diff options
Diffstat (limited to 'drivers/tty/serial/zs.c')
-rw-r--r-- | drivers/tty/serial/zs.c | 1304 |
1 files changed, 1304 insertions, 0 deletions
diff --git a/drivers/tty/serial/zs.c b/drivers/tty/serial/zs.c new file mode 100644 index 000000000000..1a7fd3e70315 --- /dev/null +++ b/drivers/tty/serial/zs.c | |||
@@ -0,0 +1,1304 @@ | |||
1 | /* | ||
2 | * zs.c: Serial port driver for IOASIC DECstations. | ||
3 | * | ||
4 | * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras. | ||
5 | * Derived from drivers/macintosh/macserial.c by Harald Koerfgen. | ||
6 | * | ||
7 | * DECstation changes | ||
8 | * Copyright (C) 1998-2000 Harald Koerfgen | ||
9 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki | ||
10 | * | ||
11 | * For the rest of the code the original Copyright applies: | ||
12 | * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au) | ||
13 | * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) | ||
14 | * | ||
15 | * | ||
16 | * Note: for IOASIC systems the wiring is as follows: | ||
17 | * | ||
18 | * mouse/keyboard: | ||
19 | * DIN-7 MJ-4 signal SCC | ||
20 | * 2 1 TxD <- A.TxD | ||
21 | * 3 4 RxD -> A.RxD | ||
22 | * | ||
23 | * EIA-232/EIA-423: | ||
24 | * DB-25 MMJ-6 signal SCC | ||
25 | * 2 2 TxD <- B.TxD | ||
26 | * 3 5 RxD -> B.RxD | ||
27 | * 4 RTS <- ~A.RTS | ||
28 | * 5 CTS -> ~B.CTS | ||
29 | * 6 6 DSR -> ~A.SYNC | ||
30 | * 8 CD -> ~B.DCD | ||
31 | * 12 DSRS(DCE) -> ~A.CTS (*) | ||
32 | * 15 TxC -> B.TxC | ||
33 | * 17 RxC -> B.RxC | ||
34 | * 20 1 DTR <- ~A.DTR | ||
35 | * 22 RI -> ~A.DCD | ||
36 | * 23 DSRS(DTE) <- ~B.RTS | ||
37 | * | ||
38 | * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE) | ||
39 | * is shared with DSRS(DTE) at pin 23. | ||
40 | * | ||
41 | * As you can immediately notice the wiring of the RTS, DTR and DSR signals | ||
42 | * is a bit odd. This makes the handling of port B unnecessarily | ||
43 | * complicated and prevents the use of some automatic modes of operation. | ||
44 | */ | ||
45 | |||
46 | #if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) | ||
47 | #define SUPPORT_SYSRQ | ||
48 | #endif | ||
49 | |||
50 | #include <linux/bug.h> | ||
51 | #include <linux/console.h> | ||
52 | #include <linux/delay.h> | ||
53 | #include <linux/errno.h> | ||
54 | #include <linux/init.h> | ||
55 | #include <linux/interrupt.h> | ||
56 | #include <linux/io.h> | ||
57 | #include <linux/ioport.h> | ||
58 | #include <linux/irqflags.h> | ||
59 | #include <linux/kernel.h> | ||
60 | #include <linux/major.h> | ||
61 | #include <linux/serial.h> | ||
62 | #include <linux/serial_core.h> | ||
63 | #include <linux/spinlock.h> | ||
64 | #include <linux/sysrq.h> | ||
65 | #include <linux/tty.h> | ||
66 | #include <linux/types.h> | ||
67 | |||
68 | #include <asm/atomic.h> | ||
69 | #include <asm/system.h> | ||
70 | |||
71 | #include <asm/dec/interrupts.h> | ||
72 | #include <asm/dec/ioasic_addrs.h> | ||
73 | #include <asm/dec/system.h> | ||
74 | |||
75 | #include "zs.h" | ||
76 | |||
77 | |||
78 | MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>"); | ||
79 | MODULE_DESCRIPTION("DECstation Z85C30 serial driver"); | ||
80 | MODULE_LICENSE("GPL"); | ||
81 | |||
82 | |||
83 | static char zs_name[] __initdata = "DECstation Z85C30 serial driver version "; | ||
84 | static char zs_version[] __initdata = "0.10"; | ||
85 | |||
86 | /* | ||
87 | * It would be nice to dynamically allocate everything that | ||
88 | * depends on ZS_NUM_SCCS, so we could support any number of | ||
89 | * Z85C30s, but for now... | ||
90 | */ | ||
91 | #define ZS_NUM_SCCS 2 /* Max # of ZS chips supported. */ | ||
92 | #define ZS_NUM_CHAN 2 /* 2 channels per chip. */ | ||
93 | #define ZS_CHAN_A 0 /* Index of the channel A. */ | ||
94 | #define ZS_CHAN_B 1 /* Index of the channel B. */ | ||
95 | #define ZS_CHAN_IO_SIZE 8 /* IOMEM space size. */ | ||
96 | #define ZS_CHAN_IO_STRIDE 4 /* Register alignment. */ | ||
97 | #define ZS_CHAN_IO_OFFSET 1 /* The SCC resides on the high byte | ||
98 | of the 16-bit IOBUS. */ | ||
99 | #define ZS_CLOCK 7372800 /* Z85C30 PCLK input clock rate. */ | ||
100 | |||
101 | #define to_zport(uport) container_of(uport, struct zs_port, port) | ||
102 | |||
103 | struct zs_parms { | ||
104 | resource_size_t scc[ZS_NUM_SCCS]; | ||
105 | int irq[ZS_NUM_SCCS]; | ||
106 | }; | ||
107 | |||
108 | static struct zs_scc zs_sccs[ZS_NUM_SCCS]; | ||
109 | |||
110 | static u8 zs_init_regs[ZS_NUM_REGS] __initdata = { | ||
111 | 0, /* write 0 */ | ||
112 | PAR_SPEC, /* write 1 */ | ||
113 | 0, /* write 2 */ | ||
114 | 0, /* write 3 */ | ||
115 | X16CLK | SB1, /* write 4 */ | ||
116 | 0, /* write 5 */ | ||
117 | 0, 0, 0, /* write 6, 7, 8 */ | ||
118 | MIE | DLC | NV, /* write 9 */ | ||
119 | NRZ, /* write 10 */ | ||
120 | TCBR | RCBR, /* write 11 */ | ||
121 | 0, 0, /* BRG time constant, write 12 + 13 */ | ||
122 | BRSRC | BRENABL, /* write 14 */ | ||
123 | 0, /* write 15 */ | ||
124 | }; | ||
125 | |||
126 | /* | ||
127 | * Debugging. | ||
128 | */ | ||
129 | #undef ZS_DEBUG_REGS | ||
130 | |||
131 | |||
132 | /* | ||
133 | * Reading and writing Z85C30 registers. | ||
134 | */ | ||
135 | static void recovery_delay(void) | ||
136 | { | ||
137 | udelay(2); | ||
138 | } | ||
139 | |||
140 | static u8 read_zsreg(struct zs_port *zport, int reg) | ||
141 | { | ||
142 | void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET; | ||
143 | u8 retval; | ||
144 | |||
145 | if (reg != 0) { | ||
146 | writeb(reg & 0xf, control); | ||
147 | fast_iob(); | ||
148 | recovery_delay(); | ||
149 | } | ||
150 | retval = readb(control); | ||
151 | recovery_delay(); | ||
152 | return retval; | ||
153 | } | ||
154 | |||
155 | static void write_zsreg(struct zs_port *zport, int reg, u8 value) | ||
156 | { | ||
157 | void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET; | ||
158 | |||
159 | if (reg != 0) { | ||
160 | writeb(reg & 0xf, control); | ||
161 | fast_iob(); recovery_delay(); | ||
162 | } | ||
163 | writeb(value, control); | ||
164 | fast_iob(); | ||
165 | recovery_delay(); | ||
166 | return; | ||
167 | } | ||
168 | |||
169 | static u8 read_zsdata(struct zs_port *zport) | ||
170 | { | ||
171 | void __iomem *data = zport->port.membase + | ||
172 | ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET; | ||
173 | u8 retval; | ||
174 | |||
175 | retval = readb(data); | ||
176 | recovery_delay(); | ||
177 | return retval; | ||
178 | } | ||
179 | |||
180 | static void write_zsdata(struct zs_port *zport, u8 value) | ||
181 | { | ||
182 | void __iomem *data = zport->port.membase + | ||
183 | ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET; | ||
184 | |||
185 | writeb(value, data); | ||
186 | fast_iob(); | ||
187 | recovery_delay(); | ||
188 | return; | ||
189 | } | ||
190 | |||
191 | #ifdef ZS_DEBUG_REGS | ||
192 | void zs_dump(void) | ||
193 | { | ||
194 | struct zs_port *zport; | ||
195 | int i, j; | ||
196 | |||
197 | for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) { | ||
198 | zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN]; | ||
199 | |||
200 | if (!zport->scc) | ||
201 | continue; | ||
202 | |||
203 | for (j = 0; j < 16; j++) | ||
204 | printk("W%-2d = 0x%02x\t", j, zport->regs[j]); | ||
205 | printk("\n"); | ||
206 | for (j = 0; j < 16; j++) | ||
207 | printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j)); | ||
208 | printk("\n\n"); | ||
209 | } | ||
210 | } | ||
211 | #endif | ||
212 | |||
213 | |||
214 | static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq) | ||
215 | { | ||
216 | if (irq) | ||
217 | spin_lock_irq(lock); | ||
218 | else | ||
219 | spin_lock(lock); | ||
220 | } | ||
221 | |||
222 | static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq) | ||
223 | { | ||
224 | if (irq) | ||
225 | spin_unlock_irq(lock); | ||
226 | else | ||
227 | spin_unlock(lock); | ||
228 | } | ||
229 | |||
230 | static int zs_receive_drain(struct zs_port *zport) | ||
231 | { | ||
232 | int loops = 10000; | ||
233 | |||
234 | while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops) | ||
235 | read_zsdata(zport); | ||
236 | return loops; | ||
237 | } | ||
238 | |||
239 | static int zs_transmit_drain(struct zs_port *zport, int irq) | ||
240 | { | ||
241 | struct zs_scc *scc = zport->scc; | ||
242 | int loops = 10000; | ||
243 | |||
244 | while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) { | ||
245 | zs_spin_unlock_cond_irq(&scc->zlock, irq); | ||
246 | udelay(2); | ||
247 | zs_spin_lock_cond_irq(&scc->zlock, irq); | ||
248 | } | ||
249 | return loops; | ||
250 | } | ||
251 | |||
252 | static int zs_line_drain(struct zs_port *zport, int irq) | ||
253 | { | ||
254 | struct zs_scc *scc = zport->scc; | ||
255 | int loops = 10000; | ||
256 | |||
257 | while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) { | ||
258 | zs_spin_unlock_cond_irq(&scc->zlock, irq); | ||
259 | udelay(2); | ||
260 | zs_spin_lock_cond_irq(&scc->zlock, irq); | ||
261 | } | ||
262 | return loops; | ||
263 | } | ||
264 | |||
265 | |||
266 | static void load_zsregs(struct zs_port *zport, u8 *regs, int irq) | ||
267 | { | ||
268 | /* Let the current transmission finish. */ | ||
269 | zs_line_drain(zport, irq); | ||
270 | /* Load 'em up. */ | ||
271 | write_zsreg(zport, R3, regs[3] & ~RxENABLE); | ||
272 | write_zsreg(zport, R5, regs[5] & ~TxENAB); | ||
273 | write_zsreg(zport, R4, regs[4]); | ||
274 | write_zsreg(zport, R9, regs[9]); | ||
275 | write_zsreg(zport, R1, regs[1]); | ||
276 | write_zsreg(zport, R2, regs[2]); | ||
277 | write_zsreg(zport, R10, regs[10]); | ||
278 | write_zsreg(zport, R14, regs[14] & ~BRENABL); | ||
279 | write_zsreg(zport, R11, regs[11]); | ||
280 | write_zsreg(zport, R12, regs[12]); | ||
281 | write_zsreg(zport, R13, regs[13]); | ||
282 | write_zsreg(zport, R14, regs[14]); | ||
283 | write_zsreg(zport, R15, regs[15]); | ||
284 | if (regs[3] & RxENABLE) | ||
285 | write_zsreg(zport, R3, regs[3]); | ||
286 | if (regs[5] & TxENAB) | ||
287 | write_zsreg(zport, R5, regs[5]); | ||
288 | return; | ||
289 | } | ||
290 | |||
291 | |||
292 | /* | ||
293 | * Status handling routines. | ||
294 | */ | ||
295 | |||
296 | /* | ||
297 | * zs_tx_empty() -- get the transmitter empty status | ||
298 | * | ||
299 | * Purpose: Let user call ioctl() to get info when the UART physically | ||
300 | * is emptied. On bus types like RS485, the transmitter must | ||
301 | * release the bus after transmitting. This must be done when | ||
302 | * the transmit shift register is empty, not be done when the | ||
303 | * transmit holding register is empty. This functionality | ||
304 | * allows an RS485 driver to be written in user space. | ||
305 | */ | ||
306 | static unsigned int zs_tx_empty(struct uart_port *uport) | ||
307 | { | ||
308 | struct zs_port *zport = to_zport(uport); | ||
309 | struct zs_scc *scc = zport->scc; | ||
310 | unsigned long flags; | ||
311 | u8 status; | ||
312 | |||
313 | spin_lock_irqsave(&scc->zlock, flags); | ||
314 | status = read_zsreg(zport, R1); | ||
315 | spin_unlock_irqrestore(&scc->zlock, flags); | ||
316 | |||
317 | return status & ALL_SNT ? TIOCSER_TEMT : 0; | ||
318 | } | ||
319 | |||
320 | static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a, | ||
321 | struct zs_port *zport_b) | ||
322 | { | ||
323 | u8 status_a, status_b; | ||
324 | unsigned int mctrl; | ||
325 | |||
326 | status_a = read_zsreg(zport_a, R0); | ||
327 | status_b = read_zsreg(zport_b, R0); | ||
328 | |||
329 | mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) | | ||
330 | ((status_b & DCD) ? TIOCM_CAR : 0) | | ||
331 | ((status_a & DCD) ? TIOCM_RNG : 0) | | ||
332 | ((status_a & SYNC_HUNT) ? TIOCM_DSR : 0); | ||
333 | |||
334 | return mctrl; | ||
335 | } | ||
336 | |||
337 | static unsigned int zs_raw_get_mctrl(struct zs_port *zport) | ||
338 | { | ||
339 | struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A]; | ||
340 | |||
341 | return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0; | ||
342 | } | ||
343 | |||
344 | static unsigned int zs_raw_xor_mctrl(struct zs_port *zport) | ||
345 | { | ||
346 | struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A]; | ||
347 | unsigned int mmask, mctrl, delta; | ||
348 | u8 mask_a, mask_b; | ||
349 | |||
350 | if (zport == zport_a) | ||
351 | return 0; | ||
352 | |||
353 | mask_a = zport_a->regs[15]; | ||
354 | mask_b = zport->regs[15]; | ||
355 | |||
356 | mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) | | ||
357 | ((mask_b & DCDIE) ? TIOCM_CAR : 0) | | ||
358 | ((mask_a & DCDIE) ? TIOCM_RNG : 0) | | ||
359 | ((mask_a & SYNCIE) ? TIOCM_DSR : 0); | ||
360 | |||
361 | mctrl = zport->mctrl; | ||
362 | if (mmask) { | ||
363 | mctrl &= ~mmask; | ||
364 | mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask; | ||
365 | } | ||
366 | |||
367 | delta = mctrl ^ zport->mctrl; | ||
368 | if (delta) | ||
369 | zport->mctrl = mctrl; | ||
370 | |||
371 | return delta; | ||
372 | } | ||
373 | |||
374 | static unsigned int zs_get_mctrl(struct uart_port *uport) | ||
375 | { | ||
376 | struct zs_port *zport = to_zport(uport); | ||
377 | struct zs_scc *scc = zport->scc; | ||
378 | unsigned int mctrl; | ||
379 | |||
380 | spin_lock(&scc->zlock); | ||
381 | mctrl = zs_raw_get_mctrl(zport); | ||
382 | spin_unlock(&scc->zlock); | ||
383 | |||
384 | return mctrl; | ||
385 | } | ||
386 | |||
387 | static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl) | ||
388 | { | ||
389 | struct zs_port *zport = to_zport(uport); | ||
390 | struct zs_scc *scc = zport->scc; | ||
391 | struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; | ||
392 | u8 oldloop, newloop; | ||
393 | |||
394 | spin_lock(&scc->zlock); | ||
395 | if (zport != zport_a) { | ||
396 | if (mctrl & TIOCM_DTR) | ||
397 | zport_a->regs[5] |= DTR; | ||
398 | else | ||
399 | zport_a->regs[5] &= ~DTR; | ||
400 | if (mctrl & TIOCM_RTS) | ||
401 | zport_a->regs[5] |= RTS; | ||
402 | else | ||
403 | zport_a->regs[5] &= ~RTS; | ||
404 | write_zsreg(zport_a, R5, zport_a->regs[5]); | ||
405 | } | ||
406 | |||
407 | /* Rarely modified, so don't poke at hardware unless necessary. */ | ||
408 | oldloop = zport->regs[14]; | ||
409 | newloop = oldloop; | ||
410 | if (mctrl & TIOCM_LOOP) | ||
411 | newloop |= LOOPBAK; | ||
412 | else | ||
413 | newloop &= ~LOOPBAK; | ||
414 | if (newloop != oldloop) { | ||
415 | zport->regs[14] = newloop; | ||
416 | write_zsreg(zport, R14, zport->regs[14]); | ||
417 | } | ||
418 | spin_unlock(&scc->zlock); | ||
419 | } | ||
420 | |||
421 | static void zs_raw_stop_tx(struct zs_port *zport) | ||
422 | { | ||
423 | write_zsreg(zport, R0, RES_Tx_P); | ||
424 | zport->tx_stopped = 1; | ||
425 | } | ||
426 | |||
427 | static void zs_stop_tx(struct uart_port *uport) | ||
428 | { | ||
429 | struct zs_port *zport = to_zport(uport); | ||
430 | struct zs_scc *scc = zport->scc; | ||
431 | |||
432 | spin_lock(&scc->zlock); | ||
433 | zs_raw_stop_tx(zport); | ||
434 | spin_unlock(&scc->zlock); | ||
435 | } | ||
436 | |||
437 | static void zs_raw_transmit_chars(struct zs_port *); | ||
438 | |||
439 | static void zs_start_tx(struct uart_port *uport) | ||
440 | { | ||
441 | struct zs_port *zport = to_zport(uport); | ||
442 | struct zs_scc *scc = zport->scc; | ||
443 | |||
444 | spin_lock(&scc->zlock); | ||
445 | if (zport->tx_stopped) { | ||
446 | zs_transmit_drain(zport, 0); | ||
447 | zport->tx_stopped = 0; | ||
448 | zs_raw_transmit_chars(zport); | ||
449 | } | ||
450 | spin_unlock(&scc->zlock); | ||
451 | } | ||
452 | |||
453 | static void zs_stop_rx(struct uart_port *uport) | ||
454 | { | ||
455 | struct zs_port *zport = to_zport(uport); | ||
456 | struct zs_scc *scc = zport->scc; | ||
457 | struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; | ||
458 | |||
459 | spin_lock(&scc->zlock); | ||
460 | zport->regs[15] &= ~BRKIE; | ||
461 | zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB); | ||
462 | zport->regs[1] |= RxINT_DISAB; | ||
463 | |||
464 | if (zport != zport_a) { | ||
465 | /* A-side DCD tracks RI and SYNC tracks DSR. */ | ||
466 | zport_a->regs[15] &= ~(DCDIE | SYNCIE); | ||
467 | write_zsreg(zport_a, R15, zport_a->regs[15]); | ||
468 | if (!(zport_a->regs[15] & BRKIE)) { | ||
469 | zport_a->regs[1] &= ~EXT_INT_ENAB; | ||
470 | write_zsreg(zport_a, R1, zport_a->regs[1]); | ||
471 | } | ||
472 | |||
473 | /* This-side DCD tracks DCD and CTS tracks CTS. */ | ||
474 | zport->regs[15] &= ~(DCDIE | CTSIE); | ||
475 | zport->regs[1] &= ~EXT_INT_ENAB; | ||
476 | } else { | ||
477 | /* DCD tracks RI and SYNC tracks DSR for the B side. */ | ||
478 | if (!(zport->regs[15] & (DCDIE | SYNCIE))) | ||
479 | zport->regs[1] &= ~EXT_INT_ENAB; | ||
480 | } | ||
481 | |||
482 | write_zsreg(zport, R15, zport->regs[15]); | ||
483 | write_zsreg(zport, R1, zport->regs[1]); | ||
484 | spin_unlock(&scc->zlock); | ||
485 | } | ||
486 | |||
487 | static void zs_enable_ms(struct uart_port *uport) | ||
488 | { | ||
489 | struct zs_port *zport = to_zport(uport); | ||
490 | struct zs_scc *scc = zport->scc; | ||
491 | struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; | ||
492 | |||
493 | if (zport == zport_a) | ||
494 | return; | ||
495 | |||
496 | spin_lock(&scc->zlock); | ||
497 | |||
498 | /* Clear Ext interrupts if not being handled already. */ | ||
499 | if (!(zport_a->regs[1] & EXT_INT_ENAB)) | ||
500 | write_zsreg(zport_a, R0, RES_EXT_INT); | ||
501 | |||
502 | /* A-side DCD tracks RI and SYNC tracks DSR. */ | ||
503 | zport_a->regs[1] |= EXT_INT_ENAB; | ||
504 | zport_a->regs[15] |= DCDIE | SYNCIE; | ||
505 | |||
506 | /* This-side DCD tracks DCD and CTS tracks CTS. */ | ||
507 | zport->regs[15] |= DCDIE | CTSIE; | ||
508 | |||
509 | zs_raw_xor_mctrl(zport); | ||
510 | |||
511 | write_zsreg(zport_a, R1, zport_a->regs[1]); | ||
512 | write_zsreg(zport_a, R15, zport_a->regs[15]); | ||
513 | write_zsreg(zport, R15, zport->regs[15]); | ||
514 | spin_unlock(&scc->zlock); | ||
515 | } | ||
516 | |||
517 | static void zs_break_ctl(struct uart_port *uport, int break_state) | ||
518 | { | ||
519 | struct zs_port *zport = to_zport(uport); | ||
520 | struct zs_scc *scc = zport->scc; | ||
521 | unsigned long flags; | ||
522 | |||
523 | spin_lock_irqsave(&scc->zlock, flags); | ||
524 | if (break_state == -1) | ||
525 | zport->regs[5] |= SND_BRK; | ||
526 | else | ||
527 | zport->regs[5] &= ~SND_BRK; | ||
528 | write_zsreg(zport, R5, zport->regs[5]); | ||
529 | spin_unlock_irqrestore(&scc->zlock, flags); | ||
530 | } | ||
531 | |||
532 | |||
533 | /* | ||
534 | * Interrupt handling routines. | ||
535 | */ | ||
536 | #define Rx_BRK 0x0100 /* BREAK event software flag. */ | ||
537 | #define Rx_SYS 0x0200 /* SysRq event software flag. */ | ||
538 | |||
539 | static void zs_receive_chars(struct zs_port *zport) | ||
540 | { | ||
541 | struct uart_port *uport = &zport->port; | ||
542 | struct zs_scc *scc = zport->scc; | ||
543 | struct uart_icount *icount; | ||
544 | unsigned int avail, status, ch, flag; | ||
545 | int count; | ||
546 | |||
547 | for (count = 16; count; count--) { | ||
548 | spin_lock(&scc->zlock); | ||
549 | avail = read_zsreg(zport, R0) & Rx_CH_AV; | ||
550 | spin_unlock(&scc->zlock); | ||
551 | if (!avail) | ||
552 | break; | ||
553 | |||
554 | spin_lock(&scc->zlock); | ||
555 | status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR); | ||
556 | ch = read_zsdata(zport); | ||
557 | spin_unlock(&scc->zlock); | ||
558 | |||
559 | flag = TTY_NORMAL; | ||
560 | |||
561 | icount = &uport->icount; | ||
562 | icount->rx++; | ||
563 | |||
564 | /* Handle the null char got when BREAK is removed. */ | ||
565 | if (!ch) | ||
566 | status |= zport->tty_break; | ||
567 | if (unlikely(status & | ||
568 | (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) { | ||
569 | zport->tty_break = 0; | ||
570 | |||
571 | /* Reset the error indication. */ | ||
572 | if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) { | ||
573 | spin_lock(&scc->zlock); | ||
574 | write_zsreg(zport, R0, ERR_RES); | ||
575 | spin_unlock(&scc->zlock); | ||
576 | } | ||
577 | |||
578 | if (status & (Rx_SYS | Rx_BRK)) { | ||
579 | icount->brk++; | ||
580 | /* SysRq discards the null char. */ | ||
581 | if (status & Rx_SYS) | ||
582 | continue; | ||
583 | } else if (status & FRM_ERR) | ||
584 | icount->frame++; | ||
585 | else if (status & PAR_ERR) | ||
586 | icount->parity++; | ||
587 | if (status & Rx_OVR) | ||
588 | icount->overrun++; | ||
589 | |||
590 | status &= uport->read_status_mask; | ||
591 | if (status & Rx_BRK) | ||
592 | flag = TTY_BREAK; | ||
593 | else if (status & FRM_ERR) | ||
594 | flag = TTY_FRAME; | ||
595 | else if (status & PAR_ERR) | ||
596 | flag = TTY_PARITY; | ||
597 | } | ||
598 | |||
599 | if (uart_handle_sysrq_char(uport, ch)) | ||
600 | continue; | ||
601 | |||
602 | uart_insert_char(uport, status, Rx_OVR, ch, flag); | ||
603 | } | ||
604 | |||
605 | tty_flip_buffer_push(uport->state->port.tty); | ||
606 | } | ||
607 | |||
608 | static void zs_raw_transmit_chars(struct zs_port *zport) | ||
609 | { | ||
610 | struct circ_buf *xmit = &zport->port.state->xmit; | ||
611 | |||
612 | /* XON/XOFF chars. */ | ||
613 | if (zport->port.x_char) { | ||
614 | write_zsdata(zport, zport->port.x_char); | ||
615 | zport->port.icount.tx++; | ||
616 | zport->port.x_char = 0; | ||
617 | return; | ||
618 | } | ||
619 | |||
620 | /* If nothing to do or stopped or hardware stopped. */ | ||
621 | if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) { | ||
622 | zs_raw_stop_tx(zport); | ||
623 | return; | ||
624 | } | ||
625 | |||
626 | /* Send char. */ | ||
627 | write_zsdata(zport, xmit->buf[xmit->tail]); | ||
628 | xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); | ||
629 | zport->port.icount.tx++; | ||
630 | |||
631 | if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) | ||
632 | uart_write_wakeup(&zport->port); | ||
633 | |||
634 | /* Are we are done? */ | ||
635 | if (uart_circ_empty(xmit)) | ||
636 | zs_raw_stop_tx(zport); | ||
637 | } | ||
638 | |||
639 | static void zs_transmit_chars(struct zs_port *zport) | ||
640 | { | ||
641 | struct zs_scc *scc = zport->scc; | ||
642 | |||
643 | spin_lock(&scc->zlock); | ||
644 | zs_raw_transmit_chars(zport); | ||
645 | spin_unlock(&scc->zlock); | ||
646 | } | ||
647 | |||
648 | static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a) | ||
649 | { | ||
650 | struct uart_port *uport = &zport->port; | ||
651 | struct zs_scc *scc = zport->scc; | ||
652 | unsigned int delta; | ||
653 | u8 status, brk; | ||
654 | |||
655 | spin_lock(&scc->zlock); | ||
656 | |||
657 | /* Get status from Read Register 0. */ | ||
658 | status = read_zsreg(zport, R0); | ||
659 | |||
660 | if (zport->regs[15] & BRKIE) { | ||
661 | brk = status & BRK_ABRT; | ||
662 | if (brk && !zport->brk) { | ||
663 | spin_unlock(&scc->zlock); | ||
664 | if (uart_handle_break(uport)) | ||
665 | zport->tty_break = Rx_SYS; | ||
666 | else | ||
667 | zport->tty_break = Rx_BRK; | ||
668 | spin_lock(&scc->zlock); | ||
669 | } | ||
670 | zport->brk = brk; | ||
671 | } | ||
672 | |||
673 | if (zport != zport_a) { | ||
674 | delta = zs_raw_xor_mctrl(zport); | ||
675 | spin_unlock(&scc->zlock); | ||
676 | |||
677 | if (delta & TIOCM_CTS) | ||
678 | uart_handle_cts_change(uport, | ||
679 | zport->mctrl & TIOCM_CTS); | ||
680 | if (delta & TIOCM_CAR) | ||
681 | uart_handle_dcd_change(uport, | ||
682 | zport->mctrl & TIOCM_CAR); | ||
683 | if (delta & TIOCM_RNG) | ||
684 | uport->icount.dsr++; | ||
685 | if (delta & TIOCM_DSR) | ||
686 | uport->icount.rng++; | ||
687 | |||
688 | if (delta) | ||
689 | wake_up_interruptible(&uport->state->port.delta_msr_wait); | ||
690 | |||
691 | spin_lock(&scc->zlock); | ||
692 | } | ||
693 | |||
694 | /* Clear the status condition... */ | ||
695 | write_zsreg(zport, R0, RES_EXT_INT); | ||
696 | |||
697 | spin_unlock(&scc->zlock); | ||
698 | } | ||
699 | |||
700 | /* | ||
701 | * This is the Z85C30 driver's generic interrupt routine. | ||
702 | */ | ||
703 | static irqreturn_t zs_interrupt(int irq, void *dev_id) | ||
704 | { | ||
705 | struct zs_scc *scc = dev_id; | ||
706 | struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; | ||
707 | struct zs_port *zport_b = &scc->zport[ZS_CHAN_B]; | ||
708 | irqreturn_t status = IRQ_NONE; | ||
709 | u8 zs_intreg; | ||
710 | int count; | ||
711 | |||
712 | /* | ||
713 | * NOTE: The read register 3, which holds the irq status, | ||
714 | * does so for both channels on each chip. Although | ||
715 | * the status value itself must be read from the A | ||
716 | * channel and is only valid when read from channel A. | ||
717 | * Yes... broken hardware... | ||
718 | */ | ||
719 | for (count = 16; count; count--) { | ||
720 | spin_lock(&scc->zlock); | ||
721 | zs_intreg = read_zsreg(zport_a, R3); | ||
722 | spin_unlock(&scc->zlock); | ||
723 | if (!zs_intreg) | ||
724 | break; | ||
725 | |||
726 | /* | ||
727 | * We do not like losing characters, so we prioritise | ||
728 | * interrupt sources a little bit differently than | ||
729 | * the SCC would, was it allowed to. | ||
730 | */ | ||
731 | if (zs_intreg & CHBRxIP) | ||
732 | zs_receive_chars(zport_b); | ||
733 | if (zs_intreg & CHARxIP) | ||
734 | zs_receive_chars(zport_a); | ||
735 | if (zs_intreg & CHBEXT) | ||
736 | zs_status_handle(zport_b, zport_a); | ||
737 | if (zs_intreg & CHAEXT) | ||
738 | zs_status_handle(zport_a, zport_a); | ||
739 | if (zs_intreg & CHBTxIP) | ||
740 | zs_transmit_chars(zport_b); | ||
741 | if (zs_intreg & CHATxIP) | ||
742 | zs_transmit_chars(zport_a); | ||
743 | |||
744 | status = IRQ_HANDLED; | ||
745 | } | ||
746 | |||
747 | return status; | ||
748 | } | ||
749 | |||
750 | |||
751 | /* | ||
752 | * Finally, routines used to initialize the serial port. | ||
753 | */ | ||
754 | static int zs_startup(struct uart_port *uport) | ||
755 | { | ||
756 | struct zs_port *zport = to_zport(uport); | ||
757 | struct zs_scc *scc = zport->scc; | ||
758 | unsigned long flags; | ||
759 | int irq_guard; | ||
760 | int ret; | ||
761 | |||
762 | irq_guard = atomic_add_return(1, &scc->irq_guard); | ||
763 | if (irq_guard == 1) { | ||
764 | ret = request_irq(zport->port.irq, zs_interrupt, | ||
765 | IRQF_SHARED, "scc", scc); | ||
766 | if (ret) { | ||
767 | atomic_add(-1, &scc->irq_guard); | ||
768 | printk(KERN_ERR "zs: can't get irq %d\n", | ||
769 | zport->port.irq); | ||
770 | return ret; | ||
771 | } | ||
772 | } | ||
773 | |||
774 | spin_lock_irqsave(&scc->zlock, flags); | ||
775 | |||
776 | /* Clear the receive FIFO. */ | ||
777 | zs_receive_drain(zport); | ||
778 | |||
779 | /* Clear the interrupt registers. */ | ||
780 | write_zsreg(zport, R0, ERR_RES); | ||
781 | write_zsreg(zport, R0, RES_Tx_P); | ||
782 | /* But Ext only if not being handled already. */ | ||
783 | if (!(zport->regs[1] & EXT_INT_ENAB)) | ||
784 | write_zsreg(zport, R0, RES_EXT_INT); | ||
785 | |||
786 | /* Finally, enable sequencing and interrupts. */ | ||
787 | zport->regs[1] &= ~RxINT_MASK; | ||
788 | zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB; | ||
789 | zport->regs[3] |= RxENABLE; | ||
790 | zport->regs[15] |= BRKIE; | ||
791 | write_zsreg(zport, R1, zport->regs[1]); | ||
792 | write_zsreg(zport, R3, zport->regs[3]); | ||
793 | write_zsreg(zport, R5, zport->regs[5]); | ||
794 | write_zsreg(zport, R15, zport->regs[15]); | ||
795 | |||
796 | /* Record the current state of RR0. */ | ||
797 | zport->mctrl = zs_raw_get_mctrl(zport); | ||
798 | zport->brk = read_zsreg(zport, R0) & BRK_ABRT; | ||
799 | |||
800 | zport->tx_stopped = 1; | ||
801 | |||
802 | spin_unlock_irqrestore(&scc->zlock, flags); | ||
803 | |||
804 | return 0; | ||
805 | } | ||
806 | |||
807 | static void zs_shutdown(struct uart_port *uport) | ||
808 | { | ||
809 | struct zs_port *zport = to_zport(uport); | ||
810 | struct zs_scc *scc = zport->scc; | ||
811 | unsigned long flags; | ||
812 | int irq_guard; | ||
813 | |||
814 | spin_lock_irqsave(&scc->zlock, flags); | ||
815 | |||
816 | zport->regs[3] &= ~RxENABLE; | ||
817 | write_zsreg(zport, R5, zport->regs[5]); | ||
818 | write_zsreg(zport, R3, zport->regs[3]); | ||
819 | |||
820 | spin_unlock_irqrestore(&scc->zlock, flags); | ||
821 | |||
822 | irq_guard = atomic_add_return(-1, &scc->irq_guard); | ||
823 | if (!irq_guard) | ||
824 | free_irq(zport->port.irq, scc); | ||
825 | } | ||
826 | |||
827 | |||
828 | static void zs_reset(struct zs_port *zport) | ||
829 | { | ||
830 | struct zs_scc *scc = zport->scc; | ||
831 | int irq; | ||
832 | unsigned long flags; | ||
833 | |||
834 | spin_lock_irqsave(&scc->zlock, flags); | ||
835 | irq = !irqs_disabled_flags(flags); | ||
836 | if (!scc->initialised) { | ||
837 | /* Reset the pointer first, just in case... */ | ||
838 | read_zsreg(zport, R0); | ||
839 | /* And let the current transmission finish. */ | ||
840 | zs_line_drain(zport, irq); | ||
841 | write_zsreg(zport, R9, FHWRES); | ||
842 | udelay(10); | ||
843 | write_zsreg(zport, R9, 0); | ||
844 | scc->initialised = 1; | ||
845 | } | ||
846 | load_zsregs(zport, zport->regs, irq); | ||
847 | spin_unlock_irqrestore(&scc->zlock, flags); | ||
848 | } | ||
849 | |||
850 | static void zs_set_termios(struct uart_port *uport, struct ktermios *termios, | ||
851 | struct ktermios *old_termios) | ||
852 | { | ||
853 | struct zs_port *zport = to_zport(uport); | ||
854 | struct zs_scc *scc = zport->scc; | ||
855 | struct zs_port *zport_a = &scc->zport[ZS_CHAN_A]; | ||
856 | int irq; | ||
857 | unsigned int baud, brg; | ||
858 | unsigned long flags; | ||
859 | |||
860 | spin_lock_irqsave(&scc->zlock, flags); | ||
861 | irq = !irqs_disabled_flags(flags); | ||
862 | |||
863 | /* Byte size. */ | ||
864 | zport->regs[3] &= ~RxNBITS_MASK; | ||
865 | zport->regs[5] &= ~TxNBITS_MASK; | ||
866 | switch (termios->c_cflag & CSIZE) { | ||
867 | case CS5: | ||
868 | zport->regs[3] |= Rx5; | ||
869 | zport->regs[5] |= Tx5; | ||
870 | break; | ||
871 | case CS6: | ||
872 | zport->regs[3] |= Rx6; | ||
873 | zport->regs[5] |= Tx6; | ||
874 | break; | ||
875 | case CS7: | ||
876 | zport->regs[3] |= Rx7; | ||
877 | zport->regs[5] |= Tx7; | ||
878 | break; | ||
879 | case CS8: | ||
880 | default: | ||
881 | zport->regs[3] |= Rx8; | ||
882 | zport->regs[5] |= Tx8; | ||
883 | break; | ||
884 | } | ||
885 | |||
886 | /* Parity and stop bits. */ | ||
887 | zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN); | ||
888 | if (termios->c_cflag & CSTOPB) | ||
889 | zport->regs[4] |= SB2; | ||
890 | else | ||
891 | zport->regs[4] |= SB1; | ||
892 | if (termios->c_cflag & PARENB) | ||
893 | zport->regs[4] |= PAR_ENA; | ||
894 | if (!(termios->c_cflag & PARODD)) | ||
895 | zport->regs[4] |= PAR_EVEN; | ||
896 | switch (zport->clk_mode) { | ||
897 | case 64: | ||
898 | zport->regs[4] |= X64CLK; | ||
899 | break; | ||
900 | case 32: | ||
901 | zport->regs[4] |= X32CLK; | ||
902 | break; | ||
903 | case 16: | ||
904 | zport->regs[4] |= X16CLK; | ||
905 | break; | ||
906 | case 1: | ||
907 | zport->regs[4] |= X1CLK; | ||
908 | break; | ||
909 | default: | ||
910 | BUG(); | ||
911 | } | ||
912 | |||
913 | baud = uart_get_baud_rate(uport, termios, old_termios, 0, | ||
914 | uport->uartclk / zport->clk_mode / 4); | ||
915 | |||
916 | brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode); | ||
917 | zport->regs[12] = brg & 0xff; | ||
918 | zport->regs[13] = (brg >> 8) & 0xff; | ||
919 | |||
920 | uart_update_timeout(uport, termios->c_cflag, baud); | ||
921 | |||
922 | uport->read_status_mask = Rx_OVR; | ||
923 | if (termios->c_iflag & INPCK) | ||
924 | uport->read_status_mask |= FRM_ERR | PAR_ERR; | ||
925 | if (termios->c_iflag & (BRKINT | PARMRK)) | ||
926 | uport->read_status_mask |= Rx_BRK; | ||
927 | |||
928 | uport->ignore_status_mask = 0; | ||
929 | if (termios->c_iflag & IGNPAR) | ||
930 | uport->ignore_status_mask |= FRM_ERR | PAR_ERR; | ||
931 | if (termios->c_iflag & IGNBRK) { | ||
932 | uport->ignore_status_mask |= Rx_BRK; | ||
933 | if (termios->c_iflag & IGNPAR) | ||
934 | uport->ignore_status_mask |= Rx_OVR; | ||
935 | } | ||
936 | |||
937 | if (termios->c_cflag & CREAD) | ||
938 | zport->regs[3] |= RxENABLE; | ||
939 | else | ||
940 | zport->regs[3] &= ~RxENABLE; | ||
941 | |||
942 | if (zport != zport_a) { | ||
943 | if (!(termios->c_cflag & CLOCAL)) { | ||
944 | zport->regs[15] |= DCDIE; | ||
945 | } else | ||
946 | zport->regs[15] &= ~DCDIE; | ||
947 | if (termios->c_cflag & CRTSCTS) { | ||
948 | zport->regs[15] |= CTSIE; | ||
949 | } else | ||
950 | zport->regs[15] &= ~CTSIE; | ||
951 | zs_raw_xor_mctrl(zport); | ||
952 | } | ||
953 | |||
954 | /* Load up the new values. */ | ||
955 | load_zsregs(zport, zport->regs, irq); | ||
956 | |||
957 | spin_unlock_irqrestore(&scc->zlock, flags); | ||
958 | } | ||
959 | |||
960 | /* | ||
961 | * Hack alert! | ||
962 | * Required solely so that the initial PROM-based console | ||
963 | * works undisturbed in parallel with this one. | ||
964 | */ | ||
965 | static void zs_pm(struct uart_port *uport, unsigned int state, | ||
966 | unsigned int oldstate) | ||
967 | { | ||
968 | struct zs_port *zport = to_zport(uport); | ||
969 | |||
970 | if (state < 3) | ||
971 | zport->regs[5] |= TxENAB; | ||
972 | else | ||
973 | zport->regs[5] &= ~TxENAB; | ||
974 | write_zsreg(zport, R5, zport->regs[5]); | ||
975 | } | ||
976 | |||
977 | |||
978 | static const char *zs_type(struct uart_port *uport) | ||
979 | { | ||
980 | return "Z85C30 SCC"; | ||
981 | } | ||
982 | |||
983 | static void zs_release_port(struct uart_port *uport) | ||
984 | { | ||
985 | iounmap(uport->membase); | ||
986 | uport->membase = 0; | ||
987 | release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE); | ||
988 | } | ||
989 | |||
990 | static int zs_map_port(struct uart_port *uport) | ||
991 | { | ||
992 | if (!uport->membase) | ||
993 | uport->membase = ioremap_nocache(uport->mapbase, | ||
994 | ZS_CHAN_IO_SIZE); | ||
995 | if (!uport->membase) { | ||
996 | printk(KERN_ERR "zs: Cannot map MMIO\n"); | ||
997 | return -ENOMEM; | ||
998 | } | ||
999 | return 0; | ||
1000 | } | ||
1001 | |||
1002 | static int zs_request_port(struct uart_port *uport) | ||
1003 | { | ||
1004 | int ret; | ||
1005 | |||
1006 | if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) { | ||
1007 | printk(KERN_ERR "zs: Unable to reserve MMIO resource\n"); | ||
1008 | return -EBUSY; | ||
1009 | } | ||
1010 | ret = zs_map_port(uport); | ||
1011 | if (ret) { | ||
1012 | release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE); | ||
1013 | return ret; | ||
1014 | } | ||
1015 | return 0; | ||
1016 | } | ||
1017 | |||
1018 | static void zs_config_port(struct uart_port *uport, int flags) | ||
1019 | { | ||
1020 | struct zs_port *zport = to_zport(uport); | ||
1021 | |||
1022 | if (flags & UART_CONFIG_TYPE) { | ||
1023 | if (zs_request_port(uport)) | ||
1024 | return; | ||
1025 | |||
1026 | uport->type = PORT_ZS; | ||
1027 | |||
1028 | zs_reset(zport); | ||
1029 | } | ||
1030 | } | ||
1031 | |||
1032 | static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser) | ||
1033 | { | ||
1034 | struct zs_port *zport = to_zport(uport); | ||
1035 | int ret = 0; | ||
1036 | |||
1037 | if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS) | ||
1038 | ret = -EINVAL; | ||
1039 | if (ser->irq != uport->irq) | ||
1040 | ret = -EINVAL; | ||
1041 | if (ser->baud_base != uport->uartclk / zport->clk_mode / 4) | ||
1042 | ret = -EINVAL; | ||
1043 | return ret; | ||
1044 | } | ||
1045 | |||
1046 | |||
1047 | static struct uart_ops zs_ops = { | ||
1048 | .tx_empty = zs_tx_empty, | ||
1049 | .set_mctrl = zs_set_mctrl, | ||
1050 | .get_mctrl = zs_get_mctrl, | ||
1051 | .stop_tx = zs_stop_tx, | ||
1052 | .start_tx = zs_start_tx, | ||
1053 | .stop_rx = zs_stop_rx, | ||
1054 | .enable_ms = zs_enable_ms, | ||
1055 | .break_ctl = zs_break_ctl, | ||
1056 | .startup = zs_startup, | ||
1057 | .shutdown = zs_shutdown, | ||
1058 | .set_termios = zs_set_termios, | ||
1059 | .pm = zs_pm, | ||
1060 | .type = zs_type, | ||
1061 | .release_port = zs_release_port, | ||
1062 | .request_port = zs_request_port, | ||
1063 | .config_port = zs_config_port, | ||
1064 | .verify_port = zs_verify_port, | ||
1065 | }; | ||
1066 | |||
1067 | /* | ||
1068 | * Initialize Z85C30 port structures. | ||
1069 | */ | ||
1070 | static int __init zs_probe_sccs(void) | ||
1071 | { | ||
1072 | static int probed; | ||
1073 | struct zs_parms zs_parms; | ||
1074 | int chip, side, irq; | ||
1075 | int n_chips = 0; | ||
1076 | int i; | ||
1077 | |||
1078 | if (probed) | ||
1079 | return 0; | ||
1080 | |||
1081 | irq = dec_interrupt[DEC_IRQ_SCC0]; | ||
1082 | if (irq >= 0) { | ||
1083 | zs_parms.scc[n_chips] = IOASIC_SCC0; | ||
1084 | zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0]; | ||
1085 | n_chips++; | ||
1086 | } | ||
1087 | irq = dec_interrupt[DEC_IRQ_SCC1]; | ||
1088 | if (irq >= 0) { | ||
1089 | zs_parms.scc[n_chips] = IOASIC_SCC1; | ||
1090 | zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1]; | ||
1091 | n_chips++; | ||
1092 | } | ||
1093 | if (!n_chips) | ||
1094 | return -ENXIO; | ||
1095 | |||
1096 | probed = 1; | ||
1097 | |||
1098 | for (chip = 0; chip < n_chips; chip++) { | ||
1099 | spin_lock_init(&zs_sccs[chip].zlock); | ||
1100 | for (side = 0; side < ZS_NUM_CHAN; side++) { | ||
1101 | struct zs_port *zport = &zs_sccs[chip].zport[side]; | ||
1102 | struct uart_port *uport = &zport->port; | ||
1103 | |||
1104 | zport->scc = &zs_sccs[chip]; | ||
1105 | zport->clk_mode = 16; | ||
1106 | |||
1107 | uport->irq = zs_parms.irq[chip]; | ||
1108 | uport->uartclk = ZS_CLOCK; | ||
1109 | uport->fifosize = 1; | ||
1110 | uport->iotype = UPIO_MEM; | ||
1111 | uport->flags = UPF_BOOT_AUTOCONF; | ||
1112 | uport->ops = &zs_ops; | ||
1113 | uport->line = chip * ZS_NUM_CHAN + side; | ||
1114 | uport->mapbase = dec_kn_slot_base + | ||
1115 | zs_parms.scc[chip] + | ||
1116 | (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE; | ||
1117 | |||
1118 | for (i = 0; i < ZS_NUM_REGS; i++) | ||
1119 | zport->regs[i] = zs_init_regs[i]; | ||
1120 | } | ||
1121 | } | ||
1122 | |||
1123 | return 0; | ||
1124 | } | ||
1125 | |||
1126 | |||
1127 | #ifdef CONFIG_SERIAL_ZS_CONSOLE | ||
1128 | static void zs_console_putchar(struct uart_port *uport, int ch) | ||
1129 | { | ||
1130 | struct zs_port *zport = to_zport(uport); | ||
1131 | struct zs_scc *scc = zport->scc; | ||
1132 | int irq; | ||
1133 | unsigned long flags; | ||
1134 | |||
1135 | spin_lock_irqsave(&scc->zlock, flags); | ||
1136 | irq = !irqs_disabled_flags(flags); | ||
1137 | if (zs_transmit_drain(zport, irq)) | ||
1138 | write_zsdata(zport, ch); | ||
1139 | spin_unlock_irqrestore(&scc->zlock, flags); | ||
1140 | } | ||
1141 | |||
1142 | /* | ||
1143 | * Print a string to the serial port trying not to disturb | ||
1144 | * any possible real use of the port... | ||
1145 | */ | ||
1146 | static void zs_console_write(struct console *co, const char *s, | ||
1147 | unsigned int count) | ||
1148 | { | ||
1149 | int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN; | ||
1150 | struct zs_port *zport = &zs_sccs[chip].zport[side]; | ||
1151 | struct zs_scc *scc = zport->scc; | ||
1152 | unsigned long flags; | ||
1153 | u8 txint, txenb; | ||
1154 | int irq; | ||
1155 | |||
1156 | /* Disable transmit interrupts and enable the transmitter. */ | ||
1157 | spin_lock_irqsave(&scc->zlock, flags); | ||
1158 | txint = zport->regs[1]; | ||
1159 | txenb = zport->regs[5]; | ||
1160 | if (txint & TxINT_ENAB) { | ||
1161 | zport->regs[1] = txint & ~TxINT_ENAB; | ||
1162 | write_zsreg(zport, R1, zport->regs[1]); | ||
1163 | } | ||
1164 | if (!(txenb & TxENAB)) { | ||
1165 | zport->regs[5] = txenb | TxENAB; | ||
1166 | write_zsreg(zport, R5, zport->regs[5]); | ||
1167 | } | ||
1168 | spin_unlock_irqrestore(&scc->zlock, flags); | ||
1169 | |||
1170 | uart_console_write(&zport->port, s, count, zs_console_putchar); | ||
1171 | |||
1172 | /* Restore transmit interrupts and the transmitter enable. */ | ||
1173 | spin_lock_irqsave(&scc->zlock, flags); | ||
1174 | irq = !irqs_disabled_flags(flags); | ||
1175 | zs_line_drain(zport, irq); | ||
1176 | if (!(txenb & TxENAB)) { | ||
1177 | zport->regs[5] &= ~TxENAB; | ||
1178 | write_zsreg(zport, R5, zport->regs[5]); | ||
1179 | } | ||
1180 | if (txint & TxINT_ENAB) { | ||
1181 | zport->regs[1] |= TxINT_ENAB; | ||
1182 | write_zsreg(zport, R1, zport->regs[1]); | ||
1183 | } | ||
1184 | spin_unlock_irqrestore(&scc->zlock, flags); | ||
1185 | } | ||
1186 | |||
1187 | /* | ||
1188 | * Setup serial console baud/bits/parity. We do two things here: | ||
1189 | * - construct a cflag setting for the first uart_open() | ||
1190 | * - initialise the serial port | ||
1191 | * Return non-zero if we didn't find a serial port. | ||
1192 | */ | ||
1193 | static int __init zs_console_setup(struct console *co, char *options) | ||
1194 | { | ||
1195 | int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN; | ||
1196 | struct zs_port *zport = &zs_sccs[chip].zport[side]; | ||
1197 | struct uart_port *uport = &zport->port; | ||
1198 | int baud = 9600; | ||
1199 | int bits = 8; | ||
1200 | int parity = 'n'; | ||
1201 | int flow = 'n'; | ||
1202 | int ret; | ||
1203 | |||
1204 | ret = zs_map_port(uport); | ||
1205 | if (ret) | ||
1206 | return ret; | ||
1207 | |||
1208 | zs_reset(zport); | ||
1209 | zs_pm(uport, 0, -1); | ||
1210 | |||
1211 | if (options) | ||
1212 | uart_parse_options(options, &baud, &parity, &bits, &flow); | ||
1213 | return uart_set_options(uport, co, baud, parity, bits, flow); | ||
1214 | } | ||
1215 | |||
1216 | static struct uart_driver zs_reg; | ||
1217 | static struct console zs_console = { | ||
1218 | .name = "ttyS", | ||
1219 | .write = zs_console_write, | ||
1220 | .device = uart_console_device, | ||
1221 | .setup = zs_console_setup, | ||
1222 | .flags = CON_PRINTBUFFER, | ||
1223 | .index = -1, | ||
1224 | .data = &zs_reg, | ||
1225 | }; | ||
1226 | |||
1227 | /* | ||
1228 | * Register console. | ||
1229 | */ | ||
1230 | static int __init zs_serial_console_init(void) | ||
1231 | { | ||
1232 | int ret; | ||
1233 | |||
1234 | ret = zs_probe_sccs(); | ||
1235 | if (ret) | ||
1236 | return ret; | ||
1237 | register_console(&zs_console); | ||
1238 | |||
1239 | return 0; | ||
1240 | } | ||
1241 | |||
1242 | console_initcall(zs_serial_console_init); | ||
1243 | |||
1244 | #define SERIAL_ZS_CONSOLE &zs_console | ||
1245 | #else | ||
1246 | #define SERIAL_ZS_CONSOLE NULL | ||
1247 | #endif /* CONFIG_SERIAL_ZS_CONSOLE */ | ||
1248 | |||
1249 | static struct uart_driver zs_reg = { | ||
1250 | .owner = THIS_MODULE, | ||
1251 | .driver_name = "serial", | ||
1252 | .dev_name = "ttyS", | ||
1253 | .major = TTY_MAJOR, | ||
1254 | .minor = 64, | ||
1255 | .nr = ZS_NUM_SCCS * ZS_NUM_CHAN, | ||
1256 | .cons = SERIAL_ZS_CONSOLE, | ||
1257 | }; | ||
1258 | |||
1259 | /* zs_init inits the driver. */ | ||
1260 | static int __init zs_init(void) | ||
1261 | { | ||
1262 | int i, ret; | ||
1263 | |||
1264 | pr_info("%s%s\n", zs_name, zs_version); | ||
1265 | |||
1266 | /* Find out how many Z85C30 SCCs we have. */ | ||
1267 | ret = zs_probe_sccs(); | ||
1268 | if (ret) | ||
1269 | return ret; | ||
1270 | |||
1271 | ret = uart_register_driver(&zs_reg); | ||
1272 | if (ret) | ||
1273 | return ret; | ||
1274 | |||
1275 | for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) { | ||
1276 | struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN]; | ||
1277 | struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN]; | ||
1278 | struct uart_port *uport = &zport->port; | ||
1279 | |||
1280 | if (zport->scc) | ||
1281 | uart_add_one_port(&zs_reg, uport); | ||
1282 | } | ||
1283 | |||
1284 | return 0; | ||
1285 | } | ||
1286 | |||
1287 | static void __exit zs_exit(void) | ||
1288 | { | ||
1289 | int i; | ||
1290 | |||
1291 | for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) { | ||
1292 | struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN]; | ||
1293 | struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN]; | ||
1294 | struct uart_port *uport = &zport->port; | ||
1295 | |||
1296 | if (zport->scc) | ||
1297 | uart_remove_one_port(&zs_reg, uport); | ||
1298 | } | ||
1299 | |||
1300 | uart_unregister_driver(&zs_reg); | ||
1301 | } | ||
1302 | |||
1303 | module_init(zs_init); | ||
1304 | module_exit(zs_exit); | ||