diff options
Diffstat (limited to 'drivers/scsi')
-rw-r--r-- | drivers/scsi/Kconfig | 6 | ||||
-rw-r--r-- | drivers/scsi/Makefile | 3 | ||||
-rw-r--r-- | drivers/scsi/esp.c | 4394 | ||||
-rw-r--r-- | drivers/scsi/esp.h | 406 | ||||
-rw-r--r-- | drivers/scsi/esp_scsi.c | 2710 | ||||
-rw-r--r-- | drivers/scsi/esp_scsi.h | 560 | ||||
-rw-r--r-- | drivers/scsi/sun_esp.c | 634 |
7 files changed, 3912 insertions, 4801 deletions
diff --git a/drivers/scsi/Kconfig b/drivers/scsi/Kconfig index 4cd280e86966..fcc4cb6c7f46 100644 --- a/drivers/scsi/Kconfig +++ b/drivers/scsi/Kconfig | |||
@@ -1763,9 +1763,15 @@ config SUN3X_ESP | |||
1763 | The ESP was an on-board SCSI controller used on Sun 3/80 | 1763 | The ESP was an on-board SCSI controller used on Sun 3/80 |
1764 | machines. Say Y here to compile in support for it. | 1764 | machines. Say Y here to compile in support for it. |
1765 | 1765 | ||
1766 | config SCSI_ESP_CORE | ||
1767 | tristate "ESP Scsi Driver Core" | ||
1768 | depends on SCSI | ||
1769 | select SCSI_SPI_ATTRS | ||
1770 | |||
1766 | config SCSI_SUNESP | 1771 | config SCSI_SUNESP |
1767 | tristate "Sparc ESP Scsi Driver" | 1772 | tristate "Sparc ESP Scsi Driver" |
1768 | depends on SBUS && SCSI | 1773 | depends on SBUS && SCSI |
1774 | select SCSI_ESP_CORE | ||
1769 | help | 1775 | help |
1770 | This is the driver for the Sun ESP SCSI host adapter. The ESP | 1776 | This is the driver for the Sun ESP SCSI host adapter. The ESP |
1771 | chipset is present in most SPARC SBUS-based computers. | 1777 | chipset is present in most SPARC SBUS-based computers. |
diff --git a/drivers/scsi/Makefile b/drivers/scsi/Makefile index 79ecf4ebe6eb..70cff4c599d7 100644 --- a/drivers/scsi/Makefile +++ b/drivers/scsi/Makefile | |||
@@ -106,7 +106,8 @@ obj-$(CONFIG_MEGARAID_LEGACY) += megaraid.o | |||
106 | obj-$(CONFIG_MEGARAID_NEWGEN) += megaraid/ | 106 | obj-$(CONFIG_MEGARAID_NEWGEN) += megaraid/ |
107 | obj-$(CONFIG_MEGARAID_SAS) += megaraid/ | 107 | obj-$(CONFIG_MEGARAID_SAS) += megaraid/ |
108 | obj-$(CONFIG_SCSI_ACARD) += atp870u.o | 108 | obj-$(CONFIG_SCSI_ACARD) += atp870u.o |
109 | obj-$(CONFIG_SCSI_SUNESP) += esp.o | 109 | obj-$(CONFIG_SCSI_ESP_CORE) += esp_scsi.o |
110 | obj-$(CONFIG_SCSI_SUNESP) += sun_esp.o | ||
110 | obj-$(CONFIG_SCSI_GDTH) += gdth.o | 111 | obj-$(CONFIG_SCSI_GDTH) += gdth.o |
111 | obj-$(CONFIG_SCSI_INITIO) += initio.o | 112 | obj-$(CONFIG_SCSI_INITIO) += initio.o |
112 | obj-$(CONFIG_SCSI_INIA100) += a100u2w.o | 113 | obj-$(CONFIG_SCSI_INIA100) += a100u2w.o |
diff --git a/drivers/scsi/esp.c b/drivers/scsi/esp.c deleted file mode 100644 index 2c2fe80bc42a..000000000000 --- a/drivers/scsi/esp.c +++ /dev/null | |||
@@ -1,4394 +0,0 @@ | |||
1 | /* esp.c: ESP Sun SCSI driver. | ||
2 | * | ||
3 | * Copyright (C) 1995, 1998, 2006 David S. Miller (davem@davemloft.net) | ||
4 | */ | ||
5 | |||
6 | /* TODO: | ||
7 | * | ||
8 | * 1) Maybe disable parity checking in config register one for SCSI1 | ||
9 | * targets. (Gilmore says parity error on the SBus can lock up | ||
10 | * old sun4c's) | ||
11 | * 2) Add support for DMA2 pipelining. | ||
12 | * 3) Add tagged queueing. | ||
13 | */ | ||
14 | |||
15 | #include <linux/kernel.h> | ||
16 | #include <linux/delay.h> | ||
17 | #include <linux/types.h> | ||
18 | #include <linux/string.h> | ||
19 | #include <linux/slab.h> | ||
20 | #include <linux/blkdev.h> | ||
21 | #include <linux/proc_fs.h> | ||
22 | #include <linux/stat.h> | ||
23 | #include <linux/init.h> | ||
24 | #include <linux/spinlock.h> | ||
25 | #include <linux/interrupt.h> | ||
26 | #include <linux/module.h> | ||
27 | |||
28 | #include "esp.h" | ||
29 | |||
30 | #include <asm/sbus.h> | ||
31 | #include <asm/dma.h> | ||
32 | #include <asm/system.h> | ||
33 | #include <asm/ptrace.h> | ||
34 | #include <asm/pgtable.h> | ||
35 | #include <asm/oplib.h> | ||
36 | #include <asm/io.h> | ||
37 | #include <asm/irq.h> | ||
38 | #ifndef __sparc_v9__ | ||
39 | #include <asm/machines.h> | ||
40 | #include <asm/idprom.h> | ||
41 | #endif | ||
42 | |||
43 | #include <scsi/scsi.h> | ||
44 | #include <scsi/scsi_cmnd.h> | ||
45 | #include <scsi/scsi_device.h> | ||
46 | #include <scsi/scsi_eh.h> | ||
47 | #include <scsi/scsi_host.h> | ||
48 | #include <scsi/scsi_tcq.h> | ||
49 | |||
50 | #define DRV_VERSION "1.101" | ||
51 | |||
52 | #define DEBUG_ESP | ||
53 | /* #define DEBUG_ESP_HME */ | ||
54 | /* #define DEBUG_ESP_DATA */ | ||
55 | /* #define DEBUG_ESP_QUEUE */ | ||
56 | /* #define DEBUG_ESP_DISCONNECT */ | ||
57 | /* #define DEBUG_ESP_STATUS */ | ||
58 | /* #define DEBUG_ESP_PHASES */ | ||
59 | /* #define DEBUG_ESP_WORKBUS */ | ||
60 | /* #define DEBUG_STATE_MACHINE */ | ||
61 | /* #define DEBUG_ESP_CMDS */ | ||
62 | /* #define DEBUG_ESP_IRQS */ | ||
63 | /* #define DEBUG_SDTR */ | ||
64 | /* #define DEBUG_ESP_SG */ | ||
65 | |||
66 | /* Use the following to sprinkle debugging messages in a way which | ||
67 | * suits you if combinations of the above become too verbose when | ||
68 | * trying to track down a specific problem. | ||
69 | */ | ||
70 | /* #define DEBUG_ESP_MISC */ | ||
71 | |||
72 | #if defined(DEBUG_ESP) | ||
73 | #define ESPLOG(foo) printk foo | ||
74 | #else | ||
75 | #define ESPLOG(foo) | ||
76 | #endif /* (DEBUG_ESP) */ | ||
77 | |||
78 | #if defined(DEBUG_ESP_HME) | ||
79 | #define ESPHME(foo) printk foo | ||
80 | #else | ||
81 | #define ESPHME(foo) | ||
82 | #endif | ||
83 | |||
84 | #if defined(DEBUG_ESP_DATA) | ||
85 | #define ESPDATA(foo) printk foo | ||
86 | #else | ||
87 | #define ESPDATA(foo) | ||
88 | #endif | ||
89 | |||
90 | #if defined(DEBUG_ESP_QUEUE) | ||
91 | #define ESPQUEUE(foo) printk foo | ||
92 | #else | ||
93 | #define ESPQUEUE(foo) | ||
94 | #endif | ||
95 | |||
96 | #if defined(DEBUG_ESP_DISCONNECT) | ||
97 | #define ESPDISC(foo) printk foo | ||
98 | #else | ||
99 | #define ESPDISC(foo) | ||
100 | #endif | ||
101 | |||
102 | #if defined(DEBUG_ESP_STATUS) | ||
103 | #define ESPSTAT(foo) printk foo | ||
104 | #else | ||
105 | #define ESPSTAT(foo) | ||
106 | #endif | ||
107 | |||
108 | #if defined(DEBUG_ESP_PHASES) | ||
109 | #define ESPPHASE(foo) printk foo | ||
110 | #else | ||
111 | #define ESPPHASE(foo) | ||
112 | #endif | ||
113 | |||
114 | #if defined(DEBUG_ESP_WORKBUS) | ||
115 | #define ESPBUS(foo) printk foo | ||
116 | #else | ||
117 | #define ESPBUS(foo) | ||
118 | #endif | ||
119 | |||
120 | #if defined(DEBUG_ESP_IRQS) | ||
121 | #define ESPIRQ(foo) printk foo | ||
122 | #else | ||
123 | #define ESPIRQ(foo) | ||
124 | #endif | ||
125 | |||
126 | #if defined(DEBUG_SDTR) | ||
127 | #define ESPSDTR(foo) printk foo | ||
128 | #else | ||
129 | #define ESPSDTR(foo) | ||
130 | #endif | ||
131 | |||
132 | #if defined(DEBUG_ESP_MISC) | ||
133 | #define ESPMISC(foo) printk foo | ||
134 | #else | ||
135 | #define ESPMISC(foo) | ||
136 | #endif | ||
137 | |||
138 | /* Command phase enumeration. */ | ||
139 | enum { | ||
140 | not_issued = 0x00, /* Still in the issue_SC queue. */ | ||
141 | |||
142 | /* Various forms of selecting a target. */ | ||
143 | #define in_slct_mask 0x10 | ||
144 | in_slct_norm = 0x10, /* ESP is arbitrating, normal selection */ | ||
145 | in_slct_stop = 0x11, /* ESP will select, then stop with IRQ */ | ||
146 | in_slct_msg = 0x12, /* select, then send a message */ | ||
147 | in_slct_tag = 0x13, /* select and send tagged queue msg */ | ||
148 | in_slct_sneg = 0x14, /* select and acquire sync capabilities */ | ||
149 | |||
150 | /* Any post selection activity. */ | ||
151 | #define in_phases_mask 0x20 | ||
152 | in_datain = 0x20, /* Data is transferring from the bus */ | ||
153 | in_dataout = 0x21, /* Data is transferring to the bus */ | ||
154 | in_data_done = 0x22, /* Last DMA data operation done (maybe) */ | ||
155 | in_msgin = 0x23, /* Eating message from target */ | ||
156 | in_msgincont = 0x24, /* Eating more msg bytes from target */ | ||
157 | in_msgindone = 0x25, /* Decide what to do with what we got */ | ||
158 | in_msgout = 0x26, /* Sending message to target */ | ||
159 | in_msgoutdone = 0x27, /* Done sending msg out */ | ||
160 | in_cmdbegin = 0x28, /* Sending cmd after abnormal selection */ | ||
161 | in_cmdend = 0x29, /* Done sending slow cmd */ | ||
162 | in_status = 0x2a, /* Was in status phase, finishing cmd */ | ||
163 | in_freeing = 0x2b, /* freeing the bus for cmd cmplt or disc */ | ||
164 | in_the_dark = 0x2c, /* Don't know what bus phase we are in */ | ||
165 | |||
166 | /* Special states, ie. not normal bus transitions... */ | ||
167 | #define in_spec_mask 0x80 | ||
168 | in_abortone = 0x80, /* Aborting one command currently */ | ||
169 | in_abortall = 0x81, /* Blowing away all commands we have */ | ||
170 | in_resetdev = 0x82, /* SCSI target reset in progress */ | ||
171 | in_resetbus = 0x83, /* SCSI bus reset in progress */ | ||
172 | in_tgterror = 0x84, /* Target did something stupid */ | ||
173 | }; | ||
174 | |||
175 | enum { | ||
176 | /* Zero has special meaning, see skipahead[12]. */ | ||
177 | /*0*/ do_never, | ||
178 | |||
179 | /*1*/ do_phase_determine, | ||
180 | /*2*/ do_reset_bus, | ||
181 | /*3*/ do_reset_complete, | ||
182 | /*4*/ do_work_bus, | ||
183 | /*5*/ do_intr_end | ||
184 | }; | ||
185 | |||
186 | /* Forward declarations. */ | ||
187 | static irqreturn_t esp_intr(int irq, void *dev_id); | ||
188 | |||
189 | /* Debugging routines */ | ||
190 | struct esp_cmdstrings { | ||
191 | u8 cmdchar; | ||
192 | char *text; | ||
193 | } esp_cmd_strings[] = { | ||
194 | /* Miscellaneous */ | ||
195 | { ESP_CMD_NULL, "ESP_NOP", }, | ||
196 | { ESP_CMD_FLUSH, "FIFO_FLUSH", }, | ||
197 | { ESP_CMD_RC, "RSTESP", }, | ||
198 | { ESP_CMD_RS, "RSTSCSI", }, | ||
199 | /* Disconnected State Group */ | ||
200 | { ESP_CMD_RSEL, "RESLCTSEQ", }, | ||
201 | { ESP_CMD_SEL, "SLCTNATN", }, | ||
202 | { ESP_CMD_SELA, "SLCTATN", }, | ||
203 | { ESP_CMD_SELAS, "SLCTATNSTOP", }, | ||
204 | { ESP_CMD_ESEL, "ENSLCTRESEL", }, | ||
205 | { ESP_CMD_DSEL, "DISSELRESEL", }, | ||
206 | { ESP_CMD_SA3, "SLCTATN3", }, | ||
207 | { ESP_CMD_RSEL3, "RESLCTSEQ", }, | ||
208 | /* Target State Group */ | ||
209 | { ESP_CMD_SMSG, "SNDMSG", }, | ||
210 | { ESP_CMD_SSTAT, "SNDSTATUS", }, | ||
211 | { ESP_CMD_SDATA, "SNDDATA", }, | ||
212 | { ESP_CMD_DSEQ, "DISCSEQ", }, | ||
213 | { ESP_CMD_TSEQ, "TERMSEQ", }, | ||
214 | { ESP_CMD_TCCSEQ, "TRGTCMDCOMPSEQ", }, | ||
215 | { ESP_CMD_DCNCT, "DISC", }, | ||
216 | { ESP_CMD_RMSG, "RCVMSG", }, | ||
217 | { ESP_CMD_RCMD, "RCVCMD", }, | ||
218 | { ESP_CMD_RDATA, "RCVDATA", }, | ||
219 | { ESP_CMD_RCSEQ, "RCVCMDSEQ", }, | ||
220 | /* Initiator State Group */ | ||
221 | { ESP_CMD_TI, "TRANSINFO", }, | ||
222 | { ESP_CMD_ICCSEQ, "INICMDSEQCOMP", }, | ||
223 | { ESP_CMD_MOK, "MSGACCEPTED", }, | ||
224 | { ESP_CMD_TPAD, "TPAD", }, | ||
225 | { ESP_CMD_SATN, "SATN", }, | ||
226 | { ESP_CMD_RATN, "RATN", }, | ||
227 | }; | ||
228 | #define NUM_ESP_COMMANDS ((sizeof(esp_cmd_strings)) / (sizeof(struct esp_cmdstrings))) | ||
229 | |||
230 | /* Print textual representation of an ESP command */ | ||
231 | static inline void esp_print_cmd(u8 espcmd) | ||
232 | { | ||
233 | u8 dma_bit = espcmd & ESP_CMD_DMA; | ||
234 | int i; | ||
235 | |||
236 | espcmd &= ~dma_bit; | ||
237 | for (i = 0; i < NUM_ESP_COMMANDS; i++) | ||
238 | if (esp_cmd_strings[i].cmdchar == espcmd) | ||
239 | break; | ||
240 | if (i == NUM_ESP_COMMANDS) | ||
241 | printk("ESP_Unknown"); | ||
242 | else | ||
243 | printk("%s%s", esp_cmd_strings[i].text, | ||
244 | ((dma_bit) ? "+DMA" : "")); | ||
245 | } | ||
246 | |||
247 | /* Print the status register's value */ | ||
248 | static inline void esp_print_statreg(u8 statreg) | ||
249 | { | ||
250 | u8 phase; | ||
251 | |||
252 | printk("STATUS<"); | ||
253 | phase = statreg & ESP_STAT_PMASK; | ||
254 | printk("%s,", (phase == ESP_DOP ? "DATA-OUT" : | ||
255 | (phase == ESP_DIP ? "DATA-IN" : | ||
256 | (phase == ESP_CMDP ? "COMMAND" : | ||
257 | (phase == ESP_STATP ? "STATUS" : | ||
258 | (phase == ESP_MOP ? "MSG-OUT" : | ||
259 | (phase == ESP_MIP ? "MSG_IN" : | ||
260 | "unknown"))))))); | ||
261 | if (statreg & ESP_STAT_TDONE) | ||
262 | printk("TRANS_DONE,"); | ||
263 | if (statreg & ESP_STAT_TCNT) | ||
264 | printk("TCOUNT_ZERO,"); | ||
265 | if (statreg & ESP_STAT_PERR) | ||
266 | printk("P_ERROR,"); | ||
267 | if (statreg & ESP_STAT_SPAM) | ||
268 | printk("SPAM,"); | ||
269 | if (statreg & ESP_STAT_INTR) | ||
270 | printk("IRQ,"); | ||
271 | printk(">"); | ||
272 | } | ||
273 | |||
274 | /* Print the interrupt register's value */ | ||
275 | static inline void esp_print_ireg(u8 intreg) | ||
276 | { | ||
277 | printk("INTREG< "); | ||
278 | if (intreg & ESP_INTR_S) | ||
279 | printk("SLCT_NATN "); | ||
280 | if (intreg & ESP_INTR_SATN) | ||
281 | printk("SLCT_ATN "); | ||
282 | if (intreg & ESP_INTR_RSEL) | ||
283 | printk("RSLCT "); | ||
284 | if (intreg & ESP_INTR_FDONE) | ||
285 | printk("FDONE "); | ||
286 | if (intreg & ESP_INTR_BSERV) | ||
287 | printk("BSERV "); | ||
288 | if (intreg & ESP_INTR_DC) | ||
289 | printk("DISCNCT "); | ||
290 | if (intreg & ESP_INTR_IC) | ||
291 | printk("ILL_CMD "); | ||
292 | if (intreg & ESP_INTR_SR) | ||
293 | printk("SCSI_BUS_RESET "); | ||
294 | printk(">"); | ||
295 | } | ||
296 | |||
297 | /* Print the sequence step registers contents */ | ||
298 | static inline void esp_print_seqreg(u8 stepreg) | ||
299 | { | ||
300 | stepreg &= ESP_STEP_VBITS; | ||
301 | printk("STEP<%s>", | ||
302 | (stepreg == ESP_STEP_ASEL ? "SLCT_ARB_CMPLT" : | ||
303 | (stepreg == ESP_STEP_SID ? "1BYTE_MSG_SENT" : | ||
304 | (stepreg == ESP_STEP_NCMD ? "NOT_IN_CMD_PHASE" : | ||
305 | (stepreg == ESP_STEP_PPC ? "CMD_BYTES_LOST" : | ||
306 | (stepreg == ESP_STEP_FINI4 ? "CMD_SENT_OK" : | ||
307 | "UNKNOWN")))))); | ||
308 | } | ||
309 | |||
310 | static char *phase_string(int phase) | ||
311 | { | ||
312 | switch (phase) { | ||
313 | case not_issued: | ||
314 | return "UNISSUED"; | ||
315 | case in_slct_norm: | ||
316 | return "SLCTNORM"; | ||
317 | case in_slct_stop: | ||
318 | return "SLCTSTOP"; | ||
319 | case in_slct_msg: | ||
320 | return "SLCTMSG"; | ||
321 | case in_slct_tag: | ||
322 | return "SLCTTAG"; | ||
323 | case in_slct_sneg: | ||
324 | return "SLCTSNEG"; | ||
325 | case in_datain: | ||
326 | return "DATAIN"; | ||
327 | case in_dataout: | ||
328 | return "DATAOUT"; | ||
329 | case in_data_done: | ||
330 | return "DATADONE"; | ||
331 | case in_msgin: | ||
332 | return "MSGIN"; | ||
333 | case in_msgincont: | ||
334 | return "MSGINCONT"; | ||
335 | case in_msgindone: | ||
336 | return "MSGINDONE"; | ||
337 | case in_msgout: | ||
338 | return "MSGOUT"; | ||
339 | case in_msgoutdone: | ||
340 | return "MSGOUTDONE"; | ||
341 | case in_cmdbegin: | ||
342 | return "CMDBEGIN"; | ||
343 | case in_cmdend: | ||
344 | return "CMDEND"; | ||
345 | case in_status: | ||
346 | return "STATUS"; | ||
347 | case in_freeing: | ||
348 | return "FREEING"; | ||
349 | case in_the_dark: | ||
350 | return "CLUELESS"; | ||
351 | case in_abortone: | ||
352 | return "ABORTONE"; | ||
353 | case in_abortall: | ||
354 | return "ABORTALL"; | ||
355 | case in_resetdev: | ||
356 | return "RESETDEV"; | ||
357 | case in_resetbus: | ||
358 | return "RESETBUS"; | ||
359 | case in_tgterror: | ||
360 | return "TGTERROR"; | ||
361 | default: | ||
362 | return "UNKNOWN"; | ||
363 | }; | ||
364 | } | ||
365 | |||
366 | #ifdef DEBUG_STATE_MACHINE | ||
367 | static inline void esp_advance_phase(struct scsi_cmnd *s, int newphase) | ||
368 | { | ||
369 | ESPLOG(("<%s>", phase_string(newphase))); | ||
370 | s->SCp.sent_command = s->SCp.phase; | ||
371 | s->SCp.phase = newphase; | ||
372 | } | ||
373 | #else | ||
374 | #define esp_advance_phase(__s, __newphase) \ | ||
375 | (__s)->SCp.sent_command = (__s)->SCp.phase; \ | ||
376 | (__s)->SCp.phase = (__newphase); | ||
377 | #endif | ||
378 | |||
379 | #ifdef DEBUG_ESP_CMDS | ||
380 | static inline void esp_cmd(struct esp *esp, u8 cmd) | ||
381 | { | ||
382 | esp->espcmdlog[esp->espcmdent] = cmd; | ||
383 | esp->espcmdent = (esp->espcmdent + 1) & 31; | ||
384 | sbus_writeb(cmd, esp->eregs + ESP_CMD); | ||
385 | } | ||
386 | #else | ||
387 | #define esp_cmd(__esp, __cmd) \ | ||
388 | sbus_writeb((__cmd), ((__esp)->eregs) + ESP_CMD) | ||
389 | #endif | ||
390 | |||
391 | #define ESP_INTSOFF(__dregs) \ | ||
392 | sbus_writel(sbus_readl((__dregs)+DMA_CSR)&~(DMA_INT_ENAB), (__dregs)+DMA_CSR) | ||
393 | #define ESP_INTSON(__dregs) \ | ||
394 | sbus_writel(sbus_readl((__dregs)+DMA_CSR)|DMA_INT_ENAB, (__dregs)+DMA_CSR) | ||
395 | #define ESP_IRQ_P(__dregs) \ | ||
396 | (sbus_readl((__dregs)+DMA_CSR) & (DMA_HNDL_INTR|DMA_HNDL_ERROR)) | ||
397 | |||
398 | /* How we use the various Linux SCSI data structures for operation. | ||
399 | * | ||
400 | * struct scsi_cmnd: | ||
401 | * | ||
402 | * We keep track of the synchronous capabilities of a target | ||
403 | * in the device member, using sync_min_period and | ||
404 | * sync_max_offset. These are the values we directly write | ||
405 | * into the ESP registers while running a command. If offset | ||
406 | * is zero the ESP will use asynchronous transfers. | ||
407 | * If the borken flag is set we assume we shouldn't even bother | ||
408 | * trying to negotiate for synchronous transfer as this target | ||
409 | * is really stupid. If we notice the target is dropping the | ||
410 | * bus, and we have been allowing it to disconnect, we clear | ||
411 | * the disconnect flag. | ||
412 | */ | ||
413 | |||
414 | |||
415 | /* Manipulation of the ESP command queues. Thanks to the aha152x driver | ||
416 | * and its author, Juergen E. Fischer, for the methods used here. | ||
417 | * Note that these are per-ESP queues, not global queues like | ||
418 | * the aha152x driver uses. | ||
419 | */ | ||
420 | static inline void append_SC(struct scsi_cmnd **SC, struct scsi_cmnd *new_SC) | ||
421 | { | ||
422 | struct scsi_cmnd *end; | ||
423 | |||
424 | new_SC->host_scribble = (unsigned char *) NULL; | ||
425 | if (!*SC) | ||
426 | *SC = new_SC; | ||
427 | else { | ||
428 | for (end=*SC;end->host_scribble;end=(struct scsi_cmnd *)end->host_scribble) | ||
429 | ; | ||
430 | end->host_scribble = (unsigned char *) new_SC; | ||
431 | } | ||
432 | } | ||
433 | |||
434 | static inline void prepend_SC(struct scsi_cmnd **SC, struct scsi_cmnd *new_SC) | ||
435 | { | ||
436 | new_SC->host_scribble = (unsigned char *) *SC; | ||
437 | *SC = new_SC; | ||
438 | } | ||
439 | |||
440 | static inline struct scsi_cmnd *remove_first_SC(struct scsi_cmnd **SC) | ||
441 | { | ||
442 | struct scsi_cmnd *ptr; | ||
443 | ptr = *SC; | ||
444 | if (ptr) | ||
445 | *SC = (struct scsi_cmnd *) (*SC)->host_scribble; | ||
446 | return ptr; | ||
447 | } | ||
448 | |||
449 | static inline struct scsi_cmnd *remove_SC(struct scsi_cmnd **SC, int target, int lun) | ||
450 | { | ||
451 | struct scsi_cmnd *ptr, *prev; | ||
452 | |||
453 | for (ptr = *SC, prev = NULL; | ||
454 | ptr && ((ptr->device->id != target) || (ptr->device->lun != lun)); | ||
455 | prev = ptr, ptr = (struct scsi_cmnd *) ptr->host_scribble) | ||
456 | ; | ||
457 | if (ptr) { | ||
458 | if (prev) | ||
459 | prev->host_scribble=ptr->host_scribble; | ||
460 | else | ||
461 | *SC=(struct scsi_cmnd *)ptr->host_scribble; | ||
462 | } | ||
463 | return ptr; | ||
464 | } | ||
465 | |||
466 | /* Resetting various pieces of the ESP scsi driver chipset/buses. */ | ||
467 | static void esp_reset_dma(struct esp *esp) | ||
468 | { | ||
469 | int can_do_burst16, can_do_burst32, can_do_burst64; | ||
470 | int can_do_sbus64; | ||
471 | u32 tmp; | ||
472 | |||
473 | can_do_burst16 = (esp->bursts & DMA_BURST16) != 0; | ||
474 | can_do_burst32 = (esp->bursts & DMA_BURST32) != 0; | ||
475 | can_do_burst64 = 0; | ||
476 | can_do_sbus64 = 0; | ||
477 | if (sbus_can_dma_64bit(esp->sdev)) | ||
478 | can_do_sbus64 = 1; | ||
479 | if (sbus_can_burst64(esp->sdev)) | ||
480 | can_do_burst64 = (esp->bursts & DMA_BURST64) != 0; | ||
481 | |||
482 | /* Punt the DVMA into a known state. */ | ||
483 | if (esp->dma->revision != dvmahme) { | ||
484 | tmp = sbus_readl(esp->dregs + DMA_CSR); | ||
485 | sbus_writel(tmp | DMA_RST_SCSI, esp->dregs + DMA_CSR); | ||
486 | sbus_writel(tmp & ~DMA_RST_SCSI, esp->dregs + DMA_CSR); | ||
487 | } | ||
488 | switch (esp->dma->revision) { | ||
489 | case dvmahme: | ||
490 | /* This is the HME DVMA gate array. */ | ||
491 | |||
492 | sbus_writel(DMA_RESET_FAS366, esp->dregs + DMA_CSR); | ||
493 | sbus_writel(DMA_RST_SCSI, esp->dregs + DMA_CSR); | ||
494 | |||
495 | esp->prev_hme_dmacsr = (DMA_PARITY_OFF|DMA_2CLKS|DMA_SCSI_DISAB|DMA_INT_ENAB); | ||
496 | esp->prev_hme_dmacsr &= ~(DMA_ENABLE|DMA_ST_WRITE|DMA_BRST_SZ); | ||
497 | |||
498 | if (can_do_burst64) | ||
499 | esp->prev_hme_dmacsr |= DMA_BRST64; | ||
500 | else if (can_do_burst32) | ||
501 | esp->prev_hme_dmacsr |= DMA_BRST32; | ||
502 | |||
503 | if (can_do_sbus64) { | ||
504 | esp->prev_hme_dmacsr |= DMA_SCSI_SBUS64; | ||
505 | sbus_set_sbus64(esp->sdev, esp->bursts); | ||
506 | } | ||
507 | |||
508 | /* This chip is horrible. */ | ||
509 | while (sbus_readl(esp->dregs + DMA_CSR) & DMA_PEND_READ) | ||
510 | udelay(1); | ||
511 | |||
512 | sbus_writel(0, esp->dregs + DMA_CSR); | ||
513 | sbus_writel(esp->prev_hme_dmacsr, esp->dregs + DMA_CSR); | ||
514 | |||
515 | /* This is necessary to avoid having the SCSI channel | ||
516 | * engine lock up on us. | ||
517 | */ | ||
518 | sbus_writel(0, esp->dregs + DMA_ADDR); | ||
519 | |||
520 | break; | ||
521 | case dvmarev2: | ||
522 | /* This is the gate array found in the sun4m | ||
523 | * NCR SBUS I/O subsystem. | ||
524 | */ | ||
525 | if (esp->erev != esp100) { | ||
526 | tmp = sbus_readl(esp->dregs + DMA_CSR); | ||
527 | sbus_writel(tmp | DMA_3CLKS, esp->dregs + DMA_CSR); | ||
528 | } | ||
529 | break; | ||
530 | case dvmarev3: | ||
531 | tmp = sbus_readl(esp->dregs + DMA_CSR); | ||
532 | tmp &= ~DMA_3CLKS; | ||
533 | tmp |= DMA_2CLKS; | ||
534 | if (can_do_burst32) { | ||
535 | tmp &= ~DMA_BRST_SZ; | ||
536 | tmp |= DMA_BRST32; | ||
537 | } | ||
538 | sbus_writel(tmp, esp->dregs + DMA_CSR); | ||
539 | break; | ||
540 | case dvmaesc1: | ||
541 | /* This is the DMA unit found on SCSI/Ether cards. */ | ||
542 | tmp = sbus_readl(esp->dregs + DMA_CSR); | ||
543 | tmp |= DMA_ADD_ENABLE; | ||
544 | tmp &= ~DMA_BCNT_ENAB; | ||
545 | if (!can_do_burst32 && can_do_burst16) { | ||
546 | tmp |= DMA_ESC_BURST; | ||
547 | } else { | ||
548 | tmp &= ~(DMA_ESC_BURST); | ||
549 | } | ||
550 | sbus_writel(tmp, esp->dregs + DMA_CSR); | ||
551 | break; | ||
552 | default: | ||
553 | break; | ||
554 | }; | ||
555 | ESP_INTSON(esp->dregs); | ||
556 | } | ||
557 | |||
558 | /* Reset the ESP chip, _not_ the SCSI bus. */ | ||
559 | static void __init esp_reset_esp(struct esp *esp) | ||
560 | { | ||
561 | u8 family_code, version; | ||
562 | int i; | ||
563 | |||
564 | /* Now reset the ESP chip */ | ||
565 | esp_cmd(esp, ESP_CMD_RC); | ||
566 | esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA); | ||
567 | esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA); | ||
568 | |||
569 | /* Reload the configuration registers */ | ||
570 | sbus_writeb(esp->cfact, esp->eregs + ESP_CFACT); | ||
571 | esp->prev_stp = 0; | ||
572 | sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP); | ||
573 | esp->prev_soff = 0; | ||
574 | sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF); | ||
575 | sbus_writeb(esp->neg_defp, esp->eregs + ESP_TIMEO); | ||
576 | |||
577 | /* This is the only point at which it is reliable to read | ||
578 | * the ID-code for a fast ESP chip variants. | ||
579 | */ | ||
580 | esp->max_period = ((35 * esp->ccycle) / 1000); | ||
581 | if (esp->erev == fast) { | ||
582 | version = sbus_readb(esp->eregs + ESP_UID); | ||
583 | family_code = (version & 0xf8) >> 3; | ||
584 | if (family_code == 0x02) | ||
585 | esp->erev = fas236; | ||
586 | else if (family_code == 0x0a) | ||
587 | esp->erev = fashme; /* Version is usually '5'. */ | ||
588 | else | ||
589 | esp->erev = fas100a; | ||
590 | ESPMISC(("esp%d: FAST chip is %s (family=%d, version=%d)\n", | ||
591 | esp->esp_id, | ||
592 | (esp->erev == fas236) ? "fas236" : | ||
593 | ((esp->erev == fas100a) ? "fas100a" : | ||
594 | "fasHME"), family_code, (version & 7))); | ||
595 | |||
596 | esp->min_period = ((4 * esp->ccycle) / 1000); | ||
597 | } else { | ||
598 | esp->min_period = ((5 * esp->ccycle) / 1000); | ||
599 | } | ||
600 | esp->max_period = (esp->max_period + 3)>>2; | ||
601 | esp->min_period = (esp->min_period + 3)>>2; | ||
602 | |||
603 | sbus_writeb(esp->config1, esp->eregs + ESP_CFG1); | ||
604 | switch (esp->erev) { | ||
605 | case esp100: | ||
606 | /* nothing to do */ | ||
607 | break; | ||
608 | case esp100a: | ||
609 | sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); | ||
610 | break; | ||
611 | case esp236: | ||
612 | /* Slow 236 */ | ||
613 | sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); | ||
614 | esp->prev_cfg3 = esp->config3[0]; | ||
615 | sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); | ||
616 | break; | ||
617 | case fashme: | ||
618 | esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB); | ||
619 | /* fallthrough... */ | ||
620 | case fas236: | ||
621 | /* Fast 236 or HME */ | ||
622 | sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); | ||
623 | for (i = 0; i < 16; i++) { | ||
624 | if (esp->erev == fashme) { | ||
625 | u8 cfg3; | ||
626 | |||
627 | cfg3 = ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH; | ||
628 | if (esp->scsi_id >= 8) | ||
629 | cfg3 |= ESP_CONFIG3_IDBIT3; | ||
630 | esp->config3[i] |= cfg3; | ||
631 | } else { | ||
632 | esp->config3[i] |= ESP_CONFIG3_FCLK; | ||
633 | } | ||
634 | } | ||
635 | esp->prev_cfg3 = esp->config3[0]; | ||
636 | sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); | ||
637 | if (esp->erev == fashme) { | ||
638 | esp->radelay = 80; | ||
639 | } else { | ||
640 | if (esp->diff) | ||
641 | esp->radelay = 0; | ||
642 | else | ||
643 | esp->radelay = 96; | ||
644 | } | ||
645 | break; | ||
646 | case fas100a: | ||
647 | /* Fast 100a */ | ||
648 | sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); | ||
649 | for (i = 0; i < 16; i++) | ||
650 | esp->config3[i] |= ESP_CONFIG3_FCLOCK; | ||
651 | esp->prev_cfg3 = esp->config3[0]; | ||
652 | sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); | ||
653 | esp->radelay = 32; | ||
654 | break; | ||
655 | default: | ||
656 | panic("esp: what could it be... I wonder..."); | ||
657 | break; | ||
658 | }; | ||
659 | |||
660 | /* Eat any bitrot in the chip */ | ||
661 | sbus_readb(esp->eregs + ESP_INTRPT); | ||
662 | udelay(100); | ||
663 | } | ||
664 | |||
665 | /* This places the ESP into a known state at boot time. */ | ||
666 | static void __init esp_bootup_reset(struct esp *esp) | ||
667 | { | ||
668 | u8 tmp; | ||
669 | |||
670 | /* Reset the DMA */ | ||
671 | esp_reset_dma(esp); | ||
672 | |||
673 | /* Reset the ESP */ | ||
674 | esp_reset_esp(esp); | ||
675 | |||
676 | /* Reset the SCSI bus, but tell ESP not to generate an irq */ | ||
677 | tmp = sbus_readb(esp->eregs + ESP_CFG1); | ||
678 | tmp |= ESP_CONFIG1_SRRDISAB; | ||
679 | sbus_writeb(tmp, esp->eregs + ESP_CFG1); | ||
680 | |||
681 | esp_cmd(esp, ESP_CMD_RS); | ||
682 | udelay(400); | ||
683 | |||
684 | sbus_writeb(esp->config1, esp->eregs + ESP_CFG1); | ||
685 | |||
686 | /* Eat any bitrot in the chip and we are done... */ | ||
687 | sbus_readb(esp->eregs + ESP_INTRPT); | ||
688 | } | ||
689 | |||
690 | static int __init esp_find_dvma(struct esp *esp, struct sbus_dev *dma_sdev) | ||
691 | { | ||
692 | struct sbus_dev *sdev = esp->sdev; | ||
693 | struct sbus_dma *dma; | ||
694 | |||
695 | if (dma_sdev != NULL) { | ||
696 | for_each_dvma(dma) { | ||
697 | if (dma->sdev == dma_sdev) | ||
698 | break; | ||
699 | } | ||
700 | } else { | ||
701 | for_each_dvma(dma) { | ||
702 | /* If allocated already, can't use it. */ | ||
703 | if (dma->allocated) | ||
704 | continue; | ||
705 | |||
706 | if (dma->sdev == NULL) | ||
707 | break; | ||
708 | |||
709 | /* If bus + slot are the same and it has the | ||
710 | * correct OBP name, it's ours. | ||
711 | */ | ||
712 | if (sdev->bus == dma->sdev->bus && | ||
713 | sdev->slot == dma->sdev->slot && | ||
714 | (!strcmp(dma->sdev->prom_name, "dma") || | ||
715 | !strcmp(dma->sdev->prom_name, "espdma"))) | ||
716 | break; | ||
717 | } | ||
718 | } | ||
719 | |||
720 | /* If we don't know how to handle the dvma, | ||
721 | * do not use this device. | ||
722 | */ | ||
723 | if (dma == NULL) { | ||
724 | printk("Cannot find dvma for ESP%d's SCSI\n", esp->esp_id); | ||
725 | return -1; | ||
726 | } | ||
727 | if (dma->allocated) { | ||
728 | printk("esp%d: can't use my espdma\n", esp->esp_id); | ||
729 | return -1; | ||
730 | } | ||
731 | dma->allocated = 1; | ||
732 | esp->dma = dma; | ||
733 | esp->dregs = dma->regs; | ||
734 | |||
735 | return 0; | ||
736 | } | ||
737 | |||
738 | static int __init esp_map_regs(struct esp *esp, int hme) | ||
739 | { | ||
740 | struct sbus_dev *sdev = esp->sdev; | ||
741 | struct resource *res; | ||
742 | |||
743 | /* On HME, two reg sets exist, first is DVMA, | ||
744 | * second is ESP registers. | ||
745 | */ | ||
746 | if (hme) | ||
747 | res = &sdev->resource[1]; | ||
748 | else | ||
749 | res = &sdev->resource[0]; | ||
750 | |||
751 | esp->eregs = sbus_ioremap(res, 0, ESP_REG_SIZE, "ESP Registers"); | ||
752 | |||
753 | if (esp->eregs == 0) | ||
754 | return -1; | ||
755 | return 0; | ||
756 | } | ||
757 | |||
758 | static int __init esp_map_cmdarea(struct esp *esp) | ||
759 | { | ||
760 | struct sbus_dev *sdev = esp->sdev; | ||
761 | |||
762 | esp->esp_command = sbus_alloc_consistent(sdev, 16, | ||
763 | &esp->esp_command_dvma); | ||
764 | if (esp->esp_command == NULL || | ||
765 | esp->esp_command_dvma == 0) | ||
766 | return -1; | ||
767 | return 0; | ||
768 | } | ||
769 | |||
770 | static int __init esp_register_irq(struct esp *esp) | ||
771 | { | ||
772 | esp->ehost->irq = esp->irq = esp->sdev->irqs[0]; | ||
773 | |||
774 | /* We used to try various overly-clever things to | ||
775 | * reduce the interrupt processing overhead on | ||
776 | * sun4c/sun4m when multiple ESP's shared the | ||
777 | * same IRQ. It was too complex and messy to | ||
778 | * sanely maintain. | ||
779 | */ | ||
780 | if (request_irq(esp->ehost->irq, esp_intr, | ||
781 | IRQF_SHARED, "ESP SCSI", esp)) { | ||
782 | printk("esp%d: Cannot acquire irq line\n", | ||
783 | esp->esp_id); | ||
784 | return -1; | ||
785 | } | ||
786 | |||
787 | printk("esp%d: IRQ %d ", esp->esp_id, | ||
788 | esp->ehost->irq); | ||
789 | |||
790 | return 0; | ||
791 | } | ||
792 | |||
793 | static void __init esp_get_scsi_id(struct esp *esp) | ||
794 | { | ||
795 | struct sbus_dev *sdev = esp->sdev; | ||
796 | struct device_node *dp = sdev->ofdev.node; | ||
797 | |||
798 | esp->scsi_id = of_getintprop_default(dp, | ||
799 | "initiator-id", | ||
800 | -1); | ||
801 | if (esp->scsi_id == -1) | ||
802 | esp->scsi_id = of_getintprop_default(dp, | ||
803 | "scsi-initiator-id", | ||
804 | -1); | ||
805 | if (esp->scsi_id == -1) | ||
806 | esp->scsi_id = (sdev->bus == NULL) ? 7 : | ||
807 | of_getintprop_default(sdev->bus->ofdev.node, | ||
808 | "scsi-initiator-id", | ||
809 | 7); | ||
810 | esp->ehost->this_id = esp->scsi_id; | ||
811 | esp->scsi_id_mask = (1 << esp->scsi_id); | ||
812 | |||
813 | } | ||
814 | |||
815 | static void __init esp_get_clock_params(struct esp *esp) | ||
816 | { | ||
817 | struct sbus_dev *sdev = esp->sdev; | ||
818 | int prom_node = esp->prom_node; | ||
819 | int sbus_prom_node; | ||
820 | unsigned int fmhz; | ||
821 | u8 ccf; | ||
822 | |||
823 | if (sdev != NULL && sdev->bus != NULL) | ||
824 | sbus_prom_node = sdev->bus->prom_node; | ||
825 | else | ||
826 | sbus_prom_node = 0; | ||
827 | |||
828 | /* This is getting messy but it has to be done | ||
829 | * correctly or else you get weird behavior all | ||
830 | * over the place. We are trying to basically | ||
831 | * figure out three pieces of information. | ||
832 | * | ||
833 | * a) Clock Conversion Factor | ||
834 | * | ||
835 | * This is a representation of the input | ||
836 | * crystal clock frequency going into the | ||
837 | * ESP on this machine. Any operation whose | ||
838 | * timing is longer than 400ns depends on this | ||
839 | * value being correct. For example, you'll | ||
840 | * get blips for arbitration/selection during | ||
841 | * high load or with multiple targets if this | ||
842 | * is not set correctly. | ||
843 | * | ||
844 | * b) Selection Time-Out | ||
845 | * | ||
846 | * The ESP isn't very bright and will arbitrate | ||
847 | * for the bus and try to select a target | ||
848 | * forever if you let it. This value tells | ||
849 | * the ESP when it has taken too long to | ||
850 | * negotiate and that it should interrupt | ||
851 | * the CPU so we can see what happened. | ||
852 | * The value is computed as follows (from | ||
853 | * NCR/Symbios chip docs). | ||
854 | * | ||
855 | * (Time Out Period) * (Input Clock) | ||
856 | * STO = ---------------------------------- | ||
857 | * (8192) * (Clock Conversion Factor) | ||
858 | * | ||
859 | * You usually want the time out period to be | ||
860 | * around 250ms, I think we'll set it a little | ||
861 | * bit higher to account for fully loaded SCSI | ||
862 | * bus's and slow devices that don't respond so | ||
863 | * quickly to selection attempts. (yeah, I know | ||
864 | * this is out of spec. but there is a lot of | ||
865 | * buggy pieces of firmware out there so bite me) | ||
866 | * | ||
867 | * c) Imperical constants for synchronous offset | ||
868 | * and transfer period register values | ||
869 | * | ||
870 | * This entails the smallest and largest sync | ||
871 | * period we could ever handle on this ESP. | ||
872 | */ | ||
873 | |||
874 | fmhz = prom_getintdefault(prom_node, "clock-frequency", -1); | ||
875 | if (fmhz == -1) | ||
876 | fmhz = (!sbus_prom_node) ? 0 : | ||
877 | prom_getintdefault(sbus_prom_node, "clock-frequency", -1); | ||
878 | |||
879 | if (fmhz <= (5000000)) | ||
880 | ccf = 0; | ||
881 | else | ||
882 | ccf = (((5000000 - 1) + (fmhz))/(5000000)); | ||
883 | |||
884 | if (!ccf || ccf > 8) { | ||
885 | /* If we can't find anything reasonable, | ||
886 | * just assume 20MHZ. This is the clock | ||
887 | * frequency of the older sun4c's where I've | ||
888 | * been unable to find the clock-frequency | ||
889 | * PROM property. All other machines provide | ||
890 | * useful values it seems. | ||
891 | */ | ||
892 | ccf = ESP_CCF_F4; | ||
893 | fmhz = (20000000); | ||
894 | } | ||
895 | |||
896 | if (ccf == (ESP_CCF_F7 + 1)) | ||
897 | esp->cfact = ESP_CCF_F0; | ||
898 | else if (ccf == ESP_CCF_NEVER) | ||
899 | esp->cfact = ESP_CCF_F2; | ||
900 | else | ||
901 | esp->cfact = ccf; | ||
902 | esp->raw_cfact = ccf; | ||
903 | |||
904 | esp->cfreq = fmhz; | ||
905 | esp->ccycle = ESP_MHZ_TO_CYCLE(fmhz); | ||
906 | esp->ctick = ESP_TICK(ccf, esp->ccycle); | ||
907 | esp->neg_defp = ESP_NEG_DEFP(fmhz, ccf); | ||
908 | esp->sync_defp = SYNC_DEFP_SLOW; | ||
909 | |||
910 | printk("SCSI ID %d Clk %dMHz CCYC=%d CCF=%d TOut %d ", | ||
911 | esp->scsi_id, (fmhz / 1000000), | ||
912 | (int)esp->ccycle, (int)ccf, (int) esp->neg_defp); | ||
913 | } | ||
914 | |||
915 | static void __init esp_get_bursts(struct esp *esp, struct sbus_dev *dma) | ||
916 | { | ||
917 | struct sbus_dev *sdev = esp->sdev; | ||
918 | u8 bursts; | ||
919 | |||
920 | bursts = prom_getintdefault(esp->prom_node, "burst-sizes", 0xff); | ||
921 | |||
922 | if (dma) { | ||
923 | u8 tmp = prom_getintdefault(dma->prom_node, | ||
924 | "burst-sizes", 0xff); | ||
925 | if (tmp != 0xff) | ||
926 | bursts &= tmp; | ||
927 | } | ||
928 | |||
929 | if (sdev->bus) { | ||
930 | u8 tmp = prom_getintdefault(sdev->bus->prom_node, | ||
931 | "burst-sizes", 0xff); | ||
932 | if (tmp != 0xff) | ||
933 | bursts &= tmp; | ||
934 | } | ||
935 | |||
936 | if (bursts == 0xff || | ||
937 | (bursts & DMA_BURST16) == 0 || | ||
938 | (bursts & DMA_BURST32) == 0) | ||
939 | bursts = (DMA_BURST32 - 1); | ||
940 | |||
941 | esp->bursts = bursts; | ||
942 | } | ||
943 | |||
944 | static void __init esp_get_revision(struct esp *esp) | ||
945 | { | ||
946 | u8 tmp; | ||
947 | |||
948 | esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7)); | ||
949 | esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY); | ||
950 | sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); | ||
951 | |||
952 | tmp = sbus_readb(esp->eregs + ESP_CFG2); | ||
953 | tmp &= ~ESP_CONFIG2_MAGIC; | ||
954 | if (tmp != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) { | ||
955 | /* If what we write to cfg2 does not come back, cfg2 | ||
956 | * is not implemented, therefore this must be a plain | ||
957 | * esp100. | ||
958 | */ | ||
959 | esp->erev = esp100; | ||
960 | printk("NCR53C90(esp100)\n"); | ||
961 | } else { | ||
962 | esp->config2 = 0; | ||
963 | esp->prev_cfg3 = esp->config3[0] = 5; | ||
964 | sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); | ||
965 | sbus_writeb(0, esp->eregs + ESP_CFG3); | ||
966 | sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); | ||
967 | |||
968 | tmp = sbus_readb(esp->eregs + ESP_CFG3); | ||
969 | if (tmp != 5) { | ||
970 | /* The cfg2 register is implemented, however | ||
971 | * cfg3 is not, must be esp100a. | ||
972 | */ | ||
973 | esp->erev = esp100a; | ||
974 | printk("NCR53C90A(esp100a)\n"); | ||
975 | } else { | ||
976 | int target; | ||
977 | |||
978 | for (target = 0; target < 16; target++) | ||
979 | esp->config3[target] = 0; | ||
980 | esp->prev_cfg3 = 0; | ||
981 | sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); | ||
982 | |||
983 | /* All of cfg{1,2,3} implemented, must be one of | ||
984 | * the fas variants, figure out which one. | ||
985 | */ | ||
986 | if (esp->raw_cfact > ESP_CCF_F5) { | ||
987 | esp->erev = fast; | ||
988 | esp->sync_defp = SYNC_DEFP_FAST; | ||
989 | printk("NCR53C9XF(espfast)\n"); | ||
990 | } else { | ||
991 | esp->erev = esp236; | ||
992 | printk("NCR53C9x(esp236)\n"); | ||
993 | } | ||
994 | esp->config2 = 0; | ||
995 | sbus_writeb(esp->config2, esp->eregs + ESP_CFG2); | ||
996 | } | ||
997 | } | ||
998 | } | ||
999 | |||
1000 | static void __init esp_init_swstate(struct esp *esp) | ||
1001 | { | ||
1002 | int i; | ||
1003 | |||
1004 | /* Command queues... */ | ||
1005 | esp->current_SC = NULL; | ||
1006 | esp->disconnected_SC = NULL; | ||
1007 | esp->issue_SC = NULL; | ||
1008 | |||
1009 | /* Target and current command state... */ | ||
1010 | esp->targets_present = 0; | ||
1011 | esp->resetting_bus = 0; | ||
1012 | esp->snip = 0; | ||
1013 | |||
1014 | init_waitqueue_head(&esp->reset_queue); | ||
1015 | |||
1016 | /* Debugging... */ | ||
1017 | for(i = 0; i < 32; i++) | ||
1018 | esp->espcmdlog[i] = 0; | ||
1019 | esp->espcmdent = 0; | ||
1020 | |||
1021 | /* MSG phase state... */ | ||
1022 | for(i = 0; i < 16; i++) { | ||
1023 | esp->cur_msgout[i] = 0; | ||
1024 | esp->cur_msgin[i] = 0; | ||
1025 | } | ||
1026 | esp->prevmsgout = esp->prevmsgin = 0; | ||
1027 | esp->msgout_len = esp->msgin_len = 0; | ||
1028 | |||
1029 | /* Clear the one behind caches to hold unmatchable values. */ | ||
1030 | esp->prev_soff = esp->prev_stp = esp->prev_cfg3 = 0xff; | ||
1031 | esp->prev_hme_dmacsr = 0xffffffff; | ||
1032 | } | ||
1033 | |||
1034 | static int __init detect_one_esp(struct scsi_host_template *tpnt, | ||
1035 | struct device *dev, | ||
1036 | struct sbus_dev *esp_dev, | ||
1037 | struct sbus_dev *espdma, | ||
1038 | struct sbus_bus *sbus, | ||
1039 | int hme) | ||
1040 | { | ||
1041 | static int instance; | ||
1042 | struct Scsi_Host *esp_host = scsi_host_alloc(tpnt, sizeof(struct esp)); | ||
1043 | struct esp *esp; | ||
1044 | |||
1045 | if (!esp_host) | ||
1046 | return -ENOMEM; | ||
1047 | |||
1048 | if (hme) | ||
1049 | esp_host->max_id = 16; | ||
1050 | esp = (struct esp *) esp_host->hostdata; | ||
1051 | esp->ehost = esp_host; | ||
1052 | esp->sdev = esp_dev; | ||
1053 | esp->esp_id = instance; | ||
1054 | esp->prom_node = esp_dev->prom_node; | ||
1055 | prom_getstring(esp->prom_node, "name", esp->prom_name, | ||
1056 | sizeof(esp->prom_name)); | ||
1057 | |||
1058 | if (esp_find_dvma(esp, espdma) < 0) | ||
1059 | goto fail_unlink; | ||
1060 | if (esp_map_regs(esp, hme) < 0) { | ||
1061 | printk("ESP registers unmappable"); | ||
1062 | goto fail_dvma_release; | ||
1063 | } | ||
1064 | if (esp_map_cmdarea(esp) < 0) { | ||
1065 | printk("ESP DVMA transport area unmappable"); | ||
1066 | goto fail_unmap_regs; | ||
1067 | } | ||
1068 | if (esp_register_irq(esp) < 0) | ||
1069 | goto fail_unmap_cmdarea; | ||
1070 | |||
1071 | esp_get_scsi_id(esp); | ||
1072 | |||
1073 | esp->diff = prom_getbool(esp->prom_node, "differential"); | ||
1074 | if (esp->diff) | ||
1075 | printk("Differential "); | ||
1076 | |||
1077 | esp_get_clock_params(esp); | ||
1078 | esp_get_bursts(esp, espdma); | ||
1079 | esp_get_revision(esp); | ||
1080 | esp_init_swstate(esp); | ||
1081 | |||
1082 | esp_bootup_reset(esp); | ||
1083 | |||
1084 | if (scsi_add_host(esp_host, dev)) | ||
1085 | goto fail_free_irq; | ||
1086 | |||
1087 | dev_set_drvdata(&esp_dev->ofdev.dev, esp); | ||
1088 | |||
1089 | scsi_scan_host(esp_host); | ||
1090 | instance++; | ||
1091 | |||
1092 | return 0; | ||
1093 | |||
1094 | fail_free_irq: | ||
1095 | free_irq(esp->ehost->irq, esp); | ||
1096 | |||
1097 | fail_unmap_cmdarea: | ||
1098 | sbus_free_consistent(esp->sdev, 16, | ||
1099 | (void *) esp->esp_command, | ||
1100 | esp->esp_command_dvma); | ||
1101 | |||
1102 | fail_unmap_regs: | ||
1103 | sbus_iounmap(esp->eregs, ESP_REG_SIZE); | ||
1104 | |||
1105 | fail_dvma_release: | ||
1106 | esp->dma->allocated = 0; | ||
1107 | |||
1108 | fail_unlink: | ||
1109 | scsi_host_put(esp_host); | ||
1110 | return -1; | ||
1111 | } | ||
1112 | |||
1113 | /* Detecting ESP chips on the machine. This is the simple and easy | ||
1114 | * version. | ||
1115 | */ | ||
1116 | static int __devexit esp_remove_common(struct esp *esp) | ||
1117 | { | ||
1118 | unsigned int irq = esp->ehost->irq; | ||
1119 | |||
1120 | scsi_remove_host(esp->ehost); | ||
1121 | |||
1122 | ESP_INTSOFF(esp->dregs); | ||
1123 | #if 0 | ||
1124 | esp_reset_dma(esp); | ||
1125 | esp_reset_esp(esp); | ||
1126 | #endif | ||
1127 | |||
1128 | free_irq(irq, esp); | ||
1129 | sbus_free_consistent(esp->sdev, 16, | ||
1130 | (void *) esp->esp_command, esp->esp_command_dvma); | ||
1131 | sbus_iounmap(esp->eregs, ESP_REG_SIZE); | ||
1132 | esp->dma->allocated = 0; | ||
1133 | |||
1134 | scsi_host_put(esp->ehost); | ||
1135 | |||
1136 | return 0; | ||
1137 | } | ||
1138 | |||
1139 | |||
1140 | #ifdef CONFIG_SUN4 | ||
1141 | |||
1142 | #include <asm/sun4paddr.h> | ||
1143 | |||
1144 | static struct sbus_dev sun4_esp_dev; | ||
1145 | |||
1146 | static int __init esp_sun4_probe(struct scsi_host_template *tpnt) | ||
1147 | { | ||
1148 | if (sun4_esp_physaddr) { | ||
1149 | memset(&sun4_esp_dev, 0, sizeof(sun4_esp_dev)); | ||
1150 | sun4_esp_dev.reg_addrs[0].phys_addr = sun4_esp_physaddr; | ||
1151 | sun4_esp_dev.irqs[0] = 4; | ||
1152 | sun4_esp_dev.resource[0].start = sun4_esp_physaddr; | ||
1153 | sun4_esp_dev.resource[0].end = | ||
1154 | sun4_esp_physaddr + ESP_REG_SIZE - 1; | ||
1155 | sun4_esp_dev.resource[0].flags = IORESOURCE_IO; | ||
1156 | |||
1157 | return detect_one_esp(tpnt, NULL, | ||
1158 | &sun4_esp_dev, NULL, NULL, 0); | ||
1159 | } | ||
1160 | return 0; | ||
1161 | } | ||
1162 | |||
1163 | static int __devexit esp_sun4_remove(void) | ||
1164 | { | ||
1165 | struct of_device *dev = &sun4_esp_dev.ofdev; | ||
1166 | struct esp *esp = dev_get_drvdata(&dev->dev); | ||
1167 | |||
1168 | return esp_remove_common(esp); | ||
1169 | } | ||
1170 | |||
1171 | #else /* !CONFIG_SUN4 */ | ||
1172 | |||
1173 | static int __devinit esp_sbus_probe(struct of_device *dev, const struct of_device_id *match) | ||
1174 | { | ||
1175 | struct sbus_dev *sdev = to_sbus_device(&dev->dev); | ||
1176 | struct device_node *dp = dev->node; | ||
1177 | struct sbus_dev *dma_sdev = NULL; | ||
1178 | int hme = 0; | ||
1179 | |||
1180 | if (dp->parent && | ||
1181 | (!strcmp(dp->parent->name, "espdma") || | ||
1182 | !strcmp(dp->parent->name, "dma"))) | ||
1183 | dma_sdev = sdev->parent; | ||
1184 | else if (!strcmp(dp->name, "SUNW,fas")) { | ||
1185 | dma_sdev = sdev; | ||
1186 | hme = 1; | ||
1187 | } | ||
1188 | |||
1189 | return detect_one_esp(match->data, &dev->dev, | ||
1190 | sdev, dma_sdev, sdev->bus, hme); | ||
1191 | } | ||
1192 | |||
1193 | static int __devexit esp_sbus_remove(struct of_device *dev) | ||
1194 | { | ||
1195 | struct esp *esp = dev_get_drvdata(&dev->dev); | ||
1196 | |||
1197 | return esp_remove_common(esp); | ||
1198 | } | ||
1199 | |||
1200 | #endif /* !CONFIG_SUN4 */ | ||
1201 | |||
1202 | /* The info function will return whatever useful | ||
1203 | * information the developer sees fit. If not provided, then | ||
1204 | * the name field will be used instead. | ||
1205 | */ | ||
1206 | static const char *esp_info(struct Scsi_Host *host) | ||
1207 | { | ||
1208 | struct esp *esp; | ||
1209 | |||
1210 | esp = (struct esp *) host->hostdata; | ||
1211 | switch (esp->erev) { | ||
1212 | case esp100: | ||
1213 | return "Sparc ESP100 (NCR53C90)"; | ||
1214 | case esp100a: | ||
1215 | return "Sparc ESP100A (NCR53C90A)"; | ||
1216 | case esp236: | ||
1217 | return "Sparc ESP236"; | ||
1218 | case fas236: | ||
1219 | return "Sparc ESP236-FAST"; | ||
1220 | case fashme: | ||
1221 | return "Sparc ESP366-HME"; | ||
1222 | case fas100a: | ||
1223 | return "Sparc ESP100A-FAST"; | ||
1224 | default: | ||
1225 | return "Bogon ESP revision"; | ||
1226 | }; | ||
1227 | } | ||
1228 | |||
1229 | /* From Wolfgang Stanglmeier's NCR scsi driver. */ | ||
1230 | struct info_str | ||
1231 | { | ||
1232 | char *buffer; | ||
1233 | int length; | ||
1234 | int offset; | ||
1235 | int pos; | ||
1236 | }; | ||
1237 | |||
1238 | static void copy_mem_info(struct info_str *info, char *data, int len) | ||
1239 | { | ||
1240 | if (info->pos + len > info->length) | ||
1241 | len = info->length - info->pos; | ||
1242 | |||
1243 | if (info->pos + len < info->offset) { | ||
1244 | info->pos += len; | ||
1245 | return; | ||
1246 | } | ||
1247 | if (info->pos < info->offset) { | ||
1248 | data += (info->offset - info->pos); | ||
1249 | len -= (info->offset - info->pos); | ||
1250 | } | ||
1251 | |||
1252 | if (len > 0) { | ||
1253 | memcpy(info->buffer + info->pos, data, len); | ||
1254 | info->pos += len; | ||
1255 | } | ||
1256 | } | ||
1257 | |||
1258 | static int copy_info(struct info_str *info, char *fmt, ...) | ||
1259 | { | ||
1260 | va_list args; | ||
1261 | char buf[81]; | ||
1262 | int len; | ||
1263 | |||
1264 | va_start(args, fmt); | ||
1265 | len = vsprintf(buf, fmt, args); | ||
1266 | va_end(args); | ||
1267 | |||
1268 | copy_mem_info(info, buf, len); | ||
1269 | return len; | ||
1270 | } | ||
1271 | |||
1272 | static int esp_host_info(struct esp *esp, char *ptr, off_t offset, int len) | ||
1273 | { | ||
1274 | struct scsi_device *sdev; | ||
1275 | struct info_str info; | ||
1276 | int i; | ||
1277 | |||
1278 | info.buffer = ptr; | ||
1279 | info.length = len; | ||
1280 | info.offset = offset; | ||
1281 | info.pos = 0; | ||
1282 | |||
1283 | copy_info(&info, "Sparc ESP Host Adapter:\n"); | ||
1284 | copy_info(&info, "\tPROM node\t\t%08x\n", (unsigned int) esp->prom_node); | ||
1285 | copy_info(&info, "\tPROM name\t\t%s\n", esp->prom_name); | ||
1286 | copy_info(&info, "\tESP Model\t\t"); | ||
1287 | switch (esp->erev) { | ||
1288 | case esp100: | ||
1289 | copy_info(&info, "ESP100\n"); | ||
1290 | break; | ||
1291 | case esp100a: | ||
1292 | copy_info(&info, "ESP100A\n"); | ||
1293 | break; | ||
1294 | case esp236: | ||
1295 | copy_info(&info, "ESP236\n"); | ||
1296 | break; | ||
1297 | case fas236: | ||
1298 | copy_info(&info, "FAS236\n"); | ||
1299 | break; | ||
1300 | case fas100a: | ||
1301 | copy_info(&info, "FAS100A\n"); | ||
1302 | break; | ||
1303 | case fast: | ||
1304 | copy_info(&info, "FAST\n"); | ||
1305 | break; | ||
1306 | case fashme: | ||
1307 | copy_info(&info, "Happy Meal FAS\n"); | ||
1308 | break; | ||
1309 | case espunknown: | ||
1310 | default: | ||
1311 | copy_info(&info, "Unknown!\n"); | ||
1312 | break; | ||
1313 | }; | ||
1314 | copy_info(&info, "\tDMA Revision\t\t"); | ||
1315 | switch (esp->dma->revision) { | ||
1316 | case dvmarev0: | ||
1317 | copy_info(&info, "Rev 0\n"); | ||
1318 | break; | ||
1319 | case dvmaesc1: | ||
1320 | copy_info(&info, "ESC Rev 1\n"); | ||
1321 | break; | ||
1322 | case dvmarev1: | ||
1323 | copy_info(&info, "Rev 1\n"); | ||
1324 | break; | ||
1325 | case dvmarev2: | ||
1326 | copy_info(&info, "Rev 2\n"); | ||
1327 | break; | ||
1328 | case dvmarev3: | ||
1329 | copy_info(&info, "Rev 3\n"); | ||
1330 | break; | ||
1331 | case dvmarevplus: | ||
1332 | copy_info(&info, "Rev 1+\n"); | ||
1333 | break; | ||
1334 | case dvmahme: | ||
1335 | copy_info(&info, "Rev HME/FAS\n"); | ||
1336 | break; | ||
1337 | default: | ||
1338 | copy_info(&info, "Unknown!\n"); | ||
1339 | break; | ||
1340 | }; | ||
1341 | copy_info(&info, "\tLive Targets\t\t[ "); | ||
1342 | for (i = 0; i < 15; i++) { | ||
1343 | if (esp->targets_present & (1 << i)) | ||
1344 | copy_info(&info, "%d ", i); | ||
1345 | } | ||
1346 | copy_info(&info, "]\n\n"); | ||
1347 | |||
1348 | /* Now describe the state of each existing target. */ | ||
1349 | copy_info(&info, "Target #\tconfig3\t\tSync Capabilities\tDisconnect\tWide\n"); | ||
1350 | |||
1351 | shost_for_each_device(sdev, esp->ehost) { | ||
1352 | struct esp_device *esp_dev = sdev->hostdata; | ||
1353 | uint id = sdev->id; | ||
1354 | |||
1355 | if (!(esp->targets_present & (1 << id))) | ||
1356 | continue; | ||
1357 | |||
1358 | copy_info(&info, "%d\t\t", id); | ||
1359 | copy_info(&info, "%08lx\t", esp->config3[id]); | ||
1360 | copy_info(&info, "[%02lx,%02lx]\t\t\t", | ||
1361 | esp_dev->sync_max_offset, | ||
1362 | esp_dev->sync_min_period); | ||
1363 | copy_info(&info, "%s\t\t", | ||
1364 | esp_dev->disconnect ? "yes" : "no"); | ||
1365 | copy_info(&info, "%s\n", | ||
1366 | (esp->config3[id] & ESP_CONFIG3_EWIDE) ? "yes" : "no"); | ||
1367 | } | ||
1368 | return info.pos > info.offset? info.pos - info.offset : 0; | ||
1369 | } | ||
1370 | |||
1371 | /* ESP proc filesystem code. */ | ||
1372 | static int esp_proc_info(struct Scsi_Host *host, char *buffer, char **start, off_t offset, | ||
1373 | int length, int inout) | ||
1374 | { | ||
1375 | struct esp *esp = (struct esp *) host->hostdata; | ||
1376 | |||
1377 | if (inout) | ||
1378 | return -EINVAL; /* not yet */ | ||
1379 | |||
1380 | if (start) | ||
1381 | *start = buffer; | ||
1382 | |||
1383 | return esp_host_info(esp, buffer, offset, length); | ||
1384 | } | ||
1385 | |||
1386 | static void esp_get_dmabufs(struct esp *esp, struct scsi_cmnd *sp) | ||
1387 | { | ||
1388 | if (sp->use_sg == 0) { | ||
1389 | sp->SCp.this_residual = sp->request_bufflen; | ||
1390 | sp->SCp.buffer = (struct scatterlist *) sp->request_buffer; | ||
1391 | sp->SCp.buffers_residual = 0; | ||
1392 | if (sp->request_bufflen) { | ||
1393 | sp->SCp.have_data_in = sbus_map_single(esp->sdev, sp->SCp.buffer, | ||
1394 | sp->SCp.this_residual, | ||
1395 | sp->sc_data_direction); | ||
1396 | sp->SCp.ptr = (char *) ((unsigned long)sp->SCp.have_data_in); | ||
1397 | } else { | ||
1398 | sp->SCp.ptr = NULL; | ||
1399 | } | ||
1400 | } else { | ||
1401 | sp->SCp.buffer = (struct scatterlist *) sp->request_buffer; | ||
1402 | sp->SCp.buffers_residual = sbus_map_sg(esp->sdev, | ||
1403 | sp->SCp.buffer, | ||
1404 | sp->use_sg, | ||
1405 | sp->sc_data_direction); | ||
1406 | sp->SCp.this_residual = sg_dma_len(sp->SCp.buffer); | ||
1407 | sp->SCp.ptr = (char *) ((unsigned long)sg_dma_address(sp->SCp.buffer)); | ||
1408 | } | ||
1409 | } | ||
1410 | |||
1411 | static void esp_release_dmabufs(struct esp *esp, struct scsi_cmnd *sp) | ||
1412 | { | ||
1413 | if (sp->use_sg) { | ||
1414 | sbus_unmap_sg(esp->sdev, sp->request_buffer, sp->use_sg, | ||
1415 | sp->sc_data_direction); | ||
1416 | } else if (sp->request_bufflen) { | ||
1417 | sbus_unmap_single(esp->sdev, | ||
1418 | sp->SCp.have_data_in, | ||
1419 | sp->request_bufflen, | ||
1420 | sp->sc_data_direction); | ||
1421 | } | ||
1422 | } | ||
1423 | |||
1424 | static void esp_restore_pointers(struct esp *esp, struct scsi_cmnd *sp) | ||
1425 | { | ||
1426 | struct esp_pointers *ep = &esp->data_pointers[sp->device->id]; | ||
1427 | |||
1428 | sp->SCp.ptr = ep->saved_ptr; | ||
1429 | sp->SCp.buffer = ep->saved_buffer; | ||
1430 | sp->SCp.this_residual = ep->saved_this_residual; | ||
1431 | sp->SCp.buffers_residual = ep->saved_buffers_residual; | ||
1432 | } | ||
1433 | |||
1434 | static void esp_save_pointers(struct esp *esp, struct scsi_cmnd *sp) | ||
1435 | { | ||
1436 | struct esp_pointers *ep = &esp->data_pointers[sp->device->id]; | ||
1437 | |||
1438 | ep->saved_ptr = sp->SCp.ptr; | ||
1439 | ep->saved_buffer = sp->SCp.buffer; | ||
1440 | ep->saved_this_residual = sp->SCp.this_residual; | ||
1441 | ep->saved_buffers_residual = sp->SCp.buffers_residual; | ||
1442 | } | ||
1443 | |||
1444 | /* Some rules: | ||
1445 | * | ||
1446 | * 1) Never ever panic while something is live on the bus. | ||
1447 | * If there is to be any chance of syncing the disks this | ||
1448 | * rule is to be obeyed. | ||
1449 | * | ||
1450 | * 2) Any target that causes a foul condition will no longer | ||
1451 | * have synchronous transfers done to it, no questions | ||
1452 | * asked. | ||
1453 | * | ||
1454 | * 3) Keep register accesses to a minimum. Think about some | ||
1455 | * day when we have Xbus machines this is running on and | ||
1456 | * the ESP chip is on the other end of the machine on a | ||
1457 | * different board from the cpu where this is running. | ||
1458 | */ | ||
1459 | |||
1460 | /* Fire off a command. We assume the bus is free and that the only | ||
1461 | * case where we could see an interrupt is where we have disconnected | ||
1462 | * commands active and they are trying to reselect us. | ||
1463 | */ | ||
1464 | static inline void esp_check_cmd(struct esp *esp, struct scsi_cmnd *sp) | ||
1465 | { | ||
1466 | switch (sp->cmd_len) { | ||
1467 | case 6: | ||
1468 | case 10: | ||
1469 | case 12: | ||
1470 | esp->esp_slowcmd = 0; | ||
1471 | break; | ||
1472 | |||
1473 | default: | ||
1474 | esp->esp_slowcmd = 1; | ||
1475 | esp->esp_scmdleft = sp->cmd_len; | ||
1476 | esp->esp_scmdp = &sp->cmnd[0]; | ||
1477 | break; | ||
1478 | }; | ||
1479 | } | ||
1480 | |||
1481 | static inline void build_sync_nego_msg(struct esp *esp, int period, int offset) | ||
1482 | { | ||
1483 | esp->cur_msgout[0] = EXTENDED_MESSAGE; | ||
1484 | esp->cur_msgout[1] = 3; | ||
1485 | esp->cur_msgout[2] = EXTENDED_SDTR; | ||
1486 | esp->cur_msgout[3] = period; | ||
1487 | esp->cur_msgout[4] = offset; | ||
1488 | esp->msgout_len = 5; | ||
1489 | } | ||
1490 | |||
1491 | /* SIZE is in bits, currently HME only supports 16 bit wide transfers. */ | ||
1492 | static inline void build_wide_nego_msg(struct esp *esp, int size) | ||
1493 | { | ||
1494 | esp->cur_msgout[0] = EXTENDED_MESSAGE; | ||
1495 | esp->cur_msgout[1] = 2; | ||
1496 | esp->cur_msgout[2] = EXTENDED_WDTR; | ||
1497 | switch (size) { | ||
1498 | case 32: | ||
1499 | esp->cur_msgout[3] = 2; | ||
1500 | break; | ||
1501 | case 16: | ||
1502 | esp->cur_msgout[3] = 1; | ||
1503 | break; | ||
1504 | case 8: | ||
1505 | default: | ||
1506 | esp->cur_msgout[3] = 0; | ||
1507 | break; | ||
1508 | }; | ||
1509 | |||
1510 | esp->msgout_len = 4; | ||
1511 | } | ||
1512 | |||
1513 | static void esp_exec_cmd(struct esp *esp) | ||
1514 | { | ||
1515 | struct scsi_cmnd *SCptr; | ||
1516 | struct scsi_device *SDptr; | ||
1517 | struct esp_device *esp_dev; | ||
1518 | volatile u8 *cmdp = esp->esp_command; | ||
1519 | u8 the_esp_command; | ||
1520 | int lun, target; | ||
1521 | int i; | ||
1522 | |||
1523 | /* Hold off if we have disconnected commands and | ||
1524 | * an IRQ is showing... | ||
1525 | */ | ||
1526 | if (esp->disconnected_SC && ESP_IRQ_P(esp->dregs)) | ||
1527 | return; | ||
1528 | |||
1529 | /* Grab first member of the issue queue. */ | ||
1530 | SCptr = esp->current_SC = remove_first_SC(&esp->issue_SC); | ||
1531 | |||
1532 | /* Safe to panic here because current_SC is null. */ | ||
1533 | if (!SCptr) | ||
1534 | panic("esp: esp_exec_cmd and issue queue is NULL"); | ||
1535 | |||
1536 | SDptr = SCptr->device; | ||
1537 | esp_dev = SDptr->hostdata; | ||
1538 | lun = SCptr->device->lun; | ||
1539 | target = SCptr->device->id; | ||
1540 | |||
1541 | esp->snip = 0; | ||
1542 | esp->msgout_len = 0; | ||
1543 | |||
1544 | /* Send it out whole, or piece by piece? The ESP | ||
1545 | * only knows how to automatically send out 6, 10, | ||
1546 | * and 12 byte commands. I used to think that the | ||
1547 | * Linux SCSI code would never throw anything other | ||
1548 | * than that to us, but then again there is the | ||
1549 | * SCSI generic driver which can send us anything. | ||
1550 | */ | ||
1551 | esp_check_cmd(esp, SCptr); | ||
1552 | |||
1553 | /* If arbitration/selection is successful, the ESP will leave | ||
1554 | * ATN asserted, causing the target to go into message out | ||
1555 | * phase. The ESP will feed the target the identify and then | ||
1556 | * the target can only legally go to one of command, | ||
1557 | * datain/out, status, or message in phase, or stay in message | ||
1558 | * out phase (should we be trying to send a sync negotiation | ||
1559 | * message after the identify). It is not allowed to drop | ||
1560 | * BSY, but some buggy targets do and we check for this | ||
1561 | * condition in the selection complete code. Most of the time | ||
1562 | * we'll make the command bytes available to the ESP and it | ||
1563 | * will not interrupt us until it finishes command phase, we | ||
1564 | * cannot do this for command sizes the ESP does not | ||
1565 | * understand and in this case we'll get interrupted right | ||
1566 | * when the target goes into command phase. | ||
1567 | * | ||
1568 | * It is absolutely _illegal_ in the presence of SCSI-2 devices | ||
1569 | * to use the ESP select w/o ATN command. When SCSI-2 devices are | ||
1570 | * present on the bus we _must_ always go straight to message out | ||
1571 | * phase with an identify message for the target. Being that | ||
1572 | * selection attempts in SCSI-1 w/o ATN was an option, doing SCSI-2 | ||
1573 | * selections should not confuse SCSI-1 we hope. | ||
1574 | */ | ||
1575 | |||
1576 | if (esp_dev->sync) { | ||
1577 | /* this targets sync is known */ | ||
1578 | #ifndef __sparc_v9__ | ||
1579 | do_sync_known: | ||
1580 | #endif | ||
1581 | if (esp_dev->disconnect) | ||
1582 | *cmdp++ = IDENTIFY(1, lun); | ||
1583 | else | ||
1584 | *cmdp++ = IDENTIFY(0, lun); | ||
1585 | |||
1586 | if (esp->esp_slowcmd) { | ||
1587 | the_esp_command = (ESP_CMD_SELAS | ESP_CMD_DMA); | ||
1588 | esp_advance_phase(SCptr, in_slct_stop); | ||
1589 | } else { | ||
1590 | the_esp_command = (ESP_CMD_SELA | ESP_CMD_DMA); | ||
1591 | esp_advance_phase(SCptr, in_slct_norm); | ||
1592 | } | ||
1593 | } else if (!(esp->targets_present & (1<<target)) || !(esp_dev->disconnect)) { | ||
1594 | /* After the bootup SCSI code sends both the | ||
1595 | * TEST_UNIT_READY and INQUIRY commands we want | ||
1596 | * to at least attempt allowing the device to | ||
1597 | * disconnect. | ||
1598 | */ | ||
1599 | ESPMISC(("esp: Selecting device for first time. target=%d " | ||
1600 | "lun=%d\n", target, SCptr->device->lun)); | ||
1601 | if (!SDptr->borken && !esp_dev->disconnect) | ||
1602 | esp_dev->disconnect = 1; | ||
1603 | |||
1604 | *cmdp++ = IDENTIFY(0, lun); | ||
1605 | esp->prevmsgout = NOP; | ||
1606 | esp_advance_phase(SCptr, in_slct_norm); | ||
1607 | the_esp_command = (ESP_CMD_SELA | ESP_CMD_DMA); | ||
1608 | |||
1609 | /* Take no chances... */ | ||
1610 | esp_dev->sync_max_offset = 0; | ||
1611 | esp_dev->sync_min_period = 0; | ||
1612 | } else { | ||
1613 | /* Sorry, I have had way too many problems with | ||
1614 | * various CDROM devices on ESP. -DaveM | ||
1615 | */ | ||
1616 | int cdrom_hwbug_wkaround = 0; | ||
1617 | |||
1618 | #ifndef __sparc_v9__ | ||
1619 | /* Never allow disconnects or synchronous transfers on | ||
1620 | * SparcStation1 and SparcStation1+. Allowing those | ||
1621 | * to be enabled seems to lockup the machine completely. | ||
1622 | */ | ||
1623 | if ((idprom->id_machtype == (SM_SUN4C | SM_4C_SS1)) || | ||
1624 | (idprom->id_machtype == (SM_SUN4C | SM_4C_SS1PLUS))) { | ||
1625 | /* But we are nice and allow tapes and removable | ||
1626 | * disks (but not CDROMs) to disconnect. | ||
1627 | */ | ||
1628 | if(SDptr->type == TYPE_TAPE || | ||
1629 | (SDptr->type != TYPE_ROM && SDptr->removable)) | ||
1630 | esp_dev->disconnect = 1; | ||
1631 | else | ||
1632 | esp_dev->disconnect = 0; | ||
1633 | esp_dev->sync_max_offset = 0; | ||
1634 | esp_dev->sync_min_period = 0; | ||
1635 | esp_dev->sync = 1; | ||
1636 | esp->snip = 0; | ||
1637 | goto do_sync_known; | ||
1638 | } | ||
1639 | #endif /* !(__sparc_v9__) */ | ||
1640 | |||
1641 | /* We've talked to this guy before, | ||
1642 | * but never negotiated. Let's try, | ||
1643 | * need to attempt WIDE first, before | ||
1644 | * sync nego, as per SCSI 2 standard. | ||
1645 | */ | ||
1646 | if (esp->erev == fashme && !esp_dev->wide) { | ||
1647 | if (!SDptr->borken && | ||
1648 | SDptr->type != TYPE_ROM && | ||
1649 | SDptr->removable == 0) { | ||
1650 | build_wide_nego_msg(esp, 16); | ||
1651 | esp_dev->wide = 1; | ||
1652 | esp->wnip = 1; | ||
1653 | goto after_nego_msg_built; | ||
1654 | } else { | ||
1655 | esp_dev->wide = 1; | ||
1656 | /* Fall through and try sync. */ | ||
1657 | } | ||
1658 | } | ||
1659 | |||
1660 | if (!SDptr->borken) { | ||
1661 | if ((SDptr->type == TYPE_ROM)) { | ||
1662 | /* Nice try sucker... */ | ||
1663 | ESPMISC(("esp%d: Disabling sync for buggy " | ||
1664 | "CDROM.\n", esp->esp_id)); | ||
1665 | cdrom_hwbug_wkaround = 1; | ||
1666 | build_sync_nego_msg(esp, 0, 0); | ||
1667 | } else if (SDptr->removable != 0) { | ||
1668 | ESPMISC(("esp%d: Not negotiating sync/wide but " | ||
1669 | "allowing disconnect for removable media.\n", | ||
1670 | esp->esp_id)); | ||
1671 | build_sync_nego_msg(esp, 0, 0); | ||
1672 | } else { | ||
1673 | build_sync_nego_msg(esp, esp->sync_defp, 15); | ||
1674 | } | ||
1675 | } else { | ||
1676 | build_sync_nego_msg(esp, 0, 0); | ||
1677 | } | ||
1678 | esp_dev->sync = 1; | ||
1679 | esp->snip = 1; | ||
1680 | |||
1681 | after_nego_msg_built: | ||
1682 | /* A fix for broken SCSI1 targets, when they disconnect | ||
1683 | * they lock up the bus and confuse ESP. So disallow | ||
1684 | * disconnects for SCSI1 targets for now until we | ||
1685 | * find a better fix. | ||
1686 | * | ||
1687 | * Addendum: This is funny, I figured out what was going | ||
1688 | * on. The blotzed SCSI1 target would disconnect, | ||
1689 | * one of the other SCSI2 targets or both would be | ||
1690 | * disconnected as well. The SCSI1 target would | ||
1691 | * stay disconnected long enough that we start | ||
1692 | * up a command on one of the SCSI2 targets. As | ||
1693 | * the ESP is arbitrating for the bus the SCSI1 | ||
1694 | * target begins to arbitrate as well to reselect | ||
1695 | * the ESP. The SCSI1 target refuses to drop it's | ||
1696 | * ID bit on the data bus even though the ESP is | ||
1697 | * at ID 7 and is the obvious winner for any | ||
1698 | * arbitration. The ESP is a poor sport and refuses | ||
1699 | * to lose arbitration, it will continue indefinitely | ||
1700 | * trying to arbitrate for the bus and can only be | ||
1701 | * stopped via a chip reset or SCSI bus reset. | ||
1702 | * Therefore _no_ disconnects for SCSI1 targets | ||
1703 | * thank you very much. ;-) | ||
1704 | */ | ||
1705 | if(((SDptr->scsi_level < 3) && | ||
1706 | (SDptr->type != TYPE_TAPE) && | ||
1707 | SDptr->removable == 0) || | ||
1708 | cdrom_hwbug_wkaround || SDptr->borken) { | ||
1709 | ESPMISC((KERN_INFO "esp%d: Disabling DISCONNECT for target %d " | ||
1710 | "lun %d\n", esp->esp_id, SCptr->device->id, SCptr->device->lun)); | ||
1711 | esp_dev->disconnect = 0; | ||
1712 | *cmdp++ = IDENTIFY(0, lun); | ||
1713 | } else { | ||
1714 | *cmdp++ = IDENTIFY(1, lun); | ||
1715 | } | ||
1716 | |||
1717 | /* ESP fifo is only so big... | ||
1718 | * Make this look like a slow command. | ||
1719 | */ | ||
1720 | esp->esp_slowcmd = 1; | ||
1721 | esp->esp_scmdleft = SCptr->cmd_len; | ||
1722 | esp->esp_scmdp = &SCptr->cmnd[0]; | ||
1723 | |||
1724 | the_esp_command = (ESP_CMD_SELAS | ESP_CMD_DMA); | ||
1725 | esp_advance_phase(SCptr, in_slct_msg); | ||
1726 | } | ||
1727 | |||
1728 | if (!esp->esp_slowcmd) | ||
1729 | for (i = 0; i < SCptr->cmd_len; i++) | ||
1730 | *cmdp++ = SCptr->cmnd[i]; | ||
1731 | |||
1732 | /* HME sucks... */ | ||
1733 | if (esp->erev == fashme) | ||
1734 | sbus_writeb((target & 0xf) | (ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT), | ||
1735 | esp->eregs + ESP_BUSID); | ||
1736 | else | ||
1737 | sbus_writeb(target & 7, esp->eregs + ESP_BUSID); | ||
1738 | if (esp->prev_soff != esp_dev->sync_max_offset || | ||
1739 | esp->prev_stp != esp_dev->sync_min_period || | ||
1740 | (esp->erev > esp100a && | ||
1741 | esp->prev_cfg3 != esp->config3[target])) { | ||
1742 | esp->prev_soff = esp_dev->sync_max_offset; | ||
1743 | esp->prev_stp = esp_dev->sync_min_period; | ||
1744 | sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF); | ||
1745 | sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP); | ||
1746 | if (esp->erev > esp100a) { | ||
1747 | esp->prev_cfg3 = esp->config3[target]; | ||
1748 | sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); | ||
1749 | } | ||
1750 | } | ||
1751 | i = (cmdp - esp->esp_command); | ||
1752 | |||
1753 | if (esp->erev == fashme) { | ||
1754 | esp_cmd(esp, ESP_CMD_FLUSH); /* Grrr! */ | ||
1755 | |||
1756 | /* Set up the DMA and HME counters */ | ||
1757 | sbus_writeb(i, esp->eregs + ESP_TCLOW); | ||
1758 | sbus_writeb(0, esp->eregs + ESP_TCMED); | ||
1759 | sbus_writeb(0, esp->eregs + FAS_RLO); | ||
1760 | sbus_writeb(0, esp->eregs + FAS_RHI); | ||
1761 | esp_cmd(esp, the_esp_command); | ||
1762 | |||
1763 | /* Talk about touchy hardware... */ | ||
1764 | esp->prev_hme_dmacsr = ((esp->prev_hme_dmacsr | | ||
1765 | (DMA_SCSI_DISAB | DMA_ENABLE)) & | ||
1766 | ~(DMA_ST_WRITE)); | ||
1767 | sbus_writel(16, esp->dregs + DMA_COUNT); | ||
1768 | sbus_writel(esp->esp_command_dvma, esp->dregs + DMA_ADDR); | ||
1769 | sbus_writel(esp->prev_hme_dmacsr, esp->dregs + DMA_CSR); | ||
1770 | } else { | ||
1771 | u32 tmp; | ||
1772 | |||
1773 | /* Set up the DMA and ESP counters */ | ||
1774 | sbus_writeb(i, esp->eregs + ESP_TCLOW); | ||
1775 | sbus_writeb(0, esp->eregs + ESP_TCMED); | ||
1776 | tmp = sbus_readl(esp->dregs + DMA_CSR); | ||
1777 | tmp &= ~DMA_ST_WRITE; | ||
1778 | tmp |= DMA_ENABLE; | ||
1779 | sbus_writel(tmp, esp->dregs + DMA_CSR); | ||
1780 | if (esp->dma->revision == dvmaesc1) { | ||
1781 | if (i) /* Workaround ESC gate array SBUS rerun bug. */ | ||
1782 | sbus_writel(PAGE_SIZE, esp->dregs + DMA_COUNT); | ||
1783 | } | ||
1784 | sbus_writel(esp->esp_command_dvma, esp->dregs + DMA_ADDR); | ||
1785 | |||
1786 | /* Tell ESP to "go". */ | ||
1787 | esp_cmd(esp, the_esp_command); | ||
1788 | } | ||
1789 | } | ||
1790 | |||
1791 | /* Queue a SCSI command delivered from the mid-level Linux SCSI code. */ | ||
1792 | static int esp_queue(struct scsi_cmnd *SCpnt, void (*done)(struct scsi_cmnd *)) | ||
1793 | { | ||
1794 | struct esp *esp; | ||
1795 | |||
1796 | /* Set up func ptr and initial driver cmd-phase. */ | ||
1797 | SCpnt->scsi_done = done; | ||
1798 | SCpnt->SCp.phase = not_issued; | ||
1799 | |||
1800 | /* We use the scratch area. */ | ||
1801 | ESPQUEUE(("esp_queue: target=%d lun=%d ", SCpnt->device->id, SCpnt->device->lun)); | ||
1802 | ESPDISC(("N<%02x,%02x>", SCpnt->device->id, SCpnt->device->lun)); | ||
1803 | |||
1804 | esp = (struct esp *) SCpnt->device->host->hostdata; | ||
1805 | esp_get_dmabufs(esp, SCpnt); | ||
1806 | esp_save_pointers(esp, SCpnt); /* FIXME for tag queueing */ | ||
1807 | |||
1808 | SCpnt->SCp.Status = CHECK_CONDITION; | ||
1809 | SCpnt->SCp.Message = 0xff; | ||
1810 | SCpnt->SCp.sent_command = 0; | ||
1811 | |||
1812 | /* Place into our queue. */ | ||
1813 | if (SCpnt->cmnd[0] == REQUEST_SENSE) { | ||
1814 | ESPQUEUE(("RQSENSE\n")); | ||
1815 | prepend_SC(&esp->issue_SC, SCpnt); | ||
1816 | } else { | ||
1817 | ESPQUEUE(("\n")); | ||
1818 | append_SC(&esp->issue_SC, SCpnt); | ||
1819 | } | ||
1820 | |||
1821 | /* Run it now if we can. */ | ||
1822 | if (!esp->current_SC && !esp->resetting_bus) | ||
1823 | esp_exec_cmd(esp); | ||
1824 | |||
1825 | return 0; | ||
1826 | } | ||
1827 | |||
1828 | /* Dump driver state. */ | ||
1829 | static void esp_dump_cmd(struct scsi_cmnd *SCptr) | ||
1830 | { | ||
1831 | ESPLOG(("[tgt<%02x> lun<%02x> " | ||
1832 | "pphase<%s> cphase<%s>]", | ||
1833 | SCptr->device->id, SCptr->device->lun, | ||
1834 | phase_string(SCptr->SCp.sent_command), | ||
1835 | phase_string(SCptr->SCp.phase))); | ||
1836 | } | ||
1837 | |||
1838 | static void esp_dump_state(struct esp *esp) | ||
1839 | { | ||
1840 | struct scsi_cmnd *SCptr = esp->current_SC; | ||
1841 | #ifdef DEBUG_ESP_CMDS | ||
1842 | int i; | ||
1843 | #endif | ||
1844 | |||
1845 | ESPLOG(("esp%d: dumping state\n", esp->esp_id)); | ||
1846 | ESPLOG(("esp%d: dma -- cond_reg<%08x> addr<%08x>\n", | ||
1847 | esp->esp_id, | ||
1848 | sbus_readl(esp->dregs + DMA_CSR), | ||
1849 | sbus_readl(esp->dregs + DMA_ADDR))); | ||
1850 | ESPLOG(("esp%d: SW [sreg<%02x> sstep<%02x> ireg<%02x>]\n", | ||
1851 | esp->esp_id, esp->sreg, esp->seqreg, esp->ireg)); | ||
1852 | ESPLOG(("esp%d: HW reread [sreg<%02x> sstep<%02x> ireg<%02x>]\n", | ||
1853 | esp->esp_id, | ||
1854 | sbus_readb(esp->eregs + ESP_STATUS), | ||
1855 | sbus_readb(esp->eregs + ESP_SSTEP), | ||
1856 | sbus_readb(esp->eregs + ESP_INTRPT))); | ||
1857 | #ifdef DEBUG_ESP_CMDS | ||
1858 | printk("esp%d: last ESP cmds [", esp->esp_id); | ||
1859 | i = (esp->espcmdent - 1) & 31; | ||
1860 | printk("<"); esp_print_cmd(esp->espcmdlog[i]); printk(">"); | ||
1861 | i = (i - 1) & 31; | ||
1862 | printk("<"); esp_print_cmd(esp->espcmdlog[i]); printk(">"); | ||
1863 | i = (i - 1) & 31; | ||
1864 | printk("<"); esp_print_cmd(esp->espcmdlog[i]); printk(">"); | ||
1865 | i = (i - 1) & 31; | ||
1866 | printk("<"); esp_print_cmd(esp->espcmdlog[i]); printk(">"); | ||
1867 | printk("]\n"); | ||
1868 | #endif /* (DEBUG_ESP_CMDS) */ | ||
1869 | |||
1870 | if (SCptr) { | ||
1871 | ESPLOG(("esp%d: current command ", esp->esp_id)); | ||
1872 | esp_dump_cmd(SCptr); | ||
1873 | } | ||
1874 | ESPLOG(("\n")); | ||
1875 | SCptr = esp->disconnected_SC; | ||
1876 | ESPLOG(("esp%d: disconnected ", esp->esp_id)); | ||
1877 | while (SCptr) { | ||
1878 | esp_dump_cmd(SCptr); | ||
1879 | SCptr = (struct scsi_cmnd *) SCptr->host_scribble; | ||
1880 | } | ||
1881 | ESPLOG(("\n")); | ||
1882 | } | ||
1883 | |||
1884 | /* Abort a command. The host_lock is acquired by caller. */ | ||
1885 | static int esp_abort(struct scsi_cmnd *SCptr) | ||
1886 | { | ||
1887 | struct esp *esp = (struct esp *) SCptr->device->host->hostdata; | ||
1888 | int don; | ||
1889 | |||
1890 | ESPLOG(("esp%d: Aborting command\n", esp->esp_id)); | ||
1891 | esp_dump_state(esp); | ||
1892 | |||
1893 | /* Wheee, if this is the current command on the bus, the | ||
1894 | * best we can do is assert ATN and wait for msgout phase. | ||
1895 | * This should even fix a hung SCSI bus when we lose state | ||
1896 | * in the driver and timeout because the eventual phase change | ||
1897 | * will cause the ESP to (eventually) give an interrupt. | ||
1898 | */ | ||
1899 | if (esp->current_SC == SCptr) { | ||
1900 | esp->cur_msgout[0] = ABORT; | ||
1901 | esp->msgout_len = 1; | ||
1902 | esp->msgout_ctr = 0; | ||
1903 | esp_cmd(esp, ESP_CMD_SATN); | ||
1904 | return SUCCESS; | ||
1905 | } | ||
1906 | |||
1907 | /* If it is still in the issue queue then we can safely | ||
1908 | * call the completion routine and report abort success. | ||
1909 | */ | ||
1910 | don = (sbus_readl(esp->dregs + DMA_CSR) & DMA_INT_ENAB); | ||
1911 | if (don) { | ||
1912 | ESP_INTSOFF(esp->dregs); | ||
1913 | } | ||
1914 | if (esp->issue_SC) { | ||
1915 | struct scsi_cmnd **prev, *this; | ||
1916 | for (prev = (&esp->issue_SC), this = esp->issue_SC; | ||
1917 | this != NULL; | ||
1918 | prev = (struct scsi_cmnd **) &(this->host_scribble), | ||
1919 | this = (struct scsi_cmnd *) this->host_scribble) { | ||
1920 | |||
1921 | if (this == SCptr) { | ||
1922 | *prev = (struct scsi_cmnd *) this->host_scribble; | ||
1923 | this->host_scribble = NULL; | ||
1924 | |||
1925 | esp_release_dmabufs(esp, this); | ||
1926 | this->result = DID_ABORT << 16; | ||
1927 | this->scsi_done(this); | ||
1928 | |||
1929 | if (don) | ||
1930 | ESP_INTSON(esp->dregs); | ||
1931 | |||
1932 | return SUCCESS; | ||
1933 | } | ||
1934 | } | ||
1935 | } | ||
1936 | |||
1937 | /* Yuck, the command to abort is disconnected, it is not | ||
1938 | * worth trying to abort it now if something else is live | ||
1939 | * on the bus at this time. So, we let the SCSI code wait | ||
1940 | * a little bit and try again later. | ||
1941 | */ | ||
1942 | if (esp->current_SC) { | ||
1943 | if (don) | ||
1944 | ESP_INTSON(esp->dregs); | ||
1945 | return FAILED; | ||
1946 | } | ||
1947 | |||
1948 | /* It's disconnected, we have to reconnect to re-establish | ||
1949 | * the nexus and tell the device to abort. However, we really | ||
1950 | * cannot 'reconnect' per se. Don't try to be fancy, just | ||
1951 | * indicate failure, which causes our caller to reset the whole | ||
1952 | * bus. | ||
1953 | */ | ||
1954 | |||
1955 | if (don) | ||
1956 | ESP_INTSON(esp->dregs); | ||
1957 | |||
1958 | return FAILED; | ||
1959 | } | ||
1960 | |||
1961 | /* We've sent ESP_CMD_RS to the ESP, the interrupt had just | ||
1962 | * arrived indicating the end of the SCSI bus reset. Our job | ||
1963 | * is to clean out the command queues and begin re-execution | ||
1964 | * of SCSI commands once more. | ||
1965 | */ | ||
1966 | static int esp_finish_reset(struct esp *esp) | ||
1967 | { | ||
1968 | struct scsi_cmnd *sp = esp->current_SC; | ||
1969 | |||
1970 | /* Clean up currently executing command, if any. */ | ||
1971 | if (sp != NULL) { | ||
1972 | esp->current_SC = NULL; | ||
1973 | |||
1974 | esp_release_dmabufs(esp, sp); | ||
1975 | sp->result = (DID_RESET << 16); | ||
1976 | |||
1977 | sp->scsi_done(sp); | ||
1978 | } | ||
1979 | |||
1980 | /* Clean up disconnected queue, they have been invalidated | ||
1981 | * by the bus reset. | ||
1982 | */ | ||
1983 | if (esp->disconnected_SC) { | ||
1984 | while ((sp = remove_first_SC(&esp->disconnected_SC)) != NULL) { | ||
1985 | esp_release_dmabufs(esp, sp); | ||
1986 | sp->result = (DID_RESET << 16); | ||
1987 | |||
1988 | sp->scsi_done(sp); | ||
1989 | } | ||
1990 | } | ||
1991 | |||
1992 | /* SCSI bus reset is complete. */ | ||
1993 | esp->resetting_bus = 0; | ||
1994 | wake_up(&esp->reset_queue); | ||
1995 | |||
1996 | /* Ok, now it is safe to get commands going once more. */ | ||
1997 | if (esp->issue_SC) | ||
1998 | esp_exec_cmd(esp); | ||
1999 | |||
2000 | return do_intr_end; | ||
2001 | } | ||
2002 | |||
2003 | static int esp_do_resetbus(struct esp *esp) | ||
2004 | { | ||
2005 | ESPLOG(("esp%d: Resetting scsi bus\n", esp->esp_id)); | ||
2006 | esp->resetting_bus = 1; | ||
2007 | esp_cmd(esp, ESP_CMD_RS); | ||
2008 | |||
2009 | return do_intr_end; | ||
2010 | } | ||
2011 | |||
2012 | /* Reset ESP chip, reset hanging bus, then kill active and | ||
2013 | * disconnected commands for targets without soft reset. | ||
2014 | * | ||
2015 | * The host_lock is acquired by caller. | ||
2016 | */ | ||
2017 | static int esp_reset(struct scsi_cmnd *SCptr) | ||
2018 | { | ||
2019 | struct esp *esp = (struct esp *) SCptr->device->host->hostdata; | ||
2020 | |||
2021 | spin_lock_irq(esp->ehost->host_lock); | ||
2022 | (void) esp_do_resetbus(esp); | ||
2023 | spin_unlock_irq(esp->ehost->host_lock); | ||
2024 | |||
2025 | wait_event(esp->reset_queue, (esp->resetting_bus == 0)); | ||
2026 | |||
2027 | return SUCCESS; | ||
2028 | } | ||
2029 | |||
2030 | /* Internal ESP done function. */ | ||
2031 | static void esp_done(struct esp *esp, int error) | ||
2032 | { | ||
2033 | struct scsi_cmnd *done_SC = esp->current_SC; | ||
2034 | |||
2035 | esp->current_SC = NULL; | ||
2036 | |||
2037 | esp_release_dmabufs(esp, done_SC); | ||
2038 | done_SC->result = error; | ||
2039 | |||
2040 | done_SC->scsi_done(done_SC); | ||
2041 | |||
2042 | /* Bus is free, issue any commands in the queue. */ | ||
2043 | if (esp->issue_SC && !esp->current_SC) | ||
2044 | esp_exec_cmd(esp); | ||
2045 | |||
2046 | } | ||
2047 | |||
2048 | /* Wheee, ESP interrupt engine. */ | ||
2049 | |||
2050 | /* Forward declarations. */ | ||
2051 | static int esp_do_phase_determine(struct esp *esp); | ||
2052 | static int esp_do_data_finale(struct esp *esp); | ||
2053 | static int esp_select_complete(struct esp *esp); | ||
2054 | static int esp_do_status(struct esp *esp); | ||
2055 | static int esp_do_msgin(struct esp *esp); | ||
2056 | static int esp_do_msgindone(struct esp *esp); | ||
2057 | static int esp_do_msgout(struct esp *esp); | ||
2058 | static int esp_do_cmdbegin(struct esp *esp); | ||
2059 | |||
2060 | #define sreg_datainp(__sreg) (((__sreg) & ESP_STAT_PMASK) == ESP_DIP) | ||
2061 | #define sreg_dataoutp(__sreg) (((__sreg) & ESP_STAT_PMASK) == ESP_DOP) | ||
2062 | |||
2063 | /* Read any bytes found in the FAS366 fifo, storing them into | ||
2064 | * the ESP driver software state structure. | ||
2065 | */ | ||
2066 | static void hme_fifo_read(struct esp *esp) | ||
2067 | { | ||
2068 | u8 count = 0; | ||
2069 | u8 status = esp->sreg; | ||
2070 | |||
2071 | /* Cannot safely frob the fifo for these following cases, but | ||
2072 | * we must always read the fifo when the reselect interrupt | ||
2073 | * is pending. | ||
2074 | */ | ||
2075 | if (((esp->ireg & ESP_INTR_RSEL) == 0) && | ||
2076 | (sreg_datainp(status) || | ||
2077 | sreg_dataoutp(status) || | ||
2078 | (esp->current_SC && | ||
2079 | esp->current_SC->SCp.phase == in_data_done))) { | ||
2080 | ESPHME(("<wkaround_skipped>")); | ||
2081 | } else { | ||
2082 | unsigned long fcnt = sbus_readb(esp->eregs + ESP_FFLAGS) & ESP_FF_FBYTES; | ||
2083 | |||
2084 | /* The HME stores bytes in multiples of 2 in the fifo. */ | ||
2085 | ESPHME(("hme_fifo[fcnt=%d", (int)fcnt)); | ||
2086 | while (fcnt) { | ||
2087 | esp->hme_fifo_workaround_buffer[count++] = | ||
2088 | sbus_readb(esp->eregs + ESP_FDATA); | ||
2089 | esp->hme_fifo_workaround_buffer[count++] = | ||
2090 | sbus_readb(esp->eregs + ESP_FDATA); | ||
2091 | ESPHME(("<%02x,%02x>", esp->hme_fifo_workaround_buffer[count-2], esp->hme_fifo_workaround_buffer[count-1])); | ||
2092 | fcnt--; | ||
2093 | } | ||
2094 | if (sbus_readb(esp->eregs + ESP_STATUS2) & ESP_STAT2_F1BYTE) { | ||
2095 | ESPHME(("<poke_byte>")); | ||
2096 | sbus_writeb(0, esp->eregs + ESP_FDATA); | ||
2097 | esp->hme_fifo_workaround_buffer[count++] = | ||
2098 | sbus_readb(esp->eregs + ESP_FDATA); | ||
2099 | ESPHME(("<%02x,0x00>", esp->hme_fifo_workaround_buffer[count-1])); | ||
2100 | ESPHME(("CMD_FLUSH")); | ||
2101 | esp_cmd(esp, ESP_CMD_FLUSH); | ||
2102 | } else { | ||
2103 | ESPHME(("no_xtra_byte")); | ||
2104 | } | ||
2105 | } | ||
2106 | ESPHME(("wkarnd_cnt=%d]", (int)count)); | ||
2107 | esp->hme_fifo_workaround_count = count; | ||
2108 | } | ||
2109 | |||
2110 | static inline void hme_fifo_push(struct esp *esp, u8 *bytes, u8 count) | ||
2111 | { | ||
2112 | esp_cmd(esp, ESP_CMD_FLUSH); | ||
2113 | while (count) { | ||
2114 | u8 tmp = *bytes++; | ||
2115 | sbus_writeb(tmp, esp->eregs + ESP_FDATA); | ||
2116 | sbus_writeb(0, esp->eregs + ESP_FDATA); | ||
2117 | count--; | ||
2118 | } | ||
2119 | } | ||
2120 | |||
2121 | /* We try to avoid some interrupts by jumping ahead and see if the ESP | ||
2122 | * has gotten far enough yet. Hence the following. | ||
2123 | */ | ||
2124 | static inline int skipahead1(struct esp *esp, struct scsi_cmnd *scp, | ||
2125 | int prev_phase, int new_phase) | ||
2126 | { | ||
2127 | if (scp->SCp.sent_command != prev_phase) | ||
2128 | return 0; | ||
2129 | if (ESP_IRQ_P(esp->dregs)) { | ||
2130 | /* Yes, we are able to save an interrupt. */ | ||
2131 | if (esp->erev == fashme) | ||
2132 | esp->sreg2 = sbus_readb(esp->eregs + ESP_STATUS2); | ||
2133 | esp->sreg = (sbus_readb(esp->eregs + ESP_STATUS) & ~(ESP_STAT_INTR)); | ||
2134 | esp->ireg = sbus_readb(esp->eregs + ESP_INTRPT); | ||
2135 | if (esp->erev == fashme) { | ||
2136 | /* This chip is really losing. */ | ||
2137 | ESPHME(("HME[")); | ||
2138 | /* Must latch fifo before reading the interrupt | ||
2139 | * register else garbage ends up in the FIFO | ||
2140 | * which confuses the driver utterly. | ||
2141 | * Happy Meal indeed.... | ||
2142 | */ | ||
2143 | ESPHME(("fifo_workaround]")); | ||
2144 | if (!(esp->sreg2 & ESP_STAT2_FEMPTY) || | ||
2145 | (esp->sreg2 & ESP_STAT2_F1BYTE)) | ||
2146 | hme_fifo_read(esp); | ||
2147 | } | ||
2148 | if (!(esp->ireg & ESP_INTR_SR)) | ||
2149 | return 0; | ||
2150 | else | ||
2151 | return do_reset_complete; | ||
2152 | } | ||
2153 | /* Ho hum, target is taking forever... */ | ||
2154 | scp->SCp.sent_command = new_phase; /* so we don't recurse... */ | ||
2155 | return do_intr_end; | ||
2156 | } | ||
2157 | |||
2158 | static inline int skipahead2(struct esp *esp, struct scsi_cmnd *scp, | ||
2159 | int prev_phase1, int prev_phase2, int new_phase) | ||
2160 | { | ||
2161 | if (scp->SCp.sent_command != prev_phase1 && | ||
2162 | scp->SCp.sent_command != prev_phase2) | ||
2163 | return 0; | ||
2164 | if (ESP_IRQ_P(esp->dregs)) { | ||
2165 | /* Yes, we are able to save an interrupt. */ | ||
2166 | if (esp->erev == fashme) | ||
2167 | esp->sreg2 = sbus_readb(esp->eregs + ESP_STATUS2); | ||
2168 | esp->sreg = (sbus_readb(esp->eregs + ESP_STATUS) & ~(ESP_STAT_INTR)); | ||
2169 | esp->ireg = sbus_readb(esp->eregs + ESP_INTRPT); | ||
2170 | if (esp->erev == fashme) { | ||
2171 | /* This chip is really losing. */ | ||
2172 | ESPHME(("HME[")); | ||
2173 | |||
2174 | /* Must latch fifo before reading the interrupt | ||
2175 | * register else garbage ends up in the FIFO | ||
2176 | * which confuses the driver utterly. | ||
2177 | * Happy Meal indeed.... | ||
2178 | */ | ||
2179 | ESPHME(("fifo_workaround]")); | ||
2180 | if (!(esp->sreg2 & ESP_STAT2_FEMPTY) || | ||
2181 | (esp->sreg2 & ESP_STAT2_F1BYTE)) | ||
2182 | hme_fifo_read(esp); | ||
2183 | } | ||
2184 | if (!(esp->ireg & ESP_INTR_SR)) | ||
2185 | return 0; | ||
2186 | else | ||
2187 | return do_reset_complete; | ||
2188 | } | ||
2189 | /* Ho hum, target is taking forever... */ | ||
2190 | scp->SCp.sent_command = new_phase; /* so we don't recurse... */ | ||
2191 | return do_intr_end; | ||
2192 | } | ||
2193 | |||
2194 | /* Now some dma helpers. */ | ||
2195 | static void dma_setup(struct esp *esp, __u32 addr, int count, int write) | ||
2196 | { | ||
2197 | u32 nreg = sbus_readl(esp->dregs + DMA_CSR); | ||
2198 | |||
2199 | if (write) | ||
2200 | nreg |= DMA_ST_WRITE; | ||
2201 | else | ||
2202 | nreg &= ~(DMA_ST_WRITE); | ||
2203 | nreg |= DMA_ENABLE; | ||
2204 | sbus_writel(nreg, esp->dregs + DMA_CSR); | ||
2205 | if (esp->dma->revision == dvmaesc1) { | ||
2206 | /* This ESC gate array sucks! */ | ||
2207 | __u32 src = addr; | ||
2208 | __u32 dest = src + count; | ||
2209 | |||
2210 | if (dest & (PAGE_SIZE - 1)) | ||
2211 | count = PAGE_ALIGN(count); | ||
2212 | sbus_writel(count, esp->dregs + DMA_COUNT); | ||
2213 | } | ||
2214 | sbus_writel(addr, esp->dregs + DMA_ADDR); | ||
2215 | } | ||
2216 | |||
2217 | static void dma_drain(struct esp *esp) | ||
2218 | { | ||
2219 | u32 tmp; | ||
2220 | |||
2221 | if (esp->dma->revision == dvmahme) | ||
2222 | return; | ||
2223 | if ((tmp = sbus_readl(esp->dregs + DMA_CSR)) & DMA_FIFO_ISDRAIN) { | ||
2224 | switch (esp->dma->revision) { | ||
2225 | default: | ||
2226 | tmp |= DMA_FIFO_STDRAIN; | ||
2227 | sbus_writel(tmp, esp->dregs + DMA_CSR); | ||
2228 | |||
2229 | case dvmarev3: | ||
2230 | case dvmaesc1: | ||
2231 | while (sbus_readl(esp->dregs + DMA_CSR) & DMA_FIFO_ISDRAIN) | ||
2232 | udelay(1); | ||
2233 | }; | ||
2234 | } | ||
2235 | } | ||
2236 | |||
2237 | static void dma_invalidate(struct esp *esp) | ||
2238 | { | ||
2239 | u32 tmp; | ||
2240 | |||
2241 | if (esp->dma->revision == dvmahme) { | ||
2242 | sbus_writel(DMA_RST_SCSI, esp->dregs + DMA_CSR); | ||
2243 | |||
2244 | esp->prev_hme_dmacsr = ((esp->prev_hme_dmacsr | | ||
2245 | (DMA_PARITY_OFF | DMA_2CLKS | | ||
2246 | DMA_SCSI_DISAB | DMA_INT_ENAB)) & | ||
2247 | ~(DMA_ST_WRITE | DMA_ENABLE)); | ||
2248 | |||
2249 | sbus_writel(0, esp->dregs + DMA_CSR); | ||
2250 | sbus_writel(esp->prev_hme_dmacsr, esp->dregs + DMA_CSR); | ||
2251 | |||
2252 | /* This is necessary to avoid having the SCSI channel | ||
2253 | * engine lock up on us. | ||
2254 | */ | ||
2255 | sbus_writel(0, esp->dregs + DMA_ADDR); | ||
2256 | } else { | ||
2257 | while ((tmp = sbus_readl(esp->dregs + DMA_CSR)) & DMA_PEND_READ) | ||
2258 | udelay(1); | ||
2259 | |||
2260 | tmp &= ~(DMA_ENABLE | DMA_ST_WRITE | DMA_BCNT_ENAB); | ||
2261 | tmp |= DMA_FIFO_INV; | ||
2262 | sbus_writel(tmp, esp->dregs + DMA_CSR); | ||
2263 | tmp &= ~DMA_FIFO_INV; | ||
2264 | sbus_writel(tmp, esp->dregs + DMA_CSR); | ||
2265 | } | ||
2266 | } | ||
2267 | |||
2268 | static inline void dma_flashclear(struct esp *esp) | ||
2269 | { | ||
2270 | dma_drain(esp); | ||
2271 | dma_invalidate(esp); | ||
2272 | } | ||
2273 | |||
2274 | static int dma_can_transfer(struct esp *esp, struct scsi_cmnd *sp) | ||
2275 | { | ||
2276 | __u32 base, end, sz; | ||
2277 | |||
2278 | if (esp->dma->revision == dvmarev3) { | ||
2279 | sz = sp->SCp.this_residual; | ||
2280 | if (sz > 0x1000000) | ||
2281 | sz = 0x1000000; | ||
2282 | } else { | ||
2283 | base = ((__u32)((unsigned long)sp->SCp.ptr)); | ||
2284 | base &= (0x1000000 - 1); | ||
2285 | end = (base + sp->SCp.this_residual); | ||
2286 | if (end > 0x1000000) | ||
2287 | end = 0x1000000; | ||
2288 | sz = (end - base); | ||
2289 | } | ||
2290 | return sz; | ||
2291 | } | ||
2292 | |||
2293 | /* Misc. esp helper macros. */ | ||
2294 | #define esp_setcount(__eregs, __cnt, __hme) \ | ||
2295 | sbus_writeb(((__cnt)&0xff), (__eregs) + ESP_TCLOW); \ | ||
2296 | sbus_writeb((((__cnt)>>8)&0xff), (__eregs) + ESP_TCMED); \ | ||
2297 | if (__hme) { \ | ||
2298 | sbus_writeb((((__cnt)>>16)&0xff), (__eregs) + FAS_RLO); \ | ||
2299 | sbus_writeb(0, (__eregs) + FAS_RHI); \ | ||
2300 | } | ||
2301 | |||
2302 | #define esp_getcount(__eregs, __hme) \ | ||
2303 | ((sbus_readb((__eregs) + ESP_TCLOW)&0xff) | \ | ||
2304 | ((sbus_readb((__eregs) + ESP_TCMED)&0xff) << 8) | \ | ||
2305 | ((__hme) ? sbus_readb((__eregs) + FAS_RLO) << 16 : 0)) | ||
2306 | |||
2307 | #define fcount(__esp) \ | ||
2308 | (((__esp)->erev == fashme) ? \ | ||
2309 | (__esp)->hme_fifo_workaround_count : \ | ||
2310 | sbus_readb(((__esp)->eregs) + ESP_FFLAGS) & ESP_FF_FBYTES) | ||
2311 | |||
2312 | #define fnzero(__esp) \ | ||
2313 | (((__esp)->erev == fashme) ? 0 : \ | ||
2314 | sbus_readb(((__esp)->eregs) + ESP_FFLAGS) & ESP_FF_ONOTZERO) | ||
2315 | |||
2316 | /* XXX speculative nops unnecessary when continuing amidst a data phase | ||
2317 | * XXX even on esp100!!! another case of flooding the bus with I/O reg | ||
2318 | * XXX writes... | ||
2319 | */ | ||
2320 | #define esp_maybe_nop(__esp) \ | ||
2321 | if ((__esp)->erev == esp100) \ | ||
2322 | esp_cmd((__esp), ESP_CMD_NULL) | ||
2323 | |||
2324 | #define sreg_to_dataphase(__sreg) \ | ||
2325 | ((((__sreg) & ESP_STAT_PMASK) == ESP_DOP) ? in_dataout : in_datain) | ||
2326 | |||
2327 | /* The ESP100 when in synchronous data phase, can mistake a long final | ||
2328 | * REQ pulse from the target as an extra byte, it places whatever is on | ||
2329 | * the data lines into the fifo. For now, we will assume when this | ||
2330 | * happens that the target is a bit quirky and we don't want to | ||
2331 | * be talking synchronously to it anyways. Regardless, we need to | ||
2332 | * tell the ESP to eat the extraneous byte so that we can proceed | ||
2333 | * to the next phase. | ||
2334 | */ | ||
2335 | static int esp100_sync_hwbug(struct esp *esp, struct scsi_cmnd *sp, int fifocnt) | ||
2336 | { | ||
2337 | /* Do not touch this piece of code. */ | ||
2338 | if ((!(esp->erev == esp100)) || | ||
2339 | (!(sreg_datainp((esp->sreg = sbus_readb(esp->eregs + ESP_STATUS))) && | ||
2340 | !fifocnt) && | ||
2341 | !(sreg_dataoutp(esp->sreg) && !fnzero(esp)))) { | ||
2342 | if (sp->SCp.phase == in_dataout) | ||
2343 | esp_cmd(esp, ESP_CMD_FLUSH); | ||
2344 | return 0; | ||
2345 | } else { | ||
2346 | /* Async mode for this guy. */ | ||
2347 | build_sync_nego_msg(esp, 0, 0); | ||
2348 | |||
2349 | /* Ack the bogus byte, but set ATN first. */ | ||
2350 | esp_cmd(esp, ESP_CMD_SATN); | ||
2351 | esp_cmd(esp, ESP_CMD_MOK); | ||
2352 | return 1; | ||
2353 | } | ||
2354 | } | ||
2355 | |||
2356 | /* This closes the window during a selection with a reselect pending, because | ||
2357 | * we use DMA for the selection process the FIFO should hold the correct | ||
2358 | * contents if we get reselected during this process. So we just need to | ||
2359 | * ack the possible illegal cmd interrupt pending on the esp100. | ||
2360 | */ | ||
2361 | static inline int esp100_reconnect_hwbug(struct esp *esp) | ||
2362 | { | ||
2363 | u8 tmp; | ||
2364 | |||
2365 | if (esp->erev != esp100) | ||
2366 | return 0; | ||
2367 | tmp = sbus_readb(esp->eregs + ESP_INTRPT); | ||
2368 | if (tmp & ESP_INTR_SR) | ||
2369 | return 1; | ||
2370 | return 0; | ||
2371 | } | ||
2372 | |||
2373 | /* This verifies the BUSID bits during a reselection so that we know which | ||
2374 | * target is talking to us. | ||
2375 | */ | ||
2376 | static inline int reconnect_target(struct esp *esp) | ||
2377 | { | ||
2378 | int it, me = esp->scsi_id_mask, targ = 0; | ||
2379 | |||
2380 | if (2 != fcount(esp)) | ||
2381 | return -1; | ||
2382 | if (esp->erev == fashme) { | ||
2383 | /* HME does not latch it's own BUS ID bits during | ||
2384 | * a reselection. Also the target number is given | ||
2385 | * as an unsigned char, not as a sole bit number | ||
2386 | * like the other ESP's do. | ||
2387 | * Happy Meal indeed.... | ||
2388 | */ | ||
2389 | targ = esp->hme_fifo_workaround_buffer[0]; | ||
2390 | } else { | ||
2391 | it = sbus_readb(esp->eregs + ESP_FDATA); | ||
2392 | if (!(it & me)) | ||
2393 | return -1; | ||
2394 | it &= ~me; | ||
2395 | if (it & (it - 1)) | ||
2396 | return -1; | ||
2397 | while (!(it & 1)) | ||
2398 | targ++, it >>= 1; | ||
2399 | } | ||
2400 | return targ; | ||
2401 | } | ||
2402 | |||
2403 | /* This verifies the identify from the target so that we know which lun is | ||
2404 | * being reconnected. | ||
2405 | */ | ||
2406 | static inline int reconnect_lun(struct esp *esp) | ||
2407 | { | ||
2408 | int lun; | ||
2409 | |||
2410 | if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) | ||
2411 | return -1; | ||
2412 | if (esp->erev == fashme) | ||
2413 | lun = esp->hme_fifo_workaround_buffer[1]; | ||
2414 | else | ||
2415 | lun = sbus_readb(esp->eregs + ESP_FDATA); | ||
2416 | |||
2417 | /* Yes, you read this correctly. We report lun of zero | ||
2418 | * if we see parity error. ESP reports parity error for | ||
2419 | * the lun byte, and this is the only way to hope to recover | ||
2420 | * because the target is connected. | ||
2421 | */ | ||
2422 | if (esp->sreg & ESP_STAT_PERR) | ||
2423 | return 0; | ||
2424 | |||
2425 | /* Check for illegal bits being set in the lun. */ | ||
2426 | if ((lun & 0x40) || !(lun & 0x80)) | ||
2427 | return -1; | ||
2428 | |||
2429 | return lun & 7; | ||
2430 | } | ||
2431 | |||
2432 | /* This puts the driver in a state where it can revitalize a command that | ||
2433 | * is being continued due to reselection. | ||
2434 | */ | ||
2435 | static inline void esp_connect(struct esp *esp, struct scsi_cmnd *sp) | ||
2436 | { | ||
2437 | struct esp_device *esp_dev = sp->device->hostdata; | ||
2438 | |||
2439 | if (esp->prev_soff != esp_dev->sync_max_offset || | ||
2440 | esp->prev_stp != esp_dev->sync_min_period || | ||
2441 | (esp->erev > esp100a && | ||
2442 | esp->prev_cfg3 != esp->config3[sp->device->id])) { | ||
2443 | esp->prev_soff = esp_dev->sync_max_offset; | ||
2444 | esp->prev_stp = esp_dev->sync_min_period; | ||
2445 | sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF); | ||
2446 | sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP); | ||
2447 | if (esp->erev > esp100a) { | ||
2448 | esp->prev_cfg3 = esp->config3[sp->device->id]; | ||
2449 | sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); | ||
2450 | } | ||
2451 | } | ||
2452 | esp->current_SC = sp; | ||
2453 | } | ||
2454 | |||
2455 | /* This will place the current working command back into the issue queue | ||
2456 | * if we are to receive a reselection amidst a selection attempt. | ||
2457 | */ | ||
2458 | static inline void esp_reconnect(struct esp *esp, struct scsi_cmnd *sp) | ||
2459 | { | ||
2460 | if (!esp->disconnected_SC) | ||
2461 | ESPLOG(("esp%d: Weird, being reselected but disconnected " | ||
2462 | "command queue is empty.\n", esp->esp_id)); | ||
2463 | esp->snip = 0; | ||
2464 | esp->current_SC = NULL; | ||
2465 | sp->SCp.phase = not_issued; | ||
2466 | append_SC(&esp->issue_SC, sp); | ||
2467 | } | ||
2468 | |||
2469 | /* Begin message in phase. */ | ||
2470 | static int esp_do_msgin(struct esp *esp) | ||
2471 | { | ||
2472 | /* Must be very careful with the fifo on the HME */ | ||
2473 | if ((esp->erev != fashme) || | ||
2474 | !(sbus_readb(esp->eregs + ESP_STATUS2) & ESP_STAT2_FEMPTY)) | ||
2475 | esp_cmd(esp, ESP_CMD_FLUSH); | ||
2476 | esp_maybe_nop(esp); | ||
2477 | esp_cmd(esp, ESP_CMD_TI); | ||
2478 | esp->msgin_len = 1; | ||
2479 | esp->msgin_ctr = 0; | ||
2480 | esp_advance_phase(esp->current_SC, in_msgindone); | ||
2481 | return do_work_bus; | ||
2482 | } | ||
2483 | |||
2484 | /* This uses various DMA csr fields and the fifo flags count value to | ||
2485 | * determine how many bytes were successfully sent/received by the ESP. | ||
2486 | */ | ||
2487 | static inline int esp_bytes_sent(struct esp *esp, int fifo_count) | ||
2488 | { | ||
2489 | int rval = sbus_readl(esp->dregs + DMA_ADDR) - esp->esp_command_dvma; | ||
2490 | |||
2491 | if (esp->dma->revision == dvmarev1) | ||
2492 | rval -= (4 - ((sbus_readl(esp->dregs + DMA_CSR) & DMA_READ_AHEAD)>>11)); | ||
2493 | return rval - fifo_count; | ||
2494 | } | ||
2495 | |||
2496 | static inline void advance_sg(struct scsi_cmnd *sp) | ||
2497 | { | ||
2498 | ++sp->SCp.buffer; | ||
2499 | --sp->SCp.buffers_residual; | ||
2500 | sp->SCp.this_residual = sg_dma_len(sp->SCp.buffer); | ||
2501 | sp->SCp.ptr = (char *)((unsigned long)sg_dma_address(sp->SCp.buffer)); | ||
2502 | } | ||
2503 | |||
2504 | /* Please note that the way I've coded these routines is that I _always_ | ||
2505 | * check for a disconnect during any and all information transfer | ||
2506 | * phases. The SCSI standard states that the target _can_ cause a BUS | ||
2507 | * FREE condition by dropping all MSG/CD/IO/BSY signals. Also note | ||
2508 | * that during information transfer phases the target controls every | ||
2509 | * change in phase, the only thing the initiator can do is "ask" for | ||
2510 | * a message out phase by driving ATN true. The target can, and sometimes | ||
2511 | * will, completely ignore this request so we cannot assume anything when | ||
2512 | * we try to force a message out phase to abort/reset a target. Most of | ||
2513 | * the time the target will eventually be nice and go to message out, so | ||
2514 | * we may have to hold on to our state about what we want to tell the target | ||
2515 | * for some period of time. | ||
2516 | */ | ||
2517 | |||
2518 | /* I think I have things working here correctly. Even partial transfers | ||
2519 | * within a buffer or sub-buffer should not upset us at all no matter | ||
2520 | * how bad the target and/or ESP fucks things up. | ||
2521 | */ | ||
2522 | static int esp_do_data(struct esp *esp) | ||
2523 | { | ||
2524 | struct scsi_cmnd *SCptr = esp->current_SC; | ||
2525 | int thisphase, hmuch; | ||
2526 | |||
2527 | ESPDATA(("esp_do_data: ")); | ||
2528 | esp_maybe_nop(esp); | ||
2529 | thisphase = sreg_to_dataphase(esp->sreg); | ||
2530 | esp_advance_phase(SCptr, thisphase); | ||
2531 | ESPDATA(("newphase<%s> ", (thisphase == in_datain) ? "DATAIN" : "DATAOUT")); | ||
2532 | hmuch = dma_can_transfer(esp, SCptr); | ||
2533 | if (hmuch > (64 * 1024) && (esp->erev != fashme)) | ||
2534 | hmuch = (64 * 1024); | ||
2535 | ESPDATA(("hmuch<%d> ", hmuch)); | ||
2536 | esp->current_transfer_size = hmuch; | ||
2537 | |||
2538 | if (esp->erev == fashme) { | ||
2539 | u32 tmp = esp->prev_hme_dmacsr; | ||
2540 | |||
2541 | /* Always set the ESP count registers first. */ | ||
2542 | esp_setcount(esp->eregs, hmuch, 1); | ||
2543 | |||
2544 | /* Get the DMA csr computed. */ | ||
2545 | tmp |= (DMA_SCSI_DISAB | DMA_ENABLE); | ||
2546 | if (thisphase == in_datain) | ||
2547 | tmp |= DMA_ST_WRITE; | ||
2548 | else | ||
2549 | tmp &= ~(DMA_ST_WRITE); | ||
2550 | esp->prev_hme_dmacsr = tmp; | ||
2551 | |||
2552 | ESPDATA(("DMA|TI --> do_intr_end\n")); | ||
2553 | if (thisphase == in_datain) { | ||
2554 | sbus_writel(hmuch, esp->dregs + DMA_COUNT); | ||
2555 | esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI); | ||
2556 | } else { | ||
2557 | esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI); | ||
2558 | sbus_writel(hmuch, esp->dregs + DMA_COUNT); | ||
2559 | } | ||
2560 | sbus_writel((__u32)((unsigned long)SCptr->SCp.ptr), esp->dregs+DMA_ADDR); | ||
2561 | sbus_writel(esp->prev_hme_dmacsr, esp->dregs + DMA_CSR); | ||
2562 | } else { | ||
2563 | esp_setcount(esp->eregs, hmuch, 0); | ||
2564 | dma_setup(esp, ((__u32)((unsigned long)SCptr->SCp.ptr)), | ||
2565 | hmuch, (thisphase == in_datain)); | ||
2566 | ESPDATA(("DMA|TI --> do_intr_end\n")); | ||
2567 | esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI); | ||
2568 | } | ||
2569 | return do_intr_end; | ||
2570 | } | ||
2571 | |||
2572 | /* See how successful the data transfer was. */ | ||
2573 | static int esp_do_data_finale(struct esp *esp) | ||
2574 | { | ||
2575 | struct scsi_cmnd *SCptr = esp->current_SC; | ||
2576 | struct esp_device *esp_dev = SCptr->device->hostdata; | ||
2577 | int bogus_data = 0, bytes_sent = 0, fifocnt, ecount = 0; | ||
2578 | |||
2579 | ESPDATA(("esp_do_data_finale: ")); | ||
2580 | |||
2581 | if (SCptr->SCp.phase == in_datain) { | ||
2582 | if (esp->sreg & ESP_STAT_PERR) { | ||
2583 | /* Yuck, parity error. The ESP asserts ATN | ||
2584 | * so that we can go to message out phase | ||
2585 | * immediately and inform the target that | ||
2586 | * something bad happened. | ||
2587 | */ | ||
2588 | ESPLOG(("esp%d: data bad parity detected.\n", | ||
2589 | esp->esp_id)); | ||
2590 | esp->cur_msgout[0] = INITIATOR_ERROR; | ||
2591 | esp->msgout_len = 1; | ||
2592 | } | ||
2593 | dma_drain(esp); | ||
2594 | } | ||
2595 | dma_invalidate(esp); | ||
2596 | |||
2597 | /* This could happen for the above parity error case. */ | ||
2598 | if (esp->ireg != ESP_INTR_BSERV) { | ||
2599 | /* Please go to msgout phase, please please please... */ | ||
2600 | ESPLOG(("esp%d: !BSERV after data, probably to msgout\n", | ||
2601 | esp->esp_id)); | ||
2602 | return esp_do_phase_determine(esp); | ||
2603 | } | ||
2604 | |||
2605 | /* Check for partial transfers and other horrible events. | ||
2606 | * Note, here we read the real fifo flags register even | ||
2607 | * on HME broken adapters because we skip the HME fifo | ||
2608 | * workaround code in esp_handle() if we are doing data | ||
2609 | * phase things. We don't want to fuck directly with | ||
2610 | * the fifo like that, especially if doing synchronous | ||
2611 | * transfers! Also, will need to double the count on | ||
2612 | * HME if we are doing wide transfers, as the HME fifo | ||
2613 | * will move and count 16-bit quantities during wide data. | ||
2614 | * SMCC _and_ Qlogic can both bite me. | ||
2615 | */ | ||
2616 | fifocnt = (sbus_readb(esp->eregs + ESP_FFLAGS) & ESP_FF_FBYTES); | ||
2617 | if (esp->erev != fashme) | ||
2618 | ecount = esp_getcount(esp->eregs, 0); | ||
2619 | bytes_sent = esp->current_transfer_size; | ||
2620 | |||
2621 | ESPDATA(("trans_sz(%d), ", bytes_sent)); | ||
2622 | if (esp->erev == fashme) { | ||
2623 | if (!(esp->sreg & ESP_STAT_TCNT)) { | ||
2624 | ecount = esp_getcount(esp->eregs, 1); | ||
2625 | bytes_sent -= ecount; | ||
2626 | } | ||
2627 | |||
2628 | /* Always subtract any cruft remaining in the FIFO. */ | ||
2629 | if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE) | ||
2630 | fifocnt <<= 1; | ||
2631 | if (SCptr->SCp.phase == in_dataout) | ||
2632 | bytes_sent -= fifocnt; | ||
2633 | |||
2634 | /* I have an IBM disk which exhibits the following | ||
2635 | * behavior during writes to it. It disconnects in | ||
2636 | * the middle of a partial transfer, the current sglist | ||
2637 | * buffer is 1024 bytes, the disk stops data transfer | ||
2638 | * at 512 bytes. | ||
2639 | * | ||
2640 | * However the FAS366 reports that 32 more bytes were | ||
2641 | * transferred than really were. This is precisely | ||
2642 | * the size of a fully loaded FIFO in wide scsi mode. | ||
2643 | * The FIFO state recorded indicates that it is empty. | ||
2644 | * | ||
2645 | * I have no idea if this is a bug in the FAS366 chip | ||
2646 | * or a bug in the firmware on this IBM disk. In any | ||
2647 | * event the following seems to be a good workaround. -DaveM | ||
2648 | */ | ||
2649 | if (bytes_sent != esp->current_transfer_size && | ||
2650 | SCptr->SCp.phase == in_dataout) { | ||
2651 | int mask = (64 - 1); | ||
2652 | |||
2653 | if ((esp->prev_cfg3 & ESP_CONFIG3_EWIDE) == 0) | ||
2654 | mask >>= 1; | ||
2655 | |||
2656 | if (bytes_sent & mask) | ||
2657 | bytes_sent -= (bytes_sent & mask); | ||
2658 | } | ||
2659 | } else { | ||
2660 | if (!(esp->sreg & ESP_STAT_TCNT)) | ||
2661 | bytes_sent -= ecount; | ||
2662 | if (SCptr->SCp.phase == in_dataout) | ||
2663 | bytes_sent -= fifocnt; | ||
2664 | } | ||
2665 | |||
2666 | ESPDATA(("bytes_sent(%d), ", bytes_sent)); | ||
2667 | |||
2668 | /* If we were in synchronous mode, check for peculiarities. */ | ||
2669 | if (esp->erev == fashme) { | ||
2670 | if (esp_dev->sync_max_offset) { | ||
2671 | if (SCptr->SCp.phase == in_dataout) | ||
2672 | esp_cmd(esp, ESP_CMD_FLUSH); | ||
2673 | } else { | ||
2674 | esp_cmd(esp, ESP_CMD_FLUSH); | ||
2675 | } | ||
2676 | } else { | ||
2677 | if (esp_dev->sync_max_offset) | ||
2678 | bogus_data = esp100_sync_hwbug(esp, SCptr, fifocnt); | ||
2679 | else | ||
2680 | esp_cmd(esp, ESP_CMD_FLUSH); | ||
2681 | } | ||
2682 | |||
2683 | /* Until we are sure of what has happened, we are certainly | ||
2684 | * in the dark. | ||
2685 | */ | ||
2686 | esp_advance_phase(SCptr, in_the_dark); | ||
2687 | |||
2688 | if (bytes_sent < 0) { | ||
2689 | /* I've seen this happen due to lost state in this | ||
2690 | * driver. No idea why it happened, but allowing | ||
2691 | * this value to be negative caused things to | ||
2692 | * lock up. This allows greater chance of recovery. | ||
2693 | * In fact every time I've seen this, it has been | ||
2694 | * a driver bug without question. | ||
2695 | */ | ||
2696 | ESPLOG(("esp%d: yieee, bytes_sent < 0!\n", esp->esp_id)); | ||
2697 | ESPLOG(("esp%d: csz=%d fifocount=%d ecount=%d\n", | ||
2698 | esp->esp_id, | ||
2699 | esp->current_transfer_size, fifocnt, ecount)); | ||
2700 | ESPLOG(("esp%d: use_sg=%d ptr=%p this_residual=%d\n", | ||
2701 | esp->esp_id, | ||
2702 | SCptr->use_sg, SCptr->SCp.ptr, SCptr->SCp.this_residual)); | ||
2703 | ESPLOG(("esp%d: Forcing async for target %d\n", esp->esp_id, | ||
2704 | SCptr->device->id)); | ||
2705 | SCptr->device->borken = 1; | ||
2706 | esp_dev->sync = 0; | ||
2707 | bytes_sent = 0; | ||
2708 | } | ||
2709 | |||
2710 | /* Update the state of our transfer. */ | ||
2711 | SCptr->SCp.ptr += bytes_sent; | ||
2712 | SCptr->SCp.this_residual -= bytes_sent; | ||
2713 | if (SCptr->SCp.this_residual < 0) { | ||
2714 | /* shit */ | ||
2715 | ESPLOG(("esp%d: Data transfer overrun.\n", esp->esp_id)); | ||
2716 | SCptr->SCp.this_residual = 0; | ||
2717 | } | ||
2718 | |||
2719 | /* Maybe continue. */ | ||
2720 | if (!bogus_data) { | ||
2721 | ESPDATA(("!bogus_data, ")); | ||
2722 | |||
2723 | /* NO MATTER WHAT, we advance the scatterlist, | ||
2724 | * if the target should decide to disconnect | ||
2725 | * in between scatter chunks (which is common) | ||
2726 | * we could die horribly! I used to have the sg | ||
2727 | * advance occur only if we are going back into | ||
2728 | * (or are staying in) a data phase, you can | ||
2729 | * imagine the hell I went through trying to | ||
2730 | * figure this out. | ||
2731 | */ | ||
2732 | if (SCptr->use_sg && !SCptr->SCp.this_residual) | ||
2733 | advance_sg(SCptr); | ||
2734 | if (sreg_datainp(esp->sreg) || sreg_dataoutp(esp->sreg)) { | ||
2735 | ESPDATA(("to more data\n")); | ||
2736 | return esp_do_data(esp); | ||
2737 | } | ||
2738 | ESPDATA(("to new phase\n")); | ||
2739 | return esp_do_phase_determine(esp); | ||
2740 | } | ||
2741 | /* Bogus data, just wait for next interrupt. */ | ||
2742 | ESPLOG(("esp%d: bogus_data during end of data phase\n", | ||
2743 | esp->esp_id)); | ||
2744 | return do_intr_end; | ||
2745 | } | ||
2746 | |||
2747 | /* We received a non-good status return at the end of | ||
2748 | * running a SCSI command. This is used to decide if | ||
2749 | * we should clear our synchronous transfer state for | ||
2750 | * such a device when that happens. | ||
2751 | * | ||
2752 | * The idea is that when spinning up a disk or rewinding | ||
2753 | * a tape, we don't want to go into a loop re-negotiating | ||
2754 | * synchronous capabilities over and over. | ||
2755 | */ | ||
2756 | static int esp_should_clear_sync(struct scsi_cmnd *sp) | ||
2757 | { | ||
2758 | u8 cmd = sp->cmnd[0]; | ||
2759 | |||
2760 | /* These cases are for spinning up a disk and | ||
2761 | * waiting for that spinup to complete. | ||
2762 | */ | ||
2763 | if (cmd == START_STOP) | ||
2764 | return 0; | ||
2765 | |||
2766 | if (cmd == TEST_UNIT_READY) | ||
2767 | return 0; | ||
2768 | |||
2769 | /* One more special case for SCSI tape drives, | ||
2770 | * this is what is used to probe the device for | ||
2771 | * completion of a rewind or tape load operation. | ||
2772 | */ | ||
2773 | if (sp->device->type == TYPE_TAPE) { | ||
2774 | if (cmd == MODE_SENSE) | ||
2775 | return 0; | ||
2776 | } | ||
2777 | |||
2778 | return 1; | ||
2779 | } | ||
2780 | |||
2781 | /* Either a command is completing or a target is dropping off the bus | ||
2782 | * to continue the command in the background so we can do other work. | ||
2783 | */ | ||
2784 | static int esp_do_freebus(struct esp *esp) | ||
2785 | { | ||
2786 | struct scsi_cmnd *SCptr = esp->current_SC; | ||
2787 | struct esp_device *esp_dev = SCptr->device->hostdata; | ||
2788 | int rval; | ||
2789 | |||
2790 | rval = skipahead2(esp, SCptr, in_status, in_msgindone, in_freeing); | ||
2791 | if (rval) | ||
2792 | return rval; | ||
2793 | if (esp->ireg != ESP_INTR_DC) { | ||
2794 | ESPLOG(("esp%d: Target will not disconnect\n", esp->esp_id)); | ||
2795 | return do_reset_bus; /* target will not drop BSY... */ | ||
2796 | } | ||
2797 | esp->msgout_len = 0; | ||
2798 | esp->prevmsgout = NOP; | ||
2799 | if (esp->prevmsgin == COMMAND_COMPLETE) { | ||
2800 | /* Normal end of nexus. */ | ||
2801 | if (esp->disconnected_SC || (esp->erev == fashme)) | ||
2802 | esp_cmd(esp, ESP_CMD_ESEL); | ||
2803 | |||
2804 | if (SCptr->SCp.Status != GOOD && | ||
2805 | SCptr->SCp.Status != CONDITION_GOOD && | ||
2806 | ((1<<SCptr->device->id) & esp->targets_present) && | ||
2807 | esp_dev->sync && | ||
2808 | esp_dev->sync_max_offset) { | ||
2809 | /* SCSI standard says that the synchronous capabilities | ||
2810 | * should be renegotiated at this point. Most likely | ||
2811 | * we are about to request sense from this target | ||
2812 | * in which case we want to avoid using sync | ||
2813 | * transfers until we are sure of the current target | ||
2814 | * state. | ||
2815 | */ | ||
2816 | ESPMISC(("esp: Status <%d> for target %d lun %d\n", | ||
2817 | SCptr->SCp.Status, SCptr->device->id, SCptr->device->lun)); | ||
2818 | |||
2819 | /* But don't do this when spinning up a disk at | ||
2820 | * boot time while we poll for completion as it | ||
2821 | * fills up the console with messages. Also, tapes | ||
2822 | * can report not ready many times right after | ||
2823 | * loading up a tape. | ||
2824 | */ | ||
2825 | if (esp_should_clear_sync(SCptr) != 0) | ||
2826 | esp_dev->sync = 0; | ||
2827 | } | ||
2828 | ESPDISC(("F<%02x,%02x>", SCptr->device->id, SCptr->device->lun)); | ||
2829 | esp_done(esp, ((SCptr->SCp.Status & 0xff) | | ||
2830 | ((SCptr->SCp.Message & 0xff)<<8) | | ||
2831 | (DID_OK << 16))); | ||
2832 | } else if (esp->prevmsgin == DISCONNECT) { | ||
2833 | /* Normal disconnect. */ | ||
2834 | esp_cmd(esp, ESP_CMD_ESEL); | ||
2835 | ESPDISC(("D<%02x,%02x>", SCptr->device->id, SCptr->device->lun)); | ||
2836 | append_SC(&esp->disconnected_SC, SCptr); | ||
2837 | esp->current_SC = NULL; | ||
2838 | if (esp->issue_SC) | ||
2839 | esp_exec_cmd(esp); | ||
2840 | } else { | ||
2841 | /* Driver bug, we do not expect a disconnect here | ||
2842 | * and should not have advanced the state engine | ||
2843 | * to in_freeing. | ||
2844 | */ | ||
2845 | ESPLOG(("esp%d: last msg not disc and not cmd cmplt.\n", | ||
2846 | esp->esp_id)); | ||
2847 | return do_reset_bus; | ||
2848 | } | ||
2849 | return do_intr_end; | ||
2850 | } | ||
2851 | |||
2852 | /* When a reselect occurs, and we cannot find the command to | ||
2853 | * reconnect to in our queues, we do this. | ||
2854 | */ | ||
2855 | static int esp_bad_reconnect(struct esp *esp) | ||
2856 | { | ||
2857 | struct scsi_cmnd *sp; | ||
2858 | |||
2859 | ESPLOG(("esp%d: Eieeee, reconnecting unknown command!\n", | ||
2860 | esp->esp_id)); | ||
2861 | ESPLOG(("QUEUE DUMP\n")); | ||
2862 | sp = esp->issue_SC; | ||
2863 | ESPLOG(("esp%d: issue_SC[", esp->esp_id)); | ||
2864 | while (sp) { | ||
2865 | ESPLOG(("<%02x,%02x>", sp->device->id, sp->device->lun)); | ||
2866 | sp = (struct scsi_cmnd *) sp->host_scribble; | ||
2867 | } | ||
2868 | ESPLOG(("]\n")); | ||
2869 | sp = esp->current_SC; | ||
2870 | ESPLOG(("esp%d: current_SC[", esp->esp_id)); | ||
2871 | if (sp) | ||
2872 | ESPLOG(("<%02x,%02x>", sp->device->id, sp->device->lun)); | ||
2873 | else | ||
2874 | ESPLOG(("<NULL>")); | ||
2875 | ESPLOG(("]\n")); | ||
2876 | sp = esp->disconnected_SC; | ||
2877 | ESPLOG(("esp%d: disconnected_SC[", esp->esp_id)); | ||
2878 | while (sp) { | ||
2879 | ESPLOG(("<%02x,%02x>", sp->device->id, sp->device->lun)); | ||
2880 | sp = (struct scsi_cmnd *) sp->host_scribble; | ||
2881 | } | ||
2882 | ESPLOG(("]\n")); | ||
2883 | return do_reset_bus; | ||
2884 | } | ||
2885 | |||
2886 | /* Do the needy when a target tries to reconnect to us. */ | ||
2887 | static int esp_do_reconnect(struct esp *esp) | ||
2888 | { | ||
2889 | int lun, target; | ||
2890 | struct scsi_cmnd *SCptr; | ||
2891 | |||
2892 | /* Check for all bogus conditions first. */ | ||
2893 | target = reconnect_target(esp); | ||
2894 | if (target < 0) { | ||
2895 | ESPDISC(("bad bus bits\n")); | ||
2896 | return do_reset_bus; | ||
2897 | } | ||
2898 | lun = reconnect_lun(esp); | ||
2899 | if (lun < 0) { | ||
2900 | ESPDISC(("target=%2x, bad identify msg\n", target)); | ||
2901 | return do_reset_bus; | ||
2902 | } | ||
2903 | |||
2904 | /* Things look ok... */ | ||
2905 | ESPDISC(("R<%02x,%02x>", target, lun)); | ||
2906 | |||
2907 | /* Must not flush FIFO or DVMA on HME. */ | ||
2908 | if (esp->erev != fashme) { | ||
2909 | esp_cmd(esp, ESP_CMD_FLUSH); | ||
2910 | if (esp100_reconnect_hwbug(esp)) | ||
2911 | return do_reset_bus; | ||
2912 | esp_cmd(esp, ESP_CMD_NULL); | ||
2913 | } | ||
2914 | |||
2915 | SCptr = remove_SC(&esp->disconnected_SC, (u8) target, (u8) lun); | ||
2916 | if (!SCptr) | ||
2917 | return esp_bad_reconnect(esp); | ||
2918 | |||
2919 | esp_connect(esp, SCptr); | ||
2920 | esp_cmd(esp, ESP_CMD_MOK); | ||
2921 | |||
2922 | if (esp->erev == fashme) | ||
2923 | sbus_writeb(((SCptr->device->id & 0xf) | | ||
2924 | (ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT)), | ||
2925 | esp->eregs + ESP_BUSID); | ||
2926 | |||
2927 | /* Reconnect implies a restore pointers operation. */ | ||
2928 | esp_restore_pointers(esp, SCptr); | ||
2929 | |||
2930 | esp->snip = 0; | ||
2931 | esp_advance_phase(SCptr, in_the_dark); | ||
2932 | return do_intr_end; | ||
2933 | } | ||
2934 | |||
2935 | /* End of NEXUS (hopefully), pick up status + message byte then leave if | ||
2936 | * all goes well. | ||
2937 | */ | ||
2938 | static int esp_do_status(struct esp *esp) | ||
2939 | { | ||
2940 | struct scsi_cmnd *SCptr = esp->current_SC; | ||
2941 | int intr, rval; | ||
2942 | |||
2943 | rval = skipahead1(esp, SCptr, in_the_dark, in_status); | ||
2944 | if (rval) | ||
2945 | return rval; | ||
2946 | intr = esp->ireg; | ||
2947 | ESPSTAT(("esp_do_status: ")); | ||
2948 | if (intr != ESP_INTR_DC) { | ||
2949 | int message_out = 0; /* for parity problems */ | ||
2950 | |||
2951 | /* Ack the message. */ | ||
2952 | ESPSTAT(("ack msg, ")); | ||
2953 | esp_cmd(esp, ESP_CMD_MOK); | ||
2954 | |||
2955 | if (esp->erev != fashme) { | ||
2956 | dma_flashclear(esp); | ||
2957 | |||
2958 | /* Wait till the first bits settle. */ | ||
2959 | while (esp->esp_command[0] == 0xff) | ||
2960 | udelay(1); | ||
2961 | } else { | ||
2962 | esp->esp_command[0] = esp->hme_fifo_workaround_buffer[0]; | ||
2963 | esp->esp_command[1] = esp->hme_fifo_workaround_buffer[1]; | ||
2964 | } | ||
2965 | |||
2966 | ESPSTAT(("got something, ")); | ||
2967 | /* ESP chimes in with one of | ||
2968 | * | ||
2969 | * 1) function done interrupt: | ||
2970 | * both status and message in bytes | ||
2971 | * are available | ||
2972 | * | ||
2973 | * 2) bus service interrupt: | ||
2974 | * only status byte was acquired | ||
2975 | * | ||
2976 | * 3) Anything else: | ||
2977 | * can't happen, but we test for it | ||
2978 | * anyways | ||
2979 | * | ||
2980 | * ALSO: If bad parity was detected on either | ||
2981 | * the status _or_ the message byte then | ||
2982 | * the ESP has asserted ATN on the bus | ||
2983 | * and we must therefore wait for the | ||
2984 | * next phase change. | ||
2985 | */ | ||
2986 | if (intr & ESP_INTR_FDONE) { | ||
2987 | /* We got it all, hallejulia. */ | ||
2988 | ESPSTAT(("got both, ")); | ||
2989 | SCptr->SCp.Status = esp->esp_command[0]; | ||
2990 | SCptr->SCp.Message = esp->esp_command[1]; | ||
2991 | esp->prevmsgin = SCptr->SCp.Message; | ||
2992 | esp->cur_msgin[0] = SCptr->SCp.Message; | ||
2993 | if (esp->sreg & ESP_STAT_PERR) { | ||
2994 | /* There was bad parity for the | ||
2995 | * message byte, the status byte | ||
2996 | * was ok. | ||
2997 | */ | ||
2998 | message_out = MSG_PARITY_ERROR; | ||
2999 | } | ||
3000 | } else if (intr == ESP_INTR_BSERV) { | ||
3001 | /* Only got status byte. */ | ||
3002 | ESPLOG(("esp%d: got status only, ", esp->esp_id)); | ||
3003 | if (!(esp->sreg & ESP_STAT_PERR)) { | ||
3004 | SCptr->SCp.Status = esp->esp_command[0]; | ||
3005 | SCptr->SCp.Message = 0xff; | ||
3006 | } else { | ||
3007 | /* The status byte had bad parity. | ||
3008 | * we leave the scsi_pointer Status | ||
3009 | * field alone as we set it to a default | ||
3010 | * of CHECK_CONDITION in esp_queue. | ||
3011 | */ | ||
3012 | message_out = INITIATOR_ERROR; | ||
3013 | } | ||
3014 | } else { | ||
3015 | /* This shouldn't happen ever. */ | ||
3016 | ESPSTAT(("got bolixed\n")); | ||
3017 | esp_advance_phase(SCptr, in_the_dark); | ||
3018 | return esp_do_phase_determine(esp); | ||
3019 | } | ||
3020 | |||
3021 | if (!message_out) { | ||
3022 | ESPSTAT(("status=%2x msg=%2x, ", SCptr->SCp.Status, | ||
3023 | SCptr->SCp.Message)); | ||
3024 | if (SCptr->SCp.Message == COMMAND_COMPLETE) { | ||
3025 | ESPSTAT(("and was COMMAND_COMPLETE\n")); | ||
3026 | esp_advance_phase(SCptr, in_freeing); | ||
3027 | return esp_do_freebus(esp); | ||
3028 | } else { | ||
3029 | ESPLOG(("esp%d: and _not_ COMMAND_COMPLETE\n", | ||
3030 | esp->esp_id)); | ||
3031 | esp->msgin_len = esp->msgin_ctr = 1; | ||
3032 | esp_advance_phase(SCptr, in_msgindone); | ||
3033 | return esp_do_msgindone(esp); | ||
3034 | } | ||
3035 | } else { | ||
3036 | /* With luck we'll be able to let the target | ||
3037 | * know that bad parity happened, it will know | ||
3038 | * which byte caused the problems and send it | ||
3039 | * again. For the case where the status byte | ||
3040 | * receives bad parity, I do not believe most | ||
3041 | * targets recover very well. We'll see. | ||
3042 | */ | ||
3043 | ESPLOG(("esp%d: bad parity somewhere mout=%2x\n", | ||
3044 | esp->esp_id, message_out)); | ||
3045 | esp->cur_msgout[0] = message_out; | ||
3046 | esp->msgout_len = esp->msgout_ctr = 1; | ||
3047 | esp_advance_phase(SCptr, in_the_dark); | ||
3048 | return esp_do_phase_determine(esp); | ||
3049 | } | ||
3050 | } else { | ||
3051 | /* If we disconnect now, all hell breaks loose. */ | ||
3052 | ESPLOG(("esp%d: whoops, disconnect\n", esp->esp_id)); | ||
3053 | esp_advance_phase(SCptr, in_the_dark); | ||
3054 | return esp_do_phase_determine(esp); | ||
3055 | } | ||
3056 | } | ||
3057 | |||
3058 | static int esp_enter_status(struct esp *esp) | ||
3059 | { | ||
3060 | u8 thecmd = ESP_CMD_ICCSEQ; | ||
3061 | |||
3062 | esp_cmd(esp, ESP_CMD_FLUSH); | ||
3063 | if (esp->erev != fashme) { | ||
3064 | u32 tmp; | ||
3065 | |||
3066 | esp->esp_command[0] = esp->esp_command[1] = 0xff; | ||
3067 | sbus_writeb(2, esp->eregs + ESP_TCLOW); | ||
3068 | sbus_writeb(0, esp->eregs + ESP_TCMED); | ||
3069 | tmp = sbus_readl(esp->dregs + DMA_CSR); | ||
3070 | tmp |= (DMA_ST_WRITE | DMA_ENABLE); | ||
3071 | sbus_writel(tmp, esp->dregs + DMA_CSR); | ||
3072 | if (esp->dma->revision == dvmaesc1) | ||
3073 | sbus_writel(0x100, esp->dregs + DMA_COUNT); | ||
3074 | sbus_writel(esp->esp_command_dvma, esp->dregs + DMA_ADDR); | ||
3075 | thecmd |= ESP_CMD_DMA; | ||
3076 | } | ||
3077 | esp_cmd(esp, thecmd); | ||
3078 | esp_advance_phase(esp->current_SC, in_status); | ||
3079 | |||
3080 | return esp_do_status(esp); | ||
3081 | } | ||
3082 | |||
3083 | static int esp_disconnect_amidst_phases(struct esp *esp) | ||
3084 | { | ||
3085 | struct scsi_cmnd *sp = esp->current_SC; | ||
3086 | struct esp_device *esp_dev = sp->device->hostdata; | ||
3087 | |||
3088 | /* This means real problems if we see this | ||
3089 | * here. Unless we were actually trying | ||
3090 | * to force the device to abort/reset. | ||
3091 | */ | ||
3092 | ESPLOG(("esp%d Disconnect amidst phases, ", esp->esp_id)); | ||
3093 | ESPLOG(("pphase<%s> cphase<%s>, ", | ||
3094 | phase_string(sp->SCp.phase), | ||
3095 | phase_string(sp->SCp.sent_command))); | ||
3096 | |||
3097 | if (esp->disconnected_SC != NULL || (esp->erev == fashme)) | ||
3098 | esp_cmd(esp, ESP_CMD_ESEL); | ||
3099 | |||
3100 | switch (esp->cur_msgout[0]) { | ||
3101 | default: | ||
3102 | /* We didn't expect this to happen at all. */ | ||
3103 | ESPLOG(("device is bolixed\n")); | ||
3104 | esp_advance_phase(sp, in_tgterror); | ||
3105 | esp_done(esp, (DID_ERROR << 16)); | ||
3106 | break; | ||
3107 | |||
3108 | case BUS_DEVICE_RESET: | ||
3109 | ESPLOG(("device reset successful\n")); | ||
3110 | esp_dev->sync_max_offset = 0; | ||
3111 | esp_dev->sync_min_period = 0; | ||
3112 | esp_dev->sync = 0; | ||
3113 | esp_advance_phase(sp, in_resetdev); | ||
3114 | esp_done(esp, (DID_RESET << 16)); | ||
3115 | break; | ||
3116 | |||
3117 | case ABORT: | ||
3118 | ESPLOG(("device abort successful\n")); | ||
3119 | esp_advance_phase(sp, in_abortone); | ||
3120 | esp_done(esp, (DID_ABORT << 16)); | ||
3121 | break; | ||
3122 | |||
3123 | }; | ||
3124 | return do_intr_end; | ||
3125 | } | ||
3126 | |||
3127 | static int esp_enter_msgout(struct esp *esp) | ||
3128 | { | ||
3129 | esp_advance_phase(esp->current_SC, in_msgout); | ||
3130 | return esp_do_msgout(esp); | ||
3131 | } | ||
3132 | |||
3133 | static int esp_enter_msgin(struct esp *esp) | ||
3134 | { | ||
3135 | esp_advance_phase(esp->current_SC, in_msgin); | ||
3136 | return esp_do_msgin(esp); | ||
3137 | } | ||
3138 | |||
3139 | static int esp_enter_cmd(struct esp *esp) | ||
3140 | { | ||
3141 | esp_advance_phase(esp->current_SC, in_cmdbegin); | ||
3142 | return esp_do_cmdbegin(esp); | ||
3143 | } | ||
3144 | |||
3145 | static int esp_enter_badphase(struct esp *esp) | ||
3146 | { | ||
3147 | ESPLOG(("esp%d: Bizarre bus phase %2x.\n", esp->esp_id, | ||
3148 | esp->sreg & ESP_STAT_PMASK)); | ||
3149 | return do_reset_bus; | ||
3150 | } | ||
3151 | |||
3152 | typedef int (*espfunc_t)(struct esp *); | ||
3153 | |||
3154 | static espfunc_t phase_vector[] = { | ||
3155 | esp_do_data, /* ESP_DOP */ | ||
3156 | esp_do_data, /* ESP_DIP */ | ||
3157 | esp_enter_cmd, /* ESP_CMDP */ | ||
3158 | esp_enter_status, /* ESP_STATP */ | ||
3159 | esp_enter_badphase, /* ESP_STAT_PMSG */ | ||
3160 | esp_enter_badphase, /* ESP_STAT_PMSG | ESP_STAT_PIO */ | ||
3161 | esp_enter_msgout, /* ESP_MOP */ | ||
3162 | esp_enter_msgin, /* ESP_MIP */ | ||
3163 | }; | ||
3164 | |||
3165 | /* The target has control of the bus and we have to see where it has | ||
3166 | * taken us. | ||
3167 | */ | ||
3168 | static int esp_do_phase_determine(struct esp *esp) | ||
3169 | { | ||
3170 | if ((esp->ireg & ESP_INTR_DC) != 0) | ||
3171 | return esp_disconnect_amidst_phases(esp); | ||
3172 | return phase_vector[esp->sreg & ESP_STAT_PMASK](esp); | ||
3173 | } | ||
3174 | |||
3175 | /* First interrupt after exec'ing a cmd comes here. */ | ||
3176 | static int esp_select_complete(struct esp *esp) | ||
3177 | { | ||
3178 | struct scsi_cmnd *SCptr = esp->current_SC; | ||
3179 | struct esp_device *esp_dev = SCptr->device->hostdata; | ||
3180 | int cmd_bytes_sent, fcnt; | ||
3181 | |||
3182 | if (esp->erev != fashme) | ||
3183 | esp->seqreg = (sbus_readb(esp->eregs + ESP_SSTEP) & ESP_STEP_VBITS); | ||
3184 | |||
3185 | if (esp->erev == fashme) | ||
3186 | fcnt = esp->hme_fifo_workaround_count; | ||
3187 | else | ||
3188 | fcnt = (sbus_readb(esp->eregs + ESP_FFLAGS) & ESP_FF_FBYTES); | ||
3189 | |||
3190 | cmd_bytes_sent = esp_bytes_sent(esp, fcnt); | ||
3191 | dma_invalidate(esp); | ||
3192 | |||
3193 | /* Let's check to see if a reselect happened | ||
3194 | * while we we're trying to select. This must | ||
3195 | * be checked first. | ||
3196 | */ | ||
3197 | if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) { | ||
3198 | esp_reconnect(esp, SCptr); | ||
3199 | return esp_do_reconnect(esp); | ||
3200 | } | ||
3201 | |||
3202 | /* Looks like things worked, we should see a bus service & | ||
3203 | * a function complete interrupt at this point. Note we | ||
3204 | * are doing a direct comparison because we don't want to | ||
3205 | * be fooled into thinking selection was successful if | ||
3206 | * ESP_INTR_DC is set, see below. | ||
3207 | */ | ||
3208 | if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) { | ||
3209 | /* target speaks... */ | ||
3210 | esp->targets_present |= (1<<SCptr->device->id); | ||
3211 | |||
3212 | /* What if the target ignores the sdtr? */ | ||
3213 | if (esp->snip) | ||
3214 | esp_dev->sync = 1; | ||
3215 | |||
3216 | /* See how far, if at all, we got in getting | ||
3217 | * the information out to the target. | ||
3218 | */ | ||
3219 | switch (esp->seqreg) { | ||
3220 | default: | ||
3221 | |||
3222 | case ESP_STEP_ASEL: | ||
3223 | /* Arbitration won, target selected, but | ||
3224 | * we are in some phase which is not command | ||
3225 | * phase nor is it message out phase. | ||
3226 | * | ||
3227 | * XXX We've confused the target, obviously. | ||
3228 | * XXX So clear it's state, but we also end | ||
3229 | * XXX up clearing everyone elses. That isn't | ||
3230 | * XXX so nice. I'd like to just reset this | ||
3231 | * XXX target, but if I cannot even get it's | ||
3232 | * XXX attention and finish selection to talk | ||
3233 | * XXX to it, there is not much more I can do. | ||
3234 | * XXX If we have a loaded bus we're going to | ||
3235 | * XXX spend the next second or so renegotiating | ||
3236 | * XXX for synchronous transfers. | ||
3237 | */ | ||
3238 | ESPLOG(("esp%d: STEP_ASEL for tgt %d\n", | ||
3239 | esp->esp_id, SCptr->device->id)); | ||
3240 | |||
3241 | case ESP_STEP_SID: | ||
3242 | /* Arbitration won, target selected, went | ||
3243 | * to message out phase, sent one message | ||
3244 | * byte, then we stopped. ATN is asserted | ||
3245 | * on the SCSI bus and the target is still | ||
3246 | * there hanging on. This is a legal | ||
3247 | * sequence step if we gave the ESP a select | ||
3248 | * and stop command. | ||
3249 | * | ||
3250 | * XXX See above, I could set the borken flag | ||
3251 | * XXX in the device struct and retry the | ||
3252 | * XXX command. But would that help for | ||
3253 | * XXX tagged capable targets? | ||
3254 | */ | ||
3255 | |||
3256 | case ESP_STEP_NCMD: | ||
3257 | /* Arbitration won, target selected, maybe | ||
3258 | * sent the one message byte in message out | ||
3259 | * phase, but we did not go to command phase | ||
3260 | * in the end. Actually, we could have sent | ||
3261 | * only some of the message bytes if we tried | ||
3262 | * to send out the entire identify and tag | ||
3263 | * message using ESP_CMD_SA3. | ||
3264 | */ | ||
3265 | cmd_bytes_sent = 0; | ||
3266 | break; | ||
3267 | |||
3268 | case ESP_STEP_PPC: | ||
3269 | /* No, not the powerPC pinhead. Arbitration | ||
3270 | * won, all message bytes sent if we went to | ||
3271 | * message out phase, went to command phase | ||
3272 | * but only part of the command was sent. | ||
3273 | * | ||
3274 | * XXX I've seen this, but usually in conjunction | ||
3275 | * XXX with a gross error which appears to have | ||
3276 | * XXX occurred between the time I told the | ||
3277 | * XXX ESP to arbitrate and when I got the | ||
3278 | * XXX interrupt. Could I have misloaded the | ||
3279 | * XXX command bytes into the fifo? Actually, | ||
3280 | * XXX I most likely missed a phase, and therefore | ||
3281 | * XXX went into never never land and didn't even | ||
3282 | * XXX know it. That was the old driver though. | ||
3283 | * XXX What is even more peculiar is that the ESP | ||
3284 | * XXX showed the proper function complete and | ||
3285 | * XXX bus service bits in the interrupt register. | ||
3286 | */ | ||
3287 | |||
3288 | case ESP_STEP_FINI4: | ||
3289 | case ESP_STEP_FINI5: | ||
3290 | case ESP_STEP_FINI6: | ||
3291 | case ESP_STEP_FINI7: | ||
3292 | /* Account for the identify message */ | ||
3293 | if (SCptr->SCp.phase == in_slct_norm) | ||
3294 | cmd_bytes_sent -= 1; | ||
3295 | }; | ||
3296 | |||
3297 | if (esp->erev != fashme) | ||
3298 | esp_cmd(esp, ESP_CMD_NULL); | ||
3299 | |||
3300 | /* Be careful, we could really get fucked during synchronous | ||
3301 | * data transfers if we try to flush the fifo now. | ||
3302 | */ | ||
3303 | if ((esp->erev != fashme) && /* not a Happy Meal and... */ | ||
3304 | !fcnt && /* Fifo is empty and... */ | ||
3305 | /* either we are not doing synchronous transfers or... */ | ||
3306 | (!esp_dev->sync_max_offset || | ||
3307 | /* We are not going into data in phase. */ | ||
3308 | ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP))) | ||
3309 | esp_cmd(esp, ESP_CMD_FLUSH); /* flush is safe */ | ||
3310 | |||
3311 | /* See how far we got if this is not a slow command. */ | ||
3312 | if (!esp->esp_slowcmd) { | ||
3313 | if (cmd_bytes_sent < 0) | ||
3314 | cmd_bytes_sent = 0; | ||
3315 | if (cmd_bytes_sent != SCptr->cmd_len) { | ||
3316 | /* Crapola, mark it as a slowcmd | ||
3317 | * so that we have some chance of | ||
3318 | * keeping the command alive with | ||
3319 | * good luck. | ||
3320 | * | ||
3321 | * XXX Actually, if we didn't send it all | ||
3322 | * XXX this means either we didn't set things | ||
3323 | * XXX up properly (driver bug) or the target | ||
3324 | * XXX or the ESP detected parity on one of | ||
3325 | * XXX the command bytes. This makes much | ||
3326 | * XXX more sense, and therefore this code | ||
3327 | * XXX should be changed to send out a | ||
3328 | * XXX parity error message or if the status | ||
3329 | * XXX register shows no parity error then | ||
3330 | * XXX just expect the target to bring the | ||
3331 | * XXX bus into message in phase so that it | ||
3332 | * XXX can send us the parity error message. | ||
3333 | * XXX SCSI sucks... | ||
3334 | */ | ||
3335 | esp->esp_slowcmd = 1; | ||
3336 | esp->esp_scmdp = &(SCptr->cmnd[cmd_bytes_sent]); | ||
3337 | esp->esp_scmdleft = (SCptr->cmd_len - cmd_bytes_sent); | ||
3338 | } | ||
3339 | } | ||
3340 | |||
3341 | /* Now figure out where we went. */ | ||
3342 | esp_advance_phase(SCptr, in_the_dark); | ||
3343 | return esp_do_phase_determine(esp); | ||
3344 | } | ||
3345 | |||
3346 | /* Did the target even make it? */ | ||
3347 | if (esp->ireg == ESP_INTR_DC) { | ||
3348 | /* wheee... nobody there or they didn't like | ||
3349 | * what we told it to do, clean up. | ||
3350 | */ | ||
3351 | |||
3352 | /* If anyone is off the bus, but working on | ||
3353 | * a command in the background for us, tell | ||
3354 | * the ESP to listen for them. | ||
3355 | */ | ||
3356 | if (esp->disconnected_SC) | ||
3357 | esp_cmd(esp, ESP_CMD_ESEL); | ||
3358 | |||
3359 | if (((1<<SCptr->device->id) & esp->targets_present) && | ||
3360 | esp->seqreg != 0 && | ||
3361 | (esp->cur_msgout[0] == EXTENDED_MESSAGE) && | ||
3362 | (SCptr->SCp.phase == in_slct_msg || | ||
3363 | SCptr->SCp.phase == in_slct_stop)) { | ||
3364 | /* shit */ | ||
3365 | esp->snip = 0; | ||
3366 | ESPLOG(("esp%d: Failed synchronous negotiation for target %d " | ||
3367 | "lun %d\n", esp->esp_id, SCptr->device->id, SCptr->device->lun)); | ||
3368 | esp_dev->sync_max_offset = 0; | ||
3369 | esp_dev->sync_min_period = 0; | ||
3370 | esp_dev->sync = 1; /* so we don't negotiate again */ | ||
3371 | |||
3372 | /* Run the command again, this time though we | ||
3373 | * won't try to negotiate for synchronous transfers. | ||
3374 | * | ||
3375 | * XXX I'd like to do something like send an | ||
3376 | * XXX INITIATOR_ERROR or ABORT message to the | ||
3377 | * XXX target to tell it, "Sorry I confused you, | ||
3378 | * XXX please come back and I will be nicer next | ||
3379 | * XXX time". But that requires having the target | ||
3380 | * XXX on the bus, and it has dropped BSY on us. | ||
3381 | */ | ||
3382 | esp->current_SC = NULL; | ||
3383 | esp_advance_phase(SCptr, not_issued); | ||
3384 | prepend_SC(&esp->issue_SC, SCptr); | ||
3385 | esp_exec_cmd(esp); | ||
3386 | return do_intr_end; | ||
3387 | } | ||
3388 | |||
3389 | /* Ok, this is normal, this is what we see during boot | ||
3390 | * or whenever when we are scanning the bus for targets. | ||
3391 | * But first make sure that is really what is happening. | ||
3392 | */ | ||
3393 | if (((1<<SCptr->device->id) & esp->targets_present)) { | ||
3394 | ESPLOG(("esp%d: Warning, live target %d not responding to " | ||
3395 | "selection.\n", esp->esp_id, SCptr->device->id)); | ||
3396 | |||
3397 | /* This _CAN_ happen. The SCSI standard states that | ||
3398 | * the target is to _not_ respond to selection if | ||
3399 | * _it_ detects bad parity on the bus for any reason. | ||
3400 | * Therefore, we assume that if we've talked successfully | ||
3401 | * to this target before, bad parity is the problem. | ||
3402 | */ | ||
3403 | esp_done(esp, (DID_PARITY << 16)); | ||
3404 | } else { | ||
3405 | /* Else, there really isn't anyone there. */ | ||
3406 | ESPMISC(("esp: selection failure, maybe nobody there?\n")); | ||
3407 | ESPMISC(("esp: target %d lun %d\n", | ||
3408 | SCptr->device->id, SCptr->device->lun)); | ||
3409 | esp_done(esp, (DID_BAD_TARGET << 16)); | ||
3410 | } | ||
3411 | return do_intr_end; | ||
3412 | } | ||
3413 | |||
3414 | ESPLOG(("esp%d: Selection failure.\n", esp->esp_id)); | ||
3415 | printk("esp%d: Currently -- ", esp->esp_id); | ||
3416 | esp_print_ireg(esp->ireg); printk(" "); | ||
3417 | esp_print_statreg(esp->sreg); printk(" "); | ||
3418 | esp_print_seqreg(esp->seqreg); printk("\n"); | ||
3419 | printk("esp%d: New -- ", esp->esp_id); | ||
3420 | esp->sreg = sbus_readb(esp->eregs + ESP_STATUS); | ||
3421 | esp->seqreg = sbus_readb(esp->eregs + ESP_SSTEP); | ||
3422 | esp->ireg = sbus_readb(esp->eregs + ESP_INTRPT); | ||
3423 | esp_print_ireg(esp->ireg); printk(" "); | ||
3424 | esp_print_statreg(esp->sreg); printk(" "); | ||
3425 | esp_print_seqreg(esp->seqreg); printk("\n"); | ||
3426 | ESPLOG(("esp%d: resetting bus\n", esp->esp_id)); | ||
3427 | return do_reset_bus; /* ugh... */ | ||
3428 | } | ||
3429 | |||
3430 | /* Continue reading bytes for msgin phase. */ | ||
3431 | static int esp_do_msgincont(struct esp *esp) | ||
3432 | { | ||
3433 | if (esp->ireg & ESP_INTR_BSERV) { | ||
3434 | /* in the right phase too? */ | ||
3435 | if ((esp->sreg & ESP_STAT_PMASK) == ESP_MIP) { | ||
3436 | /* phew... */ | ||
3437 | esp_cmd(esp, ESP_CMD_TI); | ||
3438 | esp_advance_phase(esp->current_SC, in_msgindone); | ||
3439 | return do_intr_end; | ||
3440 | } | ||
3441 | |||
3442 | /* We changed phase but ESP shows bus service, | ||
3443 | * in this case it is most likely that we, the | ||
3444 | * hacker who has been up for 20hrs straight | ||
3445 | * staring at the screen, drowned in coffee | ||
3446 | * smelling like retched cigarette ashes | ||
3447 | * have miscoded something..... so, try to | ||
3448 | * recover as best we can. | ||
3449 | */ | ||
3450 | ESPLOG(("esp%d: message in mis-carriage.\n", esp->esp_id)); | ||
3451 | } | ||
3452 | esp_advance_phase(esp->current_SC, in_the_dark); | ||
3453 | return do_phase_determine; | ||
3454 | } | ||
3455 | |||
3456 | static int check_singlebyte_msg(struct esp *esp) | ||
3457 | { | ||
3458 | esp->prevmsgin = esp->cur_msgin[0]; | ||
3459 | if (esp->cur_msgin[0] & 0x80) { | ||
3460 | /* wheee... */ | ||
3461 | ESPLOG(("esp%d: target sends identify amidst phases\n", | ||
3462 | esp->esp_id)); | ||
3463 | esp_advance_phase(esp->current_SC, in_the_dark); | ||
3464 | return 0; | ||
3465 | } else if (((esp->cur_msgin[0] & 0xf0) == 0x20) || | ||
3466 | (esp->cur_msgin[0] == EXTENDED_MESSAGE)) { | ||
3467 | esp->msgin_len = 2; | ||
3468 | esp_advance_phase(esp->current_SC, in_msgincont); | ||
3469 | return 0; | ||
3470 | } | ||
3471 | esp_advance_phase(esp->current_SC, in_the_dark); | ||
3472 | switch (esp->cur_msgin[0]) { | ||
3473 | default: | ||
3474 | /* We don't want to hear about it. */ | ||
3475 | ESPLOG(("esp%d: msg %02x which we don't know about\n", esp->esp_id, | ||
3476 | esp->cur_msgin[0])); | ||
3477 | return MESSAGE_REJECT; | ||
3478 | |||
3479 | case NOP: | ||
3480 | ESPLOG(("esp%d: target %d sends a nop\n", esp->esp_id, | ||
3481 | esp->current_SC->device->id)); | ||
3482 | return 0; | ||
3483 | |||
3484 | case RESTORE_POINTERS: | ||
3485 | /* In this case we might also have to backup the | ||
3486 | * "slow command" pointer. It is rare to get such | ||
3487 | * a save/restore pointer sequence so early in the | ||
3488 | * bus transition sequences, but cover it. | ||
3489 | */ | ||
3490 | if (esp->esp_slowcmd) { | ||
3491 | esp->esp_scmdleft = esp->current_SC->cmd_len; | ||
3492 | esp->esp_scmdp = &esp->current_SC->cmnd[0]; | ||
3493 | } | ||
3494 | esp_restore_pointers(esp, esp->current_SC); | ||
3495 | return 0; | ||
3496 | |||
3497 | case SAVE_POINTERS: | ||
3498 | esp_save_pointers(esp, esp->current_SC); | ||
3499 | return 0; | ||
3500 | |||
3501 | case COMMAND_COMPLETE: | ||
3502 | case DISCONNECT: | ||
3503 | /* Freeing the bus, let it go. */ | ||
3504 | esp->current_SC->SCp.phase = in_freeing; | ||
3505 | return 0; | ||
3506 | |||
3507 | case MESSAGE_REJECT: | ||
3508 | ESPMISC(("msg reject, ")); | ||
3509 | if (esp->prevmsgout == EXTENDED_MESSAGE) { | ||
3510 | struct esp_device *esp_dev = esp->current_SC->device->hostdata; | ||
3511 | |||
3512 | /* Doesn't look like this target can | ||
3513 | * do synchronous or WIDE transfers. | ||
3514 | */ | ||
3515 | ESPSDTR(("got reject, was trying nego, clearing sync/WIDE\n")); | ||
3516 | esp_dev->sync = 1; | ||
3517 | esp_dev->wide = 1; | ||
3518 | esp_dev->sync_min_period = 0; | ||
3519 | esp_dev->sync_max_offset = 0; | ||
3520 | return 0; | ||
3521 | } else { | ||
3522 | ESPMISC(("not sync nego, sending ABORT\n")); | ||
3523 | return ABORT; | ||
3524 | } | ||
3525 | }; | ||
3526 | } | ||
3527 | |||
3528 | /* Target negotiates for synchronous transfers before we do, this | ||
3529 | * is legal although very strange. What is even funnier is that | ||
3530 | * the SCSI2 standard specifically recommends against targets doing | ||
3531 | * this because so many initiators cannot cope with this occurring. | ||
3532 | */ | ||
3533 | static int target_with_ants_in_pants(struct esp *esp, | ||
3534 | struct scsi_cmnd *SCptr, | ||
3535 | struct esp_device *esp_dev) | ||
3536 | { | ||
3537 | if (esp_dev->sync || SCptr->device->borken) { | ||
3538 | /* sorry, no can do */ | ||
3539 | ESPSDTR(("forcing to async, ")); | ||
3540 | build_sync_nego_msg(esp, 0, 0); | ||
3541 | esp_dev->sync = 1; | ||
3542 | esp->snip = 1; | ||
3543 | ESPLOG(("esp%d: hoping for msgout\n", esp->esp_id)); | ||
3544 | esp_advance_phase(SCptr, in_the_dark); | ||
3545 | return EXTENDED_MESSAGE; | ||
3546 | } | ||
3547 | |||
3548 | /* Ok, we'll check them out... */ | ||
3549 | return 0; | ||
3550 | } | ||
3551 | |||
3552 | static void sync_report(struct esp *esp) | ||
3553 | { | ||
3554 | int msg3, msg4; | ||
3555 | char *type; | ||
3556 | |||
3557 | msg3 = esp->cur_msgin[3]; | ||
3558 | msg4 = esp->cur_msgin[4]; | ||
3559 | if (msg4) { | ||
3560 | int hz = 1000000000 / (msg3 * 4); | ||
3561 | int integer = hz / 1000000; | ||
3562 | int fraction = (hz - (integer * 1000000)) / 10000; | ||
3563 | if ((esp->erev == fashme) && | ||
3564 | (esp->config3[esp->current_SC->device->id] & ESP_CONFIG3_EWIDE)) { | ||
3565 | type = "FAST-WIDE"; | ||
3566 | integer <<= 1; | ||
3567 | fraction <<= 1; | ||
3568 | } else if ((msg3 * 4) < 200) { | ||
3569 | type = "FAST"; | ||
3570 | } else { | ||
3571 | type = "synchronous"; | ||
3572 | } | ||
3573 | |||
3574 | /* Do not transform this back into one big printk | ||
3575 | * again, it triggers a bug in our sparc64-gcc272 | ||
3576 | * sibling call optimization. -DaveM | ||
3577 | */ | ||
3578 | ESPLOG((KERN_INFO "esp%d: target %d ", | ||
3579 | esp->esp_id, esp->current_SC->device->id)); | ||
3580 | ESPLOG(("[period %dns offset %d %d.%02dMHz ", | ||
3581 | (int) msg3 * 4, (int) msg4, | ||
3582 | integer, fraction)); | ||
3583 | ESPLOG(("%s SCSI%s]\n", type, | ||
3584 | (((msg3 * 4) < 200) ? "-II" : ""))); | ||
3585 | } else { | ||
3586 | ESPLOG((KERN_INFO "esp%d: target %d asynchronous\n", | ||
3587 | esp->esp_id, esp->current_SC->device->id)); | ||
3588 | } | ||
3589 | } | ||
3590 | |||
3591 | static int check_multibyte_msg(struct esp *esp) | ||
3592 | { | ||
3593 | struct scsi_cmnd *SCptr = esp->current_SC; | ||
3594 | struct esp_device *esp_dev = SCptr->device->hostdata; | ||
3595 | u8 regval = 0; | ||
3596 | int message_out = 0; | ||
3597 | |||
3598 | ESPSDTR(("chk multibyte msg: ")); | ||
3599 | if (esp->cur_msgin[2] == EXTENDED_SDTR) { | ||
3600 | int period = esp->cur_msgin[3]; | ||
3601 | int offset = esp->cur_msgin[4]; | ||
3602 | |||
3603 | ESPSDTR(("is sync nego response, ")); | ||
3604 | if (!esp->snip) { | ||
3605 | int rval; | ||
3606 | |||
3607 | /* Target negotiates first! */ | ||
3608 | ESPSDTR(("target jumps the gun, ")); | ||
3609 | message_out = EXTENDED_MESSAGE; /* we must respond */ | ||
3610 | rval = target_with_ants_in_pants(esp, SCptr, esp_dev); | ||
3611 | if (rval) | ||
3612 | return rval; | ||
3613 | } | ||
3614 | |||
3615 | ESPSDTR(("examining sdtr, ")); | ||
3616 | |||
3617 | /* Offset cannot be larger than ESP fifo size. */ | ||
3618 | if (offset > 15) { | ||
3619 | ESPSDTR(("offset too big %2x, ", offset)); | ||
3620 | offset = 15; | ||
3621 | ESPSDTR(("sending back new offset\n")); | ||
3622 | build_sync_nego_msg(esp, period, offset); | ||
3623 | return EXTENDED_MESSAGE; | ||
3624 | } | ||
3625 | |||
3626 | if (offset && period > esp->max_period) { | ||
3627 | /* Yeee, async for this slow device. */ | ||
3628 | ESPSDTR(("period too long %2x, ", period)); | ||
3629 | build_sync_nego_msg(esp, 0, 0); | ||
3630 | ESPSDTR(("hoping for msgout\n")); | ||
3631 | esp_advance_phase(esp->current_SC, in_the_dark); | ||
3632 | return EXTENDED_MESSAGE; | ||
3633 | } else if (offset && period < esp->min_period) { | ||
3634 | ESPSDTR(("period too short %2x, ", period)); | ||
3635 | period = esp->min_period; | ||
3636 | if (esp->erev > esp236) | ||
3637 | regval = 4; | ||
3638 | else | ||
3639 | regval = 5; | ||
3640 | } else if (offset) { | ||
3641 | int tmp; | ||
3642 | |||
3643 | ESPSDTR(("period is ok, ")); | ||
3644 | tmp = esp->ccycle / 1000; | ||
3645 | regval = (((period << 2) + tmp - 1) / tmp); | ||
3646 | if (regval && ((esp->erev == fas100a || | ||
3647 | esp->erev == fas236 || | ||
3648 | esp->erev == fashme))) { | ||
3649 | if (period >= 50) | ||
3650 | regval--; | ||
3651 | } | ||
3652 | } | ||
3653 | |||
3654 | if (offset) { | ||
3655 | u8 bit; | ||
3656 | |||
3657 | esp_dev->sync_min_period = (regval & 0x1f); | ||
3658 | esp_dev->sync_max_offset = (offset | esp->radelay); | ||
3659 | if (esp->erev == fas100a || esp->erev == fas236 || esp->erev == fashme) { | ||
3660 | if ((esp->erev == fas100a) || (esp->erev == fashme)) | ||
3661 | bit = ESP_CONFIG3_FAST; | ||
3662 | else | ||
3663 | bit = ESP_CONFIG3_FSCSI; | ||
3664 | if (period < 50) { | ||
3665 | /* On FAS366, if using fast-20 synchronous transfers | ||
3666 | * we need to make sure the REQ/ACK assert/deassert | ||
3667 | * control bits are clear. | ||
3668 | */ | ||
3669 | if (esp->erev == fashme) | ||
3670 | esp_dev->sync_max_offset &= ~esp->radelay; | ||
3671 | esp->config3[SCptr->device->id] |= bit; | ||
3672 | } else { | ||
3673 | esp->config3[SCptr->device->id] &= ~bit; | ||
3674 | } | ||
3675 | esp->prev_cfg3 = esp->config3[SCptr->device->id]; | ||
3676 | sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); | ||
3677 | } | ||
3678 | esp->prev_soff = esp_dev->sync_max_offset; | ||
3679 | esp->prev_stp = esp_dev->sync_min_period; | ||
3680 | sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF); | ||
3681 | sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP); | ||
3682 | ESPSDTR(("soff=%2x stp=%2x cfg3=%2x\n", | ||
3683 | esp_dev->sync_max_offset, | ||
3684 | esp_dev->sync_min_period, | ||
3685 | esp->config3[SCptr->device->id])); | ||
3686 | |||
3687 | esp->snip = 0; | ||
3688 | } else if (esp_dev->sync_max_offset) { | ||
3689 | u8 bit; | ||
3690 | |||
3691 | /* back to async mode */ | ||
3692 | ESPSDTR(("unaccaptable sync nego, forcing async\n")); | ||
3693 | esp_dev->sync_max_offset = 0; | ||
3694 | esp_dev->sync_min_period = 0; | ||
3695 | esp->prev_soff = 0; | ||
3696 | esp->prev_stp = 0; | ||
3697 | sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF); | ||
3698 | sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP); | ||
3699 | if (esp->erev == fas100a || esp->erev == fas236 || esp->erev == fashme) { | ||
3700 | if ((esp->erev == fas100a) || (esp->erev == fashme)) | ||
3701 | bit = ESP_CONFIG3_FAST; | ||
3702 | else | ||
3703 | bit = ESP_CONFIG3_FSCSI; | ||
3704 | esp->config3[SCptr->device->id] &= ~bit; | ||
3705 | esp->prev_cfg3 = esp->config3[SCptr->device->id]; | ||
3706 | sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); | ||
3707 | } | ||
3708 | } | ||
3709 | |||
3710 | sync_report(esp); | ||
3711 | |||
3712 | ESPSDTR(("chk multibyte msg: sync is known, ")); | ||
3713 | esp_dev->sync = 1; | ||
3714 | |||
3715 | if (message_out) { | ||
3716 | ESPLOG(("esp%d: sending sdtr back, hoping for msgout\n", | ||
3717 | esp->esp_id)); | ||
3718 | build_sync_nego_msg(esp, period, offset); | ||
3719 | esp_advance_phase(SCptr, in_the_dark); | ||
3720 | return EXTENDED_MESSAGE; | ||
3721 | } | ||
3722 | |||
3723 | ESPSDTR(("returning zero\n")); | ||
3724 | esp_advance_phase(SCptr, in_the_dark); /* ...or else! */ | ||
3725 | return 0; | ||
3726 | } else if (esp->cur_msgin[2] == EXTENDED_WDTR) { | ||
3727 | int size = 8 << esp->cur_msgin[3]; | ||
3728 | |||
3729 | esp->wnip = 0; | ||
3730 | if (esp->erev != fashme) { | ||
3731 | ESPLOG(("esp%d: AIEEE wide msg received and not HME.\n", | ||
3732 | esp->esp_id)); | ||
3733 | message_out = MESSAGE_REJECT; | ||
3734 | } else if (size > 16) { | ||
3735 | ESPLOG(("esp%d: AIEEE wide transfer for %d size " | ||
3736 | "not supported.\n", esp->esp_id, size)); | ||
3737 | message_out = MESSAGE_REJECT; | ||
3738 | } else { | ||
3739 | /* Things look good; let's see what we got. */ | ||
3740 | if (size == 16) { | ||
3741 | /* Set config 3 register for this target. */ | ||
3742 | esp->config3[SCptr->device->id] |= ESP_CONFIG3_EWIDE; | ||
3743 | } else { | ||
3744 | /* Just make sure it was one byte sized. */ | ||
3745 | if (size != 8) { | ||
3746 | ESPLOG(("esp%d: Aieee, wide nego of %d size.\n", | ||
3747 | esp->esp_id, size)); | ||
3748 | message_out = MESSAGE_REJECT; | ||
3749 | goto finish; | ||
3750 | } | ||
3751 | /* Pure paranoia. */ | ||
3752 | esp->config3[SCptr->device->id] &= ~(ESP_CONFIG3_EWIDE); | ||
3753 | } | ||
3754 | esp->prev_cfg3 = esp->config3[SCptr->device->id]; | ||
3755 | sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3); | ||
3756 | |||
3757 | /* Regardless, next try for sync transfers. */ | ||
3758 | build_sync_nego_msg(esp, esp->sync_defp, 15); | ||
3759 | esp_dev->sync = 1; | ||
3760 | esp->snip = 1; | ||
3761 | message_out = EXTENDED_MESSAGE; | ||
3762 | } | ||
3763 | } else if (esp->cur_msgin[2] == EXTENDED_MODIFY_DATA_POINTER) { | ||
3764 | ESPLOG(("esp%d: rejecting modify data ptr msg\n", esp->esp_id)); | ||
3765 | message_out = MESSAGE_REJECT; | ||
3766 | } | ||
3767 | finish: | ||
3768 | esp_advance_phase(SCptr, in_the_dark); | ||
3769 | return message_out; | ||
3770 | } | ||
3771 | |||
3772 | static int esp_do_msgindone(struct esp *esp) | ||
3773 | { | ||
3774 | struct scsi_cmnd *SCptr = esp->current_SC; | ||
3775 | int message_out = 0, it = 0, rval; | ||
3776 | |||
3777 | rval = skipahead1(esp, SCptr, in_msgin, in_msgindone); | ||
3778 | if (rval) | ||
3779 | return rval; | ||
3780 | if (SCptr->SCp.sent_command != in_status) { | ||
3781 | if (!(esp->ireg & ESP_INTR_DC)) { | ||
3782 | if (esp->msgin_len && (esp->sreg & ESP_STAT_PERR)) { | ||
3783 | message_out = MSG_PARITY_ERROR; | ||
3784 | esp_cmd(esp, ESP_CMD_FLUSH); | ||
3785 | } else if (esp->erev != fashme && | ||
3786 | (it = (sbus_readb(esp->eregs + ESP_FFLAGS) & ESP_FF_FBYTES)) != 1) { | ||
3787 | /* We certainly dropped the ball somewhere. */ | ||
3788 | message_out = INITIATOR_ERROR; | ||
3789 | esp_cmd(esp, ESP_CMD_FLUSH); | ||
3790 | } else if (!esp->msgin_len) { | ||
3791 | if (esp->erev == fashme) | ||
3792 | it = esp->hme_fifo_workaround_buffer[0]; | ||
3793 | else | ||
3794 | it = sbus_readb(esp->eregs + ESP_FDATA); | ||
3795 | esp_advance_phase(SCptr, in_msgincont); | ||
3796 | } else { | ||
3797 | /* it is ok and we want it */ | ||
3798 | if (esp->erev == fashme) | ||
3799 | it = esp->cur_msgin[esp->msgin_ctr] = | ||
3800 | esp->hme_fifo_workaround_buffer[0]; | ||
3801 | else | ||
3802 | it = esp->cur_msgin[esp->msgin_ctr] = | ||
3803 | sbus_readb(esp->eregs + ESP_FDATA); | ||
3804 | esp->msgin_ctr++; | ||
3805 | } | ||
3806 | } else { | ||
3807 | esp_advance_phase(SCptr, in_the_dark); | ||
3808 | return do_work_bus; | ||
3809 | } | ||
3810 | } else { | ||
3811 | it = esp->cur_msgin[0]; | ||
3812 | } | ||
3813 | if (!message_out && esp->msgin_len) { | ||
3814 | if (esp->msgin_ctr < esp->msgin_len) { | ||
3815 | esp_advance_phase(SCptr, in_msgincont); | ||
3816 | } else if (esp->msgin_len == 1) { | ||
3817 | message_out = check_singlebyte_msg(esp); | ||
3818 | } else if (esp->msgin_len == 2) { | ||
3819 | if (esp->cur_msgin[0] == EXTENDED_MESSAGE) { | ||
3820 | if ((it + 2) >= 15) { | ||
3821 | message_out = MESSAGE_REJECT; | ||
3822 | } else { | ||
3823 | esp->msgin_len = (it + 2); | ||
3824 | esp_advance_phase(SCptr, in_msgincont); | ||
3825 | } | ||
3826 | } else { | ||
3827 | message_out = MESSAGE_REJECT; /* foo on you */ | ||
3828 | } | ||
3829 | } else { | ||
3830 | message_out = check_multibyte_msg(esp); | ||
3831 | } | ||
3832 | } | ||
3833 | if (message_out < 0) { | ||
3834 | return -message_out; | ||
3835 | } else if (message_out) { | ||
3836 | if (((message_out != 1) && | ||
3837 | ((message_out < 0x20) || (message_out & 0x80)))) | ||
3838 | esp->msgout_len = 1; | ||
3839 | esp->cur_msgout[0] = message_out; | ||
3840 | esp_cmd(esp, ESP_CMD_SATN); | ||
3841 | esp_advance_phase(SCptr, in_the_dark); | ||
3842 | esp->msgin_len = 0; | ||
3843 | } | ||
3844 | esp->sreg = sbus_readb(esp->eregs + ESP_STATUS); | ||
3845 | esp->sreg &= ~(ESP_STAT_INTR); | ||
3846 | if ((esp->sreg & (ESP_STAT_PMSG|ESP_STAT_PCD)) == (ESP_STAT_PMSG|ESP_STAT_PCD)) | ||
3847 | esp_cmd(esp, ESP_CMD_MOK); | ||
3848 | if ((SCptr->SCp.sent_command == in_msgindone) && | ||
3849 | (SCptr->SCp.phase == in_freeing)) | ||
3850 | return esp_do_freebus(esp); | ||
3851 | return do_intr_end; | ||
3852 | } | ||
3853 | |||
3854 | static int esp_do_cmdbegin(struct esp *esp) | ||
3855 | { | ||
3856 | struct scsi_cmnd *SCptr = esp->current_SC; | ||
3857 | |||
3858 | esp_advance_phase(SCptr, in_cmdend); | ||
3859 | if (esp->erev == fashme) { | ||
3860 | u32 tmp = sbus_readl(esp->dregs + DMA_CSR); | ||
3861 | int i; | ||
3862 | |||
3863 | for (i = 0; i < esp->esp_scmdleft; i++) | ||
3864 | esp->esp_command[i] = *esp->esp_scmdp++; | ||
3865 | esp->esp_scmdleft = 0; | ||
3866 | esp_cmd(esp, ESP_CMD_FLUSH); | ||
3867 | esp_setcount(esp->eregs, i, 1); | ||
3868 | esp_cmd(esp, (ESP_CMD_DMA | ESP_CMD_TI)); | ||
3869 | tmp |= (DMA_SCSI_DISAB | DMA_ENABLE); | ||
3870 | tmp &= ~(DMA_ST_WRITE); | ||
3871 | sbus_writel(i, esp->dregs + DMA_COUNT); | ||
3872 | sbus_writel(esp->esp_command_dvma, esp->dregs + DMA_ADDR); | ||
3873 | sbus_writel(tmp, esp->dregs + DMA_CSR); | ||
3874 | } else { | ||
3875 | u8 tmp; | ||
3876 | |||
3877 | esp_cmd(esp, ESP_CMD_FLUSH); | ||
3878 | tmp = *esp->esp_scmdp++; | ||
3879 | esp->esp_scmdleft--; | ||
3880 | sbus_writeb(tmp, esp->eregs + ESP_FDATA); | ||
3881 | esp_cmd(esp, ESP_CMD_TI); | ||
3882 | } | ||
3883 | return do_intr_end; | ||
3884 | } | ||
3885 | |||
3886 | static int esp_do_cmddone(struct esp *esp) | ||
3887 | { | ||
3888 | if (esp->erev == fashme) | ||
3889 | dma_invalidate(esp); | ||
3890 | else | ||
3891 | esp_cmd(esp, ESP_CMD_NULL); | ||
3892 | |||
3893 | if (esp->ireg & ESP_INTR_BSERV) { | ||
3894 | esp_advance_phase(esp->current_SC, in_the_dark); | ||
3895 | return esp_do_phase_determine(esp); | ||
3896 | } | ||
3897 | |||
3898 | ESPLOG(("esp%d: in do_cmddone() but didn't get BSERV interrupt.\n", | ||
3899 | esp->esp_id)); | ||
3900 | return do_reset_bus; | ||
3901 | } | ||
3902 | |||
3903 | static int esp_do_msgout(struct esp *esp) | ||
3904 | { | ||
3905 | esp_cmd(esp, ESP_CMD_FLUSH); | ||
3906 | switch (esp->msgout_len) { | ||
3907 | case 1: | ||
3908 | if (esp->erev == fashme) | ||
3909 | hme_fifo_push(esp, &esp->cur_msgout[0], 1); | ||
3910 | else | ||
3911 | sbus_writeb(esp->cur_msgout[0], esp->eregs + ESP_FDATA); | ||
3912 | |||
3913 | esp_cmd(esp, ESP_CMD_TI); | ||
3914 | break; | ||
3915 | |||
3916 | case 2: | ||
3917 | esp->esp_command[0] = esp->cur_msgout[0]; | ||
3918 | esp->esp_command[1] = esp->cur_msgout[1]; | ||
3919 | |||
3920 | if (esp->erev == fashme) { | ||
3921 | hme_fifo_push(esp, &esp->cur_msgout[0], 2); | ||
3922 | esp_cmd(esp, ESP_CMD_TI); | ||
3923 | } else { | ||
3924 | dma_setup(esp, esp->esp_command_dvma, 2, 0); | ||
3925 | esp_setcount(esp->eregs, 2, 0); | ||
3926 | esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI); | ||
3927 | } | ||
3928 | break; | ||
3929 | |||
3930 | case 4: | ||
3931 | esp->esp_command[0] = esp->cur_msgout[0]; | ||
3932 | esp->esp_command[1] = esp->cur_msgout[1]; | ||
3933 | esp->esp_command[2] = esp->cur_msgout[2]; | ||
3934 | esp->esp_command[3] = esp->cur_msgout[3]; | ||
3935 | esp->snip = 1; | ||
3936 | |||
3937 | if (esp->erev == fashme) { | ||
3938 | hme_fifo_push(esp, &esp->cur_msgout[0], 4); | ||
3939 | esp_cmd(esp, ESP_CMD_TI); | ||
3940 | } else { | ||
3941 | dma_setup(esp, esp->esp_command_dvma, 4, 0); | ||
3942 | esp_setcount(esp->eregs, 4, 0); | ||
3943 | esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI); | ||
3944 | } | ||
3945 | break; | ||
3946 | |||
3947 | case 5: | ||
3948 | esp->esp_command[0] = esp->cur_msgout[0]; | ||
3949 | esp->esp_command[1] = esp->cur_msgout[1]; | ||
3950 | esp->esp_command[2] = esp->cur_msgout[2]; | ||
3951 | esp->esp_command[3] = esp->cur_msgout[3]; | ||
3952 | esp->esp_command[4] = esp->cur_msgout[4]; | ||
3953 | esp->snip = 1; | ||
3954 | |||
3955 | if (esp->erev == fashme) { | ||
3956 | hme_fifo_push(esp, &esp->cur_msgout[0], 5); | ||
3957 | esp_cmd(esp, ESP_CMD_TI); | ||
3958 | } else { | ||
3959 | dma_setup(esp, esp->esp_command_dvma, 5, 0); | ||
3960 | esp_setcount(esp->eregs, 5, 0); | ||
3961 | esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI); | ||
3962 | } | ||
3963 | break; | ||
3964 | |||
3965 | default: | ||
3966 | /* whoops */ | ||
3967 | ESPMISC(("bogus msgout sending NOP\n")); | ||
3968 | esp->cur_msgout[0] = NOP; | ||
3969 | |||
3970 | if (esp->erev == fashme) { | ||
3971 | hme_fifo_push(esp, &esp->cur_msgout[0], 1); | ||
3972 | } else { | ||
3973 | sbus_writeb(esp->cur_msgout[0], esp->eregs + ESP_FDATA); | ||
3974 | } | ||
3975 | |||
3976 | esp->msgout_len = 1; | ||
3977 | esp_cmd(esp, ESP_CMD_TI); | ||
3978 | break; | ||
3979 | }; | ||
3980 | |||
3981 | esp_advance_phase(esp->current_SC, in_msgoutdone); | ||
3982 | return do_intr_end; | ||
3983 | } | ||
3984 | |||
3985 | static int esp_do_msgoutdone(struct esp *esp) | ||
3986 | { | ||
3987 | if (esp->msgout_len > 1) { | ||
3988 | /* XXX HME/FAS ATN deassert workaround required, | ||
3989 | * XXX no DMA flushing, only possible ESP_CMD_FLUSH | ||
3990 | * XXX to kill the fifo. | ||
3991 | */ | ||
3992 | if (esp->erev != fashme) { | ||
3993 | u32 tmp; | ||
3994 | |||
3995 | while ((tmp = sbus_readl(esp->dregs + DMA_CSR)) & DMA_PEND_READ) | ||
3996 | udelay(1); | ||
3997 | tmp &= ~DMA_ENABLE; | ||
3998 | sbus_writel(tmp, esp->dregs + DMA_CSR); | ||
3999 | dma_invalidate(esp); | ||
4000 | } else { | ||
4001 | esp_cmd(esp, ESP_CMD_FLUSH); | ||
4002 | } | ||
4003 | } | ||
4004 | if (!(esp->ireg & ESP_INTR_DC)) { | ||
4005 | if (esp->erev != fashme) | ||
4006 | esp_cmd(esp, ESP_CMD_NULL); | ||
4007 | switch (esp->sreg & ESP_STAT_PMASK) { | ||
4008 | case ESP_MOP: | ||
4009 | /* whoops, parity error */ | ||
4010 | ESPLOG(("esp%d: still in msgout, parity error assumed\n", | ||
4011 | esp->esp_id)); | ||
4012 | if (esp->msgout_len > 1) | ||
4013 | esp_cmd(esp, ESP_CMD_SATN); | ||
4014 | esp_advance_phase(esp->current_SC, in_msgout); | ||
4015 | return do_work_bus; | ||
4016 | |||
4017 | case ESP_DIP: | ||
4018 | break; | ||
4019 | |||
4020 | default: | ||
4021 | /* Happy Meal fifo is touchy... */ | ||
4022 | if ((esp->erev != fashme) && | ||
4023 | !fcount(esp) && | ||
4024 | !(((struct esp_device *)esp->current_SC->device->hostdata)->sync_max_offset)) | ||
4025 | esp_cmd(esp, ESP_CMD_FLUSH); | ||
4026 | break; | ||
4027 | |||
4028 | }; | ||
4029 | } else { | ||
4030 | ESPLOG(("esp%d: disconnect, resetting bus\n", esp->esp_id)); | ||
4031 | return do_reset_bus; | ||
4032 | } | ||
4033 | |||
4034 | /* If we sent out a synchronous negotiation message, update | ||
4035 | * our state. | ||
4036 | */ | ||
4037 | if (esp->cur_msgout[2] == EXTENDED_MESSAGE && | ||
4038 | esp->cur_msgout[4] == EXTENDED_SDTR) { | ||
4039 | esp->snip = 1; /* anal retentiveness... */ | ||
4040 | } | ||
4041 | |||
4042 | esp->prevmsgout = esp->cur_msgout[0]; | ||
4043 | esp->msgout_len = 0; | ||
4044 | esp_advance_phase(esp->current_SC, in_the_dark); | ||
4045 | return esp_do_phase_determine(esp); | ||
4046 | } | ||
4047 | |||
4048 | static int esp_bus_unexpected(struct esp *esp) | ||
4049 | { | ||
4050 | ESPLOG(("esp%d: command in weird state %2x\n", | ||
4051 | esp->esp_id, esp->current_SC->SCp.phase)); | ||
4052 | return do_reset_bus; | ||
4053 | } | ||
4054 | |||
4055 | static espfunc_t bus_vector[] = { | ||
4056 | esp_do_data_finale, | ||
4057 | esp_do_data_finale, | ||
4058 | esp_bus_unexpected, | ||
4059 | esp_do_msgin, | ||
4060 | esp_do_msgincont, | ||
4061 | esp_do_msgindone, | ||
4062 | esp_do_msgout, | ||
4063 | esp_do_msgoutdone, | ||
4064 | esp_do_cmdbegin, | ||
4065 | esp_do_cmddone, | ||
4066 | esp_do_status, | ||
4067 | esp_do_freebus, | ||
4068 | esp_do_phase_determine, | ||
4069 | esp_bus_unexpected, | ||
4070 | esp_bus_unexpected, | ||
4071 | esp_bus_unexpected, | ||
4072 | }; | ||
4073 | |||
4074 | /* This is the second tier in our dual-level SCSI state machine. */ | ||
4075 | static int esp_work_bus(struct esp *esp) | ||
4076 | { | ||
4077 | struct scsi_cmnd *SCptr = esp->current_SC; | ||
4078 | unsigned int phase; | ||
4079 | |||
4080 | ESPBUS(("esp_work_bus: ")); | ||
4081 | if (!SCptr) { | ||
4082 | ESPBUS(("reconnect\n")); | ||
4083 | return esp_do_reconnect(esp); | ||
4084 | } | ||
4085 | phase = SCptr->SCp.phase; | ||
4086 | if ((phase & 0xf0) == in_phases_mask) | ||
4087 | return bus_vector[(phase & 0x0f)](esp); | ||
4088 | else if ((phase & 0xf0) == in_slct_mask) | ||
4089 | return esp_select_complete(esp); | ||
4090 | else | ||
4091 | return esp_bus_unexpected(esp); | ||
4092 | } | ||
4093 | |||
4094 | static espfunc_t isvc_vector[] = { | ||
4095 | NULL, | ||
4096 | esp_do_phase_determine, | ||
4097 | esp_do_resetbus, | ||
4098 | esp_finish_reset, | ||
4099 | esp_work_bus | ||
4100 | }; | ||
4101 | |||
4102 | /* Main interrupt handler for an esp adapter. */ | ||
4103 | static void esp_handle(struct esp *esp) | ||
4104 | { | ||
4105 | struct scsi_cmnd *SCptr; | ||
4106 | int what_next = do_intr_end; | ||
4107 | |||
4108 | SCptr = esp->current_SC; | ||
4109 | |||
4110 | /* Check for errors. */ | ||
4111 | esp->sreg = sbus_readb(esp->eregs + ESP_STATUS); | ||
4112 | esp->sreg &= (~ESP_STAT_INTR); | ||
4113 | if (esp->erev == fashme) { | ||
4114 | esp->sreg2 = sbus_readb(esp->eregs + ESP_STATUS2); | ||
4115 | esp->seqreg = (sbus_readb(esp->eregs + ESP_SSTEP) & ESP_STEP_VBITS); | ||
4116 | } | ||
4117 | |||
4118 | if (esp->sreg & (ESP_STAT_SPAM)) { | ||
4119 | /* Gross error, could be due to one of: | ||
4120 | * | ||
4121 | * - top of fifo overwritten, could be because | ||
4122 | * we tried to do a synchronous transfer with | ||
4123 | * an offset greater than ESP fifo size | ||
4124 | * | ||
4125 | * - top of command register overwritten | ||
4126 | * | ||
4127 | * - DMA setup to go in one direction, SCSI | ||
4128 | * bus points in the other, whoops | ||
4129 | * | ||
4130 | * - weird phase change during asynchronous | ||
4131 | * data phase while we are initiator | ||
4132 | */ | ||
4133 | ESPLOG(("esp%d: Gross error sreg=%2x\n", esp->esp_id, esp->sreg)); | ||
4134 | |||
4135 | /* If a command is live on the bus we cannot safely | ||
4136 | * reset the bus, so we'll just let the pieces fall | ||
4137 | * where they may. Here we are hoping that the | ||
4138 | * target will be able to cleanly go away soon | ||
4139 | * so we can safely reset things. | ||
4140 | */ | ||
4141 | if (!SCptr) { | ||
4142 | ESPLOG(("esp%d: No current cmd during gross error, " | ||
4143 | "resetting bus\n", esp->esp_id)); | ||
4144 | what_next = do_reset_bus; | ||
4145 | goto state_machine; | ||
4146 | } | ||
4147 | } | ||
4148 | |||
4149 | if (sbus_readl(esp->dregs + DMA_CSR) & DMA_HNDL_ERROR) { | ||
4150 | /* A DMA gate array error. Here we must | ||
4151 | * be seeing one of two things. Either the | ||
4152 | * virtual to physical address translation | ||
4153 | * on the SBUS could not occur, else the | ||
4154 | * translation it did get pointed to a bogus | ||
4155 | * page. Ho hum... | ||
4156 | */ | ||
4157 | ESPLOG(("esp%d: DMA error %08x\n", esp->esp_id, | ||
4158 | sbus_readl(esp->dregs + DMA_CSR))); | ||
4159 | |||
4160 | /* DMA gate array itself must be reset to clear the | ||
4161 | * error condition. | ||
4162 | */ | ||
4163 | esp_reset_dma(esp); | ||
4164 | |||
4165 | what_next = do_reset_bus; | ||
4166 | goto state_machine; | ||
4167 | } | ||
4168 | |||
4169 | esp->ireg = sbus_readb(esp->eregs + ESP_INTRPT); /* Unlatch intr reg */ | ||
4170 | |||
4171 | if (esp->erev == fashme) { | ||
4172 | /* This chip is really losing. */ | ||
4173 | ESPHME(("HME[")); | ||
4174 | |||
4175 | ESPHME(("sreg2=%02x,", esp->sreg2)); | ||
4176 | /* Must latch fifo before reading the interrupt | ||
4177 | * register else garbage ends up in the FIFO | ||
4178 | * which confuses the driver utterly. | ||
4179 | */ | ||
4180 | if (!(esp->sreg2 & ESP_STAT2_FEMPTY) || | ||
4181 | (esp->sreg2 & ESP_STAT2_F1BYTE)) { | ||
4182 | ESPHME(("fifo_workaround]")); | ||
4183 | hme_fifo_read(esp); | ||
4184 | } else { | ||
4185 | ESPHME(("no_fifo_workaround]")); | ||
4186 | } | ||
4187 | } | ||
4188 | |||
4189 | /* No current cmd is only valid at this point when there are | ||
4190 | * commands off the bus or we are trying a reset. | ||
4191 | */ | ||
4192 | if (!SCptr && !esp->disconnected_SC && !(esp->ireg & ESP_INTR_SR)) { | ||
4193 | /* Panic is safe, since current_SC is null. */ | ||
4194 | ESPLOG(("esp%d: no command in esp_handle()\n", esp->esp_id)); | ||
4195 | panic("esp_handle: current_SC == penguin within interrupt!"); | ||
4196 | } | ||
4197 | |||
4198 | if (esp->ireg & (ESP_INTR_IC)) { | ||
4199 | /* Illegal command fed to ESP. Outside of obvious | ||
4200 | * software bugs that could cause this, there is | ||
4201 | * a condition with esp100 where we can confuse the | ||
4202 | * ESP into an erroneous illegal command interrupt | ||
4203 | * because it does not scrape the FIFO properly | ||
4204 | * for reselection. See esp100_reconnect_hwbug() | ||
4205 | * to see how we try very hard to avoid this. | ||
4206 | */ | ||
4207 | ESPLOG(("esp%d: invalid command\n", esp->esp_id)); | ||
4208 | |||
4209 | esp_dump_state(esp); | ||
4210 | |||
4211 | if (SCptr != NULL) { | ||
4212 | /* Devices with very buggy firmware can drop BSY | ||
4213 | * during a scatter list interrupt when using sync | ||
4214 | * mode transfers. We continue the transfer as | ||
4215 | * expected, the target drops the bus, the ESP | ||
4216 | * gets confused, and we get a illegal command | ||
4217 | * interrupt because the bus is in the disconnected | ||
4218 | * state now and ESP_CMD_TI is only allowed when | ||
4219 | * a nexus is alive on the bus. | ||
4220 | */ | ||
4221 | ESPLOG(("esp%d: Forcing async and disabling disconnect for " | ||
4222 | "target %d\n", esp->esp_id, SCptr->device->id)); | ||
4223 | SCptr->device->borken = 1; /* foo on you */ | ||
4224 | } | ||
4225 | |||
4226 | what_next = do_reset_bus; | ||
4227 | } else if (!(esp->ireg & ~(ESP_INTR_FDONE | ESP_INTR_BSERV | ESP_INTR_DC))) { | ||
4228 | if (SCptr) { | ||
4229 | unsigned int phase = SCptr->SCp.phase; | ||
4230 | |||
4231 | if (phase & in_phases_mask) { | ||
4232 | what_next = esp_work_bus(esp); | ||
4233 | } else if (phase & in_slct_mask) { | ||
4234 | what_next = esp_select_complete(esp); | ||
4235 | } else { | ||
4236 | ESPLOG(("esp%d: interrupt for no good reason...\n", | ||
4237 | esp->esp_id)); | ||
4238 | what_next = do_intr_end; | ||
4239 | } | ||
4240 | } else { | ||
4241 | ESPLOG(("esp%d: BSERV or FDONE or DC while SCptr==NULL\n", | ||
4242 | esp->esp_id)); | ||
4243 | what_next = do_reset_bus; | ||
4244 | } | ||
4245 | } else if (esp->ireg & ESP_INTR_SR) { | ||
4246 | ESPLOG(("esp%d: SCSI bus reset interrupt\n", esp->esp_id)); | ||
4247 | what_next = do_reset_complete; | ||
4248 | } else if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN)) { | ||
4249 | ESPLOG(("esp%d: AIEEE we have been selected by another initiator!\n", | ||
4250 | esp->esp_id)); | ||
4251 | what_next = do_reset_bus; | ||
4252 | } else if (esp->ireg & ESP_INTR_RSEL) { | ||
4253 | if (SCptr == NULL) { | ||
4254 | /* This is ok. */ | ||
4255 | what_next = esp_do_reconnect(esp); | ||
4256 | } else if (SCptr->SCp.phase & in_slct_mask) { | ||
4257 | /* Only selection code knows how to clean | ||
4258 | * up properly. | ||
4259 | */ | ||
4260 | ESPDISC(("Reselected during selection attempt\n")); | ||
4261 | what_next = esp_select_complete(esp); | ||
4262 | } else { | ||
4263 | ESPLOG(("esp%d: Reselected while bus is busy\n", | ||
4264 | esp->esp_id)); | ||
4265 | what_next = do_reset_bus; | ||
4266 | } | ||
4267 | } | ||
4268 | |||
4269 | /* This is tier-one in our dual level SCSI state machine. */ | ||
4270 | state_machine: | ||
4271 | while (what_next != do_intr_end) { | ||
4272 | if (what_next >= do_phase_determine && | ||
4273 | what_next < do_intr_end) { | ||
4274 | what_next = isvc_vector[what_next](esp); | ||
4275 | } else { | ||
4276 | /* state is completely lost ;-( */ | ||
4277 | ESPLOG(("esp%d: interrupt engine loses state, resetting bus\n", | ||
4278 | esp->esp_id)); | ||
4279 | what_next = do_reset_bus; | ||
4280 | } | ||
4281 | } | ||
4282 | } | ||
4283 | |||
4284 | /* Service only the ESP described by dev_id. */ | ||
4285 | static irqreturn_t esp_intr(int irq, void *dev_id) | ||
4286 | { | ||
4287 | struct esp *esp = dev_id; | ||
4288 | unsigned long flags; | ||
4289 | |||
4290 | spin_lock_irqsave(esp->ehost->host_lock, flags); | ||
4291 | if (ESP_IRQ_P(esp->dregs)) { | ||
4292 | ESP_INTSOFF(esp->dregs); | ||
4293 | |||
4294 | ESPIRQ(("I[%d:%d](", smp_processor_id(), esp->esp_id)); | ||
4295 | esp_handle(esp); | ||
4296 | ESPIRQ((")")); | ||
4297 | |||
4298 | ESP_INTSON(esp->dregs); | ||
4299 | } | ||
4300 | spin_unlock_irqrestore(esp->ehost->host_lock, flags); | ||
4301 | |||
4302 | return IRQ_HANDLED; | ||
4303 | } | ||
4304 | |||
4305 | static int esp_slave_alloc(struct scsi_device *SDptr) | ||
4306 | { | ||
4307 | struct esp_device *esp_dev = | ||
4308 | kmalloc(sizeof(struct esp_device), GFP_ATOMIC); | ||
4309 | |||
4310 | if (!esp_dev) | ||
4311 | return -ENOMEM; | ||
4312 | memset(esp_dev, 0, sizeof(struct esp_device)); | ||
4313 | SDptr->hostdata = esp_dev; | ||
4314 | return 0; | ||
4315 | } | ||
4316 | |||
4317 | static void esp_slave_destroy(struct scsi_device *SDptr) | ||
4318 | { | ||
4319 | struct esp *esp = (struct esp *) SDptr->host->hostdata; | ||
4320 | |||
4321 | esp->targets_present &= ~(1 << SDptr->id); | ||
4322 | kfree(SDptr->hostdata); | ||
4323 | SDptr->hostdata = NULL; | ||
4324 | } | ||
4325 | |||
4326 | static struct scsi_host_template esp_template = { | ||
4327 | .module = THIS_MODULE, | ||
4328 | .name = "esp", | ||
4329 | .info = esp_info, | ||
4330 | .slave_alloc = esp_slave_alloc, | ||
4331 | .slave_destroy = esp_slave_destroy, | ||
4332 | .queuecommand = esp_queue, | ||
4333 | .eh_abort_handler = esp_abort, | ||
4334 | .eh_bus_reset_handler = esp_reset, | ||
4335 | .can_queue = 7, | ||
4336 | .this_id = 7, | ||
4337 | .sg_tablesize = SG_ALL, | ||
4338 | .cmd_per_lun = 1, | ||
4339 | .use_clustering = ENABLE_CLUSTERING, | ||
4340 | .proc_name = "esp", | ||
4341 | .proc_info = esp_proc_info, | ||
4342 | }; | ||
4343 | |||
4344 | #ifndef CONFIG_SUN4 | ||
4345 | static struct of_device_id esp_match[] = { | ||
4346 | { | ||
4347 | .name = "SUNW,esp", | ||
4348 | .data = &esp_template, | ||
4349 | }, | ||
4350 | { | ||
4351 | .name = "SUNW,fas", | ||
4352 | .data = &esp_template, | ||
4353 | }, | ||
4354 | { | ||
4355 | .name = "esp", | ||
4356 | .data = &esp_template, | ||
4357 | }, | ||
4358 | {}, | ||
4359 | }; | ||
4360 | MODULE_DEVICE_TABLE(of, esp_match); | ||
4361 | |||
4362 | static struct of_platform_driver esp_sbus_driver = { | ||
4363 | .name = "esp", | ||
4364 | .match_table = esp_match, | ||
4365 | .probe = esp_sbus_probe, | ||
4366 | .remove = __devexit_p(esp_sbus_remove), | ||
4367 | }; | ||
4368 | #endif | ||
4369 | |||
4370 | static int __init esp_init(void) | ||
4371 | { | ||
4372 | #ifdef CONFIG_SUN4 | ||
4373 | return esp_sun4_probe(&esp_template); | ||
4374 | #else | ||
4375 | return of_register_driver(&esp_sbus_driver, &sbus_bus_type); | ||
4376 | #endif | ||
4377 | } | ||
4378 | |||
4379 | static void __exit esp_exit(void) | ||
4380 | { | ||
4381 | #ifdef CONFIG_SUN4 | ||
4382 | esp_sun4_remove(); | ||
4383 | #else | ||
4384 | of_unregister_driver(&esp_sbus_driver); | ||
4385 | #endif | ||
4386 | } | ||
4387 | |||
4388 | MODULE_DESCRIPTION("ESP Sun SCSI driver"); | ||
4389 | MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); | ||
4390 | MODULE_LICENSE("GPL"); | ||
4391 | MODULE_VERSION(DRV_VERSION); | ||
4392 | |||
4393 | module_init(esp_init); | ||
4394 | module_exit(esp_exit); | ||
diff --git a/drivers/scsi/esp.h b/drivers/scsi/esp.h deleted file mode 100644 index a98cda9121fc..000000000000 --- a/drivers/scsi/esp.h +++ /dev/null | |||
@@ -1,406 +0,0 @@ | |||
1 | /* $Id: esp.h,v 1.29 2001/12/11 04:55:47 davem Exp $ | ||
2 | * esp.h: Defines and structures for the Sparc ESP (Enhanced SCSI | ||
3 | * Processor) driver under Linux. | ||
4 | * | ||
5 | * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) | ||
6 | */ | ||
7 | |||
8 | #ifndef _SPARC_ESP_H | ||
9 | #define _SPARC_ESP_H | ||
10 | |||
11 | /* For dvma controller register definitions. */ | ||
12 | #include <asm/dma.h> | ||
13 | |||
14 | /* The ESP SCSI controllers have their register sets in three | ||
15 | * "classes": | ||
16 | * | ||
17 | * 1) Registers which are both read and write. | ||
18 | * 2) Registers which are read only. | ||
19 | * 3) Registers which are write only. | ||
20 | * | ||
21 | * Yet, they all live within the same IO space. | ||
22 | */ | ||
23 | |||
24 | /* All the ESP registers are one byte each and are accessed longwords | ||
25 | * apart with a big-endian ordering to the bytes. | ||
26 | */ | ||
27 | /* Access Description Offset */ | ||
28 | #define ESP_TCLOW 0x00UL /* rw Low bits of the transfer count 0x00 */ | ||
29 | #define ESP_TCMED 0x04UL /* rw Mid bits of the transfer count 0x04 */ | ||
30 | #define ESP_FDATA 0x08UL /* rw FIFO data bits 0x08 */ | ||
31 | #define ESP_CMD 0x0cUL /* rw SCSI command bits 0x0c */ | ||
32 | #define ESP_STATUS 0x10UL /* ro ESP status register 0x10 */ | ||
33 | #define ESP_BUSID ESP_STATUS /* wo Bus ID for select/reselect 0x10 */ | ||
34 | #define ESP_INTRPT 0x14UL /* ro Kind of interrupt 0x14 */ | ||
35 | #define ESP_TIMEO ESP_INTRPT /* wo Timeout value for select/resel 0x14 */ | ||
36 | #define ESP_SSTEP 0x18UL /* ro Sequence step register 0x18 */ | ||
37 | #define ESP_STP ESP_SSTEP /* wo Transfer period per sync 0x18 */ | ||
38 | #define ESP_FFLAGS 0x1cUL /* ro Bits of current FIFO info 0x1c */ | ||
39 | #define ESP_SOFF ESP_FFLAGS /* wo Sync offset 0x1c */ | ||
40 | #define ESP_CFG1 0x20UL /* rw First configuration register 0x20 */ | ||
41 | #define ESP_CFACT 0x24UL /* wo Clock conversion factor 0x24 */ | ||
42 | #define ESP_STATUS2 ESP_CFACT /* ro HME status2 register 0x24 */ | ||
43 | #define ESP_CTEST 0x28UL /* wo Chip test register 0x28 */ | ||
44 | #define ESP_CFG2 0x2cUL /* rw Second configuration register 0x2c */ | ||
45 | #define ESP_CFG3 0x30UL /* rw Third configuration register 0x30 */ | ||
46 | #define ESP_TCHI 0x38UL /* rw High bits of transfer count 0x38 */ | ||
47 | #define ESP_UID ESP_TCHI /* ro Unique ID code 0x38 */ | ||
48 | #define FAS_RLO ESP_TCHI /* rw HME extended counter 0x38 */ | ||
49 | #define ESP_FGRND 0x3cUL /* rw Data base for fifo 0x3c */ | ||
50 | #define FAS_RHI ESP_FGRND /* rw HME extended counter 0x3c */ | ||
51 | #define ESP_REG_SIZE 0x40UL | ||
52 | |||
53 | /* Various revisions of the ESP board. */ | ||
54 | enum esp_rev { | ||
55 | esp100 = 0x00, /* NCR53C90 - very broken */ | ||
56 | esp100a = 0x01, /* NCR53C90A */ | ||
57 | esp236 = 0x02, | ||
58 | fas236 = 0x03, | ||
59 | fas100a = 0x04, | ||
60 | fast = 0x05, | ||
61 | fashme = 0x06, | ||
62 | espunknown = 0x07 | ||
63 | }; | ||
64 | |||
65 | /* We allocate one of these for each scsi device and attach it to | ||
66 | * SDptr->hostdata for use in the driver | ||
67 | */ | ||
68 | struct esp_device { | ||
69 | unsigned char sync_min_period; | ||
70 | unsigned char sync_max_offset; | ||
71 | unsigned sync:1; | ||
72 | unsigned wide:1; | ||
73 | unsigned disconnect:1; | ||
74 | }; | ||
75 | |||
76 | struct scsi_cmnd; | ||
77 | |||
78 | /* We get one of these for each ESP probed. */ | ||
79 | struct esp { | ||
80 | void __iomem *eregs; /* ESP controller registers */ | ||
81 | void __iomem *dregs; /* DMA controller registers */ | ||
82 | struct sbus_dma *dma; /* DMA controller sw state */ | ||
83 | struct Scsi_Host *ehost; /* Backpointer to SCSI Host */ | ||
84 | struct sbus_dev *sdev; /* Pointer to SBus entry */ | ||
85 | |||
86 | /* ESP Configuration Registers */ | ||
87 | u8 config1; /* Copy of the 1st config register */ | ||
88 | u8 config2; /* Copy of the 2nd config register */ | ||
89 | u8 config3[16]; /* Copy of the 3rd config register */ | ||
90 | |||
91 | /* The current command we are sending to the ESP chip. This esp_command | ||
92 | * ptr needs to be mapped in DVMA area so we can send commands and read | ||
93 | * from the ESP fifo without burning precious CPU cycles. Programmed I/O | ||
94 | * sucks when we have the DVMA to do it for us. The ESP is stupid and will | ||
95 | * only send out 6, 10, and 12 byte SCSI commands, others we need to send | ||
96 | * one byte at a time. esp_slowcmd being set says that we are doing one | ||
97 | * of the command types ESP doesn't understand, esp_scmdp keeps track of | ||
98 | * which byte we are sending, esp_scmdleft says how many bytes to go. | ||
99 | */ | ||
100 | volatile u8 *esp_command; /* Location of command (CPU view) */ | ||
101 | __u32 esp_command_dvma;/* Location of command (DVMA view) */ | ||
102 | unsigned char esp_clen; /* Length of this command */ | ||
103 | unsigned char esp_slowcmd; | ||
104 | unsigned char *esp_scmdp; | ||
105 | unsigned char esp_scmdleft; | ||
106 | |||
107 | /* The following are used to determine the cause of an IRQ. Upon every | ||
108 | * IRQ entry we synchronize these with the hardware registers. | ||
109 | */ | ||
110 | u8 ireg; /* Copy of ESP interrupt register */ | ||
111 | u8 sreg; /* Copy of ESP status register */ | ||
112 | u8 seqreg; /* Copy of ESP sequence step register */ | ||
113 | u8 sreg2; /* Copy of HME status2 register */ | ||
114 | |||
115 | /* To save register writes to the ESP, which can be expensive, we | ||
116 | * keep track of the previous value that various registers had for | ||
117 | * the last target we connected to. If they are the same for the | ||
118 | * current target, we skip the register writes as they are not needed. | ||
119 | */ | ||
120 | u8 prev_soff, prev_stp; | ||
121 | u8 prev_cfg3, __cache_pad; | ||
122 | |||
123 | /* We also keep a cache of the previous FAS/HME DMA CSR register value. */ | ||
124 | u32 prev_hme_dmacsr; | ||
125 | |||
126 | /* The HME is the biggest piece of shit I have ever seen. */ | ||
127 | u8 hme_fifo_workaround_buffer[16 * 2]; | ||
128 | u8 hme_fifo_workaround_count; | ||
129 | |||
130 | /* For each target we keep track of save/restore data | ||
131 | * pointer information. This needs to be updated majorly | ||
132 | * when we add support for tagged queueing. -DaveM | ||
133 | */ | ||
134 | struct esp_pointers { | ||
135 | char *saved_ptr; | ||
136 | struct scatterlist *saved_buffer; | ||
137 | int saved_this_residual; | ||
138 | int saved_buffers_residual; | ||
139 | } data_pointers[16] /*XXX [MAX_TAGS_PER_TARGET]*/; | ||
140 | |||
141 | /* Clock periods, frequencies, synchronization, etc. */ | ||
142 | unsigned int cfreq; /* Clock frequency in HZ */ | ||
143 | unsigned int cfact; /* Clock conversion factor */ | ||
144 | unsigned int raw_cfact; /* Raw copy from probing */ | ||
145 | unsigned int ccycle; /* One ESP clock cycle */ | ||
146 | unsigned int ctick; /* One ESP clock time */ | ||
147 | unsigned int radelay; /* FAST chip req/ack delay */ | ||
148 | unsigned int neg_defp; /* Default negotiation period */ | ||
149 | unsigned int sync_defp; /* Default sync transfer period */ | ||
150 | unsigned int max_period; /* longest our period can be */ | ||
151 | unsigned int min_period; /* shortest period we can withstand */ | ||
152 | |||
153 | struct esp *next; /* Next ESP we probed or NULL */ | ||
154 | char prom_name[64]; /* Name of ESP device from prom */ | ||
155 | int prom_node; /* Prom node where ESP found */ | ||
156 | int esp_id; /* Unique per-ESP ID number */ | ||
157 | |||
158 | /* For slow to medium speed input clock rates we shoot for 5mb/s, | ||
159 | * but for high input clock rates we try to do 10mb/s although I | ||
160 | * don't think a transfer can even run that fast with an ESP even | ||
161 | * with DMA2 scatter gather pipelining. | ||
162 | */ | ||
163 | #define SYNC_DEFP_SLOW 0x32 /* 5mb/s */ | ||
164 | #define SYNC_DEFP_FAST 0x19 /* 10mb/s */ | ||
165 | |||
166 | unsigned int snip; /* Sync. negotiation in progress */ | ||
167 | unsigned int wnip; /* WIDE negotiation in progress */ | ||
168 | unsigned int targets_present;/* targets spoken to before */ | ||
169 | |||
170 | int current_transfer_size; /* Set at beginning of data dma */ | ||
171 | |||
172 | u8 espcmdlog[32]; /* Log of current esp cmds sent. */ | ||
173 | u8 espcmdent; /* Current entry in esp cmd log. */ | ||
174 | |||
175 | /* Misc. info about this ESP */ | ||
176 | enum esp_rev erev; /* ESP revision */ | ||
177 | int irq; /* SBus IRQ for this ESP */ | ||
178 | int scsi_id; /* Who am I as initiator? */ | ||
179 | int scsi_id_mask; /* Bitmask of 'me'. */ | ||
180 | int diff; /* Differential SCSI bus? */ | ||
181 | int bursts; /* Burst sizes our DVMA supports */ | ||
182 | |||
183 | /* Our command queues, only one cmd lives in the current_SC queue. */ | ||
184 | struct scsi_cmnd *issue_SC; /* Commands to be issued */ | ||
185 | struct scsi_cmnd *current_SC; /* Who is currently working the bus */ | ||
186 | struct scsi_cmnd *disconnected_SC;/* Commands disconnected from the bus */ | ||
187 | |||
188 | /* Message goo */ | ||
189 | u8 cur_msgout[16]; | ||
190 | u8 cur_msgin[16]; | ||
191 | u8 prevmsgout, prevmsgin; | ||
192 | u8 msgout_len, msgin_len; | ||
193 | u8 msgout_ctr, msgin_ctr; | ||
194 | |||
195 | /* States that we cannot keep in the per cmd structure because they | ||
196 | * cannot be assosciated with any specific command. | ||
197 | */ | ||
198 | u8 resetting_bus; | ||
199 | wait_queue_head_t reset_queue; | ||
200 | }; | ||
201 | |||
202 | /* Bitfield meanings for the above registers. */ | ||
203 | |||
204 | /* ESP config reg 1, read-write, found on all ESP chips */ | ||
205 | #define ESP_CONFIG1_ID 0x07 /* My BUS ID bits */ | ||
206 | #define ESP_CONFIG1_CHTEST 0x08 /* Enable ESP chip tests */ | ||
207 | #define ESP_CONFIG1_PENABLE 0x10 /* Enable parity checks */ | ||
208 | #define ESP_CONFIG1_PARTEST 0x20 /* Parity test mode enabled? */ | ||
209 | #define ESP_CONFIG1_SRRDISAB 0x40 /* Disable SCSI reset reports */ | ||
210 | #define ESP_CONFIG1_SLCABLE 0x80 /* Enable slow cable mode */ | ||
211 | |||
212 | /* ESP config reg 2, read-write, found only on esp100a+esp200+esp236 chips */ | ||
213 | #define ESP_CONFIG2_DMAPARITY 0x01 /* enable DMA Parity (200,236) */ | ||
214 | #define ESP_CONFIG2_REGPARITY 0x02 /* enable reg Parity (200,236) */ | ||
215 | #define ESP_CONFIG2_BADPARITY 0x04 /* Bad parity target abort */ | ||
216 | #define ESP_CONFIG2_SCSI2ENAB 0x08 /* Enable SCSI-2 features (tmode only) */ | ||
217 | #define ESP_CONFIG2_HI 0x10 /* High Impedance DREQ ??? */ | ||
218 | #define ESP_CONFIG2_HMEFENAB 0x10 /* HME features enable */ | ||
219 | #define ESP_CONFIG2_BCM 0x20 /* Enable byte-ctrl (236) */ | ||
220 | #define ESP_CONFIG2_DISPINT 0x20 /* Disable pause irq (hme) */ | ||
221 | #define ESP_CONFIG2_FENAB 0x40 /* Enable features (fas100,esp216) */ | ||
222 | #define ESP_CONFIG2_SPL 0x40 /* Enable status-phase latch (esp236) */ | ||
223 | #define ESP_CONFIG2_MKDONE 0x40 /* HME magic feature */ | ||
224 | #define ESP_CONFIG2_HME32 0x80 /* HME 32 extended */ | ||
225 | #define ESP_CONFIG2_MAGIC 0xe0 /* Invalid bits... */ | ||
226 | |||
227 | /* ESP config register 3 read-write, found only esp236+fas236+fas100a+hme chips */ | ||
228 | #define ESP_CONFIG3_FCLOCK 0x01 /* FAST SCSI clock rate (esp100a/hme) */ | ||
229 | #define ESP_CONFIG3_TEM 0x01 /* Enable thresh-8 mode (esp/fas236) */ | ||
230 | #define ESP_CONFIG3_FAST 0x02 /* Enable FAST SCSI (esp100a/hme) */ | ||
231 | #define ESP_CONFIG3_ADMA 0x02 /* Enable alternate-dma (esp/fas236) */ | ||
232 | #define ESP_CONFIG3_TENB 0x04 /* group2 SCSI2 support (esp100a/hme) */ | ||
233 | #define ESP_CONFIG3_SRB 0x04 /* Save residual byte (esp/fas236) */ | ||
234 | #define ESP_CONFIG3_TMS 0x08 /* Three-byte msg's ok (esp100a/hme) */ | ||
235 | #define ESP_CONFIG3_FCLK 0x08 /* Fast SCSI clock rate (esp/fas236) */ | ||
236 | #define ESP_CONFIG3_IDMSG 0x10 /* ID message checking (esp100a/hme) */ | ||
237 | #define ESP_CONFIG3_FSCSI 0x10 /* Enable FAST SCSI (esp/fas236) */ | ||
238 | #define ESP_CONFIG3_GTM 0x20 /* group2 SCSI2 support (esp/fas236) */ | ||
239 | #define ESP_CONFIG3_IDBIT3 0x20 /* Bit 3 of HME SCSI-ID (hme) */ | ||
240 | #define ESP_CONFIG3_TBMS 0x40 /* Three-byte msg's ok (esp/fas236) */ | ||
241 | #define ESP_CONFIG3_EWIDE 0x40 /* Enable Wide-SCSI (hme) */ | ||
242 | #define ESP_CONFIG3_IMS 0x80 /* ID msg chk'ng (esp/fas236) */ | ||
243 | #define ESP_CONFIG3_OBPUSH 0x80 /* Push odd-byte to dma (hme) */ | ||
244 | |||
245 | /* ESP command register read-write */ | ||
246 | /* Group 1 commands: These may be sent at any point in time to the ESP | ||
247 | * chip. None of them can generate interrupts 'cept | ||
248 | * the "SCSI bus reset" command if you have not disabled | ||
249 | * SCSI reset interrupts in the config1 ESP register. | ||
250 | */ | ||
251 | #define ESP_CMD_NULL 0x00 /* Null command, ie. a nop */ | ||
252 | #define ESP_CMD_FLUSH 0x01 /* FIFO Flush */ | ||
253 | #define ESP_CMD_RC 0x02 /* Chip reset */ | ||
254 | #define ESP_CMD_RS 0x03 /* SCSI bus reset */ | ||
255 | |||
256 | /* Group 2 commands: ESP must be an initiator and connected to a target | ||
257 | * for these commands to work. | ||
258 | */ | ||
259 | #define ESP_CMD_TI 0x10 /* Transfer Information */ | ||
260 | #define ESP_CMD_ICCSEQ 0x11 /* Initiator cmd complete sequence */ | ||
261 | #define ESP_CMD_MOK 0x12 /* Message okie-dokie */ | ||
262 | #define ESP_CMD_TPAD 0x18 /* Transfer Pad */ | ||
263 | #define ESP_CMD_SATN 0x1a /* Set ATN */ | ||
264 | #define ESP_CMD_RATN 0x1b /* De-assert ATN */ | ||
265 | |||
266 | /* Group 3 commands: ESP must be in the MSGOUT or MSGIN state and be connected | ||
267 | * to a target as the initiator for these commands to work. | ||
268 | */ | ||
269 | #define ESP_CMD_SMSG 0x20 /* Send message */ | ||
270 | #define ESP_CMD_SSTAT 0x21 /* Send status */ | ||
271 | #define ESP_CMD_SDATA 0x22 /* Send data */ | ||
272 | #define ESP_CMD_DSEQ 0x23 /* Discontinue Sequence */ | ||
273 | #define ESP_CMD_TSEQ 0x24 /* Terminate Sequence */ | ||
274 | #define ESP_CMD_TCCSEQ 0x25 /* Target cmd cmplt sequence */ | ||
275 | #define ESP_CMD_DCNCT 0x27 /* Disconnect */ | ||
276 | #define ESP_CMD_RMSG 0x28 /* Receive Message */ | ||
277 | #define ESP_CMD_RCMD 0x29 /* Receive Command */ | ||
278 | #define ESP_CMD_RDATA 0x2a /* Receive Data */ | ||
279 | #define ESP_CMD_RCSEQ 0x2b /* Receive cmd sequence */ | ||
280 | |||
281 | /* Group 4 commands: The ESP must be in the disconnected state and must | ||
282 | * not be connected to any targets as initiator for | ||
283 | * these commands to work. | ||
284 | */ | ||
285 | #define ESP_CMD_RSEL 0x40 /* Reselect */ | ||
286 | #define ESP_CMD_SEL 0x41 /* Select w/o ATN */ | ||
287 | #define ESP_CMD_SELA 0x42 /* Select w/ATN */ | ||
288 | #define ESP_CMD_SELAS 0x43 /* Select w/ATN & STOP */ | ||
289 | #define ESP_CMD_ESEL 0x44 /* Enable selection */ | ||
290 | #define ESP_CMD_DSEL 0x45 /* Disable selections */ | ||
291 | #define ESP_CMD_SA3 0x46 /* Select w/ATN3 */ | ||
292 | #define ESP_CMD_RSEL3 0x47 /* Reselect3 */ | ||
293 | |||
294 | /* This bit enables the ESP's DMA on the SBus */ | ||
295 | #define ESP_CMD_DMA 0x80 /* Do DMA? */ | ||
296 | |||
297 | |||
298 | /* ESP status register read-only */ | ||
299 | #define ESP_STAT_PIO 0x01 /* IO phase bit */ | ||
300 | #define ESP_STAT_PCD 0x02 /* CD phase bit */ | ||
301 | #define ESP_STAT_PMSG 0x04 /* MSG phase bit */ | ||
302 | #define ESP_STAT_PMASK 0x07 /* Mask of phase bits */ | ||
303 | #define ESP_STAT_TDONE 0x08 /* Transfer Completed */ | ||
304 | #define ESP_STAT_TCNT 0x10 /* Transfer Counter Is Zero */ | ||
305 | #define ESP_STAT_PERR 0x20 /* Parity error */ | ||
306 | #define ESP_STAT_SPAM 0x40 /* Real bad error */ | ||
307 | /* This indicates the 'interrupt pending' condition on esp236, it is a reserved | ||
308 | * bit on other revs of the ESP. | ||
309 | */ | ||
310 | #define ESP_STAT_INTR 0x80 /* Interrupt */ | ||
311 | |||
312 | /* HME only: status 2 register */ | ||
313 | #define ESP_STAT2_SCHBIT 0x01 /* Upper bits 3-7 of sstep enabled */ | ||
314 | #define ESP_STAT2_FFLAGS 0x02 /* The fifo flags are now latched */ | ||
315 | #define ESP_STAT2_XCNT 0x04 /* The transfer counter is latched */ | ||
316 | #define ESP_STAT2_CREGA 0x08 /* The command reg is active now */ | ||
317 | #define ESP_STAT2_WIDE 0x10 /* Interface on this adapter is wide */ | ||
318 | #define ESP_STAT2_F1BYTE 0x20 /* There is one byte at top of fifo */ | ||
319 | #define ESP_STAT2_FMSB 0x40 /* Next byte in fifo is most significant */ | ||
320 | #define ESP_STAT2_FEMPTY 0x80 /* FIFO is empty */ | ||
321 | |||
322 | /* The status register can be masked with ESP_STAT_PMASK and compared | ||
323 | * with the following values to determine the current phase the ESP | ||
324 | * (at least thinks it) is in. For our purposes we also add our own | ||
325 | * software 'done' bit for our phase management engine. | ||
326 | */ | ||
327 | #define ESP_DOP (0) /* Data Out */ | ||
328 | #define ESP_DIP (ESP_STAT_PIO) /* Data In */ | ||
329 | #define ESP_CMDP (ESP_STAT_PCD) /* Command */ | ||
330 | #define ESP_STATP (ESP_STAT_PCD|ESP_STAT_PIO) /* Status */ | ||
331 | #define ESP_MOP (ESP_STAT_PMSG|ESP_STAT_PCD) /* Message Out */ | ||
332 | #define ESP_MIP (ESP_STAT_PMSG|ESP_STAT_PCD|ESP_STAT_PIO) /* Message In */ | ||
333 | |||
334 | /* ESP interrupt register read-only */ | ||
335 | #define ESP_INTR_S 0x01 /* Select w/o ATN */ | ||
336 | #define ESP_INTR_SATN 0x02 /* Select w/ATN */ | ||
337 | #define ESP_INTR_RSEL 0x04 /* Reselected */ | ||
338 | #define ESP_INTR_FDONE 0x08 /* Function done */ | ||
339 | #define ESP_INTR_BSERV 0x10 /* Bus service */ | ||
340 | #define ESP_INTR_DC 0x20 /* Disconnect */ | ||
341 | #define ESP_INTR_IC 0x40 /* Illegal command given */ | ||
342 | #define ESP_INTR_SR 0x80 /* SCSI bus reset detected */ | ||
343 | |||
344 | /* Interrupt status macros */ | ||
345 | #define ESP_SRESET_IRQ(esp) ((esp)->intreg & (ESP_INTR_SR)) | ||
346 | #define ESP_ILLCMD_IRQ(esp) ((esp)->intreg & (ESP_INTR_IC)) | ||
347 | #define ESP_SELECT_WITH_ATN_IRQ(esp) ((esp)->intreg & (ESP_INTR_SATN)) | ||
348 | #define ESP_SELECT_WITHOUT_ATN_IRQ(esp) ((esp)->intreg & (ESP_INTR_S)) | ||
349 | #define ESP_SELECTION_IRQ(esp) ((ESP_SELECT_WITH_ATN_IRQ(esp)) || \ | ||
350 | (ESP_SELECT_WITHOUT_ATN_IRQ(esp))) | ||
351 | #define ESP_RESELECTION_IRQ(esp) ((esp)->intreg & (ESP_INTR_RSEL)) | ||
352 | |||
353 | /* ESP sequence step register read-only */ | ||
354 | #define ESP_STEP_VBITS 0x07 /* Valid bits */ | ||
355 | #define ESP_STEP_ASEL 0x00 /* Selection&Arbitrate cmplt */ | ||
356 | #define ESP_STEP_SID 0x01 /* One msg byte sent */ | ||
357 | #define ESP_STEP_NCMD 0x02 /* Was not in command phase */ | ||
358 | #define ESP_STEP_PPC 0x03 /* Early phase chg caused cmnd | ||
359 | * bytes to be lost | ||
360 | */ | ||
361 | #define ESP_STEP_FINI4 0x04 /* Command was sent ok */ | ||
362 | |||
363 | /* Ho hum, some ESP's set the step register to this as well... */ | ||
364 | #define ESP_STEP_FINI5 0x05 | ||
365 | #define ESP_STEP_FINI6 0x06 | ||
366 | #define ESP_STEP_FINI7 0x07 | ||
367 | |||
368 | /* ESP chip-test register read-write */ | ||
369 | #define ESP_TEST_TARG 0x01 /* Target test mode */ | ||
370 | #define ESP_TEST_INI 0x02 /* Initiator test mode */ | ||
371 | #define ESP_TEST_TS 0x04 /* Tristate test mode */ | ||
372 | |||
373 | /* ESP unique ID register read-only, found on fas236+fas100a only */ | ||
374 | #define ESP_UID_F100A 0x00 /* ESP FAS100A */ | ||
375 | #define ESP_UID_F236 0x02 /* ESP FAS236 */ | ||
376 | #define ESP_UID_REV 0x07 /* ESP revision */ | ||
377 | #define ESP_UID_FAM 0xf8 /* ESP family */ | ||
378 | |||
379 | /* ESP fifo flags register read-only */ | ||
380 | /* Note that the following implies a 16 byte FIFO on the ESP. */ | ||
381 | #define ESP_FF_FBYTES 0x1f /* Num bytes in FIFO */ | ||
382 | #define ESP_FF_ONOTZERO 0x20 /* offset ctr not zero (esp100) */ | ||
383 | #define ESP_FF_SSTEP 0xe0 /* Sequence step */ | ||
384 | |||
385 | /* ESP clock conversion factor register write-only */ | ||
386 | #define ESP_CCF_F0 0x00 /* 35.01MHz - 40MHz */ | ||
387 | #define ESP_CCF_NEVER 0x01 /* Set it to this and die */ | ||
388 | #define ESP_CCF_F2 0x02 /* 10MHz */ | ||
389 | #define ESP_CCF_F3 0x03 /* 10.01MHz - 15MHz */ | ||
390 | #define ESP_CCF_F4 0x04 /* 15.01MHz - 20MHz */ | ||
391 | #define ESP_CCF_F5 0x05 /* 20.01MHz - 25MHz */ | ||
392 | #define ESP_CCF_F6 0x06 /* 25.01MHz - 30MHz */ | ||
393 | #define ESP_CCF_F7 0x07 /* 30.01MHz - 35MHz */ | ||
394 | |||
395 | /* HME only... */ | ||
396 | #define ESP_BUSID_RESELID 0x10 | ||
397 | #define ESP_BUSID_CTR32BIT 0x40 | ||
398 | |||
399 | #define ESP_BUS_TIMEOUT 275 /* In milli-seconds */ | ||
400 | #define ESP_TIMEO_CONST 8192 | ||
401 | #define ESP_NEG_DEFP(mhz, cfact) \ | ||
402 | ((ESP_BUS_TIMEOUT * ((mhz) / 1000)) / (8192 * (cfact))) | ||
403 | #define ESP_MHZ_TO_CYCLE(mhertz) ((1000000000) / ((mhertz) / 1000)) | ||
404 | #define ESP_TICK(ccf, cycle) ((7682 * (ccf) * (cycle) / 1000)) | ||
405 | |||
406 | #endif /* !(_SPARC_ESP_H) */ | ||
diff --git a/drivers/scsi/esp_scsi.c b/drivers/scsi/esp_scsi.c new file mode 100644 index 000000000000..3cd5bf723da4 --- /dev/null +++ b/drivers/scsi/esp_scsi.c | |||
@@ -0,0 +1,2710 @@ | |||
1 | /* esp_scsi.c: ESP SCSI driver. | ||
2 | * | ||
3 | * Copyright (C) 2007 David S. Miller (davem@davemloft.net) | ||
4 | */ | ||
5 | |||
6 | #include <linux/kernel.h> | ||
7 | #include <linux/types.h> | ||
8 | #include <linux/slab.h> | ||
9 | #include <linux/delay.h> | ||
10 | #include <linux/list.h> | ||
11 | #include <linux/completion.h> | ||
12 | #include <linux/kallsyms.h> | ||
13 | #include <linux/module.h> | ||
14 | #include <linux/moduleparam.h> | ||
15 | #include <linux/init.h> | ||
16 | |||
17 | #include <asm/irq.h> | ||
18 | #include <asm/io.h> | ||
19 | #include <asm/dma.h> | ||
20 | |||
21 | #include <scsi/scsi.h> | ||
22 | #include <scsi/scsi_host.h> | ||
23 | #include <scsi/scsi_cmnd.h> | ||
24 | #include <scsi/scsi_device.h> | ||
25 | #include <scsi/scsi_tcq.h> | ||
26 | #include <scsi/scsi_dbg.h> | ||
27 | #include <scsi/scsi_transport_spi.h> | ||
28 | |||
29 | #include "esp_scsi.h" | ||
30 | |||
31 | #define DRV_MODULE_NAME "esp" | ||
32 | #define PFX DRV_MODULE_NAME ": " | ||
33 | #define DRV_VERSION "2.000" | ||
34 | #define DRV_MODULE_RELDATE "April 19, 2007" | ||
35 | |||
36 | /* SCSI bus reset settle time in seconds. */ | ||
37 | static int esp_bus_reset_settle = 3; | ||
38 | |||
39 | static u32 esp_debug; | ||
40 | #define ESP_DEBUG_INTR 0x00000001 | ||
41 | #define ESP_DEBUG_SCSICMD 0x00000002 | ||
42 | #define ESP_DEBUG_RESET 0x00000004 | ||
43 | #define ESP_DEBUG_MSGIN 0x00000008 | ||
44 | #define ESP_DEBUG_MSGOUT 0x00000010 | ||
45 | #define ESP_DEBUG_CMDDONE 0x00000020 | ||
46 | #define ESP_DEBUG_DISCONNECT 0x00000040 | ||
47 | #define ESP_DEBUG_DATASTART 0x00000080 | ||
48 | #define ESP_DEBUG_DATADONE 0x00000100 | ||
49 | #define ESP_DEBUG_RECONNECT 0x00000200 | ||
50 | #define ESP_DEBUG_AUTOSENSE 0x00000400 | ||
51 | |||
52 | #define esp_log_intr(f, a...) \ | ||
53 | do { if (esp_debug & ESP_DEBUG_INTR) \ | ||
54 | printk(f, ## a); \ | ||
55 | } while (0) | ||
56 | |||
57 | #define esp_log_reset(f, a...) \ | ||
58 | do { if (esp_debug & ESP_DEBUG_RESET) \ | ||
59 | printk(f, ## a); \ | ||
60 | } while (0) | ||
61 | |||
62 | #define esp_log_msgin(f, a...) \ | ||
63 | do { if (esp_debug & ESP_DEBUG_MSGIN) \ | ||
64 | printk(f, ## a); \ | ||
65 | } while (0) | ||
66 | |||
67 | #define esp_log_msgout(f, a...) \ | ||
68 | do { if (esp_debug & ESP_DEBUG_MSGOUT) \ | ||
69 | printk(f, ## a); \ | ||
70 | } while (0) | ||
71 | |||
72 | #define esp_log_cmddone(f, a...) \ | ||
73 | do { if (esp_debug & ESP_DEBUG_CMDDONE) \ | ||
74 | printk(f, ## a); \ | ||
75 | } while (0) | ||
76 | |||
77 | #define esp_log_disconnect(f, a...) \ | ||
78 | do { if (esp_debug & ESP_DEBUG_DISCONNECT) \ | ||
79 | printk(f, ## a); \ | ||
80 | } while (0) | ||
81 | |||
82 | #define esp_log_datastart(f, a...) \ | ||
83 | do { if (esp_debug & ESP_DEBUG_DATASTART) \ | ||
84 | printk(f, ## a); \ | ||
85 | } while (0) | ||
86 | |||
87 | #define esp_log_datadone(f, a...) \ | ||
88 | do { if (esp_debug & ESP_DEBUG_DATADONE) \ | ||
89 | printk(f, ## a); \ | ||
90 | } while (0) | ||
91 | |||
92 | #define esp_log_reconnect(f, a...) \ | ||
93 | do { if (esp_debug & ESP_DEBUG_RECONNECT) \ | ||
94 | printk(f, ## a); \ | ||
95 | } while (0) | ||
96 | |||
97 | #define esp_log_autosense(f, a...) \ | ||
98 | do { if (esp_debug & ESP_DEBUG_AUTOSENSE) \ | ||
99 | printk(f, ## a); \ | ||
100 | } while (0) | ||
101 | |||
102 | #define esp_read8(REG) esp->ops->esp_read8(esp, REG) | ||
103 | #define esp_write8(VAL,REG) esp->ops->esp_write8(esp, VAL, REG) | ||
104 | |||
105 | static void esp_log_fill_regs(struct esp *esp, | ||
106 | struct esp_event_ent *p) | ||
107 | { | ||
108 | p->sreg = esp->sreg; | ||
109 | p->seqreg = esp->seqreg; | ||
110 | p->sreg2 = esp->sreg2; | ||
111 | p->ireg = esp->ireg; | ||
112 | p->select_state = esp->select_state; | ||
113 | p->event = esp->event; | ||
114 | } | ||
115 | |||
116 | void scsi_esp_cmd(struct esp *esp, u8 val) | ||
117 | { | ||
118 | struct esp_event_ent *p; | ||
119 | int idx = esp->esp_event_cur; | ||
120 | |||
121 | p = &esp->esp_event_log[idx]; | ||
122 | p->type = ESP_EVENT_TYPE_CMD; | ||
123 | p->val = val; | ||
124 | esp_log_fill_regs(esp, p); | ||
125 | |||
126 | esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1); | ||
127 | |||
128 | esp_write8(val, ESP_CMD); | ||
129 | } | ||
130 | EXPORT_SYMBOL(scsi_esp_cmd); | ||
131 | |||
132 | static void esp_event(struct esp *esp, u8 val) | ||
133 | { | ||
134 | struct esp_event_ent *p; | ||
135 | int idx = esp->esp_event_cur; | ||
136 | |||
137 | p = &esp->esp_event_log[idx]; | ||
138 | p->type = ESP_EVENT_TYPE_EVENT; | ||
139 | p->val = val; | ||
140 | esp_log_fill_regs(esp, p); | ||
141 | |||
142 | esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1); | ||
143 | |||
144 | esp->event = val; | ||
145 | } | ||
146 | |||
147 | static void esp_dump_cmd_log(struct esp *esp) | ||
148 | { | ||
149 | int idx = esp->esp_event_cur; | ||
150 | int stop = idx; | ||
151 | |||
152 | printk(KERN_INFO PFX "esp%d: Dumping command log\n", | ||
153 | esp->host->unique_id); | ||
154 | do { | ||
155 | struct esp_event_ent *p = &esp->esp_event_log[idx]; | ||
156 | |||
157 | printk(KERN_INFO PFX "esp%d: ent[%d] %s ", | ||
158 | esp->host->unique_id, idx, | ||
159 | p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT"); | ||
160 | |||
161 | printk("val[%02x] sreg[%02x] seqreg[%02x] " | ||
162 | "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n", | ||
163 | p->val, p->sreg, p->seqreg, | ||
164 | p->sreg2, p->ireg, p->select_state, p->event); | ||
165 | |||
166 | idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1); | ||
167 | } while (idx != stop); | ||
168 | } | ||
169 | |||
170 | static void esp_flush_fifo(struct esp *esp) | ||
171 | { | ||
172 | scsi_esp_cmd(esp, ESP_CMD_FLUSH); | ||
173 | if (esp->rev == ESP236) { | ||
174 | int lim = 1000; | ||
175 | |||
176 | while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) { | ||
177 | if (--lim == 0) { | ||
178 | printk(KERN_ALERT PFX "esp%d: ESP_FF_BYTES " | ||
179 | "will not clear!\n", | ||
180 | esp->host->unique_id); | ||
181 | break; | ||
182 | } | ||
183 | udelay(1); | ||
184 | } | ||
185 | } | ||
186 | } | ||
187 | |||
188 | static void hme_read_fifo(struct esp *esp) | ||
189 | { | ||
190 | int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES; | ||
191 | int idx = 0; | ||
192 | |||
193 | while (fcnt--) { | ||
194 | esp->fifo[idx++] = esp_read8(ESP_FDATA); | ||
195 | esp->fifo[idx++] = esp_read8(ESP_FDATA); | ||
196 | } | ||
197 | if (esp->sreg2 & ESP_STAT2_F1BYTE) { | ||
198 | esp_write8(0, ESP_FDATA); | ||
199 | esp->fifo[idx++] = esp_read8(ESP_FDATA); | ||
200 | scsi_esp_cmd(esp, ESP_CMD_FLUSH); | ||
201 | } | ||
202 | esp->fifo_cnt = idx; | ||
203 | } | ||
204 | |||
205 | static void esp_set_all_config3(struct esp *esp, u8 val) | ||
206 | { | ||
207 | int i; | ||
208 | |||
209 | for (i = 0; i < ESP_MAX_TARGET; i++) | ||
210 | esp->target[i].esp_config3 = val; | ||
211 | } | ||
212 | |||
213 | /* Reset the ESP chip, _not_ the SCSI bus. */ | ||
214 | static void esp_reset_esp(struct esp *esp) | ||
215 | { | ||
216 | u8 family_code, version; | ||
217 | |||
218 | /* Now reset the ESP chip */ | ||
219 | scsi_esp_cmd(esp, ESP_CMD_RC); | ||
220 | scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA); | ||
221 | scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA); | ||
222 | |||
223 | /* Reload the configuration registers */ | ||
224 | esp_write8(esp->cfact, ESP_CFACT); | ||
225 | |||
226 | esp->prev_stp = 0; | ||
227 | esp_write8(esp->prev_stp, ESP_STP); | ||
228 | |||
229 | esp->prev_soff = 0; | ||
230 | esp_write8(esp->prev_soff, ESP_SOFF); | ||
231 | |||
232 | esp_write8(esp->neg_defp, ESP_TIMEO); | ||
233 | |||
234 | /* This is the only point at which it is reliable to read | ||
235 | * the ID-code for a fast ESP chip variants. | ||
236 | */ | ||
237 | esp->max_period = ((35 * esp->ccycle) / 1000); | ||
238 | if (esp->rev == FAST) { | ||
239 | version = esp_read8(ESP_UID); | ||
240 | family_code = (version & 0xf8) >> 3; | ||
241 | if (family_code == 0x02) | ||
242 | esp->rev = FAS236; | ||
243 | else if (family_code == 0x0a) | ||
244 | esp->rev = FASHME; /* Version is usually '5'. */ | ||
245 | else | ||
246 | esp->rev = FAS100A; | ||
247 | esp->min_period = ((4 * esp->ccycle) / 1000); | ||
248 | } else { | ||
249 | esp->min_period = ((5 * esp->ccycle) / 1000); | ||
250 | } | ||
251 | esp->max_period = (esp->max_period + 3)>>2; | ||
252 | esp->min_period = (esp->min_period + 3)>>2; | ||
253 | |||
254 | esp_write8(esp->config1, ESP_CFG1); | ||
255 | switch (esp->rev) { | ||
256 | case ESP100: | ||
257 | /* nothing to do */ | ||
258 | break; | ||
259 | |||
260 | case ESP100A: | ||
261 | esp_write8(esp->config2, ESP_CFG2); | ||
262 | break; | ||
263 | |||
264 | case ESP236: | ||
265 | /* Slow 236 */ | ||
266 | esp_write8(esp->config2, ESP_CFG2); | ||
267 | esp->prev_cfg3 = esp->target[0].esp_config3; | ||
268 | esp_write8(esp->prev_cfg3, ESP_CFG3); | ||
269 | break; | ||
270 | |||
271 | case FASHME: | ||
272 | esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB); | ||
273 | /* fallthrough... */ | ||
274 | |||
275 | case FAS236: | ||
276 | /* Fast 236 or HME */ | ||
277 | esp_write8(esp->config2, ESP_CFG2); | ||
278 | if (esp->rev == FASHME) { | ||
279 | u8 cfg3 = esp->target[0].esp_config3; | ||
280 | |||
281 | cfg3 |= ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH; | ||
282 | if (esp->scsi_id >= 8) | ||
283 | cfg3 |= ESP_CONFIG3_IDBIT3; | ||
284 | esp_set_all_config3(esp, cfg3); | ||
285 | } else { | ||
286 | u32 cfg3 = esp->target[0].esp_config3; | ||
287 | |||
288 | cfg3 |= ESP_CONFIG3_FCLK; | ||
289 | esp_set_all_config3(esp, cfg3); | ||
290 | } | ||
291 | esp->prev_cfg3 = esp->target[0].esp_config3; | ||
292 | esp_write8(esp->prev_cfg3, ESP_CFG3); | ||
293 | if (esp->rev == FASHME) { | ||
294 | esp->radelay = 80; | ||
295 | } else { | ||
296 | if (esp->flags & ESP_FLAG_DIFFERENTIAL) | ||
297 | esp->radelay = 0; | ||
298 | else | ||
299 | esp->radelay = 96; | ||
300 | } | ||
301 | break; | ||
302 | |||
303 | case FAS100A: | ||
304 | /* Fast 100a */ | ||
305 | esp_write8(esp->config2, ESP_CFG2); | ||
306 | esp_set_all_config3(esp, | ||
307 | (esp->target[0].esp_config3 | | ||
308 | ESP_CONFIG3_FCLOCK)); | ||
309 | esp->prev_cfg3 = esp->target[0].esp_config3; | ||
310 | esp_write8(esp->prev_cfg3, ESP_CFG3); | ||
311 | esp->radelay = 32; | ||
312 | break; | ||
313 | |||
314 | default: | ||
315 | break; | ||
316 | } | ||
317 | |||
318 | /* Eat any bitrot in the chip */ | ||
319 | esp_read8(ESP_INTRPT); | ||
320 | udelay(100); | ||
321 | } | ||
322 | |||
323 | static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd) | ||
324 | { | ||
325 | struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd); | ||
326 | struct scatterlist *sg = cmd->request_buffer; | ||
327 | int dir = cmd->sc_data_direction; | ||
328 | int total, i; | ||
329 | |||
330 | if (dir == DMA_NONE) | ||
331 | return; | ||
332 | |||
333 | BUG_ON(cmd->use_sg == 0); | ||
334 | |||
335 | spriv->u.num_sg = esp->ops->map_sg(esp, sg, | ||
336 | cmd->use_sg, dir); | ||
337 | spriv->cur_residue = sg_dma_len(sg); | ||
338 | spriv->cur_sg = sg; | ||
339 | |||
340 | total = 0; | ||
341 | for (i = 0; i < spriv->u.num_sg; i++) | ||
342 | total += sg_dma_len(&sg[i]); | ||
343 | spriv->tot_residue = total; | ||
344 | } | ||
345 | |||
346 | static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent, | ||
347 | struct scsi_cmnd *cmd) | ||
348 | { | ||
349 | struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd); | ||
350 | |||
351 | if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { | ||
352 | return ent->sense_dma + | ||
353 | (ent->sense_ptr - cmd->sense_buffer); | ||
354 | } | ||
355 | |||
356 | return sg_dma_address(p->cur_sg) + | ||
357 | (sg_dma_len(p->cur_sg) - | ||
358 | p->cur_residue); | ||
359 | } | ||
360 | |||
361 | static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent, | ||
362 | struct scsi_cmnd *cmd) | ||
363 | { | ||
364 | struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd); | ||
365 | |||
366 | if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { | ||
367 | return SCSI_SENSE_BUFFERSIZE - | ||
368 | (ent->sense_ptr - cmd->sense_buffer); | ||
369 | } | ||
370 | return p->cur_residue; | ||
371 | } | ||
372 | |||
373 | static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent, | ||
374 | struct scsi_cmnd *cmd, unsigned int len) | ||
375 | { | ||
376 | struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd); | ||
377 | |||
378 | if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { | ||
379 | ent->sense_ptr += len; | ||
380 | return; | ||
381 | } | ||
382 | |||
383 | p->cur_residue -= len; | ||
384 | p->tot_residue -= len; | ||
385 | if (p->cur_residue < 0 || p->tot_residue < 0) { | ||
386 | printk(KERN_ERR PFX "esp%d: Data transfer overflow.\n", | ||
387 | esp->host->unique_id); | ||
388 | printk(KERN_ERR PFX "esp%d: cur_residue[%d] tot_residue[%d] " | ||
389 | "len[%u]\n", | ||
390 | esp->host->unique_id, | ||
391 | p->cur_residue, p->tot_residue, len); | ||
392 | p->cur_residue = 0; | ||
393 | p->tot_residue = 0; | ||
394 | } | ||
395 | if (!p->cur_residue && p->tot_residue) { | ||
396 | p->cur_sg++; | ||
397 | p->cur_residue = sg_dma_len(p->cur_sg); | ||
398 | } | ||
399 | } | ||
400 | |||
401 | static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd) | ||
402 | { | ||
403 | struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd); | ||
404 | int dir = cmd->sc_data_direction; | ||
405 | |||
406 | if (dir == DMA_NONE) | ||
407 | return; | ||
408 | |||
409 | esp->ops->unmap_sg(esp, cmd->request_buffer, | ||
410 | spriv->u.num_sg, dir); | ||
411 | } | ||
412 | |||
413 | static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent) | ||
414 | { | ||
415 | struct scsi_cmnd *cmd = ent->cmd; | ||
416 | struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd); | ||
417 | |||
418 | if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { | ||
419 | ent->saved_sense_ptr = ent->sense_ptr; | ||
420 | return; | ||
421 | } | ||
422 | ent->saved_cur_residue = spriv->cur_residue; | ||
423 | ent->saved_cur_sg = spriv->cur_sg; | ||
424 | ent->saved_tot_residue = spriv->tot_residue; | ||
425 | } | ||
426 | |||
427 | static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent) | ||
428 | { | ||
429 | struct scsi_cmnd *cmd = ent->cmd; | ||
430 | struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd); | ||
431 | |||
432 | if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { | ||
433 | ent->sense_ptr = ent->saved_sense_ptr; | ||
434 | return; | ||
435 | } | ||
436 | spriv->cur_residue = ent->saved_cur_residue; | ||
437 | spriv->cur_sg = ent->saved_cur_sg; | ||
438 | spriv->tot_residue = ent->saved_tot_residue; | ||
439 | } | ||
440 | |||
441 | static void esp_check_command_len(struct esp *esp, struct scsi_cmnd *cmd) | ||
442 | { | ||
443 | if (cmd->cmd_len == 6 || | ||
444 | cmd->cmd_len == 10 || | ||
445 | cmd->cmd_len == 12) { | ||
446 | esp->flags &= ~ESP_FLAG_DOING_SLOWCMD; | ||
447 | } else { | ||
448 | esp->flags |= ESP_FLAG_DOING_SLOWCMD; | ||
449 | } | ||
450 | } | ||
451 | |||
452 | static void esp_write_tgt_config3(struct esp *esp, int tgt) | ||
453 | { | ||
454 | if (esp->rev > ESP100A) { | ||
455 | u8 val = esp->target[tgt].esp_config3; | ||
456 | |||
457 | if (val != esp->prev_cfg3) { | ||
458 | esp->prev_cfg3 = val; | ||
459 | esp_write8(val, ESP_CFG3); | ||
460 | } | ||
461 | } | ||
462 | } | ||
463 | |||
464 | static void esp_write_tgt_sync(struct esp *esp, int tgt) | ||
465 | { | ||
466 | u8 off = esp->target[tgt].esp_offset; | ||
467 | u8 per = esp->target[tgt].esp_period; | ||
468 | |||
469 | if (off != esp->prev_soff) { | ||
470 | esp->prev_soff = off; | ||
471 | esp_write8(off, ESP_SOFF); | ||
472 | } | ||
473 | if (per != esp->prev_stp) { | ||
474 | esp->prev_stp = per; | ||
475 | esp_write8(per, ESP_STP); | ||
476 | } | ||
477 | } | ||
478 | |||
479 | static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len) | ||
480 | { | ||
481 | if (esp->rev == FASHME) { | ||
482 | /* Arbitrary segment boundaries, 24-bit counts. */ | ||
483 | if (dma_len > (1U << 24)) | ||
484 | dma_len = (1U << 24); | ||
485 | } else { | ||
486 | u32 base, end; | ||
487 | |||
488 | /* ESP chip limits other variants by 16-bits of transfer | ||
489 | * count. Actually on FAS100A and FAS236 we could get | ||
490 | * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB | ||
491 | * in the ESP_CFG2 register but that causes other unwanted | ||
492 | * changes so we don't use it currently. | ||
493 | */ | ||
494 | if (dma_len > (1U << 16)) | ||
495 | dma_len = (1U << 16); | ||
496 | |||
497 | /* All of the DMA variants hooked up to these chips | ||
498 | * cannot handle crossing a 24-bit address boundary. | ||
499 | */ | ||
500 | base = dma_addr & ((1U << 24) - 1U); | ||
501 | end = base + dma_len; | ||
502 | if (end > (1U << 24)) | ||
503 | end = (1U <<24); | ||
504 | dma_len = end - base; | ||
505 | } | ||
506 | return dma_len; | ||
507 | } | ||
508 | |||
509 | static int esp_need_to_nego_wide(struct esp_target_data *tp) | ||
510 | { | ||
511 | struct scsi_target *target = tp->starget; | ||
512 | |||
513 | return spi_width(target) != tp->nego_goal_width; | ||
514 | } | ||
515 | |||
516 | static int esp_need_to_nego_sync(struct esp_target_data *tp) | ||
517 | { | ||
518 | struct scsi_target *target = tp->starget; | ||
519 | |||
520 | /* When offset is zero, period is "don't care". */ | ||
521 | if (!spi_offset(target) && !tp->nego_goal_offset) | ||
522 | return 0; | ||
523 | |||
524 | if (spi_offset(target) == tp->nego_goal_offset && | ||
525 | spi_period(target) == tp->nego_goal_period) | ||
526 | return 0; | ||
527 | |||
528 | return 1; | ||
529 | } | ||
530 | |||
531 | static int esp_alloc_lun_tag(struct esp_cmd_entry *ent, | ||
532 | struct esp_lun_data *lp) | ||
533 | { | ||
534 | if (!ent->tag[0]) { | ||
535 | /* Non-tagged, slot already taken? */ | ||
536 | if (lp->non_tagged_cmd) | ||
537 | return -EBUSY; | ||
538 | |||
539 | if (lp->hold) { | ||
540 | /* We are being held by active tagged | ||
541 | * commands. | ||
542 | */ | ||
543 | if (lp->num_tagged) | ||
544 | return -EBUSY; | ||
545 | |||
546 | /* Tagged commands completed, we can unplug | ||
547 | * the queue and run this untagged command. | ||
548 | */ | ||
549 | lp->hold = 0; | ||
550 | } else if (lp->num_tagged) { | ||
551 | /* Plug the queue until num_tagged decreases | ||
552 | * to zero in esp_free_lun_tag. | ||
553 | */ | ||
554 | lp->hold = 1; | ||
555 | return -EBUSY; | ||
556 | } | ||
557 | |||
558 | lp->non_tagged_cmd = ent; | ||
559 | return 0; | ||
560 | } else { | ||
561 | /* Tagged command, see if blocked by a | ||
562 | * non-tagged one. | ||
563 | */ | ||
564 | if (lp->non_tagged_cmd || lp->hold) | ||
565 | return -EBUSY; | ||
566 | } | ||
567 | |||
568 | BUG_ON(lp->tagged_cmds[ent->tag[1]]); | ||
569 | |||
570 | lp->tagged_cmds[ent->tag[1]] = ent; | ||
571 | lp->num_tagged++; | ||
572 | |||
573 | return 0; | ||
574 | } | ||
575 | |||
576 | static void esp_free_lun_tag(struct esp_cmd_entry *ent, | ||
577 | struct esp_lun_data *lp) | ||
578 | { | ||
579 | if (ent->tag[0]) { | ||
580 | BUG_ON(lp->tagged_cmds[ent->tag[1]] != ent); | ||
581 | lp->tagged_cmds[ent->tag[1]] = NULL; | ||
582 | lp->num_tagged--; | ||
583 | } else { | ||
584 | BUG_ON(lp->non_tagged_cmd != ent); | ||
585 | lp->non_tagged_cmd = NULL; | ||
586 | } | ||
587 | } | ||
588 | |||
589 | /* When a contingent allegiance conditon is created, we force feed a | ||
590 | * REQUEST_SENSE command to the device to fetch the sense data. I | ||
591 | * tried many other schemes, relying on the scsi error handling layer | ||
592 | * to send out the REQUEST_SENSE automatically, but this was difficult | ||
593 | * to get right especially in the presence of applications like smartd | ||
594 | * which use SG_IO to send out their own REQUEST_SENSE commands. | ||
595 | */ | ||
596 | static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent) | ||
597 | { | ||
598 | struct scsi_cmnd *cmd = ent->cmd; | ||
599 | struct scsi_device *dev = cmd->device; | ||
600 | int tgt, lun; | ||
601 | u8 *p, val; | ||
602 | |||
603 | tgt = dev->id; | ||
604 | lun = dev->lun; | ||
605 | |||
606 | |||
607 | if (!ent->sense_ptr) { | ||
608 | esp_log_autosense("esp%d: Doing auto-sense for " | ||
609 | "tgt[%d] lun[%d]\n", | ||
610 | esp->host->unique_id, tgt, lun); | ||
611 | |||
612 | ent->sense_ptr = cmd->sense_buffer; | ||
613 | ent->sense_dma = esp->ops->map_single(esp, | ||
614 | ent->sense_ptr, | ||
615 | SCSI_SENSE_BUFFERSIZE, | ||
616 | DMA_FROM_DEVICE); | ||
617 | } | ||
618 | ent->saved_sense_ptr = ent->sense_ptr; | ||
619 | |||
620 | esp->active_cmd = ent; | ||
621 | |||
622 | p = esp->command_block; | ||
623 | esp->msg_out_len = 0; | ||
624 | |||
625 | *p++ = IDENTIFY(0, lun); | ||
626 | *p++ = REQUEST_SENSE; | ||
627 | *p++ = ((dev->scsi_level <= SCSI_2) ? | ||
628 | (lun << 5) : 0); | ||
629 | *p++ = 0; | ||
630 | *p++ = 0; | ||
631 | *p++ = SCSI_SENSE_BUFFERSIZE; | ||
632 | *p++ = 0; | ||
633 | |||
634 | esp->select_state = ESP_SELECT_BASIC; | ||
635 | |||
636 | val = tgt; | ||
637 | if (esp->rev == FASHME) | ||
638 | val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT; | ||
639 | esp_write8(val, ESP_BUSID); | ||
640 | |||
641 | esp_write_tgt_sync(esp, tgt); | ||
642 | esp_write_tgt_config3(esp, tgt); | ||
643 | |||
644 | val = (p - esp->command_block); | ||
645 | |||
646 | if (esp->rev == FASHME) | ||
647 | scsi_esp_cmd(esp, ESP_CMD_FLUSH); | ||
648 | esp->ops->send_dma_cmd(esp, esp->command_block_dma, | ||
649 | val, 16, 0, ESP_CMD_DMA | ESP_CMD_SELA); | ||
650 | } | ||
651 | |||
652 | static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp) | ||
653 | { | ||
654 | struct esp_cmd_entry *ent; | ||
655 | |||
656 | list_for_each_entry(ent, &esp->queued_cmds, list) { | ||
657 | struct scsi_cmnd *cmd = ent->cmd; | ||
658 | struct scsi_device *dev = cmd->device; | ||
659 | struct esp_lun_data *lp = dev->hostdata; | ||
660 | |||
661 | if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { | ||
662 | ent->tag[0] = 0; | ||
663 | ent->tag[1] = 0; | ||
664 | return ent; | ||
665 | } | ||
666 | |||
667 | if (!scsi_populate_tag_msg(cmd, &ent->tag[0])) { | ||
668 | ent->tag[0] = 0; | ||
669 | ent->tag[1] = 0; | ||
670 | } | ||
671 | |||
672 | if (esp_alloc_lun_tag(ent, lp) < 0) | ||
673 | continue; | ||
674 | |||
675 | return ent; | ||
676 | } | ||
677 | |||
678 | return NULL; | ||
679 | } | ||
680 | |||
681 | static void esp_maybe_execute_command(struct esp *esp) | ||
682 | { | ||
683 | struct esp_target_data *tp; | ||
684 | struct esp_lun_data *lp; | ||
685 | struct scsi_device *dev; | ||
686 | struct scsi_cmnd *cmd; | ||
687 | struct esp_cmd_entry *ent; | ||
688 | int tgt, lun, i; | ||
689 | u32 val, start_cmd; | ||
690 | u8 *p; | ||
691 | |||
692 | if (esp->active_cmd || | ||
693 | (esp->flags & ESP_FLAG_RESETTING)) | ||
694 | return; | ||
695 | |||
696 | ent = find_and_prep_issuable_command(esp); | ||
697 | if (!ent) | ||
698 | return; | ||
699 | |||
700 | if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { | ||
701 | esp_autosense(esp, ent); | ||
702 | return; | ||
703 | } | ||
704 | |||
705 | cmd = ent->cmd; | ||
706 | dev = cmd->device; | ||
707 | tgt = dev->id; | ||
708 | lun = dev->lun; | ||
709 | tp = &esp->target[tgt]; | ||
710 | lp = dev->hostdata; | ||
711 | |||
712 | list_del(&ent->list); | ||
713 | list_add(&ent->list, &esp->active_cmds); | ||
714 | |||
715 | esp->active_cmd = ent; | ||
716 | |||
717 | esp_map_dma(esp, cmd); | ||
718 | esp_save_pointers(esp, ent); | ||
719 | |||
720 | esp_check_command_len(esp, cmd); | ||
721 | |||
722 | p = esp->command_block; | ||
723 | |||
724 | esp->msg_out_len = 0; | ||
725 | if (tp->flags & ESP_TGT_CHECK_NEGO) { | ||
726 | /* Need to negotiate. If the target is broken | ||
727 | * go for synchronous transfers and non-wide. | ||
728 | */ | ||
729 | if (tp->flags & ESP_TGT_BROKEN) { | ||
730 | tp->flags &= ~ESP_TGT_DISCONNECT; | ||
731 | tp->nego_goal_period = 0; | ||
732 | tp->nego_goal_offset = 0; | ||
733 | tp->nego_goal_width = 0; | ||
734 | tp->nego_goal_tags = 0; | ||
735 | } | ||
736 | |||
737 | /* If the settings are not changing, skip this. */ | ||
738 | if (spi_width(tp->starget) == tp->nego_goal_width && | ||
739 | spi_period(tp->starget) == tp->nego_goal_period && | ||
740 | spi_offset(tp->starget) == tp->nego_goal_offset) { | ||
741 | tp->flags &= ~ESP_TGT_CHECK_NEGO; | ||
742 | goto build_identify; | ||
743 | } | ||
744 | |||
745 | if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) { | ||
746 | esp->msg_out_len = | ||
747 | spi_populate_width_msg(&esp->msg_out[0], | ||
748 | (tp->nego_goal_width ? | ||
749 | 1 : 0)); | ||
750 | tp->flags |= ESP_TGT_NEGO_WIDE; | ||
751 | } else if (esp_need_to_nego_sync(tp)) { | ||
752 | esp->msg_out_len = | ||
753 | spi_populate_sync_msg(&esp->msg_out[0], | ||
754 | tp->nego_goal_period, | ||
755 | tp->nego_goal_offset); | ||
756 | tp->flags |= ESP_TGT_NEGO_SYNC; | ||
757 | } else { | ||
758 | tp->flags &= ~ESP_TGT_CHECK_NEGO; | ||
759 | } | ||
760 | |||
761 | /* Process it like a slow command. */ | ||
762 | if (tp->flags & (ESP_TGT_NEGO_WIDE | ESP_TGT_NEGO_SYNC)) | ||
763 | esp->flags |= ESP_FLAG_DOING_SLOWCMD; | ||
764 | } | ||
765 | |||
766 | build_identify: | ||
767 | /* If we don't have a lun-data struct yet, we're probing | ||
768 | * so do not disconnect. Also, do not disconnect unless | ||
769 | * we have a tag on this command. | ||
770 | */ | ||
771 | if (lp && (tp->flags & ESP_TGT_DISCONNECT) && ent->tag[0]) | ||
772 | *p++ = IDENTIFY(1, lun); | ||
773 | else | ||
774 | *p++ = IDENTIFY(0, lun); | ||
775 | |||
776 | if (ent->tag[0] && esp->rev == ESP100) { | ||
777 | /* ESP100 lacks select w/atn3 command, use select | ||
778 | * and stop instead. | ||
779 | */ | ||
780 | esp->flags |= ESP_FLAG_DOING_SLOWCMD; | ||
781 | } | ||
782 | |||
783 | if (!(esp->flags & ESP_FLAG_DOING_SLOWCMD)) { | ||
784 | start_cmd = ESP_CMD_DMA | ESP_CMD_SELA; | ||
785 | if (ent->tag[0]) { | ||
786 | *p++ = ent->tag[0]; | ||
787 | *p++ = ent->tag[1]; | ||
788 | |||
789 | start_cmd = ESP_CMD_DMA | ESP_CMD_SA3; | ||
790 | } | ||
791 | |||
792 | for (i = 0; i < cmd->cmd_len; i++) | ||
793 | *p++ = cmd->cmnd[i]; | ||
794 | |||
795 | esp->select_state = ESP_SELECT_BASIC; | ||
796 | } else { | ||
797 | esp->cmd_bytes_left = cmd->cmd_len; | ||
798 | esp->cmd_bytes_ptr = &cmd->cmnd[0]; | ||
799 | |||
800 | if (ent->tag[0]) { | ||
801 | for (i = esp->msg_out_len - 1; | ||
802 | i >= 0; i--) | ||
803 | esp->msg_out[i + 2] = esp->msg_out[i]; | ||
804 | esp->msg_out[0] = ent->tag[0]; | ||
805 | esp->msg_out[1] = ent->tag[1]; | ||
806 | esp->msg_out_len += 2; | ||
807 | } | ||
808 | |||
809 | start_cmd = ESP_CMD_DMA | ESP_CMD_SELAS; | ||
810 | esp->select_state = ESP_SELECT_MSGOUT; | ||
811 | } | ||
812 | val = tgt; | ||
813 | if (esp->rev == FASHME) | ||
814 | val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT; | ||
815 | esp_write8(val, ESP_BUSID); | ||
816 | |||
817 | esp_write_tgt_sync(esp, tgt); | ||
818 | esp_write_tgt_config3(esp, tgt); | ||
819 | |||
820 | val = (p - esp->command_block); | ||
821 | |||
822 | if (esp_debug & ESP_DEBUG_SCSICMD) { | ||
823 | printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun); | ||
824 | for (i = 0; i < cmd->cmd_len; i++) | ||
825 | printk("%02x ", cmd->cmnd[i]); | ||
826 | printk("]\n"); | ||
827 | } | ||
828 | |||
829 | if (esp->rev == FASHME) | ||
830 | scsi_esp_cmd(esp, ESP_CMD_FLUSH); | ||
831 | esp->ops->send_dma_cmd(esp, esp->command_block_dma, | ||
832 | val, 16, 0, start_cmd); | ||
833 | } | ||
834 | |||
835 | static struct esp_cmd_entry *esp_get_ent(struct esp *esp) | ||
836 | { | ||
837 | struct list_head *head = &esp->esp_cmd_pool; | ||
838 | struct esp_cmd_entry *ret; | ||
839 | |||
840 | if (list_empty(head)) { | ||
841 | ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC); | ||
842 | } else { | ||
843 | ret = list_entry(head->next, struct esp_cmd_entry, list); | ||
844 | list_del(&ret->list); | ||
845 | memset(ret, 0, sizeof(*ret)); | ||
846 | } | ||
847 | return ret; | ||
848 | } | ||
849 | |||
850 | static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent) | ||
851 | { | ||
852 | list_add(&ent->list, &esp->esp_cmd_pool); | ||
853 | } | ||
854 | |||
855 | static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent, | ||
856 | struct scsi_cmnd *cmd, unsigned int result) | ||
857 | { | ||
858 | struct scsi_device *dev = cmd->device; | ||
859 | int tgt = dev->id; | ||
860 | int lun = dev->lun; | ||
861 | |||
862 | esp->active_cmd = NULL; | ||
863 | esp_unmap_dma(esp, cmd); | ||
864 | esp_free_lun_tag(ent, dev->hostdata); | ||
865 | cmd->result = result; | ||
866 | |||
867 | if (ent->eh_done) { | ||
868 | complete(ent->eh_done); | ||
869 | ent->eh_done = NULL; | ||
870 | } | ||
871 | |||
872 | if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { | ||
873 | esp->ops->unmap_single(esp, ent->sense_dma, | ||
874 | SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); | ||
875 | ent->sense_ptr = NULL; | ||
876 | |||
877 | /* Restore the message/status bytes to what we actually | ||
878 | * saw originally. Also, report that we are providing | ||
879 | * the sense data. | ||
880 | */ | ||
881 | cmd->result = ((DRIVER_SENSE << 24) | | ||
882 | (DID_OK << 16) | | ||
883 | (COMMAND_COMPLETE << 8) | | ||
884 | (SAM_STAT_CHECK_CONDITION << 0)); | ||
885 | |||
886 | ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE; | ||
887 | if (esp_debug & ESP_DEBUG_AUTOSENSE) { | ||
888 | int i; | ||
889 | |||
890 | printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ", | ||
891 | esp->host->unique_id, tgt, lun); | ||
892 | for (i = 0; i < 18; i++) | ||
893 | printk("%02x ", cmd->sense_buffer[i]); | ||
894 | printk("]\n"); | ||
895 | } | ||
896 | } | ||
897 | |||
898 | cmd->scsi_done(cmd); | ||
899 | |||
900 | list_del(&ent->list); | ||
901 | esp_put_ent(esp, ent); | ||
902 | |||
903 | esp_maybe_execute_command(esp); | ||
904 | } | ||
905 | |||
906 | static unsigned int compose_result(unsigned int status, unsigned int message, | ||
907 | unsigned int driver_code) | ||
908 | { | ||
909 | return (status | (message << 8) | (driver_code << 16)); | ||
910 | } | ||
911 | |||
912 | static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent) | ||
913 | { | ||
914 | struct scsi_device *dev = ent->cmd->device; | ||
915 | struct esp_lun_data *lp = dev->hostdata; | ||
916 | |||
917 | scsi_track_queue_full(dev, lp->num_tagged - 1); | ||
918 | } | ||
919 | |||
920 | static int esp_queuecommand(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *)) | ||
921 | { | ||
922 | struct scsi_device *dev = cmd->device; | ||
923 | struct esp *esp = host_to_esp(dev->host); | ||
924 | struct esp_cmd_priv *spriv; | ||
925 | struct esp_cmd_entry *ent; | ||
926 | |||
927 | ent = esp_get_ent(esp); | ||
928 | if (!ent) | ||
929 | return SCSI_MLQUEUE_HOST_BUSY; | ||
930 | |||
931 | ent->cmd = cmd; | ||
932 | |||
933 | cmd->scsi_done = done; | ||
934 | |||
935 | spriv = ESP_CMD_PRIV(cmd); | ||
936 | spriv->u.dma_addr = ~(dma_addr_t)0x0; | ||
937 | |||
938 | list_add_tail(&ent->list, &esp->queued_cmds); | ||
939 | |||
940 | esp_maybe_execute_command(esp); | ||
941 | |||
942 | return 0; | ||
943 | } | ||
944 | |||
945 | static int esp_check_gross_error(struct esp *esp) | ||
946 | { | ||
947 | if (esp->sreg & ESP_STAT_SPAM) { | ||
948 | /* Gross Error, could be one of: | ||
949 | * - top of fifo overwritten | ||
950 | * - top of command register overwritten | ||
951 | * - DMA programmed with wrong direction | ||
952 | * - improper phase change | ||
953 | */ | ||
954 | printk(KERN_ERR PFX "esp%d: Gross error sreg[%02x]\n", | ||
955 | esp->host->unique_id, esp->sreg); | ||
956 | /* XXX Reset the chip. XXX */ | ||
957 | return 1; | ||
958 | } | ||
959 | return 0; | ||
960 | } | ||
961 | |||
962 | static int esp_check_spur_intr(struct esp *esp) | ||
963 | { | ||
964 | switch (esp->rev) { | ||
965 | case ESP100: | ||
966 | case ESP100A: | ||
967 | /* The interrupt pending bit of the status register cannot | ||
968 | * be trusted on these revisions. | ||
969 | */ | ||
970 | esp->sreg &= ~ESP_STAT_INTR; | ||
971 | break; | ||
972 | |||
973 | default: | ||
974 | if (!(esp->sreg & ESP_STAT_INTR)) { | ||
975 | esp->ireg = esp_read8(ESP_INTRPT); | ||
976 | if (esp->ireg & ESP_INTR_SR) | ||
977 | return 1; | ||
978 | |||
979 | /* If the DMA is indicating interrupt pending and the | ||
980 | * ESP is not, the only possibility is a DMA error. | ||
981 | */ | ||
982 | if (!esp->ops->dma_error(esp)) { | ||
983 | printk(KERN_ERR PFX "esp%d: Spurious irq, " | ||
984 | "sreg=%x.\n", | ||
985 | esp->host->unique_id, esp->sreg); | ||
986 | return -1; | ||
987 | } | ||
988 | |||
989 | printk(KERN_ERR PFX "esp%d: DMA error\n", | ||
990 | esp->host->unique_id); | ||
991 | |||
992 | /* XXX Reset the chip. XXX */ | ||
993 | return -1; | ||
994 | } | ||
995 | break; | ||
996 | } | ||
997 | |||
998 | return 0; | ||
999 | } | ||
1000 | |||
1001 | static void esp_schedule_reset(struct esp *esp) | ||
1002 | { | ||
1003 | esp_log_reset("ESP: esp_schedule_reset() from %p\n", | ||
1004 | __builtin_return_address(0)); | ||
1005 | esp->flags |= ESP_FLAG_RESETTING; | ||
1006 | esp_event(esp, ESP_EVENT_RESET); | ||
1007 | } | ||
1008 | |||
1009 | /* In order to avoid having to add a special half-reconnected state | ||
1010 | * into the driver we just sit here and poll through the rest of | ||
1011 | * the reselection process to get the tag message bytes. | ||
1012 | */ | ||
1013 | static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp, | ||
1014 | struct esp_lun_data *lp) | ||
1015 | { | ||
1016 | struct esp_cmd_entry *ent; | ||
1017 | int i; | ||
1018 | |||
1019 | if (!lp->num_tagged) { | ||
1020 | printk(KERN_ERR PFX "esp%d: Reconnect w/num_tagged==0\n", | ||
1021 | esp->host->unique_id); | ||
1022 | return NULL; | ||
1023 | } | ||
1024 | |||
1025 | esp_log_reconnect("ESP: reconnect tag, "); | ||
1026 | |||
1027 | for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) { | ||
1028 | if (esp->ops->irq_pending(esp)) | ||
1029 | break; | ||
1030 | } | ||
1031 | if (i == ESP_QUICKIRQ_LIMIT) { | ||
1032 | printk(KERN_ERR PFX "esp%d: Reconnect IRQ1 timeout\n", | ||
1033 | esp->host->unique_id); | ||
1034 | return NULL; | ||
1035 | } | ||
1036 | |||
1037 | esp->sreg = esp_read8(ESP_STATUS); | ||
1038 | esp->ireg = esp_read8(ESP_INTRPT); | ||
1039 | |||
1040 | esp_log_reconnect("IRQ(%d:%x:%x), ", | ||
1041 | i, esp->ireg, esp->sreg); | ||
1042 | |||
1043 | if (esp->ireg & ESP_INTR_DC) { | ||
1044 | printk(KERN_ERR PFX "esp%d: Reconnect, got disconnect.\n", | ||
1045 | esp->host->unique_id); | ||
1046 | return NULL; | ||
1047 | } | ||
1048 | |||
1049 | if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) { | ||
1050 | printk(KERN_ERR PFX "esp%d: Reconnect, not MIP sreg[%02x].\n", | ||
1051 | esp->host->unique_id, esp->sreg); | ||
1052 | return NULL; | ||
1053 | } | ||
1054 | |||
1055 | /* DMA in the tag bytes... */ | ||
1056 | esp->command_block[0] = 0xff; | ||
1057 | esp->command_block[1] = 0xff; | ||
1058 | esp->ops->send_dma_cmd(esp, esp->command_block_dma, | ||
1059 | 2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI); | ||
1060 | |||
1061 | /* ACK the msssage. */ | ||
1062 | scsi_esp_cmd(esp, ESP_CMD_MOK); | ||
1063 | |||
1064 | for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) { | ||
1065 | if (esp->ops->irq_pending(esp)) { | ||
1066 | esp->sreg = esp_read8(ESP_STATUS); | ||
1067 | esp->ireg = esp_read8(ESP_INTRPT); | ||
1068 | if (esp->ireg & ESP_INTR_FDONE) | ||
1069 | break; | ||
1070 | } | ||
1071 | udelay(1); | ||
1072 | } | ||
1073 | if (i == ESP_RESELECT_TAG_LIMIT) { | ||
1074 | printk(KERN_ERR PFX "esp%d: Reconnect IRQ2 timeout\n", | ||
1075 | esp->host->unique_id); | ||
1076 | return NULL; | ||
1077 | } | ||
1078 | esp->ops->dma_drain(esp); | ||
1079 | esp->ops->dma_invalidate(esp); | ||
1080 | |||
1081 | esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n", | ||
1082 | i, esp->ireg, esp->sreg, | ||
1083 | esp->command_block[0], | ||
1084 | esp->command_block[1]); | ||
1085 | |||
1086 | if (esp->command_block[0] < SIMPLE_QUEUE_TAG || | ||
1087 | esp->command_block[0] > ORDERED_QUEUE_TAG) { | ||
1088 | printk(KERN_ERR PFX "esp%d: Reconnect, bad tag " | ||
1089 | "type %02x.\n", | ||
1090 | esp->host->unique_id, esp->command_block[0]); | ||
1091 | return NULL; | ||
1092 | } | ||
1093 | |||
1094 | ent = lp->tagged_cmds[esp->command_block[1]]; | ||
1095 | if (!ent) { | ||
1096 | printk(KERN_ERR PFX "esp%d: Reconnect, no entry for " | ||
1097 | "tag %02x.\n", | ||
1098 | esp->host->unique_id, esp->command_block[1]); | ||
1099 | return NULL; | ||
1100 | } | ||
1101 | |||
1102 | return ent; | ||
1103 | } | ||
1104 | |||
1105 | static int esp_reconnect(struct esp *esp) | ||
1106 | { | ||
1107 | struct esp_cmd_entry *ent; | ||
1108 | struct esp_target_data *tp; | ||
1109 | struct esp_lun_data *lp; | ||
1110 | struct scsi_device *dev; | ||
1111 | int target, lun; | ||
1112 | |||
1113 | BUG_ON(esp->active_cmd); | ||
1114 | if (esp->rev == FASHME) { | ||
1115 | /* FASHME puts the target and lun numbers directly | ||
1116 | * into the fifo. | ||
1117 | */ | ||
1118 | target = esp->fifo[0]; | ||
1119 | lun = esp->fifo[1] & 0x7; | ||
1120 | } else { | ||
1121 | u8 bits = esp_read8(ESP_FDATA); | ||
1122 | |||
1123 | /* Older chips put the lun directly into the fifo, but | ||
1124 | * the target is given as a sample of the arbitration | ||
1125 | * lines on the bus at reselection time. So we should | ||
1126 | * see the ID of the ESP and the one reconnecting target | ||
1127 | * set in the bitmap. | ||
1128 | */ | ||
1129 | if (!(bits & esp->scsi_id_mask)) | ||
1130 | goto do_reset; | ||
1131 | bits &= ~esp->scsi_id_mask; | ||
1132 | if (!bits || (bits & (bits - 1))) | ||
1133 | goto do_reset; | ||
1134 | |||
1135 | target = ffs(bits) - 1; | ||
1136 | lun = (esp_read8(ESP_FDATA) & 0x7); | ||
1137 | |||
1138 | scsi_esp_cmd(esp, ESP_CMD_FLUSH); | ||
1139 | if (esp->rev == ESP100) { | ||
1140 | u8 ireg = esp_read8(ESP_INTRPT); | ||
1141 | /* This chip has a bug during reselection that can | ||
1142 | * cause a spurious illegal-command interrupt, which | ||
1143 | * we simply ACK here. Another possibility is a bus | ||
1144 | * reset so we must check for that. | ||
1145 | */ | ||
1146 | if (ireg & ESP_INTR_SR) | ||
1147 | goto do_reset; | ||
1148 | } | ||
1149 | scsi_esp_cmd(esp, ESP_CMD_NULL); | ||
1150 | } | ||
1151 | |||
1152 | esp_write_tgt_sync(esp, target); | ||
1153 | esp_write_tgt_config3(esp, target); | ||
1154 | |||
1155 | scsi_esp_cmd(esp, ESP_CMD_MOK); | ||
1156 | |||
1157 | if (esp->rev == FASHME) | ||
1158 | esp_write8(target | ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT, | ||
1159 | ESP_BUSID); | ||
1160 | |||
1161 | tp = &esp->target[target]; | ||
1162 | dev = __scsi_device_lookup_by_target(tp->starget, lun); | ||
1163 | if (!dev) { | ||
1164 | printk(KERN_ERR PFX "esp%d: Reconnect, no lp " | ||
1165 | "tgt[%u] lun[%u]\n", | ||
1166 | esp->host->unique_id, target, lun); | ||
1167 | goto do_reset; | ||
1168 | } | ||
1169 | lp = dev->hostdata; | ||
1170 | |||
1171 | ent = lp->non_tagged_cmd; | ||
1172 | if (!ent) { | ||
1173 | ent = esp_reconnect_with_tag(esp, lp); | ||
1174 | if (!ent) | ||
1175 | goto do_reset; | ||
1176 | } | ||
1177 | |||
1178 | esp->active_cmd = ent; | ||
1179 | |||
1180 | if (ent->flags & ESP_CMD_FLAG_ABORT) { | ||
1181 | esp->msg_out[0] = ABORT_TASK_SET; | ||
1182 | esp->msg_out_len = 1; | ||
1183 | scsi_esp_cmd(esp, ESP_CMD_SATN); | ||
1184 | } | ||
1185 | |||
1186 | esp_event(esp, ESP_EVENT_CHECK_PHASE); | ||
1187 | esp_restore_pointers(esp, ent); | ||
1188 | esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; | ||
1189 | return 1; | ||
1190 | |||
1191 | do_reset: | ||
1192 | esp_schedule_reset(esp); | ||
1193 | return 0; | ||
1194 | } | ||
1195 | |||
1196 | static int esp_finish_select(struct esp *esp) | ||
1197 | { | ||
1198 | struct esp_cmd_entry *ent; | ||
1199 | struct scsi_cmnd *cmd; | ||
1200 | u8 orig_select_state; | ||
1201 | |||
1202 | orig_select_state = esp->select_state; | ||
1203 | |||
1204 | /* No longer selecting. */ | ||
1205 | esp->select_state = ESP_SELECT_NONE; | ||
1206 | |||
1207 | esp->seqreg = esp_read8(ESP_SSTEP) & ESP_STEP_VBITS; | ||
1208 | ent = esp->active_cmd; | ||
1209 | cmd = ent->cmd; | ||
1210 | |||
1211 | if (esp->ops->dma_error(esp)) { | ||
1212 | /* If we see a DMA error during or as a result of selection, | ||
1213 | * all bets are off. | ||
1214 | */ | ||
1215 | esp_schedule_reset(esp); | ||
1216 | esp_cmd_is_done(esp, ent, cmd, (DID_ERROR << 16)); | ||
1217 | return 0; | ||
1218 | } | ||
1219 | |||
1220 | esp->ops->dma_invalidate(esp); | ||
1221 | |||
1222 | if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) { | ||
1223 | struct esp_target_data *tp = &esp->target[cmd->device->id]; | ||
1224 | |||
1225 | /* Carefully back out of the selection attempt. Release | ||
1226 | * resources (such as DMA mapping & TAG) and reset state (such | ||
1227 | * as message out and command delivery variables). | ||
1228 | */ | ||
1229 | if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) { | ||
1230 | esp_unmap_dma(esp, cmd); | ||
1231 | esp_free_lun_tag(ent, cmd->device->hostdata); | ||
1232 | tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_NEGO_WIDE); | ||
1233 | esp->flags &= ~ESP_FLAG_DOING_SLOWCMD; | ||
1234 | esp->cmd_bytes_ptr = NULL; | ||
1235 | esp->cmd_bytes_left = 0; | ||
1236 | } else { | ||
1237 | esp->ops->unmap_single(esp, ent->sense_dma, | ||
1238 | SCSI_SENSE_BUFFERSIZE, | ||
1239 | DMA_FROM_DEVICE); | ||
1240 | ent->sense_ptr = NULL; | ||
1241 | } | ||
1242 | |||
1243 | /* Now that the state is unwound properly, put back onto | ||
1244 | * the issue queue. This command is no longer active. | ||
1245 | */ | ||
1246 | list_del(&ent->list); | ||
1247 | list_add(&ent->list, &esp->queued_cmds); | ||
1248 | esp->active_cmd = NULL; | ||
1249 | |||
1250 | /* Return value ignored by caller, it directly invokes | ||
1251 | * esp_reconnect(). | ||
1252 | */ | ||
1253 | return 0; | ||
1254 | } | ||
1255 | |||
1256 | if (esp->ireg == ESP_INTR_DC) { | ||
1257 | struct scsi_device *dev = cmd->device; | ||
1258 | |||
1259 | /* Disconnect. Make sure we re-negotiate sync and | ||
1260 | * wide parameters if this target starts responding | ||
1261 | * again in the future. | ||
1262 | */ | ||
1263 | esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO; | ||
1264 | |||
1265 | scsi_esp_cmd(esp, ESP_CMD_ESEL); | ||
1266 | esp_cmd_is_done(esp, ent, cmd, (DID_BAD_TARGET << 16)); | ||
1267 | return 1; | ||
1268 | } | ||
1269 | |||
1270 | if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) { | ||
1271 | /* Selection successful. On pre-FAST chips we have | ||
1272 | * to do a NOP and possibly clean out the FIFO. | ||
1273 | */ | ||
1274 | if (esp->rev <= ESP236) { | ||
1275 | int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES; | ||
1276 | |||
1277 | scsi_esp_cmd(esp, ESP_CMD_NULL); | ||
1278 | |||
1279 | if (!fcnt && | ||
1280 | (!esp->prev_soff || | ||
1281 | ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP))) | ||
1282 | esp_flush_fifo(esp); | ||
1283 | } | ||
1284 | |||
1285 | /* If we are doing a slow command, negotiation, etc. | ||
1286 | * we'll do the right thing as we transition to the | ||
1287 | * next phase. | ||
1288 | */ | ||
1289 | esp_event(esp, ESP_EVENT_CHECK_PHASE); | ||
1290 | return 0; | ||
1291 | } | ||
1292 | |||
1293 | printk("ESP: Unexpected selection completion ireg[%x].\n", | ||
1294 | esp->ireg); | ||
1295 | esp_schedule_reset(esp); | ||
1296 | return 0; | ||
1297 | } | ||
1298 | |||
1299 | static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent, | ||
1300 | struct scsi_cmnd *cmd) | ||
1301 | { | ||
1302 | int fifo_cnt, ecount, bytes_sent, flush_fifo; | ||
1303 | |||
1304 | fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES; | ||
1305 | if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE) | ||
1306 | fifo_cnt <<= 1; | ||
1307 | |||
1308 | ecount = 0; | ||
1309 | if (!(esp->sreg & ESP_STAT_TCNT)) { | ||
1310 | ecount = ((unsigned int)esp_read8(ESP_TCLOW) | | ||
1311 | (((unsigned int)esp_read8(ESP_TCMED)) << 8)); | ||
1312 | if (esp->rev == FASHME) | ||
1313 | ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16; | ||
1314 | } | ||
1315 | |||
1316 | bytes_sent = esp->data_dma_len; | ||
1317 | bytes_sent -= ecount; | ||
1318 | |||
1319 | if (!(ent->flags & ESP_CMD_FLAG_WRITE)) | ||
1320 | bytes_sent -= fifo_cnt; | ||
1321 | |||
1322 | flush_fifo = 0; | ||
1323 | if (!esp->prev_soff) { | ||
1324 | /* Synchronous data transfer, always flush fifo. */ | ||
1325 | flush_fifo = 1; | ||
1326 | } else { | ||
1327 | if (esp->rev == ESP100) { | ||
1328 | u32 fflags, phase; | ||
1329 | |||
1330 | /* ESP100 has a chip bug where in the synchronous data | ||
1331 | * phase it can mistake a final long REQ pulse from the | ||
1332 | * target as an extra data byte. Fun. | ||
1333 | * | ||
1334 | * To detect this case we resample the status register | ||
1335 | * and fifo flags. If we're still in a data phase and | ||
1336 | * we see spurious chunks in the fifo, we return error | ||
1337 | * to the caller which should reset and set things up | ||
1338 | * such that we only try future transfers to this | ||
1339 | * target in synchronous mode. | ||
1340 | */ | ||
1341 | esp->sreg = esp_read8(ESP_STATUS); | ||
1342 | phase = esp->sreg & ESP_STAT_PMASK; | ||
1343 | fflags = esp_read8(ESP_FFLAGS); | ||
1344 | |||
1345 | if ((phase == ESP_DOP && | ||
1346 | (fflags & ESP_FF_ONOTZERO)) || | ||
1347 | (phase == ESP_DIP && | ||
1348 | (fflags & ESP_FF_FBYTES))) | ||
1349 | return -1; | ||
1350 | } | ||
1351 | if (!(ent->flags & ESP_CMD_FLAG_WRITE)) | ||
1352 | flush_fifo = 1; | ||
1353 | } | ||
1354 | |||
1355 | if (flush_fifo) | ||
1356 | esp_flush_fifo(esp); | ||
1357 | |||
1358 | return bytes_sent; | ||
1359 | } | ||
1360 | |||
1361 | static void esp_setsync(struct esp *esp, struct esp_target_data *tp, | ||
1362 | u8 scsi_period, u8 scsi_offset, | ||
1363 | u8 esp_stp, u8 esp_soff) | ||
1364 | { | ||
1365 | spi_period(tp->starget) = scsi_period; | ||
1366 | spi_offset(tp->starget) = scsi_offset; | ||
1367 | spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0; | ||
1368 | |||
1369 | if (esp_soff) { | ||
1370 | esp_stp &= 0x1f; | ||
1371 | esp_soff |= esp->radelay; | ||
1372 | if (esp->rev >= FAS236) { | ||
1373 | u8 bit = ESP_CONFIG3_FSCSI; | ||
1374 | if (esp->rev >= FAS100A) | ||
1375 | bit = ESP_CONFIG3_FAST; | ||
1376 | |||
1377 | if (scsi_period < 50) { | ||
1378 | if (esp->rev == FASHME) | ||
1379 | esp_soff &= ~esp->radelay; | ||
1380 | tp->esp_config3 |= bit; | ||
1381 | } else { | ||
1382 | tp->esp_config3 &= ~bit; | ||
1383 | } | ||
1384 | esp->prev_cfg3 = tp->esp_config3; | ||
1385 | esp_write8(esp->prev_cfg3, ESP_CFG3); | ||
1386 | } | ||
1387 | } | ||
1388 | |||
1389 | tp->esp_period = esp->prev_stp = esp_stp; | ||
1390 | tp->esp_offset = esp->prev_soff = esp_soff; | ||
1391 | |||
1392 | esp_write8(esp_soff, ESP_SOFF); | ||
1393 | esp_write8(esp_stp, ESP_STP); | ||
1394 | |||
1395 | tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO); | ||
1396 | |||
1397 | spi_display_xfer_agreement(tp->starget); | ||
1398 | } | ||
1399 | |||
1400 | static void esp_msgin_reject(struct esp *esp) | ||
1401 | { | ||
1402 | struct esp_cmd_entry *ent = esp->active_cmd; | ||
1403 | struct scsi_cmnd *cmd = ent->cmd; | ||
1404 | struct esp_target_data *tp; | ||
1405 | int tgt; | ||
1406 | |||
1407 | tgt = cmd->device->id; | ||
1408 | tp = &esp->target[tgt]; | ||
1409 | |||
1410 | if (tp->flags & ESP_TGT_NEGO_WIDE) { | ||
1411 | tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE); | ||
1412 | |||
1413 | if (!esp_need_to_nego_sync(tp)) { | ||
1414 | tp->flags &= ~ESP_TGT_CHECK_NEGO; | ||
1415 | scsi_esp_cmd(esp, ESP_CMD_RATN); | ||
1416 | } else { | ||
1417 | esp->msg_out_len = | ||
1418 | spi_populate_sync_msg(&esp->msg_out[0], | ||
1419 | tp->nego_goal_period, | ||
1420 | tp->nego_goal_offset); | ||
1421 | tp->flags |= ESP_TGT_NEGO_SYNC; | ||
1422 | scsi_esp_cmd(esp, ESP_CMD_SATN); | ||
1423 | } | ||
1424 | return; | ||
1425 | } | ||
1426 | |||
1427 | if (tp->flags & ESP_TGT_NEGO_SYNC) { | ||
1428 | tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO); | ||
1429 | tp->esp_period = 0; | ||
1430 | tp->esp_offset = 0; | ||
1431 | esp_setsync(esp, tp, 0, 0, 0, 0); | ||
1432 | scsi_esp_cmd(esp, ESP_CMD_RATN); | ||
1433 | return; | ||
1434 | } | ||
1435 | |||
1436 | esp->msg_out[0] = ABORT_TASK_SET; | ||
1437 | esp->msg_out_len = 1; | ||
1438 | scsi_esp_cmd(esp, ESP_CMD_SATN); | ||
1439 | } | ||
1440 | |||
1441 | static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp) | ||
1442 | { | ||
1443 | u8 period = esp->msg_in[3]; | ||
1444 | u8 offset = esp->msg_in[4]; | ||
1445 | u8 stp; | ||
1446 | |||
1447 | if (!(tp->flags & ESP_TGT_NEGO_SYNC)) | ||
1448 | goto do_reject; | ||
1449 | |||
1450 | if (offset > 15) | ||
1451 | goto do_reject; | ||
1452 | |||
1453 | if (offset) { | ||
1454 | int rounded_up, one_clock; | ||
1455 | |||
1456 | if (period > esp->max_period) { | ||
1457 | period = offset = 0; | ||
1458 | goto do_sdtr; | ||
1459 | } | ||
1460 | if (period < esp->min_period) | ||
1461 | goto do_reject; | ||
1462 | |||
1463 | one_clock = esp->ccycle / 1000; | ||
1464 | rounded_up = (period << 2); | ||
1465 | rounded_up = (rounded_up + one_clock - 1) / one_clock; | ||
1466 | stp = rounded_up; | ||
1467 | if (stp && esp->rev >= FAS236) { | ||
1468 | if (stp >= 50) | ||
1469 | stp--; | ||
1470 | } | ||
1471 | } else { | ||
1472 | stp = 0; | ||
1473 | } | ||
1474 | |||
1475 | esp_setsync(esp, tp, period, offset, stp, offset); | ||
1476 | return; | ||
1477 | |||
1478 | do_reject: | ||
1479 | esp->msg_out[0] = MESSAGE_REJECT; | ||
1480 | esp->msg_out_len = 1; | ||
1481 | scsi_esp_cmd(esp, ESP_CMD_SATN); | ||
1482 | return; | ||
1483 | |||
1484 | do_sdtr: | ||
1485 | tp->nego_goal_period = period; | ||
1486 | tp->nego_goal_offset = offset; | ||
1487 | esp->msg_out_len = | ||
1488 | spi_populate_sync_msg(&esp->msg_out[0], | ||
1489 | tp->nego_goal_period, | ||
1490 | tp->nego_goal_offset); | ||
1491 | scsi_esp_cmd(esp, ESP_CMD_SATN); | ||
1492 | } | ||
1493 | |||
1494 | static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp) | ||
1495 | { | ||
1496 | int size = 8 << esp->msg_in[3]; | ||
1497 | u8 cfg3; | ||
1498 | |||
1499 | if (esp->rev != FASHME) | ||
1500 | goto do_reject; | ||
1501 | |||
1502 | if (size != 8 && size != 16) | ||
1503 | goto do_reject; | ||
1504 | |||
1505 | if (!(tp->flags & ESP_TGT_NEGO_WIDE)) | ||
1506 | goto do_reject; | ||
1507 | |||
1508 | cfg3 = tp->esp_config3; | ||
1509 | if (size == 16) { | ||
1510 | tp->flags |= ESP_TGT_WIDE; | ||
1511 | cfg3 |= ESP_CONFIG3_EWIDE; | ||
1512 | } else { | ||
1513 | tp->flags &= ~ESP_TGT_WIDE; | ||
1514 | cfg3 &= ~ESP_CONFIG3_EWIDE; | ||
1515 | } | ||
1516 | tp->esp_config3 = cfg3; | ||
1517 | esp->prev_cfg3 = cfg3; | ||
1518 | esp_write8(cfg3, ESP_CFG3); | ||
1519 | |||
1520 | tp->flags &= ~ESP_TGT_NEGO_WIDE; | ||
1521 | |||
1522 | spi_period(tp->starget) = 0; | ||
1523 | spi_offset(tp->starget) = 0; | ||
1524 | if (!esp_need_to_nego_sync(tp)) { | ||
1525 | tp->flags &= ~ESP_TGT_CHECK_NEGO; | ||
1526 | scsi_esp_cmd(esp, ESP_CMD_RATN); | ||
1527 | } else { | ||
1528 | esp->msg_out_len = | ||
1529 | spi_populate_sync_msg(&esp->msg_out[0], | ||
1530 | tp->nego_goal_period, | ||
1531 | tp->nego_goal_offset); | ||
1532 | tp->flags |= ESP_TGT_NEGO_SYNC; | ||
1533 | scsi_esp_cmd(esp, ESP_CMD_SATN); | ||
1534 | } | ||
1535 | return; | ||
1536 | |||
1537 | do_reject: | ||
1538 | esp->msg_out[0] = MESSAGE_REJECT; | ||
1539 | esp->msg_out_len = 1; | ||
1540 | scsi_esp_cmd(esp, ESP_CMD_SATN); | ||
1541 | } | ||
1542 | |||
1543 | static void esp_msgin_extended(struct esp *esp) | ||
1544 | { | ||
1545 | struct esp_cmd_entry *ent = esp->active_cmd; | ||
1546 | struct scsi_cmnd *cmd = ent->cmd; | ||
1547 | struct esp_target_data *tp; | ||
1548 | int tgt = cmd->device->id; | ||
1549 | |||
1550 | tp = &esp->target[tgt]; | ||
1551 | if (esp->msg_in[2] == EXTENDED_SDTR) { | ||
1552 | esp_msgin_sdtr(esp, tp); | ||
1553 | return; | ||
1554 | } | ||
1555 | if (esp->msg_in[2] == EXTENDED_WDTR) { | ||
1556 | esp_msgin_wdtr(esp, tp); | ||
1557 | return; | ||
1558 | } | ||
1559 | |||
1560 | printk("ESP: Unexpected extended msg type %x\n", | ||
1561 | esp->msg_in[2]); | ||
1562 | |||
1563 | esp->msg_out[0] = ABORT_TASK_SET; | ||
1564 | esp->msg_out_len = 1; | ||
1565 | scsi_esp_cmd(esp, ESP_CMD_SATN); | ||
1566 | } | ||
1567 | |||
1568 | /* Analyze msgin bytes received from target so far. Return non-zero | ||
1569 | * if there are more bytes needed to complete the message. | ||
1570 | */ | ||
1571 | static int esp_msgin_process(struct esp *esp) | ||
1572 | { | ||
1573 | u8 msg0 = esp->msg_in[0]; | ||
1574 | int len = esp->msg_in_len; | ||
1575 | |||
1576 | if (msg0 & 0x80) { | ||
1577 | /* Identify */ | ||
1578 | printk("ESP: Unexpected msgin identify\n"); | ||
1579 | return 0; | ||
1580 | } | ||
1581 | |||
1582 | switch (msg0) { | ||
1583 | case EXTENDED_MESSAGE: | ||
1584 | if (len == 1) | ||
1585 | return 1; | ||
1586 | if (len < esp->msg_in[1] + 2) | ||
1587 | return 1; | ||
1588 | esp_msgin_extended(esp); | ||
1589 | return 0; | ||
1590 | |||
1591 | case IGNORE_WIDE_RESIDUE: { | ||
1592 | struct esp_cmd_entry *ent; | ||
1593 | struct esp_cmd_priv *spriv; | ||
1594 | if (len == 1) | ||
1595 | return 1; | ||
1596 | |||
1597 | if (esp->msg_in[1] != 1) | ||
1598 | goto do_reject; | ||
1599 | |||
1600 | ent = esp->active_cmd; | ||
1601 | spriv = ESP_CMD_PRIV(ent->cmd); | ||
1602 | |||
1603 | if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) { | ||
1604 | spriv->cur_sg--; | ||
1605 | spriv->cur_residue = 1; | ||
1606 | } else | ||
1607 | spriv->cur_residue++; | ||
1608 | spriv->tot_residue++; | ||
1609 | return 0; | ||
1610 | } | ||
1611 | case NOP: | ||
1612 | return 0; | ||
1613 | case RESTORE_POINTERS: | ||
1614 | esp_restore_pointers(esp, esp->active_cmd); | ||
1615 | return 0; | ||
1616 | case SAVE_POINTERS: | ||
1617 | esp_save_pointers(esp, esp->active_cmd); | ||
1618 | return 0; | ||
1619 | |||
1620 | case COMMAND_COMPLETE: | ||
1621 | case DISCONNECT: { | ||
1622 | struct esp_cmd_entry *ent = esp->active_cmd; | ||
1623 | |||
1624 | ent->message = msg0; | ||
1625 | esp_event(esp, ESP_EVENT_FREE_BUS); | ||
1626 | esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; | ||
1627 | return 0; | ||
1628 | } | ||
1629 | case MESSAGE_REJECT: | ||
1630 | esp_msgin_reject(esp); | ||
1631 | return 0; | ||
1632 | |||
1633 | default: | ||
1634 | do_reject: | ||
1635 | esp->msg_out[0] = MESSAGE_REJECT; | ||
1636 | esp->msg_out_len = 1; | ||
1637 | scsi_esp_cmd(esp, ESP_CMD_SATN); | ||
1638 | return 0; | ||
1639 | } | ||
1640 | } | ||
1641 | |||
1642 | static int esp_process_event(struct esp *esp) | ||
1643 | { | ||
1644 | int write; | ||
1645 | |||
1646 | again: | ||
1647 | write = 0; | ||
1648 | switch (esp->event) { | ||
1649 | case ESP_EVENT_CHECK_PHASE: | ||
1650 | switch (esp->sreg & ESP_STAT_PMASK) { | ||
1651 | case ESP_DOP: | ||
1652 | esp_event(esp, ESP_EVENT_DATA_OUT); | ||
1653 | break; | ||
1654 | case ESP_DIP: | ||
1655 | esp_event(esp, ESP_EVENT_DATA_IN); | ||
1656 | break; | ||
1657 | case ESP_STATP: | ||
1658 | esp_flush_fifo(esp); | ||
1659 | scsi_esp_cmd(esp, ESP_CMD_ICCSEQ); | ||
1660 | esp_event(esp, ESP_EVENT_STATUS); | ||
1661 | esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; | ||
1662 | return 1; | ||
1663 | |||
1664 | case ESP_MOP: | ||
1665 | esp_event(esp, ESP_EVENT_MSGOUT); | ||
1666 | break; | ||
1667 | |||
1668 | case ESP_MIP: | ||
1669 | esp_event(esp, ESP_EVENT_MSGIN); | ||
1670 | break; | ||
1671 | |||
1672 | case ESP_CMDP: | ||
1673 | esp_event(esp, ESP_EVENT_CMD_START); | ||
1674 | break; | ||
1675 | |||
1676 | default: | ||
1677 | printk("ESP: Unexpected phase, sreg=%02x\n", | ||
1678 | esp->sreg); | ||
1679 | esp_schedule_reset(esp); | ||
1680 | return 0; | ||
1681 | } | ||
1682 | goto again; | ||
1683 | break; | ||
1684 | |||
1685 | case ESP_EVENT_DATA_IN: | ||
1686 | write = 1; | ||
1687 | /* fallthru */ | ||
1688 | |||
1689 | case ESP_EVENT_DATA_OUT: { | ||
1690 | struct esp_cmd_entry *ent = esp->active_cmd; | ||
1691 | struct scsi_cmnd *cmd = ent->cmd; | ||
1692 | dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd); | ||
1693 | unsigned int dma_len = esp_cur_dma_len(ent, cmd); | ||
1694 | |||
1695 | if (esp->rev == ESP100) | ||
1696 | scsi_esp_cmd(esp, ESP_CMD_NULL); | ||
1697 | |||
1698 | if (write) | ||
1699 | ent->flags |= ESP_CMD_FLAG_WRITE; | ||
1700 | else | ||
1701 | ent->flags &= ~ESP_CMD_FLAG_WRITE; | ||
1702 | |||
1703 | dma_len = esp_dma_length_limit(esp, dma_addr, dma_len); | ||
1704 | esp->data_dma_len = dma_len; | ||
1705 | |||
1706 | if (!dma_len) { | ||
1707 | printk(KERN_ERR PFX "esp%d: DMA length is zero!\n", | ||
1708 | esp->host->unique_id); | ||
1709 | printk(KERN_ERR PFX "esp%d: cur adr[%08x] len[%08x]\n", | ||
1710 | esp->host->unique_id, | ||
1711 | esp_cur_dma_addr(ent, cmd), | ||
1712 | esp_cur_dma_len(ent, cmd)); | ||
1713 | esp_schedule_reset(esp); | ||
1714 | return 0; | ||
1715 | } | ||
1716 | |||
1717 | esp_log_datastart("ESP: start data addr[%08x] len[%u] " | ||
1718 | "write(%d)\n", | ||
1719 | dma_addr, dma_len, write); | ||
1720 | |||
1721 | esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len, | ||
1722 | write, ESP_CMD_DMA | ESP_CMD_TI); | ||
1723 | esp_event(esp, ESP_EVENT_DATA_DONE); | ||
1724 | break; | ||
1725 | } | ||
1726 | case ESP_EVENT_DATA_DONE: { | ||
1727 | struct esp_cmd_entry *ent = esp->active_cmd; | ||
1728 | struct scsi_cmnd *cmd = ent->cmd; | ||
1729 | int bytes_sent; | ||
1730 | |||
1731 | if (esp->ops->dma_error(esp)) { | ||
1732 | printk("ESP: data done, DMA error, resetting\n"); | ||
1733 | esp_schedule_reset(esp); | ||
1734 | return 0; | ||
1735 | } | ||
1736 | |||
1737 | if (ent->flags & ESP_CMD_FLAG_WRITE) { | ||
1738 | /* XXX parity errors, etc. XXX */ | ||
1739 | |||
1740 | esp->ops->dma_drain(esp); | ||
1741 | } | ||
1742 | esp->ops->dma_invalidate(esp); | ||
1743 | |||
1744 | if (esp->ireg != ESP_INTR_BSERV) { | ||
1745 | /* We should always see exactly a bus-service | ||
1746 | * interrupt at the end of a successful transfer. | ||
1747 | */ | ||
1748 | printk("ESP: data done, not BSERV, resetting\n"); | ||
1749 | esp_schedule_reset(esp); | ||
1750 | return 0; | ||
1751 | } | ||
1752 | |||
1753 | bytes_sent = esp_data_bytes_sent(esp, ent, cmd); | ||
1754 | |||
1755 | esp_log_datadone("ESP: data done flgs[%x] sent[%d]\n", | ||
1756 | ent->flags, bytes_sent); | ||
1757 | |||
1758 | if (bytes_sent < 0) { | ||
1759 | /* XXX force sync mode for this target XXX */ | ||
1760 | esp_schedule_reset(esp); | ||
1761 | return 0; | ||
1762 | } | ||
1763 | |||
1764 | esp_advance_dma(esp, ent, cmd, bytes_sent); | ||
1765 | esp_event(esp, ESP_EVENT_CHECK_PHASE); | ||
1766 | goto again; | ||
1767 | break; | ||
1768 | } | ||
1769 | |||
1770 | case ESP_EVENT_STATUS: { | ||
1771 | struct esp_cmd_entry *ent = esp->active_cmd; | ||
1772 | |||
1773 | if (esp->ireg & ESP_INTR_FDONE) { | ||
1774 | ent->status = esp_read8(ESP_FDATA); | ||
1775 | ent->message = esp_read8(ESP_FDATA); | ||
1776 | scsi_esp_cmd(esp, ESP_CMD_MOK); | ||
1777 | } else if (esp->ireg == ESP_INTR_BSERV) { | ||
1778 | ent->status = esp_read8(ESP_FDATA); | ||
1779 | ent->message = 0xff; | ||
1780 | esp_event(esp, ESP_EVENT_MSGIN); | ||
1781 | return 0; | ||
1782 | } | ||
1783 | |||
1784 | if (ent->message != COMMAND_COMPLETE) { | ||
1785 | printk("ESP: Unexpected message %x in status\n", | ||
1786 | ent->message); | ||
1787 | esp_schedule_reset(esp); | ||
1788 | return 0; | ||
1789 | } | ||
1790 | |||
1791 | esp_event(esp, ESP_EVENT_FREE_BUS); | ||
1792 | esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; | ||
1793 | break; | ||
1794 | } | ||
1795 | case ESP_EVENT_FREE_BUS: { | ||
1796 | struct esp_cmd_entry *ent = esp->active_cmd; | ||
1797 | struct scsi_cmnd *cmd = ent->cmd; | ||
1798 | |||
1799 | if (ent->message == COMMAND_COMPLETE || | ||
1800 | ent->message == DISCONNECT) | ||
1801 | scsi_esp_cmd(esp, ESP_CMD_ESEL); | ||
1802 | |||
1803 | if (ent->message == COMMAND_COMPLETE) { | ||
1804 | esp_log_cmddone("ESP: Command done status[%x] " | ||
1805 | "message[%x]\n", | ||
1806 | ent->status, ent->message); | ||
1807 | if (ent->status == SAM_STAT_TASK_SET_FULL) | ||
1808 | esp_event_queue_full(esp, ent); | ||
1809 | |||
1810 | if (ent->status == SAM_STAT_CHECK_CONDITION && | ||
1811 | !(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) { | ||
1812 | ent->flags |= ESP_CMD_FLAG_AUTOSENSE; | ||
1813 | esp_autosense(esp, ent); | ||
1814 | } else { | ||
1815 | esp_cmd_is_done(esp, ent, cmd, | ||
1816 | compose_result(ent->status, | ||
1817 | ent->message, | ||
1818 | DID_OK)); | ||
1819 | } | ||
1820 | } else if (ent->message == DISCONNECT) { | ||
1821 | esp_log_disconnect("ESP: Disconnecting tgt[%d] " | ||
1822 | "tag[%x:%x]\n", | ||
1823 | cmd->device->id, | ||
1824 | ent->tag[0], ent->tag[1]); | ||
1825 | |||
1826 | esp->active_cmd = NULL; | ||
1827 | esp_maybe_execute_command(esp); | ||
1828 | } else { | ||
1829 | printk("ESP: Unexpected message %x in freebus\n", | ||
1830 | ent->message); | ||
1831 | esp_schedule_reset(esp); | ||
1832 | return 0; | ||
1833 | } | ||
1834 | if (esp->active_cmd) | ||
1835 | esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; | ||
1836 | break; | ||
1837 | } | ||
1838 | case ESP_EVENT_MSGOUT: { | ||
1839 | scsi_esp_cmd(esp, ESP_CMD_FLUSH); | ||
1840 | |||
1841 | if (esp_debug & ESP_DEBUG_MSGOUT) { | ||
1842 | int i; | ||
1843 | printk("ESP: Sending message [ "); | ||
1844 | for (i = 0; i < esp->msg_out_len; i++) | ||
1845 | printk("%02x ", esp->msg_out[i]); | ||
1846 | printk("]\n"); | ||
1847 | } | ||
1848 | |||
1849 | if (esp->rev == FASHME) { | ||
1850 | int i; | ||
1851 | |||
1852 | /* Always use the fifo. */ | ||
1853 | for (i = 0; i < esp->msg_out_len; i++) { | ||
1854 | esp_write8(esp->msg_out[i], ESP_FDATA); | ||
1855 | esp_write8(0, ESP_FDATA); | ||
1856 | } | ||
1857 | scsi_esp_cmd(esp, ESP_CMD_TI); | ||
1858 | } else { | ||
1859 | if (esp->msg_out_len == 1) { | ||
1860 | esp_write8(esp->msg_out[0], ESP_FDATA); | ||
1861 | scsi_esp_cmd(esp, ESP_CMD_TI); | ||
1862 | } else { | ||
1863 | /* Use DMA. */ | ||
1864 | memcpy(esp->command_block, | ||
1865 | esp->msg_out, | ||
1866 | esp->msg_out_len); | ||
1867 | |||
1868 | esp->ops->send_dma_cmd(esp, | ||
1869 | esp->command_block_dma, | ||
1870 | esp->msg_out_len, | ||
1871 | esp->msg_out_len, | ||
1872 | 0, | ||
1873 | ESP_CMD_DMA|ESP_CMD_TI); | ||
1874 | } | ||
1875 | } | ||
1876 | esp_event(esp, ESP_EVENT_MSGOUT_DONE); | ||
1877 | break; | ||
1878 | } | ||
1879 | case ESP_EVENT_MSGOUT_DONE: | ||
1880 | if (esp->rev == FASHME) { | ||
1881 | scsi_esp_cmd(esp, ESP_CMD_FLUSH); | ||
1882 | } else { | ||
1883 | if (esp->msg_out_len > 1) | ||
1884 | esp->ops->dma_invalidate(esp); | ||
1885 | } | ||
1886 | |||
1887 | if (!(esp->ireg & ESP_INTR_DC)) { | ||
1888 | if (esp->rev != FASHME) | ||
1889 | scsi_esp_cmd(esp, ESP_CMD_NULL); | ||
1890 | } | ||
1891 | esp_event(esp, ESP_EVENT_CHECK_PHASE); | ||
1892 | goto again; | ||
1893 | case ESP_EVENT_MSGIN: | ||
1894 | if (esp->ireg & ESP_INTR_BSERV) { | ||
1895 | if (esp->rev == FASHME) { | ||
1896 | if (!(esp_read8(ESP_STATUS2) & | ||
1897 | ESP_STAT2_FEMPTY)) | ||
1898 | scsi_esp_cmd(esp, ESP_CMD_FLUSH); | ||
1899 | } else { | ||
1900 | scsi_esp_cmd(esp, ESP_CMD_FLUSH); | ||
1901 | if (esp->rev == ESP100) | ||
1902 | scsi_esp_cmd(esp, ESP_CMD_NULL); | ||
1903 | } | ||
1904 | scsi_esp_cmd(esp, ESP_CMD_TI); | ||
1905 | esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; | ||
1906 | return 1; | ||
1907 | } | ||
1908 | if (esp->ireg & ESP_INTR_FDONE) { | ||
1909 | u8 val; | ||
1910 | |||
1911 | if (esp->rev == FASHME) | ||
1912 | val = esp->fifo[0]; | ||
1913 | else | ||
1914 | val = esp_read8(ESP_FDATA); | ||
1915 | esp->msg_in[esp->msg_in_len++] = val; | ||
1916 | |||
1917 | esp_log_msgin("ESP: Got msgin byte %x\n", val); | ||
1918 | |||
1919 | if (!esp_msgin_process(esp)) | ||
1920 | esp->msg_in_len = 0; | ||
1921 | |||
1922 | if (esp->rev == FASHME) | ||
1923 | scsi_esp_cmd(esp, ESP_CMD_FLUSH); | ||
1924 | |||
1925 | scsi_esp_cmd(esp, ESP_CMD_MOK); | ||
1926 | |||
1927 | if (esp->event != ESP_EVENT_FREE_BUS) | ||
1928 | esp_event(esp, ESP_EVENT_CHECK_PHASE); | ||
1929 | } else { | ||
1930 | printk("ESP: MSGIN neither BSERV not FDON, resetting"); | ||
1931 | esp_schedule_reset(esp); | ||
1932 | return 0; | ||
1933 | } | ||
1934 | break; | ||
1935 | case ESP_EVENT_CMD_START: | ||
1936 | memcpy(esp->command_block, esp->cmd_bytes_ptr, | ||
1937 | esp->cmd_bytes_left); | ||
1938 | if (esp->rev == FASHME) | ||
1939 | scsi_esp_cmd(esp, ESP_CMD_FLUSH); | ||
1940 | esp->ops->send_dma_cmd(esp, esp->command_block_dma, | ||
1941 | esp->cmd_bytes_left, 16, 0, | ||
1942 | ESP_CMD_DMA | ESP_CMD_TI); | ||
1943 | esp_event(esp, ESP_EVENT_CMD_DONE); | ||
1944 | esp->flags |= ESP_FLAG_QUICKIRQ_CHECK; | ||
1945 | break; | ||
1946 | case ESP_EVENT_CMD_DONE: | ||
1947 | esp->ops->dma_invalidate(esp); | ||
1948 | if (esp->ireg & ESP_INTR_BSERV) { | ||
1949 | esp_event(esp, ESP_EVENT_CHECK_PHASE); | ||
1950 | goto again; | ||
1951 | } | ||
1952 | esp_schedule_reset(esp); | ||
1953 | return 0; | ||
1954 | break; | ||
1955 | |||
1956 | case ESP_EVENT_RESET: | ||
1957 | scsi_esp_cmd(esp, ESP_CMD_RS); | ||
1958 | break; | ||
1959 | |||
1960 | default: | ||
1961 | printk("ESP: Unexpected event %x, resetting\n", | ||
1962 | esp->event); | ||
1963 | esp_schedule_reset(esp); | ||
1964 | return 0; | ||
1965 | break; | ||
1966 | } | ||
1967 | return 1; | ||
1968 | } | ||
1969 | |||
1970 | static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent) | ||
1971 | { | ||
1972 | struct scsi_cmnd *cmd = ent->cmd; | ||
1973 | |||
1974 | esp_unmap_dma(esp, cmd); | ||
1975 | esp_free_lun_tag(ent, cmd->device->hostdata); | ||
1976 | cmd->result = DID_RESET << 16; | ||
1977 | |||
1978 | if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) { | ||
1979 | esp->ops->unmap_single(esp, ent->sense_dma, | ||
1980 | SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); | ||
1981 | ent->sense_ptr = NULL; | ||
1982 | } | ||
1983 | |||
1984 | cmd->scsi_done(cmd); | ||
1985 | list_del(&ent->list); | ||
1986 | esp_put_ent(esp, ent); | ||
1987 | } | ||
1988 | |||
1989 | static void esp_clear_hold(struct scsi_device *dev, void *data) | ||
1990 | { | ||
1991 | struct esp_lun_data *lp = dev->hostdata; | ||
1992 | |||
1993 | BUG_ON(lp->num_tagged); | ||
1994 | lp->hold = 0; | ||
1995 | } | ||
1996 | |||
1997 | static void esp_reset_cleanup(struct esp *esp) | ||
1998 | { | ||
1999 | struct esp_cmd_entry *ent, *tmp; | ||
2000 | int i; | ||
2001 | |||
2002 | list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) { | ||
2003 | struct scsi_cmnd *cmd = ent->cmd; | ||
2004 | |||
2005 | list_del(&ent->list); | ||
2006 | cmd->result = DID_RESET << 16; | ||
2007 | cmd->scsi_done(cmd); | ||
2008 | esp_put_ent(esp, ent); | ||
2009 | } | ||
2010 | |||
2011 | list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) { | ||
2012 | if (ent == esp->active_cmd) | ||
2013 | esp->active_cmd = NULL; | ||
2014 | esp_reset_cleanup_one(esp, ent); | ||
2015 | } | ||
2016 | |||
2017 | BUG_ON(esp->active_cmd != NULL); | ||
2018 | |||
2019 | /* Force renegotiation of sync/wide transfers. */ | ||
2020 | for (i = 0; i < ESP_MAX_TARGET; i++) { | ||
2021 | struct esp_target_data *tp = &esp->target[i]; | ||
2022 | |||
2023 | tp->esp_period = 0; | ||
2024 | tp->esp_offset = 0; | ||
2025 | tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE | | ||
2026 | ESP_CONFIG3_FSCSI | | ||
2027 | ESP_CONFIG3_FAST); | ||
2028 | tp->flags &= ~ESP_TGT_WIDE; | ||
2029 | tp->flags |= ESP_TGT_CHECK_NEGO; | ||
2030 | |||
2031 | if (tp->starget) | ||
2032 | starget_for_each_device(tp->starget, NULL, | ||
2033 | esp_clear_hold); | ||
2034 | } | ||
2035 | } | ||
2036 | |||
2037 | /* Runs under host->lock */ | ||
2038 | static void __esp_interrupt(struct esp *esp) | ||
2039 | { | ||
2040 | int finish_reset, intr_done; | ||
2041 | u8 phase; | ||
2042 | |||
2043 | esp->sreg = esp_read8(ESP_STATUS); | ||
2044 | |||
2045 | if (esp->flags & ESP_FLAG_RESETTING) { | ||
2046 | finish_reset = 1; | ||
2047 | } else { | ||
2048 | if (esp_check_gross_error(esp)) | ||
2049 | return; | ||
2050 | |||
2051 | finish_reset = esp_check_spur_intr(esp); | ||
2052 | if (finish_reset < 0) | ||
2053 | return; | ||
2054 | } | ||
2055 | |||
2056 | esp->ireg = esp_read8(ESP_INTRPT); | ||
2057 | |||
2058 | if (esp->ireg & ESP_INTR_SR) | ||
2059 | finish_reset = 1; | ||
2060 | |||
2061 | if (finish_reset) { | ||
2062 | esp_reset_cleanup(esp); | ||
2063 | if (esp->eh_reset) { | ||
2064 | complete(esp->eh_reset); | ||
2065 | esp->eh_reset = NULL; | ||
2066 | } | ||
2067 | return; | ||
2068 | } | ||
2069 | |||
2070 | phase = (esp->sreg & ESP_STAT_PMASK); | ||
2071 | if (esp->rev == FASHME) { | ||
2072 | if (((phase != ESP_DIP && phase != ESP_DOP) && | ||
2073 | esp->select_state == ESP_SELECT_NONE && | ||
2074 | esp->event != ESP_EVENT_STATUS && | ||
2075 | esp->event != ESP_EVENT_DATA_DONE) || | ||
2076 | (esp->ireg & ESP_INTR_RSEL)) { | ||
2077 | esp->sreg2 = esp_read8(ESP_STATUS2); | ||
2078 | if (!(esp->sreg2 & ESP_STAT2_FEMPTY) || | ||
2079 | (esp->sreg2 & ESP_STAT2_F1BYTE)) | ||
2080 | hme_read_fifo(esp); | ||
2081 | } | ||
2082 | } | ||
2083 | |||
2084 | esp_log_intr("ESP: intr sreg[%02x] seqreg[%02x] " | ||
2085 | "sreg2[%02x] ireg[%02x]\n", | ||
2086 | esp->sreg, esp->seqreg, esp->sreg2, esp->ireg); | ||
2087 | |||
2088 | intr_done = 0; | ||
2089 | |||
2090 | if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) { | ||
2091 | printk("ESP: unexpected IREG %02x\n", esp->ireg); | ||
2092 | if (esp->ireg & ESP_INTR_IC) | ||
2093 | esp_dump_cmd_log(esp); | ||
2094 | |||
2095 | esp_schedule_reset(esp); | ||
2096 | } else { | ||
2097 | if (!(esp->ireg & ESP_INTR_RSEL)) { | ||
2098 | /* Some combination of FDONE, BSERV, DC. */ | ||
2099 | if (esp->select_state != ESP_SELECT_NONE) | ||
2100 | intr_done = esp_finish_select(esp); | ||
2101 | } else if (esp->ireg & ESP_INTR_RSEL) { | ||
2102 | if (esp->active_cmd) | ||
2103 | (void) esp_finish_select(esp); | ||
2104 | intr_done = esp_reconnect(esp); | ||
2105 | } | ||
2106 | } | ||
2107 | while (!intr_done) | ||
2108 | intr_done = esp_process_event(esp); | ||
2109 | } | ||
2110 | |||
2111 | irqreturn_t scsi_esp_intr(int irq, void *dev_id) | ||
2112 | { | ||
2113 | struct esp *esp = dev_id; | ||
2114 | unsigned long flags; | ||
2115 | irqreturn_t ret; | ||
2116 | |||
2117 | spin_lock_irqsave(esp->host->host_lock, flags); | ||
2118 | ret = IRQ_NONE; | ||
2119 | if (esp->ops->irq_pending(esp)) { | ||
2120 | ret = IRQ_HANDLED; | ||
2121 | for (;;) { | ||
2122 | int i; | ||
2123 | |||
2124 | __esp_interrupt(esp); | ||
2125 | if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK)) | ||
2126 | break; | ||
2127 | esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK; | ||
2128 | |||
2129 | for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) { | ||
2130 | if (esp->ops->irq_pending(esp)) | ||
2131 | break; | ||
2132 | } | ||
2133 | if (i == ESP_QUICKIRQ_LIMIT) | ||
2134 | break; | ||
2135 | } | ||
2136 | } | ||
2137 | spin_unlock_irqrestore(esp->host->host_lock, flags); | ||
2138 | |||
2139 | return ret; | ||
2140 | } | ||
2141 | EXPORT_SYMBOL(scsi_esp_intr); | ||
2142 | |||
2143 | static void __devinit esp_get_revision(struct esp *esp) | ||
2144 | { | ||
2145 | u8 val; | ||
2146 | |||
2147 | esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7)); | ||
2148 | esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY); | ||
2149 | esp_write8(esp->config2, ESP_CFG2); | ||
2150 | |||
2151 | val = esp_read8(ESP_CFG2); | ||
2152 | val &= ~ESP_CONFIG2_MAGIC; | ||
2153 | if (val != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) { | ||
2154 | /* If what we write to cfg2 does not come back, cfg2 is not | ||
2155 | * implemented, therefore this must be a plain esp100. | ||
2156 | */ | ||
2157 | esp->rev = ESP100; | ||
2158 | } else { | ||
2159 | esp->config2 = 0; | ||
2160 | esp_set_all_config3(esp, 5); | ||
2161 | esp->prev_cfg3 = 5; | ||
2162 | esp_write8(esp->config2, ESP_CFG2); | ||
2163 | esp_write8(0, ESP_CFG3); | ||
2164 | esp_write8(esp->prev_cfg3, ESP_CFG3); | ||
2165 | |||
2166 | val = esp_read8(ESP_CFG3); | ||
2167 | if (val != 5) { | ||
2168 | /* The cfg2 register is implemented, however | ||
2169 | * cfg3 is not, must be esp100a. | ||
2170 | */ | ||
2171 | esp->rev = ESP100A; | ||
2172 | } else { | ||
2173 | esp_set_all_config3(esp, 0); | ||
2174 | esp->prev_cfg3 = 0; | ||
2175 | esp_write8(esp->prev_cfg3, ESP_CFG3); | ||
2176 | |||
2177 | /* All of cfg{1,2,3} implemented, must be one of | ||
2178 | * the fas variants, figure out which one. | ||
2179 | */ | ||
2180 | if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) { | ||
2181 | esp->rev = FAST; | ||
2182 | esp->sync_defp = SYNC_DEFP_FAST; | ||
2183 | } else { | ||
2184 | esp->rev = ESP236; | ||
2185 | } | ||
2186 | esp->config2 = 0; | ||
2187 | esp_write8(esp->config2, ESP_CFG2); | ||
2188 | } | ||
2189 | } | ||
2190 | } | ||
2191 | |||
2192 | static void __devinit esp_init_swstate(struct esp *esp) | ||
2193 | { | ||
2194 | int i; | ||
2195 | |||
2196 | INIT_LIST_HEAD(&esp->queued_cmds); | ||
2197 | INIT_LIST_HEAD(&esp->active_cmds); | ||
2198 | INIT_LIST_HEAD(&esp->esp_cmd_pool); | ||
2199 | |||
2200 | /* Start with a clear state, domain validation (via ->slave_configure, | ||
2201 | * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged | ||
2202 | * commands. | ||
2203 | */ | ||
2204 | for (i = 0 ; i < ESP_MAX_TARGET; i++) { | ||
2205 | esp->target[i].flags = 0; | ||
2206 | esp->target[i].nego_goal_period = 0; | ||
2207 | esp->target[i].nego_goal_offset = 0; | ||
2208 | esp->target[i].nego_goal_width = 0; | ||
2209 | esp->target[i].nego_goal_tags = 0; | ||
2210 | } | ||
2211 | } | ||
2212 | |||
2213 | /* This places the ESP into a known state at boot time. */ | ||
2214 | static void __devinit esp_bootup_reset(struct esp *esp) | ||
2215 | { | ||
2216 | u8 val; | ||
2217 | |||
2218 | /* Reset the DMA */ | ||
2219 | esp->ops->reset_dma(esp); | ||
2220 | |||
2221 | /* Reset the ESP */ | ||
2222 | esp_reset_esp(esp); | ||
2223 | |||
2224 | /* Reset the SCSI bus, but tell ESP not to generate an irq */ | ||
2225 | val = esp_read8(ESP_CFG1); | ||
2226 | val |= ESP_CONFIG1_SRRDISAB; | ||
2227 | esp_write8(val, ESP_CFG1); | ||
2228 | |||
2229 | scsi_esp_cmd(esp, ESP_CMD_RS); | ||
2230 | udelay(400); | ||
2231 | |||
2232 | esp_write8(esp->config1, ESP_CFG1); | ||
2233 | |||
2234 | /* Eat any bitrot in the chip and we are done... */ | ||
2235 | esp_read8(ESP_INTRPT); | ||
2236 | } | ||
2237 | |||
2238 | static void __devinit esp_set_clock_params(struct esp *esp) | ||
2239 | { | ||
2240 | int fmhz; | ||
2241 | u8 ccf; | ||
2242 | |||
2243 | /* This is getting messy but it has to be done correctly or else | ||
2244 | * you get weird behavior all over the place. We are trying to | ||
2245 | * basically figure out three pieces of information. | ||
2246 | * | ||
2247 | * a) Clock Conversion Factor | ||
2248 | * | ||
2249 | * This is a representation of the input crystal clock frequency | ||
2250 | * going into the ESP on this machine. Any operation whose timing | ||
2251 | * is longer than 400ns depends on this value being correct. For | ||
2252 | * example, you'll get blips for arbitration/selection during high | ||
2253 | * load or with multiple targets if this is not set correctly. | ||
2254 | * | ||
2255 | * b) Selection Time-Out | ||
2256 | * | ||
2257 | * The ESP isn't very bright and will arbitrate for the bus and try | ||
2258 | * to select a target forever if you let it. This value tells the | ||
2259 | * ESP when it has taken too long to negotiate and that it should | ||
2260 | * interrupt the CPU so we can see what happened. The value is | ||
2261 | * computed as follows (from NCR/Symbios chip docs). | ||
2262 | * | ||
2263 | * (Time Out Period) * (Input Clock) | ||
2264 | * STO = ---------------------------------- | ||
2265 | * (8192) * (Clock Conversion Factor) | ||
2266 | * | ||
2267 | * We use a time out period of 250ms (ESP_BUS_TIMEOUT). | ||
2268 | * | ||
2269 | * c) Imperical constants for synchronous offset and transfer period | ||
2270 | * register values | ||
2271 | * | ||
2272 | * This entails the smallest and largest sync period we could ever | ||
2273 | * handle on this ESP. | ||
2274 | */ | ||
2275 | fmhz = esp->cfreq; | ||
2276 | |||
2277 | ccf = ((fmhz / 1000000) + 4) / 5; | ||
2278 | if (ccf == 1) | ||
2279 | ccf = 2; | ||
2280 | |||
2281 | /* If we can't find anything reasonable, just assume 20MHZ. | ||
2282 | * This is the clock frequency of the older sun4c's where I've | ||
2283 | * been unable to find the clock-frequency PROM property. All | ||
2284 | * other machines provide useful values it seems. | ||
2285 | */ | ||
2286 | if (fmhz <= 5000000 || ccf < 1 || ccf > 8) { | ||
2287 | fmhz = 20000000; | ||
2288 | ccf = 4; | ||
2289 | } | ||
2290 | |||
2291 | esp->cfact = (ccf == 8 ? 0 : ccf); | ||
2292 | esp->cfreq = fmhz; | ||
2293 | esp->ccycle = ESP_MHZ_TO_CYCLE(fmhz); | ||
2294 | esp->ctick = ESP_TICK(ccf, esp->ccycle); | ||
2295 | esp->neg_defp = ESP_NEG_DEFP(fmhz, ccf); | ||
2296 | esp->sync_defp = SYNC_DEFP_SLOW; | ||
2297 | } | ||
2298 | |||
2299 | static const char *esp_chip_names[] = { | ||
2300 | "ESP100", | ||
2301 | "ESP100A", | ||
2302 | "ESP236", | ||
2303 | "FAS236", | ||
2304 | "FAS100A", | ||
2305 | "FAST", | ||
2306 | "FASHME", | ||
2307 | }; | ||
2308 | |||
2309 | static struct scsi_transport_template *esp_transport_template; | ||
2310 | |||
2311 | int __devinit scsi_esp_register(struct esp *esp, struct device *dev) | ||
2312 | { | ||
2313 | static int instance; | ||
2314 | int err; | ||
2315 | |||
2316 | esp->host->transportt = esp_transport_template; | ||
2317 | esp->host->max_lun = ESP_MAX_LUN; | ||
2318 | esp->host->cmd_per_lun = 2; | ||
2319 | |||
2320 | esp_set_clock_params(esp); | ||
2321 | |||
2322 | esp_get_revision(esp); | ||
2323 | |||
2324 | esp_init_swstate(esp); | ||
2325 | |||
2326 | esp_bootup_reset(esp); | ||
2327 | |||
2328 | printk(KERN_INFO PFX "esp%u, regs[%1p:%1p] irq[%u]\n", | ||
2329 | esp->host->unique_id, esp->regs, esp->dma_regs, | ||
2330 | esp->host->irq); | ||
2331 | printk(KERN_INFO PFX "esp%u is a %s, %u MHz (ccf=%u), SCSI ID %u\n", | ||
2332 | esp->host->unique_id, esp_chip_names[esp->rev], | ||
2333 | esp->cfreq / 1000000, esp->cfact, esp->scsi_id); | ||
2334 | |||
2335 | /* Let the SCSI bus reset settle. */ | ||
2336 | ssleep(esp_bus_reset_settle); | ||
2337 | |||
2338 | err = scsi_add_host(esp->host, dev); | ||
2339 | if (err) | ||
2340 | return err; | ||
2341 | |||
2342 | esp->host->unique_id = instance++; | ||
2343 | |||
2344 | scsi_scan_host(esp->host); | ||
2345 | |||
2346 | return 0; | ||
2347 | } | ||
2348 | EXPORT_SYMBOL(scsi_esp_register); | ||
2349 | |||
2350 | void __devexit scsi_esp_unregister(struct esp *esp) | ||
2351 | { | ||
2352 | scsi_remove_host(esp->host); | ||
2353 | } | ||
2354 | EXPORT_SYMBOL(scsi_esp_unregister); | ||
2355 | |||
2356 | static int esp_slave_alloc(struct scsi_device *dev) | ||
2357 | { | ||
2358 | struct esp *esp = host_to_esp(dev->host); | ||
2359 | struct esp_target_data *tp = &esp->target[dev->id]; | ||
2360 | struct esp_lun_data *lp; | ||
2361 | |||
2362 | lp = kzalloc(sizeof(*lp), GFP_KERNEL); | ||
2363 | if (!lp) | ||
2364 | return -ENOMEM; | ||
2365 | dev->hostdata = lp; | ||
2366 | |||
2367 | tp->starget = dev->sdev_target; | ||
2368 | |||
2369 | spi_min_period(tp->starget) = esp->min_period; | ||
2370 | spi_max_offset(tp->starget) = 15; | ||
2371 | |||
2372 | if (esp->flags & ESP_FLAG_WIDE_CAPABLE) | ||
2373 | spi_max_width(tp->starget) = 1; | ||
2374 | else | ||
2375 | spi_max_width(tp->starget) = 0; | ||
2376 | |||
2377 | return 0; | ||
2378 | } | ||
2379 | |||
2380 | static int esp_slave_configure(struct scsi_device *dev) | ||
2381 | { | ||
2382 | struct esp *esp = host_to_esp(dev->host); | ||
2383 | struct esp_target_data *tp = &esp->target[dev->id]; | ||
2384 | int goal_tags, queue_depth; | ||
2385 | |||
2386 | goal_tags = 0; | ||
2387 | |||
2388 | if (dev->tagged_supported) { | ||
2389 | /* XXX make this configurable somehow XXX */ | ||
2390 | goal_tags = ESP_DEFAULT_TAGS; | ||
2391 | |||
2392 | if (goal_tags > ESP_MAX_TAG) | ||
2393 | goal_tags = ESP_MAX_TAG; | ||
2394 | } | ||
2395 | |||
2396 | queue_depth = goal_tags; | ||
2397 | if (queue_depth < dev->host->cmd_per_lun) | ||
2398 | queue_depth = dev->host->cmd_per_lun; | ||
2399 | |||
2400 | if (goal_tags) { | ||
2401 | scsi_set_tag_type(dev, MSG_ORDERED_TAG); | ||
2402 | scsi_activate_tcq(dev, queue_depth); | ||
2403 | } else { | ||
2404 | scsi_deactivate_tcq(dev, queue_depth); | ||
2405 | } | ||
2406 | tp->flags |= ESP_TGT_DISCONNECT; | ||
2407 | |||
2408 | if (!spi_initial_dv(dev->sdev_target)) | ||
2409 | spi_dv_device(dev); | ||
2410 | |||
2411 | return 0; | ||
2412 | } | ||
2413 | |||
2414 | static void esp_slave_destroy(struct scsi_device *dev) | ||
2415 | { | ||
2416 | struct esp_lun_data *lp = dev->hostdata; | ||
2417 | |||
2418 | kfree(lp); | ||
2419 | dev->hostdata = NULL; | ||
2420 | } | ||
2421 | |||
2422 | static int esp_eh_abort_handler(struct scsi_cmnd *cmd) | ||
2423 | { | ||
2424 | struct esp *esp = host_to_esp(cmd->device->host); | ||
2425 | struct esp_cmd_entry *ent, *tmp; | ||
2426 | struct completion eh_done; | ||
2427 | unsigned long flags; | ||
2428 | |||
2429 | /* XXX This helps a lot with debugging but might be a bit | ||
2430 | * XXX much for the final driver. | ||
2431 | */ | ||
2432 | spin_lock_irqsave(esp->host->host_lock, flags); | ||
2433 | printk(KERN_ERR PFX "esp%d: Aborting command [%p:%02x]\n", | ||
2434 | esp->host->unique_id, cmd, cmd->cmnd[0]); | ||
2435 | ent = esp->active_cmd; | ||
2436 | if (ent) | ||
2437 | printk(KERN_ERR PFX "esp%d: Current command [%p:%02x]\n", | ||
2438 | esp->host->unique_id, ent->cmd, ent->cmd->cmnd[0]); | ||
2439 | list_for_each_entry(ent, &esp->queued_cmds, list) { | ||
2440 | printk(KERN_ERR PFX "esp%d: Queued command [%p:%02x]\n", | ||
2441 | esp->host->unique_id, ent->cmd, ent->cmd->cmnd[0]); | ||
2442 | } | ||
2443 | list_for_each_entry(ent, &esp->active_cmds, list) { | ||
2444 | printk(KERN_ERR PFX "esp%d: Active command [%p:%02x]\n", | ||
2445 | esp->host->unique_id, ent->cmd, ent->cmd->cmnd[0]); | ||
2446 | } | ||
2447 | esp_dump_cmd_log(esp); | ||
2448 | spin_unlock_irqrestore(esp->host->host_lock, flags); | ||
2449 | |||
2450 | spin_lock_irqsave(esp->host->host_lock, flags); | ||
2451 | |||
2452 | ent = NULL; | ||
2453 | list_for_each_entry(tmp, &esp->queued_cmds, list) { | ||
2454 | if (tmp->cmd == cmd) { | ||
2455 | ent = tmp; | ||
2456 | break; | ||
2457 | } | ||
2458 | } | ||
2459 | |||
2460 | if (ent) { | ||
2461 | /* Easiest case, we didn't even issue the command | ||
2462 | * yet so it is trivial to abort. | ||
2463 | */ | ||
2464 | list_del(&ent->list); | ||
2465 | |||
2466 | cmd->result = DID_ABORT << 16; | ||
2467 | cmd->scsi_done(cmd); | ||
2468 | |||
2469 | esp_put_ent(esp, ent); | ||
2470 | |||
2471 | goto out_success; | ||
2472 | } | ||
2473 | |||
2474 | init_completion(&eh_done); | ||
2475 | |||
2476 | ent = esp->active_cmd; | ||
2477 | if (ent && ent->cmd == cmd) { | ||
2478 | /* Command is the currently active command on | ||
2479 | * the bus. If we already have an output message | ||
2480 | * pending, no dice. | ||
2481 | */ | ||
2482 | if (esp->msg_out_len) | ||
2483 | goto out_failure; | ||
2484 | |||
2485 | /* Send out an abort, encouraging the target to | ||
2486 | * go to MSGOUT phase by asserting ATN. | ||
2487 | */ | ||
2488 | esp->msg_out[0] = ABORT_TASK_SET; | ||
2489 | esp->msg_out_len = 1; | ||
2490 | ent->eh_done = &eh_done; | ||
2491 | |||
2492 | scsi_esp_cmd(esp, ESP_CMD_SATN); | ||
2493 | } else { | ||
2494 | /* The command is disconnected. This is not easy to | ||
2495 | * abort. For now we fail and let the scsi error | ||
2496 | * handling layer go try a scsi bus reset or host | ||
2497 | * reset. | ||
2498 | * | ||
2499 | * What we could do is put together a scsi command | ||
2500 | * solely for the purpose of sending an abort message | ||
2501 | * to the target. Coming up with all the code to | ||
2502 | * cook up scsi commands, special case them everywhere, | ||
2503 | * etc. is for questionable gain and it would be better | ||
2504 | * if the generic scsi error handling layer could do at | ||
2505 | * least some of that for us. | ||
2506 | * | ||
2507 | * Anyways this is an area for potential future improvement | ||
2508 | * in this driver. | ||
2509 | */ | ||
2510 | goto out_failure; | ||
2511 | } | ||
2512 | |||
2513 | spin_unlock_irqrestore(esp->host->host_lock, flags); | ||
2514 | |||
2515 | if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) { | ||
2516 | spin_lock_irqsave(esp->host->host_lock, flags); | ||
2517 | ent->eh_done = NULL; | ||
2518 | spin_unlock_irqrestore(esp->host->host_lock, flags); | ||
2519 | |||
2520 | return FAILED; | ||
2521 | } | ||
2522 | |||
2523 | return SUCCESS; | ||
2524 | |||
2525 | out_success: | ||
2526 | spin_unlock_irqrestore(esp->host->host_lock, flags); | ||
2527 | return SUCCESS; | ||
2528 | |||
2529 | out_failure: | ||
2530 | /* XXX This might be a good location to set ESP_TGT_BROKEN | ||
2531 | * XXX since we know which target/lun in particular is | ||
2532 | * XXX causing trouble. | ||
2533 | */ | ||
2534 | spin_unlock_irqrestore(esp->host->host_lock, flags); | ||
2535 | return FAILED; | ||
2536 | } | ||
2537 | |||
2538 | static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd) | ||
2539 | { | ||
2540 | struct esp *esp = host_to_esp(cmd->device->host); | ||
2541 | struct completion eh_reset; | ||
2542 | unsigned long flags; | ||
2543 | |||
2544 | init_completion(&eh_reset); | ||
2545 | |||
2546 | spin_lock_irqsave(esp->host->host_lock, flags); | ||
2547 | |||
2548 | esp->eh_reset = &eh_reset; | ||
2549 | |||
2550 | /* XXX This is too simple... We should add lots of | ||
2551 | * XXX checks here so that if we find that the chip is | ||
2552 | * XXX very wedged we return failure immediately so | ||
2553 | * XXX that we can perform a full chip reset. | ||
2554 | */ | ||
2555 | esp->flags |= ESP_FLAG_RESETTING; | ||
2556 | scsi_esp_cmd(esp, ESP_CMD_RS); | ||
2557 | |||
2558 | spin_unlock_irqrestore(esp->host->host_lock, flags); | ||
2559 | |||
2560 | ssleep(esp_bus_reset_settle); | ||
2561 | |||
2562 | if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) { | ||
2563 | spin_lock_irqsave(esp->host->host_lock, flags); | ||
2564 | esp->eh_reset = NULL; | ||
2565 | spin_unlock_irqrestore(esp->host->host_lock, flags); | ||
2566 | |||
2567 | return FAILED; | ||
2568 | } | ||
2569 | |||
2570 | return SUCCESS; | ||
2571 | } | ||
2572 | |||
2573 | /* All bets are off, reset the entire device. */ | ||
2574 | static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd) | ||
2575 | { | ||
2576 | struct esp *esp = host_to_esp(cmd->device->host); | ||
2577 | unsigned long flags; | ||
2578 | |||
2579 | spin_lock_irqsave(esp->host->host_lock, flags); | ||
2580 | esp_bootup_reset(esp); | ||
2581 | esp_reset_cleanup(esp); | ||
2582 | spin_unlock_irqrestore(esp->host->host_lock, flags); | ||
2583 | |||
2584 | ssleep(esp_bus_reset_settle); | ||
2585 | |||
2586 | return SUCCESS; | ||
2587 | } | ||
2588 | |||
2589 | static const char *esp_info(struct Scsi_Host *host) | ||
2590 | { | ||
2591 | return "esp"; | ||
2592 | } | ||
2593 | |||
2594 | struct scsi_host_template scsi_esp_template = { | ||
2595 | .module = THIS_MODULE, | ||
2596 | .name = "esp", | ||
2597 | .info = esp_info, | ||
2598 | .queuecommand = esp_queuecommand, | ||
2599 | .slave_alloc = esp_slave_alloc, | ||
2600 | .slave_configure = esp_slave_configure, | ||
2601 | .slave_destroy = esp_slave_destroy, | ||
2602 | .eh_abort_handler = esp_eh_abort_handler, | ||
2603 | .eh_bus_reset_handler = esp_eh_bus_reset_handler, | ||
2604 | .eh_host_reset_handler = esp_eh_host_reset_handler, | ||
2605 | .can_queue = 7, | ||
2606 | .this_id = 7, | ||
2607 | .sg_tablesize = SG_ALL, | ||
2608 | .use_clustering = ENABLE_CLUSTERING, | ||
2609 | .max_sectors = 0xffff, | ||
2610 | .skip_settle_delay = 1, | ||
2611 | }; | ||
2612 | EXPORT_SYMBOL(scsi_esp_template); | ||
2613 | |||
2614 | static void esp_get_signalling(struct Scsi_Host *host) | ||
2615 | { | ||
2616 | struct esp *esp = host_to_esp(host); | ||
2617 | enum spi_signal_type type; | ||
2618 | |||
2619 | if (esp->flags & ESP_FLAG_DIFFERENTIAL) | ||
2620 | type = SPI_SIGNAL_HVD; | ||
2621 | else | ||
2622 | type = SPI_SIGNAL_SE; | ||
2623 | |||
2624 | spi_signalling(host) = type; | ||
2625 | } | ||
2626 | |||
2627 | static void esp_set_offset(struct scsi_target *target, int offset) | ||
2628 | { | ||
2629 | struct Scsi_Host *host = dev_to_shost(target->dev.parent); | ||
2630 | struct esp *esp = host_to_esp(host); | ||
2631 | struct esp_target_data *tp = &esp->target[target->id]; | ||
2632 | |||
2633 | tp->nego_goal_offset = offset; | ||
2634 | tp->flags |= ESP_TGT_CHECK_NEGO; | ||
2635 | } | ||
2636 | |||
2637 | static void esp_set_period(struct scsi_target *target, int period) | ||
2638 | { | ||
2639 | struct Scsi_Host *host = dev_to_shost(target->dev.parent); | ||
2640 | struct esp *esp = host_to_esp(host); | ||
2641 | struct esp_target_data *tp = &esp->target[target->id]; | ||
2642 | |||
2643 | tp->nego_goal_period = period; | ||
2644 | tp->flags |= ESP_TGT_CHECK_NEGO; | ||
2645 | } | ||
2646 | |||
2647 | static void esp_set_width(struct scsi_target *target, int width) | ||
2648 | { | ||
2649 | struct Scsi_Host *host = dev_to_shost(target->dev.parent); | ||
2650 | struct esp *esp = host_to_esp(host); | ||
2651 | struct esp_target_data *tp = &esp->target[target->id]; | ||
2652 | |||
2653 | tp->nego_goal_width = (width ? 1 : 0); | ||
2654 | tp->flags |= ESP_TGT_CHECK_NEGO; | ||
2655 | } | ||
2656 | |||
2657 | static struct spi_function_template esp_transport_ops = { | ||
2658 | .set_offset = esp_set_offset, | ||
2659 | .show_offset = 1, | ||
2660 | .set_period = esp_set_period, | ||
2661 | .show_period = 1, | ||
2662 | .set_width = esp_set_width, | ||
2663 | .show_width = 1, | ||
2664 | .get_signalling = esp_get_signalling, | ||
2665 | }; | ||
2666 | |||
2667 | static int __init esp_init(void) | ||
2668 | { | ||
2669 | BUILD_BUG_ON(sizeof(struct scsi_pointer) < | ||
2670 | sizeof(struct esp_cmd_priv)); | ||
2671 | |||
2672 | esp_transport_template = spi_attach_transport(&esp_transport_ops); | ||
2673 | if (!esp_transport_template) | ||
2674 | return -ENODEV; | ||
2675 | |||
2676 | return 0; | ||
2677 | } | ||
2678 | |||
2679 | static void __exit esp_exit(void) | ||
2680 | { | ||
2681 | spi_release_transport(esp_transport_template); | ||
2682 | } | ||
2683 | |||
2684 | MODULE_DESCRIPTION("ESP SCSI driver core"); | ||
2685 | MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); | ||
2686 | MODULE_LICENSE("GPL"); | ||
2687 | MODULE_VERSION(DRV_VERSION); | ||
2688 | |||
2689 | module_param(esp_bus_reset_settle, int, 0); | ||
2690 | MODULE_PARM_DESC(esp_bus_reset_settle, | ||
2691 | "ESP scsi bus reset delay in seconds"); | ||
2692 | |||
2693 | module_param(esp_debug, int, 0); | ||
2694 | MODULE_PARM_DESC(esp_debug, | ||
2695 | "ESP bitmapped debugging message enable value:\n" | ||
2696 | " 0x00000001 Log interrupt events\n" | ||
2697 | " 0x00000002 Log scsi commands\n" | ||
2698 | " 0x00000004 Log resets\n" | ||
2699 | " 0x00000008 Log message in events\n" | ||
2700 | " 0x00000010 Log message out events\n" | ||
2701 | " 0x00000020 Log command completion\n" | ||
2702 | " 0x00000040 Log disconnects\n" | ||
2703 | " 0x00000080 Log data start\n" | ||
2704 | " 0x00000100 Log data done\n" | ||
2705 | " 0x00000200 Log reconnects\n" | ||
2706 | " 0x00000400 Log auto-sense data\n" | ||
2707 | ); | ||
2708 | |||
2709 | module_init(esp_init); | ||
2710 | module_exit(esp_exit); | ||
diff --git a/drivers/scsi/esp_scsi.h b/drivers/scsi/esp_scsi.h new file mode 100644 index 000000000000..8d4a6690401f --- /dev/null +++ b/drivers/scsi/esp_scsi.h | |||
@@ -0,0 +1,560 @@ | |||
1 | /* esp_scsi.h: Defines and structures for the ESP drier. | ||
2 | * | ||
3 | * Copyright (C) 2007 David S. Miller (davem@davemloft.net) | ||
4 | */ | ||
5 | |||
6 | #ifndef _ESP_SCSI_H | ||
7 | #define _ESP_SCSI_H | ||
8 | |||
9 | /* Access Description Offset */ | ||
10 | #define ESP_TCLOW 0x00UL /* rw Low bits transfer count 0x00 */ | ||
11 | #define ESP_TCMED 0x01UL /* rw Mid bits transfer count 0x04 */ | ||
12 | #define ESP_FDATA 0x02UL /* rw FIFO data bits 0x08 */ | ||
13 | #define ESP_CMD 0x03UL /* rw SCSI command bits 0x0c */ | ||
14 | #define ESP_STATUS 0x04UL /* ro ESP status register 0x10 */ | ||
15 | #define ESP_BUSID ESP_STATUS /* wo BusID for sel/resel 0x10 */ | ||
16 | #define ESP_INTRPT 0x05UL /* ro Kind of interrupt 0x14 */ | ||
17 | #define ESP_TIMEO ESP_INTRPT /* wo Timeout for sel/resel 0x14 */ | ||
18 | #define ESP_SSTEP 0x06UL /* ro Sequence step register 0x18 */ | ||
19 | #define ESP_STP ESP_SSTEP /* wo Transfer period/sync 0x18 */ | ||
20 | #define ESP_FFLAGS 0x07UL /* ro Bits current FIFO info 0x1c */ | ||
21 | #define ESP_SOFF ESP_FFLAGS /* wo Sync offset 0x1c */ | ||
22 | #define ESP_CFG1 0x08UL /* rw First cfg register 0x20 */ | ||
23 | #define ESP_CFACT 0x09UL /* wo Clock conv factor 0x24 */ | ||
24 | #define ESP_STATUS2 ESP_CFACT /* ro HME status2 register 0x24 */ | ||
25 | #define ESP_CTEST 0x0aUL /* wo Chip test register 0x28 */ | ||
26 | #define ESP_CFG2 0x0bUL /* rw Second cfg register 0x2c */ | ||
27 | #define ESP_CFG3 0x0cUL /* rw Third cfg register 0x30 */ | ||
28 | #define ESP_TCHI 0x0eUL /* rw High bits transf count 0x38 */ | ||
29 | #define ESP_UID ESP_TCHI /* ro Unique ID code 0x38 */ | ||
30 | #define FAS_RLO ESP_TCHI /* rw HME extended counter 0x38 */ | ||
31 | #define ESP_FGRND 0x0fUL /* rw Data base for fifo 0x3c */ | ||
32 | #define FAS_RHI ESP_FGRND /* rw HME extended counter 0x3c */ | ||
33 | |||
34 | #define SBUS_ESP_REG_SIZE 0x40UL | ||
35 | |||
36 | /* Bitfield meanings for the above registers. */ | ||
37 | |||
38 | /* ESP config reg 1, read-write, found on all ESP chips */ | ||
39 | #define ESP_CONFIG1_ID 0x07 /* My BUS ID bits */ | ||
40 | #define ESP_CONFIG1_CHTEST 0x08 /* Enable ESP chip tests */ | ||
41 | #define ESP_CONFIG1_PENABLE 0x10 /* Enable parity checks */ | ||
42 | #define ESP_CONFIG1_PARTEST 0x20 /* Parity test mode enabled? */ | ||
43 | #define ESP_CONFIG1_SRRDISAB 0x40 /* Disable SCSI reset reports */ | ||
44 | #define ESP_CONFIG1_SLCABLE 0x80 /* Enable slow cable mode */ | ||
45 | |||
46 | /* ESP config reg 2, read-write, found only on esp100a+esp200+esp236 chips */ | ||
47 | #define ESP_CONFIG2_DMAPARITY 0x01 /* enable DMA Parity (200,236) */ | ||
48 | #define ESP_CONFIG2_REGPARITY 0x02 /* enable reg Parity (200,236) */ | ||
49 | #define ESP_CONFIG2_BADPARITY 0x04 /* Bad parity target abort */ | ||
50 | #define ESP_CONFIG2_SCSI2ENAB 0x08 /* Enable SCSI-2 features (tgtmode) */ | ||
51 | #define ESP_CONFIG2_HI 0x10 /* High Impedance DREQ ??? */ | ||
52 | #define ESP_CONFIG2_HMEFENAB 0x10 /* HME features enable */ | ||
53 | #define ESP_CONFIG2_BCM 0x20 /* Enable byte-ctrl (236) */ | ||
54 | #define ESP_CONFIG2_DISPINT 0x20 /* Disable pause irq (hme) */ | ||
55 | #define ESP_CONFIG2_FENAB 0x40 /* Enable features (fas100,216) */ | ||
56 | #define ESP_CONFIG2_SPL 0x40 /* Enable status-phase latch (236) */ | ||
57 | #define ESP_CONFIG2_MKDONE 0x40 /* HME magic feature */ | ||
58 | #define ESP_CONFIG2_HME32 0x80 /* HME 32 extended */ | ||
59 | #define ESP_CONFIG2_MAGIC 0xe0 /* Invalid bits... */ | ||
60 | |||
61 | /* ESP config register 3 read-write, found only esp236+fas236+fas100a+hme chips */ | ||
62 | #define ESP_CONFIG3_FCLOCK 0x01 /* FAST SCSI clock rate (esp100a/hme) */ | ||
63 | #define ESP_CONFIG3_TEM 0x01 /* Enable thresh-8 mode (esp/fas236) */ | ||
64 | #define ESP_CONFIG3_FAST 0x02 /* Enable FAST SCSI (esp100a/hme) */ | ||
65 | #define ESP_CONFIG3_ADMA 0x02 /* Enable alternate-dma (esp/fas236) */ | ||
66 | #define ESP_CONFIG3_TENB 0x04 /* group2 SCSI2 support (esp100a/hme) */ | ||
67 | #define ESP_CONFIG3_SRB 0x04 /* Save residual byte (esp/fas236) */ | ||
68 | #define ESP_CONFIG3_TMS 0x08 /* Three-byte msg's ok (esp100a/hme) */ | ||
69 | #define ESP_CONFIG3_FCLK 0x08 /* Fast SCSI clock rate (esp/fas236) */ | ||
70 | #define ESP_CONFIG3_IDMSG 0x10 /* ID message checking (esp100a/hme) */ | ||
71 | #define ESP_CONFIG3_FSCSI 0x10 /* Enable FAST SCSI (esp/fas236) */ | ||
72 | #define ESP_CONFIG3_GTM 0x20 /* group2 SCSI2 support (esp/fas236) */ | ||
73 | #define ESP_CONFIG3_IDBIT3 0x20 /* Bit 3 of HME SCSI-ID (hme) */ | ||
74 | #define ESP_CONFIG3_TBMS 0x40 /* Three-byte msg's ok (esp/fas236) */ | ||
75 | #define ESP_CONFIG3_EWIDE 0x40 /* Enable Wide-SCSI (hme) */ | ||
76 | #define ESP_CONFIG3_IMS 0x80 /* ID msg chk'ng (esp/fas236) */ | ||
77 | #define ESP_CONFIG3_OBPUSH 0x80 /* Push odd-byte to dma (hme) */ | ||
78 | |||
79 | /* ESP command register read-write */ | ||
80 | /* Group 1 commands: These may be sent at any point in time to the ESP | ||
81 | * chip. None of them can generate interrupts 'cept | ||
82 | * the "SCSI bus reset" command if you have not disabled | ||
83 | * SCSI reset interrupts in the config1 ESP register. | ||
84 | */ | ||
85 | #define ESP_CMD_NULL 0x00 /* Null command, ie. a nop */ | ||
86 | #define ESP_CMD_FLUSH 0x01 /* FIFO Flush */ | ||
87 | #define ESP_CMD_RC 0x02 /* Chip reset */ | ||
88 | #define ESP_CMD_RS 0x03 /* SCSI bus reset */ | ||
89 | |||
90 | /* Group 2 commands: ESP must be an initiator and connected to a target | ||
91 | * for these commands to work. | ||
92 | */ | ||
93 | #define ESP_CMD_TI 0x10 /* Transfer Information */ | ||
94 | #define ESP_CMD_ICCSEQ 0x11 /* Initiator cmd complete sequence */ | ||
95 | #define ESP_CMD_MOK 0x12 /* Message okie-dokie */ | ||
96 | #define ESP_CMD_TPAD 0x18 /* Transfer Pad */ | ||
97 | #define ESP_CMD_SATN 0x1a /* Set ATN */ | ||
98 | #define ESP_CMD_RATN 0x1b /* De-assert ATN */ | ||
99 | |||
100 | /* Group 3 commands: ESP must be in the MSGOUT or MSGIN state and be connected | ||
101 | * to a target as the initiator for these commands to work. | ||
102 | */ | ||
103 | #define ESP_CMD_SMSG 0x20 /* Send message */ | ||
104 | #define ESP_CMD_SSTAT 0x21 /* Send status */ | ||
105 | #define ESP_CMD_SDATA 0x22 /* Send data */ | ||
106 | #define ESP_CMD_DSEQ 0x23 /* Discontinue Sequence */ | ||
107 | #define ESP_CMD_TSEQ 0x24 /* Terminate Sequence */ | ||
108 | #define ESP_CMD_TCCSEQ 0x25 /* Target cmd cmplt sequence */ | ||
109 | #define ESP_CMD_DCNCT 0x27 /* Disconnect */ | ||
110 | #define ESP_CMD_RMSG 0x28 /* Receive Message */ | ||
111 | #define ESP_CMD_RCMD 0x29 /* Receive Command */ | ||
112 | #define ESP_CMD_RDATA 0x2a /* Receive Data */ | ||
113 | #define ESP_CMD_RCSEQ 0x2b /* Receive cmd sequence */ | ||
114 | |||
115 | /* Group 4 commands: The ESP must be in the disconnected state and must | ||
116 | * not be connected to any targets as initiator for | ||
117 | * these commands to work. | ||
118 | */ | ||
119 | #define ESP_CMD_RSEL 0x40 /* Reselect */ | ||
120 | #define ESP_CMD_SEL 0x41 /* Select w/o ATN */ | ||
121 | #define ESP_CMD_SELA 0x42 /* Select w/ATN */ | ||
122 | #define ESP_CMD_SELAS 0x43 /* Select w/ATN & STOP */ | ||
123 | #define ESP_CMD_ESEL 0x44 /* Enable selection */ | ||
124 | #define ESP_CMD_DSEL 0x45 /* Disable selections */ | ||
125 | #define ESP_CMD_SA3 0x46 /* Select w/ATN3 */ | ||
126 | #define ESP_CMD_RSEL3 0x47 /* Reselect3 */ | ||
127 | |||
128 | /* This bit enables the ESP's DMA on the SBus */ | ||
129 | #define ESP_CMD_DMA 0x80 /* Do DMA? */ | ||
130 | |||
131 | /* ESP status register read-only */ | ||
132 | #define ESP_STAT_PIO 0x01 /* IO phase bit */ | ||
133 | #define ESP_STAT_PCD 0x02 /* CD phase bit */ | ||
134 | #define ESP_STAT_PMSG 0x04 /* MSG phase bit */ | ||
135 | #define ESP_STAT_PMASK 0x07 /* Mask of phase bits */ | ||
136 | #define ESP_STAT_TDONE 0x08 /* Transfer Completed */ | ||
137 | #define ESP_STAT_TCNT 0x10 /* Transfer Counter Is Zero */ | ||
138 | #define ESP_STAT_PERR 0x20 /* Parity error */ | ||
139 | #define ESP_STAT_SPAM 0x40 /* Real bad error */ | ||
140 | /* This indicates the 'interrupt pending' condition on esp236, it is a reserved | ||
141 | * bit on other revs of the ESP. | ||
142 | */ | ||
143 | #define ESP_STAT_INTR 0x80 /* Interrupt */ | ||
144 | |||
145 | /* The status register can be masked with ESP_STAT_PMASK and compared | ||
146 | * with the following values to determine the current phase the ESP | ||
147 | * (at least thinks it) is in. For our purposes we also add our own | ||
148 | * software 'done' bit for our phase management engine. | ||
149 | */ | ||
150 | #define ESP_DOP (0) /* Data Out */ | ||
151 | #define ESP_DIP (ESP_STAT_PIO) /* Data In */ | ||
152 | #define ESP_CMDP (ESP_STAT_PCD) /* Command */ | ||
153 | #define ESP_STATP (ESP_STAT_PCD|ESP_STAT_PIO) /* Status */ | ||
154 | #define ESP_MOP (ESP_STAT_PMSG|ESP_STAT_PCD) /* Message Out */ | ||
155 | #define ESP_MIP (ESP_STAT_PMSG|ESP_STAT_PCD|ESP_STAT_PIO) /* Message In */ | ||
156 | |||
157 | /* HME only: status 2 register */ | ||
158 | #define ESP_STAT2_SCHBIT 0x01 /* Upper bits 3-7 of sstep enabled */ | ||
159 | #define ESP_STAT2_FFLAGS 0x02 /* The fifo flags are now latched */ | ||
160 | #define ESP_STAT2_XCNT 0x04 /* The transfer counter is latched */ | ||
161 | #define ESP_STAT2_CREGA 0x08 /* The command reg is active now */ | ||
162 | #define ESP_STAT2_WIDE 0x10 /* Interface on this adapter is wide */ | ||
163 | #define ESP_STAT2_F1BYTE 0x20 /* There is one byte at top of fifo */ | ||
164 | #define ESP_STAT2_FMSB 0x40 /* Next byte in fifo is most significant */ | ||
165 | #define ESP_STAT2_FEMPTY 0x80 /* FIFO is empty */ | ||
166 | |||
167 | /* ESP interrupt register read-only */ | ||
168 | #define ESP_INTR_S 0x01 /* Select w/o ATN */ | ||
169 | #define ESP_INTR_SATN 0x02 /* Select w/ATN */ | ||
170 | #define ESP_INTR_RSEL 0x04 /* Reselected */ | ||
171 | #define ESP_INTR_FDONE 0x08 /* Function done */ | ||
172 | #define ESP_INTR_BSERV 0x10 /* Bus service */ | ||
173 | #define ESP_INTR_DC 0x20 /* Disconnect */ | ||
174 | #define ESP_INTR_IC 0x40 /* Illegal command given */ | ||
175 | #define ESP_INTR_SR 0x80 /* SCSI bus reset detected */ | ||
176 | |||
177 | /* ESP sequence step register read-only */ | ||
178 | #define ESP_STEP_VBITS 0x07 /* Valid bits */ | ||
179 | #define ESP_STEP_ASEL 0x00 /* Selection&Arbitrate cmplt */ | ||
180 | #define ESP_STEP_SID 0x01 /* One msg byte sent */ | ||
181 | #define ESP_STEP_NCMD 0x02 /* Was not in command phase */ | ||
182 | #define ESP_STEP_PPC 0x03 /* Early phase chg caused cmnd | ||
183 | * bytes to be lost | ||
184 | */ | ||
185 | #define ESP_STEP_FINI4 0x04 /* Command was sent ok */ | ||
186 | |||
187 | /* Ho hum, some ESP's set the step register to this as well... */ | ||
188 | #define ESP_STEP_FINI5 0x05 | ||
189 | #define ESP_STEP_FINI6 0x06 | ||
190 | #define ESP_STEP_FINI7 0x07 | ||
191 | |||
192 | /* ESP chip-test register read-write */ | ||
193 | #define ESP_TEST_TARG 0x01 /* Target test mode */ | ||
194 | #define ESP_TEST_INI 0x02 /* Initiator test mode */ | ||
195 | #define ESP_TEST_TS 0x04 /* Tristate test mode */ | ||
196 | |||
197 | /* ESP unique ID register read-only, found on fas236+fas100a only */ | ||
198 | #define ESP_UID_F100A 0x00 /* ESP FAS100A */ | ||
199 | #define ESP_UID_F236 0x02 /* ESP FAS236 */ | ||
200 | #define ESP_UID_REV 0x07 /* ESP revision */ | ||
201 | #define ESP_UID_FAM 0xf8 /* ESP family */ | ||
202 | |||
203 | /* ESP fifo flags register read-only */ | ||
204 | /* Note that the following implies a 16 byte FIFO on the ESP. */ | ||
205 | #define ESP_FF_FBYTES 0x1f /* Num bytes in FIFO */ | ||
206 | #define ESP_FF_ONOTZERO 0x20 /* offset ctr not zero (esp100) */ | ||
207 | #define ESP_FF_SSTEP 0xe0 /* Sequence step */ | ||
208 | |||
209 | /* ESP clock conversion factor register write-only */ | ||
210 | #define ESP_CCF_F0 0x00 /* 35.01MHz - 40MHz */ | ||
211 | #define ESP_CCF_NEVER 0x01 /* Set it to this and die */ | ||
212 | #define ESP_CCF_F2 0x02 /* 10MHz */ | ||
213 | #define ESP_CCF_F3 0x03 /* 10.01MHz - 15MHz */ | ||
214 | #define ESP_CCF_F4 0x04 /* 15.01MHz - 20MHz */ | ||
215 | #define ESP_CCF_F5 0x05 /* 20.01MHz - 25MHz */ | ||
216 | #define ESP_CCF_F6 0x06 /* 25.01MHz - 30MHz */ | ||
217 | #define ESP_CCF_F7 0x07 /* 30.01MHz - 35MHz */ | ||
218 | |||
219 | /* HME only... */ | ||
220 | #define ESP_BUSID_RESELID 0x10 | ||
221 | #define ESP_BUSID_CTR32BIT 0x40 | ||
222 | |||
223 | #define ESP_BUS_TIMEOUT 250 /* In milli-seconds */ | ||
224 | #define ESP_TIMEO_CONST 8192 | ||
225 | #define ESP_NEG_DEFP(mhz, cfact) \ | ||
226 | ((ESP_BUS_TIMEOUT * ((mhz) / 1000)) / (8192 * (cfact))) | ||
227 | #define ESP_MHZ_TO_CYCLE(mhertz) ((1000000000) / ((mhertz) / 1000)) | ||
228 | #define ESP_TICK(ccf, cycle) ((7682 * (ccf) * (cycle) / 1000)) | ||
229 | |||
230 | /* For slow to medium speed input clock rates we shoot for 5mb/s, but for high | ||
231 | * input clock rates we try to do 10mb/s although I don't think a transfer can | ||
232 | * even run that fast with an ESP even with DMA2 scatter gather pipelining. | ||
233 | */ | ||
234 | #define SYNC_DEFP_SLOW 0x32 /* 5mb/s */ | ||
235 | #define SYNC_DEFP_FAST 0x19 /* 10mb/s */ | ||
236 | |||
237 | struct esp_cmd_priv { | ||
238 | union { | ||
239 | dma_addr_t dma_addr; | ||
240 | int num_sg; | ||
241 | } u; | ||
242 | |||
243 | unsigned int cur_residue; | ||
244 | struct scatterlist *cur_sg; | ||
245 | unsigned int tot_residue; | ||
246 | }; | ||
247 | #define ESP_CMD_PRIV(CMD) ((struct esp_cmd_priv *)(&(CMD)->SCp)) | ||
248 | |||
249 | enum esp_rev { | ||
250 | ESP100 = 0x00, /* NCR53C90 - very broken */ | ||
251 | ESP100A = 0x01, /* NCR53C90A */ | ||
252 | ESP236 = 0x02, | ||
253 | FAS236 = 0x03, | ||
254 | FAS100A = 0x04, | ||
255 | FAST = 0x05, | ||
256 | FASHME = 0x06, | ||
257 | }; | ||
258 | |||
259 | struct esp_cmd_entry { | ||
260 | struct list_head list; | ||
261 | |||
262 | struct scsi_cmnd *cmd; | ||
263 | |||
264 | unsigned int saved_cur_residue; | ||
265 | struct scatterlist *saved_cur_sg; | ||
266 | unsigned int saved_tot_residue; | ||
267 | |||
268 | u8 flags; | ||
269 | #define ESP_CMD_FLAG_WRITE 0x01 /* DMA is a write */ | ||
270 | #define ESP_CMD_FLAG_ABORT 0x02 /* being aborted */ | ||
271 | #define ESP_CMD_FLAG_AUTOSENSE 0x04 /* Doing automatic REQUEST_SENSE */ | ||
272 | |||
273 | u8 tag[2]; | ||
274 | |||
275 | u8 status; | ||
276 | u8 message; | ||
277 | |||
278 | unsigned char *sense_ptr; | ||
279 | unsigned char *saved_sense_ptr; | ||
280 | dma_addr_t sense_dma; | ||
281 | |||
282 | struct completion *eh_done; | ||
283 | }; | ||
284 | |||
285 | /* XXX make this configurable somehow XXX */ | ||
286 | #define ESP_DEFAULT_TAGS 16 | ||
287 | |||
288 | #define ESP_MAX_TARGET 16 | ||
289 | #define ESP_MAX_LUN 8 | ||
290 | #define ESP_MAX_TAG 256 | ||
291 | |||
292 | struct esp_lun_data { | ||
293 | struct esp_cmd_entry *non_tagged_cmd; | ||
294 | int num_tagged; | ||
295 | int hold; | ||
296 | struct esp_cmd_entry *tagged_cmds[ESP_MAX_TAG]; | ||
297 | }; | ||
298 | |||
299 | struct esp_target_data { | ||
300 | /* These are the ESP_STP, ESP_SOFF, and ESP_CFG3 register values which | ||
301 | * match the currently negotiated settings for this target. The SCSI | ||
302 | * protocol values are maintained in spi_{offset,period,wide}(starget). | ||
303 | */ | ||
304 | u8 esp_period; | ||
305 | u8 esp_offset; | ||
306 | u8 esp_config3; | ||
307 | |||
308 | u8 flags; | ||
309 | #define ESP_TGT_WIDE 0x01 | ||
310 | #define ESP_TGT_DISCONNECT 0x02 | ||
311 | #define ESP_TGT_NEGO_WIDE 0x04 | ||
312 | #define ESP_TGT_NEGO_SYNC 0x08 | ||
313 | #define ESP_TGT_CHECK_NEGO 0x40 | ||
314 | #define ESP_TGT_BROKEN 0x80 | ||
315 | |||
316 | /* When ESP_TGT_CHECK_NEGO is set, on the next scsi command to this | ||
317 | * device we will try to negotiate the following parameters. | ||
318 | */ | ||
319 | u8 nego_goal_period; | ||
320 | u8 nego_goal_offset; | ||
321 | u8 nego_goal_width; | ||
322 | u8 nego_goal_tags; | ||
323 | |||
324 | struct scsi_target *starget; | ||
325 | }; | ||
326 | |||
327 | struct esp_event_ent { | ||
328 | u8 type; | ||
329 | #define ESP_EVENT_TYPE_EVENT 0x01 | ||
330 | #define ESP_EVENT_TYPE_CMD 0x02 | ||
331 | u8 val; | ||
332 | |||
333 | u8 sreg; | ||
334 | u8 seqreg; | ||
335 | u8 sreg2; | ||
336 | u8 ireg; | ||
337 | u8 select_state; | ||
338 | u8 event; | ||
339 | u8 __pad; | ||
340 | }; | ||
341 | |||
342 | struct esp; | ||
343 | struct esp_driver_ops { | ||
344 | /* Read and write the ESP 8-bit registers. On some | ||
345 | * applications of the ESP chip the registers are at 4-byte | ||
346 | * instead of 1-byte intervals. | ||
347 | */ | ||
348 | void (*esp_write8)(struct esp *esp, u8 val, unsigned long reg); | ||
349 | u8 (*esp_read8)(struct esp *esp, unsigned long reg); | ||
350 | |||
351 | /* Map and unmap DMA memory. Eventually the driver will be | ||
352 | * converted to the generic DMA API as soon as SBUS is able to | ||
353 | * cope with that. At such time we can remove this. | ||
354 | */ | ||
355 | dma_addr_t (*map_single)(struct esp *esp, void *buf, | ||
356 | size_t sz, int dir); | ||
357 | int (*map_sg)(struct esp *esp, struct scatterlist *sg, | ||
358 | int num_sg, int dir); | ||
359 | void (*unmap_single)(struct esp *esp, dma_addr_t addr, | ||
360 | size_t sz, int dir); | ||
361 | void (*unmap_sg)(struct esp *esp, struct scatterlist *sg, | ||
362 | int num_sg, int dir); | ||
363 | |||
364 | /* Return non-zero if there is an IRQ pending. Usually this | ||
365 | * status bit lives in the DMA controller sitting in front of | ||
366 | * the ESP. This has to be accurate or else the ESP interrupt | ||
367 | * handler will not run. | ||
368 | */ | ||
369 | int (*irq_pending)(struct esp *esp); | ||
370 | |||
371 | /* Reset the DMA engine entirely. On return, ESP interrupts | ||
372 | * should be enabled. Often the interrupt enabling is | ||
373 | * controlled in the DMA engine. | ||
374 | */ | ||
375 | void (*reset_dma)(struct esp *esp); | ||
376 | |||
377 | /* Drain any pending DMA in the DMA engine after a transfer. | ||
378 | * This is for writes to memory. | ||
379 | */ | ||
380 | void (*dma_drain)(struct esp *esp); | ||
381 | |||
382 | /* Invalidate the DMA engine after a DMA transfer. */ | ||
383 | void (*dma_invalidate)(struct esp *esp); | ||
384 | |||
385 | /* Setup an ESP command that will use a DMA transfer. | ||
386 | * The 'esp_count' specifies what transfer length should be | ||
387 | * programmed into the ESP transfer counter registers, whereas | ||
388 | * the 'dma_count' is the length that should be programmed into | ||
389 | * the DMA controller. Usually they are the same. If 'write' | ||
390 | * is non-zero, this transfer is a write into memory. 'cmd' | ||
391 | * holds the ESP command that should be issued by calling | ||
392 | * scsi_esp_cmd() at the appropriate time while programming | ||
393 | * the DMA hardware. | ||
394 | */ | ||
395 | void (*send_dma_cmd)(struct esp *esp, u32 dma_addr, u32 esp_count, | ||
396 | u32 dma_count, int write, u8 cmd); | ||
397 | |||
398 | /* Return non-zero if the DMA engine is reporting an error | ||
399 | * currently. | ||
400 | */ | ||
401 | int (*dma_error)(struct esp *esp); | ||
402 | }; | ||
403 | |||
404 | #define ESP_MAX_MSG_SZ 8 | ||
405 | #define ESP_EVENT_LOG_SZ 32 | ||
406 | |||
407 | #define ESP_QUICKIRQ_LIMIT 100 | ||
408 | #define ESP_RESELECT_TAG_LIMIT 2500 | ||
409 | |||
410 | struct esp { | ||
411 | void __iomem *regs; | ||
412 | void __iomem *dma_regs; | ||
413 | |||
414 | const struct esp_driver_ops *ops; | ||
415 | |||
416 | struct Scsi_Host *host; | ||
417 | void *dev; | ||
418 | |||
419 | struct esp_cmd_entry *active_cmd; | ||
420 | |||
421 | struct list_head queued_cmds; | ||
422 | struct list_head active_cmds; | ||
423 | |||
424 | u8 *command_block; | ||
425 | dma_addr_t command_block_dma; | ||
426 | |||
427 | unsigned int data_dma_len; | ||
428 | |||
429 | /* The following are used to determine the cause of an IRQ. Upon every | ||
430 | * IRQ entry we synchronize these with the hardware registers. | ||
431 | */ | ||
432 | u8 sreg; | ||
433 | u8 seqreg; | ||
434 | u8 sreg2; | ||
435 | u8 ireg; | ||
436 | |||
437 | u32 prev_hme_dmacsr; | ||
438 | u8 prev_soff; | ||
439 | u8 prev_stp; | ||
440 | u8 prev_cfg3; | ||
441 | u8 __pad; | ||
442 | |||
443 | struct list_head esp_cmd_pool; | ||
444 | |||
445 | struct esp_target_data target[ESP_MAX_TARGET]; | ||
446 | |||
447 | int fifo_cnt; | ||
448 | u8 fifo[16]; | ||
449 | |||
450 | struct esp_event_ent esp_event_log[ESP_EVENT_LOG_SZ]; | ||
451 | int esp_event_cur; | ||
452 | |||
453 | u8 msg_out[ESP_MAX_MSG_SZ]; | ||
454 | int msg_out_len; | ||
455 | |||
456 | u8 msg_in[ESP_MAX_MSG_SZ]; | ||
457 | int msg_in_len; | ||
458 | |||
459 | u8 bursts; | ||
460 | u8 config1; | ||
461 | u8 config2; | ||
462 | |||
463 | u8 scsi_id; | ||
464 | u32 scsi_id_mask; | ||
465 | |||
466 | enum esp_rev rev; | ||
467 | |||
468 | u32 flags; | ||
469 | #define ESP_FLAG_DIFFERENTIAL 0x00000001 | ||
470 | #define ESP_FLAG_RESETTING 0x00000002 | ||
471 | #define ESP_FLAG_DOING_SLOWCMD 0x00000004 | ||
472 | #define ESP_FLAG_WIDE_CAPABLE 0x00000008 | ||
473 | #define ESP_FLAG_QUICKIRQ_CHECK 0x00000010 | ||
474 | |||
475 | u8 select_state; | ||
476 | #define ESP_SELECT_NONE 0x00 /* Not selecting */ | ||
477 | #define ESP_SELECT_BASIC 0x01 /* Select w/o MSGOUT phase */ | ||
478 | #define ESP_SELECT_MSGOUT 0x02 /* Select with MSGOUT */ | ||
479 | |||
480 | /* When we are not selecting, we are expecting an event. */ | ||
481 | u8 event; | ||
482 | #define ESP_EVENT_NONE 0x00 | ||
483 | #define ESP_EVENT_CMD_START 0x01 | ||
484 | #define ESP_EVENT_CMD_DONE 0x02 | ||
485 | #define ESP_EVENT_DATA_IN 0x03 | ||
486 | #define ESP_EVENT_DATA_OUT 0x04 | ||
487 | #define ESP_EVENT_DATA_DONE 0x05 | ||
488 | #define ESP_EVENT_MSGIN 0x06 | ||
489 | #define ESP_EVENT_MSGIN_MORE 0x07 | ||
490 | #define ESP_EVENT_MSGIN_DONE 0x08 | ||
491 | #define ESP_EVENT_MSGOUT 0x09 | ||
492 | #define ESP_EVENT_MSGOUT_DONE 0x0a | ||
493 | #define ESP_EVENT_STATUS 0x0b | ||
494 | #define ESP_EVENT_FREE_BUS 0x0c | ||
495 | #define ESP_EVENT_CHECK_PHASE 0x0d | ||
496 | #define ESP_EVENT_RESET 0x10 | ||
497 | |||
498 | /* Probed in esp_get_clock_params() */ | ||
499 | u32 cfact; | ||
500 | u32 cfreq; | ||
501 | u32 ccycle; | ||
502 | u32 ctick; | ||
503 | u32 neg_defp; | ||
504 | u32 sync_defp; | ||
505 | |||
506 | /* Computed in esp_reset_esp() */ | ||
507 | u32 max_period; | ||
508 | u32 min_period; | ||
509 | u32 radelay; | ||
510 | |||
511 | /* Slow command state. */ | ||
512 | u8 *cmd_bytes_ptr; | ||
513 | int cmd_bytes_left; | ||
514 | |||
515 | struct completion *eh_reset; | ||
516 | |||
517 | struct sbus_dma *dma; | ||
518 | }; | ||
519 | |||
520 | #define host_to_esp(host) ((struct esp *)(host)->hostdata) | ||
521 | |||
522 | /* A front-end driver for the ESP chip should do the following in | ||
523 | * it's device probe routine: | ||
524 | * 1) Allocate the host and private area using scsi_host_alloc() | ||
525 | * with size 'sizeof(struct esp)'. The first argument to | ||
526 | * scsi_host_alloc() should be &scsi_esp_template. | ||
527 | * 2) Set host->max_id as appropriate. | ||
528 | * 3) Set esp->host to the scsi_host itself, and esp->dev | ||
529 | * to the device object pointer. | ||
530 | * 4) Hook up esp->ops to the front-end implementation. | ||
531 | * 5) If the ESP chip supports wide transfers, set ESP_FLAG_WIDE_CAPABLE | ||
532 | * in esp->flags. | ||
533 | * 6) Map the DMA and ESP chip registers. | ||
534 | * 7) DMA map the ESP command block, store the DMA address | ||
535 | * in esp->command_block_dma. | ||
536 | * 8) Register the scsi_esp_intr() interrupt handler. | ||
537 | * 9) Probe for and provide the following chip properties: | ||
538 | * esp->scsi_id (assign to esp->host->this_id too) | ||
539 | * esp->scsi_id_mask | ||
540 | * If ESP bus is differential, set ESP_FLAG_DIFFERENTIAL | ||
541 | * esp->cfreq | ||
542 | * DMA burst bit mask in esp->bursts, if necessary | ||
543 | * 10) Perform any actions necessary before the ESP device can | ||
544 | * be programmed for the first time. On some configs, for | ||
545 | * example, the DMA engine has to be reset before ESP can | ||
546 | * be programmed. | ||
547 | * 11) If necessary, call dev_set_drvdata() as needed. | ||
548 | * 12) Call scsi_esp_register() with prepared 'esp' structure | ||
549 | * and a device pointer if possible. | ||
550 | * 13) Check scsi_esp_register() return value, release all resources | ||
551 | * if an error was returned. | ||
552 | */ | ||
553 | extern struct scsi_host_template scsi_esp_template; | ||
554 | extern int scsi_esp_register(struct esp *, struct device *); | ||
555 | |||
556 | extern void scsi_esp_unregister(struct esp *); | ||
557 | extern irqreturn_t scsi_esp_intr(int, void *); | ||
558 | extern void scsi_esp_cmd(struct esp *, u8); | ||
559 | |||
560 | #endif /* !(_ESP_SCSI_H) */ | ||
diff --git a/drivers/scsi/sun_esp.c b/drivers/scsi/sun_esp.c new file mode 100644 index 000000000000..8c766bcd1095 --- /dev/null +++ b/drivers/scsi/sun_esp.c | |||
@@ -0,0 +1,634 @@ | |||
1 | /* sun_esp.c: ESP front-end for Sparc SBUS systems. | ||
2 | * | ||
3 | * Copyright (C) 2007 David S. Miller (davem@davemloft.net) | ||
4 | */ | ||
5 | |||
6 | #include <linux/kernel.h> | ||
7 | #include <linux/types.h> | ||
8 | #include <linux/module.h> | ||
9 | #include <linux/init.h> | ||
10 | |||
11 | #include <asm/irq.h> | ||
12 | #include <asm/io.h> | ||
13 | #include <asm/dma.h> | ||
14 | |||
15 | #include <asm/sbus.h> | ||
16 | |||
17 | #include <scsi/scsi_host.h> | ||
18 | |||
19 | #include "esp_scsi.h" | ||
20 | |||
21 | #define DRV_MODULE_NAME "sun_esp" | ||
22 | #define PFX DRV_MODULE_NAME ": " | ||
23 | #define DRV_VERSION "1.000" | ||
24 | #define DRV_MODULE_RELDATE "April 19, 2007" | ||
25 | |||
26 | #define dma_read32(REG) \ | ||
27 | sbus_readl(esp->dma_regs + (REG)) | ||
28 | #define dma_write32(VAL, REG) \ | ||
29 | sbus_writel((VAL), esp->dma_regs + (REG)) | ||
30 | |||
31 | static int __devinit esp_sbus_find_dma(struct esp *esp, struct sbus_dev *dma_sdev) | ||
32 | { | ||
33 | struct sbus_dev *sdev = esp->dev; | ||
34 | struct sbus_dma *dma; | ||
35 | |||
36 | if (dma_sdev != NULL) { | ||
37 | for_each_dvma(dma) { | ||
38 | if (dma->sdev == dma_sdev) | ||
39 | break; | ||
40 | } | ||
41 | } else { | ||
42 | for_each_dvma(dma) { | ||
43 | if (dma->sdev == NULL) | ||
44 | break; | ||
45 | |||
46 | /* If bus + slot are the same and it has the | ||
47 | * correct OBP name, it's ours. | ||
48 | */ | ||
49 | if (sdev->bus == dma->sdev->bus && | ||
50 | sdev->slot == dma->sdev->slot && | ||
51 | (!strcmp(dma->sdev->prom_name, "dma") || | ||
52 | !strcmp(dma->sdev->prom_name, "espdma"))) | ||
53 | break; | ||
54 | } | ||
55 | } | ||
56 | |||
57 | if (dma == NULL) { | ||
58 | printk(KERN_ERR PFX "[%s] Cannot find dma.\n", | ||
59 | sdev->ofdev.node->full_name); | ||
60 | return -ENODEV; | ||
61 | } | ||
62 | esp->dma = dma; | ||
63 | esp->dma_regs = dma->regs; | ||
64 | |||
65 | return 0; | ||
66 | |||
67 | } | ||
68 | |||
69 | static int __devinit esp_sbus_map_regs(struct esp *esp, int hme) | ||
70 | { | ||
71 | struct sbus_dev *sdev = esp->dev; | ||
72 | struct resource *res; | ||
73 | |||
74 | /* On HME, two reg sets exist, first is DVMA, | ||
75 | * second is ESP registers. | ||
76 | */ | ||
77 | if (hme) | ||
78 | res = &sdev->resource[1]; | ||
79 | else | ||
80 | res = &sdev->resource[0]; | ||
81 | |||
82 | esp->regs = sbus_ioremap(res, 0, SBUS_ESP_REG_SIZE, "ESP"); | ||
83 | if (!esp->regs) | ||
84 | return -ENOMEM; | ||
85 | |||
86 | return 0; | ||
87 | } | ||
88 | |||
89 | static int __devinit esp_sbus_map_command_block(struct esp *esp) | ||
90 | { | ||
91 | struct sbus_dev *sdev = esp->dev; | ||
92 | |||
93 | esp->command_block = sbus_alloc_consistent(sdev, 16, | ||
94 | &esp->command_block_dma); | ||
95 | if (!esp->command_block) | ||
96 | return -ENOMEM; | ||
97 | return 0; | ||
98 | } | ||
99 | |||
100 | static int __devinit esp_sbus_register_irq(struct esp *esp) | ||
101 | { | ||
102 | struct Scsi_Host *host = esp->host; | ||
103 | struct sbus_dev *sdev = esp->dev; | ||
104 | |||
105 | host->irq = sdev->irqs[0]; | ||
106 | return request_irq(host->irq, scsi_esp_intr, IRQF_SHARED, "ESP", esp); | ||
107 | } | ||
108 | |||
109 | static void __devinit esp_get_scsi_id(struct esp *esp) | ||
110 | { | ||
111 | struct sbus_dev *sdev = esp->dev; | ||
112 | struct device_node *dp = sdev->ofdev.node; | ||
113 | |||
114 | esp->scsi_id = of_getintprop_default(dp, "initiator-id", 0xff); | ||
115 | if (esp->scsi_id != 0xff) | ||
116 | goto done; | ||
117 | |||
118 | esp->scsi_id = of_getintprop_default(dp, "scsi-initiator-id", 0xff); | ||
119 | if (esp->scsi_id != 0xff) | ||
120 | goto done; | ||
121 | |||
122 | if (!sdev->bus) { | ||
123 | /* SUN4 */ | ||
124 | esp->scsi_id = 7; | ||
125 | goto done; | ||
126 | } | ||
127 | |||
128 | esp->scsi_id = of_getintprop_default(sdev->bus->ofdev.node, | ||
129 | "scsi-initiator-id", 7); | ||
130 | |||
131 | done: | ||
132 | esp->host->this_id = esp->scsi_id; | ||
133 | esp->scsi_id_mask = (1 << esp->scsi_id); | ||
134 | } | ||
135 | |||
136 | static void __devinit esp_get_differential(struct esp *esp) | ||
137 | { | ||
138 | struct sbus_dev *sdev = esp->dev; | ||
139 | struct device_node *dp = sdev->ofdev.node; | ||
140 | |||
141 | if (of_find_property(dp, "differential", NULL)) | ||
142 | esp->flags |= ESP_FLAG_DIFFERENTIAL; | ||
143 | else | ||
144 | esp->flags &= ~ESP_FLAG_DIFFERENTIAL; | ||
145 | } | ||
146 | |||
147 | static void __devinit esp_get_clock_params(struct esp *esp) | ||
148 | { | ||
149 | struct sbus_dev *sdev = esp->dev; | ||
150 | struct device_node *dp = sdev->ofdev.node; | ||
151 | struct device_node *bus_dp; | ||
152 | int fmhz; | ||
153 | |||
154 | bus_dp = NULL; | ||
155 | if (sdev != NULL && sdev->bus != NULL) | ||
156 | bus_dp = sdev->bus->ofdev.node; | ||
157 | |||
158 | fmhz = of_getintprop_default(dp, "clock-frequency", 0); | ||
159 | if (fmhz == 0) | ||
160 | fmhz = (!bus_dp) ? 0 : | ||
161 | of_getintprop_default(bus_dp, "clock-frequency", 0); | ||
162 | |||
163 | esp->cfreq = fmhz; | ||
164 | } | ||
165 | |||
166 | static void __devinit esp_get_bursts(struct esp *esp, struct sbus_dev *dma) | ||
167 | { | ||
168 | struct sbus_dev *sdev = esp->dev; | ||
169 | struct device_node *dp = sdev->ofdev.node; | ||
170 | u8 bursts; | ||
171 | |||
172 | bursts = of_getintprop_default(dp, "burst-sizes", 0xff); | ||
173 | if (dma) { | ||
174 | struct device_node *dma_dp = dma->ofdev.node; | ||
175 | u8 val = of_getintprop_default(dma_dp, "burst-sizes", 0xff); | ||
176 | if (val != 0xff) | ||
177 | bursts &= val; | ||
178 | } | ||
179 | |||
180 | if (sdev->bus) { | ||
181 | u8 val = of_getintprop_default(sdev->bus->ofdev.node, | ||
182 | "burst-sizes", 0xff); | ||
183 | if (val != 0xff) | ||
184 | bursts &= val; | ||
185 | } | ||
186 | |||
187 | if (bursts == 0xff || | ||
188 | (bursts & DMA_BURST16) == 0 || | ||
189 | (bursts & DMA_BURST32) == 0) | ||
190 | bursts = (DMA_BURST32 - 1); | ||
191 | |||
192 | esp->bursts = bursts; | ||
193 | } | ||
194 | |||
195 | static void __devinit esp_sbus_get_props(struct esp *esp, struct sbus_dev *espdma) | ||
196 | { | ||
197 | esp_get_scsi_id(esp); | ||
198 | esp_get_differential(esp); | ||
199 | esp_get_clock_params(esp); | ||
200 | esp_get_bursts(esp, espdma); | ||
201 | } | ||
202 | |||
203 | static void sbus_esp_write8(struct esp *esp, u8 val, unsigned long reg) | ||
204 | { | ||
205 | sbus_writeb(val, esp->regs + (reg * 4UL)); | ||
206 | } | ||
207 | |||
208 | static u8 sbus_esp_read8(struct esp *esp, unsigned long reg) | ||
209 | { | ||
210 | return sbus_readb(esp->regs + (reg * 4UL)); | ||
211 | } | ||
212 | |||
213 | static dma_addr_t sbus_esp_map_single(struct esp *esp, void *buf, | ||
214 | size_t sz, int dir) | ||
215 | { | ||
216 | return sbus_map_single(esp->dev, buf, sz, dir); | ||
217 | } | ||
218 | |||
219 | static int sbus_esp_map_sg(struct esp *esp, struct scatterlist *sg, | ||
220 | int num_sg, int dir) | ||
221 | { | ||
222 | return sbus_map_sg(esp->dev, sg, num_sg, dir); | ||
223 | } | ||
224 | |||
225 | static void sbus_esp_unmap_single(struct esp *esp, dma_addr_t addr, | ||
226 | size_t sz, int dir) | ||
227 | { | ||
228 | sbus_unmap_single(esp->dev, addr, sz, dir); | ||
229 | } | ||
230 | |||
231 | static void sbus_esp_unmap_sg(struct esp *esp, struct scatterlist *sg, | ||
232 | int num_sg, int dir) | ||
233 | { | ||
234 | sbus_unmap_sg(esp->dev, sg, num_sg, dir); | ||
235 | } | ||
236 | |||
237 | static int sbus_esp_irq_pending(struct esp *esp) | ||
238 | { | ||
239 | if (dma_read32(DMA_CSR) & (DMA_HNDL_INTR | DMA_HNDL_ERROR)) | ||
240 | return 1; | ||
241 | return 0; | ||
242 | } | ||
243 | |||
244 | static void sbus_esp_reset_dma(struct esp *esp) | ||
245 | { | ||
246 | int can_do_burst16, can_do_burst32, can_do_burst64; | ||
247 | int can_do_sbus64, lim; | ||
248 | u32 val; | ||
249 | |||
250 | can_do_burst16 = (esp->bursts & DMA_BURST16) != 0; | ||
251 | can_do_burst32 = (esp->bursts & DMA_BURST32) != 0; | ||
252 | can_do_burst64 = 0; | ||
253 | can_do_sbus64 = 0; | ||
254 | if (sbus_can_dma_64bit(esp->dev)) | ||
255 | can_do_sbus64 = 1; | ||
256 | if (sbus_can_burst64(esp->sdev)) | ||
257 | can_do_burst64 = (esp->bursts & DMA_BURST64) != 0; | ||
258 | |||
259 | /* Put the DVMA into a known state. */ | ||
260 | if (esp->dma->revision != dvmahme) { | ||
261 | val = dma_read32(DMA_CSR); | ||
262 | dma_write32(val | DMA_RST_SCSI, DMA_CSR); | ||
263 | dma_write32(val & ~DMA_RST_SCSI, DMA_CSR); | ||
264 | } | ||
265 | switch (esp->dma->revision) { | ||
266 | case dvmahme: | ||
267 | dma_write32(DMA_RESET_FAS366, DMA_CSR); | ||
268 | dma_write32(DMA_RST_SCSI, DMA_CSR); | ||
269 | |||
270 | esp->prev_hme_dmacsr = (DMA_PARITY_OFF | DMA_2CLKS | | ||
271 | DMA_SCSI_DISAB | DMA_INT_ENAB); | ||
272 | |||
273 | esp->prev_hme_dmacsr &= ~(DMA_ENABLE | DMA_ST_WRITE | | ||
274 | DMA_BRST_SZ); | ||
275 | |||
276 | if (can_do_burst64) | ||
277 | esp->prev_hme_dmacsr |= DMA_BRST64; | ||
278 | else if (can_do_burst32) | ||
279 | esp->prev_hme_dmacsr |= DMA_BRST32; | ||
280 | |||
281 | if (can_do_sbus64) { | ||
282 | esp->prev_hme_dmacsr |= DMA_SCSI_SBUS64; | ||
283 | sbus_set_sbus64(esp->dev, esp->bursts); | ||
284 | } | ||
285 | |||
286 | lim = 1000; | ||
287 | while (dma_read32(DMA_CSR) & DMA_PEND_READ) { | ||
288 | if (--lim == 0) { | ||
289 | printk(KERN_ALERT PFX "esp%d: DMA_PEND_READ " | ||
290 | "will not clear!\n", | ||
291 | esp->host->unique_id); | ||
292 | break; | ||
293 | } | ||
294 | udelay(1); | ||
295 | } | ||
296 | |||
297 | dma_write32(0, DMA_CSR); | ||
298 | dma_write32(esp->prev_hme_dmacsr, DMA_CSR); | ||
299 | |||
300 | dma_write32(0, DMA_ADDR); | ||
301 | break; | ||
302 | |||
303 | case dvmarev2: | ||
304 | if (esp->rev != ESP100) { | ||
305 | val = dma_read32(DMA_CSR); | ||
306 | dma_write32(val | DMA_3CLKS, DMA_CSR); | ||
307 | } | ||
308 | break; | ||
309 | |||
310 | case dvmarev3: | ||
311 | val = dma_read32(DMA_CSR); | ||
312 | val &= ~DMA_3CLKS; | ||
313 | val |= DMA_2CLKS; | ||
314 | if (can_do_burst32) { | ||
315 | val &= ~DMA_BRST_SZ; | ||
316 | val |= DMA_BRST32; | ||
317 | } | ||
318 | dma_write32(val, DMA_CSR); | ||
319 | break; | ||
320 | |||
321 | case dvmaesc1: | ||
322 | val = dma_read32(DMA_CSR); | ||
323 | val |= DMA_ADD_ENABLE; | ||
324 | val &= ~DMA_BCNT_ENAB; | ||
325 | if (!can_do_burst32 && can_do_burst16) { | ||
326 | val |= DMA_ESC_BURST; | ||
327 | } else { | ||
328 | val &= ~(DMA_ESC_BURST); | ||
329 | } | ||
330 | dma_write32(val, DMA_CSR); | ||
331 | break; | ||
332 | |||
333 | default: | ||
334 | break; | ||
335 | } | ||
336 | |||
337 | /* Enable interrupts. */ | ||
338 | val = dma_read32(DMA_CSR); | ||
339 | dma_write32(val | DMA_INT_ENAB, DMA_CSR); | ||
340 | } | ||
341 | |||
342 | static void sbus_esp_dma_drain(struct esp *esp) | ||
343 | { | ||
344 | u32 csr; | ||
345 | int lim; | ||
346 | |||
347 | if (esp->dma->revision == dvmahme) | ||
348 | return; | ||
349 | |||
350 | csr = dma_read32(DMA_CSR); | ||
351 | if (!(csr & DMA_FIFO_ISDRAIN)) | ||
352 | return; | ||
353 | |||
354 | if (esp->dma->revision != dvmarev3 && esp->dma->revision != dvmaesc1) | ||
355 | dma_write32(csr | DMA_FIFO_STDRAIN, DMA_CSR); | ||
356 | |||
357 | lim = 1000; | ||
358 | while (dma_read32(DMA_CSR) & DMA_FIFO_ISDRAIN) { | ||
359 | if (--lim == 0) { | ||
360 | printk(KERN_ALERT PFX "esp%d: DMA will not drain!\n", | ||
361 | esp->host->unique_id); | ||
362 | break; | ||
363 | } | ||
364 | udelay(1); | ||
365 | } | ||
366 | } | ||
367 | |||
368 | static void sbus_esp_dma_invalidate(struct esp *esp) | ||
369 | { | ||
370 | if (esp->dma->revision == dvmahme) { | ||
371 | dma_write32(DMA_RST_SCSI, DMA_CSR); | ||
372 | |||
373 | esp->prev_hme_dmacsr = ((esp->prev_hme_dmacsr | | ||
374 | (DMA_PARITY_OFF | DMA_2CLKS | | ||
375 | DMA_SCSI_DISAB | DMA_INT_ENAB)) & | ||
376 | ~(DMA_ST_WRITE | DMA_ENABLE)); | ||
377 | |||
378 | dma_write32(0, DMA_CSR); | ||
379 | dma_write32(esp->prev_hme_dmacsr, DMA_CSR); | ||
380 | |||
381 | /* This is necessary to avoid having the SCSI channel | ||
382 | * engine lock up on us. | ||
383 | */ | ||
384 | dma_write32(0, DMA_ADDR); | ||
385 | } else { | ||
386 | u32 val; | ||
387 | int lim; | ||
388 | |||
389 | lim = 1000; | ||
390 | while ((val = dma_read32(DMA_CSR)) & DMA_PEND_READ) { | ||
391 | if (--lim == 0) { | ||
392 | printk(KERN_ALERT PFX "esp%d: DMA will not " | ||
393 | "invalidate!\n", esp->host->unique_id); | ||
394 | break; | ||
395 | } | ||
396 | udelay(1); | ||
397 | } | ||
398 | |||
399 | val &= ~(DMA_ENABLE | DMA_ST_WRITE | DMA_BCNT_ENAB); | ||
400 | val |= DMA_FIFO_INV; | ||
401 | dma_write32(val, DMA_CSR); | ||
402 | val &= ~DMA_FIFO_INV; | ||
403 | dma_write32(val, DMA_CSR); | ||
404 | } | ||
405 | } | ||
406 | |||
407 | static void sbus_esp_send_dma_cmd(struct esp *esp, u32 addr, u32 esp_count, | ||
408 | u32 dma_count, int write, u8 cmd) | ||
409 | { | ||
410 | u32 csr; | ||
411 | |||
412 | BUG_ON(!(cmd & ESP_CMD_DMA)); | ||
413 | |||
414 | sbus_esp_write8(esp, (esp_count >> 0) & 0xff, ESP_TCLOW); | ||
415 | sbus_esp_write8(esp, (esp_count >> 8) & 0xff, ESP_TCMED); | ||
416 | if (esp->rev == FASHME) { | ||
417 | sbus_esp_write8(esp, (esp_count >> 16) & 0xff, FAS_RLO); | ||
418 | sbus_esp_write8(esp, 0, FAS_RHI); | ||
419 | |||
420 | scsi_esp_cmd(esp, cmd); | ||
421 | |||
422 | csr = esp->prev_hme_dmacsr; | ||
423 | csr |= DMA_SCSI_DISAB | DMA_ENABLE; | ||
424 | if (write) | ||
425 | csr |= DMA_ST_WRITE; | ||
426 | else | ||
427 | csr &= ~DMA_ST_WRITE; | ||
428 | esp->prev_hme_dmacsr = csr; | ||
429 | |||
430 | dma_write32(dma_count, DMA_COUNT); | ||
431 | dma_write32(addr, DMA_ADDR); | ||
432 | dma_write32(csr, DMA_CSR); | ||
433 | } else { | ||
434 | csr = dma_read32(DMA_CSR); | ||
435 | csr |= DMA_ENABLE; | ||
436 | if (write) | ||
437 | csr |= DMA_ST_WRITE; | ||
438 | else | ||
439 | csr &= ~DMA_ST_WRITE; | ||
440 | dma_write32(csr, DMA_CSR); | ||
441 | if (esp->dma->revision == dvmaesc1) { | ||
442 | u32 end = PAGE_ALIGN(addr + dma_count + 16U); | ||
443 | dma_write32(end - addr, DMA_COUNT); | ||
444 | } | ||
445 | dma_write32(addr, DMA_ADDR); | ||
446 | |||
447 | scsi_esp_cmd(esp, cmd); | ||
448 | } | ||
449 | |||
450 | } | ||
451 | |||
452 | static int sbus_esp_dma_error(struct esp *esp) | ||
453 | { | ||
454 | u32 csr = dma_read32(DMA_CSR); | ||
455 | |||
456 | if (csr & DMA_HNDL_ERROR) | ||
457 | return 1; | ||
458 | |||
459 | return 0; | ||
460 | } | ||
461 | |||
462 | static const struct esp_driver_ops sbus_esp_ops = { | ||
463 | .esp_write8 = sbus_esp_write8, | ||
464 | .esp_read8 = sbus_esp_read8, | ||
465 | .map_single = sbus_esp_map_single, | ||
466 | .map_sg = sbus_esp_map_sg, | ||
467 | .unmap_single = sbus_esp_unmap_single, | ||
468 | .unmap_sg = sbus_esp_unmap_sg, | ||
469 | .irq_pending = sbus_esp_irq_pending, | ||
470 | .reset_dma = sbus_esp_reset_dma, | ||
471 | .dma_drain = sbus_esp_dma_drain, | ||
472 | .dma_invalidate = sbus_esp_dma_invalidate, | ||
473 | .send_dma_cmd = sbus_esp_send_dma_cmd, | ||
474 | .dma_error = sbus_esp_dma_error, | ||
475 | }; | ||
476 | |||
477 | static int __devinit esp_sbus_probe_one(struct device *dev, | ||
478 | struct sbus_dev *esp_dev, | ||
479 | struct sbus_dev *espdma, | ||
480 | struct sbus_bus *sbus, | ||
481 | int hme) | ||
482 | { | ||
483 | struct scsi_host_template *tpnt = &scsi_esp_template; | ||
484 | struct Scsi_Host *host; | ||
485 | struct esp *esp; | ||
486 | int err; | ||
487 | |||
488 | host = scsi_host_alloc(tpnt, sizeof(struct esp)); | ||
489 | |||
490 | err = -ENOMEM; | ||
491 | if (!host) | ||
492 | goto fail; | ||
493 | |||
494 | host->max_id = (hme ? 16 : 8); | ||
495 | esp = host_to_esp(host); | ||
496 | |||
497 | esp->host = host; | ||
498 | esp->dev = esp_dev; | ||
499 | esp->ops = &sbus_esp_ops; | ||
500 | |||
501 | if (hme) | ||
502 | esp->flags |= ESP_FLAG_WIDE_CAPABLE; | ||
503 | |||
504 | err = esp_sbus_find_dma(esp, espdma); | ||
505 | if (err < 0) | ||
506 | goto fail_unlink; | ||
507 | |||
508 | err = esp_sbus_map_regs(esp, hme); | ||
509 | if (err < 0) | ||
510 | goto fail_unlink; | ||
511 | |||
512 | err = esp_sbus_map_command_block(esp); | ||
513 | if (err < 0) | ||
514 | goto fail_unmap_regs; | ||
515 | |||
516 | err = esp_sbus_register_irq(esp); | ||
517 | if (err < 0) | ||
518 | goto fail_unmap_command_block; | ||
519 | |||
520 | esp_sbus_get_props(esp, espdma); | ||
521 | |||
522 | /* Before we try to touch the ESP chip, ESC1 dma can | ||
523 | * come up with the reset bit set, so make sure that | ||
524 | * is clear first. | ||
525 | */ | ||
526 | if (esp->dma->revision == dvmaesc1) { | ||
527 | u32 val = dma_read32(DMA_CSR); | ||
528 | |||
529 | dma_write32(val & ~DMA_RST_SCSI, DMA_CSR); | ||
530 | } | ||
531 | |||
532 | dev_set_drvdata(&esp_dev->ofdev.dev, esp); | ||
533 | |||
534 | err = scsi_esp_register(esp, dev); | ||
535 | if (err) | ||
536 | goto fail_free_irq; | ||
537 | |||
538 | return 0; | ||
539 | |||
540 | fail_free_irq: | ||
541 | free_irq(host->irq, esp); | ||
542 | fail_unmap_command_block: | ||
543 | sbus_free_consistent(esp->dev, 16, | ||
544 | esp->command_block, | ||
545 | esp->command_block_dma); | ||
546 | fail_unmap_regs: | ||
547 | sbus_iounmap(esp->regs, SBUS_ESP_REG_SIZE); | ||
548 | fail_unlink: | ||
549 | scsi_host_put(host); | ||
550 | fail: | ||
551 | return err; | ||
552 | } | ||
553 | |||
554 | static int __devinit esp_sbus_probe(struct of_device *dev, const struct of_device_id *match) | ||
555 | { | ||
556 | struct sbus_dev *sdev = to_sbus_device(&dev->dev); | ||
557 | struct device_node *dp = dev->node; | ||
558 | struct sbus_dev *dma_sdev = NULL; | ||
559 | int hme = 0; | ||
560 | |||
561 | if (dp->parent && | ||
562 | (!strcmp(dp->parent->name, "espdma") || | ||
563 | !strcmp(dp->parent->name, "dma"))) | ||
564 | dma_sdev = sdev->parent; | ||
565 | else if (!strcmp(dp->name, "SUNW,fas")) { | ||
566 | dma_sdev = sdev; | ||
567 | hme = 1; | ||
568 | } | ||
569 | |||
570 | return esp_sbus_probe_one(&dev->dev, sdev, dma_sdev, | ||
571 | sdev->bus, hme); | ||
572 | } | ||
573 | |||
574 | static int __devexit esp_sbus_remove(struct of_device *dev) | ||
575 | { | ||
576 | struct esp *esp = dev_get_drvdata(&dev->dev); | ||
577 | unsigned int irq = esp->host->irq; | ||
578 | u32 val; | ||
579 | |||
580 | scsi_esp_unregister(esp); | ||
581 | |||
582 | /* Disable interrupts. */ | ||
583 | val = dma_read32(DMA_CSR); | ||
584 | dma_write32(val & ~DMA_INT_ENAB, DMA_CSR); | ||
585 | |||
586 | free_irq(irq, esp); | ||
587 | sbus_free_consistent(esp->dev, 16, | ||
588 | esp->command_block, | ||
589 | esp->command_block_dma); | ||
590 | sbus_iounmap(esp->regs, SBUS_ESP_REG_SIZE); | ||
591 | |||
592 | scsi_host_put(esp->host); | ||
593 | |||
594 | return 0; | ||
595 | } | ||
596 | |||
597 | static struct of_device_id esp_match[] = { | ||
598 | { | ||
599 | .name = "SUNW,esp", | ||
600 | }, | ||
601 | { | ||
602 | .name = "SUNW,fas", | ||
603 | }, | ||
604 | { | ||
605 | .name = "esp", | ||
606 | }, | ||
607 | {}, | ||
608 | }; | ||
609 | MODULE_DEVICE_TABLE(of, esp_match); | ||
610 | |||
611 | static struct of_platform_driver esp_sbus_driver = { | ||
612 | .name = "esp", | ||
613 | .match_table = esp_match, | ||
614 | .probe = esp_sbus_probe, | ||
615 | .remove = __devexit_p(esp_sbus_remove), | ||
616 | }; | ||
617 | |||
618 | static int __init sunesp_init(void) | ||
619 | { | ||
620 | return of_register_driver(&esp_sbus_driver, &sbus_bus_type); | ||
621 | } | ||
622 | |||
623 | static void __exit sunesp_exit(void) | ||
624 | { | ||
625 | of_unregister_driver(&esp_sbus_driver); | ||
626 | } | ||
627 | |||
628 | MODULE_DESCRIPTION("Sun ESP SCSI driver"); | ||
629 | MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); | ||
630 | MODULE_LICENSE("GPL"); | ||
631 | MODULE_VERSION(DRV_VERSION); | ||
632 | |||
633 | module_init(sunesp_init); | ||
634 | module_exit(sunesp_exit); | ||