aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/scsi/sata_mv.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/scsi/sata_mv.c')
-rw-r--r--drivers/scsi/sata_mv.c1138
1 files changed, 943 insertions, 195 deletions
diff --git a/drivers/scsi/sata_mv.c b/drivers/scsi/sata_mv.c
index ea76fe44585e..46dbdee79f77 100644
--- a/drivers/scsi/sata_mv.c
+++ b/drivers/scsi/sata_mv.c
@@ -29,13 +29,14 @@
29#include <linux/interrupt.h> 29#include <linux/interrupt.h>
30#include <linux/sched.h> 30#include <linux/sched.h>
31#include <linux/dma-mapping.h> 31#include <linux/dma-mapping.h>
32#include <linux/device.h>
32#include "scsi.h" 33#include "scsi.h"
33#include <scsi/scsi_host.h> 34#include <scsi/scsi_host.h>
34#include <linux/libata.h> 35#include <linux/libata.h>
35#include <asm/io.h> 36#include <asm/io.h>
36 37
37#define DRV_NAME "sata_mv" 38#define DRV_NAME "sata_mv"
38#define DRV_VERSION "0.12" 39#define DRV_VERSION "0.25"
39 40
40enum { 41enum {
41 /* BAR's are enumerated in terms of pci_resource_start() terms */ 42 /* BAR's are enumerated in terms of pci_resource_start() terms */
@@ -55,31 +56,61 @@ enum {
55 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ 56 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
56 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, 57 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
57 58
58 MV_Q_CT = 32, 59 MV_USE_Q_DEPTH = ATA_DEF_QUEUE,
59 MV_CRQB_SZ = 32,
60 MV_CRPB_SZ = 8,
61 60
62 MV_DMA_BOUNDARY = 0xffffffffU, 61 MV_MAX_Q_DEPTH = 32,
63 SATAHC_MASK = (~(MV_SATAHC_REG_SZ - 1)), 62 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
63
64 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
65 * CRPB needs alignment on a 256B boundary. Size == 256B
66 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
67 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
68 */
69 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
70 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
71 MV_MAX_SG_CT = 176,
72 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
73 MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
74
75 /* Our DMA boundary is determined by an ePRD being unable to handle
76 * anything larger than 64KB
77 */
78 MV_DMA_BOUNDARY = 0xffffU,
64 79
65 MV_PORTS_PER_HC = 4, 80 MV_PORTS_PER_HC = 4,
66 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */ 81 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
67 MV_PORT_HC_SHIFT = 2, 82 MV_PORT_HC_SHIFT = 2,
68 /* == (port % MV_PORTS_PER_HC) to determine port from 0-7 port */ 83 /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
69 MV_PORT_MASK = 3, 84 MV_PORT_MASK = 3,
70 85
71 /* Host Flags */ 86 /* Host Flags */
72 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ 87 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
73 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */ 88 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
74 MV_FLAG_BDMA = (1 << 28), /* Basic DMA */ 89 MV_FLAG_GLBL_SFT_RST = (1 << 28), /* Global Soft Reset support */
90 MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
91 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO),
92 MV_6XXX_FLAGS = (MV_FLAG_IRQ_COALESCE |
93 MV_FLAG_GLBL_SFT_RST),
75 94
76 chip_504x = 0, 95 chip_504x = 0,
77 chip_508x = 1, 96 chip_508x = 1,
78 chip_604x = 2, 97 chip_604x = 2,
79 chip_608x = 3, 98 chip_608x = 3,
80 99
100 CRQB_FLAG_READ = (1 << 0),
101 CRQB_TAG_SHIFT = 1,
102 CRQB_CMD_ADDR_SHIFT = 8,
103 CRQB_CMD_CS = (0x2 << 11),
104 CRQB_CMD_LAST = (1 << 15),
105
106 CRPB_FLAG_STATUS_SHIFT = 8,
107
108 EPRD_FLAG_END_OF_TBL = (1 << 31),
109
81 /* PCI interface registers */ 110 /* PCI interface registers */
82 111
112 PCI_COMMAND_OFS = 0xc00,
113
83 PCI_MAIN_CMD_STS_OFS = 0xd30, 114 PCI_MAIN_CMD_STS_OFS = 0xd30,
84 STOP_PCI_MASTER = (1 << 2), 115 STOP_PCI_MASTER = (1 << 2),
85 PCI_MASTER_EMPTY = (1 << 3), 116 PCI_MASTER_EMPTY = (1 << 3),
@@ -111,20 +142,13 @@ enum {
111 HC_CFG_OFS = 0, 142 HC_CFG_OFS = 0,
112 143
113 HC_IRQ_CAUSE_OFS = 0x14, 144 HC_IRQ_CAUSE_OFS = 0x14,
114 CRBP_DMA_DONE = (1 << 0), /* shift by port # */ 145 CRPB_DMA_DONE = (1 << 0), /* shift by port # */
115 HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */ 146 HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
116 DEV_IRQ = (1 << 8), /* shift by port # */ 147 DEV_IRQ = (1 << 8), /* shift by port # */
117 148
118 /* Shadow block registers */ 149 /* Shadow block registers */
119 SHD_PIO_DATA_OFS = 0x100, 150 SHD_BLK_OFS = 0x100,
120 SHD_FEA_ERR_OFS = 0x104, 151 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
121 SHD_SECT_CNT_OFS = 0x108,
122 SHD_LBA_L_OFS = 0x10C,
123 SHD_LBA_M_OFS = 0x110,
124 SHD_LBA_H_OFS = 0x114,
125 SHD_DEV_HD_OFS = 0x118,
126 SHD_CMD_STA_OFS = 0x11C,
127 SHD_CTL_AST_OFS = 0x120,
128 152
129 /* SATA registers */ 153 /* SATA registers */
130 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */ 154 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
@@ -132,6 +156,11 @@ enum {
132 156
133 /* Port registers */ 157 /* Port registers */
134 EDMA_CFG_OFS = 0, 158 EDMA_CFG_OFS = 0,
159 EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */
160 EDMA_CFG_NCQ = (1 << 5),
161 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
162 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
163 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
135 164
136 EDMA_ERR_IRQ_CAUSE_OFS = 0x8, 165 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
137 EDMA_ERR_IRQ_MASK_OFS = 0xc, 166 EDMA_ERR_IRQ_MASK_OFS = 0xc,
@@ -161,33 +190,84 @@ enum {
161 EDMA_ERR_LNK_DATA_TX | 190 EDMA_ERR_LNK_DATA_TX |
162 EDMA_ERR_TRANS_PROTO), 191 EDMA_ERR_TRANS_PROTO),
163 192
193 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
194 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
195 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
196
197 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
198 EDMA_REQ_Q_PTR_SHIFT = 5,
199
200 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
201 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
202 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
203 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
204 EDMA_RSP_Q_PTR_SHIFT = 3,
205
164 EDMA_CMD_OFS = 0x28, 206 EDMA_CMD_OFS = 0x28,
165 EDMA_EN = (1 << 0), 207 EDMA_EN = (1 << 0),
166 EDMA_DS = (1 << 1), 208 EDMA_DS = (1 << 1),
167 ATA_RST = (1 << 2), 209 ATA_RST = (1 << 2),
168 210
169 /* BDMA is 6xxx part only */ 211 /* Host private flags (hp_flags) */
170 BDMA_CMD_OFS = 0x224, 212 MV_HP_FLAG_MSI = (1 << 0),
171 BDMA_START = (1 << 0),
172 213
173 MV_UNDEF = 0, 214 /* Port private flags (pp_flags) */
215 MV_PP_FLAG_EDMA_EN = (1 << 0),
216 MV_PP_FLAG_EDMA_DS_ACT = (1 << 1),
174}; 217};
175 218
176struct mv_port_priv { 219/* Command ReQuest Block: 32B */
220struct mv_crqb {
221 u32 sg_addr;
222 u32 sg_addr_hi;
223 u16 ctrl_flags;
224 u16 ata_cmd[11];
225};
177 226
227/* Command ResPonse Block: 8B */
228struct mv_crpb {
229 u16 id;
230 u16 flags;
231 u32 tmstmp;
178}; 232};
179 233
180struct mv_host_priv { 234/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
235struct mv_sg {
236 u32 addr;
237 u32 flags_size;
238 u32 addr_hi;
239 u32 reserved;
240};
181 241
242struct mv_port_priv {
243 struct mv_crqb *crqb;
244 dma_addr_t crqb_dma;
245 struct mv_crpb *crpb;
246 dma_addr_t crpb_dma;
247 struct mv_sg *sg_tbl;
248 dma_addr_t sg_tbl_dma;
249
250 unsigned req_producer; /* cp of req_in_ptr */
251 unsigned rsp_consumer; /* cp of rsp_out_ptr */
252 u32 pp_flags;
253};
254
255struct mv_host_priv {
256 u32 hp_flags;
182}; 257};
183 258
184static void mv_irq_clear(struct ata_port *ap); 259static void mv_irq_clear(struct ata_port *ap);
185static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in); 260static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
186static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val); 261static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
187static void mv_phy_reset(struct ata_port *ap); 262static void mv_phy_reset(struct ata_port *ap);
188static int mv_master_reset(void __iomem *mmio_base); 263static void mv_host_stop(struct ata_host_set *host_set);
264static int mv_port_start(struct ata_port *ap);
265static void mv_port_stop(struct ata_port *ap);
266static void mv_qc_prep(struct ata_queued_cmd *qc);
267static int mv_qc_issue(struct ata_queued_cmd *qc);
189static irqreturn_t mv_interrupt(int irq, void *dev_instance, 268static irqreturn_t mv_interrupt(int irq, void *dev_instance,
190 struct pt_regs *regs); 269 struct pt_regs *regs);
270static void mv_eng_timeout(struct ata_port *ap);
191static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent); 271static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
192 272
193static Scsi_Host_Template mv_sht = { 273static Scsi_Host_Template mv_sht = {
@@ -196,13 +276,13 @@ static Scsi_Host_Template mv_sht = {
196 .ioctl = ata_scsi_ioctl, 276 .ioctl = ata_scsi_ioctl,
197 .queuecommand = ata_scsi_queuecmd, 277 .queuecommand = ata_scsi_queuecmd,
198 .eh_strategy_handler = ata_scsi_error, 278 .eh_strategy_handler = ata_scsi_error,
199 .can_queue = ATA_DEF_QUEUE, 279 .can_queue = MV_USE_Q_DEPTH,
200 .this_id = ATA_SHT_THIS_ID, 280 .this_id = ATA_SHT_THIS_ID,
201 .sg_tablesize = MV_UNDEF, 281 .sg_tablesize = MV_MAX_SG_CT,
202 .max_sectors = ATA_MAX_SECTORS, 282 .max_sectors = ATA_MAX_SECTORS,
203 .cmd_per_lun = ATA_SHT_CMD_PER_LUN, 283 .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
204 .emulated = ATA_SHT_EMULATED, 284 .emulated = ATA_SHT_EMULATED,
205 .use_clustering = MV_UNDEF, 285 .use_clustering = ATA_SHT_USE_CLUSTERING,
206 .proc_name = DRV_NAME, 286 .proc_name = DRV_NAME,
207 .dma_boundary = MV_DMA_BOUNDARY, 287 .dma_boundary = MV_DMA_BOUNDARY,
208 .slave_configure = ata_scsi_slave_config, 288 .slave_configure = ata_scsi_slave_config,
@@ -210,7 +290,7 @@ static Scsi_Host_Template mv_sht = {
210 .ordered_flush = 1, 290 .ordered_flush = 1,
211}; 291};
212 292
213static struct ata_port_operations mv_ops = { 293static const struct ata_port_operations mv_ops = {
214 .port_disable = ata_port_disable, 294 .port_disable = ata_port_disable,
215 295
216 .tf_load = ata_tf_load, 296 .tf_load = ata_tf_load,
@@ -221,10 +301,10 @@ static struct ata_port_operations mv_ops = {
221 301
222 .phy_reset = mv_phy_reset, 302 .phy_reset = mv_phy_reset,
223 303
224 .qc_prep = ata_qc_prep, 304 .qc_prep = mv_qc_prep,
225 .qc_issue = ata_qc_issue_prot, 305 .qc_issue = mv_qc_issue,
226 306
227 .eng_timeout = ata_eng_timeout, 307 .eng_timeout = mv_eng_timeout,
228 308
229 .irq_handler = mv_interrupt, 309 .irq_handler = mv_interrupt,
230 .irq_clear = mv_irq_clear, 310 .irq_clear = mv_irq_clear,
@@ -232,46 +312,39 @@ static struct ata_port_operations mv_ops = {
232 .scr_read = mv_scr_read, 312 .scr_read = mv_scr_read,
233 .scr_write = mv_scr_write, 313 .scr_write = mv_scr_write,
234 314
235 .port_start = ata_port_start, 315 .port_start = mv_port_start,
236 .port_stop = ata_port_stop, 316 .port_stop = mv_port_stop,
237 .host_stop = ata_host_stop, 317 .host_stop = mv_host_stop,
238}; 318};
239 319
240static struct ata_port_info mv_port_info[] = { 320static struct ata_port_info mv_port_info[] = {
241 { /* chip_504x */ 321 { /* chip_504x */
242 .sht = &mv_sht, 322 .sht = &mv_sht,
243 .host_flags = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 323 .host_flags = MV_COMMON_FLAGS,
244 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO), 324 .pio_mask = 0x1f, /* pio0-4 */
245 .pio_mask = 0x1f, /* pio4-0 */ 325 .udma_mask = 0, /* 0x7f (udma0-6 disabled for now) */
246 .udma_mask = 0, /* 0x7f (udma6-0 disabled for now) */
247 .port_ops = &mv_ops, 326 .port_ops = &mv_ops,
248 }, 327 },
249 { /* chip_508x */ 328 { /* chip_508x */
250 .sht = &mv_sht, 329 .sht = &mv_sht,
251 .host_flags = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 330 .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
252 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO | 331 .pio_mask = 0x1f, /* pio0-4 */
253 MV_FLAG_DUAL_HC), 332 .udma_mask = 0, /* 0x7f (udma0-6 disabled for now) */
254 .pio_mask = 0x1f, /* pio4-0 */
255 .udma_mask = 0, /* 0x7f (udma6-0 disabled for now) */
256 .port_ops = &mv_ops, 333 .port_ops = &mv_ops,
257 }, 334 },
258 { /* chip_604x */ 335 { /* chip_604x */
259 .sht = &mv_sht, 336 .sht = &mv_sht,
260 .host_flags = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 337 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
261 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO | 338 .pio_mask = 0x1f, /* pio0-4 */
262 MV_FLAG_IRQ_COALESCE | MV_FLAG_BDMA), 339 .udma_mask = 0x7f, /* udma0-6 */
263 .pio_mask = 0x1f, /* pio4-0 */
264 .udma_mask = 0, /* 0x7f (udma6-0 disabled for now) */
265 .port_ops = &mv_ops, 340 .port_ops = &mv_ops,
266 }, 341 },
267 { /* chip_608x */ 342 { /* chip_608x */
268 .sht = &mv_sht, 343 .sht = &mv_sht,
269 .host_flags = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 344 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
270 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO | 345 MV_FLAG_DUAL_HC),
271 MV_FLAG_IRQ_COALESCE | MV_FLAG_DUAL_HC | 346 .pio_mask = 0x1f, /* pio0-4 */
272 MV_FLAG_BDMA), 347 .udma_mask = 0x7f, /* udma0-6 */
273 .pio_mask = 0x1f, /* pio4-0 */
274 .udma_mask = 0, /* 0x7f (udma6-0 disabled for now) */
275 .port_ops = &mv_ops, 348 .port_ops = &mv_ops,
276 }, 349 },
277}; 350};
@@ -306,12 +379,6 @@ static inline void writelfl(unsigned long data, void __iomem *addr)
306 (void) readl(addr); /* flush to avoid PCI posted write */ 379 (void) readl(addr); /* flush to avoid PCI posted write */
307} 380}
308 381
309static inline void __iomem *mv_port_addr_to_hc_base(void __iomem *port_mmio)
310{
311 return ((void __iomem *)((unsigned long)port_mmio &
312 (unsigned long)SATAHC_MASK));
313}
314
315static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) 382static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
316{ 383{
317 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); 384 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
@@ -329,24 +396,150 @@ static inline void __iomem *mv_ap_base(struct ata_port *ap)
329 return mv_port_base(ap->host_set->mmio_base, ap->port_no); 396 return mv_port_base(ap->host_set->mmio_base, ap->port_no);
330} 397}
331 398
332static inline int mv_get_hc_count(unsigned long flags) 399static inline int mv_get_hc_count(unsigned long hp_flags)
333{ 400{
334 return ((flags & MV_FLAG_DUAL_HC) ? 2 : 1); 401 return ((hp_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
335} 402}
336 403
337static inline int mv_is_edma_active(struct ata_port *ap) 404static void mv_irq_clear(struct ata_port *ap)
405{
406}
407
408/**
409 * mv_start_dma - Enable eDMA engine
410 * @base: port base address
411 * @pp: port private data
412 *
413 * Verify the local cache of the eDMA state is accurate with an
414 * assert.
415 *
416 * LOCKING:
417 * Inherited from caller.
418 */
419static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
420{
421 if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
422 writelfl(EDMA_EN, base + EDMA_CMD_OFS);
423 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
424 }
425 assert(EDMA_EN & readl(base + EDMA_CMD_OFS));
426}
427
428/**
429 * mv_stop_dma - Disable eDMA engine
430 * @ap: ATA channel to manipulate
431 *
432 * Verify the local cache of the eDMA state is accurate with an
433 * assert.
434 *
435 * LOCKING:
436 * Inherited from caller.
437 */
438static void mv_stop_dma(struct ata_port *ap)
338{ 439{
339 void __iomem *port_mmio = mv_ap_base(ap); 440 void __iomem *port_mmio = mv_ap_base(ap);
340 return (EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)); 441 struct mv_port_priv *pp = ap->private_data;
442 u32 reg;
443 int i;
444
445 if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
446 /* Disable EDMA if active. The disable bit auto clears.
447 */
448 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
449 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
450 } else {
451 assert(!(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)));
452 }
453
454 /* now properly wait for the eDMA to stop */
455 for (i = 1000; i > 0; i--) {
456 reg = readl(port_mmio + EDMA_CMD_OFS);
457 if (!(EDMA_EN & reg)) {
458 break;
459 }
460 udelay(100);
461 }
462
463 if (EDMA_EN & reg) {
464 printk(KERN_ERR "ata%u: Unable to stop eDMA\n", ap->id);
465 /* FIXME: Consider doing a reset here to recover */
466 }
341} 467}
342 468
343static inline int mv_port_bdma_capable(struct ata_port *ap) 469#ifdef ATA_DEBUG
470static void mv_dump_mem(void __iomem *start, unsigned bytes)
344{ 471{
345 return (ap->flags & MV_FLAG_BDMA); 472 int b, w;
473 for (b = 0; b < bytes; ) {
474 DPRINTK("%p: ", start + b);
475 for (w = 0; b < bytes && w < 4; w++) {
476 printk("%08x ",readl(start + b));
477 b += sizeof(u32);
478 }
479 printk("\n");
480 }
346} 481}
482#endif
347 483
348static void mv_irq_clear(struct ata_port *ap) 484static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
485{
486#ifdef ATA_DEBUG
487 int b, w;
488 u32 dw;
489 for (b = 0; b < bytes; ) {
490 DPRINTK("%02x: ", b);
491 for (w = 0; b < bytes && w < 4; w++) {
492 (void) pci_read_config_dword(pdev,b,&dw);
493 printk("%08x ",dw);
494 b += sizeof(u32);
495 }
496 printk("\n");
497 }
498#endif
499}
500static void mv_dump_all_regs(void __iomem *mmio_base, int port,
501 struct pci_dev *pdev)
349{ 502{
503#ifdef ATA_DEBUG
504 void __iomem *hc_base = mv_hc_base(mmio_base,
505 port >> MV_PORT_HC_SHIFT);
506 void __iomem *port_base;
507 int start_port, num_ports, p, start_hc, num_hcs, hc;
508
509 if (0 > port) {
510 start_hc = start_port = 0;
511 num_ports = 8; /* shld be benign for 4 port devs */
512 num_hcs = 2;
513 } else {
514 start_hc = port >> MV_PORT_HC_SHIFT;
515 start_port = port;
516 num_ports = num_hcs = 1;
517 }
518 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
519 num_ports > 1 ? num_ports - 1 : start_port);
520
521 if (NULL != pdev) {
522 DPRINTK("PCI config space regs:\n");
523 mv_dump_pci_cfg(pdev, 0x68);
524 }
525 DPRINTK("PCI regs:\n");
526 mv_dump_mem(mmio_base+0xc00, 0x3c);
527 mv_dump_mem(mmio_base+0xd00, 0x34);
528 mv_dump_mem(mmio_base+0xf00, 0x4);
529 mv_dump_mem(mmio_base+0x1d00, 0x6c);
530 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
531 hc_base = mv_hc_base(mmio_base, port >> MV_PORT_HC_SHIFT);
532 DPRINTK("HC regs (HC %i):\n", hc);
533 mv_dump_mem(hc_base, 0x1c);
534 }
535 for (p = start_port; p < start_port + num_ports; p++) {
536 port_base = mv_port_base(mmio_base, p);
537 DPRINTK("EDMA regs (port %i):\n",p);
538 mv_dump_mem(port_base, 0x54);
539 DPRINTK("SATA regs (port %i):\n",p);
540 mv_dump_mem(port_base+0x300, 0x60);
541 }
542#endif
350} 543}
351 544
352static unsigned int mv_scr_offset(unsigned int sc_reg_in) 545static unsigned int mv_scr_offset(unsigned int sc_reg_in)
@@ -389,30 +582,37 @@ static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
389 } 582 }
390} 583}
391 584
392static int mv_master_reset(void __iomem *mmio_base) 585/**
586 * mv_global_soft_reset - Perform the 6xxx global soft reset
587 * @mmio_base: base address of the HBA
588 *
589 * This routine only applies to 6xxx parts.
590 *
591 * LOCKING:
592 * Inherited from caller.
593 */
594static int mv_global_soft_reset(void __iomem *mmio_base)
393{ 595{
394 void __iomem *reg = mmio_base + PCI_MAIN_CMD_STS_OFS; 596 void __iomem *reg = mmio_base + PCI_MAIN_CMD_STS_OFS;
395 int i, rc = 0; 597 int i, rc = 0;
396 u32 t; 598 u32 t;
397 599
398 VPRINTK("ENTER\n");
399
400 /* Following procedure defined in PCI "main command and status 600 /* Following procedure defined in PCI "main command and status
401 * register" table. 601 * register" table.
402 */ 602 */
403 t = readl(reg); 603 t = readl(reg);
404 writel(t | STOP_PCI_MASTER, reg); 604 writel(t | STOP_PCI_MASTER, reg);
405 605
406 for (i = 0; i < 100; i++) { 606 for (i = 0; i < 1000; i++) {
407 msleep(10); 607 udelay(1);
408 t = readl(reg); 608 t = readl(reg);
409 if (PCI_MASTER_EMPTY & t) { 609 if (PCI_MASTER_EMPTY & t) {
410 break; 610 break;
411 } 611 }
412 } 612 }
413 if (!(PCI_MASTER_EMPTY & t)) { 613 if (!(PCI_MASTER_EMPTY & t)) {
414 printk(KERN_ERR DRV_NAME "PCI master won't flush\n"); 614 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
415 rc = 1; /* broken HW? */ 615 rc = 1;
416 goto done; 616 goto done;
417 } 617 }
418 618
@@ -425,39 +625,399 @@ static int mv_master_reset(void __iomem *mmio_base)
425 } while (!(GLOB_SFT_RST & t) && (i-- > 0)); 625 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
426 626
427 if (!(GLOB_SFT_RST & t)) { 627 if (!(GLOB_SFT_RST & t)) {
428 printk(KERN_ERR DRV_NAME "can't set global reset\n"); 628 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
429 rc = 1; /* broken HW? */ 629 rc = 1;
430 goto done; 630 goto done;
431 } 631 }
432 632
433 /* clear reset */ 633 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
434 i = 5; 634 i = 5;
435 do { 635 do {
436 writel(t & ~GLOB_SFT_RST, reg); 636 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
437 t = readl(reg); 637 t = readl(reg);
438 udelay(1); 638 udelay(1);
439 } while ((GLOB_SFT_RST & t) && (i-- > 0)); 639 } while ((GLOB_SFT_RST & t) && (i-- > 0));
440 640
441 if (GLOB_SFT_RST & t) { 641 if (GLOB_SFT_RST & t) {
442 printk(KERN_ERR DRV_NAME "can't clear global reset\n"); 642 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
443 rc = 1; /* broken HW? */ 643 rc = 1;
444 } 644 }
445 645done:
446 done:
447 VPRINTK("EXIT, rc = %i\n", rc);
448 return rc; 646 return rc;
449} 647}
450 648
451static void mv_err_intr(struct ata_port *ap) 649/**
650 * mv_host_stop - Host specific cleanup/stop routine.
651 * @host_set: host data structure
652 *
653 * Disable ints, cleanup host memory, call general purpose
654 * host_stop.
655 *
656 * LOCKING:
657 * Inherited from caller.
658 */
659static void mv_host_stop(struct ata_host_set *host_set)
452{ 660{
453 void __iomem *port_mmio; 661 struct mv_host_priv *hpriv = host_set->private_data;
454 u32 edma_err_cause, serr = 0; 662 struct pci_dev *pdev = to_pci_dev(host_set->dev);
663
664 if (hpriv->hp_flags & MV_HP_FLAG_MSI) {
665 pci_disable_msi(pdev);
666 } else {
667 pci_intx(pdev, 0);
668 }
669 kfree(hpriv);
670 ata_host_stop(host_set);
671}
672
673/**
674 * mv_port_start - Port specific init/start routine.
675 * @ap: ATA channel to manipulate
676 *
677 * Allocate and point to DMA memory, init port private memory,
678 * zero indices.
679 *
680 * LOCKING:
681 * Inherited from caller.
682 */
683static int mv_port_start(struct ata_port *ap)
684{
685 struct device *dev = ap->host_set->dev;
686 struct mv_port_priv *pp;
687 void __iomem *port_mmio = mv_ap_base(ap);
688 void *mem;
689 dma_addr_t mem_dma;
690
691 pp = kmalloc(sizeof(*pp), GFP_KERNEL);
692 if (!pp) {
693 return -ENOMEM;
694 }
695 memset(pp, 0, sizeof(*pp));
696
697 mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
698 GFP_KERNEL);
699 if (!mem) {
700 kfree(pp);
701 return -ENOMEM;
702 }
703 memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
704
705 /* First item in chunk of DMA memory:
706 * 32-slot command request table (CRQB), 32 bytes each in size
707 */
708 pp->crqb = mem;
709 pp->crqb_dma = mem_dma;
710 mem += MV_CRQB_Q_SZ;
711 mem_dma += MV_CRQB_Q_SZ;
712
713 /* Second item:
714 * 32-slot command response table (CRPB), 8 bytes each in size
715 */
716 pp->crpb = mem;
717 pp->crpb_dma = mem_dma;
718 mem += MV_CRPB_Q_SZ;
719 mem_dma += MV_CRPB_Q_SZ;
720
721 /* Third item:
722 * Table of scatter-gather descriptors (ePRD), 16 bytes each
723 */
724 pp->sg_tbl = mem;
725 pp->sg_tbl_dma = mem_dma;
726
727 writelfl(EDMA_CFG_Q_DEPTH | EDMA_CFG_RD_BRST_EXT |
728 EDMA_CFG_WR_BUFF_LEN, port_mmio + EDMA_CFG_OFS);
455 729
456 /* bug here b/c we got an err int on a port we don't know about, 730 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
457 * so there's no way to clear it 731 writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
732 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
733
734 writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
735 writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
736
737 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
738 writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
739 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
740
741 pp->req_producer = pp->rsp_consumer = 0;
742
743 /* Don't turn on EDMA here...do it before DMA commands only. Else
744 * we'll be unable to send non-data, PIO, etc due to restricted access
745 * to shadow regs.
458 */ 746 */
459 BUG_ON(NULL == ap); 747 ap->private_data = pp;
460 port_mmio = mv_ap_base(ap); 748 return 0;
749}
750
751/**
752 * mv_port_stop - Port specific cleanup/stop routine.
753 * @ap: ATA channel to manipulate
754 *
755 * Stop DMA, cleanup port memory.
756 *
757 * LOCKING:
758 * This routine uses the host_set lock to protect the DMA stop.
759 */
760static void mv_port_stop(struct ata_port *ap)
761{
762 struct device *dev = ap->host_set->dev;
763 struct mv_port_priv *pp = ap->private_data;
764 unsigned long flags;
765
766 spin_lock_irqsave(&ap->host_set->lock, flags);
767 mv_stop_dma(ap);
768 spin_unlock_irqrestore(&ap->host_set->lock, flags);
769
770 ap->private_data = NULL;
771 dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma);
772 kfree(pp);
773}
774
775/**
776 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
777 * @qc: queued command whose SG list to source from
778 *
779 * Populate the SG list and mark the last entry.
780 *
781 * LOCKING:
782 * Inherited from caller.
783 */
784static void mv_fill_sg(struct ata_queued_cmd *qc)
785{
786 struct mv_port_priv *pp = qc->ap->private_data;
787 unsigned int i;
788
789 for (i = 0; i < qc->n_elem; i++) {
790 u32 sg_len;
791 dma_addr_t addr;
792
793 addr = sg_dma_address(&qc->sg[i]);
794 sg_len = sg_dma_len(&qc->sg[i]);
795
796 pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
797 pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
798 assert(0 == (sg_len & ~MV_DMA_BOUNDARY));
799 pp->sg_tbl[i].flags_size = cpu_to_le32(sg_len);
800 }
801 if (0 < qc->n_elem) {
802 pp->sg_tbl[qc->n_elem - 1].flags_size |=
803 cpu_to_le32(EPRD_FLAG_END_OF_TBL);
804 }
805}
806
807static inline unsigned mv_inc_q_index(unsigned *index)
808{
809 *index = (*index + 1) & MV_MAX_Q_DEPTH_MASK;
810 return *index;
811}
812
813static inline void mv_crqb_pack_cmd(u16 *cmdw, u8 data, u8 addr, unsigned last)
814{
815 *cmdw = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
816 (last ? CRQB_CMD_LAST : 0);
817}
818
819/**
820 * mv_qc_prep - Host specific command preparation.
821 * @qc: queued command to prepare
822 *
823 * This routine simply redirects to the general purpose routine
824 * if command is not DMA. Else, it handles prep of the CRQB
825 * (command request block), does some sanity checking, and calls
826 * the SG load routine.
827 *
828 * LOCKING:
829 * Inherited from caller.
830 */
831static void mv_qc_prep(struct ata_queued_cmd *qc)
832{
833 struct ata_port *ap = qc->ap;
834 struct mv_port_priv *pp = ap->private_data;
835 u16 *cw;
836 struct ata_taskfile *tf;
837 u16 flags = 0;
838
839 if (ATA_PROT_DMA != qc->tf.protocol) {
840 return;
841 }
842
843 /* the req producer index should be the same as we remember it */
844 assert(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >>
845 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
846 pp->req_producer);
847
848 /* Fill in command request block
849 */
850 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
851 flags |= CRQB_FLAG_READ;
852 }
853 assert(MV_MAX_Q_DEPTH > qc->tag);
854 flags |= qc->tag << CRQB_TAG_SHIFT;
855
856 pp->crqb[pp->req_producer].sg_addr =
857 cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
858 pp->crqb[pp->req_producer].sg_addr_hi =
859 cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
860 pp->crqb[pp->req_producer].ctrl_flags = cpu_to_le16(flags);
861
862 cw = &pp->crqb[pp->req_producer].ata_cmd[0];
863 tf = &qc->tf;
864
865 /* Sadly, the CRQB cannot accomodate all registers--there are
866 * only 11 bytes...so we must pick and choose required
867 * registers based on the command. So, we drop feature and
868 * hob_feature for [RW] DMA commands, but they are needed for
869 * NCQ. NCQ will drop hob_nsect.
870 */
871 switch (tf->command) {
872 case ATA_CMD_READ:
873 case ATA_CMD_READ_EXT:
874 case ATA_CMD_WRITE:
875 case ATA_CMD_WRITE_EXT:
876 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
877 break;
878#ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
879 case ATA_CMD_FPDMA_READ:
880 case ATA_CMD_FPDMA_WRITE:
881 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
882 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
883 break;
884#endif /* FIXME: remove this line when NCQ added */
885 default:
886 /* The only other commands EDMA supports in non-queued and
887 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
888 * of which are defined/used by Linux. If we get here, this
889 * driver needs work.
890 *
891 * FIXME: modify libata to give qc_prep a return value and
892 * return error here.
893 */
894 BUG_ON(tf->command);
895 break;
896 }
897 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
898 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
899 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
900 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
901 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
902 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
903 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
904 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
905 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
906
907 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) {
908 return;
909 }
910 mv_fill_sg(qc);
911}
912
913/**
914 * mv_qc_issue - Initiate a command to the host
915 * @qc: queued command to start
916 *
917 * This routine simply redirects to the general purpose routine
918 * if command is not DMA. Else, it sanity checks our local
919 * caches of the request producer/consumer indices then enables
920 * DMA and bumps the request producer index.
921 *
922 * LOCKING:
923 * Inherited from caller.
924 */
925static int mv_qc_issue(struct ata_queued_cmd *qc)
926{
927 void __iomem *port_mmio = mv_ap_base(qc->ap);
928 struct mv_port_priv *pp = qc->ap->private_data;
929 u32 in_ptr;
930
931 if (ATA_PROT_DMA != qc->tf.protocol) {
932 /* We're about to send a non-EDMA capable command to the
933 * port. Turn off EDMA so there won't be problems accessing
934 * shadow block, etc registers.
935 */
936 mv_stop_dma(qc->ap);
937 return ata_qc_issue_prot(qc);
938 }
939
940 in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
941
942 /* the req producer index should be the same as we remember it */
943 assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
944 pp->req_producer);
945 /* until we do queuing, the queue should be empty at this point */
946 assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
947 ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS) >>
948 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
949
950 mv_inc_q_index(&pp->req_producer); /* now incr producer index */
951
952 mv_start_dma(port_mmio, pp);
953
954 /* and write the request in pointer to kick the EDMA to life */
955 in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
956 in_ptr |= pp->req_producer << EDMA_REQ_Q_PTR_SHIFT;
957 writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
958
959 return 0;
960}
961
962/**
963 * mv_get_crpb_status - get status from most recently completed cmd
964 * @ap: ATA channel to manipulate
965 *
966 * This routine is for use when the port is in DMA mode, when it
967 * will be using the CRPB (command response block) method of
968 * returning command completion information. We assert indices
969 * are good, grab status, and bump the response consumer index to
970 * prove that we're up to date.
971 *
972 * LOCKING:
973 * Inherited from caller.
974 */
975static u8 mv_get_crpb_status(struct ata_port *ap)
976{
977 void __iomem *port_mmio = mv_ap_base(ap);
978 struct mv_port_priv *pp = ap->private_data;
979 u32 out_ptr;
980
981 out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
982
983 /* the response consumer index should be the same as we remember it */
984 assert(((out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
985 pp->rsp_consumer);
986
987 /* increment our consumer index... */
988 pp->rsp_consumer = mv_inc_q_index(&pp->rsp_consumer);
989
990 /* and, until we do NCQ, there should only be 1 CRPB waiting */
991 assert(((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS) >>
992 EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
993 pp->rsp_consumer);
994
995 /* write out our inc'd consumer index so EDMA knows we're caught up */
996 out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
997 out_ptr |= pp->rsp_consumer << EDMA_RSP_Q_PTR_SHIFT;
998 writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
999
1000 /* Return ATA status register for completed CRPB */
1001 return (pp->crpb[pp->rsp_consumer].flags >> CRPB_FLAG_STATUS_SHIFT);
1002}
1003
1004/**
1005 * mv_err_intr - Handle error interrupts on the port
1006 * @ap: ATA channel to manipulate
1007 *
1008 * In most cases, just clear the interrupt and move on. However,
1009 * some cases require an eDMA reset, which is done right before
1010 * the COMRESET in mv_phy_reset(). The SERR case requires a
1011 * clear of pending errors in the SATA SERROR register. Finally,
1012 * if the port disabled DMA, update our cached copy to match.
1013 *
1014 * LOCKING:
1015 * Inherited from caller.
1016 */
1017static void mv_err_intr(struct ata_port *ap)
1018{
1019 void __iomem *port_mmio = mv_ap_base(ap);
1020 u32 edma_err_cause, serr = 0;
461 1021
462 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); 1022 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
463 1023
@@ -465,8 +1025,12 @@ static void mv_err_intr(struct ata_port *ap)
465 serr = scr_read(ap, SCR_ERROR); 1025 serr = scr_read(ap, SCR_ERROR);
466 scr_write_flush(ap, SCR_ERROR, serr); 1026 scr_write_flush(ap, SCR_ERROR, serr);
467 } 1027 }
468 DPRINTK("port %u error; EDMA err cause: 0x%08x SERR: 0x%08x\n", 1028 if (EDMA_ERR_SELF_DIS & edma_err_cause) {
469 ap->port_no, edma_err_cause, serr); 1029 struct mv_port_priv *pp = ap->private_data;
1030 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1031 }
1032 DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
1033 "SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
470 1034
471 /* Clear EDMA now that SERR cleanup done */ 1035 /* Clear EDMA now that SERR cleanup done */
472 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); 1036 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
@@ -477,7 +1041,21 @@ static void mv_err_intr(struct ata_port *ap)
477 } 1041 }
478} 1042}
479 1043
480/* Handle any outstanding interrupts in a single SATAHC 1044/**
1045 * mv_host_intr - Handle all interrupts on the given host controller
1046 * @host_set: host specific structure
1047 * @relevant: port error bits relevant to this host controller
1048 * @hc: which host controller we're to look at
1049 *
1050 * Read then write clear the HC interrupt status then walk each
1051 * port connected to the HC and see if it needs servicing. Port
1052 * success ints are reported in the HC interrupt status reg, the
1053 * port error ints are reported in the higher level main
1054 * interrupt status register and thus are passed in via the
1055 * 'relevant' argument.
1056 *
1057 * LOCKING:
1058 * Inherited from caller.
481 */ 1059 */
482static void mv_host_intr(struct ata_host_set *host_set, u32 relevant, 1060static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
483 unsigned int hc) 1061 unsigned int hc)
@@ -487,8 +1065,9 @@ static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
487 struct ata_port *ap; 1065 struct ata_port *ap;
488 struct ata_queued_cmd *qc; 1066 struct ata_queued_cmd *qc;
489 u32 hc_irq_cause; 1067 u32 hc_irq_cause;
490 int shift, port, port0, hard_port; 1068 int shift, port, port0, hard_port, handled;
491 u8 ata_status; 1069 unsigned int err_mask;
1070 u8 ata_status = 0;
492 1071
493 if (hc == 0) { 1072 if (hc == 0) {
494 port0 = 0; 1073 port0 = 0;
@@ -499,7 +1078,7 @@ static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
499 /* we'll need the HC success int register in most cases */ 1078 /* we'll need the HC success int register in most cases */
500 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS); 1079 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
501 if (hc_irq_cause) { 1080 if (hc_irq_cause) {
502 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS); 1081 writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
503 } 1082 }
504 1083
505 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n", 1084 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
@@ -508,54 +1087,70 @@ static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
508 for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) { 1087 for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
509 ap = host_set->ports[port]; 1088 ap = host_set->ports[port];
510 hard_port = port & MV_PORT_MASK; /* range 0-3 */ 1089 hard_port = port & MV_PORT_MASK; /* range 0-3 */
511 ata_status = 0xffU; 1090 handled = 0; /* ensure ata_status is set if handled++ */
512 1091
513 if (((CRBP_DMA_DONE | DEV_IRQ) << hard_port) & hc_irq_cause) { 1092 if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
514 BUG_ON(NULL == ap); 1093 /* new CRPB on the queue; just one at a time until NCQ
515 /* rcv'd new resp, basic DMA complete, or ATA IRQ */ 1094 */
516 /* This is needed to clear the ATA INTRQ. 1095 ata_status = mv_get_crpb_status(ap);
517 * FIXME: don't read the status reg in EDMA mode! 1096 handled++;
1097 } else if ((DEV_IRQ << hard_port) & hc_irq_cause) {
1098 /* received ATA IRQ; read the status reg to clear INTRQ
518 */ 1099 */
519 ata_status = readb((void __iomem *) 1100 ata_status = readb((void __iomem *)
520 ap->ioaddr.status_addr); 1101 ap->ioaddr.status_addr);
1102 handled++;
521 } 1103 }
522 1104
523 shift = port * 2; 1105 err_mask = ac_err_mask(ata_status);
1106
1107 shift = port << 1; /* (port * 2) */
524 if (port >= MV_PORTS_PER_HC) { 1108 if (port >= MV_PORTS_PER_HC) {
525 shift++; /* skip bit 8 in the HC Main IRQ reg */ 1109 shift++; /* skip bit 8 in the HC Main IRQ reg */
526 } 1110 }
527 if ((PORT0_ERR << shift) & relevant) { 1111 if ((PORT0_ERR << shift) & relevant) {
528 mv_err_intr(ap); 1112 mv_err_intr(ap);
529 /* FIXME: smart to OR in ATA_ERR? */ 1113 err_mask |= AC_ERR_OTHER;
530 ata_status = readb((void __iomem *) 1114 handled++;
531 ap->ioaddr.status_addr) | ATA_ERR;
532 } 1115 }
533 1116
534 if (ap) { 1117 if (handled && ap) {
535 qc = ata_qc_from_tag(ap, ap->active_tag); 1118 qc = ata_qc_from_tag(ap, ap->active_tag);
536 if (NULL != qc) { 1119 if (NULL != qc) {
537 VPRINTK("port %u IRQ found for qc, " 1120 VPRINTK("port %u IRQ found for qc, "
538 "ata_status 0x%x\n", port,ata_status); 1121 "ata_status 0x%x\n", port,ata_status);
539 BUG_ON(0xffU == ata_status);
540 /* mark qc status appropriately */ 1122 /* mark qc status appropriately */
541 ata_qc_complete(qc, ata_status); 1123 ata_qc_complete(qc, err_mask);
542 } 1124 }
543 } 1125 }
544 } 1126 }
545 VPRINTK("EXIT\n"); 1127 VPRINTK("EXIT\n");
546} 1128}
547 1129
1130/**
1131 * mv_interrupt -
1132 * @irq: unused
1133 * @dev_instance: private data; in this case the host structure
1134 * @regs: unused
1135 *
1136 * Read the read only register to determine if any host
1137 * controllers have pending interrupts. If so, call lower level
1138 * routine to handle. Also check for PCI errors which are only
1139 * reported here.
1140 *
1141 * LOCKING:
1142 * This routine holds the host_set lock while processing pending
1143 * interrupts.
1144 */
548static irqreturn_t mv_interrupt(int irq, void *dev_instance, 1145static irqreturn_t mv_interrupt(int irq, void *dev_instance,
549 struct pt_regs *regs) 1146 struct pt_regs *regs)
550{ 1147{
551 struct ata_host_set *host_set = dev_instance; 1148 struct ata_host_set *host_set = dev_instance;
552 unsigned int hc, handled = 0, n_hcs; 1149 unsigned int hc, handled = 0, n_hcs;
553 void __iomem *mmio; 1150 void __iomem *mmio = host_set->mmio_base;
554 u32 irq_stat; 1151 u32 irq_stat;
555 1152
556 mmio = host_set->mmio_base;
557 irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS); 1153 irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
558 n_hcs = mv_get_hc_count(host_set->ports[0]->flags);
559 1154
560 /* check the cases where we either have nothing pending or have read 1155 /* check the cases where we either have nothing pending or have read
561 * a bogus register value which can indicate HW removal or PCI fault 1156 * a bogus register value which can indicate HW removal or PCI fault
@@ -564,64 +1159,89 @@ static irqreturn_t mv_interrupt(int irq, void *dev_instance,
564 return IRQ_NONE; 1159 return IRQ_NONE;
565 } 1160 }
566 1161
1162 n_hcs = mv_get_hc_count(host_set->ports[0]->flags);
567 spin_lock(&host_set->lock); 1163 spin_lock(&host_set->lock);
568 1164
569 for (hc = 0; hc < n_hcs; hc++) { 1165 for (hc = 0; hc < n_hcs; hc++) {
570 u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT)); 1166 u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
571 if (relevant) { 1167 if (relevant) {
572 mv_host_intr(host_set, relevant, hc); 1168 mv_host_intr(host_set, relevant, hc);
573 handled = 1; 1169 handled++;
574 } 1170 }
575 } 1171 }
576 if (PCI_ERR & irq_stat) { 1172 if (PCI_ERR & irq_stat) {
577 /* FIXME: these are all masked by default, but still need 1173 printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
578 * to recover from them properly. 1174 readl(mmio + PCI_IRQ_CAUSE_OFS));
579 */
580 }
581 1175
1176 DPRINTK("All regs @ PCI error\n");
1177 mv_dump_all_regs(mmio, -1, to_pci_dev(host_set->dev));
1178
1179 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
1180 handled++;
1181 }
582 spin_unlock(&host_set->lock); 1182 spin_unlock(&host_set->lock);
583 1183
584 return IRQ_RETVAL(handled); 1184 return IRQ_RETVAL(handled);
585} 1185}
586 1186
1187/**
1188 * mv_phy_reset - Perform eDMA reset followed by COMRESET
1189 * @ap: ATA channel to manipulate
1190 *
1191 * Part of this is taken from __sata_phy_reset and modified to
1192 * not sleep since this routine gets called from interrupt level.
1193 *
1194 * LOCKING:
1195 * Inherited from caller. This is coded to safe to call at
1196 * interrupt level, i.e. it does not sleep.
1197 */
587static void mv_phy_reset(struct ata_port *ap) 1198static void mv_phy_reset(struct ata_port *ap)
588{ 1199{
589 void __iomem *port_mmio = mv_ap_base(ap); 1200 void __iomem *port_mmio = mv_ap_base(ap);
590 struct ata_taskfile tf; 1201 struct ata_taskfile tf;
591 struct ata_device *dev = &ap->device[0]; 1202 struct ata_device *dev = &ap->device[0];
592 u32 edma = 0, bdma; 1203 unsigned long timeout;
593 1204
594 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio); 1205 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
595 1206
596 edma = readl(port_mmio + EDMA_CMD_OFS); 1207 mv_stop_dma(ap);
597 if (EDMA_EN & edma) {
598 /* disable EDMA if active */
599 edma &= ~EDMA_EN;
600 writelfl(edma | EDMA_DS, port_mmio + EDMA_CMD_OFS);
601 udelay(1);
602 } else if (mv_port_bdma_capable(ap) &&
603 (bdma = readl(port_mmio + BDMA_CMD_OFS)) & BDMA_START) {
604 /* disable BDMA if active */
605 writelfl(bdma & ~BDMA_START, port_mmio + BDMA_CMD_OFS);
606 }
607 1208
608 writelfl(edma | ATA_RST, port_mmio + EDMA_CMD_OFS); 1209 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
609 udelay(25); /* allow reset propagation */ 1210 udelay(25); /* allow reset propagation */
610 1211
611 /* Spec never mentions clearing the bit. Marvell's driver does 1212 /* Spec never mentions clearing the bit. Marvell's driver does
612 * clear the bit, however. 1213 * clear the bit, however.
613 */ 1214 */
614 writelfl(edma & ~ATA_RST, port_mmio + EDMA_CMD_OFS); 1215 writelfl(0, port_mmio + EDMA_CMD_OFS);
615 1216
616 VPRINTK("Done. Now calling __sata_phy_reset()\n"); 1217 VPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1218 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1219 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
617 1220
618 /* proceed to init communications via the scr_control reg */ 1221 /* proceed to init communications via the scr_control reg */
619 __sata_phy_reset(ap); 1222 scr_write_flush(ap, SCR_CONTROL, 0x301);
1223 mdelay(1);
1224 scr_write_flush(ap, SCR_CONTROL, 0x300);
1225 timeout = jiffies + (HZ * 1);
1226 do {
1227 mdelay(10);
1228 if ((scr_read(ap, SCR_STATUS) & 0xf) != 1)
1229 break;
1230 } while (time_before(jiffies, timeout));
1231
1232 VPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1233 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1234 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
620 1235
621 if (ap->flags & ATA_FLAG_PORT_DISABLED) { 1236 if (sata_dev_present(ap)) {
622 VPRINTK("Port disabled pre-sig. Exiting.\n"); 1237 ata_port_probe(ap);
1238 } else {
1239 printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
1240 ap->id, scr_read(ap, SCR_STATUS));
1241 ata_port_disable(ap);
623 return; 1242 return;
624 } 1243 }
1244 ap->cbl = ATA_CBL_SATA;
625 1245
626 tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr); 1246 tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
627 tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr); 1247 tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
@@ -636,37 +1256,118 @@ static void mv_phy_reset(struct ata_port *ap)
636 VPRINTK("EXIT\n"); 1256 VPRINTK("EXIT\n");
637} 1257}
638 1258
639static void mv_port_init(struct ata_ioports *port, unsigned long base) 1259/**
1260 * mv_eng_timeout - Routine called by libata when SCSI times out I/O
1261 * @ap: ATA channel to manipulate
1262 *
1263 * Intent is to clear all pending error conditions, reset the
1264 * chip/bus, fail the command, and move on.
1265 *
1266 * LOCKING:
1267 * This routine holds the host_set lock while failing the command.
1268 */
1269static void mv_eng_timeout(struct ata_port *ap)
1270{
1271 struct ata_queued_cmd *qc;
1272 unsigned long flags;
1273
1274 printk(KERN_ERR "ata%u: Entering mv_eng_timeout\n",ap->id);
1275 DPRINTK("All regs @ start of eng_timeout\n");
1276 mv_dump_all_regs(ap->host_set->mmio_base, ap->port_no,
1277 to_pci_dev(ap->host_set->dev));
1278
1279 qc = ata_qc_from_tag(ap, ap->active_tag);
1280 printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
1281 ap->host_set->mmio_base, ap, qc, qc->scsicmd,
1282 &qc->scsicmd->cmnd);
1283
1284 mv_err_intr(ap);
1285 mv_phy_reset(ap);
1286
1287 if (!qc) {
1288 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
1289 ap->id);
1290 } else {
1291 /* hack alert! We cannot use the supplied completion
1292 * function from inside the ->eh_strategy_handler() thread.
1293 * libata is the only user of ->eh_strategy_handler() in
1294 * any kernel, so the default scsi_done() assumes it is
1295 * not being called from the SCSI EH.
1296 */
1297 spin_lock_irqsave(&ap->host_set->lock, flags);
1298 qc->scsidone = scsi_finish_command;
1299 ata_qc_complete(qc, AC_ERR_OTHER);
1300 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1301 }
1302}
1303
1304/**
1305 * mv_port_init - Perform some early initialization on a single port.
1306 * @port: libata data structure storing shadow register addresses
1307 * @port_mmio: base address of the port
1308 *
1309 * Initialize shadow register mmio addresses, clear outstanding
1310 * interrupts on the port, and unmask interrupts for the future
1311 * start of the port.
1312 *
1313 * LOCKING:
1314 * Inherited from caller.
1315 */
1316static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
640{ 1317{
641 /* PIO related setup */ 1318 unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
642 port->data_addr = base + SHD_PIO_DATA_OFS; 1319 unsigned serr_ofs;
643 port->error_addr = port->feature_addr = base + SHD_FEA_ERR_OFS; 1320
644 port->nsect_addr = base + SHD_SECT_CNT_OFS; 1321 /* PIO related setup
645 port->lbal_addr = base + SHD_LBA_L_OFS; 1322 */
646 port->lbam_addr = base + SHD_LBA_M_OFS; 1323 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
647 port->lbah_addr = base + SHD_LBA_H_OFS; 1324 port->error_addr =
648 port->device_addr = base + SHD_DEV_HD_OFS; 1325 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
649 port->status_addr = port->command_addr = base + SHD_CMD_STA_OFS; 1326 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
650 port->altstatus_addr = port->ctl_addr = base + SHD_CTL_AST_OFS; 1327 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
651 /* unused */ 1328 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
1329 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
1330 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
1331 port->status_addr =
1332 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
1333 /* special case: control/altstatus doesn't have ATA_REG_ address */
1334 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
1335
1336 /* unused: */
652 port->cmd_addr = port->bmdma_addr = port->scr_addr = 0; 1337 port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;
653 1338
1339 /* Clear any currently outstanding port interrupt conditions */
1340 serr_ofs = mv_scr_offset(SCR_ERROR);
1341 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
1342 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1343
654 /* unmask all EDMA error interrupts */ 1344 /* unmask all EDMA error interrupts */
655 writel(~0, (void __iomem *)base + EDMA_ERR_IRQ_MASK_OFS); 1345 writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
656 1346
657 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", 1347 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
658 readl((void __iomem *)base + EDMA_CFG_OFS), 1348 readl(port_mmio + EDMA_CFG_OFS),
659 readl((void __iomem *)base + EDMA_ERR_IRQ_CAUSE_OFS), 1349 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
660 readl((void __iomem *)base + EDMA_ERR_IRQ_MASK_OFS)); 1350 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
661} 1351}
662 1352
1353/**
1354 * mv_host_init - Perform some early initialization of the host.
1355 * @probe_ent: early data struct representing the host
1356 *
1357 * If possible, do an early global reset of the host. Then do
1358 * our port init and clear/unmask all/relevant host interrupts.
1359 *
1360 * LOCKING:
1361 * Inherited from caller.
1362 */
663static int mv_host_init(struct ata_probe_ent *probe_ent) 1363static int mv_host_init(struct ata_probe_ent *probe_ent)
664{ 1364{
665 int rc = 0, n_hc, port, hc; 1365 int rc = 0, n_hc, port, hc;
666 void __iomem *mmio = probe_ent->mmio_base; 1366 void __iomem *mmio = probe_ent->mmio_base;
667 void __iomem *port_mmio; 1367 void __iomem *port_mmio;
668 1368
669 if (mv_master_reset(probe_ent->mmio_base)) { 1369 if ((MV_FLAG_GLBL_SFT_RST & probe_ent->host_flags) &&
1370 mv_global_soft_reset(probe_ent->mmio_base)) {
670 rc = 1; 1371 rc = 1;
671 goto done; 1372 goto done;
672 } 1373 }
@@ -676,17 +1377,27 @@ static int mv_host_init(struct ata_probe_ent *probe_ent)
676 1377
677 for (port = 0; port < probe_ent->n_ports; port++) { 1378 for (port = 0; port < probe_ent->n_ports; port++) {
678 port_mmio = mv_port_base(mmio, port); 1379 port_mmio = mv_port_base(mmio, port);
679 mv_port_init(&probe_ent->port[port], (unsigned long)port_mmio); 1380 mv_port_init(&probe_ent->port[port], port_mmio);
680 } 1381 }
681 1382
682 for (hc = 0; hc < n_hc; hc++) { 1383 for (hc = 0; hc < n_hc; hc++) {
683 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause=0x%08x\n", hc, 1384 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
684 readl(mv_hc_base(mmio, hc) + HC_CFG_OFS), 1385
685 readl(mv_hc_base(mmio, hc) + HC_IRQ_CAUSE_OFS)); 1386 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
1387 "(before clear)=0x%08x\n", hc,
1388 readl(hc_mmio + HC_CFG_OFS),
1389 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
1390
1391 /* Clear any currently outstanding hc interrupt conditions */
1392 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
686 } 1393 }
687 1394
688 writel(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS); 1395 /* Clear any currently outstanding host interrupt conditions */
689 writel(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS); 1396 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
1397
1398 /* and unmask interrupt generation for host regs */
1399 writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
1400 writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
690 1401
691 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x " 1402 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
692 "PCI int cause/mask=0x%08x/0x%08x\n", 1403 "PCI int cause/mask=0x%08x/0x%08x\n",
@@ -694,11 +1405,53 @@ static int mv_host_init(struct ata_probe_ent *probe_ent)
694 readl(mmio + HC_MAIN_IRQ_MASK_OFS), 1405 readl(mmio + HC_MAIN_IRQ_MASK_OFS),
695 readl(mmio + PCI_IRQ_CAUSE_OFS), 1406 readl(mmio + PCI_IRQ_CAUSE_OFS),
696 readl(mmio + PCI_IRQ_MASK_OFS)); 1407 readl(mmio + PCI_IRQ_MASK_OFS));
697 1408done:
698 done:
699 return rc; 1409 return rc;
700} 1410}
701 1411
1412/**
1413 * mv_print_info - Dump key info to kernel log for perusal.
1414 * @probe_ent: early data struct representing the host
1415 *
1416 * FIXME: complete this.
1417 *
1418 * LOCKING:
1419 * Inherited from caller.
1420 */
1421static void mv_print_info(struct ata_probe_ent *probe_ent)
1422{
1423 struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
1424 struct mv_host_priv *hpriv = probe_ent->private_data;
1425 u8 rev_id, scc;
1426 const char *scc_s;
1427
1428 /* Use this to determine the HW stepping of the chip so we know
1429 * what errata to workaround
1430 */
1431 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
1432
1433 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
1434 if (scc == 0)
1435 scc_s = "SCSI";
1436 else if (scc == 0x01)
1437 scc_s = "RAID";
1438 else
1439 scc_s = "unknown";
1440
1441 dev_printk(KERN_INFO, &pdev->dev,
1442 "%u slots %u ports %s mode IRQ via %s\n",
1443 (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
1444 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
1445}
1446
1447/**
1448 * mv_init_one - handle a positive probe of a Marvell host
1449 * @pdev: PCI device found
1450 * @ent: PCI device ID entry for the matched host
1451 *
1452 * LOCKING:
1453 * Inherited from caller.
1454 */
702static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 1455static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
703{ 1456{
704 static int printed_version = 0; 1457 static int printed_version = 0;
@@ -706,15 +1459,10 @@ static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
706 struct mv_host_priv *hpriv; 1459 struct mv_host_priv *hpriv;
707 unsigned int board_idx = (unsigned int)ent->driver_data; 1460 unsigned int board_idx = (unsigned int)ent->driver_data;
708 void __iomem *mmio_base; 1461 void __iomem *mmio_base;
709 int pci_dev_busy = 0; 1462 int pci_dev_busy = 0, rc;
710 int rc;
711 1463
712 if (!printed_version++) { 1464 if (!printed_version++)
713 printk(KERN_DEBUG DRV_NAME " version " DRV_VERSION "\n"); 1465 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
714 }
715
716 VPRINTK("ENTER for PCI Bus:Slot.Func=%u:%u.%u\n", pdev->bus->number,
717 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
718 1466
719 rc = pci_enable_device(pdev); 1467 rc = pci_enable_device(pdev);
720 if (rc) { 1468 if (rc) {
@@ -727,8 +1475,6 @@ static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
727 goto err_out; 1475 goto err_out;
728 } 1476 }
729 1477
730 pci_intx(pdev, 1);
731
732 probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL); 1478 probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
733 if (probe_ent == NULL) { 1479 if (probe_ent == NULL) {
734 rc = -ENOMEM; 1480 rc = -ENOMEM;
@@ -739,8 +1485,7 @@ static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
739 probe_ent->dev = pci_dev_to_dev(pdev); 1485 probe_ent->dev = pci_dev_to_dev(pdev);
740 INIT_LIST_HEAD(&probe_ent->node); 1486 INIT_LIST_HEAD(&probe_ent->node);
741 1487
742 mmio_base = ioremap_nocache(pci_resource_start(pdev, MV_PRIMARY_BAR), 1488 mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0);
743 pci_resource_len(pdev, MV_PRIMARY_BAR));
744 if (mmio_base == NULL) { 1489 if (mmio_base == NULL) {
745 rc = -ENOMEM; 1490 rc = -ENOMEM;
746 goto err_out_free_ent; 1491 goto err_out_free_ent;
@@ -769,37 +1514,40 @@ static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
769 if (rc) { 1514 if (rc) {
770 goto err_out_hpriv; 1515 goto err_out_hpriv;
771 } 1516 }
772/* mv_print_info(probe_ent); */
773 1517
774 { 1518 /* Enable interrupts */
775 int b, w; 1519 if (pci_enable_msi(pdev) == 0) {
776 u32 dw[4]; /* hold a line of 16b */ 1520 hpriv->hp_flags |= MV_HP_FLAG_MSI;
777 VPRINTK("PCI config space:\n"); 1521 } else {
778 for (b = 0; b < 0x40; ) { 1522 pci_intx(pdev, 1);
779 for (w = 0; w < 4; w++) {
780 (void) pci_read_config_dword(pdev,b,&dw[w]);
781 b += sizeof(*dw);
782 }
783 VPRINTK("%08x %08x %08x %08x\n",
784 dw[0],dw[1],dw[2],dw[3]);
785 }
786 } 1523 }
787 1524
788 /* FIXME: check ata_device_add return value */ 1525 mv_dump_pci_cfg(pdev, 0x68);
789 ata_device_add(probe_ent); 1526 mv_print_info(probe_ent);
790 kfree(probe_ent); 1527
1528 if (ata_device_add(probe_ent) == 0) {
1529 rc = -ENODEV; /* No devices discovered */
1530 goto err_out_dev_add;
1531 }
791 1532
1533 kfree(probe_ent);
792 return 0; 1534 return 0;
793 1535
794 err_out_hpriv: 1536err_out_dev_add:
1537 if (MV_HP_FLAG_MSI & hpriv->hp_flags) {
1538 pci_disable_msi(pdev);
1539 } else {
1540 pci_intx(pdev, 0);
1541 }
1542err_out_hpriv:
795 kfree(hpriv); 1543 kfree(hpriv);
796 err_out_iounmap: 1544err_out_iounmap:
797 iounmap(mmio_base); 1545 pci_iounmap(pdev, mmio_base);
798 err_out_free_ent: 1546err_out_free_ent:
799 kfree(probe_ent); 1547 kfree(probe_ent);
800 err_out_regions: 1548err_out_regions:
801 pci_release_regions(pdev); 1549 pci_release_regions(pdev);
802 err_out: 1550err_out:
803 if (!pci_dev_busy) { 1551 if (!pci_dev_busy) {
804 pci_disable_device(pdev); 1552 pci_disable_device(pdev);
805 } 1553 }