diff options
Diffstat (limited to 'drivers/usb/host/xhci-ring.c')
-rw-r--r-- | drivers/usb/host/xhci-ring.c | 1648 |
1 files changed, 1648 insertions, 0 deletions
diff --git a/drivers/usb/host/xhci-ring.c b/drivers/usb/host/xhci-ring.c new file mode 100644 index 000000000000..02d81985c454 --- /dev/null +++ b/drivers/usb/host/xhci-ring.c | |||
@@ -0,0 +1,1648 @@ | |||
1 | /* | ||
2 | * xHCI host controller driver | ||
3 | * | ||
4 | * Copyright (C) 2008 Intel Corp. | ||
5 | * | ||
6 | * Author: Sarah Sharp | ||
7 | * Some code borrowed from the Linux EHCI driver. | ||
8 | * | ||
9 | * This program is free software; you can redistribute it and/or modify | ||
10 | * it under the terms of the GNU General Public License version 2 as | ||
11 | * published by the Free Software Foundation. | ||
12 | * | ||
13 | * This program is distributed in the hope that it will be useful, but | ||
14 | * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | ||
15 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | ||
16 | * for more details. | ||
17 | * | ||
18 | * You should have received a copy of the GNU General Public License | ||
19 | * along with this program; if not, write to the Free Software Foundation, | ||
20 | * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
21 | */ | ||
22 | |||
23 | /* | ||
24 | * Ring initialization rules: | ||
25 | * 1. Each segment is initialized to zero, except for link TRBs. | ||
26 | * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or | ||
27 | * Consumer Cycle State (CCS), depending on ring function. | ||
28 | * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. | ||
29 | * | ||
30 | * Ring behavior rules: | ||
31 | * 1. A ring is empty if enqueue == dequeue. This means there will always be at | ||
32 | * least one free TRB in the ring. This is useful if you want to turn that | ||
33 | * into a link TRB and expand the ring. | ||
34 | * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a | ||
35 | * link TRB, then load the pointer with the address in the link TRB. If the | ||
36 | * link TRB had its toggle bit set, you may need to update the ring cycle | ||
37 | * state (see cycle bit rules). You may have to do this multiple times | ||
38 | * until you reach a non-link TRB. | ||
39 | * 3. A ring is full if enqueue++ (for the definition of increment above) | ||
40 | * equals the dequeue pointer. | ||
41 | * | ||
42 | * Cycle bit rules: | ||
43 | * 1. When a consumer increments a dequeue pointer and encounters a toggle bit | ||
44 | * in a link TRB, it must toggle the ring cycle state. | ||
45 | * 2. When a producer increments an enqueue pointer and encounters a toggle bit | ||
46 | * in a link TRB, it must toggle the ring cycle state. | ||
47 | * | ||
48 | * Producer rules: | ||
49 | * 1. Check if ring is full before you enqueue. | ||
50 | * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. | ||
51 | * Update enqueue pointer between each write (which may update the ring | ||
52 | * cycle state). | ||
53 | * 3. Notify consumer. If SW is producer, it rings the doorbell for command | ||
54 | * and endpoint rings. If HC is the producer for the event ring, | ||
55 | * and it generates an interrupt according to interrupt modulation rules. | ||
56 | * | ||
57 | * Consumer rules: | ||
58 | * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, | ||
59 | * the TRB is owned by the consumer. | ||
60 | * 2. Update dequeue pointer (which may update the ring cycle state) and | ||
61 | * continue processing TRBs until you reach a TRB which is not owned by you. | ||
62 | * 3. Notify the producer. SW is the consumer for the event ring, and it | ||
63 | * updates event ring dequeue pointer. HC is the consumer for the command and | ||
64 | * endpoint rings; it generates events on the event ring for these. | ||
65 | */ | ||
66 | |||
67 | #include <linux/scatterlist.h> | ||
68 | #include "xhci.h" | ||
69 | |||
70 | /* | ||
71 | * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA | ||
72 | * address of the TRB. | ||
73 | */ | ||
74 | dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, | ||
75 | union xhci_trb *trb) | ||
76 | { | ||
77 | unsigned long segment_offset; | ||
78 | |||
79 | if (!seg || !trb || trb < seg->trbs) | ||
80 | return 0; | ||
81 | /* offset in TRBs */ | ||
82 | segment_offset = trb - seg->trbs; | ||
83 | if (segment_offset > TRBS_PER_SEGMENT) | ||
84 | return 0; | ||
85 | return seg->dma + (segment_offset * sizeof(*trb)); | ||
86 | } | ||
87 | |||
88 | /* Does this link TRB point to the first segment in a ring, | ||
89 | * or was the previous TRB the last TRB on the last segment in the ERST? | ||
90 | */ | ||
91 | static inline bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, | ||
92 | struct xhci_segment *seg, union xhci_trb *trb) | ||
93 | { | ||
94 | if (ring == xhci->event_ring) | ||
95 | return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && | ||
96 | (seg->next == xhci->event_ring->first_seg); | ||
97 | else | ||
98 | return trb->link.control & LINK_TOGGLE; | ||
99 | } | ||
100 | |||
101 | /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring | ||
102 | * segment? I.e. would the updated event TRB pointer step off the end of the | ||
103 | * event seg? | ||
104 | */ | ||
105 | static inline int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, | ||
106 | struct xhci_segment *seg, union xhci_trb *trb) | ||
107 | { | ||
108 | if (ring == xhci->event_ring) | ||
109 | return trb == &seg->trbs[TRBS_PER_SEGMENT]; | ||
110 | else | ||
111 | return (trb->link.control & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK); | ||
112 | } | ||
113 | |||
114 | /* Updates trb to point to the next TRB in the ring, and updates seg if the next | ||
115 | * TRB is in a new segment. This does not skip over link TRBs, and it does not | ||
116 | * effect the ring dequeue or enqueue pointers. | ||
117 | */ | ||
118 | static void next_trb(struct xhci_hcd *xhci, | ||
119 | struct xhci_ring *ring, | ||
120 | struct xhci_segment **seg, | ||
121 | union xhci_trb **trb) | ||
122 | { | ||
123 | if (last_trb(xhci, ring, *seg, *trb)) { | ||
124 | *seg = (*seg)->next; | ||
125 | *trb = ((*seg)->trbs); | ||
126 | } else { | ||
127 | *trb = (*trb)++; | ||
128 | } | ||
129 | } | ||
130 | |||
131 | /* | ||
132 | * See Cycle bit rules. SW is the consumer for the event ring only. | ||
133 | * Don't make a ring full of link TRBs. That would be dumb and this would loop. | ||
134 | */ | ||
135 | static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer) | ||
136 | { | ||
137 | union xhci_trb *next = ++(ring->dequeue); | ||
138 | |||
139 | ring->deq_updates++; | ||
140 | /* Update the dequeue pointer further if that was a link TRB or we're at | ||
141 | * the end of an event ring segment (which doesn't have link TRBS) | ||
142 | */ | ||
143 | while (last_trb(xhci, ring, ring->deq_seg, next)) { | ||
144 | if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) { | ||
145 | ring->cycle_state = (ring->cycle_state ? 0 : 1); | ||
146 | if (!in_interrupt()) | ||
147 | xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n", | ||
148 | ring, | ||
149 | (unsigned int) ring->cycle_state); | ||
150 | } | ||
151 | ring->deq_seg = ring->deq_seg->next; | ||
152 | ring->dequeue = ring->deq_seg->trbs; | ||
153 | next = ring->dequeue; | ||
154 | } | ||
155 | } | ||
156 | |||
157 | /* | ||
158 | * See Cycle bit rules. SW is the consumer for the event ring only. | ||
159 | * Don't make a ring full of link TRBs. That would be dumb and this would loop. | ||
160 | * | ||
161 | * If we've just enqueued a TRB that is in the middle of a TD (meaning the | ||
162 | * chain bit is set), then set the chain bit in all the following link TRBs. | ||
163 | * If we've enqueued the last TRB in a TD, make sure the following link TRBs | ||
164 | * have their chain bit cleared (so that each Link TRB is a separate TD). | ||
165 | * | ||
166 | * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit | ||
167 | * set, but other sections talk about dealing with the chain bit set. | ||
168 | * Assume section 6.4.4.1 is wrong, and the chain bit can be set in a Link TRB. | ||
169 | */ | ||
170 | static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer) | ||
171 | { | ||
172 | u32 chain; | ||
173 | union xhci_trb *next; | ||
174 | |||
175 | chain = ring->enqueue->generic.field[3] & TRB_CHAIN; | ||
176 | next = ++(ring->enqueue); | ||
177 | |||
178 | ring->enq_updates++; | ||
179 | /* Update the dequeue pointer further if that was a link TRB or we're at | ||
180 | * the end of an event ring segment (which doesn't have link TRBS) | ||
181 | */ | ||
182 | while (last_trb(xhci, ring, ring->enq_seg, next)) { | ||
183 | if (!consumer) { | ||
184 | if (ring != xhci->event_ring) { | ||
185 | next->link.control &= ~TRB_CHAIN; | ||
186 | next->link.control |= chain; | ||
187 | /* Give this link TRB to the hardware */ | ||
188 | wmb(); | ||
189 | if (next->link.control & TRB_CYCLE) | ||
190 | next->link.control &= (u32) ~TRB_CYCLE; | ||
191 | else | ||
192 | next->link.control |= (u32) TRB_CYCLE; | ||
193 | } | ||
194 | /* Toggle the cycle bit after the last ring segment. */ | ||
195 | if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { | ||
196 | ring->cycle_state = (ring->cycle_state ? 0 : 1); | ||
197 | if (!in_interrupt()) | ||
198 | xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n", | ||
199 | ring, | ||
200 | (unsigned int) ring->cycle_state); | ||
201 | } | ||
202 | } | ||
203 | ring->enq_seg = ring->enq_seg->next; | ||
204 | ring->enqueue = ring->enq_seg->trbs; | ||
205 | next = ring->enqueue; | ||
206 | } | ||
207 | } | ||
208 | |||
209 | /* | ||
210 | * Check to see if there's room to enqueue num_trbs on the ring. See rules | ||
211 | * above. | ||
212 | * FIXME: this would be simpler and faster if we just kept track of the number | ||
213 | * of free TRBs in a ring. | ||
214 | */ | ||
215 | static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, | ||
216 | unsigned int num_trbs) | ||
217 | { | ||
218 | int i; | ||
219 | union xhci_trb *enq = ring->enqueue; | ||
220 | struct xhci_segment *enq_seg = ring->enq_seg; | ||
221 | |||
222 | /* Check if ring is empty */ | ||
223 | if (enq == ring->dequeue) | ||
224 | return 1; | ||
225 | /* Make sure there's an extra empty TRB available */ | ||
226 | for (i = 0; i <= num_trbs; ++i) { | ||
227 | if (enq == ring->dequeue) | ||
228 | return 0; | ||
229 | enq++; | ||
230 | while (last_trb(xhci, ring, enq_seg, enq)) { | ||
231 | enq_seg = enq_seg->next; | ||
232 | enq = enq_seg->trbs; | ||
233 | } | ||
234 | } | ||
235 | return 1; | ||
236 | } | ||
237 | |||
238 | void xhci_set_hc_event_deq(struct xhci_hcd *xhci) | ||
239 | { | ||
240 | u32 temp; | ||
241 | dma_addr_t deq; | ||
242 | |||
243 | deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, | ||
244 | xhci->event_ring->dequeue); | ||
245 | if (deq == 0 && !in_interrupt()) | ||
246 | xhci_warn(xhci, "WARN something wrong with SW event ring " | ||
247 | "dequeue ptr.\n"); | ||
248 | /* Update HC event ring dequeue pointer */ | ||
249 | temp = xhci_readl(xhci, &xhci->ir_set->erst_dequeue[0]); | ||
250 | temp &= ERST_PTR_MASK; | ||
251 | if (!in_interrupt()) | ||
252 | xhci_dbg(xhci, "// Write event ring dequeue pointer\n"); | ||
253 | xhci_writel(xhci, 0, &xhci->ir_set->erst_dequeue[1]); | ||
254 | xhci_writel(xhci, (deq & ~ERST_PTR_MASK) | temp, | ||
255 | &xhci->ir_set->erst_dequeue[0]); | ||
256 | } | ||
257 | |||
258 | /* Ring the host controller doorbell after placing a command on the ring */ | ||
259 | void xhci_ring_cmd_db(struct xhci_hcd *xhci) | ||
260 | { | ||
261 | u32 temp; | ||
262 | |||
263 | xhci_dbg(xhci, "// Ding dong!\n"); | ||
264 | temp = xhci_readl(xhci, &xhci->dba->doorbell[0]) & DB_MASK; | ||
265 | xhci_writel(xhci, temp | DB_TARGET_HOST, &xhci->dba->doorbell[0]); | ||
266 | /* Flush PCI posted writes */ | ||
267 | xhci_readl(xhci, &xhci->dba->doorbell[0]); | ||
268 | } | ||
269 | |||
270 | static void ring_ep_doorbell(struct xhci_hcd *xhci, | ||
271 | unsigned int slot_id, | ||
272 | unsigned int ep_index) | ||
273 | { | ||
274 | struct xhci_ring *ep_ring; | ||
275 | u32 field; | ||
276 | __u32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; | ||
277 | |||
278 | ep_ring = xhci->devs[slot_id]->ep_rings[ep_index]; | ||
279 | /* Don't ring the doorbell for this endpoint if there are pending | ||
280 | * cancellations because the we don't want to interrupt processing. | ||
281 | */ | ||
282 | if (!ep_ring->cancels_pending && !(ep_ring->state & SET_DEQ_PENDING)) { | ||
283 | field = xhci_readl(xhci, db_addr) & DB_MASK; | ||
284 | xhci_writel(xhci, field | EPI_TO_DB(ep_index), db_addr); | ||
285 | /* Flush PCI posted writes - FIXME Matthew Wilcox says this | ||
286 | * isn't time-critical and we shouldn't make the CPU wait for | ||
287 | * the flush. | ||
288 | */ | ||
289 | xhci_readl(xhci, db_addr); | ||
290 | } | ||
291 | } | ||
292 | |||
293 | /* | ||
294 | * Find the segment that trb is in. Start searching in start_seg. | ||
295 | * If we must move past a segment that has a link TRB with a toggle cycle state | ||
296 | * bit set, then we will toggle the value pointed at by cycle_state. | ||
297 | */ | ||
298 | static struct xhci_segment *find_trb_seg( | ||
299 | struct xhci_segment *start_seg, | ||
300 | union xhci_trb *trb, int *cycle_state) | ||
301 | { | ||
302 | struct xhci_segment *cur_seg = start_seg; | ||
303 | struct xhci_generic_trb *generic_trb; | ||
304 | |||
305 | while (cur_seg->trbs > trb || | ||
306 | &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { | ||
307 | generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; | ||
308 | if (TRB_TYPE(generic_trb->field[3]) == TRB_LINK && | ||
309 | (generic_trb->field[3] & LINK_TOGGLE)) | ||
310 | *cycle_state = ~(*cycle_state) & 0x1; | ||
311 | cur_seg = cur_seg->next; | ||
312 | if (cur_seg == start_seg) | ||
313 | /* Looped over the entire list. Oops! */ | ||
314 | return 0; | ||
315 | } | ||
316 | return cur_seg; | ||
317 | } | ||
318 | |||
319 | struct dequeue_state { | ||
320 | struct xhci_segment *new_deq_seg; | ||
321 | union xhci_trb *new_deq_ptr; | ||
322 | int new_cycle_state; | ||
323 | }; | ||
324 | |||
325 | /* | ||
326 | * Move the xHC's endpoint ring dequeue pointer past cur_td. | ||
327 | * Record the new state of the xHC's endpoint ring dequeue segment, | ||
328 | * dequeue pointer, and new consumer cycle state in state. | ||
329 | * Update our internal representation of the ring's dequeue pointer. | ||
330 | * | ||
331 | * We do this in three jumps: | ||
332 | * - First we update our new ring state to be the same as when the xHC stopped. | ||
333 | * - Then we traverse the ring to find the segment that contains | ||
334 | * the last TRB in the TD. We toggle the xHC's new cycle state when we pass | ||
335 | * any link TRBs with the toggle cycle bit set. | ||
336 | * - Finally we move the dequeue state one TRB further, toggling the cycle bit | ||
337 | * if we've moved it past a link TRB with the toggle cycle bit set. | ||
338 | */ | ||
339 | static void find_new_dequeue_state(struct xhci_hcd *xhci, | ||
340 | unsigned int slot_id, unsigned int ep_index, | ||
341 | struct xhci_td *cur_td, struct dequeue_state *state) | ||
342 | { | ||
343 | struct xhci_virt_device *dev = xhci->devs[slot_id]; | ||
344 | struct xhci_ring *ep_ring = dev->ep_rings[ep_index]; | ||
345 | struct xhci_generic_trb *trb; | ||
346 | |||
347 | state->new_cycle_state = 0; | ||
348 | state->new_deq_seg = find_trb_seg(cur_td->start_seg, | ||
349 | ep_ring->stopped_trb, | ||
350 | &state->new_cycle_state); | ||
351 | if (!state->new_deq_seg) | ||
352 | BUG(); | ||
353 | /* Dig out the cycle state saved by the xHC during the stop ep cmd */ | ||
354 | state->new_cycle_state = 0x1 & dev->out_ctx->ep[ep_index].deq[0]; | ||
355 | |||
356 | state->new_deq_ptr = cur_td->last_trb; | ||
357 | state->new_deq_seg = find_trb_seg(state->new_deq_seg, | ||
358 | state->new_deq_ptr, | ||
359 | &state->new_cycle_state); | ||
360 | if (!state->new_deq_seg) | ||
361 | BUG(); | ||
362 | |||
363 | trb = &state->new_deq_ptr->generic; | ||
364 | if (TRB_TYPE(trb->field[3]) == TRB_LINK && | ||
365 | (trb->field[3] & LINK_TOGGLE)) | ||
366 | state->new_cycle_state = ~(state->new_cycle_state) & 0x1; | ||
367 | next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); | ||
368 | |||
369 | /* Don't update the ring cycle state for the producer (us). */ | ||
370 | ep_ring->dequeue = state->new_deq_ptr; | ||
371 | ep_ring->deq_seg = state->new_deq_seg; | ||
372 | } | ||
373 | |||
374 | static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, | ||
375 | struct xhci_td *cur_td) | ||
376 | { | ||
377 | struct xhci_segment *cur_seg; | ||
378 | union xhci_trb *cur_trb; | ||
379 | |||
380 | for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; | ||
381 | true; | ||
382 | next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { | ||
383 | if ((cur_trb->generic.field[3] & TRB_TYPE_BITMASK) == | ||
384 | TRB_TYPE(TRB_LINK)) { | ||
385 | /* Unchain any chained Link TRBs, but | ||
386 | * leave the pointers intact. | ||
387 | */ | ||
388 | cur_trb->generic.field[3] &= ~TRB_CHAIN; | ||
389 | xhci_dbg(xhci, "Cancel (unchain) link TRB\n"); | ||
390 | xhci_dbg(xhci, "Address = %p (0x%llx dma); " | ||
391 | "in seg %p (0x%llx dma)\n", | ||
392 | cur_trb, | ||
393 | (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), | ||
394 | cur_seg, | ||
395 | (unsigned long long)cur_seg->dma); | ||
396 | } else { | ||
397 | cur_trb->generic.field[0] = 0; | ||
398 | cur_trb->generic.field[1] = 0; | ||
399 | cur_trb->generic.field[2] = 0; | ||
400 | /* Preserve only the cycle bit of this TRB */ | ||
401 | cur_trb->generic.field[3] &= TRB_CYCLE; | ||
402 | cur_trb->generic.field[3] |= TRB_TYPE(TRB_TR_NOOP); | ||
403 | xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) " | ||
404 | "in seg %p (0x%llx dma)\n", | ||
405 | cur_trb, | ||
406 | (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), | ||
407 | cur_seg, | ||
408 | (unsigned long long)cur_seg->dma); | ||
409 | } | ||
410 | if (cur_trb == cur_td->last_trb) | ||
411 | break; | ||
412 | } | ||
413 | } | ||
414 | |||
415 | static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, | ||
416 | unsigned int ep_index, struct xhci_segment *deq_seg, | ||
417 | union xhci_trb *deq_ptr, u32 cycle_state); | ||
418 | |||
419 | /* | ||
420 | * When we get a command completion for a Stop Endpoint Command, we need to | ||
421 | * unlink any cancelled TDs from the ring. There are two ways to do that: | ||
422 | * | ||
423 | * 1. If the HW was in the middle of processing the TD that needs to be | ||
424 | * cancelled, then we must move the ring's dequeue pointer past the last TRB | ||
425 | * in the TD with a Set Dequeue Pointer Command. | ||
426 | * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain | ||
427 | * bit cleared) so that the HW will skip over them. | ||
428 | */ | ||
429 | static void handle_stopped_endpoint(struct xhci_hcd *xhci, | ||
430 | union xhci_trb *trb) | ||
431 | { | ||
432 | unsigned int slot_id; | ||
433 | unsigned int ep_index; | ||
434 | struct xhci_ring *ep_ring; | ||
435 | struct list_head *entry; | ||
436 | struct xhci_td *cur_td = 0; | ||
437 | struct xhci_td *last_unlinked_td; | ||
438 | |||
439 | struct dequeue_state deq_state; | ||
440 | #ifdef CONFIG_USB_HCD_STAT | ||
441 | ktime_t stop_time = ktime_get(); | ||
442 | #endif | ||
443 | |||
444 | memset(&deq_state, 0, sizeof(deq_state)); | ||
445 | slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]); | ||
446 | ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]); | ||
447 | ep_ring = xhci->devs[slot_id]->ep_rings[ep_index]; | ||
448 | |||
449 | if (list_empty(&ep_ring->cancelled_td_list)) | ||
450 | return; | ||
451 | |||
452 | /* Fix up the ep ring first, so HW stops executing cancelled TDs. | ||
453 | * We have the xHCI lock, so nothing can modify this list until we drop | ||
454 | * it. We're also in the event handler, so we can't get re-interrupted | ||
455 | * if another Stop Endpoint command completes | ||
456 | */ | ||
457 | list_for_each(entry, &ep_ring->cancelled_td_list) { | ||
458 | cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); | ||
459 | xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n", | ||
460 | cur_td->first_trb, | ||
461 | (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb)); | ||
462 | /* | ||
463 | * If we stopped on the TD we need to cancel, then we have to | ||
464 | * move the xHC endpoint ring dequeue pointer past this TD. | ||
465 | */ | ||
466 | if (cur_td == ep_ring->stopped_td) | ||
467 | find_new_dequeue_state(xhci, slot_id, ep_index, cur_td, | ||
468 | &deq_state); | ||
469 | else | ||
470 | td_to_noop(xhci, ep_ring, cur_td); | ||
471 | /* | ||
472 | * The event handler won't see a completion for this TD anymore, | ||
473 | * so remove it from the endpoint ring's TD list. Keep it in | ||
474 | * the cancelled TD list for URB completion later. | ||
475 | */ | ||
476 | list_del(&cur_td->td_list); | ||
477 | ep_ring->cancels_pending--; | ||
478 | } | ||
479 | last_unlinked_td = cur_td; | ||
480 | |||
481 | /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ | ||
482 | if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { | ||
483 | xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " | ||
484 | "new deq ptr = %p (0x%llx dma), new cycle = %u\n", | ||
485 | deq_state.new_deq_seg, | ||
486 | (unsigned long long)deq_state.new_deq_seg->dma, | ||
487 | deq_state.new_deq_ptr, | ||
488 | (unsigned long long)xhci_trb_virt_to_dma(deq_state.new_deq_seg, deq_state.new_deq_ptr), | ||
489 | deq_state.new_cycle_state); | ||
490 | queue_set_tr_deq(xhci, slot_id, ep_index, | ||
491 | deq_state.new_deq_seg, | ||
492 | deq_state.new_deq_ptr, | ||
493 | (u32) deq_state.new_cycle_state); | ||
494 | /* Stop the TD queueing code from ringing the doorbell until | ||
495 | * this command completes. The HC won't set the dequeue pointer | ||
496 | * if the ring is running, and ringing the doorbell starts the | ||
497 | * ring running. | ||
498 | */ | ||
499 | ep_ring->state |= SET_DEQ_PENDING; | ||
500 | xhci_ring_cmd_db(xhci); | ||
501 | } else { | ||
502 | /* Otherwise just ring the doorbell to restart the ring */ | ||
503 | ring_ep_doorbell(xhci, slot_id, ep_index); | ||
504 | } | ||
505 | |||
506 | /* | ||
507 | * Drop the lock and complete the URBs in the cancelled TD list. | ||
508 | * New TDs to be cancelled might be added to the end of the list before | ||
509 | * we can complete all the URBs for the TDs we already unlinked. | ||
510 | * So stop when we've completed the URB for the last TD we unlinked. | ||
511 | */ | ||
512 | do { | ||
513 | cur_td = list_entry(ep_ring->cancelled_td_list.next, | ||
514 | struct xhci_td, cancelled_td_list); | ||
515 | list_del(&cur_td->cancelled_td_list); | ||
516 | |||
517 | /* Clean up the cancelled URB */ | ||
518 | #ifdef CONFIG_USB_HCD_STAT | ||
519 | hcd_stat_update(xhci->tp_stat, cur_td->urb->actual_length, | ||
520 | ktime_sub(stop_time, cur_td->start_time)); | ||
521 | #endif | ||
522 | cur_td->urb->hcpriv = NULL; | ||
523 | usb_hcd_unlink_urb_from_ep(xhci_to_hcd(xhci), cur_td->urb); | ||
524 | |||
525 | xhci_dbg(xhci, "Giveback cancelled URB %p\n", cur_td->urb); | ||
526 | spin_unlock(&xhci->lock); | ||
527 | /* Doesn't matter what we pass for status, since the core will | ||
528 | * just overwrite it (because the URB has been unlinked). | ||
529 | */ | ||
530 | usb_hcd_giveback_urb(xhci_to_hcd(xhci), cur_td->urb, 0); | ||
531 | kfree(cur_td); | ||
532 | |||
533 | spin_lock(&xhci->lock); | ||
534 | } while (cur_td != last_unlinked_td); | ||
535 | |||
536 | /* Return to the event handler with xhci->lock re-acquired */ | ||
537 | } | ||
538 | |||
539 | /* | ||
540 | * When we get a completion for a Set Transfer Ring Dequeue Pointer command, | ||
541 | * we need to clear the set deq pending flag in the endpoint ring state, so that | ||
542 | * the TD queueing code can ring the doorbell again. We also need to ring the | ||
543 | * endpoint doorbell to restart the ring, but only if there aren't more | ||
544 | * cancellations pending. | ||
545 | */ | ||
546 | static void handle_set_deq_completion(struct xhci_hcd *xhci, | ||
547 | struct xhci_event_cmd *event, | ||
548 | union xhci_trb *trb) | ||
549 | { | ||
550 | unsigned int slot_id; | ||
551 | unsigned int ep_index; | ||
552 | struct xhci_ring *ep_ring; | ||
553 | struct xhci_virt_device *dev; | ||
554 | |||
555 | slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]); | ||
556 | ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]); | ||
557 | dev = xhci->devs[slot_id]; | ||
558 | ep_ring = dev->ep_rings[ep_index]; | ||
559 | |||
560 | if (GET_COMP_CODE(event->status) != COMP_SUCCESS) { | ||
561 | unsigned int ep_state; | ||
562 | unsigned int slot_state; | ||
563 | |||
564 | switch (GET_COMP_CODE(event->status)) { | ||
565 | case COMP_TRB_ERR: | ||
566 | xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because " | ||
567 | "of stream ID configuration\n"); | ||
568 | break; | ||
569 | case COMP_CTX_STATE: | ||
570 | xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due " | ||
571 | "to incorrect slot or ep state.\n"); | ||
572 | ep_state = dev->out_ctx->ep[ep_index].ep_info; | ||
573 | ep_state &= EP_STATE_MASK; | ||
574 | slot_state = dev->out_ctx->slot.dev_state; | ||
575 | slot_state = GET_SLOT_STATE(slot_state); | ||
576 | xhci_dbg(xhci, "Slot state = %u, EP state = %u\n", | ||
577 | slot_state, ep_state); | ||
578 | break; | ||
579 | case COMP_EBADSLT: | ||
580 | xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because " | ||
581 | "slot %u was not enabled.\n", slot_id); | ||
582 | break; | ||
583 | default: | ||
584 | xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown " | ||
585 | "completion code of %u.\n", | ||
586 | GET_COMP_CODE(event->status)); | ||
587 | break; | ||
588 | } | ||
589 | /* OK what do we do now? The endpoint state is hosed, and we | ||
590 | * should never get to this point if the synchronization between | ||
591 | * queueing, and endpoint state are correct. This might happen | ||
592 | * if the device gets disconnected after we've finished | ||
593 | * cancelling URBs, which might not be an error... | ||
594 | */ | ||
595 | } else { | ||
596 | xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq[0] = 0x%x, " | ||
597 | "deq[1] = 0x%x.\n", | ||
598 | dev->out_ctx->ep[ep_index].deq[0], | ||
599 | dev->out_ctx->ep[ep_index].deq[1]); | ||
600 | } | ||
601 | |||
602 | ep_ring->state &= ~SET_DEQ_PENDING; | ||
603 | ring_ep_doorbell(xhci, slot_id, ep_index); | ||
604 | } | ||
605 | |||
606 | |||
607 | static void handle_cmd_completion(struct xhci_hcd *xhci, | ||
608 | struct xhci_event_cmd *event) | ||
609 | { | ||
610 | int slot_id = TRB_TO_SLOT_ID(event->flags); | ||
611 | u64 cmd_dma; | ||
612 | dma_addr_t cmd_dequeue_dma; | ||
613 | |||
614 | cmd_dma = (((u64) event->cmd_trb[1]) << 32) + event->cmd_trb[0]; | ||
615 | cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, | ||
616 | xhci->cmd_ring->dequeue); | ||
617 | /* Is the command ring deq ptr out of sync with the deq seg ptr? */ | ||
618 | if (cmd_dequeue_dma == 0) { | ||
619 | xhci->error_bitmask |= 1 << 4; | ||
620 | return; | ||
621 | } | ||
622 | /* Does the DMA address match our internal dequeue pointer address? */ | ||
623 | if (cmd_dma != (u64) cmd_dequeue_dma) { | ||
624 | xhci->error_bitmask |= 1 << 5; | ||
625 | return; | ||
626 | } | ||
627 | switch (xhci->cmd_ring->dequeue->generic.field[3] & TRB_TYPE_BITMASK) { | ||
628 | case TRB_TYPE(TRB_ENABLE_SLOT): | ||
629 | if (GET_COMP_CODE(event->status) == COMP_SUCCESS) | ||
630 | xhci->slot_id = slot_id; | ||
631 | else | ||
632 | xhci->slot_id = 0; | ||
633 | complete(&xhci->addr_dev); | ||
634 | break; | ||
635 | case TRB_TYPE(TRB_DISABLE_SLOT): | ||
636 | if (xhci->devs[slot_id]) | ||
637 | xhci_free_virt_device(xhci, slot_id); | ||
638 | break; | ||
639 | case TRB_TYPE(TRB_CONFIG_EP): | ||
640 | xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(event->status); | ||
641 | complete(&xhci->devs[slot_id]->cmd_completion); | ||
642 | break; | ||
643 | case TRB_TYPE(TRB_ADDR_DEV): | ||
644 | xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(event->status); | ||
645 | complete(&xhci->addr_dev); | ||
646 | break; | ||
647 | case TRB_TYPE(TRB_STOP_RING): | ||
648 | handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue); | ||
649 | break; | ||
650 | case TRB_TYPE(TRB_SET_DEQ): | ||
651 | handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue); | ||
652 | break; | ||
653 | case TRB_TYPE(TRB_CMD_NOOP): | ||
654 | ++xhci->noops_handled; | ||
655 | break; | ||
656 | default: | ||
657 | /* Skip over unknown commands on the event ring */ | ||
658 | xhci->error_bitmask |= 1 << 6; | ||
659 | break; | ||
660 | } | ||
661 | inc_deq(xhci, xhci->cmd_ring, false); | ||
662 | } | ||
663 | |||
664 | static void handle_port_status(struct xhci_hcd *xhci, | ||
665 | union xhci_trb *event) | ||
666 | { | ||
667 | u32 port_id; | ||
668 | |||
669 | /* Port status change events always have a successful completion code */ | ||
670 | if (GET_COMP_CODE(event->generic.field[2]) != COMP_SUCCESS) { | ||
671 | xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); | ||
672 | xhci->error_bitmask |= 1 << 8; | ||
673 | } | ||
674 | /* FIXME: core doesn't care about all port link state changes yet */ | ||
675 | port_id = GET_PORT_ID(event->generic.field[0]); | ||
676 | xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); | ||
677 | |||
678 | /* Update event ring dequeue pointer before dropping the lock */ | ||
679 | inc_deq(xhci, xhci->event_ring, true); | ||
680 | xhci_set_hc_event_deq(xhci); | ||
681 | |||
682 | spin_unlock(&xhci->lock); | ||
683 | /* Pass this up to the core */ | ||
684 | usb_hcd_poll_rh_status(xhci_to_hcd(xhci)); | ||
685 | spin_lock(&xhci->lock); | ||
686 | } | ||
687 | |||
688 | /* | ||
689 | * This TD is defined by the TRBs starting at start_trb in start_seg and ending | ||
690 | * at end_trb, which may be in another segment. If the suspect DMA address is a | ||
691 | * TRB in this TD, this function returns that TRB's segment. Otherwise it | ||
692 | * returns 0. | ||
693 | */ | ||
694 | static struct xhci_segment *trb_in_td( | ||
695 | struct xhci_segment *start_seg, | ||
696 | union xhci_trb *start_trb, | ||
697 | union xhci_trb *end_trb, | ||
698 | dma_addr_t suspect_dma) | ||
699 | { | ||
700 | dma_addr_t start_dma; | ||
701 | dma_addr_t end_seg_dma; | ||
702 | dma_addr_t end_trb_dma; | ||
703 | struct xhci_segment *cur_seg; | ||
704 | |||
705 | start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); | ||
706 | cur_seg = start_seg; | ||
707 | |||
708 | do { | ||
709 | /* We may get an event for a Link TRB in the middle of a TD */ | ||
710 | end_seg_dma = xhci_trb_virt_to_dma(cur_seg, | ||
711 | &start_seg->trbs[TRBS_PER_SEGMENT - 1]); | ||
712 | /* If the end TRB isn't in this segment, this is set to 0 */ | ||
713 | end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); | ||
714 | |||
715 | if (end_trb_dma > 0) { | ||
716 | /* The end TRB is in this segment, so suspect should be here */ | ||
717 | if (start_dma <= end_trb_dma) { | ||
718 | if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) | ||
719 | return cur_seg; | ||
720 | } else { | ||
721 | /* Case for one segment with | ||
722 | * a TD wrapped around to the top | ||
723 | */ | ||
724 | if ((suspect_dma >= start_dma && | ||
725 | suspect_dma <= end_seg_dma) || | ||
726 | (suspect_dma >= cur_seg->dma && | ||
727 | suspect_dma <= end_trb_dma)) | ||
728 | return cur_seg; | ||
729 | } | ||
730 | return 0; | ||
731 | } else { | ||
732 | /* Might still be somewhere in this segment */ | ||
733 | if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) | ||
734 | return cur_seg; | ||
735 | } | ||
736 | cur_seg = cur_seg->next; | ||
737 | start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); | ||
738 | } while (1); | ||
739 | |||
740 | } | ||
741 | |||
742 | /* | ||
743 | * If this function returns an error condition, it means it got a Transfer | ||
744 | * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. | ||
745 | * At this point, the host controller is probably hosed and should be reset. | ||
746 | */ | ||
747 | static int handle_tx_event(struct xhci_hcd *xhci, | ||
748 | struct xhci_transfer_event *event) | ||
749 | { | ||
750 | struct xhci_virt_device *xdev; | ||
751 | struct xhci_ring *ep_ring; | ||
752 | int ep_index; | ||
753 | struct xhci_td *td = 0; | ||
754 | dma_addr_t event_dma; | ||
755 | struct xhci_segment *event_seg; | ||
756 | union xhci_trb *event_trb; | ||
757 | struct urb *urb = 0; | ||
758 | int status = -EINPROGRESS; | ||
759 | |||
760 | xdev = xhci->devs[TRB_TO_SLOT_ID(event->flags)]; | ||
761 | if (!xdev) { | ||
762 | xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); | ||
763 | return -ENODEV; | ||
764 | } | ||
765 | |||
766 | /* Endpoint ID is 1 based, our index is zero based */ | ||
767 | ep_index = TRB_TO_EP_ID(event->flags) - 1; | ||
768 | ep_ring = xdev->ep_rings[ep_index]; | ||
769 | if (!ep_ring || (xdev->out_ctx->ep[ep_index].ep_info & EP_STATE_MASK) == EP_STATE_DISABLED) { | ||
770 | xhci_err(xhci, "ERROR Transfer event pointed to disabled endpoint\n"); | ||
771 | return -ENODEV; | ||
772 | } | ||
773 | |||
774 | event_dma = event->buffer[0]; | ||
775 | if (event->buffer[1] != 0) | ||
776 | xhci_warn(xhci, "WARN ignoring upper 32-bits of 64-bit TRB dma address\n"); | ||
777 | |||
778 | /* This TRB should be in the TD at the head of this ring's TD list */ | ||
779 | if (list_empty(&ep_ring->td_list)) { | ||
780 | xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", | ||
781 | TRB_TO_SLOT_ID(event->flags), ep_index); | ||
782 | xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", | ||
783 | (unsigned int) (event->flags & TRB_TYPE_BITMASK)>>10); | ||
784 | xhci_print_trb_offsets(xhci, (union xhci_trb *) event); | ||
785 | urb = NULL; | ||
786 | goto cleanup; | ||
787 | } | ||
788 | td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); | ||
789 | |||
790 | /* Is this a TRB in the currently executing TD? */ | ||
791 | event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, | ||
792 | td->last_trb, event_dma); | ||
793 | if (!event_seg) { | ||
794 | /* HC is busted, give up! */ | ||
795 | xhci_err(xhci, "ERROR Transfer event TRB DMA ptr not part of current TD\n"); | ||
796 | return -ESHUTDOWN; | ||
797 | } | ||
798 | event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / sizeof(*event_trb)]; | ||
799 | xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", | ||
800 | (unsigned int) (event->flags & TRB_TYPE_BITMASK)>>10); | ||
801 | xhci_dbg(xhci, "Offset 0x00 (buffer[0]) = 0x%x\n", | ||
802 | (unsigned int) event->buffer[0]); | ||
803 | xhci_dbg(xhci, "Offset 0x04 (buffer[0]) = 0x%x\n", | ||
804 | (unsigned int) event->buffer[1]); | ||
805 | xhci_dbg(xhci, "Offset 0x08 (transfer length) = 0x%x\n", | ||
806 | (unsigned int) event->transfer_len); | ||
807 | xhci_dbg(xhci, "Offset 0x0C (flags) = 0x%x\n", | ||
808 | (unsigned int) event->flags); | ||
809 | |||
810 | /* Look for common error cases */ | ||
811 | switch (GET_COMP_CODE(event->transfer_len)) { | ||
812 | /* Skip codes that require special handling depending on | ||
813 | * transfer type | ||
814 | */ | ||
815 | case COMP_SUCCESS: | ||
816 | case COMP_SHORT_TX: | ||
817 | break; | ||
818 | case COMP_STOP: | ||
819 | xhci_dbg(xhci, "Stopped on Transfer TRB\n"); | ||
820 | break; | ||
821 | case COMP_STOP_INVAL: | ||
822 | xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); | ||
823 | break; | ||
824 | case COMP_STALL: | ||
825 | xhci_warn(xhci, "WARN: Stalled endpoint\n"); | ||
826 | status = -EPIPE; | ||
827 | break; | ||
828 | case COMP_TRB_ERR: | ||
829 | xhci_warn(xhci, "WARN: TRB error on endpoint\n"); | ||
830 | status = -EILSEQ; | ||
831 | break; | ||
832 | case COMP_TX_ERR: | ||
833 | xhci_warn(xhci, "WARN: transfer error on endpoint\n"); | ||
834 | status = -EPROTO; | ||
835 | break; | ||
836 | case COMP_DB_ERR: | ||
837 | xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); | ||
838 | status = -ENOSR; | ||
839 | break; | ||
840 | default: | ||
841 | xhci_warn(xhci, "ERROR Unknown event condition, HC probably busted\n"); | ||
842 | urb = NULL; | ||
843 | goto cleanup; | ||
844 | } | ||
845 | /* Now update the urb's actual_length and give back to the core */ | ||
846 | /* Was this a control transfer? */ | ||
847 | if (usb_endpoint_xfer_control(&td->urb->ep->desc)) { | ||
848 | xhci_debug_trb(xhci, xhci->event_ring->dequeue); | ||
849 | switch (GET_COMP_CODE(event->transfer_len)) { | ||
850 | case COMP_SUCCESS: | ||
851 | if (event_trb == ep_ring->dequeue) { | ||
852 | xhci_warn(xhci, "WARN: Success on ctrl setup TRB without IOC set??\n"); | ||
853 | status = -ESHUTDOWN; | ||
854 | } else if (event_trb != td->last_trb) { | ||
855 | xhci_warn(xhci, "WARN: Success on ctrl data TRB without IOC set??\n"); | ||
856 | status = -ESHUTDOWN; | ||
857 | } else { | ||
858 | xhci_dbg(xhci, "Successful control transfer!\n"); | ||
859 | status = 0; | ||
860 | } | ||
861 | break; | ||
862 | case COMP_SHORT_TX: | ||
863 | xhci_warn(xhci, "WARN: short transfer on control ep\n"); | ||
864 | status = -EREMOTEIO; | ||
865 | break; | ||
866 | default: | ||
867 | /* Others already handled above */ | ||
868 | break; | ||
869 | } | ||
870 | /* | ||
871 | * Did we transfer any data, despite the errors that might have | ||
872 | * happened? I.e. did we get past the setup stage? | ||
873 | */ | ||
874 | if (event_trb != ep_ring->dequeue) { | ||
875 | /* The event was for the status stage */ | ||
876 | if (event_trb == td->last_trb) { | ||
877 | td->urb->actual_length = | ||
878 | td->urb->transfer_buffer_length; | ||
879 | } else { | ||
880 | /* Maybe the event was for the data stage? */ | ||
881 | if (GET_COMP_CODE(event->transfer_len) != COMP_STOP_INVAL) | ||
882 | /* We didn't stop on a link TRB in the middle */ | ||
883 | td->urb->actual_length = | ||
884 | td->urb->transfer_buffer_length - | ||
885 | TRB_LEN(event->transfer_len); | ||
886 | } | ||
887 | } | ||
888 | } else { | ||
889 | switch (GET_COMP_CODE(event->transfer_len)) { | ||
890 | case COMP_SUCCESS: | ||
891 | /* Double check that the HW transferred everything. */ | ||
892 | if (event_trb != td->last_trb) { | ||
893 | xhci_warn(xhci, "WARN Successful completion " | ||
894 | "on short TX\n"); | ||
895 | if (td->urb->transfer_flags & URB_SHORT_NOT_OK) | ||
896 | status = -EREMOTEIO; | ||
897 | else | ||
898 | status = 0; | ||
899 | } else { | ||
900 | xhci_dbg(xhci, "Successful bulk transfer!\n"); | ||
901 | status = 0; | ||
902 | } | ||
903 | break; | ||
904 | case COMP_SHORT_TX: | ||
905 | if (td->urb->transfer_flags & URB_SHORT_NOT_OK) | ||
906 | status = -EREMOTEIO; | ||
907 | else | ||
908 | status = 0; | ||
909 | break; | ||
910 | default: | ||
911 | /* Others already handled above */ | ||
912 | break; | ||
913 | } | ||
914 | dev_dbg(&td->urb->dev->dev, | ||
915 | "ep %#x - asked for %d bytes, " | ||
916 | "%d bytes untransferred\n", | ||
917 | td->urb->ep->desc.bEndpointAddress, | ||
918 | td->urb->transfer_buffer_length, | ||
919 | TRB_LEN(event->transfer_len)); | ||
920 | /* Fast path - was this the last TRB in the TD for this URB? */ | ||
921 | if (event_trb == td->last_trb) { | ||
922 | if (TRB_LEN(event->transfer_len) != 0) { | ||
923 | td->urb->actual_length = | ||
924 | td->urb->transfer_buffer_length - | ||
925 | TRB_LEN(event->transfer_len); | ||
926 | if (td->urb->actual_length < 0) { | ||
927 | xhci_warn(xhci, "HC gave bad length " | ||
928 | "of %d bytes left\n", | ||
929 | TRB_LEN(event->transfer_len)); | ||
930 | td->urb->actual_length = 0; | ||
931 | } | ||
932 | if (td->urb->transfer_flags & URB_SHORT_NOT_OK) | ||
933 | status = -EREMOTEIO; | ||
934 | else | ||
935 | status = 0; | ||
936 | } else { | ||
937 | td->urb->actual_length = td->urb->transfer_buffer_length; | ||
938 | /* Ignore a short packet completion if the | ||
939 | * untransferred length was zero. | ||
940 | */ | ||
941 | status = 0; | ||
942 | } | ||
943 | } else { | ||
944 | /* Slow path - walk the list, starting from the dequeue | ||
945 | * pointer, to get the actual length transferred. | ||
946 | */ | ||
947 | union xhci_trb *cur_trb; | ||
948 | struct xhci_segment *cur_seg; | ||
949 | |||
950 | td->urb->actual_length = 0; | ||
951 | for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; | ||
952 | cur_trb != event_trb; | ||
953 | next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { | ||
954 | if (TRB_TYPE(cur_trb->generic.field[3]) != TRB_TR_NOOP && | ||
955 | TRB_TYPE(cur_trb->generic.field[3]) != TRB_LINK) | ||
956 | td->urb->actual_length += | ||
957 | TRB_LEN(cur_trb->generic.field[2]); | ||
958 | } | ||
959 | /* If the ring didn't stop on a Link or No-op TRB, add | ||
960 | * in the actual bytes transferred from the Normal TRB | ||
961 | */ | ||
962 | if (GET_COMP_CODE(event->transfer_len) != COMP_STOP_INVAL) | ||
963 | td->urb->actual_length += | ||
964 | TRB_LEN(cur_trb->generic.field[2]) - | ||
965 | TRB_LEN(event->transfer_len); | ||
966 | } | ||
967 | } | ||
968 | /* The Endpoint Stop Command completion will take care of | ||
969 | * any stopped TDs. A stopped TD may be restarted, so don't update the | ||
970 | * ring dequeue pointer or take this TD off any lists yet. | ||
971 | */ | ||
972 | if (GET_COMP_CODE(event->transfer_len) == COMP_STOP_INVAL || | ||
973 | GET_COMP_CODE(event->transfer_len) == COMP_STOP) { | ||
974 | ep_ring->stopped_td = td; | ||
975 | ep_ring->stopped_trb = event_trb; | ||
976 | } else { | ||
977 | /* Update ring dequeue pointer */ | ||
978 | while (ep_ring->dequeue != td->last_trb) | ||
979 | inc_deq(xhci, ep_ring, false); | ||
980 | inc_deq(xhci, ep_ring, false); | ||
981 | |||
982 | /* Clean up the endpoint's TD list */ | ||
983 | urb = td->urb; | ||
984 | list_del(&td->td_list); | ||
985 | /* Was this TD slated to be cancelled but completed anyway? */ | ||
986 | if (!list_empty(&td->cancelled_td_list)) { | ||
987 | list_del(&td->cancelled_td_list); | ||
988 | ep_ring->cancels_pending--; | ||
989 | } | ||
990 | kfree(td); | ||
991 | urb->hcpriv = NULL; | ||
992 | } | ||
993 | cleanup: | ||
994 | inc_deq(xhci, xhci->event_ring, true); | ||
995 | xhci_set_hc_event_deq(xhci); | ||
996 | |||
997 | /* FIXME for multi-TD URBs (who have buffers bigger than 64MB) */ | ||
998 | if (urb) { | ||
999 | usb_hcd_unlink_urb_from_ep(xhci_to_hcd(xhci), urb); | ||
1000 | spin_unlock(&xhci->lock); | ||
1001 | usb_hcd_giveback_urb(xhci_to_hcd(xhci), urb, status); | ||
1002 | spin_lock(&xhci->lock); | ||
1003 | } | ||
1004 | return 0; | ||
1005 | } | ||
1006 | |||
1007 | /* | ||
1008 | * This function handles all OS-owned events on the event ring. It may drop | ||
1009 | * xhci->lock between event processing (e.g. to pass up port status changes). | ||
1010 | */ | ||
1011 | void xhci_handle_event(struct xhci_hcd *xhci) | ||
1012 | { | ||
1013 | union xhci_trb *event; | ||
1014 | int update_ptrs = 1; | ||
1015 | int ret; | ||
1016 | |||
1017 | if (!xhci->event_ring || !xhci->event_ring->dequeue) { | ||
1018 | xhci->error_bitmask |= 1 << 1; | ||
1019 | return; | ||
1020 | } | ||
1021 | |||
1022 | event = xhci->event_ring->dequeue; | ||
1023 | /* Does the HC or OS own the TRB? */ | ||
1024 | if ((event->event_cmd.flags & TRB_CYCLE) != | ||
1025 | xhci->event_ring->cycle_state) { | ||
1026 | xhci->error_bitmask |= 1 << 2; | ||
1027 | return; | ||
1028 | } | ||
1029 | |||
1030 | /* FIXME: Handle more event types. */ | ||
1031 | switch ((event->event_cmd.flags & TRB_TYPE_BITMASK)) { | ||
1032 | case TRB_TYPE(TRB_COMPLETION): | ||
1033 | handle_cmd_completion(xhci, &event->event_cmd); | ||
1034 | break; | ||
1035 | case TRB_TYPE(TRB_PORT_STATUS): | ||
1036 | handle_port_status(xhci, event); | ||
1037 | update_ptrs = 0; | ||
1038 | break; | ||
1039 | case TRB_TYPE(TRB_TRANSFER): | ||
1040 | ret = handle_tx_event(xhci, &event->trans_event); | ||
1041 | if (ret < 0) | ||
1042 | xhci->error_bitmask |= 1 << 9; | ||
1043 | else | ||
1044 | update_ptrs = 0; | ||
1045 | break; | ||
1046 | default: | ||
1047 | xhci->error_bitmask |= 1 << 3; | ||
1048 | } | ||
1049 | |||
1050 | if (update_ptrs) { | ||
1051 | /* Update SW and HC event ring dequeue pointer */ | ||
1052 | inc_deq(xhci, xhci->event_ring, true); | ||
1053 | xhci_set_hc_event_deq(xhci); | ||
1054 | } | ||
1055 | /* Are there more items on the event ring? */ | ||
1056 | xhci_handle_event(xhci); | ||
1057 | } | ||
1058 | |||
1059 | /**** Endpoint Ring Operations ****/ | ||
1060 | |||
1061 | /* | ||
1062 | * Generic function for queueing a TRB on a ring. | ||
1063 | * The caller must have checked to make sure there's room on the ring. | ||
1064 | */ | ||
1065 | static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, | ||
1066 | bool consumer, | ||
1067 | u32 field1, u32 field2, u32 field3, u32 field4) | ||
1068 | { | ||
1069 | struct xhci_generic_trb *trb; | ||
1070 | |||
1071 | trb = &ring->enqueue->generic; | ||
1072 | trb->field[0] = field1; | ||
1073 | trb->field[1] = field2; | ||
1074 | trb->field[2] = field3; | ||
1075 | trb->field[3] = field4; | ||
1076 | inc_enq(xhci, ring, consumer); | ||
1077 | } | ||
1078 | |||
1079 | /* | ||
1080 | * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. | ||
1081 | * FIXME allocate segments if the ring is full. | ||
1082 | */ | ||
1083 | static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, | ||
1084 | u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) | ||
1085 | { | ||
1086 | /* Make sure the endpoint has been added to xHC schedule */ | ||
1087 | xhci_dbg(xhci, "Endpoint state = 0x%x\n", ep_state); | ||
1088 | switch (ep_state) { | ||
1089 | case EP_STATE_DISABLED: | ||
1090 | /* | ||
1091 | * USB core changed config/interfaces without notifying us, | ||
1092 | * or hardware is reporting the wrong state. | ||
1093 | */ | ||
1094 | xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); | ||
1095 | return -ENOENT; | ||
1096 | case EP_STATE_HALTED: | ||
1097 | case EP_STATE_ERROR: | ||
1098 | xhci_warn(xhci, "WARN waiting for halt or error on ep " | ||
1099 | "to be cleared\n"); | ||
1100 | /* FIXME event handling code for error needs to clear it */ | ||
1101 | /* XXX not sure if this should be -ENOENT or not */ | ||
1102 | return -EINVAL; | ||
1103 | case EP_STATE_STOPPED: | ||
1104 | case EP_STATE_RUNNING: | ||
1105 | break; | ||
1106 | default: | ||
1107 | xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); | ||
1108 | /* | ||
1109 | * FIXME issue Configure Endpoint command to try to get the HC | ||
1110 | * back into a known state. | ||
1111 | */ | ||
1112 | return -EINVAL; | ||
1113 | } | ||
1114 | if (!room_on_ring(xhci, ep_ring, num_trbs)) { | ||
1115 | /* FIXME allocate more room */ | ||
1116 | xhci_err(xhci, "ERROR no room on ep ring\n"); | ||
1117 | return -ENOMEM; | ||
1118 | } | ||
1119 | return 0; | ||
1120 | } | ||
1121 | |||
1122 | static int prepare_transfer(struct xhci_hcd *xhci, | ||
1123 | struct xhci_virt_device *xdev, | ||
1124 | unsigned int ep_index, | ||
1125 | unsigned int num_trbs, | ||
1126 | struct urb *urb, | ||
1127 | struct xhci_td **td, | ||
1128 | gfp_t mem_flags) | ||
1129 | { | ||
1130 | int ret; | ||
1131 | |||
1132 | ret = prepare_ring(xhci, xdev->ep_rings[ep_index], | ||
1133 | xdev->out_ctx->ep[ep_index].ep_info & EP_STATE_MASK, | ||
1134 | num_trbs, mem_flags); | ||
1135 | if (ret) | ||
1136 | return ret; | ||
1137 | *td = kzalloc(sizeof(struct xhci_td), mem_flags); | ||
1138 | if (!*td) | ||
1139 | return -ENOMEM; | ||
1140 | INIT_LIST_HEAD(&(*td)->td_list); | ||
1141 | INIT_LIST_HEAD(&(*td)->cancelled_td_list); | ||
1142 | |||
1143 | ret = usb_hcd_link_urb_to_ep(xhci_to_hcd(xhci), urb); | ||
1144 | if (unlikely(ret)) { | ||
1145 | kfree(*td); | ||
1146 | return ret; | ||
1147 | } | ||
1148 | |||
1149 | (*td)->urb = urb; | ||
1150 | urb->hcpriv = (void *) (*td); | ||
1151 | /* Add this TD to the tail of the endpoint ring's TD list */ | ||
1152 | list_add_tail(&(*td)->td_list, &xdev->ep_rings[ep_index]->td_list); | ||
1153 | (*td)->start_seg = xdev->ep_rings[ep_index]->enq_seg; | ||
1154 | (*td)->first_trb = xdev->ep_rings[ep_index]->enqueue; | ||
1155 | |||
1156 | return 0; | ||
1157 | } | ||
1158 | |||
1159 | static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) | ||
1160 | { | ||
1161 | int num_sgs, num_trbs, running_total, temp, i; | ||
1162 | struct scatterlist *sg; | ||
1163 | |||
1164 | sg = NULL; | ||
1165 | num_sgs = urb->num_sgs; | ||
1166 | temp = urb->transfer_buffer_length; | ||
1167 | |||
1168 | xhci_dbg(xhci, "count sg list trbs: \n"); | ||
1169 | num_trbs = 0; | ||
1170 | for_each_sg(urb->sg->sg, sg, num_sgs, i) { | ||
1171 | unsigned int previous_total_trbs = num_trbs; | ||
1172 | unsigned int len = sg_dma_len(sg); | ||
1173 | |||
1174 | /* Scatter gather list entries may cross 64KB boundaries */ | ||
1175 | running_total = TRB_MAX_BUFF_SIZE - | ||
1176 | (sg_dma_address(sg) & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); | ||
1177 | if (running_total != 0) | ||
1178 | num_trbs++; | ||
1179 | |||
1180 | /* How many more 64KB chunks to transfer, how many more TRBs? */ | ||
1181 | while (running_total < sg_dma_len(sg)) { | ||
1182 | num_trbs++; | ||
1183 | running_total += TRB_MAX_BUFF_SIZE; | ||
1184 | } | ||
1185 | xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n", | ||
1186 | i, (unsigned long long)sg_dma_address(sg), | ||
1187 | len, len, num_trbs - previous_total_trbs); | ||
1188 | |||
1189 | len = min_t(int, len, temp); | ||
1190 | temp -= len; | ||
1191 | if (temp == 0) | ||
1192 | break; | ||
1193 | } | ||
1194 | xhci_dbg(xhci, "\n"); | ||
1195 | if (!in_interrupt()) | ||
1196 | dev_dbg(&urb->dev->dev, "ep %#x - urb len = %d, sglist used, num_trbs = %d\n", | ||
1197 | urb->ep->desc.bEndpointAddress, | ||
1198 | urb->transfer_buffer_length, | ||
1199 | num_trbs); | ||
1200 | return num_trbs; | ||
1201 | } | ||
1202 | |||
1203 | static void check_trb_math(struct urb *urb, int num_trbs, int running_total) | ||
1204 | { | ||
1205 | if (num_trbs != 0) | ||
1206 | dev_dbg(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " | ||
1207 | "TRBs, %d left\n", __func__, | ||
1208 | urb->ep->desc.bEndpointAddress, num_trbs); | ||
1209 | if (running_total != urb->transfer_buffer_length) | ||
1210 | dev_dbg(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " | ||
1211 | "queued %#x (%d), asked for %#x (%d)\n", | ||
1212 | __func__, | ||
1213 | urb->ep->desc.bEndpointAddress, | ||
1214 | running_total, running_total, | ||
1215 | urb->transfer_buffer_length, | ||
1216 | urb->transfer_buffer_length); | ||
1217 | } | ||
1218 | |||
1219 | static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, | ||
1220 | unsigned int ep_index, int start_cycle, | ||
1221 | struct xhci_generic_trb *start_trb, struct xhci_td *td) | ||
1222 | { | ||
1223 | /* | ||
1224 | * Pass all the TRBs to the hardware at once and make sure this write | ||
1225 | * isn't reordered. | ||
1226 | */ | ||
1227 | wmb(); | ||
1228 | start_trb->field[3] |= start_cycle; | ||
1229 | ring_ep_doorbell(xhci, slot_id, ep_index); | ||
1230 | } | ||
1231 | |||
1232 | static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | ||
1233 | struct urb *urb, int slot_id, unsigned int ep_index) | ||
1234 | { | ||
1235 | struct xhci_ring *ep_ring; | ||
1236 | unsigned int num_trbs; | ||
1237 | struct xhci_td *td; | ||
1238 | struct scatterlist *sg; | ||
1239 | int num_sgs; | ||
1240 | int trb_buff_len, this_sg_len, running_total; | ||
1241 | bool first_trb; | ||
1242 | u64 addr; | ||
1243 | |||
1244 | struct xhci_generic_trb *start_trb; | ||
1245 | int start_cycle; | ||
1246 | |||
1247 | ep_ring = xhci->devs[slot_id]->ep_rings[ep_index]; | ||
1248 | num_trbs = count_sg_trbs_needed(xhci, urb); | ||
1249 | num_sgs = urb->num_sgs; | ||
1250 | |||
1251 | trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], | ||
1252 | ep_index, num_trbs, urb, &td, mem_flags); | ||
1253 | if (trb_buff_len < 0) | ||
1254 | return trb_buff_len; | ||
1255 | /* | ||
1256 | * Don't give the first TRB to the hardware (by toggling the cycle bit) | ||
1257 | * until we've finished creating all the other TRBs. The ring's cycle | ||
1258 | * state may change as we enqueue the other TRBs, so save it too. | ||
1259 | */ | ||
1260 | start_trb = &ep_ring->enqueue->generic; | ||
1261 | start_cycle = ep_ring->cycle_state; | ||
1262 | |||
1263 | running_total = 0; | ||
1264 | /* | ||
1265 | * How much data is in the first TRB? | ||
1266 | * | ||
1267 | * There are three forces at work for TRB buffer pointers and lengths: | ||
1268 | * 1. We don't want to walk off the end of this sg-list entry buffer. | ||
1269 | * 2. The transfer length that the driver requested may be smaller than | ||
1270 | * the amount of memory allocated for this scatter-gather list. | ||
1271 | * 3. TRBs buffers can't cross 64KB boundaries. | ||
1272 | */ | ||
1273 | sg = urb->sg->sg; | ||
1274 | addr = (u64) sg_dma_address(sg); | ||
1275 | this_sg_len = sg_dma_len(sg); | ||
1276 | trb_buff_len = TRB_MAX_BUFF_SIZE - | ||
1277 | (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); | ||
1278 | trb_buff_len = min_t(int, trb_buff_len, this_sg_len); | ||
1279 | if (trb_buff_len > urb->transfer_buffer_length) | ||
1280 | trb_buff_len = urb->transfer_buffer_length; | ||
1281 | xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n", | ||
1282 | trb_buff_len); | ||
1283 | |||
1284 | first_trb = true; | ||
1285 | /* Queue the first TRB, even if it's zero-length */ | ||
1286 | do { | ||
1287 | u32 field = 0; | ||
1288 | |||
1289 | /* Don't change the cycle bit of the first TRB until later */ | ||
1290 | if (first_trb) | ||
1291 | first_trb = false; | ||
1292 | else | ||
1293 | field |= ep_ring->cycle_state; | ||
1294 | |||
1295 | /* Chain all the TRBs together; clear the chain bit in the last | ||
1296 | * TRB to indicate it's the last TRB in the chain. | ||
1297 | */ | ||
1298 | if (num_trbs > 1) { | ||
1299 | field |= TRB_CHAIN; | ||
1300 | } else { | ||
1301 | /* FIXME - add check for ZERO_PACKET flag before this */ | ||
1302 | td->last_trb = ep_ring->enqueue; | ||
1303 | field |= TRB_IOC; | ||
1304 | } | ||
1305 | xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), " | ||
1306 | "64KB boundary at %#x, end dma = %#x\n", | ||
1307 | (unsigned int) addr, trb_buff_len, trb_buff_len, | ||
1308 | (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), | ||
1309 | (unsigned int) addr + trb_buff_len); | ||
1310 | if (TRB_MAX_BUFF_SIZE - | ||
1311 | (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)) < trb_buff_len) { | ||
1312 | xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); | ||
1313 | xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", | ||
1314 | (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), | ||
1315 | (unsigned int) addr + trb_buff_len); | ||
1316 | } | ||
1317 | queue_trb(xhci, ep_ring, false, | ||
1318 | (u32) addr, | ||
1319 | (u32) ((u64) addr >> 32), | ||
1320 | TRB_LEN(trb_buff_len) | TRB_INTR_TARGET(0), | ||
1321 | /* We always want to know if the TRB was short, | ||
1322 | * or we won't get an event when it completes. | ||
1323 | * (Unless we use event data TRBs, which are a | ||
1324 | * waste of space and HC resources.) | ||
1325 | */ | ||
1326 | field | TRB_ISP | TRB_TYPE(TRB_NORMAL)); | ||
1327 | --num_trbs; | ||
1328 | running_total += trb_buff_len; | ||
1329 | |||
1330 | /* Calculate length for next transfer -- | ||
1331 | * Are we done queueing all the TRBs for this sg entry? | ||
1332 | */ | ||
1333 | this_sg_len -= trb_buff_len; | ||
1334 | if (this_sg_len == 0) { | ||
1335 | --num_sgs; | ||
1336 | if (num_sgs == 0) | ||
1337 | break; | ||
1338 | sg = sg_next(sg); | ||
1339 | addr = (u64) sg_dma_address(sg); | ||
1340 | this_sg_len = sg_dma_len(sg); | ||
1341 | } else { | ||
1342 | addr += trb_buff_len; | ||
1343 | } | ||
1344 | |||
1345 | trb_buff_len = TRB_MAX_BUFF_SIZE - | ||
1346 | (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); | ||
1347 | trb_buff_len = min_t(int, trb_buff_len, this_sg_len); | ||
1348 | if (running_total + trb_buff_len > urb->transfer_buffer_length) | ||
1349 | trb_buff_len = | ||
1350 | urb->transfer_buffer_length - running_total; | ||
1351 | } while (running_total < urb->transfer_buffer_length); | ||
1352 | |||
1353 | check_trb_math(urb, num_trbs, running_total); | ||
1354 | giveback_first_trb(xhci, slot_id, ep_index, start_cycle, start_trb, td); | ||
1355 | return 0; | ||
1356 | } | ||
1357 | |||
1358 | /* This is very similar to what ehci-q.c qtd_fill() does */ | ||
1359 | int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | ||
1360 | struct urb *urb, int slot_id, unsigned int ep_index) | ||
1361 | { | ||
1362 | struct xhci_ring *ep_ring; | ||
1363 | struct xhci_td *td; | ||
1364 | int num_trbs; | ||
1365 | struct xhci_generic_trb *start_trb; | ||
1366 | bool first_trb; | ||
1367 | int start_cycle; | ||
1368 | u32 field; | ||
1369 | |||
1370 | int running_total, trb_buff_len, ret; | ||
1371 | u64 addr; | ||
1372 | |||
1373 | if (urb->sg) | ||
1374 | return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); | ||
1375 | |||
1376 | ep_ring = xhci->devs[slot_id]->ep_rings[ep_index]; | ||
1377 | |||
1378 | num_trbs = 0; | ||
1379 | /* How much data is (potentially) left before the 64KB boundary? */ | ||
1380 | running_total = TRB_MAX_BUFF_SIZE - | ||
1381 | (urb->transfer_dma & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); | ||
1382 | |||
1383 | /* If there's some data on this 64KB chunk, or we have to send a | ||
1384 | * zero-length transfer, we need at least one TRB | ||
1385 | */ | ||
1386 | if (running_total != 0 || urb->transfer_buffer_length == 0) | ||
1387 | num_trbs++; | ||
1388 | /* How many more 64KB chunks to transfer, how many more TRBs? */ | ||
1389 | while (running_total < urb->transfer_buffer_length) { | ||
1390 | num_trbs++; | ||
1391 | running_total += TRB_MAX_BUFF_SIZE; | ||
1392 | } | ||
1393 | /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ | ||
1394 | |||
1395 | if (!in_interrupt()) | ||
1396 | dev_dbg(&urb->dev->dev, "ep %#x - urb len = %#x (%d), addr = %#llx, num_trbs = %d\n", | ||
1397 | urb->ep->desc.bEndpointAddress, | ||
1398 | urb->transfer_buffer_length, | ||
1399 | urb->transfer_buffer_length, | ||
1400 | (unsigned long long)urb->transfer_dma, | ||
1401 | num_trbs); | ||
1402 | |||
1403 | ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, | ||
1404 | num_trbs, urb, &td, mem_flags); | ||
1405 | if (ret < 0) | ||
1406 | return ret; | ||
1407 | |||
1408 | /* | ||
1409 | * Don't give the first TRB to the hardware (by toggling the cycle bit) | ||
1410 | * until we've finished creating all the other TRBs. The ring's cycle | ||
1411 | * state may change as we enqueue the other TRBs, so save it too. | ||
1412 | */ | ||
1413 | start_trb = &ep_ring->enqueue->generic; | ||
1414 | start_cycle = ep_ring->cycle_state; | ||
1415 | |||
1416 | running_total = 0; | ||
1417 | /* How much data is in the first TRB? */ | ||
1418 | addr = (u64) urb->transfer_dma; | ||
1419 | trb_buff_len = TRB_MAX_BUFF_SIZE - | ||
1420 | (urb->transfer_dma & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); | ||
1421 | if (urb->transfer_buffer_length < trb_buff_len) | ||
1422 | trb_buff_len = urb->transfer_buffer_length; | ||
1423 | |||
1424 | first_trb = true; | ||
1425 | |||
1426 | /* Queue the first TRB, even if it's zero-length */ | ||
1427 | do { | ||
1428 | field = 0; | ||
1429 | |||
1430 | /* Don't change the cycle bit of the first TRB until later */ | ||
1431 | if (first_trb) | ||
1432 | first_trb = false; | ||
1433 | else | ||
1434 | field |= ep_ring->cycle_state; | ||
1435 | |||
1436 | /* Chain all the TRBs together; clear the chain bit in the last | ||
1437 | * TRB to indicate it's the last TRB in the chain. | ||
1438 | */ | ||
1439 | if (num_trbs > 1) { | ||
1440 | field |= TRB_CHAIN; | ||
1441 | } else { | ||
1442 | /* FIXME - add check for ZERO_PACKET flag before this */ | ||
1443 | td->last_trb = ep_ring->enqueue; | ||
1444 | field |= TRB_IOC; | ||
1445 | } | ||
1446 | queue_trb(xhci, ep_ring, false, | ||
1447 | (u32) addr, | ||
1448 | (u32) ((u64) addr >> 32), | ||
1449 | TRB_LEN(trb_buff_len) | TRB_INTR_TARGET(0), | ||
1450 | /* We always want to know if the TRB was short, | ||
1451 | * or we won't get an event when it completes. | ||
1452 | * (Unless we use event data TRBs, which are a | ||
1453 | * waste of space and HC resources.) | ||
1454 | */ | ||
1455 | field | TRB_ISP | TRB_TYPE(TRB_NORMAL)); | ||
1456 | --num_trbs; | ||
1457 | running_total += trb_buff_len; | ||
1458 | |||
1459 | /* Calculate length for next transfer */ | ||
1460 | addr += trb_buff_len; | ||
1461 | trb_buff_len = urb->transfer_buffer_length - running_total; | ||
1462 | if (trb_buff_len > TRB_MAX_BUFF_SIZE) | ||
1463 | trb_buff_len = TRB_MAX_BUFF_SIZE; | ||
1464 | } while (running_total < urb->transfer_buffer_length); | ||
1465 | |||
1466 | check_trb_math(urb, num_trbs, running_total); | ||
1467 | giveback_first_trb(xhci, slot_id, ep_index, start_cycle, start_trb, td); | ||
1468 | return 0; | ||
1469 | } | ||
1470 | |||
1471 | /* Caller must have locked xhci->lock */ | ||
1472 | int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | ||
1473 | struct urb *urb, int slot_id, unsigned int ep_index) | ||
1474 | { | ||
1475 | struct xhci_ring *ep_ring; | ||
1476 | int num_trbs; | ||
1477 | int ret; | ||
1478 | struct usb_ctrlrequest *setup; | ||
1479 | struct xhci_generic_trb *start_trb; | ||
1480 | int start_cycle; | ||
1481 | u32 field; | ||
1482 | struct xhci_td *td; | ||
1483 | |||
1484 | ep_ring = xhci->devs[slot_id]->ep_rings[ep_index]; | ||
1485 | |||
1486 | /* | ||
1487 | * Need to copy setup packet into setup TRB, so we can't use the setup | ||
1488 | * DMA address. | ||
1489 | */ | ||
1490 | if (!urb->setup_packet) | ||
1491 | return -EINVAL; | ||
1492 | |||
1493 | if (!in_interrupt()) | ||
1494 | xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n", | ||
1495 | slot_id, ep_index); | ||
1496 | /* 1 TRB for setup, 1 for status */ | ||
1497 | num_trbs = 2; | ||
1498 | /* | ||
1499 | * Don't need to check if we need additional event data and normal TRBs, | ||
1500 | * since data in control transfers will never get bigger than 16MB | ||
1501 | * XXX: can we get a buffer that crosses 64KB boundaries? | ||
1502 | */ | ||
1503 | if (urb->transfer_buffer_length > 0) | ||
1504 | num_trbs++; | ||
1505 | ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, num_trbs, | ||
1506 | urb, &td, mem_flags); | ||
1507 | if (ret < 0) | ||
1508 | return ret; | ||
1509 | |||
1510 | /* | ||
1511 | * Don't give the first TRB to the hardware (by toggling the cycle bit) | ||
1512 | * until we've finished creating all the other TRBs. The ring's cycle | ||
1513 | * state may change as we enqueue the other TRBs, so save it too. | ||
1514 | */ | ||
1515 | start_trb = &ep_ring->enqueue->generic; | ||
1516 | start_cycle = ep_ring->cycle_state; | ||
1517 | |||
1518 | /* Queue setup TRB - see section 6.4.1.2.1 */ | ||
1519 | /* FIXME better way to translate setup_packet into two u32 fields? */ | ||
1520 | setup = (struct usb_ctrlrequest *) urb->setup_packet; | ||
1521 | queue_trb(xhci, ep_ring, false, | ||
1522 | /* FIXME endianness is probably going to bite my ass here. */ | ||
1523 | setup->bRequestType | setup->bRequest << 8 | setup->wValue << 16, | ||
1524 | setup->wIndex | setup->wLength << 16, | ||
1525 | TRB_LEN(8) | TRB_INTR_TARGET(0), | ||
1526 | /* Immediate data in pointer */ | ||
1527 | TRB_IDT | TRB_TYPE(TRB_SETUP)); | ||
1528 | |||
1529 | /* If there's data, queue data TRBs */ | ||
1530 | field = 0; | ||
1531 | if (urb->transfer_buffer_length > 0) { | ||
1532 | if (setup->bRequestType & USB_DIR_IN) | ||
1533 | field |= TRB_DIR_IN; | ||
1534 | queue_trb(xhci, ep_ring, false, | ||
1535 | lower_32_bits(urb->transfer_dma), | ||
1536 | upper_32_bits(urb->transfer_dma), | ||
1537 | TRB_LEN(urb->transfer_buffer_length) | TRB_INTR_TARGET(0), | ||
1538 | /* Event on short tx */ | ||
1539 | field | TRB_ISP | TRB_TYPE(TRB_DATA) | ep_ring->cycle_state); | ||
1540 | } | ||
1541 | |||
1542 | /* Save the DMA address of the last TRB in the TD */ | ||
1543 | td->last_trb = ep_ring->enqueue; | ||
1544 | |||
1545 | /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ | ||
1546 | /* If the device sent data, the status stage is an OUT transfer */ | ||
1547 | if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) | ||
1548 | field = 0; | ||
1549 | else | ||
1550 | field = TRB_DIR_IN; | ||
1551 | queue_trb(xhci, ep_ring, false, | ||
1552 | 0, | ||
1553 | 0, | ||
1554 | TRB_INTR_TARGET(0), | ||
1555 | /* Event on completion */ | ||
1556 | field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); | ||
1557 | |||
1558 | giveback_first_trb(xhci, slot_id, ep_index, start_cycle, start_trb, td); | ||
1559 | return 0; | ||
1560 | } | ||
1561 | |||
1562 | /**** Command Ring Operations ****/ | ||
1563 | |||
1564 | /* Generic function for queueing a command TRB on the command ring */ | ||
1565 | static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, u32 field3, u32 field4) | ||
1566 | { | ||
1567 | if (!room_on_ring(xhci, xhci->cmd_ring, 1)) { | ||
1568 | if (!in_interrupt()) | ||
1569 | xhci_err(xhci, "ERR: No room for command on command ring\n"); | ||
1570 | return -ENOMEM; | ||
1571 | } | ||
1572 | queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, | ||
1573 | field4 | xhci->cmd_ring->cycle_state); | ||
1574 | return 0; | ||
1575 | } | ||
1576 | |||
1577 | /* Queue a no-op command on the command ring */ | ||
1578 | static int queue_cmd_noop(struct xhci_hcd *xhci) | ||
1579 | { | ||
1580 | return queue_command(xhci, 0, 0, 0, TRB_TYPE(TRB_CMD_NOOP)); | ||
1581 | } | ||
1582 | |||
1583 | /* | ||
1584 | * Place a no-op command on the command ring to test the command and | ||
1585 | * event ring. | ||
1586 | */ | ||
1587 | void *xhci_setup_one_noop(struct xhci_hcd *xhci) | ||
1588 | { | ||
1589 | if (queue_cmd_noop(xhci) < 0) | ||
1590 | return NULL; | ||
1591 | xhci->noops_submitted++; | ||
1592 | return xhci_ring_cmd_db; | ||
1593 | } | ||
1594 | |||
1595 | /* Queue a slot enable or disable request on the command ring */ | ||
1596 | int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) | ||
1597 | { | ||
1598 | return queue_command(xhci, 0, 0, 0, | ||
1599 | TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id)); | ||
1600 | } | ||
1601 | |||
1602 | /* Queue an address device command TRB */ | ||
1603 | int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, | ||
1604 | u32 slot_id) | ||
1605 | { | ||
1606 | return queue_command(xhci, in_ctx_ptr, 0, 0, | ||
1607 | TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)); | ||
1608 | } | ||
1609 | |||
1610 | /* Queue a configure endpoint command TRB */ | ||
1611 | int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, | ||
1612 | u32 slot_id) | ||
1613 | { | ||
1614 | return queue_command(xhci, in_ctx_ptr, 0, 0, | ||
1615 | TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id)); | ||
1616 | } | ||
1617 | |||
1618 | int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, | ||
1619 | unsigned int ep_index) | ||
1620 | { | ||
1621 | u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); | ||
1622 | u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); | ||
1623 | u32 type = TRB_TYPE(TRB_STOP_RING); | ||
1624 | |||
1625 | return queue_command(xhci, 0, 0, 0, | ||
1626 | trb_slot_id | trb_ep_index | type); | ||
1627 | } | ||
1628 | |||
1629 | /* Set Transfer Ring Dequeue Pointer command. | ||
1630 | * This should not be used for endpoints that have streams enabled. | ||
1631 | */ | ||
1632 | static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, | ||
1633 | unsigned int ep_index, struct xhci_segment *deq_seg, | ||
1634 | union xhci_trb *deq_ptr, u32 cycle_state) | ||
1635 | { | ||
1636 | dma_addr_t addr; | ||
1637 | u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); | ||
1638 | u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); | ||
1639 | u32 type = TRB_TYPE(TRB_SET_DEQ); | ||
1640 | |||
1641 | addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); | ||
1642 | if (addr == 0) | ||
1643 | xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); | ||
1644 | xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", | ||
1645 | deq_seg, deq_ptr); | ||
1646 | return queue_command(xhci, (u32) addr | cycle_state, 0, 0, | ||
1647 | trb_slot_id | trb_ep_index | type); | ||
1648 | } | ||