aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/usb/host/xhci.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/usb/host/xhci.c')
-rw-r--r--drivers/usb/host/xhci.c1917
1 files changed, 1917 insertions, 0 deletions
diff --git a/drivers/usb/host/xhci.c b/drivers/usb/host/xhci.c
new file mode 100644
index 000000000000..492a61c2c79d
--- /dev/null
+++ b/drivers/usb/host/xhci.c
@@ -0,0 +1,1917 @@
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/irq.h>
24#include <linux/module.h>
25#include <linux/moduleparam.h>
26
27#include "xhci.h"
28
29#define DRIVER_AUTHOR "Sarah Sharp"
30#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
31
32/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33static int link_quirk;
34module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37/* TODO: copied from ehci-hcd.c - can this be refactored? */
38/*
39 * handshake - spin reading hc until handshake completes or fails
40 * @ptr: address of hc register to be read
41 * @mask: bits to look at in result of read
42 * @done: value of those bits when handshake succeeds
43 * @usec: timeout in microseconds
44 *
45 * Returns negative errno, or zero on success
46 *
47 * Success happens when the "mask" bits have the specified value (hardware
48 * handshake done). There are two failure modes: "usec" have passed (major
49 * hardware flakeout), or the register reads as all-ones (hardware removed).
50 */
51static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
52 u32 mask, u32 done, int usec)
53{
54 u32 result;
55
56 do {
57 result = xhci_readl(xhci, ptr);
58 if (result == ~(u32)0) /* card removed */
59 return -ENODEV;
60 result &= mask;
61 if (result == done)
62 return 0;
63 udelay(1);
64 usec--;
65 } while (usec > 0);
66 return -ETIMEDOUT;
67}
68
69/*
70 * Disable interrupts and begin the xHCI halting process.
71 */
72void xhci_quiesce(struct xhci_hcd *xhci)
73{
74 u32 halted;
75 u32 cmd;
76 u32 mask;
77
78 mask = ~(XHCI_IRQS);
79 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
80 if (!halted)
81 mask &= ~CMD_RUN;
82
83 cmd = xhci_readl(xhci, &xhci->op_regs->command);
84 cmd &= mask;
85 xhci_writel(xhci, cmd, &xhci->op_regs->command);
86}
87
88/*
89 * Force HC into halt state.
90 *
91 * Disable any IRQs and clear the run/stop bit.
92 * HC will complete any current and actively pipelined transactions, and
93 * should halt within 16 microframes of the run/stop bit being cleared.
94 * Read HC Halted bit in the status register to see when the HC is finished.
95 * XXX: shouldn't we set HC_STATE_HALT here somewhere?
96 */
97int xhci_halt(struct xhci_hcd *xhci)
98{
99 xhci_dbg(xhci, "// Halt the HC\n");
100 xhci_quiesce(xhci);
101
102 return handshake(xhci, &xhci->op_regs->status,
103 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
104}
105
106/*
107 * Reset a halted HC, and set the internal HC state to HC_STATE_HALT.
108 *
109 * This resets pipelines, timers, counters, state machines, etc.
110 * Transactions will be terminated immediately, and operational registers
111 * will be set to their defaults.
112 */
113int xhci_reset(struct xhci_hcd *xhci)
114{
115 u32 command;
116 u32 state;
117
118 state = xhci_readl(xhci, &xhci->op_regs->status);
119 if ((state & STS_HALT) == 0) {
120 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
121 return 0;
122 }
123
124 xhci_dbg(xhci, "// Reset the HC\n");
125 command = xhci_readl(xhci, &xhci->op_regs->command);
126 command |= CMD_RESET;
127 xhci_writel(xhci, command, &xhci->op_regs->command);
128 /* XXX: Why does EHCI set this here? Shouldn't other code do this? */
129 xhci_to_hcd(xhci)->state = HC_STATE_HALT;
130
131 return handshake(xhci, &xhci->op_regs->command, CMD_RESET, 0, 250 * 1000);
132}
133
134
135#if 0
136/* Set up MSI-X table for entry 0 (may claim other entries later) */
137static int xhci_setup_msix(struct xhci_hcd *xhci)
138{
139 int ret;
140 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
141
142 xhci->msix_count = 0;
143 /* XXX: did I do this right? ixgbe does kcalloc for more than one */
144 xhci->msix_entries = kmalloc(sizeof(struct msix_entry), GFP_KERNEL);
145 if (!xhci->msix_entries) {
146 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
147 return -ENOMEM;
148 }
149 xhci->msix_entries[0].entry = 0;
150
151 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
152 if (ret) {
153 xhci_err(xhci, "Failed to enable MSI-X\n");
154 goto free_entries;
155 }
156
157 /*
158 * Pass the xhci pointer value as the request_irq "cookie".
159 * If more irqs are added, this will need to be unique for each one.
160 */
161 ret = request_irq(xhci->msix_entries[0].vector, &xhci_irq, 0,
162 "xHCI", xhci_to_hcd(xhci));
163 if (ret) {
164 xhci_err(xhci, "Failed to allocate MSI-X interrupt\n");
165 goto disable_msix;
166 }
167 xhci_dbg(xhci, "Finished setting up MSI-X\n");
168 return 0;
169
170disable_msix:
171 pci_disable_msix(pdev);
172free_entries:
173 kfree(xhci->msix_entries);
174 xhci->msix_entries = NULL;
175 return ret;
176}
177
178/* XXX: code duplication; can xhci_setup_msix call this? */
179/* Free any IRQs and disable MSI-X */
180static void xhci_cleanup_msix(struct xhci_hcd *xhci)
181{
182 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
183 if (!xhci->msix_entries)
184 return;
185
186 free_irq(xhci->msix_entries[0].vector, xhci);
187 pci_disable_msix(pdev);
188 kfree(xhci->msix_entries);
189 xhci->msix_entries = NULL;
190 xhci_dbg(xhci, "Finished cleaning up MSI-X\n");
191}
192#endif
193
194/*
195 * Initialize memory for HCD and xHC (one-time init).
196 *
197 * Program the PAGESIZE register, initialize the device context array, create
198 * device contexts (?), set up a command ring segment (or two?), create event
199 * ring (one for now).
200 */
201int xhci_init(struct usb_hcd *hcd)
202{
203 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
204 int retval = 0;
205
206 xhci_dbg(xhci, "xhci_init\n");
207 spin_lock_init(&xhci->lock);
208 if (link_quirk) {
209 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
210 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
211 } else {
212 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
213 }
214 retval = xhci_mem_init(xhci, GFP_KERNEL);
215 xhci_dbg(xhci, "Finished xhci_init\n");
216
217 return retval;
218}
219
220/*
221 * Called in interrupt context when there might be work
222 * queued on the event ring
223 *
224 * xhci->lock must be held by caller.
225 */
226static void xhci_work(struct xhci_hcd *xhci)
227{
228 u32 temp;
229 u64 temp_64;
230
231 /*
232 * Clear the op reg interrupt status first,
233 * so we can receive interrupts from other MSI-X interrupters.
234 * Write 1 to clear the interrupt status.
235 */
236 temp = xhci_readl(xhci, &xhci->op_regs->status);
237 temp |= STS_EINT;
238 xhci_writel(xhci, temp, &xhci->op_regs->status);
239 /* FIXME when MSI-X is supported and there are multiple vectors */
240 /* Clear the MSI-X event interrupt status */
241
242 /* Acknowledge the interrupt */
243 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
244 temp |= 0x3;
245 xhci_writel(xhci, temp, &xhci->ir_set->irq_pending);
246 /* Flush posted writes */
247 xhci_readl(xhci, &xhci->ir_set->irq_pending);
248
249 if (xhci->xhc_state & XHCI_STATE_DYING)
250 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
251 "Shouldn't IRQs be disabled?\n");
252 else
253 /* FIXME this should be a delayed service routine
254 * that clears the EHB.
255 */
256 xhci_handle_event(xhci);
257
258 /* Clear the event handler busy flag (RW1C); the event ring should be empty. */
259 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
260 xhci_write_64(xhci, temp_64 | ERST_EHB, &xhci->ir_set->erst_dequeue);
261 /* Flush posted writes -- FIXME is this necessary? */
262 xhci_readl(xhci, &xhci->ir_set->irq_pending);
263}
264
265/*-------------------------------------------------------------------------*/
266
267/*
268 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
269 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
270 * indicators of an event TRB error, but we check the status *first* to be safe.
271 */
272irqreturn_t xhci_irq(struct usb_hcd *hcd)
273{
274 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
275 u32 temp, temp2;
276 union xhci_trb *trb;
277
278 spin_lock(&xhci->lock);
279 trb = xhci->event_ring->dequeue;
280 /* Check if the xHC generated the interrupt, or the irq is shared */
281 temp = xhci_readl(xhci, &xhci->op_regs->status);
282 temp2 = xhci_readl(xhci, &xhci->ir_set->irq_pending);
283 if (temp == 0xffffffff && temp2 == 0xffffffff)
284 goto hw_died;
285
286 if (!(temp & STS_EINT) && !ER_IRQ_PENDING(temp2)) {
287 spin_unlock(&xhci->lock);
288 return IRQ_NONE;
289 }
290 xhci_dbg(xhci, "op reg status = %08x\n", temp);
291 xhci_dbg(xhci, "ir set irq_pending = %08x\n", temp2);
292 xhci_dbg(xhci, "Event ring dequeue ptr:\n");
293 xhci_dbg(xhci, "@%llx %08x %08x %08x %08x\n",
294 (unsigned long long)xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, trb),
295 lower_32_bits(trb->link.segment_ptr),
296 upper_32_bits(trb->link.segment_ptr),
297 (unsigned int) trb->link.intr_target,
298 (unsigned int) trb->link.control);
299
300 if (temp & STS_FATAL) {
301 xhci_warn(xhci, "WARNING: Host System Error\n");
302 xhci_halt(xhci);
303hw_died:
304 xhci_to_hcd(xhci)->state = HC_STATE_HALT;
305 spin_unlock(&xhci->lock);
306 return -ESHUTDOWN;
307 }
308
309 xhci_work(xhci);
310 spin_unlock(&xhci->lock);
311
312 return IRQ_HANDLED;
313}
314
315#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
316void xhci_event_ring_work(unsigned long arg)
317{
318 unsigned long flags;
319 int temp;
320 u64 temp_64;
321 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
322 int i, j;
323
324 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
325
326 spin_lock_irqsave(&xhci->lock, flags);
327 temp = xhci_readl(xhci, &xhci->op_regs->status);
328 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
329 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
330 xhci_dbg(xhci, "HW died, polling stopped.\n");
331 spin_unlock_irqrestore(&xhci->lock, flags);
332 return;
333 }
334
335 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
336 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
337 xhci_dbg(xhci, "No-op commands handled = %d\n", xhci->noops_handled);
338 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
339 xhci->error_bitmask = 0;
340 xhci_dbg(xhci, "Event ring:\n");
341 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
342 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
343 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
344 temp_64 &= ~ERST_PTR_MASK;
345 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
346 xhci_dbg(xhci, "Command ring:\n");
347 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
348 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
349 xhci_dbg_cmd_ptrs(xhci);
350 for (i = 0; i < MAX_HC_SLOTS; ++i) {
351 if (!xhci->devs[i])
352 continue;
353 for (j = 0; j < 31; ++j) {
354 struct xhci_ring *ring = xhci->devs[i]->eps[j].ring;
355 if (!ring)
356 continue;
357 xhci_dbg(xhci, "Dev %d endpoint ring %d:\n", i, j);
358 xhci_debug_segment(xhci, ring->deq_seg);
359 }
360 }
361
362 if (xhci->noops_submitted != NUM_TEST_NOOPS)
363 if (xhci_setup_one_noop(xhci))
364 xhci_ring_cmd_db(xhci);
365 spin_unlock_irqrestore(&xhci->lock, flags);
366
367 if (!xhci->zombie)
368 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
369 else
370 xhci_dbg(xhci, "Quit polling the event ring.\n");
371}
372#endif
373
374/*
375 * Start the HC after it was halted.
376 *
377 * This function is called by the USB core when the HC driver is added.
378 * Its opposite is xhci_stop().
379 *
380 * xhci_init() must be called once before this function can be called.
381 * Reset the HC, enable device slot contexts, program DCBAAP, and
382 * set command ring pointer and event ring pointer.
383 *
384 * Setup MSI-X vectors and enable interrupts.
385 */
386int xhci_run(struct usb_hcd *hcd)
387{
388 u32 temp;
389 u64 temp_64;
390 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
391 void (*doorbell)(struct xhci_hcd *) = NULL;
392
393 hcd->uses_new_polling = 1;
394 hcd->poll_rh = 0;
395
396 xhci_dbg(xhci, "xhci_run\n");
397#if 0 /* FIXME: MSI not setup yet */
398 /* Do this at the very last minute */
399 ret = xhci_setup_msix(xhci);
400 if (!ret)
401 return ret;
402
403 return -ENOSYS;
404#endif
405#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
406 init_timer(&xhci->event_ring_timer);
407 xhci->event_ring_timer.data = (unsigned long) xhci;
408 xhci->event_ring_timer.function = xhci_event_ring_work;
409 /* Poll the event ring */
410 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
411 xhci->zombie = 0;
412 xhci_dbg(xhci, "Setting event ring polling timer\n");
413 add_timer(&xhci->event_ring_timer);
414#endif
415
416 xhci_dbg(xhci, "Command ring memory map follows:\n");
417 xhci_debug_ring(xhci, xhci->cmd_ring);
418 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
419 xhci_dbg_cmd_ptrs(xhci);
420
421 xhci_dbg(xhci, "ERST memory map follows:\n");
422 xhci_dbg_erst(xhci, &xhci->erst);
423 xhci_dbg(xhci, "Event ring:\n");
424 xhci_debug_ring(xhci, xhci->event_ring);
425 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
426 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
427 temp_64 &= ~ERST_PTR_MASK;
428 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
429
430 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
431 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
432 temp &= ~ER_IRQ_INTERVAL_MASK;
433 temp |= (u32) 160;
434 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
435
436 /* Set the HCD state before we enable the irqs */
437 hcd->state = HC_STATE_RUNNING;
438 temp = xhci_readl(xhci, &xhci->op_regs->command);
439 temp |= (CMD_EIE);
440 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
441 temp);
442 xhci_writel(xhci, temp, &xhci->op_regs->command);
443
444 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
445 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
446 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
447 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
448 &xhci->ir_set->irq_pending);
449 xhci_print_ir_set(xhci, xhci->ir_set, 0);
450
451 if (NUM_TEST_NOOPS > 0)
452 doorbell = xhci_setup_one_noop(xhci);
453
454 temp = xhci_readl(xhci, &xhci->op_regs->command);
455 temp |= (CMD_RUN);
456 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
457 temp);
458 xhci_writel(xhci, temp, &xhci->op_regs->command);
459 /* Flush PCI posted writes */
460 temp = xhci_readl(xhci, &xhci->op_regs->command);
461 xhci_dbg(xhci, "// @%p = 0x%x\n", &xhci->op_regs->command, temp);
462 if (doorbell)
463 (*doorbell)(xhci);
464
465 xhci_dbg(xhci, "Finished xhci_run\n");
466 return 0;
467}
468
469/*
470 * Stop xHCI driver.
471 *
472 * This function is called by the USB core when the HC driver is removed.
473 * Its opposite is xhci_run().
474 *
475 * Disable device contexts, disable IRQs, and quiesce the HC.
476 * Reset the HC, finish any completed transactions, and cleanup memory.
477 */
478void xhci_stop(struct usb_hcd *hcd)
479{
480 u32 temp;
481 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
482
483 spin_lock_irq(&xhci->lock);
484 xhci_halt(xhci);
485 xhci_reset(xhci);
486 spin_unlock_irq(&xhci->lock);
487
488#if 0 /* No MSI yet */
489 xhci_cleanup_msix(xhci);
490#endif
491#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
492 /* Tell the event ring poll function not to reschedule */
493 xhci->zombie = 1;
494 del_timer_sync(&xhci->event_ring_timer);
495#endif
496
497 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
498 temp = xhci_readl(xhci, &xhci->op_regs->status);
499 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
500 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
501 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
502 &xhci->ir_set->irq_pending);
503 xhci_print_ir_set(xhci, xhci->ir_set, 0);
504
505 xhci_dbg(xhci, "cleaning up memory\n");
506 xhci_mem_cleanup(xhci);
507 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
508 xhci_readl(xhci, &xhci->op_regs->status));
509}
510
511/*
512 * Shutdown HC (not bus-specific)
513 *
514 * This is called when the machine is rebooting or halting. We assume that the
515 * machine will be powered off, and the HC's internal state will be reset.
516 * Don't bother to free memory.
517 */
518void xhci_shutdown(struct usb_hcd *hcd)
519{
520 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
521
522 spin_lock_irq(&xhci->lock);
523 xhci_halt(xhci);
524 spin_unlock_irq(&xhci->lock);
525
526#if 0
527 xhci_cleanup_msix(xhci);
528#endif
529
530 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
531 xhci_readl(xhci, &xhci->op_regs->status));
532}
533
534/*-------------------------------------------------------------------------*/
535
536/**
537 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
538 * HCDs. Find the index for an endpoint given its descriptor. Use the return
539 * value to right shift 1 for the bitmask.
540 *
541 * Index = (epnum * 2) + direction - 1,
542 * where direction = 0 for OUT, 1 for IN.
543 * For control endpoints, the IN index is used (OUT index is unused), so
544 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
545 */
546unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
547{
548 unsigned int index;
549 if (usb_endpoint_xfer_control(desc))
550 index = (unsigned int) (usb_endpoint_num(desc)*2);
551 else
552 index = (unsigned int) (usb_endpoint_num(desc)*2) +
553 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
554 return index;
555}
556
557/* Find the flag for this endpoint (for use in the control context). Use the
558 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
559 * bit 1, etc.
560 */
561unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
562{
563 return 1 << (xhci_get_endpoint_index(desc) + 1);
564}
565
566/* Find the flag for this endpoint (for use in the control context). Use the
567 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
568 * bit 1, etc.
569 */
570unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
571{
572 return 1 << (ep_index + 1);
573}
574
575/* Compute the last valid endpoint context index. Basically, this is the
576 * endpoint index plus one. For slot contexts with more than valid endpoint,
577 * we find the most significant bit set in the added contexts flags.
578 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
579 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
580 */
581unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
582{
583 return fls(added_ctxs) - 1;
584}
585
586/* Returns 1 if the arguments are OK;
587 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
588 */
589int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
590 struct usb_host_endpoint *ep, int check_ep, const char *func) {
591 if (!hcd || (check_ep && !ep) || !udev) {
592 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
593 func);
594 return -EINVAL;
595 }
596 if (!udev->parent) {
597 printk(KERN_DEBUG "xHCI %s called for root hub\n",
598 func);
599 return 0;
600 }
601 if (!udev->slot_id) {
602 printk(KERN_DEBUG "xHCI %s called with unaddressed device\n",
603 func);
604 return -EINVAL;
605 }
606 return 1;
607}
608
609static int xhci_configure_endpoint(struct xhci_hcd *xhci,
610 struct usb_device *udev, struct xhci_command *command,
611 bool ctx_change, bool must_succeed);
612
613/*
614 * Full speed devices may have a max packet size greater than 8 bytes, but the
615 * USB core doesn't know that until it reads the first 8 bytes of the
616 * descriptor. If the usb_device's max packet size changes after that point,
617 * we need to issue an evaluate context command and wait on it.
618 */
619static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
620 unsigned int ep_index, struct urb *urb)
621{
622 struct xhci_container_ctx *in_ctx;
623 struct xhci_container_ctx *out_ctx;
624 struct xhci_input_control_ctx *ctrl_ctx;
625 struct xhci_ep_ctx *ep_ctx;
626 int max_packet_size;
627 int hw_max_packet_size;
628 int ret = 0;
629
630 out_ctx = xhci->devs[slot_id]->out_ctx;
631 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
632 hw_max_packet_size = MAX_PACKET_DECODED(ep_ctx->ep_info2);
633 max_packet_size = urb->dev->ep0.desc.wMaxPacketSize;
634 if (hw_max_packet_size != max_packet_size) {
635 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
636 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
637 max_packet_size);
638 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
639 hw_max_packet_size);
640 xhci_dbg(xhci, "Issuing evaluate context command.\n");
641
642 /* Set up the modified control endpoint 0 */
643 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
644 xhci->devs[slot_id]->out_ctx, ep_index);
645 in_ctx = xhci->devs[slot_id]->in_ctx;
646 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
647 ep_ctx->ep_info2 &= ~MAX_PACKET_MASK;
648 ep_ctx->ep_info2 |= MAX_PACKET(max_packet_size);
649
650 /* Set up the input context flags for the command */
651 /* FIXME: This won't work if a non-default control endpoint
652 * changes max packet sizes.
653 */
654 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
655 ctrl_ctx->add_flags = EP0_FLAG;
656 ctrl_ctx->drop_flags = 0;
657
658 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
659 xhci_dbg_ctx(xhci, in_ctx, ep_index);
660 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
661 xhci_dbg_ctx(xhci, out_ctx, ep_index);
662
663 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
664 true, false);
665
666 /* Clean up the input context for later use by bandwidth
667 * functions.
668 */
669 ctrl_ctx->add_flags = SLOT_FLAG;
670 }
671 return ret;
672}
673
674/*
675 * non-error returns are a promise to giveback() the urb later
676 * we drop ownership so next owner (or urb unlink) can get it
677 */
678int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
679{
680 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
681 unsigned long flags;
682 int ret = 0;
683 unsigned int slot_id, ep_index;
684
685
686 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, true, __func__) <= 0)
687 return -EINVAL;
688
689 slot_id = urb->dev->slot_id;
690 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
691
692 if (!xhci->devs || !xhci->devs[slot_id]) {
693 if (!in_interrupt())
694 dev_warn(&urb->dev->dev, "WARN: urb submitted for dev with no Slot ID\n");
695 ret = -EINVAL;
696 goto exit;
697 }
698 if (!test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags)) {
699 if (!in_interrupt())
700 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
701 ret = -ESHUTDOWN;
702 goto exit;
703 }
704 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
705 /* Check to see if the max packet size for the default control
706 * endpoint changed during FS device enumeration
707 */
708 if (urb->dev->speed == USB_SPEED_FULL) {
709 ret = xhci_check_maxpacket(xhci, slot_id,
710 ep_index, urb);
711 if (ret < 0)
712 return ret;
713 }
714
715 /* We have a spinlock and interrupts disabled, so we must pass
716 * atomic context to this function, which may allocate memory.
717 */
718 spin_lock_irqsave(&xhci->lock, flags);
719 if (xhci->xhc_state & XHCI_STATE_DYING)
720 goto dying;
721 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
722 slot_id, ep_index);
723 spin_unlock_irqrestore(&xhci->lock, flags);
724 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
725 spin_lock_irqsave(&xhci->lock, flags);
726 if (xhci->xhc_state & XHCI_STATE_DYING)
727 goto dying;
728 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
729 slot_id, ep_index);
730 spin_unlock_irqrestore(&xhci->lock, flags);
731 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
732 spin_lock_irqsave(&xhci->lock, flags);
733 if (xhci->xhc_state & XHCI_STATE_DYING)
734 goto dying;
735 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
736 slot_id, ep_index);
737 spin_unlock_irqrestore(&xhci->lock, flags);
738 } else {
739 ret = -EINVAL;
740 }
741exit:
742 return ret;
743dying:
744 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
745 "non-responsive xHCI host.\n",
746 urb->ep->desc.bEndpointAddress, urb);
747 spin_unlock_irqrestore(&xhci->lock, flags);
748 return -ESHUTDOWN;
749}
750
751/*
752 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
753 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
754 * should pick up where it left off in the TD, unless a Set Transfer Ring
755 * Dequeue Pointer is issued.
756 *
757 * The TRBs that make up the buffers for the canceled URB will be "removed" from
758 * the ring. Since the ring is a contiguous structure, they can't be physically
759 * removed. Instead, there are two options:
760 *
761 * 1) If the HC is in the middle of processing the URB to be canceled, we
762 * simply move the ring's dequeue pointer past those TRBs using the Set
763 * Transfer Ring Dequeue Pointer command. This will be the common case,
764 * when drivers timeout on the last submitted URB and attempt to cancel.
765 *
766 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
767 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
768 * HC will need to invalidate the any TRBs it has cached after the stop
769 * endpoint command, as noted in the xHCI 0.95 errata.
770 *
771 * 3) The TD may have completed by the time the Stop Endpoint Command
772 * completes, so software needs to handle that case too.
773 *
774 * This function should protect against the TD enqueueing code ringing the
775 * doorbell while this code is waiting for a Stop Endpoint command to complete.
776 * It also needs to account for multiple cancellations on happening at the same
777 * time for the same endpoint.
778 *
779 * Note that this function can be called in any context, or so says
780 * usb_hcd_unlink_urb()
781 */
782int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
783{
784 unsigned long flags;
785 int ret;
786 u32 temp;
787 struct xhci_hcd *xhci;
788 struct xhci_td *td;
789 unsigned int ep_index;
790 struct xhci_ring *ep_ring;
791 struct xhci_virt_ep *ep;
792
793 xhci = hcd_to_xhci(hcd);
794 spin_lock_irqsave(&xhci->lock, flags);
795 /* Make sure the URB hasn't completed or been unlinked already */
796 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
797 if (ret || !urb->hcpriv)
798 goto done;
799 temp = xhci_readl(xhci, &xhci->op_regs->status);
800 if (temp == 0xffffffff) {
801 xhci_dbg(xhci, "HW died, freeing TD.\n");
802 td = (struct xhci_td *) urb->hcpriv;
803
804 usb_hcd_unlink_urb_from_ep(hcd, urb);
805 spin_unlock_irqrestore(&xhci->lock, flags);
806 usb_hcd_giveback_urb(xhci_to_hcd(xhci), urb, -ESHUTDOWN);
807 kfree(td);
808 return ret;
809 }
810 if (xhci->xhc_state & XHCI_STATE_DYING) {
811 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
812 "non-responsive xHCI host.\n",
813 urb->ep->desc.bEndpointAddress, urb);
814 /* Let the stop endpoint command watchdog timer (which set this
815 * state) finish cleaning up the endpoint TD lists. We must
816 * have caught it in the middle of dropping a lock and giving
817 * back an URB.
818 */
819 goto done;
820 }
821
822 xhci_dbg(xhci, "Cancel URB %p\n", urb);
823 xhci_dbg(xhci, "Event ring:\n");
824 xhci_debug_ring(xhci, xhci->event_ring);
825 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
826 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
827 ep_ring = ep->ring;
828 xhci_dbg(xhci, "Endpoint ring:\n");
829 xhci_debug_ring(xhci, ep_ring);
830 td = (struct xhci_td *) urb->hcpriv;
831
832 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
833 /* Queue a stop endpoint command, but only if this is
834 * the first cancellation to be handled.
835 */
836 if (!(ep->ep_state & EP_HALT_PENDING)) {
837 ep->ep_state |= EP_HALT_PENDING;
838 ep->stop_cmds_pending++;
839 ep->stop_cmd_timer.expires = jiffies +
840 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
841 add_timer(&ep->stop_cmd_timer);
842 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index);
843 xhci_ring_cmd_db(xhci);
844 }
845done:
846 spin_unlock_irqrestore(&xhci->lock, flags);
847 return ret;
848}
849
850/* Drop an endpoint from a new bandwidth configuration for this device.
851 * Only one call to this function is allowed per endpoint before
852 * check_bandwidth() or reset_bandwidth() must be called.
853 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
854 * add the endpoint to the schedule with possibly new parameters denoted by a
855 * different endpoint descriptor in usb_host_endpoint.
856 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
857 * not allowed.
858 *
859 * The USB core will not allow URBs to be queued to an endpoint that is being
860 * disabled, so there's no need for mutual exclusion to protect
861 * the xhci->devs[slot_id] structure.
862 */
863int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
864 struct usb_host_endpoint *ep)
865{
866 struct xhci_hcd *xhci;
867 struct xhci_container_ctx *in_ctx, *out_ctx;
868 struct xhci_input_control_ctx *ctrl_ctx;
869 struct xhci_slot_ctx *slot_ctx;
870 unsigned int last_ctx;
871 unsigned int ep_index;
872 struct xhci_ep_ctx *ep_ctx;
873 u32 drop_flag;
874 u32 new_add_flags, new_drop_flags, new_slot_info;
875 int ret;
876
877 ret = xhci_check_args(hcd, udev, ep, 1, __func__);
878 if (ret <= 0)
879 return ret;
880 xhci = hcd_to_xhci(hcd);
881 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
882
883 drop_flag = xhci_get_endpoint_flag(&ep->desc);
884 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
885 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
886 __func__, drop_flag);
887 return 0;
888 }
889
890 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
891 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
892 __func__);
893 return -EINVAL;
894 }
895
896 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
897 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
898 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
899 ep_index = xhci_get_endpoint_index(&ep->desc);
900 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
901 /* If the HC already knows the endpoint is disabled,
902 * or the HCD has noted it is disabled, ignore this request
903 */
904 if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED ||
905 ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) {
906 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
907 __func__, ep);
908 return 0;
909 }
910
911 ctrl_ctx->drop_flags |= drop_flag;
912 new_drop_flags = ctrl_ctx->drop_flags;
913
914 ctrl_ctx->add_flags &= ~drop_flag;
915 new_add_flags = ctrl_ctx->add_flags;
916
917 last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags);
918 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
919 /* Update the last valid endpoint context, if we deleted the last one */
920 if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) {
921 slot_ctx->dev_info &= ~LAST_CTX_MASK;
922 slot_ctx->dev_info |= LAST_CTX(last_ctx);
923 }
924 new_slot_info = slot_ctx->dev_info;
925
926 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
927
928 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
929 (unsigned int) ep->desc.bEndpointAddress,
930 udev->slot_id,
931 (unsigned int) new_drop_flags,
932 (unsigned int) new_add_flags,
933 (unsigned int) new_slot_info);
934 return 0;
935}
936
937/* Add an endpoint to a new possible bandwidth configuration for this device.
938 * Only one call to this function is allowed per endpoint before
939 * check_bandwidth() or reset_bandwidth() must be called.
940 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
941 * add the endpoint to the schedule with possibly new parameters denoted by a
942 * different endpoint descriptor in usb_host_endpoint.
943 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
944 * not allowed.
945 *
946 * The USB core will not allow URBs to be queued to an endpoint until the
947 * configuration or alt setting is installed in the device, so there's no need
948 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
949 */
950int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
951 struct usb_host_endpoint *ep)
952{
953 struct xhci_hcd *xhci;
954 struct xhci_container_ctx *in_ctx, *out_ctx;
955 unsigned int ep_index;
956 struct xhci_ep_ctx *ep_ctx;
957 struct xhci_slot_ctx *slot_ctx;
958 struct xhci_input_control_ctx *ctrl_ctx;
959 u32 added_ctxs;
960 unsigned int last_ctx;
961 u32 new_add_flags, new_drop_flags, new_slot_info;
962 int ret = 0;
963
964 ret = xhci_check_args(hcd, udev, ep, 1, __func__);
965 if (ret <= 0) {
966 /* So we won't queue a reset ep command for a root hub */
967 ep->hcpriv = NULL;
968 return ret;
969 }
970 xhci = hcd_to_xhci(hcd);
971
972 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
973 last_ctx = xhci_last_valid_endpoint(added_ctxs);
974 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
975 /* FIXME when we have to issue an evaluate endpoint command to
976 * deal with ep0 max packet size changing once we get the
977 * descriptors
978 */
979 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
980 __func__, added_ctxs);
981 return 0;
982 }
983
984 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
985 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
986 __func__);
987 return -EINVAL;
988 }
989
990 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
991 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
992 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
993 ep_index = xhci_get_endpoint_index(&ep->desc);
994 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
995 /* If the HCD has already noted the endpoint is enabled,
996 * ignore this request.
997 */
998 if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) {
999 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1000 __func__, ep);
1001 return 0;
1002 }
1003
1004 /*
1005 * Configuration and alternate setting changes must be done in
1006 * process context, not interrupt context (or so documenation
1007 * for usb_set_interface() and usb_set_configuration() claim).
1008 */
1009 if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id],
1010 udev, ep, GFP_NOIO) < 0) {
1011 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1012 __func__, ep->desc.bEndpointAddress);
1013 return -ENOMEM;
1014 }
1015
1016 ctrl_ctx->add_flags |= added_ctxs;
1017 new_add_flags = ctrl_ctx->add_flags;
1018
1019 /* If xhci_endpoint_disable() was called for this endpoint, but the
1020 * xHC hasn't been notified yet through the check_bandwidth() call,
1021 * this re-adds a new state for the endpoint from the new endpoint
1022 * descriptors. We must drop and re-add this endpoint, so we leave the
1023 * drop flags alone.
1024 */
1025 new_drop_flags = ctrl_ctx->drop_flags;
1026
1027 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1028 /* Update the last valid endpoint context, if we just added one past */
1029 if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) {
1030 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1031 slot_ctx->dev_info |= LAST_CTX(last_ctx);
1032 }
1033 new_slot_info = slot_ctx->dev_info;
1034
1035 /* Store the usb_device pointer for later use */
1036 ep->hcpriv = udev;
1037
1038 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1039 (unsigned int) ep->desc.bEndpointAddress,
1040 udev->slot_id,
1041 (unsigned int) new_drop_flags,
1042 (unsigned int) new_add_flags,
1043 (unsigned int) new_slot_info);
1044 return 0;
1045}
1046
1047static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1048{
1049 struct xhci_input_control_ctx *ctrl_ctx;
1050 struct xhci_ep_ctx *ep_ctx;
1051 struct xhci_slot_ctx *slot_ctx;
1052 int i;
1053
1054 /* When a device's add flag and drop flag are zero, any subsequent
1055 * configure endpoint command will leave that endpoint's state
1056 * untouched. Make sure we don't leave any old state in the input
1057 * endpoint contexts.
1058 */
1059 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1060 ctrl_ctx->drop_flags = 0;
1061 ctrl_ctx->add_flags = 0;
1062 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1063 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1064 /* Endpoint 0 is always valid */
1065 slot_ctx->dev_info |= LAST_CTX(1);
1066 for (i = 1; i < 31; ++i) {
1067 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1068 ep_ctx->ep_info = 0;
1069 ep_ctx->ep_info2 = 0;
1070 ep_ctx->deq = 0;
1071 ep_ctx->tx_info = 0;
1072 }
1073}
1074
1075static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1076 struct usb_device *udev, int *cmd_status)
1077{
1078 int ret;
1079
1080 switch (*cmd_status) {
1081 case COMP_ENOMEM:
1082 dev_warn(&udev->dev, "Not enough host controller resources "
1083 "for new device state.\n");
1084 ret = -ENOMEM;
1085 /* FIXME: can we allocate more resources for the HC? */
1086 break;
1087 case COMP_BW_ERR:
1088 dev_warn(&udev->dev, "Not enough bandwidth "
1089 "for new device state.\n");
1090 ret = -ENOSPC;
1091 /* FIXME: can we go back to the old state? */
1092 break;
1093 case COMP_TRB_ERR:
1094 /* the HCD set up something wrong */
1095 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1096 "add flag = 1, "
1097 "and endpoint is not disabled.\n");
1098 ret = -EINVAL;
1099 break;
1100 case COMP_SUCCESS:
1101 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1102 ret = 0;
1103 break;
1104 default:
1105 xhci_err(xhci, "ERROR: unexpected command completion "
1106 "code 0x%x.\n", *cmd_status);
1107 ret = -EINVAL;
1108 break;
1109 }
1110 return ret;
1111}
1112
1113static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1114 struct usb_device *udev, int *cmd_status)
1115{
1116 int ret;
1117 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1118
1119 switch (*cmd_status) {
1120 case COMP_EINVAL:
1121 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1122 "context command.\n");
1123 ret = -EINVAL;
1124 break;
1125 case COMP_EBADSLT:
1126 dev_warn(&udev->dev, "WARN: slot not enabled for"
1127 "evaluate context command.\n");
1128 case COMP_CTX_STATE:
1129 dev_warn(&udev->dev, "WARN: invalid context state for "
1130 "evaluate context command.\n");
1131 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1132 ret = -EINVAL;
1133 break;
1134 case COMP_SUCCESS:
1135 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1136 ret = 0;
1137 break;
1138 default:
1139 xhci_err(xhci, "ERROR: unexpected command completion "
1140 "code 0x%x.\n", *cmd_status);
1141 ret = -EINVAL;
1142 break;
1143 }
1144 return ret;
1145}
1146
1147/* Issue a configure endpoint command or evaluate context command
1148 * and wait for it to finish.
1149 */
1150static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1151 struct usb_device *udev,
1152 struct xhci_command *command,
1153 bool ctx_change, bool must_succeed)
1154{
1155 int ret;
1156 int timeleft;
1157 unsigned long flags;
1158 struct xhci_container_ctx *in_ctx;
1159 struct completion *cmd_completion;
1160 int *cmd_status;
1161 struct xhci_virt_device *virt_dev;
1162
1163 spin_lock_irqsave(&xhci->lock, flags);
1164 virt_dev = xhci->devs[udev->slot_id];
1165 if (command) {
1166 in_ctx = command->in_ctx;
1167 cmd_completion = command->completion;
1168 cmd_status = &command->status;
1169 command->command_trb = xhci->cmd_ring->enqueue;
1170 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1171 } else {
1172 in_ctx = virt_dev->in_ctx;
1173 cmd_completion = &virt_dev->cmd_completion;
1174 cmd_status = &virt_dev->cmd_status;
1175 }
1176 init_completion(cmd_completion);
1177
1178 if (!ctx_change)
1179 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1180 udev->slot_id, must_succeed);
1181 else
1182 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1183 udev->slot_id);
1184 if (ret < 0) {
1185 if (command)
1186 list_del(&command->cmd_list);
1187 spin_unlock_irqrestore(&xhci->lock, flags);
1188 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1189 return -ENOMEM;
1190 }
1191 xhci_ring_cmd_db(xhci);
1192 spin_unlock_irqrestore(&xhci->lock, flags);
1193
1194 /* Wait for the configure endpoint command to complete */
1195 timeleft = wait_for_completion_interruptible_timeout(
1196 cmd_completion,
1197 USB_CTRL_SET_TIMEOUT);
1198 if (timeleft <= 0) {
1199 xhci_warn(xhci, "%s while waiting for %s command\n",
1200 timeleft == 0 ? "Timeout" : "Signal",
1201 ctx_change == 0 ?
1202 "configure endpoint" :
1203 "evaluate context");
1204 /* FIXME cancel the configure endpoint command */
1205 return -ETIME;
1206 }
1207
1208 if (!ctx_change)
1209 return xhci_configure_endpoint_result(xhci, udev, cmd_status);
1210 return xhci_evaluate_context_result(xhci, udev, cmd_status);
1211}
1212
1213/* Called after one or more calls to xhci_add_endpoint() or
1214 * xhci_drop_endpoint(). If this call fails, the USB core is expected
1215 * to call xhci_reset_bandwidth().
1216 *
1217 * Since we are in the middle of changing either configuration or
1218 * installing a new alt setting, the USB core won't allow URBs to be
1219 * enqueued for any endpoint on the old config or interface. Nothing
1220 * else should be touching the xhci->devs[slot_id] structure, so we
1221 * don't need to take the xhci->lock for manipulating that.
1222 */
1223int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1224{
1225 int i;
1226 int ret = 0;
1227 struct xhci_hcd *xhci;
1228 struct xhci_virt_device *virt_dev;
1229 struct xhci_input_control_ctx *ctrl_ctx;
1230 struct xhci_slot_ctx *slot_ctx;
1231
1232 ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
1233 if (ret <= 0)
1234 return ret;
1235 xhci = hcd_to_xhci(hcd);
1236
1237 if (!udev->slot_id || !xhci->devs || !xhci->devs[udev->slot_id]) {
1238 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
1239 __func__);
1240 return -EINVAL;
1241 }
1242 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1243 virt_dev = xhci->devs[udev->slot_id];
1244
1245 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1246 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1247 ctrl_ctx->add_flags |= SLOT_FLAG;
1248 ctrl_ctx->add_flags &= ~EP0_FLAG;
1249 ctrl_ctx->drop_flags &= ~SLOT_FLAG;
1250 ctrl_ctx->drop_flags &= ~EP0_FLAG;
1251 xhci_dbg(xhci, "New Input Control Context:\n");
1252 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1253 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1254 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1255
1256 ret = xhci_configure_endpoint(xhci, udev, NULL,
1257 false, false);
1258 if (ret) {
1259 /* Callee should call reset_bandwidth() */
1260 return ret;
1261 }
1262
1263 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1264 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1265 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1266
1267 xhci_zero_in_ctx(xhci, virt_dev);
1268 /* Install new rings and free or cache any old rings */
1269 for (i = 1; i < 31; ++i) {
1270 if (!virt_dev->eps[i].new_ring)
1271 continue;
1272 /* Only cache or free the old ring if it exists.
1273 * It may not if this is the first add of an endpoint.
1274 */
1275 if (virt_dev->eps[i].ring) {
1276 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1277 }
1278 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1279 virt_dev->eps[i].new_ring = NULL;
1280 }
1281
1282 return ret;
1283}
1284
1285void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1286{
1287 struct xhci_hcd *xhci;
1288 struct xhci_virt_device *virt_dev;
1289 int i, ret;
1290
1291 ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
1292 if (ret <= 0)
1293 return;
1294 xhci = hcd_to_xhci(hcd);
1295
1296 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
1297 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
1298 __func__);
1299 return;
1300 }
1301 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1302 virt_dev = xhci->devs[udev->slot_id];
1303 /* Free any rings allocated for added endpoints */
1304 for (i = 0; i < 31; ++i) {
1305 if (virt_dev->eps[i].new_ring) {
1306 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1307 virt_dev->eps[i].new_ring = NULL;
1308 }
1309 }
1310 xhci_zero_in_ctx(xhci, virt_dev);
1311}
1312
1313static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1314 struct xhci_container_ctx *in_ctx,
1315 struct xhci_container_ctx *out_ctx,
1316 u32 add_flags, u32 drop_flags)
1317{
1318 struct xhci_input_control_ctx *ctrl_ctx;
1319 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1320 ctrl_ctx->add_flags = add_flags;
1321 ctrl_ctx->drop_flags = drop_flags;
1322 xhci_slot_copy(xhci, in_ctx, out_ctx);
1323 ctrl_ctx->add_flags |= SLOT_FLAG;
1324
1325 xhci_dbg(xhci, "Input Context:\n");
1326 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1327}
1328
1329void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1330 unsigned int slot_id, unsigned int ep_index,
1331 struct xhci_dequeue_state *deq_state)
1332{
1333 struct xhci_container_ctx *in_ctx;
1334 struct xhci_ep_ctx *ep_ctx;
1335 u32 added_ctxs;
1336 dma_addr_t addr;
1337
1338 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1339 xhci->devs[slot_id]->out_ctx, ep_index);
1340 in_ctx = xhci->devs[slot_id]->in_ctx;
1341 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1342 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1343 deq_state->new_deq_ptr);
1344 if (addr == 0) {
1345 xhci_warn(xhci, "WARN Cannot submit config ep after "
1346 "reset ep command\n");
1347 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1348 deq_state->new_deq_seg,
1349 deq_state->new_deq_ptr);
1350 return;
1351 }
1352 ep_ctx->deq = addr | deq_state->new_cycle_state;
1353
1354 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1355 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
1356 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
1357}
1358
1359void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
1360 struct usb_device *udev, unsigned int ep_index)
1361{
1362 struct xhci_dequeue_state deq_state;
1363 struct xhci_virt_ep *ep;
1364
1365 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
1366 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1367 /* We need to move the HW's dequeue pointer past this TD,
1368 * or it will attempt to resend it on the next doorbell ring.
1369 */
1370 xhci_find_new_dequeue_state(xhci, udev->slot_id,
1371 ep_index, ep->stopped_td,
1372 &deq_state);
1373
1374 /* HW with the reset endpoint quirk will use the saved dequeue state to
1375 * issue a configure endpoint command later.
1376 */
1377 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
1378 xhci_dbg(xhci, "Queueing new dequeue state\n");
1379 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
1380 ep_index, &deq_state);
1381 } else {
1382 /* Better hope no one uses the input context between now and the
1383 * reset endpoint completion!
1384 */
1385 xhci_dbg(xhci, "Setting up input context for "
1386 "configure endpoint command\n");
1387 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
1388 ep_index, &deq_state);
1389 }
1390}
1391
1392/* Deal with stalled endpoints. The core should have sent the control message
1393 * to clear the halt condition. However, we need to make the xHCI hardware
1394 * reset its sequence number, since a device will expect a sequence number of
1395 * zero after the halt condition is cleared.
1396 * Context: in_interrupt
1397 */
1398void xhci_endpoint_reset(struct usb_hcd *hcd,
1399 struct usb_host_endpoint *ep)
1400{
1401 struct xhci_hcd *xhci;
1402 struct usb_device *udev;
1403 unsigned int ep_index;
1404 unsigned long flags;
1405 int ret;
1406 struct xhci_virt_ep *virt_ep;
1407
1408 xhci = hcd_to_xhci(hcd);
1409 udev = (struct usb_device *) ep->hcpriv;
1410 /* Called with a root hub endpoint (or an endpoint that wasn't added
1411 * with xhci_add_endpoint()
1412 */
1413 if (!ep->hcpriv)
1414 return;
1415 ep_index = xhci_get_endpoint_index(&ep->desc);
1416 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1417 if (!virt_ep->stopped_td) {
1418 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
1419 ep->desc.bEndpointAddress);
1420 return;
1421 }
1422 if (usb_endpoint_xfer_control(&ep->desc)) {
1423 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
1424 return;
1425 }
1426
1427 xhci_dbg(xhci, "Queueing reset endpoint command\n");
1428 spin_lock_irqsave(&xhci->lock, flags);
1429 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
1430 /*
1431 * Can't change the ring dequeue pointer until it's transitioned to the
1432 * stopped state, which is only upon a successful reset endpoint
1433 * command. Better hope that last command worked!
1434 */
1435 if (!ret) {
1436 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
1437 kfree(virt_ep->stopped_td);
1438 xhci_ring_cmd_db(xhci);
1439 }
1440 spin_unlock_irqrestore(&xhci->lock, flags);
1441
1442 if (ret)
1443 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
1444}
1445
1446/*
1447 * This submits a Reset Device Command, which will set the device state to 0,
1448 * set the device address to 0, and disable all the endpoints except the default
1449 * control endpoint. The USB core should come back and call
1450 * xhci_address_device(), and then re-set up the configuration. If this is
1451 * called because of a usb_reset_and_verify_device(), then the old alternate
1452 * settings will be re-installed through the normal bandwidth allocation
1453 * functions.
1454 *
1455 * Wait for the Reset Device command to finish. Remove all structures
1456 * associated with the endpoints that were disabled. Clear the input device
1457 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
1458 */
1459int xhci_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
1460{
1461 int ret, i;
1462 unsigned long flags;
1463 struct xhci_hcd *xhci;
1464 unsigned int slot_id;
1465 struct xhci_virt_device *virt_dev;
1466 struct xhci_command *reset_device_cmd;
1467 int timeleft;
1468 int last_freed_endpoint;
1469
1470 ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
1471 if (ret <= 0)
1472 return ret;
1473 xhci = hcd_to_xhci(hcd);
1474 slot_id = udev->slot_id;
1475 virt_dev = xhci->devs[slot_id];
1476 if (!virt_dev) {
1477 xhci_dbg(xhci, "%s called with invalid slot ID %u\n",
1478 __func__, slot_id);
1479 return -EINVAL;
1480 }
1481
1482 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
1483 /* Allocate the command structure that holds the struct completion.
1484 * Assume we're in process context, since the normal device reset
1485 * process has to wait for the device anyway. Storage devices are
1486 * reset as part of error handling, so use GFP_NOIO instead of
1487 * GFP_KERNEL.
1488 */
1489 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
1490 if (!reset_device_cmd) {
1491 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
1492 return -ENOMEM;
1493 }
1494
1495 /* Attempt to submit the Reset Device command to the command ring */
1496 spin_lock_irqsave(&xhci->lock, flags);
1497 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
1498 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
1499 ret = xhci_queue_reset_device(xhci, slot_id);
1500 if (ret) {
1501 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1502 list_del(&reset_device_cmd->cmd_list);
1503 spin_unlock_irqrestore(&xhci->lock, flags);
1504 goto command_cleanup;
1505 }
1506 xhci_ring_cmd_db(xhci);
1507 spin_unlock_irqrestore(&xhci->lock, flags);
1508
1509 /* Wait for the Reset Device command to finish */
1510 timeleft = wait_for_completion_interruptible_timeout(
1511 reset_device_cmd->completion,
1512 USB_CTRL_SET_TIMEOUT);
1513 if (timeleft <= 0) {
1514 xhci_warn(xhci, "%s while waiting for reset device command\n",
1515 timeleft == 0 ? "Timeout" : "Signal");
1516 spin_lock_irqsave(&xhci->lock, flags);
1517 /* The timeout might have raced with the event ring handler, so
1518 * only delete from the list if the item isn't poisoned.
1519 */
1520 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
1521 list_del(&reset_device_cmd->cmd_list);
1522 spin_unlock_irqrestore(&xhci->lock, flags);
1523 ret = -ETIME;
1524 goto command_cleanup;
1525 }
1526
1527 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
1528 * unless we tried to reset a slot ID that wasn't enabled,
1529 * or the device wasn't in the addressed or configured state.
1530 */
1531 ret = reset_device_cmd->status;
1532 switch (ret) {
1533 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
1534 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
1535 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
1536 slot_id,
1537 xhci_get_slot_state(xhci, virt_dev->out_ctx));
1538 xhci_info(xhci, "Not freeing device rings.\n");
1539 /* Don't treat this as an error. May change my mind later. */
1540 ret = 0;
1541 goto command_cleanup;
1542 case COMP_SUCCESS:
1543 xhci_dbg(xhci, "Successful reset device command.\n");
1544 break;
1545 default:
1546 if (xhci_is_vendor_info_code(xhci, ret))
1547 break;
1548 xhci_warn(xhci, "Unknown completion code %u for "
1549 "reset device command.\n", ret);
1550 ret = -EINVAL;
1551 goto command_cleanup;
1552 }
1553
1554 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
1555 last_freed_endpoint = 1;
1556 for (i = 1; i < 31; ++i) {
1557 if (!virt_dev->eps[i].ring)
1558 continue;
1559 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1560 last_freed_endpoint = i;
1561 }
1562 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
1563 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
1564 ret = 0;
1565
1566command_cleanup:
1567 xhci_free_command(xhci, reset_device_cmd);
1568 return ret;
1569}
1570
1571/*
1572 * At this point, the struct usb_device is about to go away, the device has
1573 * disconnected, and all traffic has been stopped and the endpoints have been
1574 * disabled. Free any HC data structures associated with that device.
1575 */
1576void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
1577{
1578 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1579 struct xhci_virt_device *virt_dev;
1580 unsigned long flags;
1581 u32 state;
1582 int i;
1583
1584 if (udev->slot_id == 0)
1585 return;
1586 virt_dev = xhci->devs[udev->slot_id];
1587 if (!virt_dev)
1588 return;
1589
1590 /* Stop any wayward timer functions (which may grab the lock) */
1591 for (i = 0; i < 31; ++i) {
1592 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
1593 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
1594 }
1595
1596 spin_lock_irqsave(&xhci->lock, flags);
1597 /* Don't disable the slot if the host controller is dead. */
1598 state = xhci_readl(xhci, &xhci->op_regs->status);
1599 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
1600 xhci_free_virt_device(xhci, udev->slot_id);
1601 spin_unlock_irqrestore(&xhci->lock, flags);
1602 return;
1603 }
1604
1605 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
1606 spin_unlock_irqrestore(&xhci->lock, flags);
1607 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1608 return;
1609 }
1610 xhci_ring_cmd_db(xhci);
1611 spin_unlock_irqrestore(&xhci->lock, flags);
1612 /*
1613 * Event command completion handler will free any data structures
1614 * associated with the slot. XXX Can free sleep?
1615 */
1616}
1617
1618/*
1619 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
1620 * timed out, or allocating memory failed. Returns 1 on success.
1621 */
1622int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
1623{
1624 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1625 unsigned long flags;
1626 int timeleft;
1627 int ret;
1628
1629 spin_lock_irqsave(&xhci->lock, flags);
1630 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
1631 if (ret) {
1632 spin_unlock_irqrestore(&xhci->lock, flags);
1633 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1634 return 0;
1635 }
1636 xhci_ring_cmd_db(xhci);
1637 spin_unlock_irqrestore(&xhci->lock, flags);
1638
1639 /* XXX: how much time for xHC slot assignment? */
1640 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
1641 USB_CTRL_SET_TIMEOUT);
1642 if (timeleft <= 0) {
1643 xhci_warn(xhci, "%s while waiting for a slot\n",
1644 timeleft == 0 ? "Timeout" : "Signal");
1645 /* FIXME cancel the enable slot request */
1646 return 0;
1647 }
1648
1649 if (!xhci->slot_id) {
1650 xhci_err(xhci, "Error while assigning device slot ID\n");
1651 return 0;
1652 }
1653 /* xhci_alloc_virt_device() does not touch rings; no need to lock */
1654 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_KERNEL)) {
1655 /* Disable slot, if we can do it without mem alloc */
1656 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
1657 spin_lock_irqsave(&xhci->lock, flags);
1658 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
1659 xhci_ring_cmd_db(xhci);
1660 spin_unlock_irqrestore(&xhci->lock, flags);
1661 return 0;
1662 }
1663 udev->slot_id = xhci->slot_id;
1664 /* Is this a LS or FS device under a HS hub? */
1665 /* Hub or peripherial? */
1666 return 1;
1667}
1668
1669/*
1670 * Issue an Address Device command (which will issue a SetAddress request to
1671 * the device).
1672 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
1673 * we should only issue and wait on one address command at the same time.
1674 *
1675 * We add one to the device address issued by the hardware because the USB core
1676 * uses address 1 for the root hubs (even though they're not really devices).
1677 */
1678int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
1679{
1680 unsigned long flags;
1681 int timeleft;
1682 struct xhci_virt_device *virt_dev;
1683 int ret = 0;
1684 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1685 struct xhci_slot_ctx *slot_ctx;
1686 struct xhci_input_control_ctx *ctrl_ctx;
1687 u64 temp_64;
1688
1689 if (!udev->slot_id) {
1690 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
1691 return -EINVAL;
1692 }
1693
1694 virt_dev = xhci->devs[udev->slot_id];
1695
1696 /* If this is a Set Address to an unconfigured device, setup ep 0 */
1697 if (!udev->config)
1698 xhci_setup_addressable_virt_dev(xhci, udev);
1699 /* Otherwise, assume the core has the device configured how it wants */
1700 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
1701 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
1702
1703 spin_lock_irqsave(&xhci->lock, flags);
1704 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
1705 udev->slot_id);
1706 if (ret) {
1707 spin_unlock_irqrestore(&xhci->lock, flags);
1708 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1709 return ret;
1710 }
1711 xhci_ring_cmd_db(xhci);
1712 spin_unlock_irqrestore(&xhci->lock, flags);
1713
1714 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
1715 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
1716 USB_CTRL_SET_TIMEOUT);
1717 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
1718 * the SetAddress() "recovery interval" required by USB and aborting the
1719 * command on a timeout.
1720 */
1721 if (timeleft <= 0) {
1722 xhci_warn(xhci, "%s while waiting for a slot\n",
1723 timeleft == 0 ? "Timeout" : "Signal");
1724 /* FIXME cancel the address device command */
1725 return -ETIME;
1726 }
1727
1728 switch (virt_dev->cmd_status) {
1729 case COMP_CTX_STATE:
1730 case COMP_EBADSLT:
1731 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
1732 udev->slot_id);
1733 ret = -EINVAL;
1734 break;
1735 case COMP_TX_ERR:
1736 dev_warn(&udev->dev, "Device not responding to set address.\n");
1737 ret = -EPROTO;
1738 break;
1739 case COMP_SUCCESS:
1740 xhci_dbg(xhci, "Successful Address Device command\n");
1741 break;
1742 default:
1743 xhci_err(xhci, "ERROR: unexpected command completion "
1744 "code 0x%x.\n", virt_dev->cmd_status);
1745 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
1746 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
1747 ret = -EINVAL;
1748 break;
1749 }
1750 if (ret) {
1751 return ret;
1752 }
1753 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
1754 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
1755 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
1756 udev->slot_id,
1757 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
1758 (unsigned long long)
1759 xhci->dcbaa->dev_context_ptrs[udev->slot_id]);
1760 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
1761 (unsigned long long)virt_dev->out_ctx->dma);
1762 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
1763 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
1764 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
1765 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
1766 /*
1767 * USB core uses address 1 for the roothubs, so we add one to the
1768 * address given back to us by the HC.
1769 */
1770 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1771 udev->devnum = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1;
1772 /* Zero the input context control for later use */
1773 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1774 ctrl_ctx->add_flags = 0;
1775 ctrl_ctx->drop_flags = 0;
1776
1777 xhci_dbg(xhci, "Device address = %d\n", udev->devnum);
1778 /* XXX Meh, not sure if anyone else but choose_address uses this. */
1779 set_bit(udev->devnum, udev->bus->devmap.devicemap);
1780
1781 return 0;
1782}
1783
1784/* Once a hub descriptor is fetched for a device, we need to update the xHC's
1785 * internal data structures for the device.
1786 */
1787int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
1788 struct usb_tt *tt, gfp_t mem_flags)
1789{
1790 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1791 struct xhci_virt_device *vdev;
1792 struct xhci_command *config_cmd;
1793 struct xhci_input_control_ctx *ctrl_ctx;
1794 struct xhci_slot_ctx *slot_ctx;
1795 unsigned long flags;
1796 unsigned think_time;
1797 int ret;
1798
1799 /* Ignore root hubs */
1800 if (!hdev->parent)
1801 return 0;
1802
1803 vdev = xhci->devs[hdev->slot_id];
1804 if (!vdev) {
1805 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
1806 return -EINVAL;
1807 }
1808 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
1809 if (!config_cmd) {
1810 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
1811 return -ENOMEM;
1812 }
1813
1814 spin_lock_irqsave(&xhci->lock, flags);
1815 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
1816 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
1817 ctrl_ctx->add_flags |= SLOT_FLAG;
1818 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
1819 slot_ctx->dev_info |= DEV_HUB;
1820 if (tt->multi)
1821 slot_ctx->dev_info |= DEV_MTT;
1822 if (xhci->hci_version > 0x95) {
1823 xhci_dbg(xhci, "xHCI version %x needs hub "
1824 "TT think time and number of ports\n",
1825 (unsigned int) xhci->hci_version);
1826 slot_ctx->dev_info2 |= XHCI_MAX_PORTS(hdev->maxchild);
1827 /* Set TT think time - convert from ns to FS bit times.
1828 * 0 = 8 FS bit times, 1 = 16 FS bit times,
1829 * 2 = 24 FS bit times, 3 = 32 FS bit times.
1830 */
1831 think_time = tt->think_time;
1832 if (think_time != 0)
1833 think_time = (think_time / 666) - 1;
1834 slot_ctx->tt_info |= TT_THINK_TIME(think_time);
1835 } else {
1836 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
1837 "TT think time or number of ports\n",
1838 (unsigned int) xhci->hci_version);
1839 }
1840 slot_ctx->dev_state = 0;
1841 spin_unlock_irqrestore(&xhci->lock, flags);
1842
1843 xhci_dbg(xhci, "Set up %s for hub device.\n",
1844 (xhci->hci_version > 0x95) ?
1845 "configure endpoint" : "evaluate context");
1846 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
1847 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
1848
1849 /* Issue and wait for the configure endpoint or
1850 * evaluate context command.
1851 */
1852 if (xhci->hci_version > 0x95)
1853 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
1854 false, false);
1855 else
1856 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
1857 true, false);
1858
1859 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
1860 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
1861
1862 xhci_free_command(xhci, config_cmd);
1863 return ret;
1864}
1865
1866int xhci_get_frame(struct usb_hcd *hcd)
1867{
1868 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1869 /* EHCI mods by the periodic size. Why? */
1870 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
1871}
1872
1873MODULE_DESCRIPTION(DRIVER_DESC);
1874MODULE_AUTHOR(DRIVER_AUTHOR);
1875MODULE_LICENSE("GPL");
1876
1877static int __init xhci_hcd_init(void)
1878{
1879#ifdef CONFIG_PCI
1880 int retval = 0;
1881
1882 retval = xhci_register_pci();
1883
1884 if (retval < 0) {
1885 printk(KERN_DEBUG "Problem registering PCI driver.");
1886 return retval;
1887 }
1888#endif
1889 /*
1890 * Check the compiler generated sizes of structures that must be laid
1891 * out in specific ways for hardware access.
1892 */
1893 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
1894 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
1895 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
1896 /* xhci_device_control has eight fields, and also
1897 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
1898 */
1899 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
1900 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
1901 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
1902 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
1903 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
1904 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
1905 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
1906 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
1907 return 0;
1908}
1909module_init(xhci_hcd_init);
1910
1911static void __exit xhci_hcd_cleanup(void)
1912{
1913#ifdef CONFIG_PCI
1914 xhci_unregister_pci();
1915#endif
1916}
1917module_exit(xhci_hcd_cleanup);