diff options
Diffstat (limited to 'drivers/scsi/hpsa.c')
-rw-r--r-- | drivers/scsi/hpsa.c | 3531 |
1 files changed, 3531 insertions, 0 deletions
diff --git a/drivers/scsi/hpsa.c b/drivers/scsi/hpsa.c new file mode 100644 index 000000000000..bb96fdd58e23 --- /dev/null +++ b/drivers/scsi/hpsa.c | |||
@@ -0,0 +1,3531 @@ | |||
1 | /* | ||
2 | * Disk Array driver for HP Smart Array SAS controllers | ||
3 | * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P. | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or modify | ||
6 | * it under the terms of the GNU General Public License as published by | ||
7 | * the Free Software Foundation; version 2 of the License. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
12 | * NON INFRINGEMENT. See the GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
17 | * | ||
18 | * Questions/Comments/Bugfixes to iss_storagedev@hp.com | ||
19 | * | ||
20 | */ | ||
21 | |||
22 | #include <linux/module.h> | ||
23 | #include <linux/interrupt.h> | ||
24 | #include <linux/types.h> | ||
25 | #include <linux/pci.h> | ||
26 | #include <linux/kernel.h> | ||
27 | #include <linux/slab.h> | ||
28 | #include <linux/delay.h> | ||
29 | #include <linux/fs.h> | ||
30 | #include <linux/timer.h> | ||
31 | #include <linux/seq_file.h> | ||
32 | #include <linux/init.h> | ||
33 | #include <linux/spinlock.h> | ||
34 | #include <linux/smp_lock.h> | ||
35 | #include <linux/compat.h> | ||
36 | #include <linux/blktrace_api.h> | ||
37 | #include <linux/uaccess.h> | ||
38 | #include <linux/io.h> | ||
39 | #include <linux/dma-mapping.h> | ||
40 | #include <linux/completion.h> | ||
41 | #include <linux/moduleparam.h> | ||
42 | #include <scsi/scsi.h> | ||
43 | #include <scsi/scsi_cmnd.h> | ||
44 | #include <scsi/scsi_device.h> | ||
45 | #include <scsi/scsi_host.h> | ||
46 | #include <linux/cciss_ioctl.h> | ||
47 | #include <linux/string.h> | ||
48 | #include <linux/bitmap.h> | ||
49 | #include <asm/atomic.h> | ||
50 | #include <linux/kthread.h> | ||
51 | #include "hpsa_cmd.h" | ||
52 | #include "hpsa.h" | ||
53 | |||
54 | /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */ | ||
55 | #define HPSA_DRIVER_VERSION "1.0.0" | ||
56 | #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" | ||
57 | |||
58 | /* How long to wait (in milliseconds) for board to go into simple mode */ | ||
59 | #define MAX_CONFIG_WAIT 30000 | ||
60 | #define MAX_IOCTL_CONFIG_WAIT 1000 | ||
61 | |||
62 | /*define how many times we will try a command because of bus resets */ | ||
63 | #define MAX_CMD_RETRIES 3 | ||
64 | |||
65 | /* Embedded module documentation macros - see modules.h */ | ||
66 | MODULE_AUTHOR("Hewlett-Packard Company"); | ||
67 | MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ | ||
68 | HPSA_DRIVER_VERSION); | ||
69 | MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); | ||
70 | MODULE_VERSION(HPSA_DRIVER_VERSION); | ||
71 | MODULE_LICENSE("GPL"); | ||
72 | |||
73 | static int hpsa_allow_any; | ||
74 | module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); | ||
75 | MODULE_PARM_DESC(hpsa_allow_any, | ||
76 | "Allow hpsa driver to access unknown HP Smart Array hardware"); | ||
77 | |||
78 | /* define the PCI info for the cards we can control */ | ||
79 | static const struct pci_device_id hpsa_pci_device_id[] = { | ||
80 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223}, | ||
81 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234}, | ||
82 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D}, | ||
83 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, | ||
84 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, | ||
85 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, | ||
86 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, | ||
87 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, | ||
88 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a}, | ||
89 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b}, | ||
90 | {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, | ||
91 | PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, | ||
92 | {0,} | ||
93 | }; | ||
94 | |||
95 | MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); | ||
96 | |||
97 | /* board_id = Subsystem Device ID & Vendor ID | ||
98 | * product = Marketing Name for the board | ||
99 | * access = Address of the struct of function pointers | ||
100 | */ | ||
101 | static struct board_type products[] = { | ||
102 | {0x3223103C, "Smart Array P800", &SA5_access}, | ||
103 | {0x3234103C, "Smart Array P400", &SA5_access}, | ||
104 | {0x323d103c, "Smart Array P700M", &SA5_access}, | ||
105 | {0x3241103C, "Smart Array P212", &SA5_access}, | ||
106 | {0x3243103C, "Smart Array P410", &SA5_access}, | ||
107 | {0x3245103C, "Smart Array P410i", &SA5_access}, | ||
108 | {0x3247103C, "Smart Array P411", &SA5_access}, | ||
109 | {0x3249103C, "Smart Array P812", &SA5_access}, | ||
110 | {0x324a103C, "Smart Array P712m", &SA5_access}, | ||
111 | {0x324b103C, "Smart Array P711m", &SA5_access}, | ||
112 | {0xFFFF103C, "Unknown Smart Array", &SA5_access}, | ||
113 | }; | ||
114 | |||
115 | static int number_of_controllers; | ||
116 | |||
117 | static irqreturn_t do_hpsa_intr(int irq, void *dev_id); | ||
118 | static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg); | ||
119 | static void start_io(struct ctlr_info *h); | ||
120 | |||
121 | #ifdef CONFIG_COMPAT | ||
122 | static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg); | ||
123 | #endif | ||
124 | |||
125 | static void cmd_free(struct ctlr_info *h, struct CommandList *c); | ||
126 | static void cmd_special_free(struct ctlr_info *h, struct CommandList *c); | ||
127 | static struct CommandList *cmd_alloc(struct ctlr_info *h); | ||
128 | static struct CommandList *cmd_special_alloc(struct ctlr_info *h); | ||
129 | static void fill_cmd(struct CommandList *c, __u8 cmd, struct ctlr_info *h, | ||
130 | void *buff, size_t size, __u8 page_code, unsigned char *scsi3addr, | ||
131 | int cmd_type); | ||
132 | |||
133 | static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd, | ||
134 | void (*done)(struct scsi_cmnd *)); | ||
135 | |||
136 | static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); | ||
137 | static int hpsa_slave_alloc(struct scsi_device *sdev); | ||
138 | static void hpsa_slave_destroy(struct scsi_device *sdev); | ||
139 | |||
140 | static ssize_t raid_level_show(struct device *dev, | ||
141 | struct device_attribute *attr, char *buf); | ||
142 | static ssize_t lunid_show(struct device *dev, | ||
143 | struct device_attribute *attr, char *buf); | ||
144 | static ssize_t unique_id_show(struct device *dev, | ||
145 | struct device_attribute *attr, char *buf); | ||
146 | static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno); | ||
147 | static ssize_t host_store_rescan(struct device *dev, | ||
148 | struct device_attribute *attr, const char *buf, size_t count); | ||
149 | static int check_for_unit_attention(struct ctlr_info *h, | ||
150 | struct CommandList *c); | ||
151 | static void check_ioctl_unit_attention(struct ctlr_info *h, | ||
152 | struct CommandList *c); | ||
153 | |||
154 | static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); | ||
155 | static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); | ||
156 | static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); | ||
157 | static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); | ||
158 | |||
159 | static struct device_attribute *hpsa_sdev_attrs[] = { | ||
160 | &dev_attr_raid_level, | ||
161 | &dev_attr_lunid, | ||
162 | &dev_attr_unique_id, | ||
163 | NULL, | ||
164 | }; | ||
165 | |||
166 | static struct device_attribute *hpsa_shost_attrs[] = { | ||
167 | &dev_attr_rescan, | ||
168 | NULL, | ||
169 | }; | ||
170 | |||
171 | static struct scsi_host_template hpsa_driver_template = { | ||
172 | .module = THIS_MODULE, | ||
173 | .name = "hpsa", | ||
174 | .proc_name = "hpsa", | ||
175 | .queuecommand = hpsa_scsi_queue_command, | ||
176 | .can_queue = 512, | ||
177 | .this_id = -1, | ||
178 | .sg_tablesize = MAXSGENTRIES, | ||
179 | .cmd_per_lun = 512, | ||
180 | .use_clustering = ENABLE_CLUSTERING, | ||
181 | .eh_device_reset_handler = hpsa_eh_device_reset_handler, | ||
182 | .ioctl = hpsa_ioctl, | ||
183 | .slave_alloc = hpsa_slave_alloc, | ||
184 | .slave_destroy = hpsa_slave_destroy, | ||
185 | #ifdef CONFIG_COMPAT | ||
186 | .compat_ioctl = hpsa_compat_ioctl, | ||
187 | #endif | ||
188 | .sdev_attrs = hpsa_sdev_attrs, | ||
189 | .shost_attrs = hpsa_shost_attrs, | ||
190 | }; | ||
191 | |||
192 | static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) | ||
193 | { | ||
194 | unsigned long *priv = shost_priv(sdev->host); | ||
195 | return (struct ctlr_info *) *priv; | ||
196 | } | ||
197 | |||
198 | static struct task_struct *hpsa_scan_thread; | ||
199 | static DEFINE_MUTEX(hpsa_scan_mutex); | ||
200 | static LIST_HEAD(hpsa_scan_q); | ||
201 | static int hpsa_scan_func(void *data); | ||
202 | |||
203 | /** | ||
204 | * add_to_scan_list() - add controller to rescan queue | ||
205 | * @h: Pointer to the controller. | ||
206 | * | ||
207 | * Adds the controller to the rescan queue if not already on the queue. | ||
208 | * | ||
209 | * returns 1 if added to the queue, 0 if skipped (could be on the | ||
210 | * queue already, or the controller could be initializing or shutting | ||
211 | * down). | ||
212 | **/ | ||
213 | static int add_to_scan_list(struct ctlr_info *h) | ||
214 | { | ||
215 | struct ctlr_info *test_h; | ||
216 | int found = 0; | ||
217 | int ret = 0; | ||
218 | |||
219 | if (h->busy_initializing) | ||
220 | return 0; | ||
221 | |||
222 | /* | ||
223 | * If we don't get the lock, it means the driver is unloading | ||
224 | * and there's no point in scheduling a new scan. | ||
225 | */ | ||
226 | if (!mutex_trylock(&h->busy_shutting_down)) | ||
227 | return 0; | ||
228 | |||
229 | mutex_lock(&hpsa_scan_mutex); | ||
230 | list_for_each_entry(test_h, &hpsa_scan_q, scan_list) { | ||
231 | if (test_h == h) { | ||
232 | found = 1; | ||
233 | break; | ||
234 | } | ||
235 | } | ||
236 | if (!found && !h->busy_scanning) { | ||
237 | INIT_COMPLETION(h->scan_wait); | ||
238 | list_add_tail(&h->scan_list, &hpsa_scan_q); | ||
239 | ret = 1; | ||
240 | } | ||
241 | mutex_unlock(&hpsa_scan_mutex); | ||
242 | mutex_unlock(&h->busy_shutting_down); | ||
243 | |||
244 | return ret; | ||
245 | } | ||
246 | |||
247 | /** | ||
248 | * remove_from_scan_list() - remove controller from rescan queue | ||
249 | * @h: Pointer to the controller. | ||
250 | * | ||
251 | * Removes the controller from the rescan queue if present. Blocks if | ||
252 | * the controller is currently conducting a rescan. The controller | ||
253 | * can be in one of three states: | ||
254 | * 1. Doesn't need a scan | ||
255 | * 2. On the scan list, but not scanning yet (we remove it) | ||
256 | * 3. Busy scanning (and not on the list). In this case we want to wait for | ||
257 | * the scan to complete to make sure the scanning thread for this | ||
258 | * controller is completely idle. | ||
259 | **/ | ||
260 | static void remove_from_scan_list(struct ctlr_info *h) | ||
261 | { | ||
262 | struct ctlr_info *test_h, *tmp_h; | ||
263 | |||
264 | mutex_lock(&hpsa_scan_mutex); | ||
265 | list_for_each_entry_safe(test_h, tmp_h, &hpsa_scan_q, scan_list) { | ||
266 | if (test_h == h) { /* state 2. */ | ||
267 | list_del(&h->scan_list); | ||
268 | complete_all(&h->scan_wait); | ||
269 | mutex_unlock(&hpsa_scan_mutex); | ||
270 | return; | ||
271 | } | ||
272 | } | ||
273 | if (h->busy_scanning) { /* state 3. */ | ||
274 | mutex_unlock(&hpsa_scan_mutex); | ||
275 | wait_for_completion(&h->scan_wait); | ||
276 | } else { /* state 1, nothing to do. */ | ||
277 | mutex_unlock(&hpsa_scan_mutex); | ||
278 | } | ||
279 | } | ||
280 | |||
281 | /* hpsa_scan_func() - kernel thread used to rescan controllers | ||
282 | * @data: Ignored. | ||
283 | * | ||
284 | * A kernel thread used scan for drive topology changes on | ||
285 | * controllers. The thread processes only one controller at a time | ||
286 | * using a queue. Controllers are added to the queue using | ||
287 | * add_to_scan_list() and removed from the queue either after done | ||
288 | * processing or using remove_from_scan_list(). | ||
289 | * | ||
290 | * returns 0. | ||
291 | **/ | ||
292 | static int hpsa_scan_func(__attribute__((unused)) void *data) | ||
293 | { | ||
294 | struct ctlr_info *h; | ||
295 | int host_no; | ||
296 | |||
297 | while (1) { | ||
298 | set_current_state(TASK_INTERRUPTIBLE); | ||
299 | schedule(); | ||
300 | if (kthread_should_stop()) | ||
301 | break; | ||
302 | |||
303 | while (1) { | ||
304 | mutex_lock(&hpsa_scan_mutex); | ||
305 | if (list_empty(&hpsa_scan_q)) { | ||
306 | mutex_unlock(&hpsa_scan_mutex); | ||
307 | break; | ||
308 | } | ||
309 | h = list_entry(hpsa_scan_q.next, struct ctlr_info, | ||
310 | scan_list); | ||
311 | list_del(&h->scan_list); | ||
312 | h->busy_scanning = 1; | ||
313 | mutex_unlock(&hpsa_scan_mutex); | ||
314 | host_no = h->scsi_host ? h->scsi_host->host_no : -1; | ||
315 | hpsa_update_scsi_devices(h, host_no); | ||
316 | complete_all(&h->scan_wait); | ||
317 | mutex_lock(&hpsa_scan_mutex); | ||
318 | h->busy_scanning = 0; | ||
319 | mutex_unlock(&hpsa_scan_mutex); | ||
320 | } | ||
321 | } | ||
322 | return 0; | ||
323 | } | ||
324 | |||
325 | static int check_for_unit_attention(struct ctlr_info *h, | ||
326 | struct CommandList *c) | ||
327 | { | ||
328 | if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) | ||
329 | return 0; | ||
330 | |||
331 | switch (c->err_info->SenseInfo[12]) { | ||
332 | case STATE_CHANGED: | ||
333 | dev_warn(&h->pdev->dev, "hpsa%d: a state change " | ||
334 | "detected, command retried\n", h->ctlr); | ||
335 | break; | ||
336 | case LUN_FAILED: | ||
337 | dev_warn(&h->pdev->dev, "hpsa%d: LUN failure " | ||
338 | "detected, action required\n", h->ctlr); | ||
339 | break; | ||
340 | case REPORT_LUNS_CHANGED: | ||
341 | dev_warn(&h->pdev->dev, "hpsa%d: report LUN data " | ||
342 | "changed\n", h->ctlr); | ||
343 | /* | ||
344 | * Here, we could call add_to_scan_list and wake up the scan thread, | ||
345 | * except that it's quite likely that we will get more than one | ||
346 | * REPORT_LUNS_CHANGED condition in quick succession, which means | ||
347 | * that those which occur after the first one will likely happen | ||
348 | * *during* the hpsa_scan_thread's rescan. And the rescan code is not | ||
349 | * robust enough to restart in the middle, undoing what it has already | ||
350 | * done, and it's not clear that it's even possible to do this, since | ||
351 | * part of what it does is notify the SCSI mid layer, which starts | ||
352 | * doing it's own i/o to read partition tables and so on, and the | ||
353 | * driver doesn't have visibility to know what might need undoing. | ||
354 | * In any event, if possible, it is horribly complicated to get right | ||
355 | * so we just don't do it for now. | ||
356 | * | ||
357 | * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012. | ||
358 | */ | ||
359 | break; | ||
360 | case POWER_OR_RESET: | ||
361 | dev_warn(&h->pdev->dev, "hpsa%d: a power on " | ||
362 | "or device reset detected\n", h->ctlr); | ||
363 | break; | ||
364 | case UNIT_ATTENTION_CLEARED: | ||
365 | dev_warn(&h->pdev->dev, "hpsa%d: unit attention " | ||
366 | "cleared by another initiator\n", h->ctlr); | ||
367 | break; | ||
368 | default: | ||
369 | dev_warn(&h->pdev->dev, "hpsa%d: unknown " | ||
370 | "unit attention detected\n", h->ctlr); | ||
371 | break; | ||
372 | } | ||
373 | return 1; | ||
374 | } | ||
375 | |||
376 | static ssize_t host_store_rescan(struct device *dev, | ||
377 | struct device_attribute *attr, | ||
378 | const char *buf, size_t count) | ||
379 | { | ||
380 | struct ctlr_info *h; | ||
381 | struct Scsi_Host *shost = class_to_shost(dev); | ||
382 | unsigned long *priv = shost_priv(shost); | ||
383 | h = (struct ctlr_info *) *priv; | ||
384 | if (add_to_scan_list(h)) { | ||
385 | wake_up_process(hpsa_scan_thread); | ||
386 | wait_for_completion_interruptible(&h->scan_wait); | ||
387 | } | ||
388 | return count; | ||
389 | } | ||
390 | |||
391 | /* Enqueuing and dequeuing functions for cmdlists. */ | ||
392 | static inline void addQ(struct hlist_head *list, struct CommandList *c) | ||
393 | { | ||
394 | hlist_add_head(&c->list, list); | ||
395 | } | ||
396 | |||
397 | static void enqueue_cmd_and_start_io(struct ctlr_info *h, | ||
398 | struct CommandList *c) | ||
399 | { | ||
400 | unsigned long flags; | ||
401 | spin_lock_irqsave(&h->lock, flags); | ||
402 | addQ(&h->reqQ, c); | ||
403 | h->Qdepth++; | ||
404 | start_io(h); | ||
405 | spin_unlock_irqrestore(&h->lock, flags); | ||
406 | } | ||
407 | |||
408 | static inline void removeQ(struct CommandList *c) | ||
409 | { | ||
410 | if (WARN_ON(hlist_unhashed(&c->list))) | ||
411 | return; | ||
412 | hlist_del_init(&c->list); | ||
413 | } | ||
414 | |||
415 | static inline int is_hba_lunid(unsigned char scsi3addr[]) | ||
416 | { | ||
417 | return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; | ||
418 | } | ||
419 | |||
420 | static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) | ||
421 | { | ||
422 | return (scsi3addr[3] & 0xC0) == 0x40; | ||
423 | } | ||
424 | |||
425 | static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", | ||
426 | "UNKNOWN" | ||
427 | }; | ||
428 | #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1) | ||
429 | |||
430 | static ssize_t raid_level_show(struct device *dev, | ||
431 | struct device_attribute *attr, char *buf) | ||
432 | { | ||
433 | ssize_t l = 0; | ||
434 | int rlevel; | ||
435 | struct ctlr_info *h; | ||
436 | struct scsi_device *sdev; | ||
437 | struct hpsa_scsi_dev_t *hdev; | ||
438 | unsigned long flags; | ||
439 | |||
440 | sdev = to_scsi_device(dev); | ||
441 | h = sdev_to_hba(sdev); | ||
442 | spin_lock_irqsave(&h->lock, flags); | ||
443 | hdev = sdev->hostdata; | ||
444 | if (!hdev) { | ||
445 | spin_unlock_irqrestore(&h->lock, flags); | ||
446 | return -ENODEV; | ||
447 | } | ||
448 | |||
449 | /* Is this even a logical drive? */ | ||
450 | if (!is_logical_dev_addr_mode(hdev->scsi3addr)) { | ||
451 | spin_unlock_irqrestore(&h->lock, flags); | ||
452 | l = snprintf(buf, PAGE_SIZE, "N/A\n"); | ||
453 | return l; | ||
454 | } | ||
455 | |||
456 | rlevel = hdev->raid_level; | ||
457 | spin_unlock_irqrestore(&h->lock, flags); | ||
458 | if (rlevel < 0 || rlevel > RAID_UNKNOWN) | ||
459 | rlevel = RAID_UNKNOWN; | ||
460 | l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); | ||
461 | return l; | ||
462 | } | ||
463 | |||
464 | static ssize_t lunid_show(struct device *dev, | ||
465 | struct device_attribute *attr, char *buf) | ||
466 | { | ||
467 | struct ctlr_info *h; | ||
468 | struct scsi_device *sdev; | ||
469 | struct hpsa_scsi_dev_t *hdev; | ||
470 | unsigned long flags; | ||
471 | unsigned char lunid[8]; | ||
472 | |||
473 | sdev = to_scsi_device(dev); | ||
474 | h = sdev_to_hba(sdev); | ||
475 | spin_lock_irqsave(&h->lock, flags); | ||
476 | hdev = sdev->hostdata; | ||
477 | if (!hdev) { | ||
478 | spin_unlock_irqrestore(&h->lock, flags); | ||
479 | return -ENODEV; | ||
480 | } | ||
481 | memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); | ||
482 | spin_unlock_irqrestore(&h->lock, flags); | ||
483 | return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", | ||
484 | lunid[0], lunid[1], lunid[2], lunid[3], | ||
485 | lunid[4], lunid[5], lunid[6], lunid[7]); | ||
486 | } | ||
487 | |||
488 | static ssize_t unique_id_show(struct device *dev, | ||
489 | struct device_attribute *attr, char *buf) | ||
490 | { | ||
491 | struct ctlr_info *h; | ||
492 | struct scsi_device *sdev; | ||
493 | struct hpsa_scsi_dev_t *hdev; | ||
494 | unsigned long flags; | ||
495 | unsigned char sn[16]; | ||
496 | |||
497 | sdev = to_scsi_device(dev); | ||
498 | h = sdev_to_hba(sdev); | ||
499 | spin_lock_irqsave(&h->lock, flags); | ||
500 | hdev = sdev->hostdata; | ||
501 | if (!hdev) { | ||
502 | spin_unlock_irqrestore(&h->lock, flags); | ||
503 | return -ENODEV; | ||
504 | } | ||
505 | memcpy(sn, hdev->device_id, sizeof(sn)); | ||
506 | spin_unlock_irqrestore(&h->lock, flags); | ||
507 | return snprintf(buf, 16 * 2 + 2, | ||
508 | "%02X%02X%02X%02X%02X%02X%02X%02X" | ||
509 | "%02X%02X%02X%02X%02X%02X%02X%02X\n", | ||
510 | sn[0], sn[1], sn[2], sn[3], | ||
511 | sn[4], sn[5], sn[6], sn[7], | ||
512 | sn[8], sn[9], sn[10], sn[11], | ||
513 | sn[12], sn[13], sn[14], sn[15]); | ||
514 | } | ||
515 | |||
516 | static int hpsa_find_target_lun(struct ctlr_info *h, | ||
517 | unsigned char scsi3addr[], int bus, int *target, int *lun) | ||
518 | { | ||
519 | /* finds an unused bus, target, lun for a new physical device | ||
520 | * assumes h->devlock is held | ||
521 | */ | ||
522 | int i, found = 0; | ||
523 | DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA); | ||
524 | |||
525 | memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3); | ||
526 | |||
527 | for (i = 0; i < h->ndevices; i++) { | ||
528 | if (h->dev[i]->bus == bus && h->dev[i]->target != -1) | ||
529 | set_bit(h->dev[i]->target, lun_taken); | ||
530 | } | ||
531 | |||
532 | for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) { | ||
533 | if (!test_bit(i, lun_taken)) { | ||
534 | /* *bus = 1; */ | ||
535 | *target = i; | ||
536 | *lun = 0; | ||
537 | found = 1; | ||
538 | break; | ||
539 | } | ||
540 | } | ||
541 | return !found; | ||
542 | } | ||
543 | |||
544 | /* Add an entry into h->dev[] array. */ | ||
545 | static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno, | ||
546 | struct hpsa_scsi_dev_t *device, | ||
547 | struct hpsa_scsi_dev_t *added[], int *nadded) | ||
548 | { | ||
549 | /* assumes h->devlock is held */ | ||
550 | int n = h->ndevices; | ||
551 | int i; | ||
552 | unsigned char addr1[8], addr2[8]; | ||
553 | struct hpsa_scsi_dev_t *sd; | ||
554 | |||
555 | if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) { | ||
556 | dev_err(&h->pdev->dev, "too many devices, some will be " | ||
557 | "inaccessible.\n"); | ||
558 | return -1; | ||
559 | } | ||
560 | |||
561 | /* physical devices do not have lun or target assigned until now. */ | ||
562 | if (device->lun != -1) | ||
563 | /* Logical device, lun is already assigned. */ | ||
564 | goto lun_assigned; | ||
565 | |||
566 | /* If this device a non-zero lun of a multi-lun device | ||
567 | * byte 4 of the 8-byte LUN addr will contain the logical | ||
568 | * unit no, zero otherise. | ||
569 | */ | ||
570 | if (device->scsi3addr[4] == 0) { | ||
571 | /* This is not a non-zero lun of a multi-lun device */ | ||
572 | if (hpsa_find_target_lun(h, device->scsi3addr, | ||
573 | device->bus, &device->target, &device->lun) != 0) | ||
574 | return -1; | ||
575 | goto lun_assigned; | ||
576 | } | ||
577 | |||
578 | /* This is a non-zero lun of a multi-lun device. | ||
579 | * Search through our list and find the device which | ||
580 | * has the same 8 byte LUN address, excepting byte 4. | ||
581 | * Assign the same bus and target for this new LUN. | ||
582 | * Use the logical unit number from the firmware. | ||
583 | */ | ||
584 | memcpy(addr1, device->scsi3addr, 8); | ||
585 | addr1[4] = 0; | ||
586 | for (i = 0; i < n; i++) { | ||
587 | sd = h->dev[i]; | ||
588 | memcpy(addr2, sd->scsi3addr, 8); | ||
589 | addr2[4] = 0; | ||
590 | /* differ only in byte 4? */ | ||
591 | if (memcmp(addr1, addr2, 8) == 0) { | ||
592 | device->bus = sd->bus; | ||
593 | device->target = sd->target; | ||
594 | device->lun = device->scsi3addr[4]; | ||
595 | break; | ||
596 | } | ||
597 | } | ||
598 | if (device->lun == -1) { | ||
599 | dev_warn(&h->pdev->dev, "physical device with no LUN=0," | ||
600 | " suspect firmware bug or unsupported hardware " | ||
601 | "configuration.\n"); | ||
602 | return -1; | ||
603 | } | ||
604 | |||
605 | lun_assigned: | ||
606 | |||
607 | h->dev[n] = device; | ||
608 | h->ndevices++; | ||
609 | added[*nadded] = device; | ||
610 | (*nadded)++; | ||
611 | |||
612 | /* initially, (before registering with scsi layer) we don't | ||
613 | * know our hostno and we don't want to print anything first | ||
614 | * time anyway (the scsi layer's inquiries will show that info) | ||
615 | */ | ||
616 | /* if (hostno != -1) */ | ||
617 | dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n", | ||
618 | scsi_device_type(device->devtype), hostno, | ||
619 | device->bus, device->target, device->lun); | ||
620 | return 0; | ||
621 | } | ||
622 | |||
623 | /* Remove an entry from h->dev[] array. */ | ||
624 | static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry, | ||
625 | struct hpsa_scsi_dev_t *removed[], int *nremoved) | ||
626 | { | ||
627 | /* assumes h->devlock is held */ | ||
628 | int i; | ||
629 | struct hpsa_scsi_dev_t *sd; | ||
630 | |||
631 | if (entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA) | ||
632 | BUG(); | ||
633 | |||
634 | sd = h->dev[entry]; | ||
635 | removed[*nremoved] = h->dev[entry]; | ||
636 | (*nremoved)++; | ||
637 | |||
638 | for (i = entry; i < h->ndevices-1; i++) | ||
639 | h->dev[i] = h->dev[i+1]; | ||
640 | h->ndevices--; | ||
641 | dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n", | ||
642 | scsi_device_type(sd->devtype), hostno, sd->bus, sd->target, | ||
643 | sd->lun); | ||
644 | } | ||
645 | |||
646 | #define SCSI3ADDR_EQ(a, b) ( \ | ||
647 | (a)[7] == (b)[7] && \ | ||
648 | (a)[6] == (b)[6] && \ | ||
649 | (a)[5] == (b)[5] && \ | ||
650 | (a)[4] == (b)[4] && \ | ||
651 | (a)[3] == (b)[3] && \ | ||
652 | (a)[2] == (b)[2] && \ | ||
653 | (a)[1] == (b)[1] && \ | ||
654 | (a)[0] == (b)[0]) | ||
655 | |||
656 | static void fixup_botched_add(struct ctlr_info *h, | ||
657 | struct hpsa_scsi_dev_t *added) | ||
658 | { | ||
659 | /* called when scsi_add_device fails in order to re-adjust | ||
660 | * h->dev[] to match the mid layer's view. | ||
661 | */ | ||
662 | unsigned long flags; | ||
663 | int i, j; | ||
664 | |||
665 | spin_lock_irqsave(&h->lock, flags); | ||
666 | for (i = 0; i < h->ndevices; i++) { | ||
667 | if (h->dev[i] == added) { | ||
668 | for (j = i; j < h->ndevices-1; j++) | ||
669 | h->dev[j] = h->dev[j+1]; | ||
670 | h->ndevices--; | ||
671 | break; | ||
672 | } | ||
673 | } | ||
674 | spin_unlock_irqrestore(&h->lock, flags); | ||
675 | kfree(added); | ||
676 | } | ||
677 | |||
678 | static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, | ||
679 | struct hpsa_scsi_dev_t *dev2) | ||
680 | { | ||
681 | if ((is_logical_dev_addr_mode(dev1->scsi3addr) || | ||
682 | (dev1->lun != -1 && dev2->lun != -1)) && | ||
683 | dev1->devtype != 0x0C) | ||
684 | return (memcmp(dev1, dev2, sizeof(*dev1)) == 0); | ||
685 | |||
686 | /* we compare everything except lun and target as these | ||
687 | * are not yet assigned. Compare parts likely | ||
688 | * to differ first | ||
689 | */ | ||
690 | if (memcmp(dev1->scsi3addr, dev2->scsi3addr, | ||
691 | sizeof(dev1->scsi3addr)) != 0) | ||
692 | return 0; | ||
693 | if (memcmp(dev1->device_id, dev2->device_id, | ||
694 | sizeof(dev1->device_id)) != 0) | ||
695 | return 0; | ||
696 | if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) | ||
697 | return 0; | ||
698 | if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) | ||
699 | return 0; | ||
700 | if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0) | ||
701 | return 0; | ||
702 | if (dev1->devtype != dev2->devtype) | ||
703 | return 0; | ||
704 | if (dev1->raid_level != dev2->raid_level) | ||
705 | return 0; | ||
706 | if (dev1->bus != dev2->bus) | ||
707 | return 0; | ||
708 | return 1; | ||
709 | } | ||
710 | |||
711 | /* Find needle in haystack. If exact match found, return DEVICE_SAME, | ||
712 | * and return needle location in *index. If scsi3addr matches, but not | ||
713 | * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle | ||
714 | * location in *index. If needle not found, return DEVICE_NOT_FOUND. | ||
715 | */ | ||
716 | static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, | ||
717 | struct hpsa_scsi_dev_t *haystack[], int haystack_size, | ||
718 | int *index) | ||
719 | { | ||
720 | int i; | ||
721 | #define DEVICE_NOT_FOUND 0 | ||
722 | #define DEVICE_CHANGED 1 | ||
723 | #define DEVICE_SAME 2 | ||
724 | for (i = 0; i < haystack_size; i++) { | ||
725 | if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { | ||
726 | *index = i; | ||
727 | if (device_is_the_same(needle, haystack[i])) | ||
728 | return DEVICE_SAME; | ||
729 | else | ||
730 | return DEVICE_CHANGED; | ||
731 | } | ||
732 | } | ||
733 | *index = -1; | ||
734 | return DEVICE_NOT_FOUND; | ||
735 | } | ||
736 | |||
737 | static int adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno, | ||
738 | struct hpsa_scsi_dev_t *sd[], int nsds) | ||
739 | { | ||
740 | /* sd contains scsi3 addresses and devtypes, and inquiry | ||
741 | * data. This function takes what's in sd to be the current | ||
742 | * reality and updates h->dev[] to reflect that reality. | ||
743 | */ | ||
744 | int i, entry, device_change, changes = 0; | ||
745 | struct hpsa_scsi_dev_t *csd; | ||
746 | unsigned long flags; | ||
747 | struct hpsa_scsi_dev_t **added, **removed; | ||
748 | int nadded, nremoved; | ||
749 | struct Scsi_Host *sh = NULL; | ||
750 | |||
751 | added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA, | ||
752 | GFP_KERNEL); | ||
753 | removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA, | ||
754 | GFP_KERNEL); | ||
755 | |||
756 | if (!added || !removed) { | ||
757 | dev_warn(&h->pdev->dev, "out of memory in " | ||
758 | "adjust_hpsa_scsi_table\n"); | ||
759 | goto free_and_out; | ||
760 | } | ||
761 | |||
762 | spin_lock_irqsave(&h->devlock, flags); | ||
763 | |||
764 | /* find any devices in h->dev[] that are not in | ||
765 | * sd[] and remove them from h->dev[], and for any | ||
766 | * devices which have changed, remove the old device | ||
767 | * info and add the new device info. | ||
768 | */ | ||
769 | i = 0; | ||
770 | nremoved = 0; | ||
771 | nadded = 0; | ||
772 | while (i < h->ndevices) { | ||
773 | csd = h->dev[i]; | ||
774 | device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); | ||
775 | if (device_change == DEVICE_NOT_FOUND) { | ||
776 | changes++; | ||
777 | hpsa_scsi_remove_entry(h, hostno, i, | ||
778 | removed, &nremoved); | ||
779 | continue; /* remove ^^^, hence i not incremented */ | ||
780 | } else if (device_change == DEVICE_CHANGED) { | ||
781 | changes++; | ||
782 | hpsa_scsi_remove_entry(h, hostno, i, | ||
783 | removed, &nremoved); | ||
784 | (void) hpsa_scsi_add_entry(h, hostno, sd[entry], | ||
785 | added, &nadded); | ||
786 | /* add can't fail, we just removed one. */ | ||
787 | sd[entry] = NULL; /* prevent it from being freed */ | ||
788 | } | ||
789 | i++; | ||
790 | } | ||
791 | |||
792 | /* Now, make sure every device listed in sd[] is also | ||
793 | * listed in h->dev[], adding them if they aren't found | ||
794 | */ | ||
795 | |||
796 | for (i = 0; i < nsds; i++) { | ||
797 | if (!sd[i]) /* if already added above. */ | ||
798 | continue; | ||
799 | device_change = hpsa_scsi_find_entry(sd[i], h->dev, | ||
800 | h->ndevices, &entry); | ||
801 | if (device_change == DEVICE_NOT_FOUND) { | ||
802 | changes++; | ||
803 | if (hpsa_scsi_add_entry(h, hostno, sd[i], | ||
804 | added, &nadded) != 0) | ||
805 | break; | ||
806 | sd[i] = NULL; /* prevent from being freed later. */ | ||
807 | } else if (device_change == DEVICE_CHANGED) { | ||
808 | /* should never happen... */ | ||
809 | changes++; | ||
810 | dev_warn(&h->pdev->dev, | ||
811 | "device unexpectedly changed.\n"); | ||
812 | /* but if it does happen, we just ignore that device */ | ||
813 | } | ||
814 | } | ||
815 | spin_unlock_irqrestore(&h->devlock, flags); | ||
816 | |||
817 | /* Don't notify scsi mid layer of any changes the first time through | ||
818 | * (or if there are no changes) scsi_scan_host will do it later the | ||
819 | * first time through. | ||
820 | */ | ||
821 | if (hostno == -1 || !changes) | ||
822 | goto free_and_out; | ||
823 | |||
824 | sh = h->scsi_host; | ||
825 | /* Notify scsi mid layer of any removed devices */ | ||
826 | for (i = 0; i < nremoved; i++) { | ||
827 | struct scsi_device *sdev = | ||
828 | scsi_device_lookup(sh, removed[i]->bus, | ||
829 | removed[i]->target, removed[i]->lun); | ||
830 | if (sdev != NULL) { | ||
831 | scsi_remove_device(sdev); | ||
832 | scsi_device_put(sdev); | ||
833 | } else { | ||
834 | /* We don't expect to get here. | ||
835 | * future cmds to this device will get selection | ||
836 | * timeout as if the device was gone. | ||
837 | */ | ||
838 | dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d " | ||
839 | " for removal.", hostno, removed[i]->bus, | ||
840 | removed[i]->target, removed[i]->lun); | ||
841 | } | ||
842 | kfree(removed[i]); | ||
843 | removed[i] = NULL; | ||
844 | } | ||
845 | |||
846 | /* Notify scsi mid layer of any added devices */ | ||
847 | for (i = 0; i < nadded; i++) { | ||
848 | if (scsi_add_device(sh, added[i]->bus, | ||
849 | added[i]->target, added[i]->lun) == 0) | ||
850 | continue; | ||
851 | dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, " | ||
852 | "device not added.\n", hostno, added[i]->bus, | ||
853 | added[i]->target, added[i]->lun); | ||
854 | /* now we have to remove it from h->dev, | ||
855 | * since it didn't get added to scsi mid layer | ||
856 | */ | ||
857 | fixup_botched_add(h, added[i]); | ||
858 | } | ||
859 | |||
860 | free_and_out: | ||
861 | kfree(added); | ||
862 | kfree(removed); | ||
863 | return 0; | ||
864 | } | ||
865 | |||
866 | /* | ||
867 | * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t * | ||
868 | * Assume's h->devlock is held. | ||
869 | */ | ||
870 | static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, | ||
871 | int bus, int target, int lun) | ||
872 | { | ||
873 | int i; | ||
874 | struct hpsa_scsi_dev_t *sd; | ||
875 | |||
876 | for (i = 0; i < h->ndevices; i++) { | ||
877 | sd = h->dev[i]; | ||
878 | if (sd->bus == bus && sd->target == target && sd->lun == lun) | ||
879 | return sd; | ||
880 | } | ||
881 | return NULL; | ||
882 | } | ||
883 | |||
884 | /* link sdev->hostdata to our per-device structure. */ | ||
885 | static int hpsa_slave_alloc(struct scsi_device *sdev) | ||
886 | { | ||
887 | struct hpsa_scsi_dev_t *sd; | ||
888 | unsigned long flags; | ||
889 | struct ctlr_info *h; | ||
890 | |||
891 | h = sdev_to_hba(sdev); | ||
892 | spin_lock_irqsave(&h->devlock, flags); | ||
893 | sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), | ||
894 | sdev_id(sdev), sdev->lun); | ||
895 | if (sd != NULL) | ||
896 | sdev->hostdata = sd; | ||
897 | spin_unlock_irqrestore(&h->devlock, flags); | ||
898 | return 0; | ||
899 | } | ||
900 | |||
901 | static void hpsa_slave_destroy(struct scsi_device *sdev) | ||
902 | { | ||
903 | return; /* nothing to do. */ | ||
904 | } | ||
905 | |||
906 | static void hpsa_scsi_setup(struct ctlr_info *h) | ||
907 | { | ||
908 | h->ndevices = 0; | ||
909 | h->scsi_host = NULL; | ||
910 | spin_lock_init(&h->devlock); | ||
911 | return; | ||
912 | } | ||
913 | |||
914 | static void complete_scsi_command(struct CommandList *cp, | ||
915 | int timeout, __u32 tag) | ||
916 | { | ||
917 | struct scsi_cmnd *cmd; | ||
918 | struct ctlr_info *h; | ||
919 | struct ErrorInfo *ei; | ||
920 | |||
921 | unsigned char sense_key; | ||
922 | unsigned char asc; /* additional sense code */ | ||
923 | unsigned char ascq; /* additional sense code qualifier */ | ||
924 | |||
925 | ei = cp->err_info; | ||
926 | cmd = (struct scsi_cmnd *) cp->scsi_cmd; | ||
927 | h = cp->h; | ||
928 | |||
929 | scsi_dma_unmap(cmd); /* undo the DMA mappings */ | ||
930 | |||
931 | cmd->result = (DID_OK << 16); /* host byte */ | ||
932 | cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ | ||
933 | cmd->result |= (ei->ScsiStatus << 1); | ||
934 | |||
935 | /* copy the sense data whether we need to or not. */ | ||
936 | memcpy(cmd->sense_buffer, ei->SenseInfo, | ||
937 | ei->SenseLen > SCSI_SENSE_BUFFERSIZE ? | ||
938 | SCSI_SENSE_BUFFERSIZE : | ||
939 | ei->SenseLen); | ||
940 | scsi_set_resid(cmd, ei->ResidualCnt); | ||
941 | |||
942 | if (ei->CommandStatus == 0) { | ||
943 | cmd->scsi_done(cmd); | ||
944 | cmd_free(h, cp); | ||
945 | return; | ||
946 | } | ||
947 | |||
948 | /* an error has occurred */ | ||
949 | switch (ei->CommandStatus) { | ||
950 | |||
951 | case CMD_TARGET_STATUS: | ||
952 | if (ei->ScsiStatus) { | ||
953 | /* Get sense key */ | ||
954 | sense_key = 0xf & ei->SenseInfo[2]; | ||
955 | /* Get additional sense code */ | ||
956 | asc = ei->SenseInfo[12]; | ||
957 | /* Get addition sense code qualifier */ | ||
958 | ascq = ei->SenseInfo[13]; | ||
959 | } | ||
960 | |||
961 | if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { | ||
962 | if (check_for_unit_attention(h, cp)) { | ||
963 | cmd->result = DID_SOFT_ERROR << 16; | ||
964 | break; | ||
965 | } | ||
966 | if (sense_key == ILLEGAL_REQUEST) { | ||
967 | /* | ||
968 | * SCSI REPORT_LUNS is commonly unsupported on | ||
969 | * Smart Array. Suppress noisy complaint. | ||
970 | */ | ||
971 | if (cp->Request.CDB[0] == REPORT_LUNS) | ||
972 | break; | ||
973 | |||
974 | /* If ASC/ASCQ indicate Logical Unit | ||
975 | * Not Supported condition, | ||
976 | */ | ||
977 | if ((asc == 0x25) && (ascq == 0x0)) { | ||
978 | dev_warn(&h->pdev->dev, "cp %p " | ||
979 | "has check condition\n", cp); | ||
980 | break; | ||
981 | } | ||
982 | } | ||
983 | |||
984 | if (sense_key == NOT_READY) { | ||
985 | /* If Sense is Not Ready, Logical Unit | ||
986 | * Not ready, Manual Intervention | ||
987 | * required | ||
988 | */ | ||
989 | if ((asc == 0x04) && (ascq == 0x03)) { | ||
990 | cmd->result = DID_NO_CONNECT << 16; | ||
991 | dev_warn(&h->pdev->dev, "cp %p " | ||
992 | "has check condition: unit " | ||
993 | "not ready, manual " | ||
994 | "intervention required\n", cp); | ||
995 | break; | ||
996 | } | ||
997 | } | ||
998 | |||
999 | |||
1000 | /* Must be some other type of check condition */ | ||
1001 | dev_warn(&h->pdev->dev, "cp %p has check condition: " | ||
1002 | "unknown type: " | ||
1003 | "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " | ||
1004 | "Returning result: 0x%x, " | ||
1005 | "cmd=[%02x %02x %02x %02x %02x " | ||
1006 | "%02x %02x %02x %02x %02x]\n", | ||
1007 | cp, sense_key, asc, ascq, | ||
1008 | cmd->result, | ||
1009 | cmd->cmnd[0], cmd->cmnd[1], | ||
1010 | cmd->cmnd[2], cmd->cmnd[3], | ||
1011 | cmd->cmnd[4], cmd->cmnd[5], | ||
1012 | cmd->cmnd[6], cmd->cmnd[7], | ||
1013 | cmd->cmnd[8], cmd->cmnd[9]); | ||
1014 | break; | ||
1015 | } | ||
1016 | |||
1017 | |||
1018 | /* Problem was not a check condition | ||
1019 | * Pass it up to the upper layers... | ||
1020 | */ | ||
1021 | if (ei->ScsiStatus) { | ||
1022 | dev_warn(&h->pdev->dev, "cp %p has status 0x%x " | ||
1023 | "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " | ||
1024 | "Returning result: 0x%x\n", | ||
1025 | cp, ei->ScsiStatus, | ||
1026 | sense_key, asc, ascq, | ||
1027 | cmd->result); | ||
1028 | } else { /* scsi status is zero??? How??? */ | ||
1029 | dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " | ||
1030 | "Returning no connection.\n", cp), | ||
1031 | |||
1032 | /* Ordinarily, this case should never happen, | ||
1033 | * but there is a bug in some released firmware | ||
1034 | * revisions that allows it to happen if, for | ||
1035 | * example, a 4100 backplane loses power and | ||
1036 | * the tape drive is in it. We assume that | ||
1037 | * it's a fatal error of some kind because we | ||
1038 | * can't show that it wasn't. We will make it | ||
1039 | * look like selection timeout since that is | ||
1040 | * the most common reason for this to occur, | ||
1041 | * and it's severe enough. | ||
1042 | */ | ||
1043 | |||
1044 | cmd->result = DID_NO_CONNECT << 16; | ||
1045 | } | ||
1046 | break; | ||
1047 | |||
1048 | case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ | ||
1049 | break; | ||
1050 | case CMD_DATA_OVERRUN: | ||
1051 | dev_warn(&h->pdev->dev, "cp %p has" | ||
1052 | " completed with data overrun " | ||
1053 | "reported\n", cp); | ||
1054 | break; | ||
1055 | case CMD_INVALID: { | ||
1056 | /* print_bytes(cp, sizeof(*cp), 1, 0); | ||
1057 | print_cmd(cp); */ | ||
1058 | /* We get CMD_INVALID if you address a non-existent device | ||
1059 | * instead of a selection timeout (no response). You will | ||
1060 | * see this if you yank out a drive, then try to access it. | ||
1061 | * This is kind of a shame because it means that any other | ||
1062 | * CMD_INVALID (e.g. driver bug) will get interpreted as a | ||
1063 | * missing target. */ | ||
1064 | cmd->result = DID_NO_CONNECT << 16; | ||
1065 | } | ||
1066 | break; | ||
1067 | case CMD_PROTOCOL_ERR: | ||
1068 | dev_warn(&h->pdev->dev, "cp %p has " | ||
1069 | "protocol error \n", cp); | ||
1070 | break; | ||
1071 | case CMD_HARDWARE_ERR: | ||
1072 | cmd->result = DID_ERROR << 16; | ||
1073 | dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp); | ||
1074 | break; | ||
1075 | case CMD_CONNECTION_LOST: | ||
1076 | cmd->result = DID_ERROR << 16; | ||
1077 | dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp); | ||
1078 | break; | ||
1079 | case CMD_ABORTED: | ||
1080 | cmd->result = DID_ABORT << 16; | ||
1081 | dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n", | ||
1082 | cp, ei->ScsiStatus); | ||
1083 | break; | ||
1084 | case CMD_ABORT_FAILED: | ||
1085 | cmd->result = DID_ERROR << 16; | ||
1086 | dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp); | ||
1087 | break; | ||
1088 | case CMD_UNSOLICITED_ABORT: | ||
1089 | cmd->result = DID_ABORT << 16; | ||
1090 | dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited " | ||
1091 | "abort\n", cp); | ||
1092 | break; | ||
1093 | case CMD_TIMEOUT: | ||
1094 | cmd->result = DID_TIME_OUT << 16; | ||
1095 | dev_warn(&h->pdev->dev, "cp %p timedout\n", cp); | ||
1096 | break; | ||
1097 | default: | ||
1098 | cmd->result = DID_ERROR << 16; | ||
1099 | dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", | ||
1100 | cp, ei->CommandStatus); | ||
1101 | } | ||
1102 | cmd->scsi_done(cmd); | ||
1103 | cmd_free(h, cp); | ||
1104 | } | ||
1105 | |||
1106 | static int hpsa_scsi_detect(struct ctlr_info *h) | ||
1107 | { | ||
1108 | struct Scsi_Host *sh; | ||
1109 | int error; | ||
1110 | |||
1111 | sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); | ||
1112 | if (sh == NULL) | ||
1113 | goto fail; | ||
1114 | |||
1115 | sh->io_port = 0; | ||
1116 | sh->n_io_port = 0; | ||
1117 | sh->this_id = -1; | ||
1118 | sh->max_channel = 3; | ||
1119 | sh->max_cmd_len = MAX_COMMAND_SIZE; | ||
1120 | sh->max_lun = HPSA_MAX_LUN; | ||
1121 | sh->max_id = HPSA_MAX_LUN; | ||
1122 | h->scsi_host = sh; | ||
1123 | sh->hostdata[0] = (unsigned long) h; | ||
1124 | sh->irq = h->intr[SIMPLE_MODE_INT]; | ||
1125 | sh->unique_id = sh->irq; | ||
1126 | error = scsi_add_host(sh, &h->pdev->dev); | ||
1127 | if (error) | ||
1128 | goto fail_host_put; | ||
1129 | scsi_scan_host(sh); | ||
1130 | return 0; | ||
1131 | |||
1132 | fail_host_put: | ||
1133 | dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host" | ||
1134 | " failed for controller %d\n", h->ctlr); | ||
1135 | scsi_host_put(sh); | ||
1136 | return -1; | ||
1137 | fail: | ||
1138 | dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc" | ||
1139 | " failed for controller %d\n", h->ctlr); | ||
1140 | return -1; | ||
1141 | } | ||
1142 | |||
1143 | static void hpsa_pci_unmap(struct pci_dev *pdev, | ||
1144 | struct CommandList *c, int sg_used, int data_direction) | ||
1145 | { | ||
1146 | int i; | ||
1147 | union u64bit addr64; | ||
1148 | |||
1149 | for (i = 0; i < sg_used; i++) { | ||
1150 | addr64.val32.lower = c->SG[i].Addr.lower; | ||
1151 | addr64.val32.upper = c->SG[i].Addr.upper; | ||
1152 | pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len, | ||
1153 | data_direction); | ||
1154 | } | ||
1155 | } | ||
1156 | |||
1157 | static void hpsa_map_one(struct pci_dev *pdev, | ||
1158 | struct CommandList *cp, | ||
1159 | unsigned char *buf, | ||
1160 | size_t buflen, | ||
1161 | int data_direction) | ||
1162 | { | ||
1163 | __u64 addr64; | ||
1164 | |||
1165 | if (buflen == 0 || data_direction == PCI_DMA_NONE) { | ||
1166 | cp->Header.SGList = 0; | ||
1167 | cp->Header.SGTotal = 0; | ||
1168 | return; | ||
1169 | } | ||
1170 | |||
1171 | addr64 = (__u64) pci_map_single(pdev, buf, buflen, data_direction); | ||
1172 | cp->SG[0].Addr.lower = | ||
1173 | (__u32) (addr64 & (__u64) 0x00000000FFFFFFFF); | ||
1174 | cp->SG[0].Addr.upper = | ||
1175 | (__u32) ((addr64 >> 32) & (__u64) 0x00000000FFFFFFFF); | ||
1176 | cp->SG[0].Len = buflen; | ||
1177 | cp->Header.SGList = (__u8) 1; /* no. SGs contig in this cmd */ | ||
1178 | cp->Header.SGTotal = (__u16) 1; /* total sgs in this cmd list */ | ||
1179 | } | ||
1180 | |||
1181 | static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, | ||
1182 | struct CommandList *c) | ||
1183 | { | ||
1184 | DECLARE_COMPLETION_ONSTACK(wait); | ||
1185 | |||
1186 | c->waiting = &wait; | ||
1187 | enqueue_cmd_and_start_io(h, c); | ||
1188 | wait_for_completion(&wait); | ||
1189 | } | ||
1190 | |||
1191 | static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, | ||
1192 | struct CommandList *c, int data_direction) | ||
1193 | { | ||
1194 | int retry_count = 0; | ||
1195 | |||
1196 | do { | ||
1197 | memset(c->err_info, 0, sizeof(c->err_info)); | ||
1198 | hpsa_scsi_do_simple_cmd_core(h, c); | ||
1199 | retry_count++; | ||
1200 | } while (check_for_unit_attention(h, c) && retry_count <= 3); | ||
1201 | hpsa_pci_unmap(h->pdev, c, 1, data_direction); | ||
1202 | } | ||
1203 | |||
1204 | static void hpsa_scsi_interpret_error(struct CommandList *cp) | ||
1205 | { | ||
1206 | struct ErrorInfo *ei; | ||
1207 | struct device *d = &cp->h->pdev->dev; | ||
1208 | |||
1209 | ei = cp->err_info; | ||
1210 | switch (ei->CommandStatus) { | ||
1211 | case CMD_TARGET_STATUS: | ||
1212 | dev_warn(d, "cmd %p has completed with errors\n", cp); | ||
1213 | dev_warn(d, "cmd %p has SCSI Status = %x\n", cp, | ||
1214 | ei->ScsiStatus); | ||
1215 | if (ei->ScsiStatus == 0) | ||
1216 | dev_warn(d, "SCSI status is abnormally zero. " | ||
1217 | "(probably indicates selection timeout " | ||
1218 | "reported incorrectly due to a known " | ||
1219 | "firmware bug, circa July, 2001.)\n"); | ||
1220 | break; | ||
1221 | case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ | ||
1222 | dev_info(d, "UNDERRUN\n"); | ||
1223 | break; | ||
1224 | case CMD_DATA_OVERRUN: | ||
1225 | dev_warn(d, "cp %p has completed with data overrun\n", cp); | ||
1226 | break; | ||
1227 | case CMD_INVALID: { | ||
1228 | /* controller unfortunately reports SCSI passthru's | ||
1229 | * to non-existent targets as invalid commands. | ||
1230 | */ | ||
1231 | dev_warn(d, "cp %p is reported invalid (probably means " | ||
1232 | "target device no longer present)\n", cp); | ||
1233 | /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0); | ||
1234 | print_cmd(cp); */ | ||
1235 | } | ||
1236 | break; | ||
1237 | case CMD_PROTOCOL_ERR: | ||
1238 | dev_warn(d, "cp %p has protocol error \n", cp); | ||
1239 | break; | ||
1240 | case CMD_HARDWARE_ERR: | ||
1241 | /* cmd->result = DID_ERROR << 16; */ | ||
1242 | dev_warn(d, "cp %p had hardware error\n", cp); | ||
1243 | break; | ||
1244 | case CMD_CONNECTION_LOST: | ||
1245 | dev_warn(d, "cp %p had connection lost\n", cp); | ||
1246 | break; | ||
1247 | case CMD_ABORTED: | ||
1248 | dev_warn(d, "cp %p was aborted\n", cp); | ||
1249 | break; | ||
1250 | case CMD_ABORT_FAILED: | ||
1251 | dev_warn(d, "cp %p reports abort failed\n", cp); | ||
1252 | break; | ||
1253 | case CMD_UNSOLICITED_ABORT: | ||
1254 | dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp); | ||
1255 | break; | ||
1256 | case CMD_TIMEOUT: | ||
1257 | dev_warn(d, "cp %p timed out\n", cp); | ||
1258 | break; | ||
1259 | default: | ||
1260 | dev_warn(d, "cp %p returned unknown status %x\n", cp, | ||
1261 | ei->CommandStatus); | ||
1262 | } | ||
1263 | } | ||
1264 | |||
1265 | static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, | ||
1266 | unsigned char page, unsigned char *buf, | ||
1267 | unsigned char bufsize) | ||
1268 | { | ||
1269 | int rc = IO_OK; | ||
1270 | struct CommandList *c; | ||
1271 | struct ErrorInfo *ei; | ||
1272 | |||
1273 | c = cmd_special_alloc(h); | ||
1274 | |||
1275 | if (c == NULL) { /* trouble... */ | ||
1276 | dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | ||
1277 | return -1; | ||
1278 | } | ||
1279 | |||
1280 | fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD); | ||
1281 | hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); | ||
1282 | ei = c->err_info; | ||
1283 | if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { | ||
1284 | hpsa_scsi_interpret_error(c); | ||
1285 | rc = -1; | ||
1286 | } | ||
1287 | cmd_special_free(h, c); | ||
1288 | return rc; | ||
1289 | } | ||
1290 | |||
1291 | static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr) | ||
1292 | { | ||
1293 | int rc = IO_OK; | ||
1294 | struct CommandList *c; | ||
1295 | struct ErrorInfo *ei; | ||
1296 | |||
1297 | c = cmd_special_alloc(h); | ||
1298 | |||
1299 | if (c == NULL) { /* trouble... */ | ||
1300 | dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | ||
1301 | return -1; | ||
1302 | } | ||
1303 | |||
1304 | fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG); | ||
1305 | hpsa_scsi_do_simple_cmd_core(h, c); | ||
1306 | /* no unmap needed here because no data xfer. */ | ||
1307 | |||
1308 | ei = c->err_info; | ||
1309 | if (ei->CommandStatus != 0) { | ||
1310 | hpsa_scsi_interpret_error(c); | ||
1311 | rc = -1; | ||
1312 | } | ||
1313 | cmd_special_free(h, c); | ||
1314 | return rc; | ||
1315 | } | ||
1316 | |||
1317 | static void hpsa_get_raid_level(struct ctlr_info *h, | ||
1318 | unsigned char *scsi3addr, unsigned char *raid_level) | ||
1319 | { | ||
1320 | int rc; | ||
1321 | unsigned char *buf; | ||
1322 | |||
1323 | *raid_level = RAID_UNKNOWN; | ||
1324 | buf = kzalloc(64, GFP_KERNEL); | ||
1325 | if (!buf) | ||
1326 | return; | ||
1327 | rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64); | ||
1328 | if (rc == 0) | ||
1329 | *raid_level = buf[8]; | ||
1330 | if (*raid_level > RAID_UNKNOWN) | ||
1331 | *raid_level = RAID_UNKNOWN; | ||
1332 | kfree(buf); | ||
1333 | return; | ||
1334 | } | ||
1335 | |||
1336 | /* Get the device id from inquiry page 0x83 */ | ||
1337 | static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, | ||
1338 | unsigned char *device_id, int buflen) | ||
1339 | { | ||
1340 | int rc; | ||
1341 | unsigned char *buf; | ||
1342 | |||
1343 | if (buflen > 16) | ||
1344 | buflen = 16; | ||
1345 | buf = kzalloc(64, GFP_KERNEL); | ||
1346 | if (!buf) | ||
1347 | return -1; | ||
1348 | rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64); | ||
1349 | if (rc == 0) | ||
1350 | memcpy(device_id, &buf[8], buflen); | ||
1351 | kfree(buf); | ||
1352 | return rc != 0; | ||
1353 | } | ||
1354 | |||
1355 | static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, | ||
1356 | struct ReportLUNdata *buf, int bufsize, | ||
1357 | int extended_response) | ||
1358 | { | ||
1359 | int rc = IO_OK; | ||
1360 | struct CommandList *c; | ||
1361 | unsigned char scsi3addr[8]; | ||
1362 | struct ErrorInfo *ei; | ||
1363 | |||
1364 | c = cmd_special_alloc(h); | ||
1365 | if (c == NULL) { /* trouble... */ | ||
1366 | dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | ||
1367 | return -1; | ||
1368 | } | ||
1369 | |||
1370 | memset(&scsi3addr[0], 0, 8); /* address the controller */ | ||
1371 | |||
1372 | fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, | ||
1373 | buf, bufsize, 0, scsi3addr, TYPE_CMD); | ||
1374 | if (extended_response) | ||
1375 | c->Request.CDB[1] = extended_response; | ||
1376 | hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); | ||
1377 | ei = c->err_info; | ||
1378 | if (ei->CommandStatus != 0 && | ||
1379 | ei->CommandStatus != CMD_DATA_UNDERRUN) { | ||
1380 | hpsa_scsi_interpret_error(c); | ||
1381 | rc = -1; | ||
1382 | } | ||
1383 | cmd_special_free(h, c); | ||
1384 | return rc; | ||
1385 | } | ||
1386 | |||
1387 | static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, | ||
1388 | struct ReportLUNdata *buf, | ||
1389 | int bufsize, int extended_response) | ||
1390 | { | ||
1391 | return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response); | ||
1392 | } | ||
1393 | |||
1394 | static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, | ||
1395 | struct ReportLUNdata *buf, int bufsize) | ||
1396 | { | ||
1397 | return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); | ||
1398 | } | ||
1399 | |||
1400 | static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, | ||
1401 | int bus, int target, int lun) | ||
1402 | { | ||
1403 | device->bus = bus; | ||
1404 | device->target = target; | ||
1405 | device->lun = lun; | ||
1406 | } | ||
1407 | |||
1408 | static int hpsa_update_device_info(struct ctlr_info *h, | ||
1409 | unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device) | ||
1410 | { | ||
1411 | #define OBDR_TAPE_INQ_SIZE 49 | ||
1412 | unsigned char *inq_buff = NULL; | ||
1413 | |||
1414 | inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); | ||
1415 | if (!inq_buff) | ||
1416 | goto bail_out; | ||
1417 | |||
1418 | memset(inq_buff, 0, OBDR_TAPE_INQ_SIZE); | ||
1419 | /* Do an inquiry to the device to see what it is. */ | ||
1420 | if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, | ||
1421 | (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { | ||
1422 | /* Inquiry failed (msg printed already) */ | ||
1423 | dev_err(&h->pdev->dev, | ||
1424 | "hpsa_update_device_info: inquiry failed\n"); | ||
1425 | goto bail_out; | ||
1426 | } | ||
1427 | |||
1428 | /* As a side effect, record the firmware version number | ||
1429 | * if we happen to be talking to the RAID controller. | ||
1430 | */ | ||
1431 | if (is_hba_lunid(scsi3addr)) | ||
1432 | memcpy(h->firm_ver, &inq_buff[32], 4); | ||
1433 | |||
1434 | this_device->devtype = (inq_buff[0] & 0x1f); | ||
1435 | memcpy(this_device->scsi3addr, scsi3addr, 8); | ||
1436 | memcpy(this_device->vendor, &inq_buff[8], | ||
1437 | sizeof(this_device->vendor)); | ||
1438 | memcpy(this_device->model, &inq_buff[16], | ||
1439 | sizeof(this_device->model)); | ||
1440 | memcpy(this_device->revision, &inq_buff[32], | ||
1441 | sizeof(this_device->revision)); | ||
1442 | memset(this_device->device_id, 0, | ||
1443 | sizeof(this_device->device_id)); | ||
1444 | hpsa_get_device_id(h, scsi3addr, this_device->device_id, | ||
1445 | sizeof(this_device->device_id)); | ||
1446 | |||
1447 | if (this_device->devtype == TYPE_DISK && | ||
1448 | is_logical_dev_addr_mode(scsi3addr)) | ||
1449 | hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); | ||
1450 | else | ||
1451 | this_device->raid_level = RAID_UNKNOWN; | ||
1452 | |||
1453 | kfree(inq_buff); | ||
1454 | return 0; | ||
1455 | |||
1456 | bail_out: | ||
1457 | kfree(inq_buff); | ||
1458 | return 1; | ||
1459 | } | ||
1460 | |||
1461 | static unsigned char *msa2xxx_model[] = { | ||
1462 | "MSA2012", | ||
1463 | "MSA2024", | ||
1464 | "MSA2312", | ||
1465 | "MSA2324", | ||
1466 | NULL, | ||
1467 | }; | ||
1468 | |||
1469 | static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) | ||
1470 | { | ||
1471 | int i; | ||
1472 | |||
1473 | for (i = 0; msa2xxx_model[i]; i++) | ||
1474 | if (strncmp(device->model, msa2xxx_model[i], | ||
1475 | strlen(msa2xxx_model[i])) == 0) | ||
1476 | return 1; | ||
1477 | return 0; | ||
1478 | } | ||
1479 | |||
1480 | /* Helper function to assign bus, target, lun mapping of devices. | ||
1481 | * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical | ||
1482 | * volumes on bus 1, physical devices on bus 2. and the hba on bus 3. | ||
1483 | * Logical drive target and lun are assigned at this time, but | ||
1484 | * physical device lun and target assignment are deferred (assigned | ||
1485 | * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) | ||
1486 | */ | ||
1487 | static void figure_bus_target_lun(struct ctlr_info *h, | ||
1488 | __u8 *lunaddrbytes, int *bus, int *target, int *lun, | ||
1489 | struct hpsa_scsi_dev_t *device) | ||
1490 | { | ||
1491 | |||
1492 | __u32 lunid; | ||
1493 | |||
1494 | if (is_logical_dev_addr_mode(lunaddrbytes)) { | ||
1495 | /* logical device */ | ||
1496 | memcpy(&lunid, lunaddrbytes, sizeof(lunid)); | ||
1497 | lunid = le32_to_cpu(lunid); | ||
1498 | |||
1499 | if (is_msa2xxx(h, device)) { | ||
1500 | *bus = 1; | ||
1501 | *target = (lunid >> 16) & 0x3fff; | ||
1502 | *lun = lunid & 0x00ff; | ||
1503 | } else { | ||
1504 | *bus = 0; | ||
1505 | *lun = 0; | ||
1506 | *target = lunid & 0x3fff; | ||
1507 | } | ||
1508 | } else { | ||
1509 | /* physical device */ | ||
1510 | if (is_hba_lunid(lunaddrbytes)) | ||
1511 | *bus = 3; | ||
1512 | else | ||
1513 | *bus = 2; | ||
1514 | *target = -1; | ||
1515 | *lun = -1; /* we will fill these in later. */ | ||
1516 | } | ||
1517 | } | ||
1518 | |||
1519 | /* | ||
1520 | * If there is no lun 0 on a target, linux won't find any devices. | ||
1521 | * For the MSA2xxx boxes, we have to manually detect the enclosure | ||
1522 | * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report | ||
1523 | * it for some reason. *tmpdevice is the target we're adding, | ||
1524 | * this_device is a pointer into the current element of currentsd[] | ||
1525 | * that we're building up in update_scsi_devices(), below. | ||
1526 | * lunzerobits is a bitmap that tracks which targets already have a | ||
1527 | * lun 0 assigned. | ||
1528 | * Returns 1 if an enclosure was added, 0 if not. | ||
1529 | */ | ||
1530 | static int add_msa2xxx_enclosure_device(struct ctlr_info *h, | ||
1531 | struct hpsa_scsi_dev_t *tmpdevice, | ||
1532 | struct hpsa_scsi_dev_t *this_device, __u8 *lunaddrbytes, | ||
1533 | int bus, int target, int lun, unsigned long lunzerobits[], | ||
1534 | int *nmsa2xxx_enclosures) | ||
1535 | { | ||
1536 | unsigned char scsi3addr[8]; | ||
1537 | |||
1538 | if (test_bit(target, lunzerobits)) | ||
1539 | return 0; /* There is already a lun 0 on this target. */ | ||
1540 | |||
1541 | if (!is_logical_dev_addr_mode(lunaddrbytes)) | ||
1542 | return 0; /* It's the logical targets that may lack lun 0. */ | ||
1543 | |||
1544 | if (!is_msa2xxx(h, tmpdevice)) | ||
1545 | return 0; /* It's only the MSA2xxx that have this problem. */ | ||
1546 | |||
1547 | if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */ | ||
1548 | return 0; | ||
1549 | |||
1550 | if (is_hba_lunid(scsi3addr)) | ||
1551 | return 0; /* Don't add the RAID controller here. */ | ||
1552 | |||
1553 | #define MAX_MSA2XXX_ENCLOSURES 32 | ||
1554 | if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) { | ||
1555 | dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX " | ||
1556 | "enclosures exceeded. Check your hardware " | ||
1557 | "configuration."); | ||
1558 | return 0; | ||
1559 | } | ||
1560 | |||
1561 | memset(scsi3addr, 0, 8); | ||
1562 | scsi3addr[3] = target; | ||
1563 | if (hpsa_update_device_info(h, scsi3addr, this_device)) | ||
1564 | return 0; | ||
1565 | (*nmsa2xxx_enclosures)++; | ||
1566 | hpsa_set_bus_target_lun(this_device, bus, target, 0); | ||
1567 | set_bit(target, lunzerobits); | ||
1568 | return 1; | ||
1569 | } | ||
1570 | |||
1571 | /* | ||
1572 | * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, | ||
1573 | * logdev. The number of luns in physdev and logdev are returned in | ||
1574 | * *nphysicals and *nlogicals, respectively. | ||
1575 | * Returns 0 on success, -1 otherwise. | ||
1576 | */ | ||
1577 | static int hpsa_gather_lun_info(struct ctlr_info *h, | ||
1578 | int reportlunsize, | ||
1579 | struct ReportLUNdata *physdev, __u32 *nphysicals, | ||
1580 | struct ReportLUNdata *logdev, __u32 *nlogicals) | ||
1581 | { | ||
1582 | if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) { | ||
1583 | dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); | ||
1584 | return -1; | ||
1585 | } | ||
1586 | memcpy(nphysicals, &physdev->LUNListLength[0], sizeof(*nphysicals)); | ||
1587 | *nphysicals = be32_to_cpu(*nphysicals) / 8; | ||
1588 | #ifdef DEBUG | ||
1589 | dev_info(&h->pdev->dev, "number of physical luns is %d\n", *nphysicals); | ||
1590 | #endif | ||
1591 | if (*nphysicals > HPSA_MAX_PHYS_LUN) { | ||
1592 | dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded." | ||
1593 | " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, | ||
1594 | *nphysicals - HPSA_MAX_PHYS_LUN); | ||
1595 | *nphysicals = HPSA_MAX_PHYS_LUN; | ||
1596 | } | ||
1597 | if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) { | ||
1598 | dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); | ||
1599 | return -1; | ||
1600 | } | ||
1601 | memcpy(nlogicals, &logdev->LUNListLength[0], sizeof(*nlogicals)); | ||
1602 | *nlogicals = be32_to_cpu(*nlogicals) / 8; | ||
1603 | #ifdef DEBUG | ||
1604 | dev_info(&h->pdev->dev, "number of logical luns is %d\n", *nlogicals); | ||
1605 | #endif | ||
1606 | /* Reject Logicals in excess of our max capability. */ | ||
1607 | if (*nlogicals > HPSA_MAX_LUN) { | ||
1608 | dev_warn(&h->pdev->dev, | ||
1609 | "maximum logical LUNs (%d) exceeded. " | ||
1610 | "%d LUNs ignored.\n", HPSA_MAX_LUN, | ||
1611 | *nlogicals - HPSA_MAX_LUN); | ||
1612 | *nlogicals = HPSA_MAX_LUN; | ||
1613 | } | ||
1614 | if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { | ||
1615 | dev_warn(&h->pdev->dev, | ||
1616 | "maximum logical + physical LUNs (%d) exceeded. " | ||
1617 | "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, | ||
1618 | *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); | ||
1619 | *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; | ||
1620 | } | ||
1621 | return 0; | ||
1622 | } | ||
1623 | |||
1624 | static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno) | ||
1625 | { | ||
1626 | /* the idea here is we could get notified | ||
1627 | * that some devices have changed, so we do a report | ||
1628 | * physical luns and report logical luns cmd, and adjust | ||
1629 | * our list of devices accordingly. | ||
1630 | * | ||
1631 | * The scsi3addr's of devices won't change so long as the | ||
1632 | * adapter is not reset. That means we can rescan and | ||
1633 | * tell which devices we already know about, vs. new | ||
1634 | * devices, vs. disappearing devices. | ||
1635 | */ | ||
1636 | struct ReportLUNdata *physdev_list = NULL; | ||
1637 | struct ReportLUNdata *logdev_list = NULL; | ||
1638 | unsigned char *inq_buff = NULL; | ||
1639 | __u32 nphysicals = 0; | ||
1640 | __u32 nlogicals = 0; | ||
1641 | __u32 ndev_allocated = 0; | ||
1642 | struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; | ||
1643 | int ncurrent = 0; | ||
1644 | int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8; | ||
1645 | int i, nmsa2xxx_enclosures, ndevs_to_allocate; | ||
1646 | int bus, target, lun; | ||
1647 | DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR); | ||
1648 | |||
1649 | currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA, | ||
1650 | GFP_KERNEL); | ||
1651 | physdev_list = kzalloc(reportlunsize, GFP_KERNEL); | ||
1652 | logdev_list = kzalloc(reportlunsize, GFP_KERNEL); | ||
1653 | inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); | ||
1654 | tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); | ||
1655 | |||
1656 | if (!currentsd || !physdev_list || !logdev_list || | ||
1657 | !inq_buff || !tmpdevice) { | ||
1658 | dev_err(&h->pdev->dev, "out of memory\n"); | ||
1659 | goto out; | ||
1660 | } | ||
1661 | memset(lunzerobits, 0, sizeof(lunzerobits)); | ||
1662 | |||
1663 | if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals, | ||
1664 | logdev_list, &nlogicals)) | ||
1665 | goto out; | ||
1666 | |||
1667 | /* We might see up to 32 MSA2xxx enclosures, actually 8 of them | ||
1668 | * but each of them 4 times through different paths. The plus 1 | ||
1669 | * is for the RAID controller. | ||
1670 | */ | ||
1671 | ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1; | ||
1672 | |||
1673 | /* Allocate the per device structures */ | ||
1674 | for (i = 0; i < ndevs_to_allocate; i++) { | ||
1675 | currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); | ||
1676 | if (!currentsd[i]) { | ||
1677 | dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", | ||
1678 | __FILE__, __LINE__); | ||
1679 | goto out; | ||
1680 | } | ||
1681 | ndev_allocated++; | ||
1682 | } | ||
1683 | |||
1684 | /* adjust our table of devices */ | ||
1685 | nmsa2xxx_enclosures = 0; | ||
1686 | for (i = 0; i < nphysicals + nlogicals + 1; i++) { | ||
1687 | __u8 *lunaddrbytes; | ||
1688 | |||
1689 | /* Figure out where the LUN ID info is coming from */ | ||
1690 | if (i < nphysicals) | ||
1691 | lunaddrbytes = &physdev_list->LUN[i][0]; | ||
1692 | else | ||
1693 | if (i < nphysicals + nlogicals) | ||
1694 | lunaddrbytes = | ||
1695 | &logdev_list->LUN[i-nphysicals][0]; | ||
1696 | else /* jam in the RAID controller at the end */ | ||
1697 | lunaddrbytes = RAID_CTLR_LUNID; | ||
1698 | |||
1699 | /* skip masked physical devices. */ | ||
1700 | if (lunaddrbytes[3] & 0xC0 && i < nphysicals) | ||
1701 | continue; | ||
1702 | |||
1703 | /* Get device type, vendor, model, device id */ | ||
1704 | if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice)) | ||
1705 | continue; /* skip it if we can't talk to it. */ | ||
1706 | figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun, | ||
1707 | tmpdevice); | ||
1708 | this_device = currentsd[ncurrent]; | ||
1709 | |||
1710 | /* | ||
1711 | * For the msa2xxx boxes, we have to insert a LUN 0 which | ||
1712 | * doesn't show up in CCISS_REPORT_PHYSICAL data, but there | ||
1713 | * is nonetheless an enclosure device there. We have to | ||
1714 | * present that otherwise linux won't find anything if | ||
1715 | * there is no lun 0. | ||
1716 | */ | ||
1717 | if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device, | ||
1718 | lunaddrbytes, bus, target, lun, lunzerobits, | ||
1719 | &nmsa2xxx_enclosures)) { | ||
1720 | ncurrent++; | ||
1721 | this_device = currentsd[ncurrent]; | ||
1722 | } | ||
1723 | |||
1724 | *this_device = *tmpdevice; | ||
1725 | hpsa_set_bus_target_lun(this_device, bus, target, lun); | ||
1726 | |||
1727 | switch (this_device->devtype) { | ||
1728 | case TYPE_ROM: { | ||
1729 | /* We don't *really* support actual CD-ROM devices, | ||
1730 | * just "One Button Disaster Recovery" tape drive | ||
1731 | * which temporarily pretends to be a CD-ROM drive. | ||
1732 | * So we check that the device is really an OBDR tape | ||
1733 | * device by checking for "$DR-10" in bytes 43-48 of | ||
1734 | * the inquiry data. | ||
1735 | */ | ||
1736 | char obdr_sig[7]; | ||
1737 | #define OBDR_TAPE_SIG "$DR-10" | ||
1738 | strncpy(obdr_sig, &inq_buff[43], 6); | ||
1739 | obdr_sig[6] = '\0'; | ||
1740 | if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0) | ||
1741 | /* Not OBDR device, ignore it. */ | ||
1742 | break; | ||
1743 | } | ||
1744 | ncurrent++; | ||
1745 | break; | ||
1746 | case TYPE_DISK: | ||
1747 | if (i < nphysicals) | ||
1748 | break; | ||
1749 | ncurrent++; | ||
1750 | break; | ||
1751 | case TYPE_TAPE: | ||
1752 | case TYPE_MEDIUM_CHANGER: | ||
1753 | ncurrent++; | ||
1754 | break; | ||
1755 | case TYPE_RAID: | ||
1756 | /* Only present the Smartarray HBA as a RAID controller. | ||
1757 | * If it's a RAID controller other than the HBA itself | ||
1758 | * (an external RAID controller, MSA500 or similar) | ||
1759 | * don't present it. | ||
1760 | */ | ||
1761 | if (!is_hba_lunid(lunaddrbytes)) | ||
1762 | break; | ||
1763 | ncurrent++; | ||
1764 | break; | ||
1765 | default: | ||
1766 | break; | ||
1767 | } | ||
1768 | if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA) | ||
1769 | break; | ||
1770 | } | ||
1771 | adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent); | ||
1772 | out: | ||
1773 | kfree(tmpdevice); | ||
1774 | for (i = 0; i < ndev_allocated; i++) | ||
1775 | kfree(currentsd[i]); | ||
1776 | kfree(currentsd); | ||
1777 | kfree(inq_buff); | ||
1778 | kfree(physdev_list); | ||
1779 | kfree(logdev_list); | ||
1780 | return; | ||
1781 | } | ||
1782 | |||
1783 | /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci | ||
1784 | * dma mapping and fills in the scatter gather entries of the | ||
1785 | * hpsa command, cp. | ||
1786 | */ | ||
1787 | static int hpsa_scatter_gather(struct pci_dev *pdev, | ||
1788 | struct CommandList *cp, | ||
1789 | struct scsi_cmnd *cmd) | ||
1790 | { | ||
1791 | unsigned int len; | ||
1792 | struct scatterlist *sg; | ||
1793 | __u64 addr64; | ||
1794 | int use_sg, i; | ||
1795 | |||
1796 | BUG_ON(scsi_sg_count(cmd) > MAXSGENTRIES); | ||
1797 | |||
1798 | use_sg = scsi_dma_map(cmd); | ||
1799 | if (use_sg < 0) | ||
1800 | return use_sg; | ||
1801 | |||
1802 | if (!use_sg) | ||
1803 | goto sglist_finished; | ||
1804 | |||
1805 | scsi_for_each_sg(cmd, sg, use_sg, i) { | ||
1806 | addr64 = (__u64) sg_dma_address(sg); | ||
1807 | len = sg_dma_len(sg); | ||
1808 | cp->SG[i].Addr.lower = | ||
1809 | (__u32) (addr64 & (__u64) 0x00000000FFFFFFFF); | ||
1810 | cp->SG[i].Addr.upper = | ||
1811 | (__u32) ((addr64 >> 32) & (__u64) 0x00000000FFFFFFFF); | ||
1812 | cp->SG[i].Len = len; | ||
1813 | cp->SG[i].Ext = 0; /* we are not chaining */ | ||
1814 | } | ||
1815 | |||
1816 | sglist_finished: | ||
1817 | |||
1818 | cp->Header.SGList = (__u8) use_sg; /* no. SGs contig in this cmd */ | ||
1819 | cp->Header.SGTotal = (__u16) use_sg; /* total sgs in this cmd list */ | ||
1820 | return 0; | ||
1821 | } | ||
1822 | |||
1823 | |||
1824 | static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd, | ||
1825 | void (*done)(struct scsi_cmnd *)) | ||
1826 | { | ||
1827 | struct ctlr_info *h; | ||
1828 | struct hpsa_scsi_dev_t *dev; | ||
1829 | unsigned char scsi3addr[8]; | ||
1830 | struct CommandList *c; | ||
1831 | unsigned long flags; | ||
1832 | |||
1833 | /* Get the ptr to our adapter structure out of cmd->host. */ | ||
1834 | h = sdev_to_hba(cmd->device); | ||
1835 | dev = cmd->device->hostdata; | ||
1836 | if (!dev) { | ||
1837 | cmd->result = DID_NO_CONNECT << 16; | ||
1838 | done(cmd); | ||
1839 | return 0; | ||
1840 | } | ||
1841 | memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); | ||
1842 | |||
1843 | /* Need a lock as this is being allocated from the pool */ | ||
1844 | spin_lock_irqsave(&h->lock, flags); | ||
1845 | c = cmd_alloc(h); | ||
1846 | spin_unlock_irqrestore(&h->lock, flags); | ||
1847 | if (c == NULL) { /* trouble... */ | ||
1848 | dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n"); | ||
1849 | return SCSI_MLQUEUE_HOST_BUSY; | ||
1850 | } | ||
1851 | |||
1852 | /* Fill in the command list header */ | ||
1853 | |||
1854 | cmd->scsi_done = done; /* save this for use by completion code */ | ||
1855 | |||
1856 | /* save c in case we have to abort it */ | ||
1857 | cmd->host_scribble = (unsigned char *) c; | ||
1858 | |||
1859 | c->cmd_type = CMD_SCSI; | ||
1860 | c->scsi_cmd = cmd; | ||
1861 | c->Header.ReplyQueue = 0; /* unused in simple mode */ | ||
1862 | memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); | ||
1863 | c->Header.Tag.lower = c->busaddr; /* Use k. address of cmd as tag */ | ||
1864 | |||
1865 | /* Fill in the request block... */ | ||
1866 | |||
1867 | c->Request.Timeout = 0; | ||
1868 | memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); | ||
1869 | BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); | ||
1870 | c->Request.CDBLen = cmd->cmd_len; | ||
1871 | memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); | ||
1872 | c->Request.Type.Type = TYPE_CMD; | ||
1873 | c->Request.Type.Attribute = ATTR_SIMPLE; | ||
1874 | switch (cmd->sc_data_direction) { | ||
1875 | case DMA_TO_DEVICE: | ||
1876 | c->Request.Type.Direction = XFER_WRITE; | ||
1877 | break; | ||
1878 | case DMA_FROM_DEVICE: | ||
1879 | c->Request.Type.Direction = XFER_READ; | ||
1880 | break; | ||
1881 | case DMA_NONE: | ||
1882 | c->Request.Type.Direction = XFER_NONE; | ||
1883 | break; | ||
1884 | case DMA_BIDIRECTIONAL: | ||
1885 | /* This can happen if a buggy application does a scsi passthru | ||
1886 | * and sets both inlen and outlen to non-zero. ( see | ||
1887 | * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) | ||
1888 | */ | ||
1889 | |||
1890 | c->Request.Type.Direction = XFER_RSVD; | ||
1891 | /* This is technically wrong, and hpsa controllers should | ||
1892 | * reject it with CMD_INVALID, which is the most correct | ||
1893 | * response, but non-fibre backends appear to let it | ||
1894 | * slide by, and give the same results as if this field | ||
1895 | * were set correctly. Either way is acceptable for | ||
1896 | * our purposes here. | ||
1897 | */ | ||
1898 | |||
1899 | break; | ||
1900 | |||
1901 | default: | ||
1902 | dev_err(&h->pdev->dev, "unknown data direction: %d\n", | ||
1903 | cmd->sc_data_direction); | ||
1904 | BUG(); | ||
1905 | break; | ||
1906 | } | ||
1907 | |||
1908 | if (hpsa_scatter_gather(h->pdev, c, cmd) < 0) { /* Fill SG list */ | ||
1909 | cmd_free(h, c); | ||
1910 | return SCSI_MLQUEUE_HOST_BUSY; | ||
1911 | } | ||
1912 | enqueue_cmd_and_start_io(h, c); | ||
1913 | /* the cmd'll come back via intr handler in complete_scsi_command() */ | ||
1914 | return 0; | ||
1915 | } | ||
1916 | |||
1917 | static void hpsa_unregister_scsi(struct ctlr_info *h) | ||
1918 | { | ||
1919 | /* we are being forcibly unloaded, and may not refuse. */ | ||
1920 | scsi_remove_host(h->scsi_host); | ||
1921 | scsi_host_put(h->scsi_host); | ||
1922 | h->scsi_host = NULL; | ||
1923 | } | ||
1924 | |||
1925 | static int hpsa_register_scsi(struct ctlr_info *h) | ||
1926 | { | ||
1927 | int rc; | ||
1928 | |||
1929 | hpsa_update_scsi_devices(h, -1); | ||
1930 | rc = hpsa_scsi_detect(h); | ||
1931 | if (rc != 0) | ||
1932 | dev_err(&h->pdev->dev, "hpsa_register_scsi: failed" | ||
1933 | " hpsa_scsi_detect(), rc is %d\n", rc); | ||
1934 | return rc; | ||
1935 | } | ||
1936 | |||
1937 | static int wait_for_device_to_become_ready(struct ctlr_info *h, | ||
1938 | unsigned char lunaddr[]) | ||
1939 | { | ||
1940 | int rc = 0; | ||
1941 | int count = 0; | ||
1942 | int waittime = 1; /* seconds */ | ||
1943 | struct CommandList *c; | ||
1944 | |||
1945 | c = cmd_special_alloc(h); | ||
1946 | if (!c) { | ||
1947 | dev_warn(&h->pdev->dev, "out of memory in " | ||
1948 | "wait_for_device_to_become_ready.\n"); | ||
1949 | return IO_ERROR; | ||
1950 | } | ||
1951 | |||
1952 | /* Send test unit ready until device ready, or give up. */ | ||
1953 | while (count < HPSA_TUR_RETRY_LIMIT) { | ||
1954 | |||
1955 | /* Wait for a bit. do this first, because if we send | ||
1956 | * the TUR right away, the reset will just abort it. | ||
1957 | */ | ||
1958 | msleep(1000 * waittime); | ||
1959 | count++; | ||
1960 | |||
1961 | /* Increase wait time with each try, up to a point. */ | ||
1962 | if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) | ||
1963 | waittime = waittime * 2; | ||
1964 | |||
1965 | /* Send the Test Unit Ready */ | ||
1966 | fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD); | ||
1967 | hpsa_scsi_do_simple_cmd_core(h, c); | ||
1968 | /* no unmap needed here because no data xfer. */ | ||
1969 | |||
1970 | if (c->err_info->CommandStatus == CMD_SUCCESS) | ||
1971 | break; | ||
1972 | |||
1973 | if (c->err_info->CommandStatus == CMD_TARGET_STATUS && | ||
1974 | c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && | ||
1975 | (c->err_info->SenseInfo[2] == NO_SENSE || | ||
1976 | c->err_info->SenseInfo[2] == UNIT_ATTENTION)) | ||
1977 | break; | ||
1978 | |||
1979 | dev_warn(&h->pdev->dev, "waiting %d secs " | ||
1980 | "for device to become ready.\n", waittime); | ||
1981 | rc = 1; /* device not ready. */ | ||
1982 | } | ||
1983 | |||
1984 | if (rc) | ||
1985 | dev_warn(&h->pdev->dev, "giving up on device.\n"); | ||
1986 | else | ||
1987 | dev_warn(&h->pdev->dev, "device is ready.\n"); | ||
1988 | |||
1989 | cmd_special_free(h, c); | ||
1990 | return rc; | ||
1991 | } | ||
1992 | |||
1993 | /* Need at least one of these error handlers to keep ../scsi/hosts.c from | ||
1994 | * complaining. Doing a host- or bus-reset can't do anything good here. | ||
1995 | */ | ||
1996 | static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) | ||
1997 | { | ||
1998 | int rc; | ||
1999 | struct ctlr_info *h; | ||
2000 | struct hpsa_scsi_dev_t *dev; | ||
2001 | |||
2002 | /* find the controller to which the command to be aborted was sent */ | ||
2003 | h = sdev_to_hba(scsicmd->device); | ||
2004 | if (h == NULL) /* paranoia */ | ||
2005 | return FAILED; | ||
2006 | dev_warn(&h->pdev->dev, "resetting drive\n"); | ||
2007 | |||
2008 | dev = scsicmd->device->hostdata; | ||
2009 | if (!dev) { | ||
2010 | dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: " | ||
2011 | "device lookup failed.\n"); | ||
2012 | return FAILED; | ||
2013 | } | ||
2014 | /* send a reset to the SCSI LUN which the command was sent to */ | ||
2015 | rc = hpsa_send_reset(h, dev->scsi3addr); | ||
2016 | if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0) | ||
2017 | return SUCCESS; | ||
2018 | |||
2019 | dev_warn(&h->pdev->dev, "resetting device failed.\n"); | ||
2020 | return FAILED; | ||
2021 | } | ||
2022 | |||
2023 | /* | ||
2024 | * For operations that cannot sleep, a command block is allocated at init, | ||
2025 | * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track | ||
2026 | * which ones are free or in use. Lock must be held when calling this. | ||
2027 | * cmd_free() is the complement. | ||
2028 | */ | ||
2029 | static struct CommandList *cmd_alloc(struct ctlr_info *h) | ||
2030 | { | ||
2031 | struct CommandList *c; | ||
2032 | int i; | ||
2033 | union u64bit temp64; | ||
2034 | dma_addr_t cmd_dma_handle, err_dma_handle; | ||
2035 | |||
2036 | do { | ||
2037 | i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); | ||
2038 | if (i == h->nr_cmds) | ||
2039 | return NULL; | ||
2040 | } while (test_and_set_bit | ||
2041 | (i & (BITS_PER_LONG - 1), | ||
2042 | h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); | ||
2043 | c = h->cmd_pool + i; | ||
2044 | memset(c, 0, sizeof(*c)); | ||
2045 | cmd_dma_handle = h->cmd_pool_dhandle | ||
2046 | + i * sizeof(*c); | ||
2047 | c->err_info = h->errinfo_pool + i; | ||
2048 | memset(c->err_info, 0, sizeof(*c->err_info)); | ||
2049 | err_dma_handle = h->errinfo_pool_dhandle | ||
2050 | + i * sizeof(*c->err_info); | ||
2051 | h->nr_allocs++; | ||
2052 | |||
2053 | c->cmdindex = i; | ||
2054 | |||
2055 | INIT_HLIST_NODE(&c->list); | ||
2056 | c->busaddr = (__u32) cmd_dma_handle; | ||
2057 | temp64.val = (__u64) err_dma_handle; | ||
2058 | c->ErrDesc.Addr.lower = temp64.val32.lower; | ||
2059 | c->ErrDesc.Addr.upper = temp64.val32.upper; | ||
2060 | c->ErrDesc.Len = sizeof(*c->err_info); | ||
2061 | |||
2062 | c->h = h; | ||
2063 | return c; | ||
2064 | } | ||
2065 | |||
2066 | /* For operations that can wait for kmalloc to possibly sleep, | ||
2067 | * this routine can be called. Lock need not be held to call | ||
2068 | * cmd_special_alloc. cmd_special_free() is the complement. | ||
2069 | */ | ||
2070 | static struct CommandList *cmd_special_alloc(struct ctlr_info *h) | ||
2071 | { | ||
2072 | struct CommandList *c; | ||
2073 | union u64bit temp64; | ||
2074 | dma_addr_t cmd_dma_handle, err_dma_handle; | ||
2075 | |||
2076 | c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle); | ||
2077 | if (c == NULL) | ||
2078 | return NULL; | ||
2079 | memset(c, 0, sizeof(*c)); | ||
2080 | |||
2081 | c->cmdindex = -1; | ||
2082 | |||
2083 | c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info), | ||
2084 | &err_dma_handle); | ||
2085 | |||
2086 | if (c->err_info == NULL) { | ||
2087 | pci_free_consistent(h->pdev, | ||
2088 | sizeof(*c), c, cmd_dma_handle); | ||
2089 | return NULL; | ||
2090 | } | ||
2091 | memset(c->err_info, 0, sizeof(*c->err_info)); | ||
2092 | |||
2093 | INIT_HLIST_NODE(&c->list); | ||
2094 | c->busaddr = (__u32) cmd_dma_handle; | ||
2095 | temp64.val = (__u64) err_dma_handle; | ||
2096 | c->ErrDesc.Addr.lower = temp64.val32.lower; | ||
2097 | c->ErrDesc.Addr.upper = temp64.val32.upper; | ||
2098 | c->ErrDesc.Len = sizeof(*c->err_info); | ||
2099 | |||
2100 | c->h = h; | ||
2101 | return c; | ||
2102 | } | ||
2103 | |||
2104 | static void cmd_free(struct ctlr_info *h, struct CommandList *c) | ||
2105 | { | ||
2106 | int i; | ||
2107 | |||
2108 | i = c - h->cmd_pool; | ||
2109 | clear_bit(i & (BITS_PER_LONG - 1), | ||
2110 | h->cmd_pool_bits + (i / BITS_PER_LONG)); | ||
2111 | h->nr_frees++; | ||
2112 | } | ||
2113 | |||
2114 | static void cmd_special_free(struct ctlr_info *h, struct CommandList *c) | ||
2115 | { | ||
2116 | union u64bit temp64; | ||
2117 | |||
2118 | temp64.val32.lower = c->ErrDesc.Addr.lower; | ||
2119 | temp64.val32.upper = c->ErrDesc.Addr.upper; | ||
2120 | pci_free_consistent(h->pdev, sizeof(*c->err_info), | ||
2121 | c->err_info, (dma_addr_t) temp64.val); | ||
2122 | pci_free_consistent(h->pdev, sizeof(*c), | ||
2123 | c, (dma_addr_t) c->busaddr); | ||
2124 | } | ||
2125 | |||
2126 | #ifdef CONFIG_COMPAT | ||
2127 | |||
2128 | static int do_ioctl(struct scsi_device *dev, int cmd, void *arg) | ||
2129 | { | ||
2130 | int ret; | ||
2131 | |||
2132 | lock_kernel(); | ||
2133 | ret = hpsa_ioctl(dev, cmd, arg); | ||
2134 | unlock_kernel(); | ||
2135 | return ret; | ||
2136 | } | ||
2137 | |||
2138 | static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg); | ||
2139 | static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, | ||
2140 | int cmd, void *arg); | ||
2141 | |||
2142 | static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg) | ||
2143 | { | ||
2144 | switch (cmd) { | ||
2145 | case CCISS_GETPCIINFO: | ||
2146 | case CCISS_GETINTINFO: | ||
2147 | case CCISS_SETINTINFO: | ||
2148 | case CCISS_GETNODENAME: | ||
2149 | case CCISS_SETNODENAME: | ||
2150 | case CCISS_GETHEARTBEAT: | ||
2151 | case CCISS_GETBUSTYPES: | ||
2152 | case CCISS_GETFIRMVER: | ||
2153 | case CCISS_GETDRIVVER: | ||
2154 | case CCISS_REVALIDVOLS: | ||
2155 | case CCISS_DEREGDISK: | ||
2156 | case CCISS_REGNEWDISK: | ||
2157 | case CCISS_REGNEWD: | ||
2158 | case CCISS_RESCANDISK: | ||
2159 | case CCISS_GETLUNINFO: | ||
2160 | return do_ioctl(dev, cmd, arg); | ||
2161 | |||
2162 | case CCISS_PASSTHRU32: | ||
2163 | return hpsa_ioctl32_passthru(dev, cmd, arg); | ||
2164 | case CCISS_BIG_PASSTHRU32: | ||
2165 | return hpsa_ioctl32_big_passthru(dev, cmd, arg); | ||
2166 | |||
2167 | default: | ||
2168 | return -ENOIOCTLCMD; | ||
2169 | } | ||
2170 | } | ||
2171 | |||
2172 | static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg) | ||
2173 | { | ||
2174 | IOCTL32_Command_struct __user *arg32 = | ||
2175 | (IOCTL32_Command_struct __user *) arg; | ||
2176 | IOCTL_Command_struct arg64; | ||
2177 | IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); | ||
2178 | int err; | ||
2179 | u32 cp; | ||
2180 | |||
2181 | err = 0; | ||
2182 | err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, | ||
2183 | sizeof(arg64.LUN_info)); | ||
2184 | err |= copy_from_user(&arg64.Request, &arg32->Request, | ||
2185 | sizeof(arg64.Request)); | ||
2186 | err |= copy_from_user(&arg64.error_info, &arg32->error_info, | ||
2187 | sizeof(arg64.error_info)); | ||
2188 | err |= get_user(arg64.buf_size, &arg32->buf_size); | ||
2189 | err |= get_user(cp, &arg32->buf); | ||
2190 | arg64.buf = compat_ptr(cp); | ||
2191 | err |= copy_to_user(p, &arg64, sizeof(arg64)); | ||
2192 | |||
2193 | if (err) | ||
2194 | return -EFAULT; | ||
2195 | |||
2196 | err = do_ioctl(dev, CCISS_PASSTHRU, (void *)p); | ||
2197 | if (err) | ||
2198 | return err; | ||
2199 | err |= copy_in_user(&arg32->error_info, &p->error_info, | ||
2200 | sizeof(arg32->error_info)); | ||
2201 | if (err) | ||
2202 | return -EFAULT; | ||
2203 | return err; | ||
2204 | } | ||
2205 | |||
2206 | static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, | ||
2207 | int cmd, void *arg) | ||
2208 | { | ||
2209 | BIG_IOCTL32_Command_struct __user *arg32 = | ||
2210 | (BIG_IOCTL32_Command_struct __user *) arg; | ||
2211 | BIG_IOCTL_Command_struct arg64; | ||
2212 | BIG_IOCTL_Command_struct __user *p = | ||
2213 | compat_alloc_user_space(sizeof(arg64)); | ||
2214 | int err; | ||
2215 | u32 cp; | ||
2216 | |||
2217 | err = 0; | ||
2218 | err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, | ||
2219 | sizeof(arg64.LUN_info)); | ||
2220 | err |= copy_from_user(&arg64.Request, &arg32->Request, | ||
2221 | sizeof(arg64.Request)); | ||
2222 | err |= copy_from_user(&arg64.error_info, &arg32->error_info, | ||
2223 | sizeof(arg64.error_info)); | ||
2224 | err |= get_user(arg64.buf_size, &arg32->buf_size); | ||
2225 | err |= get_user(arg64.malloc_size, &arg32->malloc_size); | ||
2226 | err |= get_user(cp, &arg32->buf); | ||
2227 | arg64.buf = compat_ptr(cp); | ||
2228 | err |= copy_to_user(p, &arg64, sizeof(arg64)); | ||
2229 | |||
2230 | if (err) | ||
2231 | return -EFAULT; | ||
2232 | |||
2233 | err = do_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p); | ||
2234 | if (err) | ||
2235 | return err; | ||
2236 | err |= copy_in_user(&arg32->error_info, &p->error_info, | ||
2237 | sizeof(arg32->error_info)); | ||
2238 | if (err) | ||
2239 | return -EFAULT; | ||
2240 | return err; | ||
2241 | } | ||
2242 | #endif | ||
2243 | |||
2244 | static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) | ||
2245 | { | ||
2246 | struct hpsa_pci_info pciinfo; | ||
2247 | |||
2248 | if (!argp) | ||
2249 | return -EINVAL; | ||
2250 | pciinfo.domain = pci_domain_nr(h->pdev->bus); | ||
2251 | pciinfo.bus = h->pdev->bus->number; | ||
2252 | pciinfo.dev_fn = h->pdev->devfn; | ||
2253 | pciinfo.board_id = h->board_id; | ||
2254 | if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) | ||
2255 | return -EFAULT; | ||
2256 | return 0; | ||
2257 | } | ||
2258 | |||
2259 | static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) | ||
2260 | { | ||
2261 | DriverVer_type DriverVer; | ||
2262 | unsigned char vmaj, vmin, vsubmin; | ||
2263 | int rc; | ||
2264 | |||
2265 | rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", | ||
2266 | &vmaj, &vmin, &vsubmin); | ||
2267 | if (rc != 3) { | ||
2268 | dev_info(&h->pdev->dev, "driver version string '%s' " | ||
2269 | "unrecognized.", HPSA_DRIVER_VERSION); | ||
2270 | vmaj = 0; | ||
2271 | vmin = 0; | ||
2272 | vsubmin = 0; | ||
2273 | } | ||
2274 | DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; | ||
2275 | if (!argp) | ||
2276 | return -EINVAL; | ||
2277 | if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) | ||
2278 | return -EFAULT; | ||
2279 | return 0; | ||
2280 | } | ||
2281 | |||
2282 | static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) | ||
2283 | { | ||
2284 | IOCTL_Command_struct iocommand; | ||
2285 | struct CommandList *c; | ||
2286 | char *buff = NULL; | ||
2287 | union u64bit temp64; | ||
2288 | |||
2289 | if (!argp) | ||
2290 | return -EINVAL; | ||
2291 | if (!capable(CAP_SYS_RAWIO)) | ||
2292 | return -EPERM; | ||
2293 | if (copy_from_user(&iocommand, argp, sizeof(iocommand))) | ||
2294 | return -EFAULT; | ||
2295 | if ((iocommand.buf_size < 1) && | ||
2296 | (iocommand.Request.Type.Direction != XFER_NONE)) { | ||
2297 | return -EINVAL; | ||
2298 | } | ||
2299 | if (iocommand.buf_size > 0) { | ||
2300 | buff = kmalloc(iocommand.buf_size, GFP_KERNEL); | ||
2301 | if (buff == NULL) | ||
2302 | return -EFAULT; | ||
2303 | } | ||
2304 | if (iocommand.Request.Type.Direction == XFER_WRITE) { | ||
2305 | /* Copy the data into the buffer we created */ | ||
2306 | if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) { | ||
2307 | kfree(buff); | ||
2308 | return -EFAULT; | ||
2309 | } | ||
2310 | } else | ||
2311 | memset(buff, 0, iocommand.buf_size); | ||
2312 | c = cmd_special_alloc(h); | ||
2313 | if (c == NULL) { | ||
2314 | kfree(buff); | ||
2315 | return -ENOMEM; | ||
2316 | } | ||
2317 | /* Fill in the command type */ | ||
2318 | c->cmd_type = CMD_IOCTL_PEND; | ||
2319 | /* Fill in Command Header */ | ||
2320 | c->Header.ReplyQueue = 0; /* unused in simple mode */ | ||
2321 | if (iocommand.buf_size > 0) { /* buffer to fill */ | ||
2322 | c->Header.SGList = 1; | ||
2323 | c->Header.SGTotal = 1; | ||
2324 | } else { /* no buffers to fill */ | ||
2325 | c->Header.SGList = 0; | ||
2326 | c->Header.SGTotal = 0; | ||
2327 | } | ||
2328 | memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); | ||
2329 | /* use the kernel address the cmd block for tag */ | ||
2330 | c->Header.Tag.lower = c->busaddr; | ||
2331 | |||
2332 | /* Fill in Request block */ | ||
2333 | memcpy(&c->Request, &iocommand.Request, | ||
2334 | sizeof(c->Request)); | ||
2335 | |||
2336 | /* Fill in the scatter gather information */ | ||
2337 | if (iocommand.buf_size > 0) { | ||
2338 | temp64.val = pci_map_single(h->pdev, buff, | ||
2339 | iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); | ||
2340 | c->SG[0].Addr.lower = temp64.val32.lower; | ||
2341 | c->SG[0].Addr.upper = temp64.val32.upper; | ||
2342 | c->SG[0].Len = iocommand.buf_size; | ||
2343 | c->SG[0].Ext = 0; /* we are not chaining*/ | ||
2344 | } | ||
2345 | hpsa_scsi_do_simple_cmd_core(h, c); | ||
2346 | hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); | ||
2347 | check_ioctl_unit_attention(h, c); | ||
2348 | |||
2349 | /* Copy the error information out */ | ||
2350 | memcpy(&iocommand.error_info, c->err_info, | ||
2351 | sizeof(iocommand.error_info)); | ||
2352 | if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { | ||
2353 | kfree(buff); | ||
2354 | cmd_special_free(h, c); | ||
2355 | return -EFAULT; | ||
2356 | } | ||
2357 | |||
2358 | if (iocommand.Request.Type.Direction == XFER_READ) { | ||
2359 | /* Copy the data out of the buffer we created */ | ||
2360 | if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { | ||
2361 | kfree(buff); | ||
2362 | cmd_special_free(h, c); | ||
2363 | return -EFAULT; | ||
2364 | } | ||
2365 | } | ||
2366 | kfree(buff); | ||
2367 | cmd_special_free(h, c); | ||
2368 | return 0; | ||
2369 | } | ||
2370 | |||
2371 | static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) | ||
2372 | { | ||
2373 | BIG_IOCTL_Command_struct *ioc; | ||
2374 | struct CommandList *c; | ||
2375 | unsigned char **buff = NULL; | ||
2376 | int *buff_size = NULL; | ||
2377 | union u64bit temp64; | ||
2378 | BYTE sg_used = 0; | ||
2379 | int status = 0; | ||
2380 | int i; | ||
2381 | __u32 left; | ||
2382 | __u32 sz; | ||
2383 | BYTE __user *data_ptr; | ||
2384 | |||
2385 | if (!argp) | ||
2386 | return -EINVAL; | ||
2387 | if (!capable(CAP_SYS_RAWIO)) | ||
2388 | return -EPERM; | ||
2389 | ioc = (BIG_IOCTL_Command_struct *) | ||
2390 | kmalloc(sizeof(*ioc), GFP_KERNEL); | ||
2391 | if (!ioc) { | ||
2392 | status = -ENOMEM; | ||
2393 | goto cleanup1; | ||
2394 | } | ||
2395 | if (copy_from_user(ioc, argp, sizeof(*ioc))) { | ||
2396 | status = -EFAULT; | ||
2397 | goto cleanup1; | ||
2398 | } | ||
2399 | if ((ioc->buf_size < 1) && | ||
2400 | (ioc->Request.Type.Direction != XFER_NONE)) { | ||
2401 | status = -EINVAL; | ||
2402 | goto cleanup1; | ||
2403 | } | ||
2404 | /* Check kmalloc limits using all SGs */ | ||
2405 | if (ioc->malloc_size > MAX_KMALLOC_SIZE) { | ||
2406 | status = -EINVAL; | ||
2407 | goto cleanup1; | ||
2408 | } | ||
2409 | if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) { | ||
2410 | status = -EINVAL; | ||
2411 | goto cleanup1; | ||
2412 | } | ||
2413 | buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL); | ||
2414 | if (!buff) { | ||
2415 | status = -ENOMEM; | ||
2416 | goto cleanup1; | ||
2417 | } | ||
2418 | buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL); | ||
2419 | if (!buff_size) { | ||
2420 | status = -ENOMEM; | ||
2421 | goto cleanup1; | ||
2422 | } | ||
2423 | left = ioc->buf_size; | ||
2424 | data_ptr = ioc->buf; | ||
2425 | while (left) { | ||
2426 | sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; | ||
2427 | buff_size[sg_used] = sz; | ||
2428 | buff[sg_used] = kmalloc(sz, GFP_KERNEL); | ||
2429 | if (buff[sg_used] == NULL) { | ||
2430 | status = -ENOMEM; | ||
2431 | goto cleanup1; | ||
2432 | } | ||
2433 | if (ioc->Request.Type.Direction == XFER_WRITE) { | ||
2434 | if (copy_from_user(buff[sg_used], data_ptr, sz)) { | ||
2435 | status = -ENOMEM; | ||
2436 | goto cleanup1; | ||
2437 | } | ||
2438 | } else | ||
2439 | memset(buff[sg_used], 0, sz); | ||
2440 | left -= sz; | ||
2441 | data_ptr += sz; | ||
2442 | sg_used++; | ||
2443 | } | ||
2444 | c = cmd_special_alloc(h); | ||
2445 | if (c == NULL) { | ||
2446 | status = -ENOMEM; | ||
2447 | goto cleanup1; | ||
2448 | } | ||
2449 | c->cmd_type = CMD_IOCTL_PEND; | ||
2450 | c->Header.ReplyQueue = 0; | ||
2451 | |||
2452 | if (ioc->buf_size > 0) { | ||
2453 | c->Header.SGList = sg_used; | ||
2454 | c->Header.SGTotal = sg_used; | ||
2455 | } else { | ||
2456 | c->Header.SGList = 0; | ||
2457 | c->Header.SGTotal = 0; | ||
2458 | } | ||
2459 | memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); | ||
2460 | c->Header.Tag.lower = c->busaddr; | ||
2461 | memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); | ||
2462 | if (ioc->buf_size > 0) { | ||
2463 | int i; | ||
2464 | for (i = 0; i < sg_used; i++) { | ||
2465 | temp64.val = pci_map_single(h->pdev, buff[i], | ||
2466 | buff_size[i], PCI_DMA_BIDIRECTIONAL); | ||
2467 | c->SG[i].Addr.lower = temp64.val32.lower; | ||
2468 | c->SG[i].Addr.upper = temp64.val32.upper; | ||
2469 | c->SG[i].Len = buff_size[i]; | ||
2470 | /* we are not chaining */ | ||
2471 | c->SG[i].Ext = 0; | ||
2472 | } | ||
2473 | } | ||
2474 | hpsa_scsi_do_simple_cmd_core(h, c); | ||
2475 | hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); | ||
2476 | check_ioctl_unit_attention(h, c); | ||
2477 | /* Copy the error information out */ | ||
2478 | memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); | ||
2479 | if (copy_to_user(argp, ioc, sizeof(*ioc))) { | ||
2480 | cmd_special_free(h, c); | ||
2481 | status = -EFAULT; | ||
2482 | goto cleanup1; | ||
2483 | } | ||
2484 | if (ioc->Request.Type.Direction == XFER_READ) { | ||
2485 | /* Copy the data out of the buffer we created */ | ||
2486 | BYTE __user *ptr = ioc->buf; | ||
2487 | for (i = 0; i < sg_used; i++) { | ||
2488 | if (copy_to_user(ptr, buff[i], buff_size[i])) { | ||
2489 | cmd_special_free(h, c); | ||
2490 | status = -EFAULT; | ||
2491 | goto cleanup1; | ||
2492 | } | ||
2493 | ptr += buff_size[i]; | ||
2494 | } | ||
2495 | } | ||
2496 | cmd_special_free(h, c); | ||
2497 | status = 0; | ||
2498 | cleanup1: | ||
2499 | if (buff) { | ||
2500 | for (i = 0; i < sg_used; i++) | ||
2501 | kfree(buff[i]); | ||
2502 | kfree(buff); | ||
2503 | } | ||
2504 | kfree(buff_size); | ||
2505 | kfree(ioc); | ||
2506 | return status; | ||
2507 | } | ||
2508 | |||
2509 | static void check_ioctl_unit_attention(struct ctlr_info *h, | ||
2510 | struct CommandList *c) | ||
2511 | { | ||
2512 | if (c->err_info->CommandStatus == CMD_TARGET_STATUS && | ||
2513 | c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) | ||
2514 | (void) check_for_unit_attention(h, c); | ||
2515 | } | ||
2516 | /* | ||
2517 | * ioctl | ||
2518 | */ | ||
2519 | static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg) | ||
2520 | { | ||
2521 | struct ctlr_info *h; | ||
2522 | void __user *argp = (void __user *)arg; | ||
2523 | |||
2524 | h = sdev_to_hba(dev); | ||
2525 | |||
2526 | switch (cmd) { | ||
2527 | case CCISS_DEREGDISK: | ||
2528 | case CCISS_REGNEWDISK: | ||
2529 | case CCISS_REGNEWD: | ||
2530 | hpsa_update_scsi_devices(h, dev->host->host_no); | ||
2531 | return 0; | ||
2532 | case CCISS_GETPCIINFO: | ||
2533 | return hpsa_getpciinfo_ioctl(h, argp); | ||
2534 | case CCISS_GETDRIVVER: | ||
2535 | return hpsa_getdrivver_ioctl(h, argp); | ||
2536 | case CCISS_PASSTHRU: | ||
2537 | return hpsa_passthru_ioctl(h, argp); | ||
2538 | case CCISS_BIG_PASSTHRU: | ||
2539 | return hpsa_big_passthru_ioctl(h, argp); | ||
2540 | default: | ||
2541 | return -ENOTTY; | ||
2542 | } | ||
2543 | } | ||
2544 | |||
2545 | static void fill_cmd(struct CommandList *c, __u8 cmd, struct ctlr_info *h, | ||
2546 | void *buff, size_t size, __u8 page_code, unsigned char *scsi3addr, | ||
2547 | int cmd_type) | ||
2548 | { | ||
2549 | int pci_dir = XFER_NONE; | ||
2550 | |||
2551 | c->cmd_type = CMD_IOCTL_PEND; | ||
2552 | c->Header.ReplyQueue = 0; | ||
2553 | if (buff != NULL && size > 0) { | ||
2554 | c->Header.SGList = 1; | ||
2555 | c->Header.SGTotal = 1; | ||
2556 | } else { | ||
2557 | c->Header.SGList = 0; | ||
2558 | c->Header.SGTotal = 0; | ||
2559 | } | ||
2560 | c->Header.Tag.lower = c->busaddr; | ||
2561 | memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); | ||
2562 | |||
2563 | c->Request.Type.Type = cmd_type; | ||
2564 | if (cmd_type == TYPE_CMD) { | ||
2565 | switch (cmd) { | ||
2566 | case HPSA_INQUIRY: | ||
2567 | /* are we trying to read a vital product page */ | ||
2568 | if (page_code != 0) { | ||
2569 | c->Request.CDB[1] = 0x01; | ||
2570 | c->Request.CDB[2] = page_code; | ||
2571 | } | ||
2572 | c->Request.CDBLen = 6; | ||
2573 | c->Request.Type.Attribute = ATTR_SIMPLE; | ||
2574 | c->Request.Type.Direction = XFER_READ; | ||
2575 | c->Request.Timeout = 0; | ||
2576 | c->Request.CDB[0] = HPSA_INQUIRY; | ||
2577 | c->Request.CDB[4] = size & 0xFF; | ||
2578 | break; | ||
2579 | case HPSA_REPORT_LOG: | ||
2580 | case HPSA_REPORT_PHYS: | ||
2581 | /* Talking to controller so It's a physical command | ||
2582 | mode = 00 target = 0. Nothing to write. | ||
2583 | */ | ||
2584 | c->Request.CDBLen = 12; | ||
2585 | c->Request.Type.Attribute = ATTR_SIMPLE; | ||
2586 | c->Request.Type.Direction = XFER_READ; | ||
2587 | c->Request.Timeout = 0; | ||
2588 | c->Request.CDB[0] = cmd; | ||
2589 | c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ | ||
2590 | c->Request.CDB[7] = (size >> 16) & 0xFF; | ||
2591 | c->Request.CDB[8] = (size >> 8) & 0xFF; | ||
2592 | c->Request.CDB[9] = size & 0xFF; | ||
2593 | break; | ||
2594 | |||
2595 | case HPSA_READ_CAPACITY: | ||
2596 | c->Request.CDBLen = 10; | ||
2597 | c->Request.Type.Attribute = ATTR_SIMPLE; | ||
2598 | c->Request.Type.Direction = XFER_READ; | ||
2599 | c->Request.Timeout = 0; | ||
2600 | c->Request.CDB[0] = cmd; | ||
2601 | break; | ||
2602 | case HPSA_CACHE_FLUSH: | ||
2603 | c->Request.CDBLen = 12; | ||
2604 | c->Request.Type.Attribute = ATTR_SIMPLE; | ||
2605 | c->Request.Type.Direction = XFER_WRITE; | ||
2606 | c->Request.Timeout = 0; | ||
2607 | c->Request.CDB[0] = BMIC_WRITE; | ||
2608 | c->Request.CDB[6] = BMIC_CACHE_FLUSH; | ||
2609 | break; | ||
2610 | case TEST_UNIT_READY: | ||
2611 | c->Request.CDBLen = 6; | ||
2612 | c->Request.Type.Attribute = ATTR_SIMPLE; | ||
2613 | c->Request.Type.Direction = XFER_NONE; | ||
2614 | c->Request.Timeout = 0; | ||
2615 | break; | ||
2616 | default: | ||
2617 | dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); | ||
2618 | BUG(); | ||
2619 | return; | ||
2620 | } | ||
2621 | } else if (cmd_type == TYPE_MSG) { | ||
2622 | switch (cmd) { | ||
2623 | |||
2624 | case HPSA_DEVICE_RESET_MSG: | ||
2625 | c->Request.CDBLen = 16; | ||
2626 | c->Request.Type.Type = 1; /* It is a MSG not a CMD */ | ||
2627 | c->Request.Type.Attribute = ATTR_SIMPLE; | ||
2628 | c->Request.Type.Direction = XFER_NONE; | ||
2629 | c->Request.Timeout = 0; /* Don't time out */ | ||
2630 | c->Request.CDB[0] = 0x01; /* RESET_MSG is 0x01 */ | ||
2631 | c->Request.CDB[1] = 0x03; /* Reset target above */ | ||
2632 | /* If bytes 4-7 are zero, it means reset the */ | ||
2633 | /* LunID device */ | ||
2634 | c->Request.CDB[4] = 0x00; | ||
2635 | c->Request.CDB[5] = 0x00; | ||
2636 | c->Request.CDB[6] = 0x00; | ||
2637 | c->Request.CDB[7] = 0x00; | ||
2638 | break; | ||
2639 | |||
2640 | default: | ||
2641 | dev_warn(&h->pdev->dev, "unknown message type %d\n", | ||
2642 | cmd); | ||
2643 | BUG(); | ||
2644 | } | ||
2645 | } else { | ||
2646 | dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); | ||
2647 | BUG(); | ||
2648 | } | ||
2649 | |||
2650 | switch (c->Request.Type.Direction) { | ||
2651 | case XFER_READ: | ||
2652 | pci_dir = PCI_DMA_FROMDEVICE; | ||
2653 | break; | ||
2654 | case XFER_WRITE: | ||
2655 | pci_dir = PCI_DMA_TODEVICE; | ||
2656 | break; | ||
2657 | case XFER_NONE: | ||
2658 | pci_dir = PCI_DMA_NONE; | ||
2659 | break; | ||
2660 | default: | ||
2661 | pci_dir = PCI_DMA_BIDIRECTIONAL; | ||
2662 | } | ||
2663 | |||
2664 | hpsa_map_one(h->pdev, c, buff, size, pci_dir); | ||
2665 | |||
2666 | return; | ||
2667 | } | ||
2668 | |||
2669 | /* | ||
2670 | * Map (physical) PCI mem into (virtual) kernel space | ||
2671 | */ | ||
2672 | static void __iomem *remap_pci_mem(ulong base, ulong size) | ||
2673 | { | ||
2674 | ulong page_base = ((ulong) base) & PAGE_MASK; | ||
2675 | ulong page_offs = ((ulong) base) - page_base; | ||
2676 | void __iomem *page_remapped = ioremap(page_base, page_offs + size); | ||
2677 | |||
2678 | return page_remapped ? (page_remapped + page_offs) : NULL; | ||
2679 | } | ||
2680 | |||
2681 | /* Takes cmds off the submission queue and sends them to the hardware, | ||
2682 | * then puts them on the queue of cmds waiting for completion. | ||
2683 | */ | ||
2684 | static void start_io(struct ctlr_info *h) | ||
2685 | { | ||
2686 | struct CommandList *c; | ||
2687 | |||
2688 | while (!hlist_empty(&h->reqQ)) { | ||
2689 | c = hlist_entry(h->reqQ.first, struct CommandList, list); | ||
2690 | /* can't do anything if fifo is full */ | ||
2691 | if ((h->access.fifo_full(h))) { | ||
2692 | dev_warn(&h->pdev->dev, "fifo full\n"); | ||
2693 | break; | ||
2694 | } | ||
2695 | |||
2696 | /* Get the first entry from the Request Q */ | ||
2697 | removeQ(c); | ||
2698 | h->Qdepth--; | ||
2699 | |||
2700 | /* Tell the controller execute command */ | ||
2701 | h->access.submit_command(h, c); | ||
2702 | |||
2703 | /* Put job onto the completed Q */ | ||
2704 | addQ(&h->cmpQ, c); | ||
2705 | } | ||
2706 | } | ||
2707 | |||
2708 | static inline unsigned long get_next_completion(struct ctlr_info *h) | ||
2709 | { | ||
2710 | return h->access.command_completed(h); | ||
2711 | } | ||
2712 | |||
2713 | static inline int interrupt_pending(struct ctlr_info *h) | ||
2714 | { | ||
2715 | return h->access.intr_pending(h); | ||
2716 | } | ||
2717 | |||
2718 | static inline long interrupt_not_for_us(struct ctlr_info *h) | ||
2719 | { | ||
2720 | return ((h->access.intr_pending(h) == 0) || | ||
2721 | (h->interrupts_enabled == 0)); | ||
2722 | } | ||
2723 | |||
2724 | static inline int bad_tag(struct ctlr_info *h, __u32 tag_index, | ||
2725 | __u32 raw_tag) | ||
2726 | { | ||
2727 | if (unlikely(tag_index >= h->nr_cmds)) { | ||
2728 | dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); | ||
2729 | return 1; | ||
2730 | } | ||
2731 | return 0; | ||
2732 | } | ||
2733 | |||
2734 | static inline void finish_cmd(struct CommandList *c, __u32 raw_tag) | ||
2735 | { | ||
2736 | removeQ(c); | ||
2737 | if (likely(c->cmd_type == CMD_SCSI)) | ||
2738 | complete_scsi_command(c, 0, raw_tag); | ||
2739 | else if (c->cmd_type == CMD_IOCTL_PEND) | ||
2740 | complete(c->waiting); | ||
2741 | } | ||
2742 | |||
2743 | static irqreturn_t do_hpsa_intr(int irq, void *dev_id) | ||
2744 | { | ||
2745 | struct ctlr_info *h = dev_id; | ||
2746 | struct CommandList *c; | ||
2747 | unsigned long flags; | ||
2748 | __u32 raw_tag, tag, tag_index; | ||
2749 | struct hlist_node *tmp; | ||
2750 | |||
2751 | if (interrupt_not_for_us(h)) | ||
2752 | return IRQ_NONE; | ||
2753 | spin_lock_irqsave(&h->lock, flags); | ||
2754 | while (interrupt_pending(h)) { | ||
2755 | while ((raw_tag = get_next_completion(h)) != FIFO_EMPTY) { | ||
2756 | if (likely(HPSA_TAG_CONTAINS_INDEX(raw_tag))) { | ||
2757 | tag_index = HPSA_TAG_TO_INDEX(raw_tag); | ||
2758 | if (bad_tag(h, tag_index, raw_tag)) | ||
2759 | return IRQ_HANDLED; | ||
2760 | c = h->cmd_pool + tag_index; | ||
2761 | finish_cmd(c, raw_tag); | ||
2762 | continue; | ||
2763 | } | ||
2764 | tag = HPSA_TAG_DISCARD_ERROR_BITS(raw_tag); | ||
2765 | c = NULL; | ||
2766 | hlist_for_each_entry(c, tmp, &h->cmpQ, list) { | ||
2767 | if (c->busaddr == tag) { | ||
2768 | finish_cmd(c, raw_tag); | ||
2769 | break; | ||
2770 | } | ||
2771 | } | ||
2772 | } | ||
2773 | } | ||
2774 | spin_unlock_irqrestore(&h->lock, flags); | ||
2775 | return IRQ_HANDLED; | ||
2776 | } | ||
2777 | |||
2778 | /* Send a message CDB to the firmware. */ | ||
2779 | static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode, | ||
2780 | unsigned char type) | ||
2781 | { | ||
2782 | struct Command { | ||
2783 | struct CommandListHeader CommandHeader; | ||
2784 | struct RequestBlock Request; | ||
2785 | struct ErrDescriptor ErrorDescriptor; | ||
2786 | }; | ||
2787 | struct Command *cmd; | ||
2788 | static const size_t cmd_sz = sizeof(*cmd) + | ||
2789 | sizeof(cmd->ErrorDescriptor); | ||
2790 | dma_addr_t paddr64; | ||
2791 | uint32_t paddr32, tag; | ||
2792 | void __iomem *vaddr; | ||
2793 | int i, err; | ||
2794 | |||
2795 | vaddr = pci_ioremap_bar(pdev, 0); | ||
2796 | if (vaddr == NULL) | ||
2797 | return -ENOMEM; | ||
2798 | |||
2799 | /* The Inbound Post Queue only accepts 32-bit physical addresses for the | ||
2800 | * CCISS commands, so they must be allocated from the lower 4GiB of | ||
2801 | * memory. | ||
2802 | */ | ||
2803 | err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); | ||
2804 | if (err) { | ||
2805 | iounmap(vaddr); | ||
2806 | return -ENOMEM; | ||
2807 | } | ||
2808 | |||
2809 | cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); | ||
2810 | if (cmd == NULL) { | ||
2811 | iounmap(vaddr); | ||
2812 | return -ENOMEM; | ||
2813 | } | ||
2814 | |||
2815 | /* This must fit, because of the 32-bit consistent DMA mask. Also, | ||
2816 | * although there's no guarantee, we assume that the address is at | ||
2817 | * least 4-byte aligned (most likely, it's page-aligned). | ||
2818 | */ | ||
2819 | paddr32 = paddr64; | ||
2820 | |||
2821 | cmd->CommandHeader.ReplyQueue = 0; | ||
2822 | cmd->CommandHeader.SGList = 0; | ||
2823 | cmd->CommandHeader.SGTotal = 0; | ||
2824 | cmd->CommandHeader.Tag.lower = paddr32; | ||
2825 | cmd->CommandHeader.Tag.upper = 0; | ||
2826 | memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); | ||
2827 | |||
2828 | cmd->Request.CDBLen = 16; | ||
2829 | cmd->Request.Type.Type = TYPE_MSG; | ||
2830 | cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; | ||
2831 | cmd->Request.Type.Direction = XFER_NONE; | ||
2832 | cmd->Request.Timeout = 0; /* Don't time out */ | ||
2833 | cmd->Request.CDB[0] = opcode; | ||
2834 | cmd->Request.CDB[1] = type; | ||
2835 | memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ | ||
2836 | cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd); | ||
2837 | cmd->ErrorDescriptor.Addr.upper = 0; | ||
2838 | cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo); | ||
2839 | |||
2840 | writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); | ||
2841 | |||
2842 | for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { | ||
2843 | tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); | ||
2844 | if (HPSA_TAG_DISCARD_ERROR_BITS(tag) == paddr32) | ||
2845 | break; | ||
2846 | msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); | ||
2847 | } | ||
2848 | |||
2849 | iounmap(vaddr); | ||
2850 | |||
2851 | /* we leak the DMA buffer here ... no choice since the controller could | ||
2852 | * still complete the command. | ||
2853 | */ | ||
2854 | if (i == HPSA_MSG_SEND_RETRY_LIMIT) { | ||
2855 | dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", | ||
2856 | opcode, type); | ||
2857 | return -ETIMEDOUT; | ||
2858 | } | ||
2859 | |||
2860 | pci_free_consistent(pdev, cmd_sz, cmd, paddr64); | ||
2861 | |||
2862 | if (tag & HPSA_ERROR_BIT) { | ||
2863 | dev_err(&pdev->dev, "controller message %02x:%02x failed\n", | ||
2864 | opcode, type); | ||
2865 | return -EIO; | ||
2866 | } | ||
2867 | |||
2868 | dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", | ||
2869 | opcode, type); | ||
2870 | return 0; | ||
2871 | } | ||
2872 | |||
2873 | #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0) | ||
2874 | #define hpsa_noop(p) hpsa_message(p, 3, 0) | ||
2875 | |||
2876 | static __devinit int hpsa_reset_msi(struct pci_dev *pdev) | ||
2877 | { | ||
2878 | /* the #defines are stolen from drivers/pci/msi.h. */ | ||
2879 | #define msi_control_reg(base) (base + PCI_MSI_FLAGS) | ||
2880 | #define PCI_MSIX_FLAGS_ENABLE (1 << 15) | ||
2881 | |||
2882 | int pos; | ||
2883 | u16 control = 0; | ||
2884 | |||
2885 | pos = pci_find_capability(pdev, PCI_CAP_ID_MSI); | ||
2886 | if (pos) { | ||
2887 | pci_read_config_word(pdev, msi_control_reg(pos), &control); | ||
2888 | if (control & PCI_MSI_FLAGS_ENABLE) { | ||
2889 | dev_info(&pdev->dev, "resetting MSI\n"); | ||
2890 | pci_write_config_word(pdev, msi_control_reg(pos), | ||
2891 | control & ~PCI_MSI_FLAGS_ENABLE); | ||
2892 | } | ||
2893 | } | ||
2894 | |||
2895 | pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); | ||
2896 | if (pos) { | ||
2897 | pci_read_config_word(pdev, msi_control_reg(pos), &control); | ||
2898 | if (control & PCI_MSIX_FLAGS_ENABLE) { | ||
2899 | dev_info(&pdev->dev, "resetting MSI-X\n"); | ||
2900 | pci_write_config_word(pdev, msi_control_reg(pos), | ||
2901 | control & ~PCI_MSIX_FLAGS_ENABLE); | ||
2902 | } | ||
2903 | } | ||
2904 | |||
2905 | return 0; | ||
2906 | } | ||
2907 | |||
2908 | /* This does a hard reset of the controller using PCI power management | ||
2909 | * states. | ||
2910 | */ | ||
2911 | static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev) | ||
2912 | { | ||
2913 | u16 pmcsr, saved_config_space[32]; | ||
2914 | int i, pos; | ||
2915 | |||
2916 | dev_info(&pdev->dev, "using PCI PM to reset controller\n"); | ||
2917 | |||
2918 | /* This is very nearly the same thing as | ||
2919 | * | ||
2920 | * pci_save_state(pci_dev); | ||
2921 | * pci_set_power_state(pci_dev, PCI_D3hot); | ||
2922 | * pci_set_power_state(pci_dev, PCI_D0); | ||
2923 | * pci_restore_state(pci_dev); | ||
2924 | * | ||
2925 | * but we can't use these nice canned kernel routines on | ||
2926 | * kexec, because they also check the MSI/MSI-X state in PCI | ||
2927 | * configuration space and do the wrong thing when it is | ||
2928 | * set/cleared. Also, the pci_save/restore_state functions | ||
2929 | * violate the ordering requirements for restoring the | ||
2930 | * configuration space from the CCISS document (see the | ||
2931 | * comment below). So we roll our own .... | ||
2932 | */ | ||
2933 | |||
2934 | for (i = 0; i < 32; i++) | ||
2935 | pci_read_config_word(pdev, 2*i, &saved_config_space[i]); | ||
2936 | |||
2937 | pos = pci_find_capability(pdev, PCI_CAP_ID_PM); | ||
2938 | if (pos == 0) { | ||
2939 | dev_err(&pdev->dev, | ||
2940 | "hpsa_reset_controller: PCI PM not supported\n"); | ||
2941 | return -ENODEV; | ||
2942 | } | ||
2943 | |||
2944 | /* Quoting from the Open CISS Specification: "The Power | ||
2945 | * Management Control/Status Register (CSR) controls the power | ||
2946 | * state of the device. The normal operating state is D0, | ||
2947 | * CSR=00h. The software off state is D3, CSR=03h. To reset | ||
2948 | * the controller, place the interface device in D3 then to | ||
2949 | * D0, this causes a secondary PCI reset which will reset the | ||
2950 | * controller." | ||
2951 | */ | ||
2952 | |||
2953 | /* enter the D3hot power management state */ | ||
2954 | pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); | ||
2955 | pmcsr &= ~PCI_PM_CTRL_STATE_MASK; | ||
2956 | pmcsr |= PCI_D3hot; | ||
2957 | pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); | ||
2958 | |||
2959 | msleep(500); | ||
2960 | |||
2961 | /* enter the D0 power management state */ | ||
2962 | pmcsr &= ~PCI_PM_CTRL_STATE_MASK; | ||
2963 | pmcsr |= PCI_D0; | ||
2964 | pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); | ||
2965 | |||
2966 | msleep(500); | ||
2967 | |||
2968 | /* Restore the PCI configuration space. The Open CISS | ||
2969 | * Specification says, "Restore the PCI Configuration | ||
2970 | * Registers, offsets 00h through 60h. It is important to | ||
2971 | * restore the command register, 16-bits at offset 04h, | ||
2972 | * last. Do not restore the configuration status register, | ||
2973 | * 16-bits at offset 06h." Note that the offset is 2*i. | ||
2974 | */ | ||
2975 | for (i = 0; i < 32; i++) { | ||
2976 | if (i == 2 || i == 3) | ||
2977 | continue; | ||
2978 | pci_write_config_word(pdev, 2*i, saved_config_space[i]); | ||
2979 | } | ||
2980 | wmb(); | ||
2981 | pci_write_config_word(pdev, 4, saved_config_space[2]); | ||
2982 | |||
2983 | return 0; | ||
2984 | } | ||
2985 | |||
2986 | /* | ||
2987 | * We cannot read the structure directly, for portability we must use | ||
2988 | * the io functions. | ||
2989 | * This is for debug only. | ||
2990 | */ | ||
2991 | #ifdef HPSA_DEBUG | ||
2992 | static void print_cfg_table(struct device *dev, struct CfgTable *tb) | ||
2993 | { | ||
2994 | int i; | ||
2995 | char temp_name[17]; | ||
2996 | |||
2997 | dev_info(dev, "Controller Configuration information\n"); | ||
2998 | dev_info(dev, "------------------------------------\n"); | ||
2999 | for (i = 0; i < 4; i++) | ||
3000 | temp_name[i] = readb(&(tb->Signature[i])); | ||
3001 | temp_name[4] = '\0'; | ||
3002 | dev_info(dev, " Signature = %s\n", temp_name); | ||
3003 | dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); | ||
3004 | dev_info(dev, " Transport methods supported = 0x%x\n", | ||
3005 | readl(&(tb->TransportSupport))); | ||
3006 | dev_info(dev, " Transport methods active = 0x%x\n", | ||
3007 | readl(&(tb->TransportActive))); | ||
3008 | dev_info(dev, " Requested transport Method = 0x%x\n", | ||
3009 | readl(&(tb->HostWrite.TransportRequest))); | ||
3010 | dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", | ||
3011 | readl(&(tb->HostWrite.CoalIntDelay))); | ||
3012 | dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", | ||
3013 | readl(&(tb->HostWrite.CoalIntCount))); | ||
3014 | dev_info(dev, " Max outstanding commands = 0x%d\n", | ||
3015 | readl(&(tb->CmdsOutMax))); | ||
3016 | dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); | ||
3017 | for (i = 0; i < 16; i++) | ||
3018 | temp_name[i] = readb(&(tb->ServerName[i])); | ||
3019 | temp_name[16] = '\0'; | ||
3020 | dev_info(dev, " Server Name = %s\n", temp_name); | ||
3021 | dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", | ||
3022 | readl(&(tb->HeartBeat))); | ||
3023 | } | ||
3024 | #endif /* HPSA_DEBUG */ | ||
3025 | |||
3026 | static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) | ||
3027 | { | ||
3028 | int i, offset, mem_type, bar_type; | ||
3029 | |||
3030 | if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ | ||
3031 | return 0; | ||
3032 | offset = 0; | ||
3033 | for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { | ||
3034 | bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; | ||
3035 | if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) | ||
3036 | offset += 4; | ||
3037 | else { | ||
3038 | mem_type = pci_resource_flags(pdev, i) & | ||
3039 | PCI_BASE_ADDRESS_MEM_TYPE_MASK; | ||
3040 | switch (mem_type) { | ||
3041 | case PCI_BASE_ADDRESS_MEM_TYPE_32: | ||
3042 | case PCI_BASE_ADDRESS_MEM_TYPE_1M: | ||
3043 | offset += 4; /* 32 bit */ | ||
3044 | break; | ||
3045 | case PCI_BASE_ADDRESS_MEM_TYPE_64: | ||
3046 | offset += 8; | ||
3047 | break; | ||
3048 | default: /* reserved in PCI 2.2 */ | ||
3049 | dev_warn(&pdev->dev, | ||
3050 | "base address is invalid\n"); | ||
3051 | return -1; | ||
3052 | break; | ||
3053 | } | ||
3054 | } | ||
3055 | if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) | ||
3056 | return i + 1; | ||
3057 | } | ||
3058 | return -1; | ||
3059 | } | ||
3060 | |||
3061 | /* If MSI/MSI-X is supported by the kernel we will try to enable it on | ||
3062 | * controllers that are capable. If not, we use IO-APIC mode. | ||
3063 | */ | ||
3064 | |||
3065 | static void __devinit hpsa_interrupt_mode(struct ctlr_info *h, | ||
3066 | struct pci_dev *pdev, __u32 board_id) | ||
3067 | { | ||
3068 | #ifdef CONFIG_PCI_MSI | ||
3069 | int err; | ||
3070 | struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1}, | ||
3071 | {0, 2}, {0, 3} | ||
3072 | }; | ||
3073 | |||
3074 | /* Some boards advertise MSI but don't really support it */ | ||
3075 | if ((board_id == 0x40700E11) || | ||
3076 | (board_id == 0x40800E11) || | ||
3077 | (board_id == 0x40820E11) || (board_id == 0x40830E11)) | ||
3078 | goto default_int_mode; | ||
3079 | if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) { | ||
3080 | dev_info(&pdev->dev, "MSIX\n"); | ||
3081 | err = pci_enable_msix(pdev, hpsa_msix_entries, 4); | ||
3082 | if (!err) { | ||
3083 | h->intr[0] = hpsa_msix_entries[0].vector; | ||
3084 | h->intr[1] = hpsa_msix_entries[1].vector; | ||
3085 | h->intr[2] = hpsa_msix_entries[2].vector; | ||
3086 | h->intr[3] = hpsa_msix_entries[3].vector; | ||
3087 | h->msix_vector = 1; | ||
3088 | return; | ||
3089 | } | ||
3090 | if (err > 0) { | ||
3091 | dev_warn(&pdev->dev, "only %d MSI-X vectors " | ||
3092 | "available\n", err); | ||
3093 | goto default_int_mode; | ||
3094 | } else { | ||
3095 | dev_warn(&pdev->dev, "MSI-X init failed %d\n", | ||
3096 | err); | ||
3097 | goto default_int_mode; | ||
3098 | } | ||
3099 | } | ||
3100 | if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) { | ||
3101 | dev_info(&pdev->dev, "MSI\n"); | ||
3102 | if (!pci_enable_msi(pdev)) | ||
3103 | h->msi_vector = 1; | ||
3104 | else | ||
3105 | dev_warn(&pdev->dev, "MSI init failed\n"); | ||
3106 | } | ||
3107 | default_int_mode: | ||
3108 | #endif /* CONFIG_PCI_MSI */ | ||
3109 | /* if we get here we're going to use the default interrupt mode */ | ||
3110 | h->intr[SIMPLE_MODE_INT] = pdev->irq; | ||
3111 | return; | ||
3112 | } | ||
3113 | |||
3114 | static int hpsa_pci_init(struct ctlr_info *h, struct pci_dev *pdev) | ||
3115 | { | ||
3116 | ushort subsystem_vendor_id, subsystem_device_id, command; | ||
3117 | __u32 board_id, scratchpad = 0; | ||
3118 | __u64 cfg_offset; | ||
3119 | __u32 cfg_base_addr; | ||
3120 | __u64 cfg_base_addr_index; | ||
3121 | int i, prod_index, err; | ||
3122 | |||
3123 | subsystem_vendor_id = pdev->subsystem_vendor; | ||
3124 | subsystem_device_id = pdev->subsystem_device; | ||
3125 | board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) | | ||
3126 | subsystem_vendor_id); | ||
3127 | |||
3128 | for (i = 0; i < ARRAY_SIZE(products); i++) | ||
3129 | if (board_id == products[i].board_id) | ||
3130 | break; | ||
3131 | |||
3132 | prod_index = i; | ||
3133 | |||
3134 | if (prod_index == ARRAY_SIZE(products)) { | ||
3135 | prod_index--; | ||
3136 | if (subsystem_vendor_id != PCI_VENDOR_ID_HP || | ||
3137 | !hpsa_allow_any) { | ||
3138 | dev_warn(&pdev->dev, "unrecognized board ID:" | ||
3139 | " 0x%08lx, ignoring.\n", | ||
3140 | (unsigned long) board_id); | ||
3141 | return -ENODEV; | ||
3142 | } | ||
3143 | } | ||
3144 | /* check to see if controller has been disabled | ||
3145 | * BEFORE trying to enable it | ||
3146 | */ | ||
3147 | (void)pci_read_config_word(pdev, PCI_COMMAND, &command); | ||
3148 | if (!(command & 0x02)) { | ||
3149 | dev_warn(&pdev->dev, "controller appears to be disabled\n"); | ||
3150 | return -ENODEV; | ||
3151 | } | ||
3152 | |||
3153 | err = pci_enable_device(pdev); | ||
3154 | if (err) { | ||
3155 | dev_warn(&pdev->dev, "unable to enable PCI device\n"); | ||
3156 | return err; | ||
3157 | } | ||
3158 | |||
3159 | err = pci_request_regions(pdev, "hpsa"); | ||
3160 | if (err) { | ||
3161 | dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n"); | ||
3162 | return err; | ||
3163 | } | ||
3164 | |||
3165 | /* If the kernel supports MSI/MSI-X we will try to enable that, | ||
3166 | * else we use the IO-APIC interrupt assigned to us by system ROM. | ||
3167 | */ | ||
3168 | hpsa_interrupt_mode(h, pdev, board_id); | ||
3169 | |||
3170 | /* find the memory BAR */ | ||
3171 | for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { | ||
3172 | if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) | ||
3173 | break; | ||
3174 | } | ||
3175 | if (i == DEVICE_COUNT_RESOURCE) { | ||
3176 | dev_warn(&pdev->dev, "no memory BAR found\n"); | ||
3177 | err = -ENODEV; | ||
3178 | goto err_out_free_res; | ||
3179 | } | ||
3180 | |||
3181 | h->paddr = pci_resource_start(pdev, i); /* addressing mode bits | ||
3182 | * already removed | ||
3183 | */ | ||
3184 | |||
3185 | h->vaddr = remap_pci_mem(h->paddr, 0x250); | ||
3186 | |||
3187 | /* Wait for the board to become ready. */ | ||
3188 | for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) { | ||
3189 | scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); | ||
3190 | if (scratchpad == HPSA_FIRMWARE_READY) | ||
3191 | break; | ||
3192 | msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); | ||
3193 | } | ||
3194 | if (scratchpad != HPSA_FIRMWARE_READY) { | ||
3195 | dev_warn(&pdev->dev, "board not ready, timed out.\n"); | ||
3196 | err = -ENODEV; | ||
3197 | goto err_out_free_res; | ||
3198 | } | ||
3199 | |||
3200 | /* get the address index number */ | ||
3201 | cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET); | ||
3202 | cfg_base_addr &= (__u32) 0x0000ffff; | ||
3203 | cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr); | ||
3204 | if (cfg_base_addr_index == -1) { | ||
3205 | dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); | ||
3206 | err = -ENODEV; | ||
3207 | goto err_out_free_res; | ||
3208 | } | ||
3209 | |||
3210 | cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET); | ||
3211 | h->cfgtable = remap_pci_mem(pci_resource_start(pdev, | ||
3212 | cfg_base_addr_index) + cfg_offset, | ||
3213 | sizeof(h->cfgtable)); | ||
3214 | h->board_id = board_id; | ||
3215 | |||
3216 | /* Query controller for max supported commands: */ | ||
3217 | h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); | ||
3218 | |||
3219 | h->product_name = products[prod_index].product_name; | ||
3220 | h->access = *(products[prod_index].access); | ||
3221 | /* Allow room for some ioctls */ | ||
3222 | h->nr_cmds = h->max_commands - 4; | ||
3223 | |||
3224 | if ((readb(&h->cfgtable->Signature[0]) != 'C') || | ||
3225 | (readb(&h->cfgtable->Signature[1]) != 'I') || | ||
3226 | (readb(&h->cfgtable->Signature[2]) != 'S') || | ||
3227 | (readb(&h->cfgtable->Signature[3]) != 'S')) { | ||
3228 | dev_warn(&pdev->dev, "not a valid CISS config table\n"); | ||
3229 | err = -ENODEV; | ||
3230 | goto err_out_free_res; | ||
3231 | } | ||
3232 | #ifdef CONFIG_X86 | ||
3233 | { | ||
3234 | /* Need to enable prefetch in the SCSI core for 6400 in x86 */ | ||
3235 | __u32 prefetch; | ||
3236 | prefetch = readl(&(h->cfgtable->SCSI_Prefetch)); | ||
3237 | prefetch |= 0x100; | ||
3238 | writel(prefetch, &(h->cfgtable->SCSI_Prefetch)); | ||
3239 | } | ||
3240 | #endif | ||
3241 | |||
3242 | /* Disabling DMA prefetch for the P600 | ||
3243 | * An ASIC bug may result in a prefetch beyond | ||
3244 | * physical memory. | ||
3245 | */ | ||
3246 | if (board_id == 0x3225103C) { | ||
3247 | __u32 dma_prefetch; | ||
3248 | dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); | ||
3249 | dma_prefetch |= 0x8000; | ||
3250 | writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); | ||
3251 | } | ||
3252 | |||
3253 | h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); | ||
3254 | /* Update the field, and then ring the doorbell */ | ||
3255 | writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); | ||
3256 | writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); | ||
3257 | |||
3258 | /* under certain very rare conditions, this can take awhile. | ||
3259 | * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right | ||
3260 | * as we enter this code.) | ||
3261 | */ | ||
3262 | for (i = 0; i < MAX_CONFIG_WAIT; i++) { | ||
3263 | if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) | ||
3264 | break; | ||
3265 | /* delay and try again */ | ||
3266 | msleep(10); | ||
3267 | } | ||
3268 | |||
3269 | #ifdef HPSA_DEBUG | ||
3270 | print_cfg_table(&pdev->dev, h->cfgtable); | ||
3271 | #endif /* HPSA_DEBUG */ | ||
3272 | |||
3273 | if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { | ||
3274 | dev_warn(&pdev->dev, "unable to get board into simple mode\n"); | ||
3275 | err = -ENODEV; | ||
3276 | goto err_out_free_res; | ||
3277 | } | ||
3278 | return 0; | ||
3279 | |||
3280 | err_out_free_res: | ||
3281 | /* | ||
3282 | * Deliberately omit pci_disable_device(): it does something nasty to | ||
3283 | * Smart Array controllers that pci_enable_device does not undo | ||
3284 | */ | ||
3285 | pci_release_regions(pdev); | ||
3286 | return err; | ||
3287 | } | ||
3288 | |||
3289 | static int __devinit hpsa_init_one(struct pci_dev *pdev, | ||
3290 | const struct pci_device_id *ent) | ||
3291 | { | ||
3292 | int i; | ||
3293 | int dac; | ||
3294 | struct ctlr_info *h; | ||
3295 | |||
3296 | if (number_of_controllers == 0) | ||
3297 | printk(KERN_INFO DRIVER_NAME "\n"); | ||
3298 | if (reset_devices) { | ||
3299 | /* Reset the controller with a PCI power-cycle */ | ||
3300 | if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev)) | ||
3301 | return -ENODEV; | ||
3302 | |||
3303 | /* Some devices (notably the HP Smart Array 5i Controller) | ||
3304 | need a little pause here */ | ||
3305 | msleep(HPSA_POST_RESET_PAUSE_MSECS); | ||
3306 | |||
3307 | /* Now try to get the controller to respond to a no-op */ | ||
3308 | for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { | ||
3309 | if (hpsa_noop(pdev) == 0) | ||
3310 | break; | ||
3311 | else | ||
3312 | dev_warn(&pdev->dev, "no-op failed%s\n", | ||
3313 | (i < 11 ? "; re-trying" : "")); | ||
3314 | } | ||
3315 | } | ||
3316 | |||
3317 | BUILD_BUG_ON(sizeof(struct CommandList) % 8); | ||
3318 | h = kzalloc(sizeof(*h), GFP_KERNEL); | ||
3319 | if (!h) | ||
3320 | return -1; | ||
3321 | |||
3322 | h->busy_initializing = 1; | ||
3323 | INIT_HLIST_HEAD(&h->cmpQ); | ||
3324 | INIT_HLIST_HEAD(&h->reqQ); | ||
3325 | mutex_init(&h->busy_shutting_down); | ||
3326 | init_completion(&h->scan_wait); | ||
3327 | if (hpsa_pci_init(h, pdev) != 0) | ||
3328 | goto clean1; | ||
3329 | |||
3330 | sprintf(h->devname, "hpsa%d", number_of_controllers); | ||
3331 | h->ctlr = number_of_controllers; | ||
3332 | number_of_controllers++; | ||
3333 | h->pdev = pdev; | ||
3334 | |||
3335 | /* configure PCI DMA stuff */ | ||
3336 | if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) | ||
3337 | dac = 1; | ||
3338 | else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) | ||
3339 | dac = 0; | ||
3340 | else { | ||
3341 | dev_err(&pdev->dev, "no suitable DMA available\n"); | ||
3342 | goto clean1; | ||
3343 | } | ||
3344 | |||
3345 | /* make sure the board interrupts are off */ | ||
3346 | h->access.set_intr_mask(h, HPSA_INTR_OFF); | ||
3347 | if (request_irq(h->intr[SIMPLE_MODE_INT], do_hpsa_intr, | ||
3348 | IRQF_DISABLED | IRQF_SHARED, h->devname, h)) { | ||
3349 | dev_err(&pdev->dev, "unable to get irq %d for %s\n", | ||
3350 | h->intr[SIMPLE_MODE_INT], h->devname); | ||
3351 | goto clean2; | ||
3352 | } | ||
3353 | |||
3354 | dev_info(&pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n", | ||
3355 | h->devname, pdev->device, pci_name(pdev), | ||
3356 | h->intr[SIMPLE_MODE_INT], dac ? "" : " not"); | ||
3357 | |||
3358 | h->cmd_pool_bits = | ||
3359 | kmalloc(((h->nr_cmds + BITS_PER_LONG - | ||
3360 | 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL); | ||
3361 | h->cmd_pool = pci_alloc_consistent(h->pdev, | ||
3362 | h->nr_cmds * sizeof(*h->cmd_pool), | ||
3363 | &(h->cmd_pool_dhandle)); | ||
3364 | h->errinfo_pool = pci_alloc_consistent(h->pdev, | ||
3365 | h->nr_cmds * sizeof(*h->errinfo_pool), | ||
3366 | &(h->errinfo_pool_dhandle)); | ||
3367 | if ((h->cmd_pool_bits == NULL) | ||
3368 | || (h->cmd_pool == NULL) | ||
3369 | || (h->errinfo_pool == NULL)) { | ||
3370 | dev_err(&pdev->dev, "out of memory"); | ||
3371 | goto clean4; | ||
3372 | } | ||
3373 | spin_lock_init(&h->lock); | ||
3374 | |||
3375 | pci_set_drvdata(pdev, h); | ||
3376 | memset(h->cmd_pool_bits, 0, | ||
3377 | ((h->nr_cmds + BITS_PER_LONG - | ||
3378 | 1) / BITS_PER_LONG) * sizeof(unsigned long)); | ||
3379 | |||
3380 | hpsa_scsi_setup(h); | ||
3381 | |||
3382 | /* Turn the interrupts on so we can service requests */ | ||
3383 | h->access.set_intr_mask(h, HPSA_INTR_ON); | ||
3384 | |||
3385 | hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */ | ||
3386 | h->busy_initializing = 0; | ||
3387 | return 1; | ||
3388 | |||
3389 | clean4: | ||
3390 | kfree(h->cmd_pool_bits); | ||
3391 | if (h->cmd_pool) | ||
3392 | pci_free_consistent(h->pdev, | ||
3393 | h->nr_cmds * sizeof(struct CommandList), | ||
3394 | h->cmd_pool, h->cmd_pool_dhandle); | ||
3395 | if (h->errinfo_pool) | ||
3396 | pci_free_consistent(h->pdev, | ||
3397 | h->nr_cmds * sizeof(struct ErrorInfo), | ||
3398 | h->errinfo_pool, | ||
3399 | h->errinfo_pool_dhandle); | ||
3400 | free_irq(h->intr[SIMPLE_MODE_INT], h); | ||
3401 | clean2: | ||
3402 | clean1: | ||
3403 | h->busy_initializing = 0; | ||
3404 | kfree(h); | ||
3405 | return -1; | ||
3406 | } | ||
3407 | |||
3408 | static void hpsa_flush_cache(struct ctlr_info *h) | ||
3409 | { | ||
3410 | char *flush_buf; | ||
3411 | struct CommandList *c; | ||
3412 | |||
3413 | flush_buf = kzalloc(4, GFP_KERNEL); | ||
3414 | if (!flush_buf) | ||
3415 | return; | ||
3416 | |||
3417 | c = cmd_special_alloc(h); | ||
3418 | if (!c) { | ||
3419 | dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | ||
3420 | goto out_of_memory; | ||
3421 | } | ||
3422 | fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, | ||
3423 | RAID_CTLR_LUNID, TYPE_CMD); | ||
3424 | hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE); | ||
3425 | if (c->err_info->CommandStatus != 0) | ||
3426 | dev_warn(&h->pdev->dev, | ||
3427 | "error flushing cache on controller\n"); | ||
3428 | cmd_special_free(h, c); | ||
3429 | out_of_memory: | ||
3430 | kfree(flush_buf); | ||
3431 | } | ||
3432 | |||
3433 | static void hpsa_shutdown(struct pci_dev *pdev) | ||
3434 | { | ||
3435 | struct ctlr_info *h; | ||
3436 | |||
3437 | h = pci_get_drvdata(pdev); | ||
3438 | /* Turn board interrupts off and send the flush cache command | ||
3439 | * sendcmd will turn off interrupt, and send the flush... | ||
3440 | * To write all data in the battery backed cache to disks | ||
3441 | */ | ||
3442 | hpsa_flush_cache(h); | ||
3443 | h->access.set_intr_mask(h, HPSA_INTR_OFF); | ||
3444 | free_irq(h->intr[2], h); | ||
3445 | #ifdef CONFIG_PCI_MSI | ||
3446 | if (h->msix_vector) | ||
3447 | pci_disable_msix(h->pdev); | ||
3448 | else if (h->msi_vector) | ||
3449 | pci_disable_msi(h->pdev); | ||
3450 | #endif /* CONFIG_PCI_MSI */ | ||
3451 | } | ||
3452 | |||
3453 | static void __devexit hpsa_remove_one(struct pci_dev *pdev) | ||
3454 | { | ||
3455 | struct ctlr_info *h; | ||
3456 | |||
3457 | if (pci_get_drvdata(pdev) == NULL) { | ||
3458 | dev_err(&pdev->dev, "unable to remove device \n"); | ||
3459 | return; | ||
3460 | } | ||
3461 | h = pci_get_drvdata(pdev); | ||
3462 | mutex_lock(&h->busy_shutting_down); | ||
3463 | remove_from_scan_list(h); | ||
3464 | hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */ | ||
3465 | hpsa_shutdown(pdev); | ||
3466 | iounmap(h->vaddr); | ||
3467 | pci_free_consistent(h->pdev, | ||
3468 | h->nr_cmds * sizeof(struct CommandList), | ||
3469 | h->cmd_pool, h->cmd_pool_dhandle); | ||
3470 | pci_free_consistent(h->pdev, | ||
3471 | h->nr_cmds * sizeof(struct ErrorInfo), | ||
3472 | h->errinfo_pool, h->errinfo_pool_dhandle); | ||
3473 | kfree(h->cmd_pool_bits); | ||
3474 | /* | ||
3475 | * Deliberately omit pci_disable_device(): it does something nasty to | ||
3476 | * Smart Array controllers that pci_enable_device does not undo | ||
3477 | */ | ||
3478 | pci_release_regions(pdev); | ||
3479 | pci_set_drvdata(pdev, NULL); | ||
3480 | mutex_unlock(&h->busy_shutting_down); | ||
3481 | kfree(h); | ||
3482 | } | ||
3483 | |||
3484 | static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, | ||
3485 | __attribute__((unused)) pm_message_t state) | ||
3486 | { | ||
3487 | return -ENOSYS; | ||
3488 | } | ||
3489 | |||
3490 | static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) | ||
3491 | { | ||
3492 | return -ENOSYS; | ||
3493 | } | ||
3494 | |||
3495 | static struct pci_driver hpsa_pci_driver = { | ||
3496 | .name = "hpsa", | ||
3497 | .probe = hpsa_init_one, | ||
3498 | .remove = __devexit_p(hpsa_remove_one), | ||
3499 | .id_table = hpsa_pci_device_id, /* id_table */ | ||
3500 | .shutdown = hpsa_shutdown, | ||
3501 | .suspend = hpsa_suspend, | ||
3502 | .resume = hpsa_resume, | ||
3503 | }; | ||
3504 | |||
3505 | /* | ||
3506 | * This is it. Register the PCI driver information for the cards we control | ||
3507 | * the OS will call our registered routines when it finds one of our cards. | ||
3508 | */ | ||
3509 | static int __init hpsa_init(void) | ||
3510 | { | ||
3511 | int err; | ||
3512 | /* Start the scan thread */ | ||
3513 | hpsa_scan_thread = kthread_run(hpsa_scan_func, NULL, "hpsa_scan"); | ||
3514 | if (IS_ERR(hpsa_scan_thread)) { | ||
3515 | err = PTR_ERR(hpsa_scan_thread); | ||
3516 | return -ENODEV; | ||
3517 | } | ||
3518 | err = pci_register_driver(&hpsa_pci_driver); | ||
3519 | if (err) | ||
3520 | kthread_stop(hpsa_scan_thread); | ||
3521 | return err; | ||
3522 | } | ||
3523 | |||
3524 | static void __exit hpsa_cleanup(void) | ||
3525 | { | ||
3526 | pci_unregister_driver(&hpsa_pci_driver); | ||
3527 | kthread_stop(hpsa_scan_thread); | ||
3528 | } | ||
3529 | |||
3530 | module_init(hpsa_init); | ||
3531 | module_exit(hpsa_cleanup); | ||