aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/scsi/blz1230.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/scsi/blz1230.c')
-rw-r--r--drivers/scsi/blz1230.c353
1 files changed, 0 insertions, 353 deletions
diff --git a/drivers/scsi/blz1230.c b/drivers/scsi/blz1230.c
deleted file mode 100644
index 23f7c24ab809..000000000000
--- a/drivers/scsi/blz1230.c
+++ /dev/null
@@ -1,353 +0,0 @@
1/* blz1230.c: Driver for Blizzard 1230 SCSI IV Controller.
2 *
3 * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk)
4 *
5 * This driver is based on the CyberStorm driver, hence the occasional
6 * reference to CyberStorm.
7 */
8
9/* TODO:
10 *
11 * 1) Figure out how to make a cleaner merge with the sparc driver with regard
12 * to the caches and the Sparc MMU mapping.
13 * 2) Make as few routines required outside the generic driver. A lot of the
14 * routines in this file used to be inline!
15 */
16
17#include <linux/module.h>
18
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/delay.h>
22#include <linux/types.h>
23#include <linux/string.h>
24#include <linux/slab.h>
25#include <linux/blkdev.h>
26#include <linux/proc_fs.h>
27#include <linux/stat.h>
28#include <linux/interrupt.h>
29
30#include "scsi.h"
31#include <scsi/scsi_host.h>
32#include "NCR53C9x.h"
33
34#include <linux/zorro.h>
35#include <asm/irq.h>
36#include <asm/amigaints.h>
37#include <asm/amigahw.h>
38
39#include <asm/pgtable.h>
40
41#define MKIV 1
42
43/* The controller registers can be found in the Z2 config area at these
44 * offsets:
45 */
46#define BLZ1230_ESP_ADDR 0x8000
47#define BLZ1230_DMA_ADDR 0x10000
48#define BLZ1230II_ESP_ADDR 0x10000
49#define BLZ1230II_DMA_ADDR 0x10021
50
51
52/* The Blizzard 1230 DMA interface
53 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
54 * Only two things can be programmed in the Blizzard DMA:
55 * 1) The data direction is controlled by the status of bit 31 (1 = write)
56 * 2) The source/dest address (word aligned, shifted one right) in bits 30-0
57 *
58 * Program DMA by first latching the highest byte of the address/direction
59 * (i.e. bits 31-24 of the long word constructed as described in steps 1+2
60 * above). Then write each byte of the address/direction (starting with the
61 * top byte, working down) to the DMA address register.
62 *
63 * Figure out interrupt status by reading the ESP status byte.
64 */
65struct blz1230_dma_registers {
66 volatile unsigned char dma_addr; /* DMA address [0x0000] */
67 unsigned char dmapad2[0x7fff];
68 volatile unsigned char dma_latch; /* DMA latch [0x8000] */
69};
70
71struct blz1230II_dma_registers {
72 volatile unsigned char dma_addr; /* DMA address [0x0000] */
73 unsigned char dmapad2[0xf];
74 volatile unsigned char dma_latch; /* DMA latch [0x0010] */
75};
76
77#define BLZ1230_DMA_WRITE 0x80000000
78
79static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count);
80static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp);
81static void dma_dump_state(struct NCR_ESP *esp);
82static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length);
83static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length);
84static void dma_ints_off(struct NCR_ESP *esp);
85static void dma_ints_on(struct NCR_ESP *esp);
86static int dma_irq_p(struct NCR_ESP *esp);
87static int dma_ports_p(struct NCR_ESP *esp);
88static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write);
89
90static volatile unsigned char cmd_buffer[16];
91 /* This is where all commands are put
92 * before they are transferred to the ESP chip
93 * via PIO.
94 */
95
96/***************************************************************** Detection */
97int __init blz1230_esp_detect(struct scsi_host_template *tpnt)
98{
99 struct NCR_ESP *esp;
100 struct zorro_dev *z = NULL;
101 unsigned long address;
102 struct ESP_regs *eregs;
103 unsigned long board;
104
105#if MKIV
106#define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_IV_1260
107#define REAL_BLZ1230_ESP_ADDR BLZ1230_ESP_ADDR
108#define REAL_BLZ1230_DMA_ADDR BLZ1230_DMA_ADDR
109#else
110#define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060
111#define REAL_BLZ1230_ESP_ADDR BLZ1230II_ESP_ADDR
112#define REAL_BLZ1230_DMA_ADDR BLZ1230II_DMA_ADDR
113#endif
114
115 if ((z = zorro_find_device(REAL_BLZ1230_ID, z))) {
116 board = z->resource.start;
117 if (request_mem_region(board+REAL_BLZ1230_ESP_ADDR,
118 sizeof(struct ESP_regs), "NCR53C9x")) {
119 /* Do some magic to figure out if the blizzard is
120 * equipped with a SCSI controller
121 */
122 address = ZTWO_VADDR(board);
123 eregs = (struct ESP_regs *)(address + REAL_BLZ1230_ESP_ADDR);
124 esp = esp_allocate(tpnt, (void *)board + REAL_BLZ1230_ESP_ADDR,
125 0);
126
127 esp_write(eregs->esp_cfg1, (ESP_CONFIG1_PENABLE | 7));
128 udelay(5);
129 if(esp_read(eregs->esp_cfg1) != (ESP_CONFIG1_PENABLE | 7))
130 goto err_out;
131
132 /* Do command transfer with programmed I/O */
133 esp->do_pio_cmds = 1;
134
135 /* Required functions */
136 esp->dma_bytes_sent = &dma_bytes_sent;
137 esp->dma_can_transfer = &dma_can_transfer;
138 esp->dma_dump_state = &dma_dump_state;
139 esp->dma_init_read = &dma_init_read;
140 esp->dma_init_write = &dma_init_write;
141 esp->dma_ints_off = &dma_ints_off;
142 esp->dma_ints_on = &dma_ints_on;
143 esp->dma_irq_p = &dma_irq_p;
144 esp->dma_ports_p = &dma_ports_p;
145 esp->dma_setup = &dma_setup;
146
147 /* Optional functions */
148 esp->dma_barrier = 0;
149 esp->dma_drain = 0;
150 esp->dma_invalidate = 0;
151 esp->dma_irq_entry = 0;
152 esp->dma_irq_exit = 0;
153 esp->dma_led_on = 0;
154 esp->dma_led_off = 0;
155 esp->dma_poll = 0;
156 esp->dma_reset = 0;
157
158 /* SCSI chip speed */
159 esp->cfreq = 40000000;
160
161 /* The DMA registers on the Blizzard are mapped
162 * relative to the device (i.e. in the same Zorro
163 * I/O block).
164 */
165 esp->dregs = (void *)(address + REAL_BLZ1230_DMA_ADDR);
166
167 /* ESP register base */
168 esp->eregs = eregs;
169
170 /* Set the command buffer */
171 esp->esp_command = cmd_buffer;
172 esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer);
173
174 esp->irq = IRQ_AMIGA_PORTS;
175 esp->slot = board+REAL_BLZ1230_ESP_ADDR;
176 if (request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED,
177 "Blizzard 1230 SCSI IV", esp->ehost))
178 goto err_out;
179
180 /* Figure out our scsi ID on the bus */
181 esp->scsi_id = 7;
182
183 /* We don't have a differential SCSI-bus. */
184 esp->diff = 0;
185
186 esp_initialize(esp);
187
188 printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use);
189 esps_running = esps_in_use;
190 return esps_in_use;
191 }
192 }
193 return 0;
194
195 err_out:
196 scsi_unregister(esp->ehost);
197 esp_deallocate(esp);
198 release_mem_region(board+REAL_BLZ1230_ESP_ADDR,
199 sizeof(struct ESP_regs));
200 return 0;
201}
202
203/************************************************************* DMA Functions */
204static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count)
205{
206 /* Since the Blizzard DMA is fully dedicated to the ESP chip,
207 * the number of bytes sent (to the ESP chip) equals the number
208 * of bytes in the FIFO - there is no buffering in the DMA controller.
209 * XXXX Do I read this right? It is from host to ESP, right?
210 */
211 return fifo_count;
212}
213
214static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp)
215{
216 /* I don't think there's any limit on the Blizzard DMA. So we use what
217 * the ESP chip can handle (24 bit).
218 */
219 unsigned long sz = sp->SCp.this_residual;
220 if(sz > 0x1000000)
221 sz = 0x1000000;
222 return sz;
223}
224
225static void dma_dump_state(struct NCR_ESP *esp)
226{
227 ESPLOG(("intreq:<%04x>, intena:<%04x>\n",
228 amiga_custom.intreqr, amiga_custom.intenar));
229}
230
231void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length)
232{
233#if MKIV
234 struct blz1230_dma_registers *dregs =
235 (struct blz1230_dma_registers *) (esp->dregs);
236#else
237 struct blz1230II_dma_registers *dregs =
238 (struct blz1230II_dma_registers *) (esp->dregs);
239#endif
240
241 cache_clear(addr, length);
242
243 addr >>= 1;
244 addr &= ~(BLZ1230_DMA_WRITE);
245
246 /* First set latch */
247 dregs->dma_latch = (addr >> 24) & 0xff;
248
249 /* Then pump the address to the DMA address register */
250#if MKIV
251 dregs->dma_addr = (addr >> 24) & 0xff;
252#endif
253 dregs->dma_addr = (addr >> 16) & 0xff;
254 dregs->dma_addr = (addr >> 8) & 0xff;
255 dregs->dma_addr = (addr ) & 0xff;
256}
257
258void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length)
259{
260#if MKIV
261 struct blz1230_dma_registers *dregs =
262 (struct blz1230_dma_registers *) (esp->dregs);
263#else
264 struct blz1230II_dma_registers *dregs =
265 (struct blz1230II_dma_registers *) (esp->dregs);
266#endif
267
268 cache_push(addr, length);
269
270 addr >>= 1;
271 addr |= BLZ1230_DMA_WRITE;
272
273 /* First set latch */
274 dregs->dma_latch = (addr >> 24) & 0xff;
275
276 /* Then pump the address to the DMA address register */
277#if MKIV
278 dregs->dma_addr = (addr >> 24) & 0xff;
279#endif
280 dregs->dma_addr = (addr >> 16) & 0xff;
281 dregs->dma_addr = (addr >> 8) & 0xff;
282 dregs->dma_addr = (addr ) & 0xff;
283}
284
285static void dma_ints_off(struct NCR_ESP *esp)
286{
287 disable_irq(esp->irq);
288}
289
290static void dma_ints_on(struct NCR_ESP *esp)
291{
292 enable_irq(esp->irq);
293}
294
295static int dma_irq_p(struct NCR_ESP *esp)
296{
297 return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR);
298}
299
300static int dma_ports_p(struct NCR_ESP *esp)
301{
302 return ((amiga_custom.intenar) & IF_PORTS);
303}
304
305static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write)
306{
307 /* On the Sparc, DMA_ST_WRITE means "move data from device to memory"
308 * so when (write) is true, it actually means READ!
309 */
310 if(write){
311 dma_init_read(esp, addr, count);
312 } else {
313 dma_init_write(esp, addr, count);
314 }
315}
316
317#define HOSTS_C
318
319int blz1230_esp_release(struct Scsi_Host *instance)
320{
321#ifdef MODULE
322 unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev;
323 esp_deallocate((struct NCR_ESP *)instance->hostdata);
324 esp_release();
325 release_mem_region(address, sizeof(struct ESP_regs));
326 free_irq(IRQ_AMIGA_PORTS, esp_intr);
327#endif
328 return 1;
329}
330
331
332static struct scsi_host_template driver_template = {
333 .proc_name = "esp-blz1230",
334 .proc_info = esp_proc_info,
335 .name = "Blizzard1230 SCSI IV",
336 .detect = blz1230_esp_detect,
337 .slave_alloc = esp_slave_alloc,
338 .slave_destroy = esp_slave_destroy,
339 .release = blz1230_esp_release,
340 .queuecommand = esp_queue,
341 .eh_abort_handler = esp_abort,
342 .eh_bus_reset_handler = esp_reset,
343 .can_queue = 7,
344 .this_id = 7,
345 .sg_tablesize = SG_ALL,
346 .cmd_per_lun = 1,
347 .use_clustering = ENABLE_CLUSTERING
348};
349
350
351#include "scsi_module.c"
352
353MODULE_LICENSE("GPL");