aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/scsi/mpt3sas/mpt3sas_base.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/scsi/mpt3sas/mpt3sas_base.c')
-rw-r--r--drivers/scsi/mpt3sas/mpt3sas_base.c4840
1 files changed, 4840 insertions, 0 deletions
diff --git a/drivers/scsi/mpt3sas/mpt3sas_base.c b/drivers/scsi/mpt3sas/mpt3sas_base.c
new file mode 100644
index 000000000000..04f8010f0770
--- /dev/null
+++ b/drivers/scsi/mpt3sas/mpt3sas_base.c
@@ -0,0 +1,4840 @@
1/*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012 LSI Corporation
7 * (mailto:DL-MPTFusionLinux@lsi.com)
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version 2
12 * of the License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * NO WARRANTY
20 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
21 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
22 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
23 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
24 * solely responsible for determining the appropriateness of using and
25 * distributing the Program and assumes all risks associated with its
26 * exercise of rights under this Agreement, including but not limited to
27 * the risks and costs of program errors, damage to or loss of data,
28 * programs or equipment, and unavailability or interruption of operations.
29
30 * DISCLAIMER OF LIABILITY
31 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
32 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
34 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
35 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
36 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
37 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
38
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
42 * USA.
43 */
44
45#include <linux/version.h>
46#include <linux/kernel.h>
47#include <linux/module.h>
48#include <linux/errno.h>
49#include <linux/init.h>
50#include <linux/slab.h>
51#include <linux/types.h>
52#include <linux/pci.h>
53#include <linux/kdev_t.h>
54#include <linux/blkdev.h>
55#include <linux/delay.h>
56#include <linux/interrupt.h>
57#include <linux/dma-mapping.h>
58#include <linux/io.h>
59#include <linux/time.h>
60#include <linux/kthread.h>
61#include <linux/aer.h>
62
63
64#include "mpt3sas_base.h"
65
66static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
67
68
69#define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
70
71 /* maximum controller queue depth */
72#define MAX_HBA_QUEUE_DEPTH 30000
73#define MAX_CHAIN_DEPTH 100000
74static int max_queue_depth = -1;
75module_param(max_queue_depth, int, 0);
76MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
77
78static int max_sgl_entries = -1;
79module_param(max_sgl_entries, int, 0);
80MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
81
82static int msix_disable = -1;
83module_param(msix_disable, int, 0);
84MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
85
86
87static int mpt3sas_fwfault_debug;
88MODULE_PARM_DESC(mpt3sas_fwfault_debug,
89 " enable detection of firmware fault and halt firmware - (default=0)");
90
91
92/**
93 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
94 *
95 */
96static int
97_scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
98{
99 int ret = param_set_int(val, kp);
100 struct MPT3SAS_ADAPTER *ioc;
101
102 if (ret)
103 return ret;
104
105 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
106 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
107 ioc->fwfault_debug = mpt3sas_fwfault_debug;
108 return 0;
109}
110module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
111 param_get_int, &mpt3sas_fwfault_debug, 0644);
112
113/**
114 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
115 * @arg: input argument, used to derive ioc
116 *
117 * Return 0 if controller is removed from pci subsystem.
118 * Return -1 for other case.
119 */
120static int mpt3sas_remove_dead_ioc_func(void *arg)
121{
122 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
123 struct pci_dev *pdev;
124
125 if ((ioc == NULL))
126 return -1;
127
128 pdev = ioc->pdev;
129 if ((pdev == NULL))
130 return -1;
131 pci_stop_and_remove_bus_device(pdev);
132 return 0;
133}
134
135/**
136 * _base_fault_reset_work - workq handling ioc fault conditions
137 * @work: input argument, used to derive ioc
138 * Context: sleep.
139 *
140 * Return nothing.
141 */
142static void
143_base_fault_reset_work(struct work_struct *work)
144{
145 struct MPT3SAS_ADAPTER *ioc =
146 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
147 unsigned long flags;
148 u32 doorbell;
149 int rc;
150 struct task_struct *p;
151
152
153 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
154 if (ioc->shost_recovery)
155 goto rearm_timer;
156 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
157
158 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
159 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
160 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
161 ioc->name);
162
163 /*
164 * Call _scsih_flush_pending_cmds callback so that we flush all
165 * pending commands back to OS. This call is required to aovid
166 * deadlock at block layer. Dead IOC will fail to do diag reset,
167 * and this call is safe since dead ioc will never return any
168 * command back from HW.
169 */
170 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
171 /*
172 * Set remove_host flag early since kernel thread will
173 * take some time to execute.
174 */
175 ioc->remove_host = 1;
176 /*Remove the Dead Host */
177 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
178 "mpt3sas_dead_ioc_%d", ioc->id);
179 if (IS_ERR(p))
180 pr_err(MPT3SAS_FMT
181 "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
182 ioc->name, __func__);
183 else
184 pr_err(MPT3SAS_FMT
185 "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
186 ioc->name, __func__);
187 return; /* don't rearm timer */
188 }
189
190 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
191 rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
192 FORCE_BIG_HAMMER);
193 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
194 __func__, (rc == 0) ? "success" : "failed");
195 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
196 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
197 mpt3sas_base_fault_info(ioc, doorbell &
198 MPI2_DOORBELL_DATA_MASK);
199 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
200 MPI2_IOC_STATE_OPERATIONAL)
201 return; /* don't rearm timer */
202 }
203
204 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
205 rearm_timer:
206 if (ioc->fault_reset_work_q)
207 queue_delayed_work(ioc->fault_reset_work_q,
208 &ioc->fault_reset_work,
209 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
210 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
211}
212
213/**
214 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
215 * @ioc: per adapter object
216 * Context: sleep.
217 *
218 * Return nothing.
219 */
220void
221mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
222{
223 unsigned long flags;
224
225 if (ioc->fault_reset_work_q)
226 return;
227
228 /* initialize fault polling */
229
230 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
231 snprintf(ioc->fault_reset_work_q_name,
232 sizeof(ioc->fault_reset_work_q_name), "poll_%d_status", ioc->id);
233 ioc->fault_reset_work_q =
234 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
235 if (!ioc->fault_reset_work_q) {
236 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
237 ioc->name, __func__, __LINE__);
238 return;
239 }
240 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
241 if (ioc->fault_reset_work_q)
242 queue_delayed_work(ioc->fault_reset_work_q,
243 &ioc->fault_reset_work,
244 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
245 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
246}
247
248/**
249 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
250 * @ioc: per adapter object
251 * Context: sleep.
252 *
253 * Return nothing.
254 */
255void
256mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
257{
258 unsigned long flags;
259 struct workqueue_struct *wq;
260
261 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
262 wq = ioc->fault_reset_work_q;
263 ioc->fault_reset_work_q = NULL;
264 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
265 if (wq) {
266 if (!cancel_delayed_work(&ioc->fault_reset_work))
267 flush_workqueue(wq);
268 destroy_workqueue(wq);
269 }
270}
271
272/**
273 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
274 * @ioc: per adapter object
275 * @fault_code: fault code
276 *
277 * Return nothing.
278 */
279void
280mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
281{
282 pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
283 ioc->name, fault_code);
284}
285
286/**
287 * mpt3sas_halt_firmware - halt's mpt controller firmware
288 * @ioc: per adapter object
289 *
290 * For debugging timeout related issues. Writing 0xCOFFEE00
291 * to the doorbell register will halt controller firmware. With
292 * the purpose to stop both driver and firmware, the enduser can
293 * obtain a ring buffer from controller UART.
294 */
295void
296mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
297{
298 u32 doorbell;
299
300 if (!ioc->fwfault_debug)
301 return;
302
303 dump_stack();
304
305 doorbell = readl(&ioc->chip->Doorbell);
306 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
307 mpt3sas_base_fault_info(ioc , doorbell);
308 else {
309 writel(0xC0FFEE00, &ioc->chip->Doorbell);
310 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
311 ioc->name);
312 }
313
314 if (ioc->fwfault_debug == 2)
315 for (;;)
316 ;
317 else
318 panic("panic in %s\n", __func__);
319}
320
321#ifdef CONFIG_SCSI_MPT3SAS_LOGGING
322/**
323 * _base_sas_ioc_info - verbose translation of the ioc status
324 * @ioc: per adapter object
325 * @mpi_reply: reply mf payload returned from firmware
326 * @request_hdr: request mf
327 *
328 * Return nothing.
329 */
330static void
331_base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
332 MPI2RequestHeader_t *request_hdr)
333{
334 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
335 MPI2_IOCSTATUS_MASK;
336 char *desc = NULL;
337 u16 frame_sz;
338 char *func_str = NULL;
339
340 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
341 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
342 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
343 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
344 return;
345
346 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
347 return;
348
349 switch (ioc_status) {
350
351/****************************************************************************
352* Common IOCStatus values for all replies
353****************************************************************************/
354
355 case MPI2_IOCSTATUS_INVALID_FUNCTION:
356 desc = "invalid function";
357 break;
358 case MPI2_IOCSTATUS_BUSY:
359 desc = "busy";
360 break;
361 case MPI2_IOCSTATUS_INVALID_SGL:
362 desc = "invalid sgl";
363 break;
364 case MPI2_IOCSTATUS_INTERNAL_ERROR:
365 desc = "internal error";
366 break;
367 case MPI2_IOCSTATUS_INVALID_VPID:
368 desc = "invalid vpid";
369 break;
370 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
371 desc = "insufficient resources";
372 break;
373 case MPI2_IOCSTATUS_INVALID_FIELD:
374 desc = "invalid field";
375 break;
376 case MPI2_IOCSTATUS_INVALID_STATE:
377 desc = "invalid state";
378 break;
379 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
380 desc = "op state not supported";
381 break;
382
383/****************************************************************************
384* Config IOCStatus values
385****************************************************************************/
386
387 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
388 desc = "config invalid action";
389 break;
390 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
391 desc = "config invalid type";
392 break;
393 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
394 desc = "config invalid page";
395 break;
396 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
397 desc = "config invalid data";
398 break;
399 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
400 desc = "config no defaults";
401 break;
402 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
403 desc = "config cant commit";
404 break;
405
406/****************************************************************************
407* SCSI IO Reply
408****************************************************************************/
409
410 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
411 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
412 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
413 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
414 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
415 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
416 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
417 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
418 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
419 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
420 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
421 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
422 break;
423
424/****************************************************************************
425* For use by SCSI Initiator and SCSI Target end-to-end data protection
426****************************************************************************/
427
428 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
429 desc = "eedp guard error";
430 break;
431 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
432 desc = "eedp ref tag error";
433 break;
434 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
435 desc = "eedp app tag error";
436 break;
437
438/****************************************************************************
439* SCSI Target values
440****************************************************************************/
441
442 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
443 desc = "target invalid io index";
444 break;
445 case MPI2_IOCSTATUS_TARGET_ABORTED:
446 desc = "target aborted";
447 break;
448 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
449 desc = "target no conn retryable";
450 break;
451 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
452 desc = "target no connection";
453 break;
454 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
455 desc = "target xfer count mismatch";
456 break;
457 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
458 desc = "target data offset error";
459 break;
460 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
461 desc = "target too much write data";
462 break;
463 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
464 desc = "target iu too short";
465 break;
466 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
467 desc = "target ack nak timeout";
468 break;
469 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
470 desc = "target nak received";
471 break;
472
473/****************************************************************************
474* Serial Attached SCSI values
475****************************************************************************/
476
477 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
478 desc = "smp request failed";
479 break;
480 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
481 desc = "smp data overrun";
482 break;
483
484/****************************************************************************
485* Diagnostic Buffer Post / Diagnostic Release values
486****************************************************************************/
487
488 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
489 desc = "diagnostic released";
490 break;
491 default:
492 break;
493 }
494
495 if (!desc)
496 return;
497
498 switch (request_hdr->Function) {
499 case MPI2_FUNCTION_CONFIG:
500 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
501 func_str = "config_page";
502 break;
503 case MPI2_FUNCTION_SCSI_TASK_MGMT:
504 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
505 func_str = "task_mgmt";
506 break;
507 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
508 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
509 func_str = "sas_iounit_ctl";
510 break;
511 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
512 frame_sz = sizeof(Mpi2SepRequest_t);
513 func_str = "enclosure";
514 break;
515 case MPI2_FUNCTION_IOC_INIT:
516 frame_sz = sizeof(Mpi2IOCInitRequest_t);
517 func_str = "ioc_init";
518 break;
519 case MPI2_FUNCTION_PORT_ENABLE:
520 frame_sz = sizeof(Mpi2PortEnableRequest_t);
521 func_str = "port_enable";
522 break;
523 case MPI2_FUNCTION_SMP_PASSTHROUGH:
524 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
525 func_str = "smp_passthru";
526 break;
527 default:
528 frame_sz = 32;
529 func_str = "unknown";
530 break;
531 }
532
533 pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
534 ioc->name, desc, ioc_status, request_hdr, func_str);
535
536 _debug_dump_mf(request_hdr, frame_sz/4);
537}
538
539/**
540 * _base_display_event_data - verbose translation of firmware asyn events
541 * @ioc: per adapter object
542 * @mpi_reply: reply mf payload returned from firmware
543 *
544 * Return nothing.
545 */
546static void
547_base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
548 Mpi2EventNotificationReply_t *mpi_reply)
549{
550 char *desc = NULL;
551 u16 event;
552
553 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
554 return;
555
556 event = le16_to_cpu(mpi_reply->Event);
557
558 switch (event) {
559 case MPI2_EVENT_LOG_DATA:
560 desc = "Log Data";
561 break;
562 case MPI2_EVENT_STATE_CHANGE:
563 desc = "Status Change";
564 break;
565 case MPI2_EVENT_HARD_RESET_RECEIVED:
566 desc = "Hard Reset Received";
567 break;
568 case MPI2_EVENT_EVENT_CHANGE:
569 desc = "Event Change";
570 break;
571 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
572 desc = "Device Status Change";
573 break;
574 case MPI2_EVENT_IR_OPERATION_STATUS:
575 desc = "IR Operation Status";
576 break;
577 case MPI2_EVENT_SAS_DISCOVERY:
578 {
579 Mpi2EventDataSasDiscovery_t *event_data =
580 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
581 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
582 (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
583 "start" : "stop");
584 if (event_data->DiscoveryStatus)
585 pr_info("discovery_status(0x%08x)",
586 le32_to_cpu(event_data->DiscoveryStatus));
587 pr_info("\n");
588 return;
589 }
590 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
591 desc = "SAS Broadcast Primitive";
592 break;
593 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
594 desc = "SAS Init Device Status Change";
595 break;
596 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
597 desc = "SAS Init Table Overflow";
598 break;
599 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
600 desc = "SAS Topology Change List";
601 break;
602 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
603 desc = "SAS Enclosure Device Status Change";
604 break;
605 case MPI2_EVENT_IR_VOLUME:
606 desc = "IR Volume";
607 break;
608 case MPI2_EVENT_IR_PHYSICAL_DISK:
609 desc = "IR Physical Disk";
610 break;
611 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
612 desc = "IR Configuration Change List";
613 break;
614 case MPI2_EVENT_LOG_ENTRY_ADDED:
615 desc = "Log Entry Added";
616 break;
617 }
618
619 if (!desc)
620 return;
621
622 pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
623}
624#endif
625
626/**
627 * _base_sas_log_info - verbose translation of firmware log info
628 * @ioc: per adapter object
629 * @log_info: log info
630 *
631 * Return nothing.
632 */
633static void
634_base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
635{
636 union loginfo_type {
637 u32 loginfo;
638 struct {
639 u32 subcode:16;
640 u32 code:8;
641 u32 originator:4;
642 u32 bus_type:4;
643 } dw;
644 };
645 union loginfo_type sas_loginfo;
646 char *originator_str = NULL;
647
648 sas_loginfo.loginfo = log_info;
649 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
650 return;
651
652 /* each nexus loss loginfo */
653 if (log_info == 0x31170000)
654 return;
655
656 /* eat the loginfos associated with task aborts */
657 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
658 0x31140000 || log_info == 0x31130000))
659 return;
660
661 switch (sas_loginfo.dw.originator) {
662 case 0:
663 originator_str = "IOP";
664 break;
665 case 1:
666 originator_str = "PL";
667 break;
668 case 2:
669 originator_str = "IR";
670 break;
671 }
672
673 pr_warn(MPT3SAS_FMT
674 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
675 ioc->name, log_info,
676 originator_str, sas_loginfo.dw.code,
677 sas_loginfo.dw.subcode);
678}
679
680/**
681 * _base_display_reply_info -
682 * @ioc: per adapter object
683 * @smid: system request message index
684 * @msix_index: MSIX table index supplied by the OS
685 * @reply: reply message frame(lower 32bit addr)
686 *
687 * Return nothing.
688 */
689static void
690_base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
691 u32 reply)
692{
693 MPI2DefaultReply_t *mpi_reply;
694 u16 ioc_status;
695 u32 loginfo = 0;
696
697 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
698 if (unlikely(!mpi_reply)) {
699 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
700 ioc->name, __FILE__, __LINE__, __func__);
701 return;
702 }
703 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
704#ifdef CONFIG_SCSI_MPT3SAS_LOGGING
705 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
706 (ioc->logging_level & MPT_DEBUG_REPLY)) {
707 _base_sas_ioc_info(ioc , mpi_reply,
708 mpt3sas_base_get_msg_frame(ioc, smid));
709 }
710#endif
711 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
712 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
713 _base_sas_log_info(ioc, loginfo);
714 }
715
716 if (ioc_status || loginfo) {
717 ioc_status &= MPI2_IOCSTATUS_MASK;
718 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
719 }
720}
721
722/**
723 * mpt3sas_base_done - base internal command completion routine
724 * @ioc: per adapter object
725 * @smid: system request message index
726 * @msix_index: MSIX table index supplied by the OS
727 * @reply: reply message frame(lower 32bit addr)
728 *
729 * Return 1 meaning mf should be freed from _base_interrupt
730 * 0 means the mf is freed from this function.
731 */
732u8
733mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
734 u32 reply)
735{
736 MPI2DefaultReply_t *mpi_reply;
737
738 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
739 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
740 return 1;
741
742 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
743 return 1;
744
745 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
746 if (mpi_reply) {
747 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
748 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
749 }
750 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
751
752 complete(&ioc->base_cmds.done);
753 return 1;
754}
755
756/**
757 * _base_async_event - main callback handler for firmware asyn events
758 * @ioc: per adapter object
759 * @msix_index: MSIX table index supplied by the OS
760 * @reply: reply message frame(lower 32bit addr)
761 *
762 * Return 1 meaning mf should be freed from _base_interrupt
763 * 0 means the mf is freed from this function.
764 */
765static u8
766_base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
767{
768 Mpi2EventNotificationReply_t *mpi_reply;
769 Mpi2EventAckRequest_t *ack_request;
770 u16 smid;
771
772 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
773 if (!mpi_reply)
774 return 1;
775 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
776 return 1;
777#ifdef CONFIG_SCSI_MPT3SAS_LOGGING
778 _base_display_event_data(ioc, mpi_reply);
779#endif
780 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
781 goto out;
782 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
783 if (!smid) {
784 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
785 ioc->name, __func__);
786 goto out;
787 }
788
789 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
790 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
791 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
792 ack_request->Event = mpi_reply->Event;
793 ack_request->EventContext = mpi_reply->EventContext;
794 ack_request->VF_ID = 0; /* TODO */
795 ack_request->VP_ID = 0;
796 mpt3sas_base_put_smid_default(ioc, smid);
797
798 out:
799
800 /* scsih callback handler */
801 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
802
803 /* ctl callback handler */
804 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
805
806 return 1;
807}
808
809/**
810 * _base_get_cb_idx - obtain the callback index
811 * @ioc: per adapter object
812 * @smid: system request message index
813 *
814 * Return callback index.
815 */
816static u8
817_base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
818{
819 int i;
820 u8 cb_idx;
821
822 if (smid < ioc->hi_priority_smid) {
823 i = smid - 1;
824 cb_idx = ioc->scsi_lookup[i].cb_idx;
825 } else if (smid < ioc->internal_smid) {
826 i = smid - ioc->hi_priority_smid;
827 cb_idx = ioc->hpr_lookup[i].cb_idx;
828 } else if (smid <= ioc->hba_queue_depth) {
829 i = smid - ioc->internal_smid;
830 cb_idx = ioc->internal_lookup[i].cb_idx;
831 } else
832 cb_idx = 0xFF;
833 return cb_idx;
834}
835
836/**
837 * _base_mask_interrupts - disable interrupts
838 * @ioc: per adapter object
839 *
840 * Disabling ResetIRQ, Reply and Doorbell Interrupts
841 *
842 * Return nothing.
843 */
844static void
845_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
846{
847 u32 him_register;
848
849 ioc->mask_interrupts = 1;
850 him_register = readl(&ioc->chip->HostInterruptMask);
851 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
852 writel(him_register, &ioc->chip->HostInterruptMask);
853 readl(&ioc->chip->HostInterruptMask);
854}
855
856/**
857 * _base_unmask_interrupts - enable interrupts
858 * @ioc: per adapter object
859 *
860 * Enabling only Reply Interrupts
861 *
862 * Return nothing.
863 */
864static void
865_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
866{
867 u32 him_register;
868
869 him_register = readl(&ioc->chip->HostInterruptMask);
870 him_register &= ~MPI2_HIM_RIM;
871 writel(him_register, &ioc->chip->HostInterruptMask);
872 ioc->mask_interrupts = 0;
873}
874
875union reply_descriptor {
876 u64 word;
877 struct {
878 u32 low;
879 u32 high;
880 } u;
881};
882
883/**
884 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
885 * @irq: irq number (not used)
886 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
887 * @r: pt_regs pointer (not used)
888 *
889 * Return IRQ_HANDLE if processed, else IRQ_NONE.
890 */
891static irqreturn_t
892_base_interrupt(int irq, void *bus_id)
893{
894 struct adapter_reply_queue *reply_q = bus_id;
895 union reply_descriptor rd;
896 u32 completed_cmds;
897 u8 request_desript_type;
898 u16 smid;
899 u8 cb_idx;
900 u32 reply;
901 u8 msix_index = reply_q->msix_index;
902 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
903 Mpi2ReplyDescriptorsUnion_t *rpf;
904 u8 rc;
905
906 if (ioc->mask_interrupts)
907 return IRQ_NONE;
908
909 if (!atomic_add_unless(&reply_q->busy, 1, 1))
910 return IRQ_NONE;
911
912 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
913 request_desript_type = rpf->Default.ReplyFlags
914 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
915 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
916 atomic_dec(&reply_q->busy);
917 return IRQ_NONE;
918 }
919
920 completed_cmds = 0;
921 cb_idx = 0xFF;
922 do {
923 rd.word = le64_to_cpu(rpf->Words);
924 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
925 goto out;
926 reply = 0;
927 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
928 if (request_desript_type ==
929 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
930 request_desript_type ==
931 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
932 cb_idx = _base_get_cb_idx(ioc, smid);
933 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
934 (likely(mpt_callbacks[cb_idx] != NULL))) {
935 rc = mpt_callbacks[cb_idx](ioc, smid,
936 msix_index, 0);
937 if (rc)
938 mpt3sas_base_free_smid(ioc, smid);
939 }
940 } else if (request_desript_type ==
941 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
942 reply = le32_to_cpu(
943 rpf->AddressReply.ReplyFrameAddress);
944 if (reply > ioc->reply_dma_max_address ||
945 reply < ioc->reply_dma_min_address)
946 reply = 0;
947 if (smid) {
948 cb_idx = _base_get_cb_idx(ioc, smid);
949 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
950 (likely(mpt_callbacks[cb_idx] != NULL))) {
951 rc = mpt_callbacks[cb_idx](ioc, smid,
952 msix_index, reply);
953 if (reply)
954 _base_display_reply_info(ioc,
955 smid, msix_index, reply);
956 if (rc)
957 mpt3sas_base_free_smid(ioc,
958 smid);
959 }
960 } else {
961 _base_async_event(ioc, msix_index, reply);
962 }
963
964 /* reply free queue handling */
965 if (reply) {
966 ioc->reply_free_host_index =
967 (ioc->reply_free_host_index ==
968 (ioc->reply_free_queue_depth - 1)) ?
969 0 : ioc->reply_free_host_index + 1;
970 ioc->reply_free[ioc->reply_free_host_index] =
971 cpu_to_le32(reply);
972 wmb();
973 writel(ioc->reply_free_host_index,
974 &ioc->chip->ReplyFreeHostIndex);
975 }
976 }
977
978 rpf->Words = cpu_to_le64(ULLONG_MAX);
979 reply_q->reply_post_host_index =
980 (reply_q->reply_post_host_index ==
981 (ioc->reply_post_queue_depth - 1)) ? 0 :
982 reply_q->reply_post_host_index + 1;
983 request_desript_type =
984 reply_q->reply_post_free[reply_q->reply_post_host_index].
985 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
986 completed_cmds++;
987 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
988 goto out;
989 if (!reply_q->reply_post_host_index)
990 rpf = reply_q->reply_post_free;
991 else
992 rpf++;
993 } while (1);
994
995 out:
996
997 if (!completed_cmds) {
998 atomic_dec(&reply_q->busy);
999 return IRQ_NONE;
1000 }
1001
1002 wmb();
1003 writel(reply_q->reply_post_host_index | (msix_index <<
1004 MPI2_RPHI_MSIX_INDEX_SHIFT), &ioc->chip->ReplyPostHostIndex);
1005 atomic_dec(&reply_q->busy);
1006 return IRQ_HANDLED;
1007}
1008
1009/**
1010 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1011 * @ioc: per adapter object
1012 *
1013 */
1014static inline int
1015_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1016{
1017 return (ioc->facts.IOCCapabilities &
1018 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1019}
1020
1021/**
1022 * mpt3sas_base_flush_reply_queues - flushing the MSIX reply queues
1023 * @ioc: per adapter object
1024 * Context: ISR conext
1025 *
1026 * Called when a Task Management request has completed. We want
1027 * to flush the other reply queues so all the outstanding IO has been
1028 * completed back to OS before we process the TM completetion.
1029 *
1030 * Return nothing.
1031 */
1032void
1033mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1034{
1035 struct adapter_reply_queue *reply_q;
1036
1037 /* If MSIX capability is turned off
1038 * then multi-queues are not enabled
1039 */
1040 if (!_base_is_controller_msix_enabled(ioc))
1041 return;
1042
1043 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1044 if (ioc->shost_recovery)
1045 return;
1046 /* TMs are on msix_index == 0 */
1047 if (reply_q->msix_index == 0)
1048 continue;
1049 _base_interrupt(reply_q->vector, (void *)reply_q);
1050 }
1051}
1052
1053/**
1054 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1055 * @cb_idx: callback index
1056 *
1057 * Return nothing.
1058 */
1059void
1060mpt3sas_base_release_callback_handler(u8 cb_idx)
1061{
1062 mpt_callbacks[cb_idx] = NULL;
1063}
1064
1065/**
1066 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1067 * @cb_func: callback function
1068 *
1069 * Returns cb_func.
1070 */
1071u8
1072mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1073{
1074 u8 cb_idx;
1075
1076 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1077 if (mpt_callbacks[cb_idx] == NULL)
1078 break;
1079
1080 mpt_callbacks[cb_idx] = cb_func;
1081 return cb_idx;
1082}
1083
1084/**
1085 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1086 *
1087 * Return nothing.
1088 */
1089void
1090mpt3sas_base_initialize_callback_handler(void)
1091{
1092 u8 cb_idx;
1093
1094 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1095 mpt3sas_base_release_callback_handler(cb_idx);
1096}
1097
1098
1099/**
1100 * _base_build_zero_len_sge - build zero length sg entry
1101 * @ioc: per adapter object
1102 * @paddr: virtual address for SGE
1103 *
1104 * Create a zero length scatter gather entry to insure the IOCs hardware has
1105 * something to use if the target device goes brain dead and tries
1106 * to send data even when none is asked for.
1107 *
1108 * Return nothing.
1109 */
1110static void
1111_base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1112{
1113 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1114 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1115 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1116 MPI2_SGE_FLAGS_SHIFT);
1117 ioc->base_add_sg_single(paddr, flags_length, -1);
1118}
1119
1120/**
1121 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1122 * @paddr: virtual address for SGE
1123 * @flags_length: SGE flags and data transfer length
1124 * @dma_addr: Physical address
1125 *
1126 * Return nothing.
1127 */
1128static void
1129_base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1130{
1131 Mpi2SGESimple32_t *sgel = paddr;
1132
1133 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1134 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1135 sgel->FlagsLength = cpu_to_le32(flags_length);
1136 sgel->Address = cpu_to_le32(dma_addr);
1137}
1138
1139
1140/**
1141 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1142 * @paddr: virtual address for SGE
1143 * @flags_length: SGE flags and data transfer length
1144 * @dma_addr: Physical address
1145 *
1146 * Return nothing.
1147 */
1148static void
1149_base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1150{
1151 Mpi2SGESimple64_t *sgel = paddr;
1152
1153 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1154 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1155 sgel->FlagsLength = cpu_to_le32(flags_length);
1156 sgel->Address = cpu_to_le64(dma_addr);
1157}
1158
1159/**
1160 * _base_get_chain_buffer_tracker - obtain chain tracker
1161 * @ioc: per adapter object
1162 * @smid: smid associated to an IO request
1163 *
1164 * Returns chain tracker(from ioc->free_chain_list)
1165 */
1166static struct chain_tracker *
1167_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1168{
1169 struct chain_tracker *chain_req;
1170 unsigned long flags;
1171
1172 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1173 if (list_empty(&ioc->free_chain_list)) {
1174 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1175 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1176 "chain buffers not available\n", ioc->name));
1177 return NULL;
1178 }
1179 chain_req = list_entry(ioc->free_chain_list.next,
1180 struct chain_tracker, tracker_list);
1181 list_del_init(&chain_req->tracker_list);
1182 list_add_tail(&chain_req->tracker_list,
1183 &ioc->scsi_lookup[smid - 1].chain_list);
1184 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1185 return chain_req;
1186}
1187
1188
1189/**
1190 * _base_build_sg - build generic sg
1191 * @ioc: per adapter object
1192 * @psge: virtual address for SGE
1193 * @data_out_dma: physical address for WRITES
1194 * @data_out_sz: data xfer size for WRITES
1195 * @data_in_dma: physical address for READS
1196 * @data_in_sz: data xfer size for READS
1197 *
1198 * Return nothing.
1199 */
1200static void
1201_base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1202 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1203 size_t data_in_sz)
1204{
1205 u32 sgl_flags;
1206
1207 if (!data_out_sz && !data_in_sz) {
1208 _base_build_zero_len_sge(ioc, psge);
1209 return;
1210 }
1211
1212 if (data_out_sz && data_in_sz) {
1213 /* WRITE sgel first */
1214 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1215 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1216 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1217 ioc->base_add_sg_single(psge, sgl_flags |
1218 data_out_sz, data_out_dma);
1219
1220 /* incr sgel */
1221 psge += ioc->sge_size;
1222
1223 /* READ sgel last */
1224 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1225 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1226 MPI2_SGE_FLAGS_END_OF_LIST);
1227 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1228 ioc->base_add_sg_single(psge, sgl_flags |
1229 data_in_sz, data_in_dma);
1230 } else if (data_out_sz) /* WRITE */ {
1231 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1232 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1233 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1234 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1235 ioc->base_add_sg_single(psge, sgl_flags |
1236 data_out_sz, data_out_dma);
1237 } else if (data_in_sz) /* READ */ {
1238 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1239 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1240 MPI2_SGE_FLAGS_END_OF_LIST);
1241 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1242 ioc->base_add_sg_single(psge, sgl_flags |
1243 data_in_sz, data_in_dma);
1244 }
1245}
1246
1247/* IEEE format sgls */
1248
1249/**
1250 * _base_add_sg_single_ieee - add sg element for IEEE format
1251 * @paddr: virtual address for SGE
1252 * @flags: SGE flags
1253 * @chain_offset: number of 128 byte elements from start of segment
1254 * @length: data transfer length
1255 * @dma_addr: Physical address
1256 *
1257 * Return nothing.
1258 */
1259static void
1260_base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1261 dma_addr_t dma_addr)
1262{
1263 Mpi25IeeeSgeChain64_t *sgel = paddr;
1264
1265 sgel->Flags = flags;
1266 sgel->NextChainOffset = chain_offset;
1267 sgel->Length = cpu_to_le32(length);
1268 sgel->Address = cpu_to_le64(dma_addr);
1269}
1270
1271/**
1272 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1273 * @ioc: per adapter object
1274 * @paddr: virtual address for SGE
1275 *
1276 * Create a zero length scatter gather entry to insure the IOCs hardware has
1277 * something to use if the target device goes brain dead and tries
1278 * to send data even when none is asked for.
1279 *
1280 * Return nothing.
1281 */
1282static void
1283_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1284{
1285 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1286 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1287 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1288 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1289}
1290
1291/**
1292 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1293 * @ioc: per adapter object
1294 * @scmd: scsi command
1295 * @smid: system request message index
1296 * Context: none.
1297 *
1298 * The main routine that builds scatter gather table from a given
1299 * scsi request sent via the .queuecommand main handler.
1300 *
1301 * Returns 0 success, anything else error
1302 */
1303static int
1304_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1305 struct scsi_cmnd *scmd, u16 smid)
1306{
1307 Mpi2SCSIIORequest_t *mpi_request;
1308 dma_addr_t chain_dma;
1309 struct scatterlist *sg_scmd;
1310 void *sg_local, *chain;
1311 u32 chain_offset;
1312 u32 chain_length;
1313 u32 chain_flags;
1314 int sges_left;
1315 u32 sges_in_segment;
1316 u8 simple_sgl_flags;
1317 u8 simple_sgl_flags_last;
1318 u8 chain_sgl_flags;
1319 struct chain_tracker *chain_req;
1320
1321 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1322
1323 /* init scatter gather flags */
1324 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1325 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1326 simple_sgl_flags_last = simple_sgl_flags |
1327 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1328 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1329 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1330
1331 sg_scmd = scsi_sglist(scmd);
1332 sges_left = scsi_dma_map(scmd);
1333 if (!sges_left) {
1334 sdev_printk(KERN_ERR, scmd->device,
1335 "pci_map_sg failed: request for %d bytes!\n",
1336 scsi_bufflen(scmd));
1337 return -ENOMEM;
1338 }
1339
1340 sg_local = &mpi_request->SGL;
1341 sges_in_segment = (ioc->request_sz -
1342 offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1343 if (sges_left <= sges_in_segment)
1344 goto fill_in_last_segment;
1345
1346 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1347 (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1348
1349 /* fill in main message segment when there is a chain following */
1350 while (sges_in_segment > 1) {
1351 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1352 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1353 sg_scmd = sg_next(sg_scmd);
1354 sg_local += ioc->sge_size_ieee;
1355 sges_left--;
1356 sges_in_segment--;
1357 }
1358
1359 /* initializing the chain flags and pointers */
1360 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1361 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1362 if (!chain_req)
1363 return -1;
1364 chain = chain_req->chain_buffer;
1365 chain_dma = chain_req->chain_buffer_dma;
1366 do {
1367 sges_in_segment = (sges_left <=
1368 ioc->max_sges_in_chain_message) ? sges_left :
1369 ioc->max_sges_in_chain_message;
1370 chain_offset = (sges_left == sges_in_segment) ?
1371 0 : sges_in_segment;
1372 chain_length = sges_in_segment * ioc->sge_size_ieee;
1373 if (chain_offset)
1374 chain_length += ioc->sge_size_ieee;
1375 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1376 chain_offset, chain_length, chain_dma);
1377
1378 sg_local = chain;
1379 if (!chain_offset)
1380 goto fill_in_last_segment;
1381
1382 /* fill in chain segments */
1383 while (sges_in_segment) {
1384 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1385 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1386 sg_scmd = sg_next(sg_scmd);
1387 sg_local += ioc->sge_size_ieee;
1388 sges_left--;
1389 sges_in_segment--;
1390 }
1391
1392 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1393 if (!chain_req)
1394 return -1;
1395 chain = chain_req->chain_buffer;
1396 chain_dma = chain_req->chain_buffer_dma;
1397 } while (1);
1398
1399
1400 fill_in_last_segment:
1401
1402 /* fill the last segment */
1403 while (sges_left) {
1404 if (sges_left == 1)
1405 _base_add_sg_single_ieee(sg_local,
1406 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1407 sg_dma_address(sg_scmd));
1408 else
1409 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1410 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1411 sg_scmd = sg_next(sg_scmd);
1412 sg_local += ioc->sge_size_ieee;
1413 sges_left--;
1414 }
1415
1416 return 0;
1417}
1418
1419/**
1420 * _base_build_sg_ieee - build generic sg for IEEE format
1421 * @ioc: per adapter object
1422 * @psge: virtual address for SGE
1423 * @data_out_dma: physical address for WRITES
1424 * @data_out_sz: data xfer size for WRITES
1425 * @data_in_dma: physical address for READS
1426 * @data_in_sz: data xfer size for READS
1427 *
1428 * Return nothing.
1429 */
1430static void
1431_base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1432 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1433 size_t data_in_sz)
1434{
1435 u8 sgl_flags;
1436
1437 if (!data_out_sz && !data_in_sz) {
1438 _base_build_zero_len_sge_ieee(ioc, psge);
1439 return;
1440 }
1441
1442 if (data_out_sz && data_in_sz) {
1443 /* WRITE sgel first */
1444 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1445 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1446 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1447 data_out_dma);
1448
1449 /* incr sgel */
1450 psge += ioc->sge_size_ieee;
1451
1452 /* READ sgel last */
1453 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1454 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1455 data_in_dma);
1456 } else if (data_out_sz) /* WRITE */ {
1457 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1458 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1459 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1460 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1461 data_out_dma);
1462 } else if (data_in_sz) /* READ */ {
1463 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1464 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1465 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1466 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1467 data_in_dma);
1468 }
1469}
1470
1471#define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1472
1473/**
1474 * _base_config_dma_addressing - set dma addressing
1475 * @ioc: per adapter object
1476 * @pdev: PCI device struct
1477 *
1478 * Returns 0 for success, non-zero for failure.
1479 */
1480static int
1481_base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1482{
1483 struct sysinfo s;
1484 char *desc = NULL;
1485
1486 if (sizeof(dma_addr_t) > 4) {
1487 const uint64_t required_mask =
1488 dma_get_required_mask(&pdev->dev);
1489 if ((required_mask > DMA_BIT_MASK(32)) &&
1490 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1491 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1492 ioc->base_add_sg_single = &_base_add_sg_single_64;
1493 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1494 desc = "64";
1495 goto out;
1496 }
1497 }
1498
1499 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1500 && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1501 ioc->base_add_sg_single = &_base_add_sg_single_32;
1502 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1503 desc = "32";
1504 } else
1505 return -ENODEV;
1506
1507 out:
1508 si_meminfo(&s);
1509 pr_info(MPT3SAS_FMT
1510 "%s BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1511 ioc->name, desc, convert_to_kb(s.totalram));
1512
1513 return 0;
1514}
1515
1516/**
1517 * _base_check_enable_msix - checks MSIX capabable.
1518 * @ioc: per adapter object
1519 *
1520 * Check to see if card is capable of MSIX, and set number
1521 * of available msix vectors
1522 */
1523static int
1524_base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1525{
1526 int base;
1527 u16 message_control;
1528
1529 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1530 if (!base) {
1531 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1532 ioc->name));
1533 return -EINVAL;
1534 }
1535
1536 /* get msix vector count */
1537
1538 pci_read_config_word(ioc->pdev, base + 2, &message_control);
1539 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1540 if (ioc->msix_vector_count > 8)
1541 ioc->msix_vector_count = 8;
1542 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1543 "msix is supported, vector_count(%d)\n",
1544 ioc->name, ioc->msix_vector_count));
1545 return 0;
1546}
1547
1548/**
1549 * _base_free_irq - free irq
1550 * @ioc: per adapter object
1551 *
1552 * Freeing respective reply_queue from the list.
1553 */
1554static void
1555_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1556{
1557 struct adapter_reply_queue *reply_q, *next;
1558
1559 if (list_empty(&ioc->reply_queue_list))
1560 return;
1561
1562 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1563 list_del(&reply_q->list);
1564 synchronize_irq(reply_q->vector);
1565 free_irq(reply_q->vector, reply_q);
1566 kfree(reply_q);
1567 }
1568}
1569
1570/**
1571 * _base_request_irq - request irq
1572 * @ioc: per adapter object
1573 * @index: msix index into vector table
1574 * @vector: irq vector
1575 *
1576 * Inserting respective reply_queue into the list.
1577 */
1578static int
1579_base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1580{
1581 struct adapter_reply_queue *reply_q;
1582 int r;
1583
1584 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1585 if (!reply_q) {
1586 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1587 ioc->name, (int)sizeof(struct adapter_reply_queue));
1588 return -ENOMEM;
1589 }
1590 reply_q->ioc = ioc;
1591 reply_q->msix_index = index;
1592 reply_q->vector = vector;
1593 atomic_set(&reply_q->busy, 0);
1594 if (ioc->msix_enable)
1595 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1596 MPT3SAS_DRIVER_NAME, ioc->id, index);
1597 else
1598 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1599 MPT3SAS_DRIVER_NAME, ioc->id);
1600 r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1601 reply_q);
1602 if (r) {
1603 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1604 reply_q->name, vector);
1605 kfree(reply_q);
1606 return -EBUSY;
1607 }
1608
1609 INIT_LIST_HEAD(&reply_q->list);
1610 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1611 return 0;
1612}
1613
1614/**
1615 * _base_assign_reply_queues - assigning msix index for each cpu
1616 * @ioc: per adapter object
1617 *
1618 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1619 *
1620 * It would nice if we could call irq_set_affinity, however it is not
1621 * an exported symbol
1622 */
1623static void
1624_base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1625{
1626 struct adapter_reply_queue *reply_q;
1627 int cpu_id;
1628 int cpu_grouping, loop, grouping, grouping_mod;
1629 int reply_queue;
1630
1631 if (!_base_is_controller_msix_enabled(ioc))
1632 return;
1633
1634 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1635
1636 /* NUMA Hardware bug workaround - drop to less reply queues */
1637 if (ioc->reply_queue_count > ioc->facts.MaxMSIxVectors) {
1638 ioc->reply_queue_count = ioc->facts.MaxMSIxVectors;
1639 reply_queue = 0;
1640 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1641 reply_q->msix_index = reply_queue;
1642 if (++reply_queue == ioc->reply_queue_count)
1643 reply_queue = 0;
1644 }
1645 }
1646
1647 /* when there are more cpus than available msix vectors,
1648 * then group cpus togeather on same irq
1649 */
1650 if (ioc->cpu_count > ioc->msix_vector_count) {
1651 grouping = ioc->cpu_count / ioc->msix_vector_count;
1652 grouping_mod = ioc->cpu_count % ioc->msix_vector_count;
1653 if (grouping < 2 || (grouping == 2 && !grouping_mod))
1654 cpu_grouping = 2;
1655 else if (grouping < 4 || (grouping == 4 && !grouping_mod))
1656 cpu_grouping = 4;
1657 else if (grouping < 8 || (grouping == 8 && !grouping_mod))
1658 cpu_grouping = 8;
1659 else
1660 cpu_grouping = 16;
1661 } else
1662 cpu_grouping = 0;
1663
1664 loop = 0;
1665 reply_q = list_entry(ioc->reply_queue_list.next,
1666 struct adapter_reply_queue, list);
1667 for_each_online_cpu(cpu_id) {
1668 if (!cpu_grouping) {
1669 ioc->cpu_msix_table[cpu_id] = reply_q->msix_index;
1670 reply_q = list_entry(reply_q->list.next,
1671 struct adapter_reply_queue, list);
1672 } else {
1673 if (loop < cpu_grouping) {
1674 ioc->cpu_msix_table[cpu_id] =
1675 reply_q->msix_index;
1676 loop++;
1677 } else {
1678 reply_q = list_entry(reply_q->list.next,
1679 struct adapter_reply_queue, list);
1680 ioc->cpu_msix_table[cpu_id] =
1681 reply_q->msix_index;
1682 loop = 1;
1683 }
1684 }
1685 }
1686}
1687
1688/**
1689 * _base_disable_msix - disables msix
1690 * @ioc: per adapter object
1691 *
1692 */
1693static void
1694_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1695{
1696 if (!ioc->msix_enable)
1697 return;
1698 pci_disable_msix(ioc->pdev);
1699 ioc->msix_enable = 0;
1700}
1701
1702/**
1703 * _base_enable_msix - enables msix, failback to io_apic
1704 * @ioc: per adapter object
1705 *
1706 */
1707static int
1708_base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1709{
1710 struct msix_entry *entries, *a;
1711 int r;
1712 int i;
1713 u8 try_msix = 0;
1714
1715 INIT_LIST_HEAD(&ioc->reply_queue_list);
1716
1717 if (msix_disable == -1 || msix_disable == 0)
1718 try_msix = 1;
1719
1720 if (!try_msix)
1721 goto try_ioapic;
1722
1723 if (_base_check_enable_msix(ioc) != 0)
1724 goto try_ioapic;
1725
1726 ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1727 ioc->msix_vector_count);
1728
1729 entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1730 GFP_KERNEL);
1731 if (!entries) {
1732 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1733 "kcalloc failed @ at %s:%d/%s() !!!\n",
1734 ioc->name, __FILE__, __LINE__, __func__));
1735 goto try_ioapic;
1736 }
1737
1738 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
1739 a->entry = i;
1740
1741 r = pci_enable_msix(ioc->pdev, entries, ioc->reply_queue_count);
1742 if (r) {
1743 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1744 "pci_enable_msix failed (r=%d) !!!\n",
1745 ioc->name, r));
1746 kfree(entries);
1747 goto try_ioapic;
1748 }
1749
1750 ioc->msix_enable = 1;
1751 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
1752 r = _base_request_irq(ioc, i, a->vector);
1753 if (r) {
1754 _base_free_irq(ioc);
1755 _base_disable_msix(ioc);
1756 kfree(entries);
1757 goto try_ioapic;
1758 }
1759 }
1760
1761 kfree(entries);
1762 return 0;
1763
1764/* failback to io_apic interrupt routing */
1765 try_ioapic:
1766
1767 r = _base_request_irq(ioc, 0, ioc->pdev->irq);
1768
1769 return r;
1770}
1771
1772/**
1773 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
1774 * @ioc: per adapter object
1775 *
1776 * Returns 0 for success, non-zero for failure.
1777 */
1778int
1779mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
1780{
1781 struct pci_dev *pdev = ioc->pdev;
1782 u32 memap_sz;
1783 u32 pio_sz;
1784 int i, r = 0;
1785 u64 pio_chip = 0;
1786 u64 chip_phys = 0;
1787 struct adapter_reply_queue *reply_q;
1788
1789 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
1790 ioc->name, __func__));
1791
1792 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
1793 if (pci_enable_device_mem(pdev)) {
1794 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
1795 ioc->name);
1796 return -ENODEV;
1797 }
1798
1799
1800 if (pci_request_selected_regions(pdev, ioc->bars,
1801 MPT3SAS_DRIVER_NAME)) {
1802 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
1803 ioc->name);
1804 r = -ENODEV;
1805 goto out_fail;
1806 }
1807
1808/* AER (Advanced Error Reporting) hooks */
1809 pci_enable_pcie_error_reporting(pdev);
1810
1811 pci_set_master(pdev);
1812
1813
1814 if (_base_config_dma_addressing(ioc, pdev) != 0) {
1815 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
1816 ioc->name, pci_name(pdev));
1817 r = -ENODEV;
1818 goto out_fail;
1819 }
1820
1821 for (i = 0, memap_sz = 0, pio_sz = 0 ; i < DEVICE_COUNT_RESOURCE; i++) {
1822 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1823 if (pio_sz)
1824 continue;
1825 pio_chip = (u64)pci_resource_start(pdev, i);
1826 pio_sz = pci_resource_len(pdev, i);
1827 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
1828 if (memap_sz)
1829 continue;
1830 ioc->chip_phys = pci_resource_start(pdev, i);
1831 chip_phys = (u64)ioc->chip_phys;
1832 memap_sz = pci_resource_len(pdev, i);
1833 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
1834 if (ioc->chip == NULL) {
1835 pr_err(MPT3SAS_FMT "unable to map adapter memory!\n",
1836 ioc->name);
1837 r = -EINVAL;
1838 goto out_fail;
1839 }
1840 }
1841 }
1842
1843 _base_mask_interrupts(ioc);
1844 r = _base_enable_msix(ioc);
1845 if (r)
1846 goto out_fail;
1847
1848 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
1849 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
1850 reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
1851 "IO-APIC enabled"), reply_q->vector);
1852
1853 pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
1854 ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
1855 pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
1856 ioc->name, (unsigned long long)pio_chip, pio_sz);
1857
1858 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
1859 pci_save_state(pdev);
1860 return 0;
1861
1862 out_fail:
1863 if (ioc->chip_phys)
1864 iounmap(ioc->chip);
1865 ioc->chip_phys = 0;
1866 pci_release_selected_regions(ioc->pdev, ioc->bars);
1867 pci_disable_pcie_error_reporting(pdev);
1868 pci_disable_device(pdev);
1869 return r;
1870}
1871
1872/**
1873 * mpt3sas_base_get_msg_frame - obtain request mf pointer
1874 * @ioc: per adapter object
1875 * @smid: system request message index(smid zero is invalid)
1876 *
1877 * Returns virt pointer to message frame.
1878 */
1879void *
1880mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1881{
1882 return (void *)(ioc->request + (smid * ioc->request_sz));
1883}
1884
1885/**
1886 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
1887 * @ioc: per adapter object
1888 * @smid: system request message index
1889 *
1890 * Returns virt pointer to sense buffer.
1891 */
1892void *
1893mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1894{
1895 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
1896}
1897
1898/**
1899 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
1900 * @ioc: per adapter object
1901 * @smid: system request message index
1902 *
1903 * Returns phys pointer to the low 32bit address of the sense buffer.
1904 */
1905__le32
1906mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1907{
1908 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
1909 SCSI_SENSE_BUFFERSIZE));
1910}
1911
1912/**
1913 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
1914 * @ioc: per adapter object
1915 * @phys_addr: lower 32 physical addr of the reply
1916 *
1917 * Converts 32bit lower physical addr into a virt address.
1918 */
1919void *
1920mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
1921{
1922 if (!phys_addr)
1923 return NULL;
1924 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
1925}
1926
1927/**
1928 * mpt3sas_base_get_smid - obtain a free smid from internal queue
1929 * @ioc: per adapter object
1930 * @cb_idx: callback index
1931 *
1932 * Returns smid (zero is invalid)
1933 */
1934u16
1935mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
1936{
1937 unsigned long flags;
1938 struct request_tracker *request;
1939 u16 smid;
1940
1941 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1942 if (list_empty(&ioc->internal_free_list)) {
1943 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1944 pr_err(MPT3SAS_FMT "%s: smid not available\n",
1945 ioc->name, __func__);
1946 return 0;
1947 }
1948
1949 request = list_entry(ioc->internal_free_list.next,
1950 struct request_tracker, tracker_list);
1951 request->cb_idx = cb_idx;
1952 smid = request->smid;
1953 list_del(&request->tracker_list);
1954 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1955 return smid;
1956}
1957
1958/**
1959 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
1960 * @ioc: per adapter object
1961 * @cb_idx: callback index
1962 * @scmd: pointer to scsi command object
1963 *
1964 * Returns smid (zero is invalid)
1965 */
1966u16
1967mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
1968 struct scsi_cmnd *scmd)
1969{
1970 unsigned long flags;
1971 struct scsiio_tracker *request;
1972 u16 smid;
1973
1974 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1975 if (list_empty(&ioc->free_list)) {
1976 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1977 pr_err(MPT3SAS_FMT "%s: smid not available\n",
1978 ioc->name, __func__);
1979 return 0;
1980 }
1981
1982 request = list_entry(ioc->free_list.next,
1983 struct scsiio_tracker, tracker_list);
1984 request->scmd = scmd;
1985 request->cb_idx = cb_idx;
1986 smid = request->smid;
1987 list_del(&request->tracker_list);
1988 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1989 return smid;
1990}
1991
1992/**
1993 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
1994 * @ioc: per adapter object
1995 * @cb_idx: callback index
1996 *
1997 * Returns smid (zero is invalid)
1998 */
1999u16
2000mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2001{
2002 unsigned long flags;
2003 struct request_tracker *request;
2004 u16 smid;
2005
2006 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2007 if (list_empty(&ioc->hpr_free_list)) {
2008 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2009 return 0;
2010 }
2011
2012 request = list_entry(ioc->hpr_free_list.next,
2013 struct request_tracker, tracker_list);
2014 request->cb_idx = cb_idx;
2015 smid = request->smid;
2016 list_del(&request->tracker_list);
2017 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2018 return smid;
2019}
2020
2021/**
2022 * mpt3sas_base_free_smid - put smid back on free_list
2023 * @ioc: per adapter object
2024 * @smid: system request message index
2025 *
2026 * Return nothing.
2027 */
2028void
2029mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2030{
2031 unsigned long flags;
2032 int i;
2033 struct chain_tracker *chain_req, *next;
2034
2035 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2036 if (smid < ioc->hi_priority_smid) {
2037 /* scsiio queue */
2038 i = smid - 1;
2039 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2040 list_for_each_entry_safe(chain_req, next,
2041 &ioc->scsi_lookup[i].chain_list, tracker_list) {
2042 list_del_init(&chain_req->tracker_list);
2043 list_add(&chain_req->tracker_list,
2044 &ioc->free_chain_list);
2045 }
2046 }
2047 ioc->scsi_lookup[i].cb_idx = 0xFF;
2048 ioc->scsi_lookup[i].scmd = NULL;
2049 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2050 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2051
2052 /*
2053 * See _wait_for_commands_to_complete() call with regards
2054 * to this code.
2055 */
2056 if (ioc->shost_recovery && ioc->pending_io_count) {
2057 if (ioc->pending_io_count == 1)
2058 wake_up(&ioc->reset_wq);
2059 ioc->pending_io_count--;
2060 }
2061 return;
2062 } else if (smid < ioc->internal_smid) {
2063 /* hi-priority */
2064 i = smid - ioc->hi_priority_smid;
2065 ioc->hpr_lookup[i].cb_idx = 0xFF;
2066 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2067 } else if (smid <= ioc->hba_queue_depth) {
2068 /* internal queue */
2069 i = smid - ioc->internal_smid;
2070 ioc->internal_lookup[i].cb_idx = 0xFF;
2071 list_add(&ioc->internal_lookup[i].tracker_list,
2072 &ioc->internal_free_list);
2073 }
2074 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2075}
2076
2077/**
2078 * _base_writeq - 64 bit write to MMIO
2079 * @ioc: per adapter object
2080 * @b: data payload
2081 * @addr: address in MMIO space
2082 * @writeq_lock: spin lock
2083 *
2084 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2085 * care of 32 bit environment where its not quarenteed to send the entire word
2086 * in one transfer.
2087 */
2088#if defined(writeq) && defined(CONFIG_64BIT)
2089static inline void
2090_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2091{
2092 writeq(cpu_to_le64(b), addr);
2093}
2094#else
2095static inline void
2096_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2097{
2098 unsigned long flags;
2099 __u64 data_out = cpu_to_le64(b);
2100
2101 spin_lock_irqsave(writeq_lock, flags);
2102 writel((u32)(data_out), addr);
2103 writel((u32)(data_out >> 32), (addr + 4));
2104 spin_unlock_irqrestore(writeq_lock, flags);
2105}
2106#endif
2107
2108static inline u8
2109_base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2110{
2111 return ioc->cpu_msix_table[raw_smp_processor_id()];
2112}
2113
2114/**
2115 * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2116 * @ioc: per adapter object
2117 * @smid: system request message index
2118 * @handle: device handle
2119 *
2120 * Return nothing.
2121 */
2122void
2123mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2124{
2125 Mpi2RequestDescriptorUnion_t descriptor;
2126 u64 *request = (u64 *)&descriptor;
2127
2128
2129 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2130 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2131 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2132 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2133 descriptor.SCSIIO.LMID = 0;
2134 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2135 &ioc->scsi_lookup_lock);
2136}
2137
2138/**
2139 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2140 * @ioc: per adapter object
2141 * @smid: system request message index
2142 * @handle: device handle
2143 *
2144 * Return nothing.
2145 */
2146void
2147mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2148 u16 handle)
2149{
2150 Mpi2RequestDescriptorUnion_t descriptor;
2151 u64 *request = (u64 *)&descriptor;
2152
2153 descriptor.SCSIIO.RequestFlags =
2154 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2155 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2156 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2157 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2158 descriptor.SCSIIO.LMID = 0;
2159 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2160 &ioc->scsi_lookup_lock);
2161}
2162
2163/**
2164 * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2165 * @ioc: per adapter object
2166 * @smid: system request message index
2167 *
2168 * Return nothing.
2169 */
2170void
2171mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2172{
2173 Mpi2RequestDescriptorUnion_t descriptor;
2174 u64 *request = (u64 *)&descriptor;
2175
2176 descriptor.HighPriority.RequestFlags =
2177 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2178 descriptor.HighPriority.MSIxIndex = 0;
2179 descriptor.HighPriority.SMID = cpu_to_le16(smid);
2180 descriptor.HighPriority.LMID = 0;
2181 descriptor.HighPriority.Reserved1 = 0;
2182 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2183 &ioc->scsi_lookup_lock);
2184}
2185
2186/**
2187 * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2188 * @ioc: per adapter object
2189 * @smid: system request message index
2190 *
2191 * Return nothing.
2192 */
2193void
2194mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2195{
2196 Mpi2RequestDescriptorUnion_t descriptor;
2197 u64 *request = (u64 *)&descriptor;
2198
2199 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2200 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
2201 descriptor.Default.SMID = cpu_to_le16(smid);
2202 descriptor.Default.LMID = 0;
2203 descriptor.Default.DescriptorTypeDependent = 0;
2204 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2205 &ioc->scsi_lookup_lock);
2206}
2207
2208
2209
2210/**
2211 * _base_display_ioc_capabilities - Disply IOC's capabilities.
2212 * @ioc: per adapter object
2213 *
2214 * Return nothing.
2215 */
2216static void
2217_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2218{
2219 int i = 0;
2220 char desc[16];
2221 u32 iounit_pg1_flags;
2222 u32 bios_version;
2223
2224 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2225 strncpy(desc, ioc->manu_pg0.ChipName, 16);
2226 pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2227 "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2228 ioc->name, desc,
2229 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2230 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2231 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2232 ioc->facts.FWVersion.Word & 0x000000FF,
2233 ioc->pdev->revision,
2234 (bios_version & 0xFF000000) >> 24,
2235 (bios_version & 0x00FF0000) >> 16,
2236 (bios_version & 0x0000FF00) >> 8,
2237 bios_version & 0x000000FF);
2238
2239 pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2240
2241 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2242 pr_info("Initiator");
2243 i++;
2244 }
2245
2246 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2247 pr_info("%sTarget", i ? "," : "");
2248 i++;
2249 }
2250
2251 i = 0;
2252 pr_info("), ");
2253 pr_info("Capabilities=(");
2254
2255 if (ioc->facts.IOCCapabilities &
2256 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2257 pr_info("Raid");
2258 i++;
2259 }
2260
2261 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2262 pr_info("%sTLR", i ? "," : "");
2263 i++;
2264 }
2265
2266 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2267 pr_info("%sMulticast", i ? "," : "");
2268 i++;
2269 }
2270
2271 if (ioc->facts.IOCCapabilities &
2272 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2273 pr_info("%sBIDI Target", i ? "," : "");
2274 i++;
2275 }
2276
2277 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2278 pr_info("%sEEDP", i ? "," : "");
2279 i++;
2280 }
2281
2282 if (ioc->facts.IOCCapabilities &
2283 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2284 pr_info("%sSnapshot Buffer", i ? "," : "");
2285 i++;
2286 }
2287
2288 if (ioc->facts.IOCCapabilities &
2289 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2290 pr_info("%sDiag Trace Buffer", i ? "," : "");
2291 i++;
2292 }
2293
2294 if (ioc->facts.IOCCapabilities &
2295 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2296 pr_info("%sDiag Extended Buffer", i ? "," : "");
2297 i++;
2298 }
2299
2300 if (ioc->facts.IOCCapabilities &
2301 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2302 pr_info("%sTask Set Full", i ? "," : "");
2303 i++;
2304 }
2305
2306 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2307 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2308 pr_info("%sNCQ", i ? "," : "");
2309 i++;
2310 }
2311
2312 pr_info(")\n");
2313}
2314
2315/**
2316 * mpt3sas_base_update_missing_delay - change the missing delay timers
2317 * @ioc: per adapter object
2318 * @device_missing_delay: amount of time till device is reported missing
2319 * @io_missing_delay: interval IO is returned when there is a missing device
2320 *
2321 * Return nothing.
2322 *
2323 * Passed on the command line, this function will modify the device missing
2324 * delay, as well as the io missing delay. This should be called at driver
2325 * load time.
2326 */
2327void
2328mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2329 u16 device_missing_delay, u8 io_missing_delay)
2330{
2331 u16 dmd, dmd_new, dmd_orignal;
2332 u8 io_missing_delay_original;
2333 u16 sz;
2334 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2335 Mpi2ConfigReply_t mpi_reply;
2336 u8 num_phys = 0;
2337 u16 ioc_status;
2338
2339 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2340 if (!num_phys)
2341 return;
2342
2343 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2344 sizeof(Mpi2SasIOUnit1PhyData_t));
2345 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2346 if (!sas_iounit_pg1) {
2347 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2348 ioc->name, __FILE__, __LINE__, __func__);
2349 goto out;
2350 }
2351 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2352 sas_iounit_pg1, sz))) {
2353 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2354 ioc->name, __FILE__, __LINE__, __func__);
2355 goto out;
2356 }
2357 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2358 MPI2_IOCSTATUS_MASK;
2359 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2360 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2361 ioc->name, __FILE__, __LINE__, __func__);
2362 goto out;
2363 }
2364
2365 /* device missing delay */
2366 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2367 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2368 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2369 else
2370 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2371 dmd_orignal = dmd;
2372 if (device_missing_delay > 0x7F) {
2373 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2374 device_missing_delay;
2375 dmd = dmd / 16;
2376 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2377 } else
2378 dmd = device_missing_delay;
2379 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2380
2381 /* io missing delay */
2382 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2383 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2384
2385 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2386 sz)) {
2387 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2388 dmd_new = (dmd &
2389 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2390 else
2391 dmd_new =
2392 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2393 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
2394 ioc->name, dmd_orignal, dmd_new);
2395 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
2396 ioc->name, io_missing_delay_original,
2397 io_missing_delay);
2398 ioc->device_missing_delay = dmd_new;
2399 ioc->io_missing_delay = io_missing_delay;
2400 }
2401
2402out:
2403 kfree(sas_iounit_pg1);
2404}
2405/**
2406 * _base_static_config_pages - static start of day config pages
2407 * @ioc: per adapter object
2408 *
2409 * Return nothing.
2410 */
2411static void
2412_base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
2413{
2414 Mpi2ConfigReply_t mpi_reply;
2415 u32 iounit_pg1_flags;
2416
2417 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
2418 if (ioc->ir_firmware)
2419 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
2420 &ioc->manu_pg10);
2421
2422 /*
2423 * Ensure correct T10 PI operation if vendor left EEDPTagMode
2424 * flag unset in NVDATA.
2425 */
2426 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
2427 if (ioc->manu_pg11.EEDPTagMode == 0) {
2428 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
2429 ioc->name);
2430 ioc->manu_pg11.EEDPTagMode &= ~0x3;
2431 ioc->manu_pg11.EEDPTagMode |= 0x1;
2432 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
2433 &ioc->manu_pg11);
2434 }
2435
2436 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
2437 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
2438 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
2439 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
2440 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2441 _base_display_ioc_capabilities(ioc);
2442
2443 /*
2444 * Enable task_set_full handling in iounit_pg1 when the
2445 * facts capabilities indicate that its supported.
2446 */
2447 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2448 if ((ioc->facts.IOCCapabilities &
2449 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
2450 iounit_pg1_flags &=
2451 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2452 else
2453 iounit_pg1_flags |=
2454 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2455 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
2456 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2457}
2458
2459/**
2460 * _base_release_memory_pools - release memory
2461 * @ioc: per adapter object
2462 *
2463 * Free memory allocated from _base_allocate_memory_pools.
2464 *
2465 * Return nothing.
2466 */
2467static void
2468_base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
2469{
2470 int i;
2471
2472 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2473 __func__));
2474
2475 if (ioc->request) {
2476 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
2477 ioc->request, ioc->request_dma);
2478 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2479 "request_pool(0x%p): free\n",
2480 ioc->name, ioc->request));
2481 ioc->request = NULL;
2482 }
2483
2484 if (ioc->sense) {
2485 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
2486 if (ioc->sense_dma_pool)
2487 pci_pool_destroy(ioc->sense_dma_pool);
2488 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2489 "sense_pool(0x%p): free\n",
2490 ioc->name, ioc->sense));
2491 ioc->sense = NULL;
2492 }
2493
2494 if (ioc->reply) {
2495 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
2496 if (ioc->reply_dma_pool)
2497 pci_pool_destroy(ioc->reply_dma_pool);
2498 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2499 "reply_pool(0x%p): free\n",
2500 ioc->name, ioc->reply));
2501 ioc->reply = NULL;
2502 }
2503
2504 if (ioc->reply_free) {
2505 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
2506 ioc->reply_free_dma);
2507 if (ioc->reply_free_dma_pool)
2508 pci_pool_destroy(ioc->reply_free_dma_pool);
2509 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2510 "reply_free_pool(0x%p): free\n",
2511 ioc->name, ioc->reply_free));
2512 ioc->reply_free = NULL;
2513 }
2514
2515 if (ioc->reply_post_free) {
2516 pci_pool_free(ioc->reply_post_free_dma_pool,
2517 ioc->reply_post_free, ioc->reply_post_free_dma);
2518 if (ioc->reply_post_free_dma_pool)
2519 pci_pool_destroy(ioc->reply_post_free_dma_pool);
2520 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2521 "reply_post_free_pool(0x%p): free\n", ioc->name,
2522 ioc->reply_post_free));
2523 ioc->reply_post_free = NULL;
2524 }
2525
2526 if (ioc->config_page) {
2527 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2528 "config_page(0x%p): free\n", ioc->name,
2529 ioc->config_page));
2530 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
2531 ioc->config_page, ioc->config_page_dma);
2532 }
2533
2534 if (ioc->scsi_lookup) {
2535 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
2536 ioc->scsi_lookup = NULL;
2537 }
2538 kfree(ioc->hpr_lookup);
2539 kfree(ioc->internal_lookup);
2540 if (ioc->chain_lookup) {
2541 for (i = 0; i < ioc->chain_depth; i++) {
2542 if (ioc->chain_lookup[i].chain_buffer)
2543 pci_pool_free(ioc->chain_dma_pool,
2544 ioc->chain_lookup[i].chain_buffer,
2545 ioc->chain_lookup[i].chain_buffer_dma);
2546 }
2547 if (ioc->chain_dma_pool)
2548 pci_pool_destroy(ioc->chain_dma_pool);
2549 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
2550 ioc->chain_lookup = NULL;
2551 }
2552}
2553
2554/**
2555 * _base_allocate_memory_pools - allocate start of day memory pools
2556 * @ioc: per adapter object
2557 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2558 *
2559 * Returns 0 success, anything else error
2560 */
2561static int
2562_base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
2563{
2564 struct mpt3sas_facts *facts;
2565 u16 max_sge_elements;
2566 u16 chains_needed_per_io;
2567 u32 sz, total_sz, reply_post_free_sz;
2568 u32 retry_sz;
2569 u16 max_request_credit;
2570 unsigned short sg_tablesize;
2571 u16 sge_size;
2572 int i;
2573
2574 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2575 __func__));
2576
2577
2578 retry_sz = 0;
2579 facts = &ioc->facts;
2580
2581 /* command line tunables for max sgl entries */
2582 if (max_sgl_entries != -1)
2583 sg_tablesize = max_sgl_entries;
2584 else
2585 sg_tablesize = MPT3SAS_SG_DEPTH;
2586
2587 if (sg_tablesize < MPT3SAS_MIN_PHYS_SEGMENTS)
2588 sg_tablesize = MPT3SAS_MIN_PHYS_SEGMENTS;
2589 else if (sg_tablesize > MPT3SAS_MAX_PHYS_SEGMENTS)
2590 sg_tablesize = MPT3SAS_MAX_PHYS_SEGMENTS;
2591 ioc->shost->sg_tablesize = sg_tablesize;
2592
2593 ioc->hi_priority_depth = facts->HighPriorityCredit;
2594 ioc->internal_depth = ioc->hi_priority_depth + (5);
2595 /* command line tunables for max controller queue depth */
2596 if (max_queue_depth != -1 && max_queue_depth != 0) {
2597 max_request_credit = min_t(u16, max_queue_depth +
2598 ioc->hi_priority_depth + ioc->internal_depth,
2599 facts->RequestCredit);
2600 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
2601 max_request_credit = MAX_HBA_QUEUE_DEPTH;
2602 } else
2603 max_request_credit = min_t(u16, facts->RequestCredit,
2604 MAX_HBA_QUEUE_DEPTH);
2605
2606 ioc->hba_queue_depth = max_request_credit;
2607
2608 /* request frame size */
2609 ioc->request_sz = facts->IOCRequestFrameSize * 4;
2610
2611 /* reply frame size */
2612 ioc->reply_sz = facts->ReplyFrameSize * 4;
2613
2614 /* calculate the max scatter element size */
2615 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
2616
2617 retry_allocation:
2618 total_sz = 0;
2619 /* calculate number of sg elements left over in the 1st frame */
2620 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
2621 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
2622 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
2623
2624 /* now do the same for a chain buffer */
2625 max_sge_elements = ioc->request_sz - sge_size;
2626 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
2627
2628 /*
2629 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
2630 */
2631 chains_needed_per_io = ((ioc->shost->sg_tablesize -
2632 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
2633 + 1;
2634 if (chains_needed_per_io > facts->MaxChainDepth) {
2635 chains_needed_per_io = facts->MaxChainDepth;
2636 ioc->shost->sg_tablesize = min_t(u16,
2637 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
2638 * chains_needed_per_io), ioc->shost->sg_tablesize);
2639 }
2640 ioc->chains_needed_per_io = chains_needed_per_io;
2641
2642 /* reply free queue sizing - taking into account for 64 FW events */
2643 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2644
2645 /* calculate reply descriptor post queue depth */
2646 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
2647 ioc->reply_free_queue_depth + 1 ;
2648 /* align the reply post queue on the next 16 count boundary */
2649 if (ioc->reply_post_queue_depth % 16)
2650 ioc->reply_post_queue_depth += 16 -
2651 (ioc->reply_post_queue_depth % 16);
2652
2653
2654 if (ioc->reply_post_queue_depth >
2655 facts->MaxReplyDescriptorPostQueueDepth) {
2656 ioc->reply_post_queue_depth =
2657 facts->MaxReplyDescriptorPostQueueDepth -
2658 (facts->MaxReplyDescriptorPostQueueDepth % 16);
2659 ioc->hba_queue_depth =
2660 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
2661 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2662 }
2663
2664 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
2665 "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
2666 "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
2667 ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
2668 ioc->chains_needed_per_io));
2669
2670 ioc->scsiio_depth = ioc->hba_queue_depth -
2671 ioc->hi_priority_depth - ioc->internal_depth;
2672
2673 /* set the scsi host can_queue depth
2674 * with some internal commands that could be outstanding
2675 */
2676 ioc->shost->can_queue = ioc->scsiio_depth;
2677 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2678 "scsi host: can_queue depth (%d)\n",
2679 ioc->name, ioc->shost->can_queue));
2680
2681
2682 /* contiguous pool for request and chains, 16 byte align, one extra "
2683 * "frame for smid=0
2684 */
2685 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
2686 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
2687
2688 /* hi-priority queue */
2689 sz += (ioc->hi_priority_depth * ioc->request_sz);
2690
2691 /* internal queue */
2692 sz += (ioc->internal_depth * ioc->request_sz);
2693
2694 ioc->request_dma_sz = sz;
2695 ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
2696 if (!ioc->request) {
2697 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
2698 "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2699 "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
2700 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2701 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
2702 goto out;
2703 retry_sz += 64;
2704 ioc->hba_queue_depth = max_request_credit - retry_sz;
2705 goto retry_allocation;
2706 }
2707
2708 if (retry_sz)
2709 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
2710 "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2711 "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
2712 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2713
2714 /* hi-priority queue */
2715 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
2716 ioc->request_sz);
2717 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
2718 ioc->request_sz);
2719
2720 /* internal queue */
2721 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
2722 ioc->request_sz);
2723 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
2724 ioc->request_sz);
2725
2726 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2727 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
2728 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
2729 (ioc->hba_queue_depth * ioc->request_sz)/1024));
2730
2731 dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
2732 ioc->name, (unsigned long long) ioc->request_dma));
2733 total_sz += sz;
2734
2735 sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
2736 ioc->scsi_lookup_pages = get_order(sz);
2737 ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
2738 GFP_KERNEL, ioc->scsi_lookup_pages);
2739 if (!ioc->scsi_lookup) {
2740 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
2741 ioc->name, (int)sz);
2742 goto out;
2743 }
2744
2745 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
2746 ioc->name, ioc->request, ioc->scsiio_depth));
2747
2748 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
2749 sz = ioc->chain_depth * sizeof(struct chain_tracker);
2750 ioc->chain_pages = get_order(sz);
2751 ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
2752 GFP_KERNEL, ioc->chain_pages);
2753 if (!ioc->chain_lookup) {
2754 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
2755 ioc->name);
2756 goto out;
2757 }
2758 ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
2759 ioc->request_sz, 16, 0);
2760 if (!ioc->chain_dma_pool) {
2761 pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
2762 ioc->name);
2763 goto out;
2764 }
2765 for (i = 0; i < ioc->chain_depth; i++) {
2766 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
2767 ioc->chain_dma_pool , GFP_KERNEL,
2768 &ioc->chain_lookup[i].chain_buffer_dma);
2769 if (!ioc->chain_lookup[i].chain_buffer) {
2770 ioc->chain_depth = i;
2771 goto chain_done;
2772 }
2773 total_sz += ioc->request_sz;
2774 }
2775 chain_done:
2776 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2777 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
2778 ioc->name, ioc->chain_depth, ioc->request_sz,
2779 ((ioc->chain_depth * ioc->request_sz))/1024));
2780
2781 /* initialize hi-priority queue smid's */
2782 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
2783 sizeof(struct request_tracker), GFP_KERNEL);
2784 if (!ioc->hpr_lookup) {
2785 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
2786 ioc->name);
2787 goto out;
2788 }
2789 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
2790 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2791 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
2792 ioc->name, ioc->hi_priority,
2793 ioc->hi_priority_depth, ioc->hi_priority_smid));
2794
2795 /* initialize internal queue smid's */
2796 ioc->internal_lookup = kcalloc(ioc->internal_depth,
2797 sizeof(struct request_tracker), GFP_KERNEL);
2798 if (!ioc->internal_lookup) {
2799 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
2800 ioc->name);
2801 goto out;
2802 }
2803 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
2804 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2805 "internal(0x%p): depth(%d), start smid(%d)\n",
2806 ioc->name, ioc->internal,
2807 ioc->internal_depth, ioc->internal_smid));
2808
2809 /* sense buffers, 4 byte align */
2810 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
2811 ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
2812 0);
2813 if (!ioc->sense_dma_pool) {
2814 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
2815 ioc->name);
2816 goto out;
2817 }
2818 ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
2819 &ioc->sense_dma);
2820 if (!ioc->sense) {
2821 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
2822 ioc->name);
2823 goto out;
2824 }
2825 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2826 "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
2827 "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
2828 SCSI_SENSE_BUFFERSIZE, sz/1024));
2829 dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
2830 ioc->name, (unsigned long long)ioc->sense_dma));
2831 total_sz += sz;
2832
2833 /* reply pool, 4 byte align */
2834 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
2835 ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
2836 0);
2837 if (!ioc->reply_dma_pool) {
2838 pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
2839 ioc->name);
2840 goto out;
2841 }
2842 ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
2843 &ioc->reply_dma);
2844 if (!ioc->reply) {
2845 pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
2846 ioc->name);
2847 goto out;
2848 }
2849 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
2850 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
2851 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2852 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
2853 ioc->name, ioc->reply,
2854 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
2855 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
2856 ioc->name, (unsigned long long)ioc->reply_dma));
2857 total_sz += sz;
2858
2859 /* reply free queue, 16 byte align */
2860 sz = ioc->reply_free_queue_depth * 4;
2861 ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
2862 ioc->pdev, sz, 16, 0);
2863 if (!ioc->reply_free_dma_pool) {
2864 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
2865 ioc->name);
2866 goto out;
2867 }
2868 ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
2869 &ioc->reply_free_dma);
2870 if (!ioc->reply_free) {
2871 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
2872 ioc->name);
2873 goto out;
2874 }
2875 memset(ioc->reply_free, 0, sz);
2876 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
2877 "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
2878 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
2879 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2880 "reply_free_dma (0x%llx)\n",
2881 ioc->name, (unsigned long long)ioc->reply_free_dma));
2882 total_sz += sz;
2883
2884 /* reply post queue, 16 byte align */
2885 reply_post_free_sz = ioc->reply_post_queue_depth *
2886 sizeof(Mpi2DefaultReplyDescriptor_t);
2887 if (_base_is_controller_msix_enabled(ioc))
2888 sz = reply_post_free_sz * ioc->reply_queue_count;
2889 else
2890 sz = reply_post_free_sz;
2891 ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
2892 ioc->pdev, sz, 16, 0);
2893 if (!ioc->reply_post_free_dma_pool) {
2894 pr_err(MPT3SAS_FMT
2895 "reply_post_free pool: pci_pool_create failed\n",
2896 ioc->name);
2897 goto out;
2898 }
2899 ioc->reply_post_free = pci_pool_alloc(ioc->reply_post_free_dma_pool ,
2900 GFP_KERNEL, &ioc->reply_post_free_dma);
2901 if (!ioc->reply_post_free) {
2902 pr_err(MPT3SAS_FMT
2903 "reply_post_free pool: pci_pool_alloc failed\n",
2904 ioc->name);
2905 goto out;
2906 }
2907 memset(ioc->reply_post_free, 0, sz);
2908 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply post free pool" \
2909 "(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
2910 ioc->name, ioc->reply_post_free, ioc->reply_post_queue_depth, 8,
2911 sz/1024));
2912 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2913 "reply_post_free_dma = (0x%llx)\n",
2914 ioc->name, (unsigned long long)
2915 ioc->reply_post_free_dma));
2916 total_sz += sz;
2917
2918 ioc->config_page_sz = 512;
2919 ioc->config_page = pci_alloc_consistent(ioc->pdev,
2920 ioc->config_page_sz, &ioc->config_page_dma);
2921 if (!ioc->config_page) {
2922 pr_err(MPT3SAS_FMT
2923 "config page: pci_pool_alloc failed\n",
2924 ioc->name);
2925 goto out;
2926 }
2927 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2928 "config page(0x%p): size(%d)\n",
2929 ioc->name, ioc->config_page, ioc->config_page_sz));
2930 dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
2931 ioc->name, (unsigned long long)ioc->config_page_dma));
2932 total_sz += ioc->config_page_sz;
2933
2934 pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
2935 ioc->name, total_sz/1024);
2936 pr_info(MPT3SAS_FMT
2937 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
2938 ioc->name, ioc->shost->can_queue, facts->RequestCredit);
2939 pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
2940 ioc->name, ioc->shost->sg_tablesize);
2941 return 0;
2942
2943 out:
2944 return -ENOMEM;
2945}
2946
2947/**
2948 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
2949 * @ioc: Pointer to MPT_ADAPTER structure
2950 * @cooked: Request raw or cooked IOC state
2951 *
2952 * Returns all IOC Doorbell register bits if cooked==0, else just the
2953 * Doorbell bits in MPI_IOC_STATE_MASK.
2954 */
2955u32
2956mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
2957{
2958 u32 s, sc;
2959
2960 s = readl(&ioc->chip->Doorbell);
2961 sc = s & MPI2_IOC_STATE_MASK;
2962 return cooked ? sc : s;
2963}
2964
2965/**
2966 * _base_wait_on_iocstate - waiting on a particular ioc state
2967 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
2968 * @timeout: timeout in second
2969 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2970 *
2971 * Returns 0 for success, non-zero for failure.
2972 */
2973static int
2974_base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
2975 int sleep_flag)
2976{
2977 u32 count, cntdn;
2978 u32 current_state;
2979
2980 count = 0;
2981 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
2982 do {
2983 current_state = mpt3sas_base_get_iocstate(ioc, 1);
2984 if (current_state == ioc_state)
2985 return 0;
2986 if (count && current_state == MPI2_IOC_STATE_FAULT)
2987 break;
2988 if (sleep_flag == CAN_SLEEP)
2989 usleep_range(1000, 1500);
2990 else
2991 udelay(500);
2992 count++;
2993 } while (--cntdn);
2994
2995 return current_state;
2996}
2997
2998/**
2999 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3000 * a write to the doorbell)
3001 * @ioc: per adapter object
3002 * @timeout: timeout in second
3003 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3004 *
3005 * Returns 0 for success, non-zero for failure.
3006 *
3007 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3008 */
3009static int
3010_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3011 int sleep_flag)
3012{
3013 u32 cntdn, count;
3014 u32 int_status;
3015
3016 count = 0;
3017 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3018 do {
3019 int_status = readl(&ioc->chip->HostInterruptStatus);
3020 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3021 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3022 "%s: successful count(%d), timeout(%d)\n",
3023 ioc->name, __func__, count, timeout));
3024 return 0;
3025 }
3026 if (sleep_flag == CAN_SLEEP)
3027 usleep_range(1000, 1500);
3028 else
3029 udelay(500);
3030 count++;
3031 } while (--cntdn);
3032
3033 pr_err(MPT3SAS_FMT
3034 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3035 ioc->name, __func__, count, int_status);
3036 return -EFAULT;
3037}
3038
3039/**
3040 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3041 * @ioc: per adapter object
3042 * @timeout: timeout in second
3043 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3044 *
3045 * Returns 0 for success, non-zero for failure.
3046 *
3047 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3048 * doorbell.
3049 */
3050static int
3051_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3052 int sleep_flag)
3053{
3054 u32 cntdn, count;
3055 u32 int_status;
3056 u32 doorbell;
3057
3058 count = 0;
3059 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3060 do {
3061 int_status = readl(&ioc->chip->HostInterruptStatus);
3062 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3063 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3064 "%s: successful count(%d), timeout(%d)\n",
3065 ioc->name, __func__, count, timeout));
3066 return 0;
3067 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3068 doorbell = readl(&ioc->chip->Doorbell);
3069 if ((doorbell & MPI2_IOC_STATE_MASK) ==
3070 MPI2_IOC_STATE_FAULT) {
3071 mpt3sas_base_fault_info(ioc , doorbell);
3072 return -EFAULT;
3073 }
3074 } else if (int_status == 0xFFFFFFFF)
3075 goto out;
3076
3077 if (sleep_flag == CAN_SLEEP)
3078 usleep_range(1000, 1500);
3079 else
3080 udelay(500);
3081 count++;
3082 } while (--cntdn);
3083
3084 out:
3085 pr_err(MPT3SAS_FMT
3086 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3087 ioc->name, __func__, count, int_status);
3088 return -EFAULT;
3089}
3090
3091/**
3092 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3093 * @ioc: per adapter object
3094 * @timeout: timeout in second
3095 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3096 *
3097 * Returns 0 for success, non-zero for failure.
3098 *
3099 */
3100static int
3101_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3102 int sleep_flag)
3103{
3104 u32 cntdn, count;
3105 u32 doorbell_reg;
3106
3107 count = 0;
3108 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3109 do {
3110 doorbell_reg = readl(&ioc->chip->Doorbell);
3111 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3112 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3113 "%s: successful count(%d), timeout(%d)\n",
3114 ioc->name, __func__, count, timeout));
3115 return 0;
3116 }
3117 if (sleep_flag == CAN_SLEEP)
3118 usleep_range(1000, 1500);
3119 else
3120 udelay(500);
3121 count++;
3122 } while (--cntdn);
3123
3124 pr_err(MPT3SAS_FMT
3125 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3126 ioc->name, __func__, count, doorbell_reg);
3127 return -EFAULT;
3128}
3129
3130/**
3131 * _base_send_ioc_reset - send doorbell reset
3132 * @ioc: per adapter object
3133 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3134 * @timeout: timeout in second
3135 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3136 *
3137 * Returns 0 for success, non-zero for failure.
3138 */
3139static int
3140_base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3141 int sleep_flag)
3142{
3143 u32 ioc_state;
3144 int r = 0;
3145
3146 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3147 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3148 ioc->name, __func__);
3149 return -EFAULT;
3150 }
3151
3152 if (!(ioc->facts.IOCCapabilities &
3153 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3154 return -EFAULT;
3155
3156 pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3157
3158 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3159 &ioc->chip->Doorbell);
3160 if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3161 r = -EFAULT;
3162 goto out;
3163 }
3164 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3165 timeout, sleep_flag);
3166 if (ioc_state) {
3167 pr_err(MPT3SAS_FMT
3168 "%s: failed going to ready state (ioc_state=0x%x)\n",
3169 ioc->name, __func__, ioc_state);
3170 r = -EFAULT;
3171 goto out;
3172 }
3173 out:
3174 pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3175 ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3176 return r;
3177}
3178
3179/**
3180 * _base_handshake_req_reply_wait - send request thru doorbell interface
3181 * @ioc: per adapter object
3182 * @request_bytes: request length
3183 * @request: pointer having request payload
3184 * @reply_bytes: reply length
3185 * @reply: pointer to reply payload
3186 * @timeout: timeout in second
3187 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3188 *
3189 * Returns 0 for success, non-zero for failure.
3190 */
3191static int
3192_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3193 u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3194{
3195 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3196 int i;
3197 u8 failed;
3198 u16 dummy;
3199 __le32 *mfp;
3200
3201 /* make sure doorbell is not in use */
3202 if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3203 pr_err(MPT3SAS_FMT
3204 "doorbell is in use (line=%d)\n",
3205 ioc->name, __LINE__);
3206 return -EFAULT;
3207 }
3208
3209 /* clear pending doorbell interrupts from previous state changes */
3210 if (readl(&ioc->chip->HostInterruptStatus) &
3211 MPI2_HIS_IOC2SYS_DB_STATUS)
3212 writel(0, &ioc->chip->HostInterruptStatus);
3213
3214 /* send message to ioc */
3215 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3216 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3217 &ioc->chip->Doorbell);
3218
3219 if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3220 pr_err(MPT3SAS_FMT
3221 "doorbell handshake int failed (line=%d)\n",
3222 ioc->name, __LINE__);
3223 return -EFAULT;
3224 }
3225 writel(0, &ioc->chip->HostInterruptStatus);
3226
3227 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3228 pr_err(MPT3SAS_FMT
3229 "doorbell handshake ack failed (line=%d)\n",
3230 ioc->name, __LINE__);
3231 return -EFAULT;
3232 }
3233
3234 /* send message 32-bits at a time */
3235 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3236 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3237 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3238 failed = 1;
3239 }
3240
3241 if (failed) {
3242 pr_err(MPT3SAS_FMT
3243 "doorbell handshake sending request failed (line=%d)\n",
3244 ioc->name, __LINE__);
3245 return -EFAULT;
3246 }
3247
3248 /* now wait for the reply */
3249 if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3250 pr_err(MPT3SAS_FMT
3251 "doorbell handshake int failed (line=%d)\n",
3252 ioc->name, __LINE__);
3253 return -EFAULT;
3254 }
3255
3256 /* read the first two 16-bits, it gives the total length of the reply */
3257 reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3258 & MPI2_DOORBELL_DATA_MASK);
3259 writel(0, &ioc->chip->HostInterruptStatus);
3260 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3261 pr_err(MPT3SAS_FMT
3262 "doorbell handshake int failed (line=%d)\n",
3263 ioc->name, __LINE__);
3264 return -EFAULT;
3265 }
3266 reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3267 & MPI2_DOORBELL_DATA_MASK);
3268 writel(0, &ioc->chip->HostInterruptStatus);
3269
3270 for (i = 2; i < default_reply->MsgLength * 2; i++) {
3271 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3272 pr_err(MPT3SAS_FMT
3273 "doorbell handshake int failed (line=%d)\n",
3274 ioc->name, __LINE__);
3275 return -EFAULT;
3276 }
3277 if (i >= reply_bytes/2) /* overflow case */
3278 dummy = readl(&ioc->chip->Doorbell);
3279 else
3280 reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3281 & MPI2_DOORBELL_DATA_MASK);
3282 writel(0, &ioc->chip->HostInterruptStatus);
3283 }
3284
3285 _base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3286 if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3287 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3288 "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3289 }
3290 writel(0, &ioc->chip->HostInterruptStatus);
3291
3292 if (ioc->logging_level & MPT_DEBUG_INIT) {
3293 mfp = (__le32 *)reply;
3294 pr_info("\toffset:data\n");
3295 for (i = 0; i < reply_bytes/4; i++)
3296 pr_info("\t[0x%02x]:%08x\n", i*4,
3297 le32_to_cpu(mfp[i]));
3298 }
3299 return 0;
3300}
3301
3302/**
3303 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3304 * @ioc: per adapter object
3305 * @mpi_reply: the reply payload from FW
3306 * @mpi_request: the request payload sent to FW
3307 *
3308 * The SAS IO Unit Control Request message allows the host to perform low-level
3309 * operations, such as resets on the PHYs of the IO Unit, also allows the host
3310 * to obtain the IOC assigned device handles for a device if it has other
3311 * identifying information about the device, in addition allows the host to
3312 * remove IOC resources associated with the device.
3313 *
3314 * Returns 0 for success, non-zero for failure.
3315 */
3316int
3317mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
3318 Mpi2SasIoUnitControlReply_t *mpi_reply,
3319 Mpi2SasIoUnitControlRequest_t *mpi_request)
3320{
3321 u16 smid;
3322 u32 ioc_state;
3323 unsigned long timeleft;
3324 u8 issue_reset;
3325 int rc;
3326 void *request;
3327 u16 wait_state_count;
3328
3329 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3330 __func__));
3331
3332 mutex_lock(&ioc->base_cmds.mutex);
3333
3334 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3335 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3336 ioc->name, __func__);
3337 rc = -EAGAIN;
3338 goto out;
3339 }
3340
3341 wait_state_count = 0;
3342 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3343 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3344 if (wait_state_count++ == 10) {
3345 pr_err(MPT3SAS_FMT
3346 "%s: failed due to ioc not operational\n",
3347 ioc->name, __func__);
3348 rc = -EFAULT;
3349 goto out;
3350 }
3351 ssleep(1);
3352 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3353 pr_info(MPT3SAS_FMT
3354 "%s: waiting for operational state(count=%d)\n",
3355 ioc->name, __func__, wait_state_count);
3356 }
3357
3358 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3359 if (!smid) {
3360 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3361 ioc->name, __func__);
3362 rc = -EAGAIN;
3363 goto out;
3364 }
3365
3366 rc = 0;
3367 ioc->base_cmds.status = MPT3_CMD_PENDING;
3368 request = mpt3sas_base_get_msg_frame(ioc, smid);
3369 ioc->base_cmds.smid = smid;
3370 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
3371 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3372 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
3373 ioc->ioc_link_reset_in_progress = 1;
3374 init_completion(&ioc->base_cmds.done);
3375 mpt3sas_base_put_smid_default(ioc, smid);
3376 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3377 msecs_to_jiffies(10000));
3378 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3379 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
3380 ioc->ioc_link_reset_in_progress)
3381 ioc->ioc_link_reset_in_progress = 0;
3382 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3383 pr_err(MPT3SAS_FMT "%s: timeout\n",
3384 ioc->name, __func__);
3385 _debug_dump_mf(mpi_request,
3386 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
3387 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
3388 issue_reset = 1;
3389 goto issue_host_reset;
3390 }
3391 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3392 memcpy(mpi_reply, ioc->base_cmds.reply,
3393 sizeof(Mpi2SasIoUnitControlReply_t));
3394 else
3395 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
3396 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3397 goto out;
3398
3399 issue_host_reset:
3400 if (issue_reset)
3401 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3402 FORCE_BIG_HAMMER);
3403 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3404 rc = -EFAULT;
3405 out:
3406 mutex_unlock(&ioc->base_cmds.mutex);
3407 return rc;
3408}
3409
3410/**
3411 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
3412 * @ioc: per adapter object
3413 * @mpi_reply: the reply payload from FW
3414 * @mpi_request: the request payload sent to FW
3415 *
3416 * The SCSI Enclosure Processor request message causes the IOC to
3417 * communicate with SES devices to control LED status signals.
3418 *
3419 * Returns 0 for success, non-zero for failure.
3420 */
3421int
3422mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
3423 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
3424{
3425 u16 smid;
3426 u32 ioc_state;
3427 unsigned long timeleft;
3428 u8 issue_reset;
3429 int rc;
3430 void *request;
3431 u16 wait_state_count;
3432
3433 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3434 __func__));
3435
3436 mutex_lock(&ioc->base_cmds.mutex);
3437
3438 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3439 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3440 ioc->name, __func__);
3441 rc = -EAGAIN;
3442 goto out;
3443 }
3444
3445 wait_state_count = 0;
3446 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3447 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3448 if (wait_state_count++ == 10) {
3449 pr_err(MPT3SAS_FMT
3450 "%s: failed due to ioc not operational\n",
3451 ioc->name, __func__);
3452 rc = -EFAULT;
3453 goto out;
3454 }
3455 ssleep(1);
3456 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3457 pr_info(MPT3SAS_FMT
3458 "%s: waiting for operational state(count=%d)\n",
3459 ioc->name,
3460 __func__, wait_state_count);
3461 }
3462
3463 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3464 if (!smid) {
3465 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3466 ioc->name, __func__);
3467 rc = -EAGAIN;
3468 goto out;
3469 }
3470
3471 rc = 0;
3472 ioc->base_cmds.status = MPT3_CMD_PENDING;
3473 request = mpt3sas_base_get_msg_frame(ioc, smid);
3474 ioc->base_cmds.smid = smid;
3475 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
3476 init_completion(&ioc->base_cmds.done);
3477 mpt3sas_base_put_smid_default(ioc, smid);
3478 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3479 msecs_to_jiffies(10000));
3480 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3481 pr_err(MPT3SAS_FMT "%s: timeout\n",
3482 ioc->name, __func__);
3483 _debug_dump_mf(mpi_request,
3484 sizeof(Mpi2SepRequest_t)/4);
3485 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
3486 issue_reset = 1;
3487 goto issue_host_reset;
3488 }
3489 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3490 memcpy(mpi_reply, ioc->base_cmds.reply,
3491 sizeof(Mpi2SepReply_t));
3492 else
3493 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
3494 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3495 goto out;
3496
3497 issue_host_reset:
3498 if (issue_reset)
3499 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3500 FORCE_BIG_HAMMER);
3501 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3502 rc = -EFAULT;
3503 out:
3504 mutex_unlock(&ioc->base_cmds.mutex);
3505 return rc;
3506}
3507
3508/**
3509 * _base_get_port_facts - obtain port facts reply and save in ioc
3510 * @ioc: per adapter object
3511 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3512 *
3513 * Returns 0 for success, non-zero for failure.
3514 */
3515static int
3516_base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
3517{
3518 Mpi2PortFactsRequest_t mpi_request;
3519 Mpi2PortFactsReply_t mpi_reply;
3520 struct mpt3sas_port_facts *pfacts;
3521 int mpi_reply_sz, mpi_request_sz, r;
3522
3523 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3524 __func__));
3525
3526 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
3527 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
3528 memset(&mpi_request, 0, mpi_request_sz);
3529 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
3530 mpi_request.PortNumber = port;
3531 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3532 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3533
3534 if (r != 0) {
3535 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3536 ioc->name, __func__, r);
3537 return r;
3538 }
3539
3540 pfacts = &ioc->pfacts[port];
3541 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
3542 pfacts->PortNumber = mpi_reply.PortNumber;
3543 pfacts->VP_ID = mpi_reply.VP_ID;
3544 pfacts->VF_ID = mpi_reply.VF_ID;
3545 pfacts->MaxPostedCmdBuffers =
3546 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
3547
3548 return 0;
3549}
3550
3551/**
3552 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
3553 * @ioc: per adapter object
3554 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3555 *
3556 * Returns 0 for success, non-zero for failure.
3557 */
3558static int
3559_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3560{
3561 Mpi2IOCFactsRequest_t mpi_request;
3562 Mpi2IOCFactsReply_t mpi_reply;
3563 struct mpt3sas_facts *facts;
3564 int mpi_reply_sz, mpi_request_sz, r;
3565
3566 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3567 __func__));
3568
3569 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
3570 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
3571 memset(&mpi_request, 0, mpi_request_sz);
3572 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
3573 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3574 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3575
3576 if (r != 0) {
3577 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3578 ioc->name, __func__, r);
3579 return r;
3580 }
3581
3582 facts = &ioc->facts;
3583 memset(facts, 0, sizeof(struct mpt3sas_facts));
3584 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
3585 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
3586 facts->VP_ID = mpi_reply.VP_ID;
3587 facts->VF_ID = mpi_reply.VF_ID;
3588 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
3589 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
3590 facts->WhoInit = mpi_reply.WhoInit;
3591 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
3592 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
3593 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
3594 facts->MaxReplyDescriptorPostQueueDepth =
3595 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
3596 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
3597 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
3598 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
3599 ioc->ir_firmware = 1;
3600 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
3601 facts->IOCRequestFrameSize =
3602 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
3603 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
3604 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
3605 ioc->shost->max_id = -1;
3606 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
3607 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
3608 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
3609 facts->HighPriorityCredit =
3610 le16_to_cpu(mpi_reply.HighPriorityCredit);
3611 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
3612 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
3613
3614 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3615 "hba queue depth(%d), max chains per io(%d)\n",
3616 ioc->name, facts->RequestCredit,
3617 facts->MaxChainDepth));
3618 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3619 "request frame size(%d), reply frame size(%d)\n", ioc->name,
3620 facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
3621 return 0;
3622}
3623
3624/**
3625 * _base_send_ioc_init - send ioc_init to firmware
3626 * @ioc: per adapter object
3627 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3628 *
3629 * Returns 0 for success, non-zero for failure.
3630 */
3631static int
3632_base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3633{
3634 Mpi2IOCInitRequest_t mpi_request;
3635 Mpi2IOCInitReply_t mpi_reply;
3636 int r;
3637 struct timeval current_time;
3638 u16 ioc_status;
3639
3640 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3641 __func__));
3642
3643 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
3644 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
3645 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
3646 mpi_request.VF_ID = 0; /* TODO */
3647 mpi_request.VP_ID = 0;
3648 mpi_request.MsgVersion = cpu_to_le16(MPI2_VERSION);
3649 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
3650
3651 if (_base_is_controller_msix_enabled(ioc))
3652 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
3653 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
3654 mpi_request.ReplyDescriptorPostQueueDepth =
3655 cpu_to_le16(ioc->reply_post_queue_depth);
3656 mpi_request.ReplyFreeQueueDepth =
3657 cpu_to_le16(ioc->reply_free_queue_depth);
3658
3659 mpi_request.SenseBufferAddressHigh =
3660 cpu_to_le32((u64)ioc->sense_dma >> 32);
3661 mpi_request.SystemReplyAddressHigh =
3662 cpu_to_le32((u64)ioc->reply_dma >> 32);
3663 mpi_request.SystemRequestFrameBaseAddress =
3664 cpu_to_le64((u64)ioc->request_dma);
3665 mpi_request.ReplyFreeQueueAddress =
3666 cpu_to_le64((u64)ioc->reply_free_dma);
3667 mpi_request.ReplyDescriptorPostQueueAddress =
3668 cpu_to_le64((u64)ioc->reply_post_free_dma);
3669
3670
3671 /* This time stamp specifies number of milliseconds
3672 * since epoch ~ midnight January 1, 1970.
3673 */
3674 do_gettimeofday(&current_time);
3675 mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
3676 (current_time.tv_usec / 1000));
3677
3678 if (ioc->logging_level & MPT_DEBUG_INIT) {
3679 __le32 *mfp;
3680 int i;
3681
3682 mfp = (__le32 *)&mpi_request;
3683 pr_info("\toffset:data\n");
3684 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
3685 pr_info("\t[0x%02x]:%08x\n", i*4,
3686 le32_to_cpu(mfp[i]));
3687 }
3688
3689 r = _base_handshake_req_reply_wait(ioc,
3690 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
3691 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
3692 sleep_flag);
3693
3694 if (r != 0) {
3695 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3696 ioc->name, __func__, r);
3697 return r;
3698 }
3699
3700 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
3701 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
3702 mpi_reply.IOCLogInfo) {
3703 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
3704 r = -EIO;
3705 }
3706
3707 return 0;
3708}
3709
3710/**
3711 * mpt3sas_port_enable_done - command completion routine for port enable
3712 * @ioc: per adapter object
3713 * @smid: system request message index
3714 * @msix_index: MSIX table index supplied by the OS
3715 * @reply: reply message frame(lower 32bit addr)
3716 *
3717 * Return 1 meaning mf should be freed from _base_interrupt
3718 * 0 means the mf is freed from this function.
3719 */
3720u8
3721mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
3722 u32 reply)
3723{
3724 MPI2DefaultReply_t *mpi_reply;
3725 u16 ioc_status;
3726
3727 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
3728 return 1;
3729
3730 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
3731 if (!mpi_reply)
3732 return 1;
3733
3734 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
3735 return 1;
3736
3737 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
3738 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
3739 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
3740 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
3741 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
3742 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
3743 ioc->port_enable_failed = 1;
3744
3745 if (ioc->is_driver_loading) {
3746 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
3747 mpt3sas_port_enable_complete(ioc);
3748 return 1;
3749 } else {
3750 ioc->start_scan_failed = ioc_status;
3751 ioc->start_scan = 0;
3752 return 1;
3753 }
3754 }
3755 complete(&ioc->port_enable_cmds.done);
3756 return 1;
3757}
3758
3759/**
3760 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
3761 * @ioc: per adapter object
3762 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3763 *
3764 * Returns 0 for success, non-zero for failure.
3765 */
3766static int
3767_base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3768{
3769 Mpi2PortEnableRequest_t *mpi_request;
3770 Mpi2PortEnableReply_t *mpi_reply;
3771 unsigned long timeleft;
3772 int r = 0;
3773 u16 smid;
3774 u16 ioc_status;
3775
3776 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
3777
3778 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
3779 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3780 ioc->name, __func__);
3781 return -EAGAIN;
3782 }
3783
3784 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
3785 if (!smid) {
3786 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3787 ioc->name, __func__);
3788 return -EAGAIN;
3789 }
3790
3791 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
3792 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3793 ioc->port_enable_cmds.smid = smid;
3794 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
3795 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
3796
3797 init_completion(&ioc->port_enable_cmds.done);
3798 mpt3sas_base_put_smid_default(ioc, smid);
3799 timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
3800 300*HZ);
3801 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
3802 pr_err(MPT3SAS_FMT "%s: timeout\n",
3803 ioc->name, __func__);
3804 _debug_dump_mf(mpi_request,
3805 sizeof(Mpi2PortEnableRequest_t)/4);
3806 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
3807 r = -EFAULT;
3808 else
3809 r = -ETIME;
3810 goto out;
3811 }
3812
3813 mpi_reply = ioc->port_enable_cmds.reply;
3814 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
3815 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3816 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
3817 ioc->name, __func__, ioc_status);
3818 r = -EFAULT;
3819 goto out;
3820 }
3821
3822 out:
3823 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
3824 pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
3825 "SUCCESS" : "FAILED"));
3826 return r;
3827}
3828
3829/**
3830 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
3831 * @ioc: per adapter object
3832 *
3833 * Returns 0 for success, non-zero for failure.
3834 */
3835int
3836mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
3837{
3838 Mpi2PortEnableRequest_t *mpi_request;
3839 u16 smid;
3840
3841 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
3842
3843 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
3844 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3845 ioc->name, __func__);
3846 return -EAGAIN;
3847 }
3848
3849 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
3850 if (!smid) {
3851 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3852 ioc->name, __func__);
3853 return -EAGAIN;
3854 }
3855
3856 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
3857 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3858 ioc->port_enable_cmds.smid = smid;
3859 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
3860 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
3861
3862 mpt3sas_base_put_smid_default(ioc, smid);
3863 return 0;
3864}
3865
3866/**
3867 * _base_determine_wait_on_discovery - desposition
3868 * @ioc: per adapter object
3869 *
3870 * Decide whether to wait on discovery to complete. Used to either
3871 * locate boot device, or report volumes ahead of physical devices.
3872 *
3873 * Returns 1 for wait, 0 for don't wait
3874 */
3875static int
3876_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
3877{
3878 /* We wait for discovery to complete if IR firmware is loaded.
3879 * The sas topology events arrive before PD events, so we need time to
3880 * turn on the bit in ioc->pd_handles to indicate PD
3881 * Also, it maybe required to report Volumes ahead of physical
3882 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
3883 */
3884 if (ioc->ir_firmware)
3885 return 1;
3886
3887 /* if no Bios, then we don't need to wait */
3888 if (!ioc->bios_pg3.BiosVersion)
3889 return 0;
3890
3891 /* Bios is present, then we drop down here.
3892 *
3893 * If there any entries in the Bios Page 2, then we wait
3894 * for discovery to complete.
3895 */
3896
3897 /* Current Boot Device */
3898 if ((ioc->bios_pg2.CurrentBootDeviceForm &
3899 MPI2_BIOSPAGE2_FORM_MASK) ==
3900 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
3901 /* Request Boot Device */
3902 (ioc->bios_pg2.ReqBootDeviceForm &
3903 MPI2_BIOSPAGE2_FORM_MASK) ==
3904 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
3905 /* Alternate Request Boot Device */
3906 (ioc->bios_pg2.ReqAltBootDeviceForm &
3907 MPI2_BIOSPAGE2_FORM_MASK) ==
3908 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
3909 return 0;
3910
3911 return 1;
3912}
3913
3914/**
3915 * _base_unmask_events - turn on notification for this event
3916 * @ioc: per adapter object
3917 * @event: firmware event
3918 *
3919 * The mask is stored in ioc->event_masks.
3920 */
3921static void
3922_base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
3923{
3924 u32 desired_event;
3925
3926 if (event >= 128)
3927 return;
3928
3929 desired_event = (1 << (event % 32));
3930
3931 if (event < 32)
3932 ioc->event_masks[0] &= ~desired_event;
3933 else if (event < 64)
3934 ioc->event_masks[1] &= ~desired_event;
3935 else if (event < 96)
3936 ioc->event_masks[2] &= ~desired_event;
3937 else if (event < 128)
3938 ioc->event_masks[3] &= ~desired_event;
3939}
3940
3941/**
3942 * _base_event_notification - send event notification
3943 * @ioc: per adapter object
3944 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3945 *
3946 * Returns 0 for success, non-zero for failure.
3947 */
3948static int
3949_base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3950{
3951 Mpi2EventNotificationRequest_t *mpi_request;
3952 unsigned long timeleft;
3953 u16 smid;
3954 int r = 0;
3955 int i;
3956
3957 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3958 __func__));
3959
3960 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
3961 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3962 ioc->name, __func__);
3963 return -EAGAIN;
3964 }
3965
3966 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3967 if (!smid) {
3968 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3969 ioc->name, __func__);
3970 return -EAGAIN;
3971 }
3972 ioc->base_cmds.status = MPT3_CMD_PENDING;
3973 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3974 ioc->base_cmds.smid = smid;
3975 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
3976 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
3977 mpi_request->VF_ID = 0; /* TODO */
3978 mpi_request->VP_ID = 0;
3979 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
3980 mpi_request->EventMasks[i] =
3981 cpu_to_le32(ioc->event_masks[i]);
3982 init_completion(&ioc->base_cmds.done);
3983 mpt3sas_base_put_smid_default(ioc, smid);
3984 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
3985 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3986 pr_err(MPT3SAS_FMT "%s: timeout\n",
3987 ioc->name, __func__);
3988 _debug_dump_mf(mpi_request,
3989 sizeof(Mpi2EventNotificationRequest_t)/4);
3990 if (ioc->base_cmds.status & MPT3_CMD_RESET)
3991 r = -EFAULT;
3992 else
3993 r = -ETIME;
3994 } else
3995 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
3996 ioc->name, __func__));
3997 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3998 return r;
3999}
4000
4001/**
4002 * mpt3sas_base_validate_event_type - validating event types
4003 * @ioc: per adapter object
4004 * @event: firmware event
4005 *
4006 * This will turn on firmware event notification when application
4007 * ask for that event. We don't mask events that are already enabled.
4008 */
4009void
4010mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4011{
4012 int i, j;
4013 u32 event_mask, desired_event;
4014 u8 send_update_to_fw;
4015
4016 for (i = 0, send_update_to_fw = 0; i <
4017 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4018 event_mask = ~event_type[i];
4019 desired_event = 1;
4020 for (j = 0; j < 32; j++) {
4021 if (!(event_mask & desired_event) &&
4022 (ioc->event_masks[i] & desired_event)) {
4023 ioc->event_masks[i] &= ~desired_event;
4024 send_update_to_fw = 1;
4025 }
4026 desired_event = (desired_event << 1);
4027 }
4028 }
4029
4030 if (!send_update_to_fw)
4031 return;
4032
4033 mutex_lock(&ioc->base_cmds.mutex);
4034 _base_event_notification(ioc, CAN_SLEEP);
4035 mutex_unlock(&ioc->base_cmds.mutex);
4036}
4037
4038/**
4039 * _base_diag_reset - the "big hammer" start of day reset
4040 * @ioc: per adapter object
4041 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4042 *
4043 * Returns 0 for success, non-zero for failure.
4044 */
4045static int
4046_base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4047{
4048 u32 host_diagnostic;
4049 u32 ioc_state;
4050 u32 count;
4051 u32 hcb_size;
4052
4053 pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4054
4055 drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4056 ioc->name));
4057
4058 count = 0;
4059 do {
4060 /* Write magic sequence to WriteSequence register
4061 * Loop until in diagnostic mode
4062 */
4063 drsprintk(ioc, pr_info(MPT3SAS_FMT
4064 "write magic sequence\n", ioc->name));
4065 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4066 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4067 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4068 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4069 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4070 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4071 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4072
4073 /* wait 100 msec */
4074 if (sleep_flag == CAN_SLEEP)
4075 msleep(100);
4076 else
4077 mdelay(100);
4078
4079 if (count++ > 20)
4080 goto out;
4081
4082 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4083 drsprintk(ioc, pr_info(MPT3SAS_FMT
4084 "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4085 ioc->name, count, host_diagnostic));
4086
4087 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4088
4089 hcb_size = readl(&ioc->chip->HCBSize);
4090
4091 drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4092 ioc->name));
4093 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4094 &ioc->chip->HostDiagnostic);
4095
4096 /* don't access any registers for 50 milliseconds */
4097 msleep(50);
4098
4099 /* 300 second max wait */
4100 for (count = 0; count < 3000000 ; count++) {
4101
4102 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4103
4104 if (host_diagnostic == 0xFFFFFFFF)
4105 goto out;
4106 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4107 break;
4108
4109 /* wait 1 msec */
4110 if (sleep_flag == CAN_SLEEP)
4111 usleep_range(1000, 1500);
4112 else
4113 mdelay(1);
4114 }
4115
4116 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4117
4118 drsprintk(ioc, pr_info(MPT3SAS_FMT
4119 "restart the adapter assuming the HCB Address points to good F/W\n",
4120 ioc->name));
4121 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4122 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4123 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4124
4125 drsprintk(ioc, pr_info(MPT3SAS_FMT
4126 "re-enable the HCDW\n", ioc->name));
4127 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4128 &ioc->chip->HCBSize);
4129 }
4130
4131 drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4132 ioc->name));
4133 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4134 &ioc->chip->HostDiagnostic);
4135
4136 drsprintk(ioc, pr_info(MPT3SAS_FMT
4137 "disable writes to the diagnostic register\n", ioc->name));
4138 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4139
4140 drsprintk(ioc, pr_info(MPT3SAS_FMT
4141 "Wait for FW to go to the READY state\n", ioc->name));
4142 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4143 sleep_flag);
4144 if (ioc_state) {
4145 pr_err(MPT3SAS_FMT
4146 "%s: failed going to ready state (ioc_state=0x%x)\n",
4147 ioc->name, __func__, ioc_state);
4148 goto out;
4149 }
4150
4151 pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4152 return 0;
4153
4154 out:
4155 pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4156 return -EFAULT;
4157}
4158
4159/**
4160 * _base_make_ioc_ready - put controller in READY state
4161 * @ioc: per adapter object
4162 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4163 * @type: FORCE_BIG_HAMMER or SOFT_RESET
4164 *
4165 * Returns 0 for success, non-zero for failure.
4166 */
4167static int
4168_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4169 enum reset_type type)
4170{
4171 u32 ioc_state;
4172 int rc;
4173 int count;
4174
4175 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4176 __func__));
4177
4178 if (ioc->pci_error_recovery)
4179 return 0;
4180
4181 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4182 dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4183 ioc->name, __func__, ioc_state));
4184
4185 /* if in RESET state, it should move to READY state shortly */
4186 count = 0;
4187 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4188 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4189 MPI2_IOC_STATE_READY) {
4190 if (count++ == 10) {
4191 pr_err(MPT3SAS_FMT
4192 "%s: failed going to ready state (ioc_state=0x%x)\n",
4193 ioc->name, __func__, ioc_state);
4194 return -EFAULT;
4195 }
4196 if (sleep_flag == CAN_SLEEP)
4197 ssleep(1);
4198 else
4199 mdelay(1000);
4200 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4201 }
4202 }
4203
4204 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4205 return 0;
4206
4207 if (ioc_state & MPI2_DOORBELL_USED) {
4208 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4209 "unexpected doorbell active!\n",
4210 ioc->name));
4211 goto issue_diag_reset;
4212 }
4213
4214 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4215 mpt3sas_base_fault_info(ioc, ioc_state &
4216 MPI2_DOORBELL_DATA_MASK);
4217 goto issue_diag_reset;
4218 }
4219
4220 if (type == FORCE_BIG_HAMMER)
4221 goto issue_diag_reset;
4222
4223 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4224 if (!(_base_send_ioc_reset(ioc,
4225 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
4226 return 0;
4227 }
4228
4229 issue_diag_reset:
4230 rc = _base_diag_reset(ioc, CAN_SLEEP);
4231 return rc;
4232}
4233
4234/**
4235 * _base_make_ioc_operational - put controller in OPERATIONAL state
4236 * @ioc: per adapter object
4237 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4238 *
4239 * Returns 0 for success, non-zero for failure.
4240 */
4241static int
4242_base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4243{
4244 int r, i;
4245 unsigned long flags;
4246 u32 reply_address;
4247 u16 smid;
4248 struct _tr_list *delayed_tr, *delayed_tr_next;
4249 struct adapter_reply_queue *reply_q;
4250 long reply_post_free;
4251 u32 reply_post_free_sz;
4252
4253 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4254 __func__));
4255
4256 /* clean the delayed target reset list */
4257 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4258 &ioc->delayed_tr_list, list) {
4259 list_del(&delayed_tr->list);
4260 kfree(delayed_tr);
4261 }
4262
4263
4264 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4265 &ioc->delayed_tr_volume_list, list) {
4266 list_del(&delayed_tr->list);
4267 kfree(delayed_tr);
4268 }
4269
4270 /* initialize the scsi lookup free list */
4271 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4272 INIT_LIST_HEAD(&ioc->free_list);
4273 smid = 1;
4274 for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
4275 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
4276 ioc->scsi_lookup[i].cb_idx = 0xFF;
4277 ioc->scsi_lookup[i].smid = smid;
4278 ioc->scsi_lookup[i].scmd = NULL;
4279 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
4280 &ioc->free_list);
4281 }
4282
4283 /* hi-priority queue */
4284 INIT_LIST_HEAD(&ioc->hpr_free_list);
4285 smid = ioc->hi_priority_smid;
4286 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
4287 ioc->hpr_lookup[i].cb_idx = 0xFF;
4288 ioc->hpr_lookup[i].smid = smid;
4289 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
4290 &ioc->hpr_free_list);
4291 }
4292
4293 /* internal queue */
4294 INIT_LIST_HEAD(&ioc->internal_free_list);
4295 smid = ioc->internal_smid;
4296 for (i = 0; i < ioc->internal_depth; i++, smid++) {
4297 ioc->internal_lookup[i].cb_idx = 0xFF;
4298 ioc->internal_lookup[i].smid = smid;
4299 list_add_tail(&ioc->internal_lookup[i].tracker_list,
4300 &ioc->internal_free_list);
4301 }
4302
4303 /* chain pool */
4304 INIT_LIST_HEAD(&ioc->free_chain_list);
4305 for (i = 0; i < ioc->chain_depth; i++)
4306 list_add_tail(&ioc->chain_lookup[i].tracker_list,
4307 &ioc->free_chain_list);
4308
4309 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4310
4311 /* initialize Reply Free Queue */
4312 for (i = 0, reply_address = (u32)ioc->reply_dma ;
4313 i < ioc->reply_free_queue_depth ; i++, reply_address +=
4314 ioc->reply_sz)
4315 ioc->reply_free[i] = cpu_to_le32(reply_address);
4316
4317 /* initialize reply queues */
4318 if (ioc->is_driver_loading)
4319 _base_assign_reply_queues(ioc);
4320
4321 /* initialize Reply Post Free Queue */
4322 reply_post_free = (long)ioc->reply_post_free;
4323 reply_post_free_sz = ioc->reply_post_queue_depth *
4324 sizeof(Mpi2DefaultReplyDescriptor_t);
4325 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4326 reply_q->reply_post_host_index = 0;
4327 reply_q->reply_post_free = (Mpi2ReplyDescriptorsUnion_t *)
4328 reply_post_free;
4329 for (i = 0; i < ioc->reply_post_queue_depth; i++)
4330 reply_q->reply_post_free[i].Words =
4331 cpu_to_le64(ULLONG_MAX);
4332 if (!_base_is_controller_msix_enabled(ioc))
4333 goto skip_init_reply_post_free_queue;
4334 reply_post_free += reply_post_free_sz;
4335 }
4336 skip_init_reply_post_free_queue:
4337
4338 r = _base_send_ioc_init(ioc, sleep_flag);
4339 if (r)
4340 return r;
4341
4342 /* initialize reply free host index */
4343 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
4344 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
4345
4346 /* initialize reply post host index */
4347 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4348 writel(reply_q->msix_index << MPI2_RPHI_MSIX_INDEX_SHIFT,
4349 &ioc->chip->ReplyPostHostIndex);
4350 if (!_base_is_controller_msix_enabled(ioc))
4351 goto skip_init_reply_post_host_index;
4352 }
4353
4354 skip_init_reply_post_host_index:
4355
4356 _base_unmask_interrupts(ioc);
4357 r = _base_event_notification(ioc, sleep_flag);
4358 if (r)
4359 return r;
4360
4361 if (sleep_flag == CAN_SLEEP)
4362 _base_static_config_pages(ioc);
4363
4364
4365 if (ioc->is_driver_loading) {
4366 ioc->wait_for_discovery_to_complete =
4367 _base_determine_wait_on_discovery(ioc);
4368
4369 return r; /* scan_start and scan_finished support */
4370 }
4371
4372 r = _base_send_port_enable(ioc, sleep_flag);
4373 if (r)
4374 return r;
4375
4376 return r;
4377}
4378
4379/**
4380 * mpt3sas_base_free_resources - free resources controller resources
4381 * @ioc: per adapter object
4382 *
4383 * Return nothing.
4384 */
4385void
4386mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
4387{
4388 struct pci_dev *pdev = ioc->pdev;
4389
4390 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4391 __func__));
4392
4393 _base_mask_interrupts(ioc);
4394 ioc->shost_recovery = 1;
4395 _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4396 ioc->shost_recovery = 0;
4397 _base_free_irq(ioc);
4398 _base_disable_msix(ioc);
4399 if (ioc->chip_phys)
4400 iounmap(ioc->chip);
4401 ioc->chip_phys = 0;
4402 pci_release_selected_regions(ioc->pdev, ioc->bars);
4403 pci_disable_pcie_error_reporting(pdev);
4404 pci_disable_device(pdev);
4405 return;
4406}
4407
4408/**
4409 * mpt3sas_base_attach - attach controller instance
4410 * @ioc: per adapter object
4411 *
4412 * Returns 0 for success, non-zero for failure.
4413 */
4414int
4415mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
4416{
4417 int r, i;
4418 int cpu_id, last_cpu_id = 0;
4419
4420 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4421 __func__));
4422
4423 /* setup cpu_msix_table */
4424 ioc->cpu_count = num_online_cpus();
4425 for_each_online_cpu(cpu_id)
4426 last_cpu_id = cpu_id;
4427 ioc->cpu_msix_table_sz = last_cpu_id + 1;
4428 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
4429 ioc->reply_queue_count = 1;
4430 if (!ioc->cpu_msix_table) {
4431 dfailprintk(ioc, pr_info(MPT3SAS_FMT
4432 "allocation for cpu_msix_table failed!!!\n",
4433 ioc->name));
4434 r = -ENOMEM;
4435 goto out_free_resources;
4436 }
4437
4438 r = mpt3sas_base_map_resources(ioc);
4439 if (r)
4440 goto out_free_resources;
4441
4442
4443 pci_set_drvdata(ioc->pdev, ioc->shost);
4444 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
4445 if (r)
4446 goto out_free_resources;
4447
4448 /*
4449 * In SAS3.0,
4450 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
4451 * Target Status - all require the IEEE formated scatter gather
4452 * elements.
4453 */
4454
4455 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
4456 ioc->build_sg = &_base_build_sg_ieee;
4457 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
4458 ioc->mpi25 = 1;
4459 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
4460
4461 /*
4462 * These function pointers for other requests that don't
4463 * the require IEEE scatter gather elements.
4464 *
4465 * For example Configuration Pages and SAS IOUNIT Control don't.
4466 */
4467 ioc->build_sg_mpi = &_base_build_sg;
4468 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
4469
4470 r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4471 if (r)
4472 goto out_free_resources;
4473
4474 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
4475 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
4476 if (!ioc->pfacts) {
4477 r = -ENOMEM;
4478 goto out_free_resources;
4479 }
4480
4481 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
4482 r = _base_get_port_facts(ioc, i, CAN_SLEEP);
4483 if (r)
4484 goto out_free_resources;
4485 }
4486
4487 r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
4488 if (r)
4489 goto out_free_resources;
4490
4491 init_waitqueue_head(&ioc->reset_wq);
4492
4493 /* allocate memory pd handle bitmask list */
4494 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
4495 if (ioc->facts.MaxDevHandle % 8)
4496 ioc->pd_handles_sz++;
4497 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
4498 GFP_KERNEL);
4499 if (!ioc->pd_handles) {
4500 r = -ENOMEM;
4501 goto out_free_resources;
4502 }
4503 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
4504 GFP_KERNEL);
4505 if (!ioc->blocking_handles) {
4506 r = -ENOMEM;
4507 goto out_free_resources;
4508 }
4509
4510 ioc->fwfault_debug = mpt3sas_fwfault_debug;
4511
4512 /* base internal command bits */
4513 mutex_init(&ioc->base_cmds.mutex);
4514 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4515 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4516
4517 /* port_enable command bits */
4518 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4519 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4520
4521 /* transport internal command bits */
4522 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4523 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
4524 mutex_init(&ioc->transport_cmds.mutex);
4525
4526 /* scsih internal command bits */
4527 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4528 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
4529 mutex_init(&ioc->scsih_cmds.mutex);
4530
4531 /* task management internal command bits */
4532 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4533 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
4534 mutex_init(&ioc->tm_cmds.mutex);
4535
4536 /* config page internal command bits */
4537 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4538 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
4539 mutex_init(&ioc->config_cmds.mutex);
4540
4541 /* ctl module internal command bits */
4542 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4543 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
4544 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
4545 mutex_init(&ioc->ctl_cmds.mutex);
4546
4547 if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
4548 !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
4549 !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
4550 !ioc->ctl_cmds.sense) {
4551 r = -ENOMEM;
4552 goto out_free_resources;
4553 }
4554
4555 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4556 ioc->event_masks[i] = -1;
4557
4558 /* here we enable the events we care about */
4559 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
4560 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
4561 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
4562 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
4563 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
4564 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
4565 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
4566 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
4567 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
4568 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
4569
4570 r = _base_make_ioc_operational(ioc, CAN_SLEEP);
4571 if (r)
4572 goto out_free_resources;
4573
4574 return 0;
4575
4576 out_free_resources:
4577
4578 ioc->remove_host = 1;
4579
4580 mpt3sas_base_free_resources(ioc);
4581 _base_release_memory_pools(ioc);
4582 pci_set_drvdata(ioc->pdev, NULL);
4583 kfree(ioc->cpu_msix_table);
4584 kfree(ioc->pd_handles);
4585 kfree(ioc->blocking_handles);
4586 kfree(ioc->tm_cmds.reply);
4587 kfree(ioc->transport_cmds.reply);
4588 kfree(ioc->scsih_cmds.reply);
4589 kfree(ioc->config_cmds.reply);
4590 kfree(ioc->base_cmds.reply);
4591 kfree(ioc->port_enable_cmds.reply);
4592 kfree(ioc->ctl_cmds.reply);
4593 kfree(ioc->ctl_cmds.sense);
4594 kfree(ioc->pfacts);
4595 ioc->ctl_cmds.reply = NULL;
4596 ioc->base_cmds.reply = NULL;
4597 ioc->tm_cmds.reply = NULL;
4598 ioc->scsih_cmds.reply = NULL;
4599 ioc->transport_cmds.reply = NULL;
4600 ioc->config_cmds.reply = NULL;
4601 ioc->pfacts = NULL;
4602 return r;
4603}
4604
4605
4606/**
4607 * mpt3sas_base_detach - remove controller instance
4608 * @ioc: per adapter object
4609 *
4610 * Return nothing.
4611 */
4612void
4613mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
4614{
4615 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4616 __func__));
4617
4618 mpt3sas_base_stop_watchdog(ioc);
4619 mpt3sas_base_free_resources(ioc);
4620 _base_release_memory_pools(ioc);
4621 pci_set_drvdata(ioc->pdev, NULL);
4622 kfree(ioc->cpu_msix_table);
4623 kfree(ioc->pd_handles);
4624 kfree(ioc->blocking_handles);
4625 kfree(ioc->pfacts);
4626 kfree(ioc->ctl_cmds.reply);
4627 kfree(ioc->ctl_cmds.sense);
4628 kfree(ioc->base_cmds.reply);
4629 kfree(ioc->port_enable_cmds.reply);
4630 kfree(ioc->tm_cmds.reply);
4631 kfree(ioc->transport_cmds.reply);
4632 kfree(ioc->scsih_cmds.reply);
4633 kfree(ioc->config_cmds.reply);
4634}
4635
4636/**
4637 * _base_reset_handler - reset callback handler (for base)
4638 * @ioc: per adapter object
4639 * @reset_phase: phase
4640 *
4641 * The handler for doing any required cleanup or initialization.
4642 *
4643 * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
4644 * MPT3_IOC_DONE_RESET
4645 *
4646 * Return nothing.
4647 */
4648static void
4649_base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
4650{
4651 mpt3sas_scsih_reset_handler(ioc, reset_phase);
4652 mpt3sas_ctl_reset_handler(ioc, reset_phase);
4653 switch (reset_phase) {
4654 case MPT3_IOC_PRE_RESET:
4655 dtmprintk(ioc, pr_info(MPT3SAS_FMT
4656 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
4657 break;
4658 case MPT3_IOC_AFTER_RESET:
4659 dtmprintk(ioc, pr_info(MPT3SAS_FMT
4660 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
4661 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
4662 ioc->transport_cmds.status |= MPT3_CMD_RESET;
4663 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
4664 complete(&ioc->transport_cmds.done);
4665 }
4666 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4667 ioc->base_cmds.status |= MPT3_CMD_RESET;
4668 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
4669 complete(&ioc->base_cmds.done);
4670 }
4671 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4672 ioc->port_enable_failed = 1;
4673 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
4674 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
4675 if (ioc->is_driver_loading) {
4676 ioc->start_scan_failed =
4677 MPI2_IOCSTATUS_INTERNAL_ERROR;
4678 ioc->start_scan = 0;
4679 ioc->port_enable_cmds.status =
4680 MPT3_CMD_NOT_USED;
4681 } else
4682 complete(&ioc->port_enable_cmds.done);
4683 }
4684 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
4685 ioc->config_cmds.status |= MPT3_CMD_RESET;
4686 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
4687 ioc->config_cmds.smid = USHRT_MAX;
4688 complete(&ioc->config_cmds.done);
4689 }
4690 break;
4691 case MPT3_IOC_DONE_RESET:
4692 dtmprintk(ioc, pr_info(MPT3SAS_FMT
4693 "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
4694 break;
4695 }
4696}
4697
4698/**
4699 * _wait_for_commands_to_complete - reset controller
4700 * @ioc: Pointer to MPT_ADAPTER structure
4701 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4702 *
4703 * This function waiting(3s) for all pending commands to complete
4704 * prior to putting controller in reset.
4705 */
4706static void
4707_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4708{
4709 u32 ioc_state;
4710 unsigned long flags;
4711 u16 i;
4712
4713 ioc->pending_io_count = 0;
4714 if (sleep_flag != CAN_SLEEP)
4715 return;
4716
4717 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4718 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
4719 return;
4720
4721 /* pending command count */
4722 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4723 for (i = 0; i < ioc->scsiio_depth; i++)
4724 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
4725 ioc->pending_io_count++;
4726 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4727
4728 if (!ioc->pending_io_count)
4729 return;
4730
4731 /* wait for pending commands to complete */
4732 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
4733}
4734
4735/**
4736 * mpt3sas_base_hard_reset_handler - reset controller
4737 * @ioc: Pointer to MPT_ADAPTER structure
4738 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4739 * @type: FORCE_BIG_HAMMER or SOFT_RESET
4740 *
4741 * Returns 0 for success, non-zero for failure.
4742 */
4743int
4744mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4745 enum reset_type type)
4746{
4747 int r;
4748 unsigned long flags;
4749 u32 ioc_state;
4750 u8 is_fault = 0, is_trigger = 0;
4751
4752 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
4753 __func__));
4754
4755 if (ioc->pci_error_recovery) {
4756 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
4757 ioc->name, __func__);
4758 r = 0;
4759 goto out_unlocked;
4760 }
4761
4762 if (mpt3sas_fwfault_debug)
4763 mpt3sas_halt_firmware(ioc);
4764
4765 /* TODO - What we really should be doing is pulling
4766 * out all the code associated with NO_SLEEP; its never used.
4767 * That is legacy code from mpt fusion driver, ported over.
4768 * I will leave this BUG_ON here for now till its been resolved.
4769 */
4770 BUG_ON(sleep_flag == NO_SLEEP);
4771
4772 /* wait for an active reset in progress to complete */
4773 if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
4774 do {
4775 ssleep(1);
4776 } while (ioc->shost_recovery == 1);
4777 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
4778 __func__));
4779 return ioc->ioc_reset_in_progress_status;
4780 }
4781
4782 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
4783 ioc->shost_recovery = 1;
4784 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
4785
4786 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
4787 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
4788 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
4789 MPT3_DIAG_BUFFER_IS_RELEASED))) {
4790 is_trigger = 1;
4791 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4792 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
4793 is_fault = 1;
4794 }
4795 _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
4796 _wait_for_commands_to_complete(ioc, sleep_flag);
4797 _base_mask_interrupts(ioc);
4798 r = _base_make_ioc_ready(ioc, sleep_flag, type);
4799 if (r)
4800 goto out;
4801 _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
4802
4803 /* If this hard reset is called while port enable is active, then
4804 * there is no reason to call make_ioc_operational
4805 */
4806 if (ioc->is_driver_loading && ioc->port_enable_failed) {
4807 ioc->remove_host = 1;
4808 r = -EFAULT;
4809 goto out;
4810 }
4811 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
4812 if (r)
4813 goto out;
4814 r = _base_make_ioc_operational(ioc, sleep_flag);
4815 if (!r)
4816 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
4817
4818 out:
4819 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
4820 ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
4821
4822 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
4823 ioc->ioc_reset_in_progress_status = r;
4824 ioc->shost_recovery = 0;
4825 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
4826 ioc->ioc_reset_count++;
4827 mutex_unlock(&ioc->reset_in_progress_mutex);
4828
4829 out_unlocked:
4830 if ((r == 0) && is_trigger) {
4831 if (is_fault)
4832 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
4833 else
4834 mpt3sas_trigger_master(ioc,
4835 MASTER_TRIGGER_ADAPTER_RESET);
4836 }
4837 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
4838 __func__));
4839 return r;
4840}