aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/usb/gadget/s3c-hsotg.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/usb/gadget/s3c-hsotg.c')
-rw-r--r--drivers/usb/gadget/s3c-hsotg.c3269
1 files changed, 3269 insertions, 0 deletions
diff --git a/drivers/usb/gadget/s3c-hsotg.c b/drivers/usb/gadget/s3c-hsotg.c
new file mode 100644
index 000000000000..50c71aae2cc2
--- /dev/null
+++ b/drivers/usb/gadget/s3c-hsotg.c
@@ -0,0 +1,3269 @@
1/* linux/drivers/usb/gadget/s3c-hsotg.c
2 *
3 * Copyright 2008 Openmoko, Inc.
4 * Copyright 2008 Simtec Electronics
5 * Ben Dooks <ben@simtec.co.uk>
6 * http://armlinux.simtec.co.uk/
7 *
8 * S3C USB2.0 High-speed / OtG driver
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13*/
14
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
19#include <linux/platform_device.h>
20#include <linux/dma-mapping.h>
21#include <linux/debugfs.h>
22#include <linux/seq_file.h>
23#include <linux/delay.h>
24#include <linux/io.h>
25
26#include <linux/usb/ch9.h>
27#include <linux/usb/gadget.h>
28
29#include <mach/map.h>
30
31#include <plat/regs-usb-hsotg-phy.h>
32#include <plat/regs-usb-hsotg.h>
33#include <plat/regs-sys.h>
34#include <plat/udc-hs.h>
35
36#define DMA_ADDR_INVALID (~((dma_addr_t)0))
37
38/* EP0_MPS_LIMIT
39 *
40 * Unfortunately there seems to be a limit of the amount of data that can
41 * be transfered by IN transactions on EP0. This is either 127 bytes or 3
42 * packets (which practially means 1 packet and 63 bytes of data) when the
43 * MPS is set to 64.
44 *
45 * This means if we are wanting to move >127 bytes of data, we need to
46 * split the transactions up, but just doing one packet at a time does
47 * not work (this may be an implicit DATA0 PID on first packet of the
48 * transaction) and doing 2 packets is outside the controller's limits.
49 *
50 * If we try to lower the MPS size for EP0, then no transfers work properly
51 * for EP0, and the system will fail basic enumeration. As no cause for this
52 * has currently been found, we cannot support any large IN transfers for
53 * EP0.
54 */
55#define EP0_MPS_LIMIT 64
56
57struct s3c_hsotg;
58struct s3c_hsotg_req;
59
60/**
61 * struct s3c_hsotg_ep - driver endpoint definition.
62 * @ep: The gadget layer representation of the endpoint.
63 * @name: The driver generated name for the endpoint.
64 * @queue: Queue of requests for this endpoint.
65 * @parent: Reference back to the parent device structure.
66 * @req: The current request that the endpoint is processing. This is
67 * used to indicate an request has been loaded onto the endpoint
68 * and has yet to be completed (maybe due to data move, or simply
69 * awaiting an ack from the core all the data has been completed).
70 * @debugfs: File entry for debugfs file for this endpoint.
71 * @lock: State lock to protect contents of endpoint.
72 * @dir_in: Set to true if this endpoint is of the IN direction, which
73 * means that it is sending data to the Host.
74 * @index: The index for the endpoint registers.
75 * @name: The name array passed to the USB core.
76 * @halted: Set if the endpoint has been halted.
77 * @periodic: Set if this is a periodic ep, such as Interrupt
78 * @sent_zlp: Set if we've sent a zero-length packet.
79 * @total_data: The total number of data bytes done.
80 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
81 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
82 * @last_load: The offset of data for the last start of request.
83 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
84 *
85 * This is the driver's state for each registered enpoint, allowing it
86 * to keep track of transactions that need doing. Each endpoint has a
87 * lock to protect the state, to try and avoid using an overall lock
88 * for the host controller as much as possible.
89 *
90 * For periodic IN endpoints, we have fifo_size and fifo_load to try
91 * and keep track of the amount of data in the periodic FIFO for each
92 * of these as we don't have a status register that tells us how much
93 * is in each of them.
94 */
95struct s3c_hsotg_ep {
96 struct usb_ep ep;
97 struct list_head queue;
98 struct s3c_hsotg *parent;
99 struct s3c_hsotg_req *req;
100 struct dentry *debugfs;
101
102 spinlock_t lock;
103
104 unsigned long total_data;
105 unsigned int size_loaded;
106 unsigned int last_load;
107 unsigned int fifo_load;
108 unsigned short fifo_size;
109
110 unsigned char dir_in;
111 unsigned char index;
112
113 unsigned int halted:1;
114 unsigned int periodic:1;
115 unsigned int sent_zlp:1;
116
117 char name[10];
118};
119
120#define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
121
122/**
123 * struct s3c_hsotg - driver state.
124 * @dev: The parent device supplied to the probe function
125 * @driver: USB gadget driver
126 * @plat: The platform specific configuration data.
127 * @regs: The memory area mapped for accessing registers.
128 * @regs_res: The resource that was allocated when claiming register space.
129 * @irq: The IRQ number we are using
130 * @debug_root: root directrory for debugfs.
131 * @debug_file: main status file for debugfs.
132 * @debug_fifo: FIFO status file for debugfs.
133 * @ep0_reply: Request used for ep0 reply.
134 * @ep0_buff: Buffer for EP0 reply data, if needed.
135 * @ctrl_buff: Buffer for EP0 control requests.
136 * @ctrl_req: Request for EP0 control packets.
137 * @eps: The endpoints being supplied to the gadget framework
138 */
139struct s3c_hsotg {
140 struct device *dev;
141 struct usb_gadget_driver *driver;
142 struct s3c_hsotg_plat *plat;
143
144 void __iomem *regs;
145 struct resource *regs_res;
146 int irq;
147
148 struct dentry *debug_root;
149 struct dentry *debug_file;
150 struct dentry *debug_fifo;
151
152 struct usb_request *ep0_reply;
153 struct usb_request *ctrl_req;
154 u8 ep0_buff[8];
155 u8 ctrl_buff[8];
156
157 struct usb_gadget gadget;
158 struct s3c_hsotg_ep eps[];
159};
160
161/**
162 * struct s3c_hsotg_req - data transfer request
163 * @req: The USB gadget request
164 * @queue: The list of requests for the endpoint this is queued for.
165 * @in_progress: Has already had size/packets written to core
166 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
167 */
168struct s3c_hsotg_req {
169 struct usb_request req;
170 struct list_head queue;
171 unsigned char in_progress;
172 unsigned char mapped;
173};
174
175/* conversion functions */
176static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
177{
178 return container_of(req, struct s3c_hsotg_req, req);
179}
180
181static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
182{
183 return container_of(ep, struct s3c_hsotg_ep, ep);
184}
185
186static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
187{
188 return container_of(gadget, struct s3c_hsotg, gadget);
189}
190
191static inline void __orr32(void __iomem *ptr, u32 val)
192{
193 writel(readl(ptr) | val, ptr);
194}
195
196static inline void __bic32(void __iomem *ptr, u32 val)
197{
198 writel(readl(ptr) & ~val, ptr);
199}
200
201/* forward decleration of functions */
202static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
203
204/**
205 * using_dma - return the DMA status of the driver.
206 * @hsotg: The driver state.
207 *
208 * Return true if we're using DMA.
209 *
210 * Currently, we have the DMA support code worked into everywhere
211 * that needs it, but the AMBA DMA implementation in the hardware can
212 * only DMA from 32bit aligned addresses. This means that gadgets such
213 * as the CDC Ethernet cannot work as they often pass packets which are
214 * not 32bit aligned.
215 *
216 * Unfortunately the choice to use DMA or not is global to the controller
217 * and seems to be only settable when the controller is being put through
218 * a core reset. This means we either need to fix the gadgets to take
219 * account of DMA alignment, or add bounce buffers (yuerk).
220 *
221 * Until this issue is sorted out, we always return 'false'.
222 */
223static inline bool using_dma(struct s3c_hsotg *hsotg)
224{
225 return false; /* support is not complete */
226}
227
228/**
229 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
230 * @hsotg: The device state
231 * @ints: A bitmask of the interrupts to enable
232 */
233static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
234{
235 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
236 u32 new_gsintmsk;
237
238 new_gsintmsk = gsintmsk | ints;
239
240 if (new_gsintmsk != gsintmsk) {
241 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
242 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
243 }
244}
245
246/**
247 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
248 * @hsotg: The device state
249 * @ints: A bitmask of the interrupts to enable
250 */
251static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
252{
253 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
254 u32 new_gsintmsk;
255
256 new_gsintmsk = gsintmsk & ~ints;
257
258 if (new_gsintmsk != gsintmsk)
259 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
260}
261
262/**
263 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
264 * @hsotg: The device state
265 * @ep: The endpoint index
266 * @dir_in: True if direction is in.
267 * @en: The enable value, true to enable
268 *
269 * Set or clear the mask for an individual endpoint's interrupt
270 * request.
271 */
272static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
273 unsigned int ep, unsigned int dir_in,
274 unsigned int en)
275{
276 unsigned long flags;
277 u32 bit = 1 << ep;
278 u32 daint;
279
280 if (!dir_in)
281 bit <<= 16;
282
283 local_irq_save(flags);
284 daint = readl(hsotg->regs + S3C_DAINTMSK);
285 if (en)
286 daint |= bit;
287 else
288 daint &= ~bit;
289 writel(daint, hsotg->regs + S3C_DAINTMSK);
290 local_irq_restore(flags);
291}
292
293/**
294 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
295 * @hsotg: The device instance.
296 */
297static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
298{
299 /* the ryu 2.6.24 release ahs
300 writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
301 writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
302 S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
303 hsotg->regs + S3C_GNPTXFSIZ);
304 */
305
306 /* set FIFO sizes to 2048/0x1C0 */
307
308 writel(2048, hsotg->regs + S3C_GRXFSIZ);
309 writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
310 S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
311 hsotg->regs + S3C_GNPTXFSIZ);
312}
313
314/**
315 * @ep: USB endpoint to allocate request for.
316 * @flags: Allocation flags
317 *
318 * Allocate a new USB request structure appropriate for the specified endpoint
319 */
320struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep, gfp_t flags)
321{
322 struct s3c_hsotg_req *req;
323
324 req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
325 if (!req)
326 return NULL;
327
328 INIT_LIST_HEAD(&req->queue);
329
330 req->req.dma = DMA_ADDR_INVALID;
331 return &req->req;
332}
333
334/**
335 * is_ep_periodic - return true if the endpoint is in periodic mode.
336 * @hs_ep: The endpoint to query.
337 *
338 * Returns true if the endpoint is in periodic mode, meaning it is being
339 * used for an Interrupt or ISO transfer.
340 */
341static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
342{
343 return hs_ep->periodic;
344}
345
346/**
347 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
348 * @hsotg: The device state.
349 * @hs_ep: The endpoint for the request
350 * @hs_req: The request being processed.
351 *
352 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
353 * of a request to ensure the buffer is ready for access by the caller.
354*/
355static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
356 struct s3c_hsotg_ep *hs_ep,
357 struct s3c_hsotg_req *hs_req)
358{
359 struct usb_request *req = &hs_req->req;
360 enum dma_data_direction dir;
361
362 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
363
364 /* ignore this if we're not moving any data */
365 if (hs_req->req.length == 0)
366 return;
367
368 if (hs_req->mapped) {
369 /* we mapped this, so unmap and remove the dma */
370
371 dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
372
373 req->dma = DMA_ADDR_INVALID;
374 hs_req->mapped = 0;
375 } else {
376 dma_sync_single(hsotg->dev, req->dma, req->length, dir);
377 }
378}
379
380/**
381 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
382 * @hsotg: The controller state.
383 * @hs_ep: The endpoint we're going to write for.
384 * @hs_req: The request to write data for.
385 *
386 * This is called when the TxFIFO has some space in it to hold a new
387 * transmission and we have something to give it. The actual setup of
388 * the data size is done elsewhere, so all we have to do is to actually
389 * write the data.
390 *
391 * The return value is zero if there is more space (or nothing was done)
392 * otherwise -ENOSPC is returned if the FIFO space was used up.
393 *
394 * This routine is only needed for PIO
395*/
396static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
397 struct s3c_hsotg_ep *hs_ep,
398 struct s3c_hsotg_req *hs_req)
399{
400 bool periodic = is_ep_periodic(hs_ep);
401 u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
402 int buf_pos = hs_req->req.actual;
403 int to_write = hs_ep->size_loaded;
404 void *data;
405 int can_write;
406 int pkt_round;
407
408 to_write -= (buf_pos - hs_ep->last_load);
409
410 /* if there's nothing to write, get out early */
411 if (to_write == 0)
412 return 0;
413
414 if (periodic) {
415 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
416 int size_left;
417 int size_done;
418
419 /* work out how much data was loaded so we can calculate
420 * how much data is left in the fifo. */
421
422 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
423
424 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
425 __func__, size_left,
426 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
427
428 /* how much of the data has moved */
429 size_done = hs_ep->size_loaded - size_left;
430
431 /* how much data is left in the fifo */
432 can_write = hs_ep->fifo_load - size_done;
433 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
434 __func__, can_write);
435
436 can_write = hs_ep->fifo_size - can_write;
437 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
438 __func__, can_write);
439
440 if (can_write <= 0) {
441 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
442 return -ENOSPC;
443 }
444 } else {
445 if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
446 dev_dbg(hsotg->dev,
447 "%s: no queue slots available (0x%08x)\n",
448 __func__, gnptxsts);
449
450 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
451 return -ENOSPC;
452 }
453
454 can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
455 }
456
457 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
458 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
459
460 /* limit to 512 bytes of data, it seems at least on the non-periodic
461 * FIFO, requests of >512 cause the endpoint to get stuck with a
462 * fragment of the end of the transfer in it.
463 */
464 if (can_write > 512)
465 can_write = 512;
466
467 /* see if we can write data */
468
469 if (to_write > can_write) {
470 to_write = can_write;
471 pkt_round = to_write % hs_ep->ep.maxpacket;
472
473 /* Not sure, but we probably shouldn't be writing partial
474 * packets into the FIFO, so round the write down to an
475 * exact number of packets.
476 *
477 * Note, we do not currently check to see if we can ever
478 * write a full packet or not to the FIFO.
479 */
480
481 if (pkt_round)
482 to_write -= pkt_round;
483
484 /* enable correct FIFO interrupt to alert us when there
485 * is more room left. */
486
487 s3c_hsotg_en_gsint(hsotg,
488 periodic ? S3C_GINTSTS_PTxFEmp :
489 S3C_GINTSTS_NPTxFEmp);
490 }
491
492 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
493 to_write, hs_req->req.length, can_write, buf_pos);
494
495 if (to_write <= 0)
496 return -ENOSPC;
497
498 hs_req->req.actual = buf_pos + to_write;
499 hs_ep->total_data += to_write;
500
501 if (periodic)
502 hs_ep->fifo_load += to_write;
503
504 to_write = DIV_ROUND_UP(to_write, 4);
505 data = hs_req->req.buf + buf_pos;
506
507 writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
508
509 return (to_write >= can_write) ? -ENOSPC : 0;
510}
511
512/**
513 * get_ep_limit - get the maximum data legnth for this endpoint
514 * @hs_ep: The endpoint
515 *
516 * Return the maximum data that can be queued in one go on a given endpoint
517 * so that transfers that are too long can be split.
518 */
519static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
520{
521 int index = hs_ep->index;
522 unsigned maxsize;
523 unsigned maxpkt;
524
525 if (index != 0) {
526 maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
527 maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
528 } else {
529 if (hs_ep->dir_in) {
530 /* maxsize = S3C_DIEPTSIZ0_XferSize_LIMIT + 1; */
531 maxsize = 64+64+1;
532 maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
533 } else {
534 maxsize = 0x3f;
535 maxpkt = 2;
536 }
537 }
538
539 /* we made the constant loading easier above by using +1 */
540 maxpkt--;
541 maxsize--;
542
543 /* constrain by packet count if maxpkts*pktsize is greater
544 * than the length register size. */
545
546 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
547 maxsize = maxpkt * hs_ep->ep.maxpacket;
548
549 return maxsize;
550}
551
552/**
553 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
554 * @hsotg: The controller state.
555 * @hs_ep: The endpoint to process a request for
556 * @hs_req: The request to start.
557 * @continuing: True if we are doing more for the current request.
558 *
559 * Start the given request running by setting the endpoint registers
560 * appropriately, and writing any data to the FIFOs.
561 */
562static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
563 struct s3c_hsotg_ep *hs_ep,
564 struct s3c_hsotg_req *hs_req,
565 bool continuing)
566{
567 struct usb_request *ureq = &hs_req->req;
568 int index = hs_ep->index;
569 int dir_in = hs_ep->dir_in;
570 u32 epctrl_reg;
571 u32 epsize_reg;
572 u32 epsize;
573 u32 ctrl;
574 unsigned length;
575 unsigned packets;
576 unsigned maxreq;
577
578 if (index != 0) {
579 if (hs_ep->req && !continuing) {
580 dev_err(hsotg->dev, "%s: active request\n", __func__);
581 WARN_ON(1);
582 return;
583 } else if (hs_ep->req != hs_req && continuing) {
584 dev_err(hsotg->dev,
585 "%s: continue different req\n", __func__);
586 WARN_ON(1);
587 return;
588 }
589 }
590
591 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
592 epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
593
594 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
595 __func__, readl(hsotg->regs + epctrl_reg), index,
596 hs_ep->dir_in ? "in" : "out");
597
598 length = ureq->length - ureq->actual;
599
600 if (0)
601 dev_dbg(hsotg->dev,
602 "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
603 ureq->buf, length, ureq->dma,
604 ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
605
606 maxreq = get_ep_limit(hs_ep);
607 if (length > maxreq) {
608 int round = maxreq % hs_ep->ep.maxpacket;
609
610 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
611 __func__, length, maxreq, round);
612
613 /* round down to multiple of packets */
614 if (round)
615 maxreq -= round;
616
617 length = maxreq;
618 }
619
620 if (length)
621 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
622 else
623 packets = 1; /* send one packet if length is zero. */
624
625 if (dir_in && index != 0)
626 epsize = S3C_DxEPTSIZ_MC(1);
627 else
628 epsize = 0;
629
630 if (index != 0 && ureq->zero) {
631 /* test for the packets being exactly right for the
632 * transfer */
633
634 if (length == (packets * hs_ep->ep.maxpacket))
635 packets++;
636 }
637
638 epsize |= S3C_DxEPTSIZ_PktCnt(packets);
639 epsize |= S3C_DxEPTSIZ_XferSize(length);
640
641 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
642 __func__, packets, length, ureq->length, epsize, epsize_reg);
643
644 /* store the request as the current one we're doing */
645 hs_ep->req = hs_req;
646
647 /* write size / packets */
648 writel(epsize, hsotg->regs + epsize_reg);
649
650 ctrl = readl(hsotg->regs + epctrl_reg);
651
652 if (ctrl & S3C_DxEPCTL_Stall) {
653 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
654
655 /* not sure what we can do here, if it is EP0 then we should
656 * get this cleared once the endpoint has transmitted the
657 * STALL packet, otherwise it needs to be cleared by the
658 * host.
659 */
660 }
661
662 if (using_dma(hsotg)) {
663 unsigned int dma_reg;
664
665 /* write DMA address to control register, buffer already
666 * synced by s3c_hsotg_ep_queue(). */
667
668 dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
669 writel(ureq->dma, hsotg->regs + dma_reg);
670
671 dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
672 __func__, ureq->dma, dma_reg);
673 }
674
675 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
676 ctrl |= S3C_DxEPCTL_USBActEp;
677 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
678
679 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
680 writel(ctrl, hsotg->regs + epctrl_reg);
681
682 /* set these, it seems that DMA support increments past the end
683 * of the packet buffer so we need to calculate the length from
684 * this information. */
685 hs_ep->size_loaded = length;
686 hs_ep->last_load = ureq->actual;
687
688 if (dir_in && !using_dma(hsotg)) {
689 /* set these anyway, we may need them for non-periodic in */
690 hs_ep->fifo_load = 0;
691
692 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
693 }
694
695 /* clear the INTknTXFEmpMsk when we start request, more as a aide
696 * to debugging to see what is going on. */
697 if (dir_in)
698 writel(S3C_DIEPMSK_INTknTXFEmpMsk,
699 hsotg->regs + S3C_DIEPINT(index));
700
701 /* Note, trying to clear the NAK here causes problems with transmit
702 * on the S3C6400 ending up with the TXFIFO becomming full. */
703
704 /* check ep is enabled */
705 if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
706 dev_warn(hsotg->dev,
707 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
708 index, readl(hsotg->regs + epctrl_reg));
709
710 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
711 __func__, readl(hsotg->regs + epctrl_reg));
712}
713
714/**
715 * s3c_hsotg_map_dma - map the DMA memory being used for the request
716 * @hsotg: The device state.
717 * @hs_ep: The endpoint the request is on.
718 * @req: The request being processed.
719 *
720 * We've been asked to queue a request, so ensure that the memory buffer
721 * is correctly setup for DMA. If we've been passed an extant DMA address
722 * then ensure the buffer has been synced to memory. If our buffer has no
723 * DMA memory, then we map the memory and mark our request to allow us to
724 * cleanup on completion.
725*/
726static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
727 struct s3c_hsotg_ep *hs_ep,
728 struct usb_request *req)
729{
730 enum dma_data_direction dir;
731 struct s3c_hsotg_req *hs_req = our_req(req);
732
733 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
734
735 /* if the length is zero, ignore the DMA data */
736 if (hs_req->req.length == 0)
737 return 0;
738
739 if (req->dma == DMA_ADDR_INVALID) {
740 dma_addr_t dma;
741
742 dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
743
744 if (unlikely(dma_mapping_error(hsotg->dev, dma)))
745 goto dma_error;
746
747 if (dma & 3) {
748 dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
749 __func__);
750
751 dma_unmap_single(hsotg->dev, dma, req->length, dir);
752 return -EINVAL;
753 }
754
755 hs_req->mapped = 1;
756 req->dma = dma;
757 } else {
758 dma_sync_single(hsotg->dev, req->dma, req->length, dir);
759 hs_req->mapped = 0;
760 }
761
762 return 0;
763
764dma_error:
765 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
766 __func__, req->buf, req->length);
767
768 return -EIO;
769}
770
771static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
772 gfp_t gfp_flags)
773{
774 struct s3c_hsotg_req *hs_req = our_req(req);
775 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
776 struct s3c_hsotg *hs = hs_ep->parent;
777 unsigned long irqflags;
778 bool first;
779
780 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
781 ep->name, req, req->length, req->buf, req->no_interrupt,
782 req->zero, req->short_not_ok);
783
784 /* initialise status of the request */
785 INIT_LIST_HEAD(&hs_req->queue);
786 req->actual = 0;
787 req->status = -EINPROGRESS;
788
789 /* if we're using DMA, sync the buffers as necessary */
790 if (using_dma(hs)) {
791 int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
792 if (ret)
793 return ret;
794 }
795
796 spin_lock_irqsave(&hs_ep->lock, irqflags);
797
798 first = list_empty(&hs_ep->queue);
799 list_add_tail(&hs_req->queue, &hs_ep->queue);
800
801 if (first)
802 s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
803
804 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
805
806 return 0;
807}
808
809static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
810 struct usb_request *req)
811{
812 struct s3c_hsotg_req *hs_req = our_req(req);
813
814 kfree(hs_req);
815}
816
817/**
818 * s3c_hsotg_complete_oursetup - setup completion callback
819 * @ep: The endpoint the request was on.
820 * @req: The request completed.
821 *
822 * Called on completion of any requests the driver itself
823 * submitted that need cleaning up.
824 */
825static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
826 struct usb_request *req)
827{
828 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
829 struct s3c_hsotg *hsotg = hs_ep->parent;
830
831 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
832
833 s3c_hsotg_ep_free_request(ep, req);
834}
835
836/**
837 * ep_from_windex - convert control wIndex value to endpoint
838 * @hsotg: The driver state.
839 * @windex: The control request wIndex field (in host order).
840 *
841 * Convert the given wIndex into a pointer to an driver endpoint
842 * structure, or return NULL if it is not a valid endpoint.
843*/
844static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
845 u32 windex)
846{
847 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
848 int dir = (windex & USB_DIR_IN) ? 1 : 0;
849 int idx = windex & 0x7F;
850
851 if (windex >= 0x100)
852 return NULL;
853
854 if (idx > S3C_HSOTG_EPS)
855 return NULL;
856
857 if (idx && ep->dir_in != dir)
858 return NULL;
859
860 return ep;
861}
862
863/**
864 * s3c_hsotg_send_reply - send reply to control request
865 * @hsotg: The device state
866 * @ep: Endpoint 0
867 * @buff: Buffer for request
868 * @length: Length of reply.
869 *
870 * Create a request and queue it on the given endpoint. This is useful as
871 * an internal method of sending replies to certain control requests, etc.
872 */
873static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
874 struct s3c_hsotg_ep *ep,
875 void *buff,
876 int length)
877{
878 struct usb_request *req;
879 int ret;
880
881 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
882
883 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
884 hsotg->ep0_reply = req;
885 if (!req) {
886 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
887 return -ENOMEM;
888 }
889
890 req->buf = hsotg->ep0_buff;
891 req->length = length;
892 req->zero = 1; /* always do zero-length final transfer */
893 req->complete = s3c_hsotg_complete_oursetup;
894
895 if (length)
896 memcpy(req->buf, buff, length);
897 else
898 ep->sent_zlp = 1;
899
900 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
901 if (ret) {
902 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
903 return ret;
904 }
905
906 return 0;
907}
908
909/**
910 * s3c_hsotg_process_req_status - process request GET_STATUS
911 * @hsotg: The device state
912 * @ctrl: USB control request
913 */
914static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
915 struct usb_ctrlrequest *ctrl)
916{
917 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
918 struct s3c_hsotg_ep *ep;
919 __le16 reply;
920 int ret;
921
922 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
923
924 if (!ep0->dir_in) {
925 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
926 return -EINVAL;
927 }
928
929 switch (ctrl->bRequestType & USB_RECIP_MASK) {
930 case USB_RECIP_DEVICE:
931 reply = cpu_to_le16(0); /* bit 0 => self powered,
932 * bit 1 => remote wakeup */
933 break;
934
935 case USB_RECIP_INTERFACE:
936 /* currently, the data result should be zero */
937 reply = cpu_to_le16(0);
938 break;
939
940 case USB_RECIP_ENDPOINT:
941 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
942 if (!ep)
943 return -ENOENT;
944
945 reply = cpu_to_le16(ep->halted ? 1 : 0);
946 break;
947
948 default:
949 return 0;
950 }
951
952 if (le16_to_cpu(ctrl->wLength) != 2)
953 return -EINVAL;
954
955 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
956 if (ret) {
957 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
958 return ret;
959 }
960
961 return 1;
962}
963
964static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
965
966/**
967 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
968 * @hsotg: The device state
969 * @ctrl: USB control request
970 */
971static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
972 struct usb_ctrlrequest *ctrl)
973{
974 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
975 struct s3c_hsotg_ep *ep;
976
977 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
978 __func__, set ? "SET" : "CLEAR");
979
980 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
981 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
982 if (!ep) {
983 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
984 __func__, le16_to_cpu(ctrl->wIndex));
985 return -ENOENT;
986 }
987
988 switch (le16_to_cpu(ctrl->wValue)) {
989 case USB_ENDPOINT_HALT:
990 s3c_hsotg_ep_sethalt(&ep->ep, set);
991 break;
992
993 default:
994 return -ENOENT;
995 }
996 } else
997 return -ENOENT; /* currently only deal with endpoint */
998
999 return 1;
1000}
1001
1002/**
1003 * s3c_hsotg_process_control - process a control request
1004 * @hsotg: The device state
1005 * @ctrl: The control request received
1006 *
1007 * The controller has received the SETUP phase of a control request, and
1008 * needs to work out what to do next (and whether to pass it on to the
1009 * gadget driver).
1010 */
1011static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1012 struct usb_ctrlrequest *ctrl)
1013{
1014 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1015 int ret = 0;
1016 u32 dcfg;
1017
1018 ep0->sent_zlp = 0;
1019
1020 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1021 ctrl->bRequest, ctrl->bRequestType,
1022 ctrl->wValue, ctrl->wLength);
1023
1024 /* record the direction of the request, for later use when enquing
1025 * packets onto EP0. */
1026
1027 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1028 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1029
1030 /* if we've no data with this request, then the last part of the
1031 * transaction is going to implicitly be IN. */
1032 if (ctrl->wLength == 0)
1033 ep0->dir_in = 1;
1034
1035 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1036 switch (ctrl->bRequest) {
1037 case USB_REQ_SET_ADDRESS:
1038 dcfg = readl(hsotg->regs + S3C_DCFG);
1039 dcfg &= ~S3C_DCFG_DevAddr_MASK;
1040 dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
1041 writel(dcfg, hsotg->regs + S3C_DCFG);
1042
1043 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1044
1045 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1046 return;
1047
1048 case USB_REQ_GET_STATUS:
1049 ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1050 break;
1051
1052 case USB_REQ_CLEAR_FEATURE:
1053 case USB_REQ_SET_FEATURE:
1054 ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1055 break;
1056 }
1057 }
1058
1059 /* as a fallback, try delivering it to the driver to deal with */
1060
1061 if (ret == 0 && hsotg->driver) {
1062 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1063 if (ret < 0)
1064 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1065 }
1066
1067 if (ret > 0) {
1068 if (!ep0->dir_in) {
1069 /* need to generate zlp in reply or take data */
1070 /* todo - deal with any data we might be sent? */
1071 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1072 }
1073 }
1074
1075 /* the request is either unhandlable, or is not formatted correctly
1076 * so respond with a STALL for the status stage to indicate failure.
1077 */
1078
1079 if (ret < 0) {
1080 u32 reg;
1081 u32 ctrl;
1082
1083 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1084 reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
1085
1086 /* S3C_DxEPCTL_Stall will be cleared by EP once it has
1087 * taken effect, so no need to clear later. */
1088
1089 ctrl = readl(hsotg->regs + reg);
1090 ctrl |= S3C_DxEPCTL_Stall;
1091 ctrl |= S3C_DxEPCTL_CNAK;
1092 writel(ctrl, hsotg->regs + reg);
1093
1094 dev_dbg(hsotg->dev,
1095 "writen DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1096 ctrl, reg, readl(hsotg->regs + reg));
1097
1098 /* don't belive we need to anything more to get the EP
1099 * to reply with a STALL packet */
1100 }
1101}
1102
1103static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1104
1105/**
1106 * s3c_hsotg_complete_setup - completion of a setup transfer
1107 * @ep: The endpoint the request was on.
1108 * @req: The request completed.
1109 *
1110 * Called on completion of any requests the driver itself submitted for
1111 * EP0 setup packets
1112 */
1113static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1114 struct usb_request *req)
1115{
1116 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1117 struct s3c_hsotg *hsotg = hs_ep->parent;
1118
1119 if (req->status < 0) {
1120 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1121 return;
1122 }
1123
1124 if (req->actual == 0)
1125 s3c_hsotg_enqueue_setup(hsotg);
1126 else
1127 s3c_hsotg_process_control(hsotg, req->buf);
1128}
1129
1130/**
1131 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1132 * @hsotg: The device state.
1133 *
1134 * Enqueue a request on EP0 if necessary to received any SETUP packets
1135 * received from the host.
1136 */
1137static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1138{
1139 struct usb_request *req = hsotg->ctrl_req;
1140 struct s3c_hsotg_req *hs_req = our_req(req);
1141 int ret;
1142
1143 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1144
1145 req->zero = 0;
1146 req->length = 8;
1147 req->buf = hsotg->ctrl_buff;
1148 req->complete = s3c_hsotg_complete_setup;
1149
1150 if (!list_empty(&hs_req->queue)) {
1151 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1152 return;
1153 }
1154
1155 hsotg->eps[0].dir_in = 0;
1156
1157 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1158 if (ret < 0) {
1159 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1160 /* Don't think there's much we can do other than watch the
1161 * driver fail. */
1162 }
1163}
1164
1165/**
1166 * get_ep_head - return the first request on the endpoint
1167 * @hs_ep: The controller endpoint to get
1168 *
1169 * Get the first request on the endpoint.
1170*/
1171static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1172{
1173 if (list_empty(&hs_ep->queue))
1174 return NULL;
1175
1176 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1177}
1178
1179/**
1180 * s3c_hsotg_complete_request - complete a request given to us
1181 * @hsotg: The device state.
1182 * @hs_ep: The endpoint the request was on.
1183 * @hs_req: The request to complete.
1184 * @result: The result code (0 => Ok, otherwise errno)
1185 *
1186 * The given request has finished, so call the necessary completion
1187 * if it has one and then look to see if we can start a new request
1188 * on the endpoint.
1189 *
1190 * Note, expects the ep to already be locked as appropriate.
1191*/
1192static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1193 struct s3c_hsotg_ep *hs_ep,
1194 struct s3c_hsotg_req *hs_req,
1195 int result)
1196{
1197 bool restart;
1198
1199 if (!hs_req) {
1200 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1201 return;
1202 }
1203
1204 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1205 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1206
1207 /* only replace the status if we've not already set an error
1208 * from a previous transaction */
1209
1210 if (hs_req->req.status == -EINPROGRESS)
1211 hs_req->req.status = result;
1212
1213 hs_ep->req = NULL;
1214 list_del_init(&hs_req->queue);
1215
1216 if (using_dma(hsotg))
1217 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1218
1219 /* call the complete request with the locks off, just in case the
1220 * request tries to queue more work for this endpoint. */
1221
1222 if (hs_req->req.complete) {
1223 spin_unlock(&hs_ep->lock);
1224 hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1225 spin_lock(&hs_ep->lock);
1226 }
1227
1228 /* Look to see if there is anything else to do. Note, the completion
1229 * of the previous request may have caused a new request to be started
1230 * so be careful when doing this. */
1231
1232 if (!hs_ep->req && result >= 0) {
1233 restart = !list_empty(&hs_ep->queue);
1234 if (restart) {
1235 hs_req = get_ep_head(hs_ep);
1236 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1237 }
1238 }
1239}
1240
1241/**
1242 * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
1243 * @hsotg: The device state.
1244 * @hs_ep: The endpoint the request was on.
1245 * @hs_req: The request to complete.
1246 * @result: The result code (0 => Ok, otherwise errno)
1247 *
1248 * See s3c_hsotg_complete_request(), but called with the endpoint's
1249 * lock held.
1250*/
1251static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
1252 struct s3c_hsotg_ep *hs_ep,
1253 struct s3c_hsotg_req *hs_req,
1254 int result)
1255{
1256 unsigned long flags;
1257
1258 spin_lock_irqsave(&hs_ep->lock, flags);
1259 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1260 spin_unlock_irqrestore(&hs_ep->lock, flags);
1261}
1262
1263/**
1264 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1265 * @hsotg: The device state.
1266 * @ep_idx: The endpoint index for the data
1267 * @size: The size of data in the fifo, in bytes
1268 *
1269 * The FIFO status shows there is data to read from the FIFO for a given
1270 * endpoint, so sort out whether we need to read the data into a request
1271 * that has been made for that endpoint.
1272 */
1273static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1274{
1275 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1276 struct s3c_hsotg_req *hs_req = hs_ep->req;
1277 void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
1278 int to_read;
1279 int max_req;
1280 int read_ptr;
1281
1282 if (!hs_req) {
1283 u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
1284 int ptr;
1285
1286 dev_warn(hsotg->dev,
1287 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1288 __func__, size, ep_idx, epctl);
1289
1290 /* dump the data from the FIFO, we've nothing we can do */
1291 for (ptr = 0; ptr < size; ptr += 4)
1292 (void)readl(fifo);
1293
1294 return;
1295 }
1296
1297 spin_lock(&hs_ep->lock);
1298
1299 to_read = size;
1300 read_ptr = hs_req->req.actual;
1301 max_req = hs_req->req.length - read_ptr;
1302
1303 if (to_read > max_req) {
1304 /* more data appeared than we where willing
1305 * to deal with in this request.
1306 */
1307
1308 /* currently we don't deal this */
1309 WARN_ON_ONCE(1);
1310 }
1311
1312 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1313 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1314
1315 hs_ep->total_data += to_read;
1316 hs_req->req.actual += to_read;
1317 to_read = DIV_ROUND_UP(to_read, 4);
1318
1319 /* note, we might over-write the buffer end by 3 bytes depending on
1320 * alignment of the data. */
1321 readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1322
1323 spin_unlock(&hs_ep->lock);
1324}
1325
1326/**
1327 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1328 * @hsotg: The device instance
1329 * @req: The request currently on this endpoint
1330 *
1331 * Generate a zero-length IN packet request for terminating a SETUP
1332 * transaction.
1333 *
1334 * Note, since we don't write any data to the TxFIFO, then it is
1335 * currently belived that we do not need to wait for any space in
1336 * the TxFIFO.
1337 */
1338static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1339 struct s3c_hsotg_req *req)
1340{
1341 u32 ctrl;
1342
1343 if (!req) {
1344 dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1345 return;
1346 }
1347
1348 if (req->req.length == 0) {
1349 hsotg->eps[0].sent_zlp = 1;
1350 s3c_hsotg_enqueue_setup(hsotg);
1351 return;
1352 }
1353
1354 hsotg->eps[0].dir_in = 1;
1355 hsotg->eps[0].sent_zlp = 1;
1356
1357 dev_dbg(hsotg->dev, "sending zero-length packet\n");
1358
1359 /* issue a zero-sized packet to terminate this */
1360 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
1361 S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
1362
1363 ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
1364 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
1365 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
1366 ctrl |= S3C_DxEPCTL_USBActEp;
1367 writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
1368}
1369
1370/**
1371 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1372 * @hsotg: The device instance
1373 * @epnum: The endpoint received from
1374 * @was_setup: Set if processing a SetupDone event.
1375 *
1376 * The RXFIFO has delivered an OutDone event, which means that the data
1377 * transfer for an OUT endpoint has been completed, either by a short
1378 * packet or by the finish of a transfer.
1379*/
1380static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1381 int epnum, bool was_setup)
1382{
1383 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1384 struct s3c_hsotg_req *hs_req = hs_ep->req;
1385 struct usb_request *req = &hs_req->req;
1386 int result = 0;
1387
1388 if (!hs_req) {
1389 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1390 return;
1391 }
1392
1393 if (using_dma(hsotg)) {
1394 u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
1395 unsigned size_done;
1396 unsigned size_left;
1397
1398 /* Calculate the size of the transfer by checking how much
1399 * is left in the endpoint size register and then working it
1400 * out from the amount we loaded for the transfer.
1401 *
1402 * We need to do this as DMA pointers are always 32bit aligned
1403 * so may overshoot/undershoot the transfer.
1404 */
1405
1406 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1407
1408 size_done = hs_ep->size_loaded - size_left;
1409 size_done += hs_ep->last_load;
1410
1411 req->actual = size_done;
1412 }
1413
1414 if (req->actual < req->length && req->short_not_ok) {
1415 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1416 __func__, req->actual, req->length);
1417
1418 /* todo - what should we return here? there's no one else
1419 * even bothering to check the status. */
1420 }
1421
1422 if (epnum == 0) {
1423 if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1424 s3c_hsotg_send_zlp(hsotg, hs_req);
1425 }
1426
1427 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
1428}
1429
1430/**
1431 * s3c_hsotg_read_frameno - read current frame number
1432 * @hsotg: The device instance
1433 *
1434 * Return the current frame number
1435*/
1436static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1437{
1438 u32 dsts;
1439
1440 dsts = readl(hsotg->regs + S3C_DSTS);
1441 dsts &= S3C_DSTS_SOFFN_MASK;
1442 dsts >>= S3C_DSTS_SOFFN_SHIFT;
1443
1444 return dsts;
1445}
1446
1447/**
1448 * s3c_hsotg_handle_rx - RX FIFO has data
1449 * @hsotg: The device instance
1450 *
1451 * The IRQ handler has detected that the RX FIFO has some data in it
1452 * that requires processing, so find out what is in there and do the
1453 * appropriate read.
1454 *
1455 * The RXFIFO is a true FIFO, the packets comming out are still in packet
1456 * chunks, so if you have x packets received on an endpoint you'll get x
1457 * FIFO events delivered, each with a packet's worth of data in it.
1458 *
1459 * When using DMA, we should not be processing events from the RXFIFO
1460 * as the actual data should be sent to the memory directly and we turn
1461 * on the completion interrupts to get notifications of transfer completion.
1462 */
1463void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1464{
1465 u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
1466 u32 epnum, status, size;
1467
1468 WARN_ON(using_dma(hsotg));
1469
1470 epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
1471 status = grxstsr & S3C_GRXSTS_PktSts_MASK;
1472
1473 size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
1474 size >>= S3C_GRXSTS_ByteCnt_SHIFT;
1475
1476 if (1)
1477 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1478 __func__, grxstsr, size, epnum);
1479
1480#define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
1481
1482 switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
1483 case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
1484 dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1485 break;
1486
1487 case __status(S3C_GRXSTS_PktSts_OutDone):
1488 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1489 s3c_hsotg_read_frameno(hsotg));
1490
1491 if (!using_dma(hsotg))
1492 s3c_hsotg_handle_outdone(hsotg, epnum, false);
1493 break;
1494
1495 case __status(S3C_GRXSTS_PktSts_SetupDone):
1496 dev_dbg(hsotg->dev,
1497 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1498 s3c_hsotg_read_frameno(hsotg),
1499 readl(hsotg->regs + S3C_DOEPCTL(0)));
1500
1501 s3c_hsotg_handle_outdone(hsotg, epnum, true);
1502 break;
1503
1504 case __status(S3C_GRXSTS_PktSts_OutRX):
1505 s3c_hsotg_rx_data(hsotg, epnum, size);
1506 break;
1507
1508 case __status(S3C_GRXSTS_PktSts_SetupRX):
1509 dev_dbg(hsotg->dev,
1510 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1511 s3c_hsotg_read_frameno(hsotg),
1512 readl(hsotg->regs + S3C_DOEPCTL(0)));
1513
1514 s3c_hsotg_rx_data(hsotg, epnum, size);
1515 break;
1516
1517 default:
1518 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1519 __func__, grxstsr);
1520
1521 s3c_hsotg_dump(hsotg);
1522 break;
1523 }
1524}
1525
1526/**
1527 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1528 * @mps: The maximum packet size in bytes.
1529*/
1530static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1531{
1532 switch (mps) {
1533 case 64:
1534 return S3C_D0EPCTL_MPS_64;
1535 case 32:
1536 return S3C_D0EPCTL_MPS_32;
1537 case 16:
1538 return S3C_D0EPCTL_MPS_16;
1539 case 8:
1540 return S3C_D0EPCTL_MPS_8;
1541 }
1542
1543 /* bad max packet size, warn and return invalid result */
1544 WARN_ON(1);
1545 return (u32)-1;
1546}
1547
1548/**
1549 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1550 * @hsotg: The driver state.
1551 * @ep: The index number of the endpoint
1552 * @mps: The maximum packet size in bytes
1553 *
1554 * Configure the maximum packet size for the given endpoint, updating
1555 * the hardware control registers to reflect this.
1556 */
1557static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1558 unsigned int ep, unsigned int mps)
1559{
1560 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1561 void __iomem *regs = hsotg->regs;
1562 u32 mpsval;
1563 u32 reg;
1564
1565 if (ep == 0) {
1566 /* EP0 is a special case */
1567 mpsval = s3c_hsotg_ep0_mps(mps);
1568 if (mpsval > 3)
1569 goto bad_mps;
1570 } else {
1571 if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
1572 goto bad_mps;
1573
1574 mpsval = mps;
1575 }
1576
1577 hs_ep->ep.maxpacket = mps;
1578
1579 /* update both the in and out endpoint controldir_ registers, even
1580 * if one of the directions may not be in use. */
1581
1582 reg = readl(regs + S3C_DIEPCTL(ep));
1583 reg &= ~S3C_DxEPCTL_MPS_MASK;
1584 reg |= mpsval;
1585 writel(reg, regs + S3C_DIEPCTL(ep));
1586
1587 reg = readl(regs + S3C_DOEPCTL(ep));
1588 reg &= ~S3C_DxEPCTL_MPS_MASK;
1589 reg |= mpsval;
1590 writel(reg, regs + S3C_DOEPCTL(ep));
1591
1592 return;
1593
1594bad_mps:
1595 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1596}
1597
1598
1599/**
1600 * s3c_hsotg_trytx - check to see if anything needs transmitting
1601 * @hsotg: The driver state
1602 * @hs_ep: The driver endpoint to check.
1603 *
1604 * Check to see if there is a request that has data to send, and if so
1605 * make an attempt to write data into the FIFO.
1606 */
1607static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1608 struct s3c_hsotg_ep *hs_ep)
1609{
1610 struct s3c_hsotg_req *hs_req = hs_ep->req;
1611
1612 if (!hs_ep->dir_in || !hs_req)
1613 return 0;
1614
1615 if (hs_req->req.actual < hs_req->req.length) {
1616 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1617 hs_ep->index);
1618 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1619 }
1620
1621 return 0;
1622}
1623
1624/**
1625 * s3c_hsotg_complete_in - complete IN transfer
1626 * @hsotg: The device state.
1627 * @hs_ep: The endpoint that has just completed.
1628 *
1629 * An IN transfer has been completed, update the transfer's state and then
1630 * call the relevant completion routines.
1631 */
1632static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1633 struct s3c_hsotg_ep *hs_ep)
1634{
1635 struct s3c_hsotg_req *hs_req = hs_ep->req;
1636 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
1637 int size_left, size_done;
1638
1639 if (!hs_req) {
1640 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1641 return;
1642 }
1643
1644 /* Calculate the size of the transfer by checking how much is left
1645 * in the endpoint size register and then working it out from
1646 * the amount we loaded for the transfer.
1647 *
1648 * We do this even for DMA, as the transfer may have incremented
1649 * past the end of the buffer (DMA transfers are always 32bit
1650 * aligned).
1651 */
1652
1653 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1654
1655 size_done = hs_ep->size_loaded - size_left;
1656 size_done += hs_ep->last_load;
1657
1658 if (hs_req->req.actual != size_done)
1659 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1660 __func__, hs_req->req.actual, size_done);
1661
1662 hs_req->req.actual = size_done;
1663
1664 /* if we did all of the transfer, and there is more data left
1665 * around, then try restarting the rest of the request */
1666
1667 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1668 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1669 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1670 } else
1671 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
1672}
1673
1674/**
1675 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1676 * @hsotg: The driver state
1677 * @idx: The index for the endpoint (0..15)
1678 * @dir_in: Set if this is an IN endpoint
1679 *
1680 * Process and clear any interrupt pending for an individual endpoint
1681*/
1682static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1683 int dir_in)
1684{
1685 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1686 u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
1687 u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
1688 u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
1689 u32 ints;
1690 u32 clear = 0;
1691
1692 ints = readl(hsotg->regs + epint_reg);
1693
1694 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1695 __func__, idx, dir_in ? "in" : "out", ints);
1696
1697 if (ints & S3C_DxEPINT_XferCompl) {
1698 dev_dbg(hsotg->dev,
1699 "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1700 __func__, readl(hsotg->regs + epctl_reg),
1701 readl(hsotg->regs + epsiz_reg));
1702
1703 /* we get OutDone from the FIFO, so we only need to look
1704 * at completing IN requests here */
1705 if (dir_in) {
1706 s3c_hsotg_complete_in(hsotg, hs_ep);
1707
1708 if (idx == 0)
1709 s3c_hsotg_enqueue_setup(hsotg);
1710 } else if (using_dma(hsotg)) {
1711 /* We're using DMA, we need to fire an OutDone here
1712 * as we ignore the RXFIFO. */
1713
1714 s3c_hsotg_handle_outdone(hsotg, idx, false);
1715 }
1716
1717 clear |= S3C_DxEPINT_XferCompl;
1718 }
1719
1720 if (ints & S3C_DxEPINT_EPDisbld) {
1721 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1722 clear |= S3C_DxEPINT_EPDisbld;
1723 }
1724
1725 if (ints & S3C_DxEPINT_AHBErr) {
1726 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1727 clear |= S3C_DxEPINT_AHBErr;
1728 }
1729
1730 if (ints & S3C_DxEPINT_Setup) { /* Setup or Timeout */
1731 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
1732
1733 if (using_dma(hsotg) && idx == 0) {
1734 /* this is the notification we've received a
1735 * setup packet. In non-DMA mode we'd get this
1736 * from the RXFIFO, instead we need to process
1737 * the setup here. */
1738
1739 if (dir_in)
1740 WARN_ON_ONCE(1);
1741 else
1742 s3c_hsotg_handle_outdone(hsotg, 0, true);
1743 }
1744
1745 clear |= S3C_DxEPINT_Setup;
1746 }
1747
1748 if (ints & S3C_DxEPINT_Back2BackSetup) {
1749 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1750 clear |= S3C_DxEPINT_Back2BackSetup;
1751 }
1752
1753 if (dir_in) {
1754 /* not sure if this is important, but we'll clear it anyway
1755 */
1756 if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
1757 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1758 __func__, idx);
1759 clear |= S3C_DIEPMSK_INTknTXFEmpMsk;
1760 }
1761
1762 /* this probably means something bad is happening */
1763 if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
1764 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1765 __func__, idx);
1766 clear |= S3C_DIEPMSK_INTknEPMisMsk;
1767 }
1768 }
1769
1770 writel(clear, hsotg->regs + epint_reg);
1771}
1772
1773/**
1774 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1775 * @hsotg: The device state.
1776 *
1777 * Handle updating the device settings after the enumeration phase has
1778 * been completed.
1779*/
1780static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1781{
1782 u32 dsts = readl(hsotg->regs + S3C_DSTS);
1783 int ep0_mps = 0, ep_mps;
1784
1785 /* This should signal the finish of the enumeration phase
1786 * of the USB handshaking, so we should now know what rate
1787 * we connected at. */
1788
1789 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1790
1791 /* note, since we're limited by the size of transfer on EP0, and
1792 * it seems IN transfers must be a even number of packets we do
1793 * not advertise a 64byte MPS on EP0. */
1794
1795 /* catch both EnumSpd_FS and EnumSpd_FS48 */
1796 switch (dsts & S3C_DSTS_EnumSpd_MASK) {
1797 case S3C_DSTS_EnumSpd_FS:
1798 case S3C_DSTS_EnumSpd_FS48:
1799 hsotg->gadget.speed = USB_SPEED_FULL;
1800 dev_info(hsotg->dev, "new device is full-speed\n");
1801
1802 ep0_mps = EP0_MPS_LIMIT;
1803 ep_mps = 64;
1804 break;
1805
1806 case S3C_DSTS_EnumSpd_HS:
1807 dev_info(hsotg->dev, "new device is high-speed\n");
1808 hsotg->gadget.speed = USB_SPEED_HIGH;
1809
1810 ep0_mps = EP0_MPS_LIMIT;
1811 ep_mps = 512;
1812 break;
1813
1814 case S3C_DSTS_EnumSpd_LS:
1815 hsotg->gadget.speed = USB_SPEED_LOW;
1816 dev_info(hsotg->dev, "new device is low-speed\n");
1817
1818 /* note, we don't actually support LS in this driver at the
1819 * moment, and the documentation seems to imply that it isn't
1820 * supported by the PHYs on some of the devices.
1821 */
1822 break;
1823 }
1824
1825 /* we should now know the maximum packet size for an
1826 * endpoint, so set the endpoints to a default value. */
1827
1828 if (ep0_mps) {
1829 int i;
1830 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1831 for (i = 1; i < S3C_HSOTG_EPS; i++)
1832 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1833 }
1834
1835 /* ensure after enumeration our EP0 is active */
1836
1837 s3c_hsotg_enqueue_setup(hsotg);
1838
1839 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1840 readl(hsotg->regs + S3C_DIEPCTL0),
1841 readl(hsotg->regs + S3C_DOEPCTL0));
1842}
1843
1844/**
1845 * kill_all_requests - remove all requests from the endpoint's queue
1846 * @hsotg: The device state.
1847 * @ep: The endpoint the requests may be on.
1848 * @result: The result code to use.
1849 * @force: Force removal of any current requests
1850 *
1851 * Go through the requests on the given endpoint and mark them
1852 * completed with the given result code.
1853 */
1854static void kill_all_requests(struct s3c_hsotg *hsotg,
1855 struct s3c_hsotg_ep *ep,
1856 int result, bool force)
1857{
1858 struct s3c_hsotg_req *req, *treq;
1859 unsigned long flags;
1860
1861 spin_lock_irqsave(&ep->lock, flags);
1862
1863 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
1864 /* currently, we can't do much about an already
1865 * running request on an in endpoint */
1866
1867 if (ep->req == req && ep->dir_in && !force)
1868 continue;
1869
1870 s3c_hsotg_complete_request(hsotg, ep, req,
1871 result);
1872 }
1873
1874 spin_unlock_irqrestore(&ep->lock, flags);
1875}
1876
1877#define call_gadget(_hs, _entry) \
1878 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
1879 (_hs)->driver && (_hs)->driver->_entry) \
1880 (_hs)->driver->_entry(&(_hs)->gadget);
1881
1882/**
1883 * s3c_hsotg_disconnect_irq - disconnect irq service
1884 * @hsotg: The device state.
1885 *
1886 * A disconnect IRQ has been received, meaning that the host has
1887 * lost contact with the bus. Remove all current transactions
1888 * and signal the gadget driver that this has happened.
1889*/
1890static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
1891{
1892 unsigned ep;
1893
1894 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
1895 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
1896
1897 call_gadget(hsotg, disconnect);
1898}
1899
1900/**
1901 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
1902 * @hsotg: The device state:
1903 * @periodic: True if this is a periodic FIFO interrupt
1904 */
1905static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
1906{
1907 struct s3c_hsotg_ep *ep;
1908 int epno, ret;
1909
1910 /* look through for any more data to transmit */
1911
1912 for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
1913 ep = &hsotg->eps[epno];
1914
1915 if (!ep->dir_in)
1916 continue;
1917
1918 if ((periodic && !ep->periodic) ||
1919 (!periodic && ep->periodic))
1920 continue;
1921
1922 ret = s3c_hsotg_trytx(hsotg, ep);
1923 if (ret < 0)
1924 break;
1925 }
1926}
1927
1928static struct s3c_hsotg *our_hsotg;
1929
1930/* IRQ flags which will trigger a retry around the IRQ loop */
1931#define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
1932 S3C_GINTSTS_PTxFEmp | \
1933 S3C_GINTSTS_RxFLvl)
1934
1935/**
1936 * s3c_hsotg_irq - handle device interrupt
1937 * @irq: The IRQ number triggered
1938 * @pw: The pw value when registered the handler.
1939 */
1940static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
1941{
1942 struct s3c_hsotg *hsotg = pw;
1943 int retry_count = 8;
1944 u32 gintsts;
1945 u32 gintmsk;
1946
1947irq_retry:
1948 gintsts = readl(hsotg->regs + S3C_GINTSTS);
1949 gintmsk = readl(hsotg->regs + S3C_GINTMSK);
1950
1951 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
1952 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
1953
1954 gintsts &= gintmsk;
1955
1956 if (gintsts & S3C_GINTSTS_OTGInt) {
1957 u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
1958
1959 dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
1960
1961 writel(otgint, hsotg->regs + S3C_GOTGINT);
1962 writel(S3C_GINTSTS_OTGInt, hsotg->regs + S3C_GINTSTS);
1963 }
1964
1965 if (gintsts & S3C_GINTSTS_DisconnInt) {
1966 dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
1967 writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
1968
1969 s3c_hsotg_disconnect_irq(hsotg);
1970 }
1971
1972 if (gintsts & S3C_GINTSTS_SessReqInt) {
1973 dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
1974 writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
1975 }
1976
1977 if (gintsts & S3C_GINTSTS_EnumDone) {
1978 s3c_hsotg_irq_enumdone(hsotg);
1979 writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
1980 }
1981
1982 if (gintsts & S3C_GINTSTS_ConIDStsChng) {
1983 dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
1984 readl(hsotg->regs + S3C_DSTS),
1985 readl(hsotg->regs + S3C_GOTGCTL));
1986
1987 writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
1988 }
1989
1990 if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
1991 u32 daint = readl(hsotg->regs + S3C_DAINT);
1992 u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
1993 u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
1994 int ep;
1995
1996 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
1997
1998 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
1999 if (daint_out & 1)
2000 s3c_hsotg_epint(hsotg, ep, 0);
2001 }
2002
2003 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2004 if (daint_in & 1)
2005 s3c_hsotg_epint(hsotg, ep, 1);
2006 }
2007
2008 writel(daint, hsotg->regs + S3C_DAINT);
2009 writel(gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt),
2010 hsotg->regs + S3C_GINTSTS);
2011 }
2012
2013 if (gintsts & S3C_GINTSTS_USBRst) {
2014 dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2015 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2016 readl(hsotg->regs + S3C_GNPTXSTS));
2017
2018 kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
2019
2020 /* it seems after a reset we can end up with a situation
2021 * where the TXFIFO still has data in it... try flushing
2022 * it to remove anything that may still be in it.
2023 */
2024
2025 if (1) {
2026 writel(S3C_GRSTCTL_TxFNum(0) | S3C_GRSTCTL_TxFFlsh,
2027 hsotg->regs + S3C_GRSTCTL);
2028
2029 dev_info(hsotg->dev, "GNPTXSTS=%08x\n",
2030 readl(hsotg->regs + S3C_GNPTXSTS));
2031 }
2032
2033 s3c_hsotg_enqueue_setup(hsotg);
2034
2035 writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
2036 }
2037
2038 /* check both FIFOs */
2039
2040 if (gintsts & S3C_GINTSTS_NPTxFEmp) {
2041 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2042
2043 /* Disable the interrupt to stop it happening again
2044 * unless one of these endpoint routines decides that
2045 * it needs re-enabling */
2046
2047 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
2048 s3c_hsotg_irq_fifoempty(hsotg, false);
2049
2050 writel(S3C_GINTSTS_NPTxFEmp, hsotg->regs + S3C_GINTSTS);
2051 }
2052
2053 if (gintsts & S3C_GINTSTS_PTxFEmp) {
2054 dev_dbg(hsotg->dev, "PTxFEmp\n");
2055
2056 /* See note in S3C_GINTSTS_NPTxFEmp */
2057
2058 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
2059 s3c_hsotg_irq_fifoempty(hsotg, true);
2060
2061 writel(S3C_GINTSTS_PTxFEmp, hsotg->regs + S3C_GINTSTS);
2062 }
2063
2064 if (gintsts & S3C_GINTSTS_RxFLvl) {
2065 /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2066 * we need to retry s3c_hsotg_handle_rx if this is still
2067 * set. */
2068
2069 s3c_hsotg_handle_rx(hsotg);
2070 writel(S3C_GINTSTS_RxFLvl, hsotg->regs + S3C_GINTSTS);
2071 }
2072
2073 if (gintsts & S3C_GINTSTS_ModeMis) {
2074 dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2075 writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
2076 }
2077
2078 if (gintsts & S3C_GINTSTS_USBSusp) {
2079 dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
2080 writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
2081
2082 call_gadget(hsotg, suspend);
2083 }
2084
2085 if (gintsts & S3C_GINTSTS_WkUpInt) {
2086 dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
2087 writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
2088
2089 call_gadget(hsotg, resume);
2090 }
2091
2092 if (gintsts & S3C_GINTSTS_ErlySusp) {
2093 dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
2094 writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
2095 }
2096
2097 /* these next two seem to crop-up occasionally causing the core
2098 * to shutdown the USB transfer, so try clearing them and logging
2099 * the occurence. */
2100
2101 if (gintsts & S3C_GINTSTS_GOUTNakEff) {
2102 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2103
2104 s3c_hsotg_dump(hsotg);
2105
2106 writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
2107 writel(S3C_GINTSTS_GOUTNakEff, hsotg->regs + S3C_GINTSTS);
2108 }
2109
2110 if (gintsts & S3C_GINTSTS_GINNakEff) {
2111 dev_info(hsotg->dev, "GINNakEff triggered\n");
2112
2113 s3c_hsotg_dump(hsotg);
2114
2115 writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
2116 writel(S3C_GINTSTS_GINNakEff, hsotg->regs + S3C_GINTSTS);
2117 }
2118
2119 /* if we've had fifo events, we should try and go around the
2120 * loop again to see if there's any point in returning yet. */
2121
2122 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2123 goto irq_retry;
2124
2125 return IRQ_HANDLED;
2126}
2127
2128/**
2129 * s3c_hsotg_ep_enable - enable the given endpoint
2130 * @ep: The USB endpint to configure
2131 * @desc: The USB endpoint descriptor to configure with.
2132 *
2133 * This is called from the USB gadget code's usb_ep_enable().
2134*/
2135static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2136 const struct usb_endpoint_descriptor *desc)
2137{
2138 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2139 struct s3c_hsotg *hsotg = hs_ep->parent;
2140 unsigned long flags;
2141 int index = hs_ep->index;
2142 u32 epctrl_reg;
2143 u32 epctrl;
2144 u32 mps;
2145 int dir_in;
2146
2147 dev_dbg(hsotg->dev,
2148 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2149 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2150 desc->wMaxPacketSize, desc->bInterval);
2151
2152 /* not to be called for EP0 */
2153 WARN_ON(index == 0);
2154
2155 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2156 if (dir_in != hs_ep->dir_in) {
2157 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2158 return -EINVAL;
2159 }
2160
2161 mps = le16_to_cpu(desc->wMaxPacketSize);
2162
2163 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2164
2165 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2166 epctrl = readl(hsotg->regs + epctrl_reg);
2167
2168 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2169 __func__, epctrl, epctrl_reg);
2170
2171 spin_lock_irqsave(&hs_ep->lock, flags);
2172
2173 epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
2174 epctrl |= S3C_DxEPCTL_MPS(mps);
2175
2176 /* mark the endpoint as active, otherwise the core may ignore
2177 * transactions entirely for this endpoint */
2178 epctrl |= S3C_DxEPCTL_USBActEp;
2179
2180 /* set the NAK status on the endpoint, otherwise we might try and
2181 * do something with data that we've yet got a request to process
2182 * since the RXFIFO will take data for an endpoint even if the
2183 * size register hasn't been set.
2184 */
2185
2186 epctrl |= S3C_DxEPCTL_SNAK;
2187
2188 /* update the endpoint state */
2189 hs_ep->ep.maxpacket = mps;
2190
2191 /* default, set to non-periodic */
2192 hs_ep->periodic = 0;
2193
2194 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2195 case USB_ENDPOINT_XFER_ISOC:
2196 dev_err(hsotg->dev, "no current ISOC support\n");
2197 return -EINVAL;
2198
2199 case USB_ENDPOINT_XFER_BULK:
2200 epctrl |= S3C_DxEPCTL_EPType_Bulk;
2201 break;
2202
2203 case USB_ENDPOINT_XFER_INT:
2204 if (dir_in) {
2205 /* Allocate our TxFNum by simply using the index
2206 * of the endpoint for the moment. We could do
2207 * something better if the host indicates how
2208 * many FIFOs we are expecting to use. */
2209
2210 hs_ep->periodic = 1;
2211 epctrl |= S3C_DxEPCTL_TxFNum(index);
2212 }
2213
2214 epctrl |= S3C_DxEPCTL_EPType_Intterupt;
2215 break;
2216
2217 case USB_ENDPOINT_XFER_CONTROL:
2218 epctrl |= S3C_DxEPCTL_EPType_Control;
2219 break;
2220 }
2221
2222 /* for non control endpoints, set PID to D0 */
2223 if (index)
2224 epctrl |= S3C_DxEPCTL_SetD0PID;
2225
2226 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2227 __func__, epctrl);
2228
2229 writel(epctrl, hsotg->regs + epctrl_reg);
2230 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2231 __func__, readl(hsotg->regs + epctrl_reg));
2232
2233 /* enable the endpoint interrupt */
2234 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2235
2236 spin_unlock_irqrestore(&hs_ep->lock, flags);
2237 return 0;
2238}
2239
2240static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2241{
2242 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2243 struct s3c_hsotg *hsotg = hs_ep->parent;
2244 int dir_in = hs_ep->dir_in;
2245 int index = hs_ep->index;
2246 unsigned long flags;
2247 u32 epctrl_reg;
2248 u32 ctrl;
2249
2250 dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2251
2252 if (ep == &hsotg->eps[0].ep) {
2253 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2254 return -EINVAL;
2255 }
2256
2257 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2258
2259 /* terminate all requests with shutdown */
2260 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2261
2262 spin_lock_irqsave(&hs_ep->lock, flags);
2263
2264 ctrl = readl(hsotg->regs + epctrl_reg);
2265 ctrl &= ~S3C_DxEPCTL_EPEna;
2266 ctrl &= ~S3C_DxEPCTL_USBActEp;
2267 ctrl |= S3C_DxEPCTL_SNAK;
2268
2269 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2270 writel(ctrl, hsotg->regs + epctrl_reg);
2271
2272 /* disable endpoint interrupts */
2273 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2274
2275 spin_unlock_irqrestore(&hs_ep->lock, flags);
2276 return 0;
2277}
2278
2279/**
2280 * on_list - check request is on the given endpoint
2281 * @ep: The endpoint to check.
2282 * @test: The request to test if it is on the endpoint.
2283*/
2284static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2285{
2286 struct s3c_hsotg_req *req, *treq;
2287
2288 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2289 if (req == test)
2290 return true;
2291 }
2292
2293 return false;
2294}
2295
2296static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2297{
2298 struct s3c_hsotg_req *hs_req = our_req(req);
2299 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2300 struct s3c_hsotg *hs = hs_ep->parent;
2301 unsigned long flags;
2302
2303 dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2304
2305 if (hs_req == hs_ep->req) {
2306 dev_dbg(hs->dev, "%s: already in progress\n", __func__);
2307 return -EINPROGRESS;
2308 }
2309
2310 spin_lock_irqsave(&hs_ep->lock, flags);
2311
2312 if (!on_list(hs_ep, hs_req)) {
2313 spin_unlock_irqrestore(&hs_ep->lock, flags);
2314 return -EINVAL;
2315 }
2316
2317 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2318 spin_unlock_irqrestore(&hs_ep->lock, flags);
2319
2320 return 0;
2321}
2322
2323static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2324{
2325 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2326 struct s3c_hsotg *hs = hs_ep->parent;
2327 int index = hs_ep->index;
2328 unsigned long irqflags;
2329 u32 epreg;
2330 u32 epctl;
2331
2332 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2333
2334 spin_lock_irqsave(&hs_ep->lock, irqflags);
2335
2336 /* write both IN and OUT control registers */
2337
2338 epreg = S3C_DIEPCTL(index);
2339 epctl = readl(hs->regs + epreg);
2340
2341 if (value)
2342 epctl |= S3C_DxEPCTL_Stall;
2343 else
2344 epctl &= ~S3C_DxEPCTL_Stall;
2345
2346 writel(epctl, hs->regs + epreg);
2347
2348 epreg = S3C_DOEPCTL(index);
2349 epctl = readl(hs->regs + epreg);
2350
2351 if (value)
2352 epctl |= S3C_DxEPCTL_Stall;
2353 else
2354 epctl &= ~S3C_DxEPCTL_Stall;
2355
2356 writel(epctl, hs->regs + epreg);
2357
2358 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
2359
2360 return 0;
2361}
2362
2363static struct usb_ep_ops s3c_hsotg_ep_ops = {
2364 .enable = s3c_hsotg_ep_enable,
2365 .disable = s3c_hsotg_ep_disable,
2366 .alloc_request = s3c_hsotg_ep_alloc_request,
2367 .free_request = s3c_hsotg_ep_free_request,
2368 .queue = s3c_hsotg_ep_queue,
2369 .dequeue = s3c_hsotg_ep_dequeue,
2370 .set_halt = s3c_hsotg_ep_sethalt,
2371 /* note, don't belive we have any call for the fifo routines */
2372};
2373
2374/**
2375 * s3c_hsotg_corereset - issue softreset to the core
2376 * @hsotg: The device state
2377 *
2378 * Issue a soft reset to the core, and await the core finishing it.
2379*/
2380static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2381{
2382 int timeout;
2383 u32 grstctl;
2384
2385 dev_dbg(hsotg->dev, "resetting core\n");
2386
2387 /* issue soft reset */
2388 writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
2389
2390 timeout = 1000;
2391 do {
2392 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2393 } while (!(grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
2394
2395 if (!grstctl & S3C_GRSTCTL_CSftRst) {
2396 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2397 return -EINVAL;
2398 }
2399
2400 timeout = 1000;
2401
2402 while (1) {
2403 u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2404
2405 if (timeout-- < 0) {
2406 dev_info(hsotg->dev,
2407 "%s: reset failed, GRSTCTL=%08x\n",
2408 __func__, grstctl);
2409 return -ETIMEDOUT;
2410 }
2411
2412 if (grstctl & S3C_GRSTCTL_CSftRst)
2413 continue;
2414
2415 if (!(grstctl & S3C_GRSTCTL_AHBIdle))
2416 continue;
2417
2418 break; /* reset done */
2419 }
2420
2421 dev_dbg(hsotg->dev, "reset successful\n");
2422 return 0;
2423}
2424
2425int usb_gadget_register_driver(struct usb_gadget_driver *driver)
2426{
2427 struct s3c_hsotg *hsotg = our_hsotg;
2428 int ret;
2429
2430 if (!hsotg) {
2431 printk(KERN_ERR "%s: called with no device\n", __func__);
2432 return -ENODEV;
2433 }
2434
2435 if (!driver) {
2436 dev_err(hsotg->dev, "%s: no driver\n", __func__);
2437 return -EINVAL;
2438 }
2439
2440 if (driver->speed != USB_SPEED_HIGH &&
2441 driver->speed != USB_SPEED_FULL) {
2442 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2443 }
2444
2445 if (!driver->bind || !driver->setup) {
2446 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2447 return -EINVAL;
2448 }
2449
2450 WARN_ON(hsotg->driver);
2451
2452 driver->driver.bus = NULL;
2453 hsotg->driver = driver;
2454 hsotg->gadget.dev.driver = &driver->driver;
2455 hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
2456 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2457
2458 ret = device_add(&hsotg->gadget.dev);
2459 if (ret) {
2460 dev_err(hsotg->dev, "failed to register gadget device\n");
2461 goto err;
2462 }
2463
2464 ret = driver->bind(&hsotg->gadget);
2465 if (ret) {
2466 dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
2467
2468 hsotg->gadget.dev.driver = NULL;
2469 hsotg->driver = NULL;
2470 goto err;
2471 }
2472
2473 /* we must now enable ep0 ready for host detection and then
2474 * set configuration. */
2475
2476 s3c_hsotg_corereset(hsotg);
2477
2478 /* set the PLL on, remove the HNP/SRP and set the PHY */
2479 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
2480 (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
2481
2482 /* looks like soft-reset changes state of FIFOs */
2483 s3c_hsotg_init_fifo(hsotg);
2484
2485 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2486
2487 writel(1 << 18 | S3C_DCFG_DevSpd_HS, hsotg->regs + S3C_DCFG);
2488
2489 writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
2490 S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
2491 S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
2492 S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
2493 S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
2494 S3C_GINTSTS_ErlySusp,
2495 hsotg->regs + S3C_GINTMSK);
2496
2497 if (using_dma(hsotg))
2498 writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
2499 S3C_GAHBCFG_HBstLen_Incr4,
2500 hsotg->regs + S3C_GAHBCFG);
2501 else
2502 writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
2503
2504 /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2505 * up being flooded with interrupts if the host is polling the
2506 * endpoint to try and read data. */
2507
2508 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2509 S3C_DIEPMSK_INTknEPMisMsk |
2510 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
2511 hsotg->regs + S3C_DIEPMSK);
2512
2513 /* don't need XferCompl, we get that from RXFIFO in slave mode. In
2514 * DMA mode we may need this. */
2515 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2516 S3C_DOEPMSK_EPDisbldMsk |
2517 using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
2518 S3C_DIEPMSK_TimeOUTMsk) : 0,
2519 hsotg->regs + S3C_DOEPMSK);
2520
2521 writel(0, hsotg->regs + S3C_DAINTMSK);
2522
2523 dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2524 readl(hsotg->regs + S3C_DIEPCTL0),
2525 readl(hsotg->regs + S3C_DOEPCTL0));
2526
2527 /* enable in and out endpoint interrupts */
2528 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
2529
2530 /* Enable the RXFIFO when in slave mode, as this is how we collect
2531 * the data. In DMA mode, we get events from the FIFO but also
2532 * things we cannot process, so do not use it. */
2533 if (!using_dma(hsotg))
2534 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
2535
2536 /* Enable interrupts for EP0 in and out */
2537 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2538 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2539
2540 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2541 udelay(10); /* see openiboot */
2542 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2543
2544 dev_info(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
2545
2546 /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
2547 writing to the EPCTL register.. */
2548
2549 /* set to read 1 8byte packet */
2550 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
2551 S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2552
2553 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2554 S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
2555 S3C_DxEPCTL_USBActEp,
2556 hsotg->regs + S3C_DOEPCTL0);
2557
2558 /* enable, but don't activate EP0in */
2559 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2560 S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
2561
2562 s3c_hsotg_enqueue_setup(hsotg);
2563
2564 dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2565 readl(hsotg->regs + S3C_DIEPCTL0),
2566 readl(hsotg->regs + S3C_DOEPCTL0));
2567
2568 /* clear global NAKs */
2569 writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
2570 hsotg->regs + S3C_DCTL);
2571
2572 /* remove the soft-disconnect and let's go */
2573 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2574
2575 /* report to the user, and return */
2576
2577 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2578 return 0;
2579
2580err:
2581 hsotg->driver = NULL;
2582 hsotg->gadget.dev.driver = NULL;
2583 return ret;
2584}
2585
2586int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
2587{
2588 struct s3c_hsotg *hsotg = our_hsotg;
2589 int ep;
2590
2591 if (!hsotg)
2592 return -ENODEV;
2593
2594 if (!driver || driver != hsotg->driver || !driver->unbind)
2595 return -EINVAL;
2596
2597 /* all endpoints should be shutdown */
2598 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
2599 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2600
2601 call_gadget(hsotg, disconnect);
2602
2603 driver->unbind(&hsotg->gadget);
2604 hsotg->driver = NULL;
2605 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2606
2607 device_del(&hsotg->gadget.dev);
2608
2609 dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
2610 driver->driver.name);
2611
2612 return 0;
2613}
2614EXPORT_SYMBOL(usb_gadget_unregister_driver);
2615
2616static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2617{
2618 return s3c_hsotg_read_frameno(to_hsotg(gadget));
2619}
2620
2621static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2622 .get_frame = s3c_hsotg_gadget_getframe,
2623};
2624
2625/**
2626 * s3c_hsotg_initep - initialise a single endpoint
2627 * @hsotg: The device state.
2628 * @hs_ep: The endpoint to be initialised.
2629 * @epnum: The endpoint number
2630 *
2631 * Initialise the given endpoint (as part of the probe and device state
2632 * creation) to give to the gadget driver. Setup the endpoint name, any
2633 * direction information and other state that may be required.
2634 */
2635static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2636 struct s3c_hsotg_ep *hs_ep,
2637 int epnum)
2638{
2639 u32 ptxfifo;
2640 char *dir;
2641
2642 if (epnum == 0)
2643 dir = "";
2644 else if ((epnum % 2) == 0) {
2645 dir = "out";
2646 } else {
2647 dir = "in";
2648 hs_ep->dir_in = 1;
2649 }
2650
2651 hs_ep->index = epnum;
2652
2653 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
2654
2655 INIT_LIST_HEAD(&hs_ep->queue);
2656 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
2657
2658 spin_lock_init(&hs_ep->lock);
2659
2660 /* add to the list of endpoints known by the gadget driver */
2661 if (epnum)
2662 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
2663
2664 hs_ep->parent = hsotg;
2665 hs_ep->ep.name = hs_ep->name;
2666 hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
2667 hs_ep->ep.ops = &s3c_hsotg_ep_ops;
2668
2669 /* Read the FIFO size for the Periodic TX FIFO, even if we're
2670 * an OUT endpoint, we may as well do this if in future the
2671 * code is changed to make each endpoint's direction changeable.
2672 */
2673
2674 ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
2675 hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo);
2676
2677 /* if we're using dma, we need to set the next-endpoint pointer
2678 * to be something valid.
2679 */
2680
2681 if (using_dma(hsotg)) {
2682 u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
2683 writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
2684 writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
2685 }
2686}
2687
2688/**
2689 * s3c_hsotg_otgreset - reset the OtG phy block
2690 * @hsotg: The host state.
2691 *
2692 * Power up the phy, set the basic configuration and start the PHY.
2693 */
2694static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
2695{
2696 u32 osc;
2697
2698 writel(0, S3C_PHYPWR);
2699 mdelay(1);
2700
2701 osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
2702
2703 writel(osc | 0x10, S3C_PHYCLK);
2704
2705 /* issue a full set of resets to the otg and core */
2706
2707 writel(S3C_RSTCON_PHY, S3C_RSTCON);
2708 udelay(20); /* at-least 10uS */
2709 writel(0, S3C_RSTCON);
2710}
2711
2712
2713static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2714{
2715 /* unmask subset of endpoint interrupts */
2716
2717 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2718 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
2719 hsotg->regs + S3C_DIEPMSK);
2720
2721 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2722 S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
2723 hsotg->regs + S3C_DOEPMSK);
2724
2725 writel(0, hsotg->regs + S3C_DAINTMSK);
2726
2727 if (0) {
2728 /* post global nak until we're ready */
2729 writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
2730 hsotg->regs + S3C_DCTL);
2731 }
2732
2733 /* setup fifos */
2734
2735 dev_info(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2736 readl(hsotg->regs + S3C_GRXFSIZ),
2737 readl(hsotg->regs + S3C_GNPTXFSIZ));
2738
2739 s3c_hsotg_init_fifo(hsotg);
2740
2741 /* set the PLL on, remove the HNP/SRP and set the PHY */
2742 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
2743 hsotg->regs + S3C_GUSBCFG);
2744
2745 writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
2746 hsotg->regs + S3C_GAHBCFG);
2747}
2748
2749static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
2750{
2751 struct device *dev = hsotg->dev;
2752 void __iomem *regs = hsotg->regs;
2753 u32 val;
2754 int idx;
2755
2756 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
2757 readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
2758 readl(regs + S3C_DIEPMSK));
2759
2760 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
2761 readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
2762
2763 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2764 readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
2765
2766 /* show periodic fifo settings */
2767
2768 for (idx = 1; idx <= 15; idx++) {
2769 val = readl(regs + S3C_DPTXFSIZn(idx));
2770 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
2771 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
2772 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
2773 }
2774
2775 for (idx = 0; idx < 15; idx++) {
2776 dev_info(dev,
2777 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
2778 readl(regs + S3C_DIEPCTL(idx)),
2779 readl(regs + S3C_DIEPTSIZ(idx)),
2780 readl(regs + S3C_DIEPDMA(idx)));
2781
2782 val = readl(regs + S3C_DOEPCTL(idx));
2783 dev_info(dev,
2784 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
2785 idx, readl(regs + S3C_DOEPCTL(idx)),
2786 readl(regs + S3C_DOEPTSIZ(idx)),
2787 readl(regs + S3C_DOEPDMA(idx)));
2788
2789 }
2790
2791 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
2792 readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
2793}
2794
2795
2796/**
2797 * state_show - debugfs: show overall driver and device state.
2798 * @seq: The seq file to write to.
2799 * @v: Unused parameter.
2800 *
2801 * This debugfs entry shows the overall state of the hardware and
2802 * some general information about each of the endpoints available
2803 * to the system.
2804 */
2805static int state_show(struct seq_file *seq, void *v)
2806{
2807 struct s3c_hsotg *hsotg = seq->private;
2808 void __iomem *regs = hsotg->regs;
2809 int idx;
2810
2811 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
2812 readl(regs + S3C_DCFG),
2813 readl(regs + S3C_DCTL),
2814 readl(regs + S3C_DSTS));
2815
2816 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
2817 readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
2818
2819 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
2820 readl(regs + S3C_GINTMSK),
2821 readl(regs + S3C_GINTSTS));
2822
2823 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
2824 readl(regs + S3C_DAINTMSK),
2825 readl(regs + S3C_DAINT));
2826
2827 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
2828 readl(regs + S3C_GNPTXSTS),
2829 readl(regs + S3C_GRXSTSR));
2830
2831 seq_printf(seq, "\nEndpoint status:\n");
2832
2833 for (idx = 0; idx < 15; idx++) {
2834 u32 in, out;
2835
2836 in = readl(regs + S3C_DIEPCTL(idx));
2837 out = readl(regs + S3C_DOEPCTL(idx));
2838
2839 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
2840 idx, in, out);
2841
2842 in = readl(regs + S3C_DIEPTSIZ(idx));
2843 out = readl(regs + S3C_DOEPTSIZ(idx));
2844
2845 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
2846 in, out);
2847
2848 seq_printf(seq, "\n");
2849 }
2850
2851 return 0;
2852}
2853
2854static int state_open(struct inode *inode, struct file *file)
2855{
2856 return single_open(file, state_show, inode->i_private);
2857}
2858
2859static const struct file_operations state_fops = {
2860 .owner = THIS_MODULE,
2861 .open = state_open,
2862 .read = seq_read,
2863 .llseek = seq_lseek,
2864 .release = single_release,
2865};
2866
2867/**
2868 * fifo_show - debugfs: show the fifo information
2869 * @seq: The seq_file to write data to.
2870 * @v: Unused parameter.
2871 *
2872 * Show the FIFO information for the overall fifo and all the
2873 * periodic transmission FIFOs.
2874*/
2875static int fifo_show(struct seq_file *seq, void *v)
2876{
2877 struct s3c_hsotg *hsotg = seq->private;
2878 void __iomem *regs = hsotg->regs;
2879 u32 val;
2880 int idx;
2881
2882 seq_printf(seq, "Non-periodic FIFOs:\n");
2883 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
2884
2885 val = readl(regs + S3C_GNPTXFSIZ);
2886 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
2887 val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
2888 val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
2889
2890 seq_printf(seq, "\nPeriodic TXFIFOs:\n");
2891
2892 for (idx = 1; idx <= 15; idx++) {
2893 val = readl(regs + S3C_DPTXFSIZn(idx));
2894
2895 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
2896 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
2897 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
2898 }
2899
2900 return 0;
2901}
2902
2903static int fifo_open(struct inode *inode, struct file *file)
2904{
2905 return single_open(file, fifo_show, inode->i_private);
2906}
2907
2908static const struct file_operations fifo_fops = {
2909 .owner = THIS_MODULE,
2910 .open = fifo_open,
2911 .read = seq_read,
2912 .llseek = seq_lseek,
2913 .release = single_release,
2914};
2915
2916
2917static const char *decode_direction(int is_in)
2918{
2919 return is_in ? "in" : "out";
2920}
2921
2922/**
2923 * ep_show - debugfs: show the state of an endpoint.
2924 * @seq: The seq_file to write data to.
2925 * @v: Unused parameter.
2926 *
2927 * This debugfs entry shows the state of the given endpoint (one is
2928 * registered for each available).
2929*/
2930static int ep_show(struct seq_file *seq, void *v)
2931{
2932 struct s3c_hsotg_ep *ep = seq->private;
2933 struct s3c_hsotg *hsotg = ep->parent;
2934 struct s3c_hsotg_req *req;
2935 void __iomem *regs = hsotg->regs;
2936 int index = ep->index;
2937 int show_limit = 15;
2938 unsigned long flags;
2939
2940 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
2941 ep->index, ep->ep.name, decode_direction(ep->dir_in));
2942
2943 /* first show the register state */
2944
2945 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
2946 readl(regs + S3C_DIEPCTL(index)),
2947 readl(regs + S3C_DOEPCTL(index)));
2948
2949 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
2950 readl(regs + S3C_DIEPDMA(index)),
2951 readl(regs + S3C_DOEPDMA(index)));
2952
2953 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
2954 readl(regs + S3C_DIEPINT(index)),
2955 readl(regs + S3C_DOEPINT(index)));
2956
2957 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
2958 readl(regs + S3C_DIEPTSIZ(index)),
2959 readl(regs + S3C_DOEPTSIZ(index)));
2960
2961 seq_printf(seq, "\n");
2962 seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
2963 seq_printf(seq, "total_data=%ld\n", ep->total_data);
2964
2965 seq_printf(seq, "request list (%p,%p):\n",
2966 ep->queue.next, ep->queue.prev);
2967
2968 spin_lock_irqsave(&ep->lock, flags);
2969
2970 list_for_each_entry(req, &ep->queue, queue) {
2971 if (--show_limit < 0) {
2972 seq_printf(seq, "not showing more requests...\n");
2973 break;
2974 }
2975
2976 seq_printf(seq, "%c req %p: %d bytes @%p, ",
2977 req == ep->req ? '*' : ' ',
2978 req, req->req.length, req->req.buf);
2979 seq_printf(seq, "%d done, res %d\n",
2980 req->req.actual, req->req.status);
2981 }
2982
2983 spin_unlock_irqrestore(&ep->lock, flags);
2984
2985 return 0;
2986}
2987
2988static int ep_open(struct inode *inode, struct file *file)
2989{
2990 return single_open(file, ep_show, inode->i_private);
2991}
2992
2993static const struct file_operations ep_fops = {
2994 .owner = THIS_MODULE,
2995 .open = ep_open,
2996 .read = seq_read,
2997 .llseek = seq_lseek,
2998 .release = single_release,
2999};
3000
3001/**
3002 * s3c_hsotg_create_debug - create debugfs directory and files
3003 * @hsotg: The driver state
3004 *
3005 * Create the debugfs files to allow the user to get information
3006 * about the state of the system. The directory name is created
3007 * with the same name as the device itself, in case we end up
3008 * with multiple blocks in future systems.
3009*/
3010static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3011{
3012 struct dentry *root;
3013 unsigned epidx;
3014
3015 root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3016 hsotg->debug_root = root;
3017 if (IS_ERR(root)) {
3018 dev_err(hsotg->dev, "cannot create debug root\n");
3019 return;
3020 }
3021
3022 /* create general state file */
3023
3024 hsotg->debug_file = debugfs_create_file("state", 0444, root,
3025 hsotg, &state_fops);
3026
3027 if (IS_ERR(hsotg->debug_file))
3028 dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3029
3030 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3031 hsotg, &fifo_fops);
3032
3033 if (IS_ERR(hsotg->debug_fifo))
3034 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3035
3036 /* create one file for each endpoint */
3037
3038 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3039 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3040
3041 ep->debugfs = debugfs_create_file(ep->name, 0444,
3042 root, ep, &ep_fops);
3043
3044 if (IS_ERR(ep->debugfs))
3045 dev_err(hsotg->dev, "failed to create %s debug file\n",
3046 ep->name);
3047 }
3048}
3049
3050/**
3051 * s3c_hsotg_delete_debug - cleanup debugfs entries
3052 * @hsotg: The driver state
3053 *
3054 * Cleanup (remove) the debugfs files for use on module exit.
3055*/
3056static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3057{
3058 unsigned epidx;
3059
3060 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3061 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3062 debugfs_remove(ep->debugfs);
3063 }
3064
3065 debugfs_remove(hsotg->debug_file);
3066 debugfs_remove(hsotg->debug_fifo);
3067 debugfs_remove(hsotg->debug_root);
3068}
3069
3070/**
3071 * s3c_hsotg_gate - set the hardware gate for the block
3072 * @pdev: The device we bound to
3073 * @on: On or off.
3074 *
3075 * Set the hardware gate setting into the block. If we end up on
3076 * something other than an S3C64XX, then we might need to change this
3077 * to using a platform data callback, or some other mechanism.
3078 */
3079static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
3080{
3081 unsigned long flags;
3082 u32 others;
3083
3084 local_irq_save(flags);
3085
3086 others = __raw_readl(S3C64XX_OTHERS);
3087 if (on)
3088 others |= S3C64XX_OTHERS_USBMASK;
3089 else
3090 others &= ~S3C64XX_OTHERS_USBMASK;
3091 __raw_writel(others, S3C64XX_OTHERS);
3092
3093 local_irq_restore(flags);
3094}
3095
3096struct s3c_hsotg_plat s3c_hsotg_default_pdata;
3097
3098static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
3099{
3100 struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
3101 struct device *dev = &pdev->dev;
3102 struct s3c_hsotg *hsotg;
3103 struct resource *res;
3104 int epnum;
3105 int ret;
3106
3107 if (!plat)
3108 plat = &s3c_hsotg_default_pdata;
3109
3110 hsotg = kzalloc(sizeof(struct s3c_hsotg) +
3111 sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
3112 GFP_KERNEL);
3113 if (!hsotg) {
3114 dev_err(dev, "cannot get memory\n");
3115 return -ENOMEM;
3116 }
3117
3118 hsotg->dev = dev;
3119 hsotg->plat = plat;
3120
3121 platform_set_drvdata(pdev, hsotg);
3122
3123 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3124 if (!res) {
3125 dev_err(dev, "cannot find register resource 0\n");
3126 ret = -EINVAL;
3127 goto err_mem;
3128 }
3129
3130 hsotg->regs_res = request_mem_region(res->start, resource_size(res),
3131 dev_name(dev));
3132 if (!hsotg->regs_res) {
3133 dev_err(dev, "cannot reserve registers\n");
3134 ret = -ENOENT;
3135 goto err_mem;
3136 }
3137
3138 hsotg->regs = ioremap(res->start, resource_size(res));
3139 if (!hsotg->regs) {
3140 dev_err(dev, "cannot map registers\n");
3141 ret = -ENXIO;
3142 goto err_regs_res;
3143 }
3144
3145 ret = platform_get_irq(pdev, 0);
3146 if (ret < 0) {
3147 dev_err(dev, "cannot find IRQ\n");
3148 goto err_regs;
3149 }
3150
3151 hsotg->irq = ret;
3152
3153 ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
3154 if (ret < 0) {
3155 dev_err(dev, "cannot claim IRQ\n");
3156 goto err_regs;
3157 }
3158
3159 dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3160
3161 device_initialize(&hsotg->gadget.dev);
3162
3163 dev_set_name(&hsotg->gadget.dev, "gadget");
3164
3165 hsotg->gadget.is_dualspeed = 1;
3166 hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3167 hsotg->gadget.name = dev_name(dev);
3168
3169 hsotg->gadget.dev.parent = dev;
3170 hsotg->gadget.dev.dma_mask = dev->dma_mask;
3171
3172 /* setup endpoint information */
3173
3174 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3175 hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3176
3177 /* allocate EP0 request */
3178
3179 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3180 GFP_KERNEL);
3181 if (!hsotg->ctrl_req) {
3182 dev_err(dev, "failed to allocate ctrl req\n");
3183 goto err_regs;
3184 }
3185
3186 /* reset the system */
3187
3188 s3c_hsotg_gate(pdev, true);
3189
3190 s3c_hsotg_otgreset(hsotg);
3191 s3c_hsotg_corereset(hsotg);
3192 s3c_hsotg_init(hsotg);
3193
3194 /* initialise the endpoints now the core has been initialised */
3195 for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
3196 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3197
3198 s3c_hsotg_create_debug(hsotg);
3199
3200 s3c_hsotg_dump(hsotg);
3201
3202 our_hsotg = hsotg;
3203 return 0;
3204
3205err_regs:
3206 iounmap(hsotg->regs);
3207
3208err_regs_res:
3209 release_resource(hsotg->regs_res);
3210 kfree(hsotg->regs_res);
3211
3212err_mem:
3213 kfree(hsotg);
3214 return ret;
3215}
3216
3217static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
3218{
3219 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3220
3221 s3c_hsotg_delete_debug(hsotg);
3222
3223 usb_gadget_unregister_driver(hsotg->driver);
3224
3225 free_irq(hsotg->irq, hsotg);
3226 iounmap(hsotg->regs);
3227
3228 release_resource(hsotg->regs_res);
3229 kfree(hsotg->regs_res);
3230
3231 s3c_hsotg_gate(pdev, false);
3232
3233 kfree(hsotg);
3234 return 0;
3235}
3236
3237#if 1
3238#define s3c_hsotg_suspend NULL
3239#define s3c_hsotg_resume NULL
3240#endif
3241
3242static struct platform_driver s3c_hsotg_driver = {
3243 .driver = {
3244 .name = "s3c-hsotg",
3245 .owner = THIS_MODULE,
3246 },
3247 .probe = s3c_hsotg_probe,
3248 .remove = __devexit_p(s3c_hsotg_remove),
3249 .suspend = s3c_hsotg_suspend,
3250 .resume = s3c_hsotg_resume,
3251};
3252
3253static int __init s3c_hsotg_modinit(void)
3254{
3255 return platform_driver_register(&s3c_hsotg_driver);
3256}
3257
3258static void __exit s3c_hsotg_modexit(void)
3259{
3260 platform_driver_unregister(&s3c_hsotg_driver);
3261}
3262
3263module_init(s3c_hsotg_modinit);
3264module_exit(s3c_hsotg_modexit);
3265
3266MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3267MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3268MODULE_LICENSE("GPL");
3269MODULE_ALIAS("platform:s3c-hsotg");