diff options
Diffstat (limited to 'drivers/scsi/cyberstorm.c')
-rw-r--r-- | drivers/scsi/cyberstorm.c | 377 |
1 files changed, 377 insertions, 0 deletions
diff --git a/drivers/scsi/cyberstorm.c b/drivers/scsi/cyberstorm.c new file mode 100644 index 000000000000..bdbca85d1675 --- /dev/null +++ b/drivers/scsi/cyberstorm.c | |||
@@ -0,0 +1,377 @@ | |||
1 | /* cyberstorm.c: Driver for CyberStorm SCSI Controller. | ||
2 | * | ||
3 | * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) | ||
4 | * | ||
5 | * The CyberStorm SCSI driver is based on David S. Miller's ESP driver | ||
6 | * for the Sparc computers. | ||
7 | * | ||
8 | * This work was made possible by Phase5 who willingly (and most generously) | ||
9 | * supported me with hardware and all the information I needed. | ||
10 | */ | ||
11 | |||
12 | /* TODO: | ||
13 | * | ||
14 | * 1) Figure out how to make a cleaner merge with the sparc driver with regard | ||
15 | * to the caches and the Sparc MMU mapping. | ||
16 | * 2) Make as few routines required outside the generic driver. A lot of the | ||
17 | * routines in this file used to be inline! | ||
18 | */ | ||
19 | |||
20 | #include <linux/module.h> | ||
21 | |||
22 | #include <linux/init.h> | ||
23 | #include <linux/kernel.h> | ||
24 | #include <linux/delay.h> | ||
25 | #include <linux/types.h> | ||
26 | #include <linux/string.h> | ||
27 | #include <linux/slab.h> | ||
28 | #include <linux/blkdev.h> | ||
29 | #include <linux/proc_fs.h> | ||
30 | #include <linux/stat.h> | ||
31 | #include <linux/interrupt.h> | ||
32 | |||
33 | #include "scsi.h" | ||
34 | #include <scsi/scsi_host.h> | ||
35 | #include "NCR53C9x.h" | ||
36 | |||
37 | #include <linux/zorro.h> | ||
38 | #include <asm/irq.h> | ||
39 | #include <asm/amigaints.h> | ||
40 | #include <asm/amigahw.h> | ||
41 | |||
42 | #include <asm/pgtable.h> | ||
43 | |||
44 | /* The controller registers can be found in the Z2 config area at these | ||
45 | * offsets: | ||
46 | */ | ||
47 | #define CYBER_ESP_ADDR 0xf400 | ||
48 | #define CYBER_DMA_ADDR 0xf800 | ||
49 | |||
50 | |||
51 | /* The CyberStorm DMA interface */ | ||
52 | struct cyber_dma_registers { | ||
53 | volatile unsigned char dma_addr0; /* DMA address (MSB) [0x000] */ | ||
54 | unsigned char dmapad1[1]; | ||
55 | volatile unsigned char dma_addr1; /* DMA address [0x002] */ | ||
56 | unsigned char dmapad2[1]; | ||
57 | volatile unsigned char dma_addr2; /* DMA address [0x004] */ | ||
58 | unsigned char dmapad3[1]; | ||
59 | volatile unsigned char dma_addr3; /* DMA address (LSB) [0x006] */ | ||
60 | unsigned char dmapad4[0x3fb]; | ||
61 | volatile unsigned char cond_reg; /* DMA cond (ro) [0x402] */ | ||
62 | #define ctrl_reg cond_reg /* DMA control (wo) [0x402] */ | ||
63 | }; | ||
64 | |||
65 | /* DMA control bits */ | ||
66 | #define CYBER_DMA_LED 0x80 /* HD led control 1 = on */ | ||
67 | #define CYBER_DMA_WRITE 0x40 /* DMA direction. 1 = write */ | ||
68 | #define CYBER_DMA_Z3 0x20 /* 16 (Z2) or 32 (CHIP/Z3) bit DMA transfer */ | ||
69 | |||
70 | /* DMA status bits */ | ||
71 | #define CYBER_DMA_HNDL_INTR 0x80 /* DMA IRQ pending? */ | ||
72 | |||
73 | /* The bits below appears to be Phase5 Debug bits only; they were not | ||
74 | * described by Phase5 so using them may seem a bit stupid... | ||
75 | */ | ||
76 | #define CYBER_HOST_ID 0x02 /* If set, host ID should be 7, otherwise | ||
77 | * it should be 6. | ||
78 | */ | ||
79 | #define CYBER_SLOW_CABLE 0x08 /* If *not* set, assume SLOW_CABLE */ | ||
80 | |||
81 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); | ||
82 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); | ||
83 | static void dma_dump_state(struct NCR_ESP *esp); | ||
84 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); | ||
85 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); | ||
86 | static void dma_ints_off(struct NCR_ESP *esp); | ||
87 | static void dma_ints_on(struct NCR_ESP *esp); | ||
88 | static int dma_irq_p(struct NCR_ESP *esp); | ||
89 | static void dma_led_off(struct NCR_ESP *esp); | ||
90 | static void dma_led_on(struct NCR_ESP *esp); | ||
91 | static int dma_ports_p(struct NCR_ESP *esp); | ||
92 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); | ||
93 | |||
94 | static unsigned char ctrl_data = 0; /* Keep backup of the stuff written | ||
95 | * to ctrl_reg. Always write a copy | ||
96 | * to this register when writing to | ||
97 | * the hardware register! | ||
98 | */ | ||
99 | |||
100 | static volatile unsigned char cmd_buffer[16]; | ||
101 | /* This is where all commands are put | ||
102 | * before they are transferred to the ESP chip | ||
103 | * via PIO. | ||
104 | */ | ||
105 | |||
106 | /***************************************************************** Detection */ | ||
107 | int __init cyber_esp_detect(Scsi_Host_Template *tpnt) | ||
108 | { | ||
109 | struct NCR_ESP *esp; | ||
110 | struct zorro_dev *z = NULL; | ||
111 | unsigned long address; | ||
112 | |||
113 | while ((z = zorro_find_device(ZORRO_WILDCARD, z))) { | ||
114 | unsigned long board = z->resource.start; | ||
115 | if ((z->id == ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM || | ||
116 | z->id == ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060) && | ||
117 | request_mem_region(board+CYBER_ESP_ADDR, | ||
118 | sizeof(struct ESP_regs), "NCR53C9x")) { | ||
119 | /* Figure out if this is a CyberStorm or really a | ||
120 | * Fastlane/Blizzard Mk II by looking at the board size. | ||
121 | * CyberStorm maps 64kB | ||
122 | * (ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM does anyway) | ||
123 | */ | ||
124 | if(z->resource.end-board != 0xffff) { | ||
125 | release_mem_region(board+CYBER_ESP_ADDR, | ||
126 | sizeof(struct ESP_regs)); | ||
127 | return 0; | ||
128 | } | ||
129 | esp = esp_allocate(tpnt, (void *)board+CYBER_ESP_ADDR); | ||
130 | |||
131 | /* Do command transfer with programmed I/O */ | ||
132 | esp->do_pio_cmds = 1; | ||
133 | |||
134 | /* Required functions */ | ||
135 | esp->dma_bytes_sent = &dma_bytes_sent; | ||
136 | esp->dma_can_transfer = &dma_can_transfer; | ||
137 | esp->dma_dump_state = &dma_dump_state; | ||
138 | esp->dma_init_read = &dma_init_read; | ||
139 | esp->dma_init_write = &dma_init_write; | ||
140 | esp->dma_ints_off = &dma_ints_off; | ||
141 | esp->dma_ints_on = &dma_ints_on; | ||
142 | esp->dma_irq_p = &dma_irq_p; | ||
143 | esp->dma_ports_p = &dma_ports_p; | ||
144 | esp->dma_setup = &dma_setup; | ||
145 | |||
146 | /* Optional functions */ | ||
147 | esp->dma_barrier = 0; | ||
148 | esp->dma_drain = 0; | ||
149 | esp->dma_invalidate = 0; | ||
150 | esp->dma_irq_entry = 0; | ||
151 | esp->dma_irq_exit = 0; | ||
152 | esp->dma_led_on = &dma_led_on; | ||
153 | esp->dma_led_off = &dma_led_off; | ||
154 | esp->dma_poll = 0; | ||
155 | esp->dma_reset = 0; | ||
156 | |||
157 | /* SCSI chip speed */ | ||
158 | esp->cfreq = 40000000; | ||
159 | |||
160 | /* The DMA registers on the CyberStorm are mapped | ||
161 | * relative to the device (i.e. in the same Zorro | ||
162 | * I/O block). | ||
163 | */ | ||
164 | address = (unsigned long)ZTWO_VADDR(board); | ||
165 | esp->dregs = (void *)(address + CYBER_DMA_ADDR); | ||
166 | |||
167 | /* ESP register base */ | ||
168 | esp->eregs = (struct ESP_regs *)(address + CYBER_ESP_ADDR); | ||
169 | |||
170 | /* Set the command buffer */ | ||
171 | esp->esp_command = cmd_buffer; | ||
172 | esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); | ||
173 | |||
174 | esp->irq = IRQ_AMIGA_PORTS; | ||
175 | request_irq(IRQ_AMIGA_PORTS, esp_intr, SA_SHIRQ, | ||
176 | "CyberStorm SCSI", esp->ehost); | ||
177 | /* Figure out our scsi ID on the bus */ | ||
178 | /* The DMA cond flag contains a hardcoded jumper bit | ||
179 | * which can be used to select host number 6 or 7. | ||
180 | * However, even though it may change, we use a hardcoded | ||
181 | * value of 7. | ||
182 | */ | ||
183 | esp->scsi_id = 7; | ||
184 | |||
185 | /* We don't have a differential SCSI-bus. */ | ||
186 | esp->diff = 0; | ||
187 | |||
188 | esp_initialize(esp); | ||
189 | |||
190 | printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); | ||
191 | esps_running = esps_in_use; | ||
192 | return esps_in_use; | ||
193 | } | ||
194 | } | ||
195 | return 0; | ||
196 | } | ||
197 | |||
198 | /************************************************************* DMA Functions */ | ||
199 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) | ||
200 | { | ||
201 | /* Since the CyberStorm DMA is fully dedicated to the ESP chip, | ||
202 | * the number of bytes sent (to the ESP chip) equals the number | ||
203 | * of bytes in the FIFO - there is no buffering in the DMA controller. | ||
204 | * XXXX Do I read this right? It is from host to ESP, right? | ||
205 | */ | ||
206 | return fifo_count; | ||
207 | } | ||
208 | |||
209 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) | ||
210 | { | ||
211 | /* I don't think there's any limit on the CyberDMA. So we use what | ||
212 | * the ESP chip can handle (24 bit). | ||
213 | */ | ||
214 | unsigned long sz = sp->SCp.this_residual; | ||
215 | if(sz > 0x1000000) | ||
216 | sz = 0x1000000; | ||
217 | return sz; | ||
218 | } | ||
219 | |||
220 | static void dma_dump_state(struct NCR_ESP *esp) | ||
221 | { | ||
222 | ESPLOG(("esp%d: dma -- cond_reg<%02x>\n", | ||
223 | esp->esp_id, ((struct cyber_dma_registers *) | ||
224 | (esp->dregs))->cond_reg)); | ||
225 | ESPLOG(("intreq:<%04x>, intena:<%04x>\n", | ||
226 | custom.intreqr, custom.intenar)); | ||
227 | } | ||
228 | |||
229 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) | ||
230 | { | ||
231 | struct cyber_dma_registers *dregs = | ||
232 | (struct cyber_dma_registers *) esp->dregs; | ||
233 | |||
234 | cache_clear(addr, length); | ||
235 | |||
236 | addr &= ~(1); | ||
237 | dregs->dma_addr0 = (addr >> 24) & 0xff; | ||
238 | dregs->dma_addr1 = (addr >> 16) & 0xff; | ||
239 | dregs->dma_addr2 = (addr >> 8) & 0xff; | ||
240 | dregs->dma_addr3 = (addr ) & 0xff; | ||
241 | ctrl_data &= ~(CYBER_DMA_WRITE); | ||
242 | |||
243 | /* Check if physical address is outside Z2 space and of | ||
244 | * block length/block aligned in memory. If this is the | ||
245 | * case, enable 32 bit transfer. In all other cases, fall back | ||
246 | * to 16 bit transfer. | ||
247 | * Obviously 32 bit transfer should be enabled if the DMA address | ||
248 | * and length are 32 bit aligned. However, this leads to some | ||
249 | * strange behavior. Even 64 bit aligned addr/length fails. | ||
250 | * Until I've found a reason for this, 32 bit transfer is only | ||
251 | * used for full-block transfers (1kB). | ||
252 | * -jskov | ||
253 | */ | ||
254 | #if 0 | ||
255 | if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) && | ||
256 | (addr < 0xff0000))) | ||
257 | ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ | ||
258 | else | ||
259 | ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */ | ||
260 | #else | ||
261 | ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ | ||
262 | #endif | ||
263 | dregs->ctrl_reg = ctrl_data; | ||
264 | } | ||
265 | |||
266 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) | ||
267 | { | ||
268 | struct cyber_dma_registers *dregs = | ||
269 | (struct cyber_dma_registers *) esp->dregs; | ||
270 | |||
271 | cache_push(addr, length); | ||
272 | |||
273 | addr |= 1; | ||
274 | dregs->dma_addr0 = (addr >> 24) & 0xff; | ||
275 | dregs->dma_addr1 = (addr >> 16) & 0xff; | ||
276 | dregs->dma_addr2 = (addr >> 8) & 0xff; | ||
277 | dregs->dma_addr3 = (addr ) & 0xff; | ||
278 | ctrl_data |= CYBER_DMA_WRITE; | ||
279 | |||
280 | /* See comment above */ | ||
281 | #if 0 | ||
282 | if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) && | ||
283 | (addr < 0xff0000))) | ||
284 | ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ | ||
285 | else | ||
286 | ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */ | ||
287 | #else | ||
288 | ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */ | ||
289 | #endif | ||
290 | dregs->ctrl_reg = ctrl_data; | ||
291 | } | ||
292 | |||
293 | static void dma_ints_off(struct NCR_ESP *esp) | ||
294 | { | ||
295 | disable_irq(esp->irq); | ||
296 | } | ||
297 | |||
298 | static void dma_ints_on(struct NCR_ESP *esp) | ||
299 | { | ||
300 | enable_irq(esp->irq); | ||
301 | } | ||
302 | |||
303 | static int dma_irq_p(struct NCR_ESP *esp) | ||
304 | { | ||
305 | /* It's important to check the DMA IRQ bit in the correct way! */ | ||
306 | return ((esp_read(esp->eregs->esp_status) & ESP_STAT_INTR) && | ||
307 | ((((struct cyber_dma_registers *)(esp->dregs))->cond_reg) & | ||
308 | CYBER_DMA_HNDL_INTR)); | ||
309 | } | ||
310 | |||
311 | static void dma_led_off(struct NCR_ESP *esp) | ||
312 | { | ||
313 | ctrl_data &= ~CYBER_DMA_LED; | ||
314 | ((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data; | ||
315 | } | ||
316 | |||
317 | static void dma_led_on(struct NCR_ESP *esp) | ||
318 | { | ||
319 | ctrl_data |= CYBER_DMA_LED; | ||
320 | ((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data; | ||
321 | } | ||
322 | |||
323 | static int dma_ports_p(struct NCR_ESP *esp) | ||
324 | { | ||
325 | return ((custom.intenar) & IF_PORTS); | ||
326 | } | ||
327 | |||
328 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) | ||
329 | { | ||
330 | /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" | ||
331 | * so when (write) is true, it actually means READ! | ||
332 | */ | ||
333 | if(write){ | ||
334 | dma_init_read(esp, addr, count); | ||
335 | } else { | ||
336 | dma_init_write(esp, addr, count); | ||
337 | } | ||
338 | } | ||
339 | |||
340 | #define HOSTS_C | ||
341 | |||
342 | int cyber_esp_release(struct Scsi_Host *instance) | ||
343 | { | ||
344 | #ifdef MODULE | ||
345 | unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; | ||
346 | |||
347 | esp_deallocate((struct NCR_ESP *)instance->hostdata); | ||
348 | esp_release(); | ||
349 | release_mem_region(address, sizeof(struct ESP_regs)); | ||
350 | free_irq(IRQ_AMIGA_PORTS, esp_intr); | ||
351 | #endif | ||
352 | return 1; | ||
353 | } | ||
354 | |||
355 | |||
356 | static Scsi_Host_Template driver_template = { | ||
357 | .proc_name = "esp-cyberstorm", | ||
358 | .proc_info = esp_proc_info, | ||
359 | .name = "CyberStorm SCSI", | ||
360 | .detect = cyber_esp_detect, | ||
361 | .slave_alloc = esp_slave_alloc, | ||
362 | .slave_destroy = esp_slave_destroy, | ||
363 | .release = cyber_esp_release, | ||
364 | .queuecommand = esp_queue, | ||
365 | .eh_abort_handler = esp_abort, | ||
366 | .eh_bus_reset_handler = esp_reset, | ||
367 | .can_queue = 7, | ||
368 | .this_id = 7, | ||
369 | .sg_tablesize = SG_ALL, | ||
370 | .cmd_per_lun = 1, | ||
371 | .use_clustering = ENABLE_CLUSTERING | ||
372 | }; | ||
373 | |||
374 | |||
375 | #include "scsi_module.c" | ||
376 | |||
377 | MODULE_LICENSE("GPL"); | ||