aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/scsi/megaraid/megaraid_sas.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/scsi/megaraid/megaraid_sas.c')
-rw-r--r--drivers/scsi/megaraid/megaraid_sas.c2806
1 files changed, 2806 insertions, 0 deletions
diff --git a/drivers/scsi/megaraid/megaraid_sas.c b/drivers/scsi/megaraid/megaraid_sas.c
new file mode 100644
index 000000000000..c3f637395734
--- /dev/null
+++ b/drivers/scsi/megaraid/megaraid_sas.c
@@ -0,0 +1,2806 @@
1/*
2 *
3 * Linux MegaRAID driver for SAS based RAID controllers
4 *
5 * Copyright (c) 2003-2005 LSI Logic Corporation.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * FILE : megaraid_sas.c
13 * Version : v00.00.02.00-rc4
14 *
15 * Authors:
16 * Sreenivas Bagalkote <Sreenivas.Bagalkote@lsil.com>
17 * Sumant Patro <Sumant.Patro@lsil.com>
18 *
19 * List of supported controllers
20 *
21 * OEM Product Name VID DID SSVID SSID
22 * --- ------------ --- --- ---- ----
23 */
24
25#include <linux/kernel.h>
26#include <linux/types.h>
27#include <linux/pci.h>
28#include <linux/list.h>
29#include <linux/version.h>
30#include <linux/moduleparam.h>
31#include <linux/module.h>
32#include <linux/spinlock.h>
33#include <linux/interrupt.h>
34#include <linux/delay.h>
35#include <linux/uio.h>
36#include <asm/uaccess.h>
37#include <linux/fs.h>
38#include <linux/compat.h>
39
40#include <scsi/scsi.h>
41#include <scsi/scsi_cmnd.h>
42#include <scsi/scsi_device.h>
43#include <scsi/scsi_host.h>
44#include "megaraid_sas.h"
45
46MODULE_LICENSE("GPL");
47MODULE_VERSION(MEGASAS_VERSION);
48MODULE_AUTHOR("sreenivas.bagalkote@lsil.com");
49MODULE_DESCRIPTION("LSI Logic MegaRAID SAS Driver");
50
51/*
52 * PCI ID table for all supported controllers
53 */
54static struct pci_device_id megasas_pci_table[] = {
55
56 {
57 PCI_VENDOR_ID_LSI_LOGIC,
58 PCI_DEVICE_ID_LSI_SAS1064R,
59 PCI_ANY_ID,
60 PCI_ANY_ID,
61 },
62 {
63 PCI_VENDOR_ID_DELL,
64 PCI_DEVICE_ID_DELL_PERC5,
65 PCI_ANY_ID,
66 PCI_ANY_ID,
67 },
68 {0} /* Terminating entry */
69};
70
71MODULE_DEVICE_TABLE(pci, megasas_pci_table);
72
73static int megasas_mgmt_majorno;
74static struct megasas_mgmt_info megasas_mgmt_info;
75static struct fasync_struct *megasas_async_queue;
76static DECLARE_MUTEX(megasas_async_queue_mutex);
77
78/**
79 * megasas_get_cmd - Get a command from the free pool
80 * @instance: Adapter soft state
81 *
82 * Returns a free command from the pool
83 */
84static inline struct megasas_cmd *megasas_get_cmd(struct megasas_instance
85 *instance)
86{
87 unsigned long flags;
88 struct megasas_cmd *cmd = NULL;
89
90 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
91
92 if (!list_empty(&instance->cmd_pool)) {
93 cmd = list_entry((&instance->cmd_pool)->next,
94 struct megasas_cmd, list);
95 list_del_init(&cmd->list);
96 } else {
97 printk(KERN_ERR "megasas: Command pool empty!\n");
98 }
99
100 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
101 return cmd;
102}
103
104/**
105 * megasas_return_cmd - Return a cmd to free command pool
106 * @instance: Adapter soft state
107 * @cmd: Command packet to be returned to free command pool
108 */
109static inline void
110megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
111{
112 unsigned long flags;
113
114 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
115
116 cmd->scmd = NULL;
117 list_add_tail(&cmd->list, &instance->cmd_pool);
118
119 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
120}
121
122/**
123 * megasas_enable_intr - Enables interrupts
124 * @regs: MFI register set
125 */
126static inline void
127megasas_enable_intr(struct megasas_register_set __iomem * regs)
128{
129 writel(1, &(regs)->outbound_intr_mask);
130
131 /* Dummy readl to force pci flush */
132 readl(&regs->outbound_intr_mask);
133}
134
135/**
136 * megasas_disable_intr - Disables interrupts
137 * @regs: MFI register set
138 */
139static inline void
140megasas_disable_intr(struct megasas_register_set __iomem * regs)
141{
142 u32 mask = readl(&regs->outbound_intr_mask) & (~0x00000001);
143 writel(mask, &regs->outbound_intr_mask);
144
145 /* Dummy readl to force pci flush */
146 readl(&regs->outbound_intr_mask);
147}
148
149/**
150 * megasas_issue_polled - Issues a polling command
151 * @instance: Adapter soft state
152 * @cmd: Command packet to be issued
153 *
154 * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
155 */
156static int
157megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
158{
159 int i;
160 u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
161
162 struct megasas_header *frame_hdr = &cmd->frame->hdr;
163
164 frame_hdr->cmd_status = 0xFF;
165 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
166
167 /*
168 * Issue the frame using inbound queue port
169 */
170 writel(cmd->frame_phys_addr >> 3,
171 &instance->reg_set->inbound_queue_port);
172
173 /*
174 * Wait for cmd_status to change
175 */
176 for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
177 rmb();
178 msleep(1);
179 }
180
181 if (frame_hdr->cmd_status == 0xff)
182 return -ETIME;
183
184 return 0;
185}
186
187/**
188 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
189 * @instance: Adapter soft state
190 * @cmd: Command to be issued
191 *
192 * This function waits on an event for the command to be returned from ISR.
193 * Used to issue ioctl commands.
194 */
195static int
196megasas_issue_blocked_cmd(struct megasas_instance *instance,
197 struct megasas_cmd *cmd)
198{
199 cmd->cmd_status = ENODATA;
200
201 writel(cmd->frame_phys_addr >> 3,
202 &instance->reg_set->inbound_queue_port);
203
204 wait_event(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA));
205
206 return 0;
207}
208
209/**
210 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
211 * @instance: Adapter soft state
212 * @cmd_to_abort: Previously issued cmd to be aborted
213 *
214 * MFI firmware can abort previously issued AEN comamnd (automatic event
215 * notification). The megasas_issue_blocked_abort_cmd() issues such abort
216 * cmd and blocks till it is completed.
217 */
218static int
219megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
220 struct megasas_cmd *cmd_to_abort)
221{
222 struct megasas_cmd *cmd;
223 struct megasas_abort_frame *abort_fr;
224
225 cmd = megasas_get_cmd(instance);
226
227 if (!cmd)
228 return -1;
229
230 abort_fr = &cmd->frame->abort;
231
232 /*
233 * Prepare and issue the abort frame
234 */
235 abort_fr->cmd = MFI_CMD_ABORT;
236 abort_fr->cmd_status = 0xFF;
237 abort_fr->flags = 0;
238 abort_fr->abort_context = cmd_to_abort->index;
239 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
240 abort_fr->abort_mfi_phys_addr_hi = 0;
241
242 cmd->sync_cmd = 1;
243 cmd->cmd_status = 0xFF;
244
245 writel(cmd->frame_phys_addr >> 3,
246 &instance->reg_set->inbound_queue_port);
247
248 /*
249 * Wait for this cmd to complete
250 */
251 wait_event(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF));
252
253 megasas_return_cmd(instance, cmd);
254 return 0;
255}
256
257/**
258 * megasas_make_sgl32 - Prepares 32-bit SGL
259 * @instance: Adapter soft state
260 * @scp: SCSI command from the mid-layer
261 * @mfi_sgl: SGL to be filled in
262 *
263 * If successful, this function returns the number of SG elements. Otherwise,
264 * it returnes -1.
265 */
266static inline int
267megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
268 union megasas_sgl *mfi_sgl)
269{
270 int i;
271 int sge_count;
272 struct scatterlist *os_sgl;
273
274 /*
275 * Return 0 if there is no data transfer
276 */
277 if (!scp->request_buffer || !scp->request_bufflen)
278 return 0;
279
280 if (!scp->use_sg) {
281 mfi_sgl->sge32[0].phys_addr = pci_map_single(instance->pdev,
282 scp->
283 request_buffer,
284 scp->
285 request_bufflen,
286 scp->
287 sc_data_direction);
288 mfi_sgl->sge32[0].length = scp->request_bufflen;
289
290 return 1;
291 }
292
293 os_sgl = (struct scatterlist *)scp->request_buffer;
294 sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
295 scp->sc_data_direction);
296
297 for (i = 0; i < sge_count; i++, os_sgl++) {
298 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
299 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
300 }
301
302 return sge_count;
303}
304
305/**
306 * megasas_make_sgl64 - Prepares 64-bit SGL
307 * @instance: Adapter soft state
308 * @scp: SCSI command from the mid-layer
309 * @mfi_sgl: SGL to be filled in
310 *
311 * If successful, this function returns the number of SG elements. Otherwise,
312 * it returnes -1.
313 */
314static inline int
315megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
316 union megasas_sgl *mfi_sgl)
317{
318 int i;
319 int sge_count;
320 struct scatterlist *os_sgl;
321
322 /*
323 * Return 0 if there is no data transfer
324 */
325 if (!scp->request_buffer || !scp->request_bufflen)
326 return 0;
327
328 if (!scp->use_sg) {
329 mfi_sgl->sge64[0].phys_addr = pci_map_single(instance->pdev,
330 scp->
331 request_buffer,
332 scp->
333 request_bufflen,
334 scp->
335 sc_data_direction);
336
337 mfi_sgl->sge64[0].length = scp->request_bufflen;
338
339 return 1;
340 }
341
342 os_sgl = (struct scatterlist *)scp->request_buffer;
343 sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
344 scp->sc_data_direction);
345
346 for (i = 0; i < sge_count; i++, os_sgl++) {
347 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
348 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
349 }
350
351 return sge_count;
352}
353
354/**
355 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
356 * @instance: Adapter soft state
357 * @scp: SCSI command
358 * @cmd: Command to be prepared in
359 *
360 * This function prepares CDB commands. These are typcially pass-through
361 * commands to the devices.
362 */
363static inline int
364megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
365 struct megasas_cmd *cmd)
366{
367 u32 sge_sz;
368 int sge_bytes;
369 u32 is_logical;
370 u32 device_id;
371 u16 flags = 0;
372 struct megasas_pthru_frame *pthru;
373
374 is_logical = MEGASAS_IS_LOGICAL(scp);
375 device_id = MEGASAS_DEV_INDEX(instance, scp);
376 pthru = (struct megasas_pthru_frame *)cmd->frame;
377
378 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
379 flags = MFI_FRAME_DIR_WRITE;
380 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
381 flags = MFI_FRAME_DIR_READ;
382 else if (scp->sc_data_direction == PCI_DMA_NONE)
383 flags = MFI_FRAME_DIR_NONE;
384
385 /*
386 * Prepare the DCDB frame
387 */
388 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
389 pthru->cmd_status = 0x0;
390 pthru->scsi_status = 0x0;
391 pthru->target_id = device_id;
392 pthru->lun = scp->device->lun;
393 pthru->cdb_len = scp->cmd_len;
394 pthru->timeout = 0;
395 pthru->flags = flags;
396 pthru->data_xfer_len = scp->request_bufflen;
397
398 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
399
400 /*
401 * Construct SGL
402 */
403 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
404 sizeof(struct megasas_sge32);
405
406 if (IS_DMA64) {
407 pthru->flags |= MFI_FRAME_SGL64;
408 pthru->sge_count = megasas_make_sgl64(instance, scp,
409 &pthru->sgl);
410 } else
411 pthru->sge_count = megasas_make_sgl32(instance, scp,
412 &pthru->sgl);
413
414 /*
415 * Sense info specific
416 */
417 pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
418 pthru->sense_buf_phys_addr_hi = 0;
419 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
420
421 sge_bytes = sge_sz * pthru->sge_count;
422
423 /*
424 * Compute the total number of frames this command consumes. FW uses
425 * this number to pull sufficient number of frames from host memory.
426 */
427 cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
428 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
429
430 if (cmd->frame_count > 7)
431 cmd->frame_count = 8;
432
433 return cmd->frame_count;
434}
435
436/**
437 * megasas_build_ldio - Prepares IOs to logical devices
438 * @instance: Adapter soft state
439 * @scp: SCSI command
440 * @cmd: Command to to be prepared
441 *
442 * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
443 */
444static inline int
445megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
446 struct megasas_cmd *cmd)
447{
448 u32 sge_sz;
449 int sge_bytes;
450 u32 device_id;
451 u8 sc = scp->cmnd[0];
452 u16 flags = 0;
453 struct megasas_io_frame *ldio;
454
455 device_id = MEGASAS_DEV_INDEX(instance, scp);
456 ldio = (struct megasas_io_frame *)cmd->frame;
457
458 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
459 flags = MFI_FRAME_DIR_WRITE;
460 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
461 flags = MFI_FRAME_DIR_READ;
462
463 /*
464 * Preare the Logical IO frame: 2nd bit is zero for all read cmds
465 */
466 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
467 ldio->cmd_status = 0x0;
468 ldio->scsi_status = 0x0;
469 ldio->target_id = device_id;
470 ldio->timeout = 0;
471 ldio->reserved_0 = 0;
472 ldio->pad_0 = 0;
473 ldio->flags = flags;
474 ldio->start_lba_hi = 0;
475 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
476
477 /*
478 * 6-byte READ(0x08) or WRITE(0x0A) cdb
479 */
480 if (scp->cmd_len == 6) {
481 ldio->lba_count = (u32) scp->cmnd[4];
482 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
483 ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
484
485 ldio->start_lba_lo &= 0x1FFFFF;
486 }
487
488 /*
489 * 10-byte READ(0x28) or WRITE(0x2A) cdb
490 */
491 else if (scp->cmd_len == 10) {
492 ldio->lba_count = (u32) scp->cmnd[8] |
493 ((u32) scp->cmnd[7] << 8);
494 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
495 ((u32) scp->cmnd[3] << 16) |
496 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
497 }
498
499 /*
500 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
501 */
502 else if (scp->cmd_len == 12) {
503 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
504 ((u32) scp->cmnd[7] << 16) |
505 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
506
507 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
508 ((u32) scp->cmnd[3] << 16) |
509 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
510 }
511
512 /*
513 * 16-byte READ(0x88) or WRITE(0x8A) cdb
514 */
515 else if (scp->cmd_len == 16) {
516 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
517 ((u32) scp->cmnd[11] << 16) |
518 ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
519
520 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
521 ((u32) scp->cmnd[7] << 16) |
522 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
523
524 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
525 ((u32) scp->cmnd[3] << 16) |
526 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
527
528 }
529
530 /*
531 * Construct SGL
532 */
533 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
534 sizeof(struct megasas_sge32);
535
536 if (IS_DMA64) {
537 ldio->flags |= MFI_FRAME_SGL64;
538 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
539 } else
540 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
541
542 /*
543 * Sense info specific
544 */
545 ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
546 ldio->sense_buf_phys_addr_hi = 0;
547 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
548
549 sge_bytes = sge_sz * ldio->sge_count;
550
551 cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
552 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
553
554 if (cmd->frame_count > 7)
555 cmd->frame_count = 8;
556
557 return cmd->frame_count;
558}
559
560/**
561 * megasas_build_cmd - Prepares a command packet
562 * @instance: Adapter soft state
563 * @scp: SCSI command
564 * @frame_count: [OUT] Number of frames used to prepare this command
565 */
566static inline struct megasas_cmd *megasas_build_cmd(struct megasas_instance
567 *instance,
568 struct scsi_cmnd *scp,
569 int *frame_count)
570{
571 u32 logical_cmd;
572 struct megasas_cmd *cmd;
573
574 /*
575 * Find out if this is logical or physical drive command.
576 */
577 logical_cmd = MEGASAS_IS_LOGICAL(scp);
578
579 /*
580 * Logical drive command
581 */
582 if (logical_cmd) {
583
584 if (scp->device->id >= MEGASAS_MAX_LD) {
585 scp->result = DID_BAD_TARGET << 16;
586 return NULL;
587 }
588
589 switch (scp->cmnd[0]) {
590
591 case READ_10:
592 case WRITE_10:
593 case READ_12:
594 case WRITE_12:
595 case READ_6:
596 case WRITE_6:
597 case READ_16:
598 case WRITE_16:
599 /*
600 * Fail for LUN > 0
601 */
602 if (scp->device->lun) {
603 scp->result = DID_BAD_TARGET << 16;
604 return NULL;
605 }
606
607 cmd = megasas_get_cmd(instance);
608
609 if (!cmd) {
610 scp->result = DID_IMM_RETRY << 16;
611 return NULL;
612 }
613
614 *frame_count = megasas_build_ldio(instance, scp, cmd);
615
616 if (!(*frame_count)) {
617 megasas_return_cmd(instance, cmd);
618 return NULL;
619 }
620
621 return cmd;
622
623 default:
624 /*
625 * Fail for LUN > 0
626 */
627 if (scp->device->lun) {
628 scp->result = DID_BAD_TARGET << 16;
629 return NULL;
630 }
631
632 cmd = megasas_get_cmd(instance);
633
634 if (!cmd) {
635 scp->result = DID_IMM_RETRY << 16;
636 return NULL;
637 }
638
639 *frame_count = megasas_build_dcdb(instance, scp, cmd);
640
641 if (!(*frame_count)) {
642 megasas_return_cmd(instance, cmd);
643 return NULL;
644 }
645
646 return cmd;
647 }
648 } else {
649 cmd = megasas_get_cmd(instance);
650
651 if (!cmd) {
652 scp->result = DID_IMM_RETRY << 16;
653 return NULL;
654 }
655
656 *frame_count = megasas_build_dcdb(instance, scp, cmd);
657
658 if (!(*frame_count)) {
659 megasas_return_cmd(instance, cmd);
660 return NULL;
661 }
662
663 return cmd;
664 }
665
666 return NULL;
667}
668
669/**
670 * megasas_queue_command - Queue entry point
671 * @scmd: SCSI command to be queued
672 * @done: Callback entry point
673 */
674static int
675megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
676{
677 u32 frame_count;
678 unsigned long flags;
679 struct megasas_cmd *cmd;
680 struct megasas_instance *instance;
681
682 instance = (struct megasas_instance *)
683 scmd->device->host->hostdata;
684 scmd->scsi_done = done;
685 scmd->result = 0;
686
687 cmd = megasas_build_cmd(instance, scmd, &frame_count);
688
689 if (!cmd) {
690 done(scmd);
691 return 0;
692 }
693
694 cmd->scmd = scmd;
695 scmd->SCp.ptr = (char *)cmd;
696 scmd->SCp.sent_command = jiffies;
697
698 /*
699 * Issue the command to the FW
700 */
701 spin_lock_irqsave(&instance->instance_lock, flags);
702 instance->fw_outstanding++;
703 spin_unlock_irqrestore(&instance->instance_lock, flags);
704
705 writel(((cmd->frame_phys_addr >> 3) | (cmd->frame_count - 1)),
706 &instance->reg_set->inbound_queue_port);
707
708 return 0;
709}
710
711/**
712 * megasas_wait_for_outstanding - Wait for all outstanding cmds
713 * @instance: Adapter soft state
714 *
715 * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
716 * complete all its outstanding commands. Returns error if one or more IOs
717 * are pending after this time period. It also marks the controller dead.
718 */
719static int megasas_wait_for_outstanding(struct megasas_instance *instance)
720{
721 int i;
722 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
723
724 for (i = 0; i < wait_time; i++) {
725
726 if (!instance->fw_outstanding)
727 break;
728
729 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
730 printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
731 "commands to complete\n", i,
732 instance->fw_outstanding);
733 }
734
735 msleep(1000);
736 }
737
738 if (instance->fw_outstanding) {
739 instance->hw_crit_error = 1;
740 return FAILED;
741 }
742
743 return SUCCESS;
744}
745
746/**
747 * megasas_generic_reset - Generic reset routine
748 * @scmd: Mid-layer SCSI command
749 *
750 * This routine implements a generic reset handler for device, bus and host
751 * reset requests. Device, bus and host specific reset handlers can use this
752 * function after they do their specific tasks.
753 */
754static int megasas_generic_reset(struct scsi_cmnd *scmd)
755{
756 int ret_val;
757 struct megasas_instance *instance;
758
759 instance = (struct megasas_instance *)scmd->device->host->hostdata;
760
761 printk(KERN_NOTICE "megasas: RESET -%ld cmd=%x <c=%d t=%d l=%d>\n",
762 scmd->serial_number, scmd->cmnd[0], scmd->device->channel,
763 scmd->device->id, scmd->device->lun);
764
765 if (instance->hw_crit_error) {
766 printk(KERN_ERR "megasas: cannot recover from previous reset "
767 "failures\n");
768 return FAILED;
769 }
770
771 spin_unlock(scmd->device->host->host_lock);
772
773 ret_val = megasas_wait_for_outstanding(instance);
774
775 if (ret_val == SUCCESS)
776 printk(KERN_NOTICE "megasas: reset successful \n");
777 else
778 printk(KERN_ERR "megasas: failed to do reset\n");
779
780 spin_lock(scmd->device->host->host_lock);
781
782 return ret_val;
783}
784
785static enum scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
786{
787 unsigned long seconds;
788
789 if (scmd->SCp.ptr) {
790 seconds = (jiffies - scmd->SCp.sent_command) / HZ;
791
792 if (seconds < 90) {
793 return EH_RESET_TIMER;
794 } else {
795 return EH_NOT_HANDLED;
796 }
797 }
798
799 return EH_HANDLED;
800}
801
802/**
803 * megasas_reset_device - Device reset handler entry point
804 */
805static int megasas_reset_device(struct scsi_cmnd *scmd)
806{
807 int ret;
808
809 /*
810 * First wait for all commands to complete
811 */
812 ret = megasas_generic_reset(scmd);
813
814 return ret;
815}
816
817/**
818 * megasas_reset_bus_host - Bus & host reset handler entry point
819 */
820static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
821{
822 int ret;
823
824 /*
825 * Frist wait for all commands to complete
826 */
827 ret = megasas_generic_reset(scmd);
828
829 return ret;
830}
831
832/**
833 * megasas_service_aen - Processes an event notification
834 * @instance: Adapter soft state
835 * @cmd: AEN command completed by the ISR
836 *
837 * For AEN, driver sends a command down to FW that is held by the FW till an
838 * event occurs. When an event of interest occurs, FW completes the command
839 * that it was previously holding.
840 *
841 * This routines sends SIGIO signal to processes that have registered with the
842 * driver for AEN.
843 */
844static void
845megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
846{
847 /*
848 * Don't signal app if it is just an aborted previously registered aen
849 */
850 if (!cmd->abort_aen)
851 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
852 else
853 cmd->abort_aen = 0;
854
855 instance->aen_cmd = NULL;
856 megasas_return_cmd(instance, cmd);
857}
858
859/*
860 * Scsi host template for megaraid_sas driver
861 */
862static struct scsi_host_template megasas_template = {
863
864 .module = THIS_MODULE,
865 .name = "LSI Logic SAS based MegaRAID driver",
866 .proc_name = "megaraid_sas",
867 .queuecommand = megasas_queue_command,
868 .eh_device_reset_handler = megasas_reset_device,
869 .eh_bus_reset_handler = megasas_reset_bus_host,
870 .eh_host_reset_handler = megasas_reset_bus_host,
871 .eh_timed_out = megasas_reset_timer,
872 .use_clustering = ENABLE_CLUSTERING,
873};
874
875/**
876 * megasas_complete_int_cmd - Completes an internal command
877 * @instance: Adapter soft state
878 * @cmd: Command to be completed
879 *
880 * The megasas_issue_blocked_cmd() function waits for a command to complete
881 * after it issues a command. This function wakes up that waiting routine by
882 * calling wake_up() on the wait queue.
883 */
884static void
885megasas_complete_int_cmd(struct megasas_instance *instance,
886 struct megasas_cmd *cmd)
887{
888 cmd->cmd_status = cmd->frame->io.cmd_status;
889
890 if (cmd->cmd_status == ENODATA) {
891 cmd->cmd_status = 0;
892 }
893 wake_up(&instance->int_cmd_wait_q);
894}
895
896/**
897 * megasas_complete_abort - Completes aborting a command
898 * @instance: Adapter soft state
899 * @cmd: Cmd that was issued to abort another cmd
900 *
901 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
902 * after it issues an abort on a previously issued command. This function
903 * wakes up all functions waiting on the same wait queue.
904 */
905static void
906megasas_complete_abort(struct megasas_instance *instance,
907 struct megasas_cmd *cmd)
908{
909 if (cmd->sync_cmd) {
910 cmd->sync_cmd = 0;
911 cmd->cmd_status = 0;
912 wake_up(&instance->abort_cmd_wait_q);
913 }
914
915 return;
916}
917
918/**
919 * megasas_unmap_sgbuf - Unmap SG buffers
920 * @instance: Adapter soft state
921 * @cmd: Completed command
922 */
923static inline void
924megasas_unmap_sgbuf(struct megasas_instance *instance, struct megasas_cmd *cmd)
925{
926 dma_addr_t buf_h;
927 u8 opcode;
928
929 if (cmd->scmd->use_sg) {
930 pci_unmap_sg(instance->pdev, cmd->scmd->request_buffer,
931 cmd->scmd->use_sg, cmd->scmd->sc_data_direction);
932 return;
933 }
934
935 if (!cmd->scmd->request_bufflen)
936 return;
937
938 opcode = cmd->frame->hdr.cmd;
939
940 if ((opcode == MFI_CMD_LD_READ) || (opcode == MFI_CMD_LD_WRITE)) {
941 if (IS_DMA64)
942 buf_h = cmd->frame->io.sgl.sge64[0].phys_addr;
943 else
944 buf_h = cmd->frame->io.sgl.sge32[0].phys_addr;
945 } else {
946 if (IS_DMA64)
947 buf_h = cmd->frame->pthru.sgl.sge64[0].phys_addr;
948 else
949 buf_h = cmd->frame->pthru.sgl.sge32[0].phys_addr;
950 }
951
952 pci_unmap_single(instance->pdev, buf_h, cmd->scmd->request_bufflen,
953 cmd->scmd->sc_data_direction);
954 return;
955}
956
957/**
958 * megasas_complete_cmd - Completes a command
959 * @instance: Adapter soft state
960 * @cmd: Command to be completed
961 * @alt_status: If non-zero, use this value as status to
962 * SCSI mid-layer instead of the value returned
963 * by the FW. This should be used if caller wants
964 * an alternate status (as in the case of aborted
965 * commands)
966 */
967static inline void
968megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
969 u8 alt_status)
970{
971 int exception = 0;
972 struct megasas_header *hdr = &cmd->frame->hdr;
973 unsigned long flags;
974
975 if (cmd->scmd) {
976 cmd->scmd->SCp.ptr = (char *)0;
977 }
978
979 switch (hdr->cmd) {
980
981 case MFI_CMD_PD_SCSI_IO:
982 case MFI_CMD_LD_SCSI_IO:
983
984 /*
985 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
986 * issued either through an IO path or an IOCTL path. If it
987 * was via IOCTL, we will send it to internal completion.
988 */
989 if (cmd->sync_cmd) {
990 cmd->sync_cmd = 0;
991 megasas_complete_int_cmd(instance, cmd);
992 break;
993 }
994
995 /*
996 * Don't export physical disk devices to mid-layer.
997 */
998 if (!MEGASAS_IS_LOGICAL(cmd->scmd) &&
999 (hdr->cmd_status == MFI_STAT_OK) &&
1000 (cmd->scmd->cmnd[0] == INQUIRY)) {
1001
1002 if (((*(u8 *) cmd->scmd->request_buffer) & 0x1F) ==
1003 TYPE_DISK) {
1004 cmd->scmd->result = DID_BAD_TARGET << 16;
1005 exception = 1;
1006 }
1007 }
1008
1009 case MFI_CMD_LD_READ:
1010 case MFI_CMD_LD_WRITE:
1011
1012 if (alt_status) {
1013 cmd->scmd->result = alt_status << 16;
1014 exception = 1;
1015 }
1016
1017 if (exception) {
1018
1019 spin_lock_irqsave(&instance->instance_lock, flags);
1020 instance->fw_outstanding--;
1021 spin_unlock_irqrestore(&instance->instance_lock, flags);
1022
1023 megasas_unmap_sgbuf(instance, cmd);
1024 cmd->scmd->scsi_done(cmd->scmd);
1025 megasas_return_cmd(instance, cmd);
1026
1027 break;
1028 }
1029
1030 switch (hdr->cmd_status) {
1031
1032 case MFI_STAT_OK:
1033 cmd->scmd->result = DID_OK << 16;
1034 break;
1035
1036 case MFI_STAT_SCSI_IO_FAILED:
1037 case MFI_STAT_LD_INIT_IN_PROGRESS:
1038 cmd->scmd->result =
1039 (DID_ERROR << 16) | hdr->scsi_status;
1040 break;
1041
1042 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1043
1044 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1045
1046 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1047 memset(cmd->scmd->sense_buffer, 0,
1048 SCSI_SENSE_BUFFERSIZE);
1049 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1050 hdr->sense_len);
1051
1052 cmd->scmd->result |= DRIVER_SENSE << 24;
1053 }
1054
1055 break;
1056
1057 case MFI_STAT_LD_OFFLINE:
1058 case MFI_STAT_DEVICE_NOT_FOUND:
1059 cmd->scmd->result = DID_BAD_TARGET << 16;
1060 break;
1061
1062 default:
1063 printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1064 hdr->cmd_status);
1065 cmd->scmd->result = DID_ERROR << 16;
1066 break;
1067 }
1068
1069 spin_lock_irqsave(&instance->instance_lock, flags);
1070 instance->fw_outstanding--;
1071 spin_unlock_irqrestore(&instance->instance_lock, flags);
1072
1073 megasas_unmap_sgbuf(instance, cmd);
1074 cmd->scmd->scsi_done(cmd->scmd);
1075 megasas_return_cmd(instance, cmd);
1076
1077 break;
1078
1079 case MFI_CMD_SMP:
1080 case MFI_CMD_STP:
1081 case MFI_CMD_DCMD:
1082
1083 /*
1084 * See if got an event notification
1085 */
1086 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1087 megasas_service_aen(instance, cmd);
1088 else
1089 megasas_complete_int_cmd(instance, cmd);
1090
1091 break;
1092
1093 case MFI_CMD_ABORT:
1094 /*
1095 * Cmd issued to abort another cmd returned
1096 */
1097 megasas_complete_abort(instance, cmd);
1098 break;
1099
1100 default:
1101 printk("megasas: Unknown command completed! [0x%X]\n",
1102 hdr->cmd);
1103 break;
1104 }
1105}
1106
1107/**
1108 * megasas_deplete_reply_queue - Processes all completed commands
1109 * @instance: Adapter soft state
1110 * @alt_status: Alternate status to be returned to
1111 * SCSI mid-layer instead of the status
1112 * returned by the FW
1113 */
1114static inline int
1115megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1116{
1117 u32 status;
1118 u32 producer;
1119 u32 consumer;
1120 u32 context;
1121 struct megasas_cmd *cmd;
1122
1123 /*
1124 * Check if it is our interrupt
1125 */
1126 status = readl(&instance->reg_set->outbound_intr_status);
1127
1128 if (!(status & MFI_OB_INTR_STATUS_MASK)) {
1129 return IRQ_NONE;
1130 }
1131
1132 /*
1133 * Clear the interrupt by writing back the same value
1134 */
1135 writel(status, &instance->reg_set->outbound_intr_status);
1136
1137 producer = *instance->producer;
1138 consumer = *instance->consumer;
1139
1140 while (consumer != producer) {
1141 context = instance->reply_queue[consumer];
1142
1143 cmd = instance->cmd_list[context];
1144
1145 megasas_complete_cmd(instance, cmd, alt_status);
1146
1147 consumer++;
1148 if (consumer == (instance->max_fw_cmds + 1)) {
1149 consumer = 0;
1150 }
1151 }
1152
1153 *instance->consumer = producer;
1154
1155 return IRQ_HANDLED;
1156}
1157
1158/**
1159 * megasas_isr - isr entry point
1160 */
1161static irqreturn_t megasas_isr(int irq, void *devp, struct pt_regs *regs)
1162{
1163 return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1164 DID_OK);
1165}
1166
1167/**
1168 * megasas_transition_to_ready - Move the FW to READY state
1169 * @reg_set: MFI register set
1170 *
1171 * During the initialization, FW passes can potentially be in any one of
1172 * several possible states. If the FW in operational, waiting-for-handshake
1173 * states, driver must take steps to bring it to ready state. Otherwise, it
1174 * has to wait for the ready state.
1175 */
1176static int
1177megasas_transition_to_ready(struct megasas_register_set __iomem * reg_set)
1178{
1179 int i;
1180 u8 max_wait;
1181 u32 fw_state;
1182 u32 cur_state;
1183
1184 fw_state = readl(&reg_set->outbound_msg_0) & MFI_STATE_MASK;
1185
1186 while (fw_state != MFI_STATE_READY) {
1187
1188 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1189 " state\n");
1190 switch (fw_state) {
1191
1192 case MFI_STATE_FAULT:
1193
1194 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1195 return -ENODEV;
1196
1197 case MFI_STATE_WAIT_HANDSHAKE:
1198 /*
1199 * Set the CLR bit in inbound doorbell
1200 */
1201 writel(MFI_INIT_CLEAR_HANDSHAKE,
1202 &reg_set->inbound_doorbell);
1203
1204 max_wait = 2;
1205 cur_state = MFI_STATE_WAIT_HANDSHAKE;
1206 break;
1207
1208 case MFI_STATE_OPERATIONAL:
1209 /*
1210 * Bring it to READY state; assuming max wait 2 secs
1211 */
1212 megasas_disable_intr(reg_set);
1213 writel(MFI_INIT_READY, &reg_set->inbound_doorbell);
1214
1215 max_wait = 10;
1216 cur_state = MFI_STATE_OPERATIONAL;
1217 break;
1218
1219 case MFI_STATE_UNDEFINED:
1220 /*
1221 * This state should not last for more than 2 seconds
1222 */
1223 max_wait = 2;
1224 cur_state = MFI_STATE_UNDEFINED;
1225 break;
1226
1227 case MFI_STATE_BB_INIT:
1228 max_wait = 2;
1229 cur_state = MFI_STATE_BB_INIT;
1230 break;
1231
1232 case MFI_STATE_FW_INIT:
1233 max_wait = 20;
1234 cur_state = MFI_STATE_FW_INIT;
1235 break;
1236
1237 case MFI_STATE_FW_INIT_2:
1238 max_wait = 20;
1239 cur_state = MFI_STATE_FW_INIT_2;
1240 break;
1241
1242 case MFI_STATE_DEVICE_SCAN:
1243 max_wait = 20;
1244 cur_state = MFI_STATE_DEVICE_SCAN;
1245 break;
1246
1247 case MFI_STATE_FLUSH_CACHE:
1248 max_wait = 20;
1249 cur_state = MFI_STATE_FLUSH_CACHE;
1250 break;
1251
1252 default:
1253 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1254 fw_state);
1255 return -ENODEV;
1256 }
1257
1258 /*
1259 * The cur_state should not last for more than max_wait secs
1260 */
1261 for (i = 0; i < (max_wait * 1000); i++) {
1262 fw_state = MFI_STATE_MASK &
1263 readl(&reg_set->outbound_msg_0);
1264
1265 if (fw_state == cur_state) {
1266 msleep(1);
1267 } else
1268 break;
1269 }
1270
1271 /*
1272 * Return error if fw_state hasn't changed after max_wait
1273 */
1274 if (fw_state == cur_state) {
1275 printk(KERN_DEBUG "FW state [%d] hasn't changed "
1276 "in %d secs\n", fw_state, max_wait);
1277 return -ENODEV;
1278 }
1279 };
1280
1281 return 0;
1282}
1283
1284/**
1285 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
1286 * @instance: Adapter soft state
1287 */
1288static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1289{
1290 int i;
1291 u32 max_cmd = instance->max_fw_cmds;
1292 struct megasas_cmd *cmd;
1293
1294 if (!instance->frame_dma_pool)
1295 return;
1296
1297 /*
1298 * Return all frames to pool
1299 */
1300 for (i = 0; i < max_cmd; i++) {
1301
1302 cmd = instance->cmd_list[i];
1303
1304 if (cmd->frame)
1305 pci_pool_free(instance->frame_dma_pool, cmd->frame,
1306 cmd->frame_phys_addr);
1307
1308 if (cmd->sense)
1309 pci_pool_free(instance->sense_dma_pool, cmd->frame,
1310 cmd->sense_phys_addr);
1311 }
1312
1313 /*
1314 * Now destroy the pool itself
1315 */
1316 pci_pool_destroy(instance->frame_dma_pool);
1317 pci_pool_destroy(instance->sense_dma_pool);
1318
1319 instance->frame_dma_pool = NULL;
1320 instance->sense_dma_pool = NULL;
1321}
1322
1323/**
1324 * megasas_create_frame_pool - Creates DMA pool for cmd frames
1325 * @instance: Adapter soft state
1326 *
1327 * Each command packet has an embedded DMA memory buffer that is used for
1328 * filling MFI frame and the SG list that immediately follows the frame. This
1329 * function creates those DMA memory buffers for each command packet by using
1330 * PCI pool facility.
1331 */
1332static int megasas_create_frame_pool(struct megasas_instance *instance)
1333{
1334 int i;
1335 u32 max_cmd;
1336 u32 sge_sz;
1337 u32 sgl_sz;
1338 u32 total_sz;
1339 u32 frame_count;
1340 struct megasas_cmd *cmd;
1341
1342 max_cmd = instance->max_fw_cmds;
1343
1344 /*
1345 * Size of our frame is 64 bytes for MFI frame, followed by max SG
1346 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1347 */
1348 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1349 sizeof(struct megasas_sge32);
1350
1351 /*
1352 * Calculated the number of 64byte frames required for SGL
1353 */
1354 sgl_sz = sge_sz * instance->max_num_sge;
1355 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1356
1357 /*
1358 * We need one extra frame for the MFI command
1359 */
1360 frame_count++;
1361
1362 total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1363 /*
1364 * Use DMA pool facility provided by PCI layer
1365 */
1366 instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1367 instance->pdev, total_sz, 64,
1368 0);
1369
1370 if (!instance->frame_dma_pool) {
1371 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1372 return -ENOMEM;
1373 }
1374
1375 instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1376 instance->pdev, 128, 4, 0);
1377
1378 if (!instance->sense_dma_pool) {
1379 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1380
1381 pci_pool_destroy(instance->frame_dma_pool);
1382 instance->frame_dma_pool = NULL;
1383
1384 return -ENOMEM;
1385 }
1386
1387 /*
1388 * Allocate and attach a frame to each of the commands in cmd_list.
1389 * By making cmd->index as the context instead of the &cmd, we can
1390 * always use 32bit context regardless of the architecture
1391 */
1392 for (i = 0; i < max_cmd; i++) {
1393
1394 cmd = instance->cmd_list[i];
1395
1396 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1397 GFP_KERNEL, &cmd->frame_phys_addr);
1398
1399 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1400 GFP_KERNEL, &cmd->sense_phys_addr);
1401
1402 /*
1403 * megasas_teardown_frame_pool() takes care of freeing
1404 * whatever has been allocated
1405 */
1406 if (!cmd->frame || !cmd->sense) {
1407 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1408 megasas_teardown_frame_pool(instance);
1409 return -ENOMEM;
1410 }
1411
1412 cmd->frame->io.context = cmd->index;
1413 }
1414
1415 return 0;
1416}
1417
1418/**
1419 * megasas_free_cmds - Free all the cmds in the free cmd pool
1420 * @instance: Adapter soft state
1421 */
1422static void megasas_free_cmds(struct megasas_instance *instance)
1423{
1424 int i;
1425 /* First free the MFI frame pool */
1426 megasas_teardown_frame_pool(instance);
1427
1428 /* Free all the commands in the cmd_list */
1429 for (i = 0; i < instance->max_fw_cmds; i++)
1430 kfree(instance->cmd_list[i]);
1431
1432 /* Free the cmd_list buffer itself */
1433 kfree(instance->cmd_list);
1434 instance->cmd_list = NULL;
1435
1436 INIT_LIST_HEAD(&instance->cmd_pool);
1437}
1438
1439/**
1440 * megasas_alloc_cmds - Allocates the command packets
1441 * @instance: Adapter soft state
1442 *
1443 * Each command that is issued to the FW, whether IO commands from the OS or
1444 * internal commands like IOCTLs, are wrapped in local data structure called
1445 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1446 * the FW.
1447 *
1448 * Each frame has a 32-bit field called context (tag). This context is used
1449 * to get back the megasas_cmd from the frame when a frame gets completed in
1450 * the ISR. Typically the address of the megasas_cmd itself would be used as
1451 * the context. But we wanted to keep the differences between 32 and 64 bit
1452 * systems to the mininum. We always use 32 bit integers for the context. In
1453 * this driver, the 32 bit values are the indices into an array cmd_list.
1454 * This array is used only to look up the megasas_cmd given the context. The
1455 * free commands themselves are maintained in a linked list called cmd_pool.
1456 */
1457static int megasas_alloc_cmds(struct megasas_instance *instance)
1458{
1459 int i;
1460 int j;
1461 u32 max_cmd;
1462 struct megasas_cmd *cmd;
1463
1464 max_cmd = instance->max_fw_cmds;
1465
1466 /*
1467 * instance->cmd_list is an array of struct megasas_cmd pointers.
1468 * Allocate the dynamic array first and then allocate individual
1469 * commands.
1470 */
1471 instance->cmd_list = kmalloc(sizeof(struct megasas_cmd *) * max_cmd,
1472 GFP_KERNEL);
1473
1474 if (!instance->cmd_list) {
1475 printk(KERN_DEBUG "megasas: out of memory\n");
1476 return -ENOMEM;
1477 }
1478
1479 memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) * max_cmd);
1480
1481 for (i = 0; i < max_cmd; i++) {
1482 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1483 GFP_KERNEL);
1484
1485 if (!instance->cmd_list[i]) {
1486
1487 for (j = 0; j < i; j++)
1488 kfree(instance->cmd_list[j]);
1489
1490 kfree(instance->cmd_list);
1491 instance->cmd_list = NULL;
1492
1493 return -ENOMEM;
1494 }
1495 }
1496
1497 /*
1498 * Add all the commands to command pool (instance->cmd_pool)
1499 */
1500 for (i = 0; i < max_cmd; i++) {
1501 cmd = instance->cmd_list[i];
1502 memset(cmd, 0, sizeof(struct megasas_cmd));
1503 cmd->index = i;
1504 cmd->instance = instance;
1505
1506 list_add_tail(&cmd->list, &instance->cmd_pool);
1507 }
1508
1509 /*
1510 * Create a frame pool and assign one frame to each cmd
1511 */
1512 if (megasas_create_frame_pool(instance)) {
1513 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1514 megasas_free_cmds(instance);
1515 }
1516
1517 return 0;
1518}
1519
1520/**
1521 * megasas_get_controller_info - Returns FW's controller structure
1522 * @instance: Adapter soft state
1523 * @ctrl_info: Controller information structure
1524 *
1525 * Issues an internal command (DCMD) to get the FW's controller structure.
1526 * This information is mainly used to find out the maximum IO transfer per
1527 * command supported by the FW.
1528 */
1529static int
1530megasas_get_ctrl_info(struct megasas_instance *instance,
1531 struct megasas_ctrl_info *ctrl_info)
1532{
1533 int ret = 0;
1534 struct megasas_cmd *cmd;
1535 struct megasas_dcmd_frame *dcmd;
1536 struct megasas_ctrl_info *ci;
1537 dma_addr_t ci_h = 0;
1538
1539 cmd = megasas_get_cmd(instance);
1540
1541 if (!cmd) {
1542 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1543 return -ENOMEM;
1544 }
1545
1546 dcmd = &cmd->frame->dcmd;
1547
1548 ci = pci_alloc_consistent(instance->pdev,
1549 sizeof(struct megasas_ctrl_info), &ci_h);
1550
1551 if (!ci) {
1552 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1553 megasas_return_cmd(instance, cmd);
1554 return -ENOMEM;
1555 }
1556
1557 memset(ci, 0, sizeof(*ci));
1558 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1559
1560 dcmd->cmd = MFI_CMD_DCMD;
1561 dcmd->cmd_status = 0xFF;
1562 dcmd->sge_count = 1;
1563 dcmd->flags = MFI_FRAME_DIR_READ;
1564 dcmd->timeout = 0;
1565 dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1566 dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1567 dcmd->sgl.sge32[0].phys_addr = ci_h;
1568 dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1569
1570 if (!megasas_issue_polled(instance, cmd)) {
1571 ret = 0;
1572 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1573 } else {
1574 ret = -1;
1575 }
1576
1577 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1578 ci, ci_h);
1579
1580 megasas_return_cmd(instance, cmd);
1581 return ret;
1582}
1583
1584/**
1585 * megasas_init_mfi - Initializes the FW
1586 * @instance: Adapter soft state
1587 *
1588 * This is the main function for initializing MFI firmware.
1589 */
1590static int megasas_init_mfi(struct megasas_instance *instance)
1591{
1592 u32 context_sz;
1593 u32 reply_q_sz;
1594 u32 max_sectors_1;
1595 u32 max_sectors_2;
1596 struct megasas_register_set __iomem *reg_set;
1597
1598 struct megasas_cmd *cmd;
1599 struct megasas_ctrl_info *ctrl_info;
1600
1601 struct megasas_init_frame *init_frame;
1602 struct megasas_init_queue_info *initq_info;
1603 dma_addr_t init_frame_h;
1604 dma_addr_t initq_info_h;
1605
1606 /*
1607 * Map the message registers
1608 */
1609 instance->base_addr = pci_resource_start(instance->pdev, 0);
1610
1611 if (pci_request_regions(instance->pdev, "megasas: LSI Logic")) {
1612 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1613 return -EBUSY;
1614 }
1615
1616 instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1617
1618 if (!instance->reg_set) {
1619 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1620 goto fail_ioremap;
1621 }
1622
1623 reg_set = instance->reg_set;
1624
1625 /*
1626 * We expect the FW state to be READY
1627 */
1628 if (megasas_transition_to_ready(instance->reg_set))
1629 goto fail_ready_state;
1630
1631 /*
1632 * Get various operational parameters from status register
1633 */
1634 instance->max_fw_cmds = readl(&reg_set->outbound_msg_0) & 0x00FFFF;
1635 instance->max_num_sge = (readl(&reg_set->outbound_msg_0) & 0xFF0000) >>
1636 0x10;
1637 /*
1638 * Create a pool of commands
1639 */
1640 if (megasas_alloc_cmds(instance))
1641 goto fail_alloc_cmds;
1642
1643 /*
1644 * Allocate memory for reply queue. Length of reply queue should
1645 * be _one_ more than the maximum commands handled by the firmware.
1646 *
1647 * Note: When FW completes commands, it places corresponding contex
1648 * values in this circular reply queue. This circular queue is a fairly
1649 * typical producer-consumer queue. FW is the producer (of completed
1650 * commands) and the driver is the consumer.
1651 */
1652 context_sz = sizeof(u32);
1653 reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
1654
1655 instance->reply_queue = pci_alloc_consistent(instance->pdev,
1656 reply_q_sz,
1657 &instance->reply_queue_h);
1658
1659 if (!instance->reply_queue) {
1660 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
1661 goto fail_reply_queue;
1662 }
1663
1664 /*
1665 * Prepare a init frame. Note the init frame points to queue info
1666 * structure. Each frame has SGL allocated after first 64 bytes. For
1667 * this frame - since we don't need any SGL - we use SGL's space as
1668 * queue info structure
1669 *
1670 * We will not get a NULL command below. We just created the pool.
1671 */
1672 cmd = megasas_get_cmd(instance);
1673
1674 init_frame = (struct megasas_init_frame *)cmd->frame;
1675 initq_info = (struct megasas_init_queue_info *)
1676 ((unsigned long)init_frame + 64);
1677
1678 init_frame_h = cmd->frame_phys_addr;
1679 initq_info_h = init_frame_h + 64;
1680
1681 memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1682 memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1683
1684 initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1685 initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1686
1687 initq_info->producer_index_phys_addr_lo = instance->producer_h;
1688 initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1689
1690 init_frame->cmd = MFI_CMD_INIT;
1691 init_frame->cmd_status = 0xFF;
1692 init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1693
1694 init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1695
1696 /*
1697 * Issue the init frame in polled mode
1698 */
1699 if (megasas_issue_polled(instance, cmd)) {
1700 printk(KERN_DEBUG "megasas: Failed to init firmware\n");
1701 goto fail_fw_init;
1702 }
1703
1704 megasas_return_cmd(instance, cmd);
1705
1706 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
1707
1708 /*
1709 * Compute the max allowed sectors per IO: The controller info has two
1710 * limits on max sectors. Driver should use the minimum of these two.
1711 *
1712 * 1 << stripe_sz_ops.min = max sectors per strip
1713 *
1714 * Note that older firmwares ( < FW ver 30) didn't report information
1715 * to calculate max_sectors_1. So the number ended up as zero always.
1716 */
1717 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
1718
1719 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
1720 ctrl_info->max_strips_per_io;
1721 max_sectors_2 = ctrl_info->max_request_size;
1722
1723 instance->max_sectors_per_req = (max_sectors_1 < max_sectors_2)
1724 ? max_sectors_1 : max_sectors_2;
1725 } else
1726 instance->max_sectors_per_req = instance->max_num_sge *
1727 PAGE_SIZE / 512;
1728
1729 kfree(ctrl_info);
1730
1731 return 0;
1732
1733 fail_fw_init:
1734 megasas_return_cmd(instance, cmd);
1735
1736 pci_free_consistent(instance->pdev, reply_q_sz,
1737 instance->reply_queue, instance->reply_queue_h);
1738 fail_reply_queue:
1739 megasas_free_cmds(instance);
1740
1741 fail_alloc_cmds:
1742 fail_ready_state:
1743 iounmap(instance->reg_set);
1744
1745 fail_ioremap:
1746 pci_release_regions(instance->pdev);
1747
1748 return -EINVAL;
1749}
1750
1751/**
1752 * megasas_release_mfi - Reverses the FW initialization
1753 * @intance: Adapter soft state
1754 */
1755static void megasas_release_mfi(struct megasas_instance *instance)
1756{
1757 u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
1758
1759 pci_free_consistent(instance->pdev, reply_q_sz,
1760 instance->reply_queue, instance->reply_queue_h);
1761
1762 megasas_free_cmds(instance);
1763
1764 iounmap(instance->reg_set);
1765
1766 pci_release_regions(instance->pdev);
1767}
1768
1769/**
1770 * megasas_get_seq_num - Gets latest event sequence numbers
1771 * @instance: Adapter soft state
1772 * @eli: FW event log sequence numbers information
1773 *
1774 * FW maintains a log of all events in a non-volatile area. Upper layers would
1775 * usually find out the latest sequence number of the events, the seq number at
1776 * the boot etc. They would "read" all the events below the latest seq number
1777 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
1778 * number), they would subsribe to AEN (asynchronous event notification) and
1779 * wait for the events to happen.
1780 */
1781static int
1782megasas_get_seq_num(struct megasas_instance *instance,
1783 struct megasas_evt_log_info *eli)
1784{
1785 struct megasas_cmd *cmd;
1786 struct megasas_dcmd_frame *dcmd;
1787 struct megasas_evt_log_info *el_info;
1788 dma_addr_t el_info_h = 0;
1789
1790 cmd = megasas_get_cmd(instance);
1791
1792 if (!cmd) {
1793 return -ENOMEM;
1794 }
1795
1796 dcmd = &cmd->frame->dcmd;
1797 el_info = pci_alloc_consistent(instance->pdev,
1798 sizeof(struct megasas_evt_log_info),
1799 &el_info_h);
1800
1801 if (!el_info) {
1802 megasas_return_cmd(instance, cmd);
1803 return -ENOMEM;
1804 }
1805
1806 memset(el_info, 0, sizeof(*el_info));
1807 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1808
1809 dcmd->cmd = MFI_CMD_DCMD;
1810 dcmd->cmd_status = 0x0;
1811 dcmd->sge_count = 1;
1812 dcmd->flags = MFI_FRAME_DIR_READ;
1813 dcmd->timeout = 0;
1814 dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
1815 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
1816 dcmd->sgl.sge32[0].phys_addr = el_info_h;
1817 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
1818
1819 megasas_issue_blocked_cmd(instance, cmd);
1820
1821 /*
1822 * Copy the data back into callers buffer
1823 */
1824 memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
1825
1826 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
1827 el_info, el_info_h);
1828
1829 megasas_return_cmd(instance, cmd);
1830
1831 return 0;
1832}
1833
1834/**
1835 * megasas_register_aen - Registers for asynchronous event notification
1836 * @instance: Adapter soft state
1837 * @seq_num: The starting sequence number
1838 * @class_locale: Class of the event
1839 *
1840 * This function subscribes for AEN for events beyond the @seq_num. It requests
1841 * to be notified if and only if the event is of type @class_locale
1842 */
1843static int
1844megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
1845 u32 class_locale_word)
1846{
1847 int ret_val;
1848 struct megasas_cmd *cmd;
1849 struct megasas_dcmd_frame *dcmd;
1850 union megasas_evt_class_locale curr_aen;
1851 union megasas_evt_class_locale prev_aen;
1852
1853 /*
1854 * If there an AEN pending already (aen_cmd), check if the
1855 * class_locale of that pending AEN is inclusive of the new
1856 * AEN request we currently have. If it is, then we don't have
1857 * to do anything. In other words, whichever events the current
1858 * AEN request is subscribing to, have already been subscribed
1859 * to.
1860 *
1861 * If the old_cmd is _not_ inclusive, then we have to abort
1862 * that command, form a class_locale that is superset of both
1863 * old and current and re-issue to the FW
1864 */
1865
1866 curr_aen.word = class_locale_word;
1867
1868 if (instance->aen_cmd) {
1869
1870 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
1871
1872 /*
1873 * A class whose enum value is smaller is inclusive of all
1874 * higher values. If a PROGRESS (= -1) was previously
1875 * registered, then a new registration requests for higher
1876 * classes need not be sent to FW. They are automatically
1877 * included.
1878 *
1879 * Locale numbers don't have such hierarchy. They are bitmap
1880 * values
1881 */
1882 if ((prev_aen.members.class <= curr_aen.members.class) &&
1883 !((prev_aen.members.locale & curr_aen.members.locale) ^
1884 curr_aen.members.locale)) {
1885 /*
1886 * Previously issued event registration includes
1887 * current request. Nothing to do.
1888 */
1889 return 0;
1890 } else {
1891 curr_aen.members.locale |= prev_aen.members.locale;
1892
1893 if (prev_aen.members.class < curr_aen.members.class)
1894 curr_aen.members.class = prev_aen.members.class;
1895
1896 instance->aen_cmd->abort_aen = 1;
1897 ret_val = megasas_issue_blocked_abort_cmd(instance,
1898 instance->
1899 aen_cmd);
1900
1901 if (ret_val) {
1902 printk(KERN_DEBUG "megasas: Failed to abort "
1903 "previous AEN command\n");
1904 return ret_val;
1905 }
1906 }
1907 }
1908
1909 cmd = megasas_get_cmd(instance);
1910
1911 if (!cmd)
1912 return -ENOMEM;
1913
1914 dcmd = &cmd->frame->dcmd;
1915
1916 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
1917
1918 /*
1919 * Prepare DCMD for aen registration
1920 */
1921 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1922
1923 dcmd->cmd = MFI_CMD_DCMD;
1924 dcmd->cmd_status = 0x0;
1925 dcmd->sge_count = 1;
1926 dcmd->flags = MFI_FRAME_DIR_READ;
1927 dcmd->timeout = 0;
1928 dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
1929 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
1930 dcmd->mbox.w[0] = seq_num;
1931 dcmd->mbox.w[1] = curr_aen.word;
1932 dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
1933 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
1934
1935 /*
1936 * Store reference to the cmd used to register for AEN. When an
1937 * application wants us to register for AEN, we have to abort this
1938 * cmd and re-register with a new EVENT LOCALE supplied by that app
1939 */
1940 instance->aen_cmd = cmd;
1941
1942 /*
1943 * Issue the aen registration frame
1944 */
1945 writel(cmd->frame_phys_addr >> 3,
1946 &instance->reg_set->inbound_queue_port);
1947
1948 return 0;
1949}
1950
1951/**
1952 * megasas_start_aen - Subscribes to AEN during driver load time
1953 * @instance: Adapter soft state
1954 */
1955static int megasas_start_aen(struct megasas_instance *instance)
1956{
1957 struct megasas_evt_log_info eli;
1958 union megasas_evt_class_locale class_locale;
1959
1960 /*
1961 * Get the latest sequence number from FW
1962 */
1963 memset(&eli, 0, sizeof(eli));
1964
1965 if (megasas_get_seq_num(instance, &eli))
1966 return -1;
1967
1968 /*
1969 * Register AEN with FW for latest sequence number plus 1
1970 */
1971 class_locale.members.reserved = 0;
1972 class_locale.members.locale = MR_EVT_LOCALE_ALL;
1973 class_locale.members.class = MR_EVT_CLASS_DEBUG;
1974
1975 return megasas_register_aen(instance, eli.newest_seq_num + 1,
1976 class_locale.word);
1977}
1978
1979/**
1980 * megasas_io_attach - Attaches this driver to SCSI mid-layer
1981 * @instance: Adapter soft state
1982 */
1983static int megasas_io_attach(struct megasas_instance *instance)
1984{
1985 struct Scsi_Host *host = instance->host;
1986
1987 /*
1988 * Export parameters required by SCSI mid-layer
1989 */
1990 host->irq = instance->pdev->irq;
1991 host->unique_id = instance->unique_id;
1992 host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
1993 host->this_id = instance->init_id;
1994 host->sg_tablesize = instance->max_num_sge;
1995 host->max_sectors = instance->max_sectors_per_req;
1996 host->cmd_per_lun = 128;
1997 host->max_channel = MEGASAS_MAX_CHANNELS - 1;
1998 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
1999 host->max_lun = MEGASAS_MAX_LUN;
2000
2001 /*
2002 * Notify the mid-layer about the new controller
2003 */
2004 if (scsi_add_host(host, &instance->pdev->dev)) {
2005 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2006 return -ENODEV;
2007 }
2008
2009 /*
2010 * Trigger SCSI to scan our drives
2011 */
2012 scsi_scan_host(host);
2013 return 0;
2014}
2015
2016/**
2017 * megasas_probe_one - PCI hotplug entry point
2018 * @pdev: PCI device structure
2019 * @id: PCI ids of supported hotplugged adapter
2020 */
2021static int __devinit
2022megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2023{
2024 int rval;
2025 struct Scsi_Host *host;
2026 struct megasas_instance *instance;
2027
2028 /*
2029 * Announce PCI information
2030 */
2031 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2032 pdev->vendor, pdev->device, pdev->subsystem_vendor,
2033 pdev->subsystem_device);
2034
2035 printk("bus %d:slot %d:func %d\n",
2036 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2037
2038 /*
2039 * PCI prepping: enable device set bus mastering and dma mask
2040 */
2041 rval = pci_enable_device(pdev);
2042
2043 if (rval) {
2044 return rval;
2045 }
2046
2047 pci_set_master(pdev);
2048
2049 /*
2050 * All our contollers are capable of performing 64-bit DMA
2051 */
2052 if (IS_DMA64) {
2053 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2054
2055 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2056 goto fail_set_dma_mask;
2057 }
2058 } else {
2059 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2060 goto fail_set_dma_mask;
2061 }
2062
2063 host = scsi_host_alloc(&megasas_template,
2064 sizeof(struct megasas_instance));
2065
2066 if (!host) {
2067 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2068 goto fail_alloc_instance;
2069 }
2070
2071 instance = (struct megasas_instance *)host->hostdata;
2072 memset(instance, 0, sizeof(*instance));
2073
2074 instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2075 &instance->producer_h);
2076 instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2077 &instance->consumer_h);
2078
2079 if (!instance->producer || !instance->consumer) {
2080 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2081 "producer, consumer\n");
2082 goto fail_alloc_dma_buf;
2083 }
2084
2085 *instance->producer = 0;
2086 *instance->consumer = 0;
2087
2088 instance->evt_detail = pci_alloc_consistent(pdev,
2089 sizeof(struct
2090 megasas_evt_detail),
2091 &instance->evt_detail_h);
2092
2093 if (!instance->evt_detail) {
2094 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2095 "event detail structure\n");
2096 goto fail_alloc_dma_buf;
2097 }
2098
2099 /*
2100 * Initialize locks and queues
2101 */
2102 INIT_LIST_HEAD(&instance->cmd_pool);
2103
2104 init_waitqueue_head(&instance->int_cmd_wait_q);
2105 init_waitqueue_head(&instance->abort_cmd_wait_q);
2106
2107 spin_lock_init(&instance->cmd_pool_lock);
2108 spin_lock_init(&instance->instance_lock);
2109
2110 sema_init(&instance->aen_mutex, 1);
2111 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2112
2113 /*
2114 * Initialize PCI related and misc parameters
2115 */
2116 instance->pdev = pdev;
2117 instance->host = host;
2118 instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2119 instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2120
2121 /*
2122 * Initialize MFI Firmware
2123 */
2124 if (megasas_init_mfi(instance))
2125 goto fail_init_mfi;
2126
2127 /*
2128 * Register IRQ
2129 */
2130 if (request_irq(pdev->irq, megasas_isr, SA_SHIRQ, "megasas", instance)) {
2131 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2132 goto fail_irq;
2133 }
2134
2135 megasas_enable_intr(instance->reg_set);
2136
2137 /*
2138 * Store instance in PCI softstate
2139 */
2140 pci_set_drvdata(pdev, instance);
2141
2142 /*
2143 * Add this controller to megasas_mgmt_info structure so that it
2144 * can be exported to management applications
2145 */
2146 megasas_mgmt_info.count++;
2147 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2148 megasas_mgmt_info.max_index++;
2149
2150 /*
2151 * Initiate AEN (Asynchronous Event Notification)
2152 */
2153 if (megasas_start_aen(instance)) {
2154 printk(KERN_DEBUG "megasas: start aen failed\n");
2155 goto fail_start_aen;
2156 }
2157
2158 /*
2159 * Register with SCSI mid-layer
2160 */
2161 if (megasas_io_attach(instance))
2162 goto fail_io_attach;
2163
2164 return 0;
2165
2166 fail_start_aen:
2167 fail_io_attach:
2168 megasas_mgmt_info.count--;
2169 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2170 megasas_mgmt_info.max_index--;
2171
2172 pci_set_drvdata(pdev, NULL);
2173 megasas_disable_intr(instance->reg_set);
2174 free_irq(instance->pdev->irq, instance);
2175
2176 megasas_release_mfi(instance);
2177
2178 fail_irq:
2179 fail_init_mfi:
2180 fail_alloc_dma_buf:
2181 if (instance->evt_detail)
2182 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2183 instance->evt_detail,
2184 instance->evt_detail_h);
2185
2186 if (instance->producer)
2187 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2188 instance->producer_h);
2189 if (instance->consumer)
2190 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2191 instance->consumer_h);
2192 scsi_host_put(host);
2193
2194 fail_alloc_instance:
2195 fail_set_dma_mask:
2196 pci_disable_device(pdev);
2197
2198 return -ENODEV;
2199}
2200
2201/**
2202 * megasas_flush_cache - Requests FW to flush all its caches
2203 * @instance: Adapter soft state
2204 */
2205static void megasas_flush_cache(struct megasas_instance *instance)
2206{
2207 struct megasas_cmd *cmd;
2208 struct megasas_dcmd_frame *dcmd;
2209
2210 cmd = megasas_get_cmd(instance);
2211
2212 if (!cmd)
2213 return;
2214
2215 dcmd = &cmd->frame->dcmd;
2216
2217 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2218
2219 dcmd->cmd = MFI_CMD_DCMD;
2220 dcmd->cmd_status = 0x0;
2221 dcmd->sge_count = 0;
2222 dcmd->flags = MFI_FRAME_DIR_NONE;
2223 dcmd->timeout = 0;
2224 dcmd->data_xfer_len = 0;
2225 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2226 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2227
2228 megasas_issue_blocked_cmd(instance, cmd);
2229
2230 megasas_return_cmd(instance, cmd);
2231
2232 return;
2233}
2234
2235/**
2236 * megasas_shutdown_controller - Instructs FW to shutdown the controller
2237 * @instance: Adapter soft state
2238 */
2239static void megasas_shutdown_controller(struct megasas_instance *instance)
2240{
2241 struct megasas_cmd *cmd;
2242 struct megasas_dcmd_frame *dcmd;
2243
2244 cmd = megasas_get_cmd(instance);
2245
2246 if (!cmd)
2247 return;
2248
2249 if (instance->aen_cmd)
2250 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2251
2252 dcmd = &cmd->frame->dcmd;
2253
2254 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2255
2256 dcmd->cmd = MFI_CMD_DCMD;
2257 dcmd->cmd_status = 0x0;
2258 dcmd->sge_count = 0;
2259 dcmd->flags = MFI_FRAME_DIR_NONE;
2260 dcmd->timeout = 0;
2261 dcmd->data_xfer_len = 0;
2262 dcmd->opcode = MR_DCMD_CTRL_SHUTDOWN;
2263
2264 megasas_issue_blocked_cmd(instance, cmd);
2265
2266 megasas_return_cmd(instance, cmd);
2267
2268 return;
2269}
2270
2271/**
2272 * megasas_detach_one - PCI hot"un"plug entry point
2273 * @pdev: PCI device structure
2274 */
2275static void megasas_detach_one(struct pci_dev *pdev)
2276{
2277 int i;
2278 struct Scsi_Host *host;
2279 struct megasas_instance *instance;
2280
2281 instance = pci_get_drvdata(pdev);
2282 host = instance->host;
2283
2284 scsi_remove_host(instance->host);
2285 megasas_flush_cache(instance);
2286 megasas_shutdown_controller(instance);
2287
2288 /*
2289 * Take the instance off the instance array. Note that we will not
2290 * decrement the max_index. We let this array be sparse array
2291 */
2292 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2293 if (megasas_mgmt_info.instance[i] == instance) {
2294 megasas_mgmt_info.count--;
2295 megasas_mgmt_info.instance[i] = NULL;
2296
2297 break;
2298 }
2299 }
2300
2301 pci_set_drvdata(instance->pdev, NULL);
2302
2303 megasas_disable_intr(instance->reg_set);
2304
2305 free_irq(instance->pdev->irq, instance);
2306
2307 megasas_release_mfi(instance);
2308
2309 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2310 instance->evt_detail, instance->evt_detail_h);
2311
2312 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2313 instance->producer_h);
2314
2315 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2316 instance->consumer_h);
2317
2318 scsi_host_put(host);
2319
2320 pci_set_drvdata(pdev, NULL);
2321
2322 pci_disable_device(pdev);
2323
2324 return;
2325}
2326
2327/**
2328 * megasas_shutdown - Shutdown entry point
2329 * @device: Generic device structure
2330 */
2331static void megasas_shutdown(struct pci_dev *pdev)
2332{
2333 struct megasas_instance *instance = pci_get_drvdata(pdev);
2334 megasas_flush_cache(instance);
2335}
2336
2337/**
2338 * megasas_mgmt_open - char node "open" entry point
2339 */
2340static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2341{
2342 /*
2343 * Allow only those users with admin rights
2344 */
2345 if (!capable(CAP_SYS_ADMIN))
2346 return -EACCES;
2347
2348 return 0;
2349}
2350
2351/**
2352 * megasas_mgmt_release - char node "release" entry point
2353 */
2354static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2355{
2356 filep->private_data = NULL;
2357 fasync_helper(-1, filep, 0, &megasas_async_queue);
2358
2359 return 0;
2360}
2361
2362/**
2363 * megasas_mgmt_fasync - Async notifier registration from applications
2364 *
2365 * This function adds the calling process to a driver global queue. When an
2366 * event occurs, SIGIO will be sent to all processes in this queue.
2367 */
2368static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2369{
2370 int rc;
2371
2372 down(&megasas_async_queue_mutex);
2373
2374 rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2375
2376 up(&megasas_async_queue_mutex);
2377
2378 if (rc >= 0) {
2379 /* For sanity check when we get ioctl */
2380 filep->private_data = filep;
2381 return 0;
2382 }
2383
2384 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2385
2386 return rc;
2387}
2388
2389/**
2390 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW
2391 * @instance: Adapter soft state
2392 * @argp: User's ioctl packet
2393 */
2394static int
2395megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2396 struct megasas_iocpacket __user * user_ioc,
2397 struct megasas_iocpacket *ioc)
2398{
2399 struct megasas_sge32 *kern_sge32;
2400 struct megasas_cmd *cmd;
2401 void *kbuff_arr[MAX_IOCTL_SGE];
2402 dma_addr_t buf_handle = 0;
2403 int error = 0, i;
2404 void *sense = NULL;
2405 dma_addr_t sense_handle;
2406 u32 *sense_ptr;
2407
2408 memset(kbuff_arr, 0, sizeof(kbuff_arr));
2409
2410 if (ioc->sge_count > MAX_IOCTL_SGE) {
2411 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
2412 ioc->sge_count, MAX_IOCTL_SGE);
2413 return -EINVAL;
2414 }
2415
2416 cmd = megasas_get_cmd(instance);
2417 if (!cmd) {
2418 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2419 return -ENOMEM;
2420 }
2421
2422 /*
2423 * User's IOCTL packet has 2 frames (maximum). Copy those two
2424 * frames into our cmd's frames. cmd->frame's context will get
2425 * overwritten when we copy from user's frames. So set that value
2426 * alone separately
2427 */
2428 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2429 cmd->frame->hdr.context = cmd->index;
2430
2431 /*
2432 * The management interface between applications and the fw uses
2433 * MFI frames. E.g, RAID configuration changes, LD property changes
2434 * etc are accomplishes through different kinds of MFI frames. The
2435 * driver needs to care only about substituting user buffers with
2436 * kernel buffers in SGLs. The location of SGL is embedded in the
2437 * struct iocpacket itself.
2438 */
2439 kern_sge32 = (struct megasas_sge32 *)
2440 ((unsigned long)cmd->frame + ioc->sgl_off);
2441
2442 /*
2443 * For each user buffer, create a mirror buffer and copy in
2444 */
2445 for (i = 0; i < ioc->sge_count; i++) {
2446 kbuff_arr[i] = pci_alloc_consistent(instance->pdev,
2447 ioc->sgl[i].iov_len,
2448 &buf_handle);
2449 if (!kbuff_arr[i]) {
2450 printk(KERN_DEBUG "megasas: Failed to alloc "
2451 "kernel SGL buffer for IOCTL \n");
2452 error = -ENOMEM;
2453 goto out;
2454 }
2455
2456 /*
2457 * We don't change the dma_coherent_mask, so
2458 * pci_alloc_consistent only returns 32bit addresses
2459 */
2460 kern_sge32[i].phys_addr = (u32) buf_handle;
2461 kern_sge32[i].length = ioc->sgl[i].iov_len;
2462
2463 /*
2464 * We created a kernel buffer corresponding to the
2465 * user buffer. Now copy in from the user buffer
2466 */
2467 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2468 (u32) (ioc->sgl[i].iov_len))) {
2469 error = -EFAULT;
2470 goto out;
2471 }
2472 }
2473
2474 if (ioc->sense_len) {
2475 sense = pci_alloc_consistent(instance->pdev, ioc->sense_len,
2476 &sense_handle);
2477 if (!sense) {
2478 error = -ENOMEM;
2479 goto out;
2480 }
2481
2482 sense_ptr =
2483 (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
2484 *sense_ptr = sense_handle;
2485 }
2486
2487 /*
2488 * Set the sync_cmd flag so that the ISR knows not to complete this
2489 * cmd to the SCSI mid-layer
2490 */
2491 cmd->sync_cmd = 1;
2492 megasas_issue_blocked_cmd(instance, cmd);
2493 cmd->sync_cmd = 0;
2494
2495 /*
2496 * copy out the kernel buffers to user buffers
2497 */
2498 for (i = 0; i < ioc->sge_count; i++) {
2499 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
2500 ioc->sgl[i].iov_len)) {
2501 error = -EFAULT;
2502 goto out;
2503 }
2504 }
2505
2506 /*
2507 * copy out the sense
2508 */
2509 if (ioc->sense_len) {
2510 /*
2511 * sense_ptr points to the location that has the user
2512 * sense buffer address
2513 */
2514 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
2515 ioc->sense_off);
2516
2517 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
2518 sense, ioc->sense_len)) {
2519 error = -EFAULT;
2520 goto out;
2521 }
2522 }
2523
2524 /*
2525 * copy the status codes returned by the fw
2526 */
2527 if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
2528 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
2529 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
2530 error = -EFAULT;
2531 }
2532
2533 out:
2534 if (sense) {
2535 pci_free_consistent(instance->pdev, ioc->sense_len,
2536 sense, sense_handle);
2537 }
2538
2539 for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
2540 pci_free_consistent(instance->pdev,
2541 kern_sge32[i].length,
2542 kbuff_arr[i], kern_sge32[i].phys_addr);
2543 }
2544
2545 megasas_return_cmd(instance, cmd);
2546 return error;
2547}
2548
2549static struct megasas_instance *megasas_lookup_instance(u16 host_no)
2550{
2551 int i;
2552
2553 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2554
2555 if ((megasas_mgmt_info.instance[i]) &&
2556 (megasas_mgmt_info.instance[i]->host->host_no == host_no))
2557 return megasas_mgmt_info.instance[i];
2558 }
2559
2560 return NULL;
2561}
2562
2563static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
2564{
2565 struct megasas_iocpacket __user *user_ioc =
2566 (struct megasas_iocpacket __user *)arg;
2567 struct megasas_iocpacket *ioc;
2568 struct megasas_instance *instance;
2569 int error;
2570
2571 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
2572 if (!ioc)
2573 return -ENOMEM;
2574
2575 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
2576 error = -EFAULT;
2577 goto out_kfree_ioc;
2578 }
2579
2580 instance = megasas_lookup_instance(ioc->host_no);
2581 if (!instance) {
2582 error = -ENODEV;
2583 goto out_kfree_ioc;
2584 }
2585
2586 /*
2587 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
2588 */
2589 if (down_interruptible(&instance->ioctl_sem)) {
2590 error = -ERESTARTSYS;
2591 goto out_kfree_ioc;
2592 }
2593 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
2594 up(&instance->ioctl_sem);
2595
2596 out_kfree_ioc:
2597 kfree(ioc);
2598 return error;
2599}
2600
2601static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
2602{
2603 struct megasas_instance *instance;
2604 struct megasas_aen aen;
2605 int error;
2606
2607 if (file->private_data != file) {
2608 printk(KERN_DEBUG "megasas: fasync_helper was not "
2609 "called first\n");
2610 return -EINVAL;
2611 }
2612
2613 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
2614 return -EFAULT;
2615
2616 instance = megasas_lookup_instance(aen.host_no);
2617
2618 if (!instance)
2619 return -ENODEV;
2620
2621 down(&instance->aen_mutex);
2622 error = megasas_register_aen(instance, aen.seq_num,
2623 aen.class_locale_word);
2624 up(&instance->aen_mutex);
2625 return error;
2626}
2627
2628/**
2629 * megasas_mgmt_ioctl - char node ioctl entry point
2630 */
2631static long
2632megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2633{
2634 switch (cmd) {
2635 case MEGASAS_IOC_FIRMWARE:
2636 return megasas_mgmt_ioctl_fw(file, arg);
2637
2638 case MEGASAS_IOC_GET_AEN:
2639 return megasas_mgmt_ioctl_aen(file, arg);
2640 }
2641
2642 return -ENOTTY;
2643}
2644
2645#ifdef CONFIG_COMPAT
2646static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
2647{
2648 struct compat_megasas_iocpacket __user *cioc =
2649 (struct compat_megasas_iocpacket __user *)arg;
2650 struct megasas_iocpacket __user *ioc =
2651 compat_alloc_user_space(sizeof(struct megasas_iocpacket));
2652 int i;
2653 int error = 0;
2654
2655 clear_user(ioc, sizeof(*ioc));
2656
2657 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
2658 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
2659 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
2660 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
2661 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
2662 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
2663 return -EFAULT;
2664
2665 for (i = 0; i < MAX_IOCTL_SGE; i++) {
2666 compat_uptr_t ptr;
2667
2668 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
2669 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
2670 copy_in_user(&ioc->sgl[i].iov_len,
2671 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
2672 return -EFAULT;
2673 }
2674
2675 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
2676
2677 if (copy_in_user(&cioc->frame.hdr.cmd_status,
2678 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
2679 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
2680 return -EFAULT;
2681 }
2682 return error;
2683}
2684
2685static long
2686megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
2687 unsigned long arg)
2688{
2689 switch (cmd) {
2690 case MEGASAS_IOC_FIRMWARE:{
2691 return megasas_mgmt_compat_ioctl_fw(file, arg);
2692 }
2693 case MEGASAS_IOC_GET_AEN:
2694 return megasas_mgmt_ioctl_aen(file, arg);
2695 }
2696
2697 return -ENOTTY;
2698}
2699#endif
2700
2701/*
2702 * File operations structure for management interface
2703 */
2704static struct file_operations megasas_mgmt_fops = {
2705 .owner = THIS_MODULE,
2706 .open = megasas_mgmt_open,
2707 .release = megasas_mgmt_release,
2708 .fasync = megasas_mgmt_fasync,
2709 .unlocked_ioctl = megasas_mgmt_ioctl,
2710#ifdef CONFIG_COMPAT
2711 .compat_ioctl = megasas_mgmt_compat_ioctl,
2712#endif
2713};
2714
2715/*
2716 * PCI hotplug support registration structure
2717 */
2718static struct pci_driver megasas_pci_driver = {
2719
2720 .name = "megaraid_sas",
2721 .id_table = megasas_pci_table,
2722 .probe = megasas_probe_one,
2723 .remove = __devexit_p(megasas_detach_one),
2724 .shutdown = megasas_shutdown,
2725};
2726
2727/*
2728 * Sysfs driver attributes
2729 */
2730static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
2731{
2732 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
2733 MEGASAS_VERSION);
2734}
2735
2736static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
2737
2738static ssize_t
2739megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
2740{
2741 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
2742 MEGASAS_RELDATE);
2743}
2744
2745static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
2746 NULL);
2747
2748/**
2749 * megasas_init - Driver load entry point
2750 */
2751static int __init megasas_init(void)
2752{
2753 int rval;
2754
2755 /*
2756 * Announce driver version and other information
2757 */
2758 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
2759 MEGASAS_EXT_VERSION);
2760
2761 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
2762
2763 /*
2764 * Register character device node
2765 */
2766 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
2767
2768 if (rval < 0) {
2769 printk(KERN_DEBUG "megasas: failed to open device node\n");
2770 return rval;
2771 }
2772
2773 megasas_mgmt_majorno = rval;
2774
2775 /*
2776 * Register ourselves as PCI hotplug module
2777 */
2778 rval = pci_module_init(&megasas_pci_driver);
2779
2780 if (rval) {
2781 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
2782 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2783 }
2784
2785 driver_create_file(&megasas_pci_driver.driver, &driver_attr_version);
2786 driver_create_file(&megasas_pci_driver.driver,
2787 &driver_attr_release_date);
2788
2789 return rval;
2790}
2791
2792/**
2793 * megasas_exit - Driver unload entry point
2794 */
2795static void __exit megasas_exit(void)
2796{
2797 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
2798 driver_remove_file(&megasas_pci_driver.driver,
2799 &driver_attr_release_date);
2800
2801 pci_unregister_driver(&megasas_pci_driver);
2802 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2803}
2804
2805module_init(megasas_init);
2806module_exit(megasas_exit);