diff options
Diffstat (limited to 'drivers/scsi/blz2060.c')
-rw-r--r-- | drivers/scsi/blz2060.c | 306 |
1 files changed, 0 insertions, 306 deletions
diff --git a/drivers/scsi/blz2060.c b/drivers/scsi/blz2060.c deleted file mode 100644 index b6203ec00961..000000000000 --- a/drivers/scsi/blz2060.c +++ /dev/null | |||
@@ -1,306 +0,0 @@ | |||
1 | /* blz2060.c: Driver for Blizzard 2060 SCSI Controller. | ||
2 | * | ||
3 | * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) | ||
4 | * | ||
5 | * This driver is based on the CyberStorm driver, hence the occasional | ||
6 | * reference to CyberStorm. | ||
7 | */ | ||
8 | |||
9 | /* TODO: | ||
10 | * | ||
11 | * 1) Figure out how to make a cleaner merge with the sparc driver with regard | ||
12 | * to the caches and the Sparc MMU mapping. | ||
13 | * 2) Make as few routines required outside the generic driver. A lot of the | ||
14 | * routines in this file used to be inline! | ||
15 | */ | ||
16 | |||
17 | #include <linux/module.h> | ||
18 | |||
19 | #include <linux/init.h> | ||
20 | #include <linux/kernel.h> | ||
21 | #include <linux/delay.h> | ||
22 | #include <linux/types.h> | ||
23 | #include <linux/string.h> | ||
24 | #include <linux/slab.h> | ||
25 | #include <linux/blkdev.h> | ||
26 | #include <linux/proc_fs.h> | ||
27 | #include <linux/stat.h> | ||
28 | #include <linux/interrupt.h> | ||
29 | |||
30 | #include "scsi.h" | ||
31 | #include <scsi/scsi_host.h> | ||
32 | #include "NCR53C9x.h" | ||
33 | |||
34 | #include <linux/zorro.h> | ||
35 | #include <asm/irq.h> | ||
36 | #include <asm/amigaints.h> | ||
37 | #include <asm/amigahw.h> | ||
38 | |||
39 | #include <asm/pgtable.h> | ||
40 | |||
41 | /* The controller registers can be found in the Z2 config area at these | ||
42 | * offsets: | ||
43 | */ | ||
44 | #define BLZ2060_ESP_ADDR 0x1ff00 | ||
45 | #define BLZ2060_DMA_ADDR 0x1ffe0 | ||
46 | |||
47 | |||
48 | /* The Blizzard 2060 DMA interface | ||
49 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
50 | * Only two things can be programmed in the Blizzard DMA: | ||
51 | * 1) The data direction is controlled by the status of bit 31 (1 = write) | ||
52 | * 2) The source/dest address (word aligned, shifted one right) in bits 30-0 | ||
53 | * | ||
54 | * Figure out interrupt status by reading the ESP status byte. | ||
55 | */ | ||
56 | struct blz2060_dma_registers { | ||
57 | volatile unsigned char dma_led_ctrl; /* DMA led control [0x000] */ | ||
58 | unsigned char dmapad1[0x0f]; | ||
59 | volatile unsigned char dma_addr0; /* DMA address (MSB) [0x010] */ | ||
60 | unsigned char dmapad2[0x03]; | ||
61 | volatile unsigned char dma_addr1; /* DMA address [0x014] */ | ||
62 | unsigned char dmapad3[0x03]; | ||
63 | volatile unsigned char dma_addr2; /* DMA address [0x018] */ | ||
64 | unsigned char dmapad4[0x03]; | ||
65 | volatile unsigned char dma_addr3; /* DMA address (LSB) [0x01c] */ | ||
66 | }; | ||
67 | |||
68 | #define BLZ2060_DMA_WRITE 0x80000000 | ||
69 | |||
70 | /* DMA control bits */ | ||
71 | #define BLZ2060_DMA_LED 0x02 /* HD led control 1 = off */ | ||
72 | |||
73 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); | ||
74 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); | ||
75 | static void dma_dump_state(struct NCR_ESP *esp); | ||
76 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); | ||
77 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); | ||
78 | static void dma_ints_off(struct NCR_ESP *esp); | ||
79 | static void dma_ints_on(struct NCR_ESP *esp); | ||
80 | static int dma_irq_p(struct NCR_ESP *esp); | ||
81 | static void dma_led_off(struct NCR_ESP *esp); | ||
82 | static void dma_led_on(struct NCR_ESP *esp); | ||
83 | static int dma_ports_p(struct NCR_ESP *esp); | ||
84 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); | ||
85 | |||
86 | static volatile unsigned char cmd_buffer[16]; | ||
87 | /* This is where all commands are put | ||
88 | * before they are transferred to the ESP chip | ||
89 | * via PIO. | ||
90 | */ | ||
91 | |||
92 | /***************************************************************** Detection */ | ||
93 | int __init blz2060_esp_detect(struct scsi_host_template *tpnt) | ||
94 | { | ||
95 | struct NCR_ESP *esp; | ||
96 | struct zorro_dev *z = NULL; | ||
97 | unsigned long address; | ||
98 | |||
99 | if ((z = zorro_find_device(ZORRO_PROD_PHASE5_BLIZZARD_2060, z))) { | ||
100 | unsigned long board = z->resource.start; | ||
101 | if (request_mem_region(board+BLZ2060_ESP_ADDR, | ||
102 | sizeof(struct ESP_regs), "NCR53C9x")) { | ||
103 | esp = esp_allocate(tpnt, (void *)board + BLZ2060_ESP_ADDR, 0); | ||
104 | |||
105 | /* Do command transfer with programmed I/O */ | ||
106 | esp->do_pio_cmds = 1; | ||
107 | |||
108 | /* Required functions */ | ||
109 | esp->dma_bytes_sent = &dma_bytes_sent; | ||
110 | esp->dma_can_transfer = &dma_can_transfer; | ||
111 | esp->dma_dump_state = &dma_dump_state; | ||
112 | esp->dma_init_read = &dma_init_read; | ||
113 | esp->dma_init_write = &dma_init_write; | ||
114 | esp->dma_ints_off = &dma_ints_off; | ||
115 | esp->dma_ints_on = &dma_ints_on; | ||
116 | esp->dma_irq_p = &dma_irq_p; | ||
117 | esp->dma_ports_p = &dma_ports_p; | ||
118 | esp->dma_setup = &dma_setup; | ||
119 | |||
120 | /* Optional functions */ | ||
121 | esp->dma_barrier = 0; | ||
122 | esp->dma_drain = 0; | ||
123 | esp->dma_invalidate = 0; | ||
124 | esp->dma_irq_entry = 0; | ||
125 | esp->dma_irq_exit = 0; | ||
126 | esp->dma_led_on = &dma_led_on; | ||
127 | esp->dma_led_off = &dma_led_off; | ||
128 | esp->dma_poll = 0; | ||
129 | esp->dma_reset = 0; | ||
130 | |||
131 | /* SCSI chip speed */ | ||
132 | esp->cfreq = 40000000; | ||
133 | |||
134 | /* The DMA registers on the Blizzard are mapped | ||
135 | * relative to the device (i.e. in the same Zorro | ||
136 | * I/O block). | ||
137 | */ | ||
138 | address = (unsigned long)ZTWO_VADDR(board); | ||
139 | esp->dregs = (void *)(address + BLZ2060_DMA_ADDR); | ||
140 | |||
141 | /* ESP register base */ | ||
142 | esp->eregs = (struct ESP_regs *)(address + BLZ2060_ESP_ADDR); | ||
143 | |||
144 | /* Set the command buffer */ | ||
145 | esp->esp_command = cmd_buffer; | ||
146 | esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); | ||
147 | |||
148 | esp->irq = IRQ_AMIGA_PORTS; | ||
149 | request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED, | ||
150 | "Blizzard 2060 SCSI", esp->ehost); | ||
151 | |||
152 | /* Figure out our scsi ID on the bus */ | ||
153 | esp->scsi_id = 7; | ||
154 | |||
155 | /* We don't have a differential SCSI-bus. */ | ||
156 | esp->diff = 0; | ||
157 | |||
158 | esp_initialize(esp); | ||
159 | |||
160 | printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); | ||
161 | esps_running = esps_in_use; | ||
162 | return esps_in_use; | ||
163 | } | ||
164 | } | ||
165 | return 0; | ||
166 | } | ||
167 | |||
168 | /************************************************************* DMA Functions */ | ||
169 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) | ||
170 | { | ||
171 | /* Since the Blizzard DMA is fully dedicated to the ESP chip, | ||
172 | * the number of bytes sent (to the ESP chip) equals the number | ||
173 | * of bytes in the FIFO - there is no buffering in the DMA controller. | ||
174 | * XXXX Do I read this right? It is from host to ESP, right? | ||
175 | */ | ||
176 | return fifo_count; | ||
177 | } | ||
178 | |||
179 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) | ||
180 | { | ||
181 | /* I don't think there's any limit on the Blizzard DMA. So we use what | ||
182 | * the ESP chip can handle (24 bit). | ||
183 | */ | ||
184 | unsigned long sz = sp->SCp.this_residual; | ||
185 | if(sz > 0x1000000) | ||
186 | sz = 0x1000000; | ||
187 | return sz; | ||
188 | } | ||
189 | |||
190 | static void dma_dump_state(struct NCR_ESP *esp) | ||
191 | { | ||
192 | ESPLOG(("intreq:<%04x>, intena:<%04x>\n", | ||
193 | amiga_custom.intreqr, amiga_custom.intenar)); | ||
194 | } | ||
195 | |||
196 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) | ||
197 | { | ||
198 | struct blz2060_dma_registers *dregs = | ||
199 | (struct blz2060_dma_registers *) (esp->dregs); | ||
200 | |||
201 | cache_clear(addr, length); | ||
202 | |||
203 | addr >>= 1; | ||
204 | addr &= ~(BLZ2060_DMA_WRITE); | ||
205 | dregs->dma_addr3 = (addr ) & 0xff; | ||
206 | dregs->dma_addr2 = (addr >> 8) & 0xff; | ||
207 | dregs->dma_addr1 = (addr >> 16) & 0xff; | ||
208 | dregs->dma_addr0 = (addr >> 24) & 0xff; | ||
209 | } | ||
210 | |||
211 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) | ||
212 | { | ||
213 | struct blz2060_dma_registers *dregs = | ||
214 | (struct blz2060_dma_registers *) (esp->dregs); | ||
215 | |||
216 | cache_push(addr, length); | ||
217 | |||
218 | addr >>= 1; | ||
219 | addr |= BLZ2060_DMA_WRITE; | ||
220 | dregs->dma_addr3 = (addr ) & 0xff; | ||
221 | dregs->dma_addr2 = (addr >> 8) & 0xff; | ||
222 | dregs->dma_addr1 = (addr >> 16) & 0xff; | ||
223 | dregs->dma_addr0 = (addr >> 24) & 0xff; | ||
224 | } | ||
225 | |||
226 | static void dma_ints_off(struct NCR_ESP *esp) | ||
227 | { | ||
228 | disable_irq(esp->irq); | ||
229 | } | ||
230 | |||
231 | static void dma_ints_on(struct NCR_ESP *esp) | ||
232 | { | ||
233 | enable_irq(esp->irq); | ||
234 | } | ||
235 | |||
236 | static int dma_irq_p(struct NCR_ESP *esp) | ||
237 | { | ||
238 | return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR); | ||
239 | } | ||
240 | |||
241 | static void dma_led_off(struct NCR_ESP *esp) | ||
242 | { | ||
243 | ((struct blz2060_dma_registers *) (esp->dregs))->dma_led_ctrl = | ||
244 | BLZ2060_DMA_LED; | ||
245 | } | ||
246 | |||
247 | static void dma_led_on(struct NCR_ESP *esp) | ||
248 | { | ||
249 | ((struct blz2060_dma_registers *) (esp->dregs))->dma_led_ctrl = 0; | ||
250 | } | ||
251 | |||
252 | static int dma_ports_p(struct NCR_ESP *esp) | ||
253 | { | ||
254 | return ((amiga_custom.intenar) & IF_PORTS); | ||
255 | } | ||
256 | |||
257 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) | ||
258 | { | ||
259 | /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" | ||
260 | * so when (write) is true, it actually means READ! | ||
261 | */ | ||
262 | if(write){ | ||
263 | dma_init_read(esp, addr, count); | ||
264 | } else { | ||
265 | dma_init_write(esp, addr, count); | ||
266 | } | ||
267 | } | ||
268 | |||
269 | #define HOSTS_C | ||
270 | |||
271 | int blz2060_esp_release(struct Scsi_Host *instance) | ||
272 | { | ||
273 | #ifdef MODULE | ||
274 | unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; | ||
275 | |||
276 | esp_deallocate((struct NCR_ESP *)instance->hostdata); | ||
277 | esp_release(); | ||
278 | release_mem_region(address, sizeof(struct ESP_regs)); | ||
279 | free_irq(IRQ_AMIGA_PORTS, esp_intr); | ||
280 | #endif | ||
281 | return 1; | ||
282 | } | ||
283 | |||
284 | |||
285 | static struct scsi_host_template driver_template = { | ||
286 | .proc_name = "esp-blz2060", | ||
287 | .proc_info = esp_proc_info, | ||
288 | .name = "Blizzard2060 SCSI", | ||
289 | .detect = blz2060_esp_detect, | ||
290 | .slave_alloc = esp_slave_alloc, | ||
291 | .slave_destroy = esp_slave_destroy, | ||
292 | .release = blz2060_esp_release, | ||
293 | .queuecommand = esp_queue, | ||
294 | .eh_abort_handler = esp_abort, | ||
295 | .eh_bus_reset_handler = esp_reset, | ||
296 | .can_queue = 7, | ||
297 | .this_id = 7, | ||
298 | .sg_tablesize = SG_ALL, | ||
299 | .cmd_per_lun = 1, | ||
300 | .use_clustering = ENABLE_CLUSTERING | ||
301 | }; | ||
302 | |||
303 | |||
304 | #include "scsi_module.c" | ||
305 | |||
306 | MODULE_LICENSE("GPL"); | ||