring MDIO ownership. */ | ||
513 | /* Number of milliseconds for NVM auto read done after MAC reset. */ | ||
514 | #define AUTO_READ_DONE_TIMEOUT 10 | ||
515 | |||
516 | /* Flow Control */ | ||
517 | #define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ | ||
518 | |||
519 | /* Transmit Configuration Word */ | ||
520 | #define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ | ||
521 | |||
522 | /* Receive Configuration Word */ | ||
523 | |||
524 | /* PCI Express Control */ | ||
525 | #define E1000_GCR_RXD_NO_SNOOP 0x00000001 | ||
526 | #define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002 | ||
527 | #define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004 | ||
528 | #define E1000_GCR_TXD_NO_SNOOP 0x00000008 | ||
529 | #define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010 | ||
530 | #define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020 | ||
531 | |||
532 | #define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \ | ||
533 | E1000_GCR_RXDSCW_NO_SNOOP | \ | ||
534 | E1000_GCR_RXDSCR_NO_SNOOP | \ | ||
535 | E1000_GCR_TXD_NO_SNOOP | \ | ||
536 | E1000_GCR_TXDSCW_NO_SNOOP | \ | ||
537 | E1000_GCR_TXDSCR_NO_SNOOP) | ||
538 | |||
539 | /* PHY Control Register */ | ||
540 | #define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ | ||
541 | #define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ | ||
542 | #define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ | ||
543 | #define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ | ||
544 | #define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ | ||
545 | #define MII_CR_SPEED_1000 0x0040 | ||
546 | #define MII_CR_SPEED_100 0x2000 | ||
547 | #define MII_CR_SPEED_10 0x0000 | ||
548 | |||
549 | /* PHY Status Register */ | ||
550 | #define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ | ||
551 | #define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ | ||
552 | |||
553 | /* Autoneg Advertisement Register */ | ||
554 | #define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ | ||
555 | #define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ | ||
556 | #define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ | ||
557 | #define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ | ||
558 | #define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ | ||
559 | #define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ | ||
560 | |||
561 | /* Link Partner Ability Register (Base Page) */ | ||
562 | #define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ | ||
563 | #define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ | ||
564 | |||
565 | /* Autoneg Expansion Register */ | ||
566 | |||
567 | /* 1000BASE-T Control Register */ | ||
568 | #define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ | ||
569 | #define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ | ||
570 | /* 0=DTE device */ | ||
571 | #define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ | ||
572 | /* 0=Configure PHY as Slave */ | ||
573 | #define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ | ||
574 | /* 0=Automatic Master/Slave config */ | ||
575 | |||
576 | /* 1000BASE-T Status Register */ | ||
577 | #define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ | ||
578 | #define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ | ||
579 | |||
580 | |||
581 | /* PHY 1000 MII Register/Bit Definitions */ | ||
582 | /* PHY Registers defined by IEEE */ | ||
583 | #define PHY_CONTROL 0x00 /* Control Register */ | ||
584 | #define PHY_STATUS 0x01 /* Status Regiser */ | ||
585 | #define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ | ||
586 | #define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ | ||
587 | #define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ | ||
588 | #define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ | ||
589 | #define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ | ||
590 | #define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ | ||
591 | |||
592 | /* NVM Control */ | ||
593 | #define E1000_EECD_SK 0x00000001 /* NVM Clock */ | ||
594 | #define E1000_EECD_CS 0x00000002 /* NVM Chip Select */ | ||
595 | #define E1000_EECD_DI 0x00000004 /* NVM Data In */ | ||
596 | #define E1000_EECD_DO 0x00000008 /* NVM Data Out */ | ||
597 | #define E1000_EECD_REQ 0x00000040 /* NVM Access Request */ | ||
598 | #define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */ | ||
599 | #define E1000_EECD_PRES 0x00000100 /* NVM Present */ | ||
600 | /* NVM Addressing bits based on type 0=small, 1=large */ | ||
601 | #define E1000_EECD_ADDR_BITS 0x00000400 | ||
602 | #define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */ | ||
603 | #define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */ | ||
604 | #define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */ | ||
605 | #define E1000_EECD_SIZE_EX_SHIFT 11 | ||
606 | |||
607 | /* Offset to data in NVM read/write registers */ | ||
608 | #define E1000_NVM_RW_REG_DATA 16 | ||
609 | #define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ | ||
610 | #define E1000_NVM_RW_REG_START 1 /* Start operation */ | ||
611 | #define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ | ||
612 | #define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */ | ||
613 | |||
614 | /* NVM Word Offsets */ | ||
615 | #define NVM_ID_LED_SETTINGS 0x0004 | ||
616 | /* For SERDES output amplitude adjustment. */ | ||
617 | #define NVM_INIT_CONTROL2_REG 0x000F | ||
618 | #define NVM_INIT_CONTROL3_PORT_A 0x0024 | ||
619 | #define NVM_ALT_MAC_ADDR_PTR 0x0037 | ||
620 | #define NVM_CHECKSUM_REG 0x003F | ||
621 | |||
622 | #define E1000_NVM_CFG_DONE_PORT_0 0x40000 /* MNG config cycle done */ | ||
623 | #define E1000_NVM_CFG_DONE_PORT_1 0x80000 /* ...for second port */ | ||
624 | |||
625 | /* Mask bits for fields in Word 0x0f of the NVM */ | ||
626 | #define NVM_WORD0F_PAUSE_MASK 0x3000 | ||
627 | #define NVM_WORD0F_ASM_DIR 0x2000 | ||
628 | |||
629 | /* Mask bits for fields in Word 0x1a of the NVM */ | ||
630 | |||
631 | /* For checksumming, the sum of all words in the NVM should equal 0xBABA. */ | ||
632 | #define NVM_SUM 0xBABA | ||
633 | |||
634 | #define NVM_PBA_OFFSET_0 8 | ||
635 | #define NVM_PBA_OFFSET_1 9 | ||
636 | #define NVM_WORD_SIZE_BASE_SHIFT 6 | ||
637 | |||
638 | /* NVM Commands - Microwire */ | ||
639 | |||
640 | /* NVM Commands - SPI */ | ||
641 | #define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ | ||
642 | #define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */ | ||
643 | #define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ | ||
644 | #define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */ | ||
645 | #define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */ | ||
646 | |||
647 | /* SPI NVM Status Register */ | ||
648 | #define NVM_STATUS_RDY_SPI 0x01 | ||
649 | |||
650 | /* Word definitions for ID LED Settings */ | ||
651 | #define ID_LED_RESERVED_0000 0x0000 | ||
652 | #define ID_LED_RESERVED_FFFF 0xFFFF | ||
653 | #define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ | ||
654 | (ID_LED_OFF1_OFF2 << 8) | \ | ||
655 | (ID_LED_DEF1_DEF2 << 4) | \ | ||
656 | (ID_LED_DEF1_DEF2)) | ||
657 | #define ID_LED_DEF1_DEF2 0x1 | ||
658 | #define ID_LED_DEF1_ON2 0x2 | ||
659 | #define ID_LED_DEF1_OFF2 0x3 | ||
660 | #define ID_LED_ON1_DEF2 0x4 | ||
661 | #define ID_LED_ON1_ON2 0x5 | ||
662 | #define ID_LED_ON1_OFF2 0x6 | ||
663 | #define ID_LED_OFF1_DEF2 0x7 | ||
664 | #define ID_LED_OFF1_ON2 0x8 | ||
665 | #define ID_LED_OFF1_OFF2 0x9 | ||
666 | |||
667 | #define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF | ||
668 | #define IGP_ACTIVITY_LED_ENABLE 0x0300 | ||
669 | #define IGP_LED3_MODE 0x07000000 | ||
670 | |||
671 | /* PCI/PCI-X/PCI-EX Config space */ | ||
672 | #define PCI_HEADER_TYPE_REGISTER 0x0E | ||
673 | #define PCIE_LINK_STATUS 0x12 | ||
674 | |||
675 | #define PCI_HEADER_TYPE_MULTIFUNC 0x80 | ||
676 | #define PCIE_LINK_WIDTH_MASK 0x3F0 | ||
677 | #define PCIE_LINK_WIDTH_SHIFT 4 | ||
678 | |||
679 | #define PHY_REVISION_MASK 0xFFFFFFF0 | ||
680 | #define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ | ||
681 | #define MAX_PHY_MULTI_PAGE_REG 0xF | ||
682 | |||
683 | /* Bit definitions for valid PHY IDs. */ | ||
684 | /* | ||
685 | * I = Integrated | ||
686 | * E = External | ||
687 | */ | ||
688 | #define M88E1111_I_PHY_ID 0x01410CC0 | ||
689 | #define IGP03E1000_E_PHY_ID 0x02A80390 | ||
690 | #define M88_VENDOR 0x0141 | ||
691 | |||
692 | /* M88E1000 Specific Registers */ | ||
693 | #define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ | ||
694 | #define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ | ||
695 | #define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ | ||
696 | |||
697 | #define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */ | ||
698 | #define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ | ||
699 | |||
700 | /* M88E1000 PHY Specific Control Register */ | ||
701 | #define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */ | ||
702 | /* 1=CLK125 low, 0=CLK125 toggling */ | ||
703 | #define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ | ||
704 | /* Manual MDI configuration */ | ||
705 | #define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ | ||
706 | /* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */ | ||
707 | #define M88E1000_PSCR_AUTO_X_1000T 0x0040 | ||
708 | /* Auto crossover enabled all speeds */ | ||
709 | #define M88E1000_PSCR_AUTO_X_MODE 0x0060 | ||
710 | /* | ||
711 | * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T RX Threshold | ||
712 | * 0=Normal 10BASE-T RX Threshold | ||
713 | */ | ||
714 | /* 1=5-bit interface in 100BASE-TX, 0=MII interface in 100BASE-TX */ | ||
715 | #define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */ | ||
716 | |||
717 | /* M88E1000 PHY Specific Status Register */ | ||
718 | #define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ | ||
719 | #define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ | ||
720 | #define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ | ||
721 | /* | ||
722 | * 0 = <50M | ||
723 | * 1 = 50-80M | ||
724 | * 2 = 80-110M | ||
725 | * 3 = 110-140M | ||
726 | * 4 = >140M | ||
727 | */ | ||
728 | #define M88E1000_PSSR_CABLE_LENGTH 0x0380 | ||
729 | #define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ | ||
730 | #define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ | ||
731 | |||
732 | #define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 | ||
733 | |||
734 | /* M88E1000 Extended PHY Specific Control Register */ | ||
735 | /* | ||
736 | * 1 = Lost lock detect enabled. | ||
737 | * Will assert lost lock and bring | ||
738 | * link down if idle not seen | ||
739 | * within 1ms in 1000BASE-T | ||
740 | */ | ||
741 | /* | ||
742 | * Number of times we will attempt to autonegotiate before downshifting if we | ||
743 | * are the master | ||
744 | */ | ||
745 | #define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 | ||
746 | #define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 | ||
747 | /* | ||
748 | * Number of times we will attempt to autonegotiate before downshifting if we | ||
749 | * are the slave | ||
750 | */ | ||
751 | #define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 | ||
752 | #define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 | ||
753 | #define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ | ||
754 | |||
755 | /* M88EC018 Rev 2 specific DownShift settings */ | ||
756 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 | ||
757 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 | ||
758 | |||
759 | /* MDI Control */ | ||
760 | #define E1000_MDIC_REG_SHIFT 16 | ||
761 | #define E1000_MDIC_PHY_SHIFT 21 | ||
762 | #define E1000_MDIC_OP_WRITE 0x04000000 | ||
763 | #define E1000_MDIC_OP_READ 0x08000000 | ||
764 | #define E1000_MDIC_READY 0x10000000 | ||
765 | #define E1000_MDIC_ERROR 0x40000000 | ||
766 | |||
767 | /* SerDes Control */ | ||
768 | #define E1000_GEN_CTL_READY 0x80000000 | ||
769 | #define E1000_GEN_CTL_ADDRESS_SHIFT 8 | ||
770 | #define E1000_GEN_POLL_TIMEOUT 640 | ||
771 | |||
772 | #endif | ||
diff --git a/drivers/net/igb/e1000_hw.h b/drivers/net/igb/e1000_hw.h new file mode 100644 index 000000000000..161fb68764af --- /dev/null +++ b/drivers/net/igb/e1000_hw.h | |||
@@ -0,0 +1,599 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #ifndef _E1000_HW_H_ | ||
29 | #define _E1000_HW_H_ | ||
30 | |||
31 | #include <linux/types.h> | ||
32 | #include <linux/delay.h> | ||
33 | #include <linux/io.h> | ||
34 | |||
35 | #include "e1000_mac.h" | ||
36 | #include "e1000_regs.h" | ||
37 | #include "e1000_defines.h" | ||
38 | |||
39 | struct e1000_hw; | ||
40 | |||
41 | #define E1000_DEV_ID_82575EB_COPPER 0x10A7 | ||
42 | #define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9 | ||
43 | #define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6 | ||
44 | |||
45 | #define E1000_REVISION_2 2 | ||
46 | #define E1000_REVISION_4 4 | ||
47 | |||
48 | #define E1000_FUNC_1 1 | ||
49 | |||
50 | enum e1000_mac_type { | ||
51 | e1000_undefined = 0, | ||
52 | e1000_82575, | ||
53 | e1000_num_macs /* List is 1-based, so subtract 1 for true count. */ | ||
54 | }; | ||
55 | |||
56 | enum e1000_media_type { | ||
57 | e1000_media_type_unknown = 0, | ||
58 | e1000_media_type_copper = 1, | ||
59 | e1000_media_type_fiber = 2, | ||
60 | e1000_media_type_internal_serdes = 3, | ||
61 | e1000_num_media_types | ||
62 | }; | ||
63 | |||
64 | enum e1000_nvm_type { | ||
65 | e1000_nvm_unknown = 0, | ||
66 | e1000_nvm_none, | ||
67 | e1000_nvm_eeprom_spi, | ||
68 | e1000_nvm_eeprom_microwire, | ||
69 | e1000_nvm_flash_hw, | ||
70 | e1000_nvm_flash_sw | ||
71 | }; | ||
72 | |||
73 | enum e1000_nvm_override { | ||
74 | e1000_nvm_override_none = 0, | ||
75 | e1000_nvm_override_spi_small, | ||
76 | e1000_nvm_override_spi_large, | ||
77 | e1000_nvm_override_microwire_small, | ||
78 | e1000_nvm_override_microwire_large | ||
79 | }; | ||
80 | |||
81 | enum e1000_phy_type { | ||
82 | e1000_phy_unknown = 0, | ||
83 | e1000_phy_none, | ||
84 | e1000_phy_m88, | ||
85 | e1000_phy_igp, | ||
86 | e1000_phy_igp_2, | ||
87 | e1000_phy_gg82563, | ||
88 | e1000_phy_igp_3, | ||
89 | e1000_phy_ife, | ||
90 | }; | ||
91 | |||
92 | enum e1000_bus_type { | ||
93 | e1000_bus_type_unknown = 0, | ||
94 | e1000_bus_type_pci, | ||
95 | e1000_bus_type_pcix, | ||
96 | e1000_bus_type_pci_express, | ||
97 | e1000_bus_type_reserved | ||
98 | }; | ||
99 | |||
100 | enum e1000_bus_speed { | ||
101 | e1000_bus_speed_unknown = 0, | ||
102 | e1000_bus_speed_33, | ||
103 | e1000_bus_speed_66, | ||
104 | e1000_bus_speed_100, | ||
105 | e1000_bus_speed_120, | ||
106 | e1000_bus_speed_133, | ||
107 | e1000_bus_speed_2500, | ||
108 | e1000_bus_speed_5000, | ||
109 | e1000_bus_speed_reserved | ||
110 | }; | ||
111 | |||
112 | enum e1000_bus_width { | ||
113 | e1000_bus_width_unknown = 0, | ||
114 | e1000_bus_width_pcie_x1, | ||
115 | e1000_bus_width_pcie_x2, | ||
116 | e1000_bus_width_pcie_x4 = 4, | ||
117 | e1000_bus_width_pcie_x8 = 8, | ||
118 | e1000_bus_width_32, | ||
119 | e1000_bus_width_64, | ||
120 | e1000_bus_width_reserved | ||
121 | }; | ||
122 | |||
123 | enum e1000_1000t_rx_status { | ||
124 | e1000_1000t_rx_status_not_ok = 0, | ||
125 | e1000_1000t_rx_status_ok, | ||
126 | e1000_1000t_rx_status_undefined = 0xFF | ||
127 | }; | ||
128 | |||
129 | enum e1000_rev_polarity { | ||
130 | e1000_rev_polarity_normal = 0, | ||
131 | e1000_rev_polarity_reversed, | ||
132 | e1000_rev_polarity_undefined = 0xFF | ||
133 | }; | ||
134 | |||
135 | enum e1000_fc_type { | ||
136 | e1000_fc_none = 0, | ||
137 | e1000_fc_rx_pause, | ||
138 | e1000_fc_tx_pause, | ||
139 | e1000_fc_full, | ||
140 | e1000_fc_default = 0xFF | ||
141 | }; | ||
142 | |||
143 | |||
144 | /* Receive Descriptor */ | ||
145 | struct e1000_rx_desc { | ||
146 | u64 buffer_addr; /* Address of the descriptor's data buffer */ | ||
147 | u16 length; /* Length of data DMAed into data buffer */ | ||
148 | u16 csum; /* Packet checksum */ | ||
149 | u8 status; /* Descriptor status */ | ||
150 | u8 errors; /* Descriptor Errors */ | ||
151 | u16 special; | ||
152 | }; | ||
153 | |||
154 | /* Receive Descriptor - Extended */ | ||
155 | union e1000_rx_desc_extended { | ||
156 | struct { | ||
157 | u64 buffer_addr; | ||
158 | u64 reserved; | ||
159 | } read; | ||
160 | struct { | ||
161 | struct { | ||
162 | u32 mrq; /* Multiple Rx Queues */ | ||
163 | union { | ||
164 | u32 rss; /* RSS Hash */ | ||
165 | struct { | ||
166 | u16 ip_id; /* IP id */ | ||
167 | u16 csum; /* Packet Checksum */ | ||
168 | } csum_ip; | ||
169 | } hi_dword; | ||
170 | } lower; | ||
171 | struct { | ||
172 | u32 status_error; /* ext status/error */ | ||
173 | u16 length; | ||
174 | u16 vlan; /* VLAN tag */ | ||
175 | } upper; | ||
176 | } wb; /* writeback */ | ||
177 | }; | ||
178 | |||
179 | #define MAX_PS_BUFFERS 4 | ||
180 | /* Receive Descriptor - Packet Split */ | ||
181 | union e1000_rx_desc_packet_split { | ||
182 | struct { | ||
183 | /* one buffer for protocol header(s), three data buffers */ | ||
184 | u64 buffer_addr[MAX_PS_BUFFERS]; | ||
185 | } read; | ||
186 | struct { | ||
187 | struct { | ||
188 | u32 mrq; /* Multiple Rx Queues */ | ||
189 | union { | ||
190 | u32 rss; /* RSS Hash */ | ||
191 | struct { | ||
192 | u16 ip_id; /* IP id */ | ||
193 | u16 csum; /* Packet Checksum */ | ||
194 | } csum_ip; | ||
195 | } hi_dword; | ||
196 | } lower; | ||
197 | struct { | ||
198 | u32 status_error; /* ext status/error */ | ||
199 | u16 length0; /* length of buffer 0 */ | ||
200 | u16 vlan; /* VLAN tag */ | ||
201 | } middle; | ||
202 | struct { | ||
203 | u16 header_status; | ||
204 | u16 length[3]; /* length of buffers 1-3 */ | ||
205 | } upper; | ||
206 | u64 reserved; | ||
207 | } wb; /* writeback */ | ||
208 | }; | ||
209 | |||
210 | /* Transmit Descriptor */ | ||
211 | struct e1000_tx_desc { | ||
212 | u64 buffer_addr; /* Address of the descriptor's data buffer */ | ||
213 | union { | ||
214 | u32 data; | ||
215 | struct { | ||
216 | u16 length; /* Data buffer length */ | ||
217 | u8 cso; /* Checksum offset */ | ||
218 | u8 cmd; /* Descriptor control */ | ||
219 | } flags; | ||
220 | } lower; | ||
221 | union { | ||
222 | u32 data; | ||
223 | struct { | ||
224 | u8 status; /* Descriptor status */ | ||
225 | u8 css; /* Checksum start */ | ||
226 | u16 special; | ||
227 | } fields; | ||
228 | } upper; | ||
229 | }; | ||
230 | |||
231 | /* Offload Context Descriptor */ | ||
232 | struct e1000_context_desc { | ||
233 | union { | ||
234 | u32 ip_config; | ||
235 | struct { | ||
236 | u8 ipcss; /* IP checksum start */ | ||
237 | u8 ipcso; /* IP checksum offset */ | ||
238 | u16 ipcse; /* IP checksum end */ | ||
239 | } ip_fields; | ||
240 | } lower_setup; | ||
241 | union { | ||
242 | u32 tcp_config; | ||
243 | struct { | ||
244 | u8 tucss; /* TCP checksum start */ | ||
245 | u8 tucso; /* TCP checksum offset */ | ||
246 | u16 tucse; /* TCP checksum end */ | ||
247 | } tcp_fields; | ||
248 | } upper_setup; | ||
249 | u32 cmd_and_length; | ||
250 | union { | ||
251 | u32 data; | ||
252 | struct { | ||
253 | u8 status; /* Descriptor status */ | ||
254 | u8 hdr_len; /* Header length */ | ||
255 | u16 mss; /* Maximum segment size */ | ||
256 | } fields; | ||
257 | } tcp_seg_setup; | ||
258 | }; | ||
259 | |||
260 | /* Offload data descriptor */ | ||
261 | struct e1000_data_desc { | ||
262 | u64 buffer_addr; /* Address of the descriptor's buffer address */ | ||
263 | union { | ||
264 | u32 data; | ||
265 | struct { | ||
266 | u16 length; /* Data buffer length */ | ||
267 | u8 typ_len_ext; | ||
268 | u8 cmd; | ||
269 | } flags; | ||
270 | } lower; | ||
271 | union { | ||
272 | u32 data; | ||
273 | struct { | ||
274 | u8 status; /* Descriptor status */ | ||
275 | u8 popts; /* Packet Options */ | ||
276 | u16 special; | ||
277 | } fields; | ||
278 | } upper; | ||
279 | }; | ||
280 | |||
281 | /* Statistics counters collected by the MAC */ | ||
282 | struct e1000_hw_stats { | ||
283 | u64 crcerrs; | ||
284 | u64 algnerrc; | ||
285 | u64 symerrs; | ||
286 | u64 rxerrc; | ||
287 | u64 mpc; | ||
288 | u64 scc; | ||
289 | u64 ecol; | ||
290 | u64 mcc; | ||
291 | u64 latecol; | ||
292 | u64 colc; | ||
293 | u64 dc; | ||
294 | u64 tncrs; | ||
295 | u64 sec; | ||
296 | u64 cexterr; | ||
297 | u64 rlec; | ||
298 | u64 xonrxc; | ||
299 | u64 xontxc; | ||
300 | u64 xoffrxc; | ||
301 | u64 xofftxc; | ||
302 | u64 fcruc; | ||
303 | u64 prc64; | ||
304 | u64 prc127; | ||
305 | u64 prc255; | ||
306 | u64 prc511; | ||
307 | u64 prc1023; | ||
308 | u64 prc1522; | ||
309 | u64 gprc; | ||
310 | u64 bprc; | ||
311 | u64 mprc; | ||
312 | u64 gptc; | ||
313 | u64 gorc; | ||
314 | u64 gotc; | ||
315 | u64 rnbc; | ||
316 | u64 ruc; | ||
317 | u64 rfc; | ||
318 | u64 roc; | ||
319 | u64 rjc; | ||
320 | u64 mgprc; | ||
321 | u64 mgpdc; | ||
322 | u64 mgptc; | ||
323 | u64 tor; | ||
324 | u64 tot; | ||
325 | u64 tpr; | ||
326 | u64 tpt; | ||
327 | u64 ptc64; | ||
328 | u64 ptc127; | ||
329 | u64 ptc255; | ||
330 | u64 ptc511; | ||
331 | u64 ptc1023; | ||
332 | u64 ptc1522; | ||
333 | u64 mptc; | ||
334 | u64 bptc; | ||
335 | u64 tsctc; | ||
336 | u64 tsctfc; | ||
337 | u64 iac; | ||
338 | u64 icrxptc; | ||
339 | u64 icrxatc; | ||
340 | u64 ictxptc; | ||
341 | u64 ictxatc; | ||
342 | u64 ictxqec; | ||
343 | u64 ictxqmtc; | ||
344 | u64 icrxdmtc; | ||
345 | u64 icrxoc; | ||
346 | u64 cbtmpc; | ||
347 | u64 htdpmc; | ||
348 | u64 cbrdpc; | ||
349 | u64 cbrmpc; | ||
350 | u64 rpthc; | ||
351 | u64 hgptc; | ||
352 | u64 htcbdpc; | ||
353 | u64 hgorc; | ||
354 | u64 hgotc; | ||
355 | u64 lenerrs; | ||
356 | u64 scvpc; | ||
357 | u64 hrmpc; | ||
358 | }; | ||
359 | |||
360 | struct e1000_phy_stats { | ||
361 | u32 idle_errors; | ||
362 | u32 receive_errors; | ||
363 | }; | ||
364 | |||
365 | struct e1000_host_mng_dhcp_cookie { | ||
366 | u32 signature; | ||
367 | u8 status; | ||
368 | u8 reserved0; | ||
369 | u16 vlan_id; | ||
370 | u32 reserved1; | ||
371 | u16 reserved2; | ||
372 | u8 reserved3; | ||
373 | u8 checksum; | ||
374 | }; | ||
375 | |||
376 | /* Host Interface "Rev 1" */ | ||
377 | struct e1000_host_command_header { | ||
378 | u8 command_id; | ||
379 | u8 command_length; | ||
380 | u8 command_options; | ||
381 | u8 checksum; | ||
382 | }; | ||
383 | |||
384 | #define E1000_HI_MAX_DATA_LENGTH 252 | ||
385 | struct e1000_host_command_info { | ||
386 | struct e1000_host_command_header command_header; | ||
387 | u8 command_data[E1000_HI_MAX_DATA_LENGTH]; | ||
388 | }; | ||
389 | |||
390 | /* Host Interface "Rev 2" */ | ||
391 | struct e1000_host_mng_command_header { | ||
392 | u8 command_id; | ||
393 | u8 checksum; | ||
394 | u16 reserved1; | ||
395 | u16 reserved2; | ||
396 | u16 command_length; | ||
397 | }; | ||
398 | |||
399 | #define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 | ||
400 | struct e1000_host_mng_command_info { | ||
401 | struct e1000_host_mng_command_header command_header; | ||
402 | u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; | ||
403 | }; | ||
404 | |||
405 | #include "e1000_mac.h" | ||
406 | #include "e1000_phy.h" | ||
407 | #include "e1000_nvm.h" | ||
408 | |||
409 | struct e1000_mac_operations { | ||
410 | s32 (*check_for_link)(struct e1000_hw *); | ||
411 | s32 (*reset_hw)(struct e1000_hw *); | ||
412 | s32 (*init_hw)(struct e1000_hw *); | ||
413 | s32 (*setup_physical_interface)(struct e1000_hw *); | ||
414 | void (*rar_set)(struct e1000_hw *, u8 *, u32); | ||
415 | s32 (*read_mac_addr)(struct e1000_hw *); | ||
416 | s32 (*get_speed_and_duplex)(struct e1000_hw *, u16 *, u16 *); | ||
417 | }; | ||
418 | |||
419 | struct e1000_phy_operations { | ||
420 | s32 (*acquire_phy)(struct e1000_hw *); | ||
421 | s32 (*force_speed_duplex)(struct e1000_hw *); | ||
422 | s32 (*get_cfg_done)(struct e1000_hw *hw); | ||
423 | s32 (*get_cable_length)(struct e1000_hw *); | ||
424 | s32 (*get_phy_info)(struct e1000_hw *); | ||
425 | s32 (*read_phy_reg)(struct e1000_hw *, u32, u16 *); | ||
426 | void (*release_phy)(struct e1000_hw *); | ||
427 | s32 (*reset_phy)(struct e1000_hw *); | ||
428 | s32 (*set_d0_lplu_state)(struct e1000_hw *, bool); | ||
429 | s32 (*set_d3_lplu_state)(struct e1000_hw *, bool); | ||
430 | s32 (*write_phy_reg)(struct e1000_hw *, u32, u16); | ||
431 | }; | ||
432 | |||
433 | struct e1000_nvm_operations { | ||
434 | s32 (*acquire_nvm)(struct e1000_hw *); | ||
435 | s32 (*read_nvm)(struct e1000_hw *, u16, u16, u16 *); | ||
436 | void (*release_nvm)(struct e1000_hw *); | ||
437 | s32 (*write_nvm)(struct e1000_hw *, u16, u16, u16 *); | ||
438 | }; | ||
439 | |||
440 | struct e1000_info { | ||
441 | s32 (*get_invariants)(struct e1000_hw *); | ||
442 | struct e1000_mac_operations *mac_ops; | ||
443 | struct e1000_phy_operations *phy_ops; | ||
444 | struct e1000_nvm_operations *nvm_ops; | ||
445 | }; | ||
446 | |||
447 | extern const struct e1000_info e1000_82575_info; | ||
448 | |||
449 | struct e1000_mac_info { | ||
450 | struct e1000_mac_operations ops; | ||
451 | |||
452 | u8 addr[6]; | ||
453 | u8 perm_addr[6]; | ||
454 | |||
455 | enum e1000_mac_type type; | ||
456 | |||
457 | u32 collision_delta; | ||
458 | u32 ledctl_default; | ||
459 | u32 ledctl_mode1; | ||
460 | u32 ledctl_mode2; | ||
461 | u32 mc_filter_type; | ||
462 | u32 tx_packet_delta; | ||
463 | u32 txcw; | ||
464 | |||
465 | u16 current_ifs_val; | ||
466 | u16 ifs_max_val; | ||
467 | u16 ifs_min_val; | ||
468 | u16 ifs_ratio; | ||
469 | u16 ifs_step_size; | ||
470 | u16 mta_reg_count; | ||
471 | u16 rar_entry_count; | ||
472 | |||
473 | u8 forced_speed_duplex; | ||
474 | |||
475 | bool adaptive_ifs; | ||
476 | bool arc_subsystem_valid; | ||
477 | bool asf_firmware_present; | ||
478 | bool autoneg; | ||
479 | bool autoneg_failed; | ||
480 | bool disable_av; | ||
481 | bool disable_hw_init_bits; | ||
482 | bool get_link_status; | ||
483 | bool ifs_params_forced; | ||
484 | bool in_ifs_mode; | ||
485 | bool report_tx_early; | ||
486 | bool serdes_has_link; | ||
487 | bool tx_pkt_filtering; | ||
488 | }; | ||
489 | |||
490 | struct e1000_phy_info { | ||
491 | struct e1000_phy_operations ops; | ||
492 | |||
493 | enum e1000_phy_type type; | ||
494 | |||
495 | enum e1000_1000t_rx_status local_rx; | ||
496 | enum e1000_1000t_rx_status remote_rx; | ||
497 | enum e1000_ms_type ms_type; | ||
498 | enum e1000_ms_type original_ms_type; | ||
499 | enum e1000_rev_polarity cable_polarity; | ||
500 | enum e1000_smart_speed smart_speed; | ||
501 | |||
502 | u32 addr; | ||
503 | u32 id; | ||
504 | u32 reset_delay_us; /* in usec */ | ||
505 | u32 revision; | ||
506 | |||
507 | enum e1000_media_type media_type; | ||
508 | |||
509 | u16 autoneg_advertised; | ||
510 | u16 autoneg_mask; | ||
511 | u16 cable_length; | ||
512 | u16 max_cable_length; | ||
513 | u16 min_cable_length; | ||
514 | |||
515 | u8 mdix; | ||
516 | |||
517 | bool disable_polarity_correction; | ||
518 | bool is_mdix; | ||
519 | bool polarity_correction; | ||
520 | bool reset_disable; | ||
521 | bool speed_downgraded; | ||
522 | bool autoneg_wait_to_complete; | ||
523 | }; | ||
524 | |||
525 | struct e1000_nvm_info { | ||
526 | struct e1000_nvm_operations ops; | ||
527 | |||
528 | enum e1000_nvm_type type; | ||
529 | enum e1000_nvm_override override; | ||
530 | |||
531 | u32 flash_bank_size; | ||
532 | u32 flash_base_addr; | ||
533 | |||
534 | u16 word_size; | ||
535 | u16 delay_usec; | ||
536 | u16 address_bits; | ||
537 | u16 opcode_bits; | ||
538 | u16 page_size; | ||
539 | }; | ||
540 | |||
541 | struct e1000_bus_info { | ||
542 | enum e1000_bus_type type; | ||
543 | enum e1000_bus_speed speed; | ||
544 | enum e1000_bus_width width; | ||
545 | |||
546 | u32 snoop; | ||
547 | |||
548 | u16 func; | ||
549 | u16 pci_cmd_word; | ||
550 | }; | ||
551 | |||
552 | struct e1000_fc_info { | ||
553 | u32 high_water; /* Flow control high-water mark */ | ||
554 | u32 low_water; /* Flow control low-water mark */ | ||
555 | u16 pause_time; /* Flow control pause timer */ | ||
556 | bool send_xon; /* Flow control send XON */ | ||
557 | bool strict_ieee; /* Strict IEEE mode */ | ||
558 | enum e1000_fc_type type; /* Type of flow control */ | ||
559 | enum e1000_fc_type original_type; | ||
560 | }; | ||
561 | |||
562 | struct e1000_hw { | ||
563 | void *back; | ||
564 | void *dev_spec; | ||
565 | |||
566 | u8 __iomem *hw_addr; | ||
567 | u8 __iomem *flash_address; | ||
568 | unsigned long io_base; | ||
569 | |||
570 | struct e1000_mac_info mac; | ||
571 | struct e1000_fc_info fc; | ||
572 | struct e1000_phy_info phy; | ||
573 | struct e1000_nvm_info nvm; | ||
574 | struct e1000_bus_info bus; | ||
575 | struct e1000_host_mng_dhcp_cookie mng_cookie; | ||
576 | |||
577 | u32 dev_spec_size; | ||
578 | |||
579 | u16 device_id; | ||
580 | u16 subsystem_vendor_id; | ||
581 | u16 subsystem_device_id; | ||
582 | u16 vendor_id; | ||
583 | |||
584 | u8 revision_id; | ||
585 | }; | ||
586 | |||
587 | #ifdef DEBUG | ||
588 | extern char *igb_get_hw_dev_name(struct e1000_hw *hw); | ||
589 | #define hw_dbg(hw, format, arg...) \ | ||
590 | printk(KERN_DEBUG "%s: " format, igb_get_hw_dev_name(hw), ##arg) | ||
591 | #else | ||
592 | static inline int __attribute__ ((format (printf, 2, 3))) | ||
593 | hw_dbg(struct e1000_hw *hw, const char *format, ...) | ||
594 | { | ||
595 | return 0; | ||
596 | } | ||
597 | #endif | ||
598 | |||
599 | #endif | ||
diff --git a/drivers/net/igb/e1000_mac.c b/drivers/net/igb/e1000_mac.c new file mode 100644 index 000000000000..3e84a3f0c1d8 --- /dev/null +++ b/drivers/net/igb/e1000_mac.c | |||
@@ -0,0 +1,1505 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #include <linux/if_ether.h> | ||
29 | #include <linux/delay.h> | ||
30 | #include <linux/pci.h> | ||
31 | #include <linux/netdevice.h> | ||
32 | |||
33 | #include "e1000_mac.h" | ||
34 | |||
35 | #include "igb.h" | ||
36 | |||
37 | static s32 igb_set_default_fc(struct e1000_hw *hw); | ||
38 | static s32 igb_set_fc_watermarks(struct e1000_hw *hw); | ||
39 | static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr); | ||
40 | |||
41 | /** | ||
42 | * e1000_remove_device - Free device specific structure | ||
43 | * @hw: pointer to the HW structure | ||
44 | * | ||
45 | * If a device specific structure was allocated, this function will | ||
46 | * free it. | ||
47 | **/ | ||
48 | void igb_remove_device(struct e1000_hw *hw) | ||
49 | { | ||
50 | /* Freeing the dev_spec member of e1000_hw structure */ | ||
51 | kfree(hw->dev_spec); | ||
52 | } | ||
53 | |||
54 | static void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) | ||
55 | { | ||
56 | struct igb_adapter *adapter = hw->back; | ||
57 | |||
58 | pci_read_config_word(adapter->pdev, reg, value); | ||
59 | } | ||
60 | |||
61 | static s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) | ||
62 | { | ||
63 | struct igb_adapter *adapter = hw->back; | ||
64 | u16 cap_offset; | ||
65 | |||
66 | cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); | ||
67 | if (!cap_offset) | ||
68 | return -E1000_ERR_CONFIG; | ||
69 | |||
70 | pci_read_config_word(adapter->pdev, cap_offset + reg, value); | ||
71 | |||
72 | return 0; | ||
73 | } | ||
74 | |||
75 | /** | ||
76 | * e1000_get_bus_info_pcie - Get PCIe bus information | ||
77 | * @hw: pointer to the HW structure | ||
78 | * | ||
79 | * Determines and stores the system bus information for a particular | ||
80 | * network interface. The following bus information is determined and stored: | ||
81 | * bus speed, bus width, type (PCIe), and PCIe function. | ||
82 | **/ | ||
83 | s32 igb_get_bus_info_pcie(struct e1000_hw *hw) | ||
84 | { | ||
85 | struct e1000_bus_info *bus = &hw->bus; | ||
86 | s32 ret_val; | ||
87 | u32 status; | ||
88 | u16 pcie_link_status, pci_header_type; | ||
89 | |||
90 | bus->type = e1000_bus_type_pci_express; | ||
91 | bus->speed = e1000_bus_speed_2500; | ||
92 | |||
93 | ret_val = igb_read_pcie_cap_reg(hw, | ||
94 | PCIE_LINK_STATUS, | ||
95 | &pcie_link_status); | ||
96 | if (ret_val) | ||
97 | bus->width = e1000_bus_width_unknown; | ||
98 | else | ||
99 | bus->width = (enum e1000_bus_width)((pcie_link_status & | ||
100 | PCIE_LINK_WIDTH_MASK) >> | ||
101 | PCIE_LINK_WIDTH_SHIFT); | ||
102 | |||
103 | igb_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type); | ||
104 | if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { | ||
105 | status = rd32(E1000_STATUS); | ||
106 | bus->func = (status & E1000_STATUS_FUNC_MASK) | ||
107 | >> E1000_STATUS_FUNC_SHIFT; | ||
108 | } else { | ||
109 | bus->func = 0; | ||
110 | } | ||
111 | |||
112 | return 0; | ||
113 | } | ||
114 | |||
115 | /** | ||
116 | * e1000_clear_vfta - Clear VLAN filter table | ||
117 | * @hw: pointer to the HW structure | ||
118 | * | ||
119 | * Clears the register array which contains the VLAN filter table by | ||
120 | * setting all the values to 0. | ||
121 | **/ | ||
122 | void igb_clear_vfta(struct e1000_hw *hw) | ||
123 | { | ||
124 | u32 offset; | ||
125 | |||
126 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | ||
127 | array_wr32(E1000_VFTA, offset, 0); | ||
128 | wrfl(); | ||
129 | } | ||
130 | } | ||
131 | |||
132 | /** | ||
133 | * e1000_write_vfta - Write value to VLAN filter table | ||
134 | * @hw: pointer to the HW structure | ||
135 | * @offset: register offset in VLAN filter table | ||
136 | * @value: register value written to VLAN filter table | ||
137 | * | ||
138 | * Writes value at the given offset in the register array which stores | ||
139 | * the VLAN filter table. | ||
140 | **/ | ||
141 | void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) | ||
142 | { | ||
143 | array_wr32(E1000_VFTA, offset, value); | ||
144 | wrfl(); | ||
145 | } | ||
146 | |||
147 | /** | ||
148 | * e1000_init_rx_addrs - Initialize receive address's | ||
149 | * @hw: pointer to the HW structure | ||
150 | * @rar_count: receive address registers | ||
151 | * | ||
152 | * Setups the receive address registers by setting the base receive address | ||
153 | * register to the devices MAC address and clearing all the other receive | ||
154 | * address registers to 0. | ||
155 | **/ | ||
156 | void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) | ||
157 | { | ||
158 | u32 i; | ||
159 | |||
160 | /* Setup the receive address */ | ||
161 | hw_dbg(hw, "Programming MAC Address into RAR[0]\n"); | ||
162 | |||
163 | hw->mac.ops.rar_set(hw, hw->mac.addr, 0); | ||
164 | |||
165 | /* Zero out the other (rar_entry_count - 1) receive addresses */ | ||
166 | hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1); | ||
167 | for (i = 1; i < rar_count; i++) { | ||
168 | array_wr32(E1000_RA, (i << 1), 0); | ||
169 | wrfl(); | ||
170 | array_wr32(E1000_RA, ((i << 1) + 1), 0); | ||
171 | wrfl(); | ||
172 | } | ||
173 | } | ||
174 | |||
175 | /** | ||
176 | * e1000_check_alt_mac_addr - Check for alternate MAC addr | ||
177 | * @hw: pointer to the HW structure | ||
178 | * | ||
179 | * Checks the nvm for an alternate MAC address. An alternate MAC address | ||
180 | * can be setup by pre-boot software and must be treated like a permanent | ||
181 | * address and must override the actual permanent MAC address. If an | ||
182 | * alternate MAC address is fopund it is saved in the hw struct and | ||
183 | * prgrammed into RAR0 and the cuntion returns success, otherwise the | ||
184 | * fucntion returns an error. | ||
185 | **/ | ||
186 | s32 igb_check_alt_mac_addr(struct e1000_hw *hw) | ||
187 | { | ||
188 | u32 i; | ||
189 | s32 ret_val = 0; | ||
190 | u16 offset, nvm_alt_mac_addr_offset, nvm_data; | ||
191 | u8 alt_mac_addr[ETH_ALEN]; | ||
192 | |||
193 | ret_val = hw->nvm.ops.read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, | ||
194 | &nvm_alt_mac_addr_offset); | ||
195 | if (ret_val) { | ||
196 | hw_dbg(hw, "NVM Read Error\n"); | ||
197 | goto out; | ||
198 | } | ||
199 | |||
200 | if (nvm_alt_mac_addr_offset == 0xFFFF) { | ||
201 | ret_val = -(E1000_NOT_IMPLEMENTED); | ||
202 | goto out; | ||
203 | } | ||
204 | |||
205 | if (hw->bus.func == E1000_FUNC_1) | ||
206 | nvm_alt_mac_addr_offset += ETH_ALEN/sizeof(u16); | ||
207 | |||
208 | for (i = 0; i < ETH_ALEN; i += 2) { | ||
209 | offset = nvm_alt_mac_addr_offset + (i >> 1); | ||
210 | ret_val = hw->nvm.ops.read_nvm(hw, offset, 1, &nvm_data); | ||
211 | if (ret_val) { | ||
212 | hw_dbg(hw, "NVM Read Error\n"); | ||
213 | goto out; | ||
214 | } | ||
215 | |||
216 | alt_mac_addr[i] = (u8)(nvm_data & 0xFF); | ||
217 | alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); | ||
218 | } | ||
219 | |||
220 | /* if multicast bit is set, the alternate address will not be used */ | ||
221 | if (alt_mac_addr[0] & 0x01) { | ||
222 | ret_val = -(E1000_NOT_IMPLEMENTED); | ||
223 | goto out; | ||
224 | } | ||
225 | |||
226 | for (i = 0; i < ETH_ALEN; i++) | ||
227 | hw->mac.addr[i] = hw->mac.perm_addr[i] = alt_mac_addr[i]; | ||
228 | |||
229 | hw->mac.ops.rar_set(hw, hw->mac.perm_addr, 0); | ||
230 | |||
231 | out: | ||
232 | return ret_val; | ||
233 | } | ||
234 | |||
235 | /** | ||
236 | * e1000_rar_set - Set receive address register | ||
237 | * @hw: pointer to the HW structure | ||
238 | * @addr: pointer to the receive address | ||
239 | * @index: receive address array register | ||
240 | * | ||
241 | * Sets the receive address array register at index to the address passed | ||
242 | * in by addr. | ||
243 | **/ | ||
244 | void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) | ||
245 | { | ||
246 | u32 rar_low, rar_high; | ||
247 | |||
248 | /* | ||
249 | * HW expects these in little endian so we reverse the byte order | ||
250 | * from network order (big endian) to little endian | ||
251 | */ | ||
252 | rar_low = ((u32) addr[0] | | ||
253 | ((u32) addr[1] << 8) | | ||
254 | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); | ||
255 | |||
256 | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); | ||
257 | |||
258 | if (!hw->mac.disable_av) | ||
259 | rar_high |= E1000_RAH_AV; | ||
260 | |||
261 | array_wr32(E1000_RA, (index << 1), rar_low); | ||
262 | array_wr32(E1000_RA, ((index << 1) + 1), rar_high); | ||
263 | } | ||
264 | |||
265 | /** | ||
266 | * e1000_mta_set - Set multicast filter table address | ||
267 | * @hw: pointer to the HW structure | ||
268 | * @hash_value: determines the MTA register and bit to set | ||
269 | * | ||
270 | * The multicast table address is a register array of 32-bit registers. | ||
271 | * The hash_value is used to determine what register the bit is in, the | ||
272 | * current value is read, the new bit is OR'd in and the new value is | ||
273 | * written back into the register. | ||
274 | **/ | ||
275 | static void igb_mta_set(struct e1000_hw *hw, u32 hash_value) | ||
276 | { | ||
277 | u32 hash_bit, hash_reg, mta; | ||
278 | |||
279 | /* | ||
280 | * The MTA is a register array of 32-bit registers. It is | ||
281 | * treated like an array of (32*mta_reg_count) bits. We want to | ||
282 | * set bit BitArray[hash_value]. So we figure out what register | ||
283 | * the bit is in, read it, OR in the new bit, then write | ||
284 | * back the new value. The (hw->mac.mta_reg_count - 1) serves as a | ||
285 | * mask to bits 31:5 of the hash value which gives us the | ||
286 | * register we're modifying. The hash bit within that register | ||
287 | * is determined by the lower 5 bits of the hash value. | ||
288 | */ | ||
289 | hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); | ||
290 | hash_bit = hash_value & 0x1F; | ||
291 | |||
292 | mta = array_rd32(E1000_MTA, hash_reg); | ||
293 | |||
294 | mta |= (1 << hash_bit); | ||
295 | |||
296 | array_wr32(E1000_MTA, hash_reg, mta); | ||
297 | wrfl(); | ||
298 | } | ||
299 | |||
300 | /** | ||
301 | * e1000_update_mc_addr_list - Update Multicast addresses | ||
302 | * @hw: pointer to the HW structure | ||
303 | * @mc_addr_list: array of multicast addresses to program | ||
304 | * @mc_addr_count: number of multicast addresses to program | ||
305 | * @rar_used_count: the first RAR register free to program | ||
306 | * @rar_count: total number of supported Receive Address Registers | ||
307 | * | ||
308 | * Updates the Receive Address Registers and Multicast Table Array. | ||
309 | * The caller must have a packed mc_addr_list of multicast addresses. | ||
310 | * The parameter rar_count will usually be hw->mac.rar_entry_count | ||
311 | * unless there are workarounds that change this. | ||
312 | **/ | ||
313 | void igb_update_mc_addr_list(struct e1000_hw *hw, | ||
314 | u8 *mc_addr_list, u32 mc_addr_count, | ||
315 | u32 rar_used_count, u32 rar_count) | ||
316 | { | ||
317 | u32 hash_value; | ||
318 | u32 i; | ||
319 | |||
320 | /* | ||
321 | * Load the first set of multicast addresses into the exact | ||
322 | * filters (RAR). If there are not enough to fill the RAR | ||
323 | * array, clear the filters. | ||
324 | */ | ||
325 | for (i = rar_used_count; i < rar_count; i++) { | ||
326 | if (mc_addr_count) { | ||
327 | hw->mac.ops.rar_set(hw, mc_addr_list, i); | ||
328 | mc_addr_count--; | ||
329 | mc_addr_list += ETH_ALEN; | ||
330 | } else { | ||
331 | array_wr32(E1000_RA, i << 1, 0); | ||
332 | wrfl(); | ||
333 | array_wr32(E1000_RA, (i << 1) + 1, 0); | ||
334 | wrfl(); | ||
335 | } | ||
336 | } | ||
337 | |||
338 | /* Clear the old settings from the MTA */ | ||
339 | hw_dbg(hw, "Clearing MTA\n"); | ||
340 | for (i = 0; i < hw->mac.mta_reg_count; i++) { | ||
341 | array_wr32(E1000_MTA, i, 0); | ||
342 | wrfl(); | ||
343 | } | ||
344 | |||
345 | /* Load any remaining multicast addresses into the hash table. */ | ||
346 | for (; mc_addr_count > 0; mc_addr_count--) { | ||
347 | hash_value = igb_hash_mc_addr(hw, mc_addr_list); | ||
348 | hw_dbg(hw, "Hash value = 0x%03X\n", hash_value); | ||
349 | igb_mta_set(hw, hash_value); | ||
350 | mc_addr_list += ETH_ALEN; | ||
351 | } | ||
352 | } | ||
353 | |||
354 | /** | ||
355 | * e1000_hash_mc_addr - Generate a multicast hash value | ||
356 | * @hw: pointer to the HW structure | ||
357 | * @mc_addr: pointer to a multicast address | ||
358 | * | ||
359 | * Generates a multicast address hash value which is used to determine | ||
360 | * the multicast filter table array address and new table value. See | ||
361 | * igb_mta_set() | ||
362 | **/ | ||
363 | static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | ||
364 | { | ||
365 | u32 hash_value, hash_mask; | ||
366 | u8 bit_shift = 0; | ||
367 | |||
368 | /* Register count multiplied by bits per register */ | ||
369 | hash_mask = (hw->mac.mta_reg_count * 32) - 1; | ||
370 | |||
371 | /* | ||
372 | * For a mc_filter_type of 0, bit_shift is the number of left-shifts | ||
373 | * where 0xFF would still fall within the hash mask. | ||
374 | */ | ||
375 | while (hash_mask >> bit_shift != 0xFF) | ||
376 | bit_shift++; | ||
377 | |||
378 | /* | ||
379 | * The portion of the address that is used for the hash table | ||
380 | * is determined by the mc_filter_type setting. | ||
381 | * The algorithm is such that there is a total of 8 bits of shifting. | ||
382 | * The bit_shift for a mc_filter_type of 0 represents the number of | ||
383 | * left-shifts where the MSB of mc_addr[5] would still fall within | ||
384 | * the hash_mask. Case 0 does this exactly. Since there are a total | ||
385 | * of 8 bits of shifting, then mc_addr[4] will shift right the | ||
386 | * remaining number of bits. Thus 8 - bit_shift. The rest of the | ||
387 | * cases are a variation of this algorithm...essentially raising the | ||
388 | * number of bits to shift mc_addr[5] left, while still keeping the | ||
389 | * 8-bit shifting total. | ||
390 | * | ||
391 | * For example, given the following Destination MAC Address and an | ||
392 | * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), | ||
393 | * we can see that the bit_shift for case 0 is 4. These are the hash | ||
394 | * values resulting from each mc_filter_type... | ||
395 | * [0] [1] [2] [3] [4] [5] | ||
396 | * 01 AA 00 12 34 56 | ||
397 | * LSB MSB | ||
398 | * | ||
399 | * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 | ||
400 | * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 | ||
401 | * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 | ||
402 | * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 | ||
403 | */ | ||
404 | switch (hw->mac.mc_filter_type) { | ||
405 | default: | ||
406 | case 0: | ||
407 | break; | ||
408 | case 1: | ||
409 | bit_shift += 1; | ||
410 | break; | ||
411 | case 2: | ||
412 | bit_shift += 2; | ||
413 | break; | ||
414 | case 3: | ||
415 | bit_shift += 4; | ||
416 | break; | ||
417 | } | ||
418 | |||
419 | hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | | ||
420 | (((u16) mc_addr[5]) << bit_shift))); | ||
421 | |||
422 | return hash_value; | ||
423 | } | ||
424 | |||
425 | /** | ||
426 | * e1000_clear_hw_cntrs_base - Clear base hardware counters | ||
427 | * @hw: pointer to the HW structure | ||
428 | * | ||
429 | * Clears the base hardware counters by reading the counter registers. | ||
430 | **/ | ||
431 | void igb_clear_hw_cntrs_base(struct e1000_hw *hw) | ||
432 | { | ||
433 | u32 temp; | ||
434 | |||
435 | temp = rd32(E1000_CRCERRS); | ||
436 | temp = rd32(E1000_SYMERRS); | ||
437 | temp = rd32(E1000_MPC); | ||
438 | temp = rd32(E1000_SCC); | ||
439 | temp = rd32(E1000_ECOL); | ||
440 | temp = rd32(E1000_MCC); | ||
441 | temp = rd32(E1000_LATECOL); | ||
442 | temp = rd32(E1000_COLC); | ||
443 | temp = rd32(E1000_DC); | ||
444 | temp = rd32(E1000_SEC); | ||
445 | temp = rd32(E1000_RLEC); | ||
446 | temp = rd32(E1000_XONRXC); | ||
447 | temp = rd32(E1000_XONTXC); | ||
448 | temp = rd32(E1000_XOFFRXC); | ||
449 | temp = rd32(E1000_XOFFTXC); | ||
450 | temp = rd32(E1000_FCRUC); | ||
451 | temp = rd32(E1000_GPRC); | ||
452 | temp = rd32(E1000_BPRC); | ||
453 | temp = rd32(E1000_MPRC); | ||
454 | temp = rd32(E1000_GPTC); | ||
455 | temp = rd32(E1000_GORCL); | ||
456 | temp = rd32(E1000_GORCH); | ||
457 | temp = rd32(E1000_GOTCL); | ||
458 | temp = rd32(E1000_GOTCH); | ||
459 | temp = rd32(E1000_RNBC); | ||
460 | temp = rd32(E1000_RUC); | ||
461 | temp = rd32(E1000_RFC); | ||
462 | temp = rd32(E1000_ROC); | ||
463 | temp = rd32(E1000_RJC); | ||
464 | temp = rd32(E1000_TORL); | ||
465 | temp = rd32(E1000_TORH); | ||
466 | temp = rd32(E1000_TOTL); | ||
467 | temp = rd32(E1000_TOTH); | ||
468 | temp = rd32(E1000_TPR); | ||
469 | temp = rd32(E1000_TPT); | ||
470 | temp = rd32(E1000_MPTC); | ||
471 | temp = rd32(E1000_BPTC); | ||
472 | } | ||
473 | |||
474 | /** | ||
475 | * e1000_check_for_copper_link - Check for link (Copper) | ||
476 | * @hw: pointer to the HW structure | ||
477 | * | ||
478 | * Checks to see of the link status of the hardware has changed. If a | ||
479 | * change in link status has been detected, then we read the PHY registers | ||
480 | * to get the current speed/duplex if link exists. | ||
481 | **/ | ||
482 | s32 igb_check_for_copper_link(struct e1000_hw *hw) | ||
483 | { | ||
484 | struct e1000_mac_info *mac = &hw->mac; | ||
485 | s32 ret_val; | ||
486 | bool link; | ||
487 | |||
488 | /* | ||
489 | * We only want to go out to the PHY registers to see if Auto-Neg | ||
490 | * has completed and/or if our link status has changed. The | ||
491 | * get_link_status flag is set upon receiving a Link Status | ||
492 | * Change or Rx Sequence Error interrupt. | ||
493 | */ | ||
494 | if (!mac->get_link_status) { | ||
495 | ret_val = 0; | ||
496 | goto out; | ||
497 | } | ||
498 | |||
499 | /* | ||
500 | * First we want to see if the MII Status Register reports | ||
501 | * link. If so, then we want to get the current speed/duplex | ||
502 | * of the PHY. | ||
503 | */ | ||
504 | ret_val = igb_phy_has_link(hw, 1, 0, &link); | ||
505 | if (ret_val) | ||
506 | goto out; | ||
507 | |||
508 | if (!link) | ||
509 | goto out; /* No link detected */ | ||
510 | |||
511 | mac->get_link_status = false; | ||
512 | |||
513 | /* | ||
514 | * Check if there was DownShift, must be checked | ||
515 | * immediately after link-up | ||
516 | */ | ||
517 | igb_check_downshift(hw); | ||
518 | |||
519 | /* | ||
520 | * If we are forcing speed/duplex, then we simply return since | ||
521 | * we have already determined whether we have link or not. | ||
522 | */ | ||
523 | if (!mac->autoneg) { | ||
524 | ret_val = -E1000_ERR_CONFIG; | ||
525 | goto out; | ||
526 | } | ||
527 | |||
528 | /* | ||
529 | * Auto-Neg is enabled. Auto Speed Detection takes care | ||
530 | * of MAC speed/duplex configuration. So we only need to | ||
531 | * configure Collision Distance in the MAC. | ||
532 | */ | ||
533 | igb_config_collision_dist(hw); | ||
534 | |||
535 | /* | ||
536 | * Configure Flow Control now that Auto-Neg has completed. | ||
537 | * First, we need to restore the desired flow control | ||
538 | * settings because we may have had to re-autoneg with a | ||
539 | * different link partner. | ||
540 | */ | ||
541 | ret_val = igb_config_fc_after_link_up(hw); | ||
542 | if (ret_val) | ||
543 | hw_dbg(hw, "Error configuring flow control\n"); | ||
544 | |||
545 | out: | ||
546 | return ret_val; | ||
547 | } | ||
548 | |||
549 | /** | ||
550 | * e1000_setup_link - Setup flow control and link settings | ||
551 | * @hw: pointer to the HW structure | ||
552 | * | ||
553 | * Determines which flow control settings to use, then configures flow | ||
554 | * control. Calls the appropriate media-specific link configuration | ||
555 | * function. Assuming the adapter has a valid link partner, a valid link | ||
556 | * should be established. Assumes the hardware has previously been reset | ||
557 | * and the transmitter and receiver are not enabled. | ||
558 | **/ | ||
559 | s32 igb_setup_link(struct e1000_hw *hw) | ||
560 | { | ||
561 | s32 ret_val = 0; | ||
562 | |||
563 | /* | ||
564 | * In the case of the phy reset being blocked, we already have a link. | ||
565 | * We do not need to set it up again. | ||
566 | */ | ||
567 | if (igb_check_reset_block(hw)) | ||
568 | goto out; | ||
569 | |||
570 | ret_val = igb_set_default_fc(hw); | ||
571 | if (ret_val) | ||
572 | goto out; | ||
573 | |||
574 | /* | ||
575 | * We want to save off the original Flow Control configuration just | ||
576 | * in case we get disconnected and then reconnected into a different | ||
577 | * hub or switch with different Flow Control capabilities. | ||
578 | */ | ||
579 | hw->fc.original_type = hw->fc.type; | ||
580 | |||
581 | hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", hw->fc.type); | ||
582 | |||
583 | /* Call the necessary media_type subroutine to configure the link. */ | ||
584 | ret_val = hw->mac.ops.setup_physical_interface(hw); | ||
585 | if (ret_val) | ||
586 | goto out; | ||
587 | |||
588 | /* | ||
589 | * Initialize the flow control address, type, and PAUSE timer | ||
590 | * registers to their default values. This is done even if flow | ||
591 | * control is disabled, because it does not hurt anything to | ||
592 | * initialize these registers. | ||
593 | */ | ||
594 | hw_dbg(hw, | ||
595 | "Initializing the Flow Control address, type and timer regs\n"); | ||
596 | wr32(E1000_FCT, FLOW_CONTROL_TYPE); | ||
597 | wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); | ||
598 | wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); | ||
599 | |||
600 | wr32(E1000_FCTTV, hw->fc.pause_time); | ||
601 | |||
602 | ret_val = igb_set_fc_watermarks(hw); | ||
603 | |||
604 | out: | ||
605 | return ret_val; | ||
606 | } | ||
607 | |||
608 | /** | ||
609 | * e1000_config_collision_dist - Configure collision distance | ||
610 | * @hw: pointer to the HW structure | ||
611 | * | ||
612 | * Configures the collision distance to the default value and is used | ||
613 | * during link setup. Currently no func pointer exists and all | ||
614 | * implementations are handled in the generic version of this function. | ||
615 | **/ | ||
616 | void igb_config_collision_dist(struct e1000_hw *hw) | ||
617 | { | ||
618 | u32 tctl; | ||
619 | |||
620 | tctl = rd32(E1000_TCTL); | ||
621 | |||
622 | tctl &= ~E1000_TCTL_COLD; | ||
623 | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; | ||
624 | |||
625 | wr32(E1000_TCTL, tctl); | ||
626 | wrfl(); | ||
627 | } | ||
628 | |||
629 | /** | ||
630 | * e1000_set_fc_watermarks - Set flow control high/low watermarks | ||
631 | * @hw: pointer to the HW structure | ||
632 | * | ||
633 | * Sets the flow control high/low threshold (watermark) registers. If | ||
634 | * flow control XON frame transmission is enabled, then set XON frame | ||
635 | * tansmission as well. | ||
636 | **/ | ||
637 | static s32 igb_set_fc_watermarks(struct e1000_hw *hw) | ||
638 | { | ||
639 | s32 ret_val = 0; | ||
640 | u32 fcrtl = 0, fcrth = 0; | ||
641 | |||
642 | /* | ||
643 | * Set the flow control receive threshold registers. Normally, | ||
644 | * these registers will be set to a default threshold that may be | ||
645 | * adjusted later by the driver's runtime code. However, if the | ||
646 | * ability to transmit pause frames is not enabled, then these | ||
647 | * registers will be set to 0. | ||
648 | */ | ||
649 | if (hw->fc.type & e1000_fc_tx_pause) { | ||
650 | /* | ||
651 | * We need to set up the Receive Threshold high and low water | ||
652 | * marks as well as (optionally) enabling the transmission of | ||
653 | * XON frames. | ||
654 | */ | ||
655 | fcrtl = hw->fc.low_water; | ||
656 | if (hw->fc.send_xon) | ||
657 | fcrtl |= E1000_FCRTL_XONE; | ||
658 | |||
659 | fcrth = hw->fc.high_water; | ||
660 | } | ||
661 | wr32(E1000_FCRTL, fcrtl); | ||
662 | wr32(E1000_FCRTH, fcrth); | ||
663 | |||
664 | return ret_val; | ||
665 | } | ||
666 | |||
667 | /** | ||
668 | * e1000_set_default_fc - Set flow control default values | ||
669 | * @hw: pointer to the HW structure | ||
670 | * | ||
671 | * Read the EEPROM for the default values for flow control and store the | ||
672 | * values. | ||
673 | **/ | ||
674 | static s32 igb_set_default_fc(struct e1000_hw *hw) | ||
675 | { | ||
676 | s32 ret_val = 0; | ||
677 | u16 nvm_data; | ||
678 | |||
679 | /* | ||
680 | * Read and store word 0x0F of the EEPROM. This word contains bits | ||
681 | * that determine the hardware's default PAUSE (flow control) mode, | ||
682 | * a bit that determines whether the HW defaults to enabling or | ||
683 | * disabling auto-negotiation, and the direction of the | ||
684 | * SW defined pins. If there is no SW over-ride of the flow | ||
685 | * control setting, then the variable hw->fc will | ||
686 | * be initialized based on a value in the EEPROM. | ||
687 | */ | ||
688 | ret_val = hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, | ||
689 | &nvm_data); | ||
690 | |||
691 | if (ret_val) { | ||
692 | hw_dbg(hw, "NVM Read Error\n"); | ||
693 | goto out; | ||
694 | } | ||
695 | |||
696 | if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) | ||
697 | hw->fc.type = e1000_fc_none; | ||
698 | else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == | ||
699 | NVM_WORD0F_ASM_DIR) | ||
700 | hw->fc.type = e1000_fc_tx_pause; | ||
701 | else | ||
702 | hw->fc.type = e1000_fc_full; | ||
703 | |||
704 | out: | ||
705 | return ret_val; | ||
706 | } | ||
707 | |||
708 | /** | ||
709 | * e1000_force_mac_fc - Force the MAC's flow control settings | ||
710 | * @hw: pointer to the HW structure | ||
711 | * | ||
712 | * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the | ||
713 | * device control register to reflect the adapter settings. TFCE and RFCE | ||
714 | * need to be explicitly set by software when a copper PHY is used because | ||
715 | * autonegotiation is managed by the PHY rather than the MAC. Software must | ||
716 | * also configure these bits when link is forced on a fiber connection. | ||
717 | **/ | ||
718 | s32 igb_force_mac_fc(struct e1000_hw *hw) | ||
719 | { | ||
720 | u32 ctrl; | ||
721 | s32 ret_val = 0; | ||
722 | |||
723 | ctrl = rd32(E1000_CTRL); | ||
724 | |||
725 | /* | ||
726 | * Because we didn't get link via the internal auto-negotiation | ||
727 | * mechanism (we either forced link or we got link via PHY | ||
728 | * auto-neg), we have to manually enable/disable transmit an | ||
729 | * receive flow control. | ||
730 | * | ||
731 | * The "Case" statement below enables/disable flow control | ||
732 | * according to the "hw->fc.type" parameter. | ||
733 | * | ||
734 | * The possible values of the "fc" parameter are: | ||
735 | * 0: Flow control is completely disabled | ||
736 | * 1: Rx flow control is enabled (we can receive pause | ||
737 | * frames but not send pause frames). | ||
738 | * 2: Tx flow control is enabled (we can send pause frames | ||
739 | * frames but we do not receive pause frames). | ||
740 | * 3: Both Rx and TX flow control (symmetric) is enabled. | ||
741 | * other: No other values should be possible at this point. | ||
742 | */ | ||
743 | hw_dbg(hw, "hw->fc.type = %u\n", hw->fc.type); | ||
744 | |||
745 | switch (hw->fc.type) { | ||
746 | case e1000_fc_none: | ||
747 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | ||
748 | break; | ||
749 | case e1000_fc_rx_pause: | ||
750 | ctrl &= (~E1000_CTRL_TFCE); | ||
751 | ctrl |= E1000_CTRL_RFCE; | ||
752 | break; | ||
753 | case e1000_fc_tx_pause: | ||
754 | ctrl &= (~E1000_CTRL_RFCE); | ||
755 | ctrl |= E1000_CTRL_TFCE; | ||
756 | break; | ||
757 | case e1000_fc_full: | ||
758 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | ||
759 | break; | ||
760 | default: | ||
761 | hw_dbg(hw, "Flow control param set incorrectly\n"); | ||
762 | ret_val = -E1000_ERR_CONFIG; | ||
763 | goto out; | ||
764 | } | ||
765 | |||
766 | wr32(E1000_CTRL, ctrl); | ||
767 | |||
768 | out: | ||
769 | return ret_val; | ||
770 | } | ||
771 | |||
772 | /** | ||
773 | * e1000_config_fc_after_link_up - Configures flow control after link | ||
774 | * @hw: pointer to the HW structure | ||
775 | * | ||
776 | * Checks the status of auto-negotiation after link up to ensure that the | ||
777 | * speed and duplex were not forced. If the link needed to be forced, then | ||
778 | * flow control needs to be forced also. If auto-negotiation is enabled | ||
779 | * and did not fail, then we configure flow control based on our link | ||
780 | * partner. | ||
781 | **/ | ||
782 | s32 igb_config_fc_after_link_up(struct e1000_hw *hw) | ||
783 | { | ||
784 | struct e1000_mac_info *mac = &hw->mac; | ||
785 | s32 ret_val = 0; | ||
786 | u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; | ||
787 | u16 speed, duplex; | ||
788 | |||
789 | /* | ||
790 | * Check for the case where we have fiber media and auto-neg failed | ||
791 | * so we had to force link. In this case, we need to force the | ||
792 | * configuration of the MAC to match the "fc" parameter. | ||
793 | */ | ||
794 | if (mac->autoneg_failed) { | ||
795 | if (hw->phy.media_type == e1000_media_type_fiber || | ||
796 | hw->phy.media_type == e1000_media_type_internal_serdes) | ||
797 | ret_val = igb_force_mac_fc(hw); | ||
798 | } else { | ||
799 | if (hw->phy.media_type == e1000_media_type_copper) | ||
800 | ret_val = igb_force_mac_fc(hw); | ||
801 | } | ||
802 | |||
803 | if (ret_val) { | ||
804 | hw_dbg(hw, "Error forcing flow control settings\n"); | ||
805 | goto out; | ||
806 | } | ||
807 | |||
808 | /* | ||
809 | * Check for the case where we have copper media and auto-neg is | ||
810 | * enabled. In this case, we need to check and see if Auto-Neg | ||
811 | * has completed, and if so, how the PHY and link partner has | ||
812 | * flow control configured. | ||
813 | */ | ||
814 | if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { | ||
815 | /* | ||
816 | * Read the MII Status Register and check to see if AutoNeg | ||
817 | * has completed. We read this twice because this reg has | ||
818 | * some "sticky" (latched) bits. | ||
819 | */ | ||
820 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, | ||
821 | &mii_status_reg); | ||
822 | if (ret_val) | ||
823 | goto out; | ||
824 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, | ||
825 | &mii_status_reg); | ||
826 | if (ret_val) | ||
827 | goto out; | ||
828 | |||
829 | if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { | ||
830 | hw_dbg(hw, "Copper PHY and Auto Neg " | ||
831 | "has not completed.\n"); | ||
832 | goto out; | ||
833 | } | ||
834 | |||
835 | /* | ||
836 | * The AutoNeg process has completed, so we now need to | ||
837 | * read both the Auto Negotiation Advertisement | ||
838 | * Register (Address 4) and the Auto_Negotiation Base | ||
839 | * Page Ability Register (Address 5) to determine how | ||
840 | * flow control was negotiated. | ||
841 | */ | ||
842 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_AUTONEG_ADV, | ||
843 | &mii_nway_adv_reg); | ||
844 | if (ret_val) | ||
845 | goto out; | ||
846 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_LP_ABILITY, | ||
847 | &mii_nway_lp_ability_reg); | ||
848 | if (ret_val) | ||
849 | goto out; | ||
850 | |||
851 | /* | ||
852 | * Two bits in the Auto Negotiation Advertisement Register | ||
853 | * (Address 4) and two bits in the Auto Negotiation Base | ||
854 | * Page Ability Register (Address 5) determine flow control | ||
855 | * for both the PHY and the link partner. The following | ||
856 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | ||
857 | * 1999, describes these PAUSE resolution bits and how flow | ||
858 | * control is determined based upon these settings. | ||
859 | * NOTE: DC = Don't Care | ||
860 | * | ||
861 | * LOCAL DEVICE | LINK PARTNER | ||
862 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | ||
863 | *-------|---------|-------|---------|-------------------- | ||
864 | * 0 | 0 | DC | DC | e1000_fc_none | ||
865 | * 0 | 1 | 0 | DC | e1000_fc_none | ||
866 | * 0 | 1 | 1 | 0 | e1000_fc_none | ||
867 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
868 | * 1 | 0 | 0 | DC | e1000_fc_none | ||
869 | * 1 | DC | 1 | DC | e1000_fc_full | ||
870 | * 1 | 1 | 0 | 0 | e1000_fc_none | ||
871 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
872 | * | ||
873 | * Are both PAUSE bits set to 1? If so, this implies | ||
874 | * Symmetric Flow Control is enabled at both ends. The | ||
875 | * ASM_DIR bits are irrelevant per the spec. | ||
876 | * | ||
877 | * For Symmetric Flow Control: | ||
878 | * | ||
879 | * LOCAL DEVICE | LINK PARTNER | ||
880 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
881 | *-------|---------|-------|---------|-------------------- | ||
882 | * 1 | DC | 1 | DC | E1000_fc_full | ||
883 | * | ||
884 | */ | ||
885 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
886 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | ||
887 | /* | ||
888 | * Now we need to check if the user selected RX ONLY | ||
889 | * of pause frames. In this case, we had to advertise | ||
890 | * FULL flow control because we could not advertise RX | ||
891 | * ONLY. Hence, we must now check to see if we need to | ||
892 | * turn OFF the TRANSMISSION of PAUSE frames. | ||
893 | */ | ||
894 | if (hw->fc.original_type == e1000_fc_full) { | ||
895 | hw->fc.type = e1000_fc_full; | ||
896 | hw_dbg(hw, "Flow Control = FULL.\r\n"); | ||
897 | } else { | ||
898 | hw->fc.type = e1000_fc_rx_pause; | ||
899 | hw_dbg(hw, "Flow Control = " | ||
900 | "RX PAUSE frames only.\r\n"); | ||
901 | } | ||
902 | } | ||
903 | /* | ||
904 | * For receiving PAUSE frames ONLY. | ||
905 | * | ||
906 | * LOCAL DEVICE | LINK PARTNER | ||
907 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
908 | *-------|---------|-------|---------|-------------------- | ||
909 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
910 | */ | ||
911 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
912 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
913 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
914 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
915 | hw->fc.type = e1000_fc_tx_pause; | ||
916 | hw_dbg(hw, "Flow Control = TX PAUSE frames only.\r\n"); | ||
917 | } | ||
918 | /* | ||
919 | * For transmitting PAUSE frames ONLY. | ||
920 | * | ||
921 | * LOCAL DEVICE | LINK PARTNER | ||
922 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
923 | *-------|---------|-------|---------|-------------------- | ||
924 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
925 | */ | ||
926 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
927 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
928 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
929 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
930 | hw->fc.type = e1000_fc_rx_pause; | ||
931 | hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n"); | ||
932 | } | ||
933 | /* | ||
934 | * Per the IEEE spec, at this point flow control should be | ||
935 | * disabled. However, we want to consider that we could | ||
936 | * be connected to a legacy switch that doesn't advertise | ||
937 | * desired flow control, but can be forced on the link | ||
938 | * partner. So if we advertised no flow control, that is | ||
939 | * what we will resolve to. If we advertised some kind of | ||
940 | * receive capability (Rx Pause Only or Full Flow Control) | ||
941 | * and the link partner advertised none, we will configure | ||
942 | * ourselves to enable Rx Flow Control only. We can do | ||
943 | * this safely for two reasons: If the link partner really | ||
944 | * didn't want flow control enabled, and we enable Rx, no | ||
945 | * harm done since we won't be receiving any PAUSE frames | ||
946 | * anyway. If the intent on the link partner was to have | ||
947 | * flow control enabled, then by us enabling RX only, we | ||
948 | * can at least receive pause frames and process them. | ||
949 | * This is a good idea because in most cases, since we are | ||
950 | * predominantly a server NIC, more times than not we will | ||
951 | * be asked to delay transmission of packets than asking | ||
952 | * our link partner to pause transmission of frames. | ||
953 | */ | ||
954 | else if ((hw->fc.original_type == e1000_fc_none || | ||
955 | hw->fc.original_type == e1000_fc_tx_pause) || | ||
956 | hw->fc.strict_ieee) { | ||
957 | hw->fc.type = e1000_fc_none; | ||
958 | hw_dbg(hw, "Flow Control = NONE.\r\n"); | ||
959 | } else { | ||
960 | hw->fc.type = e1000_fc_rx_pause; | ||
961 | hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n"); | ||
962 | } | ||
963 | |||
964 | /* | ||
965 | * Now we need to do one last check... If we auto- | ||
966 | * negotiated to HALF DUPLEX, flow control should not be | ||
967 | * enabled per IEEE 802.3 spec. | ||
968 | */ | ||
969 | ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); | ||
970 | if (ret_val) { | ||
971 | hw_dbg(hw, "Error getting link speed and duplex\n"); | ||
972 | goto out; | ||
973 | } | ||
974 | |||
975 | if (duplex == HALF_DUPLEX) | ||
976 | hw->fc.type = e1000_fc_none; | ||
977 | |||
978 | /* | ||
979 | * Now we call a subroutine to actually force the MAC | ||
980 | * controller to use the correct flow control settings. | ||
981 | */ | ||
982 | ret_val = igb_force_mac_fc(hw); | ||
983 | if (ret_val) { | ||
984 | hw_dbg(hw, "Error forcing flow control settings\n"); | ||
985 | goto out; | ||
986 | } | ||
987 | } | ||
988 | |||
989 | out: | ||
990 | return ret_val; | ||
991 | } | ||
992 | |||
993 | /** | ||
994 | * e1000_get_speed_and_duplex_copper - Retreive current speed/duplex | ||
995 | * @hw: pointer to the HW structure | ||
996 | * @speed: stores the current speed | ||
997 | * @duplex: stores the current duplex | ||
998 | * | ||
999 | * Read the status register for the current speed/duplex and store the current | ||
1000 | * speed and duplex for copper connections. | ||
1001 | **/ | ||
1002 | s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, | ||
1003 | u16 *duplex) | ||
1004 | { | ||
1005 | u32 status; | ||
1006 | |||
1007 | status = rd32(E1000_STATUS); | ||
1008 | if (status & E1000_STATUS_SPEED_1000) { | ||
1009 | *speed = SPEED_1000; | ||
1010 | hw_dbg(hw, "1000 Mbs, "); | ||
1011 | } else if (status & E1000_STATUS_SPEED_100) { | ||
1012 | *speed = SPEED_100; | ||
1013 | hw_dbg(hw, "100 Mbs, "); | ||
1014 | } else { | ||
1015 | *speed = SPEED_10; | ||
1016 | hw_dbg(hw, "10 Mbs, "); | ||
1017 | } | ||
1018 | |||
1019 | if (status & E1000_STATUS_FD) { | ||
1020 | *duplex = FULL_DUPLEX; | ||
1021 | hw_dbg(hw, "Full Duplex\n"); | ||
1022 | } else { | ||
1023 | *duplex = HALF_DUPLEX; | ||
1024 | hw_dbg(hw, "Half Duplex\n"); | ||
1025 | } | ||
1026 | |||
1027 | return 0; | ||
1028 | } | ||
1029 | |||
1030 | /** | ||
1031 | * e1000_get_hw_semaphore - Acquire hardware semaphore | ||
1032 | * @hw: pointer to the HW structure | ||
1033 | * | ||
1034 | * Acquire the HW semaphore to access the PHY or NVM | ||
1035 | **/ | ||
1036 | s32 igb_get_hw_semaphore(struct e1000_hw *hw) | ||
1037 | { | ||
1038 | u32 swsm; | ||
1039 | s32 ret_val = 0; | ||
1040 | s32 timeout = hw->nvm.word_size + 1; | ||
1041 | s32 i = 0; | ||
1042 | |||
1043 | /* Get the SW semaphore */ | ||
1044 | while (i < timeout) { | ||
1045 | swsm = rd32(E1000_SWSM); | ||
1046 | if (!(swsm & E1000_SWSM_SMBI)) | ||
1047 | break; | ||
1048 | |||
1049 | udelay(50); | ||
1050 | i++; | ||
1051 | } | ||
1052 | |||
1053 | if (i == timeout) { | ||
1054 | hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n"); | ||
1055 | ret_val = -E1000_ERR_NVM; | ||
1056 | goto out; | ||
1057 | } | ||
1058 | |||
1059 | /* Get the FW semaphore. */ | ||
1060 | for (i = 0; i < timeout; i++) { | ||
1061 | swsm = rd32(E1000_SWSM); | ||
1062 | wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); | ||
1063 | |||
1064 | /* Semaphore acquired if bit latched */ | ||
1065 | if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) | ||
1066 | break; | ||
1067 | |||
1068 | udelay(50); | ||
1069 | } | ||
1070 | |||
1071 | if (i == timeout) { | ||
1072 | /* Release semaphores */ | ||
1073 | igb_put_hw_semaphore(hw); | ||
1074 | hw_dbg(hw, "Driver can't access the NVM\n"); | ||
1075 | ret_val = -E1000_ERR_NVM; | ||
1076 | goto out; | ||
1077 | } | ||
1078 | |||
1079 | out: | ||
1080 | return ret_val; | ||
1081 | } | ||
1082 | |||
1083 | /** | ||
1084 | * e1000_put_hw_semaphore - Release hardware semaphore | ||
1085 | * @hw: pointer to the HW structure | ||
1086 | * | ||
1087 | * Release hardware semaphore used to access the PHY or NVM | ||
1088 | **/ | ||
1089 | void igb_put_hw_semaphore(struct e1000_hw *hw) | ||
1090 | { | ||
1091 | u32 swsm; | ||
1092 | |||
1093 | swsm = rd32(E1000_SWSM); | ||
1094 | |||
1095 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | ||
1096 | |||
1097 | wr32(E1000_SWSM, swsm); | ||
1098 | } | ||
1099 | |||
1100 | /** | ||
1101 | * e1000_get_auto_rd_done - Check for auto read completion | ||
1102 | * @hw: pointer to the HW structure | ||
1103 | * | ||
1104 | * Check EEPROM for Auto Read done bit. | ||
1105 | **/ | ||
1106 | s32 igb_get_auto_rd_done(struct e1000_hw *hw) | ||
1107 | { | ||
1108 | s32 i = 0; | ||
1109 | s32 ret_val = 0; | ||
1110 | |||
1111 | |||
1112 | while (i < AUTO_READ_DONE_TIMEOUT) { | ||
1113 | if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD) | ||
1114 | break; | ||
1115 | msleep(1); | ||
1116 | i++; | ||
1117 | } | ||
1118 | |||
1119 | if (i == AUTO_READ_DONE_TIMEOUT) { | ||
1120 | hw_dbg(hw, "Auto read by HW from NVM has not completed.\n"); | ||
1121 | ret_val = -E1000_ERR_RESET; | ||
1122 | goto out; | ||
1123 | } | ||
1124 | |||
1125 | out: | ||
1126 | return ret_val; | ||
1127 | } | ||
1128 | |||
1129 | /** | ||
1130 | * e1000_valid_led_default - Verify a valid default LED config | ||
1131 | * @hw: pointer to the HW structure | ||
1132 | * @data: pointer to the NVM (EEPROM) | ||
1133 | * | ||
1134 | * Read the EEPROM for the current default LED configuration. If the | ||
1135 | * LED configuration is not valid, set to a valid LED configuration. | ||
1136 | **/ | ||
1137 | static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data) | ||
1138 | { | ||
1139 | s32 ret_val; | ||
1140 | |||
1141 | ret_val = hw->nvm.ops.read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); | ||
1142 | if (ret_val) { | ||
1143 | hw_dbg(hw, "NVM Read Error\n"); | ||
1144 | goto out; | ||
1145 | } | ||
1146 | |||
1147 | if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) | ||
1148 | *data = ID_LED_DEFAULT; | ||
1149 | |||
1150 | out: | ||
1151 | return ret_val; | ||
1152 | } | ||
1153 | |||
1154 | /** | ||
1155 | * e1000_id_led_init - | ||
1156 | * @hw: pointer to the HW structure | ||
1157 | * | ||
1158 | **/ | ||
1159 | s32 igb_id_led_init(struct e1000_hw *hw) | ||
1160 | { | ||
1161 | struct e1000_mac_info *mac = &hw->mac; | ||
1162 | s32 ret_val; | ||
1163 | const u32 ledctl_mask = 0x000000FF; | ||
1164 | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | ||
1165 | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | ||
1166 | u16 data, i, temp; | ||
1167 | const u16 led_mask = 0x0F; | ||
1168 | |||
1169 | ret_val = igb_valid_led_default(hw, &data); | ||
1170 | if (ret_val) | ||
1171 | goto out; | ||
1172 | |||
1173 | mac->ledctl_default = rd32(E1000_LEDCTL); | ||
1174 | mac->ledctl_mode1 = mac->ledctl_default; | ||
1175 | mac->ledctl_mode2 = mac->ledctl_default; | ||
1176 | |||
1177 | for (i = 0; i < 4; i++) { | ||
1178 | temp = (data >> (i << 2)) & led_mask; | ||
1179 | switch (temp) { | ||
1180 | case ID_LED_ON1_DEF2: | ||
1181 | case ID_LED_ON1_ON2: | ||
1182 | case ID_LED_ON1_OFF2: | ||
1183 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
1184 | mac->ledctl_mode1 |= ledctl_on << (i << 3); | ||
1185 | break; | ||
1186 | case ID_LED_OFF1_DEF2: | ||
1187 | case ID_LED_OFF1_ON2: | ||
1188 | case ID_LED_OFF1_OFF2: | ||
1189 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
1190 | mac->ledctl_mode1 |= ledctl_off << (i << 3); | ||
1191 | break; | ||
1192 | default: | ||
1193 | /* Do nothing */ | ||
1194 | break; | ||
1195 | } | ||
1196 | switch (temp) { | ||
1197 | case ID_LED_DEF1_ON2: | ||
1198 | case ID_LED_ON1_ON2: | ||
1199 | case ID_LED_OFF1_ON2: | ||
1200 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
1201 | mac->ledctl_mode2 |= ledctl_on << (i << 3); | ||
1202 | break; | ||
1203 | case ID_LED_DEF1_OFF2: | ||
1204 | case ID_LED_ON1_OFF2: | ||
1205 | case ID_LED_OFF1_OFF2: | ||
1206 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
1207 | mac->ledctl_mode2 |= ledctl_off << (i << 3); | ||
1208 | break; | ||
1209 | default: | ||
1210 | /* Do nothing */ | ||
1211 | break; | ||
1212 | } | ||
1213 | } | ||
1214 | |||
1215 | out: | ||
1216 | return ret_val; | ||
1217 | } | ||
1218 | |||
1219 | /** | ||
1220 | * e1000_cleanup_led - Set LED config to default operation | ||
1221 | * @hw: pointer to the HW structure | ||
1222 | * | ||
1223 | * Remove the current LED configuration and set the LED configuration | ||
1224 | * to the default value, saved from the EEPROM. | ||
1225 | **/ | ||
1226 | s32 igb_cleanup_led(struct e1000_hw *hw) | ||
1227 | { | ||
1228 | wr32(E1000_LEDCTL, hw->mac.ledctl_default); | ||
1229 | return 0; | ||
1230 | } | ||
1231 | |||
1232 | /** | ||
1233 | * e1000_blink_led - Blink LED | ||
1234 | * @hw: pointer to the HW structure | ||
1235 | * | ||
1236 | * Blink the led's which are set to be on. | ||
1237 | **/ | ||
1238 | s32 igb_blink_led(struct e1000_hw *hw) | ||
1239 | { | ||
1240 | u32 ledctl_blink = 0; | ||
1241 | u32 i; | ||
1242 | |||
1243 | if (hw->phy.media_type == e1000_media_type_fiber) { | ||
1244 | /* always blink LED0 for PCI-E fiber */ | ||
1245 | ledctl_blink = E1000_LEDCTL_LED0_BLINK | | ||
1246 | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); | ||
1247 | } else { | ||
1248 | /* | ||
1249 | * set the blink bit for each LED that's "on" (0x0E) | ||
1250 | * in ledctl_mode2 | ||
1251 | */ | ||
1252 | ledctl_blink = hw->mac.ledctl_mode2; | ||
1253 | for (i = 0; i < 4; i++) | ||
1254 | if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == | ||
1255 | E1000_LEDCTL_MODE_LED_ON) | ||
1256 | ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << | ||
1257 | (i * 8)); | ||
1258 | } | ||
1259 | |||
1260 | wr32(E1000_LEDCTL, ledctl_blink); | ||
1261 | |||
1262 | return 0; | ||
1263 | } | ||
1264 | |||
1265 | /** | ||
1266 | * e1000_led_off - Turn LED off | ||
1267 | * @hw: pointer to the HW structure | ||
1268 | * | ||
1269 | * Turn LED off. | ||
1270 | **/ | ||
1271 | s32 igb_led_off(struct e1000_hw *hw) | ||
1272 | { | ||
1273 | u32 ctrl; | ||
1274 | |||
1275 | switch (hw->phy.media_type) { | ||
1276 | case e1000_media_type_fiber: | ||
1277 | ctrl = rd32(E1000_CTRL); | ||
1278 | ctrl |= E1000_CTRL_SWDPIN0; | ||
1279 | ctrl |= E1000_CTRL_SWDPIO0; | ||
1280 | wr32(E1000_CTRL, ctrl); | ||
1281 | break; | ||
1282 | case e1000_media_type_copper: | ||
1283 | wr32(E1000_LEDCTL, hw->mac.ledctl_mode1); | ||
1284 | break; | ||
1285 | default: | ||
1286 | break; | ||
1287 | } | ||
1288 | |||
1289 | return 0; | ||
1290 | } | ||
1291 | |||
1292 | /** | ||
1293 | * e1000_disable_pcie_master - Disables PCI-express master access | ||
1294 | * @hw: pointer to the HW structure | ||
1295 | * | ||
1296 | * Returns 0 (0) if successful, else returns -10 | ||
1297 | * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued | ||
1298 | * the master requests to be disabled. | ||
1299 | * | ||
1300 | * Disables PCI-Express master access and verifies there are no pending | ||
1301 | * requests. | ||
1302 | **/ | ||
1303 | s32 igb_disable_pcie_master(struct e1000_hw *hw) | ||
1304 | { | ||
1305 | u32 ctrl; | ||
1306 | s32 timeout = MASTER_DISABLE_TIMEOUT; | ||
1307 | s32 ret_val = 0; | ||
1308 | |||
1309 | if (hw->bus.type != e1000_bus_type_pci_express) | ||
1310 | goto out; | ||
1311 | |||
1312 | ctrl = rd32(E1000_CTRL); | ||
1313 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | ||
1314 | wr32(E1000_CTRL, ctrl); | ||
1315 | |||
1316 | while (timeout) { | ||
1317 | if (!(rd32(E1000_STATUS) & | ||
1318 | E1000_STATUS_GIO_MASTER_ENABLE)) | ||
1319 | break; | ||
1320 | udelay(100); | ||
1321 | timeout--; | ||
1322 | } | ||
1323 | |||
1324 | if (!timeout) { | ||
1325 | hw_dbg(hw, "Master requests are pending.\n"); | ||
1326 | ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; | ||
1327 | goto out; | ||
1328 | } | ||
1329 | |||
1330 | out: | ||
1331 | return ret_val; | ||
1332 | } | ||
1333 | |||
1334 | /** | ||
1335 | * e1000_reset_adaptive - Reset Adaptive Interframe Spacing | ||
1336 | * @hw: pointer to the HW structure | ||
1337 | * | ||
1338 | * Reset the Adaptive Interframe Spacing throttle to default values. | ||
1339 | **/ | ||
1340 | void igb_reset_adaptive(struct e1000_hw *hw) | ||
1341 | { | ||
1342 | struct e1000_mac_info *mac = &hw->mac; | ||
1343 | |||
1344 | if (!mac->adaptive_ifs) { | ||
1345 | hw_dbg(hw, "Not in Adaptive IFS mode!\n"); | ||
1346 | goto out; | ||
1347 | } | ||
1348 | |||
1349 | if (!mac->ifs_params_forced) { | ||
1350 | mac->current_ifs_val = 0; | ||
1351 | mac->ifs_min_val = IFS_MIN; | ||
1352 | mac->ifs_max_val = IFS_MAX; | ||
1353 | mac->ifs_step_size = IFS_STEP; | ||
1354 | mac->ifs_ratio = IFS_RATIO; | ||
1355 | } | ||
1356 | |||
1357 | mac->in_ifs_mode = false; | ||
1358 | wr32(E1000_AIT, 0); | ||
1359 | out: | ||
1360 | return; | ||
1361 | } | ||
1362 | |||
1363 | /** | ||
1364 | * e1000_update_adaptive - Update Adaptive Interframe Spacing | ||
1365 | * @hw: pointer to the HW structure | ||
1366 | * | ||
1367 | * Update the Adaptive Interframe Spacing Throttle value based on the | ||
1368 | * time between transmitted packets and time between collisions. | ||
1369 | **/ | ||
1370 | void igb_update_adaptive(struct e1000_hw *hw) | ||
1371 | { | ||
1372 | struct e1000_mac_info *mac = &hw->mac; | ||
1373 | |||
1374 | if (!mac->adaptive_ifs) { | ||
1375 | hw_dbg(hw, "Not in Adaptive IFS mode!\n"); | ||
1376 | goto out; | ||
1377 | } | ||
1378 | |||
1379 | if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { | ||
1380 | if (mac->tx_packet_delta > MIN_NUM_XMITS) { | ||
1381 | mac->in_ifs_mode = true; | ||
1382 | if (mac->current_ifs_val < mac->ifs_max_val) { | ||
1383 | if (!mac->current_ifs_val) | ||
1384 | mac->current_ifs_val = mac->ifs_min_val; | ||
1385 | else | ||
1386 | mac->current_ifs_val += | ||
1387 | mac->ifs_step_size; | ||
1388 | wr32(E1000_AIT, | ||
1389 | mac->current_ifs_val); | ||
1390 | } | ||
1391 | } | ||
1392 | } else { | ||
1393 | if (mac->in_ifs_mode && | ||
1394 | (mac->tx_packet_delta <= MIN_NUM_XMITS)) { | ||
1395 | mac->current_ifs_val = 0; | ||
1396 | mac->in_ifs_mode = false; | ||
1397 | wr32(E1000_AIT, 0); | ||
1398 | } | ||
1399 | } | ||
1400 | out: | ||
1401 | return; | ||
1402 | } | ||
1403 | |||
1404 | /** | ||
1405 | * e1000_validate_mdi_setting - Verify MDI/MDIx settings | ||
1406 | * @hw: pointer to the HW structure | ||
1407 | * | ||
1408 | * Verify that when not using auto-negotitation that MDI/MDIx is correctly | ||
1409 | * set, which is forced to MDI mode only. | ||
1410 | **/ | ||
1411 | s32 igb_validate_mdi_setting(struct e1000_hw *hw) | ||
1412 | { | ||
1413 | s32 ret_val = 0; | ||
1414 | |||
1415 | if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { | ||
1416 | hw_dbg(hw, "Invalid MDI setting detected\n"); | ||
1417 | hw->phy.mdix = 1; | ||
1418 | ret_val = -E1000_ERR_CONFIG; | ||
1419 | goto out; | ||
1420 | } | ||
1421 | |||
1422 | out: | ||
1423 | return ret_val; | ||
1424 | } | ||
1425 | |||
1426 | /** | ||
1427 | * e1000_write_8bit_ctrl_reg - Write a 8bit CTRL register | ||
1428 | * @hw: pointer to the HW structure | ||
1429 | * @reg: 32bit register offset such as E1000_SCTL | ||
1430 | * @offset: register offset to write to | ||
1431 | * @data: data to write at register offset | ||
1432 | * | ||
1433 | * Writes an address/data control type register. There are several of these | ||
1434 | * and they all have the format address << 8 | data and bit 31 is polled for | ||
1435 | * completion. | ||
1436 | **/ | ||
1437 | s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, | ||
1438 | u32 offset, u8 data) | ||
1439 | { | ||
1440 | u32 i, regvalue = 0; | ||
1441 | s32 ret_val = 0; | ||
1442 | |||
1443 | /* Set up the address and data */ | ||
1444 | regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); | ||
1445 | wr32(reg, regvalue); | ||
1446 | |||
1447 | /* Poll the ready bit to see if the MDI read completed */ | ||
1448 | for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { | ||
1449 | udelay(5); | ||
1450 | regvalue = rd32(reg); | ||
1451 | if (regvalue & E1000_GEN_CTL_READY) | ||
1452 | break; | ||
1453 | } | ||
1454 | if (!(regvalue & E1000_GEN_CTL_READY)) { | ||
1455 | hw_dbg(hw, "Reg %08x did not indicate ready\n", reg); | ||
1456 | ret_val = -E1000_ERR_PHY; | ||
1457 | goto out; | ||
1458 | } | ||
1459 | |||
1460 | out: | ||
1461 | return ret_val; | ||
1462 | } | ||
1463 | |||
1464 | /** | ||
1465 | * e1000_enable_mng_pass_thru - Enable processing of ARP's | ||
1466 | * @hw: pointer to the HW structure | ||
1467 | * | ||
1468 | * Verifies the hardware needs to allow ARPs to be processed by the host. | ||
1469 | **/ | ||
1470 | bool igb_enable_mng_pass_thru(struct e1000_hw *hw) | ||
1471 | { | ||
1472 | u32 manc; | ||
1473 | u32 fwsm, factps; | ||
1474 | bool ret_val = false; | ||
1475 | |||
1476 | if (!hw->mac.asf_firmware_present) | ||
1477 | goto out; | ||
1478 | |||
1479 | manc = rd32(E1000_MANC); | ||
1480 | |||
1481 | if (!(manc & E1000_MANC_RCV_TCO_EN) || | ||
1482 | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) | ||
1483 | goto out; | ||
1484 | |||
1485 | if (hw->mac.arc_subsystem_valid) { | ||
1486 | fwsm = rd32(E1000_FWSM); | ||
1487 | factps = rd32(E1000_FACTPS); | ||
1488 | |||
1489 | if (!(factps & E1000_FACTPS_MNGCG) && | ||
1490 | ((fwsm & E1000_FWSM_MODE_MASK) == | ||
1491 | (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { | ||
1492 | ret_val = true; | ||
1493 | goto out; | ||
1494 | } | ||
1495 | } else { | ||
1496 | if ((manc & E1000_MANC_SMBUS_EN) && | ||
1497 | !(manc & E1000_MANC_ASF_EN)) { | ||
1498 | ret_val = true; | ||
1499 | goto out; | ||
1500 | } | ||
1501 | } | ||
1502 | |||
1503 | out: | ||
1504 | return ret_val; | ||
1505 | } | ||
diff --git a/drivers/net/igb/e1000_mac.h b/drivers/net/igb/e1000_mac.h new file mode 100644 index 000000000000..326b6592307b --- /dev/null +++ b/drivers/net/igb/e1000_mac.h | |||
@@ -0,0 +1,98 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #ifndef _E1000_MAC_H_ | ||
29 | #define _E1000_MAC_H_ | ||
30 | |||
31 | #include "e1000_hw.h" | ||
32 | |||
33 | #include "e1000_phy.h" | ||
34 | #include "e1000_nvm.h" | ||
35 | #include "e1000_defines.h" | ||
36 | |||
37 | /* | ||
38 | * Functions that should not be called directly from drivers but can be used | ||
39 | * by other files in this 'shared code' | ||
40 | */ | ||
41 | s32 igb_blink_led(struct e1000_hw *hw); | ||
42 | s32 igb_check_for_copper_link(struct e1000_hw *hw); | ||
43 | s32 igb_cleanup_led(struct e1000_hw *hw); | ||
44 | s32 igb_config_fc_after_link_up(struct e1000_hw *hw); | ||
45 | s32 igb_disable_pcie_master(struct e1000_hw *hw); | ||
46 | s32 igb_force_mac_fc(struct e1000_hw *hw); | ||
47 | s32 igb_get_auto_rd_done(struct e1000_hw *hw); | ||
48 | s32 igb_get_bus_info_pcie(struct e1000_hw *hw); | ||
49 | s32 igb_get_hw_semaphore(struct e1000_hw *hw); | ||
50 | s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, | ||
51 | u16 *duplex); | ||
52 | s32 igb_id_led_init(struct e1000_hw *hw); | ||
53 | s32 igb_led_off(struct e1000_hw *hw); | ||
54 | void igb_update_mc_addr_list(struct e1000_hw *hw, | ||
55 | u8 *mc_addr_list, u32 mc_addr_count, | ||
56 | u32 rar_used_count, u32 rar_count); | ||
57 | s32 igb_setup_link(struct e1000_hw *hw); | ||
58 | s32 igb_validate_mdi_setting(struct e1000_hw *hw); | ||
59 | s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, | ||
60 | u32 offset, u8 data); | ||
61 | |||
62 | void igb_clear_hw_cntrs_base(struct e1000_hw *hw); | ||
63 | void igb_clear_vfta(struct e1000_hw *hw); | ||
64 | void igb_config_collision_dist(struct e1000_hw *hw); | ||
65 | void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count); | ||
66 | void igb_put_hw_semaphore(struct e1000_hw *hw); | ||
67 | void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index); | ||
68 | s32 igb_check_alt_mac_addr(struct e1000_hw *hw); | ||
69 | void igb_remove_device(struct e1000_hw *hw); | ||
70 | void igb_reset_adaptive(struct e1000_hw *hw); | ||
71 | void igb_update_adaptive(struct e1000_hw *hw); | ||
72 | void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value); | ||
73 | |||
74 | bool igb_enable_mng_pass_thru(struct e1000_hw *hw); | ||
75 | |||
76 | enum e1000_mng_mode { | ||
77 | e1000_mng_mode_none = 0, | ||
78 | e1000_mng_mode_asf, | ||
79 | e1000_mng_mode_pt, | ||
80 | e1000_mng_mode_ipmi, | ||
81 | e1000_mng_mode_host_if_only | ||
82 | }; | ||
83 | |||
84 | #define E1000_FACTPS_MNGCG 0x20000000 | ||
85 | |||
86 | #define E1000_FWSM_MODE_MASK 0xE | ||
87 | #define E1000_FWSM_MODE_SHIFT 1 | ||
88 | |||
89 | #define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 | ||
90 | #define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2 | ||
91 | |||
92 | #define E1000_HICR_EN 0x01 /* Enable bit - RO */ | ||
93 | /* Driver sets this bit when done to put command in RAM */ | ||
94 | #define E1000_HICR_C 0x02 | ||
95 | |||
96 | extern void e1000_init_function_pointers_82575(struct e1000_hw *hw); | ||
97 | |||
98 | #endif | ||
diff --git a/drivers/net/igb/e1000_nvm.c b/drivers/net/igb/e1000_nvm.c new file mode 100644 index 000000000000..2897106fee92 --- /dev/null +++ b/drivers/net/igb/e1000_nvm.c | |||
@@ -0,0 +1,605 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #include <linux/if_ether.h> | ||
29 | #include <linux/delay.h> | ||
30 | |||
31 | #include "e1000_mac.h" | ||
32 | #include "e1000_nvm.h" | ||
33 | |||
34 | /** | ||
35 | * e1000_raise_eec_clk - Raise EEPROM clock | ||
36 | * @hw: pointer to the HW structure | ||
37 | * @eecd: pointer to the EEPROM | ||
38 | * | ||
39 | * Enable/Raise the EEPROM clock bit. | ||
40 | **/ | ||
41 | static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) | ||
42 | { | ||
43 | *eecd = *eecd | E1000_EECD_SK; | ||
44 | wr32(E1000_EECD, *eecd); | ||
45 | wrfl(); | ||
46 | udelay(hw->nvm.delay_usec); | ||
47 | } | ||
48 | |||
49 | /** | ||
50 | * e1000_lower_eec_clk - Lower EEPROM clock | ||
51 | * @hw: pointer to the HW structure | ||
52 | * @eecd: pointer to the EEPROM | ||
53 | * | ||
54 | * Clear/Lower the EEPROM clock bit. | ||
55 | **/ | ||
56 | static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) | ||
57 | { | ||
58 | *eecd = *eecd & ~E1000_EECD_SK; | ||
59 | wr32(E1000_EECD, *eecd); | ||
60 | wrfl(); | ||
61 | udelay(hw->nvm.delay_usec); | ||
62 | } | ||
63 | |||
64 | /** | ||
65 | * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM | ||
66 | * @hw: pointer to the HW structure | ||
67 | * @data: data to send to the EEPROM | ||
68 | * @count: number of bits to shift out | ||
69 | * | ||
70 | * We need to shift 'count' bits out to the EEPROM. So, the value in the | ||
71 | * "data" parameter will be shifted out to the EEPROM one bit at a time. | ||
72 | * In order to do this, "data" must be broken down into bits. | ||
73 | **/ | ||
74 | static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) | ||
75 | { | ||
76 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
77 | u32 eecd = rd32(E1000_EECD); | ||
78 | u32 mask; | ||
79 | |||
80 | mask = 0x01 << (count - 1); | ||
81 | if (nvm->type == e1000_nvm_eeprom_microwire) | ||
82 | eecd &= ~E1000_EECD_DO; | ||
83 | else if (nvm->type == e1000_nvm_eeprom_spi) | ||
84 | eecd |= E1000_EECD_DO; | ||
85 | |||
86 | do { | ||
87 | eecd &= ~E1000_EECD_DI; | ||
88 | |||
89 | if (data & mask) | ||
90 | eecd |= E1000_EECD_DI; | ||
91 | |||
92 | wr32(E1000_EECD, eecd); | ||
93 | wrfl(); | ||
94 | |||
95 | udelay(nvm->delay_usec); | ||
96 | |||
97 | igb_raise_eec_clk(hw, &eecd); | ||
98 | igb_lower_eec_clk(hw, &eecd); | ||
99 | |||
100 | mask >>= 1; | ||
101 | } while (mask); | ||
102 | |||
103 | eecd &= ~E1000_EECD_DI; | ||
104 | wr32(E1000_EECD, eecd); | ||
105 | } | ||
106 | |||
107 | /** | ||
108 | * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM | ||
109 | * @hw: pointer to the HW structure | ||
110 | * @count: number of bits to shift in | ||
111 | * | ||
112 | * In order to read a register from the EEPROM, we need to shift 'count' bits | ||
113 | * in from the EEPROM. Bits are "shifted in" by raising the clock input to | ||
114 | * the EEPROM (setting the SK bit), and then reading the value of the data out | ||
115 | * "DO" bit. During this "shifting in" process the data in "DI" bit should | ||
116 | * always be clear. | ||
117 | **/ | ||
118 | static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count) | ||
119 | { | ||
120 | u32 eecd; | ||
121 | u32 i; | ||
122 | u16 data; | ||
123 | |||
124 | eecd = rd32(E1000_EECD); | ||
125 | |||
126 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | ||
127 | data = 0; | ||
128 | |||
129 | for (i = 0; i < count; i++) { | ||
130 | data <<= 1; | ||
131 | igb_raise_eec_clk(hw, &eecd); | ||
132 | |||
133 | eecd = rd32(E1000_EECD); | ||
134 | |||
135 | eecd &= ~E1000_EECD_DI; | ||
136 | if (eecd & E1000_EECD_DO) | ||
137 | data |= 1; | ||
138 | |||
139 | igb_lower_eec_clk(hw, &eecd); | ||
140 | } | ||
141 | |||
142 | return data; | ||
143 | } | ||
144 | |||
145 | /** | ||
146 | * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion | ||
147 | * @hw: pointer to the HW structure | ||
148 | * @ee_reg: EEPROM flag for polling | ||
149 | * | ||
150 | * Polls the EEPROM status bit for either read or write completion based | ||
151 | * upon the value of 'ee_reg'. | ||
152 | **/ | ||
153 | static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) | ||
154 | { | ||
155 | u32 attempts = 100000; | ||
156 | u32 i, reg = 0; | ||
157 | s32 ret_val = -E1000_ERR_NVM; | ||
158 | |||
159 | for (i = 0; i < attempts; i++) { | ||
160 | if (ee_reg == E1000_NVM_POLL_READ) | ||
161 | reg = rd32(E1000_EERD); | ||
162 | else | ||
163 | reg = rd32(E1000_EEWR); | ||
164 | |||
165 | if (reg & E1000_NVM_RW_REG_DONE) { | ||
166 | ret_val = 0; | ||
167 | break; | ||
168 | } | ||
169 | |||
170 | udelay(5); | ||
171 | } | ||
172 | |||
173 | return ret_val; | ||
174 | } | ||
175 | |||
176 | /** | ||
177 | * e1000_acquire_nvm - Generic request for access to EEPROM | ||
178 | * @hw: pointer to the HW structure | ||
179 | * | ||
180 | * Set the EEPROM access request bit and wait for EEPROM access grant bit. | ||
181 | * Return successful if access grant bit set, else clear the request for | ||
182 | * EEPROM access and return -E1000_ERR_NVM (-1). | ||
183 | **/ | ||
184 | s32 igb_acquire_nvm(struct e1000_hw *hw) | ||
185 | { | ||
186 | u32 eecd = rd32(E1000_EECD); | ||
187 | s32 timeout = E1000_NVM_GRANT_ATTEMPTS; | ||
188 | s32 ret_val = 0; | ||
189 | |||
190 | |||
191 | wr32(E1000_EECD, eecd | E1000_EECD_REQ); | ||
192 | eecd = rd32(E1000_EECD); | ||
193 | |||
194 | while (timeout) { | ||
195 | if (eecd & E1000_EECD_GNT) | ||
196 | break; | ||
197 | udelay(5); | ||
198 | eecd = rd32(E1000_EECD); | ||
199 | timeout--; | ||
200 | } | ||
201 | |||
202 | if (!timeout) { | ||
203 | eecd &= ~E1000_EECD_REQ; | ||
204 | wr32(E1000_EECD, eecd); | ||
205 | hw_dbg(hw, "Could not acquire NVM grant\n"); | ||
206 | ret_val = -E1000_ERR_NVM; | ||
207 | } | ||
208 | |||
209 | return ret_val; | ||
210 | } | ||
211 | |||
212 | /** | ||
213 | * e1000_standby_nvm - Return EEPROM to standby state | ||
214 | * @hw: pointer to the HW structure | ||
215 | * | ||
216 | * Return the EEPROM to a standby state. | ||
217 | **/ | ||
218 | static void igb_standby_nvm(struct e1000_hw *hw) | ||
219 | { | ||
220 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
221 | u32 eecd = rd32(E1000_EECD); | ||
222 | |||
223 | if (nvm->type == e1000_nvm_eeprom_microwire) { | ||
224 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | ||
225 | wr32(E1000_EECD, eecd); | ||
226 | wrfl(); | ||
227 | udelay(nvm->delay_usec); | ||
228 | |||
229 | igb_raise_eec_clk(hw, &eecd); | ||
230 | |||
231 | /* Select EEPROM */ | ||
232 | eecd |= E1000_EECD_CS; | ||
233 | wr32(E1000_EECD, eecd); | ||
234 | wrfl(); | ||
235 | udelay(nvm->delay_usec); | ||
236 | |||
237 | igb_lower_eec_clk(hw, &eecd); | ||
238 | } else if (nvm->type == e1000_nvm_eeprom_spi) { | ||
239 | /* Toggle CS to flush commands */ | ||
240 | eecd |= E1000_EECD_CS; | ||
241 | wr32(E1000_EECD, eecd); | ||
242 | wrfl(); | ||
243 | udelay(nvm->delay_usec); | ||
244 | eecd &= ~E1000_EECD_CS; | ||
245 | wr32(E1000_EECD, eecd); | ||
246 | wrfl(); | ||
247 | udelay(nvm->delay_usec); | ||
248 | } | ||
249 | } | ||
250 | |||
251 | /** | ||
252 | * e1000_stop_nvm - Terminate EEPROM command | ||
253 | * @hw: pointer to the HW structure | ||
254 | * | ||
255 | * Terminates the current command by inverting the EEPROM's chip select pin. | ||
256 | **/ | ||
257 | static void e1000_stop_nvm(struct e1000_hw *hw) | ||
258 | { | ||
259 | u32 eecd; | ||
260 | |||
261 | eecd = rd32(E1000_EECD); | ||
262 | if (hw->nvm.type == e1000_nvm_eeprom_spi) { | ||
263 | /* Pull CS high */ | ||
264 | eecd |= E1000_EECD_CS; | ||
265 | igb_lower_eec_clk(hw, &eecd); | ||
266 | } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) { | ||
267 | /* CS on Microcwire is active-high */ | ||
268 | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); | ||
269 | wr32(E1000_EECD, eecd); | ||
270 | igb_raise_eec_clk(hw, &eecd); | ||
271 | igb_lower_eec_clk(hw, &eecd); | ||
272 | } | ||
273 | } | ||
274 | |||
275 | /** | ||
276 | * e1000_release_nvm - Release exclusive access to EEPROM | ||
277 | * @hw: pointer to the HW structure | ||
278 | * | ||
279 | * Stop any current commands to the EEPROM and clear the EEPROM request bit. | ||
280 | **/ | ||
281 | void igb_release_nvm(struct e1000_hw *hw) | ||
282 | { | ||
283 | u32 eecd; | ||
284 | |||
285 | e1000_stop_nvm(hw); | ||
286 | |||
287 | eecd = rd32(E1000_EECD); | ||
288 | eecd &= ~E1000_EECD_REQ; | ||
289 | wr32(E1000_EECD, eecd); | ||
290 | } | ||
291 | |||
292 | /** | ||
293 | * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write | ||
294 | * @hw: pointer to the HW structure | ||
295 | * | ||
296 | * Setups the EEPROM for reading and writing. | ||
297 | **/ | ||
298 | static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw) | ||
299 | { | ||
300 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
301 | u32 eecd = rd32(E1000_EECD); | ||
302 | s32 ret_val = 0; | ||
303 | u16 timeout = 0; | ||
304 | u8 spi_stat_reg; | ||
305 | |||
306 | |||
307 | if (nvm->type == e1000_nvm_eeprom_microwire) { | ||
308 | /* Clear SK and DI */ | ||
309 | eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); | ||
310 | wr32(E1000_EECD, eecd); | ||
311 | /* Set CS */ | ||
312 | eecd |= E1000_EECD_CS; | ||
313 | wr32(E1000_EECD, eecd); | ||
314 | } else if (nvm->type == e1000_nvm_eeprom_spi) { | ||
315 | /* Clear SK and CS */ | ||
316 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | ||
317 | wr32(E1000_EECD, eecd); | ||
318 | udelay(1); | ||
319 | timeout = NVM_MAX_RETRY_SPI; | ||
320 | |||
321 | /* | ||
322 | * Read "Status Register" repeatedly until the LSB is cleared. | ||
323 | * The EEPROM will signal that the command has been completed | ||
324 | * by clearing bit 0 of the internal status register. If it's | ||
325 | * not cleared within 'timeout', then error out. | ||
326 | */ | ||
327 | while (timeout) { | ||
328 | igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, | ||
329 | hw->nvm.opcode_bits); | ||
330 | spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8); | ||
331 | if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) | ||
332 | break; | ||
333 | |||
334 | udelay(5); | ||
335 | igb_standby_nvm(hw); | ||
336 | timeout--; | ||
337 | } | ||
338 | |||
339 | if (!timeout) { | ||
340 | hw_dbg(hw, "SPI NVM Status error\n"); | ||
341 | ret_val = -E1000_ERR_NVM; | ||
342 | goto out; | ||
343 | } | ||
344 | } | ||
345 | |||
346 | out: | ||
347 | return ret_val; | ||
348 | } | ||
349 | |||
350 | /** | ||
351 | * e1000_read_nvm_eerd - Reads EEPROM using EERD register | ||
352 | * @hw: pointer to the HW structure | ||
353 | * @offset: offset of word in the EEPROM to read | ||
354 | * @words: number of words to read | ||
355 | * @data: word read from the EEPROM | ||
356 | * | ||
357 | * Reads a 16 bit word from the EEPROM using the EERD register. | ||
358 | **/ | ||
359 | s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
360 | { | ||
361 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
362 | u32 i, eerd = 0; | ||
363 | s32 ret_val = 0; | ||
364 | |||
365 | /* | ||
366 | * A check for invalid values: offset too large, too many words, | ||
367 | * and not enough words. | ||
368 | */ | ||
369 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | ||
370 | (words == 0)) { | ||
371 | hw_dbg(hw, "nvm parameter(s) out of bounds\n"); | ||
372 | ret_val = -E1000_ERR_NVM; | ||
373 | goto out; | ||
374 | } | ||
375 | |||
376 | for (i = 0; i < words; i++) { | ||
377 | eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + | ||
378 | E1000_NVM_RW_REG_START; | ||
379 | |||
380 | wr32(E1000_EERD, eerd); | ||
381 | ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); | ||
382 | if (ret_val) | ||
383 | break; | ||
384 | |||
385 | data[i] = (rd32(E1000_EERD) >> | ||
386 | E1000_NVM_RW_REG_DATA); | ||
387 | } | ||
388 | |||
389 | out: | ||
390 | return ret_val; | ||
391 | } | ||
392 | |||
393 | /** | ||
394 | * e1000_write_nvm_spi - Write to EEPROM using SPI | ||
395 | * @hw: pointer to the HW structure | ||
396 | * @offset: offset within the EEPROM to be written to | ||
397 | * @words: number of words to write | ||
398 | * @data: 16 bit word(s) to be written to the EEPROM | ||
399 | * | ||
400 | * Writes data to EEPROM at offset using SPI interface. | ||
401 | * | ||
402 | * If e1000_update_nvm_checksum is not called after this function , the | ||
403 | * EEPROM will most likley contain an invalid checksum. | ||
404 | **/ | ||
405 | s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
406 | { | ||
407 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
408 | s32 ret_val; | ||
409 | u16 widx = 0; | ||
410 | |||
411 | /* | ||
412 | * A check for invalid values: offset too large, too many words, | ||
413 | * and not enough words. | ||
414 | */ | ||
415 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | ||
416 | (words == 0)) { | ||
417 | hw_dbg(hw, "nvm parameter(s) out of bounds\n"); | ||
418 | ret_val = -E1000_ERR_NVM; | ||
419 | goto out; | ||
420 | } | ||
421 | |||
422 | ret_val = hw->nvm.ops.acquire_nvm(hw); | ||
423 | if (ret_val) | ||
424 | goto out; | ||
425 | |||
426 | msleep(10); | ||
427 | |||
428 | while (widx < words) { | ||
429 | u8 write_opcode = NVM_WRITE_OPCODE_SPI; | ||
430 | |||
431 | ret_val = igb_ready_nvm_eeprom(hw); | ||
432 | if (ret_val) | ||
433 | goto release; | ||
434 | |||
435 | igb_standby_nvm(hw); | ||
436 | |||
437 | /* Send the WRITE ENABLE command (8 bit opcode) */ | ||
438 | igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, | ||
439 | nvm->opcode_bits); | ||
440 | |||
441 | igb_standby_nvm(hw); | ||
442 | |||
443 | /* | ||
444 | * Some SPI eeproms use the 8th address bit embedded in the | ||
445 | * opcode | ||
446 | */ | ||
447 | if ((nvm->address_bits == 8) && (offset >= 128)) | ||
448 | write_opcode |= NVM_A8_OPCODE_SPI; | ||
449 | |||
450 | /* Send the Write command (8-bit opcode + addr) */ | ||
451 | igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); | ||
452 | igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), | ||
453 | nvm->address_bits); | ||
454 | |||
455 | /* Loop to allow for up to whole page write of eeprom */ | ||
456 | while (widx < words) { | ||
457 | u16 word_out = data[widx]; | ||
458 | word_out = (word_out >> 8) | (word_out << 8); | ||
459 | igb_shift_out_eec_bits(hw, word_out, 16); | ||
460 | widx++; | ||
461 | |||
462 | if ((((offset + widx) * 2) % nvm->page_size) == 0) { | ||
463 | igb_standby_nvm(hw); | ||
464 | break; | ||
465 | } | ||
466 | } | ||
467 | } | ||
468 | |||
469 | msleep(10); | ||
470 | release: | ||
471 | hw->nvm.ops.release_nvm(hw); | ||
472 | |||
473 | out: | ||
474 | return ret_val; | ||
475 | } | ||
476 | |||
477 | /** | ||
478 | * e1000_read_part_num - Read device part number | ||
479 | * @hw: pointer to the HW structure | ||
480 | * @part_num: pointer to device part number | ||
481 | * | ||
482 | * Reads the product board assembly (PBA) number from the EEPROM and stores | ||
483 | * the value in part_num. | ||
484 | **/ | ||
485 | s32 igb_read_part_num(struct e1000_hw *hw, u32 *part_num) | ||
486 | { | ||
487 | s32 ret_val; | ||
488 | u16 nvm_data; | ||
489 | |||
490 | ret_val = hw->nvm.ops.read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); | ||
491 | if (ret_val) { | ||
492 | hw_dbg(hw, "NVM Read Error\n"); | ||
493 | goto out; | ||
494 | } | ||
495 | *part_num = (u32)(nvm_data << 16); | ||
496 | |||
497 | ret_val = hw->nvm.ops.read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data); | ||
498 | if (ret_val) { | ||
499 | hw_dbg(hw, "NVM Read Error\n"); | ||
500 | goto out; | ||
501 | } | ||
502 | *part_num |= nvm_data; | ||
503 | |||
504 | out: | ||
505 | return ret_val; | ||
506 | } | ||
507 | |||
508 | /** | ||
509 | * e1000_read_mac_addr - Read device MAC address | ||
510 | * @hw: pointer to the HW structure | ||
511 | * | ||
512 | * Reads the device MAC address from the EEPROM and stores the value. | ||
513 | * Since devices with two ports use the same EEPROM, we increment the | ||
514 | * last bit in the MAC address for the second port. | ||
515 | **/ | ||
516 | s32 igb_read_mac_addr(struct e1000_hw *hw) | ||
517 | { | ||
518 | s32 ret_val = 0; | ||
519 | u16 offset, nvm_data, i; | ||
520 | |||
521 | for (i = 0; i < ETH_ALEN; i += 2) { | ||
522 | offset = i >> 1; | ||
523 | ret_val = hw->nvm.ops.read_nvm(hw, offset, 1, &nvm_data); | ||
524 | if (ret_val) { | ||
525 | hw_dbg(hw, "NVM Read Error\n"); | ||
526 | goto out; | ||
527 | } | ||
528 | hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); | ||
529 | hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); | ||
530 | } | ||
531 | |||
532 | /* Flip last bit of mac address if we're on second port */ | ||
533 | if (hw->bus.func == E1000_FUNC_1) | ||
534 | hw->mac.perm_addr[5] ^= 1; | ||
535 | |||
536 | for (i = 0; i < ETH_ALEN; i++) | ||
537 | hw->mac.addr[i] = hw->mac.perm_addr[i]; | ||
538 | |||
539 | out: | ||
540 | return ret_val; | ||
541 | } | ||
542 | |||
543 | /** | ||
544 | * e1000_validate_nvm_checksum - Validate EEPROM checksum | ||
545 | * @hw: pointer to the HW structure | ||
546 | * | ||
547 | * Calculates the EEPROM checksum by reading/adding each word of the EEPROM | ||
548 | * and then verifies that the sum of the EEPROM is equal to 0xBABA. | ||
549 | **/ | ||
550 | s32 igb_validate_nvm_checksum(struct e1000_hw *hw) | ||
551 | { | ||
552 | s32 ret_val = 0; | ||
553 | u16 checksum = 0; | ||
554 | u16 i, nvm_data; | ||
555 | |||
556 | for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { | ||
557 | ret_val = hw->nvm.ops.read_nvm(hw, i, 1, &nvm_data); | ||
558 | if (ret_val) { | ||
559 | hw_dbg(hw, "NVM Read Error\n"); | ||
560 | goto out; | ||
561 | } | ||
562 | checksum += nvm_data; | ||
563 | } | ||
564 | |||
565 | if (checksum != (u16) NVM_SUM) { | ||
566 | hw_dbg(hw, "NVM Checksum Invalid\n"); | ||
567 | ret_val = -E1000_ERR_NVM; | ||
568 | goto out; | ||
569 | } | ||
570 | |||
571 | out: | ||
572 | return ret_val; | ||
573 | } | ||
574 | |||
575 | /** | ||
576 | * e1000_update_nvm_checksum - Update EEPROM checksum | ||
577 | * @hw: pointer to the HW structure | ||
578 | * | ||
579 | * Updates the EEPROM checksum by reading/adding each word of the EEPROM | ||
580 | * up to the checksum. Then calculates the EEPROM checksum and writes the | ||
581 | * value to the EEPROM. | ||
582 | **/ | ||
583 | s32 igb_update_nvm_checksum(struct e1000_hw *hw) | ||
584 | { | ||
585 | s32 ret_val; | ||
586 | u16 checksum = 0; | ||
587 | u16 i, nvm_data; | ||
588 | |||
589 | for (i = 0; i < NVM_CHECKSUM_REG; i++) { | ||
590 | ret_val = hw->nvm.ops.read_nvm(hw, i, 1, &nvm_data); | ||
591 | if (ret_val) { | ||
592 | hw_dbg(hw, "NVM Read Error while updating checksum.\n"); | ||
593 | goto out; | ||
594 | } | ||
595 | checksum += nvm_data; | ||
596 | } | ||
597 | checksum = (u16) NVM_SUM - checksum; | ||
598 | ret_val = hw->nvm.ops.write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); | ||
599 | if (ret_val) | ||
600 | hw_dbg(hw, "NVM Write Error while updating checksum.\n"); | ||
601 | |||
602 | out: | ||
603 | return ret_val; | ||
604 | } | ||
605 | |||
diff --git a/drivers/net/igb/e1000_nvm.h b/drivers/net/igb/e1000_nvm.h new file mode 100644 index 000000000000..1041c34dcbe1 --- /dev/null +++ b/drivers/net/igb/e1000_nvm.h | |||
@@ -0,0 +1,40 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #ifndef _E1000_NVM_H_ | ||
29 | #define _E1000_NVM_H_ | ||
30 | |||
31 | s32 igb_acquire_nvm(struct e1000_hw *hw); | ||
32 | void igb_release_nvm(struct e1000_hw *hw); | ||
33 | s32 igb_read_mac_addr(struct e1000_hw *hw); | ||
34 | s32 igb_read_part_num(struct e1000_hw *hw, u32 *part_num); | ||
35 | s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); | ||
36 | s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); | ||
37 | s32 igb_validate_nvm_checksum(struct e1000_hw *hw); | ||
38 | s32 igb_update_nvm_checksum(struct e1000_hw *hw); | ||
39 | |||
40 | #endif | ||
diff --git a/drivers/net/igb/e1000_phy.c b/drivers/net/igb/e1000_phy.c new file mode 100644 index 000000000000..08a86b107229 --- /dev/null +++ b/drivers/net/igb/e1000_phy.c | |||
@@ -0,0 +1,1807 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #include <linux/if_ether.h> | ||
29 | #include <linux/delay.h> | ||
30 | |||
31 | #include "e1000_mac.h" | ||
32 | #include "e1000_phy.h" | ||
33 | |||
34 | static s32 igb_get_phy_cfg_done(struct e1000_hw *hw); | ||
35 | static void igb_release_phy(struct e1000_hw *hw); | ||
36 | static s32 igb_acquire_phy(struct e1000_hw *hw); | ||
37 | static s32 igb_phy_reset_dsp(struct e1000_hw *hw); | ||
38 | static s32 igb_phy_setup_autoneg(struct e1000_hw *hw); | ||
39 | static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, | ||
40 | u16 *phy_ctrl); | ||
41 | static s32 igb_wait_autoneg(struct e1000_hw *hw); | ||
42 | |||
43 | /* Cable length tables */ | ||
44 | static const u16 e1000_m88_cable_length_table[] = | ||
45 | { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; | ||
46 | #define M88E1000_CABLE_LENGTH_TABLE_SIZE \ | ||
47 | (sizeof(e1000_m88_cable_length_table) / \ | ||
48 | sizeof(e1000_m88_cable_length_table[0])) | ||
49 | |||
50 | static const u16 e1000_igp_2_cable_length_table[] = | ||
51 | { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, | ||
52 | 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, | ||
53 | 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, | ||
54 | 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, | ||
55 | 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, | ||
56 | 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, | ||
57 | 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, | ||
58 | 104, 109, 114, 118, 121, 124}; | ||
59 | #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ | ||
60 | (sizeof(e1000_igp_2_cable_length_table) / \ | ||
61 | sizeof(e1000_igp_2_cable_length_table[0])) | ||
62 | |||
63 | /** | ||
64 | * e1000_check_reset_block - Check if PHY reset is blocked | ||
65 | * @hw: pointer to the HW structure | ||
66 | * | ||
67 | * Read the PHY management control register and check whether a PHY reset | ||
68 | * is blocked. If a reset is not blocked return 0, otherwise | ||
69 | * return E1000_BLK_PHY_RESET (12). | ||
70 | **/ | ||
71 | s32 igb_check_reset_block(struct e1000_hw *hw) | ||
72 | { | ||
73 | u32 manc; | ||
74 | |||
75 | manc = rd32(E1000_MANC); | ||
76 | |||
77 | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? | ||
78 | E1000_BLK_PHY_RESET : 0; | ||
79 | } | ||
80 | |||
81 | /** | ||
82 | * e1000_get_phy_id - Retrieve the PHY ID and revision | ||
83 | * @hw: pointer to the HW structure | ||
84 | * | ||
85 | * Reads the PHY registers and stores the PHY ID and possibly the PHY | ||
86 | * revision in the hardware structure. | ||
87 | **/ | ||
88 | s32 igb_get_phy_id(struct e1000_hw *hw) | ||
89 | { | ||
90 | struct e1000_phy_info *phy = &hw->phy; | ||
91 | s32 ret_val = 0; | ||
92 | u16 phy_id; | ||
93 | |||
94 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_ID1, &phy_id); | ||
95 | if (ret_val) | ||
96 | goto out; | ||
97 | |||
98 | phy->id = (u32)(phy_id << 16); | ||
99 | udelay(20); | ||
100 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_ID2, &phy_id); | ||
101 | if (ret_val) | ||
102 | goto out; | ||
103 | |||
104 | phy->id |= (u32)(phy_id & PHY_REVISION_MASK); | ||
105 | phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); | ||
106 | |||
107 | out: | ||
108 | return ret_val; | ||
109 | } | ||
110 | |||
111 | /** | ||
112 | * e1000_phy_reset_dsp - Reset PHY DSP | ||
113 | * @hw: pointer to the HW structure | ||
114 | * | ||
115 | * Reset the digital signal processor. | ||
116 | **/ | ||
117 | static s32 igb_phy_reset_dsp(struct e1000_hw *hw) | ||
118 | { | ||
119 | s32 ret_val; | ||
120 | |||
121 | ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); | ||
122 | if (ret_val) | ||
123 | goto out; | ||
124 | |||
125 | ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); | ||
126 | |||
127 | out: | ||
128 | return ret_val; | ||
129 | } | ||
130 | |||
131 | /** | ||
132 | * e1000_read_phy_reg_mdic - Read MDI control register | ||
133 | * @hw: pointer to the HW structure | ||
134 | * @offset: register offset to be read | ||
135 | * @data: pointer to the read data | ||
136 | * | ||
137 | * Reads the MDI control regsiter in the PHY at offset and stores the | ||
138 | * information read to data. | ||
139 | **/ | ||
140 | static s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) | ||
141 | { | ||
142 | struct e1000_phy_info *phy = &hw->phy; | ||
143 | u32 i, mdic = 0; | ||
144 | s32 ret_val = 0; | ||
145 | |||
146 | if (offset > MAX_PHY_REG_ADDRESS) { | ||
147 | hw_dbg(hw, "PHY Address %d is out of range\n", offset); | ||
148 | ret_val = -E1000_ERR_PARAM; | ||
149 | goto out; | ||
150 | } | ||
151 | |||
152 | /* | ||
153 | * Set up Op-code, Phy Address, and register offset in the MDI | ||
154 | * Control register. The MAC will take care of interfacing with the | ||
155 | * PHY to retrieve the desired data. | ||
156 | */ | ||
157 | mdic = ((offset << E1000_MDIC_REG_SHIFT) | | ||
158 | (phy->addr << E1000_MDIC_PHY_SHIFT) | | ||
159 | (E1000_MDIC_OP_READ)); | ||
160 | |||
161 | wr32(E1000_MDIC, mdic); | ||
162 | |||
163 | /* | ||
164 | * Poll the ready bit to see if the MDI read completed | ||
165 | * Increasing the time out as testing showed failures with | ||
166 | * the lower time out | ||
167 | */ | ||
168 | for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { | ||
169 | udelay(50); | ||
170 | mdic = rd32(E1000_MDIC); | ||
171 | if (mdic & E1000_MDIC_READY) | ||
172 | break; | ||
173 | } | ||
174 | if (!(mdic & E1000_MDIC_READY)) { | ||
175 | hw_dbg(hw, "MDI Read did not complete\n"); | ||
176 | ret_val = -E1000_ERR_PHY; | ||
177 | goto out; | ||
178 | } | ||
179 | if (mdic & E1000_MDIC_ERROR) { | ||
180 | hw_dbg(hw, "MDI Error\n"); | ||
181 | ret_val = -E1000_ERR_PHY; | ||
182 | goto out; | ||
183 | } | ||
184 | *data = (u16) mdic; | ||
185 | |||
186 | out: | ||
187 | return ret_val; | ||
188 | } | ||
189 | |||
190 | /** | ||
191 | * e1000_write_phy_reg_mdic - Write MDI control register | ||
192 | * @hw: pointer to the HW structure | ||
193 | * @offset: register offset to write to | ||
194 | * @data: data to write to register at offset | ||
195 | * | ||
196 | * Writes data to MDI control register in the PHY at offset. | ||
197 | **/ | ||
198 | static s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) | ||
199 | { | ||
200 | struct e1000_phy_info *phy = &hw->phy; | ||
201 | u32 i, mdic = 0; | ||
202 | s32 ret_val = 0; | ||
203 | |||
204 | if (offset > MAX_PHY_REG_ADDRESS) { | ||
205 | hw_dbg(hw, "PHY Address %d is out of range\n", offset); | ||
206 | ret_val = -E1000_ERR_PARAM; | ||
207 | goto out; | ||
208 | } | ||
209 | |||
210 | /* | ||
211 | * Set up Op-code, Phy Address, and register offset in the MDI | ||
212 | * Control register. The MAC will take care of interfacing with the | ||
213 | * PHY to retrieve the desired data. | ||
214 | */ | ||
215 | mdic = (((u32)data) | | ||
216 | (offset << E1000_MDIC_REG_SHIFT) | | ||
217 | (phy->addr << E1000_MDIC_PHY_SHIFT) | | ||
218 | (E1000_MDIC_OP_WRITE)); | ||
219 | |||
220 | wr32(E1000_MDIC, mdic); | ||
221 | |||
222 | /* | ||
223 | * Poll the ready bit to see if the MDI read completed | ||
224 | * Increasing the time out as testing showed failures with | ||
225 | * the lower time out | ||
226 | */ | ||
227 | for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { | ||
228 | udelay(50); | ||
229 | mdic = rd32(E1000_MDIC); | ||
230 | if (mdic & E1000_MDIC_READY) | ||
231 | break; | ||
232 | } | ||
233 | if (!(mdic & E1000_MDIC_READY)) { | ||
234 | hw_dbg(hw, "MDI Write did not complete\n"); | ||
235 | ret_val = -E1000_ERR_PHY; | ||
236 | goto out; | ||
237 | } | ||
238 | if (mdic & E1000_MDIC_ERROR) { | ||
239 | hw_dbg(hw, "MDI Error\n"); | ||
240 | ret_val = -E1000_ERR_PHY; | ||
241 | goto out; | ||
242 | } | ||
243 | |||
244 | out: | ||
245 | return ret_val; | ||
246 | } | ||
247 | |||
248 | /** | ||
249 | * e1000_read_phy_reg_igp - Read igp PHY register | ||
250 | * @hw: pointer to the HW structure | ||
251 | * @offset: register offset to be read | ||
252 | * @data: pointer to the read data | ||
253 | * | ||
254 | * Acquires semaphore, if necessary, then reads the PHY register at offset | ||
255 | * and storing the retrieved information in data. Release any acquired | ||
256 | * semaphores before exiting. | ||
257 | **/ | ||
258 | s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) | ||
259 | { | ||
260 | s32 ret_val; | ||
261 | |||
262 | ret_val = igb_acquire_phy(hw); | ||
263 | if (ret_val) | ||
264 | goto out; | ||
265 | |||
266 | if (offset > MAX_PHY_MULTI_PAGE_REG) { | ||
267 | ret_val = igb_write_phy_reg_mdic(hw, | ||
268 | IGP01E1000_PHY_PAGE_SELECT, | ||
269 | (u16)offset); | ||
270 | if (ret_val) { | ||
271 | igb_release_phy(hw); | ||
272 | goto out; | ||
273 | } | ||
274 | } | ||
275 | |||
276 | ret_val = igb_read_phy_reg_mdic(hw, | ||
277 | MAX_PHY_REG_ADDRESS & offset, | ||
278 | data); | ||
279 | |||
280 | igb_release_phy(hw); | ||
281 | |||
282 | out: | ||
283 | return ret_val; | ||
284 | } | ||
285 | |||
286 | /** | ||
287 | * e1000_write_phy_reg_igp - Write igp PHY register | ||
288 | * @hw: pointer to the HW structure | ||
289 | * @offset: register offset to write to | ||
290 | * @data: data to write at register offset | ||
291 | * | ||
292 | * Acquires semaphore, if necessary, then writes the data to PHY register | ||
293 | * at the offset. Release any acquired semaphores before exiting. | ||
294 | **/ | ||
295 | s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) | ||
296 | { | ||
297 | s32 ret_val; | ||
298 | |||
299 | ret_val = igb_acquire_phy(hw); | ||
300 | if (ret_val) | ||
301 | goto out; | ||
302 | |||
303 | if (offset > MAX_PHY_MULTI_PAGE_REG) { | ||
304 | ret_val = igb_write_phy_reg_mdic(hw, | ||
305 | IGP01E1000_PHY_PAGE_SELECT, | ||
306 | (u16)offset); | ||
307 | if (ret_val) { | ||
308 | igb_release_phy(hw); | ||
309 | goto out; | ||
310 | } | ||
311 | } | ||
312 | |||
313 | ret_val = igb_write_phy_reg_mdic(hw, | ||
314 | MAX_PHY_REG_ADDRESS & offset, | ||
315 | data); | ||
316 | |||
317 | igb_release_phy(hw); | ||
318 | |||
319 | out: | ||
320 | return ret_val; | ||
321 | } | ||
322 | |||
323 | /** | ||
324 | * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link | ||
325 | * @hw: pointer to the HW structure | ||
326 | * | ||
327 | * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock | ||
328 | * and downshift values are set also. | ||
329 | **/ | ||
330 | s32 igb_copper_link_setup_m88(struct e1000_hw *hw) | ||
331 | { | ||
332 | struct e1000_phy_info *phy = &hw->phy; | ||
333 | s32 ret_val; | ||
334 | u16 phy_data; | ||
335 | |||
336 | if (phy->reset_disable) { | ||
337 | ret_val = 0; | ||
338 | goto out; | ||
339 | } | ||
340 | |||
341 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | ||
342 | ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
343 | &phy_data); | ||
344 | if (ret_val) | ||
345 | goto out; | ||
346 | |||
347 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
348 | |||
349 | /* | ||
350 | * Options: | ||
351 | * MDI/MDI-X = 0 (default) | ||
352 | * 0 - Auto for all speeds | ||
353 | * 1 - MDI mode | ||
354 | * 2 - MDI-X mode | ||
355 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | ||
356 | */ | ||
357 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
358 | |||
359 | switch (phy->mdix) { | ||
360 | case 1: | ||
361 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | ||
362 | break; | ||
363 | case 2: | ||
364 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | ||
365 | break; | ||
366 | case 3: | ||
367 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | ||
368 | break; | ||
369 | case 0: | ||
370 | default: | ||
371 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | ||
372 | break; | ||
373 | } | ||
374 | |||
375 | /* | ||
376 | * Options: | ||
377 | * disable_polarity_correction = 0 (default) | ||
378 | * Automatic Correction for Reversed Cable Polarity | ||
379 | * 0 - Disabled | ||
380 | * 1 - Enabled | ||
381 | */ | ||
382 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | ||
383 | if (phy->disable_polarity_correction == 1) | ||
384 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | ||
385 | |||
386 | ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
387 | phy_data); | ||
388 | if (ret_val) | ||
389 | goto out; | ||
390 | |||
391 | if (phy->revision < E1000_REVISION_4) { | ||
392 | /* | ||
393 | * Force TX_CLK in the Extended PHY Specific Control Register | ||
394 | * to 25MHz clock. | ||
395 | */ | ||
396 | ret_val = hw->phy.ops.read_phy_reg(hw, | ||
397 | M88E1000_EXT_PHY_SPEC_CTRL, | ||
398 | &phy_data); | ||
399 | if (ret_val) | ||
400 | goto out; | ||
401 | |||
402 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
403 | |||
404 | if ((phy->revision == E1000_REVISION_2) && | ||
405 | (phy->id == M88E1111_I_PHY_ID)) { | ||
406 | /* 82573L PHY - set the downshift counter to 5x. */ | ||
407 | phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; | ||
408 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; | ||
409 | } else { | ||
410 | /* Configure Master and Slave downshift values */ | ||
411 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | ||
412 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | ||
413 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | ||
414 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | ||
415 | } | ||
416 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
417 | M88E1000_EXT_PHY_SPEC_CTRL, | ||
418 | phy_data); | ||
419 | if (ret_val) | ||
420 | goto out; | ||
421 | } | ||
422 | |||
423 | /* Commit the changes. */ | ||
424 | ret_val = igb_phy_sw_reset(hw); | ||
425 | if (ret_val) { | ||
426 | hw_dbg(hw, "Error committing the PHY changes\n"); | ||
427 | goto out; | ||
428 | } | ||
429 | |||
430 | out: | ||
431 | return ret_val; | ||
432 | } | ||
433 | |||
434 | /** | ||
435 | * e1000_copper_link_setup_igp - Setup igp PHY's for copper link | ||
436 | * @hw: pointer to the HW structure | ||
437 | * | ||
438 | * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for | ||
439 | * igp PHY's. | ||
440 | **/ | ||
441 | s32 igb_copper_link_setup_igp(struct e1000_hw *hw) | ||
442 | { | ||
443 | struct e1000_phy_info *phy = &hw->phy; | ||
444 | s32 ret_val; | ||
445 | u16 data; | ||
446 | |||
447 | if (phy->reset_disable) { | ||
448 | ret_val = 0; | ||
449 | goto out; | ||
450 | } | ||
451 | |||
452 | ret_val = hw->phy.ops.reset_phy(hw); | ||
453 | if (ret_val) { | ||
454 | hw_dbg(hw, "Error resetting the PHY.\n"); | ||
455 | goto out; | ||
456 | } | ||
457 | |||
458 | /* Wait 15ms for MAC to configure PHY from NVM settings. */ | ||
459 | msleep(15); | ||
460 | |||
461 | /* | ||
462 | * The NVM settings will configure LPLU in D3 for | ||
463 | * non-IGP1 PHYs. | ||
464 | */ | ||
465 | if (phy->type == e1000_phy_igp) { | ||
466 | /* disable lplu d3 during driver init */ | ||
467 | if (hw->phy.ops.set_d3_lplu_state) | ||
468 | ret_val = hw->phy.ops.set_d3_lplu_state(hw, false); | ||
469 | if (ret_val) { | ||
470 | hw_dbg(hw, "Error Disabling LPLU D3\n"); | ||
471 | goto out; | ||
472 | } | ||
473 | } | ||
474 | |||
475 | /* disable lplu d0 during driver init */ | ||
476 | ret_val = hw->phy.ops.set_d0_lplu_state(hw, false); | ||
477 | if (ret_val) { | ||
478 | hw_dbg(hw, "Error Disabling LPLU D0\n"); | ||
479 | goto out; | ||
480 | } | ||
481 | /* Configure mdi-mdix settings */ | ||
482 | ret_val = hw->phy.ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); | ||
483 | if (ret_val) | ||
484 | goto out; | ||
485 | |||
486 | data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
487 | |||
488 | switch (phy->mdix) { | ||
489 | case 1: | ||
490 | data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
491 | break; | ||
492 | case 2: | ||
493 | data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
494 | break; | ||
495 | case 0: | ||
496 | default: | ||
497 | data |= IGP01E1000_PSCR_AUTO_MDIX; | ||
498 | break; | ||
499 | } | ||
500 | ret_val = hw->phy.ops.write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); | ||
501 | if (ret_val) | ||
502 | goto out; | ||
503 | |||
504 | /* set auto-master slave resolution settings */ | ||
505 | if (hw->mac.autoneg) { | ||
506 | /* | ||
507 | * when autonegotiation advertisement is only 1000Mbps then we | ||
508 | * should disable SmartSpeed and enable Auto MasterSlave | ||
509 | * resolution as hardware default. | ||
510 | */ | ||
511 | if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { | ||
512 | /* Disable SmartSpeed */ | ||
513 | ret_val = hw->phy.ops.read_phy_reg(hw, | ||
514 | IGP01E1000_PHY_PORT_CONFIG, | ||
515 | &data); | ||
516 | if (ret_val) | ||
517 | goto out; | ||
518 | |||
519 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
520 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
521 | IGP01E1000_PHY_PORT_CONFIG, | ||
522 | data); | ||
523 | if (ret_val) | ||
524 | goto out; | ||
525 | |||
526 | /* Set auto Master/Slave resolution process */ | ||
527 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_1000T_CTRL, | ||
528 | &data); | ||
529 | if (ret_val) | ||
530 | goto out; | ||
531 | |||
532 | data &= ~CR_1000T_MS_ENABLE; | ||
533 | ret_val = hw->phy.ops.write_phy_reg(hw, PHY_1000T_CTRL, | ||
534 | data); | ||
535 | if (ret_val) | ||
536 | goto out; | ||
537 | } | ||
538 | |||
539 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_1000T_CTRL, &data); | ||
540 | if (ret_val) | ||
541 | goto out; | ||
542 | |||
543 | /* load defaults for future use */ | ||
544 | phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? | ||
545 | ((data & CR_1000T_MS_VALUE) ? | ||
546 | e1000_ms_force_master : | ||
547 | e1000_ms_force_slave) : | ||
548 | e1000_ms_auto; | ||
549 | |||
550 | switch (phy->ms_type) { | ||
551 | case e1000_ms_force_master: | ||
552 | data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | ||
553 | break; | ||
554 | case e1000_ms_force_slave: | ||
555 | data |= CR_1000T_MS_ENABLE; | ||
556 | data &= ~(CR_1000T_MS_VALUE); | ||
557 | break; | ||
558 | case e1000_ms_auto: | ||
559 | data &= ~CR_1000T_MS_ENABLE; | ||
560 | default: | ||
561 | break; | ||
562 | } | ||
563 | ret_val = hw->phy.ops.write_phy_reg(hw, PHY_1000T_CTRL, data); | ||
564 | if (ret_val) | ||
565 | goto out; | ||
566 | } | ||
567 | |||
568 | out: | ||
569 | return ret_val; | ||
570 | } | ||
571 | |||
572 | /** | ||
573 | * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link | ||
574 | * @hw: pointer to the HW structure | ||
575 | * | ||
576 | * Performs initial bounds checking on autoneg advertisement parameter, then | ||
577 | * configure to advertise the full capability. Setup the PHY to autoneg | ||
578 | * and restart the negotiation process between the link partner. If | ||
579 | * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. | ||
580 | **/ | ||
581 | s32 igb_copper_link_autoneg(struct e1000_hw *hw) | ||
582 | { | ||
583 | struct e1000_phy_info *phy = &hw->phy; | ||
584 | s32 ret_val; | ||
585 | u16 phy_ctrl; | ||
586 | |||
587 | /* | ||
588 | * Perform some bounds checking on the autoneg advertisement | ||
589 | * parameter. | ||
590 | */ | ||
591 | phy->autoneg_advertised &= phy->autoneg_mask; | ||
592 | |||
593 | /* | ||
594 | * If autoneg_advertised is zero, we assume it was not defaulted | ||
595 | * by the calling code so we set to advertise full capability. | ||
596 | */ | ||
597 | if (phy->autoneg_advertised == 0) | ||
598 | phy->autoneg_advertised = phy->autoneg_mask; | ||
599 | |||
600 | hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n"); | ||
601 | ret_val = igb_phy_setup_autoneg(hw); | ||
602 | if (ret_val) { | ||
603 | hw_dbg(hw, "Error Setting up Auto-Negotiation\n"); | ||
604 | goto out; | ||
605 | } | ||
606 | hw_dbg(hw, "Restarting Auto-Neg\n"); | ||
607 | |||
608 | /* | ||
609 | * Restart auto-negotiation by setting the Auto Neg Enable bit and | ||
610 | * the Auto Neg Restart bit in the PHY control register. | ||
611 | */ | ||
612 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_ctrl); | ||
613 | if (ret_val) | ||
614 | goto out; | ||
615 | |||
616 | phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | ||
617 | ret_val = hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_ctrl); | ||
618 | if (ret_val) | ||
619 | goto out; | ||
620 | |||
621 | /* | ||
622 | * Does the user want to wait for Auto-Neg to complete here, or | ||
623 | * check at a later time (for example, callback routine). | ||
624 | */ | ||
625 | if (phy->autoneg_wait_to_complete) { | ||
626 | ret_val = igb_wait_autoneg(hw); | ||
627 | if (ret_val) { | ||
628 | hw_dbg(hw, "Error while waiting for " | ||
629 | "autoneg to complete\n"); | ||
630 | goto out; | ||
631 | } | ||
632 | } | ||
633 | |||
634 | hw->mac.get_link_status = true; | ||
635 | |||
636 | out: | ||
637 | return ret_val; | ||
638 | } | ||
639 | |||
640 | /** | ||
641 | * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation | ||
642 | * @hw: pointer to the HW structure | ||
643 | * | ||
644 | * Reads the MII auto-neg advertisement register and/or the 1000T control | ||
645 | * register and if the PHY is already setup for auto-negotiation, then | ||
646 | * return successful. Otherwise, setup advertisement and flow control to | ||
647 | * the appropriate values for the wanted auto-negotiation. | ||
648 | **/ | ||
649 | static s32 igb_phy_setup_autoneg(struct e1000_hw *hw) | ||
650 | { | ||
651 | struct e1000_phy_info *phy = &hw->phy; | ||
652 | s32 ret_val; | ||
653 | u16 mii_autoneg_adv_reg; | ||
654 | u16 mii_1000t_ctrl_reg = 0; | ||
655 | |||
656 | phy->autoneg_advertised &= phy->autoneg_mask; | ||
657 | |||
658 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | ||
659 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_AUTONEG_ADV, | ||
660 | &mii_autoneg_adv_reg); | ||
661 | if (ret_val) | ||
662 | goto out; | ||
663 | |||
664 | if (phy->autoneg_mask & ADVERTISE_1000_FULL) { | ||
665 | /* Read the MII 1000Base-T Control Register (Address 9). */ | ||
666 | ret_val = hw->phy.ops.read_phy_reg(hw, | ||
667 | PHY_1000T_CTRL, | ||
668 | &mii_1000t_ctrl_reg); | ||
669 | if (ret_val) | ||
670 | goto out; | ||
671 | } | ||
672 | |||
673 | /* | ||
674 | * Need to parse both autoneg_advertised and fc and set up | ||
675 | * the appropriate PHY registers. First we will parse for | ||
676 | * autoneg_advertised software override. Since we can advertise | ||
677 | * a plethora of combinations, we need to check each bit | ||
678 | * individually. | ||
679 | */ | ||
680 | |||
681 | /* | ||
682 | * First we clear all the 10/100 mb speed bits in the Auto-Neg | ||
683 | * Advertisement Register (Address 4) and the 1000 mb speed bits in | ||
684 | * the 1000Base-T Control Register (Address 9). | ||
685 | */ | ||
686 | mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | | ||
687 | NWAY_AR_100TX_HD_CAPS | | ||
688 | NWAY_AR_10T_FD_CAPS | | ||
689 | NWAY_AR_10T_HD_CAPS); | ||
690 | mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); | ||
691 | |||
692 | hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised); | ||
693 | |||
694 | /* Do we want to advertise 10 Mb Half Duplex? */ | ||
695 | if (phy->autoneg_advertised & ADVERTISE_10_HALF) { | ||
696 | hw_dbg(hw, "Advertise 10mb Half duplex\n"); | ||
697 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | ||
698 | } | ||
699 | |||
700 | /* Do we want to advertise 10 Mb Full Duplex? */ | ||
701 | if (phy->autoneg_advertised & ADVERTISE_10_FULL) { | ||
702 | hw_dbg(hw, "Advertise 10mb Full duplex\n"); | ||
703 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | ||
704 | } | ||
705 | |||
706 | /* Do we want to advertise 100 Mb Half Duplex? */ | ||
707 | if (phy->autoneg_advertised & ADVERTISE_100_HALF) { | ||
708 | hw_dbg(hw, "Advertise 100mb Half duplex\n"); | ||
709 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; | ||
710 | } | ||
711 | |||
712 | /* Do we want to advertise 100 Mb Full Duplex? */ | ||
713 | if (phy->autoneg_advertised & ADVERTISE_100_FULL) { | ||
714 | hw_dbg(hw, "Advertise 100mb Full duplex\n"); | ||
715 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | ||
716 | } | ||
717 | |||
718 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | ||
719 | if (phy->autoneg_advertised & ADVERTISE_1000_HALF) | ||
720 | hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n"); | ||
721 | |||
722 | /* Do we want to advertise 1000 Mb Full Duplex? */ | ||
723 | if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { | ||
724 | hw_dbg(hw, "Advertise 1000mb Full duplex\n"); | ||
725 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | ||
726 | } | ||
727 | |||
728 | /* | ||
729 | * Check for a software override of the flow control settings, and | ||
730 | * setup the PHY advertisement registers accordingly. If | ||
731 | * auto-negotiation is enabled, then software will have to set the | ||
732 | * "PAUSE" bits to the correct value in the Auto-Negotiation | ||
733 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- | ||
734 | * negotiation. | ||
735 | * | ||
736 | * The possible values of the "fc" parameter are: | ||
737 | * 0: Flow control is completely disabled | ||
738 | * 1: Rx flow control is enabled (we can receive pause frames | ||
739 | * but not send pause frames). | ||
740 | * 2: Tx flow control is enabled (we can send pause frames | ||
741 | * but we do not support receiving pause frames). | ||
742 | * 3: Both Rx and TX flow control (symmetric) are enabled. | ||
743 | * other: No software override. The flow control configuration | ||
744 | * in the EEPROM is used. | ||
745 | */ | ||
746 | switch (hw->fc.type) { | ||
747 | case e1000_fc_none: | ||
748 | /* | ||
749 | * Flow control (RX & TX) is completely disabled by a | ||
750 | * software over-ride. | ||
751 | */ | ||
752 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
753 | break; | ||
754 | case e1000_fc_rx_pause: | ||
755 | /* | ||
756 | * RX Flow control is enabled, and TX Flow control is | ||
757 | * disabled, by a software over-ride. | ||
758 | * | ||
759 | * Since there really isn't a way to advertise that we are | ||
760 | * capable of RX Pause ONLY, we will advertise that we | ||
761 | * support both symmetric and asymmetric RX PAUSE. Later | ||
762 | * (in e1000_config_fc_after_link_up) we will disable the | ||
763 | * hw's ability to send PAUSE frames. | ||
764 | */ | ||
765 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
766 | break; | ||
767 | case e1000_fc_tx_pause: | ||
768 | /* | ||
769 | * TX Flow control is enabled, and RX Flow control is | ||
770 | * disabled, by a software over-ride. | ||
771 | */ | ||
772 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | ||
773 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | ||
774 | break; | ||
775 | case e1000_fc_full: | ||
776 | /* | ||
777 | * Flow control (both RX and TX) is enabled by a software | ||
778 | * over-ride. | ||
779 | */ | ||
780 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
781 | break; | ||
782 | default: | ||
783 | hw_dbg(hw, "Flow control param set incorrectly\n"); | ||
784 | ret_val = -E1000_ERR_CONFIG; | ||
785 | goto out; | ||
786 | } | ||
787 | |||
788 | ret_val = hw->phy.ops.write_phy_reg(hw, PHY_AUTONEG_ADV, | ||
789 | mii_autoneg_adv_reg); | ||
790 | if (ret_val) | ||
791 | goto out; | ||
792 | |||
793 | hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | ||
794 | |||
795 | if (phy->autoneg_mask & ADVERTISE_1000_FULL) { | ||
796 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
797 | PHY_1000T_CTRL, | ||
798 | mii_1000t_ctrl_reg); | ||
799 | if (ret_val) | ||
800 | goto out; | ||
801 | } | ||
802 | |||
803 | out: | ||
804 | return ret_val; | ||
805 | } | ||
806 | |||
807 | /** | ||
808 | * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY | ||
809 | * @hw: pointer to the HW structure | ||
810 | * | ||
811 | * Calls the PHY setup function to force speed and duplex. Clears the | ||
812 | * auto-crossover to force MDI manually. Waits for link and returns | ||
813 | * successful if link up is successful, else -E1000_ERR_PHY (-2). | ||
814 | **/ | ||
815 | s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw) | ||
816 | { | ||
817 | struct e1000_phy_info *phy = &hw->phy; | ||
818 | s32 ret_val; | ||
819 | u16 phy_data; | ||
820 | bool link; | ||
821 | |||
822 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_data); | ||
823 | if (ret_val) | ||
824 | goto out; | ||
825 | |||
826 | igb_phy_force_speed_duplex_setup(hw, &phy_data); | ||
827 | |||
828 | ret_val = hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_data); | ||
829 | if (ret_val) | ||
830 | goto out; | ||
831 | |||
832 | /* | ||
833 | * Clear Auto-Crossover to force MDI manually. IGP requires MDI | ||
834 | * forced whenever speed and duplex are forced. | ||
835 | */ | ||
836 | ret_val = hw->phy.ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, | ||
837 | &phy_data); | ||
838 | if (ret_val) | ||
839 | goto out; | ||
840 | |||
841 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
842 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
843 | |||
844 | ret_val = hw->phy.ops.write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, | ||
845 | phy_data); | ||
846 | if (ret_val) | ||
847 | goto out; | ||
848 | |||
849 | hw_dbg(hw, "IGP PSCR: %X\n", phy_data); | ||
850 | |||
851 | udelay(1); | ||
852 | |||
853 | if (phy->autoneg_wait_to_complete) { | ||
854 | hw_dbg(hw, | ||
855 | "Waiting for forced speed/duplex link on IGP phy.\n"); | ||
856 | |||
857 | ret_val = igb_phy_has_link(hw, | ||
858 | PHY_FORCE_LIMIT, | ||
859 | 100000, | ||
860 | &link); | ||
861 | if (ret_val) | ||
862 | goto out; | ||
863 | |||
864 | if (!link) | ||
865 | hw_dbg(hw, "Link taking longer than expected.\n"); | ||
866 | |||
867 | /* Try once more */ | ||
868 | ret_val = igb_phy_has_link(hw, | ||
869 | PHY_FORCE_LIMIT, | ||
870 | 100000, | ||
871 | &link); | ||
872 | if (ret_val) | ||
873 | goto out; | ||
874 | } | ||
875 | |||
876 | out: | ||
877 | return ret_val; | ||
878 | } | ||
879 | |||
880 | /** | ||
881 | * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY | ||
882 | * @hw: pointer to the HW structure | ||
883 | * | ||
884 | * Calls the PHY setup function to force speed and duplex. Clears the | ||
885 | * auto-crossover to force MDI manually. Resets the PHY to commit the | ||
886 | * changes. If time expires while waiting for link up, we reset the DSP. | ||
887 | * After reset, TX_CLK and CRS on TX must be set. Return successful upon | ||
888 | * successful completion, else return corresponding error code. | ||
889 | **/ | ||
890 | s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw) | ||
891 | { | ||
892 | struct e1000_phy_info *phy = &hw->phy; | ||
893 | s32 ret_val; | ||
894 | u16 phy_data; | ||
895 | bool link; | ||
896 | |||
897 | /* | ||
898 | * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI | ||
899 | * forced whenever speed and duplex are forced. | ||
900 | */ | ||
901 | ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
902 | &phy_data); | ||
903 | if (ret_val) | ||
904 | goto out; | ||
905 | |||
906 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
907 | ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
908 | phy_data); | ||
909 | if (ret_val) | ||
910 | goto out; | ||
911 | |||
912 | hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data); | ||
913 | |||
914 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_data); | ||
915 | if (ret_val) | ||
916 | goto out; | ||
917 | |||
918 | igb_phy_force_speed_duplex_setup(hw, &phy_data); | ||
919 | |||
920 | /* Reset the phy to commit changes. */ | ||
921 | phy_data |= MII_CR_RESET; | ||
922 | |||
923 | ret_val = hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_data); | ||
924 | if (ret_val) | ||
925 | goto out; | ||
926 | |||
927 | udelay(1); | ||
928 | |||
929 | if (phy->autoneg_wait_to_complete) { | ||
930 | hw_dbg(hw, | ||
931 | "Waiting for forced speed/duplex link on M88 phy.\n"); | ||
932 | |||
933 | ret_val = igb_phy_has_link(hw, | ||
934 | PHY_FORCE_LIMIT, | ||
935 | 100000, | ||
936 | &link); | ||
937 | if (ret_val) | ||
938 | goto out; | ||
939 | |||
940 | if (!link) { | ||
941 | /* | ||
942 | * We didn't get link. | ||
943 | * Reset the DSP and cross our fingers. | ||
944 | */ | ||
945 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
946 | M88E1000_PHY_PAGE_SELECT, | ||
947 | 0x001d); | ||
948 | if (ret_val) | ||
949 | goto out; | ||
950 | ret_val = igb_phy_reset_dsp(hw); | ||
951 | if (ret_val) | ||
952 | goto out; | ||
953 | } | ||
954 | |||
955 | /* Try once more */ | ||
956 | ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, | ||
957 | 100000, &link); | ||
958 | if (ret_val) | ||
959 | goto out; | ||
960 | } | ||
961 | |||
962 | ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | ||
963 | &phy_data); | ||
964 | if (ret_val) | ||
965 | goto out; | ||
966 | |||
967 | /* | ||
968 | * Resetting the phy means we need to re-force TX_CLK in the | ||
969 | * Extended PHY Specific Control Register to 25MHz clock from | ||
970 | * the reset value of 2.5MHz. | ||
971 | */ | ||
972 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
973 | ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | ||
974 | phy_data); | ||
975 | if (ret_val) | ||
976 | goto out; | ||
977 | |||
978 | /* | ||
979 | * In addition, we must re-enable CRS on Tx for both half and full | ||
980 | * duplex. | ||
981 | */ | ||
982 | ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
983 | &phy_data); | ||
984 | if (ret_val) | ||
985 | goto out; | ||
986 | |||
987 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
988 | ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
989 | phy_data); | ||
990 | |||
991 | out: | ||
992 | return ret_val; | ||
993 | } | ||
994 | |||
995 | /** | ||
996 | * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex | ||
997 | * @hw: pointer to the HW structure | ||
998 | * @phy_ctrl: pointer to current value of PHY_CONTROL | ||
999 | * | ||
1000 | * Forces speed and duplex on the PHY by doing the following: disable flow | ||
1001 | * control, force speed/duplex on the MAC, disable auto speed detection, | ||
1002 | * disable auto-negotiation, configure duplex, configure speed, configure | ||
1003 | * the collision distance, write configuration to CTRL register. The | ||
1004 | * caller must write to the PHY_CONTROL register for these settings to | ||
1005 | * take affect. | ||
1006 | **/ | ||
1007 | static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, | ||
1008 | u16 *phy_ctrl) | ||
1009 | { | ||
1010 | struct e1000_mac_info *mac = &hw->mac; | ||
1011 | u32 ctrl; | ||
1012 | |||
1013 | /* Turn off flow control when forcing speed/duplex */ | ||
1014 | hw->fc.type = e1000_fc_none; | ||
1015 | |||
1016 | /* Force speed/duplex on the mac */ | ||
1017 | ctrl = rd32(E1000_CTRL); | ||
1018 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
1019 | ctrl &= ~E1000_CTRL_SPD_SEL; | ||
1020 | |||
1021 | /* Disable Auto Speed Detection */ | ||
1022 | ctrl &= ~E1000_CTRL_ASDE; | ||
1023 | |||
1024 | /* Disable autoneg on the phy */ | ||
1025 | *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; | ||
1026 | |||
1027 | /* Forcing Full or Half Duplex? */ | ||
1028 | if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { | ||
1029 | ctrl &= ~E1000_CTRL_FD; | ||
1030 | *phy_ctrl &= ~MII_CR_FULL_DUPLEX; | ||
1031 | hw_dbg(hw, "Half Duplex\n"); | ||
1032 | } else { | ||
1033 | ctrl |= E1000_CTRL_FD; | ||
1034 | *phy_ctrl |= MII_CR_FULL_DUPLEX; | ||
1035 | hw_dbg(hw, "Full Duplex\n"); | ||
1036 | } | ||
1037 | |||
1038 | /* Forcing 10mb or 100mb? */ | ||
1039 | if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { | ||
1040 | ctrl |= E1000_CTRL_SPD_100; | ||
1041 | *phy_ctrl |= MII_CR_SPEED_100; | ||
1042 | *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); | ||
1043 | hw_dbg(hw, "Forcing 100mb\n"); | ||
1044 | } else { | ||
1045 | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | ||
1046 | *phy_ctrl |= MII_CR_SPEED_10; | ||
1047 | *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); | ||
1048 | hw_dbg(hw, "Forcing 10mb\n"); | ||
1049 | } | ||
1050 | |||
1051 | igb_config_collision_dist(hw); | ||
1052 | |||
1053 | wr32(E1000_CTRL, ctrl); | ||
1054 | } | ||
1055 | |||
1056 | /** | ||
1057 | * e1000_set_d3_lplu_state - Sets low power link up state for D3 | ||
1058 | * @hw: pointer to the HW structure | ||
1059 | * @active: boolean used to enable/disable lplu | ||
1060 | * | ||
1061 | * Success returns 0, Failure returns 1 | ||
1062 | * | ||
1063 | * The low power link up (lplu) state is set to the power management level D3 | ||
1064 | * and SmartSpeed is disabled when active is true, else clear lplu for D3 | ||
1065 | * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU | ||
1066 | * is used during Dx states where the power conservation is most important. | ||
1067 | * During driver activity, SmartSpeed should be enabled so performance is | ||
1068 | * maintained. | ||
1069 | **/ | ||
1070 | s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active) | ||
1071 | { | ||
1072 | struct e1000_phy_info *phy = &hw->phy; | ||
1073 | s32 ret_val; | ||
1074 | u16 data; | ||
1075 | |||
1076 | ret_val = hw->phy.ops.read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | ||
1077 | &data); | ||
1078 | if (ret_val) | ||
1079 | goto out; | ||
1080 | |||
1081 | if (!active) { | ||
1082 | data &= ~IGP02E1000_PM_D3_LPLU; | ||
1083 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
1084 | IGP02E1000_PHY_POWER_MGMT, | ||
1085 | data); | ||
1086 | if (ret_val) | ||
1087 | goto out; | ||
1088 | /* | ||
1089 | * LPLU and SmartSpeed are mutually exclusive. LPLU is used | ||
1090 | * during Dx states where the power conservation is most | ||
1091 | * important. During driver activity we should enable | ||
1092 | * SmartSpeed, so performance is maintained. | ||
1093 | */ | ||
1094 | if (phy->smart_speed == e1000_smart_speed_on) { | ||
1095 | ret_val = hw->phy.ops.read_phy_reg(hw, | ||
1096 | IGP01E1000_PHY_PORT_CONFIG, | ||
1097 | &data); | ||
1098 | if (ret_val) | ||
1099 | goto out; | ||
1100 | |||
1101 | data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
1102 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
1103 | IGP01E1000_PHY_PORT_CONFIG, | ||
1104 | data); | ||
1105 | if (ret_val) | ||
1106 | goto out; | ||
1107 | } else if (phy->smart_speed == e1000_smart_speed_off) { | ||
1108 | ret_val = hw->phy.ops.read_phy_reg(hw, | ||
1109 | IGP01E1000_PHY_PORT_CONFIG, | ||
1110 | &data); | ||
1111 | if (ret_val) | ||
1112 | goto out; | ||
1113 | |||
1114 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1115 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
1116 | IGP01E1000_PHY_PORT_CONFIG, | ||
1117 | data); | ||
1118 | if (ret_val) | ||
1119 | goto out; | ||
1120 | } | ||
1121 | } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || | ||
1122 | (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || | ||
1123 | (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { | ||
1124 | data |= IGP02E1000_PM_D3_LPLU; | ||
1125 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
1126 | IGP02E1000_PHY_POWER_MGMT, | ||
1127 | data); | ||
1128 | if (ret_val) | ||
1129 | goto out; | ||
1130 | |||
1131 | /* When LPLU is enabled, we should disable SmartSpeed */ | ||
1132 | ret_val = hw->phy.ops.read_phy_reg(hw, | ||
1133 | IGP01E1000_PHY_PORT_CONFIG, | ||
1134 | &data); | ||
1135 | if (ret_val) | ||
1136 | goto out; | ||
1137 | |||
1138 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1139 | ret_val = hw->phy.ops.write_phy_reg(hw, | ||
1140 | IGP01E1000_PHY_PORT_CONFIG, | ||
1141 | data); | ||
1142 | } | ||
1143 | |||
1144 | out: | ||
1145 | return ret_val; | ||
1146 | } | ||
1147 | |||
1148 | /** | ||
1149 | * e1000_check_downshift - Checks whether a downshift in speed occured | ||
1150 | * @hw: pointer to the HW structure | ||
1151 | * | ||
1152 | * Success returns 0, Failure returns 1 | ||
1153 | * | ||
1154 | * A downshift is detected by querying the PHY link health. | ||
1155 | **/ | ||
1156 | s32 igb_check_downshift(struct e1000_hw *hw) | ||
1157 | { | ||
1158 | struct e1000_phy_info *phy = &hw->phy; | ||
1159 | s32 ret_val; | ||
1160 | u16 phy_data, offset, mask; | ||
1161 | |||
1162 | switch (phy->type) { | ||
1163 | case e1000_phy_m88: | ||
1164 | case e1000_phy_gg82563: | ||
1165 | offset = M88E1000_PHY_SPEC_STATUS; | ||
1166 | mask = M88E1000_PSSR_DOWNSHIFT; | ||
1167 | break; | ||
1168 | case e1000_phy_igp_2: | ||
1169 | case e1000_phy_igp: | ||
1170 | case e1000_phy_igp_3: | ||
1171 | offset = IGP01E1000_PHY_LINK_HEALTH; | ||
1172 | mask = IGP01E1000_PLHR_SS_DOWNGRADE; | ||
1173 | break; | ||
1174 | default: | ||
1175 | /* speed downshift not supported */ | ||
1176 | phy->speed_downgraded = false; | ||
1177 | ret_val = 0; | ||
1178 | goto out; | ||
1179 | } | ||
1180 | |||
1181 | ret_val = hw->phy.ops.read_phy_reg(hw, offset, &phy_data); | ||
1182 | |||
1183 | if (!ret_val) | ||
1184 | phy->speed_downgraded = (phy_data & mask) ? true : false; | ||
1185 | |||
1186 | out: | ||
1187 | return ret_val; | ||
1188 | } | ||
1189 | |||
1190 | /** | ||
1191 | * e1000_check_polarity_m88 - Checks the polarity. | ||
1192 | * @hw: pointer to the HW structure | ||
1193 | * | ||
1194 | * Success returns 0, Failure returns -E1000_ERR_PHY (-2) | ||
1195 | * | ||
1196 | * Polarity is determined based on the PHY specific status register. | ||
1197 | **/ | ||
1198 | static s32 igb_check_polarity_m88(struct e1000_hw *hw) | ||
1199 | { | ||
1200 | struct e1000_phy_info *phy = &hw->phy; | ||
1201 | s32 ret_val; | ||
1202 | u16 data; | ||
1203 | |||
1204 | ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); | ||
1205 | |||
1206 | if (!ret_val) | ||
1207 | phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) | ||
1208 | ? e1000_rev_polarity_reversed | ||
1209 | : e1000_rev_polarity_normal; | ||
1210 | |||
1211 | return ret_val; | ||
1212 | } | ||
1213 | |||
1214 | /** | ||
1215 | * e1000_check_polarity_igp - Checks the polarity. | ||
1216 | * @hw: pointer to the HW structure | ||
1217 | * | ||
1218 | * Success returns 0, Failure returns -E1000_ERR_PHY (-2) | ||
1219 | * | ||
1220 | * Polarity is determined based on the PHY port status register, and the | ||
1221 | * current speed (since there is no polarity at 100Mbps). | ||
1222 | **/ | ||
1223 | static s32 igb_check_polarity_igp(struct e1000_hw *hw) | ||
1224 | { | ||
1225 | struct e1000_phy_info *phy = &hw->phy; | ||
1226 | s32 ret_val; | ||
1227 | u16 data, offset, mask; | ||
1228 | |||
1229 | /* | ||
1230 | * Polarity is determined based on the speed of | ||
1231 | * our connection. | ||
1232 | */ | ||
1233 | ret_val = hw->phy.ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | ||
1234 | &data); | ||
1235 | if (ret_val) | ||
1236 | goto out; | ||
1237 | |||
1238 | if ((data & IGP01E1000_PSSR_SPEED_MASK) == | ||
1239 | IGP01E1000_PSSR_SPEED_1000MBPS) { | ||
1240 | offset = IGP01E1000_PHY_PCS_INIT_REG; | ||
1241 | mask = IGP01E1000_PHY_POLARITY_MASK; | ||
1242 | } else { | ||
1243 | /* | ||
1244 | * This really only applies to 10Mbps since | ||
1245 | * there is no polarity for 100Mbps (always 0). | ||
1246 | */ | ||
1247 | offset = IGP01E1000_PHY_PORT_STATUS; | ||
1248 | mask = IGP01E1000_PSSR_POLARITY_REVERSED; | ||
1249 | } | ||
1250 | |||
1251 | ret_val = hw->phy.ops.read_phy_reg(hw, offset, &data); | ||
1252 | |||
1253 | if (!ret_val) | ||
1254 | phy->cable_polarity = (data & mask) | ||
1255 | ? e1000_rev_polarity_reversed | ||
1256 | : e1000_rev_polarity_normal; | ||
1257 | |||
1258 | out: | ||
1259 | return ret_val; | ||
1260 | } | ||
1261 | |||
1262 | /** | ||
1263 | * e1000_wait_autoneg - Wait for auto-neg compeletion | ||
1264 | * @hw: pointer to the HW structure | ||
1265 | * | ||
1266 | * Waits for auto-negotiation to complete or for the auto-negotiation time | ||
1267 | * limit to expire, which ever happens first. | ||
1268 | **/ | ||
1269 | static s32 igb_wait_autoneg(struct e1000_hw *hw) | ||
1270 | { | ||
1271 | s32 ret_val = 0; | ||
1272 | u16 i, phy_status; | ||
1273 | |||
1274 | /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ | ||
1275 | for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { | ||
1276 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, &phy_status); | ||
1277 | if (ret_val) | ||
1278 | break; | ||
1279 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, &phy_status); | ||
1280 | if (ret_val) | ||
1281 | break; | ||
1282 | if (phy_status & MII_SR_AUTONEG_COMPLETE) | ||
1283 | break; | ||
1284 | msleep(100); | ||
1285 | } | ||
1286 | |||
1287 | /* | ||
1288 | * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation | ||
1289 | * has completed. | ||
1290 | */ | ||
1291 | return ret_val; | ||
1292 | } | ||
1293 | |||
1294 | /** | ||
1295 | * e1000_phy_has_link - Polls PHY for link | ||
1296 | * @hw: pointer to the HW structure | ||
1297 | * @iterations: number of times to poll for link | ||
1298 | * @usec_interval: delay between polling attempts | ||
1299 | * @success: pointer to whether polling was successful or not | ||
1300 | * | ||
1301 | * Polls the PHY status register for link, 'iterations' number of times. | ||
1302 | **/ | ||
1303 | s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations, | ||
1304 | u32 usec_interval, bool *success) | ||
1305 | { | ||
1306 | s32 ret_val = 0; | ||
1307 | u16 i, phy_status; | ||
1308 | |||
1309 | for (i = 0; i < iterations; i++) { | ||
1310 | /* | ||
1311 | * Some PHYs require the PHY_STATUS register to be read | ||
1312 | * twice due to the link bit being sticky. No harm doing | ||
1313 | * it across the board. | ||
1314 | */ | ||
1315 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, &phy_status); | ||
1316 | if (ret_val) | ||
1317 | break; | ||
1318 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, &phy_status); | ||
1319 | if (ret_val) | ||
1320 | break; | ||
1321 | if (phy_status & MII_SR_LINK_STATUS) | ||
1322 | break; | ||
1323 | if (usec_interval >= 1000) | ||
1324 | mdelay(usec_interval/1000); | ||
1325 | else | ||
1326 | udelay(usec_interval); | ||
1327 | } | ||
1328 | |||
1329 | *success = (i < iterations) ? true : false; | ||
1330 | |||
1331 | return ret_val; | ||
1332 | } | ||
1333 | |||
1334 | /** | ||
1335 | * e1000_get_cable_length_m88 - Determine cable length for m88 PHY | ||
1336 | * @hw: pointer to the HW structure | ||
1337 | * | ||
1338 | * Reads the PHY specific status register to retrieve the cable length | ||
1339 | * information. The cable length is determined by averaging the minimum and | ||
1340 | * maximum values to get the "average" cable length. The m88 PHY has four | ||
1341 | * possible cable length values, which are: | ||
1342 | * Register Value Cable Length | ||
1343 | * 0 < 50 meters | ||
1344 | * 1 50 - 80 meters | ||
1345 | * 2 80 - 110 meters | ||
1346 | * 3 110 - 140 meters | ||
1347 | * 4 > 140 meters | ||
1348 | **/ | ||
1349 | s32 igb_get_cable_length_m88(struct e1000_hw *hw) | ||
1350 | { | ||
1351 | struct e1000_phy_info *phy = &hw->phy; | ||
1352 | s32 ret_val; | ||
1353 | u16 phy_data, index; | ||
1354 | |||
1355 | ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
1356 | &phy_data); | ||
1357 | if (ret_val) | ||
1358 | goto out; | ||
1359 | |||
1360 | index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | ||
1361 | M88E1000_PSSR_CABLE_LENGTH_SHIFT; | ||
1362 | phy->min_cable_length = e1000_m88_cable_length_table[index]; | ||
1363 | phy->max_cable_length = e1000_m88_cable_length_table[index+1]; | ||
1364 | |||
1365 | phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; | ||
1366 | |||
1367 | out: | ||
1368 | return ret_val; | ||
1369 | } | ||
1370 | |||
1371 | /** | ||
1372 | * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY | ||
1373 | * @hw: pointer to the HW structure | ||
1374 | * | ||
1375 | * The automatic gain control (agc) normalizes the amplitude of the | ||
1376 | * received signal, adjusting for the attenuation produced by the | ||
1377 | * cable. By reading the AGC registers, which reperesent the | ||
1378 | * cobination of course and fine gain value, the value can be put | ||
1379 | * into a lookup table to obtain the approximate cable length | ||
1380 | * for each channel. | ||
1381 | **/ | ||
1382 | s32 igb_get_cable_length_igp_2(struct e1000_hw *hw) | ||
1383 | { | ||
1384 | struct e1000_phy_info *phy = &hw->phy; | ||
1385 | s32 ret_val = 0; | ||
1386 | u16 phy_data, i, agc_value = 0; | ||
1387 | u16 cur_agc_index, max_agc_index = 0; | ||
1388 | u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; | ||
1389 | u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = | ||
1390 | {IGP02E1000_PHY_AGC_A, | ||
1391 | IGP02E1000_PHY_AGC_B, | ||
1392 | IGP02E1000_PHY_AGC_C, | ||
1393 | IGP02E1000_PHY_AGC_D}; | ||
1394 | |||
1395 | /* Read the AGC registers for all channels */ | ||
1396 | for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { | ||
1397 | ret_val = hw->phy.ops.read_phy_reg(hw, agc_reg_array[i], | ||
1398 | &phy_data); | ||
1399 | if (ret_val) | ||
1400 | goto out; | ||
1401 | |||
1402 | /* | ||
1403 | * Getting bits 15:9, which represent the combination of | ||
1404 | * course and fine gain values. The result is a number | ||
1405 | * that can be put into the lookup table to obtain the | ||
1406 | * approximate cable length. | ||
1407 | */ | ||
1408 | cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & | ||
1409 | IGP02E1000_AGC_LENGTH_MASK; | ||
1410 | |||
1411 | /* Array index bound check. */ | ||
1412 | if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || | ||
1413 | (cur_agc_index == 0)) { | ||
1414 | ret_val = -E1000_ERR_PHY; | ||
1415 | goto out; | ||
1416 | } | ||
1417 | |||
1418 | /* Remove min & max AGC values from calculation. */ | ||
1419 | if (e1000_igp_2_cable_length_table[min_agc_index] > | ||
1420 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
1421 | min_agc_index = cur_agc_index; | ||
1422 | if (e1000_igp_2_cable_length_table[max_agc_index] < | ||
1423 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
1424 | max_agc_index = cur_agc_index; | ||
1425 | |||
1426 | agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; | ||
1427 | } | ||
1428 | |||
1429 | agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + | ||
1430 | e1000_igp_2_cable_length_table[max_agc_index]); | ||
1431 | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); | ||
1432 | |||
1433 | /* Calculate cable length with the error range of +/- 10 meters. */ | ||
1434 | phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? | ||
1435 | (agc_value - IGP02E1000_AGC_RANGE) : 0; | ||
1436 | phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; | ||
1437 | |||
1438 | phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; | ||
1439 | |||
1440 | out: | ||
1441 | return ret_val; | ||
1442 | } | ||
1443 | |||
1444 | /** | ||
1445 | * e1000_get_phy_info_m88 - Retrieve PHY information | ||
1446 | * @hw: pointer to the HW structure | ||
1447 | * | ||
1448 | * Valid for only copper links. Read the PHY status register (sticky read) | ||
1449 | * to verify that link is up. Read the PHY special control register to | ||
1450 | * determine the polarity and 10base-T extended distance. Read the PHY | ||
1451 | * special status register to determine MDI/MDIx and current speed. If | ||
1452 | * speed is 1000, then determine cable length, local and remote receiver. | ||
1453 | **/ | ||
1454 | s32 igb_get_phy_info_m88(struct e1000_hw *hw) | ||
1455 | { | ||
1456 | struct e1000_phy_info *phy = &hw->phy; | ||
1457 | s32 ret_val; | ||
1458 | u16 phy_data; | ||
1459 | bool link; | ||
1460 | |||
1461 | if (hw->phy.media_type != e1000_media_type_copper) { | ||
1462 | hw_dbg(hw, "Phy info is only valid for copper media\n"); | ||
1463 | ret_val = -E1000_ERR_CONFIG; | ||
1464 | goto out; | ||
1465 | } | ||
1466 | |||
1467 | ret_val = igb_phy_has_link(hw, 1, 0, &link); | ||
1468 | if (ret_val) | ||
1469 | goto out; | ||
1470 | |||
1471 | if (!link) { | ||
1472 | hw_dbg(hw, "Phy info is only valid if link is up\n"); | ||
1473 | ret_val = -E1000_ERR_CONFIG; | ||
1474 | goto out; | ||
1475 | } | ||
1476 | |||
1477 | ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
1478 | &phy_data); | ||
1479 | if (ret_val) | ||
1480 | goto out; | ||
1481 | |||
1482 | phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) | ||
1483 | ? true | ||
1484 | : false; | ||
1485 | |||
1486 | ret_val = igb_check_polarity_m88(hw); | ||
1487 | if (ret_val) | ||
1488 | goto out; | ||
1489 | |||
1490 | ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
1491 | &phy_data); | ||
1492 | if (ret_val) | ||
1493 | goto out; | ||
1494 | |||
1495 | phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false; | ||
1496 | |||
1497 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { | ||
1498 | ret_val = hw->phy.ops.get_cable_length(hw); | ||
1499 | if (ret_val) | ||
1500 | goto out; | ||
1501 | |||
1502 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS, | ||
1503 | &phy_data); | ||
1504 | if (ret_val) | ||
1505 | goto out; | ||
1506 | |||
1507 | phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) | ||
1508 | ? e1000_1000t_rx_status_ok | ||
1509 | : e1000_1000t_rx_status_not_ok; | ||
1510 | |||
1511 | phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) | ||
1512 | ? e1000_1000t_rx_status_ok | ||
1513 | : e1000_1000t_rx_status_not_ok; | ||
1514 | } else { | ||
1515 | /* Set values to "undefined" */ | ||
1516 | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; | ||
1517 | phy->local_rx = e1000_1000t_rx_status_undefined; | ||
1518 | phy->remote_rx = e1000_1000t_rx_status_undefined; | ||
1519 | } | ||
1520 | |||
1521 | out: | ||
1522 | return ret_val; | ||
1523 | } | ||
1524 | |||
1525 | /** | ||
1526 | * e1000_get_phy_info_igp - Retrieve igp PHY information | ||
1527 | * @hw: pointer to the HW structure | ||
1528 | * | ||
1529 | * Read PHY status to determine if link is up. If link is up, then | ||
1530 | * set/determine 10base-T extended distance and polarity correction. Read | ||
1531 | * PHY port status to determine MDI/MDIx and speed. Based on the speed, | ||
1532 | * determine on the cable length, local and remote receiver. | ||
1533 | **/ | ||
1534 | s32 igb_get_phy_info_igp(struct e1000_hw *hw) | ||
1535 | { | ||
1536 | struct e1000_phy_info *phy = &hw->phy; | ||
1537 | s32 ret_val; | ||
1538 | u16 data; | ||
1539 | bool link; | ||
1540 | |||
1541 | ret_val = igb_phy_has_link(hw, 1, 0, &link); | ||
1542 | if (ret_val) | ||
1543 | goto out; | ||
1544 | |||
1545 | if (!link) { | ||
1546 | hw_dbg(hw, "Phy info is only valid if link is up\n"); | ||
1547 | ret_val = -E1000_ERR_CONFIG; | ||
1548 | goto out; | ||
1549 | } | ||
1550 | |||
1551 | phy->polarity_correction = true; | ||
1552 | |||
1553 | ret_val = igb_check_polarity_igp(hw); | ||
1554 | if (ret_val) | ||
1555 | goto out; | ||
1556 | |||
1557 | ret_val = hw->phy.ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | ||
1558 | &data); | ||
1559 | if (ret_val) | ||
1560 | goto out; | ||
1561 | |||
1562 | phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false; | ||
1563 | |||
1564 | if ((data & IGP01E1000_PSSR_SPEED_MASK) == | ||
1565 | IGP01E1000_PSSR_SPEED_1000MBPS) { | ||
1566 | ret_val = hw->phy.ops.get_cable_length(hw); | ||
1567 | if (ret_val) | ||
1568 | goto out; | ||
1569 | |||
1570 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS, | ||
1571 | &data); | ||
1572 | if (ret_val) | ||
1573 | goto out; | ||
1574 | |||
1575 | phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) | ||
1576 | ? e1000_1000t_rx_status_ok | ||
1577 | : e1000_1000t_rx_status_not_ok; | ||
1578 | |||
1579 | phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) | ||
1580 | ? e1000_1000t_rx_status_ok | ||
1581 | : e1000_1000t_rx_status_not_ok; | ||
1582 | } else { | ||
1583 | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; | ||
1584 | phy->local_rx = e1000_1000t_rx_status_undefined; | ||
1585 | phy->remote_rx = e1000_1000t_rx_status_undefined; | ||
1586 | } | ||
1587 | |||
1588 | out: | ||
1589 | return ret_val; | ||
1590 | } | ||
1591 | |||
1592 | /** | ||
1593 | * e1000_phy_sw_reset - PHY software reset | ||
1594 | * @hw: pointer to the HW structure | ||
1595 | * | ||
1596 | * Does a software reset of the PHY by reading the PHY control register and | ||
1597 | * setting/write the control register reset bit to the PHY. | ||
1598 | **/ | ||
1599 | s32 igb_phy_sw_reset(struct e1000_hw *hw) | ||
1600 | { | ||
1601 | s32 ret_val; | ||
1602 | u16 phy_ctrl; | ||
1603 | |||
1604 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_ctrl); | ||
1605 | if (ret_val) | ||
1606 | goto out; | ||
1607 | |||
1608 | phy_ctrl |= MII_CR_RESET; | ||
1609 | ret_val = hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_ctrl); | ||
1610 | if (ret_val) | ||
1611 | goto out; | ||
1612 | |||
1613 | udelay(1); | ||
1614 | |||
1615 | out: | ||
1616 | return ret_val; | ||
1617 | } | ||
1618 | |||
1619 | /** | ||
1620 | * e1000_phy_hw_reset - PHY hardware reset | ||
1621 | * @hw: pointer to the HW structure | ||
1622 | * | ||
1623 | * Verify the reset block is not blocking us from resetting. Acquire | ||
1624 | * semaphore (if necessary) and read/set/write the device control reset | ||
1625 | * bit in the PHY. Wait the appropriate delay time for the device to | ||
1626 | * reset and relase the semaphore (if necessary). | ||
1627 | **/ | ||
1628 | s32 igb_phy_hw_reset(struct e1000_hw *hw) | ||
1629 | { | ||
1630 | struct e1000_phy_info *phy = &hw->phy; | ||
1631 | s32 ret_val; | ||
1632 | u32 ctrl; | ||
1633 | |||
1634 | ret_val = igb_check_reset_block(hw); | ||
1635 | if (ret_val) { | ||
1636 | ret_val = 0; | ||
1637 | goto out; | ||
1638 | } | ||
1639 | |||
1640 | ret_val = igb_acquire_phy(hw); | ||
1641 | if (ret_val) | ||
1642 | goto out; | ||
1643 | |||
1644 | ctrl = rd32(E1000_CTRL); | ||
1645 | wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); | ||
1646 | wrfl(); | ||
1647 | |||
1648 | udelay(phy->reset_delay_us); | ||
1649 | |||
1650 | wr32(E1000_CTRL, ctrl); | ||
1651 | wrfl(); | ||
1652 | |||
1653 | udelay(150); | ||
1654 | |||
1655 | igb_release_phy(hw); | ||
1656 | |||
1657 | ret_val = igb_get_phy_cfg_done(hw); | ||
1658 | |||
1659 | out: | ||
1660 | return ret_val; | ||
1661 | } | ||
1662 | |||
1663 | /* Internal function pointers */ | ||
1664 | |||
1665 | /** | ||
1666 | * e1000_get_phy_cfg_done - Generic PHY configuration done | ||
1667 | * @hw: pointer to the HW structure | ||
1668 | * | ||
1669 | * Return success if silicon family did not implement a family specific | ||
1670 | * get_cfg_done function. | ||
1671 | **/ | ||
1672 | static s32 igb_get_phy_cfg_done(struct e1000_hw *hw) | ||
1673 | { | ||
1674 | if (hw->phy.ops.get_cfg_done) | ||
1675 | return hw->phy.ops.get_cfg_done(hw); | ||
1676 | |||
1677 | return 0; | ||
1678 | } | ||
1679 | |||
1680 | /** | ||
1681 | * e1000_release_phy - Generic release PHY | ||
1682 | * @hw: pointer to the HW structure | ||
1683 | * | ||
1684 | * Return if silicon family does not require a semaphore when accessing the | ||
1685 | * PHY. | ||
1686 | **/ | ||
1687 | static void igb_release_phy(struct e1000_hw *hw) | ||
1688 | { | ||
1689 | if (hw->phy.ops.release_phy) | ||
1690 | hw->phy.ops.release_phy(hw); | ||
1691 | } | ||
1692 | |||
1693 | /** | ||
1694 | * e1000_acquire_phy - Generic acquire PHY | ||
1695 | * @hw: pointer to the HW structure | ||
1696 | * | ||
1697 | * Return success if silicon family does not require a semaphore when | ||
1698 | * accessing the PHY. | ||
1699 | **/ | ||
1700 | static s32 igb_acquire_phy(struct e1000_hw *hw) | ||
1701 | { | ||
1702 | if (hw->phy.ops.acquire_phy) | ||
1703 | return hw->phy.ops.acquire_phy(hw); | ||
1704 | |||
1705 | return 0; | ||
1706 | } | ||
1707 | |||
1708 | /** | ||
1709 | * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex | ||
1710 | * @hw: pointer to the HW structure | ||
1711 | * | ||
1712 | * When the silicon family has not implemented a forced speed/duplex | ||
1713 | * function for the PHY, simply return 0. | ||
1714 | **/ | ||
1715 | s32 igb_phy_force_speed_duplex(struct e1000_hw *hw) | ||
1716 | { | ||
1717 | if (hw->phy.ops.force_speed_duplex) | ||
1718 | return hw->phy.ops.force_speed_duplex(hw); | ||
1719 | |||
1720 | return 0; | ||
1721 | } | ||
1722 | |||
1723 | /** | ||
1724 | * e1000_phy_init_script_igp3 - Inits the IGP3 PHY | ||
1725 | * @hw: pointer to the HW structure | ||
1726 | * | ||
1727 | * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. | ||
1728 | **/ | ||
1729 | s32 igb_phy_init_script_igp3(struct e1000_hw *hw) | ||
1730 | { | ||
1731 | hw_dbg(hw, "Running IGP 3 PHY init script\n"); | ||
1732 | |||
1733 | /* PHY init IGP 3 */ | ||
1734 | /* Enable rise/fall, 10-mode work in class-A */ | ||
1735 | hw->phy.ops.write_phy_reg(hw, 0x2F5B, 0x9018); | ||
1736 | /* Remove all caps from Replica path filter */ | ||
1737 | hw->phy.ops.write_phy_reg(hw, 0x2F52, 0x0000); | ||
1738 | /* Bias trimming for ADC, AFE and Driver (Default) */ | ||
1739 | hw->phy.ops.write_phy_reg(hw, 0x2FB1, 0x8B24); | ||
1740 | /* Increase Hybrid poly bias */ | ||
1741 | hw->phy.ops.write_phy_reg(hw, 0x2FB2, 0xF8F0); | ||
1742 | /* Add 4% to TX amplitude in Giga mode */ | ||
1743 | hw->phy.ops.write_phy_reg(hw, 0x2010, 0x10B0); | ||
1744 | /* Disable trimming (TTT) */ | ||
1745 | hw->phy.ops.write_phy_reg(hw, 0x2011, 0x0000); | ||
1746 | /* Poly DC correction to 94.6% + 2% for all channels */ | ||
1747 | hw->phy.ops.write_phy_reg(hw, 0x20DD, 0x249A); | ||
1748 | /* ABS DC correction to 95.9% */ | ||
1749 | hw->phy.ops.write_phy_reg(hw, 0x20DE, 0x00D3); | ||
1750 | /* BG temp curve trim */ | ||
1751 | hw->phy.ops.write_phy_reg(hw, 0x28B4, 0x04CE); | ||
1752 | /* Increasing ADC OPAMP stage 1 currents to max */ | ||
1753 | hw->phy.ops.write_phy_reg(hw, 0x2F70, 0x29E4); | ||
1754 | /* Force 1000 ( required for enabling PHY regs configuration) */ | ||
1755 | hw->phy.ops.write_phy_reg(hw, 0x0000, 0x0140); | ||
1756 | /* Set upd_freq to 6 */ | ||
1757 | hw->phy.ops.write_phy_reg(hw, 0x1F30, 0x1606); | ||
1758 | /* Disable NPDFE */ | ||
1759 | hw->phy.ops.write_phy_reg(hw, 0x1F31, 0xB814); | ||
1760 | /* Disable adaptive fixed FFE (Default) */ | ||
1761 | hw->phy.ops.write_phy_reg(hw, 0x1F35, 0x002A); | ||
1762 | /* Enable FFE hysteresis */ | ||
1763 | hw->phy.ops.write_phy_reg(hw, 0x1F3E, 0x0067); | ||
1764 | /* Fixed FFE for short cable lengths */ | ||
1765 | hw->phy.ops.write_phy_reg(hw, 0x1F54, 0x0065); | ||
1766 | /* Fixed FFE for medium cable lengths */ | ||
1767 | hw->phy.ops.write_phy_reg(hw, 0x1F55, 0x002A); | ||
1768 | /* Fixed FFE for long cable lengths */ | ||
1769 | hw->phy.ops.write_phy_reg(hw, 0x1F56, 0x002A); | ||
1770 | /* Enable Adaptive Clip Threshold */ | ||
1771 | hw->phy.ops.write_phy_reg(hw, 0x1F72, 0x3FB0); | ||
1772 | /* AHT reset limit to 1 */ | ||
1773 | hw->phy.ops.write_phy_reg(hw, 0x1F76, 0xC0FF); | ||
1774 | /* Set AHT master delay to 127 msec */ | ||
1775 | hw->phy.ops.write_phy_reg(hw, 0x1F77, 0x1DEC); | ||
1776 | /* Set scan bits for AHT */ | ||
1777 | hw->phy.ops.write_phy_reg(hw, 0x1F78, 0xF9EF); | ||
1778 | /* Set AHT Preset bits */ | ||
1779 | hw->phy.ops.write_phy_reg(hw, 0x1F79, 0x0210); | ||
1780 | /* Change integ_factor of channel A to 3 */ | ||
1781 | hw->phy.ops.write_phy_reg(hw, 0x1895, 0x0003); | ||
1782 | /* Change prop_factor of channels BCD to 8 */ | ||
1783 | hw->phy.ops.write_phy_reg(hw, 0x1796, 0x0008); | ||
1784 | /* Change cg_icount + enable integbp for channels BCD */ | ||
1785 | hw->phy.ops.write_phy_reg(hw, 0x1798, 0xD008); | ||
1786 | /* | ||
1787 | * Change cg_icount + enable integbp + change prop_factor_master | ||
1788 | * to 8 for channel A | ||
1789 | */ | ||
1790 | hw->phy.ops.write_phy_reg(hw, 0x1898, 0xD918); | ||
1791 | /* Disable AHT in Slave mode on channel A */ | ||
1792 | hw->phy.ops.write_phy_reg(hw, 0x187A, 0x0800); | ||
1793 | /* | ||
1794 | * Enable LPLU and disable AN to 1000 in non-D0a states, | ||
1795 | * Enable SPD+B2B | ||
1796 | */ | ||
1797 | hw->phy.ops.write_phy_reg(hw, 0x0019, 0x008D); | ||
1798 | /* Enable restart AN on an1000_dis change */ | ||
1799 | hw->phy.ops.write_phy_reg(hw, 0x001B, 0x2080); | ||
1800 | /* Enable wh_fifo read clock in 10/100 modes */ | ||
1801 | hw->phy.ops.write_phy_reg(hw, 0x0014, 0x0045); | ||
1802 | /* Restart AN, Speed selection is 1000 */ | ||
1803 | hw->phy.ops.write_phy_reg(hw, 0x0000, 0x1340); | ||
1804 | |||
1805 | return 0; | ||
1806 | } | ||
1807 | |||
diff --git a/drivers/net/igb/e1000_phy.h b/drivers/net/igb/e1000_phy.h new file mode 100644 index 000000000000..8f8fe0a780d1 --- /dev/null +++ b/drivers/net/igb/e1000_phy.h | |||
@@ -0,0 +1,98 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #ifndef _E1000_PHY_H_ | ||
29 | #define _E1000_PHY_H_ | ||
30 | |||
31 | enum e1000_ms_type { | ||
32 | e1000_ms_hw_default = 0, | ||
33 | e1000_ms_force_master, | ||
34 | e1000_ms_force_slave, | ||
35 | e1000_ms_auto | ||
36 | }; | ||
37 | |||
38 | enum e1000_smart_speed { | ||
39 | e1000_smart_speed_default = 0, | ||
40 | e1000_smart_speed_on, | ||
41 | e1000_smart_speed_off | ||
42 | }; | ||
43 | |||
44 | s32 igb_check_downshift(struct e1000_hw *hw); | ||
45 | s32 igb_check_reset_block(struct e1000_hw *hw); | ||
46 | s32 igb_copper_link_autoneg(struct e1000_hw *hw); | ||
47 | s32 igb_phy_force_speed_duplex(struct e1000_hw *hw); | ||
48 | s32 igb_copper_link_setup_igp(struct e1000_hw *hw); | ||
49 | s32 igb_copper_link_setup_m88(struct e1000_hw *hw); | ||
50 | s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw); | ||
51 | s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw); | ||
52 | s32 igb_get_cable_length_m88(struct e1000_hw *hw); | ||
53 | s32 igb_get_cable_length_igp_2(struct e1000_hw *hw); | ||
54 | s32 igb_get_phy_id(struct e1000_hw *hw); | ||
55 | s32 igb_get_phy_info_igp(struct e1000_hw *hw); | ||
56 | s32 igb_get_phy_info_m88(struct e1000_hw *hw); | ||
57 | s32 igb_phy_sw_reset(struct e1000_hw *hw); | ||
58 | s32 igb_phy_hw_reset(struct e1000_hw *hw); | ||
59 | s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data); | ||
60 | s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active); | ||
61 | s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data); | ||
62 | s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations, | ||
63 | u32 usec_interval, bool *success); | ||
64 | s32 igb_phy_init_script_igp3(struct e1000_hw *hw); | ||
65 | |||
66 | /* IGP01E1000 Specific Registers */ | ||
67 | #define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */ | ||
68 | #define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */ | ||
69 | #define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */ | ||
70 | #define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */ | ||
71 | #define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */ | ||
72 | #define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */ | ||
73 | #define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 | ||
74 | #define IGP01E1000_PHY_POLARITY_MASK 0x0078 | ||
75 | #define IGP01E1000_PSCR_AUTO_MDIX 0x1000 | ||
76 | #define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */ | ||
77 | #define IGP01E1000_PSCFR_SMART_SPEED 0x0080 | ||
78 | |||
79 | /* Enable flexible speed on link-up */ | ||
80 | #define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */ | ||
81 | #define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */ | ||
82 | #define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 | ||
83 | #define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 | ||
84 | #define IGP01E1000_PSSR_MDIX 0x0008 | ||
85 | #define IGP01E1000_PSSR_SPEED_MASK 0xC000 | ||
86 | #define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 | ||
87 | #define IGP02E1000_PHY_CHANNEL_NUM 4 | ||
88 | #define IGP02E1000_PHY_AGC_A 0x11B1 | ||
89 | #define IGP02E1000_PHY_AGC_B 0x12B1 | ||
90 | #define IGP02E1000_PHY_AGC_C 0x14B1 | ||
91 | #define IGP02E1000_PHY_AGC_D 0x18B1 | ||
92 | #define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */ | ||
93 | #define IGP02E1000_AGC_LENGTH_MASK 0x7F | ||
94 | #define IGP02E1000_AGC_RANGE 15 | ||
95 | |||
96 | #define E1000_CABLE_LENGTH_UNDEFINED 0xFF | ||
97 | |||
98 | #endif | ||
diff --git a/drivers/net/igb/e1000_regs.h b/drivers/net/igb/e1000_regs.h new file mode 100644 index 000000000000..ff187b73c69e --- /dev/null +++ b/drivers/net/igb/e1000_regs.h | |||
@@ -0,0 +1,270 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #ifndef _E1000_REGS_H_ | ||
29 | #define _E1000_REGS_H_ | ||
30 | |||
31 | #define E1000_CTRL 0x00000 /* Device Control - RW */ | ||
32 | #define E1000_STATUS 0x00008 /* Device Status - RO */ | ||
33 | #define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ | ||
34 | #define E1000_EERD 0x00014 /* EEPROM Read - RW */ | ||
35 | #define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ | ||
36 | #define E1000_MDIC 0x00020 /* MDI Control - RW */ | ||
37 | #define E1000_SCTL 0x00024 /* SerDes Control - RW */ | ||
38 | #define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ | ||
39 | #define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ | ||
40 | #define E1000_FCT 0x00030 /* Flow Control Type - RW */ | ||
41 | #define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */ | ||
42 | #define E1000_VET 0x00038 /* VLAN Ether Type - RW */ | ||
43 | #define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ | ||
44 | #define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ | ||
45 | #define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ | ||
46 | #define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ | ||
47 | #define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ | ||
48 | #define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */ | ||
49 | #define E1000_RCTL 0x00100 /* RX Control - RW */ | ||
50 | #define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ | ||
51 | #define E1000_TXCW 0x00178 /* TX Configuration Word - RW */ | ||
52 | #define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */ | ||
53 | #define E1000_EITR(_n) (0x01680 + (0x4 * (_n))) | ||
54 | #define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */ | ||
55 | #define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */ | ||
56 | #define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */ | ||
57 | #define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */ | ||
58 | #define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */ | ||
59 | #define E1000_TCTL 0x00400 /* TX Control - RW */ | ||
60 | #define E1000_TCTL_EXT 0x00404 /* Extended TX Control - RW */ | ||
61 | #define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */ | ||
62 | #define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ | ||
63 | #define E1000_LEDCTL 0x00E00 /* LED Control - RW */ | ||
64 | #define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ | ||
65 | #define E1000_PBS 0x01008 /* Packet Buffer Size */ | ||
66 | #define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ | ||
67 | #define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ | ||
68 | #define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */ | ||
69 | #define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */ | ||
70 | #define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */ | ||
71 | #define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ | ||
72 | #define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ | ||
73 | #define E1000_RDFPCQ(_n) (0x02430 + (0x4 * (_n))) | ||
74 | #define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */ | ||
75 | /* Split and Replication RX Control - RW */ | ||
76 | /* | ||
77 | * Convenience macros | ||
78 | * | ||
79 | * Note: "_n" is the queue number of the register to be written to. | ||
80 | * | ||
81 | * Example usage: | ||
82 | * E1000_RDBAL_REG(current_rx_queue) | ||
83 | */ | ||
84 | #define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) \ | ||
85 | : (0x0C000 + ((_n) * 0x40))) | ||
86 | #define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) \ | ||
87 | : (0x0C004 + ((_n) * 0x40))) | ||
88 | #define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) \ | ||
89 | : (0x0C008 + ((_n) * 0x40))) | ||
90 | #define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) \ | ||
91 | : (0x0C00C + ((_n) * 0x40))) | ||
92 | #define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) \ | ||
93 | : (0x0C010 + ((_n) * 0x40))) | ||
94 | #define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) \ | ||
95 | : (0x0C018 + ((_n) * 0x40))) | ||
96 | #define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) \ | ||
97 | : (0x0C028 + ((_n) * 0x40))) | ||
98 | #define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) \ | ||
99 | : (0x0E000 + ((_n) * 0x40))) | ||
100 | #define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) \ | ||
101 | : (0x0E004 + ((_n) * 0x40))) | ||
102 | #define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) \ | ||
103 | : (0x0E008 + ((_n) * 0x40))) | ||
104 | #define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) \ | ||
105 | : (0x0E010 + ((_n) * 0x40))) | ||
106 | #define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) \ | ||
107 | : (0x0E018 + ((_n) * 0x40))) | ||
108 | #define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) \ | ||
109 | : (0x0E028 + ((_n) * 0x40))) | ||
110 | #define E1000_TARC(_n) (0x03840 + (_n << 8)) | ||
111 | #define E1000_DCA_TXCTRL(_n) (0x03814 + (_n << 8)) | ||
112 | #define E1000_DCA_RXCTRL(_n) (0x02814 + (_n << 8)) | ||
113 | #define E1000_TDWBAL(_n) ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) \ | ||
114 | : (0x0E038 + ((_n) * 0x40))) | ||
115 | #define E1000_TDWBAH(_n) ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) \ | ||
116 | : (0x0E03C + ((_n) * 0x40))) | ||
117 | #define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ | ||
118 | #define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ | ||
119 | #define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */ | ||
120 | #define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */ | ||
121 | #define E1000_DTXCTL 0x03590 /* DMA TX Control - RW */ | ||
122 | #define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ | ||
123 | #define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ | ||
124 | #define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ | ||
125 | #define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ | ||
126 | #define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ | ||
127 | #define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ | ||
128 | #define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ | ||
129 | #define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ | ||
130 | #define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ | ||
131 | #define E1000_COLC 0x04028 /* Collision Count - R/clr */ | ||
132 | #define E1000_DC 0x04030 /* Defer Count - R/clr */ | ||
133 | #define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */ | ||
134 | #define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ | ||
135 | #define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ | ||
136 | #define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ | ||
137 | #define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */ | ||
138 | #define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */ | ||
139 | #define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */ | ||
140 | #define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */ | ||
141 | #define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */ | ||
142 | #define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */ | ||
143 | #define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */ | ||
144 | #define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */ | ||
145 | #define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */ | ||
146 | #define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */ | ||
147 | #define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */ | ||
148 | #define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */ | ||
149 | #define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */ | ||
150 | #define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */ | ||
151 | #define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */ | ||
152 | #define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */ | ||
153 | #define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */ | ||
154 | #define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */ | ||
155 | #define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */ | ||
156 | #define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */ | ||
157 | #define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */ | ||
158 | #define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */ | ||
159 | #define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */ | ||
160 | #define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */ | ||
161 | #define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */ | ||
162 | #define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ | ||
163 | #define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */ | ||
164 | #define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */ | ||
165 | #define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */ | ||
166 | #define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */ | ||
167 | #define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */ | ||
168 | #define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */ | ||
169 | #define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */ | ||
170 | #define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */ | ||
171 | #define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */ | ||
172 | #define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */ | ||
173 | #define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */ | ||
174 | #define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */ | ||
175 | #define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */ | ||
176 | #define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */ | ||
177 | #define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */ | ||
178 | #define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */ | ||
179 | #define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */ | ||
180 | #define E1000_IAC 0x04100 /* Interrupt Assertion Count */ | ||
181 | /* Interrupt Cause Rx Packet Timer Expire Count */ | ||
182 | #define E1000_ICRXPTC 0x04104 | ||
183 | /* Interrupt Cause Rx Absolute Timer Expire Count */ | ||
184 | #define E1000_ICRXATC 0x04108 | ||
185 | /* Interrupt Cause Tx Packet Timer Expire Count */ | ||
186 | #define E1000_ICTXPTC 0x0410C | ||
187 | /* Interrupt Cause Tx Absolute Timer Expire Count */ | ||
188 | #define E1000_ICTXATC 0x04110 | ||
189 | /* Interrupt Cause Tx Queue Empty Count */ | ||
190 | #define E1000_ICTXQEC 0x04118 | ||
191 | /* Interrupt Cause Tx Queue Minimum Threshold Count */ | ||
192 | #define E1000_ICTXQMTC 0x0411C | ||
193 | /* Interrupt Cause Rx Descriptor Minimum Threshold Count */ | ||
194 | #define E1000_ICRXDMTC 0x04120 | ||
195 | #define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */ | ||
196 | #define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */ | ||
197 | #define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */ | ||
198 | #define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */ | ||
199 | #define E1000_CBTMPC 0x0402C /* Circuit Breaker TX Packet Count */ | ||
200 | #define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */ | ||
201 | #define E1000_CBRMPC 0x040FC /* Circuit Breaker RX Packet Count */ | ||
202 | #define E1000_RPTHC 0x04104 /* Rx Packets To Host */ | ||
203 | #define E1000_HGPTC 0x04118 /* Host Good Packets TX Count */ | ||
204 | #define E1000_HTCBDPC 0x04124 /* Host TX Circuit Breaker Dropped Count */ | ||
205 | #define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */ | ||
206 | #define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */ | ||
207 | #define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */ | ||
208 | #define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */ | ||
209 | #define E1000_LENERRS 0x04138 /* Length Errors Count */ | ||
210 | #define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */ | ||
211 | #define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */ | ||
212 | #define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */ | ||
213 | #define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */ | ||
214 | #define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Page - RW */ | ||
215 | #define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */ | ||
216 | #define E1000_RLPML 0x05004 /* RX Long Packet Max Length */ | ||
217 | #define E1000_RFCTL 0x05008 /* Receive Filter Control*/ | ||
218 | #define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ | ||
219 | #define E1000_RA 0x05400 /* Receive Address - RW Array */ | ||
220 | #define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ | ||
221 | #define E1000_VMD_CTL 0x0581C /* VMDq Control - RW */ | ||
222 | #define E1000_WUC 0x05800 /* Wakeup Control - RW */ | ||
223 | #define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ | ||
224 | #define E1000_WUS 0x05810 /* Wakeup Status - RO */ | ||
225 | #define E1000_MANC 0x05820 /* Management Control - RW */ | ||
226 | #define E1000_IPAV 0x05838 /* IP Address Valid - RW */ | ||
227 | #define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ | ||
228 | #define E1000_HOST_IF 0x08800 /* Host Interface */ | ||
229 | |||
230 | #define E1000_MANC2H 0x05860 /* Management Control To Host - RW */ | ||
231 | #define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */ | ||
232 | #define E1000_CCMCTL 0x05B48 /* CCM Control Register */ | ||
233 | #define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */ | ||
234 | #define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */ | ||
235 | #define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */ | ||
236 | #define E1000_SWSM 0x05B50 /* SW Semaphore */ | ||
237 | #define E1000_FWSM 0x05B54 /* FW Semaphore */ | ||
238 | #define E1000_HICR 0x08F00 /* Host Inteface Control */ | ||
239 | |||
240 | /* RSS registers */ | ||
241 | #define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */ | ||
242 | #define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */ | ||
243 | #define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate Interrupt Ext*/ | ||
244 | #define E1000_IMIRVP 0x05AC0 /* Immediate Interrupt RX VLAN Priority - RW */ | ||
245 | /* MSI-X Allocation Register (_i) - RW */ | ||
246 | #define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) | ||
247 | /* MSI-X Table entry addr low reg 0 - RW */ | ||
248 | #define E1000_MSIXTADD(_i) (0x0C000 + ((_i) * 0x10)) | ||
249 | /* MSI-X Table entry addr upper reg 0 - RW */ | ||
250 | #define E1000_MSIXTUADD(_i) (0x0C004 + ((_i) * 0x10)) | ||
251 | /* MSI-X Table entry message reg 0 - RW */ | ||
252 | #define E1000_MSIXTMSG(_i) (0x0C008 + ((_i) * 0x10)) | ||
253 | /* MSI-X Table entry vector ctrl reg 0 - RW */ | ||
254 | #define E1000_MSIXVCTRL(_i) (0x0C00C + ((_i) * 0x10)) | ||
255 | /* Redirection Table - RW Array */ | ||
256 | #define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) | ||
257 | #define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW Array */ | ||
258 | |||
259 | #define E1000_REGISTER(a, reg) reg | ||
260 | |||
261 | #define wr32(reg, value) (writel(value, hw->hw_addr + reg)) | ||
262 | #define rd32(reg) (readl(hw->hw_addr + reg)) | ||
263 | #define wrfl() ((void)rd32(E1000_STATUS)) | ||
264 | |||
265 | #define array_wr32(reg, offset, value) \ | ||
266 | (writel(value, hw->hw_addr + reg + ((offset) << 2))) | ||
267 | #define array_rd32(reg, offset) \ | ||
268 | (readl(hw->hw_addr + reg + ((offset) << 2))) | ||
269 | |||
270 | #endif | ||
diff --git a/drivers/net/igb/igb.h b/drivers/net/igb/igb.h new file mode 100644 index 000000000000..6b2e7d351d65 --- /dev/null +++ b/drivers/net/igb/igb.h | |||
@@ -0,0 +1,300 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | |||
29 | /* Linux PRO/1000 Ethernet Driver main header file */ | ||
30 | |||
31 | #ifndef _IGB_H_ | ||
32 | #define _IGB_H_ | ||
33 | |||
34 | #include "e1000_mac.h" | ||
35 | #include "e1000_82575.h" | ||
36 | |||
37 | struct igb_adapter; | ||
38 | |||
39 | /* Interrupt defines */ | ||
40 | #define IGB_MAX_TX_CLEAN 72 | ||
41 | |||
42 | #define IGB_MIN_DYN_ITR 3000 | ||
43 | #define IGB_MAX_DYN_ITR 96000 | ||
44 | #define IGB_START_ITR 6000 | ||
45 | |||
46 | #define IGB_DYN_ITR_PACKET_THRESHOLD 2 | ||
47 | #define IGB_DYN_ITR_LENGTH_LOW 200 | ||
48 | #define IGB_DYN_ITR_LENGTH_HIGH 1000 | ||
49 | |||
50 | /* TX/RX descriptor defines */ | ||
51 | #define IGB_DEFAULT_TXD 256 | ||
52 | #define IGB_MIN_TXD 80 | ||
53 | #define IGB_MAX_TXD 4096 | ||
54 | |||
55 | #define IGB_DEFAULT_RXD 256 | ||
56 | #define IGB_MIN_RXD 80 | ||
57 | #define IGB_MAX_RXD 4096 | ||
58 | |||
59 | #define IGB_DEFAULT_ITR 3 /* dynamic */ | ||
60 | #define IGB_MAX_ITR_USECS 10000 | ||
61 | #define IGB_MIN_ITR_USECS 10 | ||
62 | |||
63 | /* Transmit and receive queues */ | ||
64 | #define IGB_MAX_RX_QUEUES 4 | ||
65 | |||
66 | /* RX descriptor control thresholds. | ||
67 | * PTHRESH - MAC will consider prefetch if it has fewer than this number of | ||
68 | * descriptors available in its onboard memory. | ||
69 | * Setting this to 0 disables RX descriptor prefetch. | ||
70 | * HTHRESH - MAC will only prefetch if there are at least this many descriptors | ||
71 | * available in host memory. | ||
72 | * If PTHRESH is 0, this should also be 0. | ||
73 | * WTHRESH - RX descriptor writeback threshold - MAC will delay writing back | ||
74 | * descriptors until either it has this many to write back, or the | ||
75 | * ITR timer expires. | ||
76 | */ | ||
77 | #define IGB_RX_PTHRESH 16 | ||
78 | #define IGB_RX_HTHRESH 8 | ||
79 | #define IGB_RX_WTHRESH 1 | ||
80 | |||
81 | /* this is the size past which hardware will drop packets when setting LPE=0 */ | ||
82 | #define MAXIMUM_ETHERNET_VLAN_SIZE 1522 | ||
83 | |||
84 | /* Supported Rx Buffer Sizes */ | ||
85 | #define IGB_RXBUFFER_128 128 /* Used for packet split */ | ||
86 | #define IGB_RXBUFFER_256 256 /* Used for packet split */ | ||
87 | #define IGB_RXBUFFER_512 512 | ||
88 | #define IGB_RXBUFFER_1024 1024 | ||
89 | #define IGB_RXBUFFER_2048 2048 | ||
90 | #define IGB_RXBUFFER_4096 4096 | ||
91 | #define IGB_RXBUFFER_8192 8192 | ||
92 | #define IGB_RXBUFFER_16384 16384 | ||
93 | |||
94 | /* Packet Buffer allocations */ | ||
95 | |||
96 | |||
97 | /* How many Tx Descriptors do we need to call netif_wake_queue ? */ | ||
98 | #define IGB_TX_QUEUE_WAKE 16 | ||
99 | /* How many Rx Buffers do we bundle into one write to the hardware ? */ | ||
100 | #define IGB_RX_BUFFER_WRITE 16 /* Must be power of 2 */ | ||
101 | |||
102 | #define AUTO_ALL_MODES 0 | ||
103 | #define IGB_EEPROM_APME 0x0400 | ||
104 | |||
105 | #ifndef IGB_MASTER_SLAVE | ||
106 | /* Switch to override PHY master/slave setting */ | ||
107 | #define IGB_MASTER_SLAVE e1000_ms_hw_default | ||
108 | #endif | ||
109 | |||
110 | #define IGB_MNG_VLAN_NONE -1 | ||
111 | |||
112 | /* wrapper around a pointer to a socket buffer, | ||
113 | * so a DMA handle can be stored along with the buffer */ | ||
114 | struct igb_buffer { | ||
115 | struct sk_buff *skb; | ||
116 | dma_addr_t dma; | ||
117 | union { | ||
118 | /* TX */ | ||
119 | struct { | ||
120 | unsigned long time_stamp; | ||
121 | u32 length; | ||
122 | }; | ||
123 | /* RX */ | ||
124 | struct { | ||
125 | struct page *page; | ||
126 | u64 page_dma; | ||
127 | }; | ||
128 | }; | ||
129 | }; | ||
130 | |||
131 | struct igb_queue_stats { | ||
132 | u64 packets; | ||
133 | u64 bytes; | ||
134 | }; | ||
135 | |||
136 | struct igb_ring { | ||
137 | struct igb_adapter *adapter; /* backlink */ | ||
138 | void *desc; /* descriptor ring memory */ | ||
139 | dma_addr_t dma; /* phys address of the ring */ | ||
140 | unsigned int size; /* length of desc. ring in bytes */ | ||
141 | unsigned int count; /* number of desc. in the ring */ | ||
142 | u16 next_to_use; | ||
143 | u16 next_to_clean; | ||
144 | u16 head; | ||
145 | u16 tail; | ||
146 | struct igb_buffer *buffer_info; /* array of buffer info structs */ | ||
147 | |||
148 | u32 eims_value; | ||
149 | u32 itr_val; | ||
150 | u16 itr_register; | ||
151 | u16 cpu; | ||
152 | |||
153 | unsigned int total_bytes; | ||
154 | unsigned int total_packets; | ||
155 | |||
156 | union { | ||
157 | /* TX */ | ||
158 | struct { | ||
159 | spinlock_t tx_clean_lock; | ||
160 | spinlock_t tx_lock; | ||
161 | bool detect_tx_hung; | ||
162 | }; | ||
163 | /* RX */ | ||
164 | struct { | ||
165 | /* arrays of page information for packet split */ | ||
166 | struct sk_buff *pending_skb; | ||
167 | int pending_skb_page; | ||
168 | int no_itr_adjust; | ||
169 | struct igb_queue_stats rx_stats; | ||
170 | struct napi_struct napi; | ||
171 | }; | ||
172 | }; | ||
173 | |||
174 | char name[IFNAMSIZ + 5]; | ||
175 | }; | ||
176 | |||
177 | #define IGB_DESC_UNUSED(R) \ | ||
178 | ((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \ | ||
179 | (R)->next_to_clean - (R)->next_to_use - 1) | ||
180 | |||
181 | #define E1000_RX_DESC_ADV(R, i) \ | ||
182 | (&(((union e1000_adv_rx_desc *)((R).desc))[i])) | ||
183 | #define E1000_TX_DESC_ADV(R, i) \ | ||
184 | (&(((union e1000_adv_tx_desc *)((R).desc))[i])) | ||
185 | #define E1000_TX_CTXTDESC_ADV(R, i) \ | ||
186 | (&(((struct e1000_adv_tx_context_desc *)((R).desc))[i])) | ||
187 | #define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i])) | ||
188 | #define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc) | ||
189 | #define E1000_RX_DESC(R, i) E1000_GET_DESC(R, i, e1000_rx_desc) | ||
190 | |||
191 | /* board specific private data structure */ | ||
192 | |||
193 | struct igb_adapter { | ||
194 | struct timer_list watchdog_timer; | ||
195 | struct timer_list phy_info_timer; | ||
196 | struct vlan_group *vlgrp; | ||
197 | u16 mng_vlan_id; | ||
198 | u32 bd_number; | ||
199 | u32 rx_buffer_len; | ||
200 | u32 wol; | ||
201 | u32 en_mng_pt; | ||
202 | u16 link_speed; | ||
203 | u16 link_duplex; | ||
204 | unsigned int total_tx_bytes; | ||
205 | unsigned int total_tx_packets; | ||
206 | unsigned int total_rx_bytes; | ||
207 | unsigned int total_rx_packets; | ||
208 | /* Interrupt Throttle Rate */ | ||
209 | u32 itr; | ||
210 | u32 itr_setting; | ||
211 | u16 tx_itr; | ||
212 | u16 rx_itr; | ||
213 | int set_itr; | ||
214 | |||
215 | struct work_struct reset_task; | ||
216 | struct work_struct watchdog_task; | ||
217 | bool fc_autoneg; | ||
218 | u8 tx_timeout_factor; | ||
219 | struct timer_list blink_timer; | ||
220 | unsigned long led_status; | ||
221 | |||
222 | /* TX */ | ||
223 | struct igb_ring *tx_ring; /* One per active queue */ | ||
224 | unsigned int restart_queue; | ||
225 | unsigned long tx_queue_len; | ||
226 | u32 txd_cmd; | ||
227 | u32 gotc; | ||
228 | u64 gotc_old; | ||
229 | u64 tpt_old; | ||
230 | u64 colc_old; | ||
231 | u32 tx_timeout_count; | ||
232 | |||
233 | /* RX */ | ||
234 | struct igb_ring *rx_ring; /* One per active queue */ | ||
235 | int num_tx_queues; | ||
236 | int num_rx_queues; | ||
237 | |||
238 | u64 hw_csum_err; | ||
239 | u64 hw_csum_good; | ||
240 | u64 rx_hdr_split; | ||
241 | u32 alloc_rx_buff_failed; | ||
242 | bool rx_csum; | ||
243 | u32 gorc; | ||
244 | u64 gorc_old; | ||
245 | u16 rx_ps_hdr_size; | ||
246 | u32 max_frame_size; | ||
247 | u32 min_frame_size; | ||
248 | |||
249 | /* OS defined structs */ | ||
250 | struct net_device *netdev; | ||
251 | struct napi_struct napi; | ||
252 | struct pci_dev *pdev; | ||
253 | struct net_device_stats net_stats; | ||
254 | |||
255 | /* structs defined in e1000_hw.h */ | ||
256 | struct e1000_hw hw; | ||
257 | struct e1000_hw_stats stats; | ||
258 | struct e1000_phy_info phy_info; | ||
259 | struct e1000_phy_stats phy_stats; | ||
260 | |||
261 | u32 test_icr; | ||
262 | struct igb_ring test_tx_ring; | ||
263 | struct igb_ring test_rx_ring; | ||
264 | |||
265 | int msg_enable; | ||
266 | struct msix_entry *msix_entries; | ||
267 | u32 eims_enable_mask; | ||
268 | |||
269 | /* to not mess up cache alignment, always add to the bottom */ | ||
270 | unsigned long state; | ||
271 | unsigned int msi_enabled; | ||
272 | |||
273 | u32 eeprom_wol; | ||
274 | }; | ||
275 | |||
276 | enum e1000_state_t { | ||
277 | __IGB_TESTING, | ||
278 | __IGB_RESETTING, | ||
279 | __IGB_DOWN | ||
280 | }; | ||
281 | |||
282 | enum igb_boards { | ||
283 | board_82575, | ||
284 | }; | ||
285 | |||
286 | extern char igb_driver_name[]; | ||
287 | extern char igb_driver_version[]; | ||
288 | |||
289 | extern char *igb_get_hw_dev_name(struct e1000_hw *hw); | ||
290 | extern int igb_up(struct igb_adapter *); | ||
291 | extern void igb_down(struct igb_adapter *); | ||
292 | extern void igb_reinit_locked(struct igb_adapter *); | ||
293 | extern void igb_reset(struct igb_adapter *); | ||
294 | extern int igb_set_spd_dplx(struct igb_adapter *, u16); | ||
295 | extern int igb_setup_tx_resources(struct igb_adapter *, struct igb_ring *); | ||
296 | extern int igb_setup_rx_resources(struct igb_adapter *, struct igb_ring *); | ||
297 | extern void igb_update_stats(struct igb_adapter *); | ||
298 | extern void igb_set_ethtool_ops(struct net_device *); | ||
299 | |||
300 | #endif /* _IGB_H_ */ | ||
diff --git a/drivers/net/igb/igb_ethtool.c b/drivers/net/igb/igb_ethtool.c new file mode 100644 index 000000000000..f69721e4eaa1 --- /dev/null +++ b/drivers/net/igb/igb_ethtool.c | |||
@@ -0,0 +1,1927 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | /* ethtool support for igb */ | ||
29 | |||
30 | #include <linux/vmalloc.h> | ||
31 | #include <linux/netdevice.h> | ||
32 | #include <linux/pci.h> | ||
33 | #include <linux/delay.h> | ||
34 | #include <linux/interrupt.h> | ||
35 | #include <linux/if_ether.h> | ||
36 | #include <linux/ethtool.h> | ||
37 | |||
38 | #include "igb.h" | ||
39 | |||
40 | struct igb_stats { | ||
41 | char stat_string[ETH_GSTRING_LEN]; | ||
42 | int sizeof_stat; | ||
43 | int stat_offset; | ||
44 | }; | ||
45 | |||
46 | #define IGB_STAT(m) sizeof(((struct igb_adapter *)0)->m), \ | ||
47 | offsetof(struct igb_adapter, m) | ||
48 | static const struct igb_stats igb_gstrings_stats[] = { | ||
49 | { "rx_packets", IGB_STAT(stats.gprc) }, | ||
50 | { "tx_packets", IGB_STAT(stats.gptc) }, | ||
51 | { "rx_bytes", IGB_STAT(stats.gorc) }, | ||
52 | { "tx_bytes", IGB_STAT(stats.gotc) }, | ||
53 | { "rx_broadcast", IGB_STAT(stats.bprc) }, | ||
54 | { "tx_broadcast", IGB_STAT(stats.bptc) }, | ||
55 | { "rx_multicast", IGB_STAT(stats.mprc) }, | ||
56 | { "tx_multicast", IGB_STAT(stats.mptc) }, | ||
57 | { "rx_errors", IGB_STAT(net_stats.rx_errors) }, | ||
58 | { "tx_errors", IGB_STAT(net_stats.tx_errors) }, | ||
59 | { "tx_dropped", IGB_STAT(net_stats.tx_dropped) }, | ||
60 | { "multicast", IGB_STAT(stats.mprc) }, | ||
61 | { "collisions", IGB_STAT(stats.colc) }, | ||
62 | { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) }, | ||
63 | { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) }, | ||
64 | { "rx_crc_errors", IGB_STAT(stats.crcerrs) }, | ||
65 | { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) }, | ||
66 | { "rx_no_buffer_count", IGB_STAT(stats.rnbc) }, | ||
67 | { "rx_missed_errors", IGB_STAT(stats.mpc) }, | ||
68 | { "tx_aborted_errors", IGB_STAT(stats.ecol) }, | ||
69 | { "tx_carrier_errors", IGB_STAT(stats.tncrs) }, | ||
70 | { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) }, | ||
71 | { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) }, | ||
72 | { "tx_window_errors", IGB_STAT(stats.latecol) }, | ||
73 | { "tx_abort_late_coll", IGB_STAT(stats.latecol) }, | ||
74 | { "tx_deferred_ok", IGB_STAT(stats.dc) }, | ||
75 | { "tx_single_coll_ok", IGB_STAT(stats.scc) }, | ||
76 | { "tx_multi_coll_ok", IGB_STAT(stats.mcc) }, | ||
77 | { "tx_timeout_count", IGB_STAT(tx_timeout_count) }, | ||
78 | { "tx_restart_queue", IGB_STAT(restart_queue) }, | ||
79 | { "rx_long_length_errors", IGB_STAT(stats.roc) }, | ||
80 | { "rx_short_length_errors", IGB_STAT(stats.ruc) }, | ||
81 | { "rx_align_errors", IGB_STAT(stats.algnerrc) }, | ||
82 | { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) }, | ||
83 | { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) }, | ||
84 | { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) }, | ||
85 | { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) }, | ||
86 | { "tx_flow_control_xon", IGB_STAT(stats.xontxc) }, | ||
87 | { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) }, | ||
88 | { "rx_long_byte_count", IGB_STAT(stats.gorc) }, | ||
89 | { "rx_csum_offload_good", IGB_STAT(hw_csum_good) }, | ||
90 | { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) }, | ||
91 | { "rx_header_split", IGB_STAT(rx_hdr_split) }, | ||
92 | { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) }, | ||
93 | { "tx_smbus", IGB_STAT(stats.mgptc) }, | ||
94 | { "rx_smbus", IGB_STAT(stats.mgprc) }, | ||
95 | { "dropped_smbus", IGB_STAT(stats.mgpdc) }, | ||
96 | }; | ||
97 | |||
98 | #define IGB_QUEUE_STATS_LEN \ | ||
99 | ((((((struct igb_adapter *)netdev->priv)->num_rx_queues > 1) ? \ | ||
100 | ((struct igb_adapter *)netdev->priv)->num_rx_queues : 0) + \ | ||
101 | (((((struct igb_adapter *)netdev->priv)->num_tx_queues > 1) ? \ | ||
102 | ((struct igb_adapter *)netdev->priv)->num_tx_queues : 0))) * \ | ||
103 | (sizeof(struct igb_queue_stats) / sizeof(u64))) | ||
104 | #define IGB_GLOBAL_STATS_LEN \ | ||
105 | sizeof(igb_gstrings_stats) / sizeof(struct igb_stats) | ||
106 | #define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN) | ||
107 | static const char igb_gstrings_test[][ETH_GSTRING_LEN] = { | ||
108 | "Register test (offline)", "Eeprom test (offline)", | ||
109 | "Interrupt test (offline)", "Loopback test (offline)", | ||
110 | "Link test (on/offline)" | ||
111 | }; | ||
112 | #define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN | ||
113 | |||
114 | static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) | ||
115 | { | ||
116 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
117 | struct e1000_hw *hw = &adapter->hw; | ||
118 | |||
119 | if (hw->phy.media_type == e1000_media_type_copper) { | ||
120 | |||
121 | ecmd->supported = (SUPPORTED_10baseT_Half | | ||
122 | SUPPORTED_10baseT_Full | | ||
123 | SUPPORTED_100baseT_Half | | ||
124 | SUPPORTED_100baseT_Full | | ||
125 | SUPPORTED_1000baseT_Full| | ||
126 | SUPPORTED_Autoneg | | ||
127 | SUPPORTED_TP); | ||
128 | ecmd->advertising = ADVERTISED_TP; | ||
129 | |||
130 | if (hw->mac.autoneg == 1) { | ||
131 | ecmd->advertising |= ADVERTISED_Autoneg; | ||
132 | /* the e1000 autoneg seems to match ethtool nicely */ | ||
133 | ecmd->advertising |= hw->phy.autoneg_advertised; | ||
134 | } | ||
135 | |||
136 | ecmd->port = PORT_TP; | ||
137 | ecmd->phy_address = hw->phy.addr; | ||
138 | } else { | ||
139 | ecmd->supported = (SUPPORTED_1000baseT_Full | | ||
140 | SUPPORTED_FIBRE | | ||
141 | SUPPORTED_Autoneg); | ||
142 | |||
143 | ecmd->advertising = (ADVERTISED_1000baseT_Full | | ||
144 | ADVERTISED_FIBRE | | ||
145 | ADVERTISED_Autoneg); | ||
146 | |||
147 | ecmd->port = PORT_FIBRE; | ||
148 | } | ||
149 | |||
150 | ecmd->transceiver = XCVR_INTERNAL; | ||
151 | |||
152 | if (rd32(E1000_STATUS) & E1000_STATUS_LU) { | ||
153 | |||
154 | adapter->hw.mac.ops.get_speed_and_duplex(hw, | ||
155 | &adapter->link_speed, | ||
156 | &adapter->link_duplex); | ||
157 | ecmd->speed = adapter->link_speed; | ||
158 | |||
159 | /* unfortunately FULL_DUPLEX != DUPLEX_FULL | ||
160 | * and HALF_DUPLEX != DUPLEX_HALF */ | ||
161 | |||
162 | if (adapter->link_duplex == FULL_DUPLEX) | ||
163 | ecmd->duplex = DUPLEX_FULL; | ||
164 | else | ||
165 | ecmd->duplex = DUPLEX_HALF; | ||
166 | } else { | ||
167 | ecmd->speed = -1; | ||
168 | ecmd->duplex = -1; | ||
169 | } | ||
170 | |||
171 | ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || | ||
172 | hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; | ||
173 | return 0; | ||
174 | } | ||
175 | |||
176 | static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) | ||
177 | { | ||
178 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
179 | struct e1000_hw *hw = &adapter->hw; | ||
180 | |||
181 | /* When SoL/IDER sessions are active, autoneg/speed/duplex | ||
182 | * cannot be changed */ | ||
183 | if (igb_check_reset_block(hw)) { | ||
184 | dev_err(&adapter->pdev->dev, "Cannot change link " | ||
185 | "characteristics when SoL/IDER is active.\n"); | ||
186 | return -EINVAL; | ||
187 | } | ||
188 | |||
189 | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) | ||
190 | msleep(1); | ||
191 | |||
192 | if (ecmd->autoneg == AUTONEG_ENABLE) { | ||
193 | hw->mac.autoneg = 1; | ||
194 | if (hw->phy.media_type == e1000_media_type_fiber) | ||
195 | hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | | ||
196 | ADVERTISED_FIBRE | | ||
197 | ADVERTISED_Autoneg; | ||
198 | else | ||
199 | hw->phy.autoneg_advertised = ecmd->advertising | | ||
200 | ADVERTISED_TP | | ||
201 | ADVERTISED_Autoneg; | ||
202 | ecmd->advertising = hw->phy.autoneg_advertised; | ||
203 | } else | ||
204 | if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) { | ||
205 | clear_bit(__IGB_RESETTING, &adapter->state); | ||
206 | return -EINVAL; | ||
207 | } | ||
208 | |||
209 | /* reset the link */ | ||
210 | |||
211 | if (netif_running(adapter->netdev)) { | ||
212 | igb_down(adapter); | ||
213 | igb_up(adapter); | ||
214 | } else | ||
215 | igb_reset(adapter); | ||
216 | |||
217 | clear_bit(__IGB_RESETTING, &adapter->state); | ||
218 | return 0; | ||
219 | } | ||
220 | |||
221 | static void igb_get_pauseparam(struct net_device *netdev, | ||
222 | struct ethtool_pauseparam *pause) | ||
223 | { | ||
224 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
225 | struct e1000_hw *hw = &adapter->hw; | ||
226 | |||
227 | pause->autoneg = | ||
228 | (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); | ||
229 | |||
230 | if (hw->fc.type == e1000_fc_rx_pause) | ||
231 | pause->rx_pause = 1; | ||
232 | else if (hw->fc.type == e1000_fc_tx_pause) | ||
233 | pause->tx_pause = 1; | ||
234 | else if (hw->fc.type == e1000_fc_full) { | ||
235 | pause->rx_pause = 1; | ||
236 | pause->tx_pause = 1; | ||
237 | } | ||
238 | } | ||
239 | |||
240 | static int igb_set_pauseparam(struct net_device *netdev, | ||
241 | struct ethtool_pauseparam *pause) | ||
242 | { | ||
243 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
244 | struct e1000_hw *hw = &adapter->hw; | ||
245 | int retval = 0; | ||
246 | |||
247 | adapter->fc_autoneg = pause->autoneg; | ||
248 | |||
249 | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) | ||
250 | msleep(1); | ||
251 | |||
252 | if (pause->rx_pause && pause->tx_pause) | ||
253 | hw->fc.type = e1000_fc_full; | ||
254 | else if (pause->rx_pause && !pause->tx_pause) | ||
255 | hw->fc.type = e1000_fc_rx_pause; | ||
256 | else if (!pause->rx_pause && pause->tx_pause) | ||
257 | hw->fc.type = e1000_fc_tx_pause; | ||
258 | else if (!pause->rx_pause && !pause->tx_pause) | ||
259 | hw->fc.type = e1000_fc_none; | ||
260 | |||
261 | hw->fc.original_type = hw->fc.type; | ||
262 | |||
263 | if (adapter->fc_autoneg == AUTONEG_ENABLE) { | ||
264 | if (netif_running(adapter->netdev)) { | ||
265 | igb_down(adapter); | ||
266 | igb_up(adapter); | ||
267 | } else | ||
268 | igb_reset(adapter); | ||
269 | } else | ||
270 | retval = ((hw->phy.media_type == e1000_media_type_fiber) ? | ||
271 | igb_setup_link(hw) : igb_force_mac_fc(hw)); | ||
272 | |||
273 | clear_bit(__IGB_RESETTING, &adapter->state); | ||
274 | return retval; | ||
275 | } | ||
276 | |||
277 | static u32 igb_get_rx_csum(struct net_device *netdev) | ||
278 | { | ||
279 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
280 | return adapter->rx_csum; | ||
281 | } | ||
282 | |||
283 | static int igb_set_rx_csum(struct net_device *netdev, u32 data) | ||
284 | { | ||
285 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
286 | adapter->rx_csum = data; | ||
287 | |||
288 | return 0; | ||
289 | } | ||
290 | |||
291 | static u32 igb_get_tx_csum(struct net_device *netdev) | ||
292 | { | ||
293 | return (netdev->features & NETIF_F_HW_CSUM) != 0; | ||
294 | } | ||
295 | |||
296 | static int igb_set_tx_csum(struct net_device *netdev, u32 data) | ||
297 | { | ||
298 | if (data) | ||
299 | netdev->features |= NETIF_F_HW_CSUM; | ||
300 | else | ||
301 | netdev->features &= ~NETIF_F_HW_CSUM; | ||
302 | |||
303 | return 0; | ||
304 | } | ||
305 | |||
306 | static int igb_set_tso(struct net_device *netdev, u32 data) | ||
307 | { | ||
308 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
309 | |||
310 | if (data) | ||
311 | netdev->features |= NETIF_F_TSO; | ||
312 | else | ||
313 | netdev->features &= ~NETIF_F_TSO; | ||
314 | |||
315 | if (data) | ||
316 | netdev->features |= NETIF_F_TSO6; | ||
317 | else | ||
318 | netdev->features &= ~NETIF_F_TSO6; | ||
319 | |||
320 | dev_info(&adapter->pdev->dev, "TSO is %s\n", | ||
321 | data ? "Enabled" : "Disabled"); | ||
322 | return 0; | ||
323 | } | ||
324 | |||
325 | static u32 igb_get_msglevel(struct net_device *netdev) | ||
326 | { | ||
327 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
328 | return adapter->msg_enable; | ||
329 | } | ||
330 | |||
331 | static void igb_set_msglevel(struct net_device *netdev, u32 data) | ||
332 | { | ||
333 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
334 | adapter->msg_enable = data; | ||
335 | } | ||
336 | |||
337 | static int igb_get_regs_len(struct net_device *netdev) | ||
338 | { | ||
339 | #define IGB_REGS_LEN 551 | ||
340 | return IGB_REGS_LEN * sizeof(u32); | ||
341 | } | ||
342 | |||
343 | static void igb_get_regs(struct net_device *netdev, | ||
344 | struct ethtool_regs *regs, void *p) | ||
345 | { | ||
346 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
347 | struct e1000_hw *hw = &adapter->hw; | ||
348 | u32 *regs_buff = p; | ||
349 | u8 i; | ||
350 | |||
351 | memset(p, 0, IGB_REGS_LEN * sizeof(u32)); | ||
352 | |||
353 | regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; | ||
354 | |||
355 | /* General Registers */ | ||
356 | regs_buff[0] = rd32(E1000_CTRL); | ||
357 | regs_buff[1] = rd32(E1000_STATUS); | ||
358 | regs_buff[2] = rd32(E1000_CTRL_EXT); | ||
359 | regs_buff[3] = rd32(E1000_MDIC); | ||
360 | regs_buff[4] = rd32(E1000_SCTL); | ||
361 | regs_buff[5] = rd32(E1000_CONNSW); | ||
362 | regs_buff[6] = rd32(E1000_VET); | ||
363 | regs_buff[7] = rd32(E1000_LEDCTL); | ||
364 | regs_buff[8] = rd32(E1000_PBA); | ||
365 | regs_buff[9] = rd32(E1000_PBS); | ||
366 | regs_buff[10] = rd32(E1000_FRTIMER); | ||
367 | regs_buff[11] = rd32(E1000_TCPTIMER); | ||
368 | |||
369 | /* NVM Register */ | ||
370 | regs_buff[12] = rd32(E1000_EECD); | ||
371 | |||
372 | /* Interrupt */ | ||
373 | regs_buff[13] = rd32(E1000_EICR); | ||
374 | regs_buff[14] = rd32(E1000_EICS); | ||
375 | regs_buff[15] = rd32(E1000_EIMS); | ||
376 | regs_buff[16] = rd32(E1000_EIMC); | ||
377 | regs_buff[17] = rd32(E1000_EIAC); | ||
378 | regs_buff[18] = rd32(E1000_EIAM); | ||
379 | regs_buff[19] = rd32(E1000_ICR); | ||
380 | regs_buff[20] = rd32(E1000_ICS); | ||
381 | regs_buff[21] = rd32(E1000_IMS); | ||
382 | regs_buff[22] = rd32(E1000_IMC); | ||
383 | regs_buff[23] = rd32(E1000_IAC); | ||
384 | regs_buff[24] = rd32(E1000_IAM); | ||
385 | regs_buff[25] = rd32(E1000_IMIRVP); | ||
386 | |||
387 | /* Flow Control */ | ||
388 | regs_buff[26] = rd32(E1000_FCAL); | ||
389 | regs_buff[27] = rd32(E1000_FCAH); | ||
390 | regs_buff[28] = rd32(E1000_FCTTV); | ||
391 | regs_buff[29] = rd32(E1000_FCRTL); | ||
392 | regs_buff[30] = rd32(E1000_FCRTH); | ||
393 | regs_buff[31] = rd32(E1000_FCRTV); | ||
394 | |||
395 | /* Receive */ | ||
396 | regs_buff[32] = rd32(E1000_RCTL); | ||
397 | regs_buff[33] = rd32(E1000_RXCSUM); | ||
398 | regs_buff[34] = rd32(E1000_RLPML); | ||
399 | regs_buff[35] = rd32(E1000_RFCTL); | ||
400 | regs_buff[36] = rd32(E1000_MRQC); | ||
401 | regs_buff[37] = rd32(E1000_VMD_CTL); | ||
402 | |||
403 | /* Transmit */ | ||
404 | regs_buff[38] = rd32(E1000_TCTL); | ||
405 | regs_buff[39] = rd32(E1000_TCTL_EXT); | ||
406 | regs_buff[40] = rd32(E1000_TIPG); | ||
407 | regs_buff[41] = rd32(E1000_DTXCTL); | ||
408 | |||
409 | /* Wake Up */ | ||
410 | regs_buff[42] = rd32(E1000_WUC); | ||
411 | regs_buff[43] = rd32(E1000_WUFC); | ||
412 | regs_buff[44] = rd32(E1000_WUS); | ||
413 | regs_buff[45] = rd32(E1000_IPAV); | ||
414 | regs_buff[46] = rd32(E1000_WUPL); | ||
415 | |||
416 | /* MAC */ | ||
417 | regs_buff[47] = rd32(E1000_PCS_CFG0); | ||
418 | regs_buff[48] = rd32(E1000_PCS_LCTL); | ||
419 | regs_buff[49] = rd32(E1000_PCS_LSTAT); | ||
420 | regs_buff[50] = rd32(E1000_PCS_ANADV); | ||
421 | regs_buff[51] = rd32(E1000_PCS_LPAB); | ||
422 | regs_buff[52] = rd32(E1000_PCS_NPTX); | ||
423 | regs_buff[53] = rd32(E1000_PCS_LPABNP); | ||
424 | |||
425 | /* Statistics */ | ||
426 | regs_buff[54] = adapter->stats.crcerrs; | ||
427 | regs_buff[55] = adapter->stats.algnerrc; | ||
428 | regs_buff[56] = adapter->stats.symerrs; | ||
429 | regs_buff[57] = adapter->stats.rxerrc; | ||
430 | regs_buff[58] = adapter->stats.mpc; | ||
431 | regs_buff[59] = adapter->stats.scc; | ||
432 | regs_buff[60] = adapter->stats.ecol; | ||
433 | regs_buff[61] = adapter->stats.mcc; | ||
434 | regs_buff[62] = adapter->stats.latecol; | ||
435 | regs_buff[63] = adapter->stats.colc; | ||
436 | regs_buff[64] = adapter->stats.dc; | ||
437 | regs_buff[65] = adapter->stats.tncrs; | ||
438 | regs_buff[66] = adapter->stats.sec; | ||
439 | regs_buff[67] = adapter->stats.htdpmc; | ||
440 | regs_buff[68] = adapter->stats.rlec; | ||
441 | regs_buff[69] = adapter->stats.xonrxc; | ||
442 | regs_buff[70] = adapter->stats.xontxc; | ||
443 | regs_buff[71] = adapter->stats.xoffrxc; | ||
444 | regs_buff[72] = adapter->stats.xofftxc; | ||
445 | regs_buff[73] = adapter->stats.fcruc; | ||
446 | regs_buff[74] = adapter->stats.prc64; | ||
447 | regs_buff[75] = adapter->stats.prc127; | ||
448 | regs_buff[76] = adapter->stats.prc255; | ||
449 | regs_buff[77] = adapter->stats.prc511; | ||
450 | regs_buff[78] = adapter->stats.prc1023; | ||
451 | regs_buff[79] = adapter->stats.prc1522; | ||
452 | regs_buff[80] = adapter->stats.gprc; | ||
453 | regs_buff[81] = adapter->stats.bprc; | ||
454 | regs_buff[82] = adapter->stats.mprc; | ||
455 | regs_buff[83] = adapter->stats.gptc; | ||
456 | regs_buff[84] = adapter->stats.gorc; | ||
457 | regs_buff[86] = adapter->stats.gotc; | ||
458 | regs_buff[88] = adapter->stats.rnbc; | ||
459 | regs_buff[89] = adapter->stats.ruc; | ||
460 | regs_buff[90] = adapter->stats.rfc; | ||
461 | regs_buff[91] = adapter->stats.roc; | ||
462 | regs_buff[92] = adapter->stats.rjc; | ||
463 | regs_buff[93] = adapter->stats.mgprc; | ||
464 | regs_buff[94] = adapter->stats.mgpdc; | ||
465 | regs_buff[95] = adapter->stats.mgptc; | ||
466 | regs_buff[96] = adapter->stats.tor; | ||
467 | regs_buff[98] = adapter->stats.tot; | ||
468 | regs_buff[100] = adapter->stats.tpr; | ||
469 | regs_buff[101] = adapter->stats.tpt; | ||
470 | regs_buff[102] = adapter->stats.ptc64; | ||
471 | regs_buff[103] = adapter->stats.ptc127; | ||
472 | regs_buff[104] = adapter->stats.ptc255; | ||
473 | regs_buff[105] = adapter->stats.ptc511; | ||
474 | regs_buff[106] = adapter->stats.ptc1023; | ||
475 | regs_buff[107] = adapter->stats.ptc1522; | ||
476 | regs_buff[108] = adapter->stats.mptc; | ||
477 | regs_buff[109] = adapter->stats.bptc; | ||
478 | regs_buff[110] = adapter->stats.tsctc; | ||
479 | regs_buff[111] = adapter->stats.iac; | ||
480 | regs_buff[112] = adapter->stats.rpthc; | ||
481 | regs_buff[113] = adapter->stats.hgptc; | ||
482 | regs_buff[114] = adapter->stats.hgorc; | ||
483 | regs_buff[116] = adapter->stats.hgotc; | ||
484 | regs_buff[118] = adapter->stats.lenerrs; | ||
485 | regs_buff[119] = adapter->stats.scvpc; | ||
486 | regs_buff[120] = adapter->stats.hrmpc; | ||
487 | |||
488 | /* These should probably be added to e1000_regs.h instead */ | ||
489 | #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4)) | ||
490 | #define E1000_RAL(_i) (0x05400 + ((_i) * 8)) | ||
491 | #define E1000_RAH(_i) (0x05404 + ((_i) * 8)) | ||
492 | #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8)) | ||
493 | #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4)) | ||
494 | #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4)) | ||
495 | #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8)) | ||
496 | #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8)) | ||
497 | #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8)) | ||
498 | |||
499 | for (i = 0; i < 4; i++) | ||
500 | regs_buff[121 + i] = rd32(E1000_SRRCTL(i)); | ||
501 | for (i = 0; i < 4; i++) | ||
502 | regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i)); | ||
503 | for (i = 0; i < 4; i++) | ||
504 | regs_buff[129 + i] = rd32(E1000_RDBAL(i)); | ||
505 | for (i = 0; i < 4; i++) | ||
506 | regs_buff[133 + i] = rd32(E1000_RDBAH(i)); | ||
507 | for (i = 0; i < 4; i++) | ||
508 | regs_buff[137 + i] = rd32(E1000_RDLEN(i)); | ||
509 | for (i = 0; i < 4; i++) | ||
510 | regs_buff[141 + i] = rd32(E1000_RDH(i)); | ||
511 | for (i = 0; i < 4; i++) | ||
512 | regs_buff[145 + i] = rd32(E1000_RDT(i)); | ||
513 | for (i = 0; i < 4; i++) | ||
514 | regs_buff[149 + i] = rd32(E1000_RXDCTL(i)); | ||
515 | |||
516 | for (i = 0; i < 10; i++) | ||
517 | regs_buff[153 + i] = rd32(E1000_EITR(i)); | ||
518 | for (i = 0; i < 8; i++) | ||
519 | regs_buff[163 + i] = rd32(E1000_IMIR(i)); | ||
520 | for (i = 0; i < 8; i++) | ||
521 | regs_buff[171 + i] = rd32(E1000_IMIREXT(i)); | ||
522 | for (i = 0; i < 16; i++) | ||
523 | regs_buff[179 + i] = rd32(E1000_RAL(i)); | ||
524 | for (i = 0; i < 16; i++) | ||
525 | regs_buff[195 + i] = rd32(E1000_RAH(i)); | ||
526 | |||
527 | for (i = 0; i < 4; i++) | ||
528 | regs_buff[211 + i] = rd32(E1000_TDBAL(i)); | ||
529 | for (i = 0; i < 4; i++) | ||
530 | regs_buff[215 + i] = rd32(E1000_TDBAH(i)); | ||
531 | for (i = 0; i < 4; i++) | ||
532 | regs_buff[219 + i] = rd32(E1000_TDLEN(i)); | ||
533 | for (i = 0; i < 4; i++) | ||
534 | regs_buff[223 + i] = rd32(E1000_TDH(i)); | ||
535 | for (i = 0; i < 4; i++) | ||
536 | regs_buff[227 + i] = rd32(E1000_TDT(i)); | ||
537 | for (i = 0; i < 4; i++) | ||
538 | regs_buff[231 + i] = rd32(E1000_TXDCTL(i)); | ||
539 | for (i = 0; i < 4; i++) | ||
540 | regs_buff[235 + i] = rd32(E1000_TDWBAL(i)); | ||
541 | for (i = 0; i < 4; i++) | ||
542 | regs_buff[239 + i] = rd32(E1000_TDWBAH(i)); | ||
543 | for (i = 0; i < 4; i++) | ||
544 | regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i)); | ||
545 | |||
546 | for (i = 0; i < 4; i++) | ||
547 | regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i)); | ||
548 | for (i = 0; i < 4; i++) | ||
549 | regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i)); | ||
550 | for (i = 0; i < 32; i++) | ||
551 | regs_buff[255 + i] = rd32(E1000_WUPM_REG(i)); | ||
552 | for (i = 0; i < 128; i++) | ||
553 | regs_buff[287 + i] = rd32(E1000_FFMT_REG(i)); | ||
554 | for (i = 0; i < 128; i++) | ||
555 | regs_buff[415 + i] = rd32(E1000_FFVT_REG(i)); | ||
556 | for (i = 0; i < 4; i++) | ||
557 | regs_buff[543 + i] = rd32(E1000_FFLT_REG(i)); | ||
558 | |||
559 | regs_buff[547] = rd32(E1000_TDFH); | ||
560 | regs_buff[548] = rd32(E1000_TDFT); | ||
561 | regs_buff[549] = rd32(E1000_TDFHS); | ||
562 | regs_buff[550] = rd32(E1000_TDFPC); | ||
563 | |||
564 | } | ||
565 | |||
566 | static int igb_get_eeprom_len(struct net_device *netdev) | ||
567 | { | ||
568 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
569 | return adapter->hw.nvm.word_size * 2; | ||
570 | } | ||
571 | |||
572 | static int igb_get_eeprom(struct net_device *netdev, | ||
573 | struct ethtool_eeprom *eeprom, u8 *bytes) | ||
574 | { | ||
575 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
576 | struct e1000_hw *hw = &adapter->hw; | ||
577 | u16 *eeprom_buff; | ||
578 | int first_word, last_word; | ||
579 | int ret_val = 0; | ||
580 | u16 i; | ||
581 | |||
582 | if (eeprom->len == 0) | ||
583 | return -EINVAL; | ||
584 | |||
585 | eeprom->magic = hw->vendor_id | (hw->device_id << 16); | ||
586 | |||
587 | first_word = eeprom->offset >> 1; | ||
588 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | ||
589 | |||
590 | eeprom_buff = kmalloc(sizeof(u16) * | ||
591 | (last_word - first_word + 1), GFP_KERNEL); | ||
592 | if (!eeprom_buff) | ||
593 | return -ENOMEM; | ||
594 | |||
595 | if (hw->nvm.type == e1000_nvm_eeprom_spi) | ||
596 | ret_val = hw->nvm.ops.read_nvm(hw, first_word, | ||
597 | last_word - first_word + 1, | ||
598 | eeprom_buff); | ||
599 | else { | ||
600 | for (i = 0; i < last_word - first_word + 1; i++) { | ||
601 | ret_val = hw->nvm.ops.read_nvm(hw, first_word + i, 1, | ||
602 | &eeprom_buff[i]); | ||
603 | if (ret_val) | ||
604 | break; | ||
605 | } | ||
606 | } | ||
607 | |||
608 | /* Device's eeprom is always little-endian, word addressable */ | ||
609 | for (i = 0; i < last_word - first_word + 1; i++) | ||
610 | le16_to_cpus(&eeprom_buff[i]); | ||
611 | |||
612 | memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), | ||
613 | eeprom->len); | ||
614 | kfree(eeprom_buff); | ||
615 | |||
616 | return ret_val; | ||
617 | } | ||
618 | |||
619 | static int igb_set_eeprom(struct net_device *netdev, | ||
620 | struct ethtool_eeprom *eeprom, u8 *bytes) | ||
621 | { | ||
622 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
623 | struct e1000_hw *hw = &adapter->hw; | ||
624 | u16 *eeprom_buff; | ||
625 | void *ptr; | ||
626 | int max_len, first_word, last_word, ret_val = 0; | ||
627 | u16 i; | ||
628 | |||
629 | if (eeprom->len == 0) | ||
630 | return -EOPNOTSUPP; | ||
631 | |||
632 | if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) | ||
633 | return -EFAULT; | ||
634 | |||
635 | max_len = hw->nvm.word_size * 2; | ||
636 | |||
637 | first_word = eeprom->offset >> 1; | ||
638 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | ||
639 | eeprom_buff = kmalloc(max_len, GFP_KERNEL); | ||
640 | if (!eeprom_buff) | ||
641 | return -ENOMEM; | ||
642 | |||
643 | ptr = (void *)eeprom_buff; | ||
644 | |||
645 | if (eeprom->offset & 1) { | ||
646 | /* need read/modify/write of first changed EEPROM word */ | ||
647 | /* only the second byte of the word is being modified */ | ||
648 | ret_val = hw->nvm.ops.read_nvm(hw, first_word, 1, | ||
649 | &eeprom_buff[0]); | ||
650 | ptr++; | ||
651 | } | ||
652 | if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { | ||
653 | /* need read/modify/write of last changed EEPROM word */ | ||
654 | /* only the first byte of the word is being modified */ | ||
655 | ret_val = hw->nvm.ops.read_nvm(hw, last_word, 1, | ||
656 | &eeprom_buff[last_word - first_word]); | ||
657 | } | ||
658 | |||
659 | /* Device's eeprom is always little-endian, word addressable */ | ||
660 | for (i = 0; i < last_word - first_word + 1; i++) | ||
661 | le16_to_cpus(&eeprom_buff[i]); | ||
662 | |||
663 | memcpy(ptr, bytes, eeprom->len); | ||
664 | |||
665 | for (i = 0; i < last_word - first_word + 1; i++) | ||
666 | eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); | ||
667 | |||
668 | ret_val = hw->nvm.ops.write_nvm(hw, first_word, | ||
669 | last_word - first_word + 1, eeprom_buff); | ||
670 | |||
671 | /* Update the checksum over the first part of the EEPROM if needed | ||
672 | * and flush shadow RAM for 82573 controllers */ | ||
673 | if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG))) | ||
674 | igb_update_nvm_checksum(hw); | ||
675 | |||
676 | kfree(eeprom_buff); | ||
677 | return ret_val; | ||
678 | } | ||
679 | |||
680 | static void igb_get_drvinfo(struct net_device *netdev, | ||
681 | struct ethtool_drvinfo *drvinfo) | ||
682 | { | ||
683 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
684 | char firmware_version[32]; | ||
685 | u16 eeprom_data; | ||
686 | |||
687 | strncpy(drvinfo->driver, igb_driver_name, 32); | ||
688 | strncpy(drvinfo->version, igb_driver_version, 32); | ||
689 | |||
690 | /* EEPROM image version # is reported as firmware version # for | ||
691 | * 82575 controllers */ | ||
692 | adapter->hw.nvm.ops.read_nvm(&adapter->hw, 5, 1, &eeprom_data); | ||
693 | sprintf(firmware_version, "%d.%d-%d", | ||
694 | (eeprom_data & 0xF000) >> 12, | ||
695 | (eeprom_data & 0x0FF0) >> 4, | ||
696 | eeprom_data & 0x000F); | ||
697 | |||
698 | strncpy(drvinfo->fw_version, firmware_version, 32); | ||
699 | strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); | ||
700 | drvinfo->n_stats = IGB_STATS_LEN; | ||
701 | drvinfo->testinfo_len = IGB_TEST_LEN; | ||
702 | drvinfo->regdump_len = igb_get_regs_len(netdev); | ||
703 | drvinfo->eedump_len = igb_get_eeprom_len(netdev); | ||
704 | } | ||
705 | |||
706 | static void igb_get_ringparam(struct net_device *netdev, | ||
707 | struct ethtool_ringparam *ring) | ||
708 | { | ||
709 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
710 | struct igb_ring *tx_ring = adapter->tx_ring; | ||
711 | struct igb_ring *rx_ring = adapter->rx_ring; | ||
712 | |||
713 | ring->rx_max_pending = IGB_MAX_RXD; | ||
714 | ring->tx_max_pending = IGB_MAX_TXD; | ||
715 | ring->rx_mini_max_pending = 0; | ||
716 | ring->rx_jumbo_max_pending = 0; | ||
717 | ring->rx_pending = rx_ring->count; | ||
718 | ring->tx_pending = tx_ring->count; | ||
719 | ring->rx_mini_pending = 0; | ||
720 | ring->rx_jumbo_pending = 0; | ||
721 | } | ||
722 | |||
723 | static int igb_set_ringparam(struct net_device *netdev, | ||
724 | struct ethtool_ringparam *ring) | ||
725 | { | ||
726 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
727 | struct igb_buffer *old_buf; | ||
728 | struct igb_buffer *old_rx_buf; | ||
729 | void *old_desc; | ||
730 | int i, err; | ||
731 | u32 new_rx_count, new_tx_count, old_size; | ||
732 | dma_addr_t old_dma; | ||
733 | |||
734 | if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) | ||
735 | return -EINVAL; | ||
736 | |||
737 | new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD); | ||
738 | new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD); | ||
739 | new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); | ||
740 | |||
741 | new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD); | ||
742 | new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD); | ||
743 | new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); | ||
744 | |||
745 | if ((new_tx_count == adapter->tx_ring->count) && | ||
746 | (new_rx_count == adapter->rx_ring->count)) { | ||
747 | /* nothing to do */ | ||
748 | return 0; | ||
749 | } | ||
750 | |||
751 | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) | ||
752 | msleep(1); | ||
753 | |||
754 | if (netif_running(adapter->netdev)) | ||
755 | igb_down(adapter); | ||
756 | |||
757 | /* | ||
758 | * We can't just free everything and then setup again, | ||
759 | * because the ISRs in MSI-X mode get passed pointers | ||
760 | * to the tx and rx ring structs. | ||
761 | */ | ||
762 | if (new_tx_count != adapter->tx_ring->count) { | ||
763 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
764 | /* Save existing descriptor ring */ | ||
765 | old_buf = adapter->tx_ring[i].buffer_info; | ||
766 | old_desc = adapter->tx_ring[i].desc; | ||
767 | old_size = adapter->tx_ring[i].size; | ||
768 | old_dma = adapter->tx_ring[i].dma; | ||
769 | /* Try to allocate a new one */ | ||
770 | adapter->tx_ring[i].buffer_info = NULL; | ||
771 | adapter->tx_ring[i].desc = NULL; | ||
772 | adapter->tx_ring[i].count = new_tx_count; | ||
773 | err = igb_setup_tx_resources(adapter, | ||
774 | &adapter->tx_ring[i]); | ||
775 | if (err) { | ||
776 | /* Restore the old one so at least | ||
777 | the adapter still works, even if | ||
778 | we failed the request */ | ||
779 | adapter->tx_ring[i].buffer_info = old_buf; | ||
780 | adapter->tx_ring[i].desc = old_desc; | ||
781 | adapter->tx_ring[i].size = old_size; | ||
782 | adapter->tx_ring[i].dma = old_dma; | ||
783 | goto err_setup; | ||
784 | } | ||
785 | /* Free the old buffer manually */ | ||
786 | vfree(old_buf); | ||
787 | pci_free_consistent(adapter->pdev, old_size, | ||
788 | old_desc, old_dma); | ||
789 | } | ||
790 | } | ||
791 | |||
792 | if (new_rx_count != adapter->rx_ring->count) { | ||
793 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
794 | |||
795 | old_rx_buf = adapter->rx_ring[i].buffer_info; | ||
796 | old_desc = adapter->rx_ring[i].desc; | ||
797 | old_size = adapter->rx_ring[i].size; | ||
798 | old_dma = adapter->rx_ring[i].dma; | ||
799 | |||
800 | adapter->rx_ring[i].buffer_info = NULL; | ||
801 | adapter->rx_ring[i].desc = NULL; | ||
802 | adapter->rx_ring[i].dma = 0; | ||
803 | adapter->rx_ring[i].count = new_rx_count; | ||
804 | err = igb_setup_rx_resources(adapter, | ||
805 | &adapter->rx_ring[i]); | ||
806 | if (err) { | ||
807 | adapter->rx_ring[i].buffer_info = old_rx_buf; | ||
808 | adapter->rx_ring[i].desc = old_desc; | ||
809 | adapter->rx_ring[i].size = old_size; | ||
810 | adapter->rx_ring[i].dma = old_dma; | ||
811 | goto err_setup; | ||
812 | } | ||
813 | |||
814 | vfree(old_rx_buf); | ||
815 | pci_free_consistent(adapter->pdev, old_size, old_desc, | ||
816 | old_dma); | ||
817 | } | ||
818 | } | ||
819 | |||
820 | err = 0; | ||
821 | err_setup: | ||
822 | if (netif_running(adapter->netdev)) | ||
823 | igb_up(adapter); | ||
824 | |||
825 | clear_bit(__IGB_RESETTING, &adapter->state); | ||
826 | return err; | ||
827 | } | ||
828 | |||
829 | /* ethtool register test data */ | ||
830 | struct igb_reg_test { | ||
831 | u16 reg; | ||
832 | u8 array_len; | ||
833 | u8 test_type; | ||
834 | u32 mask; | ||
835 | u32 write; | ||
836 | }; | ||
837 | |||
838 | /* In the hardware, registers are laid out either singly, in arrays | ||
839 | * spaced 0x100 bytes apart, or in contiguous tables. We assume | ||
840 | * most tests take place on arrays or single registers (handled | ||
841 | * as a single-element array) and special-case the tables. | ||
842 | * Table tests are always pattern tests. | ||
843 | * | ||
844 | * We also make provision for some required setup steps by specifying | ||
845 | * registers to be written without any read-back testing. | ||
846 | */ | ||
847 | |||
848 | #define PATTERN_TEST 1 | ||
849 | #define SET_READ_TEST 2 | ||
850 | #define WRITE_NO_TEST 3 | ||
851 | #define TABLE32_TEST 4 | ||
852 | #define TABLE64_TEST_LO 5 | ||
853 | #define TABLE64_TEST_HI 6 | ||
854 | |||
855 | /* default register test */ | ||
856 | static struct igb_reg_test reg_test_82575[] = { | ||
857 | { E1000_FCAL, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
858 | { E1000_FCAH, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, | ||
859 | { E1000_FCT, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, | ||
860 | { E1000_VET, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
861 | { E1000_RDBAL(0), 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, | ||
862 | { E1000_RDBAH(0), 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
863 | { E1000_RDLEN(0), 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, | ||
864 | /* Enable all four RX queues before testing. */ | ||
865 | { E1000_RXDCTL(0), 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, | ||
866 | /* RDH is read-only for 82575, only test RDT. */ | ||
867 | { E1000_RDT(0), 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, | ||
868 | { E1000_RXDCTL(0), 4, WRITE_NO_TEST, 0, 0 }, | ||
869 | { E1000_FCRTH, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, | ||
870 | { E1000_FCTTV, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, | ||
871 | { E1000_TIPG, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, | ||
872 | { E1000_TDBAL(0), 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, | ||
873 | { E1000_TDBAH(0), 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
874 | { E1000_TDLEN(0), 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, | ||
875 | { E1000_RCTL, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, | ||
876 | { E1000_RCTL, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB }, | ||
877 | { E1000_RCTL, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF }, | ||
878 | { E1000_TCTL, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, | ||
879 | { E1000_TXCW, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF }, | ||
880 | { E1000_RA, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
881 | { E1000_RA, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF }, | ||
882 | { E1000_MTA, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, | ||
883 | { 0, 0, 0, 0 } | ||
884 | }; | ||
885 | |||
886 | static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data, | ||
887 | int reg, u32 mask, u32 write) | ||
888 | { | ||
889 | u32 pat, val; | ||
890 | u32 _test[] = | ||
891 | {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; | ||
892 | for (pat = 0; pat < ARRAY_SIZE(_test); pat++) { | ||
893 | writel((_test[pat] & write), (adapter->hw.hw_addr + reg)); | ||
894 | val = readl(adapter->hw.hw_addr + reg); | ||
895 | if (val != (_test[pat] & write & mask)) { | ||
896 | dev_err(&adapter->pdev->dev, "pattern test reg %04X " | ||
897 | "failed: got 0x%08X expected 0x%08X\n", | ||
898 | reg, val, (_test[pat] & write & mask)); | ||
899 | *data = reg; | ||
900 | return 1; | ||
901 | } | ||
902 | } | ||
903 | return 0; | ||
904 | } | ||
905 | |||
906 | static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data, | ||
907 | int reg, u32 mask, u32 write) | ||
908 | { | ||
909 | u32 val; | ||
910 | writel((write & mask), (adapter->hw.hw_addr + reg)); | ||
911 | val = readl(adapter->hw.hw_addr + reg); | ||
912 | if ((write & mask) != (val & mask)) { | ||
913 | dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:" | ||
914 | " got 0x%08X expected 0x%08X\n", reg, | ||
915 | (val & mask), (write & mask)); | ||
916 | *data = reg; | ||
917 | return 1; | ||
918 | } | ||
919 | return 0; | ||
920 | } | ||
921 | |||
922 | #define REG_PATTERN_TEST(reg, mask, write) \ | ||
923 | do { \ | ||
924 | if (reg_pattern_test(adapter, data, reg, mask, write)) \ | ||
925 | return 1; \ | ||
926 | } while (0) | ||
927 | |||
928 | #define REG_SET_AND_CHECK(reg, mask, write) \ | ||
929 | do { \ | ||
930 | if (reg_set_and_check(adapter, data, reg, mask, write)) \ | ||
931 | return 1; \ | ||
932 | } while (0) | ||
933 | |||
934 | static int igb_reg_test(struct igb_adapter *adapter, u64 *data) | ||
935 | { | ||
936 | struct e1000_hw *hw = &adapter->hw; | ||
937 | struct igb_reg_test *test; | ||
938 | u32 value, before, after; | ||
939 | u32 i, toggle; | ||
940 | |||
941 | toggle = 0x7FFFF3FF; | ||
942 | test = reg_test_82575; | ||
943 | |||
944 | /* Because the status register is such a special case, | ||
945 | * we handle it separately from the rest of the register | ||
946 | * tests. Some bits are read-only, some toggle, and some | ||
947 | * are writable on newer MACs. | ||
948 | */ | ||
949 | before = rd32(E1000_STATUS); | ||
950 | value = (rd32(E1000_STATUS) & toggle); | ||
951 | wr32(E1000_STATUS, toggle); | ||
952 | after = rd32(E1000_STATUS) & toggle; | ||
953 | if (value != after) { | ||
954 | dev_err(&adapter->pdev->dev, "failed STATUS register test " | ||
955 | "got: 0x%08X expected: 0x%08X\n", after, value); | ||
956 | *data = 1; | ||
957 | return 1; | ||
958 | } | ||
959 | /* restore previous status */ | ||
960 | wr32(E1000_STATUS, before); | ||
961 | |||
962 | /* Perform the remainder of the register test, looping through | ||
963 | * the test table until we either fail or reach the null entry. | ||
964 | */ | ||
965 | while (test->reg) { | ||
966 | for (i = 0; i < test->array_len; i++) { | ||
967 | switch (test->test_type) { | ||
968 | case PATTERN_TEST: | ||
969 | REG_PATTERN_TEST(test->reg + (i * 0x100), | ||
970 | test->mask, | ||
971 | test->write); | ||
972 | break; | ||
973 | case SET_READ_TEST: | ||
974 | REG_SET_AND_CHECK(test->reg + (i * 0x100), | ||
975 | test->mask, | ||
976 | test->write); | ||
977 | break; | ||
978 | case WRITE_NO_TEST: | ||
979 | writel(test->write, | ||
980 | (adapter->hw.hw_addr + test->reg) | ||
981 | + (i * 0x100)); | ||
982 | break; | ||
983 | case TABLE32_TEST: | ||
984 | REG_PATTERN_TEST(test->reg + (i * 4), | ||
985 | test->mask, | ||
986 | test->write); | ||
987 | break; | ||
988 | case TABLE64_TEST_LO: | ||
989 | REG_PATTERN_TEST(test->reg + (i * 8), | ||
990 | test->mask, | ||
991 | test->write); | ||
992 | break; | ||
993 | case TABLE64_TEST_HI: | ||
994 | REG_PATTERN_TEST((test->reg + 4) + (i * 8), | ||
995 | test->mask, | ||
996 | test->write); | ||
997 | break; | ||
998 | } | ||
999 | } | ||
1000 | test++; | ||
1001 | } | ||
1002 | |||
1003 | *data = 0; | ||
1004 | return 0; | ||
1005 | } | ||
1006 | |||
1007 | static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data) | ||
1008 | { | ||
1009 | u16 temp; | ||
1010 | u16 checksum = 0; | ||
1011 | u16 i; | ||
1012 | |||
1013 | *data = 0; | ||
1014 | /* Read and add up the contents of the EEPROM */ | ||
1015 | for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { | ||
1016 | if ((adapter->hw.nvm.ops.read_nvm(&adapter->hw, i, 1, &temp)) | ||
1017 | < 0) { | ||
1018 | *data = 1; | ||
1019 | break; | ||
1020 | } | ||
1021 | checksum += temp; | ||
1022 | } | ||
1023 | |||
1024 | /* If Checksum is not Correct return error else test passed */ | ||
1025 | if ((checksum != (u16) NVM_SUM) && !(*data)) | ||
1026 | *data = 2; | ||
1027 | |||
1028 | return *data; | ||
1029 | } | ||
1030 | |||
1031 | static irqreturn_t igb_test_intr(int irq, void *data) | ||
1032 | { | ||
1033 | struct net_device *netdev = (struct net_device *) data; | ||
1034 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1035 | struct e1000_hw *hw = &adapter->hw; | ||
1036 | |||
1037 | adapter->test_icr |= rd32(E1000_ICR); | ||
1038 | |||
1039 | return IRQ_HANDLED; | ||
1040 | } | ||
1041 | |||
1042 | static int igb_intr_test(struct igb_adapter *adapter, u64 *data) | ||
1043 | { | ||
1044 | struct e1000_hw *hw = &adapter->hw; | ||
1045 | struct net_device *netdev = adapter->netdev; | ||
1046 | u32 mask, i = 0, shared_int = true; | ||
1047 | u32 irq = adapter->pdev->irq; | ||
1048 | |||
1049 | *data = 0; | ||
1050 | |||
1051 | /* Hook up test interrupt handler just for this test */ | ||
1052 | if (adapter->msix_entries) { | ||
1053 | /* NOTE: we don't test MSI-X interrupts here, yet */ | ||
1054 | return 0; | ||
1055 | } else if (adapter->msi_enabled) { | ||
1056 | shared_int = false; | ||
1057 | if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) { | ||
1058 | *data = 1; | ||
1059 | return -1; | ||
1060 | } | ||
1061 | } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED, | ||
1062 | netdev->name, netdev)) { | ||
1063 | shared_int = false; | ||
1064 | } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED, | ||
1065 | netdev->name, netdev)) { | ||
1066 | *data = 1; | ||
1067 | return -1; | ||
1068 | } | ||
1069 | dev_info(&adapter->pdev->dev, "testing %s interrupt\n", | ||
1070 | (shared_int ? "shared" : "unshared")); | ||
1071 | |||
1072 | /* Disable all the interrupts */ | ||
1073 | wr32(E1000_IMC, 0xFFFFFFFF); | ||
1074 | msleep(10); | ||
1075 | |||
1076 | /* Test each interrupt */ | ||
1077 | for (; i < 10; i++) { | ||
1078 | /* Interrupt to test */ | ||
1079 | mask = 1 << i; | ||
1080 | |||
1081 | if (!shared_int) { | ||
1082 | /* Disable the interrupt to be reported in | ||
1083 | * the cause register and then force the same | ||
1084 | * interrupt and see if one gets posted. If | ||
1085 | * an interrupt was posted to the bus, the | ||
1086 | * test failed. | ||
1087 | */ | ||
1088 | adapter->test_icr = 0; | ||
1089 | wr32(E1000_IMC, ~mask & 0x00007FFF); | ||
1090 | wr32(E1000_ICS, ~mask & 0x00007FFF); | ||
1091 | msleep(10); | ||
1092 | |||
1093 | if (adapter->test_icr & mask) { | ||
1094 | *data = 3; | ||
1095 | break; | ||
1096 | } | ||
1097 | } | ||
1098 | |||
1099 | /* Enable the interrupt to be reported in | ||
1100 | * the cause register and then force the same | ||
1101 | * interrupt and see if one gets posted. If | ||
1102 | * an interrupt was not posted to the bus, the | ||
1103 | * test failed. | ||
1104 | */ | ||
1105 | adapter->test_icr = 0; | ||
1106 | wr32(E1000_IMS, mask); | ||
1107 | wr32(E1000_ICS, mask); | ||
1108 | msleep(10); | ||
1109 | |||
1110 | if (!(adapter->test_icr & mask)) { | ||
1111 | *data = 4; | ||
1112 | break; | ||
1113 | } | ||
1114 | |||
1115 | if (!shared_int) { | ||
1116 | /* Disable the other interrupts to be reported in | ||
1117 | * the cause register and then force the other | ||
1118 | * interrupts and see if any get posted. If | ||
1119 | * an interrupt was posted to the bus, the | ||
1120 | * test failed. | ||
1121 | */ | ||
1122 | adapter->test_icr = 0; | ||
1123 | wr32(E1000_IMC, ~mask & 0x00007FFF); | ||
1124 | wr32(E1000_ICS, ~mask & 0x00007FFF); | ||
1125 | msleep(10); | ||
1126 | |||
1127 | if (adapter->test_icr) { | ||
1128 | *data = 5; | ||
1129 | break; | ||
1130 | } | ||
1131 | } | ||
1132 | } | ||
1133 | |||
1134 | /* Disable all the interrupts */ | ||
1135 | wr32(E1000_IMC, 0xFFFFFFFF); | ||
1136 | msleep(10); | ||
1137 | |||
1138 | /* Unhook test interrupt handler */ | ||
1139 | free_irq(irq, netdev); | ||
1140 | |||
1141 | return *data; | ||
1142 | } | ||
1143 | |||
1144 | static void igb_free_desc_rings(struct igb_adapter *adapter) | ||
1145 | { | ||
1146 | struct igb_ring *tx_ring = &adapter->test_tx_ring; | ||
1147 | struct igb_ring *rx_ring = &adapter->test_rx_ring; | ||
1148 | struct pci_dev *pdev = adapter->pdev; | ||
1149 | int i; | ||
1150 | |||
1151 | if (tx_ring->desc && tx_ring->buffer_info) { | ||
1152 | for (i = 0; i < tx_ring->count; i++) { | ||
1153 | struct igb_buffer *buf = &(tx_ring->buffer_info[i]); | ||
1154 | if (buf->dma) | ||
1155 | pci_unmap_single(pdev, buf->dma, buf->length, | ||
1156 | PCI_DMA_TODEVICE); | ||
1157 | if (buf->skb) | ||
1158 | dev_kfree_skb(buf->skb); | ||
1159 | } | ||
1160 | } | ||
1161 | |||
1162 | if (rx_ring->desc && rx_ring->buffer_info) { | ||
1163 | for (i = 0; i < rx_ring->count; i++) { | ||
1164 | struct igb_buffer *buf = &(rx_ring->buffer_info[i]); | ||
1165 | if (buf->dma) | ||
1166 | pci_unmap_single(pdev, buf->dma, | ||
1167 | IGB_RXBUFFER_2048, | ||
1168 | PCI_DMA_FROMDEVICE); | ||
1169 | if (buf->skb) | ||
1170 | dev_kfree_skb(buf->skb); | ||
1171 | } | ||
1172 | } | ||
1173 | |||
1174 | if (tx_ring->desc) { | ||
1175 | pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, | ||
1176 | tx_ring->dma); | ||
1177 | tx_ring->desc = NULL; | ||
1178 | } | ||
1179 | if (rx_ring->desc) { | ||
1180 | pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, | ||
1181 | rx_ring->dma); | ||
1182 | rx_ring->desc = NULL; | ||
1183 | } | ||
1184 | |||
1185 | kfree(tx_ring->buffer_info); | ||
1186 | tx_ring->buffer_info = NULL; | ||
1187 | kfree(rx_ring->buffer_info); | ||
1188 | rx_ring->buffer_info = NULL; | ||
1189 | |||
1190 | return; | ||
1191 | } | ||
1192 | |||
1193 | static int igb_setup_desc_rings(struct igb_adapter *adapter) | ||
1194 | { | ||
1195 | struct e1000_hw *hw = &adapter->hw; | ||
1196 | struct igb_ring *tx_ring = &adapter->test_tx_ring; | ||
1197 | struct igb_ring *rx_ring = &adapter->test_rx_ring; | ||
1198 | struct pci_dev *pdev = adapter->pdev; | ||
1199 | u32 rctl; | ||
1200 | int i, ret_val; | ||
1201 | |||
1202 | /* Setup Tx descriptor ring and Tx buffers */ | ||
1203 | |||
1204 | if (!tx_ring->count) | ||
1205 | tx_ring->count = IGB_DEFAULT_TXD; | ||
1206 | |||
1207 | tx_ring->buffer_info = kcalloc(tx_ring->count, | ||
1208 | sizeof(struct igb_buffer), | ||
1209 | GFP_KERNEL); | ||
1210 | if (!tx_ring->buffer_info) { | ||
1211 | ret_val = 1; | ||
1212 | goto err_nomem; | ||
1213 | } | ||
1214 | |||
1215 | tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); | ||
1216 | tx_ring->size = ALIGN(tx_ring->size, 4096); | ||
1217 | tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size, | ||
1218 | &tx_ring->dma); | ||
1219 | if (!tx_ring->desc) { | ||
1220 | ret_val = 2; | ||
1221 | goto err_nomem; | ||
1222 | } | ||
1223 | tx_ring->next_to_use = tx_ring->next_to_clean = 0; | ||
1224 | |||
1225 | wr32(E1000_TDBAL(0), | ||
1226 | ((u64) tx_ring->dma & 0x00000000FFFFFFFF)); | ||
1227 | wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32)); | ||
1228 | wr32(E1000_TDLEN(0), | ||
1229 | tx_ring->count * sizeof(struct e1000_tx_desc)); | ||
1230 | wr32(E1000_TDH(0), 0); | ||
1231 | wr32(E1000_TDT(0), 0); | ||
1232 | wr32(E1000_TCTL, | ||
1233 | E1000_TCTL_PSP | E1000_TCTL_EN | | ||
1234 | E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | | ||
1235 | E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); | ||
1236 | |||
1237 | for (i = 0; i < tx_ring->count; i++) { | ||
1238 | struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); | ||
1239 | struct sk_buff *skb; | ||
1240 | unsigned int size = 1024; | ||
1241 | |||
1242 | skb = alloc_skb(size, GFP_KERNEL); | ||
1243 | if (!skb) { | ||
1244 | ret_val = 3; | ||
1245 | goto err_nomem; | ||
1246 | } | ||
1247 | skb_put(skb, size); | ||
1248 | tx_ring->buffer_info[i].skb = skb; | ||
1249 | tx_ring->buffer_info[i].length = skb->len; | ||
1250 | tx_ring->buffer_info[i].dma = | ||
1251 | pci_map_single(pdev, skb->data, skb->len, | ||
1252 | PCI_DMA_TODEVICE); | ||
1253 | tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); | ||
1254 | tx_desc->lower.data = cpu_to_le32(skb->len); | ||
1255 | tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | | ||
1256 | E1000_TXD_CMD_IFCS | | ||
1257 | E1000_TXD_CMD_RS); | ||
1258 | tx_desc->upper.data = 0; | ||
1259 | } | ||
1260 | |||
1261 | /* Setup Rx descriptor ring and Rx buffers */ | ||
1262 | |||
1263 | if (!rx_ring->count) | ||
1264 | rx_ring->count = IGB_DEFAULT_RXD; | ||
1265 | |||
1266 | rx_ring->buffer_info = kcalloc(rx_ring->count, | ||
1267 | sizeof(struct igb_buffer), | ||
1268 | GFP_KERNEL); | ||
1269 | if (!rx_ring->buffer_info) { | ||
1270 | ret_val = 4; | ||
1271 | goto err_nomem; | ||
1272 | } | ||
1273 | |||
1274 | rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc); | ||
1275 | rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size, | ||
1276 | &rx_ring->dma); | ||
1277 | if (!rx_ring->desc) { | ||
1278 | ret_val = 5; | ||
1279 | goto err_nomem; | ||
1280 | } | ||
1281 | rx_ring->next_to_use = rx_ring->next_to_clean = 0; | ||
1282 | |||
1283 | rctl = rd32(E1000_RCTL); | ||
1284 | wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); | ||
1285 | wr32(E1000_RDBAL(0), | ||
1286 | ((u64) rx_ring->dma & 0xFFFFFFFF)); | ||
1287 | wr32(E1000_RDBAH(0), | ||
1288 | ((u64) rx_ring->dma >> 32)); | ||
1289 | wr32(E1000_RDLEN(0), rx_ring->size); | ||
1290 | wr32(E1000_RDH(0), 0); | ||
1291 | wr32(E1000_RDT(0), 0); | ||
1292 | rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | | ||
1293 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | ||
1294 | (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); | ||
1295 | wr32(E1000_RCTL, rctl); | ||
1296 | wr32(E1000_SRRCTL(0), 0); | ||
1297 | |||
1298 | for (i = 0; i < rx_ring->count; i++) { | ||
1299 | struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
1300 | struct sk_buff *skb; | ||
1301 | |||
1302 | skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN, | ||
1303 | GFP_KERNEL); | ||
1304 | if (!skb) { | ||
1305 | ret_val = 6; | ||
1306 | goto err_nomem; | ||
1307 | } | ||
1308 | skb_reserve(skb, NET_IP_ALIGN); | ||
1309 | rx_ring->buffer_info[i].skb = skb; | ||
1310 | rx_ring->buffer_info[i].dma = | ||
1311 | pci_map_single(pdev, skb->data, IGB_RXBUFFER_2048, | ||
1312 | PCI_DMA_FROMDEVICE); | ||
1313 | rx_desc->buffer_addr = cpu_to_le64(rx_ring->buffer_info[i].dma); | ||
1314 | memset(skb->data, 0x00, skb->len); | ||
1315 | } | ||
1316 | |||
1317 | return 0; | ||
1318 | |||
1319 | err_nomem: | ||
1320 | igb_free_desc_rings(adapter); | ||
1321 | return ret_val; | ||
1322 | } | ||
1323 | |||
1324 | static void igb_phy_disable_receiver(struct igb_adapter *adapter) | ||
1325 | { | ||
1326 | struct e1000_hw *hw = &adapter->hw; | ||
1327 | |||
1328 | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ | ||
1329 | hw->phy.ops.write_phy_reg(hw, 29, 0x001F); | ||
1330 | hw->phy.ops.write_phy_reg(hw, 30, 0x8FFC); | ||
1331 | hw->phy.ops.write_phy_reg(hw, 29, 0x001A); | ||
1332 | hw->phy.ops.write_phy_reg(hw, 30, 0x8FF0); | ||
1333 | } | ||
1334 | |||
1335 | static int igb_integrated_phy_loopback(struct igb_adapter *adapter) | ||
1336 | { | ||
1337 | struct e1000_hw *hw = &adapter->hw; | ||
1338 | u32 ctrl_reg = 0; | ||
1339 | u32 stat_reg = 0; | ||
1340 | |||
1341 | hw->mac.autoneg = false; | ||
1342 | |||
1343 | if (hw->phy.type == e1000_phy_m88) { | ||
1344 | /* Auto-MDI/MDIX Off */ | ||
1345 | hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); | ||
1346 | /* reset to update Auto-MDI/MDIX */ | ||
1347 | hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x9140); | ||
1348 | /* autoneg off */ | ||
1349 | hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x8140); | ||
1350 | } | ||
1351 | |||
1352 | ctrl_reg = rd32(E1000_CTRL); | ||
1353 | |||
1354 | /* force 1000, set loopback */ | ||
1355 | hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x4140); | ||
1356 | |||
1357 | /* Now set up the MAC to the same speed/duplex as the PHY. */ | ||
1358 | ctrl_reg = rd32(E1000_CTRL); | ||
1359 | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ | ||
1360 | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | ||
1361 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | ||
1362 | E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ | ||
1363 | E1000_CTRL_FD); /* Force Duplex to FULL */ | ||
1364 | |||
1365 | if (hw->phy.media_type == e1000_media_type_copper && | ||
1366 | hw->phy.type == e1000_phy_m88) | ||
1367 | ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ | ||
1368 | else { | ||
1369 | /* Set the ILOS bit on the fiber Nic if half duplex link is | ||
1370 | * detected. */ | ||
1371 | stat_reg = rd32(E1000_STATUS); | ||
1372 | if ((stat_reg & E1000_STATUS_FD) == 0) | ||
1373 | ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); | ||
1374 | } | ||
1375 | |||
1376 | wr32(E1000_CTRL, ctrl_reg); | ||
1377 | |||
1378 | /* Disable the receiver on the PHY so when a cable is plugged in, the | ||
1379 | * PHY does not begin to autoneg when a cable is reconnected to the NIC. | ||
1380 | */ | ||
1381 | if (hw->phy.type == e1000_phy_m88) | ||
1382 | igb_phy_disable_receiver(adapter); | ||
1383 | |||
1384 | udelay(500); | ||
1385 | |||
1386 | return 0; | ||
1387 | } | ||
1388 | |||
1389 | static int igb_set_phy_loopback(struct igb_adapter *adapter) | ||
1390 | { | ||
1391 | return igb_integrated_phy_loopback(adapter); | ||
1392 | } | ||
1393 | |||
1394 | static int igb_setup_loopback_test(struct igb_adapter *adapter) | ||
1395 | { | ||
1396 | struct e1000_hw *hw = &adapter->hw; | ||
1397 | u32 rctl; | ||
1398 | |||
1399 | if (hw->phy.media_type == e1000_media_type_fiber || | ||
1400 | hw->phy.media_type == e1000_media_type_internal_serdes) { | ||
1401 | rctl = rd32(E1000_RCTL); | ||
1402 | rctl |= E1000_RCTL_LBM_TCVR; | ||
1403 | wr32(E1000_RCTL, rctl); | ||
1404 | return 0; | ||
1405 | } else if (hw->phy.media_type == e1000_media_type_copper) { | ||
1406 | return igb_set_phy_loopback(adapter); | ||
1407 | } | ||
1408 | |||
1409 | return 7; | ||
1410 | } | ||
1411 | |||
1412 | static void igb_loopback_cleanup(struct igb_adapter *adapter) | ||
1413 | { | ||
1414 | struct e1000_hw *hw = &adapter->hw; | ||
1415 | u32 rctl; | ||
1416 | u16 phy_reg; | ||
1417 | |||
1418 | rctl = rd32(E1000_RCTL); | ||
1419 | rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); | ||
1420 | wr32(E1000_RCTL, rctl); | ||
1421 | |||
1422 | hw->mac.autoneg = true; | ||
1423 | hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_reg); | ||
1424 | if (phy_reg & MII_CR_LOOPBACK) { | ||
1425 | phy_reg &= ~MII_CR_LOOPBACK; | ||
1426 | hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_reg); | ||
1427 | igb_phy_sw_reset(hw); | ||
1428 | } | ||
1429 | } | ||
1430 | |||
1431 | static void igb_create_lbtest_frame(struct sk_buff *skb, | ||
1432 | unsigned int frame_size) | ||
1433 | { | ||
1434 | memset(skb->data, 0xFF, frame_size); | ||
1435 | frame_size &= ~1; | ||
1436 | memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); | ||
1437 | memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); | ||
1438 | memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); | ||
1439 | } | ||
1440 | |||
1441 | static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) | ||
1442 | { | ||
1443 | frame_size &= ~1; | ||
1444 | if (*(skb->data + 3) == 0xFF) | ||
1445 | if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && | ||
1446 | (*(skb->data + frame_size / 2 + 12) == 0xAF)) | ||
1447 | return 0; | ||
1448 | return 13; | ||
1449 | } | ||
1450 | |||
1451 | static int igb_run_loopback_test(struct igb_adapter *adapter) | ||
1452 | { | ||
1453 | struct e1000_hw *hw = &adapter->hw; | ||
1454 | struct igb_ring *tx_ring = &adapter->test_tx_ring; | ||
1455 | struct igb_ring *rx_ring = &adapter->test_rx_ring; | ||
1456 | struct pci_dev *pdev = adapter->pdev; | ||
1457 | int i, j, k, l, lc, good_cnt; | ||
1458 | int ret_val = 0; | ||
1459 | unsigned long time; | ||
1460 | |||
1461 | wr32(E1000_RDT(0), rx_ring->count - 1); | ||
1462 | |||
1463 | /* Calculate the loop count based on the largest descriptor ring | ||
1464 | * The idea is to wrap the largest ring a number of times using 64 | ||
1465 | * send/receive pairs during each loop | ||
1466 | */ | ||
1467 | |||
1468 | if (rx_ring->count <= tx_ring->count) | ||
1469 | lc = ((tx_ring->count / 64) * 2) + 1; | ||
1470 | else | ||
1471 | lc = ((rx_ring->count / 64) * 2) + 1; | ||
1472 | |||
1473 | k = l = 0; | ||
1474 | for (j = 0; j <= lc; j++) { /* loop count loop */ | ||
1475 | for (i = 0; i < 64; i++) { /* send the packets */ | ||
1476 | igb_create_lbtest_frame(tx_ring->buffer_info[k].skb, | ||
1477 | 1024); | ||
1478 | pci_dma_sync_single_for_device(pdev, | ||
1479 | tx_ring->buffer_info[k].dma, | ||
1480 | tx_ring->buffer_info[k].length, | ||
1481 | PCI_DMA_TODEVICE); | ||
1482 | k++; | ||
1483 | if (k == tx_ring->count) | ||
1484 | k = 0; | ||
1485 | } | ||
1486 | wr32(E1000_TDT(0), k); | ||
1487 | msleep(200); | ||
1488 | time = jiffies; /* set the start time for the receive */ | ||
1489 | good_cnt = 0; | ||
1490 | do { /* receive the sent packets */ | ||
1491 | pci_dma_sync_single_for_cpu(pdev, | ||
1492 | rx_ring->buffer_info[l].dma, | ||
1493 | IGB_RXBUFFER_2048, | ||
1494 | PCI_DMA_FROMDEVICE); | ||
1495 | |||
1496 | ret_val = igb_check_lbtest_frame( | ||
1497 | rx_ring->buffer_info[l].skb, 1024); | ||
1498 | if (!ret_val) | ||
1499 | good_cnt++; | ||
1500 | l++; | ||
1501 | if (l == rx_ring->count) | ||
1502 | l = 0; | ||
1503 | /* time + 20 msecs (200 msecs on 2.4) is more than | ||
1504 | * enough time to complete the receives, if it's | ||
1505 | * exceeded, break and error off | ||
1506 | */ | ||
1507 | } while (good_cnt < 64 && jiffies < (time + 20)); | ||
1508 | if (good_cnt != 64) { | ||
1509 | ret_val = 13; /* ret_val is the same as mis-compare */ | ||
1510 | break; | ||
1511 | } | ||
1512 | if (jiffies >= (time + 20)) { | ||
1513 | ret_val = 14; /* error code for time out error */ | ||
1514 | break; | ||
1515 | } | ||
1516 | } /* end loop count loop */ | ||
1517 | return ret_val; | ||
1518 | } | ||
1519 | |||
1520 | static int igb_loopback_test(struct igb_adapter *adapter, u64 *data) | ||
1521 | { | ||
1522 | /* PHY loopback cannot be performed if SoL/IDER | ||
1523 | * sessions are active */ | ||
1524 | if (igb_check_reset_block(&adapter->hw)) { | ||
1525 | dev_err(&adapter->pdev->dev, | ||
1526 | "Cannot do PHY loopback test " | ||
1527 | "when SoL/IDER is active.\n"); | ||
1528 | *data = 0; | ||
1529 | goto out; | ||
1530 | } | ||
1531 | *data = igb_setup_desc_rings(adapter); | ||
1532 | if (*data) | ||
1533 | goto out; | ||
1534 | *data = igb_setup_loopback_test(adapter); | ||
1535 | if (*data) | ||
1536 | goto err_loopback; | ||
1537 | *data = igb_run_loopback_test(adapter); | ||
1538 | igb_loopback_cleanup(adapter); | ||
1539 | |||
1540 | err_loopback: | ||
1541 | igb_free_desc_rings(adapter); | ||
1542 | out: | ||
1543 | return *data; | ||
1544 | } | ||
1545 | |||
1546 | static int igb_link_test(struct igb_adapter *adapter, u64 *data) | ||
1547 | { | ||
1548 | struct e1000_hw *hw = &adapter->hw; | ||
1549 | *data = 0; | ||
1550 | if (hw->phy.media_type == e1000_media_type_internal_serdes) { | ||
1551 | int i = 0; | ||
1552 | hw->mac.serdes_has_link = false; | ||
1553 | |||
1554 | /* On some blade server designs, link establishment | ||
1555 | * could take as long as 2-3 minutes */ | ||
1556 | do { | ||
1557 | hw->mac.ops.check_for_link(&adapter->hw); | ||
1558 | if (hw->mac.serdes_has_link) | ||
1559 | return *data; | ||
1560 | msleep(20); | ||
1561 | } while (i++ < 3750); | ||
1562 | |||
1563 | *data = 1; | ||
1564 | } else { | ||
1565 | hw->mac.ops.check_for_link(&adapter->hw); | ||
1566 | if (hw->mac.autoneg) | ||
1567 | msleep(4000); | ||
1568 | |||
1569 | if (!(rd32(E1000_STATUS) & | ||
1570 | E1000_STATUS_LU)) | ||
1571 | *data = 1; | ||
1572 | } | ||
1573 | return *data; | ||
1574 | } | ||
1575 | |||
1576 | static void igb_diag_test(struct net_device *netdev, | ||
1577 | struct ethtool_test *eth_test, u64 *data) | ||
1578 | { | ||
1579 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1580 | u16 autoneg_advertised; | ||
1581 | u8 forced_speed_duplex, autoneg; | ||
1582 | bool if_running = netif_running(netdev); | ||
1583 | |||
1584 | set_bit(__IGB_TESTING, &adapter->state); | ||
1585 | if (eth_test->flags == ETH_TEST_FL_OFFLINE) { | ||
1586 | /* Offline tests */ | ||
1587 | |||
1588 | /* save speed, duplex, autoneg settings */ | ||
1589 | autoneg_advertised = adapter->hw.phy.autoneg_advertised; | ||
1590 | forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; | ||
1591 | autoneg = adapter->hw.mac.autoneg; | ||
1592 | |||
1593 | dev_info(&adapter->pdev->dev, "offline testing starting\n"); | ||
1594 | |||
1595 | /* Link test performed before hardware reset so autoneg doesn't | ||
1596 | * interfere with test result */ | ||
1597 | if (igb_link_test(adapter, &data[4])) | ||
1598 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1599 | |||
1600 | if (if_running) | ||
1601 | /* indicate we're in test mode */ | ||
1602 | dev_close(netdev); | ||
1603 | else | ||
1604 | igb_reset(adapter); | ||
1605 | |||
1606 | if (igb_reg_test(adapter, &data[0])) | ||
1607 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1608 | |||
1609 | igb_reset(adapter); | ||
1610 | if (igb_eeprom_test(adapter, &data[1])) | ||
1611 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1612 | |||
1613 | igb_reset(adapter); | ||
1614 | if (igb_intr_test(adapter, &data[2])) | ||
1615 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1616 | |||
1617 | igb_reset(adapter); | ||
1618 | if (igb_loopback_test(adapter, &data[3])) | ||
1619 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1620 | |||
1621 | /* restore speed, duplex, autoneg settings */ | ||
1622 | adapter->hw.phy.autoneg_advertised = autoneg_advertised; | ||
1623 | adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; | ||
1624 | adapter->hw.mac.autoneg = autoneg; | ||
1625 | |||
1626 | /* force this routine to wait until autoneg complete/timeout */ | ||
1627 | adapter->hw.phy.autoneg_wait_to_complete = true; | ||
1628 | igb_reset(adapter); | ||
1629 | adapter->hw.phy.autoneg_wait_to_complete = false; | ||
1630 | |||
1631 | clear_bit(__IGB_TESTING, &adapter->state); | ||
1632 | if (if_running) | ||
1633 | dev_open(netdev); | ||
1634 | } else { | ||
1635 | dev_info(&adapter->pdev->dev, "online testing starting\n"); | ||
1636 | /* Online tests */ | ||
1637 | if (igb_link_test(adapter, &data[4])) | ||
1638 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1639 | |||
1640 | /* Online tests aren't run; pass by default */ | ||
1641 | data[0] = 0; | ||
1642 | data[1] = 0; | ||
1643 | data[2] = 0; | ||
1644 | data[3] = 0; | ||
1645 | |||
1646 | clear_bit(__IGB_TESTING, &adapter->state); | ||
1647 | } | ||
1648 | msleep_interruptible(4 * 1000); | ||
1649 | } | ||
1650 | |||
1651 | static int igb_wol_exclusion(struct igb_adapter *adapter, | ||
1652 | struct ethtool_wolinfo *wol) | ||
1653 | { | ||
1654 | struct e1000_hw *hw = &adapter->hw; | ||
1655 | int retval = 1; /* fail by default */ | ||
1656 | |||
1657 | switch (hw->device_id) { | ||
1658 | case E1000_DEV_ID_82575GB_QUAD_COPPER: | ||
1659 | /* WoL not supported */ | ||
1660 | wol->supported = 0; | ||
1661 | break; | ||
1662 | case E1000_DEV_ID_82575EB_FIBER_SERDES: | ||
1663 | /* Wake events not supported on port B */ | ||
1664 | if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) { | ||
1665 | wol->supported = 0; | ||
1666 | break; | ||
1667 | } | ||
1668 | /* return success for non excluded adapter ports */ | ||
1669 | retval = 0; | ||
1670 | break; | ||
1671 | default: | ||
1672 | /* dual port cards only support WoL on port A from now on | ||
1673 | * unless it was enabled in the eeprom for port B | ||
1674 | * so exclude FUNC_1 ports from having WoL enabled */ | ||
1675 | if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 && | ||
1676 | !adapter->eeprom_wol) { | ||
1677 | wol->supported = 0; | ||
1678 | break; | ||
1679 | } | ||
1680 | |||
1681 | retval = 0; | ||
1682 | } | ||
1683 | |||
1684 | return retval; | ||
1685 | } | ||
1686 | |||
1687 | static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | ||
1688 | { | ||
1689 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1690 | |||
1691 | wol->supported = WAKE_UCAST | WAKE_MCAST | | ||
1692 | WAKE_BCAST | WAKE_MAGIC; | ||
1693 | wol->wolopts = 0; | ||
1694 | |||
1695 | /* this function will set ->supported = 0 and return 1 if wol is not | ||
1696 | * supported by this hardware */ | ||
1697 | if (igb_wol_exclusion(adapter, wol)) | ||
1698 | return; | ||
1699 | |||
1700 | /* apply any specific unsupported masks here */ | ||
1701 | switch (adapter->hw.device_id) { | ||
1702 | default: | ||
1703 | break; | ||
1704 | } | ||
1705 | |||
1706 | if (adapter->wol & E1000_WUFC_EX) | ||
1707 | wol->wolopts |= WAKE_UCAST; | ||
1708 | if (adapter->wol & E1000_WUFC_MC) | ||
1709 | wol->wolopts |= WAKE_MCAST; | ||
1710 | if (adapter->wol & E1000_WUFC_BC) | ||
1711 | wol->wolopts |= WAKE_BCAST; | ||
1712 | if (adapter->wol & E1000_WUFC_MAG) | ||
1713 | wol->wolopts |= WAKE_MAGIC; | ||
1714 | |||
1715 | return; | ||
1716 | } | ||
1717 | |||
1718 | static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | ||
1719 | { | ||
1720 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1721 | struct e1000_hw *hw = &adapter->hw; | ||
1722 | |||
1723 | if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) | ||
1724 | return -EOPNOTSUPP; | ||
1725 | |||
1726 | if (igb_wol_exclusion(adapter, wol)) | ||
1727 | return wol->wolopts ? -EOPNOTSUPP : 0; | ||
1728 | |||
1729 | switch (hw->device_id) { | ||
1730 | default: | ||
1731 | break; | ||
1732 | } | ||
1733 | |||
1734 | /* these settings will always override what we currently have */ | ||
1735 | adapter->wol = 0; | ||
1736 | |||
1737 | if (wol->wolopts & WAKE_UCAST) | ||
1738 | adapter->wol |= E1000_WUFC_EX; | ||
1739 | if (wol->wolopts & WAKE_MCAST) | ||
1740 | adapter->wol |= E1000_WUFC_MC; | ||
1741 | if (wol->wolopts & WAKE_BCAST) | ||
1742 | adapter->wol |= E1000_WUFC_BC; | ||
1743 | if (wol->wolopts & WAKE_MAGIC) | ||
1744 | adapter->wol |= E1000_WUFC_MAG; | ||
1745 | |||
1746 | return 0; | ||
1747 | } | ||
1748 | |||
1749 | /* toggle LED 4 times per second = 2 "blinks" per second */ | ||
1750 | #define IGB_ID_INTERVAL (HZ/4) | ||
1751 | |||
1752 | /* bit defines for adapter->led_status */ | ||
1753 | #define IGB_LED_ON 0 | ||
1754 | |||
1755 | static int igb_phys_id(struct net_device *netdev, u32 data) | ||
1756 | { | ||
1757 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1758 | struct e1000_hw *hw = &adapter->hw; | ||
1759 | |||
1760 | if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) | ||
1761 | data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); | ||
1762 | |||
1763 | igb_blink_led(hw); | ||
1764 | msleep_interruptible(data * 1000); | ||
1765 | |||
1766 | igb_led_off(hw); | ||
1767 | clear_bit(IGB_LED_ON, &adapter->led_status); | ||
1768 | igb_cleanup_led(hw); | ||
1769 | |||
1770 | return 0; | ||
1771 | } | ||
1772 | |||
1773 | static int igb_set_coalesce(struct net_device *netdev, | ||
1774 | struct ethtool_coalesce *ec) | ||
1775 | { | ||
1776 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1777 | |||
1778 | if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) || | ||
1779 | ((ec->rx_coalesce_usecs > 3) && | ||
1780 | (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) || | ||
1781 | (ec->rx_coalesce_usecs == 2)) | ||
1782 | return -EINVAL; | ||
1783 | |||
1784 | /* convert to rate of irq's per second */ | ||
1785 | if (ec->rx_coalesce_usecs <= 3) | ||
1786 | adapter->itr_setting = ec->rx_coalesce_usecs; | ||
1787 | else | ||
1788 | adapter->itr_setting = (1000000 / ec->rx_coalesce_usecs); | ||
1789 | |||
1790 | if (netif_running(netdev)) | ||
1791 | igb_reinit_locked(adapter); | ||
1792 | |||
1793 | return 0; | ||
1794 | } | ||
1795 | |||
1796 | static int igb_get_coalesce(struct net_device *netdev, | ||
1797 | struct ethtool_coalesce *ec) | ||
1798 | { | ||
1799 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1800 | |||
1801 | if (adapter->itr_setting <= 3) | ||
1802 | ec->rx_coalesce_usecs = adapter->itr_setting; | ||
1803 | else | ||
1804 | ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; | ||
1805 | |||
1806 | return 0; | ||
1807 | } | ||
1808 | |||
1809 | |||
1810 | static int igb_nway_reset(struct net_device *netdev) | ||
1811 | { | ||
1812 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1813 | if (netif_running(netdev)) | ||
1814 | igb_reinit_locked(adapter); | ||
1815 | return 0; | ||
1816 | } | ||
1817 | |||
1818 | static int igb_get_sset_count(struct net_device *netdev, int sset) | ||
1819 | { | ||
1820 | switch (sset) { | ||
1821 | case ETH_SS_STATS: | ||
1822 | return IGB_STATS_LEN; | ||
1823 | case ETH_SS_TEST: | ||
1824 | return IGB_TEST_LEN; | ||
1825 | default: | ||
1826 | return -ENOTSUPP; | ||
1827 | } | ||
1828 | } | ||
1829 | |||
1830 | static void igb_get_ethtool_stats(struct net_device *netdev, | ||
1831 | struct ethtool_stats *stats, u64 *data) | ||
1832 | { | ||
1833 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1834 | u64 *queue_stat; | ||
1835 | int stat_count = sizeof(struct igb_queue_stats) / sizeof(u64); | ||
1836 | int j; | ||
1837 | int i; | ||
1838 | |||
1839 | igb_update_stats(adapter); | ||
1840 | for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { | ||
1841 | char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset; | ||
1842 | data[i] = (igb_gstrings_stats[i].sizeof_stat == | ||
1843 | sizeof(u64)) ? *(u64 *)p : *(u32 *)p; | ||
1844 | } | ||
1845 | for (j = 0; j < adapter->num_rx_queues; j++) { | ||
1846 | int k; | ||
1847 | queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats; | ||
1848 | for (k = 0; k < stat_count; k++) | ||
1849 | data[i + k] = queue_stat[k]; | ||
1850 | i += k; | ||
1851 | } | ||
1852 | } | ||
1853 | |||
1854 | static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data) | ||
1855 | { | ||
1856 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1857 | u8 *p = data; | ||
1858 | int i; | ||
1859 | |||
1860 | switch (stringset) { | ||
1861 | case ETH_SS_TEST: | ||
1862 | memcpy(data, *igb_gstrings_test, | ||
1863 | IGB_TEST_LEN*ETH_GSTRING_LEN); | ||
1864 | break; | ||
1865 | case ETH_SS_STATS: | ||
1866 | for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { | ||
1867 | memcpy(p, igb_gstrings_stats[i].stat_string, | ||
1868 | ETH_GSTRING_LEN); | ||
1869 | p += ETH_GSTRING_LEN; | ||
1870 | } | ||
1871 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
1872 | sprintf(p, "tx_queue_%u_packets", i); | ||
1873 | p += ETH_GSTRING_LEN; | ||
1874 | sprintf(p, "tx_queue_%u_bytes", i); | ||
1875 | p += ETH_GSTRING_LEN; | ||
1876 | } | ||
1877 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
1878 | sprintf(p, "rx_queue_%u_packets", i); | ||
1879 | p += ETH_GSTRING_LEN; | ||
1880 | sprintf(p, "rx_queue_%u_bytes", i); | ||
1881 | p += ETH_GSTRING_LEN; | ||
1882 | } | ||
1883 | /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */ | ||
1884 | break; | ||
1885 | } | ||
1886 | } | ||
1887 | |||
1888 | static struct ethtool_ops igb_ethtool_ops = { | ||
1889 | .get_settings = igb_get_settings, | ||
1890 | .set_settings = igb_set_settings, | ||
1891 | .get_drvinfo = igb_get_drvinfo, | ||
1892 | .get_regs_len = igb_get_regs_len, | ||
1893 | .get_regs = igb_get_regs, | ||
1894 | .get_wol = igb_get_wol, | ||
1895 | .set_wol = igb_set_wol, | ||
1896 | .get_msglevel = igb_get_msglevel, | ||
1897 | .set_msglevel = igb_set_msglevel, | ||
1898 | .nway_reset = igb_nway_reset, | ||
1899 | .get_link = ethtool_op_get_link, | ||
1900 | .get_eeprom_len = igb_get_eeprom_len, | ||
1901 | .get_eeprom = igb_get_eeprom, | ||
1902 | .set_eeprom = igb_set_eeprom, | ||
1903 | .get_ringparam = igb_get_ringparam, | ||
1904 | .set_ringparam = igb_set_ringparam, | ||
1905 | .get_pauseparam = igb_get_pauseparam, | ||
1906 | .set_pauseparam = igb_set_pauseparam, | ||
1907 | .get_rx_csum = igb_get_rx_csum, | ||
1908 | .set_rx_csum = igb_set_rx_csum, | ||
1909 | .get_tx_csum = igb_get_tx_csum, | ||
1910 | .set_tx_csum = igb_set_tx_csum, | ||
1911 | .get_sg = ethtool_op_get_sg, | ||
1912 | .set_sg = ethtool_op_set_sg, | ||
1913 | .get_tso = ethtool_op_get_tso, | ||
1914 | .set_tso = igb_set_tso, | ||
1915 | .self_test = igb_diag_test, | ||
1916 | .get_strings = igb_get_strings, | ||
1917 | .phys_id = igb_phys_id, | ||
1918 | .get_sset_count = igb_get_sset_count, | ||
1919 | .get_ethtool_stats = igb_get_ethtool_stats, | ||
1920 | .get_coalesce = igb_get_coalesce, | ||
1921 | .set_coalesce = igb_set_coalesce, | ||
1922 | }; | ||
1923 | |||
1924 | void igb_set_ethtool_ops(struct net_device *netdev) | ||
1925 | { | ||
1926 | SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops); | ||
1927 | } | ||
diff --git a/drivers/net/igb/igb_main.c b/drivers/net/igb/igb_main.c new file mode 100644 index 000000000000..f3c144d5d72f --- /dev/null +++ b/drivers/net/igb/igb_main.c | |||
@@ -0,0 +1,4138 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #include <linux/module.h> | ||
29 | #include <linux/types.h> | ||
30 | #include <linux/init.h> | ||
31 | #include <linux/vmalloc.h> | ||
32 | #include <linux/pagemap.h> | ||
33 | #include <linux/netdevice.h> | ||
34 | #include <linux/tcp.h> | ||
35 | #include <linux/ipv6.h> | ||
36 | #include <net/checksum.h> | ||
37 | #include <net/ip6_checksum.h> | ||
38 | #include <linux/mii.h> | ||
39 | #include <linux/ethtool.h> | ||
40 | #include <linux/if_vlan.h> | ||
41 | #include <linux/pci.h> | ||
42 | #include <linux/delay.h> | ||
43 | #include <linux/interrupt.h> | ||
44 | #include <linux/if_ether.h> | ||
45 | |||
46 | #include "igb.h" | ||
47 | |||
48 | #define DRV_VERSION "1.0.8-k2" | ||
49 | char igb_driver_name[] = "igb"; | ||
50 | char igb_driver_version[] = DRV_VERSION; | ||
51 | static const char igb_driver_string[] = | ||
52 | "Intel(R) Gigabit Ethernet Network Driver"; | ||
53 | static const char igb_copyright[] = "Copyright (c) 2007 Intel Corporation."; | ||
54 | |||
55 | |||
56 | static const struct e1000_info *igb_info_tbl[] = { | ||
57 | [board_82575] = &e1000_82575_info, | ||
58 | }; | ||
59 | |||
60 | static struct pci_device_id igb_pci_tbl[] = { | ||
61 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, | ||
62 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, | ||
63 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, | ||
64 | /* required last entry */ | ||
65 | {0, } | ||
66 | }; | ||
67 | |||
68 | MODULE_DEVICE_TABLE(pci, igb_pci_tbl); | ||
69 | |||
70 | void igb_reset(struct igb_adapter *); | ||
71 | static int igb_setup_all_tx_resources(struct igb_adapter *); | ||
72 | static int igb_setup_all_rx_resources(struct igb_adapter *); | ||
73 | static void igb_free_all_tx_resources(struct igb_adapter *); | ||
74 | static void igb_free_all_rx_resources(struct igb_adapter *); | ||
75 | static void igb_free_tx_resources(struct igb_adapter *, struct igb_ring *); | ||
76 | static void igb_free_rx_resources(struct igb_adapter *, struct igb_ring *); | ||
77 | void igb_update_stats(struct igb_adapter *); | ||
78 | static int igb_probe(struct pci_dev *, const struct pci_device_id *); | ||
79 | static void __devexit igb_remove(struct pci_dev *pdev); | ||
80 | static int igb_sw_init(struct igb_adapter *); | ||
81 | static int igb_open(struct net_device *); | ||
82 | static int igb_close(struct net_device *); | ||
83 | static void igb_configure_tx(struct igb_adapter *); | ||
84 | static void igb_configure_rx(struct igb_adapter *); | ||
85 | static void igb_setup_rctl(struct igb_adapter *); | ||
86 | static void igb_clean_all_tx_rings(struct igb_adapter *); | ||
87 | static void igb_clean_all_rx_rings(struct igb_adapter *); | ||
88 | static void igb_clean_tx_ring(struct igb_adapter *, struct igb_ring *); | ||
89 | static void igb_clean_rx_ring(struct igb_adapter *, struct igb_ring *); | ||
90 | static void igb_set_multi(struct net_device *); | ||
91 | static void igb_update_phy_info(unsigned long); | ||
92 | static void igb_watchdog(unsigned long); | ||
93 | static void igb_watchdog_task(struct work_struct *); | ||
94 | static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *, | ||
95 | struct igb_ring *); | ||
96 | static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *); | ||
97 | static struct net_device_stats *igb_get_stats(struct net_device *); | ||
98 | static int igb_change_mtu(struct net_device *, int); | ||
99 | static int igb_set_mac(struct net_device *, void *); | ||
100 | static irqreturn_t igb_intr(int irq, void *); | ||
101 | static irqreturn_t igb_intr_msi(int irq, void *); | ||
102 | static irqreturn_t igb_msix_other(int irq, void *); | ||
103 | static irqreturn_t igb_msix_rx(int irq, void *); | ||
104 | static irqreturn_t igb_msix_tx(int irq, void *); | ||
105 | static int igb_clean_rx_ring_msix(struct napi_struct *, int); | ||
106 | static bool igb_clean_tx_irq(struct igb_adapter *, struct igb_ring *); | ||
107 | static int igb_clean(struct napi_struct *, int); | ||
108 | static bool igb_clean_rx_irq_adv(struct igb_adapter *, | ||
109 | struct igb_ring *, int *, int); | ||
110 | static void igb_alloc_rx_buffers_adv(struct igb_adapter *, | ||
111 | struct igb_ring *, int); | ||
112 | static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); | ||
113 | static void igb_tx_timeout(struct net_device *); | ||
114 | static void igb_reset_task(struct work_struct *); | ||
115 | static void igb_vlan_rx_register(struct net_device *, struct vlan_group *); | ||
116 | static void igb_vlan_rx_add_vid(struct net_device *, u16); | ||
117 | static void igb_vlan_rx_kill_vid(struct net_device *, u16); | ||
118 | static void igb_restore_vlan(struct igb_adapter *); | ||
119 | |||
120 | static int igb_suspend(struct pci_dev *, pm_message_t); | ||
121 | #ifdef CONFIG_PM | ||
122 | static int igb_resume(struct pci_dev *); | ||
123 | #endif | ||
124 | static void igb_shutdown(struct pci_dev *); | ||
125 | |||
126 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
127 | /* for netdump / net console */ | ||
128 | static void igb_netpoll(struct net_device *); | ||
129 | #endif | ||
130 | |||
131 | static pci_ers_result_t igb_io_error_detected(struct pci_dev *, | ||
132 | pci_channel_state_t); | ||
133 | static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); | ||
134 | static void igb_io_resume(struct pci_dev *); | ||
135 | |||
136 | static struct pci_error_handlers igb_err_handler = { | ||
137 | .error_detected = igb_io_error_detected, | ||
138 | .slot_reset = igb_io_slot_reset, | ||
139 | .resume = igb_io_resume, | ||
140 | }; | ||
141 | |||
142 | |||
143 | static struct pci_driver igb_driver = { | ||
144 | .name = igb_driver_name, | ||
145 | .id_table = igb_pci_tbl, | ||
146 | .probe = igb_probe, | ||
147 | .remove = __devexit_p(igb_remove), | ||
148 | #ifdef CONFIG_PM | ||
149 | /* Power Managment Hooks */ | ||
150 | .suspend = igb_suspend, | ||
151 | .resume = igb_resume, | ||
152 | #endif | ||
153 | .shutdown = igb_shutdown, | ||
154 | .err_handler = &igb_err_handler | ||
155 | }; | ||
156 | |||
157 | MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); | ||
158 | MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); | ||
159 | MODULE_LICENSE("GPL"); | ||
160 | MODULE_VERSION(DRV_VERSION); | ||
161 | |||
162 | #ifdef DEBUG | ||
163 | /** | ||
164 | * igb_get_hw_dev_name - return device name string | ||
165 | * used by hardware layer to print debugging information | ||
166 | **/ | ||
167 | char *igb_get_hw_dev_name(struct e1000_hw *hw) | ||
168 | { | ||
169 | struct igb_adapter *adapter = hw->back; | ||
170 | return adapter->netdev->name; | ||
171 | } | ||
172 | #endif | ||
173 | |||
174 | /** | ||
175 | * igb_init_module - Driver Registration Routine | ||
176 | * | ||
177 | * igb_init_module is the first routine called when the driver is | ||
178 | * loaded. All it does is register with the PCI subsystem. | ||
179 | **/ | ||
180 | static int __init igb_init_module(void) | ||
181 | { | ||
182 | int ret; | ||
183 | printk(KERN_INFO "%s - version %s\n", | ||
184 | igb_driver_string, igb_driver_version); | ||
185 | |||
186 | printk(KERN_INFO "%s\n", igb_copyright); | ||
187 | |||
188 | ret = pci_register_driver(&igb_driver); | ||
189 | return ret; | ||
190 | } | ||
191 | |||
192 | module_init(igb_init_module); | ||
193 | |||
194 | /** | ||
195 | * igb_exit_module - Driver Exit Cleanup Routine | ||
196 | * | ||
197 | * igb_exit_module is called just before the driver is removed | ||
198 | * from memory. | ||
199 | **/ | ||
200 | static void __exit igb_exit_module(void) | ||
201 | { | ||
202 | pci_unregister_driver(&igb_driver); | ||
203 | } | ||
204 | |||
205 | module_exit(igb_exit_module); | ||
206 | |||
207 | /** | ||
208 | * igb_alloc_queues - Allocate memory for all rings | ||
209 | * @adapter: board private structure to initialize | ||
210 | * | ||
211 | * We allocate one ring per queue at run-time since we don't know the | ||
212 | * number of queues at compile-time. | ||
213 | **/ | ||
214 | static int igb_alloc_queues(struct igb_adapter *adapter) | ||
215 | { | ||
216 | int i; | ||
217 | |||
218 | adapter->tx_ring = kcalloc(adapter->num_tx_queues, | ||
219 | sizeof(struct igb_ring), GFP_KERNEL); | ||
220 | if (!adapter->tx_ring) | ||
221 | return -ENOMEM; | ||
222 | |||
223 | adapter->rx_ring = kcalloc(adapter->num_rx_queues, | ||
224 | sizeof(struct igb_ring), GFP_KERNEL); | ||
225 | if (!adapter->rx_ring) { | ||
226 | kfree(adapter->tx_ring); | ||
227 | return -ENOMEM; | ||
228 | } | ||
229 | |||
230 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
231 | struct igb_ring *ring = &(adapter->rx_ring[i]); | ||
232 | ring->adapter = adapter; | ||
233 | ring->itr_register = E1000_ITR; | ||
234 | |||
235 | if (!ring->napi.poll) | ||
236 | netif_napi_add(adapter->netdev, &ring->napi, igb_clean, | ||
237 | adapter->napi.weight / | ||
238 | adapter->num_rx_queues); | ||
239 | } | ||
240 | return 0; | ||
241 | } | ||
242 | |||
243 | #define IGB_N0_QUEUE -1 | ||
244 | static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue, | ||
245 | int tx_queue, int msix_vector) | ||
246 | { | ||
247 | u32 msixbm = 0; | ||
248 | struct e1000_hw *hw = &adapter->hw; | ||
249 | /* The 82575 assigns vectors using a bitmask, which matches the | ||
250 | bitmask for the EICR/EIMS/EIMC registers. To assign one | ||
251 | or more queues to a vector, we write the appropriate bits | ||
252 | into the MSIXBM register for that vector. */ | ||
253 | if (rx_queue > IGB_N0_QUEUE) { | ||
254 | msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; | ||
255 | adapter->rx_ring[rx_queue].eims_value = msixbm; | ||
256 | } | ||
257 | if (tx_queue > IGB_N0_QUEUE) { | ||
258 | msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; | ||
259 | adapter->tx_ring[tx_queue].eims_value = | ||
260 | E1000_EICR_TX_QUEUE0 << tx_queue; | ||
261 | } | ||
262 | array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); | ||
263 | } | ||
264 | |||
265 | /** | ||
266 | * igb_configure_msix - Configure MSI-X hardware | ||
267 | * | ||
268 | * igb_configure_msix sets up the hardware to properly | ||
269 | * generate MSI-X interrupts. | ||
270 | **/ | ||
271 | static void igb_configure_msix(struct igb_adapter *adapter) | ||
272 | { | ||
273 | u32 tmp; | ||
274 | int i, vector = 0; | ||
275 | struct e1000_hw *hw = &adapter->hw; | ||
276 | |||
277 | adapter->eims_enable_mask = 0; | ||
278 | |||
279 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
280 | struct igb_ring *tx_ring = &adapter->tx_ring[i]; | ||
281 | igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++); | ||
282 | adapter->eims_enable_mask |= tx_ring->eims_value; | ||
283 | if (tx_ring->itr_val) | ||
284 | writel(1000000000 / (tx_ring->itr_val * 256), | ||
285 | hw->hw_addr + tx_ring->itr_register); | ||
286 | else | ||
287 | writel(1, hw->hw_addr + tx_ring->itr_register); | ||
288 | } | ||
289 | |||
290 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
291 | struct igb_ring *rx_ring = &adapter->rx_ring[i]; | ||
292 | igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++); | ||
293 | adapter->eims_enable_mask |= rx_ring->eims_value; | ||
294 | if (rx_ring->itr_val) | ||
295 | writel(1000000000 / (rx_ring->itr_val * 256), | ||
296 | hw->hw_addr + rx_ring->itr_register); | ||
297 | else | ||
298 | writel(1, hw->hw_addr + rx_ring->itr_register); | ||
299 | } | ||
300 | |||
301 | |||
302 | /* set vector for other causes, i.e. link changes */ | ||
303 | array_wr32(E1000_MSIXBM(0), vector++, | ||
304 | E1000_EIMS_OTHER); | ||
305 | |||
306 | /* disable IAM for ICR interrupt bits */ | ||
307 | wr32(E1000_IAM, 0); | ||
308 | |||
309 | tmp = rd32(E1000_CTRL_EXT); | ||
310 | /* enable MSI-X PBA support*/ | ||
311 | tmp |= E1000_CTRL_EXT_PBA_CLR; | ||
312 | |||
313 | /* Auto-Mask interrupts upon ICR read. */ | ||
314 | tmp |= E1000_CTRL_EXT_EIAME; | ||
315 | tmp |= E1000_CTRL_EXT_IRCA; | ||
316 | |||
317 | wr32(E1000_CTRL_EXT, tmp); | ||
318 | adapter->eims_enable_mask |= E1000_EIMS_OTHER; | ||
319 | |||
320 | wrfl(); | ||
321 | } | ||
322 | |||
323 | /** | ||
324 | * igb_request_msix - Initialize MSI-X interrupts | ||
325 | * | ||
326 | * igb_request_msix allocates MSI-X vectors and requests interrupts from the | ||
327 | * kernel. | ||
328 | **/ | ||
329 | static int igb_request_msix(struct igb_adapter *adapter) | ||
330 | { | ||
331 | struct net_device *netdev = adapter->netdev; | ||
332 | int i, err = 0, vector = 0; | ||
333 | |||
334 | vector = 0; | ||
335 | |||
336 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
337 | struct igb_ring *ring = &(adapter->tx_ring[i]); | ||
338 | sprintf(ring->name, "%s-tx%d", netdev->name, i); | ||
339 | err = request_irq(adapter->msix_entries[vector].vector, | ||
340 | &igb_msix_tx, 0, ring->name, | ||
341 | &(adapter->tx_ring[i])); | ||
342 | if (err) | ||
343 | goto out; | ||
344 | ring->itr_register = E1000_EITR(0) + (vector << 2); | ||
345 | ring->itr_val = adapter->itr; | ||
346 | vector++; | ||
347 | } | ||
348 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
349 | struct igb_ring *ring = &(adapter->rx_ring[i]); | ||
350 | if (strlen(netdev->name) < (IFNAMSIZ - 5)) | ||
351 | sprintf(ring->name, "%s-rx%d", netdev->name, i); | ||
352 | else | ||
353 | memcpy(ring->name, netdev->name, IFNAMSIZ); | ||
354 | err = request_irq(adapter->msix_entries[vector].vector, | ||
355 | &igb_msix_rx, 0, ring->name, | ||
356 | &(adapter->rx_ring[i])); | ||
357 | if (err) | ||
358 | goto out; | ||
359 | ring->itr_register = E1000_EITR(0) + (vector << 2); | ||
360 | ring->itr_val = adapter->itr; | ||
361 | vector++; | ||
362 | } | ||
363 | |||
364 | err = request_irq(adapter->msix_entries[vector].vector, | ||
365 | &igb_msix_other, 0, netdev->name, netdev); | ||
366 | if (err) | ||
367 | goto out; | ||
368 | |||
369 | adapter->napi.poll = igb_clean_rx_ring_msix; | ||
370 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
371 | adapter->rx_ring[i].napi.poll = adapter->napi.poll; | ||
372 | igb_configure_msix(adapter); | ||
373 | return 0; | ||
374 | out: | ||
375 | return err; | ||
376 | } | ||
377 | |||
378 | static void igb_reset_interrupt_capability(struct igb_adapter *adapter) | ||
379 | { | ||
380 | if (adapter->msix_entries) { | ||
381 | pci_disable_msix(adapter->pdev); | ||
382 | kfree(adapter->msix_entries); | ||
383 | adapter->msix_entries = NULL; | ||
384 | } else if (adapter->msi_enabled) | ||
385 | pci_disable_msi(adapter->pdev); | ||
386 | return; | ||
387 | } | ||
388 | |||
389 | |||
390 | /** | ||
391 | * igb_set_interrupt_capability - set MSI or MSI-X if supported | ||
392 | * | ||
393 | * Attempt to configure interrupts using the best available | ||
394 | * capabilities of the hardware and kernel. | ||
395 | **/ | ||
396 | static void igb_set_interrupt_capability(struct igb_adapter *adapter) | ||
397 | { | ||
398 | int err; | ||
399 | int numvecs, i; | ||
400 | |||
401 | numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1; | ||
402 | adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), | ||
403 | GFP_KERNEL); | ||
404 | if (!adapter->msix_entries) | ||
405 | goto msi_only; | ||
406 | |||
407 | for (i = 0; i < numvecs; i++) | ||
408 | adapter->msix_entries[i].entry = i; | ||
409 | |||
410 | err = pci_enable_msix(adapter->pdev, | ||
411 | adapter->msix_entries, | ||
412 | numvecs); | ||
413 | if (err == 0) | ||
414 | return; | ||
415 | |||
416 | igb_reset_interrupt_capability(adapter); | ||
417 | |||
418 | /* If we can't do MSI-X, try MSI */ | ||
419 | msi_only: | ||
420 | adapter->num_rx_queues = 1; | ||
421 | if (!pci_enable_msi(adapter->pdev)) | ||
422 | adapter->msi_enabled = 1; | ||
423 | return; | ||
424 | } | ||
425 | |||
426 | /** | ||
427 | * igb_request_irq - initialize interrupts | ||
428 | * | ||
429 | * Attempts to configure interrupts using the best available | ||
430 | * capabilities of the hardware and kernel. | ||
431 | **/ | ||
432 | static int igb_request_irq(struct igb_adapter *adapter) | ||
433 | { | ||
434 | struct net_device *netdev = adapter->netdev; | ||
435 | struct e1000_hw *hw = &adapter->hw; | ||
436 | int err = 0; | ||
437 | |||
438 | if (adapter->msix_entries) { | ||
439 | err = igb_request_msix(adapter); | ||
440 | if (!err) { | ||
441 | struct e1000_hw *hw = &adapter->hw; | ||
442 | /* enable IAM, auto-mask, | ||
443 | * DO NOT USE EIAME or IAME in legacy mode */ | ||
444 | wr32(E1000_IAM, IMS_ENABLE_MASK); | ||
445 | goto request_done; | ||
446 | } | ||
447 | /* fall back to MSI */ | ||
448 | igb_reset_interrupt_capability(adapter); | ||
449 | if (!pci_enable_msi(adapter->pdev)) | ||
450 | adapter->msi_enabled = 1; | ||
451 | igb_free_all_tx_resources(adapter); | ||
452 | igb_free_all_rx_resources(adapter); | ||
453 | adapter->num_rx_queues = 1; | ||
454 | igb_alloc_queues(adapter); | ||
455 | } | ||
456 | if (adapter->msi_enabled) { | ||
457 | err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0, | ||
458 | netdev->name, netdev); | ||
459 | if (!err) | ||
460 | goto request_done; | ||
461 | /* fall back to legacy interrupts */ | ||
462 | igb_reset_interrupt_capability(adapter); | ||
463 | adapter->msi_enabled = 0; | ||
464 | } | ||
465 | |||
466 | err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED, | ||
467 | netdev->name, netdev); | ||
468 | |||
469 | if (err) { | ||
470 | dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n", | ||
471 | err); | ||
472 | goto request_done; | ||
473 | } | ||
474 | |||
475 | /* enable IAM, auto-mask */ | ||
476 | wr32(E1000_IAM, IMS_ENABLE_MASK); | ||
477 | |||
478 | request_done: | ||
479 | return err; | ||
480 | } | ||
481 | |||
482 | static void igb_free_irq(struct igb_adapter *adapter) | ||
483 | { | ||
484 | struct net_device *netdev = adapter->netdev; | ||
485 | |||
486 | if (adapter->msix_entries) { | ||
487 | int vector = 0, i; | ||
488 | |||
489 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
490 | free_irq(adapter->msix_entries[vector++].vector, | ||
491 | &(adapter->tx_ring[i])); | ||
492 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
493 | free_irq(adapter->msix_entries[vector++].vector, | ||
494 | &(adapter->rx_ring[i])); | ||
495 | |||
496 | free_irq(adapter->msix_entries[vector++].vector, netdev); | ||
497 | return; | ||
498 | } | ||
499 | |||
500 | free_irq(adapter->pdev->irq, netdev); | ||
501 | } | ||
502 | |||
503 | /** | ||
504 | * igb_irq_disable - Mask off interrupt generation on the NIC | ||
505 | * @adapter: board private structure | ||
506 | **/ | ||
507 | static void igb_irq_disable(struct igb_adapter *adapter) | ||
508 | { | ||
509 | struct e1000_hw *hw = &adapter->hw; | ||
510 | |||
511 | if (adapter->msix_entries) { | ||
512 | wr32(E1000_EIMC, ~0); | ||
513 | wr32(E1000_EIAC, 0); | ||
514 | } | ||
515 | wr32(E1000_IMC, ~0); | ||
516 | wrfl(); | ||
517 | synchronize_irq(adapter->pdev->irq); | ||
518 | } | ||
519 | |||
520 | /** | ||
521 | * igb_irq_enable - Enable default interrupt generation settings | ||
522 | * @adapter: board private structure | ||
523 | **/ | ||
524 | static void igb_irq_enable(struct igb_adapter *adapter) | ||
525 | { | ||
526 | struct e1000_hw *hw = &adapter->hw; | ||
527 | |||
528 | if (adapter->msix_entries) { | ||
529 | wr32(E1000_EIMS, | ||
530 | adapter->eims_enable_mask); | ||
531 | wr32(E1000_EIAC, | ||
532 | adapter->eims_enable_mask); | ||
533 | wr32(E1000_IMS, E1000_IMS_LSC); | ||
534 | } else | ||
535 | wr32(E1000_IMS, IMS_ENABLE_MASK); | ||
536 | } | ||
537 | |||
538 | static void igb_update_mng_vlan(struct igb_adapter *adapter) | ||
539 | { | ||
540 | struct net_device *netdev = adapter->netdev; | ||
541 | u16 vid = adapter->hw.mng_cookie.vlan_id; | ||
542 | u16 old_vid = adapter->mng_vlan_id; | ||
543 | if (adapter->vlgrp) { | ||
544 | if (!vlan_group_get_device(adapter->vlgrp, vid)) { | ||
545 | if (adapter->hw.mng_cookie.status & | ||
546 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { | ||
547 | igb_vlan_rx_add_vid(netdev, vid); | ||
548 | adapter->mng_vlan_id = vid; | ||
549 | } else | ||
550 | adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; | ||
551 | |||
552 | if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && | ||
553 | (vid != old_vid) && | ||
554 | !vlan_group_get_device(adapter->vlgrp, old_vid)) | ||
555 | igb_vlan_rx_kill_vid(netdev, old_vid); | ||
556 | } else | ||
557 | adapter->mng_vlan_id = vid; | ||
558 | } | ||
559 | } | ||
560 | |||
561 | /** | ||
562 | * igb_release_hw_control - release control of the h/w to f/w | ||
563 | * @adapter: address of board private structure | ||
564 | * | ||
565 | * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. | ||
566 | * For ASF and Pass Through versions of f/w this means that the | ||
567 | * driver is no longer loaded. | ||
568 | * | ||
569 | **/ | ||
570 | static void igb_release_hw_control(struct igb_adapter *adapter) | ||
571 | { | ||
572 | struct e1000_hw *hw = &adapter->hw; | ||
573 | u32 ctrl_ext; | ||
574 | |||
575 | /* Let firmware take over control of h/w */ | ||
576 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
577 | wr32(E1000_CTRL_EXT, | ||
578 | ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); | ||
579 | } | ||
580 | |||
581 | |||
582 | /** | ||
583 | * igb_get_hw_control - get control of the h/w from f/w | ||
584 | * @adapter: address of board private structure | ||
585 | * | ||
586 | * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. | ||
587 | * For ASF and Pass Through versions of f/w this means that | ||
588 | * the driver is loaded. | ||
589 | * | ||
590 | **/ | ||
591 | static void igb_get_hw_control(struct igb_adapter *adapter) | ||
592 | { | ||
593 | struct e1000_hw *hw = &adapter->hw; | ||
594 | u32 ctrl_ext; | ||
595 | |||
596 | /* Let firmware know the driver has taken over */ | ||
597 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
598 | wr32(E1000_CTRL_EXT, | ||
599 | ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); | ||
600 | } | ||
601 | |||
602 | static void igb_init_manageability(struct igb_adapter *adapter) | ||
603 | { | ||
604 | struct e1000_hw *hw = &adapter->hw; | ||
605 | |||
606 | if (adapter->en_mng_pt) { | ||
607 | u32 manc2h = rd32(E1000_MANC2H); | ||
608 | u32 manc = rd32(E1000_MANC); | ||
609 | |||
610 | /* disable hardware interception of ARP */ | ||
611 | manc &= ~(E1000_MANC_ARP_EN); | ||
612 | |||
613 | /* enable receiving management packets to the host */ | ||
614 | /* this will probably generate destination unreachable messages | ||
615 | * from the host OS, but the packets will be handled on SMBUS */ | ||
616 | manc |= E1000_MANC_EN_MNG2HOST; | ||
617 | #define E1000_MNG2HOST_PORT_623 (1 << 5) | ||
618 | #define E1000_MNG2HOST_PORT_664 (1 << 6) | ||
619 | manc2h |= E1000_MNG2HOST_PORT_623; | ||
620 | manc2h |= E1000_MNG2HOST_PORT_664; | ||
621 | wr32(E1000_MANC2H, manc2h); | ||
622 | |||
623 | wr32(E1000_MANC, manc); | ||
624 | } | ||
625 | } | ||
626 | |||
627 | static void igb_release_manageability(struct igb_adapter *adapter) | ||
628 | { | ||
629 | struct e1000_hw *hw = &adapter->hw; | ||
630 | |||
631 | if (adapter->en_mng_pt) { | ||
632 | u32 manc = rd32(E1000_MANC); | ||
633 | |||
634 | /* re-enable hardware interception of ARP */ | ||
635 | manc |= E1000_MANC_ARP_EN; | ||
636 | manc &= ~E1000_MANC_EN_MNG2HOST; | ||
637 | |||
638 | /* don't explicitly have to mess with MANC2H since | ||
639 | * MANC has an enable disable that gates MANC2H */ | ||
640 | |||
641 | /* XXX stop the hardware watchdog ? */ | ||
642 | wr32(E1000_MANC, manc); | ||
643 | } | ||
644 | } | ||
645 | |||
646 | /** | ||
647 | * igb_configure - configure the hardware for RX and TX | ||
648 | * @adapter: private board structure | ||
649 | **/ | ||
650 | static void igb_configure(struct igb_adapter *adapter) | ||
651 | { | ||
652 | struct net_device *netdev = adapter->netdev; | ||
653 | int i; | ||
654 | |||
655 | igb_get_hw_control(adapter); | ||
656 | igb_set_multi(netdev); | ||
657 | |||
658 | igb_restore_vlan(adapter); | ||
659 | igb_init_manageability(adapter); | ||
660 | |||
661 | igb_configure_tx(adapter); | ||
662 | igb_setup_rctl(adapter); | ||
663 | igb_configure_rx(adapter); | ||
664 | /* call IGB_DESC_UNUSED which always leaves | ||
665 | * at least 1 descriptor unused to make sure | ||
666 | * next_to_use != next_to_clean */ | ||
667 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
668 | struct igb_ring *ring = &adapter->rx_ring[i]; | ||
669 | igb_alloc_rx_buffers_adv(adapter, ring, IGB_DESC_UNUSED(ring)); | ||
670 | } | ||
671 | |||
672 | |||
673 | adapter->tx_queue_len = netdev->tx_queue_len; | ||
674 | } | ||
675 | |||
676 | |||
677 | /** | ||
678 | * igb_up - Open the interface and prepare it to handle traffic | ||
679 | * @adapter: board private structure | ||
680 | **/ | ||
681 | |||
682 | int igb_up(struct igb_adapter *adapter) | ||
683 | { | ||
684 | struct e1000_hw *hw = &adapter->hw; | ||
685 | int i; | ||
686 | |||
687 | /* hardware has been reset, we need to reload some things */ | ||
688 | igb_configure(adapter); | ||
689 | |||
690 | clear_bit(__IGB_DOWN, &adapter->state); | ||
691 | |||
692 | napi_enable(&adapter->napi); | ||
693 | |||
694 | if (adapter->msix_entries) { | ||
695 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
696 | napi_enable(&adapter->rx_ring[i].napi); | ||
697 | igb_configure_msix(adapter); | ||
698 | } | ||
699 | |||
700 | /* Clear any pending interrupts. */ | ||
701 | rd32(E1000_ICR); | ||
702 | igb_irq_enable(adapter); | ||
703 | |||
704 | /* Fire a link change interrupt to start the watchdog. */ | ||
705 | wr32(E1000_ICS, E1000_ICS_LSC); | ||
706 | return 0; | ||
707 | } | ||
708 | |||
709 | void igb_down(struct igb_adapter *adapter) | ||
710 | { | ||
711 | struct e1000_hw *hw = &adapter->hw; | ||
712 | struct net_device *netdev = adapter->netdev; | ||
713 | u32 tctl, rctl; | ||
714 | int i; | ||
715 | |||
716 | /* signal that we're down so the interrupt handler does not | ||
717 | * reschedule our watchdog timer */ | ||
718 | set_bit(__IGB_DOWN, &adapter->state); | ||
719 | |||
720 | /* disable receives in the hardware */ | ||
721 | rctl = rd32(E1000_RCTL); | ||
722 | wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); | ||
723 | /* flush and sleep below */ | ||
724 | |||
725 | netif_stop_queue(netdev); | ||
726 | |||
727 | /* disable transmits in the hardware */ | ||
728 | tctl = rd32(E1000_TCTL); | ||
729 | tctl &= ~E1000_TCTL_EN; | ||
730 | wr32(E1000_TCTL, tctl); | ||
731 | /* flush both disables and wait for them to finish */ | ||
732 | wrfl(); | ||
733 | msleep(10); | ||
734 | |||
735 | napi_disable(&adapter->napi); | ||
736 | |||
737 | if (adapter->msix_entries) | ||
738 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
739 | napi_disable(&adapter->rx_ring[i].napi); | ||
740 | igb_irq_disable(adapter); | ||
741 | |||
742 | del_timer_sync(&adapter->watchdog_timer); | ||
743 | del_timer_sync(&adapter->phy_info_timer); | ||
744 | |||
745 | netdev->tx_queue_len = adapter->tx_queue_len; | ||
746 | netif_carrier_off(netdev); | ||
747 | adapter->link_speed = 0; | ||
748 | adapter->link_duplex = 0; | ||
749 | |||
750 | igb_reset(adapter); | ||
751 | igb_clean_all_tx_rings(adapter); | ||
752 | igb_clean_all_rx_rings(adapter); | ||
753 | } | ||
754 | |||
755 | void igb_reinit_locked(struct igb_adapter *adapter) | ||
756 | { | ||
757 | WARN_ON(in_interrupt()); | ||
758 | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) | ||
759 | msleep(1); | ||
760 | igb_down(adapter); | ||
761 | igb_up(adapter); | ||
762 | clear_bit(__IGB_RESETTING, &adapter->state); | ||
763 | } | ||
764 | |||
765 | void igb_reset(struct igb_adapter *adapter) | ||
766 | { | ||
767 | struct e1000_hw *hw = &adapter->hw; | ||
768 | struct e1000_fc_info *fc = &adapter->hw.fc; | ||
769 | u32 pba = 0, tx_space, min_tx_space, min_rx_space; | ||
770 | u16 hwm; | ||
771 | |||
772 | /* Repartition Pba for greater than 9k mtu | ||
773 | * To take effect CTRL.RST is required. | ||
774 | */ | ||
775 | pba = E1000_PBA_34K; | ||
776 | |||
777 | if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { | ||
778 | /* adjust PBA for jumbo frames */ | ||
779 | wr32(E1000_PBA, pba); | ||
780 | |||
781 | /* To maintain wire speed transmits, the Tx FIFO should be | ||
782 | * large enough to accommodate two full transmit packets, | ||
783 | * rounded up to the next 1KB and expressed in KB. Likewise, | ||
784 | * the Rx FIFO should be large enough to accommodate at least | ||
785 | * one full receive packet and is similarly rounded up and | ||
786 | * expressed in KB. */ | ||
787 | pba = rd32(E1000_PBA); | ||
788 | /* upper 16 bits has Tx packet buffer allocation size in KB */ | ||
789 | tx_space = pba >> 16; | ||
790 | /* lower 16 bits has Rx packet buffer allocation size in KB */ | ||
791 | pba &= 0xffff; | ||
792 | /* the tx fifo also stores 16 bytes of information about the tx | ||
793 | * but don't include ethernet FCS because hardware appends it */ | ||
794 | min_tx_space = (adapter->max_frame_size + | ||
795 | sizeof(struct e1000_tx_desc) - | ||
796 | ETH_FCS_LEN) * 2; | ||
797 | min_tx_space = ALIGN(min_tx_space, 1024); | ||
798 | min_tx_space >>= 10; | ||
799 | /* software strips receive CRC, so leave room for it */ | ||
800 | min_rx_space = adapter->max_frame_size; | ||
801 | min_rx_space = ALIGN(min_rx_space, 1024); | ||
802 | min_rx_space >>= 10; | ||
803 | |||
804 | /* If current Tx allocation is less than the min Tx FIFO size, | ||
805 | * and the min Tx FIFO size is less than the current Rx FIFO | ||
806 | * allocation, take space away from current Rx allocation */ | ||
807 | if (tx_space < min_tx_space && | ||
808 | ((min_tx_space - tx_space) < pba)) { | ||
809 | pba = pba - (min_tx_space - tx_space); | ||
810 | |||
811 | /* if short on rx space, rx wins and must trump tx | ||
812 | * adjustment */ | ||
813 | if (pba < min_rx_space) | ||
814 | pba = min_rx_space; | ||
815 | } | ||
816 | } | ||
817 | wr32(E1000_PBA, pba); | ||
818 | |||
819 | /* flow control settings */ | ||
820 | /* The high water mark must be low enough to fit one full frame | ||
821 | * (or the size used for early receive) above it in the Rx FIFO. | ||
822 | * Set it to the lower of: | ||
823 | * - 90% of the Rx FIFO size, or | ||
824 | * - the full Rx FIFO size minus one full frame */ | ||
825 | hwm = min(((pba << 10) * 9 / 10), | ||
826 | ((pba << 10) - adapter->max_frame_size)); | ||
827 | |||
828 | fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */ | ||
829 | fc->low_water = fc->high_water - 8; | ||
830 | fc->pause_time = 0xFFFF; | ||
831 | fc->send_xon = 1; | ||
832 | fc->type = fc->original_type; | ||
833 | |||
834 | /* Allow time for pending master requests to run */ | ||
835 | adapter->hw.mac.ops.reset_hw(&adapter->hw); | ||
836 | wr32(E1000_WUC, 0); | ||
837 | |||
838 | if (adapter->hw.mac.ops.init_hw(&adapter->hw)) | ||
839 | dev_err(&adapter->pdev->dev, "Hardware Error\n"); | ||
840 | |||
841 | igb_update_mng_vlan(adapter); | ||
842 | |||
843 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | ||
844 | wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); | ||
845 | |||
846 | igb_reset_adaptive(&adapter->hw); | ||
847 | adapter->hw.phy.ops.get_phy_info(&adapter->hw); | ||
848 | igb_release_manageability(adapter); | ||
849 | } | ||
850 | |||
851 | /** | ||
852 | * igb_probe - Device Initialization Routine | ||
853 | * @pdev: PCI device information struct | ||
854 | * @ent: entry in igb_pci_tbl | ||
855 | * | ||
856 | * Returns 0 on success, negative on failure | ||
857 | * | ||
858 | * igb_probe initializes an adapter identified by a pci_dev structure. | ||
859 | * The OS initialization, configuring of the adapter private structure, | ||
860 | * and a hardware reset occur. | ||
861 | **/ | ||
862 | static int __devinit igb_probe(struct pci_dev *pdev, | ||
863 | const struct pci_device_id *ent) | ||
864 | { | ||
865 | struct net_device *netdev; | ||
866 | struct igb_adapter *adapter; | ||
867 | struct e1000_hw *hw; | ||
868 | const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; | ||
869 | unsigned long mmio_start, mmio_len; | ||
870 | static int cards_found; | ||
871 | int i, err, pci_using_dac; | ||
872 | u16 eeprom_data = 0; | ||
873 | u16 eeprom_apme_mask = IGB_EEPROM_APME; | ||
874 | u32 part_num; | ||
875 | |||
876 | err = pci_enable_device(pdev); | ||
877 | if (err) | ||
878 | return err; | ||
879 | |||
880 | pci_using_dac = 0; | ||
881 | err = pci_set_dma_mask(pdev, DMA_64BIT_MASK); | ||
882 | if (!err) { | ||
883 | err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); | ||
884 | if (!err) | ||
885 | pci_using_dac = 1; | ||
886 | } else { | ||
887 | err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); | ||
888 | if (err) { | ||
889 | err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); | ||
890 | if (err) { | ||
891 | dev_err(&pdev->dev, "No usable DMA " | ||
892 | "configuration, aborting\n"); | ||
893 | goto err_dma; | ||
894 | } | ||
895 | } | ||
896 | } | ||
897 | |||
898 | err = pci_request_regions(pdev, igb_driver_name); | ||
899 | if (err) | ||
900 | goto err_pci_reg; | ||
901 | |||
902 | pci_set_master(pdev); | ||
903 | |||
904 | err = -ENOMEM; | ||
905 | netdev = alloc_etherdev(sizeof(struct igb_adapter)); | ||
906 | if (!netdev) | ||
907 | goto err_alloc_etherdev; | ||
908 | |||
909 | SET_NETDEV_DEV(netdev, &pdev->dev); | ||
910 | |||
911 | pci_set_drvdata(pdev, netdev); | ||
912 | adapter = netdev_priv(netdev); | ||
913 | adapter->netdev = netdev; | ||
914 | adapter->pdev = pdev; | ||
915 | hw = &adapter->hw; | ||
916 | hw->back = adapter; | ||
917 | adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE; | ||
918 | |||
919 | mmio_start = pci_resource_start(pdev, 0); | ||
920 | mmio_len = pci_resource_len(pdev, 0); | ||
921 | |||
922 | err = -EIO; | ||
923 | adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); | ||
924 | if (!adapter->hw.hw_addr) | ||
925 | goto err_ioremap; | ||
926 | |||
927 | netdev->open = &igb_open; | ||
928 | netdev->stop = &igb_close; | ||
929 | netdev->get_stats = &igb_get_stats; | ||
930 | netdev->set_multicast_list = &igb_set_multi; | ||
931 | netdev->set_mac_address = &igb_set_mac; | ||
932 | netdev->change_mtu = &igb_change_mtu; | ||
933 | netdev->do_ioctl = &igb_ioctl; | ||
934 | igb_set_ethtool_ops(netdev); | ||
935 | netdev->tx_timeout = &igb_tx_timeout; | ||
936 | netdev->watchdog_timeo = 5 * HZ; | ||
937 | netif_napi_add(netdev, &adapter->napi, igb_clean, 64); | ||
938 | netdev->vlan_rx_register = igb_vlan_rx_register; | ||
939 | netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid; | ||
940 | netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid; | ||
941 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
942 | netdev->poll_controller = igb_netpoll; | ||
943 | #endif | ||
944 | netdev->hard_start_xmit = &igb_xmit_frame_adv; | ||
945 | |||
946 | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | ||
947 | |||
948 | netdev->mem_start = mmio_start; | ||
949 | netdev->mem_end = mmio_start + mmio_len; | ||
950 | |||
951 | adapter->bd_number = cards_found; | ||
952 | |||
953 | /* PCI config space info */ | ||
954 | hw->vendor_id = pdev->vendor; | ||
955 | hw->device_id = pdev->device; | ||
956 | hw->revision_id = pdev->revision; | ||
957 | hw->subsystem_vendor_id = pdev->subsystem_vendor; | ||
958 | hw->subsystem_device_id = pdev->subsystem_device; | ||
959 | |||
960 | /* setup the private structure */ | ||
961 | hw->back = adapter; | ||
962 | /* Copy the default MAC, PHY and NVM function pointers */ | ||
963 | memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); | ||
964 | memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); | ||
965 | memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); | ||
966 | /* Initialize skew-specific constants */ | ||
967 | err = ei->get_invariants(hw); | ||
968 | if (err) | ||
969 | goto err_hw_init; | ||
970 | |||
971 | err = igb_sw_init(adapter); | ||
972 | if (err) | ||
973 | goto err_sw_init; | ||
974 | |||
975 | igb_get_bus_info_pcie(hw); | ||
976 | |||
977 | hw->phy.autoneg_wait_to_complete = false; | ||
978 | hw->mac.adaptive_ifs = true; | ||
979 | |||
980 | /* Copper options */ | ||
981 | if (hw->phy.media_type == e1000_media_type_copper) { | ||
982 | hw->phy.mdix = AUTO_ALL_MODES; | ||
983 | hw->phy.disable_polarity_correction = false; | ||
984 | hw->phy.ms_type = e1000_ms_hw_default; | ||
985 | } | ||
986 | |||
987 | if (igb_check_reset_block(hw)) | ||
988 | dev_info(&pdev->dev, | ||
989 | "PHY reset is blocked due to SOL/IDER session.\n"); | ||
990 | |||
991 | netdev->features = NETIF_F_SG | | ||
992 | NETIF_F_HW_CSUM | | ||
993 | NETIF_F_HW_VLAN_TX | | ||
994 | NETIF_F_HW_VLAN_RX | | ||
995 | NETIF_F_HW_VLAN_FILTER; | ||
996 | |||
997 | netdev->features |= NETIF_F_TSO; | ||
998 | |||
999 | netdev->features |= NETIF_F_TSO6; | ||
1000 | if (pci_using_dac) | ||
1001 | netdev->features |= NETIF_F_HIGHDMA; | ||
1002 | |||
1003 | netdev->features |= NETIF_F_LLTX; | ||
1004 | adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw); | ||
1005 | |||
1006 | /* before reading the NVM, reset the controller to put the device in a | ||
1007 | * known good starting state */ | ||
1008 | hw->mac.ops.reset_hw(hw); | ||
1009 | |||
1010 | /* make sure the NVM is good */ | ||
1011 | if (igb_validate_nvm_checksum(hw) < 0) { | ||
1012 | dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); | ||
1013 | err = -EIO; | ||
1014 | goto err_eeprom; | ||
1015 | } | ||
1016 | |||
1017 | /* copy the MAC address out of the NVM */ | ||
1018 | if (hw->mac.ops.read_mac_addr(hw)) | ||
1019 | dev_err(&pdev->dev, "NVM Read Error\n"); | ||
1020 | |||
1021 | memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); | ||
1022 | memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len); | ||
1023 | |||
1024 | if (!is_valid_ether_addr(netdev->perm_addr)) { | ||
1025 | dev_err(&pdev->dev, "Invalid MAC Address\n"); | ||
1026 | err = -EIO; | ||
1027 | goto err_eeprom; | ||
1028 | } | ||
1029 | |||
1030 | init_timer(&adapter->watchdog_timer); | ||
1031 | adapter->watchdog_timer.function = &igb_watchdog; | ||
1032 | adapter->watchdog_timer.data = (unsigned long) adapter; | ||
1033 | |||
1034 | init_timer(&adapter->phy_info_timer); | ||
1035 | adapter->phy_info_timer.function = &igb_update_phy_info; | ||
1036 | adapter->phy_info_timer.data = (unsigned long) adapter; | ||
1037 | |||
1038 | INIT_WORK(&adapter->reset_task, igb_reset_task); | ||
1039 | INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); | ||
1040 | |||
1041 | /* Initialize link & ring properties that are user-changeable */ | ||
1042 | adapter->tx_ring->count = 256; | ||
1043 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
1044 | adapter->tx_ring[i].count = adapter->tx_ring->count; | ||
1045 | adapter->rx_ring->count = 256; | ||
1046 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
1047 | adapter->rx_ring[i].count = adapter->rx_ring->count; | ||
1048 | |||
1049 | adapter->fc_autoneg = true; | ||
1050 | hw->mac.autoneg = true; | ||
1051 | hw->phy.autoneg_advertised = 0x2f; | ||
1052 | |||
1053 | hw->fc.original_type = e1000_fc_default; | ||
1054 | hw->fc.type = e1000_fc_default; | ||
1055 | |||
1056 | adapter->itr_setting = 3; | ||
1057 | adapter->itr = IGB_START_ITR; | ||
1058 | |||
1059 | igb_validate_mdi_setting(hw); | ||
1060 | |||
1061 | adapter->rx_csum = 1; | ||
1062 | |||
1063 | /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM, | ||
1064 | * enable the ACPI Magic Packet filter | ||
1065 | */ | ||
1066 | |||
1067 | if (hw->bus.func == 0 || | ||
1068 | hw->device_id == E1000_DEV_ID_82575EB_COPPER) | ||
1069 | hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1, | ||
1070 | &eeprom_data); | ||
1071 | |||
1072 | if (eeprom_data & eeprom_apme_mask) | ||
1073 | adapter->eeprom_wol |= E1000_WUFC_MAG; | ||
1074 | |||
1075 | /* now that we have the eeprom settings, apply the special cases where | ||
1076 | * the eeprom may be wrong or the board simply won't support wake on | ||
1077 | * lan on a particular port */ | ||
1078 | switch (pdev->device) { | ||
1079 | case E1000_DEV_ID_82575GB_QUAD_COPPER: | ||
1080 | adapter->eeprom_wol = 0; | ||
1081 | break; | ||
1082 | case E1000_DEV_ID_82575EB_FIBER_SERDES: | ||
1083 | /* Wake events only supported on port A for dual fiber | ||
1084 | * regardless of eeprom setting */ | ||
1085 | if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) | ||
1086 | adapter->eeprom_wol = 0; | ||
1087 | break; | ||
1088 | } | ||
1089 | |||
1090 | /* initialize the wol settings based on the eeprom settings */ | ||
1091 | adapter->wol = adapter->eeprom_wol; | ||
1092 | |||
1093 | /* reset the hardware with the new settings */ | ||
1094 | igb_reset(adapter); | ||
1095 | |||
1096 | /* let the f/w know that the h/w is now under the control of the | ||
1097 | * driver. */ | ||
1098 | igb_get_hw_control(adapter); | ||
1099 | |||
1100 | /* tell the stack to leave us alone until igb_open() is called */ | ||
1101 | netif_carrier_off(netdev); | ||
1102 | netif_stop_queue(netdev); | ||
1103 | |||
1104 | strcpy(netdev->name, "eth%d"); | ||
1105 | err = register_netdev(netdev); | ||
1106 | if (err) | ||
1107 | goto err_register; | ||
1108 | |||
1109 | dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); | ||
1110 | /* print bus type/speed/width info */ | ||
1111 | dev_info(&pdev->dev, | ||
1112 | "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n", | ||
1113 | netdev->name, | ||
1114 | ((hw->bus.speed == e1000_bus_speed_2500) | ||
1115 | ? "2.5Gb/s" : "unknown"), | ||
1116 | ((hw->bus.width == e1000_bus_width_pcie_x4) | ||
1117 | ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1) | ||
1118 | ? "Width x1" : "unknown"), | ||
1119 | netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2], | ||
1120 | netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]); | ||
1121 | |||
1122 | igb_read_part_num(hw, &part_num); | ||
1123 | dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name, | ||
1124 | (part_num >> 8), (part_num & 0xff)); | ||
1125 | |||
1126 | dev_info(&pdev->dev, | ||
1127 | "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", | ||
1128 | adapter->msix_entries ? "MSI-X" : | ||
1129 | adapter->msi_enabled ? "MSI" : "legacy", | ||
1130 | adapter->num_rx_queues, adapter->num_tx_queues); | ||
1131 | |||
1132 | cards_found++; | ||
1133 | return 0; | ||
1134 | |||
1135 | err_register: | ||
1136 | igb_release_hw_control(adapter); | ||
1137 | err_eeprom: | ||
1138 | if (!igb_check_reset_block(hw)) | ||
1139 | hw->phy.ops.reset_phy(hw); | ||
1140 | |||
1141 | if (hw->flash_address) | ||
1142 | iounmap(hw->flash_address); | ||
1143 | |||
1144 | igb_remove_device(hw); | ||
1145 | kfree(adapter->tx_ring); | ||
1146 | kfree(adapter->rx_ring); | ||
1147 | err_sw_init: | ||
1148 | err_hw_init: | ||
1149 | iounmap(hw->hw_addr); | ||
1150 | err_ioremap: | ||
1151 | free_netdev(netdev); | ||
1152 | err_alloc_etherdev: | ||
1153 | pci_release_regions(pdev); | ||
1154 | err_pci_reg: | ||
1155 | err_dma: | ||
1156 | pci_disable_device(pdev); | ||
1157 | return err; | ||
1158 | } | ||
1159 | |||
1160 | /** | ||
1161 | * igb_remove - Device Removal Routine | ||
1162 | * @pdev: PCI device information struct | ||
1163 | * | ||
1164 | * igb_remove is called by the PCI subsystem to alert the driver | ||
1165 | * that it should release a PCI device. The could be caused by a | ||
1166 | * Hot-Plug event, or because the driver is going to be removed from | ||
1167 | * memory. | ||
1168 | **/ | ||
1169 | static void __devexit igb_remove(struct pci_dev *pdev) | ||
1170 | { | ||
1171 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
1172 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1173 | |||
1174 | /* flush_scheduled work may reschedule our watchdog task, so | ||
1175 | * explicitly disable watchdog tasks from being rescheduled */ | ||
1176 | set_bit(__IGB_DOWN, &adapter->state); | ||
1177 | del_timer_sync(&adapter->watchdog_timer); | ||
1178 | del_timer_sync(&adapter->phy_info_timer); | ||
1179 | |||
1180 | flush_scheduled_work(); | ||
1181 | |||
1182 | |||
1183 | igb_release_manageability(adapter); | ||
1184 | |||
1185 | /* Release control of h/w to f/w. If f/w is AMT enabled, this | ||
1186 | * would have already happened in close and is redundant. */ | ||
1187 | igb_release_hw_control(adapter); | ||
1188 | |||
1189 | unregister_netdev(netdev); | ||
1190 | |||
1191 | if (!igb_check_reset_block(&adapter->hw)) | ||
1192 | adapter->hw.phy.ops.reset_phy(&adapter->hw); | ||
1193 | |||
1194 | igb_remove_device(&adapter->hw); | ||
1195 | igb_reset_interrupt_capability(adapter); | ||
1196 | |||
1197 | kfree(adapter->tx_ring); | ||
1198 | kfree(adapter->rx_ring); | ||
1199 | |||
1200 | iounmap(adapter->hw.hw_addr); | ||
1201 | if (adapter->hw.flash_address) | ||
1202 | iounmap(adapter->hw.flash_address); | ||
1203 | pci_release_regions(pdev); | ||
1204 | |||
1205 | free_netdev(netdev); | ||
1206 | |||
1207 | pci_disable_device(pdev); | ||
1208 | } | ||
1209 | |||
1210 | /** | ||
1211 | * igb_sw_init - Initialize general software structures (struct igb_adapter) | ||
1212 | * @adapter: board private structure to initialize | ||
1213 | * | ||
1214 | * igb_sw_init initializes the Adapter private data structure. | ||
1215 | * Fields are initialized based on PCI device information and | ||
1216 | * OS network device settings (MTU size). | ||
1217 | **/ | ||
1218 | static int __devinit igb_sw_init(struct igb_adapter *adapter) | ||
1219 | { | ||
1220 | struct e1000_hw *hw = &adapter->hw; | ||
1221 | struct net_device *netdev = adapter->netdev; | ||
1222 | struct pci_dev *pdev = adapter->pdev; | ||
1223 | |||
1224 | pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); | ||
1225 | |||
1226 | adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | ||
1227 | adapter->rx_ps_hdr_size = 0; /* disable packet split */ | ||
1228 | adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; | ||
1229 | adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; | ||
1230 | |||
1231 | /* Number of supported queues. */ | ||
1232 | /* Having more queues than CPUs doesn't make sense. */ | ||
1233 | adapter->num_tx_queues = 1; | ||
1234 | adapter->num_rx_queues = min(IGB_MAX_RX_QUEUES, num_online_cpus()); | ||
1235 | |||
1236 | igb_set_interrupt_capability(adapter); | ||
1237 | |||
1238 | if (igb_alloc_queues(adapter)) { | ||
1239 | dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); | ||
1240 | return -ENOMEM; | ||
1241 | } | ||
1242 | |||
1243 | /* Explicitly disable IRQ since the NIC can be in any state. */ | ||
1244 | igb_irq_disable(adapter); | ||
1245 | |||
1246 | set_bit(__IGB_DOWN, &adapter->state); | ||
1247 | return 0; | ||
1248 | } | ||
1249 | |||
1250 | /** | ||
1251 | * igb_open - Called when a network interface is made active | ||
1252 | * @netdev: network interface device structure | ||
1253 | * | ||
1254 | * Returns 0 on success, negative value on failure | ||
1255 | * | ||
1256 | * The open entry point is called when a network interface is made | ||
1257 | * active by the system (IFF_UP). At this point all resources needed | ||
1258 | * for transmit and receive operations are allocated, the interrupt | ||
1259 | * handler is registered with the OS, the watchdog timer is started, | ||
1260 | * and the stack is notified that the interface is ready. | ||
1261 | **/ | ||
1262 | static int igb_open(struct net_device *netdev) | ||
1263 | { | ||
1264 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1265 | struct e1000_hw *hw = &adapter->hw; | ||
1266 | int err; | ||
1267 | int i; | ||
1268 | |||
1269 | /* disallow open during test */ | ||
1270 | if (test_bit(__IGB_TESTING, &adapter->state)) | ||
1271 | return -EBUSY; | ||
1272 | |||
1273 | /* allocate transmit descriptors */ | ||
1274 | err = igb_setup_all_tx_resources(adapter); | ||
1275 | if (err) | ||
1276 | goto err_setup_tx; | ||
1277 | |||
1278 | /* allocate receive descriptors */ | ||
1279 | err = igb_setup_all_rx_resources(adapter); | ||
1280 | if (err) | ||
1281 | goto err_setup_rx; | ||
1282 | |||
1283 | /* e1000_power_up_phy(adapter); */ | ||
1284 | |||
1285 | adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; | ||
1286 | if ((adapter->hw.mng_cookie.status & | ||
1287 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) | ||
1288 | igb_update_mng_vlan(adapter); | ||
1289 | |||
1290 | /* before we allocate an interrupt, we must be ready to handle it. | ||
1291 | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | ||
1292 | * as soon as we call pci_request_irq, so we have to setup our | ||
1293 | * clean_rx handler before we do so. */ | ||
1294 | igb_configure(adapter); | ||
1295 | |||
1296 | err = igb_request_irq(adapter); | ||
1297 | if (err) | ||
1298 | goto err_req_irq; | ||
1299 | |||
1300 | /* From here on the code is the same as igb_up() */ | ||
1301 | clear_bit(__IGB_DOWN, &adapter->state); | ||
1302 | |||
1303 | napi_enable(&adapter->napi); | ||
1304 | if (adapter->msix_entries) | ||
1305 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
1306 | napi_enable(&adapter->rx_ring[i].napi); | ||
1307 | |||
1308 | igb_irq_enable(adapter); | ||
1309 | |||
1310 | /* Clear any pending interrupts. */ | ||
1311 | rd32(E1000_ICR); | ||
1312 | /* Fire a link status change interrupt to start the watchdog. */ | ||
1313 | wr32(E1000_ICS, E1000_ICS_LSC); | ||
1314 | |||
1315 | return 0; | ||
1316 | |||
1317 | err_req_irq: | ||
1318 | igb_release_hw_control(adapter); | ||
1319 | /* e1000_power_down_phy(adapter); */ | ||
1320 | igb_free_all_rx_resources(adapter); | ||
1321 | err_setup_rx: | ||
1322 | igb_free_all_tx_resources(adapter); | ||
1323 | err_setup_tx: | ||
1324 | igb_reset(adapter); | ||
1325 | |||
1326 | return err; | ||
1327 | } | ||
1328 | |||
1329 | /** | ||
1330 | * igb_close - Disables a network interface | ||
1331 | * @netdev: network interface device structure | ||
1332 | * | ||
1333 | * Returns 0, this is not allowed to fail | ||
1334 | * | ||
1335 | * The close entry point is called when an interface is de-activated | ||
1336 | * by the OS. The hardware is still under the driver's control, but | ||
1337 | * needs to be disabled. A global MAC reset is issued to stop the | ||
1338 | * hardware, and all transmit and receive resources are freed. | ||
1339 | **/ | ||
1340 | static int igb_close(struct net_device *netdev) | ||
1341 | { | ||
1342 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1343 | |||
1344 | WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); | ||
1345 | igb_down(adapter); | ||
1346 | |||
1347 | igb_free_irq(adapter); | ||
1348 | |||
1349 | igb_free_all_tx_resources(adapter); | ||
1350 | igb_free_all_rx_resources(adapter); | ||
1351 | |||
1352 | /* kill manageability vlan ID if supported, but not if a vlan with | ||
1353 | * the same ID is registered on the host OS (let 8021q kill it) */ | ||
1354 | if ((adapter->hw.mng_cookie.status & | ||
1355 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | ||
1356 | !(adapter->vlgrp && | ||
1357 | vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) | ||
1358 | igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | ||
1359 | |||
1360 | return 0; | ||
1361 | } | ||
1362 | |||
1363 | /** | ||
1364 | * igb_setup_tx_resources - allocate Tx resources (Descriptors) | ||
1365 | * @adapter: board private structure | ||
1366 | * @tx_ring: tx descriptor ring (for a specific queue) to setup | ||
1367 | * | ||
1368 | * Return 0 on success, negative on failure | ||
1369 | **/ | ||
1370 | |||
1371 | int igb_setup_tx_resources(struct igb_adapter *adapter, | ||
1372 | struct igb_ring *tx_ring) | ||
1373 | { | ||
1374 | struct pci_dev *pdev = adapter->pdev; | ||
1375 | int size; | ||
1376 | |||
1377 | size = sizeof(struct igb_buffer) * tx_ring->count; | ||
1378 | tx_ring->buffer_info = vmalloc(size); | ||
1379 | if (!tx_ring->buffer_info) | ||
1380 | goto err; | ||
1381 | memset(tx_ring->buffer_info, 0, size); | ||
1382 | |||
1383 | /* round up to nearest 4K */ | ||
1384 | tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc) | ||
1385 | + sizeof(u32); | ||
1386 | tx_ring->size = ALIGN(tx_ring->size, 4096); | ||
1387 | |||
1388 | tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size, | ||
1389 | &tx_ring->dma); | ||
1390 | |||
1391 | if (!tx_ring->desc) | ||
1392 | goto err; | ||
1393 | |||
1394 | tx_ring->adapter = adapter; | ||
1395 | tx_ring->next_to_use = 0; | ||
1396 | tx_ring->next_to_clean = 0; | ||
1397 | spin_lock_init(&tx_ring->tx_clean_lock); | ||
1398 | spin_lock_init(&tx_ring->tx_lock); | ||
1399 | return 0; | ||
1400 | |||
1401 | err: | ||
1402 | vfree(tx_ring->buffer_info); | ||
1403 | dev_err(&adapter->pdev->dev, | ||
1404 | "Unable to allocate memory for the transmit descriptor ring\n"); | ||
1405 | return -ENOMEM; | ||
1406 | } | ||
1407 | |||
1408 | /** | ||
1409 | * igb_setup_all_tx_resources - wrapper to allocate Tx resources | ||
1410 | * (Descriptors) for all queues | ||
1411 | * @adapter: board private structure | ||
1412 | * | ||
1413 | * Return 0 on success, negative on failure | ||
1414 | **/ | ||
1415 | static int igb_setup_all_tx_resources(struct igb_adapter *adapter) | ||
1416 | { | ||
1417 | int i, err = 0; | ||
1418 | |||
1419 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
1420 | err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]); | ||
1421 | if (err) { | ||
1422 | dev_err(&adapter->pdev->dev, | ||
1423 | "Allocation for Tx Queue %u failed\n", i); | ||
1424 | for (i--; i >= 0; i--) | ||
1425 | igb_free_tx_resources(adapter, | ||
1426 | &adapter->tx_ring[i]); | ||
1427 | break; | ||
1428 | } | ||
1429 | } | ||
1430 | |||
1431 | return err; | ||
1432 | } | ||
1433 | |||
1434 | /** | ||
1435 | * igb_configure_tx - Configure transmit Unit after Reset | ||
1436 | * @adapter: board private structure | ||
1437 | * | ||
1438 | * Configure the Tx unit of the MAC after a reset. | ||
1439 | **/ | ||
1440 | static void igb_configure_tx(struct igb_adapter *adapter) | ||
1441 | { | ||
1442 | u64 tdba, tdwba; | ||
1443 | struct e1000_hw *hw = &adapter->hw; | ||
1444 | u32 tctl; | ||
1445 | u32 txdctl, txctrl; | ||
1446 | int i; | ||
1447 | |||
1448 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
1449 | struct igb_ring *ring = &(adapter->tx_ring[i]); | ||
1450 | |||
1451 | wr32(E1000_TDLEN(i), | ||
1452 | ring->count * sizeof(struct e1000_tx_desc)); | ||
1453 | tdba = ring->dma; | ||
1454 | wr32(E1000_TDBAL(i), | ||
1455 | tdba & 0x00000000ffffffffULL); | ||
1456 | wr32(E1000_TDBAH(i), tdba >> 32); | ||
1457 | |||
1458 | tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc); | ||
1459 | tdwba |= 1; /* enable head wb */ | ||
1460 | wr32(E1000_TDWBAL(i), | ||
1461 | tdwba & 0x00000000ffffffffULL); | ||
1462 | wr32(E1000_TDWBAH(i), tdwba >> 32); | ||
1463 | |||
1464 | ring->head = E1000_TDH(i); | ||
1465 | ring->tail = E1000_TDT(i); | ||
1466 | writel(0, hw->hw_addr + ring->tail); | ||
1467 | writel(0, hw->hw_addr + ring->head); | ||
1468 | txdctl = rd32(E1000_TXDCTL(i)); | ||
1469 | txdctl |= E1000_TXDCTL_QUEUE_ENABLE; | ||
1470 | wr32(E1000_TXDCTL(i), txdctl); | ||
1471 | |||
1472 | /* Turn off Relaxed Ordering on head write-backs. The | ||
1473 | * writebacks MUST be delivered in order or it will | ||
1474 | * completely screw up our bookeeping. | ||
1475 | */ | ||
1476 | txctrl = rd32(E1000_DCA_TXCTRL(i)); | ||
1477 | txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN; | ||
1478 | wr32(E1000_DCA_TXCTRL(i), txctrl); | ||
1479 | } | ||
1480 | |||
1481 | |||
1482 | |||
1483 | /* Use the default values for the Tx Inter Packet Gap (IPG) timer */ | ||
1484 | |||
1485 | /* Program the Transmit Control Register */ | ||
1486 | |||
1487 | tctl = rd32(E1000_TCTL); | ||
1488 | tctl &= ~E1000_TCTL_CT; | ||
1489 | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | ||
1490 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | ||
1491 | |||
1492 | igb_config_collision_dist(hw); | ||
1493 | |||
1494 | /* Setup Transmit Descriptor Settings for eop descriptor */ | ||
1495 | adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS; | ||
1496 | |||
1497 | /* Enable transmits */ | ||
1498 | tctl |= E1000_TCTL_EN; | ||
1499 | |||
1500 | wr32(E1000_TCTL, tctl); | ||
1501 | } | ||
1502 | |||
1503 | /** | ||
1504 | * igb_setup_rx_resources - allocate Rx resources (Descriptors) | ||
1505 | * @adapter: board private structure | ||
1506 | * @rx_ring: rx descriptor ring (for a specific queue) to setup | ||
1507 | * | ||
1508 | * Returns 0 on success, negative on failure | ||
1509 | **/ | ||
1510 | |||
1511 | int igb_setup_rx_resources(struct igb_adapter *adapter, | ||
1512 | struct igb_ring *rx_ring) | ||
1513 | { | ||
1514 | struct pci_dev *pdev = adapter->pdev; | ||
1515 | int size, desc_len; | ||
1516 | |||
1517 | size = sizeof(struct igb_buffer) * rx_ring->count; | ||
1518 | rx_ring->buffer_info = vmalloc(size); | ||
1519 | if (!rx_ring->buffer_info) | ||
1520 | goto err; | ||
1521 | memset(rx_ring->buffer_info, 0, size); | ||
1522 | |||
1523 | desc_len = sizeof(union e1000_adv_rx_desc); | ||
1524 | |||
1525 | /* Round up to nearest 4K */ | ||
1526 | rx_ring->size = rx_ring->count * desc_len; | ||
1527 | rx_ring->size = ALIGN(rx_ring->size, 4096); | ||
1528 | |||
1529 | rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size, | ||
1530 | &rx_ring->dma); | ||
1531 | |||
1532 | if (!rx_ring->desc) | ||
1533 | goto err; | ||
1534 | |||
1535 | rx_ring->next_to_clean = 0; | ||
1536 | rx_ring->next_to_use = 0; | ||
1537 | rx_ring->pending_skb = NULL; | ||
1538 | |||
1539 | rx_ring->adapter = adapter; | ||
1540 | /* FIXME: do we want to setup ring->napi->poll here? */ | ||
1541 | rx_ring->napi.poll = adapter->napi.poll; | ||
1542 | |||
1543 | return 0; | ||
1544 | |||
1545 | err: | ||
1546 | vfree(rx_ring->buffer_info); | ||
1547 | dev_err(&adapter->pdev->dev, "Unable to allocate memory for " | ||
1548 | "the receive descriptor ring\n"); | ||
1549 | return -ENOMEM; | ||
1550 | } | ||
1551 | |||
1552 | /** | ||
1553 | * igb_setup_all_rx_resources - wrapper to allocate Rx resources | ||
1554 | * (Descriptors) for all queues | ||
1555 | * @adapter: board private structure | ||
1556 | * | ||
1557 | * Return 0 on success, negative on failure | ||
1558 | **/ | ||
1559 | static int igb_setup_all_rx_resources(struct igb_adapter *adapter) | ||
1560 | { | ||
1561 | int i, err = 0; | ||
1562 | |||
1563 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
1564 | err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]); | ||
1565 | if (err) { | ||
1566 | dev_err(&adapter->pdev->dev, | ||
1567 | "Allocation for Rx Queue %u failed\n", i); | ||
1568 | for (i--; i >= 0; i--) | ||
1569 | igb_free_rx_resources(adapter, | ||
1570 | &adapter->rx_ring[i]); | ||
1571 | break; | ||
1572 | } | ||
1573 | } | ||
1574 | |||
1575 | return err; | ||
1576 | } | ||
1577 | |||
1578 | /** | ||
1579 | * igb_setup_rctl - configure the receive control registers | ||
1580 | * @adapter: Board private structure | ||
1581 | **/ | ||
1582 | static void igb_setup_rctl(struct igb_adapter *adapter) | ||
1583 | { | ||
1584 | struct e1000_hw *hw = &adapter->hw; | ||
1585 | u32 rctl; | ||
1586 | u32 srrctl = 0; | ||
1587 | int i; | ||
1588 | |||
1589 | rctl = rd32(E1000_RCTL); | ||
1590 | |||
1591 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | ||
1592 | |||
1593 | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | | ||
1594 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | ||
1595 | (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); | ||
1596 | |||
1597 | /* disable the stripping of CRC because it breaks | ||
1598 | * BMC firmware connected over SMBUS | ||
1599 | rctl |= E1000_RCTL_SECRC; | ||
1600 | */ | ||
1601 | |||
1602 | rctl &= ~E1000_RCTL_SBP; | ||
1603 | |||
1604 | if (adapter->netdev->mtu <= ETH_DATA_LEN) | ||
1605 | rctl &= ~E1000_RCTL_LPE; | ||
1606 | else | ||
1607 | rctl |= E1000_RCTL_LPE; | ||
1608 | if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) { | ||
1609 | /* Setup buffer sizes */ | ||
1610 | rctl &= ~E1000_RCTL_SZ_4096; | ||
1611 | rctl |= E1000_RCTL_BSEX; | ||
1612 | switch (adapter->rx_buffer_len) { | ||
1613 | case IGB_RXBUFFER_256: | ||
1614 | rctl |= E1000_RCTL_SZ_256; | ||
1615 | rctl &= ~E1000_RCTL_BSEX; | ||
1616 | break; | ||
1617 | case IGB_RXBUFFER_512: | ||
1618 | rctl |= E1000_RCTL_SZ_512; | ||
1619 | rctl &= ~E1000_RCTL_BSEX; | ||
1620 | break; | ||
1621 | case IGB_RXBUFFER_1024: | ||
1622 | rctl |= E1000_RCTL_SZ_1024; | ||
1623 | rctl &= ~E1000_RCTL_BSEX; | ||
1624 | break; | ||
1625 | case IGB_RXBUFFER_2048: | ||
1626 | default: | ||
1627 | rctl |= E1000_RCTL_SZ_2048; | ||
1628 | rctl &= ~E1000_RCTL_BSEX; | ||
1629 | break; | ||
1630 | case IGB_RXBUFFER_4096: | ||
1631 | rctl |= E1000_RCTL_SZ_4096; | ||
1632 | break; | ||
1633 | case IGB_RXBUFFER_8192: | ||
1634 | rctl |= E1000_RCTL_SZ_8192; | ||
1635 | break; | ||
1636 | case IGB_RXBUFFER_16384: | ||
1637 | rctl |= E1000_RCTL_SZ_16384; | ||
1638 | break; | ||
1639 | } | ||
1640 | } else { | ||
1641 | rctl &= ~E1000_RCTL_BSEX; | ||
1642 | srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT; | ||
1643 | } | ||
1644 | |||
1645 | /* 82575 and greater support packet-split where the protocol | ||
1646 | * header is placed in skb->data and the packet data is | ||
1647 | * placed in pages hanging off of skb_shinfo(skb)->nr_frags. | ||
1648 | * In the case of a non-split, skb->data is linearly filled, | ||
1649 | * followed by the page buffers. Therefore, skb->data is | ||
1650 | * sized to hold the largest protocol header. | ||
1651 | */ | ||
1652 | /* allocations using alloc_page take too long for regular MTU | ||
1653 | * so only enable packet split for jumbo frames */ | ||
1654 | if (rctl & E1000_RCTL_LPE) { | ||
1655 | adapter->rx_ps_hdr_size = IGB_RXBUFFER_128; | ||
1656 | srrctl = adapter->rx_ps_hdr_size << | ||
1657 | E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; | ||
1658 | /* buffer size is ALWAYS one page */ | ||
1659 | srrctl |= PAGE_SIZE >> E1000_SRRCTL_BSIZEPKT_SHIFT; | ||
1660 | srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; | ||
1661 | } else { | ||
1662 | adapter->rx_ps_hdr_size = 0; | ||
1663 | srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; | ||
1664 | } | ||
1665 | |||
1666 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
1667 | wr32(E1000_SRRCTL(i), srrctl); | ||
1668 | |||
1669 | wr32(E1000_RCTL, rctl); | ||
1670 | } | ||
1671 | |||
1672 | /** | ||
1673 | * igb_configure_rx - Configure receive Unit after Reset | ||
1674 | * @adapter: board private structure | ||
1675 | * | ||
1676 | * Configure the Rx unit of the MAC after a reset. | ||
1677 | **/ | ||
1678 | static void igb_configure_rx(struct igb_adapter *adapter) | ||
1679 | { | ||
1680 | u64 rdba; | ||
1681 | struct e1000_hw *hw = &adapter->hw; | ||
1682 | u32 rctl, rxcsum; | ||
1683 | u32 rxdctl; | ||
1684 | int i; | ||
1685 | |||
1686 | /* disable receives while setting up the descriptors */ | ||
1687 | rctl = rd32(E1000_RCTL); | ||
1688 | wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); | ||
1689 | wrfl(); | ||
1690 | mdelay(10); | ||
1691 | |||
1692 | if (adapter->itr_setting > 3) | ||
1693 | wr32(E1000_ITR, | ||
1694 | 1000000000 / (adapter->itr * 256)); | ||
1695 | |||
1696 | /* Setup the HW Rx Head and Tail Descriptor Pointers and | ||
1697 | * the Base and Length of the Rx Descriptor Ring */ | ||
1698 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
1699 | struct igb_ring *ring = &(adapter->rx_ring[i]); | ||
1700 | rdba = ring->dma; | ||
1701 | wr32(E1000_RDBAL(i), | ||
1702 | rdba & 0x00000000ffffffffULL); | ||
1703 | wr32(E1000_RDBAH(i), rdba >> 32); | ||
1704 | wr32(E1000_RDLEN(i), | ||
1705 | ring->count * sizeof(union e1000_adv_rx_desc)); | ||
1706 | |||
1707 | ring->head = E1000_RDH(i); | ||
1708 | ring->tail = E1000_RDT(i); | ||
1709 | writel(0, hw->hw_addr + ring->tail); | ||
1710 | writel(0, hw->hw_addr + ring->head); | ||
1711 | |||
1712 | rxdctl = rd32(E1000_RXDCTL(i)); | ||
1713 | rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; | ||
1714 | rxdctl &= 0xFFF00000; | ||
1715 | rxdctl |= IGB_RX_PTHRESH; | ||
1716 | rxdctl |= IGB_RX_HTHRESH << 8; | ||
1717 | rxdctl |= IGB_RX_WTHRESH << 16; | ||
1718 | wr32(E1000_RXDCTL(i), rxdctl); | ||
1719 | } | ||
1720 | |||
1721 | if (adapter->num_rx_queues > 1) { | ||
1722 | u32 random[10]; | ||
1723 | u32 mrqc; | ||
1724 | u32 j, shift; | ||
1725 | union e1000_reta { | ||
1726 | u32 dword; | ||
1727 | u8 bytes[4]; | ||
1728 | } reta; | ||
1729 | |||
1730 | get_random_bytes(&random[0], 40); | ||
1731 | |||
1732 | shift = 6; | ||
1733 | for (j = 0; j < (32 * 4); j++) { | ||
1734 | reta.bytes[j & 3] = | ||
1735 | (j % adapter->num_rx_queues) << shift; | ||
1736 | if ((j & 3) == 3) | ||
1737 | writel(reta.dword, | ||
1738 | hw->hw_addr + E1000_RETA(0) + (j & ~3)); | ||
1739 | } | ||
1740 | mrqc = E1000_MRQC_ENABLE_RSS_4Q; | ||
1741 | |||
1742 | /* Fill out hash function seeds */ | ||
1743 | for (j = 0; j < 10; j++) | ||
1744 | array_wr32(E1000_RSSRK(0), j, random[j]); | ||
1745 | |||
1746 | mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | | ||
1747 | E1000_MRQC_RSS_FIELD_IPV4_TCP); | ||
1748 | mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 | | ||
1749 | E1000_MRQC_RSS_FIELD_IPV6_TCP); | ||
1750 | mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP | | ||
1751 | E1000_MRQC_RSS_FIELD_IPV6_UDP); | ||
1752 | mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | | ||
1753 | E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); | ||
1754 | |||
1755 | |||
1756 | wr32(E1000_MRQC, mrqc); | ||
1757 | |||
1758 | /* Multiqueue and raw packet checksumming are mutually | ||
1759 | * exclusive. Note that this not the same as TCP/IP | ||
1760 | * checksumming, which works fine. */ | ||
1761 | rxcsum = rd32(E1000_RXCSUM); | ||
1762 | rxcsum |= E1000_RXCSUM_PCSD; | ||
1763 | wr32(E1000_RXCSUM, rxcsum); | ||
1764 | } else { | ||
1765 | /* Enable Receive Checksum Offload for TCP and UDP */ | ||
1766 | rxcsum = rd32(E1000_RXCSUM); | ||
1767 | if (adapter->rx_csum) { | ||
1768 | rxcsum |= E1000_RXCSUM_TUOFL; | ||
1769 | |||
1770 | /* Enable IPv4 payload checksum for UDP fragments | ||
1771 | * Must be used in conjunction with packet-split. */ | ||
1772 | if (adapter->rx_ps_hdr_size) | ||
1773 | rxcsum |= E1000_RXCSUM_IPPCSE; | ||
1774 | } else { | ||
1775 | rxcsum &= ~E1000_RXCSUM_TUOFL; | ||
1776 | /* don't need to clear IPPCSE as it defaults to 0 */ | ||
1777 | } | ||
1778 | wr32(E1000_RXCSUM, rxcsum); | ||
1779 | } | ||
1780 | |||
1781 | if (adapter->vlgrp) | ||
1782 | wr32(E1000_RLPML, | ||
1783 | adapter->max_frame_size + VLAN_TAG_SIZE); | ||
1784 | else | ||
1785 | wr32(E1000_RLPML, adapter->max_frame_size); | ||
1786 | |||
1787 | /* Enable Receives */ | ||
1788 | wr32(E1000_RCTL, rctl); | ||
1789 | } | ||
1790 | |||
1791 | /** | ||
1792 | * igb_free_tx_resources - Free Tx Resources per Queue | ||
1793 | * @adapter: board private structure | ||
1794 | * @tx_ring: Tx descriptor ring for a specific queue | ||
1795 | * | ||
1796 | * Free all transmit software resources | ||
1797 | **/ | ||
1798 | static void igb_free_tx_resources(struct igb_adapter *adapter, | ||
1799 | struct igb_ring *tx_ring) | ||
1800 | { | ||
1801 | struct pci_dev *pdev = adapter->pdev; | ||
1802 | |||
1803 | igb_clean_tx_ring(adapter, tx_ring); | ||
1804 | |||
1805 | vfree(tx_ring->buffer_info); | ||
1806 | tx_ring->buffer_info = NULL; | ||
1807 | |||
1808 | pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma); | ||
1809 | |||
1810 | tx_ring->desc = NULL; | ||
1811 | } | ||
1812 | |||
1813 | /** | ||
1814 | * igb_free_all_tx_resources - Free Tx Resources for All Queues | ||
1815 | * @adapter: board private structure | ||
1816 | * | ||
1817 | * Free all transmit software resources | ||
1818 | **/ | ||
1819 | static void igb_free_all_tx_resources(struct igb_adapter *adapter) | ||
1820 | { | ||
1821 | int i; | ||
1822 | |||
1823 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
1824 | igb_free_tx_resources(adapter, &adapter->tx_ring[i]); | ||
1825 | } | ||
1826 | |||
1827 | static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter, | ||
1828 | struct igb_buffer *buffer_info) | ||
1829 | { | ||
1830 | if (buffer_info->dma) { | ||
1831 | pci_unmap_page(adapter->pdev, | ||
1832 | buffer_info->dma, | ||
1833 | buffer_info->length, | ||
1834 | PCI_DMA_TODEVICE); | ||
1835 | buffer_info->dma = 0; | ||
1836 | } | ||
1837 | if (buffer_info->skb) { | ||
1838 | dev_kfree_skb_any(buffer_info->skb); | ||
1839 | buffer_info->skb = NULL; | ||
1840 | } | ||
1841 | buffer_info->time_stamp = 0; | ||
1842 | /* buffer_info must be completely set up in the transmit path */ | ||
1843 | } | ||
1844 | |||
1845 | /** | ||
1846 | * igb_clean_tx_ring - Free Tx Buffers | ||
1847 | * @adapter: board private structure | ||
1848 | * @tx_ring: ring to be cleaned | ||
1849 | **/ | ||
1850 | static void igb_clean_tx_ring(struct igb_adapter *adapter, | ||
1851 | struct igb_ring *tx_ring) | ||
1852 | { | ||
1853 | struct igb_buffer *buffer_info; | ||
1854 | unsigned long size; | ||
1855 | unsigned int i; | ||
1856 | |||
1857 | if (!tx_ring->buffer_info) | ||
1858 | return; | ||
1859 | /* Free all the Tx ring sk_buffs */ | ||
1860 | |||
1861 | for (i = 0; i < tx_ring->count; i++) { | ||
1862 | buffer_info = &tx_ring->buffer_info[i]; | ||
1863 | igb_unmap_and_free_tx_resource(adapter, buffer_info); | ||
1864 | } | ||
1865 | |||
1866 | size = sizeof(struct igb_buffer) * tx_ring->count; | ||
1867 | memset(tx_ring->buffer_info, 0, size); | ||
1868 | |||
1869 | /* Zero out the descriptor ring */ | ||
1870 | |||
1871 | memset(tx_ring->desc, 0, tx_ring->size); | ||
1872 | |||
1873 | tx_ring->next_to_use = 0; | ||
1874 | tx_ring->next_to_clean = 0; | ||
1875 | |||
1876 | writel(0, adapter->hw.hw_addr + tx_ring->head); | ||
1877 | writel(0, adapter->hw.hw_addr + tx_ring->tail); | ||
1878 | } | ||
1879 | |||
1880 | /** | ||
1881 | * igb_clean_all_tx_rings - Free Tx Buffers for all queues | ||
1882 | * @adapter: board private structure | ||
1883 | **/ | ||
1884 | static void igb_clean_all_tx_rings(struct igb_adapter *adapter) | ||
1885 | { | ||
1886 | int i; | ||
1887 | |||
1888 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
1889 | igb_clean_tx_ring(adapter, &adapter->tx_ring[i]); | ||
1890 | } | ||
1891 | |||
1892 | /** | ||
1893 | * igb_free_rx_resources - Free Rx Resources | ||
1894 | * @adapter: board private structure | ||
1895 | * @rx_ring: ring to clean the resources from | ||
1896 | * | ||
1897 | * Free all receive software resources | ||
1898 | **/ | ||
1899 | static void igb_free_rx_resources(struct igb_adapter *adapter, | ||
1900 | struct igb_ring *rx_ring) | ||
1901 | { | ||
1902 | struct pci_dev *pdev = adapter->pdev; | ||
1903 | |||
1904 | igb_clean_rx_ring(adapter, rx_ring); | ||
1905 | |||
1906 | vfree(rx_ring->buffer_info); | ||
1907 | rx_ring->buffer_info = NULL; | ||
1908 | |||
1909 | pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); | ||
1910 | |||
1911 | rx_ring->desc = NULL; | ||
1912 | } | ||
1913 | |||
1914 | /** | ||
1915 | * igb_free_all_rx_resources - Free Rx Resources for All Queues | ||
1916 | * @adapter: board private structure | ||
1917 | * | ||
1918 | * Free all receive software resources | ||
1919 | **/ | ||
1920 | static void igb_free_all_rx_resources(struct igb_adapter *adapter) | ||
1921 | { | ||
1922 | int i; | ||
1923 | |||
1924 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
1925 | igb_free_rx_resources(adapter, &adapter->rx_ring[i]); | ||
1926 | } | ||
1927 | |||
1928 | /** | ||
1929 | * igb_clean_rx_ring - Free Rx Buffers per Queue | ||
1930 | * @adapter: board private structure | ||
1931 | * @rx_ring: ring to free buffers from | ||
1932 | **/ | ||
1933 | static void igb_clean_rx_ring(struct igb_adapter *adapter, | ||
1934 | struct igb_ring *rx_ring) | ||
1935 | { | ||
1936 | struct igb_buffer *buffer_info; | ||
1937 | struct pci_dev *pdev = adapter->pdev; | ||
1938 | unsigned long size; | ||
1939 | unsigned int i; | ||
1940 | |||
1941 | if (!rx_ring->buffer_info) | ||
1942 | return; | ||
1943 | /* Free all the Rx ring sk_buffs */ | ||
1944 | for (i = 0; i < rx_ring->count; i++) { | ||
1945 | buffer_info = &rx_ring->buffer_info[i]; | ||
1946 | if (buffer_info->dma) { | ||
1947 | if (adapter->rx_ps_hdr_size) | ||
1948 | pci_unmap_single(pdev, buffer_info->dma, | ||
1949 | adapter->rx_ps_hdr_size, | ||
1950 | PCI_DMA_FROMDEVICE); | ||
1951 | else | ||
1952 | pci_unmap_single(pdev, buffer_info->dma, | ||
1953 | adapter->rx_buffer_len, | ||
1954 | PCI_DMA_FROMDEVICE); | ||
1955 | buffer_info->dma = 0; | ||
1956 | } | ||
1957 | |||
1958 | if (buffer_info->skb) { | ||
1959 | dev_kfree_skb(buffer_info->skb); | ||
1960 | buffer_info->skb = NULL; | ||
1961 | } | ||
1962 | if (buffer_info->page) { | ||
1963 | pci_unmap_page(pdev, buffer_info->page_dma, | ||
1964 | PAGE_SIZE, PCI_DMA_FROMDEVICE); | ||
1965 | put_page(buffer_info->page); | ||
1966 | buffer_info->page = NULL; | ||
1967 | buffer_info->page_dma = 0; | ||
1968 | } | ||
1969 | } | ||
1970 | |||
1971 | /* there also may be some cached data from a chained receive */ | ||
1972 | if (rx_ring->pending_skb) { | ||
1973 | dev_kfree_skb(rx_ring->pending_skb); | ||
1974 | rx_ring->pending_skb = NULL; | ||
1975 | } | ||
1976 | |||
1977 | size = sizeof(struct igb_buffer) * rx_ring->count; | ||
1978 | memset(rx_ring->buffer_info, 0, size); | ||
1979 | |||
1980 | /* Zero out the descriptor ring */ | ||
1981 | memset(rx_ring->desc, 0, rx_ring->size); | ||
1982 | |||
1983 | rx_ring->next_to_clean = 0; | ||
1984 | rx_ring->next_to_use = 0; | ||
1985 | |||
1986 | writel(0, adapter->hw.hw_addr + rx_ring->head); | ||
1987 | writel(0, adapter->hw.hw_addr + rx_ring->tail); | ||
1988 | } | ||
1989 | |||
1990 | /** | ||
1991 | * igb_clean_all_rx_rings - Free Rx Buffers for all queues | ||
1992 | * @adapter: board private structure | ||
1993 | **/ | ||
1994 | static void igb_clean_all_rx_rings(struct igb_adapter *adapter) | ||
1995 | { | ||
1996 | int i; | ||
1997 | |||
1998 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
1999 | igb_clean_rx_ring(adapter, &adapter->rx_ring[i]); | ||
2000 | } | ||
2001 | |||
2002 | /** | ||
2003 | * igb_set_mac - Change the Ethernet Address of the NIC | ||
2004 | * @netdev: network interface device structure | ||
2005 | * @p: pointer to an address structure | ||
2006 | * | ||
2007 | * Returns 0 on success, negative on failure | ||
2008 | **/ | ||
2009 | static int igb_set_mac(struct net_device *netdev, void *p) | ||
2010 | { | ||
2011 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2012 | struct sockaddr *addr = p; | ||
2013 | |||
2014 | if (!is_valid_ether_addr(addr->sa_data)) | ||
2015 | return -EADDRNOTAVAIL; | ||
2016 | |||
2017 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | ||
2018 | memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); | ||
2019 | |||
2020 | adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0); | ||
2021 | |||
2022 | return 0; | ||
2023 | } | ||
2024 | |||
2025 | /** | ||
2026 | * igb_set_multi - Multicast and Promiscuous mode set | ||
2027 | * @netdev: network interface device structure | ||
2028 | * | ||
2029 | * The set_multi entry point is called whenever the multicast address | ||
2030 | * list or the network interface flags are updated. This routine is | ||
2031 | * responsible for configuring the hardware for proper multicast, | ||
2032 | * promiscuous mode, and all-multi behavior. | ||
2033 | **/ | ||
2034 | static void igb_set_multi(struct net_device *netdev) | ||
2035 | { | ||
2036 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2037 | struct e1000_hw *hw = &adapter->hw; | ||
2038 | struct e1000_mac_info *mac = &hw->mac; | ||
2039 | struct dev_mc_list *mc_ptr; | ||
2040 | u8 *mta_list; | ||
2041 | u32 rctl; | ||
2042 | int i; | ||
2043 | |||
2044 | /* Check for Promiscuous and All Multicast modes */ | ||
2045 | |||
2046 | rctl = rd32(E1000_RCTL); | ||
2047 | |||
2048 | if (netdev->flags & IFF_PROMISC) | ||
2049 | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | ||
2050 | else if (netdev->flags & IFF_ALLMULTI) { | ||
2051 | rctl |= E1000_RCTL_MPE; | ||
2052 | rctl &= ~E1000_RCTL_UPE; | ||
2053 | } else | ||
2054 | rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); | ||
2055 | |||
2056 | wr32(E1000_RCTL, rctl); | ||
2057 | |||
2058 | if (!netdev->mc_count) { | ||
2059 | /* nothing to program, so clear mc list */ | ||
2060 | igb_update_mc_addr_list(hw, NULL, 0, 1, | ||
2061 | mac->rar_entry_count); | ||
2062 | return; | ||
2063 | } | ||
2064 | |||
2065 | mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC); | ||
2066 | if (!mta_list) | ||
2067 | return; | ||
2068 | |||
2069 | /* The shared function expects a packed array of only addresses. */ | ||
2070 | mc_ptr = netdev->mc_list; | ||
2071 | |||
2072 | for (i = 0; i < netdev->mc_count; i++) { | ||
2073 | if (!mc_ptr) | ||
2074 | break; | ||
2075 | memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN); | ||
2076 | mc_ptr = mc_ptr->next; | ||
2077 | } | ||
2078 | igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count); | ||
2079 | kfree(mta_list); | ||
2080 | } | ||
2081 | |||
2082 | /* Need to wait a few seconds after link up to get diagnostic information from | ||
2083 | * the phy */ | ||
2084 | static void igb_update_phy_info(unsigned long data) | ||
2085 | { | ||
2086 | struct igb_adapter *adapter = (struct igb_adapter *) data; | ||
2087 | adapter->hw.phy.ops.get_phy_info(&adapter->hw); | ||
2088 | } | ||
2089 | |||
2090 | /** | ||
2091 | * igb_watchdog - Timer Call-back | ||
2092 | * @data: pointer to adapter cast into an unsigned long | ||
2093 | **/ | ||
2094 | static void igb_watchdog(unsigned long data) | ||
2095 | { | ||
2096 | struct igb_adapter *adapter = (struct igb_adapter *)data; | ||
2097 | /* Do the rest outside of interrupt context */ | ||
2098 | schedule_work(&adapter->watchdog_task); | ||
2099 | } | ||
2100 | |||
2101 | static void igb_watchdog_task(struct work_struct *work) | ||
2102 | { | ||
2103 | struct igb_adapter *adapter = container_of(work, | ||
2104 | struct igb_adapter, watchdog_task); | ||
2105 | struct e1000_hw *hw = &adapter->hw; | ||
2106 | |||
2107 | struct net_device *netdev = adapter->netdev; | ||
2108 | struct igb_ring *tx_ring = adapter->tx_ring; | ||
2109 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
2110 | u32 link; | ||
2111 | s32 ret_val; | ||
2112 | |||
2113 | if ((netif_carrier_ok(netdev)) && | ||
2114 | (rd32(E1000_STATUS) & E1000_STATUS_LU)) | ||
2115 | goto link_up; | ||
2116 | |||
2117 | ret_val = hw->mac.ops.check_for_link(&adapter->hw); | ||
2118 | if ((ret_val == E1000_ERR_PHY) && | ||
2119 | (hw->phy.type == e1000_phy_igp_3) && | ||
2120 | (rd32(E1000_CTRL) & | ||
2121 | E1000_PHY_CTRL_GBE_DISABLE)) | ||
2122 | dev_info(&adapter->pdev->dev, | ||
2123 | "Gigabit has been disabled, downgrading speed\n"); | ||
2124 | |||
2125 | if ((hw->phy.media_type == e1000_media_type_internal_serdes) && | ||
2126 | !(rd32(E1000_TXCW) & E1000_TXCW_ANE)) | ||
2127 | link = mac->serdes_has_link; | ||
2128 | else | ||
2129 | link = rd32(E1000_STATUS) & | ||
2130 | E1000_STATUS_LU; | ||
2131 | |||
2132 | if (link) { | ||
2133 | if (!netif_carrier_ok(netdev)) { | ||
2134 | u32 ctrl; | ||
2135 | hw->mac.ops.get_speed_and_duplex(&adapter->hw, | ||
2136 | &adapter->link_speed, | ||
2137 | &adapter->link_duplex); | ||
2138 | |||
2139 | ctrl = rd32(E1000_CTRL); | ||
2140 | dev_info(&adapter->pdev->dev, | ||
2141 | "NIC Link is Up %d Mbps %s, " | ||
2142 | "Flow Control: %s\n", | ||
2143 | adapter->link_speed, | ||
2144 | adapter->link_duplex == FULL_DUPLEX ? | ||
2145 | "Full Duplex" : "Half Duplex", | ||
2146 | ((ctrl & E1000_CTRL_TFCE) && (ctrl & | ||
2147 | E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & | ||
2148 | E1000_CTRL_RFCE) ? "RX" : ((ctrl & | ||
2149 | E1000_CTRL_TFCE) ? "TX" : "None"))); | ||
2150 | |||
2151 | /* tweak tx_queue_len according to speed/duplex and | ||
2152 | * adjust the timeout factor */ | ||
2153 | netdev->tx_queue_len = adapter->tx_queue_len; | ||
2154 | adapter->tx_timeout_factor = 1; | ||
2155 | switch (adapter->link_speed) { | ||
2156 | case SPEED_10: | ||
2157 | netdev->tx_queue_len = 10; | ||
2158 | adapter->tx_timeout_factor = 14; | ||
2159 | break; | ||
2160 | case SPEED_100: | ||
2161 | netdev->tx_queue_len = 100; | ||
2162 | /* maybe add some timeout factor ? */ | ||
2163 | break; | ||
2164 | } | ||
2165 | |||
2166 | netif_carrier_on(netdev); | ||
2167 | netif_wake_queue(netdev); | ||
2168 | |||
2169 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
2170 | mod_timer(&adapter->phy_info_timer, | ||
2171 | round_jiffies(jiffies + 2 * HZ)); | ||
2172 | } | ||
2173 | } else { | ||
2174 | if (netif_carrier_ok(netdev)) { | ||
2175 | adapter->link_speed = 0; | ||
2176 | adapter->link_duplex = 0; | ||
2177 | dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); | ||
2178 | netif_carrier_off(netdev); | ||
2179 | netif_stop_queue(netdev); | ||
2180 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
2181 | mod_timer(&adapter->phy_info_timer, | ||
2182 | round_jiffies(jiffies + 2 * HZ)); | ||
2183 | } | ||
2184 | } | ||
2185 | |||
2186 | link_up: | ||
2187 | igb_update_stats(adapter); | ||
2188 | |||
2189 | mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; | ||
2190 | adapter->tpt_old = adapter->stats.tpt; | ||
2191 | mac->collision_delta = adapter->stats.colc - adapter->colc_old; | ||
2192 | adapter->colc_old = adapter->stats.colc; | ||
2193 | |||
2194 | adapter->gorc = adapter->stats.gorc - adapter->gorc_old; | ||
2195 | adapter->gorc_old = adapter->stats.gorc; | ||
2196 | adapter->gotc = adapter->stats.gotc - adapter->gotc_old; | ||
2197 | adapter->gotc_old = adapter->stats.gotc; | ||
2198 | |||
2199 | igb_update_adaptive(&adapter->hw); | ||
2200 | |||
2201 | if (!netif_carrier_ok(netdev)) { | ||
2202 | if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) { | ||
2203 | /* We've lost link, so the controller stops DMA, | ||
2204 | * but we've got queued Tx work that's never going | ||
2205 | * to get done, so reset controller to flush Tx. | ||
2206 | * (Do the reset outside of interrupt context). */ | ||
2207 | adapter->tx_timeout_count++; | ||
2208 | schedule_work(&adapter->reset_task); | ||
2209 | } | ||
2210 | } | ||
2211 | |||
2212 | /* Cause software interrupt to ensure rx ring is cleaned */ | ||
2213 | wr32(E1000_ICS, E1000_ICS_RXDMT0); | ||
2214 | |||
2215 | /* Force detection of hung controller every watchdog period */ | ||
2216 | tx_ring->detect_tx_hung = true; | ||
2217 | |||
2218 | /* Reset the timer */ | ||
2219 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
2220 | mod_timer(&adapter->watchdog_timer, | ||
2221 | round_jiffies(jiffies + 2 * HZ)); | ||
2222 | } | ||
2223 | |||
2224 | enum latency_range { | ||
2225 | lowest_latency = 0, | ||
2226 | low_latency = 1, | ||
2227 | bulk_latency = 2, | ||
2228 | latency_invalid = 255 | ||
2229 | }; | ||
2230 | |||
2231 | |||
2232 | static void igb_lower_rx_eitr(struct igb_adapter *adapter, | ||
2233 | struct igb_ring *rx_ring) | ||
2234 | { | ||
2235 | struct e1000_hw *hw = &adapter->hw; | ||
2236 | int new_val; | ||
2237 | |||
2238 | new_val = rx_ring->itr_val / 2; | ||
2239 | if (new_val < IGB_MIN_DYN_ITR) | ||
2240 | new_val = IGB_MIN_DYN_ITR; | ||
2241 | |||
2242 | if (new_val != rx_ring->itr_val) { | ||
2243 | rx_ring->itr_val = new_val; | ||
2244 | wr32(rx_ring->itr_register, | ||
2245 | 1000000000 / (new_val * 256)); | ||
2246 | } | ||
2247 | } | ||
2248 | |||
2249 | static void igb_raise_rx_eitr(struct igb_adapter *adapter, | ||
2250 | struct igb_ring *rx_ring) | ||
2251 | { | ||
2252 | struct e1000_hw *hw = &adapter->hw; | ||
2253 | int new_val; | ||
2254 | |||
2255 | new_val = rx_ring->itr_val * 2; | ||
2256 | if (new_val > IGB_MAX_DYN_ITR) | ||
2257 | new_val = IGB_MAX_DYN_ITR; | ||
2258 | |||
2259 | if (new_val != rx_ring->itr_val) { | ||
2260 | rx_ring->itr_val = new_val; | ||
2261 | wr32(rx_ring->itr_register, | ||
2262 | 1000000000 / (new_val * 256)); | ||
2263 | } | ||
2264 | } | ||
2265 | |||
2266 | /** | ||
2267 | * igb_update_itr - update the dynamic ITR value based on statistics | ||
2268 | * Stores a new ITR value based on packets and byte | ||
2269 | * counts during the last interrupt. The advantage of per interrupt | ||
2270 | * computation is faster updates and more accurate ITR for the current | ||
2271 | * traffic pattern. Constants in this function were computed | ||
2272 | * based on theoretical maximum wire speed and thresholds were set based | ||
2273 | * on testing data as well as attempting to minimize response time | ||
2274 | * while increasing bulk throughput. | ||
2275 | * this functionality is controlled by the InterruptThrottleRate module | ||
2276 | * parameter (see igb_param.c) | ||
2277 | * NOTE: These calculations are only valid when operating in a single- | ||
2278 | * queue environment. | ||
2279 | * @adapter: pointer to adapter | ||
2280 | * @itr_setting: current adapter->itr | ||
2281 | * @packets: the number of packets during this measurement interval | ||
2282 | * @bytes: the number of bytes during this measurement interval | ||
2283 | **/ | ||
2284 | static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting, | ||
2285 | int packets, int bytes) | ||
2286 | { | ||
2287 | unsigned int retval = itr_setting; | ||
2288 | |||
2289 | if (packets == 0) | ||
2290 | goto update_itr_done; | ||
2291 | |||
2292 | switch (itr_setting) { | ||
2293 | case lowest_latency: | ||
2294 | /* handle TSO and jumbo frames */ | ||
2295 | if (bytes/packets > 8000) | ||
2296 | retval = bulk_latency; | ||
2297 | else if ((packets < 5) && (bytes > 512)) | ||
2298 | retval = low_latency; | ||
2299 | break; | ||
2300 | case low_latency: /* 50 usec aka 20000 ints/s */ | ||
2301 | if (bytes > 10000) { | ||
2302 | /* this if handles the TSO accounting */ | ||
2303 | if (bytes/packets > 8000) { | ||
2304 | retval = bulk_latency; | ||
2305 | } else if ((packets < 10) || ((bytes/packets) > 1200)) { | ||
2306 | retval = bulk_latency; | ||
2307 | } else if ((packets > 35)) { | ||
2308 | retval = lowest_latency; | ||
2309 | } | ||
2310 | } else if (bytes/packets > 2000) { | ||
2311 | retval = bulk_latency; | ||
2312 | } else if (packets <= 2 && bytes < 512) { | ||
2313 | retval = lowest_latency; | ||
2314 | } | ||
2315 | break; | ||
2316 | case bulk_latency: /* 250 usec aka 4000 ints/s */ | ||
2317 | if (bytes > 25000) { | ||
2318 | if (packets > 35) | ||
2319 | retval = low_latency; | ||
2320 | } else if (bytes < 6000) { | ||
2321 | retval = low_latency; | ||
2322 | } | ||
2323 | break; | ||
2324 | } | ||
2325 | |||
2326 | update_itr_done: | ||
2327 | return retval; | ||
2328 | } | ||
2329 | |||
2330 | static void igb_set_itr(struct igb_adapter *adapter, u16 itr_register, | ||
2331 | int rx_only) | ||
2332 | { | ||
2333 | u16 current_itr; | ||
2334 | u32 new_itr = adapter->itr; | ||
2335 | |||
2336 | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | ||
2337 | if (adapter->link_speed != SPEED_1000) { | ||
2338 | current_itr = 0; | ||
2339 | new_itr = 4000; | ||
2340 | goto set_itr_now; | ||
2341 | } | ||
2342 | |||
2343 | adapter->rx_itr = igb_update_itr(adapter, | ||
2344 | adapter->rx_itr, | ||
2345 | adapter->rx_ring->total_packets, | ||
2346 | adapter->rx_ring->total_bytes); | ||
2347 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
2348 | if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) | ||
2349 | adapter->rx_itr = low_latency; | ||
2350 | |||
2351 | if (!rx_only) { | ||
2352 | adapter->tx_itr = igb_update_itr(adapter, | ||
2353 | adapter->tx_itr, | ||
2354 | adapter->tx_ring->total_packets, | ||
2355 | adapter->tx_ring->total_bytes); | ||
2356 | /* conservative mode (itr 3) eliminates the | ||
2357 | * lowest_latency setting */ | ||
2358 | if (adapter->itr_setting == 3 && | ||
2359 | adapter->tx_itr == lowest_latency) | ||
2360 | adapter->tx_itr = low_latency; | ||
2361 | |||
2362 | current_itr = max(adapter->rx_itr, adapter->tx_itr); | ||
2363 | } else { | ||
2364 | current_itr = adapter->rx_itr; | ||
2365 | } | ||
2366 | |||
2367 | switch (current_itr) { | ||
2368 | /* counts and packets in update_itr are dependent on these numbers */ | ||
2369 | case lowest_latency: | ||
2370 | new_itr = 70000; | ||
2371 | break; | ||
2372 | case low_latency: | ||
2373 | new_itr = 20000; /* aka hwitr = ~200 */ | ||
2374 | break; | ||
2375 | case bulk_latency: | ||
2376 | new_itr = 4000; | ||
2377 | break; | ||
2378 | default: | ||
2379 | break; | ||
2380 | } | ||
2381 | |||
2382 | set_itr_now: | ||
2383 | if (new_itr != adapter->itr) { | ||
2384 | /* this attempts to bias the interrupt rate towards Bulk | ||
2385 | * by adding intermediate steps when interrupt rate is | ||
2386 | * increasing */ | ||
2387 | new_itr = new_itr > adapter->itr ? | ||
2388 | min(adapter->itr + (new_itr >> 2), new_itr) : | ||
2389 | new_itr; | ||
2390 | /* Don't write the value here; it resets the adapter's | ||
2391 | * internal timer, and causes us to delay far longer than | ||
2392 | * we should between interrupts. Instead, we write the ITR | ||
2393 | * value at the beginning of the next interrupt so the timing | ||
2394 | * ends up being correct. | ||
2395 | */ | ||
2396 | adapter->itr = new_itr; | ||
2397 | adapter->set_itr = 1; | ||
2398 | } | ||
2399 | |||
2400 | return; | ||
2401 | } | ||
2402 | |||
2403 | |||
2404 | #define IGB_TX_FLAGS_CSUM 0x00000001 | ||
2405 | #define IGB_TX_FLAGS_VLAN 0x00000002 | ||
2406 | #define IGB_TX_FLAGS_TSO 0x00000004 | ||
2407 | #define IGB_TX_FLAGS_IPV4 0x00000008 | ||
2408 | #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000 | ||
2409 | #define IGB_TX_FLAGS_VLAN_SHIFT 16 | ||
2410 | |||
2411 | static inline int igb_tso_adv(struct igb_adapter *adapter, | ||
2412 | struct igb_ring *tx_ring, | ||
2413 | struct sk_buff *skb, u32 tx_flags, u8 *hdr_len) | ||
2414 | { | ||
2415 | struct e1000_adv_tx_context_desc *context_desc; | ||
2416 | unsigned int i; | ||
2417 | int err; | ||
2418 | struct igb_buffer *buffer_info; | ||
2419 | u32 info = 0, tu_cmd = 0; | ||
2420 | u32 mss_l4len_idx, l4len; | ||
2421 | *hdr_len = 0; | ||
2422 | |||
2423 | if (skb_header_cloned(skb)) { | ||
2424 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | ||
2425 | if (err) | ||
2426 | return err; | ||
2427 | } | ||
2428 | |||
2429 | l4len = tcp_hdrlen(skb); | ||
2430 | *hdr_len += l4len; | ||
2431 | |||
2432 | if (skb->protocol == htons(ETH_P_IP)) { | ||
2433 | struct iphdr *iph = ip_hdr(skb); | ||
2434 | iph->tot_len = 0; | ||
2435 | iph->check = 0; | ||
2436 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, | ||
2437 | iph->daddr, 0, | ||
2438 | IPPROTO_TCP, | ||
2439 | 0); | ||
2440 | } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) { | ||
2441 | ipv6_hdr(skb)->payload_len = 0; | ||
2442 | tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | ||
2443 | &ipv6_hdr(skb)->daddr, | ||
2444 | 0, IPPROTO_TCP, 0); | ||
2445 | } | ||
2446 | |||
2447 | i = tx_ring->next_to_use; | ||
2448 | |||
2449 | buffer_info = &tx_ring->buffer_info[i]; | ||
2450 | context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i); | ||
2451 | /* VLAN MACLEN IPLEN */ | ||
2452 | if (tx_flags & IGB_TX_FLAGS_VLAN) | ||
2453 | info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK); | ||
2454 | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); | ||
2455 | *hdr_len += skb_network_offset(skb); | ||
2456 | info |= skb_network_header_len(skb); | ||
2457 | *hdr_len += skb_network_header_len(skb); | ||
2458 | context_desc->vlan_macip_lens = cpu_to_le32(info); | ||
2459 | |||
2460 | /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ | ||
2461 | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); | ||
2462 | |||
2463 | if (skb->protocol == htons(ETH_P_IP)) | ||
2464 | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; | ||
2465 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
2466 | |||
2467 | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); | ||
2468 | |||
2469 | /* MSS L4LEN IDX */ | ||
2470 | mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT); | ||
2471 | mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT); | ||
2472 | |||
2473 | /* Context index must be unique per ring. Luckily, so is the interrupt | ||
2474 | * mask value. */ | ||
2475 | mss_l4len_idx |= tx_ring->eims_value >> 4; | ||
2476 | |||
2477 | context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); | ||
2478 | context_desc->seqnum_seed = 0; | ||
2479 | |||
2480 | buffer_info->time_stamp = jiffies; | ||
2481 | buffer_info->dma = 0; | ||
2482 | i++; | ||
2483 | if (i == tx_ring->count) | ||
2484 | i = 0; | ||
2485 | |||
2486 | tx_ring->next_to_use = i; | ||
2487 | |||
2488 | return true; | ||
2489 | } | ||
2490 | |||
2491 | static inline bool igb_tx_csum_adv(struct igb_adapter *adapter, | ||
2492 | struct igb_ring *tx_ring, | ||
2493 | struct sk_buff *skb, u32 tx_flags) | ||
2494 | { | ||
2495 | struct e1000_adv_tx_context_desc *context_desc; | ||
2496 | unsigned int i; | ||
2497 | struct igb_buffer *buffer_info; | ||
2498 | u32 info = 0, tu_cmd = 0; | ||
2499 | |||
2500 | if ((skb->ip_summed == CHECKSUM_PARTIAL) || | ||
2501 | (tx_flags & IGB_TX_FLAGS_VLAN)) { | ||
2502 | i = tx_ring->next_to_use; | ||
2503 | buffer_info = &tx_ring->buffer_info[i]; | ||
2504 | context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i); | ||
2505 | |||
2506 | if (tx_flags & IGB_TX_FLAGS_VLAN) | ||
2507 | info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK); | ||
2508 | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); | ||
2509 | if (skb->ip_summed == CHECKSUM_PARTIAL) | ||
2510 | info |= skb_network_header_len(skb); | ||
2511 | |||
2512 | context_desc->vlan_macip_lens = cpu_to_le32(info); | ||
2513 | |||
2514 | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); | ||
2515 | |||
2516 | if (skb->ip_summed == CHECKSUM_PARTIAL) { | ||
2517 | if (skb->protocol == htons(ETH_P_IP)) | ||
2518 | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; | ||
2519 | if (skb->sk && (skb->sk->sk_protocol == IPPROTO_TCP)) | ||
2520 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
2521 | } | ||
2522 | |||
2523 | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); | ||
2524 | context_desc->seqnum_seed = 0; | ||
2525 | context_desc->mss_l4len_idx = | ||
2526 | cpu_to_le32(tx_ring->eims_value >> 4); | ||
2527 | |||
2528 | buffer_info->time_stamp = jiffies; | ||
2529 | buffer_info->dma = 0; | ||
2530 | |||
2531 | i++; | ||
2532 | if (i == tx_ring->count) | ||
2533 | i = 0; | ||
2534 | tx_ring->next_to_use = i; | ||
2535 | |||
2536 | return true; | ||
2537 | } | ||
2538 | |||
2539 | |||
2540 | return false; | ||
2541 | } | ||
2542 | |||
2543 | #define IGB_MAX_TXD_PWR 16 | ||
2544 | #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR) | ||
2545 | |||
2546 | static inline int igb_tx_map_adv(struct igb_adapter *adapter, | ||
2547 | struct igb_ring *tx_ring, | ||
2548 | struct sk_buff *skb) | ||
2549 | { | ||
2550 | struct igb_buffer *buffer_info; | ||
2551 | unsigned int len = skb_headlen(skb); | ||
2552 | unsigned int count = 0, i; | ||
2553 | unsigned int f; | ||
2554 | |||
2555 | i = tx_ring->next_to_use; | ||
2556 | |||
2557 | buffer_info = &tx_ring->buffer_info[i]; | ||
2558 | BUG_ON(len >= IGB_MAX_DATA_PER_TXD); | ||
2559 | buffer_info->length = len; | ||
2560 | /* set time_stamp *before* dma to help avoid a possible race */ | ||
2561 | buffer_info->time_stamp = jiffies; | ||
2562 | buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len, | ||
2563 | PCI_DMA_TODEVICE); | ||
2564 | count++; | ||
2565 | i++; | ||
2566 | if (i == tx_ring->count) | ||
2567 | i = 0; | ||
2568 | |||
2569 | for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { | ||
2570 | struct skb_frag_struct *frag; | ||
2571 | |||
2572 | frag = &skb_shinfo(skb)->frags[f]; | ||
2573 | len = frag->size; | ||
2574 | |||
2575 | buffer_info = &tx_ring->buffer_info[i]; | ||
2576 | BUG_ON(len >= IGB_MAX_DATA_PER_TXD); | ||
2577 | buffer_info->length = len; | ||
2578 | buffer_info->time_stamp = jiffies; | ||
2579 | buffer_info->dma = pci_map_page(adapter->pdev, | ||
2580 | frag->page, | ||
2581 | frag->page_offset, | ||
2582 | len, | ||
2583 | PCI_DMA_TODEVICE); | ||
2584 | |||
2585 | count++; | ||
2586 | i++; | ||
2587 | if (i == tx_ring->count) | ||
2588 | i = 0; | ||
2589 | } | ||
2590 | |||
2591 | i = (i == 0) ? tx_ring->count - 1 : i - 1; | ||
2592 | tx_ring->buffer_info[i].skb = skb; | ||
2593 | |||
2594 | return count; | ||
2595 | } | ||
2596 | |||
2597 | static inline void igb_tx_queue_adv(struct igb_adapter *adapter, | ||
2598 | struct igb_ring *tx_ring, | ||
2599 | int tx_flags, int count, u32 paylen, | ||
2600 | u8 hdr_len) | ||
2601 | { | ||
2602 | union e1000_adv_tx_desc *tx_desc = NULL; | ||
2603 | struct igb_buffer *buffer_info; | ||
2604 | u32 olinfo_status = 0, cmd_type_len; | ||
2605 | unsigned int i; | ||
2606 | |||
2607 | cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | | ||
2608 | E1000_ADVTXD_DCMD_DEXT); | ||
2609 | |||
2610 | if (tx_flags & IGB_TX_FLAGS_VLAN) | ||
2611 | cmd_type_len |= E1000_ADVTXD_DCMD_VLE; | ||
2612 | |||
2613 | if (tx_flags & IGB_TX_FLAGS_TSO) { | ||
2614 | cmd_type_len |= E1000_ADVTXD_DCMD_TSE; | ||
2615 | |||
2616 | /* insert tcp checksum */ | ||
2617 | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; | ||
2618 | |||
2619 | /* insert ip checksum */ | ||
2620 | if (tx_flags & IGB_TX_FLAGS_IPV4) | ||
2621 | olinfo_status |= E1000_TXD_POPTS_IXSM << 8; | ||
2622 | |||
2623 | } else if (tx_flags & IGB_TX_FLAGS_CSUM) { | ||
2624 | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; | ||
2625 | } | ||
2626 | |||
2627 | if (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO | | ||
2628 | IGB_TX_FLAGS_VLAN)) | ||
2629 | olinfo_status |= tx_ring->eims_value >> 4; | ||
2630 | |||
2631 | olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); | ||
2632 | |||
2633 | i = tx_ring->next_to_use; | ||
2634 | while (count--) { | ||
2635 | buffer_info = &tx_ring->buffer_info[i]; | ||
2636 | tx_desc = E1000_TX_DESC_ADV(*tx_ring, i); | ||
2637 | tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); | ||
2638 | tx_desc->read.cmd_type_len = | ||
2639 | cpu_to_le32(cmd_type_len | buffer_info->length); | ||
2640 | tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); | ||
2641 | i++; | ||
2642 | if (i == tx_ring->count) | ||
2643 | i = 0; | ||
2644 | } | ||
2645 | |||
2646 | tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd); | ||
2647 | /* Force memory writes to complete before letting h/w | ||
2648 | * know there are new descriptors to fetch. (Only | ||
2649 | * applicable for weak-ordered memory model archs, | ||
2650 | * such as IA-64). */ | ||
2651 | wmb(); | ||
2652 | |||
2653 | tx_ring->next_to_use = i; | ||
2654 | writel(i, adapter->hw.hw_addr + tx_ring->tail); | ||
2655 | /* we need this if more than one processor can write to our tail | ||
2656 | * at a time, it syncronizes IO on IA64/Altix systems */ | ||
2657 | mmiowb(); | ||
2658 | } | ||
2659 | |||
2660 | static int __igb_maybe_stop_tx(struct net_device *netdev, | ||
2661 | struct igb_ring *tx_ring, int size) | ||
2662 | { | ||
2663 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2664 | |||
2665 | netif_stop_queue(netdev); | ||
2666 | /* Herbert's original patch had: | ||
2667 | * smp_mb__after_netif_stop_queue(); | ||
2668 | * but since that doesn't exist yet, just open code it. */ | ||
2669 | smp_mb(); | ||
2670 | |||
2671 | /* We need to check again in a case another CPU has just | ||
2672 | * made room available. */ | ||
2673 | if (IGB_DESC_UNUSED(tx_ring) < size) | ||
2674 | return -EBUSY; | ||
2675 | |||
2676 | /* A reprieve! */ | ||
2677 | netif_start_queue(netdev); | ||
2678 | ++adapter->restart_queue; | ||
2679 | return 0; | ||
2680 | } | ||
2681 | |||
2682 | static int igb_maybe_stop_tx(struct net_device *netdev, | ||
2683 | struct igb_ring *tx_ring, int size) | ||
2684 | { | ||
2685 | if (IGB_DESC_UNUSED(tx_ring) >= size) | ||
2686 | return 0; | ||
2687 | return __igb_maybe_stop_tx(netdev, tx_ring, size); | ||
2688 | } | ||
2689 | |||
2690 | #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1) | ||
2691 | |||
2692 | static int igb_xmit_frame_ring_adv(struct sk_buff *skb, | ||
2693 | struct net_device *netdev, | ||
2694 | struct igb_ring *tx_ring) | ||
2695 | { | ||
2696 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2697 | unsigned int tx_flags = 0; | ||
2698 | unsigned int len; | ||
2699 | unsigned long irq_flags; | ||
2700 | u8 hdr_len = 0; | ||
2701 | int tso = 0; | ||
2702 | |||
2703 | len = skb_headlen(skb); | ||
2704 | |||
2705 | if (test_bit(__IGB_DOWN, &adapter->state)) { | ||
2706 | dev_kfree_skb_any(skb); | ||
2707 | return NETDEV_TX_OK; | ||
2708 | } | ||
2709 | |||
2710 | if (skb->len <= 0) { | ||
2711 | dev_kfree_skb_any(skb); | ||
2712 | return NETDEV_TX_OK; | ||
2713 | } | ||
2714 | |||
2715 | if (!spin_trylock_irqsave(&tx_ring->tx_lock, irq_flags)) | ||
2716 | /* Collision - tell upper layer to requeue */ | ||
2717 | return NETDEV_TX_LOCKED; | ||
2718 | |||
2719 | /* need: 1 descriptor per page, | ||
2720 | * + 2 desc gap to keep tail from touching head, | ||
2721 | * + 1 desc for skb->data, | ||
2722 | * + 1 desc for context descriptor, | ||
2723 | * otherwise try next time */ | ||
2724 | if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) { | ||
2725 | /* this is a hard error */ | ||
2726 | spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags); | ||
2727 | return NETDEV_TX_BUSY; | ||
2728 | } | ||
2729 | |||
2730 | if (adapter->vlgrp && vlan_tx_tag_present(skb)) { | ||
2731 | tx_flags |= IGB_TX_FLAGS_VLAN; | ||
2732 | tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); | ||
2733 | } | ||
2734 | |||
2735 | tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags, | ||
2736 | &hdr_len) : 0; | ||
2737 | |||
2738 | if (tso < 0) { | ||
2739 | dev_kfree_skb_any(skb); | ||
2740 | spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags); | ||
2741 | return NETDEV_TX_OK; | ||
2742 | } | ||
2743 | |||
2744 | if (tso) | ||
2745 | tx_flags |= IGB_TX_FLAGS_TSO; | ||
2746 | else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags)) | ||
2747 | if (skb->ip_summed == CHECKSUM_PARTIAL) | ||
2748 | tx_flags |= IGB_TX_FLAGS_CSUM; | ||
2749 | |||
2750 | if (skb->protocol == htons(ETH_P_IP)) | ||
2751 | tx_flags |= IGB_TX_FLAGS_IPV4; | ||
2752 | |||
2753 | igb_tx_queue_adv(adapter, tx_ring, tx_flags, | ||
2754 | igb_tx_map_adv(adapter, tx_ring, skb), | ||
2755 | skb->len, hdr_len); | ||
2756 | |||
2757 | netdev->trans_start = jiffies; | ||
2758 | |||
2759 | /* Make sure there is space in the ring for the next send. */ | ||
2760 | igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4); | ||
2761 | |||
2762 | spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags); | ||
2763 | return NETDEV_TX_OK; | ||
2764 | } | ||
2765 | |||
2766 | static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev) | ||
2767 | { | ||
2768 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2769 | struct igb_ring *tx_ring = &adapter->tx_ring[0]; | ||
2770 | |||
2771 | /* This goes back to the question of how to logically map a tx queue | ||
2772 | * to a flow. Right now, performance is impacted slightly negatively | ||
2773 | * if using multiple tx queues. If the stack breaks away from a | ||
2774 | * single qdisc implementation, we can look at this again. */ | ||
2775 | return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring)); | ||
2776 | } | ||
2777 | |||
2778 | /** | ||
2779 | * igb_tx_timeout - Respond to a Tx Hang | ||
2780 | * @netdev: network interface device structure | ||
2781 | **/ | ||
2782 | static void igb_tx_timeout(struct net_device *netdev) | ||
2783 | { | ||
2784 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2785 | struct e1000_hw *hw = &adapter->hw; | ||
2786 | |||
2787 | /* Do the reset outside of interrupt context */ | ||
2788 | adapter->tx_timeout_count++; | ||
2789 | schedule_work(&adapter->reset_task); | ||
2790 | wr32(E1000_EICS, adapter->eims_enable_mask & | ||
2791 | ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER)); | ||
2792 | } | ||
2793 | |||
2794 | static void igb_reset_task(struct work_struct *work) | ||
2795 | { | ||
2796 | struct igb_adapter *adapter; | ||
2797 | adapter = container_of(work, struct igb_adapter, reset_task); | ||
2798 | |||
2799 | igb_reinit_locked(adapter); | ||
2800 | } | ||
2801 | |||
2802 | /** | ||
2803 | * igb_get_stats - Get System Network Statistics | ||
2804 | * @netdev: network interface device structure | ||
2805 | * | ||
2806 | * Returns the address of the device statistics structure. | ||
2807 | * The statistics are actually updated from the timer callback. | ||
2808 | **/ | ||
2809 | static struct net_device_stats * | ||
2810 | igb_get_stats(struct net_device *netdev) | ||
2811 | { | ||
2812 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2813 | |||
2814 | /* only return the current stats */ | ||
2815 | return &adapter->net_stats; | ||
2816 | } | ||
2817 | |||
2818 | /** | ||
2819 | * igb_change_mtu - Change the Maximum Transfer Unit | ||
2820 | * @netdev: network interface device structure | ||
2821 | * @new_mtu: new value for maximum frame size | ||
2822 | * | ||
2823 | * Returns 0 on success, negative on failure | ||
2824 | **/ | ||
2825 | static int igb_change_mtu(struct net_device *netdev, int new_mtu) | ||
2826 | { | ||
2827 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2828 | int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; | ||
2829 | |||
2830 | if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) || | ||
2831 | (max_frame > MAX_JUMBO_FRAME_SIZE)) { | ||
2832 | dev_err(&adapter->pdev->dev, "Invalid MTU setting\n"); | ||
2833 | return -EINVAL; | ||
2834 | } | ||
2835 | |||
2836 | #define MAX_STD_JUMBO_FRAME_SIZE 9234 | ||
2837 | if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { | ||
2838 | dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n"); | ||
2839 | return -EINVAL; | ||
2840 | } | ||
2841 | |||
2842 | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) | ||
2843 | msleep(1); | ||
2844 | /* igb_down has a dependency on max_frame_size */ | ||
2845 | adapter->max_frame_size = max_frame; | ||
2846 | if (netif_running(netdev)) | ||
2847 | igb_down(adapter); | ||
2848 | |||
2849 | /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | ||
2850 | * means we reserve 2 more, this pushes us to allocate from the next | ||
2851 | * larger slab size. | ||
2852 | * i.e. RXBUFFER_2048 --> size-4096 slab | ||
2853 | */ | ||
2854 | |||
2855 | if (max_frame <= IGB_RXBUFFER_256) | ||
2856 | adapter->rx_buffer_len = IGB_RXBUFFER_256; | ||
2857 | else if (max_frame <= IGB_RXBUFFER_512) | ||
2858 | adapter->rx_buffer_len = IGB_RXBUFFER_512; | ||
2859 | else if (max_frame <= IGB_RXBUFFER_1024) | ||
2860 | adapter->rx_buffer_len = IGB_RXBUFFER_1024; | ||
2861 | else if (max_frame <= IGB_RXBUFFER_2048) | ||
2862 | adapter->rx_buffer_len = IGB_RXBUFFER_2048; | ||
2863 | else | ||
2864 | adapter->rx_buffer_len = IGB_RXBUFFER_4096; | ||
2865 | /* adjust allocation if LPE protects us, and we aren't using SBP */ | ||
2866 | if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || | ||
2867 | (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)) | ||
2868 | adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | ||
2869 | |||
2870 | dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n", | ||
2871 | netdev->mtu, new_mtu); | ||
2872 | netdev->mtu = new_mtu; | ||
2873 | |||
2874 | if (netif_running(netdev)) | ||
2875 | igb_up(adapter); | ||
2876 | else | ||
2877 | igb_reset(adapter); | ||
2878 | |||
2879 | clear_bit(__IGB_RESETTING, &adapter->state); | ||
2880 | |||
2881 | return 0; | ||
2882 | } | ||
2883 | |||
2884 | /** | ||
2885 | * igb_update_stats - Update the board statistics counters | ||
2886 | * @adapter: board private structure | ||
2887 | **/ | ||
2888 | |||
2889 | void igb_update_stats(struct igb_adapter *adapter) | ||
2890 | { | ||
2891 | struct e1000_hw *hw = &adapter->hw; | ||
2892 | struct pci_dev *pdev = adapter->pdev; | ||
2893 | u16 phy_tmp; | ||
2894 | |||
2895 | #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF | ||
2896 | |||
2897 | /* | ||
2898 | * Prevent stats update while adapter is being reset, or if the pci | ||
2899 | * connection is down. | ||
2900 | */ | ||
2901 | if (adapter->link_speed == 0) | ||
2902 | return; | ||
2903 | if (pci_channel_offline(pdev)) | ||
2904 | return; | ||
2905 | |||
2906 | adapter->stats.crcerrs += rd32(E1000_CRCERRS); | ||
2907 | adapter->stats.gprc += rd32(E1000_GPRC); | ||
2908 | adapter->stats.gorc += rd32(E1000_GORCL); | ||
2909 | rd32(E1000_GORCH); /* clear GORCL */ | ||
2910 | adapter->stats.bprc += rd32(E1000_BPRC); | ||
2911 | adapter->stats.mprc += rd32(E1000_MPRC); | ||
2912 | adapter->stats.roc += rd32(E1000_ROC); | ||
2913 | |||
2914 | adapter->stats.prc64 += rd32(E1000_PRC64); | ||
2915 | adapter->stats.prc127 += rd32(E1000_PRC127); | ||
2916 | adapter->stats.prc255 += rd32(E1000_PRC255); | ||
2917 | adapter->stats.prc511 += rd32(E1000_PRC511); | ||
2918 | adapter->stats.prc1023 += rd32(E1000_PRC1023); | ||
2919 | adapter->stats.prc1522 += rd32(E1000_PRC1522); | ||
2920 | adapter->stats.symerrs += rd32(E1000_SYMERRS); | ||
2921 | adapter->stats.sec += rd32(E1000_SEC); | ||
2922 | |||
2923 | adapter->stats.mpc += rd32(E1000_MPC); | ||
2924 | adapter->stats.scc += rd32(E1000_SCC); | ||
2925 | adapter->stats.ecol += rd32(E1000_ECOL); | ||
2926 | adapter->stats.mcc += rd32(E1000_MCC); | ||
2927 | adapter->stats.latecol += rd32(E1000_LATECOL); | ||
2928 | adapter->stats.dc += rd32(E1000_DC); | ||
2929 | adapter->stats.rlec += rd32(E1000_RLEC); | ||
2930 | adapter->stats.xonrxc += rd32(E1000_XONRXC); | ||
2931 | adapter->stats.xontxc += rd32(E1000_XONTXC); | ||
2932 | adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); | ||
2933 | adapter->stats.xofftxc += rd32(E1000_XOFFTXC); | ||
2934 | adapter->stats.fcruc += rd32(E1000_FCRUC); | ||
2935 | adapter->stats.gptc += rd32(E1000_GPTC); | ||
2936 | adapter->stats.gotc += rd32(E1000_GOTCL); | ||
2937 | rd32(E1000_GOTCH); /* clear GOTCL */ | ||
2938 | adapter->stats.rnbc += rd32(E1000_RNBC); | ||
2939 | adapter->stats.ruc += rd32(E1000_RUC); | ||
2940 | adapter->stats.rfc += rd32(E1000_RFC); | ||
2941 | adapter->stats.rjc += rd32(E1000_RJC); | ||
2942 | adapter->stats.tor += rd32(E1000_TORH); | ||
2943 | adapter->stats.tot += rd32(E1000_TOTH); | ||
2944 | adapter->stats.tpr += rd32(E1000_TPR); | ||
2945 | |||
2946 | adapter->stats.ptc64 += rd32(E1000_PTC64); | ||
2947 | adapter->stats.ptc127 += rd32(E1000_PTC127); | ||
2948 | adapter->stats.ptc255 += rd32(E1000_PTC255); | ||
2949 | adapter->stats.ptc511 += rd32(E1000_PTC511); | ||
2950 | adapter->stats.ptc1023 += rd32(E1000_PTC1023); | ||
2951 | adapter->stats.ptc1522 += rd32(E1000_PTC1522); | ||
2952 | |||
2953 | adapter->stats.mptc += rd32(E1000_MPTC); | ||
2954 | adapter->stats.bptc += rd32(E1000_BPTC); | ||
2955 | |||
2956 | /* used for adaptive IFS */ | ||
2957 | |||
2958 | hw->mac.tx_packet_delta = rd32(E1000_TPT); | ||
2959 | adapter->stats.tpt += hw->mac.tx_packet_delta; | ||
2960 | hw->mac.collision_delta = rd32(E1000_COLC); | ||
2961 | adapter->stats.colc += hw->mac.collision_delta; | ||
2962 | |||
2963 | adapter->stats.algnerrc += rd32(E1000_ALGNERRC); | ||
2964 | adapter->stats.rxerrc += rd32(E1000_RXERRC); | ||
2965 | adapter->stats.tncrs += rd32(E1000_TNCRS); | ||
2966 | adapter->stats.tsctc += rd32(E1000_TSCTC); | ||
2967 | adapter->stats.tsctfc += rd32(E1000_TSCTFC); | ||
2968 | |||
2969 | adapter->stats.iac += rd32(E1000_IAC); | ||
2970 | adapter->stats.icrxoc += rd32(E1000_ICRXOC); | ||
2971 | adapter->stats.icrxptc += rd32(E1000_ICRXPTC); | ||
2972 | adapter->stats.icrxatc += rd32(E1000_ICRXATC); | ||
2973 | adapter->stats.ictxptc += rd32(E1000_ICTXPTC); | ||
2974 | adapter->stats.ictxatc += rd32(E1000_ICTXATC); | ||
2975 | adapter->stats.ictxqec += rd32(E1000_ICTXQEC); | ||
2976 | adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); | ||
2977 | adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); | ||
2978 | |||
2979 | /* Fill out the OS statistics structure */ | ||
2980 | adapter->net_stats.multicast = adapter->stats.mprc; | ||
2981 | adapter->net_stats.collisions = adapter->stats.colc; | ||
2982 | |||
2983 | /* Rx Errors */ | ||
2984 | |||
2985 | /* RLEC on some newer hardware can be incorrect so build | ||
2986 | * our own version based on RUC and ROC */ | ||
2987 | adapter->net_stats.rx_errors = adapter->stats.rxerrc + | ||
2988 | adapter->stats.crcerrs + adapter->stats.algnerrc + | ||
2989 | adapter->stats.ruc + adapter->stats.roc + | ||
2990 | adapter->stats.cexterr; | ||
2991 | adapter->net_stats.rx_length_errors = adapter->stats.ruc + | ||
2992 | adapter->stats.roc; | ||
2993 | adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; | ||
2994 | adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; | ||
2995 | adapter->net_stats.rx_missed_errors = adapter->stats.mpc; | ||
2996 | |||
2997 | /* Tx Errors */ | ||
2998 | adapter->net_stats.tx_errors = adapter->stats.ecol + | ||
2999 | adapter->stats.latecol; | ||
3000 | adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; | ||
3001 | adapter->net_stats.tx_window_errors = adapter->stats.latecol; | ||
3002 | adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; | ||
3003 | |||
3004 | /* Tx Dropped needs to be maintained elsewhere */ | ||
3005 | |||
3006 | /* Phy Stats */ | ||
3007 | if (hw->phy.media_type == e1000_media_type_copper) { | ||
3008 | if ((adapter->link_speed == SPEED_1000) && | ||
3009 | (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS, | ||
3010 | &phy_tmp))) { | ||
3011 | phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; | ||
3012 | adapter->phy_stats.idle_errors += phy_tmp; | ||
3013 | } | ||
3014 | } | ||
3015 | |||
3016 | /* Management Stats */ | ||
3017 | adapter->stats.mgptc += rd32(E1000_MGTPTC); | ||
3018 | adapter->stats.mgprc += rd32(E1000_MGTPRC); | ||
3019 | adapter->stats.mgpdc += rd32(E1000_MGTPDC); | ||
3020 | } | ||
3021 | |||
3022 | |||
3023 | static irqreturn_t igb_msix_other(int irq, void *data) | ||
3024 | { | ||
3025 | struct net_device *netdev = data; | ||
3026 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3027 | struct e1000_hw *hw = &adapter->hw; | ||
3028 | u32 eicr; | ||
3029 | /* disable interrupts from the "other" bit, avoid re-entry */ | ||
3030 | wr32(E1000_EIMC, E1000_EIMS_OTHER); | ||
3031 | |||
3032 | eicr = rd32(E1000_EICR); | ||
3033 | |||
3034 | if (eicr & E1000_EIMS_OTHER) { | ||
3035 | u32 icr = rd32(E1000_ICR); | ||
3036 | /* reading ICR causes bit 31 of EICR to be cleared */ | ||
3037 | if (!(icr & E1000_ICR_LSC)) | ||
3038 | goto no_link_interrupt; | ||
3039 | hw->mac.get_link_status = 1; | ||
3040 | /* guard against interrupt when we're going down */ | ||
3041 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
3042 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
3043 | } | ||
3044 | |||
3045 | no_link_interrupt: | ||
3046 | wr32(E1000_IMS, E1000_IMS_LSC); | ||
3047 | wr32(E1000_EIMS, E1000_EIMS_OTHER); | ||
3048 | |||
3049 | return IRQ_HANDLED; | ||
3050 | } | ||
3051 | |||
3052 | static irqreturn_t igb_msix_tx(int irq, void *data) | ||
3053 | { | ||
3054 | struct igb_ring *tx_ring = data; | ||
3055 | struct igb_adapter *adapter = tx_ring->adapter; | ||
3056 | struct e1000_hw *hw = &adapter->hw; | ||
3057 | |||
3058 | if (!tx_ring->itr_val) | ||
3059 | wr32(E1000_EIMC, tx_ring->eims_value); | ||
3060 | |||
3061 | tx_ring->total_bytes = 0; | ||
3062 | tx_ring->total_packets = 0; | ||
3063 | if (!igb_clean_tx_irq(adapter, tx_ring)) | ||
3064 | /* Ring was not completely cleaned, so fire another interrupt */ | ||
3065 | wr32(E1000_EICS, tx_ring->eims_value); | ||
3066 | |||
3067 | if (!tx_ring->itr_val) | ||
3068 | wr32(E1000_EIMS, tx_ring->eims_value); | ||
3069 | return IRQ_HANDLED; | ||
3070 | } | ||
3071 | |||
3072 | static irqreturn_t igb_msix_rx(int irq, void *data) | ||
3073 | { | ||
3074 | struct igb_ring *rx_ring = data; | ||
3075 | struct igb_adapter *adapter = rx_ring->adapter; | ||
3076 | struct e1000_hw *hw = &adapter->hw; | ||
3077 | |||
3078 | if (!rx_ring->itr_val) | ||
3079 | wr32(E1000_EIMC, rx_ring->eims_value); | ||
3080 | |||
3081 | if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi)) { | ||
3082 | rx_ring->total_bytes = 0; | ||
3083 | rx_ring->total_packets = 0; | ||
3084 | rx_ring->no_itr_adjust = 0; | ||
3085 | __netif_rx_schedule(adapter->netdev, &rx_ring->napi); | ||
3086 | } else { | ||
3087 | if (!rx_ring->no_itr_adjust) { | ||
3088 | igb_lower_rx_eitr(adapter, rx_ring); | ||
3089 | rx_ring->no_itr_adjust = 1; | ||
3090 | } | ||
3091 | } | ||
3092 | |||
3093 | return IRQ_HANDLED; | ||
3094 | } | ||
3095 | |||
3096 | |||
3097 | /** | ||
3098 | * igb_intr_msi - Interrupt Handler | ||
3099 | * @irq: interrupt number | ||
3100 | * @data: pointer to a network interface device structure | ||
3101 | **/ | ||
3102 | static irqreturn_t igb_intr_msi(int irq, void *data) | ||
3103 | { | ||
3104 | struct net_device *netdev = data; | ||
3105 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3106 | struct napi_struct *napi = &adapter->napi; | ||
3107 | struct e1000_hw *hw = &adapter->hw; | ||
3108 | /* read ICR disables interrupts using IAM */ | ||
3109 | u32 icr = rd32(E1000_ICR); | ||
3110 | |||
3111 | /* Write the ITR value calculated at the end of the | ||
3112 | * previous interrupt. | ||
3113 | */ | ||
3114 | if (adapter->set_itr) { | ||
3115 | wr32(E1000_ITR, | ||
3116 | 1000000000 / (adapter->itr * 256)); | ||
3117 | adapter->set_itr = 0; | ||
3118 | } | ||
3119 | |||
3120 | /* read ICR disables interrupts using IAM */ | ||
3121 | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | ||
3122 | hw->mac.get_link_status = 1; | ||
3123 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
3124 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
3125 | } | ||
3126 | |||
3127 | if (netif_rx_schedule_prep(netdev, napi)) { | ||
3128 | adapter->tx_ring->total_bytes = 0; | ||
3129 | adapter->tx_ring->total_packets = 0; | ||
3130 | adapter->rx_ring->total_bytes = 0; | ||
3131 | adapter->rx_ring->total_packets = 0; | ||
3132 | __netif_rx_schedule(netdev, napi); | ||
3133 | } | ||
3134 | |||
3135 | return IRQ_HANDLED; | ||
3136 | } | ||
3137 | |||
3138 | /** | ||
3139 | * igb_intr - Interrupt Handler | ||
3140 | * @irq: interrupt number | ||
3141 | * @data: pointer to a network interface device structure | ||
3142 | **/ | ||
3143 | static irqreturn_t igb_intr(int irq, void *data) | ||
3144 | { | ||
3145 | struct net_device *netdev = data; | ||
3146 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3147 | struct napi_struct *napi = &adapter->napi; | ||
3148 | struct e1000_hw *hw = &adapter->hw; | ||
3149 | /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No | ||
3150 | * need for the IMC write */ | ||
3151 | u32 icr = rd32(E1000_ICR); | ||
3152 | u32 eicr = 0; | ||
3153 | if (!icr) | ||
3154 | return IRQ_NONE; /* Not our interrupt */ | ||
3155 | |||
3156 | /* Write the ITR value calculated at the end of the | ||
3157 | * previous interrupt. | ||
3158 | */ | ||
3159 | if (adapter->set_itr) { | ||
3160 | wr32(E1000_ITR, | ||
3161 | 1000000000 / (adapter->itr * 256)); | ||
3162 | adapter->set_itr = 0; | ||
3163 | } | ||
3164 | |||
3165 | /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is | ||
3166 | * not set, then the adapter didn't send an interrupt */ | ||
3167 | if (!(icr & E1000_ICR_INT_ASSERTED)) | ||
3168 | return IRQ_NONE; | ||
3169 | |||
3170 | eicr = rd32(E1000_EICR); | ||
3171 | |||
3172 | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | ||
3173 | hw->mac.get_link_status = 1; | ||
3174 | /* guard against interrupt when we're going down */ | ||
3175 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
3176 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
3177 | } | ||
3178 | |||
3179 | if (netif_rx_schedule_prep(netdev, napi)) { | ||
3180 | adapter->tx_ring->total_bytes = 0; | ||
3181 | adapter->rx_ring->total_bytes = 0; | ||
3182 | adapter->tx_ring->total_packets = 0; | ||
3183 | adapter->rx_ring->total_packets = 0; | ||
3184 | __netif_rx_schedule(netdev, napi); | ||
3185 | } | ||
3186 | |||
3187 | return IRQ_HANDLED; | ||
3188 | } | ||
3189 | |||
3190 | /** | ||
3191 | * igb_clean - NAPI Rx polling callback | ||
3192 | * @adapter: board private structure | ||
3193 | **/ | ||
3194 | static int igb_clean(struct napi_struct *napi, int budget) | ||
3195 | { | ||
3196 | struct igb_adapter *adapter = container_of(napi, struct igb_adapter, | ||
3197 | napi); | ||
3198 | struct net_device *netdev = adapter->netdev; | ||
3199 | int tx_clean_complete = 1, work_done = 0; | ||
3200 | int i; | ||
3201 | |||
3202 | /* Must NOT use netdev_priv macro here. */ | ||
3203 | adapter = netdev->priv; | ||
3204 | |||
3205 | /* Keep link state information with original netdev */ | ||
3206 | if (!netif_carrier_ok(netdev)) | ||
3207 | goto quit_polling; | ||
3208 | |||
3209 | /* igb_clean is called per-cpu. This lock protects tx_ring[i] from | ||
3210 | * being cleaned by multiple cpus simultaneously. A failure obtaining | ||
3211 | * the lock means tx_ring[i] is currently being cleaned anyway. */ | ||
3212 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
3213 | if (spin_trylock(&adapter->tx_ring[i].tx_clean_lock)) { | ||
3214 | tx_clean_complete &= igb_clean_tx_irq(adapter, | ||
3215 | &adapter->tx_ring[i]); | ||
3216 | spin_unlock(&adapter->tx_ring[i].tx_clean_lock); | ||
3217 | } | ||
3218 | } | ||
3219 | |||
3220 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
3221 | igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i], &work_done, | ||
3222 | adapter->rx_ring[i].napi.weight); | ||
3223 | |||
3224 | /* If no Tx and not enough Rx work done, exit the polling mode */ | ||
3225 | if ((tx_clean_complete && (work_done < budget)) || | ||
3226 | !netif_running(netdev)) { | ||
3227 | quit_polling: | ||
3228 | if (adapter->itr_setting & 3) | ||
3229 | igb_set_itr(adapter, E1000_ITR, false); | ||
3230 | netif_rx_complete(netdev, napi); | ||
3231 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
3232 | igb_irq_enable(adapter); | ||
3233 | return 0; | ||
3234 | } | ||
3235 | |||
3236 | return 1; | ||
3237 | } | ||
3238 | |||
3239 | static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget) | ||
3240 | { | ||
3241 | struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi); | ||
3242 | struct igb_adapter *adapter = rx_ring->adapter; | ||
3243 | struct e1000_hw *hw = &adapter->hw; | ||
3244 | struct net_device *netdev = adapter->netdev; | ||
3245 | int work_done = 0; | ||
3246 | |||
3247 | /* Keep link state information with original netdev */ | ||
3248 | if (!netif_carrier_ok(netdev)) | ||
3249 | goto quit_polling; | ||
3250 | |||
3251 | igb_clean_rx_irq_adv(adapter, rx_ring, &work_done, budget); | ||
3252 | |||
3253 | |||
3254 | /* If not enough Rx work done, exit the polling mode */ | ||
3255 | if ((work_done == 0) || !netif_running(netdev)) { | ||
3256 | quit_polling: | ||
3257 | netif_rx_complete(netdev, napi); | ||
3258 | |||
3259 | wr32(E1000_EIMS, rx_ring->eims_value); | ||
3260 | if ((adapter->itr_setting & 3) && !rx_ring->no_itr_adjust && | ||
3261 | (rx_ring->total_packets > IGB_DYN_ITR_PACKET_THRESHOLD)) { | ||
3262 | int mean_size = rx_ring->total_bytes / | ||
3263 | rx_ring->total_packets; | ||
3264 | if (mean_size < IGB_DYN_ITR_LENGTH_LOW) | ||
3265 | igb_raise_rx_eitr(adapter, rx_ring); | ||
3266 | else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH) | ||
3267 | igb_lower_rx_eitr(adapter, rx_ring); | ||
3268 | } | ||
3269 | return 0; | ||
3270 | } | ||
3271 | |||
3272 | return 1; | ||
3273 | } | ||
3274 | /** | ||
3275 | * igb_clean_tx_irq - Reclaim resources after transmit completes | ||
3276 | * @adapter: board private structure | ||
3277 | * returns true if ring is completely cleaned | ||
3278 | **/ | ||
3279 | static bool igb_clean_tx_irq(struct igb_adapter *adapter, | ||
3280 | struct igb_ring *tx_ring) | ||
3281 | { | ||
3282 | struct net_device *netdev = adapter->netdev; | ||
3283 | struct e1000_hw *hw = &adapter->hw; | ||
3284 | struct e1000_tx_desc *tx_desc; | ||
3285 | struct igb_buffer *buffer_info; | ||
3286 | struct sk_buff *skb; | ||
3287 | unsigned int i; | ||
3288 | u32 head, oldhead; | ||
3289 | unsigned int count = 0; | ||
3290 | bool cleaned = false; | ||
3291 | bool retval = true; | ||
3292 | unsigned int total_bytes = 0, total_packets = 0; | ||
3293 | |||
3294 | rmb(); | ||
3295 | head = *(volatile u32 *)((struct e1000_tx_desc *)tx_ring->desc | ||
3296 | + tx_ring->count); | ||
3297 | head = le32_to_cpu(head); | ||
3298 | i = tx_ring->next_to_clean; | ||
3299 | while (1) { | ||
3300 | while (i != head) { | ||
3301 | cleaned = true; | ||
3302 | tx_desc = E1000_TX_DESC(*tx_ring, i); | ||
3303 | buffer_info = &tx_ring->buffer_info[i]; | ||
3304 | skb = buffer_info->skb; | ||
3305 | |||
3306 | if (skb) { | ||
3307 | unsigned int segs, bytecount; | ||
3308 | /* gso_segs is currently only valid for tcp */ | ||
3309 | segs = skb_shinfo(skb)->gso_segs ?: 1; | ||
3310 | /* multiply data chunks by size of headers */ | ||
3311 | bytecount = ((segs - 1) * skb_headlen(skb)) + | ||
3312 | skb->len; | ||
3313 | total_packets += segs; | ||
3314 | total_bytes += bytecount; | ||
3315 | } | ||
3316 | |||
3317 | igb_unmap_and_free_tx_resource(adapter, buffer_info); | ||
3318 | tx_desc->upper.data = 0; | ||
3319 | |||
3320 | i++; | ||
3321 | if (i == tx_ring->count) | ||
3322 | i = 0; | ||
3323 | |||
3324 | count++; | ||
3325 | if (count == IGB_MAX_TX_CLEAN) { | ||
3326 | retval = false; | ||
3327 | goto done_cleaning; | ||
3328 | } | ||
3329 | } | ||
3330 | oldhead = head; | ||
3331 | rmb(); | ||
3332 | head = *(volatile u32 *)((struct e1000_tx_desc *)tx_ring->desc | ||
3333 | + tx_ring->count); | ||
3334 | head = le32_to_cpu(head); | ||
3335 | if (head == oldhead) | ||
3336 | goto done_cleaning; | ||
3337 | } /* while (1) */ | ||
3338 | |||
3339 | done_cleaning: | ||
3340 | tx_ring->next_to_clean = i; | ||
3341 | |||
3342 | if (unlikely(cleaned && | ||
3343 | netif_carrier_ok(netdev) && | ||
3344 | IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) { | ||
3345 | /* Make sure that anybody stopping the queue after this | ||
3346 | * sees the new next_to_clean. | ||
3347 | */ | ||
3348 | smp_mb(); | ||
3349 | if (netif_queue_stopped(netdev) && | ||
3350 | !(test_bit(__IGB_DOWN, &adapter->state))) { | ||
3351 | netif_wake_queue(netdev); | ||
3352 | ++adapter->restart_queue; | ||
3353 | } | ||
3354 | } | ||
3355 | |||
3356 | if (tx_ring->detect_tx_hung) { | ||
3357 | /* Detect a transmit hang in hardware, this serializes the | ||
3358 | * check with the clearing of time_stamp and movement of i */ | ||
3359 | tx_ring->detect_tx_hung = false; | ||
3360 | if (tx_ring->buffer_info[i].time_stamp && | ||
3361 | time_after(jiffies, tx_ring->buffer_info[i].time_stamp + | ||
3362 | (adapter->tx_timeout_factor * HZ)) | ||
3363 | && !(rd32(E1000_STATUS) & | ||
3364 | E1000_STATUS_TXOFF)) { | ||
3365 | |||
3366 | tx_desc = E1000_TX_DESC(*tx_ring, i); | ||
3367 | /* detected Tx unit hang */ | ||
3368 | dev_err(&adapter->pdev->dev, | ||
3369 | "Detected Tx Unit Hang\n" | ||
3370 | " Tx Queue <%lu>\n" | ||
3371 | " TDH <%x>\n" | ||
3372 | " TDT <%x>\n" | ||
3373 | " next_to_use <%x>\n" | ||
3374 | " next_to_clean <%x>\n" | ||
3375 | " head (WB) <%x>\n" | ||
3376 | "buffer_info[next_to_clean]\n" | ||
3377 | " time_stamp <%lx>\n" | ||
3378 | " jiffies <%lx>\n" | ||
3379 | " desc.status <%x>\n", | ||
3380 | (unsigned long)((tx_ring - adapter->tx_ring) / | ||
3381 | sizeof(struct igb_ring)), | ||
3382 | readl(adapter->hw.hw_addr + tx_ring->head), | ||
3383 | readl(adapter->hw.hw_addr + tx_ring->tail), | ||
3384 | tx_ring->next_to_use, | ||
3385 | tx_ring->next_to_clean, | ||
3386 | head, | ||
3387 | tx_ring->buffer_info[i].time_stamp, | ||
3388 | jiffies, | ||
3389 | tx_desc->upper.fields.status); | ||
3390 | netif_stop_queue(netdev); | ||
3391 | } | ||
3392 | } | ||
3393 | tx_ring->total_bytes += total_bytes; | ||
3394 | tx_ring->total_packets += total_packets; | ||
3395 | adapter->net_stats.tx_bytes += total_bytes; | ||
3396 | adapter->net_stats.tx_packets += total_packets; | ||
3397 | return retval; | ||
3398 | } | ||
3399 | |||
3400 | |||
3401 | /** | ||
3402 | * igb_receive_skb - helper function to handle rx indications | ||
3403 | * @adapter: board private structure | ||
3404 | * @status: descriptor status field as written by hardware | ||
3405 | * @vlan: descriptor vlan field as written by hardware (no le/be conversion) | ||
3406 | * @skb: pointer to sk_buff to be indicated to stack | ||
3407 | **/ | ||
3408 | static void igb_receive_skb(struct igb_adapter *adapter, u8 status, u16 vlan, | ||
3409 | struct sk_buff *skb) | ||
3410 | { | ||
3411 | if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) | ||
3412 | vlan_hwaccel_receive_skb(skb, adapter->vlgrp, | ||
3413 | le16_to_cpu(vlan) & | ||
3414 | E1000_RXD_SPC_VLAN_MASK); | ||
3415 | else | ||
3416 | netif_receive_skb(skb); | ||
3417 | } | ||
3418 | |||
3419 | |||
3420 | static inline void igb_rx_checksum_adv(struct igb_adapter *adapter, | ||
3421 | u32 status_err, struct sk_buff *skb) | ||
3422 | { | ||
3423 | skb->ip_summed = CHECKSUM_NONE; | ||
3424 | |||
3425 | /* Ignore Checksum bit is set or checksum is disabled through ethtool */ | ||
3426 | if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum) | ||
3427 | return; | ||
3428 | /* TCP/UDP checksum error bit is set */ | ||
3429 | if (status_err & | ||
3430 | (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { | ||
3431 | /* let the stack verify checksum errors */ | ||
3432 | adapter->hw_csum_err++; | ||
3433 | return; | ||
3434 | } | ||
3435 | /* It must be a TCP or UDP packet with a valid checksum */ | ||
3436 | if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) | ||
3437 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
3438 | |||
3439 | adapter->hw_csum_good++; | ||
3440 | } | ||
3441 | |||
3442 | static bool igb_clean_rx_irq_adv(struct igb_adapter *adapter, | ||
3443 | struct igb_ring *rx_ring, | ||
3444 | int *work_done, int budget) | ||
3445 | { | ||
3446 | struct net_device *netdev = adapter->netdev; | ||
3447 | struct pci_dev *pdev = adapter->pdev; | ||
3448 | union e1000_adv_rx_desc *rx_desc , *next_rxd; | ||
3449 | struct igb_buffer *buffer_info , *next_buffer; | ||
3450 | struct sk_buff *skb; | ||
3451 | unsigned int i, j; | ||
3452 | u32 length, hlen, staterr; | ||
3453 | bool cleaned = false; | ||
3454 | int cleaned_count = 0; | ||
3455 | unsigned int total_bytes = 0, total_packets = 0; | ||
3456 | |||
3457 | i = rx_ring->next_to_clean; | ||
3458 | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); | ||
3459 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
3460 | |||
3461 | while (staterr & E1000_RXD_STAT_DD) { | ||
3462 | if (*work_done >= budget) | ||
3463 | break; | ||
3464 | (*work_done)++; | ||
3465 | buffer_info = &rx_ring->buffer_info[i]; | ||
3466 | |||
3467 | /* HW will not DMA in data larger than the given buffer, even | ||
3468 | * if it parses the (NFS, of course) header to be larger. In | ||
3469 | * that case, it fills the header buffer and spills the rest | ||
3470 | * into the page. | ||
3471 | */ | ||
3472 | hlen = le16_to_cpu((rx_desc->wb.lower.lo_dword.hdr_info & | ||
3473 | E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT); | ||
3474 | if (hlen > adapter->rx_ps_hdr_size) | ||
3475 | hlen = adapter->rx_ps_hdr_size; | ||
3476 | |||
3477 | length = le16_to_cpu(rx_desc->wb.upper.length); | ||
3478 | cleaned = true; | ||
3479 | cleaned_count++; | ||
3480 | |||
3481 | if (rx_ring->pending_skb != NULL) { | ||
3482 | skb = rx_ring->pending_skb; | ||
3483 | rx_ring->pending_skb = NULL; | ||
3484 | j = rx_ring->pending_skb_page; | ||
3485 | } else { | ||
3486 | skb = buffer_info->skb; | ||
3487 | prefetch(skb->data - NET_IP_ALIGN); | ||
3488 | buffer_info->skb = NULL; | ||
3489 | if (hlen) { | ||
3490 | pci_unmap_single(pdev, buffer_info->dma, | ||
3491 | adapter->rx_ps_hdr_size + | ||
3492 | NET_IP_ALIGN, | ||
3493 | PCI_DMA_FROMDEVICE); | ||
3494 | skb_put(skb, hlen); | ||
3495 | } else { | ||
3496 | pci_unmap_single(pdev, buffer_info->dma, | ||
3497 | adapter->rx_buffer_len + | ||
3498 | NET_IP_ALIGN, | ||
3499 | PCI_DMA_FROMDEVICE); | ||
3500 | skb_put(skb, length); | ||
3501 | goto send_up; | ||
3502 | } | ||
3503 | j = 0; | ||
3504 | } | ||
3505 | |||
3506 | while (length) { | ||
3507 | pci_unmap_page(pdev, buffer_info->page_dma, | ||
3508 | PAGE_SIZE, PCI_DMA_FROMDEVICE); | ||
3509 | buffer_info->page_dma = 0; | ||
3510 | skb_fill_page_desc(skb, j, buffer_info->page, | ||
3511 | 0, length); | ||
3512 | buffer_info->page = NULL; | ||
3513 | |||
3514 | skb->len += length; | ||
3515 | skb->data_len += length; | ||
3516 | skb->truesize += length; | ||
3517 | rx_desc->wb.upper.status_error = 0; | ||
3518 | if (staterr & E1000_RXD_STAT_EOP) | ||
3519 | break; | ||
3520 | |||
3521 | j++; | ||
3522 | cleaned_count++; | ||
3523 | i++; | ||
3524 | if (i == rx_ring->count) | ||
3525 | i = 0; | ||
3526 | |||
3527 | buffer_info = &rx_ring->buffer_info[i]; | ||
3528 | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); | ||
3529 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
3530 | length = le16_to_cpu(rx_desc->wb.upper.length); | ||
3531 | if (!(staterr & E1000_RXD_STAT_DD)) { | ||
3532 | rx_ring->pending_skb = skb; | ||
3533 | rx_ring->pending_skb_page = j; | ||
3534 | goto out; | ||
3535 | } | ||
3536 | } | ||
3537 | send_up: | ||
3538 | pskb_trim(skb, skb->len - 4); | ||
3539 | i++; | ||
3540 | if (i == rx_ring->count) | ||
3541 | i = 0; | ||
3542 | next_rxd = E1000_RX_DESC_ADV(*rx_ring, i); | ||
3543 | prefetch(next_rxd); | ||
3544 | next_buffer = &rx_ring->buffer_info[i]; | ||
3545 | |||
3546 | if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { | ||
3547 | dev_kfree_skb_irq(skb); | ||
3548 | goto next_desc; | ||
3549 | } | ||
3550 | rx_ring->no_itr_adjust |= (staterr & E1000_RXD_STAT_DYNINT); | ||
3551 | |||
3552 | total_bytes += skb->len; | ||
3553 | total_packets++; | ||
3554 | |||
3555 | igb_rx_checksum_adv(adapter, staterr, skb); | ||
3556 | |||
3557 | skb->protocol = eth_type_trans(skb, netdev); | ||
3558 | |||
3559 | igb_receive_skb(adapter, staterr, rx_desc->wb.upper.vlan, skb); | ||
3560 | |||
3561 | netdev->last_rx = jiffies; | ||
3562 | |||
3563 | next_desc: | ||
3564 | rx_desc->wb.upper.status_error = 0; | ||
3565 | |||
3566 | /* return some buffers to hardware, one at a time is too slow */ | ||
3567 | if (cleaned_count >= IGB_RX_BUFFER_WRITE) { | ||
3568 | igb_alloc_rx_buffers_adv(adapter, rx_ring, | ||
3569 | cleaned_count); | ||
3570 | cleaned_count = 0; | ||
3571 | } | ||
3572 | |||
3573 | /* use prefetched values */ | ||
3574 | rx_desc = next_rxd; | ||
3575 | buffer_info = next_buffer; | ||
3576 | |||
3577 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
3578 | } | ||
3579 | out: | ||
3580 | rx_ring->next_to_clean = i; | ||
3581 | cleaned_count = IGB_DESC_UNUSED(rx_ring); | ||
3582 | |||
3583 | if (cleaned_count) | ||
3584 | igb_alloc_rx_buffers_adv(adapter, rx_ring, cleaned_count); | ||
3585 | |||
3586 | rx_ring->total_packets += total_packets; | ||
3587 | rx_ring->total_bytes += total_bytes; | ||
3588 | rx_ring->rx_stats.packets += total_packets; | ||
3589 | rx_ring->rx_stats.bytes += total_bytes; | ||
3590 | adapter->net_stats.rx_bytes += total_bytes; | ||
3591 | adapter->net_stats.rx_packets += total_packets; | ||
3592 | return cleaned; | ||
3593 | } | ||
3594 | |||
3595 | |||
3596 | /** | ||
3597 | * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split | ||
3598 | * @adapter: address of board private structure | ||
3599 | **/ | ||
3600 | static void igb_alloc_rx_buffers_adv(struct igb_adapter *adapter, | ||
3601 | struct igb_ring *rx_ring, | ||
3602 | int cleaned_count) | ||
3603 | { | ||
3604 | struct net_device *netdev = adapter->netdev; | ||
3605 | struct pci_dev *pdev = adapter->pdev; | ||
3606 | union e1000_adv_rx_desc *rx_desc; | ||
3607 | struct igb_buffer *buffer_info; | ||
3608 | struct sk_buff *skb; | ||
3609 | unsigned int i; | ||
3610 | |||
3611 | i = rx_ring->next_to_use; | ||
3612 | buffer_info = &rx_ring->buffer_info[i]; | ||
3613 | |||
3614 | while (cleaned_count--) { | ||
3615 | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); | ||
3616 | |||
3617 | if (adapter->rx_ps_hdr_size && !buffer_info->page) { | ||
3618 | buffer_info->page = alloc_page(GFP_ATOMIC); | ||
3619 | if (!buffer_info->page) { | ||
3620 | adapter->alloc_rx_buff_failed++; | ||
3621 | goto no_buffers; | ||
3622 | } | ||
3623 | buffer_info->page_dma = | ||
3624 | pci_map_page(pdev, | ||
3625 | buffer_info->page, | ||
3626 | 0, PAGE_SIZE, | ||
3627 | PCI_DMA_FROMDEVICE); | ||
3628 | } | ||
3629 | |||
3630 | if (!buffer_info->skb) { | ||
3631 | int bufsz; | ||
3632 | |||
3633 | if (adapter->rx_ps_hdr_size) | ||
3634 | bufsz = adapter->rx_ps_hdr_size; | ||
3635 | else | ||
3636 | bufsz = adapter->rx_buffer_len; | ||
3637 | bufsz += NET_IP_ALIGN; | ||
3638 | skb = netdev_alloc_skb(netdev, bufsz); | ||
3639 | |||
3640 | if (!skb) { | ||
3641 | adapter->alloc_rx_buff_failed++; | ||
3642 | goto no_buffers; | ||
3643 | } | ||
3644 | |||
3645 | /* Make buffer alignment 2 beyond a 16 byte boundary | ||
3646 | * this will result in a 16 byte aligned IP header after | ||
3647 | * the 14 byte MAC header is removed | ||
3648 | */ | ||
3649 | skb_reserve(skb, NET_IP_ALIGN); | ||
3650 | |||
3651 | buffer_info->skb = skb; | ||
3652 | buffer_info->dma = pci_map_single(pdev, skb->data, | ||
3653 | bufsz, | ||
3654 | PCI_DMA_FROMDEVICE); | ||
3655 | |||
3656 | } | ||
3657 | /* Refresh the desc even if buffer_addrs didn't change because | ||
3658 | * each write-back erases this info. */ | ||
3659 | if (adapter->rx_ps_hdr_size) { | ||
3660 | rx_desc->read.pkt_addr = | ||
3661 | cpu_to_le64(buffer_info->page_dma); | ||
3662 | rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); | ||
3663 | } else { | ||
3664 | rx_desc->read.pkt_addr = | ||
3665 | cpu_to_le64(buffer_info->dma); | ||
3666 | rx_desc->read.hdr_addr = 0; | ||
3667 | } | ||
3668 | |||
3669 | i++; | ||
3670 | if (i == rx_ring->count) | ||
3671 | i = 0; | ||
3672 | buffer_info = &rx_ring->buffer_info[i]; | ||
3673 | } | ||
3674 | |||
3675 | no_buffers: | ||
3676 | if (rx_ring->next_to_use != i) { | ||
3677 | rx_ring->next_to_use = i; | ||
3678 | if (i == 0) | ||
3679 | i = (rx_ring->count - 1); | ||
3680 | else | ||
3681 | i--; | ||
3682 | |||
3683 | /* Force memory writes to complete before letting h/w | ||
3684 | * know there are new descriptors to fetch. (Only | ||
3685 | * applicable for weak-ordered memory model archs, | ||
3686 | * such as IA-64). */ | ||
3687 | wmb(); | ||
3688 | writel(i, adapter->hw.hw_addr + rx_ring->tail); | ||
3689 | } | ||
3690 | } | ||
3691 | |||
3692 | /** | ||
3693 | * igb_mii_ioctl - | ||
3694 | * @netdev: | ||
3695 | * @ifreq: | ||
3696 | * @cmd: | ||
3697 | **/ | ||
3698 | static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
3699 | { | ||
3700 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3701 | struct mii_ioctl_data *data = if_mii(ifr); | ||
3702 | |||
3703 | if (adapter->hw.phy.media_type != e1000_media_type_copper) | ||
3704 | return -EOPNOTSUPP; | ||
3705 | |||
3706 | switch (cmd) { | ||
3707 | case SIOCGMIIPHY: | ||
3708 | data->phy_id = adapter->hw.phy.addr; | ||
3709 | break; | ||
3710 | case SIOCGMIIREG: | ||
3711 | if (!capable(CAP_NET_ADMIN)) | ||
3712 | return -EPERM; | ||
3713 | if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw, | ||
3714 | data->reg_num | ||
3715 | & 0x1F, &data->val_out)) | ||
3716 | return -EIO; | ||
3717 | break; | ||
3718 | case SIOCSMIIREG: | ||
3719 | default: | ||
3720 | return -EOPNOTSUPP; | ||
3721 | } | ||
3722 | return 0; | ||
3723 | } | ||
3724 | |||
3725 | /** | ||
3726 | * igb_ioctl - | ||
3727 | * @netdev: | ||
3728 | * @ifreq: | ||
3729 | * @cmd: | ||
3730 | **/ | ||
3731 | static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
3732 | { | ||
3733 | switch (cmd) { | ||
3734 | case SIOCGMIIPHY: | ||
3735 | case SIOCGMIIREG: | ||
3736 | case SIOCSMIIREG: | ||
3737 | return igb_mii_ioctl(netdev, ifr, cmd); | ||
3738 | default: | ||
3739 | return -EOPNOTSUPP; | ||
3740 | } | ||
3741 | } | ||
3742 | |||
3743 | static void igb_vlan_rx_register(struct net_device *netdev, | ||
3744 | struct vlan_group *grp) | ||
3745 | { | ||
3746 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3747 | struct e1000_hw *hw = &adapter->hw; | ||
3748 | u32 ctrl, rctl; | ||
3749 | |||
3750 | igb_irq_disable(adapter); | ||
3751 | adapter->vlgrp = grp; | ||
3752 | |||
3753 | if (grp) { | ||
3754 | /* enable VLAN tag insert/strip */ | ||
3755 | ctrl = rd32(E1000_CTRL); | ||
3756 | ctrl |= E1000_CTRL_VME; | ||
3757 | wr32(E1000_CTRL, ctrl); | ||
3758 | |||
3759 | /* enable VLAN receive filtering */ | ||
3760 | rctl = rd32(E1000_RCTL); | ||
3761 | rctl |= E1000_RCTL_VFE; | ||
3762 | rctl &= ~E1000_RCTL_CFIEN; | ||
3763 | wr32(E1000_RCTL, rctl); | ||
3764 | igb_update_mng_vlan(adapter); | ||
3765 | wr32(E1000_RLPML, | ||
3766 | adapter->max_frame_size + VLAN_TAG_SIZE); | ||
3767 | } else { | ||
3768 | /* disable VLAN tag insert/strip */ | ||
3769 | ctrl = rd32(E1000_CTRL); | ||
3770 | ctrl &= ~E1000_CTRL_VME; | ||
3771 | wr32(E1000_CTRL, ctrl); | ||
3772 | |||
3773 | /* disable VLAN filtering */ | ||
3774 | rctl = rd32(E1000_RCTL); | ||
3775 | rctl &= ~E1000_RCTL_VFE; | ||
3776 | wr32(E1000_RCTL, rctl); | ||
3777 | if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) { | ||
3778 | igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | ||
3779 | adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; | ||
3780 | } | ||
3781 | wr32(E1000_RLPML, | ||
3782 | adapter->max_frame_size); | ||
3783 | } | ||
3784 | |||
3785 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
3786 | igb_irq_enable(adapter); | ||
3787 | } | ||
3788 | |||
3789 | static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | ||
3790 | { | ||
3791 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3792 | struct e1000_hw *hw = &adapter->hw; | ||
3793 | u32 vfta, index; | ||
3794 | |||
3795 | if ((adapter->hw.mng_cookie.status & | ||
3796 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | ||
3797 | (vid == adapter->mng_vlan_id)) | ||
3798 | return; | ||
3799 | /* add VID to filter table */ | ||
3800 | index = (vid >> 5) & 0x7F; | ||
3801 | vfta = array_rd32(E1000_VFTA, index); | ||
3802 | vfta |= (1 << (vid & 0x1F)); | ||
3803 | igb_write_vfta(&adapter->hw, index, vfta); | ||
3804 | } | ||
3805 | |||
3806 | static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | ||
3807 | { | ||
3808 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3809 | struct e1000_hw *hw = &adapter->hw; | ||
3810 | u32 vfta, index; | ||
3811 | |||
3812 | igb_irq_disable(adapter); | ||
3813 | vlan_group_set_device(adapter->vlgrp, vid, NULL); | ||
3814 | |||
3815 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
3816 | igb_irq_enable(adapter); | ||
3817 | |||
3818 | if ((adapter->hw.mng_cookie.status & | ||
3819 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | ||
3820 | (vid == adapter->mng_vlan_id)) { | ||
3821 | /* release control to f/w */ | ||
3822 | igb_release_hw_control(adapter); | ||
3823 | return; | ||
3824 | } | ||
3825 | |||
3826 | /* remove VID from filter table */ | ||
3827 | index = (vid >> 5) & 0x7F; | ||
3828 | vfta = array_rd32(E1000_VFTA, index); | ||
3829 | vfta &= ~(1 << (vid & 0x1F)); | ||
3830 | igb_write_vfta(&adapter->hw, index, vfta); | ||
3831 | } | ||
3832 | |||
3833 | static void igb_restore_vlan(struct igb_adapter *adapter) | ||
3834 | { | ||
3835 | igb_vlan_rx_register(adapter->netdev, adapter->vlgrp); | ||
3836 | |||
3837 | if (adapter->vlgrp) { | ||
3838 | u16 vid; | ||
3839 | for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { | ||
3840 | if (!vlan_group_get_device(adapter->vlgrp, vid)) | ||
3841 | continue; | ||
3842 | igb_vlan_rx_add_vid(adapter->netdev, vid); | ||
3843 | } | ||
3844 | } | ||
3845 | } | ||
3846 | |||
3847 | int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx) | ||
3848 | { | ||
3849 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
3850 | |||
3851 | mac->autoneg = 0; | ||
3852 | |||
3853 | /* Fiber NICs only allow 1000 gbps Full duplex */ | ||
3854 | if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && | ||
3855 | spddplx != (SPEED_1000 + DUPLEX_FULL)) { | ||
3856 | dev_err(&adapter->pdev->dev, | ||
3857 | "Unsupported Speed/Duplex configuration\n"); | ||
3858 | return -EINVAL; | ||
3859 | } | ||
3860 | |||
3861 | switch (spddplx) { | ||
3862 | case SPEED_10 + DUPLEX_HALF: | ||
3863 | mac->forced_speed_duplex = ADVERTISE_10_HALF; | ||
3864 | break; | ||
3865 | case SPEED_10 + DUPLEX_FULL: | ||
3866 | mac->forced_speed_duplex = ADVERTISE_10_FULL; | ||
3867 | break; | ||
3868 | case SPEED_100 + DUPLEX_HALF: | ||
3869 | mac->forced_speed_duplex = ADVERTISE_100_HALF; | ||
3870 | break; | ||
3871 | case SPEED_100 + DUPLEX_FULL: | ||
3872 | mac->forced_speed_duplex = ADVERTISE_100_FULL; | ||
3873 | break; | ||
3874 | case SPEED_1000 + DUPLEX_FULL: | ||
3875 | mac->autoneg = 1; | ||
3876 | adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; | ||
3877 | break; | ||
3878 | case SPEED_1000 + DUPLEX_HALF: /* not supported */ | ||
3879 | default: | ||
3880 | dev_err(&adapter->pdev->dev, | ||
3881 | "Unsupported Speed/Duplex configuration\n"); | ||
3882 | return -EINVAL; | ||
3883 | } | ||
3884 | return 0; | ||
3885 | } | ||
3886 | |||
3887 | |||
3888 | static int igb_suspend(struct pci_dev *pdev, pm_message_t state) | ||
3889 | { | ||
3890 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
3891 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3892 | struct e1000_hw *hw = &adapter->hw; | ||
3893 | u32 ctrl, ctrl_ext, rctl, status; | ||
3894 | u32 wufc = adapter->wol; | ||
3895 | #ifdef CONFIG_PM | ||
3896 | int retval = 0; | ||
3897 | #endif | ||
3898 | |||
3899 | netif_device_detach(netdev); | ||
3900 | |||
3901 | if (netif_running(netdev)) { | ||
3902 | WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); | ||
3903 | igb_down(adapter); | ||
3904 | igb_free_irq(adapter); | ||
3905 | } | ||
3906 | |||
3907 | #ifdef CONFIG_PM | ||
3908 | retval = pci_save_state(pdev); | ||
3909 | if (retval) | ||
3910 | return retval; | ||
3911 | #endif | ||
3912 | |||
3913 | status = rd32(E1000_STATUS); | ||
3914 | if (status & E1000_STATUS_LU) | ||
3915 | wufc &= ~E1000_WUFC_LNKC; | ||
3916 | |||
3917 | if (wufc) { | ||
3918 | igb_setup_rctl(adapter); | ||
3919 | igb_set_multi(netdev); | ||
3920 | |||
3921 | /* turn on all-multi mode if wake on multicast is enabled */ | ||
3922 | if (wufc & E1000_WUFC_MC) { | ||
3923 | rctl = rd32(E1000_RCTL); | ||
3924 | rctl |= E1000_RCTL_MPE; | ||
3925 | wr32(E1000_RCTL, rctl); | ||
3926 | } | ||
3927 | |||
3928 | ctrl = rd32(E1000_CTRL); | ||
3929 | /* advertise wake from D3Cold */ | ||
3930 | #define E1000_CTRL_ADVD3WUC 0x00100000 | ||
3931 | /* phy power management enable */ | ||
3932 | #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | ||
3933 | ctrl |= E1000_CTRL_ADVD3WUC; | ||
3934 | wr32(E1000_CTRL, ctrl); | ||
3935 | |||
3936 | if (adapter->hw.phy.media_type == e1000_media_type_fiber || | ||
3937 | adapter->hw.phy.media_type == | ||
3938 | e1000_media_type_internal_serdes) { | ||
3939 | /* keep the laser running in D3 */ | ||
3940 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
3941 | ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; | ||
3942 | wr32(E1000_CTRL_EXT, ctrl_ext); | ||
3943 | } | ||
3944 | |||
3945 | /* Allow time for pending master requests to run */ | ||
3946 | igb_disable_pcie_master(&adapter->hw); | ||
3947 | |||
3948 | wr32(E1000_WUC, E1000_WUC_PME_EN); | ||
3949 | wr32(E1000_WUFC, wufc); | ||
3950 | pci_enable_wake(pdev, PCI_D3hot, 1); | ||
3951 | pci_enable_wake(pdev, PCI_D3cold, 1); | ||
3952 | } else { | ||
3953 | wr32(E1000_WUC, 0); | ||
3954 | wr32(E1000_WUFC, 0); | ||
3955 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
3956 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
3957 | } | ||
3958 | |||
3959 | igb_release_manageability(adapter); | ||
3960 | |||
3961 | /* make sure adapter isn't asleep if manageability is enabled */ | ||
3962 | if (adapter->en_mng_pt) { | ||
3963 | pci_enable_wake(pdev, PCI_D3hot, 1); | ||
3964 | pci_enable_wake(pdev, PCI_D3cold, 1); | ||
3965 | } | ||
3966 | |||
3967 | /* Release control of h/w to f/w. If f/w is AMT enabled, this | ||
3968 | * would have already happened in close and is redundant. */ | ||
3969 | igb_release_hw_control(adapter); | ||
3970 | |||
3971 | pci_disable_device(pdev); | ||
3972 | |||
3973 | pci_set_power_state(pdev, pci_choose_state(pdev, state)); | ||
3974 | |||
3975 | return 0; | ||
3976 | } | ||
3977 | |||
3978 | #ifdef CONFIG_PM | ||
3979 | static int igb_resume(struct pci_dev *pdev) | ||
3980 | { | ||
3981 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
3982 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3983 | struct e1000_hw *hw = &adapter->hw; | ||
3984 | u32 err; | ||
3985 | |||
3986 | pci_set_power_state(pdev, PCI_D0); | ||
3987 | pci_restore_state(pdev); | ||
3988 | err = pci_enable_device(pdev); | ||
3989 | if (err) { | ||
3990 | dev_err(&pdev->dev, | ||
3991 | "igb: Cannot enable PCI device from suspend\n"); | ||
3992 | return err; | ||
3993 | } | ||
3994 | pci_set_master(pdev); | ||
3995 | |||
3996 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
3997 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
3998 | |||
3999 | if (netif_running(netdev)) { | ||
4000 | err = igb_request_irq(adapter); | ||
4001 | if (err) | ||
4002 | return err; | ||
4003 | } | ||
4004 | |||
4005 | /* e1000_power_up_phy(adapter); */ | ||
4006 | |||
4007 | igb_reset(adapter); | ||
4008 | wr32(E1000_WUS, ~0); | ||
4009 | |||
4010 | igb_init_manageability(adapter); | ||
4011 | |||
4012 | if (netif_running(netdev)) | ||
4013 | igb_up(adapter); | ||
4014 | |||
4015 | netif_device_attach(netdev); | ||
4016 | |||
4017 | /* let the f/w know that the h/w is now under the control of the | ||
4018 | * driver. */ | ||
4019 | igb_get_hw_control(adapter); | ||
4020 | |||
4021 | return 0; | ||
4022 | } | ||
4023 | #endif | ||
4024 | |||
4025 | static void igb_shutdown(struct pci_dev *pdev) | ||
4026 | { | ||
4027 | igb_suspend(pdev, PMSG_SUSPEND); | ||
4028 | } | ||
4029 | |||
4030 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
4031 | /* | ||
4032 | * Polling 'interrupt' - used by things like netconsole to send skbs | ||
4033 | * without having to re-enable interrupts. It's not called while | ||
4034 | * the interrupt routine is executing. | ||
4035 | */ | ||
4036 | static void igb_netpoll(struct net_device *netdev) | ||
4037 | { | ||
4038 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
4039 | int i; | ||
4040 | int work_done = 0; | ||
4041 | |||
4042 | igb_irq_disable(adapter); | ||
4043 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
4044 | igb_clean_tx_irq(adapter, &adapter->tx_ring[i]); | ||
4045 | |||
4046 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
4047 | igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i], | ||
4048 | &work_done, | ||
4049 | adapter->rx_ring[i].napi.weight); | ||
4050 | |||
4051 | igb_irq_enable(adapter); | ||
4052 | } | ||
4053 | #endif /* CONFIG_NET_POLL_CONTROLLER */ | ||
4054 | |||
4055 | /** | ||
4056 | * igb_io_error_detected - called when PCI error is detected | ||
4057 | * @pdev: Pointer to PCI device | ||
4058 | * @state: The current pci connection state | ||
4059 | * | ||
4060 | * This function is called after a PCI bus error affecting | ||
4061 | * this device has been detected. | ||
4062 | */ | ||
4063 | static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, | ||
4064 | pci_channel_state_t state) | ||
4065 | { | ||
4066 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
4067 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
4068 | |||
4069 | netif_device_detach(netdev); | ||
4070 | |||
4071 | if (netif_running(netdev)) | ||
4072 | igb_down(adapter); | ||
4073 | pci_disable_device(pdev); | ||
4074 | |||
4075 | /* Request a slot slot reset. */ | ||
4076 | return PCI_ERS_RESULT_NEED_RESET; | ||
4077 | } | ||
4078 | |||
4079 | /** | ||
4080 | * igb_io_slot_reset - called after the pci bus has been reset. | ||
4081 | * @pdev: Pointer to PCI device | ||
4082 | * | ||
4083 | * Restart the card from scratch, as if from a cold-boot. Implementation | ||
4084 | * resembles the first-half of the igb_resume routine. | ||
4085 | */ | ||
4086 | static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) | ||
4087 | { | ||
4088 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
4089 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
4090 | struct e1000_hw *hw = &adapter->hw; | ||
4091 | |||
4092 | if (pci_enable_device(pdev)) { | ||
4093 | dev_err(&pdev->dev, | ||
4094 | "Cannot re-enable PCI device after reset.\n"); | ||
4095 | return PCI_ERS_RESULT_DISCONNECT; | ||
4096 | } | ||
4097 | pci_set_master(pdev); | ||
4098 | |||
4099 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
4100 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
4101 | |||
4102 | igb_reset(adapter); | ||
4103 | wr32(E1000_WUS, ~0); | ||
4104 | |||
4105 | return PCI_ERS_RESULT_RECOVERED; | ||
4106 | } | ||
4107 | |||
4108 | /** | ||
4109 | * igb_io_resume - called when traffic can start flowing again. | ||
4110 | * @pdev: Pointer to PCI device | ||
4111 | * | ||
4112 | * This callback is called when the error recovery driver tells us that | ||
4113 | * its OK to resume normal operation. Implementation resembles the | ||
4114 | * second-half of the igb_resume routine. | ||
4115 | */ | ||
4116 | static void igb_io_resume(struct pci_dev *pdev) | ||
4117 | { | ||
4118 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
4119 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
4120 | |||
4121 | igb_init_manageability(adapter); | ||
4122 | |||
4123 | if (netif_running(netdev)) { | ||
4124 | if (igb_up(adapter)) { | ||
4125 | dev_err(&pdev->dev, "igb_up failed after reset\n"); | ||
4126 | return; | ||
4127 | } | ||
4128 | } | ||
4129 | |||
4130 | netif_device_attach(netdev); | ||
4131 | |||
4132 | /* let the f/w know that the h/w is now under the control of the | ||
4133 | * driver. */ | ||
4134 | igb_get_hw_control(adapter); | ||
4135 | |||
4136 | } | ||
4137 | |||
4138 | /* igb_main.c */ | ||