diff options
Diffstat (limited to 'drivers/tty/ehv_bytechan.c')
-rw-r--r-- | drivers/tty/ehv_bytechan.c | 881 |
1 files changed, 881 insertions, 0 deletions
diff --git a/drivers/tty/ehv_bytechan.c b/drivers/tty/ehv_bytechan.c new file mode 100644 index 000000000000..1595dba0072c --- /dev/null +++ b/drivers/tty/ehv_bytechan.c | |||
@@ -0,0 +1,881 @@ | |||
1 | /* ePAPR hypervisor byte channel device driver | ||
2 | * | ||
3 | * Copyright 2009-2011 Freescale Semiconductor, Inc. | ||
4 | * | ||
5 | * Author: Timur Tabi <timur@freescale.com> | ||
6 | * | ||
7 | * This file is licensed under the terms of the GNU General Public License | ||
8 | * version 2. This program is licensed "as is" without any warranty of any | ||
9 | * kind, whether express or implied. | ||
10 | * | ||
11 | * This driver support three distinct interfaces, all of which are related to | ||
12 | * ePAPR hypervisor byte channels. | ||
13 | * | ||
14 | * 1) An early-console (udbg) driver. This provides early console output | ||
15 | * through a byte channel. The byte channel handle must be specified in a | ||
16 | * Kconfig option. | ||
17 | * | ||
18 | * 2) A normal console driver. Output is sent to the byte channel designated | ||
19 | * for stdout in the device tree. The console driver is for handling kernel | ||
20 | * printk calls. | ||
21 | * | ||
22 | * 3) A tty driver, which is used to handle user-space input and output. The | ||
23 | * byte channel used for the console is designated as the default tty. | ||
24 | */ | ||
25 | |||
26 | #include <linux/module.h> | ||
27 | #include <linux/init.h> | ||
28 | #include <linux/slab.h> | ||
29 | #include <linux/err.h> | ||
30 | #include <linux/interrupt.h> | ||
31 | #include <linux/fs.h> | ||
32 | #include <linux/poll.h> | ||
33 | #include <asm/epapr_hcalls.h> | ||
34 | #include <linux/of.h> | ||
35 | #include <linux/platform_device.h> | ||
36 | #include <linux/cdev.h> | ||
37 | #include <linux/console.h> | ||
38 | #include <linux/tty.h> | ||
39 | #include <linux/tty_flip.h> | ||
40 | #include <linux/circ_buf.h> | ||
41 | #include <asm/udbg.h> | ||
42 | |||
43 | /* The size of the transmit circular buffer. This must be a power of two. */ | ||
44 | #define BUF_SIZE 2048 | ||
45 | |||
46 | /* Per-byte channel private data */ | ||
47 | struct ehv_bc_data { | ||
48 | struct device *dev; | ||
49 | struct tty_port port; | ||
50 | uint32_t handle; | ||
51 | unsigned int rx_irq; | ||
52 | unsigned int tx_irq; | ||
53 | |||
54 | spinlock_t lock; /* lock for transmit buffer */ | ||
55 | unsigned char buf[BUF_SIZE]; /* transmit circular buffer */ | ||
56 | unsigned int head; /* circular buffer head */ | ||
57 | unsigned int tail; /* circular buffer tail */ | ||
58 | |||
59 | int tx_irq_enabled; /* true == TX interrupt is enabled */ | ||
60 | }; | ||
61 | |||
62 | /* Array of byte channel objects */ | ||
63 | static struct ehv_bc_data *bcs; | ||
64 | |||
65 | /* Byte channel handle for stdout (and stdin), taken from device tree */ | ||
66 | static unsigned int stdout_bc; | ||
67 | |||
68 | /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */ | ||
69 | static unsigned int stdout_irq; | ||
70 | |||
71 | /**************************** SUPPORT FUNCTIONS ****************************/ | ||
72 | |||
73 | /* | ||
74 | * Enable the transmit interrupt | ||
75 | * | ||
76 | * Unlike a serial device, byte channels have no mechanism for disabling their | ||
77 | * own receive or transmit interrupts. To emulate that feature, we toggle | ||
78 | * the IRQ in the kernel. | ||
79 | * | ||
80 | * We cannot just blindly call enable_irq() or disable_irq(), because these | ||
81 | * calls are reference counted. This means that we cannot call enable_irq() | ||
82 | * if interrupts are already enabled. This can happen in two situations: | ||
83 | * | ||
84 | * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write() | ||
85 | * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue() | ||
86 | * | ||
87 | * To work around this, we keep a flag to tell us if the IRQ is enabled or not. | ||
88 | */ | ||
89 | static void enable_tx_interrupt(struct ehv_bc_data *bc) | ||
90 | { | ||
91 | if (!bc->tx_irq_enabled) { | ||
92 | enable_irq(bc->tx_irq); | ||
93 | bc->tx_irq_enabled = 1; | ||
94 | } | ||
95 | } | ||
96 | |||
97 | static void disable_tx_interrupt(struct ehv_bc_data *bc) | ||
98 | { | ||
99 | if (bc->tx_irq_enabled) { | ||
100 | disable_irq_nosync(bc->tx_irq); | ||
101 | bc->tx_irq_enabled = 0; | ||
102 | } | ||
103 | } | ||
104 | |||
105 | /* | ||
106 | * find the byte channel handle to use for the console | ||
107 | * | ||
108 | * The byte channel to be used for the console is specified via a "stdout" | ||
109 | * property in the /chosen node. | ||
110 | * | ||
111 | * For compatible with legacy device trees, we also look for a "stdout" alias. | ||
112 | */ | ||
113 | static int find_console_handle(void) | ||
114 | { | ||
115 | struct device_node *np, *np2; | ||
116 | const char *sprop = NULL; | ||
117 | const uint32_t *iprop; | ||
118 | |||
119 | np = of_find_node_by_path("/chosen"); | ||
120 | if (np) | ||
121 | sprop = of_get_property(np, "stdout-path", NULL); | ||
122 | |||
123 | if (!np || !sprop) { | ||
124 | of_node_put(np); | ||
125 | np = of_find_node_by_name(NULL, "aliases"); | ||
126 | if (np) | ||
127 | sprop = of_get_property(np, "stdout", NULL); | ||
128 | } | ||
129 | |||
130 | if (!sprop) { | ||
131 | of_node_put(np); | ||
132 | return 0; | ||
133 | } | ||
134 | |||
135 | /* We don't care what the aliased node is actually called. We only | ||
136 | * care if it's compatible with "epapr,hv-byte-channel", because that | ||
137 | * indicates that it's a byte channel node. We use a temporary | ||
138 | * variable, 'np2', because we can't release 'np' until we're done with | ||
139 | * 'sprop'. | ||
140 | */ | ||
141 | np2 = of_find_node_by_path(sprop); | ||
142 | of_node_put(np); | ||
143 | np = np2; | ||
144 | if (!np) { | ||
145 | pr_warning("ehv-bc: stdout node '%s' does not exist\n", sprop); | ||
146 | return 0; | ||
147 | } | ||
148 | |||
149 | /* Is it a byte channel? */ | ||
150 | if (!of_device_is_compatible(np, "epapr,hv-byte-channel")) { | ||
151 | of_node_put(np); | ||
152 | return 0; | ||
153 | } | ||
154 | |||
155 | stdout_irq = irq_of_parse_and_map(np, 0); | ||
156 | if (stdout_irq == NO_IRQ) { | ||
157 | pr_err("ehv-bc: no 'interrupts' property in %s node\n", sprop); | ||
158 | of_node_put(np); | ||
159 | return 0; | ||
160 | } | ||
161 | |||
162 | /* | ||
163 | * The 'hv-handle' property contains the handle for this byte channel. | ||
164 | */ | ||
165 | iprop = of_get_property(np, "hv-handle", NULL); | ||
166 | if (!iprop) { | ||
167 | pr_err("ehv-bc: no 'hv-handle' property in %s node\n", | ||
168 | np->name); | ||
169 | of_node_put(np); | ||
170 | return 0; | ||
171 | } | ||
172 | stdout_bc = be32_to_cpu(*iprop); | ||
173 | |||
174 | of_node_put(np); | ||
175 | return 1; | ||
176 | } | ||
177 | |||
178 | /*************************** EARLY CONSOLE DRIVER ***************************/ | ||
179 | |||
180 | #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC | ||
181 | |||
182 | /* | ||
183 | * send a byte to a byte channel, wait if necessary | ||
184 | * | ||
185 | * This function sends a byte to a byte channel, and it waits and | ||
186 | * retries if the byte channel is full. It returns if the character | ||
187 | * has been sent, or if some error has occurred. | ||
188 | * | ||
189 | */ | ||
190 | static void byte_channel_spin_send(const char data) | ||
191 | { | ||
192 | int ret, count; | ||
193 | |||
194 | do { | ||
195 | count = 1; | ||
196 | ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, | ||
197 | &count, &data); | ||
198 | } while (ret == EV_EAGAIN); | ||
199 | } | ||
200 | |||
201 | /* | ||
202 | * The udbg subsystem calls this function to display a single character. | ||
203 | * We convert CR to a CR/LF. | ||
204 | */ | ||
205 | static void ehv_bc_udbg_putc(char c) | ||
206 | { | ||
207 | if (c == '\n') | ||
208 | byte_channel_spin_send('\r'); | ||
209 | |||
210 | byte_channel_spin_send(c); | ||
211 | } | ||
212 | |||
213 | /* | ||
214 | * early console initialization | ||
215 | * | ||
216 | * PowerPC kernels support an early printk console, also known as udbg. | ||
217 | * This function must be called via the ppc_md.init_early function pointer. | ||
218 | * At this point, the device tree has been unflattened, so we can obtain the | ||
219 | * byte channel handle for stdout. | ||
220 | * | ||
221 | * We only support displaying of characters (putc). We do not support | ||
222 | * keyboard input. | ||
223 | */ | ||
224 | void __init udbg_init_ehv_bc(void) | ||
225 | { | ||
226 | unsigned int rx_count, tx_count; | ||
227 | unsigned int ret; | ||
228 | |||
229 | /* Verify the byte channel handle */ | ||
230 | ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, | ||
231 | &rx_count, &tx_count); | ||
232 | if (ret) | ||
233 | return; | ||
234 | |||
235 | udbg_putc = ehv_bc_udbg_putc; | ||
236 | register_early_udbg_console(); | ||
237 | |||
238 | udbg_printf("ehv-bc: early console using byte channel handle %u\n", | ||
239 | CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); | ||
240 | } | ||
241 | |||
242 | #endif | ||
243 | |||
244 | /****************************** CONSOLE DRIVER ******************************/ | ||
245 | |||
246 | static struct tty_driver *ehv_bc_driver; | ||
247 | |||
248 | /* | ||
249 | * Byte channel console sending worker function. | ||
250 | * | ||
251 | * For consoles, if the output buffer is full, we should just spin until it | ||
252 | * clears. | ||
253 | */ | ||
254 | static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s, | ||
255 | unsigned int count) | ||
256 | { | ||
257 | unsigned int len; | ||
258 | int ret = 0; | ||
259 | |||
260 | while (count) { | ||
261 | len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES); | ||
262 | do { | ||
263 | ret = ev_byte_channel_send(handle, &len, s); | ||
264 | } while (ret == EV_EAGAIN); | ||
265 | count -= len; | ||
266 | s += len; | ||
267 | } | ||
268 | |||
269 | return ret; | ||
270 | } | ||
271 | |||
272 | /* | ||
273 | * write a string to the console | ||
274 | * | ||
275 | * This function gets called to write a string from the kernel, typically from | ||
276 | * a printk(). This function spins until all data is written. | ||
277 | * | ||
278 | * We copy the data to a temporary buffer because we need to insert a \r in | ||
279 | * front of every \n. It's more efficient to copy the data to the buffer than | ||
280 | * it is to make multiple hcalls for each character or each newline. | ||
281 | */ | ||
282 | static void ehv_bc_console_write(struct console *co, const char *s, | ||
283 | unsigned int count) | ||
284 | { | ||
285 | char s2[EV_BYTE_CHANNEL_MAX_BYTES]; | ||
286 | unsigned int i, j = 0; | ||
287 | char c; | ||
288 | |||
289 | for (i = 0; i < count; i++) { | ||
290 | c = *s++; | ||
291 | |||
292 | if (c == '\n') | ||
293 | s2[j++] = '\r'; | ||
294 | |||
295 | s2[j++] = c; | ||
296 | if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) { | ||
297 | if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j)) | ||
298 | return; | ||
299 | j = 0; | ||
300 | } | ||
301 | } | ||
302 | |||
303 | if (j) | ||
304 | ehv_bc_console_byte_channel_send(stdout_bc, s2, j); | ||
305 | } | ||
306 | |||
307 | /* | ||
308 | * When /dev/console is opened, the kernel iterates the console list looking | ||
309 | * for one with ->device and then calls that method. On success, it expects | ||
310 | * the passed-in int* to contain the minor number to use. | ||
311 | */ | ||
312 | static struct tty_driver *ehv_bc_console_device(struct console *co, int *index) | ||
313 | { | ||
314 | *index = co->index; | ||
315 | |||
316 | return ehv_bc_driver; | ||
317 | } | ||
318 | |||
319 | static struct console ehv_bc_console = { | ||
320 | .name = "ttyEHV", | ||
321 | .write = ehv_bc_console_write, | ||
322 | .device = ehv_bc_console_device, | ||
323 | .flags = CON_PRINTBUFFER | CON_ENABLED, | ||
324 | }; | ||
325 | |||
326 | /* | ||
327 | * Console initialization | ||
328 | * | ||
329 | * This is the first function that is called after the device tree is | ||
330 | * available, so here is where we determine the byte channel handle and IRQ for | ||
331 | * stdout/stdin, even though that information is used by the tty and character | ||
332 | * drivers. | ||
333 | */ | ||
334 | static int __init ehv_bc_console_init(void) | ||
335 | { | ||
336 | if (!find_console_handle()) { | ||
337 | pr_debug("ehv-bc: stdout is not a byte channel\n"); | ||
338 | return -ENODEV; | ||
339 | } | ||
340 | |||
341 | #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC | ||
342 | /* Print a friendly warning if the user chose the wrong byte channel | ||
343 | * handle for udbg. | ||
344 | */ | ||
345 | if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE) | ||
346 | pr_warning("ehv-bc: udbg handle %u is not the stdout handle\n", | ||
347 | CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); | ||
348 | #endif | ||
349 | |||
350 | /* add_preferred_console() must be called before register_console(), | ||
351 | otherwise it won't work. However, we don't want to enumerate all the | ||
352 | byte channels here, either, since we only care about one. */ | ||
353 | |||
354 | add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL); | ||
355 | register_console(&ehv_bc_console); | ||
356 | |||
357 | pr_info("ehv-bc: registered console driver for byte channel %u\n", | ||
358 | stdout_bc); | ||
359 | |||
360 | return 0; | ||
361 | } | ||
362 | console_initcall(ehv_bc_console_init); | ||
363 | |||
364 | /******************************** TTY DRIVER ********************************/ | ||
365 | |||
366 | /* | ||
367 | * byte channel receive interupt handler | ||
368 | * | ||
369 | * This ISR is called whenever data is available on a byte channel. | ||
370 | */ | ||
371 | static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data) | ||
372 | { | ||
373 | struct ehv_bc_data *bc = data; | ||
374 | struct tty_struct *ttys = tty_port_tty_get(&bc->port); | ||
375 | unsigned int rx_count, tx_count, len; | ||
376 | int count; | ||
377 | char buffer[EV_BYTE_CHANNEL_MAX_BYTES]; | ||
378 | int ret; | ||
379 | |||
380 | /* ttys could be NULL during a hangup */ | ||
381 | if (!ttys) | ||
382 | return IRQ_HANDLED; | ||
383 | |||
384 | /* Find out how much data needs to be read, and then ask the TTY layer | ||
385 | * if it can handle that much. We want to ensure that every byte we | ||
386 | * read from the byte channel will be accepted by the TTY layer. | ||
387 | */ | ||
388 | ev_byte_channel_poll(bc->handle, &rx_count, &tx_count); | ||
389 | count = tty_buffer_request_room(ttys, rx_count); | ||
390 | |||
391 | /* 'count' is the maximum amount of data the TTY layer can accept at | ||
392 | * this time. However, during testing, I was never able to get 'count' | ||
393 | * to be less than 'rx_count'. I'm not sure whether I'm calling it | ||
394 | * correctly. | ||
395 | */ | ||
396 | |||
397 | while (count > 0) { | ||
398 | len = min_t(unsigned int, count, sizeof(buffer)); | ||
399 | |||
400 | /* Read some data from the byte channel. This function will | ||
401 | * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes. | ||
402 | */ | ||
403 | ev_byte_channel_receive(bc->handle, &len, buffer); | ||
404 | |||
405 | /* 'len' is now the amount of data that's been received. 'len' | ||
406 | * can't be zero, and most likely it's equal to one. | ||
407 | */ | ||
408 | |||
409 | /* Pass the received data to the tty layer. */ | ||
410 | ret = tty_insert_flip_string(ttys, buffer, len); | ||
411 | |||
412 | /* 'ret' is the number of bytes that the TTY layer accepted. | ||
413 | * If it's not equal to 'len', then it means the buffer is | ||
414 | * full, which should never happen. If it does happen, we can | ||
415 | * exit gracefully, but we drop the last 'len - ret' characters | ||
416 | * that we read from the byte channel. | ||
417 | */ | ||
418 | if (ret != len) | ||
419 | break; | ||
420 | |||
421 | count -= len; | ||
422 | } | ||
423 | |||
424 | /* Tell the tty layer that we're done. */ | ||
425 | tty_flip_buffer_push(ttys); | ||
426 | |||
427 | tty_kref_put(ttys); | ||
428 | |||
429 | return IRQ_HANDLED; | ||
430 | } | ||
431 | |||
432 | /* | ||
433 | * dequeue the transmit buffer to the hypervisor | ||
434 | * | ||
435 | * This function, which can be called in interrupt context, dequeues as much | ||
436 | * data as possible from the transmit buffer to the byte channel. | ||
437 | */ | ||
438 | static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc) | ||
439 | { | ||
440 | unsigned int count; | ||
441 | unsigned int len, ret; | ||
442 | unsigned long flags; | ||
443 | |||
444 | do { | ||
445 | spin_lock_irqsave(&bc->lock, flags); | ||
446 | len = min_t(unsigned int, | ||
447 | CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE), | ||
448 | EV_BYTE_CHANNEL_MAX_BYTES); | ||
449 | |||
450 | ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail); | ||
451 | |||
452 | /* 'len' is valid only if the return code is 0 or EV_EAGAIN */ | ||
453 | if (!ret || (ret == EV_EAGAIN)) | ||
454 | bc->tail = (bc->tail + len) & (BUF_SIZE - 1); | ||
455 | |||
456 | count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE); | ||
457 | spin_unlock_irqrestore(&bc->lock, flags); | ||
458 | } while (count && !ret); | ||
459 | |||
460 | spin_lock_irqsave(&bc->lock, flags); | ||
461 | if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE)) | ||
462 | /* | ||
463 | * If we haven't emptied the buffer, then enable the TX IRQ. | ||
464 | * We'll get an interrupt when there's more room in the | ||
465 | * hypervisor's output buffer. | ||
466 | */ | ||
467 | enable_tx_interrupt(bc); | ||
468 | else | ||
469 | disable_tx_interrupt(bc); | ||
470 | spin_unlock_irqrestore(&bc->lock, flags); | ||
471 | } | ||
472 | |||
473 | /* | ||
474 | * byte channel transmit interupt handler | ||
475 | * | ||
476 | * This ISR is called whenever space becomes available for transmitting | ||
477 | * characters on a byte channel. | ||
478 | */ | ||
479 | static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data) | ||
480 | { | ||
481 | struct ehv_bc_data *bc = data; | ||
482 | struct tty_struct *ttys = tty_port_tty_get(&bc->port); | ||
483 | |||
484 | ehv_bc_tx_dequeue(bc); | ||
485 | if (ttys) { | ||
486 | tty_wakeup(ttys); | ||
487 | tty_kref_put(ttys); | ||
488 | } | ||
489 | |||
490 | return IRQ_HANDLED; | ||
491 | } | ||
492 | |||
493 | /* | ||
494 | * This function is called when the tty layer has data for us send. We store | ||
495 | * the data first in a circular buffer, and then dequeue as much of that data | ||
496 | * as possible. | ||
497 | * | ||
498 | * We don't need to worry about whether there is enough room in the buffer for | ||
499 | * all the data. The purpose of ehv_bc_tty_write_room() is to tell the tty | ||
500 | * layer how much data it can safely send to us. We guarantee that | ||
501 | * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us | ||
502 | * too much data. | ||
503 | */ | ||
504 | static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s, | ||
505 | int count) | ||
506 | { | ||
507 | struct ehv_bc_data *bc = ttys->driver_data; | ||
508 | unsigned long flags; | ||
509 | unsigned int len; | ||
510 | unsigned int written = 0; | ||
511 | |||
512 | while (1) { | ||
513 | spin_lock_irqsave(&bc->lock, flags); | ||
514 | len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE); | ||
515 | if (count < len) | ||
516 | len = count; | ||
517 | if (len) { | ||
518 | memcpy(bc->buf + bc->head, s, len); | ||
519 | bc->head = (bc->head + len) & (BUF_SIZE - 1); | ||
520 | } | ||
521 | spin_unlock_irqrestore(&bc->lock, flags); | ||
522 | if (!len) | ||
523 | break; | ||
524 | |||
525 | s += len; | ||
526 | count -= len; | ||
527 | written += len; | ||
528 | } | ||
529 | |||
530 | ehv_bc_tx_dequeue(bc); | ||
531 | |||
532 | return written; | ||
533 | } | ||
534 | |||
535 | /* | ||
536 | * This function can be called multiple times for a given tty_struct, which is | ||
537 | * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead. | ||
538 | * | ||
539 | * The tty layer will still call this function even if the device was not | ||
540 | * registered (i.e. tty_register_device() was not called). This happens | ||
541 | * because tty_register_device() is optional and some legacy drivers don't | ||
542 | * use it. So we need to check for that. | ||
543 | */ | ||
544 | static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp) | ||
545 | { | ||
546 | struct ehv_bc_data *bc = &bcs[ttys->index]; | ||
547 | |||
548 | if (!bc->dev) | ||
549 | return -ENODEV; | ||
550 | |||
551 | return tty_port_open(&bc->port, ttys, filp); | ||
552 | } | ||
553 | |||
554 | /* | ||
555 | * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will | ||
556 | * still call this function to close the tty device. So we can't assume that | ||
557 | * the tty port has been initialized. | ||
558 | */ | ||
559 | static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp) | ||
560 | { | ||
561 | struct ehv_bc_data *bc = &bcs[ttys->index]; | ||
562 | |||
563 | if (bc->dev) | ||
564 | tty_port_close(&bc->port, ttys, filp); | ||
565 | } | ||
566 | |||
567 | /* | ||
568 | * Return the amount of space in the output buffer | ||
569 | * | ||
570 | * This is actually a contract between the driver and the tty layer outlining | ||
571 | * how much write room the driver can guarantee will be sent OR BUFFERED. This | ||
572 | * driver MUST honor the return value. | ||
573 | */ | ||
574 | static int ehv_bc_tty_write_room(struct tty_struct *ttys) | ||
575 | { | ||
576 | struct ehv_bc_data *bc = ttys->driver_data; | ||
577 | unsigned long flags; | ||
578 | int count; | ||
579 | |||
580 | spin_lock_irqsave(&bc->lock, flags); | ||
581 | count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE); | ||
582 | spin_unlock_irqrestore(&bc->lock, flags); | ||
583 | |||
584 | return count; | ||
585 | } | ||
586 | |||
587 | /* | ||
588 | * Stop sending data to the tty layer | ||
589 | * | ||
590 | * This function is called when the tty layer's input buffers are getting full, | ||
591 | * so the driver should stop sending it data. The easiest way to do this is to | ||
592 | * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being | ||
593 | * called. | ||
594 | * | ||
595 | * The hypervisor will continue to queue up any incoming data. If there is any | ||
596 | * data in the queue when the RX interrupt is enabled, we'll immediately get an | ||
597 | * RX interrupt. | ||
598 | */ | ||
599 | static void ehv_bc_tty_throttle(struct tty_struct *ttys) | ||
600 | { | ||
601 | struct ehv_bc_data *bc = ttys->driver_data; | ||
602 | |||
603 | disable_irq(bc->rx_irq); | ||
604 | } | ||
605 | |||
606 | /* | ||
607 | * Resume sending data to the tty layer | ||
608 | * | ||
609 | * This function is called after previously calling ehv_bc_tty_throttle(). The | ||
610 | * tty layer's input buffers now have more room, so the driver can resume | ||
611 | * sending it data. | ||
612 | */ | ||
613 | static void ehv_bc_tty_unthrottle(struct tty_struct *ttys) | ||
614 | { | ||
615 | struct ehv_bc_data *bc = ttys->driver_data; | ||
616 | |||
617 | /* If there is any data in the queue when the RX interrupt is enabled, | ||
618 | * we'll immediately get an RX interrupt. | ||
619 | */ | ||
620 | enable_irq(bc->rx_irq); | ||
621 | } | ||
622 | |||
623 | static void ehv_bc_tty_hangup(struct tty_struct *ttys) | ||
624 | { | ||
625 | struct ehv_bc_data *bc = ttys->driver_data; | ||
626 | |||
627 | ehv_bc_tx_dequeue(bc); | ||
628 | tty_port_hangup(&bc->port); | ||
629 | } | ||
630 | |||
631 | /* | ||
632 | * TTY driver operations | ||
633 | * | ||
634 | * If we could ask the hypervisor how much data is still in the TX buffer, or | ||
635 | * at least how big the TX buffers are, then we could implement the | ||
636 | * .wait_until_sent and .chars_in_buffer functions. | ||
637 | */ | ||
638 | static const struct tty_operations ehv_bc_ops = { | ||
639 | .open = ehv_bc_tty_open, | ||
640 | .close = ehv_bc_tty_close, | ||
641 | .write = ehv_bc_tty_write, | ||
642 | .write_room = ehv_bc_tty_write_room, | ||
643 | .throttle = ehv_bc_tty_throttle, | ||
644 | .unthrottle = ehv_bc_tty_unthrottle, | ||
645 | .hangup = ehv_bc_tty_hangup, | ||
646 | }; | ||
647 | |||
648 | /* | ||
649 | * initialize the TTY port | ||
650 | * | ||
651 | * This function will only be called once, no matter how many times | ||
652 | * ehv_bc_tty_open() is called. That's why we register the ISR here, and also | ||
653 | * why we initialize tty_struct-related variables here. | ||
654 | */ | ||
655 | static int ehv_bc_tty_port_activate(struct tty_port *port, | ||
656 | struct tty_struct *ttys) | ||
657 | { | ||
658 | struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); | ||
659 | int ret; | ||
660 | |||
661 | ttys->driver_data = bc; | ||
662 | |||
663 | ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc); | ||
664 | if (ret < 0) { | ||
665 | dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n", | ||
666 | bc->rx_irq, ret); | ||
667 | return ret; | ||
668 | } | ||
669 | |||
670 | /* request_irq also enables the IRQ */ | ||
671 | bc->tx_irq_enabled = 1; | ||
672 | |||
673 | ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc); | ||
674 | if (ret < 0) { | ||
675 | dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n", | ||
676 | bc->tx_irq, ret); | ||
677 | free_irq(bc->rx_irq, bc); | ||
678 | return ret; | ||
679 | } | ||
680 | |||
681 | /* The TX IRQ is enabled only when we can't write all the data to the | ||
682 | * byte channel at once, so by default it's disabled. | ||
683 | */ | ||
684 | disable_tx_interrupt(bc); | ||
685 | |||
686 | return 0; | ||
687 | } | ||
688 | |||
689 | static void ehv_bc_tty_port_shutdown(struct tty_port *port) | ||
690 | { | ||
691 | struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); | ||
692 | |||
693 | free_irq(bc->tx_irq, bc); | ||
694 | free_irq(bc->rx_irq, bc); | ||
695 | } | ||
696 | |||
697 | static const struct tty_port_operations ehv_bc_tty_port_ops = { | ||
698 | .activate = ehv_bc_tty_port_activate, | ||
699 | .shutdown = ehv_bc_tty_port_shutdown, | ||
700 | }; | ||
701 | |||
702 | static int __devinit ehv_bc_tty_probe(struct platform_device *pdev) | ||
703 | { | ||
704 | struct device_node *np = pdev->dev.of_node; | ||
705 | struct ehv_bc_data *bc; | ||
706 | const uint32_t *iprop; | ||
707 | unsigned int handle; | ||
708 | int ret; | ||
709 | static unsigned int index = 1; | ||
710 | unsigned int i; | ||
711 | |||
712 | iprop = of_get_property(np, "hv-handle", NULL); | ||
713 | if (!iprop) { | ||
714 | dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n", | ||
715 | np->name); | ||
716 | return -ENODEV; | ||
717 | } | ||
718 | |||
719 | /* We already told the console layer that the index for the console | ||
720 | * device is zero, so we need to make sure that we use that index when | ||
721 | * we probe the console byte channel node. | ||
722 | */ | ||
723 | handle = be32_to_cpu(*iprop); | ||
724 | i = (handle == stdout_bc) ? 0 : index++; | ||
725 | bc = &bcs[i]; | ||
726 | |||
727 | bc->handle = handle; | ||
728 | bc->head = 0; | ||
729 | bc->tail = 0; | ||
730 | spin_lock_init(&bc->lock); | ||
731 | |||
732 | bc->rx_irq = irq_of_parse_and_map(np, 0); | ||
733 | bc->tx_irq = irq_of_parse_and_map(np, 1); | ||
734 | if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) { | ||
735 | dev_err(&pdev->dev, "no 'interrupts' property in %s node\n", | ||
736 | np->name); | ||
737 | ret = -ENODEV; | ||
738 | goto error; | ||
739 | } | ||
740 | |||
741 | bc->dev = tty_register_device(ehv_bc_driver, i, &pdev->dev); | ||
742 | if (IS_ERR(bc->dev)) { | ||
743 | ret = PTR_ERR(bc->dev); | ||
744 | dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret); | ||
745 | goto error; | ||
746 | } | ||
747 | |||
748 | tty_port_init(&bc->port); | ||
749 | bc->port.ops = &ehv_bc_tty_port_ops; | ||
750 | |||
751 | dev_set_drvdata(&pdev->dev, bc); | ||
752 | |||
753 | dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n", | ||
754 | ehv_bc_driver->name, i, bc->handle); | ||
755 | |||
756 | return 0; | ||
757 | |||
758 | error: | ||
759 | irq_dispose_mapping(bc->tx_irq); | ||
760 | irq_dispose_mapping(bc->rx_irq); | ||
761 | |||
762 | memset(bc, 0, sizeof(struct ehv_bc_data)); | ||
763 | return ret; | ||
764 | } | ||
765 | |||
766 | static int ehv_bc_tty_remove(struct platform_device *pdev) | ||
767 | { | ||
768 | struct ehv_bc_data *bc = dev_get_drvdata(&pdev->dev); | ||
769 | |||
770 | tty_unregister_device(ehv_bc_driver, bc - bcs); | ||
771 | |||
772 | irq_dispose_mapping(bc->tx_irq); | ||
773 | irq_dispose_mapping(bc->rx_irq); | ||
774 | |||
775 | return 0; | ||
776 | } | ||
777 | |||
778 | static const struct of_device_id ehv_bc_tty_of_ids[] = { | ||
779 | { .compatible = "epapr,hv-byte-channel" }, | ||
780 | {} | ||
781 | }; | ||
782 | |||
783 | static struct platform_driver ehv_bc_tty_driver = { | ||
784 | .driver = { | ||
785 | .owner = THIS_MODULE, | ||
786 | .name = "ehv-bc", | ||
787 | .of_match_table = ehv_bc_tty_of_ids, | ||
788 | }, | ||
789 | .probe = ehv_bc_tty_probe, | ||
790 | .remove = ehv_bc_tty_remove, | ||
791 | }; | ||
792 | |||
793 | /** | ||
794 | * ehv_bc_init - ePAPR hypervisor byte channel driver initialization | ||
795 | * | ||
796 | * This function is called when this module is loaded. | ||
797 | */ | ||
798 | static int __init ehv_bc_init(void) | ||
799 | { | ||
800 | struct device_node *np; | ||
801 | unsigned int count = 0; /* Number of elements in bcs[] */ | ||
802 | int ret; | ||
803 | |||
804 | pr_info("ePAPR hypervisor byte channel driver\n"); | ||
805 | |||
806 | /* Count the number of byte channels */ | ||
807 | for_each_compatible_node(np, NULL, "epapr,hv-byte-channel") | ||
808 | count++; | ||
809 | |||
810 | if (!count) | ||
811 | return -ENODEV; | ||
812 | |||
813 | /* The array index of an element in bcs[] is the same as the tty index | ||
814 | * for that element. If you know the address of an element in the | ||
815 | * array, then you can use pointer math (e.g. "bc - bcs") to get its | ||
816 | * tty index. | ||
817 | */ | ||
818 | bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL); | ||
819 | if (!bcs) | ||
820 | return -ENOMEM; | ||
821 | |||
822 | ehv_bc_driver = alloc_tty_driver(count); | ||
823 | if (!ehv_bc_driver) { | ||
824 | ret = -ENOMEM; | ||
825 | goto error; | ||
826 | } | ||
827 | |||
828 | ehv_bc_driver->owner = THIS_MODULE; | ||
829 | ehv_bc_driver->driver_name = "ehv-bc"; | ||
830 | ehv_bc_driver->name = ehv_bc_console.name; | ||
831 | ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE; | ||
832 | ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE; | ||
833 | ehv_bc_driver->init_termios = tty_std_termios; | ||
834 | ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; | ||
835 | tty_set_operations(ehv_bc_driver, &ehv_bc_ops); | ||
836 | |||
837 | ret = tty_register_driver(ehv_bc_driver); | ||
838 | if (ret) { | ||
839 | pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret); | ||
840 | goto error; | ||
841 | } | ||
842 | |||
843 | ret = platform_driver_register(&ehv_bc_tty_driver); | ||
844 | if (ret) { | ||
845 | pr_err("ehv-bc: could not register platform driver (ret=%i)\n", | ||
846 | ret); | ||
847 | goto error; | ||
848 | } | ||
849 | |||
850 | return 0; | ||
851 | |||
852 | error: | ||
853 | if (ehv_bc_driver) { | ||
854 | tty_unregister_driver(ehv_bc_driver); | ||
855 | put_tty_driver(ehv_bc_driver); | ||
856 | } | ||
857 | |||
858 | kfree(bcs); | ||
859 | |||
860 | return ret; | ||
861 | } | ||
862 | |||
863 | |||
864 | /** | ||
865 | * ehv_bc_exit - ePAPR hypervisor byte channel driver termination | ||
866 | * | ||
867 | * This function is called when this driver is unloaded. | ||
868 | */ | ||
869 | static void __exit ehv_bc_exit(void) | ||
870 | { | ||
871 | tty_unregister_driver(ehv_bc_driver); | ||
872 | put_tty_driver(ehv_bc_driver); | ||
873 | kfree(bcs); | ||
874 | } | ||
875 | |||
876 | module_init(ehv_bc_init); | ||
877 | module_exit(ehv_bc_exit); | ||
878 | |||
879 | MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); | ||
880 | MODULE_DESCRIPTION("ePAPR hypervisor byte channel driver"); | ||
881 | MODULE_LICENSE("GPL v2"); | ||