aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/sh/clk
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/sh/clk')
-rw-r--r--drivers/sh/clk/Makefile3
-rw-r--r--drivers/sh/clk/core.c694
-rw-r--r--drivers/sh/clk/cpg.c359
3 files changed, 1056 insertions, 0 deletions
diff --git a/drivers/sh/clk/Makefile b/drivers/sh/clk/Makefile
new file mode 100644
index 000000000000..5d15ebfaa074
--- /dev/null
+++ b/drivers/sh/clk/Makefile
@@ -0,0 +1,3 @@
1obj-y := core.o
2
3obj-$(CONFIG_SH_CLK_CPG) += cpg.o
diff --git a/drivers/sh/clk/core.c b/drivers/sh/clk/core.c
new file mode 100644
index 000000000000..fd0d1b98901c
--- /dev/null
+++ b/drivers/sh/clk/core.c
@@ -0,0 +1,694 @@
1/*
2 * SuperH clock framework
3 *
4 * Copyright (C) 2005 - 2010 Paul Mundt
5 *
6 * This clock framework is derived from the OMAP version by:
7 *
8 * Copyright (C) 2004 - 2008 Nokia Corporation
9 * Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
10 *
11 * Modified for omap shared clock framework by Tony Lindgren <tony@atomide.com>
12 *
13 * This file is subject to the terms and conditions of the GNU General Public
14 * License. See the file "COPYING" in the main directory of this archive
15 * for more details.
16 */
17#define pr_fmt(fmt) "clock: " fmt
18
19#include <linux/kernel.h>
20#include <linux/init.h>
21#include <linux/module.h>
22#include <linux/mutex.h>
23#include <linux/list.h>
24#include <linux/kobject.h>
25#include <linux/sysdev.h>
26#include <linux/seq_file.h>
27#include <linux/err.h>
28#include <linux/io.h>
29#include <linux/debugfs.h>
30#include <linux/cpufreq.h>
31#include <linux/clk.h>
32#include <linux/sh_clk.h>
33
34static LIST_HEAD(clock_list);
35static DEFINE_SPINLOCK(clock_lock);
36static DEFINE_MUTEX(clock_list_sem);
37
38void clk_rate_table_build(struct clk *clk,
39 struct cpufreq_frequency_table *freq_table,
40 int nr_freqs,
41 struct clk_div_mult_table *src_table,
42 unsigned long *bitmap)
43{
44 unsigned long mult, div;
45 unsigned long freq;
46 int i;
47
48 clk->nr_freqs = nr_freqs;
49
50 for (i = 0; i < nr_freqs; i++) {
51 div = 1;
52 mult = 1;
53
54 if (src_table->divisors && i < src_table->nr_divisors)
55 div = src_table->divisors[i];
56
57 if (src_table->multipliers && i < src_table->nr_multipliers)
58 mult = src_table->multipliers[i];
59
60 if (!div || !mult || (bitmap && !test_bit(i, bitmap)))
61 freq = CPUFREQ_ENTRY_INVALID;
62 else
63 freq = clk->parent->rate * mult / div;
64
65 freq_table[i].index = i;
66 freq_table[i].frequency = freq;
67 }
68
69 /* Termination entry */
70 freq_table[i].index = i;
71 freq_table[i].frequency = CPUFREQ_TABLE_END;
72}
73
74struct clk_rate_round_data;
75
76struct clk_rate_round_data {
77 unsigned long rate;
78 unsigned int min, max;
79 long (*func)(unsigned int, struct clk_rate_round_data *);
80 void *arg;
81};
82
83#define for_each_frequency(pos, r, freq) \
84 for (pos = r->min, freq = r->func(pos, r); \
85 pos <= r->max; pos++, freq = r->func(pos, r)) \
86 if (unlikely(freq == 0)) \
87 ; \
88 else
89
90static long clk_rate_round_helper(struct clk_rate_round_data *rounder)
91{
92 unsigned long rate_error, rate_error_prev = ~0UL;
93 unsigned long rate_best_fit = rounder->rate;
94 unsigned long highest, lowest, freq;
95 int i;
96
97 highest = 0;
98 lowest = ~0UL;
99
100 for_each_frequency(i, rounder, freq) {
101 if (freq > highest)
102 highest = freq;
103 if (freq < lowest)
104 lowest = freq;
105
106 rate_error = abs(freq - rounder->rate);
107 if (rate_error < rate_error_prev) {
108 rate_best_fit = freq;
109 rate_error_prev = rate_error;
110 }
111
112 if (rate_error == 0)
113 break;
114 }
115
116 if (rounder->rate >= highest)
117 rate_best_fit = highest;
118 if (rounder->rate <= lowest)
119 rate_best_fit = lowest;
120
121 return rate_best_fit;
122}
123
124static long clk_rate_table_iter(unsigned int pos,
125 struct clk_rate_round_data *rounder)
126{
127 struct cpufreq_frequency_table *freq_table = rounder->arg;
128 unsigned long freq = freq_table[pos].frequency;
129
130 if (freq == CPUFREQ_ENTRY_INVALID)
131 freq = 0;
132
133 return freq;
134}
135
136long clk_rate_table_round(struct clk *clk,
137 struct cpufreq_frequency_table *freq_table,
138 unsigned long rate)
139{
140 struct clk_rate_round_data table_round = {
141 .min = 0,
142 .max = clk->nr_freqs - 1,
143 .func = clk_rate_table_iter,
144 .arg = freq_table,
145 .rate = rate,
146 };
147
148 if (clk->nr_freqs < 1)
149 return 0;
150
151 return clk_rate_round_helper(&table_round);
152}
153
154static long clk_rate_div_range_iter(unsigned int pos,
155 struct clk_rate_round_data *rounder)
156{
157 return clk_get_rate(rounder->arg) / pos;
158}
159
160long clk_rate_div_range_round(struct clk *clk, unsigned int div_min,
161 unsigned int div_max, unsigned long rate)
162{
163 struct clk_rate_round_data div_range_round = {
164 .min = div_min,
165 .max = div_max,
166 .func = clk_rate_div_range_iter,
167 .arg = clk_get_parent(clk),
168 .rate = rate,
169 };
170
171 return clk_rate_round_helper(&div_range_round);
172}
173
174int clk_rate_table_find(struct clk *clk,
175 struct cpufreq_frequency_table *freq_table,
176 unsigned long rate)
177{
178 int i;
179
180 for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
181 unsigned long freq = freq_table[i].frequency;
182
183 if (freq == CPUFREQ_ENTRY_INVALID)
184 continue;
185
186 if (freq == rate)
187 return i;
188 }
189
190 return -ENOENT;
191}
192
193/* Used for clocks that always have same value as the parent clock */
194unsigned long followparent_recalc(struct clk *clk)
195{
196 return clk->parent ? clk->parent->rate : 0;
197}
198
199int clk_reparent(struct clk *child, struct clk *parent)
200{
201 list_del_init(&child->sibling);
202 if (parent)
203 list_add(&child->sibling, &parent->children);
204 child->parent = parent;
205
206 /* now do the debugfs renaming to reattach the child
207 to the proper parent */
208
209 return 0;
210}
211
212/* Propagate rate to children */
213void propagate_rate(struct clk *tclk)
214{
215 struct clk *clkp;
216
217 list_for_each_entry(clkp, &tclk->children, sibling) {
218 if (clkp->ops && clkp->ops->recalc)
219 clkp->rate = clkp->ops->recalc(clkp);
220
221 propagate_rate(clkp);
222 }
223}
224
225static void __clk_disable(struct clk *clk)
226{
227 if (WARN(!clk->usecount, "Trying to disable clock %p with 0 usecount\n",
228 clk))
229 return;
230
231 if (!(--clk->usecount)) {
232 if (likely(clk->ops && clk->ops->disable))
233 clk->ops->disable(clk);
234 if (likely(clk->parent))
235 __clk_disable(clk->parent);
236 }
237}
238
239void clk_disable(struct clk *clk)
240{
241 unsigned long flags;
242
243 if (!clk)
244 return;
245
246 spin_lock_irqsave(&clock_lock, flags);
247 __clk_disable(clk);
248 spin_unlock_irqrestore(&clock_lock, flags);
249}
250EXPORT_SYMBOL_GPL(clk_disable);
251
252static int __clk_enable(struct clk *clk)
253{
254 int ret = 0;
255
256 if (clk->usecount++ == 0) {
257 if (clk->parent) {
258 ret = __clk_enable(clk->parent);
259 if (unlikely(ret))
260 goto err;
261 }
262
263 if (clk->ops && clk->ops->enable) {
264 ret = clk->ops->enable(clk);
265 if (ret) {
266 if (clk->parent)
267 __clk_disable(clk->parent);
268 goto err;
269 }
270 }
271 }
272
273 return ret;
274err:
275 clk->usecount--;
276 return ret;
277}
278
279int clk_enable(struct clk *clk)
280{
281 unsigned long flags;
282 int ret;
283
284 if (!clk)
285 return -EINVAL;
286
287 spin_lock_irqsave(&clock_lock, flags);
288 ret = __clk_enable(clk);
289 spin_unlock_irqrestore(&clock_lock, flags);
290
291 return ret;
292}
293EXPORT_SYMBOL_GPL(clk_enable);
294
295static LIST_HEAD(root_clks);
296
297/**
298 * recalculate_root_clocks - recalculate and propagate all root clocks
299 *
300 * Recalculates all root clocks (clocks with no parent), which if the
301 * clock's .recalc is set correctly, should also propagate their rates.
302 * Called at init.
303 */
304void recalculate_root_clocks(void)
305{
306 struct clk *clkp;
307
308 list_for_each_entry(clkp, &root_clks, sibling) {
309 if (clkp->ops && clkp->ops->recalc)
310 clkp->rate = clkp->ops->recalc(clkp);
311 propagate_rate(clkp);
312 }
313}
314
315static struct clk_mapping dummy_mapping;
316
317static struct clk *lookup_root_clock(struct clk *clk)
318{
319 while (clk->parent)
320 clk = clk->parent;
321
322 return clk;
323}
324
325static int clk_establish_mapping(struct clk *clk)
326{
327 struct clk_mapping *mapping = clk->mapping;
328
329 /*
330 * Propagate mappings.
331 */
332 if (!mapping) {
333 struct clk *clkp;
334
335 /*
336 * dummy mapping for root clocks with no specified ranges
337 */
338 if (!clk->parent) {
339 clk->mapping = &dummy_mapping;
340 return 0;
341 }
342
343 /*
344 * If we're on a child clock and it provides no mapping of its
345 * own, inherit the mapping from its root clock.
346 */
347 clkp = lookup_root_clock(clk);
348 mapping = clkp->mapping;
349 BUG_ON(!mapping);
350 }
351
352 /*
353 * Establish initial mapping.
354 */
355 if (!mapping->base && mapping->phys) {
356 kref_init(&mapping->ref);
357
358 mapping->base = ioremap_nocache(mapping->phys, mapping->len);
359 if (unlikely(!mapping->base))
360 return -ENXIO;
361 } else if (mapping->base) {
362 /*
363 * Bump the refcount for an existing mapping
364 */
365 kref_get(&mapping->ref);
366 }
367
368 clk->mapping = mapping;
369 return 0;
370}
371
372static void clk_destroy_mapping(struct kref *kref)
373{
374 struct clk_mapping *mapping;
375
376 mapping = container_of(kref, struct clk_mapping, ref);
377
378 iounmap(mapping->base);
379}
380
381static void clk_teardown_mapping(struct clk *clk)
382{
383 struct clk_mapping *mapping = clk->mapping;
384
385 /* Nothing to do */
386 if (mapping == &dummy_mapping)
387 return;
388
389 kref_put(&mapping->ref, clk_destroy_mapping);
390 clk->mapping = NULL;
391}
392
393int clk_register(struct clk *clk)
394{
395 int ret;
396
397 if (clk == NULL || IS_ERR(clk))
398 return -EINVAL;
399
400 /*
401 * trap out already registered clocks
402 */
403 if (clk->node.next || clk->node.prev)
404 return 0;
405
406 mutex_lock(&clock_list_sem);
407
408 INIT_LIST_HEAD(&clk->children);
409 clk->usecount = 0;
410
411 ret = clk_establish_mapping(clk);
412 if (unlikely(ret))
413 goto out_unlock;
414
415 if (clk->parent)
416 list_add(&clk->sibling, &clk->parent->children);
417 else
418 list_add(&clk->sibling, &root_clks);
419
420 list_add(&clk->node, &clock_list);
421 if (clk->ops && clk->ops->init)
422 clk->ops->init(clk);
423
424out_unlock:
425 mutex_unlock(&clock_list_sem);
426
427 return ret;
428}
429EXPORT_SYMBOL_GPL(clk_register);
430
431void clk_unregister(struct clk *clk)
432{
433 mutex_lock(&clock_list_sem);
434 list_del(&clk->sibling);
435 list_del(&clk->node);
436 clk_teardown_mapping(clk);
437 mutex_unlock(&clock_list_sem);
438}
439EXPORT_SYMBOL_GPL(clk_unregister);
440
441void clk_enable_init_clocks(void)
442{
443 struct clk *clkp;
444
445 list_for_each_entry(clkp, &clock_list, node)
446 if (clkp->flags & CLK_ENABLE_ON_INIT)
447 clk_enable(clkp);
448}
449
450unsigned long clk_get_rate(struct clk *clk)
451{
452 return clk->rate;
453}
454EXPORT_SYMBOL_GPL(clk_get_rate);
455
456int clk_set_rate(struct clk *clk, unsigned long rate)
457{
458 return clk_set_rate_ex(clk, rate, 0);
459}
460EXPORT_SYMBOL_GPL(clk_set_rate);
461
462int clk_set_rate_ex(struct clk *clk, unsigned long rate, int algo_id)
463{
464 int ret = -EOPNOTSUPP;
465 unsigned long flags;
466
467 spin_lock_irqsave(&clock_lock, flags);
468
469 if (likely(clk->ops && clk->ops->set_rate)) {
470 ret = clk->ops->set_rate(clk, rate, algo_id);
471 if (ret != 0)
472 goto out_unlock;
473 } else {
474 clk->rate = rate;
475 ret = 0;
476 }
477
478 if (clk->ops && clk->ops->recalc)
479 clk->rate = clk->ops->recalc(clk);
480
481 propagate_rate(clk);
482
483out_unlock:
484 spin_unlock_irqrestore(&clock_lock, flags);
485
486 return ret;
487}
488EXPORT_SYMBOL_GPL(clk_set_rate_ex);
489
490int clk_set_parent(struct clk *clk, struct clk *parent)
491{
492 unsigned long flags;
493 int ret = -EINVAL;
494
495 if (!parent || !clk)
496 return ret;
497 if (clk->parent == parent)
498 return 0;
499
500 spin_lock_irqsave(&clock_lock, flags);
501 if (clk->usecount == 0) {
502 if (clk->ops->set_parent)
503 ret = clk->ops->set_parent(clk, parent);
504 else
505 ret = clk_reparent(clk, parent);
506
507 if (ret == 0) {
508 if (clk->ops->recalc)
509 clk->rate = clk->ops->recalc(clk);
510 pr_debug("set parent of %p to %p (new rate %ld)\n",
511 clk, clk->parent, clk->rate);
512 propagate_rate(clk);
513 }
514 } else
515 ret = -EBUSY;
516 spin_unlock_irqrestore(&clock_lock, flags);
517
518 return ret;
519}
520EXPORT_SYMBOL_GPL(clk_set_parent);
521
522struct clk *clk_get_parent(struct clk *clk)
523{
524 return clk->parent;
525}
526EXPORT_SYMBOL_GPL(clk_get_parent);
527
528long clk_round_rate(struct clk *clk, unsigned long rate)
529{
530 if (likely(clk->ops && clk->ops->round_rate)) {
531 unsigned long flags, rounded;
532
533 spin_lock_irqsave(&clock_lock, flags);
534 rounded = clk->ops->round_rate(clk, rate);
535 spin_unlock_irqrestore(&clock_lock, flags);
536
537 return rounded;
538 }
539
540 return clk_get_rate(clk);
541}
542EXPORT_SYMBOL_GPL(clk_round_rate);
543
544#ifdef CONFIG_PM
545static int clks_sysdev_suspend(struct sys_device *dev, pm_message_t state)
546{
547 static pm_message_t prev_state;
548 struct clk *clkp;
549
550 switch (state.event) {
551 case PM_EVENT_ON:
552 /* Resumeing from hibernation */
553 if (prev_state.event != PM_EVENT_FREEZE)
554 break;
555
556 list_for_each_entry(clkp, &clock_list, node) {
557 if (likely(clkp->ops)) {
558 unsigned long rate = clkp->rate;
559
560 if (likely(clkp->ops->set_parent))
561 clkp->ops->set_parent(clkp,
562 clkp->parent);
563 if (likely(clkp->ops->set_rate))
564 clkp->ops->set_rate(clkp,
565 rate, NO_CHANGE);
566 else if (likely(clkp->ops->recalc))
567 clkp->rate = clkp->ops->recalc(clkp);
568 }
569 }
570 break;
571 case PM_EVENT_FREEZE:
572 break;
573 case PM_EVENT_SUSPEND:
574 break;
575 }
576
577 prev_state = state;
578 return 0;
579}
580
581static int clks_sysdev_resume(struct sys_device *dev)
582{
583 return clks_sysdev_suspend(dev, PMSG_ON);
584}
585
586static struct sysdev_class clks_sysdev_class = {
587 .name = "clks",
588};
589
590static struct sysdev_driver clks_sysdev_driver = {
591 .suspend = clks_sysdev_suspend,
592 .resume = clks_sysdev_resume,
593};
594
595static struct sys_device clks_sysdev_dev = {
596 .cls = &clks_sysdev_class,
597};
598
599static int __init clk_sysdev_init(void)
600{
601 sysdev_class_register(&clks_sysdev_class);
602 sysdev_driver_register(&clks_sysdev_class, &clks_sysdev_driver);
603 sysdev_register(&clks_sysdev_dev);
604
605 return 0;
606}
607subsys_initcall(clk_sysdev_init);
608#endif
609
610/*
611 * debugfs support to trace clock tree hierarchy and attributes
612 */
613static struct dentry *clk_debugfs_root;
614
615static int clk_debugfs_register_one(struct clk *c)
616{
617 int err;
618 struct dentry *d, *child, *child_tmp;
619 struct clk *pa = c->parent;
620 char s[255];
621 char *p = s;
622
623 p += sprintf(p, "%p", c);
624 d = debugfs_create_dir(s, pa ? pa->dentry : clk_debugfs_root);
625 if (!d)
626 return -ENOMEM;
627 c->dentry = d;
628
629 d = debugfs_create_u8("usecount", S_IRUGO, c->dentry, (u8 *)&c->usecount);
630 if (!d) {
631 err = -ENOMEM;
632 goto err_out;
633 }
634 d = debugfs_create_u32("rate", S_IRUGO, c->dentry, (u32 *)&c->rate);
635 if (!d) {
636 err = -ENOMEM;
637 goto err_out;
638 }
639 d = debugfs_create_x32("flags", S_IRUGO, c->dentry, (u32 *)&c->flags);
640 if (!d) {
641 err = -ENOMEM;
642 goto err_out;
643 }
644 return 0;
645
646err_out:
647 d = c->dentry;
648 list_for_each_entry_safe(child, child_tmp, &d->d_subdirs, d_u.d_child)
649 debugfs_remove(child);
650 debugfs_remove(c->dentry);
651 return err;
652}
653
654static int clk_debugfs_register(struct clk *c)
655{
656 int err;
657 struct clk *pa = c->parent;
658
659 if (pa && !pa->dentry) {
660 err = clk_debugfs_register(pa);
661 if (err)
662 return err;
663 }
664
665 if (!c->dentry) {
666 err = clk_debugfs_register_one(c);
667 if (err)
668 return err;
669 }
670 return 0;
671}
672
673static int __init clk_debugfs_init(void)
674{
675 struct clk *c;
676 struct dentry *d;
677 int err;
678
679 d = debugfs_create_dir("clock", NULL);
680 if (!d)
681 return -ENOMEM;
682 clk_debugfs_root = d;
683
684 list_for_each_entry(c, &clock_list, node) {
685 err = clk_debugfs_register(c);
686 if (err)
687 goto err_out;
688 }
689 return 0;
690err_out:
691 debugfs_remove_recursive(clk_debugfs_root);
692 return err;
693}
694late_initcall(clk_debugfs_init);
diff --git a/drivers/sh/clk/cpg.c b/drivers/sh/clk/cpg.c
new file mode 100644
index 000000000000..3aea5f0ceb09
--- /dev/null
+++ b/drivers/sh/clk/cpg.c
@@ -0,0 +1,359 @@
1/*
2 * Helper routines for SuperH Clock Pulse Generator blocks (CPG).
3 *
4 * Copyright (C) 2010 Magnus Damm
5 *
6 * This file is subject to the terms and conditions of the GNU General Public
7 * License. See the file "COPYING" in the main directory of this archive
8 * for more details.
9 */
10#include <linux/clk.h>
11#include <linux/compiler.h>
12#include <linux/slab.h>
13#include <linux/io.h>
14#include <linux/sh_clk.h>
15
16static int sh_clk_mstp32_enable(struct clk *clk)
17{
18 __raw_writel(__raw_readl(clk->enable_reg) & ~(1 << clk->enable_bit),
19 clk->enable_reg);
20 return 0;
21}
22
23static void sh_clk_mstp32_disable(struct clk *clk)
24{
25 __raw_writel(__raw_readl(clk->enable_reg) | (1 << clk->enable_bit),
26 clk->enable_reg);
27}
28
29static struct clk_ops sh_clk_mstp32_clk_ops = {
30 .enable = sh_clk_mstp32_enable,
31 .disable = sh_clk_mstp32_disable,
32 .recalc = followparent_recalc,
33};
34
35int __init sh_clk_mstp32_register(struct clk *clks, int nr)
36{
37 struct clk *clkp;
38 int ret = 0;
39 int k;
40
41 for (k = 0; !ret && (k < nr); k++) {
42 clkp = clks + k;
43 clkp->ops = &sh_clk_mstp32_clk_ops;
44 ret |= clk_register(clkp);
45 }
46
47 return ret;
48}
49
50static long sh_clk_div_round_rate(struct clk *clk, unsigned long rate)
51{
52 return clk_rate_table_round(clk, clk->freq_table, rate);
53}
54
55static int sh_clk_div6_divisors[64] = {
56 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
57 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
58 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
59 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
60};
61
62static struct clk_div_mult_table sh_clk_div6_table = {
63 .divisors = sh_clk_div6_divisors,
64 .nr_divisors = ARRAY_SIZE(sh_clk_div6_divisors),
65};
66
67static unsigned long sh_clk_div6_recalc(struct clk *clk)
68{
69 struct clk_div_mult_table *table = &sh_clk_div6_table;
70 unsigned int idx;
71
72 clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
73 table, NULL);
74
75 idx = __raw_readl(clk->enable_reg) & 0x003f;
76
77 return clk->freq_table[idx].frequency;
78}
79
80static int sh_clk_div6_set_parent(struct clk *clk, struct clk *parent)
81{
82 struct clk_div_mult_table *table = &sh_clk_div6_table;
83 u32 value;
84 int ret, i;
85
86 if (!clk->parent_table || !clk->parent_num)
87 return -EINVAL;
88
89 /* Search the parent */
90 for (i = 0; i < clk->parent_num; i++)
91 if (clk->parent_table[i] == parent)
92 break;
93
94 if (i == clk->parent_num)
95 return -ENODEV;
96
97 ret = clk_reparent(clk, parent);
98 if (ret < 0)
99 return ret;
100
101 value = __raw_readl(clk->enable_reg) &
102 ~(((1 << clk->src_width) - 1) << clk->src_shift);
103
104 __raw_writel(value | (i << clk->src_shift), clk->enable_reg);
105
106 /* Rebuild the frequency table */
107 clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
108 table, &clk->arch_flags);
109
110 return 0;
111}
112
113static int sh_clk_div6_set_rate(struct clk *clk,
114 unsigned long rate, int algo_id)
115{
116 unsigned long value;
117 int idx;
118
119 idx = clk_rate_table_find(clk, clk->freq_table, rate);
120 if (idx < 0)
121 return idx;
122
123 value = __raw_readl(clk->enable_reg);
124 value &= ~0x3f;
125 value |= idx;
126 __raw_writel(value, clk->enable_reg);
127 return 0;
128}
129
130static int sh_clk_div6_enable(struct clk *clk)
131{
132 unsigned long value;
133 int ret;
134
135 ret = sh_clk_div6_set_rate(clk, clk->rate, 0);
136 if (ret == 0) {
137 value = __raw_readl(clk->enable_reg);
138 value &= ~0x100; /* clear stop bit to enable clock */
139 __raw_writel(value, clk->enable_reg);
140 }
141 return ret;
142}
143
144static void sh_clk_div6_disable(struct clk *clk)
145{
146 unsigned long value;
147
148 value = __raw_readl(clk->enable_reg);
149 value |= 0x100; /* stop clock */
150 value |= 0x3f; /* VDIV bits must be non-zero, overwrite divider */
151 __raw_writel(value, clk->enable_reg);
152}
153
154static struct clk_ops sh_clk_div6_clk_ops = {
155 .recalc = sh_clk_div6_recalc,
156 .round_rate = sh_clk_div_round_rate,
157 .set_rate = sh_clk_div6_set_rate,
158 .enable = sh_clk_div6_enable,
159 .disable = sh_clk_div6_disable,
160};
161
162static struct clk_ops sh_clk_div6_reparent_clk_ops = {
163 .recalc = sh_clk_div6_recalc,
164 .round_rate = sh_clk_div_round_rate,
165 .set_rate = sh_clk_div6_set_rate,
166 .enable = sh_clk_div6_enable,
167 .disable = sh_clk_div6_disable,
168 .set_parent = sh_clk_div6_set_parent,
169};
170
171static int __init sh_clk_div6_register_ops(struct clk *clks, int nr,
172 struct clk_ops *ops)
173{
174 struct clk *clkp;
175 void *freq_table;
176 int nr_divs = sh_clk_div6_table.nr_divisors;
177 int freq_table_size = sizeof(struct cpufreq_frequency_table);
178 int ret = 0;
179 int k;
180
181 freq_table_size *= (nr_divs + 1);
182 freq_table = kzalloc(freq_table_size * nr, GFP_KERNEL);
183 if (!freq_table) {
184 pr_err("sh_clk_div6_register: unable to alloc memory\n");
185 return -ENOMEM;
186 }
187
188 for (k = 0; !ret && (k < nr); k++) {
189 clkp = clks + k;
190
191 clkp->ops = ops;
192 clkp->freq_table = freq_table + (k * freq_table_size);
193 clkp->freq_table[nr_divs].frequency = CPUFREQ_TABLE_END;
194
195 ret = clk_register(clkp);
196 }
197
198 return ret;
199}
200
201int __init sh_clk_div6_register(struct clk *clks, int nr)
202{
203 return sh_clk_div6_register_ops(clks, nr, &sh_clk_div6_clk_ops);
204}
205
206int __init sh_clk_div6_reparent_register(struct clk *clks, int nr)
207{
208 return sh_clk_div6_register_ops(clks, nr,
209 &sh_clk_div6_reparent_clk_ops);
210}
211
212static unsigned long sh_clk_div4_recalc(struct clk *clk)
213{
214 struct clk_div4_table *d4t = clk->priv;
215 struct clk_div_mult_table *table = d4t->div_mult_table;
216 unsigned int idx;
217
218 clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
219 table, &clk->arch_flags);
220
221 idx = (__raw_readl(clk->enable_reg) >> clk->enable_bit) & 0x000f;
222
223 return clk->freq_table[idx].frequency;
224}
225
226static int sh_clk_div4_set_parent(struct clk *clk, struct clk *parent)
227{
228 struct clk_div4_table *d4t = clk->priv;
229 struct clk_div_mult_table *table = d4t->div_mult_table;
230 u32 value;
231 int ret;
232
233 /* we really need a better way to determine parent index, but for
234 * now assume internal parent comes with CLK_ENABLE_ON_INIT set,
235 * no CLK_ENABLE_ON_INIT means external clock...
236 */
237
238 if (parent->flags & CLK_ENABLE_ON_INIT)
239 value = __raw_readl(clk->enable_reg) & ~(1 << 7);
240 else
241 value = __raw_readl(clk->enable_reg) | (1 << 7);
242
243 ret = clk_reparent(clk, parent);
244 if (ret < 0)
245 return ret;
246
247 __raw_writel(value, clk->enable_reg);
248
249 /* Rebiuld the frequency table */
250 clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
251 table, &clk->arch_flags);
252
253 return 0;
254}
255
256static int sh_clk_div4_set_rate(struct clk *clk, unsigned long rate, int algo_id)
257{
258 struct clk_div4_table *d4t = clk->priv;
259 unsigned long value;
260 int idx = clk_rate_table_find(clk, clk->freq_table, rate);
261 if (idx < 0)
262 return idx;
263
264 value = __raw_readl(clk->enable_reg);
265 value &= ~(0xf << clk->enable_bit);
266 value |= (idx << clk->enable_bit);
267 __raw_writel(value, clk->enable_reg);
268
269 if (d4t->kick)
270 d4t->kick(clk);
271
272 return 0;
273}
274
275static int sh_clk_div4_enable(struct clk *clk)
276{
277 __raw_writel(__raw_readl(clk->enable_reg) & ~(1 << 8), clk->enable_reg);
278 return 0;
279}
280
281static void sh_clk_div4_disable(struct clk *clk)
282{
283 __raw_writel(__raw_readl(clk->enable_reg) | (1 << 8), clk->enable_reg);
284}
285
286static struct clk_ops sh_clk_div4_clk_ops = {
287 .recalc = sh_clk_div4_recalc,
288 .set_rate = sh_clk_div4_set_rate,
289 .round_rate = sh_clk_div_round_rate,
290};
291
292static struct clk_ops sh_clk_div4_enable_clk_ops = {
293 .recalc = sh_clk_div4_recalc,
294 .set_rate = sh_clk_div4_set_rate,
295 .round_rate = sh_clk_div_round_rate,
296 .enable = sh_clk_div4_enable,
297 .disable = sh_clk_div4_disable,
298};
299
300static struct clk_ops sh_clk_div4_reparent_clk_ops = {
301 .recalc = sh_clk_div4_recalc,
302 .set_rate = sh_clk_div4_set_rate,
303 .round_rate = sh_clk_div_round_rate,
304 .enable = sh_clk_div4_enable,
305 .disable = sh_clk_div4_disable,
306 .set_parent = sh_clk_div4_set_parent,
307};
308
309static int __init sh_clk_div4_register_ops(struct clk *clks, int nr,
310 struct clk_div4_table *table, struct clk_ops *ops)
311{
312 struct clk *clkp;
313 void *freq_table;
314 int nr_divs = table->div_mult_table->nr_divisors;
315 int freq_table_size = sizeof(struct cpufreq_frequency_table);
316 int ret = 0;
317 int k;
318
319 freq_table_size *= (nr_divs + 1);
320 freq_table = kzalloc(freq_table_size * nr, GFP_KERNEL);
321 if (!freq_table) {
322 pr_err("sh_clk_div4_register: unable to alloc memory\n");
323 return -ENOMEM;
324 }
325
326 for (k = 0; !ret && (k < nr); k++) {
327 clkp = clks + k;
328
329 clkp->ops = ops;
330 clkp->priv = table;
331
332 clkp->freq_table = freq_table + (k * freq_table_size);
333 clkp->freq_table[nr_divs].frequency = CPUFREQ_TABLE_END;
334
335 ret = clk_register(clkp);
336 }
337
338 return ret;
339}
340
341int __init sh_clk_div4_register(struct clk *clks, int nr,
342 struct clk_div4_table *table)
343{
344 return sh_clk_div4_register_ops(clks, nr, table, &sh_clk_div4_clk_ops);
345}
346
347int __init sh_clk_div4_enable_register(struct clk *clks, int nr,
348 struct clk_div4_table *table)
349{
350 return sh_clk_div4_register_ops(clks, nr, table,
351 &sh_clk_div4_enable_clk_ops);
352}
353
354int __init sh_clk_div4_reparent_register(struct clk *clks, int nr,
355 struct clk_div4_table *table)
356{
357 return sh_clk_div4_register_ops(clks, nr, table,
358 &sh_clk_div4_reparent_clk_ops);
359}