aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/usb/host/uhci-hcd.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/usb/host/uhci-hcd.c')
-rw-r--r--drivers/usb/host/uhci-hcd.c52
1 files changed, 21 insertions, 31 deletions
diff --git a/drivers/usb/host/uhci-hcd.c b/drivers/usb/host/uhci-hcd.c
index 1f0833ab294a..44da4334f1d6 100644
--- a/drivers/usb/host/uhci-hcd.c
+++ b/drivers/usb/host/uhci-hcd.c
@@ -13,7 +13,7 @@
13 * (C) Copyright 2000 Yggdrasil Computing, Inc. (port of new PCI interface 13 * (C) Copyright 2000 Yggdrasil Computing, Inc. (port of new PCI interface
14 * support from usb-ohci.c by Adam Richter, adam@yggdrasil.com). 14 * support from usb-ohci.c by Adam Richter, adam@yggdrasil.com).
15 * (C) Copyright 1999 Gregory P. Smith (from usb-ohci.c) 15 * (C) Copyright 1999 Gregory P. Smith (from usb-ohci.c)
16 * (C) Copyright 2004-2006 Alan Stern, stern@rowland.harvard.edu 16 * (C) Copyright 2004-2007 Alan Stern, stern@rowland.harvard.edu
17 * 17 *
18 * Intel documents this fairly well, and as far as I know there 18 * Intel documents this fairly well, and as far as I know there
19 * are no royalties or anything like that, but even so there are 19 * are no royalties or anything like that, but even so there are
@@ -107,10 +107,10 @@ static __le32 uhci_frame_skel_link(struct uhci_hcd *uhci, int frame)
107 * interrupt QHs, which will help spread out bandwidth utilization. 107 * interrupt QHs, which will help spread out bandwidth utilization.
108 * 108 *
109 * ffs (Find First bit Set) does exactly what we need: 109 * ffs (Find First bit Set) does exactly what we need:
110 * 1,3,5,... => ffs = 0 => use skel_int2_qh = skelqh[8], 110 * 1,3,5,... => ffs = 0 => use period-2 QH = skelqh[8],
111 * 2,6,10,... => ffs = 1 => use skel_int4_qh = skelqh[7], etc. 111 * 2,6,10,... => ffs = 1 => use period-4 QH = skelqh[7], etc.
112 * ffs >= 7 => not on any high-period queue, so use 112 * ffs >= 7 => not on any high-period queue, so use
113 * skel_int1_qh = skelqh[9]. 113 * period-1 QH = skelqh[9].
114 * Add in UHCI_NUMFRAMES to insure at least one bit is set. 114 * Add in UHCI_NUMFRAMES to insure at least one bit is set.
115 */ 115 */
116 skelnum = 8 - (int) __ffs(frame | UHCI_NUMFRAMES); 116 skelnum = 8 - (int) __ffs(frame | UHCI_NUMFRAMES);
@@ -540,16 +540,18 @@ static void uhci_shutdown(struct pci_dev *pdev)
540 * 540 *
541 * The hardware doesn't really know any difference 541 * The hardware doesn't really know any difference
542 * in the queues, but the order does matter for the 542 * in the queues, but the order does matter for the
543 * protocols higher up. The order is: 543 * protocols higher up. The order in which the queues
544 * are encountered by the hardware is:
544 * 545 *
545 * - any isochronous events handled before any 546 * - All isochronous events are handled before any
546 * of the queues. We don't do that here, because 547 * of the queues. We don't do that here, because
547 * we'll create the actual TD entries on demand. 548 * we'll create the actual TD entries on demand.
548 * - The first queue is the interrupt queue. 549 * - The first queue is the high-period interrupt queue.
549 * - The second queue is the control queue, split into low- and full-speed 550 * - The second queue is the period-1 interrupt and async
550 * - The third queue is bulk queue. 551 * (low-speed control, full-speed control, then bulk) queue.
551 * - The fourth queue is the bandwidth reclamation queue, which loops back 552 * - The third queue is the terminating bandwidth reclamation queue,
552 * to the full-speed control queue. 553 * which contains no members, loops back to itself, and is present
554 * only when FSBR is on and there are no full-speed control or bulk QHs.
553 */ 555 */
554static int uhci_start(struct usb_hcd *hcd) 556static int uhci_start(struct usb_hcd *hcd)
555{ 557{
@@ -626,30 +628,18 @@ static int uhci_start(struct usb_hcd *hcd)
626 } 628 }
627 629
628 /* 630 /*
629 * 8 Interrupt queues; link all higher int queues to int1, 631 * 8 Interrupt queues; link all higher int queues to int1 = async
630 * then link int1 to control and control to bulk
631 */ 632 */
632 uhci->skel_int128_qh->link = 633 for (i = SKEL_ISO + 1; i < SKEL_ASYNC; ++i)
633 uhci->skel_int64_qh->link = 634 uhci->skelqh[i]->link = LINK_TO_QH(uhci->skel_async_qh);
634 uhci->skel_int32_qh->link = 635 uhci->skel_async_qh->link = uhci->skel_term_qh->link = UHCI_PTR_TERM;
635 uhci->skel_int16_qh->link =
636 uhci->skel_int8_qh->link =
637 uhci->skel_int4_qh->link =
638 uhci->skel_int2_qh->link = LINK_TO_QH(
639 uhci->skel_int1_qh);
640
641 uhci->skel_int1_qh->link = LINK_TO_QH(uhci->skel_ls_control_qh);
642 uhci->skel_ls_control_qh->link = LINK_TO_QH(uhci->skel_fs_control_qh);
643 uhci->skel_fs_control_qh->link = LINK_TO_QH(uhci->skel_bulk_qh);
644 uhci->skel_bulk_qh->link = LINK_TO_QH(uhci->skel_term_qh);
645 636
646 /* This dummy TD is to work around a bug in Intel PIIX controllers */ 637 /* This dummy TD is to work around a bug in Intel PIIX controllers */
647 uhci_fill_td(uhci->term_td, 0, uhci_explen(0) | 638 uhci_fill_td(uhci->term_td, 0, uhci_explen(0) |
648 (0x7f << TD_TOKEN_DEVADDR_SHIFT) | USB_PID_IN, 0); 639 (0x7f << TD_TOKEN_DEVADDR_SHIFT) | USB_PID_IN, 0);
649 uhci->term_td->link = LINK_TO_TD(uhci->term_td); 640 uhci->term_td->link = UHCI_PTR_TERM;
650 641 uhci->skel_async_qh->element = uhci->skel_term_qh->element =
651 uhci->skel_term_qh->link = UHCI_PTR_TERM; 642 LINK_TO_TD(uhci->term_td);
652 uhci->skel_term_qh->element = LINK_TO_TD(uhci->term_td);
653 643
654 /* 644 /*
655 * Fill the frame list: make all entries point to the proper 645 * Fill the frame list: make all entries point to the proper