diff options
Diffstat (limited to 'drivers/video/kyro/STG4000InitDevice.c')
-rw-r--r-- | drivers/video/kyro/STG4000InitDevice.c | 326 |
1 files changed, 326 insertions, 0 deletions
diff --git a/drivers/video/kyro/STG4000InitDevice.c b/drivers/video/kyro/STG4000InitDevice.c new file mode 100644 index 000000000000..7e33cd307d47 --- /dev/null +++ b/drivers/video/kyro/STG4000InitDevice.c | |||
@@ -0,0 +1,326 @@ | |||
1 | /* | ||
2 | * linux/drivers/video/kyro/STG4000InitDevice.c | ||
3 | * | ||
4 | * Copyright (C) 2000 Imagination Technologies Ltd | ||
5 | * Copyright (C) 2002 STMicroelectronics | ||
6 | * | ||
7 | * This file is subject to the terms and conditions of the GNU General Public | ||
8 | * License. See the file COPYING in the main directory of this archive | ||
9 | * for more details. | ||
10 | */ | ||
11 | |||
12 | #include <linux/kernel.h> | ||
13 | #include <linux/errno.h> | ||
14 | #include <linux/types.h> | ||
15 | #include <linux/pci.h> | ||
16 | |||
17 | #include "STG4000Reg.h" | ||
18 | |||
19 | /* SDRAM fixed settings */ | ||
20 | #define SDRAM_CFG_0 0x49A1 | ||
21 | #define SDRAM_CFG_1 0xA732 | ||
22 | #define SDRAM_CFG_2 0x31 | ||
23 | #define SDRAM_ARB_CFG 0xA0 | ||
24 | #define SDRAM_REFRESH 0x20 | ||
25 | |||
26 | /* Reset values */ | ||
27 | #define PMX2_SOFTRESET_DAC_RST 0x0001 | ||
28 | #define PMX2_SOFTRESET_C1_RST 0x0004 | ||
29 | #define PMX2_SOFTRESET_C2_RST 0x0008 | ||
30 | #define PMX2_SOFTRESET_3D_RST 0x0010 | ||
31 | #define PMX2_SOFTRESET_VIDIN_RST 0x0020 | ||
32 | #define PMX2_SOFTRESET_TLB_RST 0x0040 | ||
33 | #define PMX2_SOFTRESET_SD_RST 0x0080 | ||
34 | #define PMX2_SOFTRESET_VGA_RST 0x0100 | ||
35 | #define PMX2_SOFTRESET_ROM_RST 0x0200 /* reserved bit, do not reset */ | ||
36 | #define PMX2_SOFTRESET_TA_RST 0x0400 | ||
37 | #define PMX2_SOFTRESET_REG_RST 0x4000 | ||
38 | #define PMX2_SOFTRESET_ALL 0x7fff | ||
39 | |||
40 | /* Core clock freq */ | ||
41 | #define CORE_PLL_FREQ 1000000 | ||
42 | |||
43 | /* Reference Clock freq */ | ||
44 | #define REF_FREQ 14318 | ||
45 | |||
46 | /* PCI Registers */ | ||
47 | static u16 CorePllControl = 0x70; | ||
48 | |||
49 | #define PCI_CONFIG_SUBSYS_ID 0x2e | ||
50 | |||
51 | /* Misc */ | ||
52 | #define CORE_PLL_MODE_REG_0_7 3 | ||
53 | #define CORE_PLL_MODE_REG_8_15 2 | ||
54 | #define CORE_PLL_MODE_CONFIG_REG 1 | ||
55 | #define DAC_PLL_CONFIG_REG 0 | ||
56 | |||
57 | #define STG_MAX_VCO 500000 | ||
58 | #define STG_MIN_VCO 100000 | ||
59 | |||
60 | /* PLL Clock */ | ||
61 | #define STG4K3_PLL_SCALER 8 /* scale numbers by 2^8 for fixed point calc */ | ||
62 | #define STG4K3_PLL_MIN_R 2 /* Minimum multiplier */ | ||
63 | #define STG4K3_PLL_MAX_R 33 /* Max */ | ||
64 | #define STG4K3_PLL_MIN_F 2 /* Minimum divisor */ | ||
65 | #define STG4K3_PLL_MAX_F 513 /* Max */ | ||
66 | #define STG4K3_PLL_MIN_OD 0 /* Min output divider (shift) */ | ||
67 | #define STG4K3_PLL_MAX_OD 2 /* Max */ | ||
68 | #define STG4K3_PLL_MIN_VCO_SC (100000000 >> STG4K3_PLL_SCALER) /* Min VCO rate */ | ||
69 | #define STG4K3_PLL_MAX_VCO_SC (500000000 >> STG4K3_PLL_SCALER) /* Max VCO rate */ | ||
70 | #define STG4K3_PLL_MINR_VCO_SC (100000000 >> STG4K3_PLL_SCALER) /* Min VCO rate (restricted) */ | ||
71 | #define STG4K3_PLL_MAXR_VCO_SC (500000000 >> STG4K3_PLL_SCALER) /* Max VCO rate (restricted) */ | ||
72 | #define STG4K3_PLL_MINR_VCO 100000000 /* Min VCO rate (restricted) */ | ||
73 | #define STG4K3_PLL_MAX_VCO 500000000 /* Max VCO rate */ | ||
74 | #define STG4K3_PLL_MAXR_VCO 500000000 /* Max VCO rate (restricted) */ | ||
75 | |||
76 | #define OS_DELAY(X) \ | ||
77 | { \ | ||
78 | volatile u32 i,count=0; \ | ||
79 | for(i=0;i<X;i++) count++; \ | ||
80 | } | ||
81 | |||
82 | static u32 InitSDRAMRegisters(volatile STG4000REG __iomem *pSTGReg, | ||
83 | u32 dwSubSysID, u32 dwRevID) | ||
84 | { | ||
85 | u32 adwSDRAMArgCfg0[] = { 0xa0, 0x80, 0xa0, 0xa0, 0xa0 }; | ||
86 | u32 adwSDRAMCfg1[] = { 0x8732, 0x8732, 0xa732, 0xa732, 0x8732 }; | ||
87 | u32 adwSDRAMCfg2[] = { 0x87d2, 0x87d2, 0xa7d2, 0x87d2, 0xa7d2 }; | ||
88 | u32 adwSDRAMRsh[] = { 36, 39, 40 }; | ||
89 | u32 adwChipSpeed[] = { 110, 120, 125 }; | ||
90 | u32 dwMemTypeIdx; | ||
91 | u32 dwChipSpeedIdx; | ||
92 | |||
93 | /* Get memory tpye and chip speed indexs from the SubSysDevID */ | ||
94 | dwMemTypeIdx = (dwSubSysID & 0x70) >> 4; | ||
95 | dwChipSpeedIdx = (dwSubSysID & 0x180) >> 7; | ||
96 | |||
97 | if (dwMemTypeIdx > 4 || dwChipSpeedIdx > 2) | ||
98 | return 0; | ||
99 | |||
100 | /* Program SD-RAM interface */ | ||
101 | STG_WRITE_REG(SDRAMArbiterConf, adwSDRAMArgCfg0[dwMemTypeIdx]); | ||
102 | if (dwRevID < 5) { | ||
103 | STG_WRITE_REG(SDRAMConf0, 0x49A1); | ||
104 | STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg1[dwMemTypeIdx]); | ||
105 | } else { | ||
106 | STG_WRITE_REG(SDRAMConf0, 0x4DF1); | ||
107 | STG_WRITE_REG(SDRAMConf1, adwSDRAMCfg2[dwMemTypeIdx]); | ||
108 | } | ||
109 | |||
110 | STG_WRITE_REG(SDRAMConf2, 0x31); | ||
111 | STG_WRITE_REG(SDRAMRefresh, adwSDRAMRsh[dwChipSpeedIdx]); | ||
112 | |||
113 | return adwChipSpeed[dwChipSpeedIdx] * 10000; | ||
114 | } | ||
115 | |||
116 | u32 ProgramClock(u32 refClock, | ||
117 | u32 coreClock, | ||
118 | u32 * FOut, u32 * ROut, u32 * POut) | ||
119 | { | ||
120 | u32 R = 0, F = 0, OD = 0, ODIndex = 0; | ||
121 | u32 ulBestR = 0, ulBestF = 0, ulBestOD = 0; | ||
122 | u32 ulBestVCO = 0, ulBestClk = 0, ulBestScore = 0; | ||
123 | u32 ulScore, ulPhaseScore, ulVcoScore; | ||
124 | u32 ulTmp = 0, ulVCO; | ||
125 | u32 ulScaleClockReq, ulMinClock, ulMaxClock; | ||
126 | u32 ODValues[] = { 1, 2, 0 }; | ||
127 | |||
128 | /* Translate clock in Hz */ | ||
129 | coreClock *= 100; /* in Hz */ | ||
130 | refClock *= 1000; /* in Hz */ | ||
131 | |||
132 | /* Work out acceptable clock | ||
133 | * The method calculates ~ +- 0.4% (1/256) | ||
134 | */ | ||
135 | ulMinClock = coreClock - (coreClock >> 8); | ||
136 | ulMaxClock = coreClock + (coreClock >> 8); | ||
137 | |||
138 | /* Scale clock required for use in calculations */ | ||
139 | ulScaleClockReq = coreClock >> STG4K3_PLL_SCALER; | ||
140 | |||
141 | /* Iterate through post divider values */ | ||
142 | for (ODIndex = 0; ODIndex < 3; ODIndex++) { | ||
143 | OD = ODValues[ODIndex]; | ||
144 | R = STG4K3_PLL_MIN_R; | ||
145 | |||
146 | /* loop for pre-divider from min to max */ | ||
147 | while (R <= STG4K3_PLL_MAX_R) { | ||
148 | /* estimate required feedback multiplier */ | ||
149 | ulTmp = R * (ulScaleClockReq << OD); | ||
150 | |||
151 | /* F = ClkRequired * R * (2^OD) / Fref */ | ||
152 | F = (u32)(ulTmp / (refClock >> STG4K3_PLL_SCALER)); | ||
153 | |||
154 | /* compensate for accuracy */ | ||
155 | if (F > STG4K3_PLL_MIN_F) | ||
156 | F--; | ||
157 | |||
158 | |||
159 | /* | ||
160 | * We should be close to our target frequency (if it's | ||
161 | * achievable with current OD & R) let's iterate | ||
162 | * through F for best fit | ||
163 | */ | ||
164 | while ((F >= STG4K3_PLL_MIN_F) && | ||
165 | (F <= STG4K3_PLL_MAX_F)) { | ||
166 | /* Calc VCO at full accuracy */ | ||
167 | ulVCO = refClock / R; | ||
168 | ulVCO = F * ulVCO; | ||
169 | |||
170 | /* | ||
171 | * Check it's within restricted VCO range | ||
172 | * unless of course the desired frequency is | ||
173 | * above the restricted range, then test | ||
174 | * against VCO limit | ||
175 | */ | ||
176 | if ((ulVCO >= STG4K3_PLL_MINR_VCO) && | ||
177 | ((ulVCO <= STG4K3_PLL_MAXR_VCO) || | ||
178 | ((coreClock > STG4K3_PLL_MAXR_VCO) | ||
179 | && (ulVCO <= STG4K3_PLL_MAX_VCO)))) { | ||
180 | ulTmp = (ulVCO >> OD); /* Clock = VCO / (2^OD) */ | ||
181 | |||
182 | /* Is this clock good enough? */ | ||
183 | if ((ulTmp >= ulMinClock) | ||
184 | && (ulTmp <= ulMaxClock)) { | ||
185 | ulPhaseScore = (((refClock / R) - (refClock / STG4K3_PLL_MAX_R))) / ((refClock - (refClock / STG4K3_PLL_MAX_R)) >> 10); | ||
186 | |||
187 | ulVcoScore = ((ulVCO - STG4K3_PLL_MINR_VCO)) / ((STG4K3_PLL_MAXR_VCO - STG4K3_PLL_MINR_VCO) >> 10); | ||
188 | ulScore = ulPhaseScore + ulVcoScore; | ||
189 | |||
190 | if (!ulBestScore) { | ||
191 | ulBestVCO = ulVCO; | ||
192 | ulBestOD = OD; | ||
193 | ulBestF = F; | ||
194 | ulBestR = R; | ||
195 | ulBestClk = ulTmp; | ||
196 | ulBestScore = | ||
197 | ulScore; | ||
198 | } | ||
199 | /* is this better, ( aim for highest Score) */ | ||
200 | /*-------------------------------------------------------------------------- | ||
201 | Here we want to use a scoring system which will take account of both the | ||
202 | value at the phase comparater and the VCO output | ||
203 | to do this we will use a cumulative score between the two | ||
204 | The way this ends up is that we choose the first value in the loop anyway | ||
205 | but we shall keep this code in case new restrictions come into play | ||
206 | --------------------------------------------------------------------------*/ | ||
207 | if ((ulScore >= ulBestScore) && (OD > 0)) { | ||
208 | ulBestVCO = ulVCO; | ||
209 | ulBestOD = OD; | ||
210 | ulBestF = F; | ||
211 | ulBestR = R; | ||
212 | ulBestClk = ulTmp; | ||
213 | ulBestScore = | ||
214 | ulScore; | ||
215 | } | ||
216 | } | ||
217 | } | ||
218 | F++; | ||
219 | } | ||
220 | R++; | ||
221 | } | ||
222 | } | ||
223 | |||
224 | /* | ||
225 | did we find anything? | ||
226 | Then return RFOD | ||
227 | */ | ||
228 | if (ulBestScore) { | ||
229 | *ROut = ulBestR; | ||
230 | *FOut = ulBestF; | ||
231 | |||
232 | if ((ulBestOD == 2) || (ulBestOD == 3)) { | ||
233 | *POut = 3; | ||
234 | } else | ||
235 | *POut = ulBestOD; | ||
236 | |||
237 | } | ||
238 | |||
239 | return (ulBestClk); | ||
240 | } | ||
241 | |||
242 | int SetCoreClockPLL(volatile STG4000REG __iomem *pSTGReg, struct pci_dev *pDev) | ||
243 | { | ||
244 | u32 F, R, P; | ||
245 | u16 core_pll = 0, sub; | ||
246 | u32 ulCoreClock; | ||
247 | u32 tmp; | ||
248 | u32 ulChipSpeed; | ||
249 | u8 rev; | ||
250 | |||
251 | STG_WRITE_REG(IntMask, 0xFFFF); | ||
252 | |||
253 | /* Disable Primary Core Thread0 */ | ||
254 | tmp = STG_READ_REG(Thread0Enable); | ||
255 | CLEAR_BIT(0); | ||
256 | STG_WRITE_REG(Thread0Enable, tmp); | ||
257 | |||
258 | /* Disable Primary Core Thread1 */ | ||
259 | tmp = STG_READ_REG(Thread1Enable); | ||
260 | CLEAR_BIT(0); | ||
261 | STG_WRITE_REG(Thread1Enable, tmp); | ||
262 | |||
263 | STG_WRITE_REG(SoftwareReset, | ||
264 | PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST); | ||
265 | STG_WRITE_REG(SoftwareReset, | ||
266 | PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST | | ||
267 | PMX2_SOFTRESET_ROM_RST); | ||
268 | |||
269 | /* Need to play around to reset TA */ | ||
270 | STG_WRITE_REG(TAConfiguration, 0); | ||
271 | STG_WRITE_REG(SoftwareReset, | ||
272 | PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_ROM_RST); | ||
273 | STG_WRITE_REG(SoftwareReset, | ||
274 | PMX2_SOFTRESET_REG_RST | PMX2_SOFTRESET_TA_RST | | ||
275 | PMX2_SOFTRESET_ROM_RST); | ||
276 | |||
277 | pci_read_config_word(pDev, PCI_CONFIG_SUBSYS_ID, &sub); | ||
278 | pci_read_config_byte(pDev, PCI_REVISION_ID, &rev); | ||
279 | |||
280 | ulChipSpeed = InitSDRAMRegisters(pSTGReg, (u32)sub, (u32)rev); | ||
281 | |||
282 | if (ulChipSpeed == 0) | ||
283 | return -EINVAL; | ||
284 | |||
285 | ulCoreClock = ProgramClock(REF_FREQ, CORE_PLL_FREQ, &F, &R, &P); | ||
286 | |||
287 | core_pll |= ((P) | ((F - 2) << 2) | ((R - 2) << 11)); | ||
288 | |||
289 | /* Set Core PLL Control to Core PLL Mode */ | ||
290 | |||
291 | /* Send bits 0:7 of the Core PLL Mode register */ | ||
292 | tmp = ((CORE_PLL_MODE_REG_0_7 << 8) | (core_pll & 0x00FF)); | ||
293 | pci_write_config_word(pDev, CorePllControl, tmp); | ||
294 | /* Without some delay between the PCI config writes the clock does | ||
295 | not reliably set when the code is compiled -O3 | ||
296 | */ | ||
297 | OS_DELAY(1000000); | ||
298 | |||
299 | tmp |= SET_BIT(14); | ||
300 | pci_write_config_word(pDev, CorePllControl, tmp); | ||
301 | OS_DELAY(1000000); | ||
302 | |||
303 | /* Send bits 8:15 of the Core PLL Mode register */ | ||
304 | tmp = | ||
305 | ((CORE_PLL_MODE_REG_8_15 << 8) | ((core_pll & 0xFF00) >> 8)); | ||
306 | pci_write_config_word(pDev, CorePllControl, tmp); | ||
307 | OS_DELAY(1000000); | ||
308 | |||
309 | tmp |= SET_BIT(14); | ||
310 | pci_write_config_word(pDev, CorePllControl, tmp); | ||
311 | OS_DELAY(1000000); | ||
312 | |||
313 | STG_WRITE_REG(SoftwareReset, PMX2_SOFTRESET_ALL); | ||
314 | |||
315 | #if 0 | ||
316 | /* Enable Primary Core Thread0 */ | ||
317 | tmp = ((STG_READ_REG(Thread0Enable)) | SET_BIT(0)); | ||
318 | STG_WRITE_REG(Thread0Enable, tmp); | ||
319 | |||
320 | /* Enable Primary Core Thread1 */ | ||
321 | tmp = ((STG_READ_REG(Thread1Enable)) | SET_BIT(0)); | ||
322 | STG_WRITE_REG(Thread1Enable, tmp); | ||
323 | #endif | ||
324 | |||
325 | return 0; | ||
326 | } | ||