aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/scsi/hpsa.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/scsi/hpsa.c')
-rw-r--r--drivers/scsi/hpsa.c3531
1 files changed, 3531 insertions, 0 deletions
diff --git a/drivers/scsi/hpsa.c b/drivers/scsi/hpsa.c
new file mode 100644
index 000000000000..bb96fdd58e23
--- /dev/null
+++ b/drivers/scsi/hpsa.c
@@ -0,0 +1,3531 @@
1/*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 *
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
19 *
20 */
21
22#include <linux/module.h>
23#include <linux/interrupt.h>
24#include <linux/types.h>
25#include <linux/pci.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/delay.h>
29#include <linux/fs.h>
30#include <linux/timer.h>
31#include <linux/seq_file.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp_lock.h>
35#include <linux/compat.h>
36#include <linux/blktrace_api.h>
37#include <linux/uaccess.h>
38#include <linux/io.h>
39#include <linux/dma-mapping.h>
40#include <linux/completion.h>
41#include <linux/moduleparam.h>
42#include <scsi/scsi.h>
43#include <scsi/scsi_cmnd.h>
44#include <scsi/scsi_device.h>
45#include <scsi/scsi_host.h>
46#include <linux/cciss_ioctl.h>
47#include <linux/string.h>
48#include <linux/bitmap.h>
49#include <asm/atomic.h>
50#include <linux/kthread.h>
51#include "hpsa_cmd.h"
52#include "hpsa.h"
53
54/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55#define HPSA_DRIVER_VERSION "1.0.0"
56#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58/* How long to wait (in milliseconds) for board to go into simple mode */
59#define MAX_CONFIG_WAIT 30000
60#define MAX_IOCTL_CONFIG_WAIT 1000
61
62/*define how many times we will try a command because of bus resets */
63#define MAX_CMD_RETRIES 3
64
65/* Embedded module documentation macros - see modules.h */
66MODULE_AUTHOR("Hewlett-Packard Company");
67MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 HPSA_DRIVER_VERSION);
69MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70MODULE_VERSION(HPSA_DRIVER_VERSION);
71MODULE_LICENSE("GPL");
72
73static int hpsa_allow_any;
74module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75MODULE_PARM_DESC(hpsa_allow_any,
76 "Allow hpsa driver to access unknown HP Smart Array hardware");
77
78/* define the PCI info for the cards we can control */
79static const struct pci_device_id hpsa_pci_device_id[] = {
80 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
81 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
82 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
90 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
91 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
92 {0,}
93};
94
95MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
96
97/* board_id = Subsystem Device ID & Vendor ID
98 * product = Marketing Name for the board
99 * access = Address of the struct of function pointers
100 */
101static struct board_type products[] = {
102 {0x3223103C, "Smart Array P800", &SA5_access},
103 {0x3234103C, "Smart Array P400", &SA5_access},
104 {0x323d103c, "Smart Array P700M", &SA5_access},
105 {0x3241103C, "Smart Array P212", &SA5_access},
106 {0x3243103C, "Smart Array P410", &SA5_access},
107 {0x3245103C, "Smart Array P410i", &SA5_access},
108 {0x3247103C, "Smart Array P411", &SA5_access},
109 {0x3249103C, "Smart Array P812", &SA5_access},
110 {0x324a103C, "Smart Array P712m", &SA5_access},
111 {0x324b103C, "Smart Array P711m", &SA5_access},
112 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
113};
114
115static int number_of_controllers;
116
117static irqreturn_t do_hpsa_intr(int irq, void *dev_id);
118static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
119static void start_io(struct ctlr_info *h);
120
121#ifdef CONFIG_COMPAT
122static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
123#endif
124
125static void cmd_free(struct ctlr_info *h, struct CommandList *c);
126static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
127static struct CommandList *cmd_alloc(struct ctlr_info *h);
128static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
129static void fill_cmd(struct CommandList *c, __u8 cmd, struct ctlr_info *h,
130 void *buff, size_t size, __u8 page_code, unsigned char *scsi3addr,
131 int cmd_type);
132
133static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
134 void (*done)(struct scsi_cmnd *));
135
136static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
137static int hpsa_slave_alloc(struct scsi_device *sdev);
138static void hpsa_slave_destroy(struct scsi_device *sdev);
139
140static ssize_t raid_level_show(struct device *dev,
141 struct device_attribute *attr, char *buf);
142static ssize_t lunid_show(struct device *dev,
143 struct device_attribute *attr, char *buf);
144static ssize_t unique_id_show(struct device *dev,
145 struct device_attribute *attr, char *buf);
146static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
147static ssize_t host_store_rescan(struct device *dev,
148 struct device_attribute *attr, const char *buf, size_t count);
149static int check_for_unit_attention(struct ctlr_info *h,
150 struct CommandList *c);
151static void check_ioctl_unit_attention(struct ctlr_info *h,
152 struct CommandList *c);
153
154static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
155static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
156static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
157static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
158
159static struct device_attribute *hpsa_sdev_attrs[] = {
160 &dev_attr_raid_level,
161 &dev_attr_lunid,
162 &dev_attr_unique_id,
163 NULL,
164};
165
166static struct device_attribute *hpsa_shost_attrs[] = {
167 &dev_attr_rescan,
168 NULL,
169};
170
171static struct scsi_host_template hpsa_driver_template = {
172 .module = THIS_MODULE,
173 .name = "hpsa",
174 .proc_name = "hpsa",
175 .queuecommand = hpsa_scsi_queue_command,
176 .can_queue = 512,
177 .this_id = -1,
178 .sg_tablesize = MAXSGENTRIES,
179 .cmd_per_lun = 512,
180 .use_clustering = ENABLE_CLUSTERING,
181 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
182 .ioctl = hpsa_ioctl,
183 .slave_alloc = hpsa_slave_alloc,
184 .slave_destroy = hpsa_slave_destroy,
185#ifdef CONFIG_COMPAT
186 .compat_ioctl = hpsa_compat_ioctl,
187#endif
188 .sdev_attrs = hpsa_sdev_attrs,
189 .shost_attrs = hpsa_shost_attrs,
190};
191
192static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
193{
194 unsigned long *priv = shost_priv(sdev->host);
195 return (struct ctlr_info *) *priv;
196}
197
198static struct task_struct *hpsa_scan_thread;
199static DEFINE_MUTEX(hpsa_scan_mutex);
200static LIST_HEAD(hpsa_scan_q);
201static int hpsa_scan_func(void *data);
202
203/**
204 * add_to_scan_list() - add controller to rescan queue
205 * @h: Pointer to the controller.
206 *
207 * Adds the controller to the rescan queue if not already on the queue.
208 *
209 * returns 1 if added to the queue, 0 if skipped (could be on the
210 * queue already, or the controller could be initializing or shutting
211 * down).
212 **/
213static int add_to_scan_list(struct ctlr_info *h)
214{
215 struct ctlr_info *test_h;
216 int found = 0;
217 int ret = 0;
218
219 if (h->busy_initializing)
220 return 0;
221
222 /*
223 * If we don't get the lock, it means the driver is unloading
224 * and there's no point in scheduling a new scan.
225 */
226 if (!mutex_trylock(&h->busy_shutting_down))
227 return 0;
228
229 mutex_lock(&hpsa_scan_mutex);
230 list_for_each_entry(test_h, &hpsa_scan_q, scan_list) {
231 if (test_h == h) {
232 found = 1;
233 break;
234 }
235 }
236 if (!found && !h->busy_scanning) {
237 INIT_COMPLETION(h->scan_wait);
238 list_add_tail(&h->scan_list, &hpsa_scan_q);
239 ret = 1;
240 }
241 mutex_unlock(&hpsa_scan_mutex);
242 mutex_unlock(&h->busy_shutting_down);
243
244 return ret;
245}
246
247/**
248 * remove_from_scan_list() - remove controller from rescan queue
249 * @h: Pointer to the controller.
250 *
251 * Removes the controller from the rescan queue if present. Blocks if
252 * the controller is currently conducting a rescan. The controller
253 * can be in one of three states:
254 * 1. Doesn't need a scan
255 * 2. On the scan list, but not scanning yet (we remove it)
256 * 3. Busy scanning (and not on the list). In this case we want to wait for
257 * the scan to complete to make sure the scanning thread for this
258 * controller is completely idle.
259 **/
260static void remove_from_scan_list(struct ctlr_info *h)
261{
262 struct ctlr_info *test_h, *tmp_h;
263
264 mutex_lock(&hpsa_scan_mutex);
265 list_for_each_entry_safe(test_h, tmp_h, &hpsa_scan_q, scan_list) {
266 if (test_h == h) { /* state 2. */
267 list_del(&h->scan_list);
268 complete_all(&h->scan_wait);
269 mutex_unlock(&hpsa_scan_mutex);
270 return;
271 }
272 }
273 if (h->busy_scanning) { /* state 3. */
274 mutex_unlock(&hpsa_scan_mutex);
275 wait_for_completion(&h->scan_wait);
276 } else { /* state 1, nothing to do. */
277 mutex_unlock(&hpsa_scan_mutex);
278 }
279}
280
281/* hpsa_scan_func() - kernel thread used to rescan controllers
282 * @data: Ignored.
283 *
284 * A kernel thread used scan for drive topology changes on
285 * controllers. The thread processes only one controller at a time
286 * using a queue. Controllers are added to the queue using
287 * add_to_scan_list() and removed from the queue either after done
288 * processing or using remove_from_scan_list().
289 *
290 * returns 0.
291 **/
292static int hpsa_scan_func(__attribute__((unused)) void *data)
293{
294 struct ctlr_info *h;
295 int host_no;
296
297 while (1) {
298 set_current_state(TASK_INTERRUPTIBLE);
299 schedule();
300 if (kthread_should_stop())
301 break;
302
303 while (1) {
304 mutex_lock(&hpsa_scan_mutex);
305 if (list_empty(&hpsa_scan_q)) {
306 mutex_unlock(&hpsa_scan_mutex);
307 break;
308 }
309 h = list_entry(hpsa_scan_q.next, struct ctlr_info,
310 scan_list);
311 list_del(&h->scan_list);
312 h->busy_scanning = 1;
313 mutex_unlock(&hpsa_scan_mutex);
314 host_no = h->scsi_host ? h->scsi_host->host_no : -1;
315 hpsa_update_scsi_devices(h, host_no);
316 complete_all(&h->scan_wait);
317 mutex_lock(&hpsa_scan_mutex);
318 h->busy_scanning = 0;
319 mutex_unlock(&hpsa_scan_mutex);
320 }
321 }
322 return 0;
323}
324
325static int check_for_unit_attention(struct ctlr_info *h,
326 struct CommandList *c)
327{
328 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
329 return 0;
330
331 switch (c->err_info->SenseInfo[12]) {
332 case STATE_CHANGED:
333 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
334 "detected, command retried\n", h->ctlr);
335 break;
336 case LUN_FAILED:
337 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
338 "detected, action required\n", h->ctlr);
339 break;
340 case REPORT_LUNS_CHANGED:
341 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
342 "changed\n", h->ctlr);
343 /*
344 * Here, we could call add_to_scan_list and wake up the scan thread,
345 * except that it's quite likely that we will get more than one
346 * REPORT_LUNS_CHANGED condition in quick succession, which means
347 * that those which occur after the first one will likely happen
348 * *during* the hpsa_scan_thread's rescan. And the rescan code is not
349 * robust enough to restart in the middle, undoing what it has already
350 * done, and it's not clear that it's even possible to do this, since
351 * part of what it does is notify the SCSI mid layer, which starts
352 * doing it's own i/o to read partition tables and so on, and the
353 * driver doesn't have visibility to know what might need undoing.
354 * In any event, if possible, it is horribly complicated to get right
355 * so we just don't do it for now.
356 *
357 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
358 */
359 break;
360 case POWER_OR_RESET:
361 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
362 "or device reset detected\n", h->ctlr);
363 break;
364 case UNIT_ATTENTION_CLEARED:
365 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
366 "cleared by another initiator\n", h->ctlr);
367 break;
368 default:
369 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
370 "unit attention detected\n", h->ctlr);
371 break;
372 }
373 return 1;
374}
375
376static ssize_t host_store_rescan(struct device *dev,
377 struct device_attribute *attr,
378 const char *buf, size_t count)
379{
380 struct ctlr_info *h;
381 struct Scsi_Host *shost = class_to_shost(dev);
382 unsigned long *priv = shost_priv(shost);
383 h = (struct ctlr_info *) *priv;
384 if (add_to_scan_list(h)) {
385 wake_up_process(hpsa_scan_thread);
386 wait_for_completion_interruptible(&h->scan_wait);
387 }
388 return count;
389}
390
391/* Enqueuing and dequeuing functions for cmdlists. */
392static inline void addQ(struct hlist_head *list, struct CommandList *c)
393{
394 hlist_add_head(&c->list, list);
395}
396
397static void enqueue_cmd_and_start_io(struct ctlr_info *h,
398 struct CommandList *c)
399{
400 unsigned long flags;
401 spin_lock_irqsave(&h->lock, flags);
402 addQ(&h->reqQ, c);
403 h->Qdepth++;
404 start_io(h);
405 spin_unlock_irqrestore(&h->lock, flags);
406}
407
408static inline void removeQ(struct CommandList *c)
409{
410 if (WARN_ON(hlist_unhashed(&c->list)))
411 return;
412 hlist_del_init(&c->list);
413}
414
415static inline int is_hba_lunid(unsigned char scsi3addr[])
416{
417 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
418}
419
420static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
421{
422 return (scsi3addr[3] & 0xC0) == 0x40;
423}
424
425static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
426 "UNKNOWN"
427};
428#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
429
430static ssize_t raid_level_show(struct device *dev,
431 struct device_attribute *attr, char *buf)
432{
433 ssize_t l = 0;
434 int rlevel;
435 struct ctlr_info *h;
436 struct scsi_device *sdev;
437 struct hpsa_scsi_dev_t *hdev;
438 unsigned long flags;
439
440 sdev = to_scsi_device(dev);
441 h = sdev_to_hba(sdev);
442 spin_lock_irqsave(&h->lock, flags);
443 hdev = sdev->hostdata;
444 if (!hdev) {
445 spin_unlock_irqrestore(&h->lock, flags);
446 return -ENODEV;
447 }
448
449 /* Is this even a logical drive? */
450 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
451 spin_unlock_irqrestore(&h->lock, flags);
452 l = snprintf(buf, PAGE_SIZE, "N/A\n");
453 return l;
454 }
455
456 rlevel = hdev->raid_level;
457 spin_unlock_irqrestore(&h->lock, flags);
458 if (rlevel < 0 || rlevel > RAID_UNKNOWN)
459 rlevel = RAID_UNKNOWN;
460 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
461 return l;
462}
463
464static ssize_t lunid_show(struct device *dev,
465 struct device_attribute *attr, char *buf)
466{
467 struct ctlr_info *h;
468 struct scsi_device *sdev;
469 struct hpsa_scsi_dev_t *hdev;
470 unsigned long flags;
471 unsigned char lunid[8];
472
473 sdev = to_scsi_device(dev);
474 h = sdev_to_hba(sdev);
475 spin_lock_irqsave(&h->lock, flags);
476 hdev = sdev->hostdata;
477 if (!hdev) {
478 spin_unlock_irqrestore(&h->lock, flags);
479 return -ENODEV;
480 }
481 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
482 spin_unlock_irqrestore(&h->lock, flags);
483 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
484 lunid[0], lunid[1], lunid[2], lunid[3],
485 lunid[4], lunid[5], lunid[6], lunid[7]);
486}
487
488static ssize_t unique_id_show(struct device *dev,
489 struct device_attribute *attr, char *buf)
490{
491 struct ctlr_info *h;
492 struct scsi_device *sdev;
493 struct hpsa_scsi_dev_t *hdev;
494 unsigned long flags;
495 unsigned char sn[16];
496
497 sdev = to_scsi_device(dev);
498 h = sdev_to_hba(sdev);
499 spin_lock_irqsave(&h->lock, flags);
500 hdev = sdev->hostdata;
501 if (!hdev) {
502 spin_unlock_irqrestore(&h->lock, flags);
503 return -ENODEV;
504 }
505 memcpy(sn, hdev->device_id, sizeof(sn));
506 spin_unlock_irqrestore(&h->lock, flags);
507 return snprintf(buf, 16 * 2 + 2,
508 "%02X%02X%02X%02X%02X%02X%02X%02X"
509 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
510 sn[0], sn[1], sn[2], sn[3],
511 sn[4], sn[5], sn[6], sn[7],
512 sn[8], sn[9], sn[10], sn[11],
513 sn[12], sn[13], sn[14], sn[15]);
514}
515
516static int hpsa_find_target_lun(struct ctlr_info *h,
517 unsigned char scsi3addr[], int bus, int *target, int *lun)
518{
519 /* finds an unused bus, target, lun for a new physical device
520 * assumes h->devlock is held
521 */
522 int i, found = 0;
523 DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
524
525 memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
526
527 for (i = 0; i < h->ndevices; i++) {
528 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
529 set_bit(h->dev[i]->target, lun_taken);
530 }
531
532 for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
533 if (!test_bit(i, lun_taken)) {
534 /* *bus = 1; */
535 *target = i;
536 *lun = 0;
537 found = 1;
538 break;
539 }
540 }
541 return !found;
542}
543
544/* Add an entry into h->dev[] array. */
545static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
546 struct hpsa_scsi_dev_t *device,
547 struct hpsa_scsi_dev_t *added[], int *nadded)
548{
549 /* assumes h->devlock is held */
550 int n = h->ndevices;
551 int i;
552 unsigned char addr1[8], addr2[8];
553 struct hpsa_scsi_dev_t *sd;
554
555 if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
556 dev_err(&h->pdev->dev, "too many devices, some will be "
557 "inaccessible.\n");
558 return -1;
559 }
560
561 /* physical devices do not have lun or target assigned until now. */
562 if (device->lun != -1)
563 /* Logical device, lun is already assigned. */
564 goto lun_assigned;
565
566 /* If this device a non-zero lun of a multi-lun device
567 * byte 4 of the 8-byte LUN addr will contain the logical
568 * unit no, zero otherise.
569 */
570 if (device->scsi3addr[4] == 0) {
571 /* This is not a non-zero lun of a multi-lun device */
572 if (hpsa_find_target_lun(h, device->scsi3addr,
573 device->bus, &device->target, &device->lun) != 0)
574 return -1;
575 goto lun_assigned;
576 }
577
578 /* This is a non-zero lun of a multi-lun device.
579 * Search through our list and find the device which
580 * has the same 8 byte LUN address, excepting byte 4.
581 * Assign the same bus and target for this new LUN.
582 * Use the logical unit number from the firmware.
583 */
584 memcpy(addr1, device->scsi3addr, 8);
585 addr1[4] = 0;
586 for (i = 0; i < n; i++) {
587 sd = h->dev[i];
588 memcpy(addr2, sd->scsi3addr, 8);
589 addr2[4] = 0;
590 /* differ only in byte 4? */
591 if (memcmp(addr1, addr2, 8) == 0) {
592 device->bus = sd->bus;
593 device->target = sd->target;
594 device->lun = device->scsi3addr[4];
595 break;
596 }
597 }
598 if (device->lun == -1) {
599 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
600 " suspect firmware bug or unsupported hardware "
601 "configuration.\n");
602 return -1;
603 }
604
605lun_assigned:
606
607 h->dev[n] = device;
608 h->ndevices++;
609 added[*nadded] = device;
610 (*nadded)++;
611
612 /* initially, (before registering with scsi layer) we don't
613 * know our hostno and we don't want to print anything first
614 * time anyway (the scsi layer's inquiries will show that info)
615 */
616 /* if (hostno != -1) */
617 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
618 scsi_device_type(device->devtype), hostno,
619 device->bus, device->target, device->lun);
620 return 0;
621}
622
623/* Remove an entry from h->dev[] array. */
624static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
625 struct hpsa_scsi_dev_t *removed[], int *nremoved)
626{
627 /* assumes h->devlock is held */
628 int i;
629 struct hpsa_scsi_dev_t *sd;
630
631 if (entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA)
632 BUG();
633
634 sd = h->dev[entry];
635 removed[*nremoved] = h->dev[entry];
636 (*nremoved)++;
637
638 for (i = entry; i < h->ndevices-1; i++)
639 h->dev[i] = h->dev[i+1];
640 h->ndevices--;
641 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
642 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
643 sd->lun);
644}
645
646#define SCSI3ADDR_EQ(a, b) ( \
647 (a)[7] == (b)[7] && \
648 (a)[6] == (b)[6] && \
649 (a)[5] == (b)[5] && \
650 (a)[4] == (b)[4] && \
651 (a)[3] == (b)[3] && \
652 (a)[2] == (b)[2] && \
653 (a)[1] == (b)[1] && \
654 (a)[0] == (b)[0])
655
656static void fixup_botched_add(struct ctlr_info *h,
657 struct hpsa_scsi_dev_t *added)
658{
659 /* called when scsi_add_device fails in order to re-adjust
660 * h->dev[] to match the mid layer's view.
661 */
662 unsigned long flags;
663 int i, j;
664
665 spin_lock_irqsave(&h->lock, flags);
666 for (i = 0; i < h->ndevices; i++) {
667 if (h->dev[i] == added) {
668 for (j = i; j < h->ndevices-1; j++)
669 h->dev[j] = h->dev[j+1];
670 h->ndevices--;
671 break;
672 }
673 }
674 spin_unlock_irqrestore(&h->lock, flags);
675 kfree(added);
676}
677
678static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
679 struct hpsa_scsi_dev_t *dev2)
680{
681 if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
682 (dev1->lun != -1 && dev2->lun != -1)) &&
683 dev1->devtype != 0x0C)
684 return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
685
686 /* we compare everything except lun and target as these
687 * are not yet assigned. Compare parts likely
688 * to differ first
689 */
690 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
691 sizeof(dev1->scsi3addr)) != 0)
692 return 0;
693 if (memcmp(dev1->device_id, dev2->device_id,
694 sizeof(dev1->device_id)) != 0)
695 return 0;
696 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
697 return 0;
698 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
699 return 0;
700 if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
701 return 0;
702 if (dev1->devtype != dev2->devtype)
703 return 0;
704 if (dev1->raid_level != dev2->raid_level)
705 return 0;
706 if (dev1->bus != dev2->bus)
707 return 0;
708 return 1;
709}
710
711/* Find needle in haystack. If exact match found, return DEVICE_SAME,
712 * and return needle location in *index. If scsi3addr matches, but not
713 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
714 * location in *index. If needle not found, return DEVICE_NOT_FOUND.
715 */
716static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
717 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
718 int *index)
719{
720 int i;
721#define DEVICE_NOT_FOUND 0
722#define DEVICE_CHANGED 1
723#define DEVICE_SAME 2
724 for (i = 0; i < haystack_size; i++) {
725 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
726 *index = i;
727 if (device_is_the_same(needle, haystack[i]))
728 return DEVICE_SAME;
729 else
730 return DEVICE_CHANGED;
731 }
732 }
733 *index = -1;
734 return DEVICE_NOT_FOUND;
735}
736
737static int adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
738 struct hpsa_scsi_dev_t *sd[], int nsds)
739{
740 /* sd contains scsi3 addresses and devtypes, and inquiry
741 * data. This function takes what's in sd to be the current
742 * reality and updates h->dev[] to reflect that reality.
743 */
744 int i, entry, device_change, changes = 0;
745 struct hpsa_scsi_dev_t *csd;
746 unsigned long flags;
747 struct hpsa_scsi_dev_t **added, **removed;
748 int nadded, nremoved;
749 struct Scsi_Host *sh = NULL;
750
751 added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
752 GFP_KERNEL);
753 removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
754 GFP_KERNEL);
755
756 if (!added || !removed) {
757 dev_warn(&h->pdev->dev, "out of memory in "
758 "adjust_hpsa_scsi_table\n");
759 goto free_and_out;
760 }
761
762 spin_lock_irqsave(&h->devlock, flags);
763
764 /* find any devices in h->dev[] that are not in
765 * sd[] and remove them from h->dev[], and for any
766 * devices which have changed, remove the old device
767 * info and add the new device info.
768 */
769 i = 0;
770 nremoved = 0;
771 nadded = 0;
772 while (i < h->ndevices) {
773 csd = h->dev[i];
774 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
775 if (device_change == DEVICE_NOT_FOUND) {
776 changes++;
777 hpsa_scsi_remove_entry(h, hostno, i,
778 removed, &nremoved);
779 continue; /* remove ^^^, hence i not incremented */
780 } else if (device_change == DEVICE_CHANGED) {
781 changes++;
782 hpsa_scsi_remove_entry(h, hostno, i,
783 removed, &nremoved);
784 (void) hpsa_scsi_add_entry(h, hostno, sd[entry],
785 added, &nadded);
786 /* add can't fail, we just removed one. */
787 sd[entry] = NULL; /* prevent it from being freed */
788 }
789 i++;
790 }
791
792 /* Now, make sure every device listed in sd[] is also
793 * listed in h->dev[], adding them if they aren't found
794 */
795
796 for (i = 0; i < nsds; i++) {
797 if (!sd[i]) /* if already added above. */
798 continue;
799 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
800 h->ndevices, &entry);
801 if (device_change == DEVICE_NOT_FOUND) {
802 changes++;
803 if (hpsa_scsi_add_entry(h, hostno, sd[i],
804 added, &nadded) != 0)
805 break;
806 sd[i] = NULL; /* prevent from being freed later. */
807 } else if (device_change == DEVICE_CHANGED) {
808 /* should never happen... */
809 changes++;
810 dev_warn(&h->pdev->dev,
811 "device unexpectedly changed.\n");
812 /* but if it does happen, we just ignore that device */
813 }
814 }
815 spin_unlock_irqrestore(&h->devlock, flags);
816
817 /* Don't notify scsi mid layer of any changes the first time through
818 * (or if there are no changes) scsi_scan_host will do it later the
819 * first time through.
820 */
821 if (hostno == -1 || !changes)
822 goto free_and_out;
823
824 sh = h->scsi_host;
825 /* Notify scsi mid layer of any removed devices */
826 for (i = 0; i < nremoved; i++) {
827 struct scsi_device *sdev =
828 scsi_device_lookup(sh, removed[i]->bus,
829 removed[i]->target, removed[i]->lun);
830 if (sdev != NULL) {
831 scsi_remove_device(sdev);
832 scsi_device_put(sdev);
833 } else {
834 /* We don't expect to get here.
835 * future cmds to this device will get selection
836 * timeout as if the device was gone.
837 */
838 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
839 " for removal.", hostno, removed[i]->bus,
840 removed[i]->target, removed[i]->lun);
841 }
842 kfree(removed[i]);
843 removed[i] = NULL;
844 }
845
846 /* Notify scsi mid layer of any added devices */
847 for (i = 0; i < nadded; i++) {
848 if (scsi_add_device(sh, added[i]->bus,
849 added[i]->target, added[i]->lun) == 0)
850 continue;
851 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
852 "device not added.\n", hostno, added[i]->bus,
853 added[i]->target, added[i]->lun);
854 /* now we have to remove it from h->dev,
855 * since it didn't get added to scsi mid layer
856 */
857 fixup_botched_add(h, added[i]);
858 }
859
860free_and_out:
861 kfree(added);
862 kfree(removed);
863 return 0;
864}
865
866/*
867 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
868 * Assume's h->devlock is held.
869 */
870static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
871 int bus, int target, int lun)
872{
873 int i;
874 struct hpsa_scsi_dev_t *sd;
875
876 for (i = 0; i < h->ndevices; i++) {
877 sd = h->dev[i];
878 if (sd->bus == bus && sd->target == target && sd->lun == lun)
879 return sd;
880 }
881 return NULL;
882}
883
884/* link sdev->hostdata to our per-device structure. */
885static int hpsa_slave_alloc(struct scsi_device *sdev)
886{
887 struct hpsa_scsi_dev_t *sd;
888 unsigned long flags;
889 struct ctlr_info *h;
890
891 h = sdev_to_hba(sdev);
892 spin_lock_irqsave(&h->devlock, flags);
893 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
894 sdev_id(sdev), sdev->lun);
895 if (sd != NULL)
896 sdev->hostdata = sd;
897 spin_unlock_irqrestore(&h->devlock, flags);
898 return 0;
899}
900
901static void hpsa_slave_destroy(struct scsi_device *sdev)
902{
903 return; /* nothing to do. */
904}
905
906static void hpsa_scsi_setup(struct ctlr_info *h)
907{
908 h->ndevices = 0;
909 h->scsi_host = NULL;
910 spin_lock_init(&h->devlock);
911 return;
912}
913
914static void complete_scsi_command(struct CommandList *cp,
915 int timeout, __u32 tag)
916{
917 struct scsi_cmnd *cmd;
918 struct ctlr_info *h;
919 struct ErrorInfo *ei;
920
921 unsigned char sense_key;
922 unsigned char asc; /* additional sense code */
923 unsigned char ascq; /* additional sense code qualifier */
924
925 ei = cp->err_info;
926 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
927 h = cp->h;
928
929 scsi_dma_unmap(cmd); /* undo the DMA mappings */
930
931 cmd->result = (DID_OK << 16); /* host byte */
932 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
933 cmd->result |= (ei->ScsiStatus << 1);
934
935 /* copy the sense data whether we need to or not. */
936 memcpy(cmd->sense_buffer, ei->SenseInfo,
937 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
938 SCSI_SENSE_BUFFERSIZE :
939 ei->SenseLen);
940 scsi_set_resid(cmd, ei->ResidualCnt);
941
942 if (ei->CommandStatus == 0) {
943 cmd->scsi_done(cmd);
944 cmd_free(h, cp);
945 return;
946 }
947
948 /* an error has occurred */
949 switch (ei->CommandStatus) {
950
951 case CMD_TARGET_STATUS:
952 if (ei->ScsiStatus) {
953 /* Get sense key */
954 sense_key = 0xf & ei->SenseInfo[2];
955 /* Get additional sense code */
956 asc = ei->SenseInfo[12];
957 /* Get addition sense code qualifier */
958 ascq = ei->SenseInfo[13];
959 }
960
961 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
962 if (check_for_unit_attention(h, cp)) {
963 cmd->result = DID_SOFT_ERROR << 16;
964 break;
965 }
966 if (sense_key == ILLEGAL_REQUEST) {
967 /*
968 * SCSI REPORT_LUNS is commonly unsupported on
969 * Smart Array. Suppress noisy complaint.
970 */
971 if (cp->Request.CDB[0] == REPORT_LUNS)
972 break;
973
974 /* If ASC/ASCQ indicate Logical Unit
975 * Not Supported condition,
976 */
977 if ((asc == 0x25) && (ascq == 0x0)) {
978 dev_warn(&h->pdev->dev, "cp %p "
979 "has check condition\n", cp);
980 break;
981 }
982 }
983
984 if (sense_key == NOT_READY) {
985 /* If Sense is Not Ready, Logical Unit
986 * Not ready, Manual Intervention
987 * required
988 */
989 if ((asc == 0x04) && (ascq == 0x03)) {
990 cmd->result = DID_NO_CONNECT << 16;
991 dev_warn(&h->pdev->dev, "cp %p "
992 "has check condition: unit "
993 "not ready, manual "
994 "intervention required\n", cp);
995 break;
996 }
997 }
998
999
1000 /* Must be some other type of check condition */
1001 dev_warn(&h->pdev->dev, "cp %p has check condition: "
1002 "unknown type: "
1003 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1004 "Returning result: 0x%x, "
1005 "cmd=[%02x %02x %02x %02x %02x "
1006 "%02x %02x %02x %02x %02x]\n",
1007 cp, sense_key, asc, ascq,
1008 cmd->result,
1009 cmd->cmnd[0], cmd->cmnd[1],
1010 cmd->cmnd[2], cmd->cmnd[3],
1011 cmd->cmnd[4], cmd->cmnd[5],
1012 cmd->cmnd[6], cmd->cmnd[7],
1013 cmd->cmnd[8], cmd->cmnd[9]);
1014 break;
1015 }
1016
1017
1018 /* Problem was not a check condition
1019 * Pass it up to the upper layers...
1020 */
1021 if (ei->ScsiStatus) {
1022 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1023 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1024 "Returning result: 0x%x\n",
1025 cp, ei->ScsiStatus,
1026 sense_key, asc, ascq,
1027 cmd->result);
1028 } else { /* scsi status is zero??? How??? */
1029 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1030 "Returning no connection.\n", cp),
1031
1032 /* Ordinarily, this case should never happen,
1033 * but there is a bug in some released firmware
1034 * revisions that allows it to happen if, for
1035 * example, a 4100 backplane loses power and
1036 * the tape drive is in it. We assume that
1037 * it's a fatal error of some kind because we
1038 * can't show that it wasn't. We will make it
1039 * look like selection timeout since that is
1040 * the most common reason for this to occur,
1041 * and it's severe enough.
1042 */
1043
1044 cmd->result = DID_NO_CONNECT << 16;
1045 }
1046 break;
1047
1048 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1049 break;
1050 case CMD_DATA_OVERRUN:
1051 dev_warn(&h->pdev->dev, "cp %p has"
1052 " completed with data overrun "
1053 "reported\n", cp);
1054 break;
1055 case CMD_INVALID: {
1056 /* print_bytes(cp, sizeof(*cp), 1, 0);
1057 print_cmd(cp); */
1058 /* We get CMD_INVALID if you address a non-existent device
1059 * instead of a selection timeout (no response). You will
1060 * see this if you yank out a drive, then try to access it.
1061 * This is kind of a shame because it means that any other
1062 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1063 * missing target. */
1064 cmd->result = DID_NO_CONNECT << 16;
1065 }
1066 break;
1067 case CMD_PROTOCOL_ERR:
1068 dev_warn(&h->pdev->dev, "cp %p has "
1069 "protocol error \n", cp);
1070 break;
1071 case CMD_HARDWARE_ERR:
1072 cmd->result = DID_ERROR << 16;
1073 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1074 break;
1075 case CMD_CONNECTION_LOST:
1076 cmd->result = DID_ERROR << 16;
1077 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1078 break;
1079 case CMD_ABORTED:
1080 cmd->result = DID_ABORT << 16;
1081 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1082 cp, ei->ScsiStatus);
1083 break;
1084 case CMD_ABORT_FAILED:
1085 cmd->result = DID_ERROR << 16;
1086 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1087 break;
1088 case CMD_UNSOLICITED_ABORT:
1089 cmd->result = DID_ABORT << 16;
1090 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1091 "abort\n", cp);
1092 break;
1093 case CMD_TIMEOUT:
1094 cmd->result = DID_TIME_OUT << 16;
1095 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1096 break;
1097 default:
1098 cmd->result = DID_ERROR << 16;
1099 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1100 cp, ei->CommandStatus);
1101 }
1102 cmd->scsi_done(cmd);
1103 cmd_free(h, cp);
1104}
1105
1106static int hpsa_scsi_detect(struct ctlr_info *h)
1107{
1108 struct Scsi_Host *sh;
1109 int error;
1110
1111 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1112 if (sh == NULL)
1113 goto fail;
1114
1115 sh->io_port = 0;
1116 sh->n_io_port = 0;
1117 sh->this_id = -1;
1118 sh->max_channel = 3;
1119 sh->max_cmd_len = MAX_COMMAND_SIZE;
1120 sh->max_lun = HPSA_MAX_LUN;
1121 sh->max_id = HPSA_MAX_LUN;
1122 h->scsi_host = sh;
1123 sh->hostdata[0] = (unsigned long) h;
1124 sh->irq = h->intr[SIMPLE_MODE_INT];
1125 sh->unique_id = sh->irq;
1126 error = scsi_add_host(sh, &h->pdev->dev);
1127 if (error)
1128 goto fail_host_put;
1129 scsi_scan_host(sh);
1130 return 0;
1131
1132 fail_host_put:
1133 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1134 " failed for controller %d\n", h->ctlr);
1135 scsi_host_put(sh);
1136 return -1;
1137 fail:
1138 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1139 " failed for controller %d\n", h->ctlr);
1140 return -1;
1141}
1142
1143static void hpsa_pci_unmap(struct pci_dev *pdev,
1144 struct CommandList *c, int sg_used, int data_direction)
1145{
1146 int i;
1147 union u64bit addr64;
1148
1149 for (i = 0; i < sg_used; i++) {
1150 addr64.val32.lower = c->SG[i].Addr.lower;
1151 addr64.val32.upper = c->SG[i].Addr.upper;
1152 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1153 data_direction);
1154 }
1155}
1156
1157static void hpsa_map_one(struct pci_dev *pdev,
1158 struct CommandList *cp,
1159 unsigned char *buf,
1160 size_t buflen,
1161 int data_direction)
1162{
1163 __u64 addr64;
1164
1165 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1166 cp->Header.SGList = 0;
1167 cp->Header.SGTotal = 0;
1168 return;
1169 }
1170
1171 addr64 = (__u64) pci_map_single(pdev, buf, buflen, data_direction);
1172 cp->SG[0].Addr.lower =
1173 (__u32) (addr64 & (__u64) 0x00000000FFFFFFFF);
1174 cp->SG[0].Addr.upper =
1175 (__u32) ((addr64 >> 32) & (__u64) 0x00000000FFFFFFFF);
1176 cp->SG[0].Len = buflen;
1177 cp->Header.SGList = (__u8) 1; /* no. SGs contig in this cmd */
1178 cp->Header.SGTotal = (__u16) 1; /* total sgs in this cmd list */
1179}
1180
1181static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1182 struct CommandList *c)
1183{
1184 DECLARE_COMPLETION_ONSTACK(wait);
1185
1186 c->waiting = &wait;
1187 enqueue_cmd_and_start_io(h, c);
1188 wait_for_completion(&wait);
1189}
1190
1191static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1192 struct CommandList *c, int data_direction)
1193{
1194 int retry_count = 0;
1195
1196 do {
1197 memset(c->err_info, 0, sizeof(c->err_info));
1198 hpsa_scsi_do_simple_cmd_core(h, c);
1199 retry_count++;
1200 } while (check_for_unit_attention(h, c) && retry_count <= 3);
1201 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1202}
1203
1204static void hpsa_scsi_interpret_error(struct CommandList *cp)
1205{
1206 struct ErrorInfo *ei;
1207 struct device *d = &cp->h->pdev->dev;
1208
1209 ei = cp->err_info;
1210 switch (ei->CommandStatus) {
1211 case CMD_TARGET_STATUS:
1212 dev_warn(d, "cmd %p has completed with errors\n", cp);
1213 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1214 ei->ScsiStatus);
1215 if (ei->ScsiStatus == 0)
1216 dev_warn(d, "SCSI status is abnormally zero. "
1217 "(probably indicates selection timeout "
1218 "reported incorrectly due to a known "
1219 "firmware bug, circa July, 2001.)\n");
1220 break;
1221 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1222 dev_info(d, "UNDERRUN\n");
1223 break;
1224 case CMD_DATA_OVERRUN:
1225 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1226 break;
1227 case CMD_INVALID: {
1228 /* controller unfortunately reports SCSI passthru's
1229 * to non-existent targets as invalid commands.
1230 */
1231 dev_warn(d, "cp %p is reported invalid (probably means "
1232 "target device no longer present)\n", cp);
1233 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1234 print_cmd(cp); */
1235 }
1236 break;
1237 case CMD_PROTOCOL_ERR:
1238 dev_warn(d, "cp %p has protocol error \n", cp);
1239 break;
1240 case CMD_HARDWARE_ERR:
1241 /* cmd->result = DID_ERROR << 16; */
1242 dev_warn(d, "cp %p had hardware error\n", cp);
1243 break;
1244 case CMD_CONNECTION_LOST:
1245 dev_warn(d, "cp %p had connection lost\n", cp);
1246 break;
1247 case CMD_ABORTED:
1248 dev_warn(d, "cp %p was aborted\n", cp);
1249 break;
1250 case CMD_ABORT_FAILED:
1251 dev_warn(d, "cp %p reports abort failed\n", cp);
1252 break;
1253 case CMD_UNSOLICITED_ABORT:
1254 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1255 break;
1256 case CMD_TIMEOUT:
1257 dev_warn(d, "cp %p timed out\n", cp);
1258 break;
1259 default:
1260 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1261 ei->CommandStatus);
1262 }
1263}
1264
1265static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1266 unsigned char page, unsigned char *buf,
1267 unsigned char bufsize)
1268{
1269 int rc = IO_OK;
1270 struct CommandList *c;
1271 struct ErrorInfo *ei;
1272
1273 c = cmd_special_alloc(h);
1274
1275 if (c == NULL) { /* trouble... */
1276 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1277 return -1;
1278 }
1279
1280 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1281 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1282 ei = c->err_info;
1283 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1284 hpsa_scsi_interpret_error(c);
1285 rc = -1;
1286 }
1287 cmd_special_free(h, c);
1288 return rc;
1289}
1290
1291static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1292{
1293 int rc = IO_OK;
1294 struct CommandList *c;
1295 struct ErrorInfo *ei;
1296
1297 c = cmd_special_alloc(h);
1298
1299 if (c == NULL) { /* trouble... */
1300 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1301 return -1;
1302 }
1303
1304 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1305 hpsa_scsi_do_simple_cmd_core(h, c);
1306 /* no unmap needed here because no data xfer. */
1307
1308 ei = c->err_info;
1309 if (ei->CommandStatus != 0) {
1310 hpsa_scsi_interpret_error(c);
1311 rc = -1;
1312 }
1313 cmd_special_free(h, c);
1314 return rc;
1315}
1316
1317static void hpsa_get_raid_level(struct ctlr_info *h,
1318 unsigned char *scsi3addr, unsigned char *raid_level)
1319{
1320 int rc;
1321 unsigned char *buf;
1322
1323 *raid_level = RAID_UNKNOWN;
1324 buf = kzalloc(64, GFP_KERNEL);
1325 if (!buf)
1326 return;
1327 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1328 if (rc == 0)
1329 *raid_level = buf[8];
1330 if (*raid_level > RAID_UNKNOWN)
1331 *raid_level = RAID_UNKNOWN;
1332 kfree(buf);
1333 return;
1334}
1335
1336/* Get the device id from inquiry page 0x83 */
1337static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1338 unsigned char *device_id, int buflen)
1339{
1340 int rc;
1341 unsigned char *buf;
1342
1343 if (buflen > 16)
1344 buflen = 16;
1345 buf = kzalloc(64, GFP_KERNEL);
1346 if (!buf)
1347 return -1;
1348 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1349 if (rc == 0)
1350 memcpy(device_id, &buf[8], buflen);
1351 kfree(buf);
1352 return rc != 0;
1353}
1354
1355static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1356 struct ReportLUNdata *buf, int bufsize,
1357 int extended_response)
1358{
1359 int rc = IO_OK;
1360 struct CommandList *c;
1361 unsigned char scsi3addr[8];
1362 struct ErrorInfo *ei;
1363
1364 c = cmd_special_alloc(h);
1365 if (c == NULL) { /* trouble... */
1366 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1367 return -1;
1368 }
1369
1370 memset(&scsi3addr[0], 0, 8); /* address the controller */
1371
1372 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1373 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1374 if (extended_response)
1375 c->Request.CDB[1] = extended_response;
1376 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1377 ei = c->err_info;
1378 if (ei->CommandStatus != 0 &&
1379 ei->CommandStatus != CMD_DATA_UNDERRUN) {
1380 hpsa_scsi_interpret_error(c);
1381 rc = -1;
1382 }
1383 cmd_special_free(h, c);
1384 return rc;
1385}
1386
1387static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1388 struct ReportLUNdata *buf,
1389 int bufsize, int extended_response)
1390{
1391 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1392}
1393
1394static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1395 struct ReportLUNdata *buf, int bufsize)
1396{
1397 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1398}
1399
1400static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1401 int bus, int target, int lun)
1402{
1403 device->bus = bus;
1404 device->target = target;
1405 device->lun = lun;
1406}
1407
1408static int hpsa_update_device_info(struct ctlr_info *h,
1409 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1410{
1411#define OBDR_TAPE_INQ_SIZE 49
1412 unsigned char *inq_buff = NULL;
1413
1414 inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1415 if (!inq_buff)
1416 goto bail_out;
1417
1418 memset(inq_buff, 0, OBDR_TAPE_INQ_SIZE);
1419 /* Do an inquiry to the device to see what it is. */
1420 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1421 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1422 /* Inquiry failed (msg printed already) */
1423 dev_err(&h->pdev->dev,
1424 "hpsa_update_device_info: inquiry failed\n");
1425 goto bail_out;
1426 }
1427
1428 /* As a side effect, record the firmware version number
1429 * if we happen to be talking to the RAID controller.
1430 */
1431 if (is_hba_lunid(scsi3addr))
1432 memcpy(h->firm_ver, &inq_buff[32], 4);
1433
1434 this_device->devtype = (inq_buff[0] & 0x1f);
1435 memcpy(this_device->scsi3addr, scsi3addr, 8);
1436 memcpy(this_device->vendor, &inq_buff[8],
1437 sizeof(this_device->vendor));
1438 memcpy(this_device->model, &inq_buff[16],
1439 sizeof(this_device->model));
1440 memcpy(this_device->revision, &inq_buff[32],
1441 sizeof(this_device->revision));
1442 memset(this_device->device_id, 0,
1443 sizeof(this_device->device_id));
1444 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1445 sizeof(this_device->device_id));
1446
1447 if (this_device->devtype == TYPE_DISK &&
1448 is_logical_dev_addr_mode(scsi3addr))
1449 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1450 else
1451 this_device->raid_level = RAID_UNKNOWN;
1452
1453 kfree(inq_buff);
1454 return 0;
1455
1456bail_out:
1457 kfree(inq_buff);
1458 return 1;
1459}
1460
1461static unsigned char *msa2xxx_model[] = {
1462 "MSA2012",
1463 "MSA2024",
1464 "MSA2312",
1465 "MSA2324",
1466 NULL,
1467};
1468
1469static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1470{
1471 int i;
1472
1473 for (i = 0; msa2xxx_model[i]; i++)
1474 if (strncmp(device->model, msa2xxx_model[i],
1475 strlen(msa2xxx_model[i])) == 0)
1476 return 1;
1477 return 0;
1478}
1479
1480/* Helper function to assign bus, target, lun mapping of devices.
1481 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1482 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1483 * Logical drive target and lun are assigned at this time, but
1484 * physical device lun and target assignment are deferred (assigned
1485 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1486 */
1487static void figure_bus_target_lun(struct ctlr_info *h,
1488 __u8 *lunaddrbytes, int *bus, int *target, int *lun,
1489 struct hpsa_scsi_dev_t *device)
1490{
1491
1492 __u32 lunid;
1493
1494 if (is_logical_dev_addr_mode(lunaddrbytes)) {
1495 /* logical device */
1496 memcpy(&lunid, lunaddrbytes, sizeof(lunid));
1497 lunid = le32_to_cpu(lunid);
1498
1499 if (is_msa2xxx(h, device)) {
1500 *bus = 1;
1501 *target = (lunid >> 16) & 0x3fff;
1502 *lun = lunid & 0x00ff;
1503 } else {
1504 *bus = 0;
1505 *lun = 0;
1506 *target = lunid & 0x3fff;
1507 }
1508 } else {
1509 /* physical device */
1510 if (is_hba_lunid(lunaddrbytes))
1511 *bus = 3;
1512 else
1513 *bus = 2;
1514 *target = -1;
1515 *lun = -1; /* we will fill these in later. */
1516 }
1517}
1518
1519/*
1520 * If there is no lun 0 on a target, linux won't find any devices.
1521 * For the MSA2xxx boxes, we have to manually detect the enclosure
1522 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1523 * it for some reason. *tmpdevice is the target we're adding,
1524 * this_device is a pointer into the current element of currentsd[]
1525 * that we're building up in update_scsi_devices(), below.
1526 * lunzerobits is a bitmap that tracks which targets already have a
1527 * lun 0 assigned.
1528 * Returns 1 if an enclosure was added, 0 if not.
1529 */
1530static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1531 struct hpsa_scsi_dev_t *tmpdevice,
1532 struct hpsa_scsi_dev_t *this_device, __u8 *lunaddrbytes,
1533 int bus, int target, int lun, unsigned long lunzerobits[],
1534 int *nmsa2xxx_enclosures)
1535{
1536 unsigned char scsi3addr[8];
1537
1538 if (test_bit(target, lunzerobits))
1539 return 0; /* There is already a lun 0 on this target. */
1540
1541 if (!is_logical_dev_addr_mode(lunaddrbytes))
1542 return 0; /* It's the logical targets that may lack lun 0. */
1543
1544 if (!is_msa2xxx(h, tmpdevice))
1545 return 0; /* It's only the MSA2xxx that have this problem. */
1546
1547 if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1548 return 0;
1549
1550 if (is_hba_lunid(scsi3addr))
1551 return 0; /* Don't add the RAID controller here. */
1552
1553#define MAX_MSA2XXX_ENCLOSURES 32
1554 if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1555 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1556 "enclosures exceeded. Check your hardware "
1557 "configuration.");
1558 return 0;
1559 }
1560
1561 memset(scsi3addr, 0, 8);
1562 scsi3addr[3] = target;
1563 if (hpsa_update_device_info(h, scsi3addr, this_device))
1564 return 0;
1565 (*nmsa2xxx_enclosures)++;
1566 hpsa_set_bus_target_lun(this_device, bus, target, 0);
1567 set_bit(target, lunzerobits);
1568 return 1;
1569}
1570
1571/*
1572 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1573 * logdev. The number of luns in physdev and logdev are returned in
1574 * *nphysicals and *nlogicals, respectively.
1575 * Returns 0 on success, -1 otherwise.
1576 */
1577static int hpsa_gather_lun_info(struct ctlr_info *h,
1578 int reportlunsize,
1579 struct ReportLUNdata *physdev, __u32 *nphysicals,
1580 struct ReportLUNdata *logdev, __u32 *nlogicals)
1581{
1582 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1583 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1584 return -1;
1585 }
1586 memcpy(nphysicals, &physdev->LUNListLength[0], sizeof(*nphysicals));
1587 *nphysicals = be32_to_cpu(*nphysicals) / 8;
1588#ifdef DEBUG
1589 dev_info(&h->pdev->dev, "number of physical luns is %d\n", *nphysicals);
1590#endif
1591 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1592 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1593 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1594 *nphysicals - HPSA_MAX_PHYS_LUN);
1595 *nphysicals = HPSA_MAX_PHYS_LUN;
1596 }
1597 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1598 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1599 return -1;
1600 }
1601 memcpy(nlogicals, &logdev->LUNListLength[0], sizeof(*nlogicals));
1602 *nlogicals = be32_to_cpu(*nlogicals) / 8;
1603#ifdef DEBUG
1604 dev_info(&h->pdev->dev, "number of logical luns is %d\n", *nlogicals);
1605#endif
1606 /* Reject Logicals in excess of our max capability. */
1607 if (*nlogicals > HPSA_MAX_LUN) {
1608 dev_warn(&h->pdev->dev,
1609 "maximum logical LUNs (%d) exceeded. "
1610 "%d LUNs ignored.\n", HPSA_MAX_LUN,
1611 *nlogicals - HPSA_MAX_LUN);
1612 *nlogicals = HPSA_MAX_LUN;
1613 }
1614 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1615 dev_warn(&h->pdev->dev,
1616 "maximum logical + physical LUNs (%d) exceeded. "
1617 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1618 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1619 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1620 }
1621 return 0;
1622}
1623
1624static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1625{
1626 /* the idea here is we could get notified
1627 * that some devices have changed, so we do a report
1628 * physical luns and report logical luns cmd, and adjust
1629 * our list of devices accordingly.
1630 *
1631 * The scsi3addr's of devices won't change so long as the
1632 * adapter is not reset. That means we can rescan and
1633 * tell which devices we already know about, vs. new
1634 * devices, vs. disappearing devices.
1635 */
1636 struct ReportLUNdata *physdev_list = NULL;
1637 struct ReportLUNdata *logdev_list = NULL;
1638 unsigned char *inq_buff = NULL;
1639 __u32 nphysicals = 0;
1640 __u32 nlogicals = 0;
1641 __u32 ndev_allocated = 0;
1642 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1643 int ncurrent = 0;
1644 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1645 int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1646 int bus, target, lun;
1647 DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1648
1649 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1650 GFP_KERNEL);
1651 physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1652 logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1653 inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1654 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1655
1656 if (!currentsd || !physdev_list || !logdev_list ||
1657 !inq_buff || !tmpdevice) {
1658 dev_err(&h->pdev->dev, "out of memory\n");
1659 goto out;
1660 }
1661 memset(lunzerobits, 0, sizeof(lunzerobits));
1662
1663 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1664 logdev_list, &nlogicals))
1665 goto out;
1666
1667 /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1668 * but each of them 4 times through different paths. The plus 1
1669 * is for the RAID controller.
1670 */
1671 ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1672
1673 /* Allocate the per device structures */
1674 for (i = 0; i < ndevs_to_allocate; i++) {
1675 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1676 if (!currentsd[i]) {
1677 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1678 __FILE__, __LINE__);
1679 goto out;
1680 }
1681 ndev_allocated++;
1682 }
1683
1684 /* adjust our table of devices */
1685 nmsa2xxx_enclosures = 0;
1686 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1687 __u8 *lunaddrbytes;
1688
1689 /* Figure out where the LUN ID info is coming from */
1690 if (i < nphysicals)
1691 lunaddrbytes = &physdev_list->LUN[i][0];
1692 else
1693 if (i < nphysicals + nlogicals)
1694 lunaddrbytes =
1695 &logdev_list->LUN[i-nphysicals][0];
1696 else /* jam in the RAID controller at the end */
1697 lunaddrbytes = RAID_CTLR_LUNID;
1698
1699 /* skip masked physical devices. */
1700 if (lunaddrbytes[3] & 0xC0 && i < nphysicals)
1701 continue;
1702
1703 /* Get device type, vendor, model, device id */
1704 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1705 continue; /* skip it if we can't talk to it. */
1706 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1707 tmpdevice);
1708 this_device = currentsd[ncurrent];
1709
1710 /*
1711 * For the msa2xxx boxes, we have to insert a LUN 0 which
1712 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1713 * is nonetheless an enclosure device there. We have to
1714 * present that otherwise linux won't find anything if
1715 * there is no lun 0.
1716 */
1717 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1718 lunaddrbytes, bus, target, lun, lunzerobits,
1719 &nmsa2xxx_enclosures)) {
1720 ncurrent++;
1721 this_device = currentsd[ncurrent];
1722 }
1723
1724 *this_device = *tmpdevice;
1725 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1726
1727 switch (this_device->devtype) {
1728 case TYPE_ROM: {
1729 /* We don't *really* support actual CD-ROM devices,
1730 * just "One Button Disaster Recovery" tape drive
1731 * which temporarily pretends to be a CD-ROM drive.
1732 * So we check that the device is really an OBDR tape
1733 * device by checking for "$DR-10" in bytes 43-48 of
1734 * the inquiry data.
1735 */
1736 char obdr_sig[7];
1737#define OBDR_TAPE_SIG "$DR-10"
1738 strncpy(obdr_sig, &inq_buff[43], 6);
1739 obdr_sig[6] = '\0';
1740 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1741 /* Not OBDR device, ignore it. */
1742 break;
1743 }
1744 ncurrent++;
1745 break;
1746 case TYPE_DISK:
1747 if (i < nphysicals)
1748 break;
1749 ncurrent++;
1750 break;
1751 case TYPE_TAPE:
1752 case TYPE_MEDIUM_CHANGER:
1753 ncurrent++;
1754 break;
1755 case TYPE_RAID:
1756 /* Only present the Smartarray HBA as a RAID controller.
1757 * If it's a RAID controller other than the HBA itself
1758 * (an external RAID controller, MSA500 or similar)
1759 * don't present it.
1760 */
1761 if (!is_hba_lunid(lunaddrbytes))
1762 break;
1763 ncurrent++;
1764 break;
1765 default:
1766 break;
1767 }
1768 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1769 break;
1770 }
1771 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1772out:
1773 kfree(tmpdevice);
1774 for (i = 0; i < ndev_allocated; i++)
1775 kfree(currentsd[i]);
1776 kfree(currentsd);
1777 kfree(inq_buff);
1778 kfree(physdev_list);
1779 kfree(logdev_list);
1780 return;
1781}
1782
1783/* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1784 * dma mapping and fills in the scatter gather entries of the
1785 * hpsa command, cp.
1786 */
1787static int hpsa_scatter_gather(struct pci_dev *pdev,
1788 struct CommandList *cp,
1789 struct scsi_cmnd *cmd)
1790{
1791 unsigned int len;
1792 struct scatterlist *sg;
1793 __u64 addr64;
1794 int use_sg, i;
1795
1796 BUG_ON(scsi_sg_count(cmd) > MAXSGENTRIES);
1797
1798 use_sg = scsi_dma_map(cmd);
1799 if (use_sg < 0)
1800 return use_sg;
1801
1802 if (!use_sg)
1803 goto sglist_finished;
1804
1805 scsi_for_each_sg(cmd, sg, use_sg, i) {
1806 addr64 = (__u64) sg_dma_address(sg);
1807 len = sg_dma_len(sg);
1808 cp->SG[i].Addr.lower =
1809 (__u32) (addr64 & (__u64) 0x00000000FFFFFFFF);
1810 cp->SG[i].Addr.upper =
1811 (__u32) ((addr64 >> 32) & (__u64) 0x00000000FFFFFFFF);
1812 cp->SG[i].Len = len;
1813 cp->SG[i].Ext = 0; /* we are not chaining */
1814 }
1815
1816sglist_finished:
1817
1818 cp->Header.SGList = (__u8) use_sg; /* no. SGs contig in this cmd */
1819 cp->Header.SGTotal = (__u16) use_sg; /* total sgs in this cmd list */
1820 return 0;
1821}
1822
1823
1824static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
1825 void (*done)(struct scsi_cmnd *))
1826{
1827 struct ctlr_info *h;
1828 struct hpsa_scsi_dev_t *dev;
1829 unsigned char scsi3addr[8];
1830 struct CommandList *c;
1831 unsigned long flags;
1832
1833 /* Get the ptr to our adapter structure out of cmd->host. */
1834 h = sdev_to_hba(cmd->device);
1835 dev = cmd->device->hostdata;
1836 if (!dev) {
1837 cmd->result = DID_NO_CONNECT << 16;
1838 done(cmd);
1839 return 0;
1840 }
1841 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1842
1843 /* Need a lock as this is being allocated from the pool */
1844 spin_lock_irqsave(&h->lock, flags);
1845 c = cmd_alloc(h);
1846 spin_unlock_irqrestore(&h->lock, flags);
1847 if (c == NULL) { /* trouble... */
1848 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1849 return SCSI_MLQUEUE_HOST_BUSY;
1850 }
1851
1852 /* Fill in the command list header */
1853
1854 cmd->scsi_done = done; /* save this for use by completion code */
1855
1856 /* save c in case we have to abort it */
1857 cmd->host_scribble = (unsigned char *) c;
1858
1859 c->cmd_type = CMD_SCSI;
1860 c->scsi_cmd = cmd;
1861 c->Header.ReplyQueue = 0; /* unused in simple mode */
1862 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1863 c->Header.Tag.lower = c->busaddr; /* Use k. address of cmd as tag */
1864
1865 /* Fill in the request block... */
1866
1867 c->Request.Timeout = 0;
1868 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1869 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1870 c->Request.CDBLen = cmd->cmd_len;
1871 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1872 c->Request.Type.Type = TYPE_CMD;
1873 c->Request.Type.Attribute = ATTR_SIMPLE;
1874 switch (cmd->sc_data_direction) {
1875 case DMA_TO_DEVICE:
1876 c->Request.Type.Direction = XFER_WRITE;
1877 break;
1878 case DMA_FROM_DEVICE:
1879 c->Request.Type.Direction = XFER_READ;
1880 break;
1881 case DMA_NONE:
1882 c->Request.Type.Direction = XFER_NONE;
1883 break;
1884 case DMA_BIDIRECTIONAL:
1885 /* This can happen if a buggy application does a scsi passthru
1886 * and sets both inlen and outlen to non-zero. ( see
1887 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1888 */
1889
1890 c->Request.Type.Direction = XFER_RSVD;
1891 /* This is technically wrong, and hpsa controllers should
1892 * reject it with CMD_INVALID, which is the most correct
1893 * response, but non-fibre backends appear to let it
1894 * slide by, and give the same results as if this field
1895 * were set correctly. Either way is acceptable for
1896 * our purposes here.
1897 */
1898
1899 break;
1900
1901 default:
1902 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
1903 cmd->sc_data_direction);
1904 BUG();
1905 break;
1906 }
1907
1908 if (hpsa_scatter_gather(h->pdev, c, cmd) < 0) { /* Fill SG list */
1909 cmd_free(h, c);
1910 return SCSI_MLQUEUE_HOST_BUSY;
1911 }
1912 enqueue_cmd_and_start_io(h, c);
1913 /* the cmd'll come back via intr handler in complete_scsi_command() */
1914 return 0;
1915}
1916
1917static void hpsa_unregister_scsi(struct ctlr_info *h)
1918{
1919 /* we are being forcibly unloaded, and may not refuse. */
1920 scsi_remove_host(h->scsi_host);
1921 scsi_host_put(h->scsi_host);
1922 h->scsi_host = NULL;
1923}
1924
1925static int hpsa_register_scsi(struct ctlr_info *h)
1926{
1927 int rc;
1928
1929 hpsa_update_scsi_devices(h, -1);
1930 rc = hpsa_scsi_detect(h);
1931 if (rc != 0)
1932 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
1933 " hpsa_scsi_detect(), rc is %d\n", rc);
1934 return rc;
1935}
1936
1937static int wait_for_device_to_become_ready(struct ctlr_info *h,
1938 unsigned char lunaddr[])
1939{
1940 int rc = 0;
1941 int count = 0;
1942 int waittime = 1; /* seconds */
1943 struct CommandList *c;
1944
1945 c = cmd_special_alloc(h);
1946 if (!c) {
1947 dev_warn(&h->pdev->dev, "out of memory in "
1948 "wait_for_device_to_become_ready.\n");
1949 return IO_ERROR;
1950 }
1951
1952 /* Send test unit ready until device ready, or give up. */
1953 while (count < HPSA_TUR_RETRY_LIMIT) {
1954
1955 /* Wait for a bit. do this first, because if we send
1956 * the TUR right away, the reset will just abort it.
1957 */
1958 msleep(1000 * waittime);
1959 count++;
1960
1961 /* Increase wait time with each try, up to a point. */
1962 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
1963 waittime = waittime * 2;
1964
1965 /* Send the Test Unit Ready */
1966 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
1967 hpsa_scsi_do_simple_cmd_core(h, c);
1968 /* no unmap needed here because no data xfer. */
1969
1970 if (c->err_info->CommandStatus == CMD_SUCCESS)
1971 break;
1972
1973 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1974 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
1975 (c->err_info->SenseInfo[2] == NO_SENSE ||
1976 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
1977 break;
1978
1979 dev_warn(&h->pdev->dev, "waiting %d secs "
1980 "for device to become ready.\n", waittime);
1981 rc = 1; /* device not ready. */
1982 }
1983
1984 if (rc)
1985 dev_warn(&h->pdev->dev, "giving up on device.\n");
1986 else
1987 dev_warn(&h->pdev->dev, "device is ready.\n");
1988
1989 cmd_special_free(h, c);
1990 return rc;
1991}
1992
1993/* Need at least one of these error handlers to keep ../scsi/hosts.c from
1994 * complaining. Doing a host- or bus-reset can't do anything good here.
1995 */
1996static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
1997{
1998 int rc;
1999 struct ctlr_info *h;
2000 struct hpsa_scsi_dev_t *dev;
2001
2002 /* find the controller to which the command to be aborted was sent */
2003 h = sdev_to_hba(scsicmd->device);
2004 if (h == NULL) /* paranoia */
2005 return FAILED;
2006 dev_warn(&h->pdev->dev, "resetting drive\n");
2007
2008 dev = scsicmd->device->hostdata;
2009 if (!dev) {
2010 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2011 "device lookup failed.\n");
2012 return FAILED;
2013 }
2014 /* send a reset to the SCSI LUN which the command was sent to */
2015 rc = hpsa_send_reset(h, dev->scsi3addr);
2016 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2017 return SUCCESS;
2018
2019 dev_warn(&h->pdev->dev, "resetting device failed.\n");
2020 return FAILED;
2021}
2022
2023/*
2024 * For operations that cannot sleep, a command block is allocated at init,
2025 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2026 * which ones are free or in use. Lock must be held when calling this.
2027 * cmd_free() is the complement.
2028 */
2029static struct CommandList *cmd_alloc(struct ctlr_info *h)
2030{
2031 struct CommandList *c;
2032 int i;
2033 union u64bit temp64;
2034 dma_addr_t cmd_dma_handle, err_dma_handle;
2035
2036 do {
2037 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2038 if (i == h->nr_cmds)
2039 return NULL;
2040 } while (test_and_set_bit
2041 (i & (BITS_PER_LONG - 1),
2042 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2043 c = h->cmd_pool + i;
2044 memset(c, 0, sizeof(*c));
2045 cmd_dma_handle = h->cmd_pool_dhandle
2046 + i * sizeof(*c);
2047 c->err_info = h->errinfo_pool + i;
2048 memset(c->err_info, 0, sizeof(*c->err_info));
2049 err_dma_handle = h->errinfo_pool_dhandle
2050 + i * sizeof(*c->err_info);
2051 h->nr_allocs++;
2052
2053 c->cmdindex = i;
2054
2055 INIT_HLIST_NODE(&c->list);
2056 c->busaddr = (__u32) cmd_dma_handle;
2057 temp64.val = (__u64) err_dma_handle;
2058 c->ErrDesc.Addr.lower = temp64.val32.lower;
2059 c->ErrDesc.Addr.upper = temp64.val32.upper;
2060 c->ErrDesc.Len = sizeof(*c->err_info);
2061
2062 c->h = h;
2063 return c;
2064}
2065
2066/* For operations that can wait for kmalloc to possibly sleep,
2067 * this routine can be called. Lock need not be held to call
2068 * cmd_special_alloc. cmd_special_free() is the complement.
2069 */
2070static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2071{
2072 struct CommandList *c;
2073 union u64bit temp64;
2074 dma_addr_t cmd_dma_handle, err_dma_handle;
2075
2076 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2077 if (c == NULL)
2078 return NULL;
2079 memset(c, 0, sizeof(*c));
2080
2081 c->cmdindex = -1;
2082
2083 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2084 &err_dma_handle);
2085
2086 if (c->err_info == NULL) {
2087 pci_free_consistent(h->pdev,
2088 sizeof(*c), c, cmd_dma_handle);
2089 return NULL;
2090 }
2091 memset(c->err_info, 0, sizeof(*c->err_info));
2092
2093 INIT_HLIST_NODE(&c->list);
2094 c->busaddr = (__u32) cmd_dma_handle;
2095 temp64.val = (__u64) err_dma_handle;
2096 c->ErrDesc.Addr.lower = temp64.val32.lower;
2097 c->ErrDesc.Addr.upper = temp64.val32.upper;
2098 c->ErrDesc.Len = sizeof(*c->err_info);
2099
2100 c->h = h;
2101 return c;
2102}
2103
2104static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2105{
2106 int i;
2107
2108 i = c - h->cmd_pool;
2109 clear_bit(i & (BITS_PER_LONG - 1),
2110 h->cmd_pool_bits + (i / BITS_PER_LONG));
2111 h->nr_frees++;
2112}
2113
2114static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2115{
2116 union u64bit temp64;
2117
2118 temp64.val32.lower = c->ErrDesc.Addr.lower;
2119 temp64.val32.upper = c->ErrDesc.Addr.upper;
2120 pci_free_consistent(h->pdev, sizeof(*c->err_info),
2121 c->err_info, (dma_addr_t) temp64.val);
2122 pci_free_consistent(h->pdev, sizeof(*c),
2123 c, (dma_addr_t) c->busaddr);
2124}
2125
2126#ifdef CONFIG_COMPAT
2127
2128static int do_ioctl(struct scsi_device *dev, int cmd, void *arg)
2129{
2130 int ret;
2131
2132 lock_kernel();
2133 ret = hpsa_ioctl(dev, cmd, arg);
2134 unlock_kernel();
2135 return ret;
2136}
2137
2138static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg);
2139static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2140 int cmd, void *arg);
2141
2142static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2143{
2144 switch (cmd) {
2145 case CCISS_GETPCIINFO:
2146 case CCISS_GETINTINFO:
2147 case CCISS_SETINTINFO:
2148 case CCISS_GETNODENAME:
2149 case CCISS_SETNODENAME:
2150 case CCISS_GETHEARTBEAT:
2151 case CCISS_GETBUSTYPES:
2152 case CCISS_GETFIRMVER:
2153 case CCISS_GETDRIVVER:
2154 case CCISS_REVALIDVOLS:
2155 case CCISS_DEREGDISK:
2156 case CCISS_REGNEWDISK:
2157 case CCISS_REGNEWD:
2158 case CCISS_RESCANDISK:
2159 case CCISS_GETLUNINFO:
2160 return do_ioctl(dev, cmd, arg);
2161
2162 case CCISS_PASSTHRU32:
2163 return hpsa_ioctl32_passthru(dev, cmd, arg);
2164 case CCISS_BIG_PASSTHRU32:
2165 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2166
2167 default:
2168 return -ENOIOCTLCMD;
2169 }
2170}
2171
2172static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2173{
2174 IOCTL32_Command_struct __user *arg32 =
2175 (IOCTL32_Command_struct __user *) arg;
2176 IOCTL_Command_struct arg64;
2177 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2178 int err;
2179 u32 cp;
2180
2181 err = 0;
2182 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2183 sizeof(arg64.LUN_info));
2184 err |= copy_from_user(&arg64.Request, &arg32->Request,
2185 sizeof(arg64.Request));
2186 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2187 sizeof(arg64.error_info));
2188 err |= get_user(arg64.buf_size, &arg32->buf_size);
2189 err |= get_user(cp, &arg32->buf);
2190 arg64.buf = compat_ptr(cp);
2191 err |= copy_to_user(p, &arg64, sizeof(arg64));
2192
2193 if (err)
2194 return -EFAULT;
2195
2196 err = do_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2197 if (err)
2198 return err;
2199 err |= copy_in_user(&arg32->error_info, &p->error_info,
2200 sizeof(arg32->error_info));
2201 if (err)
2202 return -EFAULT;
2203 return err;
2204}
2205
2206static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2207 int cmd, void *arg)
2208{
2209 BIG_IOCTL32_Command_struct __user *arg32 =
2210 (BIG_IOCTL32_Command_struct __user *) arg;
2211 BIG_IOCTL_Command_struct arg64;
2212 BIG_IOCTL_Command_struct __user *p =
2213 compat_alloc_user_space(sizeof(arg64));
2214 int err;
2215 u32 cp;
2216
2217 err = 0;
2218 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2219 sizeof(arg64.LUN_info));
2220 err |= copy_from_user(&arg64.Request, &arg32->Request,
2221 sizeof(arg64.Request));
2222 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2223 sizeof(arg64.error_info));
2224 err |= get_user(arg64.buf_size, &arg32->buf_size);
2225 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2226 err |= get_user(cp, &arg32->buf);
2227 arg64.buf = compat_ptr(cp);
2228 err |= copy_to_user(p, &arg64, sizeof(arg64));
2229
2230 if (err)
2231 return -EFAULT;
2232
2233 err = do_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2234 if (err)
2235 return err;
2236 err |= copy_in_user(&arg32->error_info, &p->error_info,
2237 sizeof(arg32->error_info));
2238 if (err)
2239 return -EFAULT;
2240 return err;
2241}
2242#endif
2243
2244static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2245{
2246 struct hpsa_pci_info pciinfo;
2247
2248 if (!argp)
2249 return -EINVAL;
2250 pciinfo.domain = pci_domain_nr(h->pdev->bus);
2251 pciinfo.bus = h->pdev->bus->number;
2252 pciinfo.dev_fn = h->pdev->devfn;
2253 pciinfo.board_id = h->board_id;
2254 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2255 return -EFAULT;
2256 return 0;
2257}
2258
2259static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2260{
2261 DriverVer_type DriverVer;
2262 unsigned char vmaj, vmin, vsubmin;
2263 int rc;
2264
2265 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2266 &vmaj, &vmin, &vsubmin);
2267 if (rc != 3) {
2268 dev_info(&h->pdev->dev, "driver version string '%s' "
2269 "unrecognized.", HPSA_DRIVER_VERSION);
2270 vmaj = 0;
2271 vmin = 0;
2272 vsubmin = 0;
2273 }
2274 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2275 if (!argp)
2276 return -EINVAL;
2277 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2278 return -EFAULT;
2279 return 0;
2280}
2281
2282static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2283{
2284 IOCTL_Command_struct iocommand;
2285 struct CommandList *c;
2286 char *buff = NULL;
2287 union u64bit temp64;
2288
2289 if (!argp)
2290 return -EINVAL;
2291 if (!capable(CAP_SYS_RAWIO))
2292 return -EPERM;
2293 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2294 return -EFAULT;
2295 if ((iocommand.buf_size < 1) &&
2296 (iocommand.Request.Type.Direction != XFER_NONE)) {
2297 return -EINVAL;
2298 }
2299 if (iocommand.buf_size > 0) {
2300 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2301 if (buff == NULL)
2302 return -EFAULT;
2303 }
2304 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2305 /* Copy the data into the buffer we created */
2306 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2307 kfree(buff);
2308 return -EFAULT;
2309 }
2310 } else
2311 memset(buff, 0, iocommand.buf_size);
2312 c = cmd_special_alloc(h);
2313 if (c == NULL) {
2314 kfree(buff);
2315 return -ENOMEM;
2316 }
2317 /* Fill in the command type */
2318 c->cmd_type = CMD_IOCTL_PEND;
2319 /* Fill in Command Header */
2320 c->Header.ReplyQueue = 0; /* unused in simple mode */
2321 if (iocommand.buf_size > 0) { /* buffer to fill */
2322 c->Header.SGList = 1;
2323 c->Header.SGTotal = 1;
2324 } else { /* no buffers to fill */
2325 c->Header.SGList = 0;
2326 c->Header.SGTotal = 0;
2327 }
2328 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2329 /* use the kernel address the cmd block for tag */
2330 c->Header.Tag.lower = c->busaddr;
2331
2332 /* Fill in Request block */
2333 memcpy(&c->Request, &iocommand.Request,
2334 sizeof(c->Request));
2335
2336 /* Fill in the scatter gather information */
2337 if (iocommand.buf_size > 0) {
2338 temp64.val = pci_map_single(h->pdev, buff,
2339 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2340 c->SG[0].Addr.lower = temp64.val32.lower;
2341 c->SG[0].Addr.upper = temp64.val32.upper;
2342 c->SG[0].Len = iocommand.buf_size;
2343 c->SG[0].Ext = 0; /* we are not chaining*/
2344 }
2345 hpsa_scsi_do_simple_cmd_core(h, c);
2346 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2347 check_ioctl_unit_attention(h, c);
2348
2349 /* Copy the error information out */
2350 memcpy(&iocommand.error_info, c->err_info,
2351 sizeof(iocommand.error_info));
2352 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2353 kfree(buff);
2354 cmd_special_free(h, c);
2355 return -EFAULT;
2356 }
2357
2358 if (iocommand.Request.Type.Direction == XFER_READ) {
2359 /* Copy the data out of the buffer we created */
2360 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2361 kfree(buff);
2362 cmd_special_free(h, c);
2363 return -EFAULT;
2364 }
2365 }
2366 kfree(buff);
2367 cmd_special_free(h, c);
2368 return 0;
2369}
2370
2371static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2372{
2373 BIG_IOCTL_Command_struct *ioc;
2374 struct CommandList *c;
2375 unsigned char **buff = NULL;
2376 int *buff_size = NULL;
2377 union u64bit temp64;
2378 BYTE sg_used = 0;
2379 int status = 0;
2380 int i;
2381 __u32 left;
2382 __u32 sz;
2383 BYTE __user *data_ptr;
2384
2385 if (!argp)
2386 return -EINVAL;
2387 if (!capable(CAP_SYS_RAWIO))
2388 return -EPERM;
2389 ioc = (BIG_IOCTL_Command_struct *)
2390 kmalloc(sizeof(*ioc), GFP_KERNEL);
2391 if (!ioc) {
2392 status = -ENOMEM;
2393 goto cleanup1;
2394 }
2395 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2396 status = -EFAULT;
2397 goto cleanup1;
2398 }
2399 if ((ioc->buf_size < 1) &&
2400 (ioc->Request.Type.Direction != XFER_NONE)) {
2401 status = -EINVAL;
2402 goto cleanup1;
2403 }
2404 /* Check kmalloc limits using all SGs */
2405 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2406 status = -EINVAL;
2407 goto cleanup1;
2408 }
2409 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2410 status = -EINVAL;
2411 goto cleanup1;
2412 }
2413 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2414 if (!buff) {
2415 status = -ENOMEM;
2416 goto cleanup1;
2417 }
2418 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2419 if (!buff_size) {
2420 status = -ENOMEM;
2421 goto cleanup1;
2422 }
2423 left = ioc->buf_size;
2424 data_ptr = ioc->buf;
2425 while (left) {
2426 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2427 buff_size[sg_used] = sz;
2428 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2429 if (buff[sg_used] == NULL) {
2430 status = -ENOMEM;
2431 goto cleanup1;
2432 }
2433 if (ioc->Request.Type.Direction == XFER_WRITE) {
2434 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2435 status = -ENOMEM;
2436 goto cleanup1;
2437 }
2438 } else
2439 memset(buff[sg_used], 0, sz);
2440 left -= sz;
2441 data_ptr += sz;
2442 sg_used++;
2443 }
2444 c = cmd_special_alloc(h);
2445 if (c == NULL) {
2446 status = -ENOMEM;
2447 goto cleanup1;
2448 }
2449 c->cmd_type = CMD_IOCTL_PEND;
2450 c->Header.ReplyQueue = 0;
2451
2452 if (ioc->buf_size > 0) {
2453 c->Header.SGList = sg_used;
2454 c->Header.SGTotal = sg_used;
2455 } else {
2456 c->Header.SGList = 0;
2457 c->Header.SGTotal = 0;
2458 }
2459 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2460 c->Header.Tag.lower = c->busaddr;
2461 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2462 if (ioc->buf_size > 0) {
2463 int i;
2464 for (i = 0; i < sg_used; i++) {
2465 temp64.val = pci_map_single(h->pdev, buff[i],
2466 buff_size[i], PCI_DMA_BIDIRECTIONAL);
2467 c->SG[i].Addr.lower = temp64.val32.lower;
2468 c->SG[i].Addr.upper = temp64.val32.upper;
2469 c->SG[i].Len = buff_size[i];
2470 /* we are not chaining */
2471 c->SG[i].Ext = 0;
2472 }
2473 }
2474 hpsa_scsi_do_simple_cmd_core(h, c);
2475 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2476 check_ioctl_unit_attention(h, c);
2477 /* Copy the error information out */
2478 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2479 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2480 cmd_special_free(h, c);
2481 status = -EFAULT;
2482 goto cleanup1;
2483 }
2484 if (ioc->Request.Type.Direction == XFER_READ) {
2485 /* Copy the data out of the buffer we created */
2486 BYTE __user *ptr = ioc->buf;
2487 for (i = 0; i < sg_used; i++) {
2488 if (copy_to_user(ptr, buff[i], buff_size[i])) {
2489 cmd_special_free(h, c);
2490 status = -EFAULT;
2491 goto cleanup1;
2492 }
2493 ptr += buff_size[i];
2494 }
2495 }
2496 cmd_special_free(h, c);
2497 status = 0;
2498cleanup1:
2499 if (buff) {
2500 for (i = 0; i < sg_used; i++)
2501 kfree(buff[i]);
2502 kfree(buff);
2503 }
2504 kfree(buff_size);
2505 kfree(ioc);
2506 return status;
2507}
2508
2509static void check_ioctl_unit_attention(struct ctlr_info *h,
2510 struct CommandList *c)
2511{
2512 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2513 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2514 (void) check_for_unit_attention(h, c);
2515}
2516/*
2517 * ioctl
2518 */
2519static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2520{
2521 struct ctlr_info *h;
2522 void __user *argp = (void __user *)arg;
2523
2524 h = sdev_to_hba(dev);
2525
2526 switch (cmd) {
2527 case CCISS_DEREGDISK:
2528 case CCISS_REGNEWDISK:
2529 case CCISS_REGNEWD:
2530 hpsa_update_scsi_devices(h, dev->host->host_no);
2531 return 0;
2532 case CCISS_GETPCIINFO:
2533 return hpsa_getpciinfo_ioctl(h, argp);
2534 case CCISS_GETDRIVVER:
2535 return hpsa_getdrivver_ioctl(h, argp);
2536 case CCISS_PASSTHRU:
2537 return hpsa_passthru_ioctl(h, argp);
2538 case CCISS_BIG_PASSTHRU:
2539 return hpsa_big_passthru_ioctl(h, argp);
2540 default:
2541 return -ENOTTY;
2542 }
2543}
2544
2545static void fill_cmd(struct CommandList *c, __u8 cmd, struct ctlr_info *h,
2546 void *buff, size_t size, __u8 page_code, unsigned char *scsi3addr,
2547 int cmd_type)
2548{
2549 int pci_dir = XFER_NONE;
2550
2551 c->cmd_type = CMD_IOCTL_PEND;
2552 c->Header.ReplyQueue = 0;
2553 if (buff != NULL && size > 0) {
2554 c->Header.SGList = 1;
2555 c->Header.SGTotal = 1;
2556 } else {
2557 c->Header.SGList = 0;
2558 c->Header.SGTotal = 0;
2559 }
2560 c->Header.Tag.lower = c->busaddr;
2561 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2562
2563 c->Request.Type.Type = cmd_type;
2564 if (cmd_type == TYPE_CMD) {
2565 switch (cmd) {
2566 case HPSA_INQUIRY:
2567 /* are we trying to read a vital product page */
2568 if (page_code != 0) {
2569 c->Request.CDB[1] = 0x01;
2570 c->Request.CDB[2] = page_code;
2571 }
2572 c->Request.CDBLen = 6;
2573 c->Request.Type.Attribute = ATTR_SIMPLE;
2574 c->Request.Type.Direction = XFER_READ;
2575 c->Request.Timeout = 0;
2576 c->Request.CDB[0] = HPSA_INQUIRY;
2577 c->Request.CDB[4] = size & 0xFF;
2578 break;
2579 case HPSA_REPORT_LOG:
2580 case HPSA_REPORT_PHYS:
2581 /* Talking to controller so It's a physical command
2582 mode = 00 target = 0. Nothing to write.
2583 */
2584 c->Request.CDBLen = 12;
2585 c->Request.Type.Attribute = ATTR_SIMPLE;
2586 c->Request.Type.Direction = XFER_READ;
2587 c->Request.Timeout = 0;
2588 c->Request.CDB[0] = cmd;
2589 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2590 c->Request.CDB[7] = (size >> 16) & 0xFF;
2591 c->Request.CDB[8] = (size >> 8) & 0xFF;
2592 c->Request.CDB[9] = size & 0xFF;
2593 break;
2594
2595 case HPSA_READ_CAPACITY:
2596 c->Request.CDBLen = 10;
2597 c->Request.Type.Attribute = ATTR_SIMPLE;
2598 c->Request.Type.Direction = XFER_READ;
2599 c->Request.Timeout = 0;
2600 c->Request.CDB[0] = cmd;
2601 break;
2602 case HPSA_CACHE_FLUSH:
2603 c->Request.CDBLen = 12;
2604 c->Request.Type.Attribute = ATTR_SIMPLE;
2605 c->Request.Type.Direction = XFER_WRITE;
2606 c->Request.Timeout = 0;
2607 c->Request.CDB[0] = BMIC_WRITE;
2608 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2609 break;
2610 case TEST_UNIT_READY:
2611 c->Request.CDBLen = 6;
2612 c->Request.Type.Attribute = ATTR_SIMPLE;
2613 c->Request.Type.Direction = XFER_NONE;
2614 c->Request.Timeout = 0;
2615 break;
2616 default:
2617 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2618 BUG();
2619 return;
2620 }
2621 } else if (cmd_type == TYPE_MSG) {
2622 switch (cmd) {
2623
2624 case HPSA_DEVICE_RESET_MSG:
2625 c->Request.CDBLen = 16;
2626 c->Request.Type.Type = 1; /* It is a MSG not a CMD */
2627 c->Request.Type.Attribute = ATTR_SIMPLE;
2628 c->Request.Type.Direction = XFER_NONE;
2629 c->Request.Timeout = 0; /* Don't time out */
2630 c->Request.CDB[0] = 0x01; /* RESET_MSG is 0x01 */
2631 c->Request.CDB[1] = 0x03; /* Reset target above */
2632 /* If bytes 4-7 are zero, it means reset the */
2633 /* LunID device */
2634 c->Request.CDB[4] = 0x00;
2635 c->Request.CDB[5] = 0x00;
2636 c->Request.CDB[6] = 0x00;
2637 c->Request.CDB[7] = 0x00;
2638 break;
2639
2640 default:
2641 dev_warn(&h->pdev->dev, "unknown message type %d\n",
2642 cmd);
2643 BUG();
2644 }
2645 } else {
2646 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2647 BUG();
2648 }
2649
2650 switch (c->Request.Type.Direction) {
2651 case XFER_READ:
2652 pci_dir = PCI_DMA_FROMDEVICE;
2653 break;
2654 case XFER_WRITE:
2655 pci_dir = PCI_DMA_TODEVICE;
2656 break;
2657 case XFER_NONE:
2658 pci_dir = PCI_DMA_NONE;
2659 break;
2660 default:
2661 pci_dir = PCI_DMA_BIDIRECTIONAL;
2662 }
2663
2664 hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2665
2666 return;
2667}
2668
2669/*
2670 * Map (physical) PCI mem into (virtual) kernel space
2671 */
2672static void __iomem *remap_pci_mem(ulong base, ulong size)
2673{
2674 ulong page_base = ((ulong) base) & PAGE_MASK;
2675 ulong page_offs = ((ulong) base) - page_base;
2676 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2677
2678 return page_remapped ? (page_remapped + page_offs) : NULL;
2679}
2680
2681/* Takes cmds off the submission queue and sends them to the hardware,
2682 * then puts them on the queue of cmds waiting for completion.
2683 */
2684static void start_io(struct ctlr_info *h)
2685{
2686 struct CommandList *c;
2687
2688 while (!hlist_empty(&h->reqQ)) {
2689 c = hlist_entry(h->reqQ.first, struct CommandList, list);
2690 /* can't do anything if fifo is full */
2691 if ((h->access.fifo_full(h))) {
2692 dev_warn(&h->pdev->dev, "fifo full\n");
2693 break;
2694 }
2695
2696 /* Get the first entry from the Request Q */
2697 removeQ(c);
2698 h->Qdepth--;
2699
2700 /* Tell the controller execute command */
2701 h->access.submit_command(h, c);
2702
2703 /* Put job onto the completed Q */
2704 addQ(&h->cmpQ, c);
2705 }
2706}
2707
2708static inline unsigned long get_next_completion(struct ctlr_info *h)
2709{
2710 return h->access.command_completed(h);
2711}
2712
2713static inline int interrupt_pending(struct ctlr_info *h)
2714{
2715 return h->access.intr_pending(h);
2716}
2717
2718static inline long interrupt_not_for_us(struct ctlr_info *h)
2719{
2720 return ((h->access.intr_pending(h) == 0) ||
2721 (h->interrupts_enabled == 0));
2722}
2723
2724static inline int bad_tag(struct ctlr_info *h, __u32 tag_index,
2725 __u32 raw_tag)
2726{
2727 if (unlikely(tag_index >= h->nr_cmds)) {
2728 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2729 return 1;
2730 }
2731 return 0;
2732}
2733
2734static inline void finish_cmd(struct CommandList *c, __u32 raw_tag)
2735{
2736 removeQ(c);
2737 if (likely(c->cmd_type == CMD_SCSI))
2738 complete_scsi_command(c, 0, raw_tag);
2739 else if (c->cmd_type == CMD_IOCTL_PEND)
2740 complete(c->waiting);
2741}
2742
2743static irqreturn_t do_hpsa_intr(int irq, void *dev_id)
2744{
2745 struct ctlr_info *h = dev_id;
2746 struct CommandList *c;
2747 unsigned long flags;
2748 __u32 raw_tag, tag, tag_index;
2749 struct hlist_node *tmp;
2750
2751 if (interrupt_not_for_us(h))
2752 return IRQ_NONE;
2753 spin_lock_irqsave(&h->lock, flags);
2754 while (interrupt_pending(h)) {
2755 while ((raw_tag = get_next_completion(h)) != FIFO_EMPTY) {
2756 if (likely(HPSA_TAG_CONTAINS_INDEX(raw_tag))) {
2757 tag_index = HPSA_TAG_TO_INDEX(raw_tag);
2758 if (bad_tag(h, tag_index, raw_tag))
2759 return IRQ_HANDLED;
2760 c = h->cmd_pool + tag_index;
2761 finish_cmd(c, raw_tag);
2762 continue;
2763 }
2764 tag = HPSA_TAG_DISCARD_ERROR_BITS(raw_tag);
2765 c = NULL;
2766 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2767 if (c->busaddr == tag) {
2768 finish_cmd(c, raw_tag);
2769 break;
2770 }
2771 }
2772 }
2773 }
2774 spin_unlock_irqrestore(&h->lock, flags);
2775 return IRQ_HANDLED;
2776}
2777
2778/* Send a message CDB to the firmware. */
2779static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2780 unsigned char type)
2781{
2782 struct Command {
2783 struct CommandListHeader CommandHeader;
2784 struct RequestBlock Request;
2785 struct ErrDescriptor ErrorDescriptor;
2786 };
2787 struct Command *cmd;
2788 static const size_t cmd_sz = sizeof(*cmd) +
2789 sizeof(cmd->ErrorDescriptor);
2790 dma_addr_t paddr64;
2791 uint32_t paddr32, tag;
2792 void __iomem *vaddr;
2793 int i, err;
2794
2795 vaddr = pci_ioremap_bar(pdev, 0);
2796 if (vaddr == NULL)
2797 return -ENOMEM;
2798
2799 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
2800 * CCISS commands, so they must be allocated from the lower 4GiB of
2801 * memory.
2802 */
2803 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2804 if (err) {
2805 iounmap(vaddr);
2806 return -ENOMEM;
2807 }
2808
2809 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2810 if (cmd == NULL) {
2811 iounmap(vaddr);
2812 return -ENOMEM;
2813 }
2814
2815 /* This must fit, because of the 32-bit consistent DMA mask. Also,
2816 * although there's no guarantee, we assume that the address is at
2817 * least 4-byte aligned (most likely, it's page-aligned).
2818 */
2819 paddr32 = paddr64;
2820
2821 cmd->CommandHeader.ReplyQueue = 0;
2822 cmd->CommandHeader.SGList = 0;
2823 cmd->CommandHeader.SGTotal = 0;
2824 cmd->CommandHeader.Tag.lower = paddr32;
2825 cmd->CommandHeader.Tag.upper = 0;
2826 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
2827
2828 cmd->Request.CDBLen = 16;
2829 cmd->Request.Type.Type = TYPE_MSG;
2830 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
2831 cmd->Request.Type.Direction = XFER_NONE;
2832 cmd->Request.Timeout = 0; /* Don't time out */
2833 cmd->Request.CDB[0] = opcode;
2834 cmd->Request.CDB[1] = type;
2835 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
2836 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
2837 cmd->ErrorDescriptor.Addr.upper = 0;
2838 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
2839
2840 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
2841
2842 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
2843 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
2844 if (HPSA_TAG_DISCARD_ERROR_BITS(tag) == paddr32)
2845 break;
2846 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
2847 }
2848
2849 iounmap(vaddr);
2850
2851 /* we leak the DMA buffer here ... no choice since the controller could
2852 * still complete the command.
2853 */
2854 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
2855 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
2856 opcode, type);
2857 return -ETIMEDOUT;
2858 }
2859
2860 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
2861
2862 if (tag & HPSA_ERROR_BIT) {
2863 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
2864 opcode, type);
2865 return -EIO;
2866 }
2867
2868 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
2869 opcode, type);
2870 return 0;
2871}
2872
2873#define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
2874#define hpsa_noop(p) hpsa_message(p, 3, 0)
2875
2876static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
2877{
2878/* the #defines are stolen from drivers/pci/msi.h. */
2879#define msi_control_reg(base) (base + PCI_MSI_FLAGS)
2880#define PCI_MSIX_FLAGS_ENABLE (1 << 15)
2881
2882 int pos;
2883 u16 control = 0;
2884
2885 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
2886 if (pos) {
2887 pci_read_config_word(pdev, msi_control_reg(pos), &control);
2888 if (control & PCI_MSI_FLAGS_ENABLE) {
2889 dev_info(&pdev->dev, "resetting MSI\n");
2890 pci_write_config_word(pdev, msi_control_reg(pos),
2891 control & ~PCI_MSI_FLAGS_ENABLE);
2892 }
2893 }
2894
2895 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
2896 if (pos) {
2897 pci_read_config_word(pdev, msi_control_reg(pos), &control);
2898 if (control & PCI_MSIX_FLAGS_ENABLE) {
2899 dev_info(&pdev->dev, "resetting MSI-X\n");
2900 pci_write_config_word(pdev, msi_control_reg(pos),
2901 control & ~PCI_MSIX_FLAGS_ENABLE);
2902 }
2903 }
2904
2905 return 0;
2906}
2907
2908/* This does a hard reset of the controller using PCI power management
2909 * states.
2910 */
2911static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev)
2912{
2913 u16 pmcsr, saved_config_space[32];
2914 int i, pos;
2915
2916 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
2917
2918 /* This is very nearly the same thing as
2919 *
2920 * pci_save_state(pci_dev);
2921 * pci_set_power_state(pci_dev, PCI_D3hot);
2922 * pci_set_power_state(pci_dev, PCI_D0);
2923 * pci_restore_state(pci_dev);
2924 *
2925 * but we can't use these nice canned kernel routines on
2926 * kexec, because they also check the MSI/MSI-X state in PCI
2927 * configuration space and do the wrong thing when it is
2928 * set/cleared. Also, the pci_save/restore_state functions
2929 * violate the ordering requirements for restoring the
2930 * configuration space from the CCISS document (see the
2931 * comment below). So we roll our own ....
2932 */
2933
2934 for (i = 0; i < 32; i++)
2935 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
2936
2937 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
2938 if (pos == 0) {
2939 dev_err(&pdev->dev,
2940 "hpsa_reset_controller: PCI PM not supported\n");
2941 return -ENODEV;
2942 }
2943
2944 /* Quoting from the Open CISS Specification: "The Power
2945 * Management Control/Status Register (CSR) controls the power
2946 * state of the device. The normal operating state is D0,
2947 * CSR=00h. The software off state is D3, CSR=03h. To reset
2948 * the controller, place the interface device in D3 then to
2949 * D0, this causes a secondary PCI reset which will reset the
2950 * controller."
2951 */
2952
2953 /* enter the D3hot power management state */
2954 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
2955 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2956 pmcsr |= PCI_D3hot;
2957 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
2958
2959 msleep(500);
2960
2961 /* enter the D0 power management state */
2962 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2963 pmcsr |= PCI_D0;
2964 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
2965
2966 msleep(500);
2967
2968 /* Restore the PCI configuration space. The Open CISS
2969 * Specification says, "Restore the PCI Configuration
2970 * Registers, offsets 00h through 60h. It is important to
2971 * restore the command register, 16-bits at offset 04h,
2972 * last. Do not restore the configuration status register,
2973 * 16-bits at offset 06h." Note that the offset is 2*i.
2974 */
2975 for (i = 0; i < 32; i++) {
2976 if (i == 2 || i == 3)
2977 continue;
2978 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
2979 }
2980 wmb();
2981 pci_write_config_word(pdev, 4, saved_config_space[2]);
2982
2983 return 0;
2984}
2985
2986/*
2987 * We cannot read the structure directly, for portability we must use
2988 * the io functions.
2989 * This is for debug only.
2990 */
2991#ifdef HPSA_DEBUG
2992static void print_cfg_table(struct device *dev, struct CfgTable *tb)
2993{
2994 int i;
2995 char temp_name[17];
2996
2997 dev_info(dev, "Controller Configuration information\n");
2998 dev_info(dev, "------------------------------------\n");
2999 for (i = 0; i < 4; i++)
3000 temp_name[i] = readb(&(tb->Signature[i]));
3001 temp_name[4] = '\0';
3002 dev_info(dev, " Signature = %s\n", temp_name);
3003 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
3004 dev_info(dev, " Transport methods supported = 0x%x\n",
3005 readl(&(tb->TransportSupport)));
3006 dev_info(dev, " Transport methods active = 0x%x\n",
3007 readl(&(tb->TransportActive)));
3008 dev_info(dev, " Requested transport Method = 0x%x\n",
3009 readl(&(tb->HostWrite.TransportRequest)));
3010 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
3011 readl(&(tb->HostWrite.CoalIntDelay)));
3012 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
3013 readl(&(tb->HostWrite.CoalIntCount)));
3014 dev_info(dev, " Max outstanding commands = 0x%d\n",
3015 readl(&(tb->CmdsOutMax)));
3016 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3017 for (i = 0; i < 16; i++)
3018 temp_name[i] = readb(&(tb->ServerName[i]));
3019 temp_name[16] = '\0';
3020 dev_info(dev, " Server Name = %s\n", temp_name);
3021 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
3022 readl(&(tb->HeartBeat)));
3023}
3024#endif /* HPSA_DEBUG */
3025
3026static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3027{
3028 int i, offset, mem_type, bar_type;
3029
3030 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3031 return 0;
3032 offset = 0;
3033 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3034 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3035 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3036 offset += 4;
3037 else {
3038 mem_type = pci_resource_flags(pdev, i) &
3039 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3040 switch (mem_type) {
3041 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3042 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3043 offset += 4; /* 32 bit */
3044 break;
3045 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3046 offset += 8;
3047 break;
3048 default: /* reserved in PCI 2.2 */
3049 dev_warn(&pdev->dev,
3050 "base address is invalid\n");
3051 return -1;
3052 break;
3053 }
3054 }
3055 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3056 return i + 1;
3057 }
3058 return -1;
3059}
3060
3061/* If MSI/MSI-X is supported by the kernel we will try to enable it on
3062 * controllers that are capable. If not, we use IO-APIC mode.
3063 */
3064
3065static void __devinit hpsa_interrupt_mode(struct ctlr_info *h,
3066 struct pci_dev *pdev, __u32 board_id)
3067{
3068#ifdef CONFIG_PCI_MSI
3069 int err;
3070 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3071 {0, 2}, {0, 3}
3072 };
3073
3074 /* Some boards advertise MSI but don't really support it */
3075 if ((board_id == 0x40700E11) ||
3076 (board_id == 0x40800E11) ||
3077 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3078 goto default_int_mode;
3079 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3080 dev_info(&pdev->dev, "MSIX\n");
3081 err = pci_enable_msix(pdev, hpsa_msix_entries, 4);
3082 if (!err) {
3083 h->intr[0] = hpsa_msix_entries[0].vector;
3084 h->intr[1] = hpsa_msix_entries[1].vector;
3085 h->intr[2] = hpsa_msix_entries[2].vector;
3086 h->intr[3] = hpsa_msix_entries[3].vector;
3087 h->msix_vector = 1;
3088 return;
3089 }
3090 if (err > 0) {
3091 dev_warn(&pdev->dev, "only %d MSI-X vectors "
3092 "available\n", err);
3093 goto default_int_mode;
3094 } else {
3095 dev_warn(&pdev->dev, "MSI-X init failed %d\n",
3096 err);
3097 goto default_int_mode;
3098 }
3099 }
3100 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3101 dev_info(&pdev->dev, "MSI\n");
3102 if (!pci_enable_msi(pdev))
3103 h->msi_vector = 1;
3104 else
3105 dev_warn(&pdev->dev, "MSI init failed\n");
3106 }
3107default_int_mode:
3108#endif /* CONFIG_PCI_MSI */
3109 /* if we get here we're going to use the default interrupt mode */
3110 h->intr[SIMPLE_MODE_INT] = pdev->irq;
3111 return;
3112}
3113
3114static int hpsa_pci_init(struct ctlr_info *h, struct pci_dev *pdev)
3115{
3116 ushort subsystem_vendor_id, subsystem_device_id, command;
3117 __u32 board_id, scratchpad = 0;
3118 __u64 cfg_offset;
3119 __u32 cfg_base_addr;
3120 __u64 cfg_base_addr_index;
3121 int i, prod_index, err;
3122
3123 subsystem_vendor_id = pdev->subsystem_vendor;
3124 subsystem_device_id = pdev->subsystem_device;
3125 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3126 subsystem_vendor_id);
3127
3128 for (i = 0; i < ARRAY_SIZE(products); i++)
3129 if (board_id == products[i].board_id)
3130 break;
3131
3132 prod_index = i;
3133
3134 if (prod_index == ARRAY_SIZE(products)) {
3135 prod_index--;
3136 if (subsystem_vendor_id != PCI_VENDOR_ID_HP ||
3137 !hpsa_allow_any) {
3138 dev_warn(&pdev->dev, "unrecognized board ID:"
3139 " 0x%08lx, ignoring.\n",
3140 (unsigned long) board_id);
3141 return -ENODEV;
3142 }
3143 }
3144 /* check to see if controller has been disabled
3145 * BEFORE trying to enable it
3146 */
3147 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3148 if (!(command & 0x02)) {
3149 dev_warn(&pdev->dev, "controller appears to be disabled\n");
3150 return -ENODEV;
3151 }
3152
3153 err = pci_enable_device(pdev);
3154 if (err) {
3155 dev_warn(&pdev->dev, "unable to enable PCI device\n");
3156 return err;
3157 }
3158
3159 err = pci_request_regions(pdev, "hpsa");
3160 if (err) {
3161 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
3162 return err;
3163 }
3164
3165 /* If the kernel supports MSI/MSI-X we will try to enable that,
3166 * else we use the IO-APIC interrupt assigned to us by system ROM.
3167 */
3168 hpsa_interrupt_mode(h, pdev, board_id);
3169
3170 /* find the memory BAR */
3171 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3172 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3173 break;
3174 }
3175 if (i == DEVICE_COUNT_RESOURCE) {
3176 dev_warn(&pdev->dev, "no memory BAR found\n");
3177 err = -ENODEV;
3178 goto err_out_free_res;
3179 }
3180
3181 h->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3182 * already removed
3183 */
3184
3185 h->vaddr = remap_pci_mem(h->paddr, 0x250);
3186
3187 /* Wait for the board to become ready. */
3188 for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3189 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3190 if (scratchpad == HPSA_FIRMWARE_READY)
3191 break;
3192 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3193 }
3194 if (scratchpad != HPSA_FIRMWARE_READY) {
3195 dev_warn(&pdev->dev, "board not ready, timed out.\n");
3196 err = -ENODEV;
3197 goto err_out_free_res;
3198 }
3199
3200 /* get the address index number */
3201 cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET);
3202 cfg_base_addr &= (__u32) 0x0000ffff;
3203 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3204 if (cfg_base_addr_index == -1) {
3205 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3206 err = -ENODEV;
3207 goto err_out_free_res;
3208 }
3209
3210 cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET);
3211 h->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3212 cfg_base_addr_index) + cfg_offset,
3213 sizeof(h->cfgtable));
3214 h->board_id = board_id;
3215
3216 /* Query controller for max supported commands: */
3217 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3218
3219 h->product_name = products[prod_index].product_name;
3220 h->access = *(products[prod_index].access);
3221 /* Allow room for some ioctls */
3222 h->nr_cmds = h->max_commands - 4;
3223
3224 if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3225 (readb(&h->cfgtable->Signature[1]) != 'I') ||
3226 (readb(&h->cfgtable->Signature[2]) != 'S') ||
3227 (readb(&h->cfgtable->Signature[3]) != 'S')) {
3228 dev_warn(&pdev->dev, "not a valid CISS config table\n");
3229 err = -ENODEV;
3230 goto err_out_free_res;
3231 }
3232#ifdef CONFIG_X86
3233 {
3234 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3235 __u32 prefetch;
3236 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3237 prefetch |= 0x100;
3238 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3239 }
3240#endif
3241
3242 /* Disabling DMA prefetch for the P600
3243 * An ASIC bug may result in a prefetch beyond
3244 * physical memory.
3245 */
3246 if (board_id == 0x3225103C) {
3247 __u32 dma_prefetch;
3248 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3249 dma_prefetch |= 0x8000;
3250 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3251 }
3252
3253 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3254 /* Update the field, and then ring the doorbell */
3255 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3256 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3257
3258 /* under certain very rare conditions, this can take awhile.
3259 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3260 * as we enter this code.)
3261 */
3262 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3263 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3264 break;
3265 /* delay and try again */
3266 msleep(10);
3267 }
3268
3269#ifdef HPSA_DEBUG
3270 print_cfg_table(&pdev->dev, h->cfgtable);
3271#endif /* HPSA_DEBUG */
3272
3273 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3274 dev_warn(&pdev->dev, "unable to get board into simple mode\n");
3275 err = -ENODEV;
3276 goto err_out_free_res;
3277 }
3278 return 0;
3279
3280err_out_free_res:
3281 /*
3282 * Deliberately omit pci_disable_device(): it does something nasty to
3283 * Smart Array controllers that pci_enable_device does not undo
3284 */
3285 pci_release_regions(pdev);
3286 return err;
3287}
3288
3289static int __devinit hpsa_init_one(struct pci_dev *pdev,
3290 const struct pci_device_id *ent)
3291{
3292 int i;
3293 int dac;
3294 struct ctlr_info *h;
3295
3296 if (number_of_controllers == 0)
3297 printk(KERN_INFO DRIVER_NAME "\n");
3298 if (reset_devices) {
3299 /* Reset the controller with a PCI power-cycle */
3300 if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev))
3301 return -ENODEV;
3302
3303 /* Some devices (notably the HP Smart Array 5i Controller)
3304 need a little pause here */
3305 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3306
3307 /* Now try to get the controller to respond to a no-op */
3308 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3309 if (hpsa_noop(pdev) == 0)
3310 break;
3311 else
3312 dev_warn(&pdev->dev, "no-op failed%s\n",
3313 (i < 11 ? "; re-trying" : ""));
3314 }
3315 }
3316
3317 BUILD_BUG_ON(sizeof(struct CommandList) % 8);
3318 h = kzalloc(sizeof(*h), GFP_KERNEL);
3319 if (!h)
3320 return -1;
3321
3322 h->busy_initializing = 1;
3323 INIT_HLIST_HEAD(&h->cmpQ);
3324 INIT_HLIST_HEAD(&h->reqQ);
3325 mutex_init(&h->busy_shutting_down);
3326 init_completion(&h->scan_wait);
3327 if (hpsa_pci_init(h, pdev) != 0)
3328 goto clean1;
3329
3330 sprintf(h->devname, "hpsa%d", number_of_controllers);
3331 h->ctlr = number_of_controllers;
3332 number_of_controllers++;
3333 h->pdev = pdev;
3334
3335 /* configure PCI DMA stuff */
3336 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
3337 dac = 1;
3338 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
3339 dac = 0;
3340 else {
3341 dev_err(&pdev->dev, "no suitable DMA available\n");
3342 goto clean1;
3343 }
3344
3345 /* make sure the board interrupts are off */
3346 h->access.set_intr_mask(h, HPSA_INTR_OFF);
3347 if (request_irq(h->intr[SIMPLE_MODE_INT], do_hpsa_intr,
3348 IRQF_DISABLED | IRQF_SHARED, h->devname, h)) {
3349 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3350 h->intr[SIMPLE_MODE_INT], h->devname);
3351 goto clean2;
3352 }
3353
3354 dev_info(&pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3355 h->devname, pdev->device, pci_name(pdev),
3356 h->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3357
3358 h->cmd_pool_bits =
3359 kmalloc(((h->nr_cmds + BITS_PER_LONG -
3360 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3361 h->cmd_pool = pci_alloc_consistent(h->pdev,
3362 h->nr_cmds * sizeof(*h->cmd_pool),
3363 &(h->cmd_pool_dhandle));
3364 h->errinfo_pool = pci_alloc_consistent(h->pdev,
3365 h->nr_cmds * sizeof(*h->errinfo_pool),
3366 &(h->errinfo_pool_dhandle));
3367 if ((h->cmd_pool_bits == NULL)
3368 || (h->cmd_pool == NULL)
3369 || (h->errinfo_pool == NULL)) {
3370 dev_err(&pdev->dev, "out of memory");
3371 goto clean4;
3372 }
3373 spin_lock_init(&h->lock);
3374
3375 pci_set_drvdata(pdev, h);
3376 memset(h->cmd_pool_bits, 0,
3377 ((h->nr_cmds + BITS_PER_LONG -
3378 1) / BITS_PER_LONG) * sizeof(unsigned long));
3379
3380 hpsa_scsi_setup(h);
3381
3382 /* Turn the interrupts on so we can service requests */
3383 h->access.set_intr_mask(h, HPSA_INTR_ON);
3384
3385 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
3386 h->busy_initializing = 0;
3387 return 1;
3388
3389clean4:
3390 kfree(h->cmd_pool_bits);
3391 if (h->cmd_pool)
3392 pci_free_consistent(h->pdev,
3393 h->nr_cmds * sizeof(struct CommandList),
3394 h->cmd_pool, h->cmd_pool_dhandle);
3395 if (h->errinfo_pool)
3396 pci_free_consistent(h->pdev,
3397 h->nr_cmds * sizeof(struct ErrorInfo),
3398 h->errinfo_pool,
3399 h->errinfo_pool_dhandle);
3400 free_irq(h->intr[SIMPLE_MODE_INT], h);
3401clean2:
3402clean1:
3403 h->busy_initializing = 0;
3404 kfree(h);
3405 return -1;
3406}
3407
3408static void hpsa_flush_cache(struct ctlr_info *h)
3409{
3410 char *flush_buf;
3411 struct CommandList *c;
3412
3413 flush_buf = kzalloc(4, GFP_KERNEL);
3414 if (!flush_buf)
3415 return;
3416
3417 c = cmd_special_alloc(h);
3418 if (!c) {
3419 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3420 goto out_of_memory;
3421 }
3422 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3423 RAID_CTLR_LUNID, TYPE_CMD);
3424 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3425 if (c->err_info->CommandStatus != 0)
3426 dev_warn(&h->pdev->dev,
3427 "error flushing cache on controller\n");
3428 cmd_special_free(h, c);
3429out_of_memory:
3430 kfree(flush_buf);
3431}
3432
3433static void hpsa_shutdown(struct pci_dev *pdev)
3434{
3435 struct ctlr_info *h;
3436
3437 h = pci_get_drvdata(pdev);
3438 /* Turn board interrupts off and send the flush cache command
3439 * sendcmd will turn off interrupt, and send the flush...
3440 * To write all data in the battery backed cache to disks
3441 */
3442 hpsa_flush_cache(h);
3443 h->access.set_intr_mask(h, HPSA_INTR_OFF);
3444 free_irq(h->intr[2], h);
3445#ifdef CONFIG_PCI_MSI
3446 if (h->msix_vector)
3447 pci_disable_msix(h->pdev);
3448 else if (h->msi_vector)
3449 pci_disable_msi(h->pdev);
3450#endif /* CONFIG_PCI_MSI */
3451}
3452
3453static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3454{
3455 struct ctlr_info *h;
3456
3457 if (pci_get_drvdata(pdev) == NULL) {
3458 dev_err(&pdev->dev, "unable to remove device \n");
3459 return;
3460 }
3461 h = pci_get_drvdata(pdev);
3462 mutex_lock(&h->busy_shutting_down);
3463 remove_from_scan_list(h);
3464 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
3465 hpsa_shutdown(pdev);
3466 iounmap(h->vaddr);
3467 pci_free_consistent(h->pdev,
3468 h->nr_cmds * sizeof(struct CommandList),
3469 h->cmd_pool, h->cmd_pool_dhandle);
3470 pci_free_consistent(h->pdev,
3471 h->nr_cmds * sizeof(struct ErrorInfo),
3472 h->errinfo_pool, h->errinfo_pool_dhandle);
3473 kfree(h->cmd_pool_bits);
3474 /*
3475 * Deliberately omit pci_disable_device(): it does something nasty to
3476 * Smart Array controllers that pci_enable_device does not undo
3477 */
3478 pci_release_regions(pdev);
3479 pci_set_drvdata(pdev, NULL);
3480 mutex_unlock(&h->busy_shutting_down);
3481 kfree(h);
3482}
3483
3484static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3485 __attribute__((unused)) pm_message_t state)
3486{
3487 return -ENOSYS;
3488}
3489
3490static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3491{
3492 return -ENOSYS;
3493}
3494
3495static struct pci_driver hpsa_pci_driver = {
3496 .name = "hpsa",
3497 .probe = hpsa_init_one,
3498 .remove = __devexit_p(hpsa_remove_one),
3499 .id_table = hpsa_pci_device_id, /* id_table */
3500 .shutdown = hpsa_shutdown,
3501 .suspend = hpsa_suspend,
3502 .resume = hpsa_resume,
3503};
3504
3505/*
3506 * This is it. Register the PCI driver information for the cards we control
3507 * the OS will call our registered routines when it finds one of our cards.
3508 */
3509static int __init hpsa_init(void)
3510{
3511 int err;
3512 /* Start the scan thread */
3513 hpsa_scan_thread = kthread_run(hpsa_scan_func, NULL, "hpsa_scan");
3514 if (IS_ERR(hpsa_scan_thread)) {
3515 err = PTR_ERR(hpsa_scan_thread);
3516 return -ENODEV;
3517 }
3518 err = pci_register_driver(&hpsa_pci_driver);
3519 if (err)
3520 kthread_stop(hpsa_scan_thread);
3521 return err;
3522}
3523
3524static void __exit hpsa_cleanup(void)
3525{
3526 pci_unregister_driver(&hpsa_pci_driver);
3527 kthread_stop(hpsa_scan_thread);
3528}
3529
3530module_init(hpsa_init);
3531module_exit(hpsa_cleanup);