aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/scsi/aic94xx
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/scsi/aic94xx')
-rw-r--r--drivers/scsi/aic94xx/Kconfig41
-rw-r--r--drivers/scsi/aic94xx/Makefile39
-rw-r--r--drivers/scsi/aic94xx/aic94xx.h114
-rw-r--r--drivers/scsi/aic94xx/aic94xx_dev.c353
-rw-r--r--drivers/scsi/aic94xx/aic94xx_dump.c959
-rw-r--r--drivers/scsi/aic94xx/aic94xx_dump.h52
-rw-r--r--drivers/scsi/aic94xx/aic94xx_hwi.c1376
-rw-r--r--drivers/scsi/aic94xx/aic94xx_hwi.h397
-rw-r--r--drivers/scsi/aic94xx/aic94xx_init.c860
-rw-r--r--drivers/scsi/aic94xx/aic94xx_reg.c332
-rw-r--r--drivers/scsi/aic94xx/aic94xx_reg.h302
-rw-r--r--drivers/scsi/aic94xx/aic94xx_reg_def.h2398
-rw-r--r--drivers/scsi/aic94xx/aic94xx_sas.h785
-rw-r--r--drivers/scsi/aic94xx/aic94xx_scb.c732
-rw-r--r--drivers/scsi/aic94xx/aic94xx_sds.c1136
-rw-r--r--drivers/scsi/aic94xx/aic94xx_seq.c1401
-rw-r--r--drivers/scsi/aic94xx/aic94xx_seq.h70
-rw-r--r--drivers/scsi/aic94xx/aic94xx_task.c642
-rw-r--r--drivers/scsi/aic94xx/aic94xx_tmf.c636
19 files changed, 12625 insertions, 0 deletions
diff --git a/drivers/scsi/aic94xx/Kconfig b/drivers/scsi/aic94xx/Kconfig
new file mode 100644
index 000000000000..0ed391d8ee84
--- /dev/null
+++ b/drivers/scsi/aic94xx/Kconfig
@@ -0,0 +1,41 @@
1#
2# Kernel configuration file for aic94xx SAS/SATA driver.
3#
4# Copyright (c) 2005 Adaptec, Inc. All rights reserved.
5# Copyright (c) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6#
7# This file is licensed under GPLv2.
8#
9# This file is part of the aic94xx driver.
10#
11# The aic94xx driver is free software; you can redistribute it and/or
12# modify it under the terms of the GNU General Public License as
13# published by the Free Software Foundation; version 2 of the
14# License.
15#
16# The aic94xx driver is distributed in the hope that it will be useful,
17# but WITHOUT ANY WARRANTY; without even the implied warranty of
18# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19# General Public License for more details.
20#
21# You should have received a copy of the GNU General Public License
22# along with Aic94xx Driver; if not, write to the Free Software
23# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24#
25#
26
27config SCSI_AIC94XX
28 tristate "Adaptec AIC94xx SAS/SATA support"
29 depends on PCI
30 select SCSI_SAS_LIBSAS
31 help
32 This driver supports Adaptec's SAS/SATA 3Gb/s 64 bit PCI-X
33 AIC94xx chip based host adapters.
34
35config AIC94XX_DEBUG
36 bool "Compile in debug mode"
37 default y
38 depends on SCSI_AIC94XX
39 help
40 Compiles the aic94xx driver in debug mode. In debug mode,
41 the driver prints some messages to the console.
diff --git a/drivers/scsi/aic94xx/Makefile b/drivers/scsi/aic94xx/Makefile
new file mode 100644
index 000000000000..e6b70123940c
--- /dev/null
+++ b/drivers/scsi/aic94xx/Makefile
@@ -0,0 +1,39 @@
1#
2# Makefile for Adaptec aic94xx SAS/SATA driver.
3#
4# Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5# Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6#
7# This file is licensed under GPLv2.
8#
9# This file is part of the the aic94xx driver.
10#
11# The aic94xx driver is free software; you can redistribute it and/or
12# modify it under the terms of the GNU General Public License as
13# published by the Free Software Foundation; version 2 of the
14# License.
15#
16# The aic94xx driver is distributed in the hope that it will be useful,
17# but WITHOUT ANY WARRANTY; without even the implied warranty of
18# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19# General Public License for more details.
20#
21# You should have received a copy of the GNU General Public License
22# along with the aic94xx driver; if not, write to the Free Software
23# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24
25ifeq ($(CONFIG_AIC94XX_DEBUG),y)
26 EXTRA_CFLAGS += -DASD_DEBUG -DASD_ENTER_EXIT
27endif
28
29obj-$(CONFIG_SCSI_AIC94XX) += aic94xx.o
30aic94xx-y += aic94xx_init.o \
31 aic94xx_hwi.o \
32 aic94xx_reg.o \
33 aic94xx_sds.o \
34 aic94xx_seq.o \
35 aic94xx_dump.o \
36 aic94xx_scb.o \
37 aic94xx_dev.o \
38 aic94xx_tmf.o \
39 aic94xx_task.o
diff --git a/drivers/scsi/aic94xx/aic94xx.h b/drivers/scsi/aic94xx/aic94xx.h
new file mode 100644
index 000000000000..cb7caf1c9ce1
--- /dev/null
+++ b/drivers/scsi/aic94xx/aic94xx.h
@@ -0,0 +1,114 @@
1/*
2 * Aic94xx SAS/SATA driver header file.
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This file is part of the aic94xx driver.
10 *
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
14 * License.
15 *
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 *
25 * $Id: //depot/aic94xx/aic94xx.h#31 $
26 */
27
28#ifndef _AIC94XX_H_
29#define _AIC94XX_H_
30
31#include <linux/slab.h>
32#include <linux/ctype.h>
33#include <scsi/libsas.h>
34
35#define ASD_DRIVER_NAME "aic94xx"
36#define ASD_DRIVER_DESCRIPTION "Adaptec aic94xx SAS/SATA driver"
37
38#define asd_printk(fmt, ...) printk(KERN_NOTICE ASD_DRIVER_NAME ": " fmt, ## __VA_ARGS__)
39
40#ifdef ASD_ENTER_EXIT
41#define ENTER printk(KERN_NOTICE "%s: ENTER %s\n", ASD_DRIVER_NAME, \
42 __FUNCTION__)
43#define EXIT printk(KERN_NOTICE "%s: --EXIT %s\n", ASD_DRIVER_NAME, \
44 __FUNCTION__)
45#else
46#define ENTER
47#define EXIT
48#endif
49
50#ifdef ASD_DEBUG
51#define ASD_DPRINTK asd_printk
52#else
53#define ASD_DPRINTK(fmt, ...)
54#endif
55
56/* 2*ITNL timeout + 1 second */
57#define AIC94XX_SCB_TIMEOUT (5*HZ)
58
59extern kmem_cache_t *asd_dma_token_cache;
60extern kmem_cache_t *asd_ascb_cache;
61extern char sas_addr_str[2*SAS_ADDR_SIZE + 1];
62
63static inline void asd_stringify_sas_addr(char *p, const u8 *sas_addr)
64{
65 int i;
66 for (i = 0; i < SAS_ADDR_SIZE; i++, p += 2)
67 snprintf(p, 3, "%02X", sas_addr[i]);
68 *p = '\0';
69}
70
71static inline void asd_destringify_sas_addr(u8 *sas_addr, const char *p)
72{
73 int i;
74 for (i = 0; i < SAS_ADDR_SIZE; i++) {
75 u8 h, l;
76 if (!*p)
77 break;
78 h = isdigit(*p) ? *p-'0' : *p-'A'+10;
79 p++;
80 l = isdigit(*p) ? *p-'0' : *p-'A'+10;
81 p++;
82 sas_addr[i] = (h<<4) | l;
83 }
84}
85
86struct asd_ha_struct;
87struct asd_ascb;
88
89int asd_read_ocm(struct asd_ha_struct *asd_ha);
90int asd_read_flash(struct asd_ha_struct *asd_ha);
91
92int asd_dev_found(struct domain_device *dev);
93void asd_dev_gone(struct domain_device *dev);
94
95void asd_invalidate_edb(struct asd_ascb *ascb, int edb_id);
96
97int asd_execute_task(struct sas_task *, int num, unsigned long gfp_flags);
98
99/* ---------- TMFs ---------- */
100int asd_abort_task(struct sas_task *);
101int asd_abort_task_set(struct domain_device *, u8 *lun);
102int asd_clear_aca(struct domain_device *, u8 *lun);
103int asd_clear_task_set(struct domain_device *, u8 *lun);
104int asd_lu_reset(struct domain_device *, u8 *lun);
105int asd_query_task(struct sas_task *);
106
107/* ---------- Adapter and Port management ---------- */
108int asd_clear_nexus_port(struct asd_sas_port *port);
109int asd_clear_nexus_ha(struct sas_ha_struct *sas_ha);
110
111/* ---------- Phy Management ---------- */
112int asd_control_phy(struct asd_sas_phy *phy, enum phy_func func);
113
114#endif
diff --git a/drivers/scsi/aic94xx/aic94xx_dev.c b/drivers/scsi/aic94xx/aic94xx_dev.c
new file mode 100644
index 000000000000..6f8901b748f7
--- /dev/null
+++ b/drivers/scsi/aic94xx/aic94xx_dev.c
@@ -0,0 +1,353 @@
1/*
2 * Aic94xx SAS/SATA DDB management
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This file is part of the aic94xx driver.
10 *
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
14 * License.
15 *
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 *
25 * $Id: //depot/aic94xx/aic94xx_dev.c#21 $
26 */
27
28#include "aic94xx.h"
29#include "aic94xx_hwi.h"
30#include "aic94xx_reg.h"
31#include "aic94xx_sas.h"
32
33#define FIND_FREE_DDB(_ha) find_first_zero_bit((_ha)->hw_prof.ddb_bitmap, \
34 (_ha)->hw_prof.max_ddbs)
35#define SET_DDB(_ddb, _ha) set_bit(_ddb, (_ha)->hw_prof.ddb_bitmap)
36#define CLEAR_DDB(_ddb, _ha) clear_bit(_ddb, (_ha)->hw_prof.ddb_bitmap)
37
38static inline int asd_get_ddb(struct asd_ha_struct *asd_ha)
39{
40 unsigned long flags;
41 int ddb, i;
42
43 spin_lock_irqsave(&asd_ha->hw_prof.ddb_lock, flags);
44 ddb = FIND_FREE_DDB(asd_ha);
45 if (ddb >= asd_ha->hw_prof.max_ddbs) {
46 ddb = -ENOMEM;
47 spin_unlock_irqrestore(&asd_ha->hw_prof.ddb_lock, flags);
48 goto out;
49 }
50 SET_DDB(ddb, asd_ha);
51 spin_unlock_irqrestore(&asd_ha->hw_prof.ddb_lock, flags);
52
53 for (i = 0; i < sizeof(struct asd_ddb_ssp_smp_target_port); i+= 4)
54 asd_ddbsite_write_dword(asd_ha, ddb, i, 0);
55out:
56 return ddb;
57}
58
59#define INIT_CONN_TAG offsetof(struct asd_ddb_ssp_smp_target_port, init_conn_tag)
60#define DEST_SAS_ADDR offsetof(struct asd_ddb_ssp_smp_target_port, dest_sas_addr)
61#define SEND_QUEUE_HEAD offsetof(struct asd_ddb_ssp_smp_target_port, send_queue_head)
62#define DDB_TYPE offsetof(struct asd_ddb_ssp_smp_target_port, ddb_type)
63#define CONN_MASK offsetof(struct asd_ddb_ssp_smp_target_port, conn_mask)
64#define DDB_TARG_FLAGS offsetof(struct asd_ddb_ssp_smp_target_port, flags)
65#define DDB_TARG_FLAGS2 offsetof(struct asd_ddb_stp_sata_target_port, flags2)
66#define EXEC_QUEUE_TAIL offsetof(struct asd_ddb_ssp_smp_target_port, exec_queue_tail)
67#define SEND_QUEUE_TAIL offsetof(struct asd_ddb_ssp_smp_target_port, send_queue_tail)
68#define SISTER_DDB offsetof(struct asd_ddb_ssp_smp_target_port, sister_ddb)
69#define MAX_CCONN offsetof(struct asd_ddb_ssp_smp_target_port, max_concurrent_conn)
70#define NUM_CTX offsetof(struct asd_ddb_ssp_smp_target_port, num_contexts)
71#define ATA_CMD_SCBPTR offsetof(struct asd_ddb_stp_sata_target_port, ata_cmd_scbptr)
72#define SATA_TAG_ALLOC_MASK offsetof(struct asd_ddb_stp_sata_target_port, sata_tag_alloc_mask)
73#define NUM_SATA_TAGS offsetof(struct asd_ddb_stp_sata_target_port, num_sata_tags)
74#define SATA_STATUS offsetof(struct asd_ddb_stp_sata_target_port, sata_status)
75#define NCQ_DATA_SCB_PTR offsetof(struct asd_ddb_stp_sata_target_port, ncq_data_scb_ptr)
76#define ITNL_TIMEOUT offsetof(struct asd_ddb_ssp_smp_target_port, itnl_timeout)
77
78static inline void asd_free_ddb(struct asd_ha_struct *asd_ha, int ddb)
79{
80 unsigned long flags;
81
82 if (!ddb || ddb >= 0xFFFF)
83 return;
84 asd_ddbsite_write_byte(asd_ha, ddb, DDB_TYPE, DDB_TYPE_UNUSED);
85 spin_lock_irqsave(&asd_ha->hw_prof.ddb_lock, flags);
86 CLEAR_DDB(ddb, asd_ha);
87 spin_unlock_irqrestore(&asd_ha->hw_prof.ddb_lock, flags);
88}
89
90static inline void asd_set_ddb_type(struct domain_device *dev)
91{
92 struct asd_ha_struct *asd_ha = dev->port->ha->lldd_ha;
93 int ddb = (int) (unsigned long) dev->lldd_dev;
94
95 if (dev->dev_type == SATA_PM_PORT)
96 asd_ddbsite_write_byte(asd_ha,ddb, DDB_TYPE, DDB_TYPE_PM_PORT);
97 else if (dev->tproto)
98 asd_ddbsite_write_byte(asd_ha,ddb, DDB_TYPE, DDB_TYPE_TARGET);
99 else
100 asd_ddbsite_write_byte(asd_ha,ddb,DDB_TYPE,DDB_TYPE_INITIATOR);
101}
102
103static int asd_init_sata_tag_ddb(struct domain_device *dev)
104{
105 struct asd_ha_struct *asd_ha = dev->port->ha->lldd_ha;
106 int ddb, i;
107
108 ddb = asd_get_ddb(asd_ha);
109 if (ddb < 0)
110 return ddb;
111
112 for (i = 0; i < sizeof(struct asd_ddb_sata_tag); i += 2)
113 asd_ddbsite_write_word(asd_ha, ddb, i, 0xFFFF);
114
115 asd_ddbsite_write_word(asd_ha, (int) (unsigned long) dev->lldd_dev,
116 SISTER_DDB, ddb);
117 return 0;
118}
119
120static inline int asd_init_sata(struct domain_device *dev)
121{
122 struct asd_ha_struct *asd_ha = dev->port->ha->lldd_ha;
123 int ddb = (int) (unsigned long) dev->lldd_dev;
124 u32 qdepth = 0;
125 int res = 0;
126
127 asd_ddbsite_write_word(asd_ha, ddb, ATA_CMD_SCBPTR, 0xFFFF);
128 if ((dev->dev_type == SATA_DEV || dev->dev_type == SATA_PM_PORT) &&
129 dev->sata_dev.identify_device &&
130 dev->sata_dev.identify_device[10] != 0) {
131 u16 w75 = le16_to_cpu(dev->sata_dev.identify_device[75]);
132 u16 w76 = le16_to_cpu(dev->sata_dev.identify_device[76]);
133
134 if (w76 & 0x100) /* NCQ? */
135 qdepth = (w75 & 0x1F) + 1;
136 asd_ddbsite_write_dword(asd_ha, ddb, SATA_TAG_ALLOC_MASK,
137 (1<<qdepth)-1);
138 asd_ddbsite_write_byte(asd_ha, ddb, NUM_SATA_TAGS, qdepth);
139 }
140 if (dev->dev_type == SATA_DEV || dev->dev_type == SATA_PM ||
141 dev->dev_type == SATA_PM_PORT) {
142 struct dev_to_host_fis *fis = (struct dev_to_host_fis *)
143 dev->frame_rcvd;
144 asd_ddbsite_write_byte(asd_ha, ddb, SATA_STATUS, fis->status);
145 }
146 asd_ddbsite_write_word(asd_ha, ddb, NCQ_DATA_SCB_PTR, 0xFFFF);
147 if (qdepth > 0)
148 res = asd_init_sata_tag_ddb(dev);
149 return res;
150}
151
152static int asd_init_target_ddb(struct domain_device *dev)
153{
154 int ddb, i;
155 struct asd_ha_struct *asd_ha = dev->port->ha->lldd_ha;
156 u8 flags = 0;
157
158 ddb = asd_get_ddb(asd_ha);
159 if (ddb < 0)
160 return ddb;
161
162 dev->lldd_dev = (void *) (unsigned long) ddb;
163
164 asd_ddbsite_write_byte(asd_ha, ddb, 0, DDB_TP_CONN_TYPE);
165 asd_ddbsite_write_byte(asd_ha, ddb, 1, 0);
166 asd_ddbsite_write_word(asd_ha, ddb, INIT_CONN_TAG, 0xFFFF);
167 for (i = 0; i < SAS_ADDR_SIZE; i++)
168 asd_ddbsite_write_byte(asd_ha, ddb, DEST_SAS_ADDR+i,
169 dev->sas_addr[i]);
170 asd_ddbsite_write_word(asd_ha, ddb, SEND_QUEUE_HEAD, 0xFFFF);
171 asd_set_ddb_type(dev);
172 asd_ddbsite_write_byte(asd_ha, ddb, CONN_MASK, dev->port->phy_mask);
173 if (dev->port->oob_mode != SATA_OOB_MODE) {
174 flags |= OPEN_REQUIRED;
175 if ((dev->dev_type == SATA_DEV) ||
176 (dev->tproto & SAS_PROTO_STP)) {
177 struct smp_resp *rps_resp = &dev->sata_dev.rps_resp;
178 if (rps_resp->frame_type == SMP_RESPONSE &&
179 rps_resp->function == SMP_REPORT_PHY_SATA &&
180 rps_resp->result == SMP_RESP_FUNC_ACC) {
181 if (rps_resp->rps.affil_valid)
182 flags |= STP_AFFIL_POL;
183 if (rps_resp->rps.affil_supp)
184 flags |= SUPPORTS_AFFIL;
185 }
186 } else {
187 flags |= CONCURRENT_CONN_SUPP;
188 if (!dev->parent &&
189 (dev->dev_type == EDGE_DEV ||
190 dev->dev_type == FANOUT_DEV))
191 asd_ddbsite_write_byte(asd_ha, ddb, MAX_CCONN,
192 4);
193 else
194 asd_ddbsite_write_byte(asd_ha, ddb, MAX_CCONN,
195 dev->pathways);
196 asd_ddbsite_write_byte(asd_ha, ddb, NUM_CTX, 1);
197 }
198 }
199 if (dev->dev_type == SATA_PM)
200 flags |= SATA_MULTIPORT;
201 asd_ddbsite_write_byte(asd_ha, ddb, DDB_TARG_FLAGS, flags);
202
203 flags = 0;
204 if (dev->tproto & SAS_PROTO_STP)
205 flags |= STP_CL_POL_NO_TX;
206 asd_ddbsite_write_byte(asd_ha, ddb, DDB_TARG_FLAGS2, flags);
207
208 asd_ddbsite_write_word(asd_ha, ddb, EXEC_QUEUE_TAIL, 0xFFFF);
209 asd_ddbsite_write_word(asd_ha, ddb, SEND_QUEUE_TAIL, 0xFFFF);
210 asd_ddbsite_write_word(asd_ha, ddb, SISTER_DDB, 0xFFFF);
211
212 if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTO_STP)) {
213 i = asd_init_sata(dev);
214 if (i < 0) {
215 asd_free_ddb(asd_ha, ddb);
216 return i;
217 }
218 }
219
220 if (dev->dev_type == SAS_END_DEV) {
221 struct sas_end_device *rdev = rphy_to_end_device(dev->rphy);
222 if (rdev->I_T_nexus_loss_timeout > 0)
223 asd_ddbsite_write_word(asd_ha, ddb, ITNL_TIMEOUT,
224 min(rdev->I_T_nexus_loss_timeout,
225 (u16)ITNL_TIMEOUT_CONST));
226 else
227 asd_ddbsite_write_word(asd_ha, ddb, ITNL_TIMEOUT,
228 (u16)ITNL_TIMEOUT_CONST);
229 }
230 return 0;
231}
232
233static int asd_init_sata_pm_table_ddb(struct domain_device *dev)
234{
235 struct asd_ha_struct *asd_ha = dev->port->ha->lldd_ha;
236 int ddb, i;
237
238 ddb = asd_get_ddb(asd_ha);
239 if (ddb < 0)
240 return ddb;
241
242 for (i = 0; i < 32; i += 2)
243 asd_ddbsite_write_word(asd_ha, ddb, i, 0xFFFF);
244
245 asd_ddbsite_write_word(asd_ha, (int) (unsigned long) dev->lldd_dev,
246 SISTER_DDB, ddb);
247
248 return 0;
249}
250
251#define PM_PORT_FLAGS offsetof(struct asd_ddb_sata_pm_port, pm_port_flags)
252#define PARENT_DDB offsetof(struct asd_ddb_sata_pm_port, parent_ddb)
253
254/**
255 * asd_init_sata_pm_port_ddb -- SATA Port Multiplier Port
256 * dev: pointer to domain device
257 *
258 * For SATA Port Multiplier Ports we need to allocate one SATA Port
259 * Multiplier Port DDB and depending on whether the target on it
260 * supports SATA II NCQ, one SATA Tag DDB.
261 */
262static int asd_init_sata_pm_port_ddb(struct domain_device *dev)
263{
264 int ddb, i, parent_ddb, pmtable_ddb;
265 struct asd_ha_struct *asd_ha = dev->port->ha->lldd_ha;
266 u8 flags;
267
268 ddb = asd_get_ddb(asd_ha);
269 if (ddb < 0)
270 return ddb;
271
272 asd_set_ddb_type(dev);
273 flags = (dev->sata_dev.port_no << 4) | PM_PORT_SET;
274 asd_ddbsite_write_byte(asd_ha, ddb, PM_PORT_FLAGS, flags);
275 asd_ddbsite_write_word(asd_ha, ddb, SISTER_DDB, 0xFFFF);
276 asd_ddbsite_write_word(asd_ha, ddb, ATA_CMD_SCBPTR, 0xFFFF);
277 asd_init_sata(dev);
278
279 parent_ddb = (int) (unsigned long) dev->parent->lldd_dev;
280 asd_ddbsite_write_word(asd_ha, ddb, PARENT_DDB, parent_ddb);
281 pmtable_ddb = asd_ddbsite_read_word(asd_ha, parent_ddb, SISTER_DDB);
282 asd_ddbsite_write_word(asd_ha, pmtable_ddb, dev->sata_dev.port_no,ddb);
283
284 if (asd_ddbsite_read_byte(asd_ha, ddb, NUM_SATA_TAGS) > 0) {
285 i = asd_init_sata_tag_ddb(dev);
286 if (i < 0) {
287 asd_free_ddb(asd_ha, ddb);
288 return i;
289 }
290 }
291 return 0;
292}
293
294static int asd_init_initiator_ddb(struct domain_device *dev)
295{
296 return -ENODEV;
297}
298
299/**
300 * asd_init_sata_pm_ddb -- SATA Port Multiplier
301 * dev: pointer to domain device
302 *
303 * For STP and direct-attached SATA Port Multipliers we need
304 * one target port DDB entry and one SATA PM table DDB entry.
305 */
306static int asd_init_sata_pm_ddb(struct domain_device *dev)
307{
308 int res = 0;
309
310 res = asd_init_target_ddb(dev);
311 if (res)
312 goto out;
313 res = asd_init_sata_pm_table_ddb(dev);
314 if (res)
315 asd_free_ddb(dev->port->ha->lldd_ha,
316 (int) (unsigned long) dev->lldd_dev);
317out:
318 return res;
319}
320
321int asd_dev_found(struct domain_device *dev)
322{
323 int res = 0;
324
325 switch (dev->dev_type) {
326 case SATA_PM:
327 res = asd_init_sata_pm_ddb(dev);
328 break;
329 case SATA_PM_PORT:
330 res = asd_init_sata_pm_port_ddb(dev);
331 break;
332 default:
333 if (dev->tproto)
334 res = asd_init_target_ddb(dev);
335 else
336 res = asd_init_initiator_ddb(dev);
337 }
338 return res;
339}
340
341void asd_dev_gone(struct domain_device *dev)
342{
343 int ddb, sister_ddb;
344 struct asd_ha_struct *asd_ha = dev->port->ha->lldd_ha;
345
346 ddb = (int) (unsigned long) dev->lldd_dev;
347 sister_ddb = asd_ddbsite_read_word(asd_ha, ddb, SISTER_DDB);
348
349 if (sister_ddb != 0xFFFF)
350 asd_free_ddb(asd_ha, sister_ddb);
351 asd_free_ddb(asd_ha, ddb);
352 dev->lldd_dev = NULL;
353}
diff --git a/drivers/scsi/aic94xx/aic94xx_dump.c b/drivers/scsi/aic94xx/aic94xx_dump.c
new file mode 100644
index 000000000000..e6ade5996d95
--- /dev/null
+++ b/drivers/scsi/aic94xx/aic94xx_dump.c
@@ -0,0 +1,959 @@
1/*
2 * Aic94xx SAS/SATA driver dump interface.
3 *
4 * Copyright (C) 2004 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2004 David Chaw <david_chaw@adaptec.com>
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 *
8 * This file is licensed under GPLv2.
9 *
10 * This file is part of the aic94xx driver.
11 *
12 * The aic94xx driver is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; version 2 of the
15 * License.
16 *
17 * The aic94xx driver is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with the aic94xx driver; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 *
26 * 2005/07/14/LT Complete overhaul of this file. Update pages, register
27 * locations, names, etc. Make use of macros. Print more information.
28 * Print all cseq and lseq mip and mdp.
29 *
30 */
31
32#include "linux/pci.h"
33#include "aic94xx.h"
34#include "aic94xx_reg.h"
35#include "aic94xx_reg_def.h"
36#include "aic94xx_sas.h"
37
38#include "aic94xx_dump.h"
39
40#ifdef ASD_DEBUG
41
42#define MD(x) (1 << (x))
43#define MODE_COMMON (1 << 31)
44#define MODE_0_7 (0xFF)
45
46static const struct lseq_cio_regs {
47 char *name;
48 u32 offs;
49 u8 width;
50 u32 mode;
51} LSEQmCIOREGS[] = {
52 {"LmMnSCBPTR", 0x20, 16, MD(0)|MD(1)|MD(2)|MD(3)|MD(4) },
53 {"LmMnDDBPTR", 0x22, 16, MD(0)|MD(1)|MD(2)|MD(3)|MD(4) },
54 {"LmREQMBX", 0x30, 32, MODE_COMMON },
55 {"LmRSPMBX", 0x34, 32, MODE_COMMON },
56 {"LmMnINT", 0x38, 32, MODE_0_7 },
57 {"LmMnINTEN", 0x3C, 32, MODE_0_7 },
58 {"LmXMTPRIMD", 0x40, 32, MODE_COMMON },
59 {"LmXMTPRIMCS", 0x44, 8, MODE_COMMON },
60 {"LmCONSTAT", 0x45, 8, MODE_COMMON },
61 {"LmMnDMAERRS", 0x46, 8, MD(0)|MD(1) },
62 {"LmMnSGDMAERRS", 0x47, 8, MD(0)|MD(1) },
63 {"LmMnEXPHDRP", 0x48, 8, MD(0) },
64 {"LmMnSASAALIGN", 0x48, 8, MD(1) },
65 {"LmMnMSKHDRP", 0x49, 8, MD(0) },
66 {"LmMnSTPALIGN", 0x49, 8, MD(1) },
67 {"LmMnRCVHDRP", 0x4A, 8, MD(0) },
68 {"LmMnXMTHDRP", 0x4A, 8, MD(1) },
69 {"LmALIGNMODE", 0x4B, 8, MD(1) },
70 {"LmMnEXPRCVCNT", 0x4C, 32, MD(0) },
71 {"LmMnXMTCNT", 0x4C, 32, MD(1) },
72 {"LmMnCURRTAG", 0x54, 16, MD(0) },
73 {"LmMnPREVTAG", 0x56, 16, MD(0) },
74 {"LmMnACKOFS", 0x58, 8, MD(1) },
75 {"LmMnXFRLVL", 0x59, 8, MD(0)|MD(1) },
76 {"LmMnSGDMACTL", 0x5A, 8, MD(0)|MD(1) },
77 {"LmMnSGDMASTAT", 0x5B, 8, MD(0)|MD(1) },
78 {"LmMnDDMACTL", 0x5C, 8, MD(0)|MD(1) },
79 {"LmMnDDMASTAT", 0x5D, 8, MD(0)|MD(1) },
80 {"LmMnDDMAMODE", 0x5E, 16, MD(0)|MD(1) },
81 {"LmMnPIPECTL", 0x61, 8, MD(0)|MD(1) },
82 {"LmMnACTSCB", 0x62, 16, MD(0)|MD(1) },
83 {"LmMnSGBHADR", 0x64, 8, MD(0)|MD(1) },
84 {"LmMnSGBADR", 0x65, 8, MD(0)|MD(1) },
85 {"LmMnSGDCNT", 0x66, 8, MD(0)|MD(1) },
86 {"LmMnSGDMADR", 0x68, 32, MD(0)|MD(1) },
87 {"LmMnSGDMADR", 0x6C, 32, MD(0)|MD(1) },
88 {"LmMnXFRCNT", 0x70, 32, MD(0)|MD(1) },
89 {"LmMnXMTCRC", 0x74, 32, MD(1) },
90 {"LmCURRTAG", 0x74, 16, MD(0) },
91 {"LmPREVTAG", 0x76, 16, MD(0) },
92 {"LmMnDPSEL", 0x7B, 8, MD(0)|MD(1) },
93 {"LmDPTHSTAT", 0x7C, 8, MODE_COMMON },
94 {"LmMnHOLDLVL", 0x7D, 8, MD(0) },
95 {"LmMnSATAFS", 0x7E, 8, MD(1) },
96 {"LmMnCMPLTSTAT", 0x7F, 8, MD(0)|MD(1) },
97 {"LmPRMSTAT0", 0x80, 32, MODE_COMMON },
98 {"LmPRMSTAT1", 0x84, 32, MODE_COMMON },
99 {"LmGPRMINT", 0x88, 8, MODE_COMMON },
100 {"LmMnCURRSCB", 0x8A, 16, MD(0) },
101 {"LmPRMICODE", 0x8C, 32, MODE_COMMON },
102 {"LmMnRCVCNT", 0x90, 16, MD(0) },
103 {"LmMnBUFSTAT", 0x92, 16, MD(0) },
104 {"LmMnXMTHDRSIZE",0x92, 8, MD(1) },
105 {"LmMnXMTSIZE", 0x93, 8, MD(1) },
106 {"LmMnTGTXFRCNT", 0x94, 32, MD(0) },
107 {"LmMnEXPROFS", 0x98, 32, MD(0) },
108 {"LmMnXMTROFS", 0x98, 32, MD(1) },
109 {"LmMnRCVROFS", 0x9C, 32, MD(0) },
110 {"LmCONCTL", 0xA0, 16, MODE_COMMON },
111 {"LmBITLTIMER", 0xA2, 16, MODE_COMMON },
112 {"LmWWNLOW", 0xA8, 32, MODE_COMMON },
113 {"LmWWNHIGH", 0xAC, 32, MODE_COMMON },
114 {"LmMnFRMERR", 0xB0, 32, MD(0) },
115 {"LmMnFRMERREN", 0xB4, 32, MD(0) },
116 {"LmAWTIMER", 0xB8, 16, MODE_COMMON },
117 {"LmAWTCTL", 0xBA, 8, MODE_COMMON },
118 {"LmMnHDRCMPS", 0xC0, 32, MD(0) },
119 {"LmMnXMTSTAT", 0xC4, 8, MD(1) },
120 {"LmHWTSTATEN", 0xC5, 8, MODE_COMMON },
121 {"LmMnRRDYRC", 0xC6, 8, MD(0) },
122 {"LmMnRRDYTC", 0xC6, 8, MD(1) },
123 {"LmHWTSTAT", 0xC7, 8, MODE_COMMON },
124 {"LmMnDATABUFADR",0xC8, 16, MD(0)|MD(1) },
125 {"LmDWSSTATUS", 0xCB, 8, MODE_COMMON },
126 {"LmMnACTSTAT", 0xCE, 16, MD(0)|MD(1) },
127 {"LmMnREQSCB", 0xD2, 16, MD(0)|MD(1) },
128 {"LmXXXPRIM", 0xD4, 32, MODE_COMMON },
129 {"LmRCVASTAT", 0xD9, 8, MODE_COMMON },
130 {"LmINTDIS1", 0xDA, 8, MODE_COMMON },
131 {"LmPSTORESEL", 0xDB, 8, MODE_COMMON },
132 {"LmPSTORE", 0xDC, 32, MODE_COMMON },
133 {"LmPRIMSTAT0EN", 0xE0, 32, MODE_COMMON },
134 {"LmPRIMSTAT1EN", 0xE4, 32, MODE_COMMON },
135 {"LmDONETCTL", 0xF2, 16, MODE_COMMON },
136 {NULL, 0, 0, 0 }
137};
138/*
139static struct lseq_cio_regs LSEQmOOBREGS[] = {
140 {"OOB_BFLTR" ,0x100, 8, MD(5)},
141 {"OOB_INIT_MIN" ,0x102,16, MD(5)},
142 {"OOB_INIT_MAX" ,0x104,16, MD(5)},
143 {"OOB_INIT_NEG" ,0x106,16, MD(5)},
144 {"OOB_SAS_MIN" ,0x108,16, MD(5)},
145 {"OOB_SAS_MAX" ,0x10A,16, MD(5)},
146 {"OOB_SAS_NEG" ,0x10C,16, MD(5)},
147 {"OOB_WAKE_MIN" ,0x10E,16, MD(5)},
148 {"OOB_WAKE_MAX" ,0x110,16, MD(5)},
149 {"OOB_WAKE_NEG" ,0x112,16, MD(5)},
150 {"OOB_IDLE_MAX" ,0x114,16, MD(5)},
151 {"OOB_BURST_MAX" ,0x116,16, MD(5)},
152 {"OOB_XMIT_BURST" ,0x118, 8, MD(5)},
153 {"OOB_SEND_PAIRS" ,0x119, 8, MD(5)},
154 {"OOB_INIT_IDLE" ,0x11A, 8, MD(5)},
155 {"OOB_INIT_NEGO" ,0x11C, 8, MD(5)},
156 {"OOB_SAS_IDLE" ,0x11E, 8, MD(5)},
157 {"OOB_SAS_NEGO" ,0x120, 8, MD(5)},
158 {"OOB_WAKE_IDLE" ,0x122, 8, MD(5)},
159 {"OOB_WAKE_NEGO" ,0x124, 8, MD(5)},
160 {"OOB_DATA_KBITS" ,0x126, 8, MD(5)},
161 {"OOB_BURST_DATA" ,0x128,32, MD(5)},
162 {"OOB_ALIGN_0_DATA" ,0x12C,32, MD(5)},
163 {"OOB_ALIGN_1_DATA" ,0x130,32, MD(5)},
164 {"OOB_SYNC_DATA" ,0x134,32, MD(5)},
165 {"OOB_D10_2_DATA" ,0x138,32, MD(5)},
166 {"OOB_PHY_RST_CNT" ,0x13C,32, MD(5)},
167 {"OOB_SIG_GEN" ,0x140, 8, MD(5)},
168 {"OOB_XMIT" ,0x141, 8, MD(5)},
169 {"FUNCTION_MAKS" ,0x142, 8, MD(5)},
170 {"OOB_MODE" ,0x143, 8, MD(5)},
171 {"CURRENT_STATUS" ,0x144, 8, MD(5)},
172 {"SPEED_MASK" ,0x145, 8, MD(5)},
173 {"PRIM_COUNT" ,0x146, 8, MD(5)},
174 {"OOB_SIGNALS" ,0x148, 8, MD(5)},
175 {"OOB_DATA_DET" ,0x149, 8, MD(5)},
176 {"OOB_TIME_OUT" ,0x14C, 8, MD(5)},
177 {"OOB_TIMER_ENABLE" ,0x14D, 8, MD(5)},
178 {"OOB_STATUS" ,0x14E, 8, MD(5)},
179 {"HOT_PLUG_DELAY" ,0x150, 8, MD(5)},
180 {"RCD_DELAY" ,0x151, 8, MD(5)},
181 {"COMSAS_TIMER" ,0x152, 8, MD(5)},
182 {"SNTT_DELAY" ,0x153, 8, MD(5)},
183 {"SPD_CHNG_DELAY" ,0x154, 8, MD(5)},
184 {"SNLT_DELAY" ,0x155, 8, MD(5)},
185 {"SNWT_DELAY" ,0x156, 8, MD(5)},
186 {"ALIGN_DELAY" ,0x157, 8, MD(5)},
187 {"INT_ENABLE_0" ,0x158, 8, MD(5)},
188 {"INT_ENABLE_1" ,0x159, 8, MD(5)},
189 {"INT_ENABLE_2" ,0x15A, 8, MD(5)},
190 {"INT_ENABLE_3" ,0x15B, 8, MD(5)},
191 {"OOB_TEST_REG" ,0x15C, 8, MD(5)},
192 {"PHY_CONTROL_0" ,0x160, 8, MD(5)},
193 {"PHY_CONTROL_1" ,0x161, 8, MD(5)},
194 {"PHY_CONTROL_2" ,0x162, 8, MD(5)},
195 {"PHY_CONTROL_3" ,0x163, 8, MD(5)},
196 {"PHY_OOB_CAL_TX" ,0x164, 8, MD(5)},
197 {"PHY_OOB_CAL_RX" ,0x165, 8, MD(5)},
198 {"OOB_PHY_CAL_TX" ,0x166, 8, MD(5)},
199 {"OOB_PHY_CAL_RX" ,0x167, 8, MD(5)},
200 {"PHY_CONTROL_4" ,0x168, 8, MD(5)},
201 {"PHY_TEST" ,0x169, 8, MD(5)},
202 {"PHY_PWR_CTL" ,0x16A, 8, MD(5)},
203 {"PHY_PWR_DELAY" ,0x16B, 8, MD(5)},
204 {"OOB_SM_CON" ,0x16C, 8, MD(5)},
205 {"ADDR_TRAP_1" ,0x16D, 8, MD(5)},
206 {"ADDR_NEXT_1" ,0x16E, 8, MD(5)},
207 {"NEXT_ST_1" ,0x16F, 8, MD(5)},
208 {"OOB_SM_STATE" ,0x170, 8, MD(5)},
209 {"ADDR_TRAP_2" ,0x171, 8, MD(5)},
210 {"ADDR_NEXT_2" ,0x172, 8, MD(5)},
211 {"NEXT_ST_2" ,0x173, 8, MD(5)},
212 {NULL, 0, 0, 0 }
213};
214*/
215#define STR_8BIT " %30s[0x%04x]:0x%02x\n"
216#define STR_16BIT " %30s[0x%04x]:0x%04x\n"
217#define STR_32BIT " %30s[0x%04x]:0x%08x\n"
218#define STR_64BIT " %30s[0x%04x]:0x%llx\n"
219
220#define PRINT_REG_8bit(_ha, _n, _r) asd_printk(STR_8BIT, #_n, _n, \
221 asd_read_reg_byte(_ha, _r))
222#define PRINT_REG_16bit(_ha, _n, _r) asd_printk(STR_16BIT, #_n, _n, \
223 asd_read_reg_word(_ha, _r))
224#define PRINT_REG_32bit(_ha, _n, _r) asd_printk(STR_32BIT, #_n, _n, \
225 asd_read_reg_dword(_ha, _r))
226
227#define PRINT_CREG_8bit(_ha, _n) asd_printk(STR_8BIT, #_n, _n, \
228 asd_read_reg_byte(_ha, C##_n))
229#define PRINT_CREG_16bit(_ha, _n) asd_printk(STR_16BIT, #_n, _n, \
230 asd_read_reg_word(_ha, C##_n))
231#define PRINT_CREG_32bit(_ha, _n) asd_printk(STR_32BIT, #_n, _n, \
232 asd_read_reg_dword(_ha, C##_n))
233
234#define MSTR_8BIT " Mode:%02d %30s[0x%04x]:0x%02x\n"
235#define MSTR_16BIT " Mode:%02d %30s[0x%04x]:0x%04x\n"
236#define MSTR_32BIT " Mode:%02d %30s[0x%04x]:0x%08x\n"
237
238#define PRINT_MREG_8bit(_ha, _m, _n, _r) asd_printk(MSTR_8BIT, _m, #_n, _n, \
239 asd_read_reg_byte(_ha, _r))
240#define PRINT_MREG_16bit(_ha, _m, _n, _r) asd_printk(MSTR_16BIT, _m, #_n, _n, \
241 asd_read_reg_word(_ha, _r))
242#define PRINT_MREG_32bit(_ha, _m, _n, _r) asd_printk(MSTR_32BIT, _m, #_n, _n, \
243 asd_read_reg_dword(_ha, _r))
244
245/* can also be used for MD when the register is mode aware already */
246#define PRINT_MIS_byte(_ha, _n) asd_printk(STR_8BIT, #_n,CSEQ_##_n-CMAPPEDSCR,\
247 asd_read_reg_byte(_ha, CSEQ_##_n))
248#define PRINT_MIS_word(_ha, _n) asd_printk(STR_16BIT,#_n,CSEQ_##_n-CMAPPEDSCR,\
249 asd_read_reg_word(_ha, CSEQ_##_n))
250#define PRINT_MIS_dword(_ha, _n) \
251 asd_printk(STR_32BIT,#_n,CSEQ_##_n-CMAPPEDSCR,\
252 asd_read_reg_dword(_ha, CSEQ_##_n))
253#define PRINT_MIS_qword(_ha, _n) \
254 asd_printk(STR_64BIT, #_n,CSEQ_##_n-CMAPPEDSCR, \
255 (unsigned long long)(((u64)asd_read_reg_dword(_ha, CSEQ_##_n)) \
256 | (((u64)asd_read_reg_dword(_ha, (CSEQ_##_n)+4))<<32)))
257
258#define CMDP_REG(_n, _m) (_m*(CSEQ_PAGE_SIZE*2)+CSEQ_##_n)
259#define PRINT_CMDP_word(_ha, _n) \
260asd_printk("%20s 0x%04x 0x%04x 0x%04x 0x%04x 0x%04x 0x%04x 0x%04x 0x%04x\n", \
261 #_n, \
262 asd_read_reg_word(_ha, CMDP_REG(_n, 0)), \
263 asd_read_reg_word(_ha, CMDP_REG(_n, 1)), \
264 asd_read_reg_word(_ha, CMDP_REG(_n, 2)), \
265 asd_read_reg_word(_ha, CMDP_REG(_n, 3)), \
266 asd_read_reg_word(_ha, CMDP_REG(_n, 4)), \
267 asd_read_reg_word(_ha, CMDP_REG(_n, 5)), \
268 asd_read_reg_word(_ha, CMDP_REG(_n, 6)), \
269 asd_read_reg_word(_ha, CMDP_REG(_n, 7)))
270
271#define PRINT_CMDP_byte(_ha, _n) \
272asd_printk("%20s 0x%04x 0x%04x 0x%04x 0x%04x 0x%04x 0x%04x 0x%04x 0x%04x\n", \
273 #_n, \
274 asd_read_reg_byte(_ha, CMDP_REG(_n, 0)), \
275 asd_read_reg_byte(_ha, CMDP_REG(_n, 1)), \
276 asd_read_reg_byte(_ha, CMDP_REG(_n, 2)), \
277 asd_read_reg_byte(_ha, CMDP_REG(_n, 3)), \
278 asd_read_reg_byte(_ha, CMDP_REG(_n, 4)), \
279 asd_read_reg_byte(_ha, CMDP_REG(_n, 5)), \
280 asd_read_reg_byte(_ha, CMDP_REG(_n, 6)), \
281 asd_read_reg_byte(_ha, CMDP_REG(_n, 7)))
282
283static void asd_dump_cseq_state(struct asd_ha_struct *asd_ha)
284{
285 int mode;
286
287 asd_printk("CSEQ STATE\n");
288
289 asd_printk("ARP2 REGISTERS\n");
290
291 PRINT_CREG_32bit(asd_ha, ARP2CTL);
292 PRINT_CREG_32bit(asd_ha, ARP2INT);
293 PRINT_CREG_32bit(asd_ha, ARP2INTEN);
294 PRINT_CREG_8bit(asd_ha, MODEPTR);
295 PRINT_CREG_8bit(asd_ha, ALTMODE);
296 PRINT_CREG_8bit(asd_ha, FLAG);
297 PRINT_CREG_8bit(asd_ha, ARP2INTCTL);
298 PRINT_CREG_16bit(asd_ha, STACK);
299 PRINT_CREG_16bit(asd_ha, PRGMCNT);
300 PRINT_CREG_16bit(asd_ha, ACCUM);
301 PRINT_CREG_16bit(asd_ha, SINDEX);
302 PRINT_CREG_16bit(asd_ha, DINDEX);
303 PRINT_CREG_8bit(asd_ha, SINDIR);
304 PRINT_CREG_8bit(asd_ha, DINDIR);
305 PRINT_CREG_8bit(asd_ha, JUMLDIR);
306 PRINT_CREG_8bit(asd_ha, ARP2HALTCODE);
307 PRINT_CREG_16bit(asd_ha, CURRADDR);
308 PRINT_CREG_16bit(asd_ha, LASTADDR);
309 PRINT_CREG_16bit(asd_ha, NXTLADDR);
310
311 asd_printk("IOP REGISTERS\n");
312
313 PRINT_REG_32bit(asd_ha, BISTCTL1, CBISTCTL);
314 PRINT_CREG_32bit(asd_ha, MAPPEDSCR);
315
316 asd_printk("CIO REGISTERS\n");
317
318 for (mode = 0; mode < 9; mode++)
319 PRINT_MREG_16bit(asd_ha, mode, MnSCBPTR, CMnSCBPTR(mode));
320 PRINT_MREG_16bit(asd_ha, 15, MnSCBPTR, CMnSCBPTR(15));
321
322 for (mode = 0; mode < 9; mode++)
323 PRINT_MREG_16bit(asd_ha, mode, MnDDBPTR, CMnDDBPTR(mode));
324 PRINT_MREG_16bit(asd_ha, 15, MnDDBPTR, CMnDDBPTR(15));
325
326 for (mode = 0; mode < 8; mode++)
327 PRINT_MREG_32bit(asd_ha, mode, MnREQMBX, CMnREQMBX(mode));
328 for (mode = 0; mode < 8; mode++)
329 PRINT_MREG_32bit(asd_ha, mode, MnRSPMBX, CMnRSPMBX(mode));
330 for (mode = 0; mode < 8; mode++)
331 PRINT_MREG_32bit(asd_ha, mode, MnINT, CMnINT(mode));
332 for (mode = 0; mode < 8; mode++)
333 PRINT_MREG_32bit(asd_ha, mode, MnINTEN, CMnINTEN(mode));
334
335 PRINT_CREG_8bit(asd_ha, SCRATCHPAGE);
336 for (mode = 0; mode < 8; mode++)
337 PRINT_MREG_8bit(asd_ha, mode, MnSCRATCHPAGE,
338 CMnSCRATCHPAGE(mode));
339
340 PRINT_REG_32bit(asd_ha, CLINKCON, CLINKCON);
341 PRINT_REG_8bit(asd_ha, CCONMSK, CCONMSK);
342 PRINT_REG_8bit(asd_ha, CCONEXIST, CCONEXIST);
343 PRINT_REG_16bit(asd_ha, CCONMODE, CCONMODE);
344 PRINT_REG_32bit(asd_ha, CTIMERCALC, CTIMERCALC);
345 PRINT_REG_8bit(asd_ha, CINTDIS, CINTDIS);
346
347 asd_printk("SCRATCH MEMORY\n");
348
349 asd_printk("MIP 4 >>>>>\n");
350 PRINT_MIS_word(asd_ha, Q_EXE_HEAD);
351 PRINT_MIS_word(asd_ha, Q_EXE_TAIL);
352 PRINT_MIS_word(asd_ha, Q_DONE_HEAD);
353 PRINT_MIS_word(asd_ha, Q_DONE_TAIL);
354 PRINT_MIS_word(asd_ha, Q_SEND_HEAD);
355 PRINT_MIS_word(asd_ha, Q_SEND_TAIL);
356 PRINT_MIS_word(asd_ha, Q_DMA2CHIM_HEAD);
357 PRINT_MIS_word(asd_ha, Q_DMA2CHIM_TAIL);
358 PRINT_MIS_word(asd_ha, Q_COPY_HEAD);
359 PRINT_MIS_word(asd_ha, Q_COPY_TAIL);
360 PRINT_MIS_word(asd_ha, REG0);
361 PRINT_MIS_word(asd_ha, REG1);
362 PRINT_MIS_dword(asd_ha, REG2);
363 PRINT_MIS_byte(asd_ha, LINK_CTL_Q_MAP);
364 PRINT_MIS_byte(asd_ha, MAX_CSEQ_MODE);
365 PRINT_MIS_byte(asd_ha, FREE_LIST_HACK_COUNT);
366
367 asd_printk("MIP 5 >>>>\n");
368 PRINT_MIS_qword(asd_ha, EST_NEXUS_REQ_QUEUE);
369 PRINT_MIS_qword(asd_ha, EST_NEXUS_REQ_COUNT);
370 PRINT_MIS_word(asd_ha, Q_EST_NEXUS_HEAD);
371 PRINT_MIS_word(asd_ha, Q_EST_NEXUS_TAIL);
372 PRINT_MIS_word(asd_ha, NEED_EST_NEXUS_SCB);
373 PRINT_MIS_byte(asd_ha, EST_NEXUS_REQ_HEAD);
374 PRINT_MIS_byte(asd_ha, EST_NEXUS_REQ_TAIL);
375 PRINT_MIS_byte(asd_ha, EST_NEXUS_SCB_OFFSET);
376
377 asd_printk("MIP 6 >>>>\n");
378 PRINT_MIS_word(asd_ha, INT_ROUT_RET_ADDR0);
379 PRINT_MIS_word(asd_ha, INT_ROUT_RET_ADDR1);
380 PRINT_MIS_word(asd_ha, INT_ROUT_SCBPTR);
381 PRINT_MIS_byte(asd_ha, INT_ROUT_MODE);
382 PRINT_MIS_byte(asd_ha, ISR_SCRATCH_FLAGS);
383 PRINT_MIS_word(asd_ha, ISR_SAVE_SINDEX);
384 PRINT_MIS_word(asd_ha, ISR_SAVE_DINDEX);
385 PRINT_MIS_word(asd_ha, Q_MONIRTT_HEAD);
386 PRINT_MIS_word(asd_ha, Q_MONIRTT_TAIL);
387 PRINT_MIS_byte(asd_ha, FREE_SCB_MASK);
388 PRINT_MIS_word(asd_ha, BUILTIN_FREE_SCB_HEAD);
389 PRINT_MIS_word(asd_ha, BUILTIN_FREE_SCB_TAIL);
390 PRINT_MIS_word(asd_ha, EXTENDED_FREE_SCB_HEAD);
391 PRINT_MIS_word(asd_ha, EXTENDED_FREE_SCB_TAIL);
392
393 asd_printk("MIP 7 >>>>\n");
394 PRINT_MIS_qword(asd_ha, EMPTY_REQ_QUEUE);
395 PRINT_MIS_qword(asd_ha, EMPTY_REQ_COUNT);
396 PRINT_MIS_word(asd_ha, Q_EMPTY_HEAD);
397 PRINT_MIS_word(asd_ha, Q_EMPTY_TAIL);
398 PRINT_MIS_word(asd_ha, NEED_EMPTY_SCB);
399 PRINT_MIS_byte(asd_ha, EMPTY_REQ_HEAD);
400 PRINT_MIS_byte(asd_ha, EMPTY_REQ_TAIL);
401 PRINT_MIS_byte(asd_ha, EMPTY_SCB_OFFSET);
402 PRINT_MIS_word(asd_ha, PRIMITIVE_DATA);
403 PRINT_MIS_dword(asd_ha, TIMEOUT_CONST);
404
405 asd_printk("MDP 0 >>>>\n");
406 asd_printk("%-20s %6s %6s %6s %6s %6s %6s %6s %6s\n",
407 "Mode: ", "0", "1", "2", "3", "4", "5", "6", "7");
408 PRINT_CMDP_word(asd_ha, LRM_SAVE_SINDEX);
409 PRINT_CMDP_word(asd_ha, LRM_SAVE_SCBPTR);
410 PRINT_CMDP_word(asd_ha, Q_LINK_HEAD);
411 PRINT_CMDP_word(asd_ha, Q_LINK_TAIL);
412 PRINT_CMDP_byte(asd_ha, LRM_SAVE_SCRPAGE);
413
414 asd_printk("MDP 0 Mode 8 >>>>\n");
415 PRINT_MIS_word(asd_ha, RET_ADDR);
416 PRINT_MIS_word(asd_ha, RET_SCBPTR);
417 PRINT_MIS_word(asd_ha, SAVE_SCBPTR);
418 PRINT_MIS_word(asd_ha, EMPTY_TRANS_CTX);
419 PRINT_MIS_word(asd_ha, RESP_LEN);
420 PRINT_MIS_word(asd_ha, TMF_SCBPTR);
421 PRINT_MIS_word(asd_ha, GLOBAL_PREV_SCB);
422 PRINT_MIS_word(asd_ha, GLOBAL_HEAD);
423 PRINT_MIS_word(asd_ha, CLEAR_LU_HEAD);
424 PRINT_MIS_byte(asd_ha, TMF_OPCODE);
425 PRINT_MIS_byte(asd_ha, SCRATCH_FLAGS);
426 PRINT_MIS_word(asd_ha, HSB_SITE);
427 PRINT_MIS_word(asd_ha, FIRST_INV_SCB_SITE);
428 PRINT_MIS_word(asd_ha, FIRST_INV_DDB_SITE);
429
430 asd_printk("MDP 1 Mode 8 >>>>\n");
431 PRINT_MIS_qword(asd_ha, LUN_TO_CLEAR);
432 PRINT_MIS_qword(asd_ha, LUN_TO_CHECK);
433
434 asd_printk("MDP 2 Mode 8 >>>>\n");
435 PRINT_MIS_qword(asd_ha, HQ_NEW_POINTER);
436 PRINT_MIS_qword(asd_ha, HQ_DONE_BASE);
437 PRINT_MIS_dword(asd_ha, HQ_DONE_POINTER);
438 PRINT_MIS_byte(asd_ha, HQ_DONE_PASS);
439}
440
441#define PRINT_LREG_8bit(_h, _lseq, _n) \
442 asd_printk(STR_8BIT, #_n, _n, asd_read_reg_byte(_h, Lm##_n(_lseq)))
443#define PRINT_LREG_16bit(_h, _lseq, _n) \
444 asd_printk(STR_16BIT, #_n, _n, asd_read_reg_word(_h, Lm##_n(_lseq)))
445#define PRINT_LREG_32bit(_h, _lseq, _n) \
446 asd_printk(STR_32BIT, #_n, _n, asd_read_reg_dword(_h, Lm##_n(_lseq)))
447
448#define PRINT_LMIP_byte(_h, _lseq, _n) \
449 asd_printk(STR_8BIT, #_n, LmSEQ_##_n(_lseq)-LmSCRATCH(_lseq), \
450 asd_read_reg_byte(_h, LmSEQ_##_n(_lseq)))
451#define PRINT_LMIP_word(_h, _lseq, _n) \
452 asd_printk(STR_16BIT, #_n, LmSEQ_##_n(_lseq)-LmSCRATCH(_lseq), \
453 asd_read_reg_word(_h, LmSEQ_##_n(_lseq)))
454#define PRINT_LMIP_dword(_h, _lseq, _n) \
455 asd_printk(STR_32BIT, #_n, LmSEQ_##_n(_lseq)-LmSCRATCH(_lseq), \
456 asd_read_reg_dword(_h, LmSEQ_##_n(_lseq)))
457#define PRINT_LMIP_qword(_h, _lseq, _n) \
458 asd_printk(STR_64BIT, #_n, LmSEQ_##_n(_lseq)-LmSCRATCH(_lseq), \
459 (unsigned long long)(((unsigned long long) \
460 asd_read_reg_dword(_h, LmSEQ_##_n(_lseq))) \
461 | (((unsigned long long) \
462 asd_read_reg_dword(_h, LmSEQ_##_n(_lseq)+4))<<32)))
463
464static void asd_print_lseq_cio_reg(struct asd_ha_struct *asd_ha,
465 u32 lseq_cio_addr, int i)
466{
467 switch (LSEQmCIOREGS[i].width) {
468 case 8:
469 asd_printk("%20s[0x%x]: 0x%02x\n", LSEQmCIOREGS[i].name,
470 LSEQmCIOREGS[i].offs,
471 asd_read_reg_byte(asd_ha, lseq_cio_addr +
472 LSEQmCIOREGS[i].offs));
473
474 break;
475 case 16:
476 asd_printk("%20s[0x%x]: 0x%04x\n", LSEQmCIOREGS[i].name,
477 LSEQmCIOREGS[i].offs,
478 asd_read_reg_word(asd_ha, lseq_cio_addr +
479 LSEQmCIOREGS[i].offs));
480
481 break;
482 case 32:
483 asd_printk("%20s[0x%x]: 0x%08x\n", LSEQmCIOREGS[i].name,
484 LSEQmCIOREGS[i].offs,
485 asd_read_reg_dword(asd_ha, lseq_cio_addr +
486 LSEQmCIOREGS[i].offs));
487 break;
488 }
489}
490
491static void asd_dump_lseq_state(struct asd_ha_struct *asd_ha, int lseq)
492{
493 u32 moffs;
494 int mode;
495
496 asd_printk("LSEQ %d STATE\n", lseq);
497
498 asd_printk("LSEQ%d: ARP2 REGISTERS\n", lseq);
499 PRINT_LREG_32bit(asd_ha, lseq, ARP2CTL);
500 PRINT_LREG_32bit(asd_ha, lseq, ARP2INT);
501 PRINT_LREG_32bit(asd_ha, lseq, ARP2INTEN);
502 PRINT_LREG_8bit(asd_ha, lseq, MODEPTR);
503 PRINT_LREG_8bit(asd_ha, lseq, ALTMODE);
504 PRINT_LREG_8bit(asd_ha, lseq, FLAG);
505 PRINT_LREG_8bit(asd_ha, lseq, ARP2INTCTL);
506 PRINT_LREG_16bit(asd_ha, lseq, STACK);
507 PRINT_LREG_16bit(asd_ha, lseq, PRGMCNT);
508 PRINT_LREG_16bit(asd_ha, lseq, ACCUM);
509 PRINT_LREG_16bit(asd_ha, lseq, SINDEX);
510 PRINT_LREG_16bit(asd_ha, lseq, DINDEX);
511 PRINT_LREG_8bit(asd_ha, lseq, SINDIR);
512 PRINT_LREG_8bit(asd_ha, lseq, DINDIR);
513 PRINT_LREG_8bit(asd_ha, lseq, JUMLDIR);
514 PRINT_LREG_8bit(asd_ha, lseq, ARP2HALTCODE);
515 PRINT_LREG_16bit(asd_ha, lseq, CURRADDR);
516 PRINT_LREG_16bit(asd_ha, lseq, LASTADDR);
517 PRINT_LREG_16bit(asd_ha, lseq, NXTLADDR);
518
519 asd_printk("LSEQ%d: IOP REGISTERS\n", lseq);
520
521 PRINT_LREG_32bit(asd_ha, lseq, MODECTL);
522 PRINT_LREG_32bit(asd_ha, lseq, DBGMODE);
523 PRINT_LREG_32bit(asd_ha, lseq, CONTROL);
524 PRINT_REG_32bit(asd_ha, BISTCTL0, LmBISTCTL0(lseq));
525 PRINT_REG_32bit(asd_ha, BISTCTL1, LmBISTCTL1(lseq));
526
527 asd_printk("LSEQ%d: CIO REGISTERS\n", lseq);
528 asd_printk("Mode common:\n");
529
530 for (mode = 0; mode < 8; mode++) {
531 u32 lseq_cio_addr = LmSEQ_PHY_BASE(mode, lseq);
532 int i;
533
534 for (i = 0; LSEQmCIOREGS[i].name; i++)
535 if (LSEQmCIOREGS[i].mode == MODE_COMMON)
536 asd_print_lseq_cio_reg(asd_ha,lseq_cio_addr,i);
537 }
538
539 asd_printk("Mode unique:\n");
540 for (mode = 0; mode < 8; mode++) {
541 u32 lseq_cio_addr = LmSEQ_PHY_BASE(mode, lseq);
542 int i;
543
544 asd_printk("Mode %d\n", mode);
545 for (i = 0; LSEQmCIOREGS[i].name; i++) {
546 if (!(LSEQmCIOREGS[i].mode & (1 << mode)))
547 continue;
548 asd_print_lseq_cio_reg(asd_ha, lseq_cio_addr, i);
549 }
550 }
551
552 asd_printk("SCRATCH MEMORY\n");
553
554 asd_printk("LSEQ%d MIP 0 >>>>\n", lseq);
555 PRINT_LMIP_word(asd_ha, lseq, Q_TGTXFR_HEAD);
556 PRINT_LMIP_word(asd_ha, lseq, Q_TGTXFR_TAIL);
557 PRINT_LMIP_byte(asd_ha, lseq, LINK_NUMBER);
558 PRINT_LMIP_byte(asd_ha, lseq, SCRATCH_FLAGS);
559 PRINT_LMIP_qword(asd_ha, lseq, CONNECTION_STATE);
560 PRINT_LMIP_word(asd_ha, lseq, CONCTL);
561 PRINT_LMIP_byte(asd_ha, lseq, CONSTAT);
562 PRINT_LMIP_byte(asd_ha, lseq, CONNECTION_MODES);
563 PRINT_LMIP_word(asd_ha, lseq, REG1_ISR);
564 PRINT_LMIP_word(asd_ha, lseq, REG2_ISR);
565 PRINT_LMIP_word(asd_ha, lseq, REG3_ISR);
566 PRINT_LMIP_qword(asd_ha, lseq,REG0_ISR);
567
568 asd_printk("LSEQ%d MIP 1 >>>>\n", lseq);
569 PRINT_LMIP_word(asd_ha, lseq, EST_NEXUS_SCBPTR0);
570 PRINT_LMIP_word(asd_ha, lseq, EST_NEXUS_SCBPTR1);
571 PRINT_LMIP_word(asd_ha, lseq, EST_NEXUS_SCBPTR2);
572 PRINT_LMIP_word(asd_ha, lseq, EST_NEXUS_SCBPTR3);
573 PRINT_LMIP_byte(asd_ha, lseq, EST_NEXUS_SCB_OPCODE0);
574 PRINT_LMIP_byte(asd_ha, lseq, EST_NEXUS_SCB_OPCODE1);
575 PRINT_LMIP_byte(asd_ha, lseq, EST_NEXUS_SCB_OPCODE2);
576 PRINT_LMIP_byte(asd_ha, lseq, EST_NEXUS_SCB_OPCODE3);
577 PRINT_LMIP_byte(asd_ha, lseq, EST_NEXUS_SCB_HEAD);
578 PRINT_LMIP_byte(asd_ha, lseq, EST_NEXUS_SCB_TAIL);
579 PRINT_LMIP_byte(asd_ha, lseq, EST_NEXUS_BUF_AVAIL);
580 PRINT_LMIP_dword(asd_ha, lseq, TIMEOUT_CONST);
581 PRINT_LMIP_word(asd_ha, lseq, ISR_SAVE_SINDEX);
582 PRINT_LMIP_word(asd_ha, lseq, ISR_SAVE_DINDEX);
583
584 asd_printk("LSEQ%d MIP 2 >>>>\n", lseq);
585 PRINT_LMIP_word(asd_ha, lseq, EMPTY_SCB_PTR0);
586 PRINT_LMIP_word(asd_ha, lseq, EMPTY_SCB_PTR1);
587 PRINT_LMIP_word(asd_ha, lseq, EMPTY_SCB_PTR2);
588 PRINT_LMIP_word(asd_ha, lseq, EMPTY_SCB_PTR3);
589 PRINT_LMIP_byte(asd_ha, lseq, EMPTY_SCB_OPCD0);
590 PRINT_LMIP_byte(asd_ha, lseq, EMPTY_SCB_OPCD1);
591 PRINT_LMIP_byte(asd_ha, lseq, EMPTY_SCB_OPCD2);
592 PRINT_LMIP_byte(asd_ha, lseq, EMPTY_SCB_OPCD3);
593 PRINT_LMIP_byte(asd_ha, lseq, EMPTY_SCB_HEAD);
594 PRINT_LMIP_byte(asd_ha, lseq, EMPTY_SCB_TAIL);
595 PRINT_LMIP_byte(asd_ha, lseq, EMPTY_BUFS_AVAIL);
596
597 asd_printk("LSEQ%d MIP 3 >>>>\n", lseq);
598 PRINT_LMIP_dword(asd_ha, lseq, DEV_PRES_TMR_TOUT_CONST);
599 PRINT_LMIP_dword(asd_ha, lseq, SATA_INTERLOCK_TIMEOUT);
600 PRINT_LMIP_dword(asd_ha, lseq, SRST_ASSERT_TIMEOUT);
601 PRINT_LMIP_dword(asd_ha, lseq, RCV_FIS_TIMEOUT);
602 PRINT_LMIP_dword(asd_ha, lseq, ONE_MILLISEC_TIMEOUT);
603 PRINT_LMIP_dword(asd_ha, lseq, TEN_MS_COMINIT_TIMEOUT);
604 PRINT_LMIP_dword(asd_ha, lseq, SMP_RCV_TIMEOUT);
605
606 for (mode = 0; mode < 3; mode++) {
607 asd_printk("LSEQ%d MDP 0 MODE %d >>>>\n", lseq, mode);
608 moffs = mode * LSEQ_MODE_SCRATCH_SIZE;
609
610 asd_printk(STR_16BIT, "RET_ADDR", 0,
611 asd_read_reg_word(asd_ha, LmSEQ_RET_ADDR(lseq)
612 + moffs));
613 asd_printk(STR_16BIT, "REG0_MODE", 2,
614 asd_read_reg_word(asd_ha, LmSEQ_REG0_MODE(lseq)
615 + moffs));
616 asd_printk(STR_16BIT, "MODE_FLAGS", 4,
617 asd_read_reg_word(asd_ha, LmSEQ_MODE_FLAGS(lseq)
618 + moffs));
619 asd_printk(STR_16BIT, "RET_ADDR2", 0x6,
620 asd_read_reg_word(asd_ha, LmSEQ_RET_ADDR2(lseq)
621 + moffs));
622 asd_printk(STR_16BIT, "RET_ADDR1", 0x8,
623 asd_read_reg_word(asd_ha, LmSEQ_RET_ADDR1(lseq)
624 + moffs));
625 asd_printk(STR_8BIT, "OPCODE_TO_CSEQ", 0xB,
626 asd_read_reg_byte(asd_ha, LmSEQ_OPCODE_TO_CSEQ(lseq)
627 + moffs));
628 asd_printk(STR_16BIT, "DATA_TO_CSEQ", 0xC,
629 asd_read_reg_word(asd_ha, LmSEQ_DATA_TO_CSEQ(lseq)
630 + moffs));
631 }
632
633 asd_printk("LSEQ%d MDP 0 MODE 5 >>>>\n", lseq);
634 moffs = LSEQ_MODE5_PAGE0_OFFSET;
635 asd_printk(STR_16BIT, "RET_ADDR", 0,
636 asd_read_reg_word(asd_ha, LmSEQ_RET_ADDR(lseq) + moffs));
637 asd_printk(STR_16BIT, "REG0_MODE", 2,
638 asd_read_reg_word(asd_ha, LmSEQ_REG0_MODE(lseq) + moffs));
639 asd_printk(STR_16BIT, "MODE_FLAGS", 4,
640 asd_read_reg_word(asd_ha, LmSEQ_MODE_FLAGS(lseq) + moffs));
641 asd_printk(STR_16BIT, "RET_ADDR2", 0x6,
642 asd_read_reg_word(asd_ha, LmSEQ_RET_ADDR2(lseq) + moffs));
643 asd_printk(STR_16BIT, "RET_ADDR1", 0x8,
644 asd_read_reg_word(asd_ha, LmSEQ_RET_ADDR1(lseq) + moffs));
645 asd_printk(STR_8BIT, "OPCODE_TO_CSEQ", 0xB,
646 asd_read_reg_byte(asd_ha, LmSEQ_OPCODE_TO_CSEQ(lseq) + moffs));
647 asd_printk(STR_16BIT, "DATA_TO_CSEQ", 0xC,
648 asd_read_reg_word(asd_ha, LmSEQ_DATA_TO_CSEQ(lseq) + moffs));
649
650 asd_printk("LSEQ%d MDP 0 MODE 0 >>>>\n", lseq);
651 PRINT_LMIP_word(asd_ha, lseq, FIRST_INV_DDB_SITE);
652 PRINT_LMIP_word(asd_ha, lseq, EMPTY_TRANS_CTX);
653 PRINT_LMIP_word(asd_ha, lseq, RESP_LEN);
654 PRINT_LMIP_word(asd_ha, lseq, FIRST_INV_SCB_SITE);
655 PRINT_LMIP_dword(asd_ha, lseq, INTEN_SAVE);
656 PRINT_LMIP_byte(asd_ha, lseq, LINK_RST_FRM_LEN);
657 PRINT_LMIP_byte(asd_ha, lseq, LINK_RST_PROTOCOL);
658 PRINT_LMIP_byte(asd_ha, lseq, RESP_STATUS);
659 PRINT_LMIP_byte(asd_ha, lseq, LAST_LOADED_SGE);
660 PRINT_LMIP_byte(asd_ha, lseq, SAVE_SCBPTR);
661
662 asd_printk("LSEQ%d MDP 0 MODE 1 >>>>\n", lseq);
663 PRINT_LMIP_word(asd_ha, lseq, Q_XMIT_HEAD);
664 PRINT_LMIP_word(asd_ha, lseq, M1_EMPTY_TRANS_CTX);
665 PRINT_LMIP_word(asd_ha, lseq, INI_CONN_TAG);
666 PRINT_LMIP_byte(asd_ha, lseq, FAILED_OPEN_STATUS);
667 PRINT_LMIP_byte(asd_ha, lseq, XMIT_REQUEST_TYPE);
668 PRINT_LMIP_byte(asd_ha, lseq, M1_RESP_STATUS);
669 PRINT_LMIP_byte(asd_ha, lseq, M1_LAST_LOADED_SGE);
670 PRINT_LMIP_word(asd_ha, lseq, M1_SAVE_SCBPTR);
671
672 asd_printk("LSEQ%d MDP 0 MODE 2 >>>>\n", lseq);
673 PRINT_LMIP_word(asd_ha, lseq, PORT_COUNTER);
674 PRINT_LMIP_word(asd_ha, lseq, PM_TABLE_PTR);
675 PRINT_LMIP_word(asd_ha, lseq, SATA_INTERLOCK_TMR_SAVE);
676 PRINT_LMIP_word(asd_ha, lseq, IP_BITL);
677 PRINT_LMIP_word(asd_ha, lseq, COPY_SMP_CONN_TAG);
678 PRINT_LMIP_byte(asd_ha, lseq, P0M2_OFFS1AH);
679
680 asd_printk("LSEQ%d MDP 0 MODE 4/5 >>>>\n", lseq);
681 PRINT_LMIP_byte(asd_ha, lseq, SAVED_OOB_STATUS);
682 PRINT_LMIP_byte(asd_ha, lseq, SAVED_OOB_MODE);
683 PRINT_LMIP_word(asd_ha, lseq, Q_LINK_HEAD);
684 PRINT_LMIP_byte(asd_ha, lseq, LINK_RST_ERR);
685 PRINT_LMIP_byte(asd_ha, lseq, SAVED_OOB_SIGNALS);
686 PRINT_LMIP_byte(asd_ha, lseq, SAS_RESET_MODE);
687 PRINT_LMIP_byte(asd_ha, lseq, LINK_RESET_RETRY_COUNT);
688 PRINT_LMIP_byte(asd_ha, lseq, NUM_LINK_RESET_RETRIES);
689 PRINT_LMIP_word(asd_ha, lseq, OOB_INT_ENABLES);
690 PRINT_LMIP_word(asd_ha, lseq, NOTIFY_TIMER_TIMEOUT);
691 PRINT_LMIP_word(asd_ha, lseq, NOTIFY_TIMER_DOWN_COUNT);
692
693 asd_printk("LSEQ%d MDP 1 MODE 0 >>>>\n", lseq);
694 PRINT_LMIP_qword(asd_ha, lseq, SG_LIST_PTR_ADDR0);
695 PRINT_LMIP_qword(asd_ha, lseq, SG_LIST_PTR_ADDR1);
696
697 asd_printk("LSEQ%d MDP 1 MODE 1 >>>>\n", lseq);
698 PRINT_LMIP_qword(asd_ha, lseq, M1_SG_LIST_PTR_ADDR0);
699 PRINT_LMIP_qword(asd_ha, lseq, M1_SG_LIST_PTR_ADDR1);
700
701 asd_printk("LSEQ%d MDP 1 MODE 2 >>>>\n", lseq);
702 PRINT_LMIP_dword(asd_ha, lseq, INVALID_DWORD_COUNT);
703 PRINT_LMIP_dword(asd_ha, lseq, DISPARITY_ERROR_COUNT);
704 PRINT_LMIP_dword(asd_ha, lseq, LOSS_OF_SYNC_COUNT);
705
706 asd_printk("LSEQ%d MDP 1 MODE 4/5 >>>>\n", lseq);
707 PRINT_LMIP_dword(asd_ha, lseq, FRAME_TYPE_MASK);
708 PRINT_LMIP_dword(asd_ha, lseq, HASHED_SRC_ADDR_MASK_PRINT);
709 PRINT_LMIP_byte(asd_ha, lseq, NUM_FILL_BYTES_MASK);
710 PRINT_LMIP_word(asd_ha, lseq, TAG_MASK);
711 PRINT_LMIP_word(asd_ha, lseq, TARGET_PORT_XFER_TAG);
712 PRINT_LMIP_dword(asd_ha, lseq, DATA_OFFSET);
713
714 asd_printk("LSEQ%d MDP 2 MODE 0 >>>>\n", lseq);
715 PRINT_LMIP_dword(asd_ha, lseq, SMP_RCV_TIMER_TERM_TS);
716 PRINT_LMIP_byte(asd_ha, lseq, DEVICE_BITS);
717 PRINT_LMIP_word(asd_ha, lseq, SDB_DDB);
718 PRINT_LMIP_word(asd_ha, lseq, SDB_NUM_TAGS);
719 PRINT_LMIP_word(asd_ha, lseq, SDB_CURR_TAG);
720
721 asd_printk("LSEQ%d MDP 2 MODE 1 >>>>\n", lseq);
722 PRINT_LMIP_qword(asd_ha, lseq, TX_ID_ADDR_FRAME);
723 PRINT_LMIP_dword(asd_ha, lseq, OPEN_TIMER_TERM_TS);
724 PRINT_LMIP_dword(asd_ha, lseq, SRST_AS_TIMER_TERM_TS);
725 PRINT_LMIP_dword(asd_ha, lseq, LAST_LOADED_SG_EL);
726
727 asd_printk("LSEQ%d MDP 2 MODE 2 >>>>\n", lseq);
728 PRINT_LMIP_dword(asd_ha, lseq, CLOSE_TIMER_TERM_TS);
729 PRINT_LMIP_dword(asd_ha, lseq, BREAK_TIMER_TERM_TS);
730 PRINT_LMIP_dword(asd_ha, lseq, DWS_RESET_TIMER_TERM_TS);
731 PRINT_LMIP_dword(asd_ha, lseq, SATA_INTERLOCK_TIMER_TERM_TS);
732 PRINT_LMIP_dword(asd_ha, lseq, MCTL_TIMER_TERM_TS);
733
734 asd_printk("LSEQ%d MDP 2 MODE 4/5 >>>>\n", lseq);
735 PRINT_LMIP_dword(asd_ha, lseq, COMINIT_TIMER_TERM_TS);
736 PRINT_LMIP_dword(asd_ha, lseq, RCV_ID_TIMER_TERM_TS);
737 PRINT_LMIP_dword(asd_ha, lseq, RCV_FIS_TIMER_TERM_TS);
738 PRINT_LMIP_dword(asd_ha, lseq, DEV_PRES_TIMER_TERM_TS);
739}
740
741/**
742 * asd_dump_ddb_site -- dump a CSEQ DDB site
743 * @asd_ha: pointer to host adapter structure
744 * @site_no: site number of interest
745 */
746void asd_dump_target_ddb(struct asd_ha_struct *asd_ha, u16 site_no)
747{
748 if (site_no >= asd_ha->hw_prof.max_ddbs)
749 return;
750
751#define DDB_FIELDB(__name) \
752 asd_ddbsite_read_byte(asd_ha, site_no, \
753 offsetof(struct asd_ddb_ssp_smp_target_port, __name))
754#define DDB2_FIELDB(__name) \
755 asd_ddbsite_read_byte(asd_ha, site_no, \
756 offsetof(struct asd_ddb_stp_sata_target_port, __name))
757#define DDB_FIELDW(__name) \
758 asd_ddbsite_read_word(asd_ha, site_no, \
759 offsetof(struct asd_ddb_ssp_smp_target_port, __name))
760
761#define DDB_FIELDD(__name) \
762 asd_ddbsite_read_dword(asd_ha, site_no, \
763 offsetof(struct asd_ddb_ssp_smp_target_port, __name))
764
765 asd_printk("DDB: 0x%02x\n", site_no);
766 asd_printk("conn_type: 0x%02x\n", DDB_FIELDB(conn_type));
767 asd_printk("conn_rate: 0x%02x\n", DDB_FIELDB(conn_rate));
768 asd_printk("init_conn_tag: 0x%04x\n", be16_to_cpu(DDB_FIELDW(init_conn_tag)));
769 asd_printk("send_queue_head: 0x%04x\n", be16_to_cpu(DDB_FIELDW(send_queue_head)));
770 asd_printk("sq_suspended: 0x%02x\n", DDB_FIELDB(sq_suspended));
771 asd_printk("DDB Type: 0x%02x\n", DDB_FIELDB(ddb_type));
772 asd_printk("AWT Default: 0x%04x\n", DDB_FIELDW(awt_def));
773 asd_printk("compat_features: 0x%02x\n", DDB_FIELDB(compat_features));
774 asd_printk("Pathway Blocked Count: 0x%02x\n",
775 DDB_FIELDB(pathway_blocked_count));
776 asd_printk("arb_wait_time: 0x%04x\n", DDB_FIELDW(arb_wait_time));
777 asd_printk("more_compat_features: 0x%08x\n",
778 DDB_FIELDD(more_compat_features));
779 asd_printk("Conn Mask: 0x%02x\n", DDB_FIELDB(conn_mask));
780 asd_printk("flags: 0x%02x\n", DDB_FIELDB(flags));
781 asd_printk("flags2: 0x%02x\n", DDB2_FIELDB(flags2));
782 asd_printk("ExecQ Tail: 0x%04x\n",DDB_FIELDW(exec_queue_tail));
783 asd_printk("SendQ Tail: 0x%04x\n",DDB_FIELDW(send_queue_tail));
784 asd_printk("Active Task Count: 0x%04x\n",
785 DDB_FIELDW(active_task_count));
786 asd_printk("ITNL Reason: 0x%02x\n", DDB_FIELDB(itnl_reason));
787 asd_printk("ITNL Timeout Const: 0x%04x\n", DDB_FIELDW(itnl_timeout));
788 asd_printk("ITNL timestamp: 0x%08x\n", DDB_FIELDD(itnl_timestamp));
789}
790
791void asd_dump_ddb_0(struct asd_ha_struct *asd_ha)
792{
793#define DDB0_FIELDB(__name) \
794 asd_ddbsite_read_byte(asd_ha, 0, \
795 offsetof(struct asd_ddb_seq_shared, __name))
796#define DDB0_FIELDW(__name) \
797 asd_ddbsite_read_word(asd_ha, 0, \
798 offsetof(struct asd_ddb_seq_shared, __name))
799
800#define DDB0_FIELDD(__name) \
801 asd_ddbsite_read_dword(asd_ha,0 , \
802 offsetof(struct asd_ddb_seq_shared, __name))
803
804#define DDB0_FIELDA(__name, _o) \
805 asd_ddbsite_read_byte(asd_ha, 0, \
806 offsetof(struct asd_ddb_seq_shared, __name)+_o)
807
808
809 asd_printk("DDB: 0\n");
810 asd_printk("q_free_ddb_head:%04x\n", DDB0_FIELDW(q_free_ddb_head));
811 asd_printk("q_free_ddb_tail:%04x\n", DDB0_FIELDW(q_free_ddb_tail));
812 asd_printk("q_free_ddb_cnt:%04x\n", DDB0_FIELDW(q_free_ddb_cnt));
813 asd_printk("q_used_ddb_head:%04x\n", DDB0_FIELDW(q_used_ddb_head));
814 asd_printk("q_used_ddb_tail:%04x\n", DDB0_FIELDW(q_used_ddb_tail));
815 asd_printk("shared_mem_lock:%04x\n", DDB0_FIELDW(shared_mem_lock));
816 asd_printk("smp_conn_tag:%04x\n", DDB0_FIELDW(smp_conn_tag));
817 asd_printk("est_nexus_buf_cnt:%04x\n", DDB0_FIELDW(est_nexus_buf_cnt));
818 asd_printk("est_nexus_buf_thresh:%04x\n",
819 DDB0_FIELDW(est_nexus_buf_thresh));
820 asd_printk("conn_not_active:%02x\n", DDB0_FIELDB(conn_not_active));
821 asd_printk("phy_is_up:%02x\n", DDB0_FIELDB(phy_is_up));
822 asd_printk("port_map_by_links:%02x %02x %02x %02x "
823 "%02x %02x %02x %02x\n",
824 DDB0_FIELDA(port_map_by_links, 0),
825 DDB0_FIELDA(port_map_by_links, 1),
826 DDB0_FIELDA(port_map_by_links, 2),
827 DDB0_FIELDA(port_map_by_links, 3),
828 DDB0_FIELDA(port_map_by_links, 4),
829 DDB0_FIELDA(port_map_by_links, 5),
830 DDB0_FIELDA(port_map_by_links, 6),
831 DDB0_FIELDA(port_map_by_links, 7));
832}
833
834static void asd_dump_scb_site(struct asd_ha_struct *asd_ha, u16 site_no)
835{
836
837#define SCB_FIELDB(__name) \
838 asd_scbsite_read_byte(asd_ha, site_no, sizeof(struct scb_header) \
839 + offsetof(struct initiate_ssp_task, __name))
840#define SCB_FIELDW(__name) \
841 asd_scbsite_read_word(asd_ha, site_no, sizeof(struct scb_header) \
842 + offsetof(struct initiate_ssp_task, __name))
843#define SCB_FIELDD(__name) \
844 asd_scbsite_read_dword(asd_ha, site_no, sizeof(struct scb_header) \
845 + offsetof(struct initiate_ssp_task, __name))
846
847 asd_printk("Total Xfer Len: 0x%08x.\n", SCB_FIELDD(total_xfer_len));
848 asd_printk("Frame Type: 0x%02x.\n", SCB_FIELDB(ssp_frame.frame_type));
849 asd_printk("Tag: 0x%04x.\n", SCB_FIELDW(ssp_frame.tag));
850 asd_printk("Target Port Xfer Tag: 0x%04x.\n",
851 SCB_FIELDW(ssp_frame.tptt));
852 asd_printk("Data Offset: 0x%08x.\n", SCB_FIELDW(ssp_frame.data_offs));
853 asd_printk("Retry Count: 0x%02x.\n", SCB_FIELDB(retry_count));
854}
855
856/**
857 * asd_dump_scb_sites -- dump currently used CSEQ SCB sites
858 * @asd_ha: pointer to host adapter struct
859 */
860void asd_dump_scb_sites(struct asd_ha_struct *asd_ha)
861{
862 u16 site_no;
863
864 for (site_no = 0; site_no < asd_ha->hw_prof.max_scbs; site_no++) {
865 u8 opcode;
866
867 if (!SCB_SITE_VALID(site_no))
868 continue;
869
870 /* We are only interested in SCB sites currently used.
871 */
872 opcode = asd_scbsite_read_byte(asd_ha, site_no,
873 offsetof(struct scb_header,
874 opcode));
875 if (opcode == 0xFF)
876 continue;
877
878 asd_printk("\nSCB: 0x%x\n", site_no);
879 asd_dump_scb_site(asd_ha, site_no);
880 }
881}
882
883/**
884 * ads_dump_seq_state -- dump CSEQ and LSEQ states
885 * @asd_ha: pointer to host adapter structure
886 * @lseq_mask: mask of LSEQs of interest
887 */
888void asd_dump_seq_state(struct asd_ha_struct *asd_ha, u8 lseq_mask)
889{
890 int lseq;
891
892 asd_dump_cseq_state(asd_ha);
893
894 if (lseq_mask != 0)
895 for_each_sequencer(lseq_mask, lseq_mask, lseq)
896 asd_dump_lseq_state(asd_ha, lseq);
897}
898
899void asd_dump_frame_rcvd(struct asd_phy *phy,
900 struct done_list_struct *dl)
901{
902 unsigned long flags;
903 int i;
904
905 switch ((dl->status_block[1] & 0x70) >> 3) {
906 case SAS_PROTO_STP:
907 ASD_DPRINTK("STP proto device-to-host FIS:\n");
908 break;
909 default:
910 case SAS_PROTO_SSP:
911 ASD_DPRINTK("SAS proto IDENTIFY:\n");
912 break;
913 }
914 spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
915 for (i = 0; i < phy->sas_phy.frame_rcvd_size; i+=4)
916 ASD_DPRINTK("%02x: %02x %02x %02x %02x\n",
917 i,
918 phy->frame_rcvd[i],
919 phy->frame_rcvd[i+1],
920 phy->frame_rcvd[i+2],
921 phy->frame_rcvd[i+3]);
922 spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
923}
924
925static inline void asd_dump_scb(struct asd_ascb *ascb, int ind)
926{
927 asd_printk("scb%d: vaddr: 0x%p, dma_handle: 0x%llx, next: 0x%llx, "
928 "index:%d, opcode:0x%02x\n",
929 ind, ascb->dma_scb.vaddr,
930 (unsigned long long)ascb->dma_scb.dma_handle,
931 (unsigned long long)
932 le64_to_cpu(ascb->scb->header.next_scb),
933 le16_to_cpu(ascb->scb->header.index),
934 ascb->scb->header.opcode);
935}
936
937void asd_dump_scb_list(struct asd_ascb *ascb, int num)
938{
939 int i = 0;
940
941 asd_printk("dumping %d scbs:\n", num);
942
943 asd_dump_scb(ascb, i++);
944 --num;
945
946 if (num > 0 && !list_empty(&ascb->list)) {
947 struct list_head *el;
948
949 list_for_each(el, &ascb->list) {
950 struct asd_ascb *s = list_entry(el, struct asd_ascb,
951 list);
952 asd_dump_scb(s, i++);
953 if (--num <= 0)
954 break;
955 }
956 }
957}
958
959#endif /* ASD_DEBUG */
diff --git a/drivers/scsi/aic94xx/aic94xx_dump.h b/drivers/scsi/aic94xx/aic94xx_dump.h
new file mode 100644
index 000000000000..0c388e7da6bb
--- /dev/null
+++ b/drivers/scsi/aic94xx/aic94xx_dump.h
@@ -0,0 +1,52 @@
1/*
2 * Aic94xx SAS/SATA driver dump header file.
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This file is part of the aic94xx driver.
10 *
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
14 * License.
15 *
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 *
25 */
26
27#ifndef _AIC94XX_DUMP_H_
28#define _AIC94XX_DUMP_H_
29
30#ifdef ASD_DEBUG
31
32void asd_dump_ddb_0(struct asd_ha_struct *asd_ha);
33void asd_dump_target_ddb(struct asd_ha_struct *asd_ha, u16 site_no);
34void asd_dump_scb_sites(struct asd_ha_struct *asd_ha);
35void asd_dump_seq_state(struct asd_ha_struct *asd_ha, u8 lseq_mask);
36void asd_dump_frame_rcvd(struct asd_phy *phy,
37 struct done_list_struct *dl);
38void asd_dump_scb_list(struct asd_ascb *ascb, int num);
39#else /* ASD_DEBUG */
40
41static inline void asd_dump_ddb_0(struct asd_ha_struct *asd_ha) { }
42static inline void asd_dump_target_ddb(struct asd_ha_struct *asd_ha,
43 u16 site_no) { }
44static inline void asd_dump_scb_sites(struct asd_ha_struct *asd_ha) { }
45static inline void asd_dump_seq_state(struct asd_ha_struct *asd_ha,
46 u8 lseq_mask) { }
47static inline void asd_dump_frame_rcvd(struct asd_phy *phy,
48 struct done_list_struct *dl) { }
49static inline void asd_dump_scb_list(struct asd_ascb *ascb, int num) { }
50#endif /* ASD_DEBUG */
51
52#endif /* _AIC94XX_DUMP_H_ */
diff --git a/drivers/scsi/aic94xx/aic94xx_hwi.c b/drivers/scsi/aic94xx/aic94xx_hwi.c
new file mode 100644
index 000000000000..075cea85b56b
--- /dev/null
+++ b/drivers/scsi/aic94xx/aic94xx_hwi.c
@@ -0,0 +1,1376 @@
1/*
2 * Aic94xx SAS/SATA driver hardware interface.
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This file is part of the aic94xx driver.
10 *
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
14 * License.
15 *
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 *
25 */
26
27#include <linux/pci.h>
28#include <linux/delay.h>
29#include <linux/module.h>
30
31#include "aic94xx.h"
32#include "aic94xx_reg.h"
33#include "aic94xx_hwi.h"
34#include "aic94xx_seq.h"
35#include "aic94xx_dump.h"
36
37u32 MBAR0_SWB_SIZE;
38
39/* ---------- Initialization ---------- */
40
41static void asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
42{
43 extern char sas_addr_str[];
44 /* If the user has specified a WWN it overrides other settings
45 */
46 if (sas_addr_str[0] != '\0')
47 asd_destringify_sas_addr(asd_ha->hw_prof.sas_addr,
48 sas_addr_str);
49 else if (asd_ha->hw_prof.sas_addr[0] != 0)
50 asd_stringify_sas_addr(sas_addr_str, asd_ha->hw_prof.sas_addr);
51}
52
53static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
54{
55 int i;
56
57 for (i = 0; i < ASD_MAX_PHYS; i++) {
58 if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
59 continue;
60 /* Set a phy's address only if it has none.
61 */
62 ASD_DPRINTK("setting phy%d addr to %llx\n", i,
63 SAS_ADDR(asd_ha->hw_prof.sas_addr));
64 memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
65 asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
66 }
67}
68
69/* ---------- PHY initialization ---------- */
70
71static void asd_init_phy_identify(struct asd_phy *phy)
72{
73 phy->identify_frame = phy->id_frm_tok->vaddr;
74
75 memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));
76
77 phy->identify_frame->dev_type = SAS_END_DEV;
78 if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
79 phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
80 if (phy->sas_phy.role & PHY_ROLE_TARGET)
81 phy->identify_frame->target_bits = phy->sas_phy.tproto;
82 memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
83 SAS_ADDR_SIZE);
84 phy->identify_frame->phy_id = phy->sas_phy.id;
85}
86
87static int asd_init_phy(struct asd_phy *phy)
88{
89 struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
90 struct asd_sas_phy *sas_phy = &phy->sas_phy;
91
92 sas_phy->enabled = 1;
93 sas_phy->class = SAS;
94 sas_phy->iproto = SAS_PROTO_ALL;
95 sas_phy->tproto = 0;
96 sas_phy->type = PHY_TYPE_PHYSICAL;
97 sas_phy->role = PHY_ROLE_INITIATOR;
98 sas_phy->oob_mode = OOB_NOT_CONNECTED;
99 sas_phy->linkrate = PHY_LINKRATE_NONE;
100
101 phy->id_frm_tok = asd_alloc_coherent(asd_ha,
102 sizeof(*phy->identify_frame),
103 GFP_KERNEL);
104 if (!phy->id_frm_tok) {
105 asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
106 return -ENOMEM;
107 } else
108 asd_init_phy_identify(phy);
109
110 memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));
111
112 return 0;
113}
114
115static int asd_init_phys(struct asd_ha_struct *asd_ha)
116{
117 u8 i;
118 u8 phy_mask = asd_ha->hw_prof.enabled_phys;
119
120 for (i = 0; i < ASD_MAX_PHYS; i++) {
121 struct asd_phy *phy = &asd_ha->phys[i];
122
123 phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
124
125 phy->sas_phy.enabled = 0;
126 phy->sas_phy.id = i;
127 phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
128 phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
129 phy->sas_phy.ha = &asd_ha->sas_ha;
130 phy->sas_phy.lldd_phy = phy;
131 }
132
133 /* Now enable and initialize only the enabled phys. */
134 for_each_phy(phy_mask, phy_mask, i) {
135 int err = asd_init_phy(&asd_ha->phys[i]);
136 if (err)
137 return err;
138 }
139
140 return 0;
141}
142
143/* ---------- Sliding windows ---------- */
144
145static int asd_init_sw(struct asd_ha_struct *asd_ha)
146{
147 struct pci_dev *pcidev = asd_ha->pcidev;
148 int err;
149 u32 v;
150
151 /* Unlock MBARs */
152 err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
153 if (err) {
154 asd_printk("couldn't access conf. space of %s\n",
155 pci_name(pcidev));
156 goto Err;
157 }
158 if (v)
159 err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
160 if (err) {
161 asd_printk("couldn't write to MBAR_KEY of %s\n",
162 pci_name(pcidev));
163 goto Err;
164 }
165
166 /* Set sliding windows A, B and C to point to proper internal
167 * memory regions.
168 */
169 pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
170 pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
171 REG_BASE_ADDR_CSEQCIO);
172 pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
173 asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
174 asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
175 asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
176 MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
177 if (!asd_ha->iospace) {
178 /* MBAR1 will point to OCM (On Chip Memory) */
179 pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
180 asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
181 }
182 spin_lock_init(&asd_ha->iolock);
183Err:
184 return err;
185}
186
187/* ---------- SCB initialization ---------- */
188
189/**
190 * asd_init_scbs - manually allocate the first SCB.
191 * @asd_ha: pointer to host adapter structure
192 *
193 * This allocates the very first SCB which would be sent to the
194 * sequencer for execution. Its bus address is written to
195 * CSEQ_Q_NEW_POINTER, mode page 2, mode 8. Since the bus address of
196 * the _next_ scb to be DMA-ed to the host adapter is read from the last
197 * SCB DMA-ed to the host adapter, we have to always stay one step
198 * ahead of the sequencer and keep one SCB already allocated.
199 */
200static int asd_init_scbs(struct asd_ha_struct *asd_ha)
201{
202 struct asd_seq_data *seq = &asd_ha->seq;
203 int bitmap_bytes;
204
205 /* allocate the index array and bitmap */
206 asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
207 asd_ha->seq.tc_index_array = kzalloc(asd_ha->seq.tc_index_bitmap_bits*
208 sizeof(void *), GFP_KERNEL);
209 if (!asd_ha->seq.tc_index_array)
210 return -ENOMEM;
211
212 bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
213 bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
214 asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
215 if (!asd_ha->seq.tc_index_bitmap)
216 return -ENOMEM;
217
218 spin_lock_init(&seq->tc_index_lock);
219
220 seq->next_scb.size = sizeof(struct scb);
221 seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
222 &seq->next_scb.dma_handle);
223 if (!seq->next_scb.vaddr) {
224 kfree(asd_ha->seq.tc_index_bitmap);
225 kfree(asd_ha->seq.tc_index_array);
226 asd_ha->seq.tc_index_bitmap = NULL;
227 asd_ha->seq.tc_index_array = NULL;
228 return -ENOMEM;
229 }
230
231 seq->pending = 0;
232 spin_lock_init(&seq->pend_q_lock);
233 INIT_LIST_HEAD(&seq->pend_q);
234
235 return 0;
236}
237
238static inline void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
239{
240 asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
241 asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
242 ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
243 asd_ha->hw_prof.max_scbs,
244 asd_ha->hw_prof.max_ddbs);
245}
246
247/* ---------- Done List initialization ---------- */
248
249static void asd_dl_tasklet_handler(unsigned long);
250
251static int asd_init_dl(struct asd_ha_struct *asd_ha)
252{
253 asd_ha->seq.actual_dl
254 = asd_alloc_coherent(asd_ha,
255 ASD_DL_SIZE * sizeof(struct done_list_struct),
256 GFP_KERNEL);
257 if (!asd_ha->seq.actual_dl)
258 return -ENOMEM;
259 asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
260 asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
261 asd_ha->seq.dl_next = 0;
262 tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
263 (unsigned long) asd_ha);
264
265 return 0;
266}
267
268/* ---------- EDB and ESCB init ---------- */
269
270static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, unsigned int gfp_flags)
271{
272 struct asd_seq_data *seq = &asd_ha->seq;
273 int i;
274
275 seq->edb_arr = kmalloc(seq->num_edbs*sizeof(*seq->edb_arr), gfp_flags);
276 if (!seq->edb_arr)
277 return -ENOMEM;
278
279 for (i = 0; i < seq->num_edbs; i++) {
280 seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
281 gfp_flags);
282 if (!seq->edb_arr[i])
283 goto Err_unroll;
284 memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
285 }
286
287 ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);
288
289 return 0;
290
291Err_unroll:
292 for (i-- ; i >= 0; i--)
293 asd_free_coherent(asd_ha, seq->edb_arr[i]);
294 kfree(seq->edb_arr);
295 seq->edb_arr = NULL;
296
297 return -ENOMEM;
298}
299
300static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
301 unsigned int gfp_flags)
302{
303 struct asd_seq_data *seq = &asd_ha->seq;
304 struct asd_ascb *escb;
305 int i, escbs;
306
307 seq->escb_arr = kmalloc(seq->num_escbs*sizeof(*seq->escb_arr),
308 gfp_flags);
309 if (!seq->escb_arr)
310 return -ENOMEM;
311
312 escbs = seq->num_escbs;
313 escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
314 if (!escb) {
315 asd_printk("couldn't allocate list of escbs\n");
316 goto Err;
317 }
318 seq->num_escbs -= escbs; /* subtract what was not allocated */
319 ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);
320
321 for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
322 struct asd_ascb,
323 list)) {
324 seq->escb_arr[i] = escb;
325 escb->scb->header.opcode = EMPTY_SCB;
326 }
327
328 return 0;
329Err:
330 kfree(seq->escb_arr);
331 seq->escb_arr = NULL;
332 return -ENOMEM;
333
334}
335
336static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
337{
338 struct asd_seq_data *seq = &asd_ha->seq;
339 int i, k, z = 0;
340
341 for (i = 0; i < seq->num_escbs; i++) {
342 struct asd_ascb *ascb = seq->escb_arr[i];
343 struct empty_scb *escb = &ascb->scb->escb;
344
345 ascb->edb_index = z;
346
347 escb->num_valid = ASD_EDBS_PER_SCB;
348
349 for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
350 struct sg_el *eb = &escb->eb[k];
351 struct asd_dma_tok *edb = seq->edb_arr[z++];
352
353 memset(eb, 0, sizeof(*eb));
354 eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
355 eb->size = cpu_to_le32(((u32) edb->size));
356 }
357 }
358}
359
360/**
361 * asd_init_escbs -- allocate and initialize empty scbs
362 * @asd_ha: pointer to host adapter structure
363 *
364 * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
365 * They transport sense data, etc.
366 */
367static int asd_init_escbs(struct asd_ha_struct *asd_ha)
368{
369 struct asd_seq_data *seq = &asd_ha->seq;
370 int err = 0;
371
372 /* Allocate two empty data buffers (edb) per sequencer. */
373 int edbs = 2*(1+asd_ha->hw_prof.num_phys);
374
375 seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
376 seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;
377
378 err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
379 if (err) {
380 asd_printk("couldn't allocate edbs\n");
381 return err;
382 }
383
384 err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
385 if (err) {
386 asd_printk("couldn't allocate escbs\n");
387 return err;
388 }
389
390 asd_assign_edbs2escbs(asd_ha);
391 /* In order to insure that normal SCBs do not overfill sequencer
392 * memory and leave no space for escbs (halting condition),
393 * we increment pending here by the number of escbs. However,
394 * escbs are never pending.
395 */
396 seq->pending = seq->num_escbs;
397 seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;
398
399 return 0;
400}
401
402/* ---------- HW initialization ---------- */
403
404/**
405 * asd_chip_hardrst -- hard reset the chip
406 * @asd_ha: pointer to host adapter structure
407 *
408 * This takes 16 cycles and is synchronous to CFCLK, which runs
409 * at 200 MHz, so this should take at most 80 nanoseconds.
410 */
411int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
412{
413 int i;
414 int count = 100;
415 u32 reg;
416
417 for (i = 0 ; i < 4 ; i++) {
418 asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
419 }
420
421 do {
422 udelay(1);
423 reg = asd_read_reg_dword(asd_ha, CHIMINT);
424 if (reg & HARDRSTDET) {
425 asd_write_reg_dword(asd_ha, CHIMINT,
426 HARDRSTDET|PORRSTDET);
427 return 0;
428 }
429 } while (--count > 0);
430
431 return -ENODEV;
432}
433
434/**
435 * asd_init_chip -- initialize the chip
436 * @asd_ha: pointer to host adapter structure
437 *
438 * Hard resets the chip, disables HA interrupts, downloads the sequnecer
439 * microcode and starts the sequencers. The caller has to explicitly
440 * enable HA interrupts with asd_enable_ints(asd_ha).
441 */
442static int asd_init_chip(struct asd_ha_struct *asd_ha)
443{
444 int err;
445
446 err = asd_chip_hardrst(asd_ha);
447 if (err) {
448 asd_printk("couldn't hard reset %s\n",
449 pci_name(asd_ha->pcidev));
450 goto out;
451 }
452
453 asd_disable_ints(asd_ha);
454
455 err = asd_init_seqs(asd_ha);
456 if (err) {
457 asd_printk("couldn't init seqs for %s\n",
458 pci_name(asd_ha->pcidev));
459 goto out;
460 }
461
462 err = asd_start_seqs(asd_ha);
463 if (err) {
464 asd_printk("coudln't start seqs for %s\n",
465 pci_name(asd_ha->pcidev));
466 goto out;
467 }
468out:
469 return err;
470}
471
472#define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
473
474static int max_devs = 0;
475module_param_named(max_devs, max_devs, int, S_IRUGO);
476MODULE_PARM_DESC(max_devs, "\n"
477 "\tMaximum number of SAS devices to support (not LUs).\n"
478 "\tDefault: 2176, Maximum: 65663.\n");
479
480static int max_cmnds = 0;
481module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
482MODULE_PARM_DESC(max_cmnds, "\n"
483 "\tMaximum number of commands queuable.\n"
484 "\tDefault: 512, Maximum: 66047.\n");
485
486static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
487{
488 unsigned long dma_addr = OCM_BASE_ADDR;
489 u32 d;
490
491 dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
492 asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
493 d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
494 d |= 4;
495 asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
496 asd_ha->hw_prof.max_ddbs += MAX_DEVS;
497}
498
499static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
500{
501 dma_addr_t dma_handle;
502 unsigned long dma_addr;
503 u32 d;
504 int size;
505
506 asd_extend_devctx_ocm(asd_ha);
507
508 asd_ha->hw_prof.ddb_ext = NULL;
509 if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
510 max_devs = asd_ha->hw_prof.max_ddbs;
511 return 0;
512 }
513
514 size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;
515
516 asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
517 if (!asd_ha->hw_prof.ddb_ext) {
518 asd_printk("couldn't allocate memory for %d devices\n",
519 max_devs);
520 max_devs = asd_ha->hw_prof.max_ddbs;
521 return -ENOMEM;
522 }
523 dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
524 dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
525 dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
526 dma_handle = (dma_addr_t) dma_addr;
527 asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
528 d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
529 d &= ~4;
530 asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
531
532 asd_ha->hw_prof.max_ddbs = max_devs;
533
534 return 0;
535}
536
537static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
538{
539 dma_addr_t dma_handle;
540 unsigned long dma_addr;
541 u32 d;
542 int size;
543
544 asd_ha->hw_prof.scb_ext = NULL;
545 if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
546 max_cmnds = asd_ha->hw_prof.max_scbs;
547 return 0;
548 }
549
550 size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;
551
552 asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
553 if (!asd_ha->hw_prof.scb_ext) {
554 asd_printk("couldn't allocate memory for %d commands\n",
555 max_cmnds);
556 max_cmnds = asd_ha->hw_prof.max_scbs;
557 return -ENOMEM;
558 }
559 dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
560 dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
561 dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
562 dma_handle = (dma_addr_t) dma_addr;
563 asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
564 d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
565 d &= ~1;
566 asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
567
568 asd_ha->hw_prof.max_scbs = max_cmnds;
569
570 return 0;
571}
572
573/**
574 * asd_init_ctxmem -- initialize context memory
575 * asd_ha: pointer to host adapter structure
576 *
577 * This function sets the maximum number of SCBs and
578 * DDBs which can be used by the sequencer. This is normally
579 * 512 and 128 respectively. If support for more SCBs or more DDBs
580 * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
581 * initialized here to extend context memory to point to host memory,
582 * thus allowing unlimited support for SCBs and DDBs -- only limited
583 * by host memory.
584 */
585static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
586{
587 int bitmap_bytes;
588
589 asd_get_max_scb_ddb(asd_ha);
590 asd_extend_devctx(asd_ha);
591 asd_extend_cmdctx(asd_ha);
592
593 /* The kernel wants bitmaps to be unsigned long sized. */
594 bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
595 bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
596 asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
597 if (!asd_ha->hw_prof.ddb_bitmap)
598 return -ENOMEM;
599 spin_lock_init(&asd_ha->hw_prof.ddb_lock);
600
601 return 0;
602}
603
604int asd_init_hw(struct asd_ha_struct *asd_ha)
605{
606 int err;
607 u32 v;
608
609 err = asd_init_sw(asd_ha);
610 if (err)
611 return err;
612
613 err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
614 if (err) {
615 asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
616 pci_name(asd_ha->pcidev));
617 return err;
618 }
619 pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
620 v | SC_TMR_DIS);
621 if (err) {
622 asd_printk("couldn't disable split completion timer of %s\n",
623 pci_name(asd_ha->pcidev));
624 return err;
625 }
626
627 err = asd_read_ocm(asd_ha);
628 if (err) {
629 asd_printk("couldn't read ocm(%d)\n", err);
630 /* While suspicios, it is not an error that we
631 * couldn't read the OCM. */
632 }
633
634 err = asd_read_flash(asd_ha);
635 if (err) {
636 asd_printk("couldn't read flash(%d)\n", err);
637 /* While suspicios, it is not an error that we
638 * couldn't read FLASH memory.
639 */
640 }
641
642 asd_init_ctxmem(asd_ha);
643
644 asd_get_user_sas_addr(asd_ha);
645 if (!asd_ha->hw_prof.sas_addr[0]) {
646 asd_printk("No SAS Address provided for %s\n",
647 pci_name(asd_ha->pcidev));
648 err = -ENODEV;
649 goto Out;
650 }
651
652 asd_propagate_sas_addr(asd_ha);
653
654 err = asd_init_phys(asd_ha);
655 if (err) {
656 asd_printk("couldn't initialize phys for %s\n",
657 pci_name(asd_ha->pcidev));
658 goto Out;
659 }
660
661 err = asd_init_scbs(asd_ha);
662 if (err) {
663 asd_printk("couldn't initialize scbs for %s\n",
664 pci_name(asd_ha->pcidev));
665 goto Out;
666 }
667
668 err = asd_init_dl(asd_ha);
669 if (err) {
670 asd_printk("couldn't initialize the done list:%d\n",
671 err);
672 goto Out;
673 }
674
675 err = asd_init_escbs(asd_ha);
676 if (err) {
677 asd_printk("couldn't initialize escbs\n");
678 goto Out;
679 }
680
681 err = asd_init_chip(asd_ha);
682 if (err) {
683 asd_printk("couldn't init the chip\n");
684 goto Out;
685 }
686Out:
687 return err;
688}
689
690/* ---------- Chip reset ---------- */
691
692/**
693 * asd_chip_reset -- reset the host adapter, etc
694 * @asd_ha: pointer to host adapter structure of interest
695 *
696 * Called from the ISR. Hard reset the chip. Let everything
697 * timeout. This should be no different than hot-unplugging the
698 * host adapter. Once everything times out we'll init the chip with
699 * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
700 * XXX finish.
701 */
702static void asd_chip_reset(struct asd_ha_struct *asd_ha)
703{
704 struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
705
706 ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
707 asd_chip_hardrst(asd_ha);
708 sas_ha->notify_ha_event(sas_ha, HAE_RESET);
709}
710
711/* ---------- Done List Routines ---------- */
712
713static void asd_dl_tasklet_handler(unsigned long data)
714{
715 struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
716 struct asd_seq_data *seq = &asd_ha->seq;
717 unsigned long flags;
718
719 while (1) {
720 struct done_list_struct *dl = &seq->dl[seq->dl_next];
721 struct asd_ascb *ascb;
722
723 if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
724 break;
725
726 /* find the aSCB */
727 spin_lock_irqsave(&seq->tc_index_lock, flags);
728 ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
729 spin_unlock_irqrestore(&seq->tc_index_lock, flags);
730 if (unlikely(!ascb)) {
731 ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
732 goto next_1;
733 } else if (ascb->scb->header.opcode == EMPTY_SCB) {
734 goto out;
735 } else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
736 goto next_1;
737 }
738 spin_lock_irqsave(&seq->pend_q_lock, flags);
739 list_del_init(&ascb->list);
740 seq->pending--;
741 spin_unlock_irqrestore(&seq->pend_q_lock, flags);
742 out:
743 ascb->tasklet_complete(ascb, dl);
744
745 next_1:
746 seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
747 if (!seq->dl_next)
748 seq->dl_toggle ^= DL_TOGGLE_MASK;
749 }
750}
751
752/* ---------- Interrupt Service Routines ---------- */
753
754/**
755 * asd_process_donelist_isr -- schedule processing of done list entries
756 * @asd_ha: pointer to host adapter structure
757 */
758static inline void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
759{
760 tasklet_schedule(&asd_ha->seq.dl_tasklet);
761}
762
763/**
764 * asd_com_sas_isr -- process device communication interrupt (COMINT)
765 * @asd_ha: pointer to host adapter structure
766 */
767static inline void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
768{
769 u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);
770
771 /* clear COMSTAT int */
772 asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);
773
774 if (comstat & CSBUFPERR) {
775 asd_printk("%s: command/status buffer dma parity error\n",
776 pci_name(asd_ha->pcidev));
777 } else if (comstat & CSERR) {
778 int i;
779 u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
780 dmaerr &= 0xFF;
781 asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
782 "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
783 pci_name(asd_ha->pcidev),
784 dmaerr,
785 asd_read_reg_dword(asd_ha, CSDMAADR),
786 asd_read_reg_dword(asd_ha, CSDMAADR+4));
787 asd_printk("CSBUFFER:\n");
788 for (i = 0; i < 8; i++) {
789 asd_printk("%08x %08x %08x %08x\n",
790 asd_read_reg_dword(asd_ha, CSBUFFER),
791 asd_read_reg_dword(asd_ha, CSBUFFER+4),
792 asd_read_reg_dword(asd_ha, CSBUFFER+8),
793 asd_read_reg_dword(asd_ha, CSBUFFER+12));
794 }
795 asd_dump_seq_state(asd_ha, 0);
796 } else if (comstat & OVLYERR) {
797 u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
798 dmaerr = (dmaerr >> 8) & 0xFF;
799 asd_printk("%s: overlay dma error:0x%x\n",
800 pci_name(asd_ha->pcidev),
801 dmaerr);
802 }
803 asd_chip_reset(asd_ha);
804}
805
806static inline void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
807{
808 static const char *halt_code[256] = {
809 "UNEXPECTED_INTERRUPT0",
810 "UNEXPECTED_INTERRUPT1",
811 "UNEXPECTED_INTERRUPT2",
812 "UNEXPECTED_INTERRUPT3",
813 "UNEXPECTED_INTERRUPT4",
814 "UNEXPECTED_INTERRUPT5",
815 "UNEXPECTED_INTERRUPT6",
816 "UNEXPECTED_INTERRUPT7",
817 "UNEXPECTED_INTERRUPT8",
818 "UNEXPECTED_INTERRUPT9",
819 "UNEXPECTED_INTERRUPT10",
820 [11 ... 19] = "unknown[11,19]",
821 "NO_FREE_SCB_AVAILABLE",
822 "INVALID_SCB_OPCODE",
823 "INVALID_MBX_OPCODE",
824 "INVALID_ATA_STATE",
825 "ATA_QUEUE_FULL",
826 "ATA_TAG_TABLE_FAULT",
827 "ATA_TAG_MASK_FAULT",
828 "BAD_LINK_QUEUE_STATE",
829 "DMA2CHIM_QUEUE_ERROR",
830 "EMPTY_SCB_LIST_FULL",
831 "unknown[30]",
832 "IN_USE_SCB_ON_FREE_LIST",
833 "BAD_OPEN_WAIT_STATE",
834 "INVALID_STP_AFFILIATION",
835 "unknown[34]",
836 "EXEC_QUEUE_ERROR",
837 "TOO_MANY_EMPTIES_NEEDED",
838 "EMPTY_REQ_QUEUE_ERROR",
839 "Q_MONIRTT_MGMT_ERROR",
840 "TARGET_MODE_FLOW_ERROR",
841 "DEVICE_QUEUE_NOT_FOUND",
842 "START_IRTT_TIMER_ERROR",
843 "ABORT_TASK_ILLEGAL_REQ",
844 [43 ... 255] = "unknown[43,255]"
845 };
846
847 if (dchstatus & CSEQINT) {
848 u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);
849
850 if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
851 asd_printk("%s: CSEQ arp2int:0x%x\n",
852 pci_name(asd_ha->pcidev),
853 arp2int);
854 } else if (arp2int & ARP2HALTC)
855 asd_printk("%s: CSEQ halted: %s\n",
856 pci_name(asd_ha->pcidev),
857 halt_code[(arp2int>>16)&0xFF]);
858 else
859 asd_printk("%s: CARP2INT:0x%x\n",
860 pci_name(asd_ha->pcidev),
861 arp2int);
862 }
863 if (dchstatus & LSEQINT_MASK) {
864 int lseq;
865 u8 lseq_mask = dchstatus & LSEQINT_MASK;
866
867 for_each_sequencer(lseq_mask, lseq_mask, lseq) {
868 u32 arp2int = asd_read_reg_dword(asd_ha,
869 LmARP2INT(lseq));
870 if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
871 | ARP2CIOPERR)) {
872 asd_printk("%s: LSEQ%d arp2int:0x%x\n",
873 pci_name(asd_ha->pcidev),
874 lseq, arp2int);
875 /* XXX we should only do lseq reset */
876 } else if (arp2int & ARP2HALTC)
877 asd_printk("%s: LSEQ%d halted: %s\n",
878 pci_name(asd_ha->pcidev),
879 lseq,halt_code[(arp2int>>16)&0xFF]);
880 else
881 asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
882 pci_name(asd_ha->pcidev), lseq,
883 arp2int);
884 }
885 }
886 asd_chip_reset(asd_ha);
887}
888
889/**
890 * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
891 * @asd_ha: pointer to host adapter structure
892 */
893static inline void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
894{
895 u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);
896
897 if (dchstatus & CFIFTOERR) {
898 asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
899 asd_chip_reset(asd_ha);
900 } else
901 asd_arp2_err(asd_ha, dchstatus);
902}
903
904/**
905 * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
906 * @asd_ha: pointer to host adapter structure
907 */
908static inline void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
909{
910 u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);
911
912 if (!(stat0r & ASIERR)) {
913 asd_printk("hmm, EXSI interrupted but no error?\n");
914 return;
915 }
916
917 if (stat0r & ASIFMTERR) {
918 asd_printk("ASI SEEPROM format error for %s\n",
919 pci_name(asd_ha->pcidev));
920 } else if (stat0r & ASISEECHKERR) {
921 u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
922 asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
923 stat1r & CHECKSUM_MASK,
924 pci_name(asd_ha->pcidev));
925 } else {
926 u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);
927
928 if (!(statr & CPI2ASIMSTERR_MASK)) {
929 ASD_DPRINTK("hmm, ASIERR?\n");
930 return;
931 } else {
932 u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
933 u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);
934
935 asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
936 "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
937 "master id: 0x%x, master err: 0x%x\n",
938 pci_name(asd_ha->pcidev),
939 addr, data,
940 (statr & CPI2ASIBYTECNT_MASK) >> 16,
941 (statr & CPI2ASIBYTEEN_MASK) >> 12,
942 (statr & CPI2ASITARGERR_MASK) >> 8,
943 (statr & CPI2ASITARGMID_MASK) >> 4,
944 (statr & CPI2ASIMSTERR_MASK));
945 }
946 }
947 asd_chip_reset(asd_ha);
948}
949
950/**
951 * asd_hst_pcix_isr -- process host interface interrupts
952 * @asd_ha: pointer to host adapter structure
953 *
954 * Asserted on PCIX errors: target abort, etc.
955 */
956static inline void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
957{
958 u16 status;
959 u32 pcix_status;
960 u32 ecc_status;
961
962 pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
963 pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
964 pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);
965
966 if (status & PCI_STATUS_DETECTED_PARITY)
967 asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
968 else if (status & PCI_STATUS_REC_MASTER_ABORT)
969 asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
970 else if (status & PCI_STATUS_REC_TARGET_ABORT)
971 asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
972 else if (status & PCI_STATUS_PARITY)
973 asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
974 else if (pcix_status & RCV_SCE) {
975 asd_printk("received split completion error for %s\n",
976 pci_name(asd_ha->pcidev));
977 pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
978 /* XXX: Abort task? */
979 return;
980 } else if (pcix_status & UNEXP_SC) {
981 asd_printk("unexpected split completion for %s\n",
982 pci_name(asd_ha->pcidev));
983 pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
984 /* ignore */
985 return;
986 } else if (pcix_status & SC_DISCARD)
987 asd_printk("split completion discarded for %s\n",
988 pci_name(asd_ha->pcidev));
989 else if (ecc_status & UNCOR_ECCERR)
990 asd_printk("uncorrectable ECC error for %s\n",
991 pci_name(asd_ha->pcidev));
992 asd_chip_reset(asd_ha);
993}
994
995/**
996 * asd_hw_isr -- host adapter interrupt service routine
997 * @irq: ignored
998 * @dev_id: pointer to host adapter structure
999 * @regs: ignored
1000 *
1001 * The ISR processes done list entries and level 3 error handling.
1002 */
1003irqreturn_t asd_hw_isr(int irq, void *dev_id, struct pt_regs *regs)
1004{
1005 struct asd_ha_struct *asd_ha = dev_id;
1006 u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);
1007
1008 if (!chimint)
1009 return IRQ_NONE;
1010
1011 asd_write_reg_dword(asd_ha, CHIMINT, chimint);
1012 (void) asd_read_reg_dword(asd_ha, CHIMINT);
1013
1014 if (chimint & DLAVAIL)
1015 asd_process_donelist_isr(asd_ha);
1016 if (chimint & COMINT)
1017 asd_com_sas_isr(asd_ha);
1018 if (chimint & DEVINT)
1019 asd_dch_sas_isr(asd_ha);
1020 if (chimint & INITERR)
1021 asd_rbi_exsi_isr(asd_ha);
1022 if (chimint & HOSTERR)
1023 asd_hst_pcix_isr(asd_ha);
1024
1025 return IRQ_HANDLED;
1026}
1027
1028/* ---------- SCB handling ---------- */
1029
1030static inline struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
1031 unsigned int gfp_flags)
1032{
1033 extern kmem_cache_t *asd_ascb_cache;
1034 struct asd_seq_data *seq = &asd_ha->seq;
1035 struct asd_ascb *ascb;
1036 unsigned long flags;
1037
1038 ascb = kmem_cache_alloc(asd_ascb_cache, gfp_flags);
1039
1040 if (ascb) {
1041 memset(ascb, 0, sizeof(*ascb));
1042 ascb->dma_scb.size = sizeof(struct scb);
1043 ascb->dma_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool,
1044 gfp_flags,
1045 &ascb->dma_scb.dma_handle);
1046 if (!ascb->dma_scb.vaddr) {
1047 kmem_cache_free(asd_ascb_cache, ascb);
1048 return NULL;
1049 }
1050 memset(ascb->dma_scb.vaddr, 0, sizeof(struct scb));
1051 asd_init_ascb(asd_ha, ascb);
1052
1053 spin_lock_irqsave(&seq->tc_index_lock, flags);
1054 ascb->tc_index = asd_tc_index_get(seq, ascb);
1055 spin_unlock_irqrestore(&seq->tc_index_lock, flags);
1056 if (ascb->tc_index == -1)
1057 goto undo;
1058
1059 ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
1060 }
1061
1062 return ascb;
1063undo:
1064 dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
1065 ascb->dma_scb.dma_handle);
1066 kmem_cache_free(asd_ascb_cache, ascb);
1067 ASD_DPRINTK("no index for ascb\n");
1068 return NULL;
1069}
1070
1071/**
1072 * asd_ascb_alloc_list -- allocate a list of aSCBs
1073 * @asd_ha: pointer to host adapter structure
1074 * @num: pointer to integer number of aSCBs
1075 * @gfp_flags: GFP_ flags.
1076 *
1077 * This is the only function which is used to allocate aSCBs.
1078 * It can allocate one or many. If more than one, then they form
1079 * a linked list in two ways: by their list field of the ascb struct
1080 * and by the next_scb field of the scb_header.
1081 *
1082 * Returns NULL if no memory was available, else pointer to a list
1083 * of ascbs. When this function returns, @num would be the number
1084 * of SCBs which were not able to be allocated, 0 if all requested
1085 * were able to be allocated.
1086 */
1087struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
1088 *asd_ha, int *num,
1089 unsigned int gfp_flags)
1090{
1091 struct asd_ascb *first = NULL;
1092
1093 for ( ; *num > 0; --*num) {
1094 struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);
1095
1096 if (!ascb)
1097 break;
1098 else if (!first)
1099 first = ascb;
1100 else {
1101 struct asd_ascb *last = list_entry(first->list.prev,
1102 struct asd_ascb,
1103 list);
1104 list_add_tail(&ascb->list, &first->list);
1105 last->scb->header.next_scb =
1106 cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
1107 }
1108 }
1109
1110 return first;
1111}
1112
1113/**
1114 * asd_swap_head_scb -- swap the head scb
1115 * @asd_ha: pointer to host adapter structure
1116 * @ascb: pointer to the head of an ascb list
1117 *
1118 * The sequencer knows the DMA address of the next SCB to be DMAed to
1119 * the host adapter, from initialization or from the last list DMAed.
1120 * seq->next_scb keeps the address of this SCB. The sequencer will
1121 * DMA to the host adapter this list of SCBs. But the head (first
1122 * element) of this list is not known to the sequencer. Here we swap
1123 * the head of the list with the known SCB (memcpy()).
1124 * Only one memcpy() is required per list so it is in our interest
1125 * to keep the list of SCB as long as possible so that the ratio
1126 * of number of memcpy calls to the number of SCB DMA-ed is as small
1127 * as possible.
1128 *
1129 * LOCKING: called with the pending list lock held.
1130 */
1131static inline void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
1132 struct asd_ascb *ascb)
1133{
1134 struct asd_seq_data *seq = &asd_ha->seq;
1135 struct asd_ascb *last = list_entry(ascb->list.prev,
1136 struct asd_ascb,
1137 list);
1138 struct asd_dma_tok t = ascb->dma_scb;
1139
1140 memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
1141 ascb->dma_scb = seq->next_scb;
1142 ascb->scb = ascb->dma_scb.vaddr;
1143 seq->next_scb = t;
1144 last->scb->header.next_scb =
1145 cpu_to_le64(((u64)seq->next_scb.dma_handle));
1146}
1147
1148/**
1149 * asd_start_timers -- (add and) start timers of SCBs
1150 * @list: pointer to struct list_head of the scbs
1151 * @to: timeout in jiffies
1152 *
1153 * If an SCB in the @list has no timer function, assign the default
1154 * one, then start the timer of the SCB. This function is
1155 * intended to be called from asd_post_ascb_list(), just prior to
1156 * posting the SCBs to the sequencer.
1157 */
1158static inline void asd_start_scb_timers(struct list_head *list)
1159{
1160 struct asd_ascb *ascb;
1161 list_for_each_entry(ascb, list, list) {
1162 if (!ascb->uldd_timer) {
1163 ascb->timer.data = (unsigned long) ascb;
1164 ascb->timer.function = asd_ascb_timedout;
1165 ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
1166 add_timer(&ascb->timer);
1167 }
1168 }
1169}
1170
1171/**
1172 * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1173 * @asd_ha: pointer to a host adapter structure
1174 * @ascb: pointer to the first aSCB in the list
1175 * @num: number of aSCBs in the list (to be posted)
1176 *
1177 * See queueing comment in asd_post_escb_list().
1178 *
1179 * Additional note on queuing: In order to minimize the ratio of memcpy()
1180 * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1181 * in one go.
1182 * Two cases are possible:
1183 * A) can_queue >= num,
1184 * B) can_queue < num.
1185 * Case A: we can send the whole batch at once. Increment "pending"
1186 * in the beginning of this function, when it is checked, in order to
1187 * eliminate races when this function is called by multiple processes.
1188 * Case B: should never happen if the managing layer considers
1189 * lldd_queue_size.
1190 */
1191int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1192 int num)
1193{
1194 unsigned long flags;
1195 LIST_HEAD(list);
1196 int can_queue;
1197
1198 spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1199 can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
1200 if (can_queue >= num)
1201 asd_ha->seq.pending += num;
1202 else
1203 can_queue = 0;
1204
1205 if (!can_queue) {
1206 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1207 asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
1208 return -SAS_QUEUE_FULL;
1209 }
1210
1211 asd_swap_head_scb(asd_ha, ascb);
1212
1213 __list_add(&list, ascb->list.prev, &ascb->list);
1214
1215 asd_start_scb_timers(&list);
1216
1217 asd_ha->seq.scbpro += num;
1218 list_splice_init(&list, asd_ha->seq.pend_q.prev);
1219 asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1220 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1221
1222 return 0;
1223}
1224
1225/**
1226 * asd_post_escb_list -- post a list of 1 or more empty scb
1227 * @asd_ha: pointer to a host adapter structure
1228 * @ascb: pointer to the first empty SCB in the list
1229 * @num: number of aSCBs in the list (to be posted)
1230 *
1231 * This is essentially the same as asd_post_ascb_list, but we do not
1232 * increment pending, add those to the pending list or get indexes.
1233 * See asd_init_escbs() and asd_init_post_escbs().
1234 *
1235 * Since sending a list of ascbs is a superset of sending a single
1236 * ascb, this function exists to generalize this. More specifically,
1237 * when sending a list of those, we want to do only a _single_
1238 * memcpy() at swap head, as opposed to for each ascb sent (in the
1239 * case of sending them one by one). That is, we want to minimize the
1240 * ratio of memcpy() operations to the number of ascbs sent. The same
1241 * logic applies to asd_post_ascb_list().
1242 */
1243int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1244 int num)
1245{
1246 unsigned long flags;
1247
1248 spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1249 asd_swap_head_scb(asd_ha, ascb);
1250 asd_ha->seq.scbpro += num;
1251 asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1252 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1253
1254 return 0;
1255}
1256
1257/* ---------- LED ---------- */
1258
1259/**
1260 * asd_turn_led -- turn on/off an LED
1261 * @asd_ha: pointer to host adapter structure
1262 * @phy_id: the PHY id whose LED we want to manupulate
1263 * @op: 1 to turn on, 0 to turn off
1264 */
1265void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1266{
1267 if (phy_id < ASD_MAX_PHYS) {
1268 u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
1269 if (op)
1270 v |= LEDPOL;
1271 else
1272 v &= ~LEDPOL;
1273 asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
1274 }
1275}
1276
1277/**
1278 * asd_control_led -- enable/disable an LED on the board
1279 * @asd_ha: pointer to host adapter structure
1280 * @phy_id: integer, the phy id
1281 * @op: integer, 1 to enable, 0 to disable the LED
1282 *
1283 * First we output enable the LED, then we set the source
1284 * to be an external module.
1285 */
1286void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1287{
1288 if (phy_id < ASD_MAX_PHYS) {
1289 u32 v;
1290
1291 v = asd_read_reg_dword(asd_ha, GPIOOER);
1292 if (op)
1293 v |= (1 << phy_id);
1294 else
1295 v &= ~(1 << phy_id);
1296 asd_write_reg_dword(asd_ha, GPIOOER, v);
1297
1298 v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
1299 if (op)
1300 v |= (1 << phy_id);
1301 else
1302 v &= ~(1 << phy_id);
1303 asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
1304 }
1305}
1306
1307/* ---------- PHY enable ---------- */
1308
1309static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
1310{
1311 struct asd_phy *phy = &asd_ha->phys[phy_id];
1312
1313 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
1314 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
1315 HOTPLUG_DELAY_TIMEOUT);
1316
1317 /* Get defaults from manuf. sector */
1318 /* XXX we need defaults for those in case MS is broken. */
1319 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
1320 phy->phy_desc->phy_control_0);
1321 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
1322 phy->phy_desc->phy_control_1);
1323 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
1324 phy->phy_desc->phy_control_2);
1325 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
1326 phy->phy_desc->phy_control_3);
1327
1328 asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
1329 ASD_COMINIT_TIMEOUT);
1330
1331 asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
1332 phy->id_frm_tok->dma_handle);
1333
1334 asd_control_led(asd_ha, phy_id, 1);
1335
1336 return 0;
1337}
1338
1339int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
1340{
1341 u8 phy_m;
1342 u8 i;
1343 int num = 0, k;
1344 struct asd_ascb *ascb;
1345 struct asd_ascb *ascb_list;
1346
1347 if (!phy_mask) {
1348 asd_printk("%s called with phy_mask of 0!?\n", __FUNCTION__);
1349 return 0;
1350 }
1351
1352 for_each_phy(phy_mask, phy_m, i) {
1353 num++;
1354 asd_enable_phy(asd_ha, i);
1355 }
1356
1357 k = num;
1358 ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
1359 if (!ascb_list) {
1360 asd_printk("no memory for control phy ascb list\n");
1361 return -ENOMEM;
1362 }
1363 num -= k;
1364
1365 ascb = ascb_list;
1366 for_each_phy(phy_mask, phy_m, i) {
1367 asd_build_control_phy(ascb, i, ENABLE_PHY);
1368 ascb = list_entry(ascb->list.next, struct asd_ascb, list);
1369 }
1370 ASD_DPRINTK("posting %d control phy scbs\n", num);
1371 k = asd_post_ascb_list(asd_ha, ascb_list, num);
1372 if (k)
1373 asd_ascb_free_list(ascb_list);
1374
1375 return k;
1376}
diff --git a/drivers/scsi/aic94xx/aic94xx_hwi.h b/drivers/scsi/aic94xx/aic94xx_hwi.h
new file mode 100644
index 000000000000..c7d505388fed
--- /dev/null
+++ b/drivers/scsi/aic94xx/aic94xx_hwi.h
@@ -0,0 +1,397 @@
1/*
2 * Aic94xx SAS/SATA driver hardware interface header file.
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This file is part of the aic94xx driver.
10 *
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
14 * License.
15 *
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 *
25 */
26
27#ifndef _AIC94XX_HWI_H_
28#define _AIC94XX_HWI_H_
29
30#include <linux/interrupt.h>
31#include <linux/pci.h>
32#include <linux/dma-mapping.h>
33
34#include <scsi/libsas.h>
35
36#include "aic94xx.h"
37#include "aic94xx_sas.h"
38
39/* Define ASD_MAX_PHYS to the maximum phys ever. Currently 8. */
40#define ASD_MAX_PHYS 8
41#define ASD_PCBA_SN_SIZE 12
42
43/* Those are to be further named properly, the "RAZORx" part, and
44 * subsequently included in include/linux/pci_ids.h.
45 */
46#define PCI_DEVICE_ID_ADAPTEC2_RAZOR10 0x410
47#define PCI_DEVICE_ID_ADAPTEC2_RAZOR12 0x412
48#define PCI_DEVICE_ID_ADAPTEC2_RAZOR1E 0x41E
49#define PCI_DEVICE_ID_ADAPTEC2_RAZOR30 0x430
50#define PCI_DEVICE_ID_ADAPTEC2_RAZOR32 0x432
51#define PCI_DEVICE_ID_ADAPTEC2_RAZOR3E 0x43E
52#define PCI_DEVICE_ID_ADAPTEC2_RAZOR3F 0x43F
53
54struct asd_ha_addrspace {
55 void __iomem *addr;
56 unsigned long start; /* pci resource start */
57 unsigned long len; /* pci resource len */
58 unsigned long flags; /* pci resource flags */
59
60 /* addresses internal to the host adapter */
61 u32 swa_base; /* mmspace 1 (MBAR1) uses this only */
62 u32 swb_base;
63 u32 swc_base;
64};
65
66struct bios_struct {
67 int present;
68 u8 maj;
69 u8 min;
70 u32 bld;
71};
72
73struct unit_element_struct {
74 u16 num;
75 u16 size;
76 void *area;
77};
78
79struct flash_struct {
80 u32 bar;
81 int present;
82 int wide;
83 u8 manuf;
84 u8 dev_id;
85 u8 sec_prot;
86
87 u32 dir_offs;
88};
89
90struct asd_phy_desc {
91 /* From CTRL-A settings, then set to what is appropriate */
92 u8 sas_addr[SAS_ADDR_SIZE];
93 u8 max_sas_lrate;
94 u8 min_sas_lrate;
95 u8 max_sata_lrate;
96 u8 min_sata_lrate;
97 u8 flags;
98#define ASD_CRC_DIS 1
99#define ASD_SATA_SPINUP_HOLD 2
100
101 u8 phy_control_0; /* mode 5 reg 0x160 */
102 u8 phy_control_1; /* mode 5 reg 0x161 */
103 u8 phy_control_2; /* mode 5 reg 0x162 */
104 u8 phy_control_3; /* mode 5 reg 0x163 */
105};
106
107struct asd_dma_tok {
108 void *vaddr;
109 dma_addr_t dma_handle;
110 size_t size;
111};
112
113struct hw_profile {
114 struct bios_struct bios;
115 struct unit_element_struct ue;
116 struct flash_struct flash;
117
118 u8 sas_addr[SAS_ADDR_SIZE];
119 char pcba_sn[ASD_PCBA_SN_SIZE+1];
120
121 u8 enabled_phys; /* mask of enabled phys */
122 struct asd_phy_desc phy_desc[ASD_MAX_PHYS];
123 u32 max_scbs; /* absolute sequencer scb queue size */
124 struct asd_dma_tok *scb_ext;
125 u32 max_ddbs;
126 struct asd_dma_tok *ddb_ext;
127
128 spinlock_t ddb_lock;
129 void *ddb_bitmap;
130
131 int num_phys; /* ENABLEABLE */
132 int max_phys; /* REPORTED + ENABLEABLE */
133
134 unsigned addr_range; /* max # of addrs; max # of possible ports */
135 unsigned port_name_base;
136 unsigned dev_name_base;
137 unsigned sata_name_base;
138};
139
140struct asd_ascb {
141 struct list_head list;
142 struct asd_ha_struct *ha;
143
144 struct scb *scb; /* equals dma_scb->vaddr */
145 struct asd_dma_tok dma_scb;
146 struct asd_dma_tok *sg_arr;
147
148 void (*tasklet_complete)(struct asd_ascb *, struct done_list_struct *);
149 u8 uldd_timer:1;
150
151 /* internally generated command */
152 struct timer_list timer;
153 struct completion completion;
154 u8 tag_valid:1;
155 __be16 tag; /* error recovery only */
156
157 /* If this is an Empty SCB, index of first edb in seq->edb_arr. */
158 int edb_index;
159
160 /* Used by the timer timeout function. */
161 int tc_index;
162
163 void *uldd_task;
164};
165
166#define ASD_DL_SIZE_BITS 0x8
167#define ASD_DL_SIZE (1<<(2+ASD_DL_SIZE_BITS))
168#define ASD_DEF_DL_TOGGLE 0x01
169
170struct asd_seq_data {
171 spinlock_t pend_q_lock;
172 u16 scbpro;
173 int pending;
174 struct list_head pend_q;
175 int can_queue; /* per adapter */
176 struct asd_dma_tok next_scb; /* next scb to be delivered to CSEQ */
177
178 spinlock_t tc_index_lock;
179 void **tc_index_array;
180 void *tc_index_bitmap;
181 int tc_index_bitmap_bits;
182
183 struct tasklet_struct dl_tasklet;
184 struct done_list_struct *dl; /* array of done list entries, equals */
185 struct asd_dma_tok *actual_dl; /* actual_dl->vaddr */
186 int dl_toggle;
187 int dl_next;
188
189 int num_edbs;
190 struct asd_dma_tok **edb_arr;
191 int num_escbs;
192 struct asd_ascb **escb_arr; /* array of pointers to escbs */
193};
194
195/* This is the Host Adapter structure. It describes the hardware
196 * SAS adapter.
197 */
198struct asd_ha_struct {
199 struct pci_dev *pcidev;
200 const char *name;
201
202 struct sas_ha_struct sas_ha;
203
204 u8 revision_id;
205
206 int iospace;
207 spinlock_t iolock;
208 struct asd_ha_addrspace io_handle[2];
209
210 struct hw_profile hw_prof;
211
212 struct asd_phy phys[ASD_MAX_PHYS];
213 struct asd_sas_port ports[ASD_MAX_PHYS];
214
215 struct dma_pool *scb_pool;
216
217 struct asd_seq_data seq; /* sequencer related */
218};
219
220/* ---------- Common macros ---------- */
221
222#define ASD_BUSADDR_LO(__dma_handle) ((u32)(__dma_handle))
223#define ASD_BUSADDR_HI(__dma_handle) (((sizeof(dma_addr_t))==8) \
224 ? ((u32)((__dma_handle) >> 32)) \
225 : ((u32)0))
226
227#define dev_to_asd_ha(__dev) pci_get_drvdata(to_pci_dev(__dev))
228#define SCB_SITE_VALID(__site_no) (((__site_no) & 0xF0FF) != 0x00FF \
229 && ((__site_no) & 0xF0FF) > 0x001F)
230/* For each bit set in __lseq_mask, set __lseq to equal the bit
231 * position of the set bit and execute the statement following.
232 * __mc is the temporary mask, used as a mask "counter".
233 */
234#define for_each_sequencer(__lseq_mask, __mc, __lseq) \
235 for ((__mc)=(__lseq_mask),(__lseq)=0;(__mc)!=0;(__lseq++),(__mc)>>=1)\
236 if (((__mc) & 1))
237#define for_each_phy(__lseq_mask, __mc, __lseq) \
238 for ((__mc)=(__lseq_mask),(__lseq)=0;(__mc)!=0;(__lseq++),(__mc)>>=1)\
239 if (((__mc) & 1))
240
241#define PHY_ENABLED(_HA, _I) ((_HA)->hw_prof.enabled_phys & (1<<(_I)))
242
243/* ---------- DMA allocs ---------- */
244
245static inline struct asd_dma_tok *asd_dmatok_alloc(unsigned int flags)
246{
247 return kmem_cache_alloc(asd_dma_token_cache, flags);
248}
249
250static inline void asd_dmatok_free(struct asd_dma_tok *token)
251{
252 kmem_cache_free(asd_dma_token_cache, token);
253}
254
255static inline struct asd_dma_tok *asd_alloc_coherent(struct asd_ha_struct *
256 asd_ha, size_t size,
257 unsigned int flags)
258{
259 struct asd_dma_tok *token = asd_dmatok_alloc(flags);
260 if (token) {
261 token->size = size;
262 token->vaddr = dma_alloc_coherent(&asd_ha->pcidev->dev,
263 token->size,
264 &token->dma_handle,
265 flags);
266 if (!token->vaddr) {
267 asd_dmatok_free(token);
268 token = NULL;
269 }
270 }
271 return token;
272}
273
274static inline void asd_free_coherent(struct asd_ha_struct *asd_ha,
275 struct asd_dma_tok *token)
276{
277 if (token) {
278 dma_free_coherent(&asd_ha->pcidev->dev, token->size,
279 token->vaddr, token->dma_handle);
280 asd_dmatok_free(token);
281 }
282}
283
284static inline void asd_init_ascb(struct asd_ha_struct *asd_ha,
285 struct asd_ascb *ascb)
286{
287 INIT_LIST_HEAD(&ascb->list);
288 ascb->scb = ascb->dma_scb.vaddr;
289 ascb->ha = asd_ha;
290 ascb->timer.function = NULL;
291 init_timer(&ascb->timer);
292 ascb->tc_index = -1;
293 init_completion(&ascb->completion);
294}
295
296/* Must be called with the tc_index_lock held!
297 */
298static inline void asd_tc_index_release(struct asd_seq_data *seq, int index)
299{
300 seq->tc_index_array[index] = NULL;
301 clear_bit(index, seq->tc_index_bitmap);
302}
303
304/* Must be called with the tc_index_lock held!
305 */
306static inline int asd_tc_index_get(struct asd_seq_data *seq, void *ptr)
307{
308 int index;
309
310 index = find_first_zero_bit(seq->tc_index_bitmap,
311 seq->tc_index_bitmap_bits);
312 if (index == seq->tc_index_bitmap_bits)
313 return -1;
314
315 seq->tc_index_array[index] = ptr;
316 set_bit(index, seq->tc_index_bitmap);
317
318 return index;
319}
320
321/* Must be called with the tc_index_lock held!
322 */
323static inline void *asd_tc_index_find(struct asd_seq_data *seq, int index)
324{
325 return seq->tc_index_array[index];
326}
327
328/**
329 * asd_ascb_free -- free a single aSCB after is has completed
330 * @ascb: pointer to the aSCB of interest
331 *
332 * This frees an aSCB after it has been executed/completed by
333 * the sequencer.
334 */
335static inline void asd_ascb_free(struct asd_ascb *ascb)
336{
337 if (ascb) {
338 struct asd_ha_struct *asd_ha = ascb->ha;
339 unsigned long flags;
340
341 BUG_ON(!list_empty(&ascb->list));
342 spin_lock_irqsave(&ascb->ha->seq.tc_index_lock, flags);
343 asd_tc_index_release(&ascb->ha->seq, ascb->tc_index);
344 spin_unlock_irqrestore(&ascb->ha->seq.tc_index_lock, flags);
345 dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
346 ascb->dma_scb.dma_handle);
347 kmem_cache_free(asd_ascb_cache, ascb);
348 }
349}
350
351/**
352 * asd_ascb_list_free -- free a list of ascbs
353 * @ascb_list: a list of ascbs
354 *
355 * This function will free a list of ascbs allocated by asd_ascb_alloc_list.
356 * It is used when say the scb queueing function returned QUEUE_FULL,
357 * and we do not need the ascbs any more.
358 */
359static inline void asd_ascb_free_list(struct asd_ascb *ascb_list)
360{
361 LIST_HEAD(list);
362 struct list_head *n, *pos;
363
364 __list_add(&list, ascb_list->list.prev, &ascb_list->list);
365 list_for_each_safe(pos, n, &list) {
366 list_del_init(pos);
367 asd_ascb_free(list_entry(pos, struct asd_ascb, list));
368 }
369}
370
371/* ---------- Function declarations ---------- */
372
373int asd_init_hw(struct asd_ha_struct *asd_ha);
374irqreturn_t asd_hw_isr(int irq, void *dev_id, struct pt_regs *regs);
375
376
377struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
378 *asd_ha, int *num,
379 unsigned int gfp_mask);
380
381int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
382 int num);
383int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
384 int num);
385
386int asd_init_post_escbs(struct asd_ha_struct *asd_ha);
387void asd_build_control_phy(struct asd_ascb *ascb, int phy_id, u8 subfunc);
388void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op);
389void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op);
390int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask);
391void asd_build_initiate_link_adm_task(struct asd_ascb *ascb, int phy_id,
392 u8 subfunc);
393
394void asd_ascb_timedout(unsigned long data);
395int asd_chip_hardrst(struct asd_ha_struct *asd_ha);
396
397#endif
diff --git a/drivers/scsi/aic94xx/aic94xx_init.c b/drivers/scsi/aic94xx/aic94xx_init.c
new file mode 100644
index 000000000000..3ec2e46f80c6
--- /dev/null
+++ b/drivers/scsi/aic94xx/aic94xx_init.c
@@ -0,0 +1,860 @@
1/*
2 * Aic94xx SAS/SATA driver initialization.
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This file is part of the aic94xx driver.
10 *
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
14 * License.
15 *
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 *
25 */
26
27#include <linux/config.h>
28#include <linux/module.h>
29#include <linux/init.h>
30#include <linux/kernel.h>
31#include <linux/pci.h>
32#include <linux/delay.h>
33
34#include <scsi/scsi_host.h>
35
36#include "aic94xx.h"
37#include "aic94xx_reg.h"
38#include "aic94xx_hwi.h"
39#include "aic94xx_seq.h"
40
41/* The format is "version.release.patchlevel" */
42#define ASD_DRIVER_VERSION "1.0.2"
43
44static int use_msi = 0;
45module_param_named(use_msi, use_msi, int, S_IRUGO);
46MODULE_PARM_DESC(use_msi, "\n"
47 "\tEnable(1) or disable(0) using PCI MSI.\n"
48 "\tDefault: 0");
49
50static int lldd_max_execute_num = 0;
51module_param_named(collector, lldd_max_execute_num, int, S_IRUGO);
52MODULE_PARM_DESC(collector, "\n"
53 "\tIf greater than one, tells the SAS Layer to run in Task Collector\n"
54 "\tMode. If 1 or 0, tells the SAS Layer to run in Direct Mode.\n"
55 "\tThe aic94xx SAS LLDD supports both modes.\n"
56 "\tDefault: 0 (Direct Mode).\n");
57
58char sas_addr_str[2*SAS_ADDR_SIZE + 1] = "";
59
60static struct scsi_transport_template *aic94xx_transport_template;
61
62static struct scsi_host_template aic94xx_sht = {
63 .module = THIS_MODULE,
64 /* .name is initialized */
65 .name = "aic94xx",
66 .queuecommand = sas_queuecommand,
67 .target_alloc = sas_target_alloc,
68 .slave_configure = sas_slave_configure,
69 .slave_destroy = sas_slave_destroy,
70 .change_queue_depth = sas_change_queue_depth,
71 .change_queue_type = sas_change_queue_type,
72 .bios_param = sas_bios_param,
73 .can_queue = 1,
74 .cmd_per_lun = 1,
75 .this_id = -1,
76 .sg_tablesize = SG_ALL,
77 .max_sectors = SCSI_DEFAULT_MAX_SECTORS,
78 .use_clustering = ENABLE_CLUSTERING,
79};
80
81static int __devinit asd_map_memio(struct asd_ha_struct *asd_ha)
82{
83 int err, i;
84 struct asd_ha_addrspace *io_handle;
85
86 asd_ha->iospace = 0;
87 for (i = 0; i < 3; i += 2) {
88 io_handle = &asd_ha->io_handle[i==0?0:1];
89 io_handle->start = pci_resource_start(asd_ha->pcidev, i);
90 io_handle->len = pci_resource_len(asd_ha->pcidev, i);
91 io_handle->flags = pci_resource_flags(asd_ha->pcidev, i);
92 err = -ENODEV;
93 if (!io_handle->start || !io_handle->len) {
94 asd_printk("MBAR%d start or length for %s is 0.\n",
95 i==0?0:1, pci_name(asd_ha->pcidev));
96 goto Err;
97 }
98 err = pci_request_region(asd_ha->pcidev, i, ASD_DRIVER_NAME);
99 if (err) {
100 asd_printk("couldn't reserve memory region for %s\n",
101 pci_name(asd_ha->pcidev));
102 goto Err;
103 }
104 if (io_handle->flags & IORESOURCE_CACHEABLE)
105 io_handle->addr = ioremap(io_handle->start,
106 io_handle->len);
107 else
108 io_handle->addr = ioremap_nocache(io_handle->start,
109 io_handle->len);
110 if (!io_handle->addr) {
111 asd_printk("couldn't map MBAR%d of %s\n", i==0?0:1,
112 pci_name(asd_ha->pcidev));
113 goto Err_unreq;
114 }
115 }
116
117 return 0;
118Err_unreq:
119 pci_release_region(asd_ha->pcidev, i);
120Err:
121 if (i > 0) {
122 io_handle = &asd_ha->io_handle[0];
123 iounmap(io_handle->addr);
124 pci_release_region(asd_ha->pcidev, 0);
125 }
126 return err;
127}
128
129static void __devexit asd_unmap_memio(struct asd_ha_struct *asd_ha)
130{
131 struct asd_ha_addrspace *io_handle;
132
133 io_handle = &asd_ha->io_handle[1];
134 iounmap(io_handle->addr);
135 pci_release_region(asd_ha->pcidev, 2);
136
137 io_handle = &asd_ha->io_handle[0];
138 iounmap(io_handle->addr);
139 pci_release_region(asd_ha->pcidev, 0);
140}
141
142static int __devinit asd_map_ioport(struct asd_ha_struct *asd_ha)
143{
144 int i = PCI_IOBAR_OFFSET, err;
145 struct asd_ha_addrspace *io_handle = &asd_ha->io_handle[0];
146
147 asd_ha->iospace = 1;
148 io_handle->start = pci_resource_start(asd_ha->pcidev, i);
149 io_handle->len = pci_resource_len(asd_ha->pcidev, i);
150 io_handle->flags = pci_resource_flags(asd_ha->pcidev, i);
151 io_handle->addr = (void __iomem *) io_handle->start;
152 if (!io_handle->start || !io_handle->len) {
153 asd_printk("couldn't get IO ports for %s\n",
154 pci_name(asd_ha->pcidev));
155 return -ENODEV;
156 }
157 err = pci_request_region(asd_ha->pcidev, i, ASD_DRIVER_NAME);
158 if (err) {
159 asd_printk("couldn't reserve io space for %s\n",
160 pci_name(asd_ha->pcidev));
161 }
162
163 return err;
164}
165
166static void __devexit asd_unmap_ioport(struct asd_ha_struct *asd_ha)
167{
168 pci_release_region(asd_ha->pcidev, PCI_IOBAR_OFFSET);
169}
170
171static int __devinit asd_map_ha(struct asd_ha_struct *asd_ha)
172{
173 int err;
174 u16 cmd_reg;
175
176 err = pci_read_config_word(asd_ha->pcidev, PCI_COMMAND, &cmd_reg);
177 if (err) {
178 asd_printk("couldn't read command register of %s\n",
179 pci_name(asd_ha->pcidev));
180 goto Err;
181 }
182
183 err = -ENODEV;
184 if (cmd_reg & PCI_COMMAND_MEMORY) {
185 if ((err = asd_map_memio(asd_ha)))
186 goto Err;
187 } else if (cmd_reg & PCI_COMMAND_IO) {
188 if ((err = asd_map_ioport(asd_ha)))
189 goto Err;
190 asd_printk("%s ioport mapped -- upgrade your hardware\n",
191 pci_name(asd_ha->pcidev));
192 } else {
193 asd_printk("no proper device access to %s\n",
194 pci_name(asd_ha->pcidev));
195 goto Err;
196 }
197
198 return 0;
199Err:
200 return err;
201}
202
203static void __devexit asd_unmap_ha(struct asd_ha_struct *asd_ha)
204{
205 if (asd_ha->iospace)
206 asd_unmap_ioport(asd_ha);
207 else
208 asd_unmap_memio(asd_ha);
209}
210
211static const char *asd_dev_rev[30] = {
212 [0] = "A0",
213 [1] = "A1",
214 [8] = "B0",
215};
216
217static int __devinit asd_common_setup(struct asd_ha_struct *asd_ha)
218{
219 int err, i;
220
221 err = pci_read_config_byte(asd_ha->pcidev, PCI_REVISION_ID,
222 &asd_ha->revision_id);
223 if (err) {
224 asd_printk("couldn't read REVISION ID register of %s\n",
225 pci_name(asd_ha->pcidev));
226 goto Err;
227 }
228 err = -ENODEV;
229 if (asd_ha->revision_id < AIC9410_DEV_REV_B0) {
230 asd_printk("%s is revision %s (%X), which is not supported\n",
231 pci_name(asd_ha->pcidev),
232 asd_dev_rev[asd_ha->revision_id],
233 asd_ha->revision_id);
234 goto Err;
235 }
236 /* Provide some sane default values. */
237 asd_ha->hw_prof.max_scbs = 512;
238 asd_ha->hw_prof.max_ddbs = 128;
239 asd_ha->hw_prof.num_phys = ASD_MAX_PHYS;
240 /* All phys are enabled, by default. */
241 asd_ha->hw_prof.enabled_phys = 0xFF;
242 for (i = 0; i < ASD_MAX_PHYS; i++) {
243 asd_ha->hw_prof.phy_desc[i].max_sas_lrate = PHY_LINKRATE_3;
244 asd_ha->hw_prof.phy_desc[i].min_sas_lrate = PHY_LINKRATE_1_5;
245 asd_ha->hw_prof.phy_desc[i].max_sata_lrate= PHY_LINKRATE_1_5;
246 asd_ha->hw_prof.phy_desc[i].min_sata_lrate= PHY_LINKRATE_1_5;
247 }
248
249 return 0;
250Err:
251 return err;
252}
253
254static int __devinit asd_aic9410_setup(struct asd_ha_struct *asd_ha)
255{
256 int err = asd_common_setup(asd_ha);
257
258 if (err)
259 return err;
260
261 asd_ha->hw_prof.addr_range = 8;
262 asd_ha->hw_prof.port_name_base = 0;
263 asd_ha->hw_prof.dev_name_base = 8;
264 asd_ha->hw_prof.sata_name_base = 16;
265
266 return 0;
267}
268
269static int __devinit asd_aic9405_setup(struct asd_ha_struct *asd_ha)
270{
271 int err = asd_common_setup(asd_ha);
272
273 if (err)
274 return err;
275
276 asd_ha->hw_prof.addr_range = 4;
277 asd_ha->hw_prof.port_name_base = 0;
278 asd_ha->hw_prof.dev_name_base = 4;
279 asd_ha->hw_prof.sata_name_base = 8;
280
281 return 0;
282}
283
284static ssize_t asd_show_dev_rev(struct device *dev,
285 struct device_attribute *attr, char *buf)
286{
287 struct asd_ha_struct *asd_ha = dev_to_asd_ha(dev);
288 return snprintf(buf, PAGE_SIZE, "%s\n",
289 asd_dev_rev[asd_ha->revision_id]);
290}
291static DEVICE_ATTR(revision, S_IRUGO, asd_show_dev_rev, NULL);
292
293static ssize_t asd_show_dev_bios_build(struct device *dev,
294 struct device_attribute *attr,char *buf)
295{
296 struct asd_ha_struct *asd_ha = dev_to_asd_ha(dev);
297 return snprintf(buf, PAGE_SIZE, "%d\n", asd_ha->hw_prof.bios.bld);
298}
299static DEVICE_ATTR(bios_build, S_IRUGO, asd_show_dev_bios_build, NULL);
300
301static ssize_t asd_show_dev_pcba_sn(struct device *dev,
302 struct device_attribute *attr, char *buf)
303{
304 struct asd_ha_struct *asd_ha = dev_to_asd_ha(dev);
305 return snprintf(buf, PAGE_SIZE, "%s\n", asd_ha->hw_prof.pcba_sn);
306}
307static DEVICE_ATTR(pcba_sn, S_IRUGO, asd_show_dev_pcba_sn, NULL);
308
309static void asd_create_dev_attrs(struct asd_ha_struct *asd_ha)
310{
311 device_create_file(&asd_ha->pcidev->dev, &dev_attr_revision);
312 device_create_file(&asd_ha->pcidev->dev, &dev_attr_bios_build);
313 device_create_file(&asd_ha->pcidev->dev, &dev_attr_pcba_sn);
314}
315
316static void asd_remove_dev_attrs(struct asd_ha_struct *asd_ha)
317{
318 device_remove_file(&asd_ha->pcidev->dev, &dev_attr_revision);
319 device_remove_file(&asd_ha->pcidev->dev, &dev_attr_bios_build);
320 device_remove_file(&asd_ha->pcidev->dev, &dev_attr_pcba_sn);
321}
322
323/* The first entry, 0, is used for dynamic ids, the rest for devices
324 * we know about.
325 */
326static struct asd_pcidev_struct {
327 const char * name;
328 int (*setup)(struct asd_ha_struct *asd_ha);
329} asd_pcidev_data[] = {
330 /* Id 0 is used for dynamic ids. */
331 { .name = "Adaptec AIC-94xx SAS/SATA Host Adapter",
332 .setup = asd_aic9410_setup
333 },
334 { .name = "Adaptec AIC-9410W SAS/SATA Host Adapter",
335 .setup = asd_aic9410_setup
336 },
337 { .name = "Adaptec AIC-9405W SAS/SATA Host Adapter",
338 .setup = asd_aic9405_setup
339 },
340};
341
342static inline int asd_create_ha_caches(struct asd_ha_struct *asd_ha)
343{
344 asd_ha->scb_pool = dma_pool_create(ASD_DRIVER_NAME "_scb_pool",
345 &asd_ha->pcidev->dev,
346 sizeof(struct scb),
347 8, 0);
348 if (!asd_ha->scb_pool) {
349 asd_printk("couldn't create scb pool\n");
350 return -ENOMEM;
351 }
352
353 return 0;
354}
355
356/**
357 * asd_free_edbs -- free empty data buffers
358 * asd_ha: pointer to host adapter structure
359 */
360static inline void asd_free_edbs(struct asd_ha_struct *asd_ha)
361{
362 struct asd_seq_data *seq = &asd_ha->seq;
363 int i;
364
365 for (i = 0; i < seq->num_edbs; i++)
366 asd_free_coherent(asd_ha, seq->edb_arr[i]);
367 kfree(seq->edb_arr);
368 seq->edb_arr = NULL;
369}
370
371static inline void asd_free_escbs(struct asd_ha_struct *asd_ha)
372{
373 struct asd_seq_data *seq = &asd_ha->seq;
374 int i;
375
376 for (i = 0; i < seq->num_escbs; i++) {
377 if (!list_empty(&seq->escb_arr[i]->list))
378 list_del_init(&seq->escb_arr[i]->list);
379
380 asd_ascb_free(seq->escb_arr[i]);
381 }
382 kfree(seq->escb_arr);
383 seq->escb_arr = NULL;
384}
385
386static inline void asd_destroy_ha_caches(struct asd_ha_struct *asd_ha)
387{
388 int i;
389
390 if (asd_ha->hw_prof.ddb_ext)
391 asd_free_coherent(asd_ha, asd_ha->hw_prof.ddb_ext);
392 if (asd_ha->hw_prof.scb_ext)
393 asd_free_coherent(asd_ha, asd_ha->hw_prof.scb_ext);
394
395 if (asd_ha->hw_prof.ddb_bitmap)
396 kfree(asd_ha->hw_prof.ddb_bitmap);
397 asd_ha->hw_prof.ddb_bitmap = NULL;
398
399 for (i = 0; i < ASD_MAX_PHYS; i++) {
400 struct asd_phy *phy = &asd_ha->phys[i];
401
402 asd_free_coherent(asd_ha, phy->id_frm_tok);
403 }
404 if (asd_ha->seq.escb_arr)
405 asd_free_escbs(asd_ha);
406 if (asd_ha->seq.edb_arr)
407 asd_free_edbs(asd_ha);
408 if (asd_ha->hw_prof.ue.area) {
409 kfree(asd_ha->hw_prof.ue.area);
410 asd_ha->hw_prof.ue.area = NULL;
411 }
412 if (asd_ha->seq.tc_index_array) {
413 kfree(asd_ha->seq.tc_index_array);
414 kfree(asd_ha->seq.tc_index_bitmap);
415 asd_ha->seq.tc_index_array = NULL;
416 asd_ha->seq.tc_index_bitmap = NULL;
417 }
418 if (asd_ha->seq.actual_dl) {
419 asd_free_coherent(asd_ha, asd_ha->seq.actual_dl);
420 asd_ha->seq.actual_dl = NULL;
421 asd_ha->seq.dl = NULL;
422 }
423 if (asd_ha->seq.next_scb.vaddr) {
424 dma_pool_free(asd_ha->scb_pool, asd_ha->seq.next_scb.vaddr,
425 asd_ha->seq.next_scb.dma_handle);
426 asd_ha->seq.next_scb.vaddr = NULL;
427 }
428 dma_pool_destroy(asd_ha->scb_pool);
429 asd_ha->scb_pool = NULL;
430}
431
432kmem_cache_t *asd_dma_token_cache;
433kmem_cache_t *asd_ascb_cache;
434
435static int asd_create_global_caches(void)
436{
437 if (!asd_dma_token_cache) {
438 asd_dma_token_cache
439 = kmem_cache_create(ASD_DRIVER_NAME "_dma_token",
440 sizeof(struct asd_dma_tok),
441 0,
442 SLAB_HWCACHE_ALIGN,
443 NULL, NULL);
444 if (!asd_dma_token_cache) {
445 asd_printk("couldn't create dma token cache\n");
446 return -ENOMEM;
447 }
448 }
449
450 if (!asd_ascb_cache) {
451 asd_ascb_cache = kmem_cache_create(ASD_DRIVER_NAME "_ascb",
452 sizeof(struct asd_ascb),
453 0,
454 SLAB_HWCACHE_ALIGN,
455 NULL, NULL);
456 if (!asd_ascb_cache) {
457 asd_printk("couldn't create ascb cache\n");
458 goto Err;
459 }
460 }
461
462 return 0;
463Err:
464 kmem_cache_destroy(asd_dma_token_cache);
465 asd_dma_token_cache = NULL;
466 return -ENOMEM;
467}
468
469static void asd_destroy_global_caches(void)
470{
471 if (asd_dma_token_cache)
472 kmem_cache_destroy(asd_dma_token_cache);
473 asd_dma_token_cache = NULL;
474
475 if (asd_ascb_cache)
476 kmem_cache_destroy(asd_ascb_cache);
477 asd_ascb_cache = NULL;
478}
479
480static int asd_register_sas_ha(struct asd_ha_struct *asd_ha)
481{
482 int i;
483 struct asd_sas_phy **sas_phys =
484 kmalloc(ASD_MAX_PHYS * sizeof(struct asd_sas_phy), GFP_KERNEL);
485 struct asd_sas_port **sas_ports =
486 kmalloc(ASD_MAX_PHYS * sizeof(struct asd_sas_port), GFP_KERNEL);
487
488 if (!sas_phys || !sas_ports) {
489 kfree(sas_phys);
490 kfree(sas_ports);
491 return -ENOMEM;
492 }
493
494 asd_ha->sas_ha.sas_ha_name = (char *) asd_ha->name;
495 asd_ha->sas_ha.lldd_module = THIS_MODULE;
496 asd_ha->sas_ha.sas_addr = &asd_ha->hw_prof.sas_addr[0];
497
498 for (i = 0; i < ASD_MAX_PHYS; i++) {
499 sas_phys[i] = &asd_ha->phys[i].sas_phy;
500 sas_ports[i] = &asd_ha->ports[i];
501 }
502
503 asd_ha->sas_ha.sas_phy = sas_phys;
504 asd_ha->sas_ha.sas_port= sas_ports;
505 asd_ha->sas_ha.num_phys= ASD_MAX_PHYS;
506
507 asd_ha->sas_ha.lldd_queue_size = asd_ha->seq.can_queue;
508
509 return sas_register_ha(&asd_ha->sas_ha);
510}
511
512static int asd_unregister_sas_ha(struct asd_ha_struct *asd_ha)
513{
514 int err;
515
516 err = sas_unregister_ha(&asd_ha->sas_ha);
517
518 sas_remove_host(asd_ha->sas_ha.core.shost);
519 scsi_remove_host(asd_ha->sas_ha.core.shost);
520 scsi_host_put(asd_ha->sas_ha.core.shost);
521
522 kfree(asd_ha->sas_ha.sas_phy);
523 kfree(asd_ha->sas_ha.sas_port);
524
525 return err;
526}
527
528static int __devinit asd_pci_probe(struct pci_dev *dev,
529 const struct pci_device_id *id)
530{
531 struct asd_pcidev_struct *asd_dev;
532 unsigned asd_id = (unsigned) id->driver_data;
533 struct asd_ha_struct *asd_ha;
534 struct Scsi_Host *shost;
535 int err;
536
537 if (asd_id >= ARRAY_SIZE(asd_pcidev_data)) {
538 asd_printk("wrong driver_data in PCI table\n");
539 return -ENODEV;
540 }
541
542 if ((err = pci_enable_device(dev))) {
543 asd_printk("couldn't enable device %s\n", pci_name(dev));
544 return err;
545 }
546
547 pci_set_master(dev);
548
549 err = -ENOMEM;
550
551 shost = scsi_host_alloc(&aic94xx_sht, sizeof(void *));
552 if (!shost)
553 goto Err;
554
555 asd_dev = &asd_pcidev_data[asd_id];
556
557 asd_ha = kzalloc(sizeof(*asd_ha), GFP_KERNEL);
558 if (!asd_ha) {
559 asd_printk("out of memory\n");
560 goto Err;
561 }
562 asd_ha->pcidev = dev;
563 asd_ha->sas_ha.pcidev = asd_ha->pcidev;
564 asd_ha->sas_ha.lldd_ha = asd_ha;
565
566 asd_ha->name = asd_dev->name;
567 asd_printk("found %s, device %s\n", asd_ha->name, pci_name(dev));
568
569 SHOST_TO_SAS_HA(shost) = &asd_ha->sas_ha;
570 asd_ha->sas_ha.core.shost = shost;
571 shost->transportt = aic94xx_transport_template;
572 shost->max_id = ~0;
573 shost->max_lun = ~0;
574 shost->max_cmd_len = 16;
575
576 err = scsi_add_host(shost, &dev->dev);
577 if (err) {
578 scsi_host_put(shost);
579 goto Err_free;
580 }
581
582
583
584 err = asd_dev->setup(asd_ha);
585 if (err)
586 goto Err_free;
587
588 err = -ENODEV;
589 if (!pci_set_dma_mask(dev, DMA_64BIT_MASK)
590 && !pci_set_consistent_dma_mask(dev, DMA_64BIT_MASK))
591 ;
592 else if (!pci_set_dma_mask(dev, DMA_32BIT_MASK)
593 && !pci_set_consistent_dma_mask(dev, DMA_32BIT_MASK))
594 ;
595 else {
596 asd_printk("no suitable DMA mask for %s\n", pci_name(dev));
597 goto Err_free;
598 }
599
600 pci_set_drvdata(dev, asd_ha);
601
602 err = asd_map_ha(asd_ha);
603 if (err)
604 goto Err_free;
605
606 err = asd_create_ha_caches(asd_ha);
607 if (err)
608 goto Err_unmap;
609
610 err = asd_init_hw(asd_ha);
611 if (err)
612 goto Err_free_cache;
613
614 asd_printk("device %s: SAS addr %llx, PCBA SN %s, %d phys, %d enabled "
615 "phys, flash %s, BIOS %s%d\n",
616 pci_name(dev), SAS_ADDR(asd_ha->hw_prof.sas_addr),
617 asd_ha->hw_prof.pcba_sn, asd_ha->hw_prof.max_phys,
618 asd_ha->hw_prof.num_phys,
619 asd_ha->hw_prof.flash.present ? "present" : "not present",
620 asd_ha->hw_prof.bios.present ? "build " : "not present",
621 asd_ha->hw_prof.bios.bld);
622
623 if (use_msi)
624 pci_enable_msi(asd_ha->pcidev);
625
626 err = request_irq(asd_ha->pcidev->irq, asd_hw_isr, SA_SHIRQ,
627 ASD_DRIVER_NAME, asd_ha);
628 if (err) {
629 asd_printk("couldn't get irq %d for %s\n",
630 asd_ha->pcidev->irq, pci_name(asd_ha->pcidev));
631 goto Err_irq;
632 }
633 asd_enable_ints(asd_ha);
634
635 err = asd_init_post_escbs(asd_ha);
636 if (err) {
637 asd_printk("couldn't post escbs for %s\n",
638 pci_name(asd_ha->pcidev));
639 goto Err_escbs;
640 }
641 ASD_DPRINTK("escbs posted\n");
642
643 asd_create_dev_attrs(asd_ha);
644
645 err = asd_register_sas_ha(asd_ha);
646 if (err)
647 goto Err_reg_sas;
648
649 err = asd_enable_phys(asd_ha, asd_ha->hw_prof.enabled_phys);
650 if (err) {
651 asd_printk("coudln't enable phys, err:%d\n", err);
652 goto Err_en_phys;
653 }
654 ASD_DPRINTK("enabled phys\n");
655 /* give the phy enabling interrupt event time to come in (1s
656 * is empirically about all it takes) */
657 ssleep(1);
658 /* Wait for discovery to finish */
659 scsi_flush_work(asd_ha->sas_ha.core.shost);
660
661 return 0;
662Err_en_phys:
663 asd_unregister_sas_ha(asd_ha);
664Err_reg_sas:
665 asd_remove_dev_attrs(asd_ha);
666Err_escbs:
667 asd_disable_ints(asd_ha);
668 free_irq(dev->irq, asd_ha);
669Err_irq:
670 if (use_msi)
671 pci_disable_msi(dev);
672 asd_chip_hardrst(asd_ha);
673Err_free_cache:
674 asd_destroy_ha_caches(asd_ha);
675Err_unmap:
676 asd_unmap_ha(asd_ha);
677Err_free:
678 kfree(asd_ha);
679 scsi_remove_host(shost);
680Err:
681 pci_disable_device(dev);
682 return err;
683}
684
685static void asd_free_queues(struct asd_ha_struct *asd_ha)
686{
687 unsigned long flags;
688 LIST_HEAD(pending);
689 struct list_head *n, *pos;
690
691 spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
692 asd_ha->seq.pending = 0;
693 list_splice_init(&asd_ha->seq.pend_q, &pending);
694 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
695
696 if (!list_empty(&pending))
697 ASD_DPRINTK("Uh-oh! Pending is not empty!\n");
698
699 list_for_each_safe(pos, n, &pending) {
700 struct asd_ascb *ascb = list_entry(pos, struct asd_ascb, list);
701 list_del_init(pos);
702 ASD_DPRINTK("freeing from pending\n");
703 asd_ascb_free(ascb);
704 }
705}
706
707static void asd_turn_off_leds(struct asd_ha_struct *asd_ha)
708{
709 u8 phy_mask = asd_ha->hw_prof.enabled_phys;
710 u8 i;
711
712 for_each_phy(phy_mask, phy_mask, i) {
713 asd_turn_led(asd_ha, i, 0);
714 asd_control_led(asd_ha, i, 0);
715 }
716}
717
718static void __devexit asd_pci_remove(struct pci_dev *dev)
719{
720 struct asd_ha_struct *asd_ha = pci_get_drvdata(dev);
721
722 if (!asd_ha)
723 return;
724
725 asd_unregister_sas_ha(asd_ha);
726
727 asd_disable_ints(asd_ha);
728
729 asd_remove_dev_attrs(asd_ha);
730
731 /* XXX more here as needed */
732
733 free_irq(dev->irq, asd_ha);
734 if (use_msi)
735 pci_disable_msi(asd_ha->pcidev);
736 asd_turn_off_leds(asd_ha);
737 asd_chip_hardrst(asd_ha);
738 asd_free_queues(asd_ha);
739 asd_destroy_ha_caches(asd_ha);
740 asd_unmap_ha(asd_ha);
741 kfree(asd_ha);
742 pci_disable_device(dev);
743 return;
744}
745
746static ssize_t asd_version_show(struct device_driver *driver, char *buf)
747{
748 return snprintf(buf, PAGE_SIZE, "%s\n", ASD_DRIVER_VERSION);
749}
750static DRIVER_ATTR(version, S_IRUGO, asd_version_show, NULL);
751
752static void asd_create_driver_attrs(struct device_driver *driver)
753{
754 driver_create_file(driver, &driver_attr_version);
755}
756
757static void asd_remove_driver_attrs(struct device_driver *driver)
758{
759 driver_remove_file(driver, &driver_attr_version);
760}
761
762static struct sas_domain_function_template aic94xx_transport_functions = {
763 .lldd_port_formed = asd_update_port_links,
764
765 .lldd_dev_found = asd_dev_found,
766 .lldd_dev_gone = asd_dev_gone,
767
768 .lldd_execute_task = asd_execute_task,
769
770 .lldd_abort_task = asd_abort_task,
771 .lldd_abort_task_set = asd_abort_task_set,
772 .lldd_clear_aca = asd_clear_aca,
773 .lldd_clear_task_set = asd_clear_task_set,
774 .lldd_I_T_nexus_reset = NULL,
775 .lldd_lu_reset = asd_lu_reset,
776 .lldd_query_task = asd_query_task,
777
778 .lldd_clear_nexus_port = asd_clear_nexus_port,
779 .lldd_clear_nexus_ha = asd_clear_nexus_ha,
780
781 .lldd_control_phy = asd_control_phy,
782};
783
784static const struct pci_device_id aic94xx_pci_table[] __devinitdata = {
785 {PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_RAZOR10),
786 0, 0, 1},
787 {PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_RAZOR12),
788 0, 0, 1},
789 {PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_RAZOR1E),
790 0, 0, 1},
791 {PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_RAZOR30),
792 0, 0, 2},
793 {PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_RAZOR32),
794 0, 0, 2},
795 {PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_RAZOR3E),
796 0, 0, 2},
797 {PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_RAZOR3F),
798 0, 0, 2},
799 {}
800};
801
802MODULE_DEVICE_TABLE(pci, aic94xx_pci_table);
803
804static struct pci_driver aic94xx_pci_driver = {
805 .name = ASD_DRIVER_NAME,
806 .id_table = aic94xx_pci_table,
807 .probe = asd_pci_probe,
808 .remove = __devexit_p(asd_pci_remove),
809};
810
811static int __init aic94xx_init(void)
812{
813 int err;
814
815
816 asd_printk("%s version %s loaded\n", ASD_DRIVER_DESCRIPTION,
817 ASD_DRIVER_VERSION);
818
819 err = asd_create_global_caches();
820 if (err)
821 return err;
822
823 aic94xx_transport_template =
824 sas_domain_attach_transport(&aic94xx_transport_functions);
825 if (err)
826 goto out_destroy_caches;
827
828 err = pci_register_driver(&aic94xx_pci_driver);
829 if (err)
830 goto out_release_transport;
831
832 asd_create_driver_attrs(&aic94xx_pci_driver.driver);
833
834 return err;
835
836 out_release_transport:
837 sas_release_transport(aic94xx_transport_template);
838 out_destroy_caches:
839 asd_destroy_global_caches();
840
841 return err;
842}
843
844static void __exit aic94xx_exit(void)
845{
846 asd_remove_driver_attrs(&aic94xx_pci_driver.driver);
847 pci_unregister_driver(&aic94xx_pci_driver);
848 sas_release_transport(aic94xx_transport_template);
849 asd_destroy_global_caches();
850 asd_printk("%s version %s unloaded\n", ASD_DRIVER_DESCRIPTION,
851 ASD_DRIVER_VERSION);
852}
853
854module_init(aic94xx_init);
855module_exit(aic94xx_exit);
856
857MODULE_AUTHOR("Luben Tuikov <luben_tuikov@adaptec.com>");
858MODULE_DESCRIPTION(ASD_DRIVER_DESCRIPTION);
859MODULE_LICENSE("GPL v2");
860MODULE_VERSION(ASD_DRIVER_VERSION);
diff --git a/drivers/scsi/aic94xx/aic94xx_reg.c b/drivers/scsi/aic94xx/aic94xx_reg.c
new file mode 100644
index 000000000000..f210dac3203d
--- /dev/null
+++ b/drivers/scsi/aic94xx/aic94xx_reg.c
@@ -0,0 +1,332 @@
1/*
2 * Aic94xx SAS/SATA driver register access.
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This file is part of the aic94xx driver.
10 *
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
14 * License.
15 *
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 *
25 */
26
27#include <linux/pci.h>
28#include "aic94xx_reg.h"
29#include "aic94xx.h"
30
31/* Writing to device address space.
32 * Offset comes before value to remind that the operation of
33 * this function is *offs = val.
34 */
35static inline void asd_write_byte(struct asd_ha_struct *asd_ha,
36 unsigned long offs, u8 val)
37{
38 if (unlikely(asd_ha->iospace))
39 outb(val,
40 (unsigned long)asd_ha->io_handle[0].addr + (offs & 0xFF));
41 else
42 writeb(val, asd_ha->io_handle[0].addr + offs);
43 wmb();
44}
45
46static inline void asd_write_word(struct asd_ha_struct *asd_ha,
47 unsigned long offs, u16 val)
48{
49 if (unlikely(asd_ha->iospace))
50 outw(val,
51 (unsigned long)asd_ha->io_handle[0].addr + (offs & 0xFF));
52 else
53 writew(val, asd_ha->io_handle[0].addr + offs);
54 wmb();
55}
56
57static inline void asd_write_dword(struct asd_ha_struct *asd_ha,
58 unsigned long offs, u32 val)
59{
60 if (unlikely(asd_ha->iospace))
61 outl(val,
62 (unsigned long)asd_ha->io_handle[0].addr + (offs & 0xFF));
63 else
64 writel(val, asd_ha->io_handle[0].addr + offs);
65 wmb();
66}
67
68/* Reading from device address space.
69 */
70static inline u8 asd_read_byte(struct asd_ha_struct *asd_ha,
71 unsigned long offs)
72{
73 u8 val;
74 if (unlikely(asd_ha->iospace))
75 val = inb((unsigned long) asd_ha->io_handle[0].addr
76 + (offs & 0xFF));
77 else
78 val = readb(asd_ha->io_handle[0].addr + offs);
79 rmb();
80 return val;
81}
82
83static inline u16 asd_read_word(struct asd_ha_struct *asd_ha,
84 unsigned long offs)
85{
86 u16 val;
87 if (unlikely(asd_ha->iospace))
88 val = inw((unsigned long)asd_ha->io_handle[0].addr
89 + (offs & 0xFF));
90 else
91 val = readw(asd_ha->io_handle[0].addr + offs);
92 rmb();
93 return val;
94}
95
96static inline u32 asd_read_dword(struct asd_ha_struct *asd_ha,
97 unsigned long offs)
98{
99 u32 val;
100 if (unlikely(asd_ha->iospace))
101 val = inl((unsigned long) asd_ha->io_handle[0].addr
102 + (offs & 0xFF));
103 else
104 val = readl(asd_ha->io_handle[0].addr + offs);
105 rmb();
106 return val;
107}
108
109static inline u32 asd_mem_offs_swa(void)
110{
111 return 0;
112}
113
114static inline u32 asd_mem_offs_swc(void)
115{
116 return asd_mem_offs_swa() + MBAR0_SWA_SIZE;
117}
118
119static inline u32 asd_mem_offs_swb(void)
120{
121 return asd_mem_offs_swc() + MBAR0_SWC_SIZE + 0x20;
122}
123
124/* We know that the register wanted is in the range
125 * of the sliding window.
126 */
127#define ASD_READ_SW(ww, type, ord) \
128static inline type asd_read_##ww##_##ord (struct asd_ha_struct *asd_ha,\
129 u32 reg) \
130{ \
131 struct asd_ha_addrspace *io_handle = &asd_ha->io_handle[0]; \
132 u32 map_offs=(reg - io_handle-> ww##_base )+asd_mem_offs_##ww ();\
133 return asd_read_##ord (asd_ha, (unsigned long) map_offs); \
134}
135
136#define ASD_WRITE_SW(ww, type, ord) \
137static inline void asd_write_##ww##_##ord (struct asd_ha_struct *asd_ha,\
138 u32 reg, type val) \
139{ \
140 struct asd_ha_addrspace *io_handle = &asd_ha->io_handle[0]; \
141 u32 map_offs=(reg - io_handle-> ww##_base )+asd_mem_offs_##ww ();\
142 asd_write_##ord (asd_ha, (unsigned long) map_offs, val); \
143}
144
145ASD_READ_SW(swa, u8, byte);
146ASD_READ_SW(swa, u16, word);
147ASD_READ_SW(swa, u32, dword);
148
149ASD_READ_SW(swb, u8, byte);
150ASD_READ_SW(swb, u16, word);
151ASD_READ_SW(swb, u32, dword);
152
153ASD_READ_SW(swc, u8, byte);
154ASD_READ_SW(swc, u16, word);
155ASD_READ_SW(swc, u32, dword);
156
157ASD_WRITE_SW(swa, u8, byte);
158ASD_WRITE_SW(swa, u16, word);
159ASD_WRITE_SW(swa, u32, dword);
160
161ASD_WRITE_SW(swb, u8, byte);
162ASD_WRITE_SW(swb, u16, word);
163ASD_WRITE_SW(swb, u32, dword);
164
165ASD_WRITE_SW(swc, u8, byte);
166ASD_WRITE_SW(swc, u16, word);
167ASD_WRITE_SW(swc, u32, dword);
168
169/*
170 * A word about sliding windows:
171 * MBAR0 is divided into sliding windows A, C and B, in that order.
172 * SWA starts at offset 0 of MBAR0, up to 0x57, with size 0x58 bytes.
173 * SWC starts at offset 0x58 of MBAR0, up to 0x60, with size 0x8 bytes.
174 * From 0x60 to 0x7F, we have a copy of PCI config space 0x60-0x7F.
175 * SWB starts at offset 0x80 of MBAR0 and extends to the end of MBAR0.
176 * See asd_init_sw() in aic94xx_hwi.c
177 *
178 * We map the most common registers we'd access of the internal 4GB
179 * host adapter memory space. If a register/internal memory location
180 * is wanted which is not mapped, we slide SWB, by paging it,
181 * see asd_move_swb() in aic94xx_reg.c.
182 */
183
184/**
185 * asd_move_swb -- move sliding window B
186 * @asd_ha: pointer to host adapter structure
187 * @reg: register desired to be within range of the new window
188 */
189static inline void asd_move_swb(struct asd_ha_struct *asd_ha, u32 reg)
190{
191 u32 base = reg & ~(MBAR0_SWB_SIZE-1);
192 pci_write_config_dword(asd_ha->pcidev, PCI_CONF_MBAR0_SWB, base);
193 asd_ha->io_handle[0].swb_base = base;
194}
195
196static void __asd_write_reg_byte(struct asd_ha_struct *asd_ha, u32 reg, u8 val)
197{
198 struct asd_ha_addrspace *io_handle=&asd_ha->io_handle[0];
199 BUG_ON(reg >= 0xC0000000 || reg < ALL_BASE_ADDR);
200 if (io_handle->swa_base <= reg
201 && reg < io_handle->swa_base + MBAR0_SWA_SIZE)
202 asd_write_swa_byte (asd_ha, reg,val);
203 else if (io_handle->swb_base <= reg
204 && reg < io_handle->swb_base + MBAR0_SWB_SIZE)
205 asd_write_swb_byte (asd_ha, reg, val);
206 else if (io_handle->swc_base <= reg
207 && reg < io_handle->swc_base + MBAR0_SWC_SIZE)
208 asd_write_swc_byte (asd_ha, reg, val);
209 else {
210 /* Ok, we have to move SWB */
211 asd_move_swb(asd_ha, reg);
212 asd_write_swb_byte (asd_ha, reg, val);
213 }
214}
215
216#define ASD_WRITE_REG(type, ord) \
217void asd_write_reg_##ord (struct asd_ha_struct *asd_ha, u32 reg, type val)\
218{ \
219 struct asd_ha_addrspace *io_handle=&asd_ha->io_handle[0]; \
220 unsigned long flags; \
221 BUG_ON(reg >= 0xC0000000 || reg < ALL_BASE_ADDR); \
222 spin_lock_irqsave(&asd_ha->iolock, flags); \
223 if (io_handle->swa_base <= reg \
224 && reg < io_handle->swa_base + MBAR0_SWA_SIZE) \
225 asd_write_swa_##ord (asd_ha, reg,val); \
226 else if (io_handle->swb_base <= reg \
227 && reg < io_handle->swb_base + MBAR0_SWB_SIZE) \
228 asd_write_swb_##ord (asd_ha, reg, val); \
229 else if (io_handle->swc_base <= reg \
230 && reg < io_handle->swc_base + MBAR0_SWC_SIZE) \
231 asd_write_swc_##ord (asd_ha, reg, val); \
232 else { \
233 /* Ok, we have to move SWB */ \
234 asd_move_swb(asd_ha, reg); \
235 asd_write_swb_##ord (asd_ha, reg, val); \
236 } \
237 spin_unlock_irqrestore(&asd_ha->iolock, flags); \
238}
239
240ASD_WRITE_REG(u8, byte);
241ASD_WRITE_REG(u16,word);
242ASD_WRITE_REG(u32,dword);
243
244static u8 __asd_read_reg_byte(struct asd_ha_struct *asd_ha, u32 reg)
245{
246 struct asd_ha_addrspace *io_handle=&asd_ha->io_handle[0];
247 u8 val;
248 BUG_ON(reg >= 0xC0000000 || reg < ALL_BASE_ADDR);
249 if (io_handle->swa_base <= reg
250 && reg < io_handle->swa_base + MBAR0_SWA_SIZE)
251 val = asd_read_swa_byte (asd_ha, reg);
252 else if (io_handle->swb_base <= reg
253 && reg < io_handle->swb_base + MBAR0_SWB_SIZE)
254 val = asd_read_swb_byte (asd_ha, reg);
255 else if (io_handle->swc_base <= reg
256 && reg < io_handle->swc_base + MBAR0_SWC_SIZE)
257 val = asd_read_swc_byte (asd_ha, reg);
258 else {
259 /* Ok, we have to move SWB */
260 asd_move_swb(asd_ha, reg);
261 val = asd_read_swb_byte (asd_ha, reg);
262 }
263 return val;
264}
265
266#define ASD_READ_REG(type, ord) \
267type asd_read_reg_##ord (struct asd_ha_struct *asd_ha, u32 reg) \
268{ \
269 struct asd_ha_addrspace *io_handle=&asd_ha->io_handle[0]; \
270 type val; \
271 unsigned long flags; \
272 BUG_ON(reg >= 0xC0000000 || reg < ALL_BASE_ADDR); \
273 spin_lock_irqsave(&asd_ha->iolock, flags); \
274 if (io_handle->swa_base <= reg \
275 && reg < io_handle->swa_base + MBAR0_SWA_SIZE) \
276 val = asd_read_swa_##ord (asd_ha, reg); \
277 else if (io_handle->swb_base <= reg \
278 && reg < io_handle->swb_base + MBAR0_SWB_SIZE) \
279 val = asd_read_swb_##ord (asd_ha, reg); \
280 else if (io_handle->swc_base <= reg \
281 && reg < io_handle->swc_base + MBAR0_SWC_SIZE) \
282 val = asd_read_swc_##ord (asd_ha, reg); \
283 else { \
284 /* Ok, we have to move SWB */ \
285 asd_move_swb(asd_ha, reg); \
286 val = asd_read_swb_##ord (asd_ha, reg); \
287 } \
288 spin_unlock_irqrestore(&asd_ha->iolock, flags); \
289 return val; \
290}
291
292ASD_READ_REG(u8, byte);
293ASD_READ_REG(u16,word);
294ASD_READ_REG(u32,dword);
295
296/**
297 * asd_read_reg_string -- read a string of bytes from io space memory
298 * @asd_ha: pointer to host adapter structure
299 * @dst: pointer to a destination buffer where data will be written to
300 * @offs: start offset (register) to read from
301 * @count: number of bytes to read
302 */
303void asd_read_reg_string(struct asd_ha_struct *asd_ha, void *dst,
304 u32 offs, int count)
305{
306 u8 *p = dst;
307 unsigned long flags;
308
309 spin_lock_irqsave(&asd_ha->iolock, flags);
310 for ( ; count > 0; count--, offs++, p++)
311 *p = __asd_read_reg_byte(asd_ha, offs);
312 spin_unlock_irqrestore(&asd_ha->iolock, flags);
313}
314
315/**
316 * asd_write_reg_string -- write a string of bytes to io space memory
317 * @asd_ha: pointer to host adapter structure
318 * @src: pointer to source buffer where data will be read from
319 * @offs: start offset (register) to write to
320 * @count: number of bytes to write
321 */
322void asd_write_reg_string(struct asd_ha_struct *asd_ha, void *src,
323 u32 offs, int count)
324{
325 u8 *p = src;
326 unsigned long flags;
327
328 spin_lock_irqsave(&asd_ha->iolock, flags);
329 for ( ; count > 0; count--, offs++, p++)
330 __asd_write_reg_byte(asd_ha, offs, *p);
331 spin_unlock_irqrestore(&asd_ha->iolock, flags);
332}
diff --git a/drivers/scsi/aic94xx/aic94xx_reg.h b/drivers/scsi/aic94xx/aic94xx_reg.h
new file mode 100644
index 000000000000..2279307fd27e
--- /dev/null
+++ b/drivers/scsi/aic94xx/aic94xx_reg.h
@@ -0,0 +1,302 @@
1/*
2 * Aic94xx SAS/SATA driver hardware registers definitions.
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This file is part of the aic94xx driver.
10 *
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
14 * License.
15 *
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 *
25 */
26
27#ifndef _AIC94XX_REG_H_
28#define _AIC94XX_REG_H_
29
30#include <asm/io.h>
31#include "aic94xx_hwi.h"
32
33/* Values */
34#define AIC9410_DEV_REV_B0 0x8
35
36/* MBAR0, SWA, SWB, SWC, internal memory space addresses */
37#define REG_BASE_ADDR 0xB8000000
38#define REG_BASE_ADDR_CSEQCIO 0xB8002000
39#define REG_BASE_ADDR_EXSI 0xB8042800
40
41#define MBAR0_SWA_SIZE 0x58
42extern u32 MBAR0_SWB_SIZE;
43#define MBAR0_SWC_SIZE 0x8
44
45/* MBAR1, points to On Chip Memory */
46#define OCM_BASE_ADDR 0xA0000000
47#define OCM_MAX_SIZE 0x20000
48
49/* Smallest address possible to reference */
50#define ALL_BASE_ADDR OCM_BASE_ADDR
51
52/* PCI configuration space registers */
53#define PCI_IOBAR_OFFSET 4
54
55#define PCI_CONF_MBAR1 0x6C
56#define PCI_CONF_MBAR0_SWA 0x70
57#define PCI_CONF_MBAR0_SWB 0x74
58#define PCI_CONF_MBAR0_SWC 0x78
59#define PCI_CONF_MBAR_KEY 0x7C
60#define PCI_CONF_FLSH_BAR 0xB8
61
62#include "aic94xx_reg_def.h"
63
64u8 asd_read_reg_byte(struct asd_ha_struct *asd_ha, u32 reg);
65u16 asd_read_reg_word(struct asd_ha_struct *asd_ha, u32 reg);
66u32 asd_read_reg_dword(struct asd_ha_struct *asd_ha, u32 reg);
67
68void asd_write_reg_byte(struct asd_ha_struct *asd_ha, u32 reg, u8 val);
69void asd_write_reg_word(struct asd_ha_struct *asd_ha, u32 reg, u16 val);
70void asd_write_reg_dword(struct asd_ha_struct *asd_ha, u32 reg, u32 val);
71
72void asd_read_reg_string(struct asd_ha_struct *asd_ha, void *dst,
73 u32 offs, int count);
74void asd_write_reg_string(struct asd_ha_struct *asd_ha, void *src,
75 u32 offs, int count);
76
77#define ASD_READ_OCM(type, ord, S) \
78static inline type asd_read_ocm_##ord (struct asd_ha_struct *asd_ha, \
79 u32 offs) \
80{ \
81 struct asd_ha_addrspace *io_handle = &asd_ha->io_handle[1]; \
82 type val = read##S (io_handle->addr + (unsigned long) offs); \
83 rmb(); \
84 return val; \
85}
86
87ASD_READ_OCM(u8, byte, b);
88ASD_READ_OCM(u16,word, w);
89ASD_READ_OCM(u32,dword,l);
90
91#define ASD_WRITE_OCM(type, ord, S) \
92static inline void asd_write_ocm_##ord (struct asd_ha_struct *asd_ha, \
93 u32 offs, type val) \
94{ \
95 struct asd_ha_addrspace *io_handle = &asd_ha->io_handle[1]; \
96 write##S (val, io_handle->addr + (unsigned long) offs); \
97 return; \
98}
99
100ASD_WRITE_OCM(u8, byte, b);
101ASD_WRITE_OCM(u16,word, w);
102ASD_WRITE_OCM(u32,dword,l);
103
104#define ASD_DDBSITE_READ(type, ord) \
105static inline type asd_ddbsite_read_##ord (struct asd_ha_struct *asd_ha, \
106 u16 ddb_site_no, \
107 u16 offs) \
108{ \
109 asd_write_reg_word(asd_ha, ALTCIOADR, MnDDB_SITE + offs); \
110 asd_write_reg_word(asd_ha, ADDBPTR, ddb_site_no); \
111 return asd_read_reg_##ord (asd_ha, CTXACCESS); \
112}
113
114ASD_DDBSITE_READ(u32, dword);
115ASD_DDBSITE_READ(u16, word);
116
117static inline u8 asd_ddbsite_read_byte(struct asd_ha_struct *asd_ha,
118 u16 ddb_site_no,
119 u16 offs)
120{
121 if (offs & 1)
122 return asd_ddbsite_read_word(asd_ha, ddb_site_no,
123 offs & ~1) >> 8;
124 else
125 return asd_ddbsite_read_word(asd_ha, ddb_site_no,
126 offs) & 0xFF;
127}
128
129
130#define ASD_DDBSITE_WRITE(type, ord) \
131static inline void asd_ddbsite_write_##ord (struct asd_ha_struct *asd_ha, \
132 u16 ddb_site_no, \
133 u16 offs, type val) \
134{ \
135 asd_write_reg_word(asd_ha, ALTCIOADR, MnDDB_SITE + offs); \
136 asd_write_reg_word(asd_ha, ADDBPTR, ddb_site_no); \
137 asd_write_reg_##ord (asd_ha, CTXACCESS, val); \
138}
139
140ASD_DDBSITE_WRITE(u32, dword);
141ASD_DDBSITE_WRITE(u16, word);
142
143static inline void asd_ddbsite_write_byte(struct asd_ha_struct *asd_ha,
144 u16 ddb_site_no,
145 u16 offs, u8 val)
146{
147 u16 base = offs & ~1;
148 u16 rval = asd_ddbsite_read_word(asd_ha, ddb_site_no, base);
149 if (offs & 1)
150 rval = (val << 8) | (rval & 0xFF);
151 else
152 rval = (rval & 0xFF00) | val;
153 asd_ddbsite_write_word(asd_ha, ddb_site_no, base, rval);
154}
155
156
157#define ASD_SCBSITE_READ(type, ord) \
158static inline type asd_scbsite_read_##ord (struct asd_ha_struct *asd_ha, \
159 u16 scb_site_no, \
160 u16 offs) \
161{ \
162 asd_write_reg_word(asd_ha, ALTCIOADR, MnSCB_SITE + offs); \
163 asd_write_reg_word(asd_ha, ASCBPTR, scb_site_no); \
164 return asd_read_reg_##ord (asd_ha, CTXACCESS); \
165}
166
167ASD_SCBSITE_READ(u32, dword);
168ASD_SCBSITE_READ(u16, word);
169
170static inline u8 asd_scbsite_read_byte(struct asd_ha_struct *asd_ha,
171 u16 scb_site_no,
172 u16 offs)
173{
174 if (offs & 1)
175 return asd_scbsite_read_word(asd_ha, scb_site_no,
176 offs & ~1) >> 8;
177 else
178 return asd_scbsite_read_word(asd_ha, scb_site_no,
179 offs) & 0xFF;
180}
181
182
183#define ASD_SCBSITE_WRITE(type, ord) \
184static inline void asd_scbsite_write_##ord (struct asd_ha_struct *asd_ha, \
185 u16 scb_site_no, \
186 u16 offs, type val) \
187{ \
188 asd_write_reg_word(asd_ha, ALTCIOADR, MnSCB_SITE + offs); \
189 asd_write_reg_word(asd_ha, ASCBPTR, scb_site_no); \
190 asd_write_reg_##ord (asd_ha, CTXACCESS, val); \
191}
192
193ASD_SCBSITE_WRITE(u32, dword);
194ASD_SCBSITE_WRITE(u16, word);
195
196static inline void asd_scbsite_write_byte(struct asd_ha_struct *asd_ha,
197 u16 scb_site_no,
198 u16 offs, u8 val)
199{
200 u16 base = offs & ~1;
201 u16 rval = asd_scbsite_read_word(asd_ha, scb_site_no, base);
202 if (offs & 1)
203 rval = (val << 8) | (rval & 0xFF);
204 else
205 rval = (rval & 0xFF00) | val;
206 asd_scbsite_write_word(asd_ha, scb_site_no, base, rval);
207}
208
209/**
210 * asd_ddbsite_update_word -- atomically update a word in a ddb site
211 * @asd_ha: pointer to host adapter structure
212 * @ddb_site_no: the DDB site number
213 * @offs: the offset into the DDB
214 * @oldval: old value found in that offset
215 * @newval: the new value to replace it
216 *
217 * This function is used when the sequencers are running and we need to
218 * update a DDB site atomically without expensive pausing and upausing
219 * of the sequencers and accessing the DDB site through the CIO bus.
220 *
221 * Return 0 on success; -EFAULT on parity error; -EAGAIN if the old value
222 * is different than the current value at that offset.
223 */
224static inline int asd_ddbsite_update_word(struct asd_ha_struct *asd_ha,
225 u16 ddb_site_no, u16 offs,
226 u16 oldval, u16 newval)
227{
228 u8 done;
229 u16 oval = asd_ddbsite_read_word(asd_ha, ddb_site_no, offs);
230 if (oval != oldval)
231 return -EAGAIN;
232 asd_write_reg_word(asd_ha, AOLDDATA, oldval);
233 asd_write_reg_word(asd_ha, ANEWDATA, newval);
234 do {
235 done = asd_read_reg_byte(asd_ha, ATOMICSTATCTL);
236 } while (!(done & ATOMICDONE));
237 if (done & ATOMICERR)
238 return -EFAULT; /* parity error */
239 else if (done & ATOMICWIN)
240 return 0; /* success */
241 else
242 return -EAGAIN; /* oldval different than current value */
243}
244
245static inline int asd_ddbsite_update_byte(struct asd_ha_struct *asd_ha,
246 u16 ddb_site_no, u16 offs,
247 u8 _oldval, u8 _newval)
248{
249 u16 base = offs & ~1;
250 u16 oval;
251 u16 nval = asd_ddbsite_read_word(asd_ha, ddb_site_no, base);
252 if (offs & 1) {
253 if ((nval >> 8) != _oldval)
254 return -EAGAIN;
255 nval = (_newval << 8) | (nval & 0xFF);
256 oval = (_oldval << 8) | (nval & 0xFF);
257 } else {
258 if ((nval & 0xFF) != _oldval)
259 return -EAGAIN;
260 nval = (nval & 0xFF00) | _newval;
261 oval = (nval & 0xFF00) | _oldval;
262 }
263 return asd_ddbsite_update_word(asd_ha, ddb_site_no, base, oval, nval);
264}
265
266static inline void asd_write_reg_addr(struct asd_ha_struct *asd_ha, u32 reg,
267 dma_addr_t dma_handle)
268{
269 asd_write_reg_dword(asd_ha, reg, ASD_BUSADDR_LO(dma_handle));
270 asd_write_reg_dword(asd_ha, reg+4, ASD_BUSADDR_HI(dma_handle));
271}
272
273static inline u32 asd_get_cmdctx_size(struct asd_ha_struct *asd_ha)
274{
275 /* DCHREVISION returns 0, possibly broken */
276 u32 ctxmemsize = asd_read_reg_dword(asd_ha, LmMnINT(0,0)) & CTXMEMSIZE;
277 return ctxmemsize ? 65536 : 32768;
278}
279
280static inline u32 asd_get_devctx_size(struct asd_ha_struct *asd_ha)
281{
282 u32 ctxmemsize = asd_read_reg_dword(asd_ha, LmMnINT(0,0)) & CTXMEMSIZE;
283 return ctxmemsize ? 8192 : 4096;
284}
285
286static inline void asd_disable_ints(struct asd_ha_struct *asd_ha)
287{
288 asd_write_reg_dword(asd_ha, CHIMINTEN, RST_CHIMINTEN);
289}
290
291static inline void asd_enable_ints(struct asd_ha_struct *asd_ha)
292{
293 /* Enable COM SAS interrupt on errors, COMSTAT */
294 asd_write_reg_dword(asd_ha, COMSTATEN,
295 EN_CSBUFPERR | EN_CSERR | EN_OVLYERR);
296 /* Enable DCH SAS CFIFTOERR */
297 asd_write_reg_dword(asd_ha, DCHSTATUS, EN_CFIFTOERR);
298 /* Enable Host Device interrupts */
299 asd_write_reg_dword(asd_ha, CHIMINTEN, SET_CHIMINTEN);
300}
301
302#endif
diff --git a/drivers/scsi/aic94xx/aic94xx_reg_def.h b/drivers/scsi/aic94xx/aic94xx_reg_def.h
new file mode 100644
index 000000000000..b79f45f3ad47
--- /dev/null
+++ b/drivers/scsi/aic94xx/aic94xx_reg_def.h
@@ -0,0 +1,2398 @@
1/*
2 * Aic94xx SAS/SATA driver hardware registers defintions.
3 *
4 * Copyright (C) 2004 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2004 David Chaw <david_chaw@adaptec.com>
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 *
8 * Luben Tuikov: Some register value updates to make it work with the window
9 * agnostic register r/w functions. Some register corrections, sizes,
10 * etc.
11 *
12 * This file is licensed under GPLv2.
13 *
14 * This file is part of the aic94xx driver.
15 *
16 * The aic94xx driver is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License as
18 * published by the Free Software Foundation; version 2 of the
19 * License.
20 *
21 * The aic94xx driver is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 * General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with the aic94xx driver; if not, write to the Free Software
28 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
29 *
30 * $Id: //depot/aic94xx/aic94xx_reg_def.h#27 $
31 *
32 */
33
34#ifndef _ADP94XX_REG_DEF_H_
35#define _ADP94XX_REG_DEF_H_
36
37/*
38 * Common definitions.
39 */
40#define CSEQ_MODE_PAGE_SIZE 0x200 /* CSEQ mode page size */
41#define LmSEQ_MODE_PAGE_SIZE 0x200 /* LmSEQ mode page size */
42#define LmSEQ_HOST_REG_SIZE 0x4000 /* LmSEQ Host Register size */
43
44/********************* COM_SAS registers definition *************************/
45
46/* The base is REG_BASE_ADDR, defined in aic94xx_reg.h.
47 */
48
49/*
50 * CHIM Registers, Address Range : (0x00-0xFF)
51 */
52#define COMBIST (REG_BASE_ADDR + 0x00)
53
54/* bits 31:24 */
55#define L7BLKRST 0x80000000
56#define L6BLKRST 0x40000000
57#define L5BLKRST 0x20000000
58#define L4BLKRST 0x10000000
59#define L3BLKRST 0x08000000
60#define L2BLKRST 0x04000000
61#define L1BLKRST 0x02000000
62#define L0BLKRST 0x01000000
63#define LmBLKRST 0xFF000000
64#define LmBLKRST_COMBIST(phyid) (1 << (24 + phyid))
65
66#define OCMBLKRST 0x00400000
67#define CTXMEMBLKRST 0x00200000
68#define CSEQBLKRST 0x00100000
69#define EXSIBLKRST 0x00040000
70#define DPIBLKRST 0x00020000
71#define DFIFBLKRST 0x00010000
72#define HARDRST 0x00000200
73#define COMBLKRST 0x00000100
74#define FRCDFPERR 0x00000080
75#define FRCCIOPERR 0x00000020
76#define FRCBISTERR 0x00000010
77#define COMBISTEN 0x00000004
78#define COMBISTDONE 0x00000002 /* ro */
79#define COMBISTFAIL 0x00000001 /* ro */
80
81#define COMSTAT (REG_BASE_ADDR + 0x04)
82
83#define REQMBXREAD 0x00000040
84#define RSPMBXAVAIL 0x00000020
85#define CSBUFPERR 0x00000008
86#define OVLYERR 0x00000004
87#define CSERR 0x00000002
88#define OVLYDMADONE 0x00000001
89
90#define COMSTAT_MASK (REQMBXREAD | RSPMBXAVAIL | \
91 CSBUFPERR | OVLYERR | CSERR |\
92 OVLYDMADONE)
93
94#define COMSTATEN (REG_BASE_ADDR + 0x08)
95
96#define EN_REQMBXREAD 0x00000040
97#define EN_RSPMBXAVAIL 0x00000020
98#define EN_CSBUFPERR 0x00000008
99#define EN_OVLYERR 0x00000004
100#define EN_CSERR 0x00000002
101#define EN_OVLYDONE 0x00000001
102
103#define SCBPRO (REG_BASE_ADDR + 0x0C)
104
105#define SCBCONS_MASK 0xFFFF0000
106#define SCBPRO_MASK 0x0000FFFF
107
108#define CHIMREQMBX (REG_BASE_ADDR + 0x10)
109
110#define CHIMRSPMBX (REG_BASE_ADDR + 0x14)
111
112#define CHIMINT (REG_BASE_ADDR + 0x18)
113
114#define EXT_INT0 0x00000800
115#define EXT_INT1 0x00000400
116#define PORRSTDET 0x00000200
117#define HARDRSTDET 0x00000100
118#define DLAVAILQ 0x00000080 /* ro */
119#define HOSTERR 0x00000040
120#define INITERR 0x00000020
121#define DEVINT 0x00000010
122#define COMINT 0x00000008
123#define DEVTIMER2 0x00000004
124#define DEVTIMER1 0x00000002
125#define DLAVAIL 0x00000001
126
127#define CHIMINT_MASK (HOSTERR | INITERR | DEVINT | COMINT |\
128 DEVTIMER2 | DEVTIMER1 | DLAVAIL)
129
130#define DEVEXCEPT_MASK (HOSTERR | INITERR | DEVINT | COMINT)
131
132#define CHIMINTEN (REG_BASE_ADDR + 0x1C)
133
134#define RST_EN_EXT_INT1 0x01000000
135#define RST_EN_EXT_INT0 0x00800000
136#define RST_EN_HOSTERR 0x00400000
137#define RST_EN_INITERR 0x00200000
138#define RST_EN_DEVINT 0x00100000
139#define RST_EN_COMINT 0x00080000
140#define RST_EN_DEVTIMER2 0x00040000
141#define RST_EN_DEVTIMER1 0x00020000
142#define RST_EN_DLAVAIL 0x00010000
143#define SET_EN_EXT_INT1 0x00000100
144#define SET_EN_EXT_INT0 0x00000080
145#define SET_EN_HOSTERR 0x00000040
146#define SET_EN_INITERR 0x00000020
147#define SET_EN_DEVINT 0x00000010
148#define SET_EN_COMINT 0x00000008
149#define SET_EN_DEVTIMER2 0x00000004
150#define SET_EN_DEVTIMER1 0x00000002
151#define SET_EN_DLAVAIL 0x00000001
152
153#define RST_CHIMINTEN (RST_EN_HOSTERR | RST_EN_INITERR | \
154 RST_EN_DEVINT | RST_EN_COMINT | \
155 RST_EN_DEVTIMER2 | RST_EN_DEVTIMER1 |\
156 RST_EN_DLAVAIL)
157
158#define SET_CHIMINTEN (SET_EN_HOSTERR | SET_EN_INITERR |\
159 SET_EN_DEVINT | SET_EN_COMINT |\
160 SET_EN_DLAVAIL)
161
162#define OVLYDMACTL (REG_BASE_ADDR + 0x20)
163
164#define OVLYADR_MASK 0x07FF0000
165#define OVLYLSEQ_MASK 0x0000FF00
166#define OVLYCSEQ 0x00000080
167#define OVLYHALTERR 0x00000040
168#define PIOCMODE 0x00000020
169#define RESETOVLYDMA 0x00000008 /* wo */
170#define STARTOVLYDMA 0x00000004
171#define STOPOVLYDMA 0x00000002 /* wo */
172#define OVLYDMAACT 0x00000001 /* ro */
173
174#define OVLYDMACNT (REG_BASE_ADDR + 0x24)
175
176#define OVLYDOMAIN1 0x20000000 /* ro */
177#define OVLYDOMAIN0 0x10000000
178#define OVLYBUFADR_MASK 0x007F0000
179#define OVLYDMACNT_MASK 0x00003FFF
180
181#define OVLYDMAADR (REG_BASE_ADDR + 0x28)
182
183#define DMAERR (REG_BASE_ADDR + 0x30)
184
185#define OVLYERRSTAT_MASK 0x0000FF00 /* ro */
186#define CSERRSTAT_MASK 0x000000FF /* ro */
187
188#define SPIODATA (REG_BASE_ADDR + 0x34)
189
190/* 0x38 - 0x3C are reserved */
191
192#define T1CNTRLR (REG_BASE_ADDR + 0x40)
193
194#define T1DONE 0x00010000 /* ro */
195#define TIMER64 0x00000400
196#define T1ENABLE 0x00000200
197#define T1RELOAD 0x00000100
198#define T1PRESCALER_MASK 0x00000003
199
200#define T1CMPR (REG_BASE_ADDR + 0x44)
201
202#define T1CNTR (REG_BASE_ADDR + 0x48)
203
204#define T2CNTRLR (REG_BASE_ADDR + 0x4C)
205
206#define T2DONE 0x00010000 /* ro */
207#define T2ENABLE 0x00000200
208#define T2RELOAD 0x00000100
209#define T2PRESCALER_MASK 0x00000003
210
211#define T2CMPR (REG_BASE_ADDR + 0x50)
212
213#define T2CNTR (REG_BASE_ADDR + 0x54)
214
215/* 0x58h - 0xFCh are reserved */
216
217/*
218 * DCH_SAS Registers, Address Range : (0x800-0xFFF)
219 */
220#define CMDCTXBASE (REG_BASE_ADDR + 0x800)
221
222#define DEVCTXBASE (REG_BASE_ADDR + 0x808)
223
224#define CTXDOMAIN (REG_BASE_ADDR + 0x810)
225
226#define DEVCTXDOMAIN1 0x00000008 /* ro */
227#define DEVCTXDOMAIN0 0x00000004
228#define CMDCTXDOMAIN1 0x00000002 /* ro */
229#define CMDCTXDOMAIN0 0x00000001
230
231#define DCHCTL (REG_BASE_ADDR + 0x814)
232
233#define OCMBISTREPAIR 0x00080000
234#define OCMBISTEN 0x00040000
235#define OCMBISTDN 0x00020000 /* ro */
236#define OCMBISTFAIL 0x00010000 /* ro */
237#define DDBBISTEN 0x00004000
238#define DDBBISTDN 0x00002000 /* ro */
239#define DDBBISTFAIL 0x00001000 /* ro */
240#define SCBBISTEN 0x00000400
241#define SCBBISTDN 0x00000200 /* ro */
242#define SCBBISTFAIL 0x00000100 /* ro */
243
244#define MEMSEL_MASK 0x000000E0
245#define MEMSEL_CCM_LSEQ 0x00000000
246#define MEMSEL_CCM_IOP 0x00000020
247#define MEMSEL_CCM_SASCTL 0x00000040
248#define MEMSEL_DCM_LSEQ 0x00000060
249#define MEMSEL_DCM_IOP 0x00000080
250#define MEMSEL_OCM 0x000000A0
251
252#define FRCERR 0x00000010
253#define AUTORLS 0x00000001
254
255#define DCHREVISION (REG_BASE_ADDR + 0x818)
256
257#define DCHREVISION_MASK 0x000000FF
258
259#define DCHSTATUS (REG_BASE_ADDR + 0x81C)
260
261#define EN_CFIFTOERR 0x00020000
262#define CFIFTOERR 0x00000200
263#define CSEQINT 0x00000100 /* ro */
264#define LSEQ7INT 0x00000080 /* ro */
265#define LSEQ6INT 0x00000040 /* ro */
266#define LSEQ5INT 0x00000020 /* ro */
267#define LSEQ4INT 0x00000010 /* ro */
268#define LSEQ3INT 0x00000008 /* ro */
269#define LSEQ2INT 0x00000004 /* ro */
270#define LSEQ1INT 0x00000002 /* ro */
271#define LSEQ0INT 0x00000001 /* ro */
272
273#define LSEQINT_MASK (LSEQ7INT | LSEQ6INT | LSEQ5INT |\
274 LSEQ4INT | LSEQ3INT | LSEQ2INT |\
275 LSEQ1INT | LSEQ0INT)
276
277#define DCHDFIFDEBUG (REG_BASE_ADDR + 0x820)
278#define ENFAIRMST 0x00FF0000
279#define DISWRMST9 0x00000200
280#define DISWRMST8 0x00000100
281#define DISRDMST 0x000000FF
282
283#define ATOMICSTATCTL (REG_BASE_ADDR + 0x824)
284/* 8 bit wide */
285#define AUTOINC 0x80
286#define ATOMICERR 0x04
287#define ATOMICWIN 0x02
288#define ATOMICDONE 0x01
289
290
291#define ALTCIOADR (REG_BASE_ADDR + 0x828)
292/* 16 bit; bits 8:0 define CIO addr space of CSEQ */
293
294#define ASCBPTR (REG_BASE_ADDR + 0x82C)
295/* 16 bit wide */
296
297#define ADDBPTR (REG_BASE_ADDR + 0x82E)
298/* 16 bit wide */
299
300#define ANEWDATA (REG_BASE_ADDR + 0x830)
301/* 16 bit */
302
303#define AOLDDATA (REG_BASE_ADDR + 0x834)
304/* 16 bit */
305
306#define CTXACCESS (REG_BASE_ADDR + 0x838)
307/* 32 bit */
308
309/* 0x83Ch - 0xFFCh are reserved */
310
311/*
312 * ARP2 External Processor Registers, Address Range : (0x00-0x1F)
313 */
314#define ARP2CTL 0x00
315
316#define FRCSCRPERR 0x00040000
317#define FRCARP2PERR 0x00020000
318#define FRCARP2ILLOPC 0x00010000
319#define ENWAITTO 0x00008000
320#define PERRORDIS 0x00004000
321#define FAILDIS 0x00002000
322#define CIOPERRDIS 0x00001000
323#define BREAKEN3 0x00000800
324#define BREAKEN2 0x00000400
325#define BREAKEN1 0x00000200
326#define BREAKEN0 0x00000100
327#define EPAUSE 0x00000008
328#define PAUSED 0x00000004 /* ro */
329#define STEP 0x00000002
330#define ARP2RESET 0x00000001 /* wo */
331
332#define ARP2INT 0x04
333
334#define HALTCODE_MASK 0x00FF0000 /* ro */
335#define ARP2WAITTO 0x00000100
336#define ARP2HALTC 0x00000080
337#define ARP2ILLOPC 0x00000040
338#define ARP2PERR 0x00000020
339#define ARP2CIOPERR 0x00000010
340#define ARP2BREAK3 0x00000008
341#define ARP2BREAK2 0x00000004
342#define ARP2BREAK1 0x00000002
343#define ARP2BREAK0 0x00000001
344
345#define ARP2INTEN 0x08
346
347#define EN_ARP2WAITTO 0x00000100
348#define EN_ARP2HALTC 0x00000080
349#define EN_ARP2ILLOPC 0x00000040
350#define EN_ARP2PERR 0x00000020
351#define EN_ARP2CIOPERR 0x00000010
352#define EN_ARP2BREAK3 0x00000008
353#define EN_ARP2BREAK2 0x00000004
354#define EN_ARP2BREAK1 0x00000002
355#define EN_ARP2BREAK0 0x00000001
356
357#define ARP2BREAKADR01 0x0C
358
359#define BREAKADR1_MASK 0x0FFF0000
360#define BREAKADR0_MASK 0x00000FFF
361
362#define ARP2BREAKADR23 0x10
363
364#define BREAKADR3_MASK 0x0FFF0000
365#define BREAKADR2_MASK 0x00000FFF
366
367/* 0x14h - 0x1Ch are reserved */
368
369/*
370 * ARP2 Registers, Address Range : (0x00-0x1F)
371 * The definitions have the same address offset for CSEQ and LmSEQ
372 * CIO Bus Registers.
373 */
374#define MODEPTR 0x00
375
376#define DSTMODE 0xF0
377#define SRCMODE 0x0F
378
379#define ALTMODE 0x01
380
381#define ALTDMODE 0xF0
382#define ALTSMODE 0x0F
383
384#define ATOMICXCHG 0x02
385
386#define FLAG 0x04
387
388#define INTCODE_MASK 0xF0
389#define ALTMODEV2 0x04
390#define CARRY_INT 0x02
391#define CARRY 0x01
392
393#define ARP2INTCTL 0x05
394
395#define PAUSEDIS 0x80
396#define RSTINTCTL 0x40
397#define POPALTMODE 0x08
398#define ALTMODEV 0x04
399#define INTMASK 0x02
400#define IRET 0x01
401
402#define STACK 0x06
403
404#define FUNCTION1 0x07
405
406#define PRGMCNT 0x08
407
408#define ACCUM 0x0A
409
410#define SINDEX 0x0C
411
412#define DINDEX 0x0E
413
414#define ALLONES 0x10
415
416#define ALLZEROS 0x11
417
418#define SINDIR 0x12
419
420#define DINDIR 0x13
421
422#define JUMLDIR 0x14
423
424#define ARP2HALTCODE 0x15
425
426#define CURRADDR 0x16
427
428#define LASTADDR 0x18
429
430#define NXTLADDR 0x1A
431
432#define DBGPORTPTR 0x1C
433
434#define DBGPORT 0x1D
435
436/*
437 * CIO Registers.
438 * The definitions have the same address offset for CSEQ and LmSEQ
439 * CIO Bus Registers.
440 */
441#define MnSCBPTR 0x20
442
443#define MnDDBPTR 0x22
444
445#define SCRATCHPAGE 0x24
446
447#define MnSCRATCHPAGE 0x25
448
449#define SCRATCHPAGESV 0x26
450
451#define MnSCRATCHPAGESV 0x27
452
453#define MnDMAERRS 0x46
454
455#define MnSGDMAERRS 0x47
456
457#define MnSGBUF 0x53
458
459#define MnSGDMASTAT 0x5b
460
461#define MnDDMACTL 0x5c /* RAZOR.rspec.fm rev 1.5 is wrong */
462
463#define MnDDMASTAT 0x5d /* RAZOR.rspec.fm rev 1.5 is wrong */
464
465#define MnDDMAMODE 0x5e /* RAZOR.rspec.fm rev 1.5 is wrong */
466
467#define MnDMAENG 0x60
468
469#define MnPIPECTL 0x61
470
471#define MnSGBADR 0x65
472
473#define MnSCB_SITE 0x100
474
475#define MnDDB_SITE 0x180
476
477/*
478 * The common definitions below have the same address offset for both
479 * CSEQ and LmSEQ.
480 */
481#define BISTCTL0 0x4C
482
483#define BISTCTL1 0x50
484
485#define MAPPEDSCR 0x800
486
487/*
488 * CSEQ Host Register, Address Range : (0x000-0xFFC)
489 */
490#define CSEQ_HOST_REG_BASE_ADR 0xB8001000
491
492#define CARP2CTL (CSEQ_HOST_REG_BASE_ADR + ARP2CTL)
493
494#define CARP2INT (CSEQ_HOST_REG_BASE_ADR + ARP2INT)
495
496#define CARP2INTEN (CSEQ_HOST_REG_BASE_ADR + ARP2INTEN)
497
498#define CARP2BREAKADR01 (CSEQ_HOST_REG_BASE_ADR+ARP2BREAKADR01)
499
500#define CARP2BREAKADR23 (CSEQ_HOST_REG_BASE_ADR+ARP2BREAKADR23)
501
502#define CBISTCTL (CSEQ_HOST_REG_BASE_ADR + BISTCTL1)
503
504#define CSEQRAMBISTEN 0x00000040
505#define CSEQRAMBISTDN 0x00000020 /* ro */
506#define CSEQRAMBISTFAIL 0x00000010 /* ro */
507#define CSEQSCRBISTEN 0x00000004
508#define CSEQSCRBISTDN 0x00000002 /* ro */
509#define CSEQSCRBISTFAIL 0x00000001 /* ro */
510
511#define CMAPPEDSCR (CSEQ_HOST_REG_BASE_ADR + MAPPEDSCR)
512
513/*
514 * CSEQ CIO Bus Registers, Address Range : (0x0000-0x1FFC)
515 * 16 modes, each mode is 512 bytes.
516 * Unless specified, the register should valid for all modes.
517 */
518#define CSEQ_CIO_REG_BASE_ADR REG_BASE_ADDR_CSEQCIO
519
520#define CSEQm_CIO_REG(Mode, Reg) \
521 (CSEQ_CIO_REG_BASE_ADR + \
522 ((u32) (Mode) * CSEQ_MODE_PAGE_SIZE) + (u32) (Reg))
523
524#define CMODEPTR (CSEQ_CIO_REG_BASE_ADR + MODEPTR)
525
526#define CALTMODE (CSEQ_CIO_REG_BASE_ADR + ALTMODE)
527
528#define CATOMICXCHG (CSEQ_CIO_REG_BASE_ADR + ATOMICXCHG)
529
530#define CFLAG (CSEQ_CIO_REG_BASE_ADR + FLAG)
531
532#define CARP2INTCTL (CSEQ_CIO_REG_BASE_ADR + ARP2INTCTL)
533
534#define CSTACK (CSEQ_CIO_REG_BASE_ADR + STACK)
535
536#define CFUNCTION1 (CSEQ_CIO_REG_BASE_ADR + FUNCTION1)
537
538#define CPRGMCNT (CSEQ_CIO_REG_BASE_ADR + PRGMCNT)
539
540#define CACCUM (CSEQ_CIO_REG_BASE_ADR + ACCUM)
541
542#define CSINDEX (CSEQ_CIO_REG_BASE_ADR + SINDEX)
543
544#define CDINDEX (CSEQ_CIO_REG_BASE_ADR + DINDEX)
545
546#define CALLONES (CSEQ_CIO_REG_BASE_ADR + ALLONES)
547
548#define CALLZEROS (CSEQ_CIO_REG_BASE_ADR + ALLZEROS)
549
550#define CSINDIR (CSEQ_CIO_REG_BASE_ADR + SINDIR)
551
552#define CDINDIR (CSEQ_CIO_REG_BASE_ADR + DINDIR)
553
554#define CJUMLDIR (CSEQ_CIO_REG_BASE_ADR + JUMLDIR)
555
556#define CARP2HALTCODE (CSEQ_CIO_REG_BASE_ADR + ARP2HALTCODE)
557
558#define CCURRADDR (CSEQ_CIO_REG_BASE_ADR + CURRADDR)
559
560#define CLASTADDR (CSEQ_CIO_REG_BASE_ADR + LASTADDR)
561
562#define CNXTLADDR (CSEQ_CIO_REG_BASE_ADR + NXTLADDR)
563
564#define CDBGPORTPTR (CSEQ_CIO_REG_BASE_ADR + DBGPORTPTR)
565
566#define CDBGPORT (CSEQ_CIO_REG_BASE_ADR + DBGPORT)
567
568#define CSCRATCHPAGE (CSEQ_CIO_REG_BASE_ADR + SCRATCHPAGE)
569
570#define CMnSCBPTR(Mode) CSEQm_CIO_REG(Mode, MnSCBPTR)
571
572#define CMnDDBPTR(Mode) CSEQm_CIO_REG(Mode, MnDDBPTR)
573
574#define CMnSCRATCHPAGE(Mode) CSEQm_CIO_REG(Mode, MnSCRATCHPAGE)
575
576#define CLINKCON (CSEQ_CIO_REG_BASE_ADR + 0x28)
577
578#define CCIOAACESS (CSEQ_CIO_REG_BASE_ADR + 0x2C)
579
580/* mode 0-7 */
581#define MnREQMBX 0x30
582#define CMnREQMBX(Mode) CSEQm_CIO_REG(Mode, 0x30)
583
584/* mode 8 */
585#define CSEQCON CSEQm_CIO_REG(8, 0x30)
586
587/* mode 0-7 */
588#define MnRSPMBX 0x34
589#define CMnRSPMBX(Mode) CSEQm_CIO_REG(Mode, 0x34)
590
591/* mode 8 */
592#define CSEQCOMCTL CSEQm_CIO_REG(8, 0x34)
593
594/* mode 8 */
595#define CSEQCOMSTAT CSEQm_CIO_REG(8, 0x35)
596
597/* mode 8 */
598#define CSEQCOMINTEN CSEQm_CIO_REG(8, 0x36)
599
600/* mode 8 */
601#define CSEQCOMDMACTL CSEQm_CIO_REG(8, 0x37)
602
603#define CSHALTERR 0x10
604#define RESETCSDMA 0x08 /* wo */
605#define STARTCSDMA 0x04
606#define STOPCSDMA 0x02 /* wo */
607#define CSDMAACT 0x01 /* ro */
608
609/* mode 0-7 */
610#define MnINT 0x38
611#define CMnINT(Mode) CSEQm_CIO_REG(Mode, 0x38)
612
613#define CMnREQMBXE 0x02
614#define CMnRSPMBXF 0x01
615#define CMnINT_MASK 0x00000003
616
617/* mode 8 */
618#define CSEQREQMBX CSEQm_CIO_REG(8, 0x38)
619
620/* mode 0-7 */
621#define MnINTEN 0x3C
622#define CMnINTEN(Mode) CSEQm_CIO_REG(Mode, 0x3C)
623
624#define EN_CMnRSPMBXF 0x01
625
626/* mode 8 */
627#define CSEQRSPMBX CSEQm_CIO_REG(8, 0x3C)
628
629/* mode 8 */
630#define CSDMAADR CSEQm_CIO_REG(8, 0x40)
631
632/* mode 8 */
633#define CSDMACNT CSEQm_CIO_REG(8, 0x48)
634
635/* mode 8 */
636#define CSEQDLCTL CSEQm_CIO_REG(8, 0x4D)
637
638#define DONELISTEND 0x10
639#define DONELISTSIZE_MASK 0x0F
640#define DONELISTSIZE_8ELEM 0x01
641#define DONELISTSIZE_16ELEM 0x02
642#define DONELISTSIZE_32ELEM 0x03
643#define DONELISTSIZE_64ELEM 0x04
644#define DONELISTSIZE_128ELEM 0x05
645#define DONELISTSIZE_256ELEM 0x06
646#define DONELISTSIZE_512ELEM 0x07
647#define DONELISTSIZE_1024ELEM 0x08
648#define DONELISTSIZE_2048ELEM 0x09
649#define DONELISTSIZE_4096ELEM 0x0A
650#define DONELISTSIZE_8192ELEM 0x0B
651#define DONELISTSIZE_16384ELEM 0x0C
652
653/* mode 8 */
654#define CSEQDLOFFS CSEQm_CIO_REG(8, 0x4E)
655
656/* mode 11 */
657#define CM11INTVEC0 CSEQm_CIO_REG(11, 0x50)
658
659/* mode 11 */
660#define CM11INTVEC1 CSEQm_CIO_REG(11, 0x52)
661
662/* mode 11 */
663#define CM11INTVEC2 CSEQm_CIO_REG(11, 0x54)
664
665#define CCONMSK (CSEQ_CIO_REG_BASE_ADR + 0x60)
666
667#define CCONEXIST (CSEQ_CIO_REG_BASE_ADR + 0x61)
668
669#define CCONMODE (CSEQ_CIO_REG_BASE_ADR + 0x62)
670
671#define CTIMERCALC (CSEQ_CIO_REG_BASE_ADR + 0x64)
672
673#define CINTDIS (CSEQ_CIO_REG_BASE_ADR + 0x68)
674
675/* mode 8, 32x32 bits, 128 bytes of mapped buffer */
676#define CSBUFFER CSEQm_CIO_REG(8, 0x80)
677
678#define CSCRATCH (CSEQ_CIO_REG_BASE_ADR + 0x1C0)
679
680/* mode 0-8 */
681#define CMnSCRATCH(Mode) CSEQm_CIO_REG(Mode, 0x1E0)
682
683/*
684 * CSEQ Mapped Instruction RAM Page, Address Range : (0x0000-0x1FFC)
685 */
686#define CSEQ_RAM_REG_BASE_ADR 0xB8004000
687
688/*
689 * The common definitions below have the same address offset for all the Link
690 * sequencers.
691 */
692#define MODECTL 0x40
693
694#define DBGMODE 0x44
695
696#define CONTROL 0x48
697#define LEDTIMER 0x00010000
698#define LEDTIMERS_10us 0x00000000
699#define LEDTIMERS_1ms 0x00000800
700#define LEDTIMERS_100ms 0x00001000
701#define LEDMODE_TXRX 0x00000000
702#define LEDMODE_CONNECTED 0x00000200
703#define LEDPOL 0x00000100
704
705#define LSEQRAM 0x1000
706
707/*
708 * LmSEQ Host Registers, Address Range : (0x0000-0x3FFC)
709 */
710#define LSEQ0_HOST_REG_BASE_ADR 0xB8020000
711#define LSEQ1_HOST_REG_BASE_ADR 0xB8024000
712#define LSEQ2_HOST_REG_BASE_ADR 0xB8028000
713#define LSEQ3_HOST_REG_BASE_ADR 0xB802C000
714#define LSEQ4_HOST_REG_BASE_ADR 0xB8030000
715#define LSEQ5_HOST_REG_BASE_ADR 0xB8034000
716#define LSEQ6_HOST_REG_BASE_ADR 0xB8038000
717#define LSEQ7_HOST_REG_BASE_ADR 0xB803C000
718
719#define LmARP2CTL(LinkNum) (LSEQ0_HOST_REG_BASE_ADR + \
720 ((LinkNum)*LmSEQ_HOST_REG_SIZE) + \
721 ARP2CTL)
722
723#define LmARP2INT(LinkNum) (LSEQ0_HOST_REG_BASE_ADR + \
724 ((LinkNum)*LmSEQ_HOST_REG_SIZE) + \
725 ARP2INT)
726
727#define LmARP2INTEN(LinkNum) (LSEQ0_HOST_REG_BASE_ADR + \
728 ((LinkNum)*LmSEQ_HOST_REG_SIZE) + \
729 ARP2INTEN)
730
731#define LmDBGMODE(LinkNum) (LSEQ0_HOST_REG_BASE_ADR + \
732 ((LinkNum)*LmSEQ_HOST_REG_SIZE) + \
733 DBGMODE)
734
735#define LmCONTROL(LinkNum) (LSEQ0_HOST_REG_BASE_ADR + \
736 ((LinkNum)*LmSEQ_HOST_REG_SIZE) + \
737 CONTROL)
738
739#define LmARP2BREAKADR01(LinkNum) (LSEQ0_HOST_REG_BASE_ADR + \
740 ((LinkNum)*LmSEQ_HOST_REG_SIZE) + \
741 ARP2BREAKADR01)
742
743#define LmARP2BREAKADR23(LinkNum) (LSEQ0_HOST_REG_BASE_ADR + \
744 ((LinkNum)*LmSEQ_HOST_REG_SIZE) + \
745 ARP2BREAKADR23)
746
747#define LmMODECTL(LinkNum) (LSEQ0_HOST_REG_BASE_ADR + \
748 ((LinkNum)*LmSEQ_HOST_REG_SIZE) + \
749 MODECTL)
750
751#define LmAUTODISCI 0x08000000
752#define LmDSBLBITLT 0x04000000
753#define LmDSBLANTT 0x02000000
754#define LmDSBLCRTT 0x01000000
755#define LmDSBLCONT 0x00000100
756#define LmPRIMODE 0x00000080
757#define LmDSBLHOLD 0x00000040
758#define LmDISACK 0x00000020
759#define LmBLIND48 0x00000010
760#define LmRCVMODE_MASK 0x0000000C
761#define LmRCVMODE_PLD 0x00000000
762#define LmRCVMODE_HPC 0x00000004
763
764#define LmDBGMODE(LinkNum) (LSEQ0_HOST_REG_BASE_ADR + \
765 ((LinkNum)*LmSEQ_HOST_REG_SIZE) + \
766 DBGMODE)
767
768#define LmFRCPERR 0x80000000
769#define LmMEMSEL_MASK 0x30000000
770#define LmFRCRBPERR 0x00000000
771#define LmFRCTBPERR 0x10000000
772#define LmFRCSGBPERR 0x20000000
773#define LmFRCARBPERR 0x30000000
774#define LmRCVIDW 0x00080000
775#define LmINVDWERR 0x00040000
776#define LmRCVDISP 0x00004000
777#define LmDISPERR 0x00002000
778#define LmDSBLDSCR 0x00000800
779#define LmDSBLSCR 0x00000400
780#define LmFRCNAK 0x00000200
781#define LmFRCROFS 0x00000100
782#define LmFRCCRC 0x00000080
783#define LmFRMTYPE_MASK 0x00000070
784#define LmSG_DATA 0x00000000
785#define LmSG_COMMAND 0x00000010
786#define LmSG_TASK 0x00000020
787#define LmSG_TGTXFER 0x00000030
788#define LmSG_RESPONSE 0x00000040
789#define LmSG_IDENADDR 0x00000050
790#define LmSG_OPENADDR 0x00000060
791#define LmDISCRCGEN 0x00000008
792#define LmDISCRCCHK 0x00000004
793#define LmSSXMTFRM 0x00000002
794#define LmSSRCVFRM 0x00000001
795
796#define LmCONTROL(LinkNum) (LSEQ0_HOST_REG_BASE_ADR + \
797 ((LinkNum)*LmSEQ_HOST_REG_SIZE) + \
798 CONTROL)
799
800#define LmSTEPXMTFRM 0x00000002
801#define LmSTEPRCVFRM 0x00000001
802
803#define LmBISTCTL0(LinkNum) (LSEQ0_HOST_REG_BASE_ADR + \
804 ((LinkNum)*LmSEQ_HOST_REG_SIZE) + \
805 BISTCTL0)
806
807#define ARBBISTEN 0x40000000
808#define ARBBISTDN 0x20000000 /* ro */
809#define ARBBISTFAIL 0x10000000 /* ro */
810#define TBBISTEN 0x00000400
811#define TBBISTDN 0x00000200 /* ro */
812#define TBBISTFAIL 0x00000100 /* ro */
813#define RBBISTEN 0x00000040
814#define RBBISTDN 0x00000020 /* ro */
815#define RBBISTFAIL 0x00000010 /* ro */
816#define SGBISTEN 0x00000004
817#define SGBISTDN 0x00000002 /* ro */
818#define SGBISTFAIL 0x00000001 /* ro */
819
820#define LmBISTCTL1(LinkNum) (LSEQ0_HOST_REG_BASE_ADR + \
821 ((LinkNum)*LmSEQ_HOST_REG_SIZE) +\
822 BISTCTL1)
823
824#define LmRAMPAGE1 0x00000200
825#define LmRAMPAGE0 0x00000100
826#define LmIMEMBISTEN 0x00000040
827#define LmIMEMBISTDN 0x00000020 /* ro */
828#define LmIMEMBISTFAIL 0x00000010 /* ro */
829#define LmSCRBISTEN 0x00000004
830#define LmSCRBISTDN 0x00000002 /* ro */
831#define LmSCRBISTFAIL 0x00000001 /* ro */
832#define LmRAMPAGE (LmRAMPAGE1 + LmRAMPAGE0)
833#define LmRAMPAGE_LSHIFT 0x8
834
835#define LmSCRATCH(LinkNum) (LSEQ0_HOST_REG_BASE_ADR + \
836 ((LinkNum) * LmSEQ_HOST_REG_SIZE) +\
837 MAPPEDSCR)
838
839#define LmSEQRAM(LinkNum) (LSEQ0_HOST_REG_BASE_ADR + \
840 ((LinkNum) * LmSEQ_HOST_REG_SIZE) +\
841 LSEQRAM)
842
843/*
844 * LmSEQ CIO Bus Register, Address Range : (0x0000-0xFFC)
845 * 8 modes, each mode is 512 bytes.
846 * Unless specified, the register should valid for all modes.
847 */
848#define LmSEQ_CIOBUS_REG_BASE 0x2000
849
850#define LmSEQ_PHY_BASE(Mode, LinkNum) \
851 (LSEQ0_HOST_REG_BASE_ADR + \
852 (LmSEQ_HOST_REG_SIZE * (u32) (LinkNum)) + \
853 LmSEQ_CIOBUS_REG_BASE + \
854 ((u32) (Mode) * LmSEQ_MODE_PAGE_SIZE))
855
856#define LmSEQ_PHY_REG(Mode, LinkNum, Reg) \
857 (LmSEQ_PHY_BASE(Mode, LinkNum) + (u32) (Reg))
858
859#define LmMODEPTR(LinkNum) LmSEQ_PHY_REG(0, LinkNum, MODEPTR)
860
861#define LmALTMODE(LinkNum) LmSEQ_PHY_REG(0, LinkNum, ALTMODE)
862
863#define LmATOMICXCHG(LinkNum) LmSEQ_PHY_REG(0, LinkNum, ATOMICXCHG)
864
865#define LmFLAG(LinkNum) LmSEQ_PHY_REG(0, LinkNum, FLAG)
866
867#define LmARP2INTCTL(LinkNum) LmSEQ_PHY_REG(0, LinkNum, ARP2INTCTL)
868
869#define LmSTACK(LinkNum) LmSEQ_PHY_REG(0, LinkNum, STACK)
870
871#define LmFUNCTION1(LinkNum) LmSEQ_PHY_REG(0, LinkNum, FUNCTION1)
872
873#define LmPRGMCNT(LinkNum) LmSEQ_PHY_REG(0, LinkNum, PRGMCNT)
874
875#define LmACCUM(LinkNum) LmSEQ_PHY_REG(0, LinkNum, ACCUM)
876
877#define LmSINDEX(LinkNum) LmSEQ_PHY_REG(0, LinkNum, SINDEX)
878
879#define LmDINDEX(LinkNum) LmSEQ_PHY_REG(0, LinkNum, DINDEX)
880
881#define LmALLONES(LinkNum) LmSEQ_PHY_REG(0, LinkNum, ALLONES)
882
883#define LmALLZEROS(LinkNum) LmSEQ_PHY_REG(0, LinkNum, ALLZEROS)
884
885#define LmSINDIR(LinkNum) LmSEQ_PHY_REG(0, LinkNum, SINDIR)
886
887#define LmDINDIR(LinkNum) LmSEQ_PHY_REG(0, LinkNum, DINDIR)
888
889#define LmJUMLDIR(LinkNum) LmSEQ_PHY_REG(0, LinkNum, JUMLDIR)
890
891#define LmARP2HALTCODE(LinkNum) LmSEQ_PHY_REG(0, LinkNum, ARP2HALTCODE)
892
893#define LmCURRADDR(LinkNum) LmSEQ_PHY_REG(0, LinkNum, CURRADDR)
894
895#define LmLASTADDR(LinkNum) LmSEQ_PHY_REG(0, LinkNum, LASTADDR)
896
897#define LmNXTLADDR(LinkNum) LmSEQ_PHY_REG(0, LinkNum, NXTLADDR)
898
899#define LmDBGPORTPTR(LinkNum) LmSEQ_PHY_REG(0, LinkNum, DBGPORTPTR)
900
901#define LmDBGPORT(LinkNum) LmSEQ_PHY_REG(0, LinkNum, DBGPORT)
902
903#define LmSCRATCHPAGE(LinkNum) LmSEQ_PHY_REG(0, LinkNum, SCRATCHPAGE)
904
905#define LmMnSCRATCHPAGE(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, \
906 MnSCRATCHPAGE)
907
908#define LmTIMERCALC(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0x28)
909
910#define LmREQMBX(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0x30)
911
912#define LmRSPMBX(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0x34)
913
914#define LmMnINT(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0x38)
915
916#define CTXMEMSIZE 0x80000000 /* ro */
917#define LmACKREQ 0x08000000
918#define LmNAKREQ 0x04000000
919#define LmMnXMTERR 0x02000000
920#define LmM5OOBSVC 0x01000000
921#define LmHWTINT 0x00800000
922#define LmMnCTXDONE 0x00100000
923#define LmM2REQMBXF 0x00080000
924#define LmM2RSPMBXE 0x00040000
925#define LmMnDMAERR 0x00020000
926#define LmRCVPRIM 0x00010000
927#define LmRCVERR 0x00008000
928#define LmADDRRCV 0x00004000
929#define LmMnHDRMISS 0x00002000
930#define LmMnWAITSCB 0x00001000
931#define LmMnRLSSCB 0x00000800
932#define LmMnSAVECTX 0x00000400
933#define LmMnFETCHSG 0x00000200
934#define LmMnLOADCTX 0x00000100
935#define LmMnCFGICL 0x00000080
936#define LmMnCFGSATA 0x00000040
937#define LmMnCFGEXPSATA 0x00000020
938#define LmMnCFGCMPLT 0x00000010
939#define LmMnCFGRBUF 0x00000008
940#define LmMnSAVETTR 0x00000004
941#define LmMnCFGRDAT 0x00000002
942#define LmMnCFGHDR 0x00000001
943
944#define LmMnINTEN(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0x3C)
945
946#define EN_LmACKREQ 0x08000000
947#define EN_LmNAKREQ 0x04000000
948#define EN_LmMnXMTERR 0x02000000
949#define EN_LmM5OOBSVC 0x01000000
950#define EN_LmHWTINT 0x00800000
951#define EN_LmMnCTXDONE 0x00100000
952#define EN_LmM2REQMBXF 0x00080000
953#define EN_LmM2RSPMBXE 0x00040000
954#define EN_LmMnDMAERR 0x00020000
955#define EN_LmRCVPRIM 0x00010000
956#define EN_LmRCVERR 0x00008000
957#define EN_LmADDRRCV 0x00004000
958#define EN_LmMnHDRMISS 0x00002000
959#define EN_LmMnWAITSCB 0x00001000
960#define EN_LmMnRLSSCB 0x00000800
961#define EN_LmMnSAVECTX 0x00000400
962#define EN_LmMnFETCHSG 0x00000200
963#define EN_LmMnLOADCTX 0x00000100
964#define EN_LmMnCFGICL 0x00000080
965#define EN_LmMnCFGSATA 0x00000040
966#define EN_LmMnCFGEXPSATA 0x00000020
967#define EN_LmMnCFGCMPLT 0x00000010
968#define EN_LmMnCFGRBUF 0x00000008
969#define EN_LmMnSAVETTR 0x00000004
970#define EN_LmMnCFGRDAT 0x00000002
971#define EN_LmMnCFGHDR 0x00000001
972
973#define LmM0INTEN_MASK (EN_LmMnCFGCMPLT | EN_LmMnCFGRBUF | \
974 EN_LmMnSAVETTR | EN_LmMnCFGRDAT | \
975 EN_LmMnCFGHDR | EN_LmRCVERR | \
976 EN_LmADDRRCV | EN_LmMnHDRMISS | \
977 EN_LmMnRLSSCB | EN_LmMnSAVECTX | \
978 EN_LmMnFETCHSG | EN_LmMnLOADCTX | \
979 EN_LmHWTINT | EN_LmMnCTXDONE | \
980 EN_LmRCVPRIM | EN_LmMnCFGSATA | \
981 EN_LmMnCFGEXPSATA | EN_LmMnDMAERR)
982
983#define LmM1INTEN_MASK (EN_LmMnCFGCMPLT | EN_LmADDRRCV | \
984 EN_LmMnRLSSCB | EN_LmMnSAVECTX | \
985 EN_LmMnFETCHSG | EN_LmMnLOADCTX | \
986 EN_LmMnXMTERR | EN_LmHWTINT | \
987 EN_LmMnCTXDONE | EN_LmRCVPRIM | \
988 EN_LmRCVERR | EN_LmMnDMAERR)
989
990#define LmM2INTEN_MASK (EN_LmADDRRCV | EN_LmHWTINT | \
991 EN_LmM2REQMBXF | EN_LmRCVPRIM | \
992 EN_LmRCVERR)
993
994#define LmM5INTEN_MASK (EN_LmADDRRCV | EN_LmM5OOBSVC | \
995 EN_LmHWTINT | EN_LmRCVPRIM | \
996 EN_LmRCVERR)
997
998#define LmXMTPRIMD(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0x40)
999
1000#define LmXMTPRIMCS(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0x44)
1001
1002#define LmCONSTAT(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0x45)
1003
1004#define LmMnDMAERRS(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0x46)
1005
1006#define LmMnSGDMAERRS(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0x47)
1007
1008#define LmM0EXPHDRP(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0x48)
1009
1010#define LmM1SASALIGN(LinkNum) LmSEQ_PHY_REG(1, LinkNum, 0x48)
1011#define SAS_ALIGN_DEFAULT 0xFF
1012
1013#define LmM0MSKHDRP(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0x49)
1014
1015#define LmM1STPALIGN(LinkNum) LmSEQ_PHY_REG(1, LinkNum, 0x49)
1016#define STP_ALIGN_DEFAULT 0x1F
1017
1018#define LmM0RCVHDRP(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0x4A)
1019
1020#define LmM1XMTHDRP(LinkNum) LmSEQ_PHY_REG(1, LinkNum, 0x4A)
1021
1022#define LmM0ICLADR(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0x4B)
1023
1024#define LmM1ALIGNMODE(LinkNum) LmSEQ_PHY_REG(1, LinkNum, 0x4B)
1025
1026#define LmDISALIGN 0x20
1027#define LmROTSTPALIGN 0x10
1028#define LmSTPALIGN 0x08
1029#define LmROTNOTIFY 0x04
1030#define LmDUALALIGN 0x02
1031#define LmROTALIGN 0x01
1032
1033#define LmM0EXPRCVNT(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0x4C)
1034
1035#define LmM1XMTCNT(LinkNum) LmSEQ_PHY_REG(1, LinkNum, 0x4C)
1036
1037#define LmMnBUFSTAT(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0x4E)
1038
1039#define LmMnBUFPERR 0x01
1040
1041/* mode 0-1 */
1042#define LmMnXFRLVL(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0x59)
1043
1044#define LmMnXFRLVL_128 0x05
1045#define LmMnXFRLVL_256 0x04
1046#define LmMnXFRLVL_512 0x03
1047#define LmMnXFRLVL_1024 0x02
1048#define LmMnXFRLVL_1536 0x01
1049#define LmMnXFRLVL_2048 0x00
1050
1051 /* mode 0-1 */
1052#define LmMnSGDMACTL(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0x5A)
1053
1054#define LmMnRESETSG 0x04
1055#define LmMnSTOPSG 0x02
1056#define LmMnSTARTSG 0x01
1057
1058/* mode 0-1 */
1059#define LmMnSGDMASTAT(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0x5B)
1060
1061/* mode 0-1 */
1062#define LmMnDDMACTL(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0x5C)
1063
1064#define LmMnFLUSH 0x40 /* wo */
1065#define LmMnRLSRTRY 0x20 /* wo */
1066#define LmMnDISCARD 0x10 /* wo */
1067#define LmMnRESETDAT 0x08 /* wo */
1068#define LmMnSUSDAT 0x04 /* wo */
1069#define LmMnSTOPDAT 0x02 /* wo */
1070#define LmMnSTARTDAT 0x01 /* wo */
1071
1072/* mode 0-1 */
1073#define LmMnDDMASTAT(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0x5D)
1074
1075#define LmMnDPEMPTY 0x80
1076#define LmMnFLUSHING 0x40
1077#define LmMnDDMAREQ 0x20
1078#define LmMnHDMAREQ 0x10
1079#define LmMnDATFREE 0x08
1080#define LmMnDATSUS 0x04
1081#define LmMnDATACT 0x02
1082#define LmMnDATEN 0x01
1083
1084/* mode 0-1 */
1085#define LmMnDDMAMODE(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0x5E)
1086
1087#define LmMnDMATYPE_NORMAL 0x0000
1088#define LmMnDMATYPE_HOST_ONLY_TX 0x0001
1089#define LmMnDMATYPE_DEVICE_ONLY_TX 0x0002
1090#define LmMnDMATYPE_INVALID 0x0003
1091#define LmMnDMATYPE_MASK 0x0003
1092
1093#define LmMnDMAWRAP 0x0004
1094#define LmMnBITBUCKET 0x0008
1095#define LmMnDISHDR 0x0010
1096#define LmMnSTPCRC 0x0020
1097#define LmXTEST 0x0040
1098#define LmMnDISCRC 0x0080
1099#define LmMnENINTLK 0x0100
1100#define LmMnADDRFRM 0x0400
1101#define LmMnENXMTCRC 0x0800
1102
1103/* mode 0-1 */
1104#define LmMnXFRCNT(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0x70)
1105
1106/* mode 0-1 */
1107#define LmMnDPSEL(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0x7B)
1108#define LmMnDPSEL_MASK 0x07
1109#define LmMnEOLPRE 0x40
1110#define LmMnEOSPRE 0x80
1111
1112/* Registers used in conjunction with LmMnDPSEL and LmMnDPACC registers */
1113/* Receive Mode n = 0 */
1114#define LmMnHRADDR 0x00
1115#define LmMnHBYTECNT 0x01
1116#define LmMnHREWIND 0x02
1117#define LmMnDWADDR 0x03
1118#define LmMnDSPACECNT 0x04
1119#define LmMnDFRMSIZE 0x05
1120
1121/* Registers used in conjunction with LmMnDPSEL and LmMnDPACC registers */
1122/* Transmit Mode n = 1 */
1123#define LmMnHWADDR 0x00
1124#define LmMnHSPACECNT 0x01
1125/* #define LmMnHREWIND 0x02 */
1126#define LmMnDRADDR 0x03
1127#define LmMnDBYTECNT 0x04
1128/* #define LmMnDFRMSIZE 0x05 */
1129
1130/* mode 0-1 */
1131#define LmMnDPACC(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0x78)
1132#define LmMnDPACC_MASK 0x00FFFFFF
1133
1134/* mode 0-1 */
1135#define LmMnHOLDLVL(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0x7D)
1136
1137#define LmPRMSTAT0(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0x80)
1138#define LmPRMSTAT0BYTE0 0x80
1139#define LmPRMSTAT0BYTE1 0x81
1140#define LmPRMSTAT0BYTE2 0x82
1141#define LmPRMSTAT0BYTE3 0x83
1142
1143#define LmFRAMERCVD 0x80000000
1144#define LmXFRRDYRCVD 0x40000000
1145#define LmUNKNOWNP 0x20000000
1146#define LmBREAK 0x10000000
1147#define LmDONE 0x08000000
1148#define LmOPENACPT 0x04000000
1149#define LmOPENRJCT 0x02000000
1150#define LmOPENRTRY 0x01000000
1151#define LmCLOSERV1 0x00800000
1152#define LmCLOSERV0 0x00400000
1153#define LmCLOSENORM 0x00200000
1154#define LmCLOSECLAF 0x00100000
1155#define LmNOTIFYRV2 0x00080000
1156#define LmNOTIFYRV1 0x00040000
1157#define LmNOTIFYRV0 0x00020000
1158#define LmNOTIFYSPIN 0x00010000
1159#define LmBROADRV4 0x00008000
1160#define LmBROADRV3 0x00004000
1161#define LmBROADRV2 0x00002000
1162#define LmBROADRV1 0x00001000
1163#define LmBROADSES 0x00000800
1164#define LmBROADRVCH1 0x00000400
1165#define LmBROADRVCH0 0x00000200
1166#define LmBROADCH 0x00000100
1167#define LmAIPRVWP 0x00000080
1168#define LmAIPWP 0x00000040
1169#define LmAIPWD 0x00000020
1170#define LmAIPWC 0x00000010
1171#define LmAIPRV2 0x00000008
1172#define LmAIPRV1 0x00000004
1173#define LmAIPRV0 0x00000002
1174#define LmAIPNRML 0x00000001
1175
1176#define LmBROADCAST_MASK (LmBROADCH | LmBROADRVCH0 | \
1177 LmBROADRVCH1)
1178
1179#define LmPRMSTAT1(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0x84)
1180#define LmPRMSTAT1BYTE0 0x84
1181#define LmPRMSTAT1BYTE1 0x85
1182#define LmPRMSTAT1BYTE2 0x86
1183#define LmPRMSTAT1BYTE3 0x87
1184
1185#define LmFRMRCVDSTAT 0x80000000
1186#define LmBREAK_DET 0x04000000
1187#define LmCLOSE_DET 0x02000000
1188#define LmDONE_DET 0x01000000
1189#define LmXRDY 0x00040000
1190#define LmSYNCSRST 0x00020000
1191#define LmSYNC 0x00010000
1192#define LmXHOLD 0x00008000
1193#define LmRRDY 0x00004000
1194#define LmHOLD 0x00002000
1195#define LmROK 0x00001000
1196#define LmRIP 0x00000800
1197#define LmCRBLK 0x00000400
1198#define LmACK 0x00000200
1199#define LmNAK 0x00000100
1200#define LmHARDRST 0x00000080
1201#define LmERROR 0x00000040
1202#define LmRERR 0x00000020
1203#define LmPMREQP 0x00000010
1204#define LmPMREQS 0x00000008
1205#define LmPMACK 0x00000004
1206#define LmPMNAK 0x00000002
1207#define LmDMAT 0x00000001
1208
1209/* mode 1 */
1210#define LmMnSATAFS(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0x7E)
1211#define LmMnXMTSIZE(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0x93)
1212
1213/* mode 0 */
1214#define LmMnFRMERR(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0xB0)
1215
1216#define LmACRCERR 0x00000800
1217#define LmPHYOVRN 0x00000400
1218#define LmOBOVRN 0x00000200
1219#define LmMnZERODATA 0x00000100
1220#define LmSATAINTLK 0x00000080
1221#define LmMnCRCERR 0x00000020
1222#define LmRRDYOVRN 0x00000010
1223#define LmMISSSOAF 0x00000008
1224#define LmMISSSOF 0x00000004
1225#define LmMISSEOAF 0x00000002
1226#define LmMISSEOF 0x00000001
1227
1228#define LmFRMERREN(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0xB4)
1229
1230#define EN_LmACRCERR 0x00000800
1231#define EN_LmPHYOVRN 0x00000400
1232#define EN_LmOBOVRN 0x00000200
1233#define EN_LmMnZERODATA 0x00000100
1234#define EN_LmSATAINTLK 0x00000080
1235#define EN_LmFRMBAD 0x00000040
1236#define EN_LmMnCRCERR 0x00000020
1237#define EN_LmRRDYOVRN 0x00000010
1238#define EN_LmMISSSOAF 0x00000008
1239#define EN_LmMISSSOF 0x00000004
1240#define EN_LmMISSEOAF 0x00000002
1241#define EN_LmMISSEOF 0x00000001
1242
1243#define LmFRMERREN_MASK (EN_LmSATAINTLK | EN_LmMnCRCERR | \
1244 EN_LmRRDYOVRN | EN_LmMISSSOF | \
1245 EN_LmMISSEOAF | EN_LmMISSEOF | \
1246 EN_LmACRCERR | LmPHYOVRN | \
1247 EN_LmOBOVRN | EN_LmMnZERODATA)
1248
1249#define LmHWTSTATEN(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0xC5)
1250
1251#define EN_LmDONETO 0x80
1252#define EN_LmINVDISP 0x40
1253#define EN_LmINVDW 0x20
1254#define EN_LmDWSEVENT 0x08
1255#define EN_LmCRTTTO 0x04
1256#define EN_LmANTTTO 0x02
1257#define EN_LmBITLTTO 0x01
1258
1259#define LmHWTSTATEN_MASK (EN_LmINVDISP | EN_LmINVDW | \
1260 EN_LmDWSEVENT | EN_LmCRTTTO | \
1261 EN_LmANTTTO | EN_LmDONETO | \
1262 EN_LmBITLTTO)
1263
1264#define LmHWTSTAT(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0xC7)
1265
1266#define LmDONETO 0x80
1267#define LmINVDISP 0x40
1268#define LmINVDW 0x20
1269#define LmDWSEVENT 0x08
1270#define LmCRTTTO 0x04
1271#define LmANTTTO 0x02
1272#define LmBITLTTO 0x01
1273
1274#define LmMnDATABUFADR(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0xC8)
1275#define LmDATABUFADR_MASK 0x0FFF
1276
1277#define LmMnDATABUF(LinkNum, Mode) LmSEQ_PHY_REG(Mode, LinkNum, 0xCA)
1278
1279#define LmPRIMSTAT0EN(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0xE0)
1280
1281#define EN_LmUNKNOWNP 0x20000000
1282#define EN_LmBREAK 0x10000000
1283#define EN_LmDONE 0x08000000
1284#define EN_LmOPENACPT 0x04000000
1285#define EN_LmOPENRJCT 0x02000000
1286#define EN_LmOPENRTRY 0x01000000
1287#define EN_LmCLOSERV1 0x00800000
1288#define EN_LmCLOSERV0 0x00400000
1289#define EN_LmCLOSENORM 0x00200000
1290#define EN_LmCLOSECLAF 0x00100000
1291#define EN_LmNOTIFYRV2 0x00080000
1292#define EN_LmNOTIFYRV1 0x00040000
1293#define EN_LmNOTIFYRV0 0x00020000
1294#define EN_LmNOTIFYSPIN 0x00010000
1295#define EN_LmBROADRV4 0x00008000
1296#define EN_LmBROADRV3 0x00004000
1297#define EN_LmBROADRV2 0x00002000
1298#define EN_LmBROADRV1 0x00001000
1299#define EN_LmBROADRV0 0x00000800
1300#define EN_LmBROADRVCH1 0x00000400
1301#define EN_LmBROADRVCH0 0x00000200
1302#define EN_LmBROADCH 0x00000100
1303#define EN_LmAIPRVWP 0x00000080
1304#define EN_LmAIPWP 0x00000040
1305#define EN_LmAIPWD 0x00000020
1306#define EN_LmAIPWC 0x00000010
1307#define EN_LmAIPRV2 0x00000008
1308#define EN_LmAIPRV1 0x00000004
1309#define EN_LmAIPRV0 0x00000002
1310#define EN_LmAIPNRML 0x00000001
1311
1312#define LmPRIMSTAT0EN_MASK (EN_LmBREAK | \
1313 EN_LmDONE | EN_LmOPENACPT | \
1314 EN_LmOPENRJCT | EN_LmOPENRTRY | \
1315 EN_LmCLOSERV1 | EN_LmCLOSERV0 | \
1316 EN_LmCLOSENORM | EN_LmCLOSECLAF | \
1317 EN_LmBROADRV4 | EN_LmBROADRV3 | \
1318 EN_LmBROADRV2 | EN_LmBROADRV1 | \
1319 EN_LmBROADRV0 | EN_LmBROADRVCH1 | \
1320 EN_LmBROADRVCH0 | EN_LmBROADCH | \
1321 EN_LmAIPRVWP | EN_LmAIPWP | \
1322 EN_LmAIPWD | EN_LmAIPWC | \
1323 EN_LmAIPRV2 | EN_LmAIPRV1 | \
1324 EN_LmAIPRV0 | EN_LmAIPNRML)
1325
1326#define LmPRIMSTAT1EN(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0xE4)
1327
1328#define EN_LmXRDY 0x00040000
1329#define EN_LmSYNCSRST 0x00020000
1330#define EN_LmSYNC 0x00010000
1331#define EN_LmXHOLD 0x00008000
1332#define EN_LmRRDY 0x00004000
1333#define EN_LmHOLD 0x00002000
1334#define EN_LmROK 0x00001000
1335#define EN_LmRIP 0x00000800
1336#define EN_LmCRBLK 0x00000400
1337#define EN_LmACK 0x00000200
1338#define EN_LmNAK 0x00000100
1339#define EN_LmHARDRST 0x00000080
1340#define EN_LmERROR 0x00000040
1341#define EN_LmRERR 0x00000020
1342#define EN_LmPMREQP 0x00000010
1343#define EN_LmPMREQS 0x00000008
1344#define EN_LmPMACK 0x00000004
1345#define EN_LmPMNAK 0x00000002
1346#define EN_LmDMAT 0x00000001
1347
1348#define LmPRIMSTAT1EN_MASK (EN_LmHARDRST | \
1349 EN_LmSYNCSRST | \
1350 EN_LmPMREQP | EN_LmPMREQS | \
1351 EN_LmPMACK | EN_LmPMNAK)
1352
1353#define LmSMSTATE(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0xE8)
1354
1355#define LmSMSTATEBRK(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0xEC)
1356
1357#define LmSMDBGCTL(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0xF0)
1358
1359
1360/*
1361 * LmSEQ CIO Bus Mode 3 Register.
1362 * Mode 3: Configuration and Setup, IOP Context SCB.
1363 */
1364#define LmM3SATATIMER(LinkNum) LmSEQ_PHY_REG(3, LinkNum, 0x48)
1365
1366#define LmM3INTVEC0(LinkNum) LmSEQ_PHY_REG(3, LinkNum, 0x90)
1367
1368#define LmM3INTVEC1(LinkNum) LmSEQ_PHY_REG(3, LinkNum, 0x92)
1369
1370#define LmM3INTVEC2(LinkNum) LmSEQ_PHY_REG(3, LinkNum, 0x94)
1371
1372#define LmM3INTVEC3(LinkNum) LmSEQ_PHY_REG(3, LinkNum, 0x96)
1373
1374#define LmM3INTVEC4(LinkNum) LmSEQ_PHY_REG(3, LinkNum, 0x98)
1375
1376#define LmM3INTVEC5(LinkNum) LmSEQ_PHY_REG(3, LinkNum, 0x9A)
1377
1378#define LmM3INTVEC6(LinkNum) LmSEQ_PHY_REG(3, LinkNum, 0x9C)
1379
1380#define LmM3INTVEC7(LinkNum) LmSEQ_PHY_REG(3, LinkNum, 0x9E)
1381
1382#define LmM3INTVEC8(LinkNum) LmSEQ_PHY_REG(3, LinkNum, 0xA4)
1383
1384#define LmM3INTVEC9(LinkNum) LmSEQ_PHY_REG(3, LinkNum, 0xA6)
1385
1386#define LmM3INTVEC10(LinkNum) LmSEQ_PHY_REG(3, LinkNum, 0xB0)
1387
1388#define LmM3FRMGAP(LinkNum) LmSEQ_PHY_REG(3, LinkNum, 0xB4)
1389
1390#define LmBITL_TIMER(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0xA2)
1391
1392#define LmWWN(LinkNum) LmSEQ_PHY_REG(0, LinkNum, 0xA8)
1393
1394
1395/*
1396 * LmSEQ CIO Bus Mode 5 Registers.
1397 * Mode 5: Phy/OOB Control and Status.
1398 */
1399#define LmSEQ_OOB_REG(phy_id, reg) LmSEQ_PHY_REG(5, (phy_id), (reg))
1400
1401#define OOB_BFLTR 0x100
1402
1403#define BFLTR_THR_MASK 0xF0
1404#define BFLTR_TC_MASK 0x0F
1405
1406#define OOB_INIT_MIN 0x102
1407
1408#define OOB_INIT_MAX 0x104
1409
1410#define OOB_INIT_NEG 0x106
1411
1412#define OOB_SAS_MIN 0x108
1413
1414#define OOB_SAS_MAX 0x10A
1415
1416#define OOB_SAS_NEG 0x10C
1417
1418#define OOB_WAKE_MIN 0x10E
1419
1420#define OOB_WAKE_MAX 0x110
1421
1422#define OOB_WAKE_NEG 0x112
1423
1424#define OOB_IDLE_MAX 0x114
1425
1426#define OOB_BURST_MAX 0x116
1427
1428#define OOB_DATA_KBITS 0x126
1429
1430#define OOB_ALIGN_0_DATA 0x12C
1431
1432#define OOB_ALIGN_1_DATA 0x130
1433
1434#define D10_2_DATA_k 0x00
1435#define SYNC_DATA_k 0x02
1436#define ALIGN_1_DATA_k 0x04
1437#define ALIGN_0_DATA_k 0x08
1438#define BURST_DATA_k 0x10
1439
1440#define OOB_PHY_RESET_COUNT 0x13C
1441
1442#define OOB_SIG_GEN 0x140
1443
1444#define START_OOB 0x80
1445#define START_DWS 0x40
1446#define ALIGN_CNT3 0x30
1447#define ALIGN_CNT2 0x20
1448#define ALIGN_CNT1 0x10
1449#define ALIGN_CNT4 0x00
1450#define STOP_DWS 0x08
1451#define SEND_COMSAS 0x04
1452#define SEND_COMINIT 0x02
1453#define SEND_COMWAKE 0x01
1454
1455#define OOB_XMIT 0x141
1456
1457#define TX_ENABLE 0x80
1458#define XMIT_OOB_BURST 0x10
1459#define XMIT_D10_2 0x08
1460#define XMIT_SYNC 0x04
1461#define XMIT_ALIGN_1 0x02
1462#define XMIT_ALIGN_0 0x01
1463
1464#define FUNCTION_MASK 0x142
1465
1466#define SAS_MODE_DIS 0x80
1467#define SATA_MODE_DIS 0x40
1468#define SPINUP_HOLD_DIS 0x20
1469#define HOT_PLUG_DIS 0x10
1470#define SATA_PS_DIS 0x08
1471#define FUNCTION_MASK_DEFAULT (SPINUP_HOLD_DIS | SATA_PS_DIS)
1472
1473#define OOB_MODE 0x143
1474
1475#define SAS_MODE 0x80
1476#define SATA_MODE 0x40
1477#define SLOW_CLK 0x20
1478#define FORCE_XMIT_15 0x08
1479#define PHY_SPEED_60 0x04
1480#define PHY_SPEED_30 0x02
1481#define PHY_SPEED_15 0x01
1482
1483#define CURRENT_STATUS 0x144
1484
1485#define CURRENT_OOB_DONE 0x80
1486#define CURRENT_LOSS_OF_SIGNAL 0x40
1487#define CURRENT_SPINUP_HOLD 0x20
1488#define CURRENT_HOT_PLUG_CNCT 0x10
1489#define CURRENT_GTO_TIMEOUT 0x08
1490#define CURRENT_OOB_TIMEOUT 0x04
1491#define CURRENT_DEVICE_PRESENT 0x02
1492#define CURRENT_OOB_ERROR 0x01
1493
1494#define CURRENT_OOB1_ERROR (CURRENT_HOT_PLUG_CNCT | \
1495 CURRENT_GTO_TIMEOUT)
1496
1497#define CURRENT_OOB2_ERROR (CURRENT_HOT_PLUG_CNCT | \
1498 CURRENT_OOB_ERROR)
1499
1500#define DEVICE_ADDED_W_CNT (CURRENT_OOB_DONE | \
1501 CURRENT_HOT_PLUG_CNCT | \
1502 CURRENT_DEVICE_PRESENT)
1503
1504#define DEVICE_ADDED_WO_CNT (CURRENT_OOB_DONE | \
1505 CURRENT_DEVICE_PRESENT)
1506
1507#define DEVICE_REMOVED CURRENT_LOSS_OF_SIGNAL
1508
1509#define CURRENT_PHY_MASK (CURRENT_OOB_DONE | \
1510 CURRENT_LOSS_OF_SIGNAL | \
1511 CURRENT_SPINUP_HOLD | \
1512 CURRENT_HOT_PLUG_CNCT | \
1513 CURRENT_GTO_TIMEOUT | \
1514 CURRENT_DEVICE_PRESENT | \
1515 CURRENT_OOB_ERROR )
1516
1517#define CURRENT_ERR_MASK (CURRENT_LOSS_OF_SIGNAL | \
1518 CURRENT_GTO_TIMEOUT | \
1519 CURRENT_OOB_TIMEOUT | \
1520 CURRENT_OOB_ERROR )
1521
1522#define SPEED_MASK 0x145
1523
1524#define SATA_SPEED_30_DIS 0x10
1525#define SATA_SPEED_15_DIS 0x08
1526#define SAS_SPEED_60_DIS 0x04
1527#define SAS_SPEED_30_DIS 0x02
1528#define SAS_SPEED_15_DIS 0x01
1529#define SAS_SPEED_MASK_DEFAULT 0x00
1530
1531#define OOB_TIMER_ENABLE 0x14D
1532
1533#define HOT_PLUG_EN 0x80
1534#define RCD_EN 0x40
1535#define COMTIMER_EN 0x20
1536#define SNTT_EN 0x10
1537#define SNLT_EN 0x04
1538#define SNWT_EN 0x02
1539#define ALIGN_EN 0x01
1540
1541#define OOB_STATUS 0x14E
1542
1543#define OOB_DONE 0x80
1544#define LOSS_OF_SIGNAL 0x40 /* ro */
1545#define SPINUP_HOLD 0x20
1546#define HOT_PLUG_CNCT 0x10 /* ro */
1547#define GTO_TIMEOUT 0x08 /* ro */
1548#define OOB_TIMEOUT 0x04 /* ro */
1549#define DEVICE_PRESENT 0x02 /* ro */
1550#define OOB_ERROR 0x01 /* ro */
1551
1552#define OOB_STATUS_ERROR_MASK (LOSS_OF_SIGNAL | GTO_TIMEOUT | \
1553 OOB_TIMEOUT | OOB_ERROR)
1554
1555#define OOB_STATUS_CLEAR 0x14F
1556
1557#define OOB_DONE_CLR 0x80
1558#define LOSS_OF_SIGNAL_CLR 0x40
1559#define SPINUP_HOLD_CLR 0x20
1560#define HOT_PLUG_CNCT_CLR 0x10
1561#define GTO_TIMEOUT_CLR 0x08
1562#define OOB_TIMEOUT_CLR 0x04
1563#define OOB_ERROR_CLR 0x01
1564
1565#define HOT_PLUG_DELAY 0x150
1566/* In 5 ms units. 20 = 100 ms. */
1567#define HOTPLUG_DELAY_TIMEOUT 20
1568
1569
1570#define INT_ENABLE_2 0x15A
1571
1572#define OOB_DONE_EN 0x80
1573#define LOSS_OF_SIGNAL_EN 0x40
1574#define SPINUP_HOLD_EN 0x20
1575#define HOT_PLUG_CNCT_EN 0x10
1576#define GTO_TIMEOUT_EN 0x08
1577#define OOB_TIMEOUT_EN 0x04
1578#define DEVICE_PRESENT_EN 0x02
1579#define OOB_ERROR_EN 0x01
1580
1581#define PHY_CONTROL_0 0x160
1582
1583#define PHY_LOWPWREN_TX 0x80
1584#define PHY_LOWPWREN_RX 0x40
1585#define SPARE_REG_160_B5 0x20
1586#define OFFSET_CANCEL_RX 0x10
1587
1588/* bits 3:2 */
1589#define PHY_RXCOMCENTER_60V 0x00
1590#define PHY_RXCOMCENTER_70V 0x04
1591#define PHY_RXCOMCENTER_80V 0x08
1592#define PHY_RXCOMCENTER_90V 0x0C
1593#define PHY_RXCOMCENTER_MASK 0x0C
1594
1595#define PHY_RESET 0x02
1596#define SAS_DEFAULT_SEL 0x01
1597
1598#define PHY_CONTROL_1 0x161
1599
1600/* bits 2:0 */
1601#define SATA_PHY_DETLEVEL_50mv 0x00
1602#define SATA_PHY_DETLEVEL_75mv 0x01
1603#define SATA_PHY_DETLEVEL_100mv 0x02
1604#define SATA_PHY_DETLEVEL_125mv 0x03
1605#define SATA_PHY_DETLEVEL_150mv 0x04
1606#define SATA_PHY_DETLEVEL_175mv 0x05
1607#define SATA_PHY_DETLEVEL_200mv 0x06
1608#define SATA_PHY_DETLEVEL_225mv 0x07
1609#define SATA_PHY_DETLEVEL_MASK 0x07
1610
1611/* bits 5:3 */
1612#define SAS_PHY_DETLEVEL_50mv 0x00
1613#define SAS_PHY_DETLEVEL_75mv 0x08
1614#define SAS_PHY_DETLEVEL_100mv 0x10
1615#define SAS_PHY_DETLEVEL_125mv 0x11
1616#define SAS_PHY_DETLEVEL_150mv 0x20
1617#define SAS_PHY_DETLEVEL_175mv 0x21
1618#define SAS_PHY_DETLEVEL_200mv 0x30
1619#define SAS_PHY_DETLEVEL_225mv 0x31
1620#define SAS_PHY_DETLEVEL_MASK 0x38
1621
1622#define PHY_CONTROL_2 0x162
1623
1624/* bits 7:5 */
1625#define SATA_PHY_DRV_400mv 0x00
1626#define SATA_PHY_DRV_450mv 0x20
1627#define SATA_PHY_DRV_500mv 0x40
1628#define SATA_PHY_DRV_550mv 0x60
1629#define SATA_PHY_DRV_600mv 0x80
1630#define SATA_PHY_DRV_650mv 0xA0
1631#define SATA_PHY_DRV_725mv 0xC0
1632#define SATA_PHY_DRV_800mv 0xE0
1633#define SATA_PHY_DRV_MASK 0xE0
1634
1635/* bits 4:3 */
1636#define SATA_PREEMP_0 0x00
1637#define SATA_PREEMP_1 0x08
1638#define SATA_PREEMP_2 0x10
1639#define SATA_PREEMP_3 0x18
1640#define SATA_PREEMP_MASK 0x18
1641
1642#define SATA_CMSH1P5 0x04
1643
1644/* bits 1:0 */
1645#define SATA_SLEW_0 0x00
1646#define SATA_SLEW_1 0x01
1647#define SATA_SLEW_2 0x02
1648#define SATA_SLEW_3 0x03
1649#define SATA_SLEW_MASK 0x03
1650
1651#define PHY_CONTROL_3 0x163
1652
1653/* bits 7:5 */
1654#define SAS_PHY_DRV_400mv 0x00
1655#define SAS_PHY_DRV_450mv 0x20
1656#define SAS_PHY_DRV_500mv 0x40
1657#define SAS_PHY_DRV_550mv 0x60
1658#define SAS_PHY_DRV_600mv 0x80
1659#define SAS_PHY_DRV_650mv 0xA0
1660#define SAS_PHY_DRV_725mv 0xC0
1661#define SAS_PHY_DRV_800mv 0xE0
1662#define SAS_PHY_DRV_MASK 0xE0
1663
1664/* bits 4:3 */
1665#define SAS_PREEMP_0 0x00
1666#define SAS_PREEMP_1 0x08
1667#define SAS_PREEMP_2 0x10
1668#define SAS_PREEMP_3 0x18
1669#define SAS_PREEMP_MASK 0x18
1670
1671#define SAS_CMSH1P5 0x04
1672
1673/* bits 1:0 */
1674#define SAS_SLEW_0 0x00
1675#define SAS_SLEW_1 0x01
1676#define SAS_SLEW_2 0x02
1677#define SAS_SLEW_3 0x03
1678#define SAS_SLEW_MASK 0x03
1679
1680#define PHY_CONTROL_4 0x168
1681
1682#define PHY_DONE_CAL_TX 0x80
1683#define PHY_DONE_CAL_RX 0x40
1684#define RX_TERM_LOAD_DIS 0x20
1685#define TX_TERM_LOAD_DIS 0x10
1686#define AUTO_TERM_CAL_DIS 0x08
1687#define PHY_SIGDET_FLTR_EN 0x04
1688#define OSC_FREQ 0x02
1689#define PHY_START_CAL 0x01
1690
1691/*
1692 * HST_PCIX2 Registers, Addresss Range: (0x00-0xFC)
1693 */
1694#define PCIX_REG_BASE_ADR 0xB8040000
1695
1696#define PCIC_VENDOR_ID 0x00
1697
1698#define PCIC_DEVICE_ID 0x02
1699
1700#define PCIC_COMMAND 0x04
1701
1702#define INT_DIS 0x0400
1703#define FBB_EN 0x0200 /* ro */
1704#define SERR_EN 0x0100
1705#define STEP_EN 0x0080 /* ro */
1706#define PERR_EN 0x0040
1707#define VGA_EN 0x0020 /* ro */
1708#define MWI_EN 0x0010
1709#define SPC_EN 0x0008
1710#define MST_EN 0x0004
1711#define MEM_EN 0x0002
1712#define IO_EN 0x0001
1713
1714#define PCIC_STATUS 0x06
1715
1716#define PERR_DET 0x8000
1717#define SERR_GEN 0x4000
1718#define MABT_DET 0x2000
1719#define TABT_DET 0x1000
1720#define TABT_GEN 0x0800
1721#define DPERR_DET 0x0100
1722#define CAP_LIST 0x0010
1723#define INT_STAT 0x0008
1724
1725#define PCIC_DEVREV_ID 0x08
1726
1727#define PCIC_CLASS_CODE 0x09
1728
1729#define PCIC_CACHELINE_SIZE 0x0C
1730
1731#define PCIC_MBAR0 0x10
1732
1733#define PCIC_MBAR0_OFFSET 0
1734
1735#define PCIC_MBAR1 0x18
1736
1737#define PCIC_MBAR1_OFFSET 2
1738
1739#define PCIC_IOBAR 0x20
1740
1741#define PCIC_IOBAR_OFFSET 4
1742
1743#define PCIC_SUBVENDOR_ID 0x2C
1744
1745#define PCIC_SUBSYTEM_ID 0x2E
1746
1747#define PCIX_STATUS 0x44
1748#define RCV_SCE 0x20000000
1749#define UNEXP_SC 0x00080000
1750#define SC_DISCARD 0x00040000
1751
1752#define ECC_CTRL_STAT 0x48
1753#define UNCOR_ECCERR 0x00000008
1754
1755#define PCIC_PM_CSR 0x5C
1756
1757#define PWR_STATE_D0 0
1758#define PWR_STATE_D1 1 /* not supported */
1759#define PWR_STATE_D2 2 /* not supported */
1760#define PWR_STATE_D3 3
1761
1762#define PCIC_BASE1 0x6C /* internal use only */
1763
1764#define BASE1_RSVD 0xFFFFFFF8
1765
1766#define PCIC_BASEA 0x70 /* internal use only */
1767
1768#define BASEA_RSVD 0xFFFFFFC0
1769#define BASEA_START 0
1770
1771#define PCIC_BASEB 0x74 /* internal use only */
1772
1773#define BASEB_RSVD 0xFFFFFF80
1774#define BASEB_IOMAP_MASK 0x7F
1775#define BASEB_START 0x80
1776
1777#define PCIC_BASEC 0x78 /* internal use only */
1778
1779#define BASEC_RSVD 0xFFFFFFFC
1780#define BASEC_MASK 0x03
1781#define BASEC_START 0x58
1782
1783#define PCIC_MBAR_KEY 0x7C /* internal use only */
1784
1785#define MBAR_KEY_MASK 0xFFFFFFFF
1786
1787#define PCIC_HSTPCIX_CNTRL 0xA0
1788
1789#define REWIND_DIS 0x0800
1790#define SC_TMR_DIS 0x04000000
1791
1792#define PCIC_MBAR0_MASK 0xA8
1793#define PCIC_MBAR0_SIZE_MASK 0x1FFFE000
1794#define PCIC_MBAR0_SIZE_SHIFT 13
1795#define PCIC_MBAR0_SIZE(val) \
1796 (((val) & PCIC_MBAR0_SIZE_MASK) >> PCIC_MBAR0_SIZE_SHIFT)
1797
1798#define PCIC_FLASH_MBAR 0xB8
1799
1800#define PCIC_INTRPT_STAT 0xD4
1801
1802#define PCIC_TP_CTRL 0xFC
1803
1804/*
1805 * EXSI Registers, Addresss Range: (0x00-0xFC)
1806 */
1807#define EXSI_REG_BASE_ADR REG_BASE_ADDR_EXSI
1808
1809#define EXSICNFGR (EXSI_REG_BASE_ADR + 0x00)
1810
1811#define OCMINITIALIZED 0x80000000
1812#define ASIEN 0x00400000
1813#define HCMODE 0x00200000
1814#define PCIDEF 0x00100000
1815#define COMSTOCK 0x00080000
1816#define SEEPROMEND 0x00040000
1817#define MSTTIMEN 0x00020000
1818#define XREGEX 0x00000200
1819#define NVRAMW 0x00000100
1820#define NVRAMEX 0x00000080
1821#define SRAMW 0x00000040
1822#define SRAMEX 0x00000020
1823#define FLASHW 0x00000010
1824#define FLASHEX 0x00000008
1825#define SEEPROMCFG 0x00000004
1826#define SEEPROMTYP 0x00000002
1827#define SEEPROMEX 0x00000001
1828
1829
1830#define EXSICNTRLR (EXSI_REG_BASE_ADR + 0x04)
1831
1832#define MODINT_EN 0x00000001
1833
1834
1835#define PMSTATR (EXSI_REG_BASE_ADR + 0x10)
1836
1837#define FLASHRST 0x00000002
1838#define FLASHRDY 0x00000001
1839
1840
1841#define FLCNFGR (EXSI_REG_BASE_ADR + 0x14)
1842
1843#define FLWEH_MASK 0x30000000
1844#define FLWESU_MASK 0x0C000000
1845#define FLWEPW_MASK 0x03F00000
1846#define FLOEH_MASK 0x000C0000
1847#define FLOESU_MASK 0x00030000
1848#define FLOEPW_MASK 0x0000FC00
1849#define FLCSH_MASK 0x00000300
1850#define FLCSSU_MASK 0x000000C0
1851#define FLCSPW_MASK 0x0000003F
1852
1853#define SRCNFGR (EXSI_REG_BASE_ADR + 0x18)
1854
1855#define SRWEH_MASK 0x30000000
1856#define SRWESU_MASK 0x0C000000
1857#define SRWEPW_MASK 0x03F00000
1858
1859#define SROEH_MASK 0x000C0000
1860#define SROESU_MASK 0x00030000
1861#define SROEPW_MASK 0x0000FC00
1862#define SRCSH_MASK 0x00000300
1863#define SRCSSU_MASK 0x000000C0
1864#define SRCSPW_MASK 0x0000003F
1865
1866#define NVCNFGR (EXSI_REG_BASE_ADR + 0x1C)
1867
1868#define NVWEH_MASK 0x30000000
1869#define NVWESU_MASK 0x0C000000
1870#define NVWEPW_MASK 0x03F00000
1871#define NVOEH_MASK 0x000C0000
1872#define NVOESU_MASK 0x00030000
1873#define NVOEPW_MASK 0x0000FC00
1874#define NVCSH_MASK 0x00000300
1875#define NVCSSU_MASK 0x000000C0
1876#define NVCSPW_MASK 0x0000003F
1877
1878#define XRCNFGR (EXSI_REG_BASE_ADR + 0x20)
1879
1880#define XRWEH_MASK 0x30000000
1881#define XRWESU_MASK 0x0C000000
1882#define XRWEPW_MASK 0x03F00000
1883#define XROEH_MASK 0x000C0000
1884#define XROESU_MASK 0x00030000
1885#define XROEPW_MASK 0x0000FC00
1886#define XRCSH_MASK 0x00000300
1887#define XRCSSU_MASK 0x000000C0
1888#define XRCSPW_MASK 0x0000003F
1889
1890#define XREGADDR (EXSI_REG_BASE_ADR + 0x24)
1891
1892#define XRADDRINCEN 0x80000000
1893#define XREGADD_MASK 0x007FFFFF
1894
1895
1896#define XREGDATAR (EXSI_REG_BASE_ADR + 0x28)
1897
1898#define XREGDATA_MASK 0x0000FFFF
1899
1900#define GPIOOER (EXSI_REG_BASE_ADR + 0x40)
1901
1902#define GPIOODENR (EXSI_REG_BASE_ADR + 0x44)
1903
1904#define GPIOINVR (EXSI_REG_BASE_ADR + 0x48)
1905
1906#define GPIODATAOR (EXSI_REG_BASE_ADR + 0x4C)
1907
1908#define GPIODATAIR (EXSI_REG_BASE_ADR + 0x50)
1909
1910#define GPIOCNFGR (EXSI_REG_BASE_ADR + 0x54)
1911
1912#define GPIO_EXTSRC 0x00000001
1913
1914#define SCNTRLR (EXSI_REG_BASE_ADR + 0xA0)
1915
1916#define SXFERDONE 0x00000100
1917#define SXFERCNT_MASK 0x000000E0
1918#define SCMDTYP_MASK 0x0000001C
1919#define SXFERSTART 0x00000002
1920#define SXFEREN 0x00000001
1921
1922#define SRATER (EXSI_REG_BASE_ADR + 0xA4)
1923
1924#define SADDRR (EXSI_REG_BASE_ADR + 0xA8)
1925
1926#define SADDR_MASK 0x0000FFFF
1927
1928#define SDATAOR (EXSI_REG_BASE_ADR + 0xAC)
1929
1930#define SDATAOR0 (EXSI_REG_BASE_ADR + 0xAC)
1931#define SDATAOR1 (EXSI_REG_BASE_ADR + 0xAD)
1932#define SDATAOR2 (EXSI_REG_BASE_ADR + 0xAE)
1933#define SDATAOR3 (EXSI_REG_BASE_ADR + 0xAF)
1934
1935#define SDATAIR (EXSI_REG_BASE_ADR + 0xB0)
1936
1937#define SDATAIR0 (EXSI_REG_BASE_ADR + 0xB0)
1938#define SDATAIR1 (EXSI_REG_BASE_ADR + 0xB1)
1939#define SDATAIR2 (EXSI_REG_BASE_ADR + 0xB2)
1940#define SDATAIR3 (EXSI_REG_BASE_ADR + 0xB3)
1941
1942#define ASISTAT0R (EXSI_REG_BASE_ADR + 0xD0)
1943#define ASIFMTERR 0x00000400
1944#define ASISEECHKERR 0x00000200
1945#define ASIERR 0x00000100
1946
1947#define ASISTAT1R (EXSI_REG_BASE_ADR + 0xD4)
1948#define CHECKSUM_MASK 0x0000FFFF
1949
1950#define ASIERRADDR (EXSI_REG_BASE_ADR + 0xD8)
1951#define ASIERRDATAR (EXSI_REG_BASE_ADR + 0xDC)
1952#define ASIERRSTATR (EXSI_REG_BASE_ADR + 0xE0)
1953#define CPI2ASIBYTECNT_MASK 0x00070000
1954#define CPI2ASIBYTEEN_MASK 0x0000F000
1955#define CPI2ASITARGERR_MASK 0x00000F00
1956#define CPI2ASITARGMID_MASK 0x000000F0
1957#define CPI2ASIMSTERR_MASK 0x0000000F
1958
1959/*
1960 * XSRAM, External SRAM (DWord and any BE pattern accessible)
1961 */
1962#define XSRAM_REG_BASE_ADDR 0xB8100000
1963#define XSRAM_SIZE 0x100000
1964
1965/*
1966 * NVRAM Registers, Address Range: (0x00000 - 0x3FFFF).
1967 */
1968#define NVRAM_REG_BASE_ADR 0xBF800000
1969#define NVRAM_MAX_BASE_ADR 0x003FFFFF
1970
1971/* OCM base address */
1972#define OCM_BASE_ADDR 0xA0000000
1973#define OCM_MAX_SIZE 0x20000
1974
1975/*
1976 * Sequencers (Central and Link) Scratch RAM page definitions.
1977 */
1978
1979/*
1980 * The Central Management Sequencer (CSEQ) Scratch Memory is a 1024
1981 * byte memory. It is dword accessible and has byte parity
1982 * protection. The CSEQ accesses it in 32 byte windows, either as mode
1983 * dependent or mode independent memory. Each mode has 96 bytes,
1984 * (three 32 byte pages 0-2, not contiguous), leaving 128 bytes of
1985 * Mode Independent memory (four 32 byte pages 3-7). Note that mode
1986 * dependent scratch memory, Mode 8, page 0-3 overlaps mode
1987 * independent scratch memory, pages 0-3.
1988 * - 896 bytes of mode dependent scratch, 96 bytes per Modes 0-7, and
1989 * 128 bytes in mode 8,
1990 * - 259 bytes of mode independent scratch, common to modes 0-15.
1991 *
1992 * Sequencer scratch RAM is 1024 bytes. This scratch memory is
1993 * divided into mode dependent and mode independent scratch with this
1994 * memory further subdivided into pages of size 32 bytes. There are 5
1995 * pages (160 bytes) of mode independent scratch and 3 pages of
1996 * dependent scratch memory for modes 0-7 (768 bytes). Mode 8 pages
1997 * 0-2 dependent scratch overlap with pages 0-2 of mode independent
1998 * scratch memory.
1999 *
2000 * The host accesses this scratch in a different manner from the
2001 * central sequencer. The sequencer has to use CSEQ registers CSCRPAGE
2002 * and CMnSCRPAGE to access the scratch memory. A flat mapping of the
2003 * scratch memory is avaliable for software convenience and to prevent
2004 * corruption while the sequencer is running. This memory is mapped
2005 * onto addresses 800h - BFFh, total of 400h bytes.
2006 *
2007 * These addresses are mapped as follows:
2008 *
2009 * 800h-83Fh Mode Dependent Scratch Mode 0 Pages 0-1
2010 * 840h-87Fh Mode Dependent Scratch Mode 1 Pages 0-1
2011 * 880h-8BFh Mode Dependent Scratch Mode 2 Pages 0-1
2012 * 8C0h-8FFh Mode Dependent Scratch Mode 3 Pages 0-1
2013 * 900h-93Fh Mode Dependent Scratch Mode 4 Pages 0-1
2014 * 940h-97Fh Mode Dependent Scratch Mode 5 Pages 0-1
2015 * 980h-9BFh Mode Dependent Scratch Mode 6 Pages 0-1
2016 * 9C0h-9FFh Mode Dependent Scratch Mode 7 Pages 0-1
2017 * A00h-A5Fh Mode Dependent Scratch Mode 8 Pages 0-2
2018 * Mode Independent Scratch Pages 0-2
2019 * A60h-A7Fh Mode Dependent Scratch Mode 8 Page 3
2020 * Mode Independent Scratch Page 3
2021 * A80h-AFFh Mode Independent Scratch Pages 4-7
2022 * B00h-B1Fh Mode Dependent Scratch Mode 0 Page 2
2023 * B20h-B3Fh Mode Dependent Scratch Mode 1 Page 2
2024 * B40h-B5Fh Mode Dependent Scratch Mode 2 Page 2
2025 * B60h-B7Fh Mode Dependent Scratch Mode 3 Page 2
2026 * B80h-B9Fh Mode Dependent Scratch Mode 4 Page 2
2027 * BA0h-BBFh Mode Dependent Scratch Mode 5 Page 2
2028 * BC0h-BDFh Mode Dependent Scratch Mode 6 Page 2
2029 * BE0h-BFFh Mode Dependent Scratch Mode 7 Page 2
2030 */
2031
2032/* General macros */
2033#define CSEQ_PAGE_SIZE 32 /* Scratch page size (in bytes) */
2034
2035/* All macros start with offsets from base + 0x800 (CMAPPEDSCR).
2036 * Mode dependent scratch page 0, mode 0.
2037 * For modes 1-7 you have to do arithmetic. */
2038#define CSEQ_LRM_SAVE_SINDEX (CMAPPEDSCR + 0x0000)
2039#define CSEQ_LRM_SAVE_SCBPTR (CMAPPEDSCR + 0x0002)
2040#define CSEQ_Q_LINK_HEAD (CMAPPEDSCR + 0x0004)
2041#define CSEQ_Q_LINK_TAIL (CMAPPEDSCR + 0x0006)
2042#define CSEQ_LRM_SAVE_SCRPAGE (CMAPPEDSCR + 0x0008)
2043
2044/* Mode dependent scratch page 0 mode 8 macros. */
2045#define CSEQ_RET_ADDR (CMAPPEDSCR + 0x0200)
2046#define CSEQ_RET_SCBPTR (CMAPPEDSCR + 0x0202)
2047#define CSEQ_SAVE_SCBPTR (CMAPPEDSCR + 0x0204)
2048#define CSEQ_EMPTY_TRANS_CTX (CMAPPEDSCR + 0x0206)
2049#define CSEQ_RESP_LEN (CMAPPEDSCR + 0x0208)
2050#define CSEQ_TMF_SCBPTR (CMAPPEDSCR + 0x020A)
2051#define CSEQ_GLOBAL_PREV_SCB (CMAPPEDSCR + 0x020C)
2052#define CSEQ_GLOBAL_HEAD (CMAPPEDSCR + 0x020E)
2053#define CSEQ_CLEAR_LU_HEAD (CMAPPEDSCR + 0x0210)
2054#define CSEQ_TMF_OPCODE (CMAPPEDSCR + 0x0212)
2055#define CSEQ_SCRATCH_FLAGS (CMAPPEDSCR + 0x0213)
2056#define CSEQ_HSB_SITE (CMAPPEDSCR + 0x021A)
2057#define CSEQ_FIRST_INV_SCB_SITE (CMAPPEDSCR + 0x021C)
2058#define CSEQ_FIRST_INV_DDB_SITE (CMAPPEDSCR + 0x021E)
2059
2060/* Mode dependent scratch page 1 mode 8 macros. */
2061#define CSEQ_LUN_TO_CLEAR (CMAPPEDSCR + 0x0220)
2062#define CSEQ_LUN_TO_CHECK (CMAPPEDSCR + 0x0228)
2063
2064/* Mode dependent scratch page 2 mode 8 macros */
2065#define CSEQ_HQ_NEW_POINTER (CMAPPEDSCR + 0x0240)
2066#define CSEQ_HQ_DONE_BASE (CMAPPEDSCR + 0x0248)
2067#define CSEQ_HQ_DONE_POINTER (CMAPPEDSCR + 0x0250)
2068#define CSEQ_HQ_DONE_PASS (CMAPPEDSCR + 0x0254)
2069
2070/* Mode independent scratch page 4 macros. */
2071#define CSEQ_Q_EXE_HEAD (CMAPPEDSCR + 0x0280)
2072#define CSEQ_Q_EXE_TAIL (CMAPPEDSCR + 0x0282)
2073#define CSEQ_Q_DONE_HEAD (CMAPPEDSCR + 0x0284)
2074#define CSEQ_Q_DONE_TAIL (CMAPPEDSCR + 0x0286)
2075#define CSEQ_Q_SEND_HEAD (CMAPPEDSCR + 0x0288)
2076#define CSEQ_Q_SEND_TAIL (CMAPPEDSCR + 0x028A)
2077#define CSEQ_Q_DMA2CHIM_HEAD (CMAPPEDSCR + 0x028C)
2078#define CSEQ_Q_DMA2CHIM_TAIL (CMAPPEDSCR + 0x028E)
2079#define CSEQ_Q_COPY_HEAD (CMAPPEDSCR + 0x0290)
2080#define CSEQ_Q_COPY_TAIL (CMAPPEDSCR + 0x0292)
2081#define CSEQ_REG0 (CMAPPEDSCR + 0x0294)
2082#define CSEQ_REG1 (CMAPPEDSCR + 0x0296)
2083#define CSEQ_REG2 (CMAPPEDSCR + 0x0298)
2084#define CSEQ_LINK_CTL_Q_MAP (CMAPPEDSCR + 0x029C)
2085#define CSEQ_MAX_CSEQ_MODE (CMAPPEDSCR + 0x029D)
2086#define CSEQ_FREE_LIST_HACK_COUNT (CMAPPEDSCR + 0x029E)
2087
2088/* Mode independent scratch page 5 macros. */
2089#define CSEQ_EST_NEXUS_REQ_QUEUE (CMAPPEDSCR + 0x02A0)
2090#define CSEQ_EST_NEXUS_REQ_COUNT (CMAPPEDSCR + 0x02A8)
2091#define CSEQ_Q_EST_NEXUS_HEAD (CMAPPEDSCR + 0x02B0)
2092#define CSEQ_Q_EST_NEXUS_TAIL (CMAPPEDSCR + 0x02B2)
2093#define CSEQ_NEED_EST_NEXUS_SCB (CMAPPEDSCR + 0x02B4)
2094#define CSEQ_EST_NEXUS_REQ_HEAD (CMAPPEDSCR + 0x02B6)
2095#define CSEQ_EST_NEXUS_REQ_TAIL (CMAPPEDSCR + 0x02B7)
2096#define CSEQ_EST_NEXUS_SCB_OFFSET (CMAPPEDSCR + 0x02B8)
2097
2098/* Mode independent scratch page 6 macros. */
2099#define CSEQ_INT_ROUT_RET_ADDR0 (CMAPPEDSCR + 0x02C0)
2100#define CSEQ_INT_ROUT_RET_ADDR1 (CMAPPEDSCR + 0x02C2)
2101#define CSEQ_INT_ROUT_SCBPTR (CMAPPEDSCR + 0x02C4)
2102#define CSEQ_INT_ROUT_MODE (CMAPPEDSCR + 0x02C6)
2103#define CSEQ_ISR_SCRATCH_FLAGS (CMAPPEDSCR + 0x02C7)
2104#define CSEQ_ISR_SAVE_SINDEX (CMAPPEDSCR + 0x02C8)
2105#define CSEQ_ISR_SAVE_DINDEX (CMAPPEDSCR + 0x02CA)
2106#define CSEQ_Q_MONIRTT_HEAD (CMAPPEDSCR + 0x02D0)
2107#define CSEQ_Q_MONIRTT_TAIL (CMAPPEDSCR + 0x02D2)
2108#define CSEQ_FREE_SCB_MASK (CMAPPEDSCR + 0x02D5)
2109#define CSEQ_BUILTIN_FREE_SCB_HEAD (CMAPPEDSCR + 0x02D6)
2110#define CSEQ_BUILTIN_FREE_SCB_TAIL (CMAPPEDSCR + 0x02D8)
2111#define CSEQ_EXTENDED_FREE_SCB_HEAD (CMAPPEDSCR + 0x02DA)
2112#define CSEQ_EXTENDED_FREE_SCB_TAIL (CMAPPEDSCR + 0x02DC)
2113
2114/* Mode independent scratch page 7 macros. */
2115#define CSEQ_EMPTY_REQ_QUEUE (CMAPPEDSCR + 0x02E0)
2116#define CSEQ_EMPTY_REQ_COUNT (CMAPPEDSCR + 0x02E8)
2117#define CSEQ_Q_EMPTY_HEAD (CMAPPEDSCR + 0x02F0)
2118#define CSEQ_Q_EMPTY_TAIL (CMAPPEDSCR + 0x02F2)
2119#define CSEQ_NEED_EMPTY_SCB (CMAPPEDSCR + 0x02F4)
2120#define CSEQ_EMPTY_REQ_HEAD (CMAPPEDSCR + 0x02F6)
2121#define CSEQ_EMPTY_REQ_TAIL (CMAPPEDSCR + 0x02F7)
2122#define CSEQ_EMPTY_SCB_OFFSET (CMAPPEDSCR + 0x02F8)
2123#define CSEQ_PRIMITIVE_DATA (CMAPPEDSCR + 0x02FA)
2124#define CSEQ_TIMEOUT_CONST (CMAPPEDSCR + 0x02FC)
2125
2126/***************************************************************************
2127* Link m Sequencer scratch RAM is 512 bytes.
2128* This scratch memory is divided into mode dependent and mode
2129* independent scratch with this memory further subdivided into
2130* pages of size 32 bytes. There are 4 pages (128 bytes) of
2131* mode independent scratch and 4 pages of dependent scratch
2132* memory for modes 0-2 (384 bytes).
2133*
2134* The host accesses this scratch in a different manner from the
2135* link sequencer. The sequencer has to use LSEQ registers
2136* LmSCRPAGE and LmMnSCRPAGE to access the scratch memory. A flat
2137* mapping of the scratch memory is avaliable for software
2138* convenience and to prevent corruption while the sequencer is
2139* running. This memory is mapped onto addresses 800h - 9FFh.
2140*
2141* These addresses are mapped as follows:
2142*
2143* 800h-85Fh Mode Dependent Scratch Mode 0 Pages 0-2
2144* 860h-87Fh Mode Dependent Scratch Mode 0 Page 3
2145* Mode Dependent Scratch Mode 5 Page 0
2146* 880h-8DFh Mode Dependent Scratch Mode 1 Pages 0-2
2147* 8E0h-8FFh Mode Dependent Scratch Mode 1 Page 3
2148* Mode Dependent Scratch Mode 5 Page 1
2149* 900h-95Fh Mode Dependent Scratch Mode 2 Pages 0-2
2150* 960h-97Fh Mode Dependent Scratch Mode 2 Page 3
2151* Mode Dependent Scratch Mode 5 Page 2
2152* 980h-9DFh Mode Independent Scratch Pages 0-3
2153* 9E0h-9FFh Mode Independent Scratch Page 3
2154* Mode Dependent Scratch Mode 5 Page 3
2155*
2156****************************************************************************/
2157/* General macros */
2158#define LSEQ_MODE_SCRATCH_SIZE 0x80 /* Size of scratch RAM per mode */
2159#define LSEQ_PAGE_SIZE 0x20 /* Scratch page size (in bytes) */
2160#define LSEQ_MODE5_PAGE0_OFFSET 0x60
2161
2162/* Common mode dependent scratch page 0 macros for modes 0,1,2, and 5 */
2163/* Indexed using LSEQ_MODE_SCRATCH_SIZE * mode, for modes 0,1,2. */
2164#define LmSEQ_RET_ADDR(LinkNum) (LmSCRATCH(LinkNum) + 0x0000)
2165#define LmSEQ_REG0_MODE(LinkNum) (LmSCRATCH(LinkNum) + 0x0002)
2166#define LmSEQ_MODE_FLAGS(LinkNum) (LmSCRATCH(LinkNum) + 0x0004)
2167
2168/* Mode flag macros (byte 0) */
2169#define SAS_SAVECTX_OCCURRED 0x80
2170#define SAS_OOBSVC_OCCURRED 0x40
2171#define SAS_OOB_DEVICE_PRESENT 0x20
2172#define SAS_CFGHDR_OCCURRED 0x10
2173#define SAS_RCV_INTS_ARE_DISABLED 0x08
2174#define SAS_OOB_HOT_PLUG_CNCT 0x04
2175#define SAS_AWAIT_OPEN_CONNECTION 0x02
2176#define SAS_CFGCMPLT_OCCURRED 0x01
2177
2178/* Mode flag macros (byte 1) */
2179#define SAS_RLSSCB_OCCURRED 0x80
2180#define SAS_FORCED_HEADER_MISS 0x40
2181
2182#define LmSEQ_RET_ADDR2(LinkNum) (LmSCRATCH(LinkNum) + 0x0006)
2183#define LmSEQ_RET_ADDR1(LinkNum) (LmSCRATCH(LinkNum) + 0x0008)
2184#define LmSEQ_OPCODE_TO_CSEQ(LinkNum) (LmSCRATCH(LinkNum) + 0x000B)
2185#define LmSEQ_DATA_TO_CSEQ(LinkNum) (LmSCRATCH(LinkNum) + 0x000C)
2186
2187/* Mode dependent scratch page 0 macros for mode 0 (non-common) */
2188/* Absolute offsets */
2189#define LmSEQ_FIRST_INV_DDB_SITE(LinkNum) (LmSCRATCH(LinkNum) + 0x000E)
2190#define LmSEQ_EMPTY_TRANS_CTX(LinkNum) (LmSCRATCH(LinkNum) + 0x0010)
2191#define LmSEQ_RESP_LEN(LinkNum) (LmSCRATCH(LinkNum) + 0x0012)
2192#define LmSEQ_FIRST_INV_SCB_SITE(LinkNum) (LmSCRATCH(LinkNum) + 0x0014)
2193#define LmSEQ_INTEN_SAVE(LinkNum) (LmSCRATCH(LinkNum) + 0x0016)
2194#define LmSEQ_LINK_RST_FRM_LEN(LinkNum) (LmSCRATCH(LinkNum) + 0x001A)
2195#define LmSEQ_LINK_RST_PROTOCOL(LinkNum) (LmSCRATCH(LinkNum) + 0x001B)
2196#define LmSEQ_RESP_STATUS(LinkNum) (LmSCRATCH(LinkNum) + 0x001C)
2197#define LmSEQ_LAST_LOADED_SGE(LinkNum) (LmSCRATCH(LinkNum) + 0x001D)
2198#define LmSEQ_SAVE_SCBPTR(LinkNum) (LmSCRATCH(LinkNum) + 0x001E)
2199
2200/* Mode dependent scratch page 0 macros for mode 1 (non-common) */
2201/* Absolute offsets */
2202#define LmSEQ_Q_XMIT_HEAD(LinkNum) (LmSCRATCH(LinkNum) + 0x008E)
2203#define LmSEQ_M1_EMPTY_TRANS_CTX(LinkNum) (LmSCRATCH(LinkNum) + 0x0090)
2204#define LmSEQ_INI_CONN_TAG(LinkNum) (LmSCRATCH(LinkNum) + 0x0092)
2205#define LmSEQ_FAILED_OPEN_STATUS(LinkNum) (LmSCRATCH(LinkNum) + 0x009A)
2206#define LmSEQ_XMIT_REQUEST_TYPE(LinkNum) (LmSCRATCH(LinkNum) + 0x009B)
2207#define LmSEQ_M1_RESP_STATUS(LinkNum) (LmSCRATCH(LinkNum) + 0x009C)
2208#define LmSEQ_M1_LAST_LOADED_SGE(LinkNum) (LmSCRATCH(LinkNum) + 0x009D)
2209#define LmSEQ_M1_SAVE_SCBPTR(LinkNum) (LmSCRATCH(LinkNum) + 0x009E)
2210
2211/* Mode dependent scratch page 0 macros for mode 2 (non-common) */
2212#define LmSEQ_PORT_COUNTER(LinkNum) (LmSCRATCH(LinkNum) + 0x010E)
2213#define LmSEQ_PM_TABLE_PTR(LinkNum) (LmSCRATCH(LinkNum) + 0x0110)
2214#define LmSEQ_SATA_INTERLOCK_TMR_SAVE(LinkNum) (LmSCRATCH(LinkNum) + 0x0112)
2215#define LmSEQ_IP_BITL(LinkNum) (LmSCRATCH(LinkNum) + 0x0114)
2216#define LmSEQ_COPY_SMP_CONN_TAG(LinkNum) (LmSCRATCH(LinkNum) + 0x0116)
2217#define LmSEQ_P0M2_OFFS1AH(LinkNum) (LmSCRATCH(LinkNum) + 0x011A)
2218
2219/* Mode dependent scratch page 0 macros for modes 4/5 (non-common) */
2220/* Absolute offsets */
2221#define LmSEQ_SAVED_OOB_STATUS(LinkNum) (LmSCRATCH(LinkNum) + 0x006E)
2222#define LmSEQ_SAVED_OOB_MODE(LinkNum) (LmSCRATCH(LinkNum) + 0x006F)
2223#define LmSEQ_Q_LINK_HEAD(LinkNum) (LmSCRATCH(LinkNum) + 0x0070)
2224#define LmSEQ_LINK_RST_ERR(LinkNum) (LmSCRATCH(LinkNum) + 0x0072)
2225#define LmSEQ_SAVED_OOB_SIGNALS(LinkNum) (LmSCRATCH(LinkNum) + 0x0073)
2226#define LmSEQ_SAS_RESET_MODE(LinkNum) (LmSCRATCH(LinkNum) + 0x0074)
2227#define LmSEQ_LINK_RESET_RETRY_COUNT(LinkNum) (LmSCRATCH(LinkNum) + 0x0075)
2228#define LmSEQ_NUM_LINK_RESET_RETRIES(LinkNum) (LmSCRATCH(LinkNum) + 0x0076)
2229#define LmSEQ_OOB_INT_ENABLES(LinkNum) (LmSCRATCH(LinkNum) + 0x007A)
2230#define LmSEQ_NOTIFY_TIMER_TIMEOUT(LinkNum) (LmSCRATCH(LinkNum) + 0x007C)
2231#define LmSEQ_NOTIFY_TIMER_DOWN_COUNT(LinkNum) (LmSCRATCH(LinkNum) + 0x007E)
2232
2233/* Mode dependent scratch page 1, mode 0 and mode 1 */
2234#define LmSEQ_SG_LIST_PTR_ADDR0(LinkNum) (LmSCRATCH(LinkNum) + 0x0020)
2235#define LmSEQ_SG_LIST_PTR_ADDR1(LinkNum) (LmSCRATCH(LinkNum) + 0x0030)
2236#define LmSEQ_M1_SG_LIST_PTR_ADDR0(LinkNum) (LmSCRATCH(LinkNum) + 0x00A0)
2237#define LmSEQ_M1_SG_LIST_PTR_ADDR1(LinkNum) (LmSCRATCH(LinkNum) + 0x00B0)
2238
2239/* Mode dependent scratch page 1 macros for mode 2 */
2240/* Absolute offsets */
2241#define LmSEQ_INVALID_DWORD_COUNT(LinkNum) (LmSCRATCH(LinkNum) + 0x0120)
2242#define LmSEQ_DISPARITY_ERROR_COUNT(LinkNum) (LmSCRATCH(LinkNum) + 0x0124)
2243#define LmSEQ_LOSS_OF_SYNC_COUNT(LinkNum) (LmSCRATCH(LinkNum) + 0x0128)
2244
2245/* Mode dependent scratch page 1 macros for mode 4/5 */
2246#define LmSEQ_FRAME_TYPE_MASK(LinkNum) (LmSCRATCH(LinkNum) + 0x00E0)
2247#define LmSEQ_HASHED_DEST_ADDR_MASK(LinkNum) (LmSCRATCH(LinkNum) + 0x00E1)
2248#define LmSEQ_HASHED_SRC_ADDR_MASK_PRINT(LinkNum) (LmSCRATCH(LinkNum) + 0x00E4)
2249#define LmSEQ_HASHED_SRC_ADDR_MASK(LinkNum) (LmSCRATCH(LinkNum) + 0x00E5)
2250#define LmSEQ_NUM_FILL_BYTES_MASK(LinkNum) (LmSCRATCH(LinkNum) + 0x00EB)
2251#define LmSEQ_TAG_MASK(LinkNum) (LmSCRATCH(LinkNum) + 0x00F0)
2252#define LmSEQ_TARGET_PORT_XFER_TAG(LinkNum) (LmSCRATCH(LinkNum) + 0x00F2)
2253#define LmSEQ_DATA_OFFSET(LinkNum) (LmSCRATCH(LinkNum) + 0x00F4)
2254
2255/* Mode dependent scratch page 2 macros for mode 0 */
2256/* Absolute offsets */
2257#define LmSEQ_SMP_RCV_TIMER_TERM_TS(LinkNum) (LmSCRATCH(LinkNum) + 0x0040)
2258#define LmSEQ_DEVICE_BITS(LinkNum) (LmSCRATCH(LinkNum) + 0x005B)
2259#define LmSEQ_SDB_DDB(LinkNum) (LmSCRATCH(LinkNum) + 0x005C)
2260#define LmSEQ_SDB_NUM_TAGS(LinkNum) (LmSCRATCH(LinkNum) + 0x005E)
2261#define LmSEQ_SDB_CURR_TAG(LinkNum) (LmSCRATCH(LinkNum) + 0x005F)
2262
2263/* Mode dependent scratch page 2 macros for mode 1 */
2264/* Absolute offsets */
2265/* byte 0 bits 1-0 are domain select. */
2266#define LmSEQ_TX_ID_ADDR_FRAME(LinkNum) (LmSCRATCH(LinkNum) + 0x00C0)
2267#define LmSEQ_OPEN_TIMER_TERM_TS(LinkNum) (LmSCRATCH(LinkNum) + 0x00C8)
2268#define LmSEQ_SRST_AS_TIMER_TERM_TS(LinkNum) (LmSCRATCH(LinkNum) + 0x00CC)
2269#define LmSEQ_LAST_LOADED_SG_EL(LinkNum) (LmSCRATCH(LinkNum) + 0x00D4)
2270
2271/* Mode dependent scratch page 2 macros for mode 2 */
2272/* Absolute offsets */
2273#define LmSEQ_STP_SHUTDOWN_TIMER_TERM_TS(LinkNum) (LmSCRATCH(LinkNum) + 0x0140)
2274#define LmSEQ_CLOSE_TIMER_TERM_TS(LinkNum) (LmSCRATCH(LinkNum) + 0x0144)
2275#define LmSEQ_BREAK_TIMER_TERM_TS(LinkNum) (LmSCRATCH(LinkNum) + 0x0148)
2276#define LmSEQ_DWS_RESET_TIMER_TERM_TS(LinkNum) (LmSCRATCH(LinkNum) + 0x014C)
2277#define LmSEQ_SATA_INTERLOCK_TIMER_TERM_TS(LinkNum) \
2278 (LmSCRATCH(LinkNum) + 0x0150)
2279#define LmSEQ_MCTL_TIMER_TERM_TS(LinkNum) (LmSCRATCH(LinkNum) + 0x0154)
2280
2281/* Mode dependent scratch page 2 macros for mode 5 */
2282#define LmSEQ_COMINIT_TIMER_TERM_TS(LinkNum) (LmSCRATCH(LinkNum) + 0x0160)
2283#define LmSEQ_RCV_ID_TIMER_TERM_TS(LinkNum) (LmSCRATCH(LinkNum) + 0x0164)
2284#define LmSEQ_RCV_FIS_TIMER_TERM_TS(LinkNum) (LmSCRATCH(LinkNum) + 0x0168)
2285#define LmSEQ_DEV_PRES_TIMER_TERM_TS(LinkNum) (LmSCRATCH(LinkNum) + 0x016C)
2286
2287/* Mode dependent scratch page 3 macros for modes 0 and 1 */
2288/* None defined */
2289
2290/* Mode dependent scratch page 3 macros for modes 2 and 5 */
2291/* None defined */
2292
2293/* Mode Independent Scratch page 0 macros. */
2294#define LmSEQ_Q_TGTXFR_HEAD(LinkNum) (LmSCRATCH(LinkNum) + 0x0180)
2295#define LmSEQ_Q_TGTXFR_TAIL(LinkNum) (LmSCRATCH(LinkNum) + 0x0182)
2296#define LmSEQ_LINK_NUMBER(LinkNum) (LmSCRATCH(LinkNum) + 0x0186)
2297#define LmSEQ_SCRATCH_FLAGS(LinkNum) (LmSCRATCH(LinkNum) + 0x0187)
2298/*
2299 * Currently only bit 0, SAS_DWSAQD, is used.
2300 */
2301#define SAS_DWSAQD 0x01 /*
2302 * DWSSTATUS: DWSAQD
2303 * bit las read in ISR.
2304 */
2305#define LmSEQ_CONNECTION_STATE(LinkNum) (LmSCRATCH(LinkNum) + 0x0188)
2306/* Connection states (byte 0) */
2307#define SAS_WE_OPENED_CS 0x01
2308#define SAS_DEVICE_OPENED_CS 0x02
2309#define SAS_WE_SENT_DONE_CS 0x04
2310#define SAS_DEVICE_SENT_DONE_CS 0x08
2311#define SAS_WE_SENT_CLOSE_CS 0x10
2312#define SAS_DEVICE_SENT_CLOSE_CS 0x20
2313#define SAS_WE_SENT_BREAK_CS 0x40
2314#define SAS_DEVICE_SENT_BREAK_CS 0x80
2315/* Connection states (byte 1) */
2316#define SAS_OPN_TIMEOUT_OR_OPN_RJCT_CS 0x01
2317#define SAS_AIP_RECEIVED_CS 0x02
2318#define SAS_CREDIT_TIMEOUT_OCCURRED_CS 0x04
2319#define SAS_ACKNAK_TIMEOUT_OCCURRED_CS 0x08
2320#define SAS_SMPRSP_TIMEOUT_OCCURRED_CS 0x10
2321#define SAS_DONE_TIMEOUT_OCCURRED_CS 0x20
2322/* Connection states (byte 2) */
2323#define SAS_SMP_RESPONSE_RECEIVED_CS 0x01
2324#define SAS_INTLK_TIMEOUT_OCCURRED_CS 0x02
2325#define SAS_DEVICE_SENT_DMAT_CS 0x04
2326#define SAS_DEVICE_SENT_SYNCSRST_CS 0x08
2327#define SAS_CLEARING_AFFILIATION_CS 0x20
2328#define SAS_RXTASK_ACTIVE_CS 0x40
2329#define SAS_TXTASK_ACTIVE_CS 0x80
2330/* Connection states (byte 3) */
2331#define SAS_PHY_LOSS_OF_SIGNAL_CS 0x01
2332#define SAS_DWS_TIMER_EXPIRED_CS 0x02
2333#define SAS_LINK_RESET_NOT_COMPLETE_CS 0x04
2334#define SAS_PHY_DISABLED_CS 0x08
2335#define SAS_LINK_CTL_TASK_ACTIVE_CS 0x10
2336#define SAS_PHY_EVENT_TASK_ACTIVE_CS 0x20
2337#define SAS_DEVICE_SENT_ID_FRAME_CS 0x40
2338#define SAS_DEVICE_SENT_REG_FIS_CS 0x40
2339#define SAS_DEVICE_SENT_HARD_RESET_CS 0x80
2340#define SAS_PHY_IS_DOWN_FLAGS (SAS_PHY_LOSS_OF_SIGNAL_CS|\
2341 SAS_DWS_TIMER_EXPIRED_CS |\
2342 SAS_LINK_RESET_NOT_COMPLETE_CS|\
2343 SAS_PHY_DISABLED_CS)
2344
2345#define SAS_LINK_CTL_PHY_EVENT_FLAGS (SAS_LINK_CTL_TASK_ACTIVE_CS |\
2346 SAS_PHY_EVENT_TASK_ACTIVE_CS |\
2347 SAS_DEVICE_SENT_ID_FRAME_CS |\
2348 SAS_DEVICE_SENT_HARD_RESET_CS)
2349
2350#define LmSEQ_CONCTL(LinkNum) (LmSCRATCH(LinkNum) + 0x018C)
2351#define LmSEQ_CONSTAT(LinkNum) (LmSCRATCH(LinkNum) + 0x018E)
2352#define LmSEQ_CONNECTION_MODES(LinkNum) (LmSCRATCH(LinkNum) + 0x018F)
2353#define LmSEQ_REG1_ISR(LinkNum) (LmSCRATCH(LinkNum) + 0x0192)
2354#define LmSEQ_REG2_ISR(LinkNum) (LmSCRATCH(LinkNum) + 0x0194)
2355#define LmSEQ_REG3_ISR(LinkNum) (LmSCRATCH(LinkNum) + 0x0196)
2356#define LmSEQ_REG0_ISR(LinkNum) (LmSCRATCH(LinkNum) + 0x0198)
2357
2358/* Mode independent scratch page 1 macros. */
2359#define LmSEQ_EST_NEXUS_SCBPTR0(LinkNum) (LmSCRATCH(LinkNum) + 0x01A0)
2360#define LmSEQ_EST_NEXUS_SCBPTR1(LinkNum) (LmSCRATCH(LinkNum) + 0x01A2)
2361#define LmSEQ_EST_NEXUS_SCBPTR2(LinkNum) (LmSCRATCH(LinkNum) + 0x01A4)
2362#define LmSEQ_EST_NEXUS_SCBPTR3(LinkNum) (LmSCRATCH(LinkNum) + 0x01A6)
2363#define LmSEQ_EST_NEXUS_SCB_OPCODE0(LinkNum) (LmSCRATCH(LinkNum) + 0x01A8)
2364#define LmSEQ_EST_NEXUS_SCB_OPCODE1(LinkNum) (LmSCRATCH(LinkNum) + 0x01A9)
2365#define LmSEQ_EST_NEXUS_SCB_OPCODE2(LinkNum) (LmSCRATCH(LinkNum) + 0x01AA)
2366#define LmSEQ_EST_NEXUS_SCB_OPCODE3(LinkNum) (LmSCRATCH(LinkNum) + 0x01AB)
2367#define LmSEQ_EST_NEXUS_SCB_HEAD(LinkNum) (LmSCRATCH(LinkNum) + 0x01AC)
2368#define LmSEQ_EST_NEXUS_SCB_TAIL(LinkNum) (LmSCRATCH(LinkNum) + 0x01AD)
2369#define LmSEQ_EST_NEXUS_BUF_AVAIL(LinkNum) (LmSCRATCH(LinkNum) + 0x01AE)
2370#define LmSEQ_TIMEOUT_CONST(LinkNum) (LmSCRATCH(LinkNum) + 0x01B8)
2371#define LmSEQ_ISR_SAVE_SINDEX(LinkNum) (LmSCRATCH(LinkNum) + 0x01BC)
2372#define LmSEQ_ISR_SAVE_DINDEX(LinkNum) (LmSCRATCH(LinkNum) + 0x01BE)
2373
2374/* Mode independent scratch page 2 macros. */
2375#define LmSEQ_EMPTY_SCB_PTR0(LinkNum) (LmSCRATCH(LinkNum) + 0x01C0)
2376#define LmSEQ_EMPTY_SCB_PTR1(LinkNum) (LmSCRATCH(LinkNum) + 0x01C2)
2377#define LmSEQ_EMPTY_SCB_PTR2(LinkNum) (LmSCRATCH(LinkNum) + 0x01C4)
2378#define LmSEQ_EMPTY_SCB_PTR3(LinkNum) (LmSCRATCH(LinkNum) + 0x01C6)
2379#define LmSEQ_EMPTY_SCB_OPCD0(LinkNum) (LmSCRATCH(LinkNum) + 0x01C8)
2380#define LmSEQ_EMPTY_SCB_OPCD1(LinkNum) (LmSCRATCH(LinkNum) + 0x01C9)
2381#define LmSEQ_EMPTY_SCB_OPCD2(LinkNum) (LmSCRATCH(LinkNum) + 0x01CA)
2382#define LmSEQ_EMPTY_SCB_OPCD3(LinkNum) (LmSCRATCH(LinkNum) + 0x01CB)
2383#define LmSEQ_EMPTY_SCB_HEAD(LinkNum) (LmSCRATCH(LinkNum) + 0x01CC)
2384#define LmSEQ_EMPTY_SCB_TAIL(LinkNum) (LmSCRATCH(LinkNum) + 0x01CD)
2385#define LmSEQ_EMPTY_BUFS_AVAIL(LinkNum) (LmSCRATCH(LinkNum) + 0x01CE)
2386#define LmSEQ_ATA_SCR_REGS(LinkNum) (LmSCRATCH(LinkNum) + 0x01D4)
2387
2388/* Mode independent scratch page 3 macros. */
2389#define LmSEQ_DEV_PRES_TMR_TOUT_CONST(LinkNum) (LmSCRATCH(LinkNum) + 0x01E0)
2390#define LmSEQ_SATA_INTERLOCK_TIMEOUT(LinkNum) (LmSCRATCH(LinkNum) + 0x01E4)
2391#define LmSEQ_STP_SHUTDOWN_TIMEOUT(LinkNum) (LmSCRATCH(LinkNum) + 0x01E8)
2392#define LmSEQ_SRST_ASSERT_TIMEOUT(LinkNum) (LmSCRATCH(LinkNum) + 0x01EC)
2393#define LmSEQ_RCV_FIS_TIMEOUT(LinkNum) (LmSCRATCH(LinkNum) + 0x01F0)
2394#define LmSEQ_ONE_MILLISEC_TIMEOUT(LinkNum) (LmSCRATCH(LinkNum) + 0x01F4)
2395#define LmSEQ_TEN_MS_COMINIT_TIMEOUT(LinkNum) (LmSCRATCH(LinkNum) + 0x01F8)
2396#define LmSEQ_SMP_RCV_TIMEOUT(LinkNum) (LmSCRATCH(LinkNum) + 0x01FC)
2397
2398#endif
diff --git a/drivers/scsi/aic94xx/aic94xx_sas.h b/drivers/scsi/aic94xx/aic94xx_sas.h
new file mode 100644
index 000000000000..64d231712345
--- /dev/null
+++ b/drivers/scsi/aic94xx/aic94xx_sas.h
@@ -0,0 +1,785 @@
1/*
2 * Aic94xx SAS/SATA driver SAS definitions and hardware interface header file.
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This file is part of the aic94xx driver.
10 *
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
14 * License.
15 *
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 *
25 */
26
27#ifndef _AIC94XX_SAS_H_
28#define _AIC94XX_SAS_H_
29
30#include <scsi/libsas.h>
31
32/* ---------- DDBs ---------- */
33/* DDBs are device descriptor blocks which describe a device in the
34 * domain that this sequencer can maintain low-level connections for
35 * us. They are be 64 bytes.
36 */
37
38struct asd_ddb_ssp_smp_target_port {
39 u8 conn_type; /* byte 0 */
40#define DDB_TP_CONN_TYPE 0x81 /* Initiator port and addr frame type 0x01 */
41
42 u8 conn_rate;
43 __be16 init_conn_tag;
44 u8 dest_sas_addr[8]; /* bytes 4-11 */
45
46 __le16 send_queue_head;
47 u8 sq_suspended;
48 u8 ddb_type; /* DDB_TYPE_TARGET */
49#define DDB_TYPE_UNUSED 0xFF
50#define DDB_TYPE_TARGET 0xFE
51#define DDB_TYPE_INITIATOR 0xFD
52#define DDB_TYPE_PM_PORT 0xFC
53
54 __le16 _r_a;
55 __be16 awt_def;
56
57 u8 compat_features; /* byte 20 */
58 u8 pathway_blocked_count;
59 __be16 arb_wait_time;
60 __be32 more_compat_features; /* byte 24 */
61
62 u8 conn_mask;
63 u8 flags; /* concurrent conn:2,2 and open:0(1) */
64#define CONCURRENT_CONN_SUPP 0x04
65#define OPEN_REQUIRED 0x01
66
67 u16 _r_b;
68 __le16 exec_queue_tail;
69 __le16 send_queue_tail;
70 __le16 sister_ddb;
71
72 __le16 _r_c;
73
74 u8 max_concurrent_conn;
75 u8 num_concurrent_conn;
76 u8 num_contexts;
77
78 u8 _r_d;
79
80 __le16 active_task_count;
81
82 u8 _r_e[9];
83
84 u8 itnl_reason; /* I_T nexus loss reason */
85
86 __le16 _r_f;
87
88 __le16 itnl_timeout;
89#define ITNL_TIMEOUT_CONST 0x7D0 /* 2 seconds */
90
91 __le32 itnl_timestamp;
92} __attribute__ ((packed));
93
94struct asd_ddb_stp_sata_target_port {
95 u8 conn_type; /* byte 0 */
96 u8 conn_rate;
97 __be16 init_conn_tag;
98 u8 dest_sas_addr[8]; /* bytes 4-11 */
99
100 __le16 send_queue_head;
101 u8 sq_suspended;
102 u8 ddb_type; /* DDB_TYPE_TARGET */
103
104 __le16 _r_a;
105
106 __be16 awt_def;
107 u8 compat_features; /* byte 20 */
108 u8 pathway_blocked_count;
109 __be16 arb_wait_time;
110 __be32 more_compat_features; /* byte 24 */
111
112 u8 conn_mask;
113 u8 flags; /* concurrent conn:2,2 and open:0(1) */
114#define SATA_MULTIPORT 0x80
115#define SUPPORTS_AFFIL 0x40
116#define STP_AFFIL_POL 0x20
117
118 u8 _r_b;
119 u8 flags2; /* STP close policy:0 */
120#define STP_CL_POL_NO_TX 0x00
121#define STP_CL_POL_BTW_CMDS 0x01
122
123 __le16 exec_queue_tail;
124 __le16 send_queue_tail;
125 __le16 sister_ddb;
126 __le16 ata_cmd_scbptr;
127 __le32 sata_tag_alloc_mask;
128 __le16 active_task_count;
129 __le16 _r_c;
130 __le32 sata_sactive;
131 u8 num_sata_tags;
132 u8 sata_status;
133 u8 sata_ending_status;
134 u8 itnl_reason; /* I_T nexus loss reason */
135 __le16 ncq_data_scb_ptr;
136 __le16 itnl_timeout;
137 __le32 itnl_timestamp;
138} __attribute__ ((packed));
139
140/* This struct asd_ddb_init_port, describes the device descriptor block
141 * of an initiator port (when the sequencer is operating in target mode).
142 * Bytes [0,11] and [20,27] are from the OPEN address frame.
143 * The sequencer allocates an initiator port DDB entry.
144 */
145struct asd_ddb_init_port {
146 u8 conn_type; /* byte 0 */
147 u8 conn_rate;
148 __be16 init_conn_tag; /* BE */
149 u8 dest_sas_addr[8];
150 __le16 send_queue_head; /* LE, byte 12 */
151 u8 sq_suspended;
152 u8 ddb_type; /* DDB_TYPE_INITIATOR */
153 __le16 _r_a;
154 __be16 awt_def; /* BE */
155 u8 compat_features;
156 u8 pathway_blocked_count;
157 __be16 arb_wait_time; /* BE */
158 __be32 more_compat_features; /* BE */
159 u8 conn_mask;
160 u8 flags; /* == 5 */
161 u16 _r_b;
162 __le16 exec_queue_tail; /* execution queue tail */
163 __le16 send_queue_tail;
164 __le16 sister_ddb;
165 __le16 init_resp_timeout; /* initiator response timeout */
166 __le32 _r_c;
167 __le16 active_tasks; /* active task count */
168 __le16 init_list; /* initiator list link pointer */
169 __le32 _r_d;
170 u8 max_conn_to[3]; /* from Conn-Disc mode page, in us, LE */
171 u8 itnl_reason; /* I_T nexus loss reason */
172 __le16 bus_inact_to; /* from Conn-Disc mode page, in 100 us, LE */
173 __le16 itnl_to; /* from the Protocol Specific Port Ctrl MP */
174 __le32 itnl_timestamp;
175} __attribute__ ((packed));
176
177/* This struct asd_ddb_sata_tag, describes a look-up table to be used
178 * by the sequencers. SATA II, IDENTIFY DEVICE data, word 76, bit 8:
179 * NCQ support. This table is used by the sequencers to find the
180 * corresponding SCB, given a SATA II tag value.
181 */
182struct asd_ddb_sata_tag {
183 __le16 scb_pointer[32];
184} __attribute__ ((packed));
185
186/* This struct asd_ddb_sata_pm_table, describes a port number to
187 * connection handle look-up table. SATA targets attached to a port
188 * multiplier require a 4-bit port number value. There is one DDB
189 * entry of this type for each SATA port multiplier (sister DDB).
190 * Given a SATA PM port number, this table gives us the SATA PM Port
191 * DDB of the SATA port multiplier port (i.e. the SATA target
192 * discovered on the port).
193 */
194struct asd_ddb_sata_pm_table {
195 __le16 ddb_pointer[16];
196 __le16 _r_a[16];
197} __attribute__ ((packed));
198
199/* This struct asd_ddb_sata_pm_port, describes the SATA port multiplier
200 * port format DDB.
201 */
202struct asd_ddb_sata_pm_port {
203 u8 _r_a[15];
204 u8 ddb_type;
205 u8 _r_b[13];
206 u8 pm_port_flags;
207#define PM_PORT_MASK 0xF0
208#define PM_PORT_SET 0x02
209 u8 _r_c[6];
210 __le16 sister_ddb;
211 __le16 ata_cmd_scbptr;
212 __le32 sata_tag_alloc_mask;
213 __le16 active_task_count;
214 __le16 parent_ddb;
215 __le32 sata_sactive;
216 u8 num_sata_tags;
217 u8 sata_status;
218 u8 sata_ending_status;
219 u8 _r_d[9];
220} __attribute__ ((packed));
221
222/* This struct asd_ddb_seq_shared, describes a DDB shared by the
223 * central and link sequencers. port_map_by_links is indexed phy
224 * number [0,7]; each byte is a bit mask of all the phys that are in
225 * the same port as the indexed phy.
226 */
227struct asd_ddb_seq_shared {
228 __le16 q_free_ddb_head;
229 __le16 q_free_ddb_tail;
230 __le16 q_free_ddb_cnt;
231 __le16 q_used_ddb_head;
232 __le16 q_used_ddb_tail;
233 __le16 shared_mem_lock;
234 __le16 smp_conn_tag;
235 __le16 est_nexus_buf_cnt;
236 __le16 est_nexus_buf_thresh;
237 u32 _r_a;
238 u8 settable_max_contexts;
239 u8 _r_b[23];
240 u8 conn_not_active;
241 u8 phy_is_up;
242 u8 _r_c[8];
243 u8 port_map_by_links[8];
244} __attribute__ ((packed));
245
246/* ---------- SG Element ---------- */
247
248/* This struct sg_el, describes the hardware scatter gather buffer
249 * element. All entries are little endian. In an SCB, there are 2 of
250 * this, plus one more, called a link element of this indicating a
251 * sublist if needed.
252 *
253 * A link element has only the bus address set and the flags (DS) bit
254 * valid. The bus address points to the start of the sublist.
255 *
256 * If a sublist is needed, then that sublist should also include the 2
257 * sg_el embedded in the SCB, in which case next_sg_offset is 32,
258 * since sizeof(sg_el) = 16; EOS should be 1 and EOL 0 in this case.
259 */
260struct sg_el {
261 __le64 bus_addr;
262 __le32 size;
263 __le16 _r;
264 u8 next_sg_offs;
265 u8 flags;
266#define ASD_SG_EL_DS_MASK 0x30
267#define ASD_SG_EL_DS_OCM 0x10
268#define ASD_SG_EL_DS_HM 0x00
269#define ASD_SG_EL_LIST_MASK 0xC0
270#define ASD_SG_EL_LIST_EOL 0x40
271#define ASD_SG_EL_LIST_EOS 0x80
272} __attribute__ ((packed));
273
274/* ---------- SCBs ---------- */
275
276/* An SCB (sequencer control block) is comprised of a common header
277 * and a task part, for a total of 128 bytes. All fields are in LE
278 * order, unless otherwise noted.
279 */
280
281/* This struct scb_header, defines the SCB header format.
282 */
283struct scb_header {
284 __le64 next_scb;
285 __le16 index; /* transaction context */
286 u8 opcode;
287} __attribute__ ((packed));
288
289/* SCB opcodes: Execution queue
290 */
291#define INITIATE_SSP_TASK 0x00
292#define INITIATE_LONG_SSP_TASK 0x01
293#define INITIATE_BIDIR_SSP_TASK 0x02
294#define ABORT_TASK 0x03
295#define INITIATE_SSP_TMF 0x04
296#define SSP_TARG_GET_DATA 0x05
297#define SSP_TARG_GET_DATA_GOOD 0x06
298#define SSP_TARG_SEND_RESP 0x07
299#define QUERY_SSP_TASK 0x08
300#define INITIATE_ATA_TASK 0x09
301#define INITIATE_ATAPI_TASK 0x0a
302#define CONTROL_ATA_DEV 0x0b
303#define INITIATE_SMP_TASK 0x0c
304#define SMP_TARG_SEND_RESP 0x0f
305
306/* SCB opcodes: Send Queue
307 */
308#define SSP_TARG_SEND_DATA 0x40
309#define SSP_TARG_SEND_DATA_GOOD 0x41
310
311/* SCB opcodes: Link Queue
312 */
313#define CONTROL_PHY 0x80
314#define SEND_PRIMITIVE 0x81
315#define INITIATE_LINK_ADM_TASK 0x82
316
317/* SCB opcodes: other
318 */
319#define EMPTY_SCB 0xc0
320#define INITIATE_SEQ_ADM_TASK 0xc1
321#define EST_ICL_TARG_WINDOW 0xc2
322#define COPY_MEM 0xc3
323#define CLEAR_NEXUS 0xc4
324#define INITIATE_DDB_ADM_TASK 0xc6
325#define ESTABLISH_NEXUS_ESCB 0xd0
326
327#define LUN_SIZE 8
328
329/* See SAS spec, task IU
330 */
331struct ssp_task_iu {
332 u8 lun[LUN_SIZE]; /* BE */
333 u16 _r_a;
334 u8 tmf;
335 u8 _r_b;
336 __be16 tag; /* BE */
337 u8 _r_c[14];
338} __attribute__ ((packed));
339
340/* See SAS spec, command IU
341 */
342struct ssp_command_iu {
343 u8 lun[LUN_SIZE];
344 u8 _r_a;
345 u8 efb_prio_attr; /* enable first burst, task prio & attr */
346#define EFB_MASK 0x80
347#define TASK_PRIO_MASK 0x78
348#define TASK_ATTR_MASK 0x07
349
350 u8 _r_b;
351 u8 add_cdb_len; /* in dwords, since bit 0,1 are reserved */
352 union {
353 u8 cdb[16];
354 struct {
355 __le64 long_cdb_addr; /* bus address, LE */
356 __le32 long_cdb_size; /* LE */
357 u8 _r_c[3];
358 u8 eol_ds; /* eol:6,6, ds:5,4 */
359 } long_cdb; /* sequencer extension */
360 };
361} __attribute__ ((packed));
362
363struct xfer_rdy_iu {
364 __be32 requested_offset; /* BE */
365 __be32 write_data_len; /* BE */
366 __be32 _r_a;
367} __attribute__ ((packed));
368
369/* ---------- SCB tasks ---------- */
370
371/* This is both ssp_task and long_ssp_task
372 */
373struct initiate_ssp_task {
374 u8 proto_conn_rate; /* proto:6,4, conn_rate:3,0 */
375 __le32 total_xfer_len;
376 struct ssp_frame_hdr ssp_frame;
377 struct ssp_command_iu ssp_cmd;
378 __le16 sister_scb; /* 0xFFFF */
379 __le16 conn_handle; /* index to DDB for the intended target */
380 u8 data_dir; /* :1,0 */
381#define DATA_DIR_NONE 0x00
382#define DATA_DIR_IN 0x01
383#define DATA_DIR_OUT 0x02
384#define DATA_DIR_BYRECIPIENT 0x03
385
386 u8 _r_a;
387 u8 retry_count;
388 u8 _r_b[5];
389 struct sg_el sg_element[3]; /* 2 real and 1 link */
390} __attribute__ ((packed));
391
392/* This defines both ata_task and atapi_task.
393 * ata: C bit of FIS should be 1,
394 * atapi: C bit of FIS should be 1, and command register should be 0xA0,
395 * to indicate a packet command.
396 */
397struct initiate_ata_task {
398 u8 proto_conn_rate;
399 __le32 total_xfer_len;
400 struct host_to_dev_fis fis;
401 __le32 data_offs;
402 u8 atapi_packet[16];
403 u8 _r_a[12];
404 __le16 sister_scb;
405 __le16 conn_handle;
406 u8 ata_flags; /* CSMI:6,6, DTM:4,4, QT:3,3, data dir:1,0 */
407#define CSMI_TASK 0x40
408#define DATA_XFER_MODE_DMA 0x10
409#define ATA_Q_TYPE_MASK 0x08
410#define ATA_Q_TYPE_UNTAGGED 0x00
411#define ATA_Q_TYPE_NCQ 0x08
412
413 u8 _r_b;
414 u8 retry_count;
415 u8 _r_c;
416 u8 flags;
417#define STP_AFFIL_POLICY 0x20
418#define SET_AFFIL_POLICY 0x10
419#define RET_PARTIAL_SGLIST 0x02
420
421 u8 _r_d[3];
422 struct sg_el sg_element[3];
423} __attribute__ ((packed));
424
425struct initiate_smp_task {
426 u8 proto_conn_rate;
427 u8 _r_a[40];
428 struct sg_el smp_req;
429 __le16 sister_scb;
430 __le16 conn_handle;
431 u8 _r_c[8];
432 struct sg_el smp_resp;
433 u8 _r_d[32];
434} __attribute__ ((packed));
435
436struct control_phy {
437 u8 phy_id;
438 u8 sub_func;
439#define DISABLE_PHY 0x00
440#define ENABLE_PHY 0x01
441#define RELEASE_SPINUP_HOLD 0x02
442#define ENABLE_PHY_NO_SAS_OOB 0x03
443#define ENABLE_PHY_NO_SATA_OOB 0x04
444#define PHY_NO_OP 0x05
445#define EXECUTE_HARD_RESET 0x81
446
447 u8 func_mask;
448 u8 speed_mask;
449 u8 hot_plug_delay;
450 u8 port_type;
451 u8 flags;
452#define DEV_PRES_TIMER_OVERRIDE_ENABLE 0x01
453#define DISABLE_PHY_IF_OOB_FAILS 0x02
454
455 __le32 timeout_override;
456 u8 link_reset_retries;
457 u8 _r_a[47];
458 __le16 conn_handle;
459 u8 _r_b[56];
460} __attribute__ ((packed));
461
462struct control_ata_dev {
463 u8 proto_conn_rate;
464 __le32 _r_a;
465 struct host_to_dev_fis fis;
466 u8 _r_b[32];
467 __le16 sister_scb;
468 __le16 conn_handle;
469 u8 ata_flags; /* 0 */
470 u8 _r_c[55];
471} __attribute__ ((packed));
472
473struct empty_scb {
474 u8 num_valid;
475 __le32 _r_a;
476#define ASD_EDBS_PER_SCB 7
477/* header+data+CRC+DMA suffix data */
478#define ASD_EDB_SIZE (24+1024+4+16)
479 struct sg_el eb[ASD_EDBS_PER_SCB];
480#define ELEMENT_NOT_VALID 0xC0
481} __attribute__ ((packed));
482
483struct initiate_link_adm {
484 u8 phy_id;
485 u8 sub_func;
486#define GET_LINK_ERROR_COUNT 0x00
487#define RESET_LINK_ERROR_COUNT 0x01
488#define ENABLE_NOTIFY_SPINUP_INTS 0x02
489
490 u8 _r_a[57];
491 __le16 conn_handle;
492 u8 _r_b[56];
493} __attribute__ ((packed));
494
495struct copy_memory {
496 u8 _r_a;
497 __le16 xfer_len;
498 __le16 _r_b;
499 __le64 src_busaddr;
500 u8 src_ds; /* See definition of sg_el */
501 u8 _r_c[45];
502 __le16 conn_handle;
503 __le64 _r_d;
504 __le64 dest_busaddr;
505 u8 dest_ds; /* See definition of sg_el */
506 u8 _r_e[39];
507} __attribute__ ((packed));
508
509struct abort_task {
510 u8 proto_conn_rate;
511 __le32 _r_a;
512 struct ssp_frame_hdr ssp_frame;
513 struct ssp_task_iu ssp_task;
514 __le16 sister_scb;
515 __le16 conn_handle;
516 u8 flags; /* ovrd_itnl_timer:3,3, suspend_data_trans:2,2 */
517#define SUSPEND_DATA_TRANS 0x04
518
519 u8 _r_b;
520 u8 retry_count;
521 u8 _r_c[5];
522 __le16 index; /* Transaction context of task to be queried */
523 __le16 itnl_to;
524 u8 _r_d[44];
525} __attribute__ ((packed));
526
527struct clear_nexus {
528 u8 nexus;
529#define NEXUS_ADAPTER 0x00
530#define NEXUS_PORT 0x01
531#define NEXUS_I_T 0x02
532#define NEXUS_I_T_L 0x03
533#define NEXUS_TAG 0x04
534#define NEXUS_TRANS_CX 0x05
535#define NEXUS_SATA_TAG 0x06
536#define NEXUS_T_L 0x07
537#define NEXUS_L 0x08
538#define NEXUS_T_TAG 0x09
539
540 __le32 _r_a;
541 u8 flags;
542#define SUSPEND_TX 0x80
543#define RESUME_TX 0x40
544#define SEND_Q 0x04
545#define EXEC_Q 0x02
546#define NOTINQ 0x01
547
548 u8 _r_b[3];
549 u8 conn_mask;
550 u8 _r_c[19];
551 struct ssp_task_iu ssp_task; /* LUN and TAG */
552 __le16 _r_d;
553 __le16 conn_handle;
554 __le64 _r_e;
555 __le16 index; /* Transaction context of task to be cleared */
556 __le16 context; /* Clear nexus context */
557 u8 _r_f[44];
558} __attribute__ ((packed));
559
560struct initiate_ssp_tmf {
561 u8 proto_conn_rate;
562 __le32 _r_a;
563 struct ssp_frame_hdr ssp_frame;
564 struct ssp_task_iu ssp_task;
565 __le16 sister_scb;
566 __le16 conn_handle;
567 u8 flags; /* itnl override and suspend data tx */
568#define OVERRIDE_ITNL_TIMER 8
569
570 u8 _r_b;
571 u8 retry_count;
572 u8 _r_c[5];
573 __le16 index; /* Transaction context of task to be queried */
574 __le16 itnl_to;
575 u8 _r_d[44];
576} __attribute__ ((packed));
577
578/* Transmits an arbitrary primitive on the link.
579 * Used for NOTIFY and BROADCAST.
580 */
581struct send_prim {
582 u8 phy_id;
583 u8 wait_transmit; /* :0,0 */
584 u8 xmit_flags;
585#define XMTPSIZE_MASK 0xF0
586#define XMTPSIZE_SINGLE 0x10
587#define XMTPSIZE_REPEATED 0x20
588#define XMTPSIZE_CONT 0x20
589#define XMTPSIZE_TRIPLE 0x30
590#define XMTPSIZE_REDUNDANT 0x60
591#define XMTPSIZE_INF 0
592
593#define XMTCONTEN 0x04
594#define XMTPFRM 0x02 /* Transmit at the next frame boundary */
595#define XMTPIMM 0x01 /* Transmit immediately */
596
597 __le16 _r_a;
598 u8 prim[4]; /* K, D0, D1, D2 */
599 u8 _r_b[50];
600 __le16 conn_handle;
601 u8 _r_c[56];
602} __attribute__ ((packed));
603
604/* This describes both SSP Target Get Data and SSP Target Get Data And
605 * Send Good Response SCBs. Used when the sequencer is operating in
606 * target mode...
607 */
608struct ssp_targ_get_data {
609 u8 proto_conn_rate;
610 __le32 total_xfer_len;
611 struct ssp_frame_hdr ssp_frame;
612 struct xfer_rdy_iu xfer_rdy;
613 u8 lun[LUN_SIZE];
614 __le64 _r_a;
615 __le16 sister_scb;
616 __le16 conn_handle;
617 u8 data_dir; /* 01b */
618 u8 _r_b;
619 u8 retry_count;
620 u8 _r_c[5];
621 struct sg_el sg_element[3];
622} __attribute__ ((packed));
623
624/* ---------- The actual SCB struct ---------- */
625
626struct scb {
627 struct scb_header header;
628 union {
629 struct initiate_ssp_task ssp_task;
630 struct initiate_ata_task ata_task;
631 struct initiate_smp_task smp_task;
632 struct control_phy control_phy;
633 struct control_ata_dev control_ata_dev;
634 struct empty_scb escb;
635 struct initiate_link_adm link_adm;
636 struct copy_memory cp_mem;
637 struct abort_task abort_task;
638 struct clear_nexus clear_nexus;
639 struct initiate_ssp_tmf ssp_tmf;
640 };
641} __attribute__ ((packed));
642
643/* ---------- Done List ---------- */
644/* The done list entry opcode field is defined below.
645 * The mnemonic encoding and meaning is as follows:
646 * TC - Task Complete, status was received and acknowledged
647 * TF - Task Failed, indicates an error prior to receiving acknowledgment
648 * for the command:
649 * - no conn,
650 * - NACK or R_ERR received in response to this command,
651 * - credit blocked or not available, or in the case of SMP request,
652 * - no SMP response was received.
653 * In these four cases it is known that the target didn't receive the
654 * command.
655 * TI - Task Interrupted, error after the command was acknowledged. It is
656 * known that the command was received by the target.
657 * TU - Task Unacked, command was transmitted but neither ACK (R_OK) nor NAK
658 * (R_ERR) was received due to loss of signal, broken connection, loss of
659 * dword sync or other reason. The application client should send the
660 * appropriate task query.
661 * TA - Task Aborted, see TF.
662 * _RESP - The completion includes an empty buffer containing status.
663 * TO - Timeout.
664 */
665#define TC_NO_ERROR 0x00
666#define TC_UNDERRUN 0x01
667#define TC_OVERRUN 0x02
668#define TF_OPEN_TO 0x03
669#define TF_OPEN_REJECT 0x04
670#define TI_BREAK 0x05
671#define TI_PROTO_ERR 0x06
672#define TC_SSP_RESP 0x07
673#define TI_PHY_DOWN 0x08
674#define TF_PHY_DOWN 0x09
675#define TC_LINK_ADM_RESP 0x0a
676#define TC_CSMI 0x0b
677#define TC_ATA_RESP 0x0c
678#define TU_PHY_DOWN 0x0d
679#define TU_BREAK 0x0e
680#define TI_SATA_TO 0x0f
681#define TI_NAK 0x10
682#define TC_CONTROL_PHY 0x11
683#define TF_BREAK 0x12
684#define TC_RESUME 0x13
685#define TI_ACK_NAK_TO 0x14
686#define TF_SMPRSP_TO 0x15
687#define TF_SMP_XMIT_RCV_ERR 0x16
688#define TC_PARTIAL_SG_LIST 0x17
689#define TU_ACK_NAK_TO 0x18
690#define TU_SATA_TO 0x19
691#define TF_NAK_RECV 0x1a
692#define TA_I_T_NEXUS_LOSS 0x1b
693#define TC_ATA_R_ERR_RECV 0x1c
694#define TF_TMF_NO_CTX 0x1d
695#define TA_ON_REQ 0x1e
696#define TF_TMF_NO_TAG 0x1f
697#define TF_TMF_TAG_FREE 0x20
698#define TF_TMF_TASK_DONE 0x21
699#define TF_TMF_NO_CONN_HANDLE 0x22
700#define TC_TASK_CLEARED 0x23
701#define TI_SYNCS_RECV 0x24
702#define TU_SYNCS_RECV 0x25
703#define TF_IRTT_TO 0x26
704#define TF_NO_SMP_CONN 0x27
705#define TF_IU_SHORT 0x28
706#define TF_DATA_OFFS_ERR 0x29
707#define TF_INV_CONN_HANDLE 0x2a
708#define TF_REQUESTED_N_PENDING 0x2b
709
710/* 0xc1 - 0xc7: empty buffer received,
711 0xd1 - 0xd7: establish nexus empty buffer received
712*/
713/* This is the ESCB mask */
714#define ESCB_RECVD 0xC0
715
716
717/* This struct done_list_struct defines the done list entry.
718 * All fields are LE.
719 */
720struct done_list_struct {
721 __le16 index; /* aka transaction context */
722 u8 opcode;
723 u8 status_block[4];
724 u8 toggle; /* bit 0 */
725#define DL_TOGGLE_MASK 0x01
726} __attribute__ ((packed));
727
728/* ---------- PHYS ---------- */
729
730struct asd_phy {
731 struct asd_sas_phy sas_phy;
732 struct asd_phy_desc *phy_desc; /* hw profile */
733
734 struct sas_identify_frame *identify_frame;
735 struct asd_dma_tok *id_frm_tok;
736
737 u8 frame_rcvd[ASD_EDB_SIZE];
738};
739
740
741#define ASD_SCB_SIZE sizeof(struct scb)
742#define ASD_DDB_SIZE sizeof(struct asd_ddb_ssp_smp_target_port)
743
744/* Define this to 0 if you do not want NOTIFY (ENABLE SPINIP) sent.
745 * Default: 0x10 (it's a mask)
746 */
747#define ASD_NOTIFY_ENABLE_SPINUP 0x10
748
749/* If enabled, set this to the interval between transmission
750 * of NOTIFY (ENABLE SPINUP). In units of 200 us.
751 */
752#define ASD_NOTIFY_TIMEOUT 2500
753
754/* Initial delay after OOB, before we transmit NOTIFY (ENABLE SPINUP).
755 * If 0, transmit immediately. In milliseconds.
756 */
757#define ASD_NOTIFY_DOWN_COUNT 0
758
759/* Device present timer timeout constant, 10 ms. */
760#define ASD_DEV_PRESENT_TIMEOUT 0x2710
761
762#define ASD_SATA_INTERLOCK_TIMEOUT 0
763
764/* How long to wait before shutting down an STP connection, unless
765 * an STP target sent frame(s). 50 usec.
766 * IGNORED by the sequencer (i.e. value 0 always).
767 */
768#define ASD_STP_SHUTDOWN_TIMEOUT 0x0
769
770/* ATA soft reset timer timeout. 5 usec. */
771#define ASD_SRST_ASSERT_TIMEOUT 0x05
772
773/* 31 sec */
774#define ASD_RCV_FIS_TIMEOUT 0x01D905C0
775
776#define ASD_ONE_MILLISEC_TIMEOUT 0x03e8
777
778/* COMINIT timer */
779#define ASD_TEN_MILLISEC_TIMEOUT 0x2710
780#define ASD_COMINIT_TIMEOUT ASD_TEN_MILLISEC_TIMEOUT
781
782/* 1 sec */
783#define ASD_SMP_RCV_TIMEOUT 0x000F4240
784
785#endif
diff --git a/drivers/scsi/aic94xx/aic94xx_scb.c b/drivers/scsi/aic94xx/aic94xx_scb.c
new file mode 100644
index 000000000000..fc1b7438a913
--- /dev/null
+++ b/drivers/scsi/aic94xx/aic94xx_scb.c
@@ -0,0 +1,732 @@
1/*
2 * Aic94xx SAS/SATA driver SCB management.
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This file is part of the aic94xx driver.
10 *
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
14 * License.
15 *
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 *
25 */
26
27#include <linux/pci.h>
28
29#include "aic94xx.h"
30#include "aic94xx_reg.h"
31#include "aic94xx_hwi.h"
32#include "aic94xx_seq.h"
33
34#include "aic94xx_dump.h"
35
36/* ---------- EMPTY SCB ---------- */
37
38#define DL_PHY_MASK 7
39#define BYTES_DMAED 0
40#define PRIMITIVE_RECVD 0x08
41#define PHY_EVENT 0x10
42#define LINK_RESET_ERROR 0x18
43#define TIMER_EVENT 0x20
44#define REQ_TASK_ABORT 0xF0
45#define REQ_DEVICE_RESET 0xF1
46#define SIGNAL_NCQ_ERROR 0xF2
47#define CLEAR_NCQ_ERROR 0xF3
48
49#define PHY_EVENTS_STATUS (CURRENT_LOSS_OF_SIGNAL | CURRENT_OOB_DONE \
50 | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \
51 | CURRENT_OOB_ERROR)
52
53static inline void get_lrate_mode(struct asd_phy *phy, u8 oob_mode)
54{
55 switch (oob_mode & 7) {
56 case PHY_SPEED_60:
57 /* FIXME: sas transport class doesn't have this */
58 phy->sas_phy.linkrate = PHY_LINKRATE_6;
59 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS;
60 break;
61 case PHY_SPEED_30:
62 phy->sas_phy.linkrate = PHY_LINKRATE_3;
63 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS;
64 break;
65 case PHY_SPEED_15:
66 phy->sas_phy.linkrate = PHY_LINKRATE_1_5;
67 phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS;
68 break;
69 }
70 if (oob_mode & SAS_MODE)
71 phy->sas_phy.oob_mode = SAS_OOB_MODE;
72 else if (oob_mode & SATA_MODE)
73 phy->sas_phy.oob_mode = SATA_OOB_MODE;
74}
75
76static inline void asd_phy_event_tasklet(struct asd_ascb *ascb,
77 struct done_list_struct *dl)
78{
79 struct asd_ha_struct *asd_ha = ascb->ha;
80 struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
81 int phy_id = dl->status_block[0] & DL_PHY_MASK;
82 struct asd_phy *phy = &asd_ha->phys[phy_id];
83
84 u8 oob_status = dl->status_block[1] & PHY_EVENTS_STATUS;
85 u8 oob_mode = dl->status_block[2];
86
87 switch (oob_status) {
88 case CURRENT_LOSS_OF_SIGNAL:
89 /* directly attached device was removed */
90 ASD_DPRINTK("phy%d: device unplugged\n", phy_id);
91 asd_turn_led(asd_ha, phy_id, 0);
92 sas_phy_disconnected(&phy->sas_phy);
93 sas_ha->notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL);
94 break;
95 case CURRENT_OOB_DONE:
96 /* hot plugged device */
97 asd_turn_led(asd_ha, phy_id, 1);
98 get_lrate_mode(phy, oob_mode);
99 ASD_DPRINTK("phy%d device plugged: lrate:0x%x, proto:0x%x\n",
100 phy_id, phy->sas_phy.linkrate, phy->sas_phy.iproto);
101 sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE);
102 break;
103 case CURRENT_SPINUP_HOLD:
104 /* hot plug SATA, no COMWAKE sent */
105 asd_turn_led(asd_ha, phy_id, 1);
106 sas_ha->notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD);
107 break;
108 case CURRENT_GTO_TIMEOUT:
109 case CURRENT_OOB_ERROR:
110 ASD_DPRINTK("phy%d error while OOB: oob status:0x%x\n", phy_id,
111 dl->status_block[1]);
112 asd_turn_led(asd_ha, phy_id, 0);
113 sas_phy_disconnected(&phy->sas_phy);
114 sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR);
115 break;
116 }
117}
118
119/* If phys are enabled sparsely, this will do the right thing. */
120static inline unsigned ord_phy(struct asd_ha_struct *asd_ha,
121 struct asd_phy *phy)
122{
123 u8 enabled_mask = asd_ha->hw_prof.enabled_phys;
124 int i, k = 0;
125
126 for_each_phy(enabled_mask, enabled_mask, i) {
127 if (&asd_ha->phys[i] == phy)
128 return k;
129 k++;
130 }
131 return 0;
132}
133
134/**
135 * asd_get_attached_sas_addr -- extract/generate attached SAS address
136 * phy: pointer to asd_phy
137 * sas_addr: pointer to buffer where the SAS address is to be written
138 *
139 * This function extracts the SAS address from an IDENTIFY frame
140 * received. If OOB is SATA, then a SAS address is generated from the
141 * HA tables.
142 *
143 * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame
144 * buffer.
145 */
146static inline void asd_get_attached_sas_addr(struct asd_phy *phy, u8 *sas_addr)
147{
148 if (phy->sas_phy.frame_rcvd[0] == 0x34
149 && phy->sas_phy.oob_mode == SATA_OOB_MODE) {
150 struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
151 /* FIS device-to-host */
152 u64 addr = be64_to_cpu(*(__be64 *)phy->phy_desc->sas_addr);
153
154 addr += asd_ha->hw_prof.sata_name_base + ord_phy(asd_ha, phy);
155 *(__be64 *)sas_addr = cpu_to_be64(addr);
156 } else {
157 struct sas_identify_frame *idframe =
158 (void *) phy->sas_phy.frame_rcvd;
159 memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE);
160 }
161}
162
163static inline void asd_bytes_dmaed_tasklet(struct asd_ascb *ascb,
164 struct done_list_struct *dl,
165 int edb_id, int phy_id)
166{
167 unsigned long flags;
168 int edb_el = edb_id + ascb->edb_index;
169 struct asd_dma_tok *edb = ascb->ha->seq.edb_arr[edb_el];
170 struct asd_phy *phy = &ascb->ha->phys[phy_id];
171 struct sas_ha_struct *sas_ha = phy->sas_phy.ha;
172 u16 size = ((dl->status_block[3] & 7) << 8) | dl->status_block[2];
173
174 size = min(size, (u16) sizeof(phy->frame_rcvd));
175
176 spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
177 memcpy(phy->sas_phy.frame_rcvd, edb->vaddr, size);
178 phy->sas_phy.frame_rcvd_size = size;
179 asd_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
180 spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
181 asd_dump_frame_rcvd(phy, dl);
182 sas_ha->notify_port_event(&phy->sas_phy, PORTE_BYTES_DMAED);
183}
184
185static inline void asd_link_reset_err_tasklet(struct asd_ascb *ascb,
186 struct done_list_struct *dl,
187 int phy_id)
188{
189 struct asd_ha_struct *asd_ha = ascb->ha;
190 struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
191 struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
192 u8 lr_error = dl->status_block[1];
193 u8 retries_left = dl->status_block[2];
194
195 switch (lr_error) {
196 case 0:
197 ASD_DPRINTK("phy%d: Receive ID timer expired\n", phy_id);
198 break;
199 case 1:
200 ASD_DPRINTK("phy%d: Loss of signal\n", phy_id);
201 break;
202 case 2:
203 ASD_DPRINTK("phy%d: Loss of dword sync\n", phy_id);
204 break;
205 case 3:
206 ASD_DPRINTK("phy%d: Receive FIS timeout\n", phy_id);
207 break;
208 default:
209 ASD_DPRINTK("phy%d: unknown link reset error code: 0x%x\n",
210 phy_id, lr_error);
211 break;
212 }
213
214 asd_turn_led(asd_ha, phy_id, 0);
215 sas_phy_disconnected(sas_phy);
216 sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
217
218 if (retries_left == 0) {
219 int num = 1;
220 struct asd_ascb *cp = asd_ascb_alloc_list(ascb->ha, &num,
221 GFP_ATOMIC);
222 if (!cp) {
223 asd_printk("%s: out of memory\n", __FUNCTION__);
224 goto out;
225 }
226 ASD_DPRINTK("phy%d: retries:0 performing link reset seq\n",
227 phy_id);
228 asd_build_control_phy(cp, phy_id, ENABLE_PHY);
229 if (asd_post_ascb_list(ascb->ha, cp, 1) != 0)
230 asd_ascb_free(cp);
231 }
232out:
233 ;
234}
235
236static inline void asd_primitive_rcvd_tasklet(struct asd_ascb *ascb,
237 struct done_list_struct *dl,
238 int phy_id)
239{
240 unsigned long flags;
241 struct sas_ha_struct *sas_ha = &ascb->ha->sas_ha;
242 struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
243 u8 reg = dl->status_block[1];
244 u32 cont = dl->status_block[2] << ((reg & 3)*8);
245
246 reg &= ~3;
247 switch (reg) {
248 case LmPRMSTAT0BYTE0:
249 switch (cont) {
250 case LmBROADCH:
251 case LmBROADRVCH0:
252 case LmBROADRVCH1:
253 case LmBROADSES:
254 ASD_DPRINTK("phy%d: BROADCAST change received:%d\n",
255 phy_id, cont);
256 spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
257 sas_phy->sas_prim = ffs(cont);
258 spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
259 sas_ha->notify_port_event(sas_phy,PORTE_BROADCAST_RCVD);
260 break;
261
262 case LmUNKNOWNP:
263 ASD_DPRINTK("phy%d: unknown BREAK\n", phy_id);
264 break;
265
266 default:
267 ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n",
268 phy_id, reg, cont);
269 break;
270 }
271 break;
272 case LmPRMSTAT1BYTE0:
273 switch (cont) {
274 case LmHARDRST:
275 ASD_DPRINTK("phy%d: HARD_RESET primitive rcvd\n",
276 phy_id);
277 /* The sequencer disables all phys on that port.
278 * We have to re-enable the phys ourselves. */
279 sas_ha->notify_port_event(sas_phy, PORTE_HARD_RESET);
280 break;
281
282 default:
283 ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n",
284 phy_id, reg, cont);
285 break;
286 }
287 break;
288 default:
289 ASD_DPRINTK("unknown primitive register:0x%x\n",
290 dl->status_block[1]);
291 break;
292 }
293}
294
295/**
296 * asd_invalidate_edb -- invalidate an EDB and if necessary post the ESCB
297 * @ascb: pointer to Empty SCB
298 * @edb_id: index [0,6] to the empty data buffer which is to be invalidated
299 *
300 * After an EDB has been invalidated, if all EDBs in this ESCB have been
301 * invalidated, the ESCB is posted back to the sequencer.
302 * Context is tasklet/IRQ.
303 */
304void asd_invalidate_edb(struct asd_ascb *ascb, int edb_id)
305{
306 struct asd_seq_data *seq = &ascb->ha->seq;
307 struct empty_scb *escb = &ascb->scb->escb;
308 struct sg_el *eb = &escb->eb[edb_id];
309 struct asd_dma_tok *edb = seq->edb_arr[ascb->edb_index + edb_id];
310
311 memset(edb->vaddr, 0, ASD_EDB_SIZE);
312 eb->flags |= ELEMENT_NOT_VALID;
313 escb->num_valid--;
314
315 if (escb->num_valid == 0) {
316 int i;
317 /* ASD_DPRINTK("reposting escb: vaddr: 0x%p, "
318 "dma_handle: 0x%08llx, next: 0x%08llx, "
319 "index:%d, opcode:0x%02x\n",
320 ascb->dma_scb.vaddr,
321 (u64)ascb->dma_scb.dma_handle,
322 le64_to_cpu(ascb->scb->header.next_scb),
323 le16_to_cpu(ascb->scb->header.index),
324 ascb->scb->header.opcode);
325 */
326 escb->num_valid = ASD_EDBS_PER_SCB;
327 for (i = 0; i < ASD_EDBS_PER_SCB; i++)
328 escb->eb[i].flags = 0;
329 if (!list_empty(&ascb->list))
330 list_del_init(&ascb->list);
331 i = asd_post_escb_list(ascb->ha, ascb, 1);
332 if (i)
333 asd_printk("couldn't post escb, err:%d\n", i);
334 }
335}
336
337static void escb_tasklet_complete(struct asd_ascb *ascb,
338 struct done_list_struct *dl)
339{
340 struct asd_ha_struct *asd_ha = ascb->ha;
341 struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
342 int edb = (dl->opcode & DL_PHY_MASK) - 1; /* [0xc1,0xc7] -> [0,6] */
343 u8 sb_opcode = dl->status_block[0];
344 int phy_id = sb_opcode & DL_PHY_MASK;
345 struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
346
347 if (edb > 6 || edb < 0) {
348 ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n",
349 edb, dl->opcode);
350 ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n",
351 sb_opcode, phy_id);
352 ASD_DPRINTK("escb: vaddr: 0x%p, "
353 "dma_handle: 0x%llx, next: 0x%llx, "
354 "index:%d, opcode:0x%02x\n",
355 ascb->dma_scb.vaddr,
356 (unsigned long long)ascb->dma_scb.dma_handle,
357 (unsigned long long)
358 le64_to_cpu(ascb->scb->header.next_scb),
359 le16_to_cpu(ascb->scb->header.index),
360 ascb->scb->header.opcode);
361 }
362
363 sb_opcode &= ~DL_PHY_MASK;
364
365 switch (sb_opcode) {
366 case BYTES_DMAED:
367 ASD_DPRINTK("%s: phy%d: BYTES_DMAED\n", __FUNCTION__, phy_id);
368 asd_bytes_dmaed_tasklet(ascb, dl, edb, phy_id);
369 break;
370 case PRIMITIVE_RECVD:
371 ASD_DPRINTK("%s: phy%d: PRIMITIVE_RECVD\n", __FUNCTION__,
372 phy_id);
373 asd_primitive_rcvd_tasklet(ascb, dl, phy_id);
374 break;
375 case PHY_EVENT:
376 ASD_DPRINTK("%s: phy%d: PHY_EVENT\n", __FUNCTION__, phy_id);
377 asd_phy_event_tasklet(ascb, dl);
378 break;
379 case LINK_RESET_ERROR:
380 ASD_DPRINTK("%s: phy%d: LINK_RESET_ERROR\n", __FUNCTION__,
381 phy_id);
382 asd_link_reset_err_tasklet(ascb, dl, phy_id);
383 break;
384 case TIMER_EVENT:
385 ASD_DPRINTK("%s: phy%d: TIMER_EVENT, lost dw sync\n",
386 __FUNCTION__, phy_id);
387 asd_turn_led(asd_ha, phy_id, 0);
388 /* the device is gone */
389 sas_phy_disconnected(sas_phy);
390 sas_ha->notify_port_event(sas_phy, PORTE_TIMER_EVENT);
391 break;
392 case REQ_TASK_ABORT:
393 ASD_DPRINTK("%s: phy%d: REQ_TASK_ABORT\n", __FUNCTION__,
394 phy_id);
395 break;
396 case REQ_DEVICE_RESET:
397 ASD_DPRINTK("%s: phy%d: REQ_DEVICE_RESET\n", __FUNCTION__,
398 phy_id);
399 break;
400 case SIGNAL_NCQ_ERROR:
401 ASD_DPRINTK("%s: phy%d: SIGNAL_NCQ_ERROR\n", __FUNCTION__,
402 phy_id);
403 break;
404 case CLEAR_NCQ_ERROR:
405 ASD_DPRINTK("%s: phy%d: CLEAR_NCQ_ERROR\n", __FUNCTION__,
406 phy_id);
407 break;
408 default:
409 ASD_DPRINTK("%s: phy%d: unknown event:0x%x\n", __FUNCTION__,
410 phy_id, sb_opcode);
411 ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n",
412 edb, dl->opcode);
413 ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n",
414 sb_opcode, phy_id);
415 ASD_DPRINTK("escb: vaddr: 0x%p, "
416 "dma_handle: 0x%llx, next: 0x%llx, "
417 "index:%d, opcode:0x%02x\n",
418 ascb->dma_scb.vaddr,
419 (unsigned long long)ascb->dma_scb.dma_handle,
420 (unsigned long long)
421 le64_to_cpu(ascb->scb->header.next_scb),
422 le16_to_cpu(ascb->scb->header.index),
423 ascb->scb->header.opcode);
424
425 break;
426 }
427
428 asd_invalidate_edb(ascb, edb);
429}
430
431int asd_init_post_escbs(struct asd_ha_struct *asd_ha)
432{
433 struct asd_seq_data *seq = &asd_ha->seq;
434 int i;
435
436 for (i = 0; i < seq->num_escbs; i++)
437 seq->escb_arr[i]->tasklet_complete = escb_tasklet_complete;
438
439 ASD_DPRINTK("posting %d escbs\n", i);
440 return asd_post_escb_list(asd_ha, seq->escb_arr[0], seq->num_escbs);
441}
442
443/* ---------- CONTROL PHY ---------- */
444
445#define CONTROL_PHY_STATUS (CURRENT_DEVICE_PRESENT | CURRENT_OOB_DONE \
446 | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \
447 | CURRENT_OOB_ERROR)
448
449/**
450 * control_phy_tasklet_complete -- tasklet complete for CONTROL PHY ascb
451 * @ascb: pointer to an ascb
452 * @dl: pointer to the done list entry
453 *
454 * This function completes a CONTROL PHY scb and frees the ascb.
455 * A note on LEDs:
456 * - an LED blinks if there is IO though it,
457 * - if a device is connected to the LED, it is lit,
458 * - if no device is connected to the LED, is is dimmed (off).
459 */
460static void control_phy_tasklet_complete(struct asd_ascb *ascb,
461 struct done_list_struct *dl)
462{
463 struct asd_ha_struct *asd_ha = ascb->ha;
464 struct scb *scb = ascb->scb;
465 struct control_phy *control_phy = &scb->control_phy;
466 u8 phy_id = control_phy->phy_id;
467 struct asd_phy *phy = &ascb->ha->phys[phy_id];
468
469 u8 status = dl->status_block[0];
470 u8 oob_status = dl->status_block[1];
471 u8 oob_mode = dl->status_block[2];
472 /* u8 oob_signals= dl->status_block[3]; */
473
474 if (status != 0) {
475 ASD_DPRINTK("%s: phy%d status block opcode:0x%x\n",
476 __FUNCTION__, phy_id, status);
477 goto out;
478 }
479
480 switch (control_phy->sub_func) {
481 case DISABLE_PHY:
482 asd_ha->hw_prof.enabled_phys &= ~(1 << phy_id);
483 asd_turn_led(asd_ha, phy_id, 0);
484 asd_control_led(asd_ha, phy_id, 0);
485 ASD_DPRINTK("%s: disable phy%d\n", __FUNCTION__, phy_id);
486 break;
487
488 case ENABLE_PHY:
489 asd_control_led(asd_ha, phy_id, 1);
490 if (oob_status & CURRENT_OOB_DONE) {
491 asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
492 get_lrate_mode(phy, oob_mode);
493 asd_turn_led(asd_ha, phy_id, 1);
494 ASD_DPRINTK("%s: phy%d, lrate:0x%x, proto:0x%x\n",
495 __FUNCTION__, phy_id,phy->sas_phy.linkrate,
496 phy->sas_phy.iproto);
497 } else if (oob_status & CURRENT_SPINUP_HOLD) {
498 asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
499 asd_turn_led(asd_ha, phy_id, 1);
500 ASD_DPRINTK("%s: phy%d, spinup hold\n", __FUNCTION__,
501 phy_id);
502 } else if (oob_status & CURRENT_ERR_MASK) {
503 asd_turn_led(asd_ha, phy_id, 0);
504 ASD_DPRINTK("%s: phy%d: error: oob status:0x%02x\n",
505 __FUNCTION__, phy_id, oob_status);
506 } else if (oob_status & (CURRENT_HOT_PLUG_CNCT
507 | CURRENT_DEVICE_PRESENT)) {
508 asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
509 asd_turn_led(asd_ha, phy_id, 1);
510 ASD_DPRINTK("%s: phy%d: hot plug or device present\n",
511 __FUNCTION__, phy_id);
512 } else {
513 asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
514 asd_turn_led(asd_ha, phy_id, 0);
515 ASD_DPRINTK("%s: phy%d: no device present: "
516 "oob_status:0x%x\n",
517 __FUNCTION__, phy_id, oob_status);
518 }
519 break;
520 case RELEASE_SPINUP_HOLD:
521 case PHY_NO_OP:
522 case EXECUTE_HARD_RESET:
523 ASD_DPRINTK("%s: phy%d: sub_func:0x%x\n", __FUNCTION__,
524 phy_id, control_phy->sub_func);
525 /* XXX finish */
526 break;
527 default:
528 ASD_DPRINTK("%s: phy%d: sub_func:0x%x?\n", __FUNCTION__,
529 phy_id, control_phy->sub_func);
530 break;
531 }
532out:
533 asd_ascb_free(ascb);
534}
535
536static inline void set_speed_mask(u8 *speed_mask, struct asd_phy_desc *pd)
537{
538 /* disable all speeds, then enable defaults */
539 *speed_mask = SAS_SPEED_60_DIS | SAS_SPEED_30_DIS | SAS_SPEED_15_DIS
540 | SATA_SPEED_30_DIS | SATA_SPEED_15_DIS;
541
542 switch (pd->max_sas_lrate) {
543 case PHY_LINKRATE_6:
544 *speed_mask &= ~SAS_SPEED_60_DIS;
545 default:
546 case PHY_LINKRATE_3:
547 *speed_mask &= ~SAS_SPEED_30_DIS;
548 case PHY_LINKRATE_1_5:
549 *speed_mask &= ~SAS_SPEED_15_DIS;
550 }
551
552 switch (pd->min_sas_lrate) {
553 case PHY_LINKRATE_6:
554 *speed_mask |= SAS_SPEED_30_DIS;
555 case PHY_LINKRATE_3:
556 *speed_mask |= SAS_SPEED_15_DIS;
557 default:
558 case PHY_LINKRATE_1_5:
559 /* nothing to do */
560 ;
561 }
562
563 switch (pd->max_sata_lrate) {
564 case PHY_LINKRATE_3:
565 *speed_mask &= ~SATA_SPEED_30_DIS;
566 default:
567 case PHY_LINKRATE_1_5:
568 *speed_mask &= ~SATA_SPEED_15_DIS;
569 }
570
571 switch (pd->min_sata_lrate) {
572 case PHY_LINKRATE_3:
573 *speed_mask |= SATA_SPEED_15_DIS;
574 default:
575 case PHY_LINKRATE_1_5:
576 /* nothing to do */
577 ;
578 }
579}
580
581/**
582 * asd_build_control_phy -- build a CONTROL PHY SCB
583 * @ascb: pointer to an ascb
584 * @phy_id: phy id to control, integer
585 * @subfunc: subfunction, what to actually to do the phy
586 *
587 * This function builds a CONTROL PHY scb. No allocation of any kind
588 * is performed. @ascb is allocated with the list function.
589 * The caller can override the ascb->tasklet_complete to point
590 * to its own callback function. It must call asd_ascb_free()
591 * at its tasklet complete function.
592 * See the default implementation.
593 */
594void asd_build_control_phy(struct asd_ascb *ascb, int phy_id, u8 subfunc)
595{
596 struct asd_phy *phy = &ascb->ha->phys[phy_id];
597 struct scb *scb = ascb->scb;
598 struct control_phy *control_phy = &scb->control_phy;
599
600 scb->header.opcode = CONTROL_PHY;
601 control_phy->phy_id = (u8) phy_id;
602 control_phy->sub_func = subfunc;
603
604 switch (subfunc) {
605 case EXECUTE_HARD_RESET: /* 0x81 */
606 case ENABLE_PHY: /* 0x01 */
607 /* decide hot plug delay */
608 control_phy->hot_plug_delay = HOTPLUG_DELAY_TIMEOUT;
609
610 /* decide speed mask */
611 set_speed_mask(&control_phy->speed_mask, phy->phy_desc);
612
613 /* initiator port settings are in the hi nibble */
614 if (phy->sas_phy.role == PHY_ROLE_INITIATOR)
615 control_phy->port_type = SAS_PROTO_ALL << 4;
616 else if (phy->sas_phy.role == PHY_ROLE_TARGET)
617 control_phy->port_type = SAS_PROTO_ALL;
618 else
619 control_phy->port_type =
620 (SAS_PROTO_ALL << 4) | SAS_PROTO_ALL;
621
622 /* link reset retries, this should be nominal */
623 control_phy->link_reset_retries = 10;
624
625 case RELEASE_SPINUP_HOLD: /* 0x02 */
626 /* decide the func_mask */
627 control_phy->func_mask = FUNCTION_MASK_DEFAULT;
628 if (phy->phy_desc->flags & ASD_SATA_SPINUP_HOLD)
629 control_phy->func_mask &= ~SPINUP_HOLD_DIS;
630 else
631 control_phy->func_mask |= SPINUP_HOLD_DIS;
632 }
633
634 control_phy->conn_handle = cpu_to_le16(0xFFFF);
635
636 ascb->tasklet_complete = control_phy_tasklet_complete;
637}
638
639/* ---------- INITIATE LINK ADM TASK ---------- */
640
641static void link_adm_tasklet_complete(struct asd_ascb *ascb,
642 struct done_list_struct *dl)
643{
644 u8 opcode = dl->opcode;
645 struct initiate_link_adm *link_adm = &ascb->scb->link_adm;
646 u8 phy_id = link_adm->phy_id;
647
648 if (opcode != TC_NO_ERROR) {
649 asd_printk("phy%d: link adm task 0x%x completed with error "
650 "0x%x\n", phy_id, link_adm->sub_func, opcode);
651 }
652 ASD_DPRINTK("phy%d: link adm task 0x%x: 0x%x\n",
653 phy_id, link_adm->sub_func, opcode);
654
655 asd_ascb_free(ascb);
656}
657
658void asd_build_initiate_link_adm_task(struct asd_ascb *ascb, int phy_id,
659 u8 subfunc)
660{
661 struct scb *scb = ascb->scb;
662 struct initiate_link_adm *link_adm = &scb->link_adm;
663
664 scb->header.opcode = INITIATE_LINK_ADM_TASK;
665
666 link_adm->phy_id = phy_id;
667 link_adm->sub_func = subfunc;
668 link_adm->conn_handle = cpu_to_le16(0xFFFF);
669
670 ascb->tasklet_complete = link_adm_tasklet_complete;
671}
672
673/* ---------- SCB timer ---------- */
674
675/**
676 * asd_ascb_timedout -- called when a pending SCB's timer has expired
677 * @data: unsigned long, a pointer to the ascb in question
678 *
679 * This is the default timeout function which does the most necessary.
680 * Upper layers can implement their own timeout function, say to free
681 * resources they have with this SCB, and then call this one at the
682 * end of their timeout function. To do this, one should initialize
683 * the ascb->timer.{function, data, expires} prior to calling the post
684 * funcion. The timer is started by the post function.
685 */
686void asd_ascb_timedout(unsigned long data)
687{
688 struct asd_ascb *ascb = (void *) data;
689 struct asd_seq_data *seq = &ascb->ha->seq;
690 unsigned long flags;
691
692 ASD_DPRINTK("scb:0x%x timed out\n", ascb->scb->header.opcode);
693
694 spin_lock_irqsave(&seq->pend_q_lock, flags);
695 seq->pending--;
696 list_del_init(&ascb->list);
697 spin_unlock_irqrestore(&seq->pend_q_lock, flags);
698
699 asd_ascb_free(ascb);
700}
701
702/* ---------- CONTROL PHY ---------- */
703
704/* Given the spec value, return a driver value. */
705static const int phy_func_table[] = {
706 [PHY_FUNC_NOP] = PHY_NO_OP,
707 [PHY_FUNC_LINK_RESET] = ENABLE_PHY,
708 [PHY_FUNC_HARD_RESET] = EXECUTE_HARD_RESET,
709 [PHY_FUNC_DISABLE] = DISABLE_PHY,
710 [PHY_FUNC_RELEASE_SPINUP_HOLD] = RELEASE_SPINUP_HOLD,
711};
712
713int asd_control_phy(struct asd_sas_phy *phy, enum phy_func func)
714{
715 struct asd_ha_struct *asd_ha = phy->ha->lldd_ha;
716 struct asd_ascb *ascb;
717 int res = 1;
718
719 if (func == PHY_FUNC_CLEAR_ERROR_LOG)
720 return -ENOSYS;
721
722 ascb = asd_ascb_alloc_list(asd_ha, &res, GFP_KERNEL);
723 if (!ascb)
724 return -ENOMEM;
725
726 asd_build_control_phy(ascb, phy->id, phy_func_table[func]);
727 res = asd_post_ascb_list(asd_ha, ascb , 1);
728 if (res)
729 asd_ascb_free(ascb);
730
731 return res;
732}
diff --git a/drivers/scsi/aic94xx/aic94xx_sds.c b/drivers/scsi/aic94xx/aic94xx_sds.c
new file mode 100644
index 000000000000..eec1e0db0e0f
--- /dev/null
+++ b/drivers/scsi/aic94xx/aic94xx_sds.c
@@ -0,0 +1,1136 @@
1/*
2 * Aic94xx SAS/SATA driver access to shared data structures and memory
3 * maps.
4 *
5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 *
8 * This file is licensed under GPLv2.
9 *
10 * This file is part of the aic94xx driver.
11 *
12 * The aic94xx driver is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; version 2 of the
15 * License.
16 *
17 * The aic94xx driver is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with the aic94xx driver; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 *
26 */
27
28#include <linux/pci.h>
29#include <linux/delay.h>
30
31#include "aic94xx.h"
32#include "aic94xx_reg.h"
33
34/* ---------- OCM stuff ---------- */
35
36struct asd_ocm_dir_ent {
37 u8 type;
38 u8 offs[3];
39 u8 _r1;
40 u8 size[3];
41} __attribute__ ((packed));
42
43struct asd_ocm_dir {
44 char sig[2];
45 u8 _r1[2];
46 u8 major; /* 0 */
47 u8 minor; /* 0 */
48 u8 _r2;
49 u8 num_de;
50 struct asd_ocm_dir_ent entry[15];
51} __attribute__ ((packed));
52
53#define OCM_DE_OCM_DIR 0x00
54#define OCM_DE_WIN_DRVR 0x01
55#define OCM_DE_BIOS_CHIM 0x02
56#define OCM_DE_RAID_ENGN 0x03
57#define OCM_DE_BIOS_INTL 0x04
58#define OCM_DE_BIOS_CHIM_OSM 0x05
59#define OCM_DE_BIOS_CHIM_DYNAMIC 0x06
60#define OCM_DE_ADDC2C_RES0 0x07
61#define OCM_DE_ADDC2C_RES1 0x08
62#define OCM_DE_ADDC2C_RES2 0x09
63#define OCM_DE_ADDC2C_RES3 0x0A
64
65#define OCM_INIT_DIR_ENTRIES 5
66/***************************************************************************
67* OCM dircetory default
68***************************************************************************/
69static struct asd_ocm_dir OCMDirInit =
70{
71 .sig = {0x4D, 0x4F}, /* signature */
72 .num_de = OCM_INIT_DIR_ENTRIES, /* no. of directory entries */
73};
74
75/***************************************************************************
76* OCM dircetory Entries default
77***************************************************************************/
78static struct asd_ocm_dir_ent OCMDirEntriesInit[OCM_INIT_DIR_ENTRIES] =
79{
80 {
81 .type = (OCM_DE_ADDC2C_RES0), /* Entry type */
82 .offs = {128}, /* Offset */
83 .size = {0, 4}, /* size */
84 },
85 {
86 .type = (OCM_DE_ADDC2C_RES1), /* Entry type */
87 .offs = {128, 4}, /* Offset */
88 .size = {0, 4}, /* size */
89 },
90 {
91 .type = (OCM_DE_ADDC2C_RES2), /* Entry type */
92 .offs = {128, 8}, /* Offset */
93 .size = {0, 4}, /* size */
94 },
95 {
96 .type = (OCM_DE_ADDC2C_RES3), /* Entry type */
97 .offs = {128, 12}, /* Offset */
98 .size = {0, 4}, /* size */
99 },
100 {
101 .type = (OCM_DE_WIN_DRVR), /* Entry type */
102 .offs = {128, 16}, /* Offset */
103 .size = {128, 235, 1}, /* size */
104 },
105};
106
107struct asd_bios_chim_struct {
108 char sig[4];
109 u8 major; /* 1 */
110 u8 minor; /* 0 */
111 u8 bios_major;
112 u8 bios_minor;
113 __le32 bios_build;
114 u8 flags;
115 u8 pci_slot;
116 __le16 ue_num;
117 __le16 ue_size;
118 u8 _r[14];
119 /* The unit element array is right here.
120 */
121} __attribute__ ((packed));
122
123/**
124 * asd_read_ocm_seg - read an on chip memory (OCM) segment
125 * @asd_ha: pointer to the host adapter structure
126 * @buffer: where to write the read data
127 * @offs: offset into OCM where to read from
128 * @size: how many bytes to read
129 *
130 * Return the number of bytes not read. Return 0 on success.
131 */
132static int asd_read_ocm_seg(struct asd_ha_struct *asd_ha, void *buffer,
133 u32 offs, int size)
134{
135 u8 *p = buffer;
136 if (unlikely(asd_ha->iospace))
137 asd_read_reg_string(asd_ha, buffer, offs+OCM_BASE_ADDR, size);
138 else {
139 for ( ; size > 0; size--, offs++, p++)
140 *p = asd_read_ocm_byte(asd_ha, offs);
141 }
142 return size;
143}
144
145static int asd_read_ocm_dir(struct asd_ha_struct *asd_ha,
146 struct asd_ocm_dir *dir, u32 offs)
147{
148 int err = asd_read_ocm_seg(asd_ha, dir, offs, sizeof(*dir));
149 if (err) {
150 ASD_DPRINTK("couldn't read ocm segment\n");
151 return err;
152 }
153
154 if (dir->sig[0] != 'M' || dir->sig[1] != 'O') {
155 ASD_DPRINTK("no valid dir signature(%c%c) at start of OCM\n",
156 dir->sig[0], dir->sig[1]);
157 return -ENOENT;
158 }
159 if (dir->major != 0) {
160 asd_printk("unsupported major version of ocm dir:0x%x\n",
161 dir->major);
162 return -ENOENT;
163 }
164 dir->num_de &= 0xf;
165 return 0;
166}
167
168/**
169 * asd_write_ocm_seg - write an on chip memory (OCM) segment
170 * @asd_ha: pointer to the host adapter structure
171 * @buffer: where to read the write data
172 * @offs: offset into OCM to write to
173 * @size: how many bytes to write
174 *
175 * Return the number of bytes not written. Return 0 on success.
176 */
177static void asd_write_ocm_seg(struct asd_ha_struct *asd_ha, void *buffer,
178 u32 offs, int size)
179{
180 u8 *p = buffer;
181 if (unlikely(asd_ha->iospace))
182 asd_write_reg_string(asd_ha, buffer, offs+OCM_BASE_ADDR, size);
183 else {
184 for ( ; size > 0; size--, offs++, p++)
185 asd_write_ocm_byte(asd_ha, offs, *p);
186 }
187 return;
188}
189
190#define THREE_TO_NUM(X) ((X)[0] | ((X)[1] << 8) | ((X)[2] << 16))
191
192static int asd_find_dir_entry(struct asd_ocm_dir *dir, u8 type,
193 u32 *offs, u32 *size)
194{
195 int i;
196 struct asd_ocm_dir_ent *ent;
197
198 for (i = 0; i < dir->num_de; i++) {
199 if (dir->entry[i].type == type)
200 break;
201 }
202 if (i >= dir->num_de)
203 return -ENOENT;
204 ent = &dir->entry[i];
205 *offs = (u32) THREE_TO_NUM(ent->offs);
206 *size = (u32) THREE_TO_NUM(ent->size);
207 return 0;
208}
209
210#define OCM_BIOS_CHIM_DE 2
211#define BC_BIOS_PRESENT 1
212
213static int asd_get_bios_chim(struct asd_ha_struct *asd_ha,
214 struct asd_ocm_dir *dir)
215{
216 int err;
217 struct asd_bios_chim_struct *bc_struct;
218 u32 offs, size;
219
220 err = asd_find_dir_entry(dir, OCM_BIOS_CHIM_DE, &offs, &size);
221 if (err) {
222 ASD_DPRINTK("couldn't find BIOS_CHIM dir ent\n");
223 goto out;
224 }
225 err = -ENOMEM;
226 bc_struct = kmalloc(sizeof(*bc_struct), GFP_KERNEL);
227 if (!bc_struct) {
228 asd_printk("no memory for bios_chim struct\n");
229 goto out;
230 }
231 err = asd_read_ocm_seg(asd_ha, (void *)bc_struct, offs,
232 sizeof(*bc_struct));
233 if (err) {
234 ASD_DPRINTK("couldn't read ocm segment\n");
235 goto out2;
236 }
237 if (strncmp(bc_struct->sig, "SOIB", 4)
238 && strncmp(bc_struct->sig, "IPSA", 4)) {
239 ASD_DPRINTK("BIOS_CHIM entry has no valid sig(%c%c%c%c)\n",
240 bc_struct->sig[0], bc_struct->sig[1],
241 bc_struct->sig[2], bc_struct->sig[3]);
242 err = -ENOENT;
243 goto out2;
244 }
245 if (bc_struct->major != 1) {
246 asd_printk("BIOS_CHIM unsupported major version:0x%x\n",
247 bc_struct->major);
248 err = -ENOENT;
249 goto out2;
250 }
251 if (bc_struct->flags & BC_BIOS_PRESENT) {
252 asd_ha->hw_prof.bios.present = 1;
253 asd_ha->hw_prof.bios.maj = bc_struct->bios_major;
254 asd_ha->hw_prof.bios.min = bc_struct->bios_minor;
255 asd_ha->hw_prof.bios.bld = le32_to_cpu(bc_struct->bios_build);
256 ASD_DPRINTK("BIOS present (%d,%d), %d\n",
257 asd_ha->hw_prof.bios.maj,
258 asd_ha->hw_prof.bios.min,
259 asd_ha->hw_prof.bios.bld);
260 }
261 asd_ha->hw_prof.ue.num = le16_to_cpu(bc_struct->ue_num);
262 asd_ha->hw_prof.ue.size= le16_to_cpu(bc_struct->ue_size);
263 ASD_DPRINTK("ue num:%d, ue size:%d\n", asd_ha->hw_prof.ue.num,
264 asd_ha->hw_prof.ue.size);
265 size = asd_ha->hw_prof.ue.num * asd_ha->hw_prof.ue.size;
266 if (size > 0) {
267 err = -ENOMEM;
268 asd_ha->hw_prof.ue.area = kmalloc(size, GFP_KERNEL);
269 if (!asd_ha->hw_prof.ue.area)
270 goto out2;
271 err = asd_read_ocm_seg(asd_ha, (void *)asd_ha->hw_prof.ue.area,
272 offs + sizeof(*bc_struct), size);
273 if (err) {
274 kfree(asd_ha->hw_prof.ue.area);
275 asd_ha->hw_prof.ue.area = NULL;
276 asd_ha->hw_prof.ue.num = 0;
277 asd_ha->hw_prof.ue.size = 0;
278 ASD_DPRINTK("couldn't read ue entries(%d)\n", err);
279 }
280 }
281out2:
282 kfree(bc_struct);
283out:
284 return err;
285}
286
287static void
288asd_hwi_initialize_ocm_dir (struct asd_ha_struct *asd_ha)
289{
290 int i;
291
292 /* Zero OCM */
293 for (i = 0; i < OCM_MAX_SIZE; i += 4)
294 asd_write_ocm_dword(asd_ha, i, 0);
295
296 /* Write Dir */
297 asd_write_ocm_seg(asd_ha, &OCMDirInit, 0,
298 sizeof(struct asd_ocm_dir));
299
300 /* Write Dir Entries */
301 for (i = 0; i < OCM_INIT_DIR_ENTRIES; i++)
302 asd_write_ocm_seg(asd_ha, &OCMDirEntriesInit[i],
303 sizeof(struct asd_ocm_dir) +
304 (i * sizeof(struct asd_ocm_dir_ent))
305 , sizeof(struct asd_ocm_dir_ent));
306
307}
308
309static int
310asd_hwi_check_ocm_access (struct asd_ha_struct *asd_ha)
311{
312 struct pci_dev *pcidev = asd_ha->pcidev;
313 u32 reg;
314 int err = 0;
315 u32 v;
316
317 /* check if OCM has been initialized by BIOS */
318 reg = asd_read_reg_dword(asd_ha, EXSICNFGR);
319
320 if (!(reg & OCMINITIALIZED)) {
321 err = pci_read_config_dword(pcidev, PCIC_INTRPT_STAT, &v);
322 if (err) {
323 asd_printk("couldn't access PCIC_INTRPT_STAT of %s\n",
324 pci_name(pcidev));
325 goto out;
326 }
327
328 printk(KERN_INFO "OCM is not initialized by BIOS,"
329 "reinitialize it and ignore it, current IntrptStatus"
330 "is 0x%x\n", v);
331
332 if (v)
333 err = pci_write_config_dword(pcidev,
334 PCIC_INTRPT_STAT, v);
335 if (err) {
336 asd_printk("couldn't write PCIC_INTRPT_STAT of %s\n",
337 pci_name(pcidev));
338 goto out;
339 }
340
341 asd_hwi_initialize_ocm_dir(asd_ha);
342
343 }
344out:
345 return err;
346}
347
348/**
349 * asd_read_ocm - read on chip memory (OCM)
350 * @asd_ha: pointer to the host adapter structure
351 */
352int asd_read_ocm(struct asd_ha_struct *asd_ha)
353{
354 int err;
355 struct asd_ocm_dir *dir;
356
357 if (asd_hwi_check_ocm_access(asd_ha))
358 return -1;
359
360 dir = kmalloc(sizeof(*dir), GFP_KERNEL);
361 if (!dir) {
362 asd_printk("no memory for ocm dir\n");
363 return -ENOMEM;
364 }
365
366 err = asd_read_ocm_dir(asd_ha, dir, 0);
367 if (err)
368 goto out;
369
370 err = asd_get_bios_chim(asd_ha, dir);
371out:
372 kfree(dir);
373 return err;
374}
375
376/* ---------- FLASH stuff ---------- */
377
378#define FLASH_RESET 0xF0
379#define FLASH_MANUF_AMD 1
380
381#define FLASH_SIZE 0x200000
382#define FLASH_DIR_COOKIE "*** ADAPTEC FLASH DIRECTORY *** "
383#define FLASH_NEXT_ENTRY_OFFS 0x2000
384#define FLASH_MAX_DIR_ENTRIES 32
385
386#define FLASH_DE_TYPE_MASK 0x3FFFFFFF
387#define FLASH_DE_MS 0x120
388#define FLASH_DE_CTRL_A_USER 0xE0
389
390struct asd_flash_de {
391 __le32 type;
392 __le32 offs;
393 __le32 pad_size;
394 __le32 image_size;
395 __le32 chksum;
396 u8 _r[12];
397 u8 version[32];
398} __attribute__ ((packed));
399
400struct asd_flash_dir {
401 u8 cookie[32];
402 __le32 rev; /* 2 */
403 __le32 chksum;
404 __le32 chksum_antidote;
405 __le32 bld;
406 u8 bld_id[32]; /* build id data */
407 u8 ver_data[32]; /* date and time of build */
408 __le32 ae_mask;
409 __le32 v_mask;
410 __le32 oc_mask;
411 u8 _r[20];
412 struct asd_flash_de dir_entry[FLASH_MAX_DIR_ENTRIES];
413} __attribute__ ((packed));
414
415struct asd_manuf_sec {
416 char sig[2]; /* 'S', 'M' */
417 u16 offs_next;
418 u8 maj; /* 0 */
419 u8 min; /* 0 */
420 u16 chksum;
421 u16 size;
422 u8 _r[6];
423 u8 sas_addr[SAS_ADDR_SIZE];
424 u8 pcba_sn[ASD_PCBA_SN_SIZE];
425 /* Here start the other segments */
426 u8 linked_list[0];
427} __attribute__ ((packed));
428
429struct asd_manuf_phy_desc {
430 u8 state; /* low 4 bits */
431#define MS_PHY_STATE_ENABLEABLE 0
432#define MS_PHY_STATE_REPORTED 1
433#define MS_PHY_STATE_HIDDEN 2
434 u8 phy_id;
435 u16 _r;
436 u8 phy_control_0; /* mode 5 reg 0x160 */
437 u8 phy_control_1; /* mode 5 reg 0x161 */
438 u8 phy_control_2; /* mode 5 reg 0x162 */
439 u8 phy_control_3; /* mode 5 reg 0x163 */
440} __attribute__ ((packed));
441
442struct asd_manuf_phy_param {
443 char sig[2]; /* 'P', 'M' */
444 u16 next;
445 u8 maj; /* 0 */
446 u8 min; /* 2 */
447 u8 num_phy_desc; /* 8 */
448 u8 phy_desc_size; /* 8 */
449 u8 _r[3];
450 u8 usage_model_id;
451 u32 _r2;
452 struct asd_manuf_phy_desc phy_desc[ASD_MAX_PHYS];
453} __attribute__ ((packed));
454
455#if 0
456static const char *asd_sb_type[] = {
457 "unknown",
458 "SGPIO",
459 [2 ... 0x7F] = "unknown",
460 [0x80] = "ADPT_I2C",
461 [0x81 ... 0xFF] = "VENDOR_UNIQUExx"
462};
463#endif
464
465struct asd_ms_sb_desc {
466 u8 type;
467 u8 node_desc_index;
468 u8 conn_desc_index;
469 u8 _recvd[0];
470} __attribute__ ((packed));
471
472#if 0
473static const char *asd_conn_type[] = {
474 [0 ... 7] = "unknown",
475 "SFF8470",
476 "SFF8482",
477 "SFF8484",
478 [0x80] = "PCIX_DAUGHTER0",
479 [0x81] = "SAS_DAUGHTER0",
480 [0x82 ... 0xFF] = "VENDOR_UNIQUExx"
481};
482
483static const char *asd_conn_location[] = {
484 "unknown",
485 "internal",
486 "external",
487 "board_to_board",
488};
489#endif
490
491struct asd_ms_conn_desc {
492 u8 type;
493 u8 location;
494 u8 num_sideband_desc;
495 u8 size_sideband_desc;
496 u32 _resvd;
497 u8 name[16];
498 struct asd_ms_sb_desc sb_desc[0];
499} __attribute__ ((packed));
500
501struct asd_nd_phy_desc {
502 u8 vp_attch_type;
503 u8 attch_specific[0];
504} __attribute__ ((packed));
505
506#if 0
507static const char *asd_node_type[] = {
508 "IOP",
509 "IO_CONTROLLER",
510 "EXPANDER",
511 "PORT_MULTIPLIER",
512 "PORT_MULTIPLEXER",
513 "MULTI_DROP_I2C_BUS",
514};
515#endif
516
517struct asd_ms_node_desc {
518 u8 type;
519 u8 num_phy_desc;
520 u8 size_phy_desc;
521 u8 _resvd;
522 u8 name[16];
523 struct asd_nd_phy_desc phy_desc[0];
524} __attribute__ ((packed));
525
526struct asd_ms_conn_map {
527 char sig[2]; /* 'M', 'C' */
528 __le16 next;
529 u8 maj; /* 0 */
530 u8 min; /* 0 */
531 __le16 cm_size; /* size of this struct */
532 u8 num_conn;
533 u8 conn_size;
534 u8 num_nodes;
535 u8 usage_model_id;
536 u32 _resvd;
537 struct asd_ms_conn_desc conn_desc[0];
538 struct asd_ms_node_desc node_desc[0];
539} __attribute__ ((packed));
540
541struct asd_ctrla_phy_entry {
542 u8 sas_addr[SAS_ADDR_SIZE];
543 u8 sas_link_rates; /* max in hi bits, min in low bits */
544 u8 flags;
545 u8 sata_link_rates;
546 u8 _r[5];
547} __attribute__ ((packed));
548
549struct asd_ctrla_phy_settings {
550 u8 id0; /* P'h'y */
551 u8 _r;
552 u16 next;
553 u8 num_phys; /* number of PHYs in the PCI function */
554 u8 _r2[3];
555 struct asd_ctrla_phy_entry phy_ent[ASD_MAX_PHYS];
556} __attribute__ ((packed));
557
558struct asd_ll_el {
559 u8 id0;
560 u8 id1;
561 __le16 next;
562 u8 something_here[0];
563} __attribute__ ((packed));
564
565static int asd_poll_flash(struct asd_ha_struct *asd_ha)
566{
567 int c;
568 u8 d;
569
570 for (c = 5000; c > 0; c--) {
571 d = asd_read_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar);
572 d ^= asd_read_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar);
573 if (!d)
574 return 0;
575 udelay(5);
576 }
577 return -ENOENT;
578}
579
580static int asd_reset_flash(struct asd_ha_struct *asd_ha)
581{
582 int err;
583
584 err = asd_poll_flash(asd_ha);
585 if (err)
586 return err;
587 asd_write_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar, FLASH_RESET);
588 err = asd_poll_flash(asd_ha);
589
590 return err;
591}
592
593static inline int asd_read_flash_seg(struct asd_ha_struct *asd_ha,
594 void *buffer, u32 offs, int size)
595{
596 asd_read_reg_string(asd_ha, buffer, asd_ha->hw_prof.flash.bar+offs,
597 size);
598 return 0;
599}
600
601/**
602 * asd_find_flash_dir - finds and reads the flash directory
603 * @asd_ha: pointer to the host adapter structure
604 * @flash_dir: pointer to flash directory structure
605 *
606 * If found, the flash directory segment will be copied to
607 * @flash_dir. Return 1 if found, 0 if not.
608 */
609static int asd_find_flash_dir(struct asd_ha_struct *asd_ha,
610 struct asd_flash_dir *flash_dir)
611{
612 u32 v;
613 for (v = 0; v < FLASH_SIZE; v += FLASH_NEXT_ENTRY_OFFS) {
614 asd_read_flash_seg(asd_ha, flash_dir, v,
615 sizeof(FLASH_DIR_COOKIE)-1);
616 if (memcmp(flash_dir->cookie, FLASH_DIR_COOKIE,
617 sizeof(FLASH_DIR_COOKIE)-1) == 0) {
618 asd_ha->hw_prof.flash.dir_offs = v;
619 asd_read_flash_seg(asd_ha, flash_dir, v,
620 sizeof(*flash_dir));
621 return 1;
622 }
623 }
624 return 0;
625}
626
627static int asd_flash_getid(struct asd_ha_struct *asd_ha)
628{
629 int err = 0;
630 u32 reg, inc;
631
632 reg = asd_read_reg_dword(asd_ha, EXSICNFGR);
633
634 if (!(reg & FLASHEX)) {
635 ASD_DPRINTK("flash doesn't exist\n");
636 return -ENOENT;
637 }
638 if (pci_read_config_dword(asd_ha->pcidev, PCI_CONF_FLSH_BAR,
639 &asd_ha->hw_prof.flash.bar)) {
640 asd_printk("couldn't read PCI_CONF_FLSH_BAR of %s\n",
641 pci_name(asd_ha->pcidev));
642 return -ENOENT;
643 }
644 asd_ha->hw_prof.flash.present = 1;
645 asd_ha->hw_prof.flash.wide = reg & FLASHW ? 1 : 0;
646 err = asd_reset_flash(asd_ha);
647 if (err) {
648 ASD_DPRINTK("couldn't reset flash(%d)\n", err);
649 return err;
650 }
651 /* Get flash info. This would most likely be AMD Am29LV family flash.
652 * First try the sequence for word mode. It is the same as for
653 * 008B (byte mode only), 160B (word mode) and 800D (word mode).
654 */
655 reg = asd_ha->hw_prof.flash.bar;
656 inc = asd_ha->hw_prof.flash.wide ? 2 : 1;
657 asd_write_reg_byte(asd_ha, reg + 0x555, 0xAA);
658 asd_write_reg_byte(asd_ha, reg + 0x2AA, 0x55);
659 asd_write_reg_byte(asd_ha, reg + 0x555, 0x90);
660 asd_ha->hw_prof.flash.manuf = asd_read_reg_byte(asd_ha, reg);
661 asd_ha->hw_prof.flash.dev_id= asd_read_reg_byte(asd_ha,reg+inc);
662 asd_ha->hw_prof.flash.sec_prot = asd_read_reg_byte(asd_ha,reg+inc+inc);
663 /* Get out of autoselect mode. */
664 err = asd_reset_flash(asd_ha);
665
666 if (asd_ha->hw_prof.flash.manuf == FLASH_MANUF_AMD) {
667 ASD_DPRINTK("0Found FLASH(%d) manuf:%d, dev_id:0x%x, "
668 "sec_prot:%d\n",
669 asd_ha->hw_prof.flash.wide ? 16 : 8,
670 asd_ha->hw_prof.flash.manuf,
671 asd_ha->hw_prof.flash.dev_id,
672 asd_ha->hw_prof.flash.sec_prot);
673 return 0;
674 }
675
676 /* Ok, try the sequence for byte mode of 160B and 800D.
677 * We may actually never need this.
678 */
679 asd_write_reg_byte(asd_ha, reg + 0xAAA, 0xAA);
680 asd_write_reg_byte(asd_ha, reg + 0x555, 0x55);
681 asd_write_reg_byte(asd_ha, reg + 0xAAA, 0x90);
682 asd_ha->hw_prof.flash.manuf = asd_read_reg_byte(asd_ha, reg);
683 asd_ha->hw_prof.flash.dev_id = asd_read_reg_byte(asd_ha, reg + 2);
684 asd_ha->hw_prof.flash.sec_prot = asd_read_reg_byte(asd_ha, reg + 4);
685 err = asd_reset_flash(asd_ha);
686
687 if (asd_ha->hw_prof.flash.manuf == FLASH_MANUF_AMD) {
688 ASD_DPRINTK("1Found FLASH(%d) manuf:%d, dev_id:0x%x, "
689 "sec_prot:%d\n",
690 asd_ha->hw_prof.flash.wide ? 16 : 8,
691 asd_ha->hw_prof.flash.manuf,
692 asd_ha->hw_prof.flash.dev_id,
693 asd_ha->hw_prof.flash.sec_prot);
694 return 0;
695 }
696
697 return -ENOENT;
698}
699
700static u16 asd_calc_flash_chksum(u16 *p, int size)
701{
702 u16 chksum = 0;
703
704 while (size-- > 0)
705 chksum += *p++;
706
707 return chksum;
708}
709
710
711static int asd_find_flash_de(struct asd_flash_dir *flash_dir, u32 entry_type,
712 u32 *offs, u32 *size)
713{
714 int i;
715 struct asd_flash_de *de;
716
717 for (i = 0; i < FLASH_MAX_DIR_ENTRIES; i++) {
718 u32 type = le32_to_cpu(flash_dir->dir_entry[i].type);
719
720 type &= FLASH_DE_TYPE_MASK;
721 if (type == entry_type)
722 break;
723 }
724 if (i >= FLASH_MAX_DIR_ENTRIES)
725 return -ENOENT;
726 de = &flash_dir->dir_entry[i];
727 *offs = le32_to_cpu(de->offs);
728 *size = le32_to_cpu(de->pad_size);
729 return 0;
730}
731
732static int asd_validate_ms(struct asd_manuf_sec *ms)
733{
734 if (ms->sig[0] != 'S' || ms->sig[1] != 'M') {
735 ASD_DPRINTK("manuf sec: no valid sig(%c%c)\n",
736 ms->sig[0], ms->sig[1]);
737 return -ENOENT;
738 }
739 if (ms->maj != 0) {
740 asd_printk("unsupported manuf. sector. major version:%x\n",
741 ms->maj);
742 return -ENOENT;
743 }
744 ms->offs_next = le16_to_cpu((__force __le16) ms->offs_next);
745 ms->chksum = le16_to_cpu((__force __le16) ms->chksum);
746 ms->size = le16_to_cpu((__force __le16) ms->size);
747
748 if (asd_calc_flash_chksum((u16 *)ms, ms->size/2)) {
749 asd_printk("failed manuf sector checksum\n");
750 }
751
752 return 0;
753}
754
755static int asd_ms_get_sas_addr(struct asd_ha_struct *asd_ha,
756 struct asd_manuf_sec *ms)
757{
758 memcpy(asd_ha->hw_prof.sas_addr, ms->sas_addr, SAS_ADDR_SIZE);
759 return 0;
760}
761
762static int asd_ms_get_pcba_sn(struct asd_ha_struct *asd_ha,
763 struct asd_manuf_sec *ms)
764{
765 memcpy(asd_ha->hw_prof.pcba_sn, ms->pcba_sn, ASD_PCBA_SN_SIZE);
766 asd_ha->hw_prof.pcba_sn[ASD_PCBA_SN_SIZE] = '\0';
767 return 0;
768}
769
770/**
771 * asd_find_ll_by_id - find a linked list entry by its id
772 * @start: void pointer to the first element in the linked list
773 * @id0: the first byte of the id (offs 0)
774 * @id1: the second byte of the id (offs 1)
775 *
776 * @start has to be the _base_ element start, since the
777 * linked list entries's offset is from this pointer.
778 * Some linked list entries use only the first id, in which case
779 * you can pass 0xFF for the second.
780 */
781static void *asd_find_ll_by_id(void * const start, const u8 id0, const u8 id1)
782{
783 struct asd_ll_el *el = start;
784
785 do {
786 switch (id1) {
787 default:
788 if (el->id1 == id1)
789 case 0xFF:
790 if (el->id0 == id0)
791 return el;
792 }
793 el = start + le16_to_cpu(el->next);
794 } while (el != start);
795
796 return NULL;
797}
798
799/**
800 * asd_ms_get_phy_params - get phy parameters from the manufacturing sector
801 * @asd_ha: pointer to the host adapter structure
802 * @manuf_sec: pointer to the manufacturing sector
803 *
804 * The manufacturing sector contans also the linked list of sub-segments,
805 * since when it was read, its size was taken from the flash directory,
806 * not from the structure size.
807 *
808 * HIDDEN phys do not count in the total count. REPORTED phys cannot
809 * be enabled but are reported and counted towards the total.
810 * ENEBLEABLE phys are enabled by default and count towards the total.
811 * The absolute total phy number is ASD_MAX_PHYS. hw_prof->num_phys
812 * merely specifies the number of phys the host adapter decided to
813 * report. E.g., it is possible for phys 0, 1 and 2 to be HIDDEN,
814 * phys 3, 4 and 5 to be REPORTED and phys 6 and 7 to be ENEBLEABLE.
815 * In this case ASD_MAX_PHYS is 8, hw_prof->num_phys is 5, and only 2
816 * are actually enabled (enabled by default, max number of phys
817 * enableable in this case).
818 */
819static int asd_ms_get_phy_params(struct asd_ha_struct *asd_ha,
820 struct asd_manuf_sec *manuf_sec)
821{
822 int i;
823 int en_phys = 0;
824 int rep_phys = 0;
825 struct asd_manuf_phy_param *phy_param;
826 struct asd_manuf_phy_param dflt_phy_param;
827
828 phy_param = asd_find_ll_by_id(manuf_sec, 'P', 'M');
829 if (!phy_param) {
830 ASD_DPRINTK("ms: no phy parameters found\n");
831 ASD_DPRINTK("ms: Creating default phy parameters\n");
832 dflt_phy_param.sig[0] = 'P';
833 dflt_phy_param.sig[1] = 'M';
834 dflt_phy_param.maj = 0;
835 dflt_phy_param.min = 2;
836 dflt_phy_param.num_phy_desc = 8;
837 dflt_phy_param.phy_desc_size = sizeof(struct asd_manuf_phy_desc);
838 for (i =0; i < ASD_MAX_PHYS; i++) {
839 dflt_phy_param.phy_desc[i].state = 0;
840 dflt_phy_param.phy_desc[i].phy_id = i;
841 dflt_phy_param.phy_desc[i].phy_control_0 = 0xf6;
842 dflt_phy_param.phy_desc[i].phy_control_1 = 0x10;
843 dflt_phy_param.phy_desc[i].phy_control_2 = 0x43;
844 dflt_phy_param.phy_desc[i].phy_control_3 = 0xeb;
845 }
846
847 phy_param = &dflt_phy_param;
848
849 }
850
851 if (phy_param->maj != 0) {
852 asd_printk("unsupported manuf. phy param major version:0x%x\n",
853 phy_param->maj);
854 return -ENOENT;
855 }
856
857 ASD_DPRINTK("ms: num_phy_desc: %d\n", phy_param->num_phy_desc);
858 asd_ha->hw_prof.enabled_phys = 0;
859 for (i = 0; i < phy_param->num_phy_desc; i++) {
860 struct asd_manuf_phy_desc *pd = &phy_param->phy_desc[i];
861 switch (pd->state & 0xF) {
862 case MS_PHY_STATE_HIDDEN:
863 ASD_DPRINTK("ms: phy%d: HIDDEN\n", i);
864 continue;
865 case MS_PHY_STATE_REPORTED:
866 ASD_DPRINTK("ms: phy%d: REPORTED\n", i);
867 asd_ha->hw_prof.enabled_phys &= ~(1 << i);
868 rep_phys++;
869 continue;
870 case MS_PHY_STATE_ENABLEABLE:
871 ASD_DPRINTK("ms: phy%d: ENEBLEABLE\n", i);
872 asd_ha->hw_prof.enabled_phys |= (1 << i);
873 en_phys++;
874 break;
875 }
876 asd_ha->hw_prof.phy_desc[i].phy_control_0 = pd->phy_control_0;
877 asd_ha->hw_prof.phy_desc[i].phy_control_1 = pd->phy_control_1;
878 asd_ha->hw_prof.phy_desc[i].phy_control_2 = pd->phy_control_2;
879 asd_ha->hw_prof.phy_desc[i].phy_control_3 = pd->phy_control_3;
880 }
881 asd_ha->hw_prof.max_phys = rep_phys + en_phys;
882 asd_ha->hw_prof.num_phys = en_phys;
883 ASD_DPRINTK("ms: max_phys:0x%x, num_phys:0x%x\n",
884 asd_ha->hw_prof.max_phys, asd_ha->hw_prof.num_phys);
885 ASD_DPRINTK("ms: enabled_phys:0x%x\n", asd_ha->hw_prof.enabled_phys);
886 return 0;
887}
888
889static int asd_ms_get_connector_map(struct asd_ha_struct *asd_ha,
890 struct asd_manuf_sec *manuf_sec)
891{
892 struct asd_ms_conn_map *cm;
893
894 cm = asd_find_ll_by_id(manuf_sec, 'M', 'C');
895 if (!cm) {
896 ASD_DPRINTK("ms: no connector map found\n");
897 return 0;
898 }
899
900 if (cm->maj != 0) {
901 ASD_DPRINTK("ms: unsupported: connector map major version 0x%x"
902 "\n", cm->maj);
903 return -ENOENT;
904 }
905
906 /* XXX */
907
908 return 0;
909}
910
911
912/**
913 * asd_process_ms - find and extract information from the manufacturing sector
914 * @asd_ha: pointer to the host adapter structure
915 * @flash_dir: pointer to the flash directory
916 */
917static int asd_process_ms(struct asd_ha_struct *asd_ha,
918 struct asd_flash_dir *flash_dir)
919{
920 int err;
921 struct asd_manuf_sec *manuf_sec;
922 u32 offs, size;
923
924 err = asd_find_flash_de(flash_dir, FLASH_DE_MS, &offs, &size);
925 if (err) {
926 ASD_DPRINTK("Couldn't find the manuf. sector\n");
927 goto out;
928 }
929
930 if (size == 0)
931 goto out;
932
933 err = -ENOMEM;
934 manuf_sec = kmalloc(size, GFP_KERNEL);
935 if (!manuf_sec) {
936 ASD_DPRINTK("no mem for manuf sector\n");
937 goto out;
938 }
939
940 err = asd_read_flash_seg(asd_ha, (void *)manuf_sec, offs, size);
941 if (err) {
942 ASD_DPRINTK("couldn't read manuf sector at 0x%x, size 0x%x\n",
943 offs, size);
944 goto out2;
945 }
946
947 err = asd_validate_ms(manuf_sec);
948 if (err) {
949 ASD_DPRINTK("couldn't validate manuf sector\n");
950 goto out2;
951 }
952
953 err = asd_ms_get_sas_addr(asd_ha, manuf_sec);
954 if (err) {
955 ASD_DPRINTK("couldn't read the SAS_ADDR\n");
956 goto out2;
957 }
958 ASD_DPRINTK("manuf sect SAS_ADDR %llx\n",
959 SAS_ADDR(asd_ha->hw_prof.sas_addr));
960
961 err = asd_ms_get_pcba_sn(asd_ha, manuf_sec);
962 if (err) {
963 ASD_DPRINTK("couldn't read the PCBA SN\n");
964 goto out2;
965 }
966 ASD_DPRINTK("manuf sect PCBA SN %s\n", asd_ha->hw_prof.pcba_sn);
967
968 err = asd_ms_get_phy_params(asd_ha, manuf_sec);
969 if (err) {
970 ASD_DPRINTK("ms: couldn't get phy parameters\n");
971 goto out2;
972 }
973
974 err = asd_ms_get_connector_map(asd_ha, manuf_sec);
975 if (err) {
976 ASD_DPRINTK("ms: couldn't get connector map\n");
977 goto out2;
978 }
979
980out2:
981 kfree(manuf_sec);
982out:
983 return err;
984}
985
986static int asd_process_ctrla_phy_settings(struct asd_ha_struct *asd_ha,
987 struct asd_ctrla_phy_settings *ps)
988{
989 int i;
990 for (i = 0; i < ps->num_phys; i++) {
991 struct asd_ctrla_phy_entry *pe = &ps->phy_ent[i];
992
993 if (!PHY_ENABLED(asd_ha, i))
994 continue;
995 if (*(u64 *)pe->sas_addr == 0) {
996 asd_ha->hw_prof.enabled_phys &= ~(1 << i);
997 continue;
998 }
999 /* This is the SAS address which should be sent in IDENTIFY. */
1000 memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr, pe->sas_addr,
1001 SAS_ADDR_SIZE);
1002 asd_ha->hw_prof.phy_desc[i].max_sas_lrate =
1003 (pe->sas_link_rates & 0xF0) >> 4;
1004 asd_ha->hw_prof.phy_desc[i].min_sas_lrate =
1005 (pe->sas_link_rates & 0x0F);
1006 asd_ha->hw_prof.phy_desc[i].max_sata_lrate =
1007 (pe->sata_link_rates & 0xF0) >> 4;
1008 asd_ha->hw_prof.phy_desc[i].min_sata_lrate =
1009 (pe->sata_link_rates & 0x0F);
1010 asd_ha->hw_prof.phy_desc[i].flags = pe->flags;
1011 ASD_DPRINTK("ctrla: phy%d: sas_addr: %llx, sas rate:0x%x-0x%x,"
1012 " sata rate:0x%x-0x%x, flags:0x%x\n",
1013 i,
1014 SAS_ADDR(asd_ha->hw_prof.phy_desc[i].sas_addr),
1015 asd_ha->hw_prof.phy_desc[i].max_sas_lrate,
1016 asd_ha->hw_prof.phy_desc[i].min_sas_lrate,
1017 asd_ha->hw_prof.phy_desc[i].max_sata_lrate,
1018 asd_ha->hw_prof.phy_desc[i].min_sata_lrate,
1019 asd_ha->hw_prof.phy_desc[i].flags);
1020 }
1021
1022 return 0;
1023}
1024
1025/**
1026 * asd_process_ctrl_a_user - process CTRL-A user settings
1027 * @asd_ha: pointer to the host adapter structure
1028 * @flash_dir: pointer to the flash directory
1029 */
1030static int asd_process_ctrl_a_user(struct asd_ha_struct *asd_ha,
1031 struct asd_flash_dir *flash_dir)
1032{
1033 int err, i;
1034 u32 offs, size;
1035 struct asd_ll_el *el;
1036 struct asd_ctrla_phy_settings *ps;
1037 struct asd_ctrla_phy_settings dflt_ps;
1038
1039 err = asd_find_flash_de(flash_dir, FLASH_DE_CTRL_A_USER, &offs, &size);
1040 if (err) {
1041 ASD_DPRINTK("couldn't find CTRL-A user settings section\n");
1042 ASD_DPRINTK("Creating default CTRL-A user settings section\n");
1043
1044 dflt_ps.id0 = 'h';
1045 dflt_ps.num_phys = 8;
1046 for (i =0; i < ASD_MAX_PHYS; i++) {
1047 memcpy(dflt_ps.phy_ent[i].sas_addr,
1048 asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
1049 dflt_ps.phy_ent[i].sas_link_rates = 0x98;
1050 dflt_ps.phy_ent[i].flags = 0x0;
1051 dflt_ps.phy_ent[i].sata_link_rates = 0x0;
1052 }
1053
1054 size = sizeof(struct asd_ctrla_phy_settings);
1055 ps = &dflt_ps;
1056 }
1057
1058 if (size == 0)
1059 goto out;
1060
1061 err = -ENOMEM;
1062 el = kmalloc(size, GFP_KERNEL);
1063 if (!el) {
1064 ASD_DPRINTK("no mem for ctrla user settings section\n");
1065 goto out;
1066 }
1067
1068 err = asd_read_flash_seg(asd_ha, (void *)el, offs, size);
1069 if (err) {
1070 ASD_DPRINTK("couldn't read ctrla phy settings section\n");
1071 goto out2;
1072 }
1073
1074 err = -ENOENT;
1075 ps = asd_find_ll_by_id(el, 'h', 0xFF);
1076 if (!ps) {
1077 ASD_DPRINTK("couldn't find ctrla phy settings struct\n");
1078 goto out2;
1079 }
1080
1081 err = asd_process_ctrla_phy_settings(asd_ha, ps);
1082 if (err) {
1083 ASD_DPRINTK("couldn't process ctrla phy settings\n");
1084 goto out2;
1085 }
1086out2:
1087 kfree(el);
1088out:
1089 return err;
1090}
1091
1092/**
1093 * asd_read_flash - read flash memory
1094 * @asd_ha: pointer to the host adapter structure
1095 */
1096int asd_read_flash(struct asd_ha_struct *asd_ha)
1097{
1098 int err;
1099 struct asd_flash_dir *flash_dir;
1100
1101 err = asd_flash_getid(asd_ha);
1102 if (err)
1103 return err;
1104
1105 flash_dir = kmalloc(sizeof(*flash_dir), GFP_KERNEL);
1106 if (!flash_dir)
1107 return -ENOMEM;
1108
1109 err = -ENOENT;
1110 if (!asd_find_flash_dir(asd_ha, flash_dir)) {
1111 ASD_DPRINTK("couldn't find flash directory\n");
1112 goto out;
1113 }
1114
1115 if (le32_to_cpu(flash_dir->rev) != 2) {
1116 asd_printk("unsupported flash dir version:0x%x\n",
1117 le32_to_cpu(flash_dir->rev));
1118 goto out;
1119 }
1120
1121 err = asd_process_ms(asd_ha, flash_dir);
1122 if (err) {
1123 ASD_DPRINTK("couldn't process manuf sector settings\n");
1124 goto out;
1125 }
1126
1127 err = asd_process_ctrl_a_user(asd_ha, flash_dir);
1128 if (err) {
1129 ASD_DPRINTK("couldn't process CTRL-A user settings\n");
1130 goto out;
1131 }
1132
1133out:
1134 kfree(flash_dir);
1135 return err;
1136}
diff --git a/drivers/scsi/aic94xx/aic94xx_seq.c b/drivers/scsi/aic94xx/aic94xx_seq.c
new file mode 100644
index 000000000000..9050c6f3f6bd
--- /dev/null
+++ b/drivers/scsi/aic94xx/aic94xx_seq.c
@@ -0,0 +1,1401 @@
1/*
2 * Aic94xx SAS/SATA driver sequencer interface.
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * Parts of this code adapted from David Chaw's adp94xx_seq.c.
8 *
9 * This file is licensed under GPLv2.
10 *
11 * This file is part of the aic94xx driver.
12 *
13 * The aic94xx driver is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License as
15 * published by the Free Software Foundation; version 2 of the
16 * License.
17 *
18 * The aic94xx driver is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with the aic94xx driver; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
26 *
27 */
28
29#include <linux/delay.h>
30#include <linux/pci.h>
31#include <linux/firmware.h>
32#include "aic94xx_reg.h"
33#include "aic94xx_hwi.h"
34
35#include "aic94xx_seq.h"
36#include "aic94xx_dump.h"
37
38/* It takes no more than 0.05 us for an instruction
39 * to complete. So waiting for 1 us should be more than
40 * plenty.
41 */
42#define PAUSE_DELAY 1
43#define PAUSE_TRIES 1000
44
45static const struct firmware *sequencer_fw;
46static const char *sequencer_version;
47static u16 cseq_vecs[CSEQ_NUM_VECS], lseq_vecs[LSEQ_NUM_VECS], mode2_task,
48 cseq_idle_loop, lseq_idle_loop;
49static u8 *cseq_code, *lseq_code;
50static u32 cseq_code_size, lseq_code_size;
51
52static u16 first_scb_site_no = 0xFFFF;
53static u16 last_scb_site_no;
54
55/* ---------- Pause/Unpause CSEQ/LSEQ ---------- */
56
57/**
58 * asd_pause_cseq - pause the central sequencer
59 * @asd_ha: pointer to host adapter structure
60 *
61 * Return 0 on success, negative on failure.
62 */
63int asd_pause_cseq(struct asd_ha_struct *asd_ha)
64{
65 int count = PAUSE_TRIES;
66 u32 arp2ctl;
67
68 arp2ctl = asd_read_reg_dword(asd_ha, CARP2CTL);
69 if (arp2ctl & PAUSED)
70 return 0;
71
72 asd_write_reg_dword(asd_ha, CARP2CTL, arp2ctl | EPAUSE);
73 do {
74 arp2ctl = asd_read_reg_dword(asd_ha, CARP2CTL);
75 if (arp2ctl & PAUSED)
76 return 0;
77 udelay(PAUSE_DELAY);
78 } while (--count > 0);
79
80 ASD_DPRINTK("couldn't pause CSEQ\n");
81 return -1;
82}
83
84/**
85 * asd_unpause_cseq - unpause the central sequencer.
86 * @asd_ha: pointer to host adapter structure.
87 *
88 * Return 0 on success, negative on error.
89 */
90int asd_unpause_cseq(struct asd_ha_struct *asd_ha)
91{
92 u32 arp2ctl;
93 int count = PAUSE_TRIES;
94
95 arp2ctl = asd_read_reg_dword(asd_ha, CARP2CTL);
96 if (!(arp2ctl & PAUSED))
97 return 0;
98
99 asd_write_reg_dword(asd_ha, CARP2CTL, arp2ctl & ~EPAUSE);
100 do {
101 arp2ctl = asd_read_reg_dword(asd_ha, CARP2CTL);
102 if (!(arp2ctl & PAUSED))
103 return 0;
104 udelay(PAUSE_DELAY);
105 } while (--count > 0);
106
107 ASD_DPRINTK("couldn't unpause the CSEQ\n");
108 return -1;
109}
110
111/**
112 * asd_seq_pause_lseq - pause a link sequencer
113 * @asd_ha: pointer to a host adapter structure
114 * @lseq: link sequencer of interest
115 *
116 * Return 0 on success, negative on error.
117 */
118static inline int asd_seq_pause_lseq(struct asd_ha_struct *asd_ha, int lseq)
119{
120 u32 arp2ctl;
121 int count = PAUSE_TRIES;
122
123 arp2ctl = asd_read_reg_dword(asd_ha, LmARP2CTL(lseq));
124 if (arp2ctl & PAUSED)
125 return 0;
126
127 asd_write_reg_dword(asd_ha, LmARP2CTL(lseq), arp2ctl | EPAUSE);
128 do {
129 arp2ctl = asd_read_reg_dword(asd_ha, LmARP2CTL(lseq));
130 if (arp2ctl & PAUSED)
131 return 0;
132 udelay(PAUSE_DELAY);
133 } while (--count > 0);
134
135 ASD_DPRINTK("couldn't pause LSEQ %d\n", lseq);
136 return -1;
137}
138
139/**
140 * asd_pause_lseq - pause the link sequencer(s)
141 * @asd_ha: pointer to host adapter structure
142 * @lseq_mask: mask of link sequencers of interest
143 *
144 * Return 0 on success, negative on failure.
145 */
146int asd_pause_lseq(struct asd_ha_struct *asd_ha, u8 lseq_mask)
147{
148 int lseq;
149 int err = 0;
150
151 for_each_sequencer(lseq_mask, lseq_mask, lseq) {
152 err = asd_seq_pause_lseq(asd_ha, lseq);
153 if (err)
154 return err;
155 }
156
157 return err;
158}
159
160/**
161 * asd_seq_unpause_lseq - unpause a link sequencer
162 * @asd_ha: pointer to host adapter structure
163 * @lseq: link sequencer of interest
164 *
165 * Return 0 on success, negative on error.
166 */
167static inline int asd_seq_unpause_lseq(struct asd_ha_struct *asd_ha, int lseq)
168{
169 u32 arp2ctl;
170 int count = PAUSE_TRIES;
171
172 arp2ctl = asd_read_reg_dword(asd_ha, LmARP2CTL(lseq));
173 if (!(arp2ctl & PAUSED))
174 return 0;
175
176 asd_write_reg_dword(asd_ha, LmARP2CTL(lseq), arp2ctl & ~EPAUSE);
177 do {
178 arp2ctl = asd_read_reg_dword(asd_ha, LmARP2CTL(lseq));
179 if (!(arp2ctl & PAUSED))
180 return 0;
181 udelay(PAUSE_DELAY);
182 } while (--count > 0);
183
184 ASD_DPRINTK("couldn't unpause LSEQ %d\n", lseq);
185 return 0;
186}
187
188
189/**
190 * asd_unpause_lseq - unpause the link sequencer(s)
191 * @asd_ha: pointer to host adapter structure
192 * @lseq_mask: mask of link sequencers of interest
193 *
194 * Return 0 on success, negative on failure.
195 */
196int asd_unpause_lseq(struct asd_ha_struct *asd_ha, u8 lseq_mask)
197{
198 int lseq;
199 int err = 0;
200
201 for_each_sequencer(lseq_mask, lseq_mask, lseq) {
202 err = asd_seq_unpause_lseq(asd_ha, lseq);
203 if (err)
204 return err;
205 }
206
207 return err;
208}
209
210/* ---------- Downloading CSEQ/LSEQ microcode ---------- */
211
212static int asd_verify_cseq(struct asd_ha_struct *asd_ha, const u8 *_prog,
213 u32 size)
214{
215 u32 addr = CSEQ_RAM_REG_BASE_ADR;
216 const u32 *prog = (u32 *) _prog;
217 u32 i;
218
219 for (i = 0; i < size; i += 4, prog++, addr += 4) {
220 u32 val = asd_read_reg_dword(asd_ha, addr);
221
222 if (le32_to_cpu(*prog) != val) {
223 asd_printk("%s: cseq verify failed at %u "
224 "read:0x%x, wanted:0x%x\n",
225 pci_name(asd_ha->pcidev),
226 i, val, le32_to_cpu(*prog));
227 return -1;
228 }
229 }
230 ASD_DPRINTK("verified %d bytes, passed\n", size);
231 return 0;
232}
233
234/**
235 * asd_verify_lseq - verify the microcode of a link sequencer
236 * @asd_ha: pointer to host adapter structure
237 * @_prog: pointer to the microcode
238 * @size: size of the microcode in bytes
239 * @lseq: link sequencer of interest
240 *
241 * The link sequencer code is accessed in 4 KB pages, which are selected
242 * by setting LmRAMPAGE (bits 8 and 9) of the LmBISTCTL1 register.
243 * The 10 KB LSEQm instruction code is mapped, page at a time, at
244 * LmSEQRAM address.
245 */
246static int asd_verify_lseq(struct asd_ha_struct *asd_ha, const u8 *_prog,
247 u32 size, int lseq)
248{
249#define LSEQ_CODEPAGE_SIZE 4096
250 int pages = (size + LSEQ_CODEPAGE_SIZE - 1) / LSEQ_CODEPAGE_SIZE;
251 u32 page;
252 const u32 *prog = (u32 *) _prog;
253
254 for (page = 0; page < pages; page++) {
255 u32 i;
256
257 asd_write_reg_dword(asd_ha, LmBISTCTL1(lseq),
258 page << LmRAMPAGE_LSHIFT);
259 for (i = 0; size > 0 && i < LSEQ_CODEPAGE_SIZE;
260 i += 4, prog++, size-=4) {
261
262 u32 val = asd_read_reg_dword(asd_ha, LmSEQRAM(lseq)+i);
263
264 if (le32_to_cpu(*prog) != val) {
265 asd_printk("%s: LSEQ%d verify failed "
266 "page:%d, offs:%d\n",
267 pci_name(asd_ha->pcidev),
268 lseq, page, i);
269 return -1;
270 }
271 }
272 }
273 ASD_DPRINTK("LSEQ%d verified %d bytes, passed\n", lseq,
274 (int)((u8 *)prog-_prog));
275 return 0;
276}
277
278/**
279 * asd_verify_seq -- verify CSEQ/LSEQ microcode
280 * @asd_ha: pointer to host adapter structure
281 * @prog: pointer to microcode
282 * @size: size of the microcode
283 * @lseq_mask: if 0, verify CSEQ microcode, else mask of LSEQs of interest
284 *
285 * Return 0 if microcode is correct, negative on mismatch.
286 */
287static int asd_verify_seq(struct asd_ha_struct *asd_ha, const u8 *prog,
288 u32 size, u8 lseq_mask)
289{
290 if (lseq_mask == 0)
291 return asd_verify_cseq(asd_ha, prog, size);
292 else {
293 int lseq, err;
294
295 for_each_sequencer(lseq_mask, lseq_mask, lseq) {
296 err = asd_verify_lseq(asd_ha, prog, size, lseq);
297 if (err)
298 return err;
299 }
300 }
301
302 return 0;
303}
304#define ASD_DMA_MODE_DOWNLOAD
305#ifdef ASD_DMA_MODE_DOWNLOAD
306/* This is the size of the CSEQ Mapped instruction page */
307#define MAX_DMA_OVLY_COUNT ((1U << 14)-1)
308static int asd_download_seq(struct asd_ha_struct *asd_ha,
309 const u8 * const prog, u32 size, u8 lseq_mask)
310{
311 u32 comstaten;
312 u32 reg;
313 int page;
314 const int pages = (size + MAX_DMA_OVLY_COUNT - 1) / MAX_DMA_OVLY_COUNT;
315 struct asd_dma_tok *token;
316 int err = 0;
317
318 if (size % 4) {
319 asd_printk("sequencer program not multiple of 4\n");
320 return -1;
321 }
322
323 asd_pause_cseq(asd_ha);
324 asd_pause_lseq(asd_ha, 0xFF);
325
326 /* save, disable and clear interrupts */
327 comstaten = asd_read_reg_dword(asd_ha, COMSTATEN);
328 asd_write_reg_dword(asd_ha, COMSTATEN, 0);
329 asd_write_reg_dword(asd_ha, COMSTAT, COMSTAT_MASK);
330
331 asd_write_reg_dword(asd_ha, CHIMINTEN, RST_CHIMINTEN);
332 asd_write_reg_dword(asd_ha, CHIMINT, CHIMINT_MASK);
333
334 token = asd_alloc_coherent(asd_ha, MAX_DMA_OVLY_COUNT, GFP_KERNEL);
335 if (!token) {
336 asd_printk("out of memory for dma SEQ download\n");
337 err = -ENOMEM;
338 goto out;
339 }
340 ASD_DPRINTK("dma-ing %d bytes\n", size);
341
342 for (page = 0; page < pages; page++) {
343 int i;
344 u32 left = min(size-page*MAX_DMA_OVLY_COUNT,
345 (u32)MAX_DMA_OVLY_COUNT);
346
347 memcpy(token->vaddr, prog + page*MAX_DMA_OVLY_COUNT, left);
348 asd_write_reg_addr(asd_ha, OVLYDMAADR, token->dma_handle);
349 asd_write_reg_dword(asd_ha, OVLYDMACNT, left);
350 reg = !page ? RESETOVLYDMA : 0;
351 reg |= (STARTOVLYDMA | OVLYHALTERR);
352 reg |= (lseq_mask ? (((u32)lseq_mask) << 8) : OVLYCSEQ);
353 /* Start DMA. */
354 asd_write_reg_dword(asd_ha, OVLYDMACTL, reg);
355
356 for (i = PAUSE_TRIES*100; i > 0; i--) {
357 u32 dmadone = asd_read_reg_dword(asd_ha, OVLYDMACTL);
358 if (!(dmadone & OVLYDMAACT))
359 break;
360 udelay(PAUSE_DELAY);
361 }
362 }
363
364 reg = asd_read_reg_dword(asd_ha, COMSTAT);
365 if (!(reg & OVLYDMADONE) || (reg & OVLYERR)
366 || (asd_read_reg_dword(asd_ha, CHIMINT) & DEVEXCEPT_MASK)){
367 asd_printk("%s: error DMA-ing sequencer code\n",
368 pci_name(asd_ha->pcidev));
369 err = -ENODEV;
370 }
371
372 asd_free_coherent(asd_ha, token);
373 out:
374 asd_write_reg_dword(asd_ha, COMSTATEN, comstaten);
375
376 return err ? : asd_verify_seq(asd_ha, prog, size, lseq_mask);
377}
378#else /* ASD_DMA_MODE_DOWNLOAD */
379static int asd_download_seq(struct asd_ha_struct *asd_ha, const u8 *_prog,
380 u32 size, u8 lseq_mask)
381{
382 int i;
383 u32 reg = 0;
384 const u32 *prog = (u32 *) _prog;
385
386 if (size % 4) {
387 asd_printk("sequencer program not multiple of 4\n");
388 return -1;
389 }
390
391 asd_pause_cseq(asd_ha);
392 asd_pause_lseq(asd_ha, 0xFF);
393
394 reg |= (lseq_mask ? (((u32)lseq_mask) << 8) : OVLYCSEQ);
395 reg |= PIOCMODE;
396
397 asd_write_reg_dword(asd_ha, OVLYDMACNT, size);
398 asd_write_reg_dword(asd_ha, OVLYDMACTL, reg);
399
400 ASD_DPRINTK("downloading %s sequencer%s in PIO mode...\n",
401 lseq_mask ? "LSEQ" : "CSEQ", lseq_mask ? "s" : "");
402
403 for (i = 0; i < size; i += 4, prog++)
404 asd_write_reg_dword(asd_ha, SPIODATA, *prog);
405
406 reg = (reg & ~PIOCMODE) | OVLYHALTERR;
407 asd_write_reg_dword(asd_ha, OVLYDMACTL, reg);
408
409 return asd_verify_seq(asd_ha, _prog, size, lseq_mask);
410}
411#endif /* ASD_DMA_MODE_DOWNLOAD */
412
413/**
414 * asd_seq_download_seqs - download the sequencer microcode
415 * @asd_ha: pointer to host adapter structure
416 *
417 * Download the central and link sequencer microcode.
418 */
419static int asd_seq_download_seqs(struct asd_ha_struct *asd_ha)
420{
421 int err;
422
423 if (!asd_ha->hw_prof.enabled_phys) {
424 asd_printk("%s: no enabled phys!\n", pci_name(asd_ha->pcidev));
425 return -ENODEV;
426 }
427
428 /* Download the CSEQ */
429 ASD_DPRINTK("downloading CSEQ...\n");
430 err = asd_download_seq(asd_ha, cseq_code, cseq_code_size, 0);
431 if (err) {
432 asd_printk("CSEQ download failed:%d\n", err);
433 return err;
434 }
435
436 /* Download the Link Sequencers code. All of the Link Sequencers
437 * microcode can be downloaded at the same time.
438 */
439 ASD_DPRINTK("downloading LSEQs...\n");
440 err = asd_download_seq(asd_ha, lseq_code, lseq_code_size,
441 asd_ha->hw_prof.enabled_phys);
442 if (err) {
443 /* Try it one at a time */
444 u8 lseq;
445 u8 lseq_mask = asd_ha->hw_prof.enabled_phys;
446
447 for_each_sequencer(lseq_mask, lseq_mask, lseq) {
448 err = asd_download_seq(asd_ha, lseq_code,
449 lseq_code_size, 1<<lseq);
450 if (err)
451 break;
452 }
453 }
454 if (err)
455 asd_printk("LSEQs download failed:%d\n", err);
456
457 return err;
458}
459
460/* ---------- Initializing the chip, chip memory, etc. ---------- */
461
462/**
463 * asd_init_cseq_mip - initialize CSEQ mode independent pages 4-7
464 * @asd_ha: pointer to host adapter structure
465 */
466static void asd_init_cseq_mip(struct asd_ha_struct *asd_ha)
467{
468 /* CSEQ Mode Independent, page 4 setup. */
469 asd_write_reg_word(asd_ha, CSEQ_Q_EXE_HEAD, 0xFFFF);
470 asd_write_reg_word(asd_ha, CSEQ_Q_EXE_TAIL, 0xFFFF);
471 asd_write_reg_word(asd_ha, CSEQ_Q_DONE_HEAD, 0xFFFF);
472 asd_write_reg_word(asd_ha, CSEQ_Q_DONE_TAIL, 0xFFFF);
473 asd_write_reg_word(asd_ha, CSEQ_Q_SEND_HEAD, 0xFFFF);
474 asd_write_reg_word(asd_ha, CSEQ_Q_SEND_TAIL, 0xFFFF);
475 asd_write_reg_word(asd_ha, CSEQ_Q_DMA2CHIM_HEAD, 0xFFFF);
476 asd_write_reg_word(asd_ha, CSEQ_Q_DMA2CHIM_TAIL, 0xFFFF);
477 asd_write_reg_word(asd_ha, CSEQ_Q_COPY_HEAD, 0xFFFF);
478 asd_write_reg_word(asd_ha, CSEQ_Q_COPY_TAIL, 0xFFFF);
479 asd_write_reg_word(asd_ha, CSEQ_REG0, 0);
480 asd_write_reg_word(asd_ha, CSEQ_REG1, 0);
481 asd_write_reg_dword(asd_ha, CSEQ_REG2, 0);
482 asd_write_reg_byte(asd_ha, CSEQ_LINK_CTL_Q_MAP, 0);
483 {
484 u8 con = asd_read_reg_byte(asd_ha, CCONEXIST);
485 u8 val = hweight8(con);
486 asd_write_reg_byte(asd_ha, CSEQ_MAX_CSEQ_MODE, (val<<4)|val);
487 }
488 asd_write_reg_word(asd_ha, CSEQ_FREE_LIST_HACK_COUNT, 0);
489
490 /* CSEQ Mode independent, page 5 setup. */
491 asd_write_reg_dword(asd_ha, CSEQ_EST_NEXUS_REQ_QUEUE, 0);
492 asd_write_reg_dword(asd_ha, CSEQ_EST_NEXUS_REQ_QUEUE+4, 0);
493 asd_write_reg_dword(asd_ha, CSEQ_EST_NEXUS_REQ_COUNT, 0);
494 asd_write_reg_dword(asd_ha, CSEQ_EST_NEXUS_REQ_COUNT+4, 0);
495 asd_write_reg_word(asd_ha, CSEQ_Q_EST_NEXUS_HEAD, 0xFFFF);
496 asd_write_reg_word(asd_ha, CSEQ_Q_EST_NEXUS_TAIL, 0xFFFF);
497 asd_write_reg_word(asd_ha, CSEQ_NEED_EST_NEXUS_SCB, 0);
498 asd_write_reg_byte(asd_ha, CSEQ_EST_NEXUS_REQ_HEAD, 0);
499 asd_write_reg_byte(asd_ha, CSEQ_EST_NEXUS_REQ_TAIL, 0);
500 asd_write_reg_byte(asd_ha, CSEQ_EST_NEXUS_SCB_OFFSET, 0);
501
502 /* CSEQ Mode independent, page 6 setup. */
503 asd_write_reg_word(asd_ha, CSEQ_INT_ROUT_RET_ADDR0, 0);
504 asd_write_reg_word(asd_ha, CSEQ_INT_ROUT_RET_ADDR1, 0);
505 asd_write_reg_word(asd_ha, CSEQ_INT_ROUT_SCBPTR, 0);
506 asd_write_reg_byte(asd_ha, CSEQ_INT_ROUT_MODE, 0);
507 asd_write_reg_byte(asd_ha, CSEQ_ISR_SCRATCH_FLAGS, 0);
508 asd_write_reg_word(asd_ha, CSEQ_ISR_SAVE_SINDEX, 0);
509 asd_write_reg_word(asd_ha, CSEQ_ISR_SAVE_DINDEX, 0);
510 asd_write_reg_word(asd_ha, CSEQ_Q_MONIRTT_HEAD, 0xFFFF);
511 asd_write_reg_word(asd_ha, CSEQ_Q_MONIRTT_TAIL, 0xFFFF);
512 /* Calculate the free scb mask. */
513 {
514 u16 cmdctx = asd_get_cmdctx_size(asd_ha);
515 cmdctx = (~((cmdctx/128)-1)) >> 8;
516 asd_write_reg_byte(asd_ha, CSEQ_FREE_SCB_MASK, (u8)cmdctx);
517 }
518 asd_write_reg_word(asd_ha, CSEQ_BUILTIN_FREE_SCB_HEAD,
519 first_scb_site_no);
520 asd_write_reg_word(asd_ha, CSEQ_BUILTIN_FREE_SCB_TAIL,
521 last_scb_site_no);
522 asd_write_reg_word(asd_ha, CSEQ_EXTENDED_FREE_SCB_HEAD, 0xFFFF);
523 asd_write_reg_word(asd_ha, CSEQ_EXTENDED_FREE_SCB_TAIL, 0xFFFF);
524
525 /* CSEQ Mode independent, page 7 setup. */
526 asd_write_reg_dword(asd_ha, CSEQ_EMPTY_REQ_QUEUE, 0);
527 asd_write_reg_dword(asd_ha, CSEQ_EMPTY_REQ_QUEUE+4, 0);
528 asd_write_reg_dword(asd_ha, CSEQ_EMPTY_REQ_COUNT, 0);
529 asd_write_reg_dword(asd_ha, CSEQ_EMPTY_REQ_COUNT+4, 0);
530 asd_write_reg_word(asd_ha, CSEQ_Q_EMPTY_HEAD, 0xFFFF);
531 asd_write_reg_word(asd_ha, CSEQ_Q_EMPTY_TAIL, 0xFFFF);
532 asd_write_reg_word(asd_ha, CSEQ_NEED_EMPTY_SCB, 0);
533 asd_write_reg_byte(asd_ha, CSEQ_EMPTY_REQ_HEAD, 0);
534 asd_write_reg_byte(asd_ha, CSEQ_EMPTY_REQ_TAIL, 0);
535 asd_write_reg_byte(asd_ha, CSEQ_EMPTY_SCB_OFFSET, 0);
536 asd_write_reg_word(asd_ha, CSEQ_PRIMITIVE_DATA, 0);
537 asd_write_reg_dword(asd_ha, CSEQ_TIMEOUT_CONST, 0);
538}
539
540/**
541 * asd_init_cseq_mdp - initialize CSEQ Mode dependent pages
542 * @asd_ha: pointer to host adapter structure
543 */
544static void asd_init_cseq_mdp(struct asd_ha_struct *asd_ha)
545{
546 int i;
547 int moffs;
548
549 moffs = CSEQ_PAGE_SIZE * 2;
550
551 /* CSEQ Mode dependent, modes 0-7, page 0 setup. */
552 for (i = 0; i < 8; i++) {
553 asd_write_reg_word(asd_ha, i*moffs+CSEQ_LRM_SAVE_SINDEX, 0);
554 asd_write_reg_word(asd_ha, i*moffs+CSEQ_LRM_SAVE_SCBPTR, 0);
555 asd_write_reg_word(asd_ha, i*moffs+CSEQ_Q_LINK_HEAD, 0xFFFF);
556 asd_write_reg_word(asd_ha, i*moffs+CSEQ_Q_LINK_TAIL, 0xFFFF);
557 asd_write_reg_byte(asd_ha, i*moffs+CSEQ_LRM_SAVE_SCRPAGE, 0);
558 }
559
560 /* CSEQ Mode dependent, mode 0-7, page 1 and 2 shall be ignored. */
561
562 /* CSEQ Mode dependent, mode 8, page 0 setup. */
563 asd_write_reg_word(asd_ha, CSEQ_RET_ADDR, 0xFFFF);
564 asd_write_reg_word(asd_ha, CSEQ_RET_SCBPTR, 0);
565 asd_write_reg_word(asd_ha, CSEQ_SAVE_SCBPTR, 0);
566 asd_write_reg_word(asd_ha, CSEQ_EMPTY_TRANS_CTX, 0);
567 asd_write_reg_word(asd_ha, CSEQ_RESP_LEN, 0);
568 asd_write_reg_word(asd_ha, CSEQ_TMF_SCBPTR, 0);
569 asd_write_reg_word(asd_ha, CSEQ_GLOBAL_PREV_SCB, 0);
570 asd_write_reg_word(asd_ha, CSEQ_GLOBAL_HEAD, 0);
571 asd_write_reg_word(asd_ha, CSEQ_CLEAR_LU_HEAD, 0);
572 asd_write_reg_byte(asd_ha, CSEQ_TMF_OPCODE, 0);
573 asd_write_reg_byte(asd_ha, CSEQ_SCRATCH_FLAGS, 0);
574 asd_write_reg_word(asd_ha, CSEQ_HSB_SITE, 0);
575 asd_write_reg_word(asd_ha, CSEQ_FIRST_INV_SCB_SITE,
576 (u16)last_scb_site_no+1);
577 asd_write_reg_word(asd_ha, CSEQ_FIRST_INV_DDB_SITE,
578 (u16)asd_ha->hw_prof.max_ddbs);
579
580 /* CSEQ Mode dependent, mode 8, page 1 setup. */
581 asd_write_reg_dword(asd_ha, CSEQ_LUN_TO_CLEAR, 0);
582 asd_write_reg_dword(asd_ha, CSEQ_LUN_TO_CLEAR + 4, 0);
583 asd_write_reg_dword(asd_ha, CSEQ_LUN_TO_CHECK, 0);
584 asd_write_reg_dword(asd_ha, CSEQ_LUN_TO_CHECK + 4, 0);
585
586 /* CSEQ Mode dependent, mode 8, page 2 setup. */
587 /* Tell the sequencer the bus address of the first SCB. */
588 asd_write_reg_addr(asd_ha, CSEQ_HQ_NEW_POINTER,
589 asd_ha->seq.next_scb.dma_handle);
590 ASD_DPRINTK("First SCB dma_handle: 0x%llx\n",
591 (unsigned long long)asd_ha->seq.next_scb.dma_handle);
592
593 /* Tell the sequencer the first Done List entry address. */
594 asd_write_reg_addr(asd_ha, CSEQ_HQ_DONE_BASE,
595 asd_ha->seq.actual_dl->dma_handle);
596
597 /* Initialize the Q_DONE_POINTER with the least significant
598 * 4 bytes of the first Done List address. */
599 asd_write_reg_dword(asd_ha, CSEQ_HQ_DONE_POINTER,
600 ASD_BUSADDR_LO(asd_ha->seq.actual_dl->dma_handle));
601
602 asd_write_reg_byte(asd_ha, CSEQ_HQ_DONE_PASS, ASD_DEF_DL_TOGGLE);
603
604 /* CSEQ Mode dependent, mode 8, page 3 shall be ignored. */
605}
606
607/**
608 * asd_init_cseq_scratch -- setup and init CSEQ
609 * @asd_ha: pointer to host adapter structure
610 *
611 * Setup and initialize Central sequencers. Initialiaze the mode
612 * independent and dependent scratch page to the default settings.
613 */
614static void asd_init_cseq_scratch(struct asd_ha_struct *asd_ha)
615{
616 asd_init_cseq_mip(asd_ha);
617 asd_init_cseq_mdp(asd_ha);
618}
619
620/**
621 * asd_init_lseq_mip -- initialize LSEQ Mode independent pages 0-3
622 * @asd_ha: pointer to host adapter structure
623 */
624static void asd_init_lseq_mip(struct asd_ha_struct *asd_ha, u8 lseq)
625{
626 int i;
627
628 /* LSEQ Mode independent page 0 setup. */
629 asd_write_reg_word(asd_ha, LmSEQ_Q_TGTXFR_HEAD(lseq), 0xFFFF);
630 asd_write_reg_word(asd_ha, LmSEQ_Q_TGTXFR_TAIL(lseq), 0xFFFF);
631 asd_write_reg_byte(asd_ha, LmSEQ_LINK_NUMBER(lseq), lseq);
632 asd_write_reg_byte(asd_ha, LmSEQ_SCRATCH_FLAGS(lseq),
633 ASD_NOTIFY_ENABLE_SPINUP);
634 asd_write_reg_dword(asd_ha, LmSEQ_CONNECTION_STATE(lseq),0x08000000);
635 asd_write_reg_word(asd_ha, LmSEQ_CONCTL(lseq), 0);
636 asd_write_reg_byte(asd_ha, LmSEQ_CONSTAT(lseq), 0);
637 asd_write_reg_byte(asd_ha, LmSEQ_CONNECTION_MODES(lseq), 0);
638 asd_write_reg_word(asd_ha, LmSEQ_REG1_ISR(lseq), 0);
639 asd_write_reg_word(asd_ha, LmSEQ_REG2_ISR(lseq), 0);
640 asd_write_reg_word(asd_ha, LmSEQ_REG3_ISR(lseq), 0);
641 asd_write_reg_dword(asd_ha, LmSEQ_REG0_ISR(lseq), 0);
642 asd_write_reg_dword(asd_ha, LmSEQ_REG0_ISR(lseq)+4, 0);
643
644 /* LSEQ Mode independent page 1 setup. */
645 asd_write_reg_word(asd_ha, LmSEQ_EST_NEXUS_SCBPTR0(lseq), 0xFFFF);
646 asd_write_reg_word(asd_ha, LmSEQ_EST_NEXUS_SCBPTR1(lseq), 0xFFFF);
647 asd_write_reg_word(asd_ha, LmSEQ_EST_NEXUS_SCBPTR2(lseq), 0xFFFF);
648 asd_write_reg_word(asd_ha, LmSEQ_EST_NEXUS_SCBPTR3(lseq), 0xFFFF);
649 asd_write_reg_byte(asd_ha, LmSEQ_EST_NEXUS_SCB_OPCODE0(lseq), 0);
650 asd_write_reg_byte(asd_ha, LmSEQ_EST_NEXUS_SCB_OPCODE1(lseq), 0);
651 asd_write_reg_byte(asd_ha, LmSEQ_EST_NEXUS_SCB_OPCODE2(lseq), 0);
652 asd_write_reg_byte(asd_ha, LmSEQ_EST_NEXUS_SCB_OPCODE3(lseq), 0);
653 asd_write_reg_byte(asd_ha, LmSEQ_EST_NEXUS_SCB_HEAD(lseq), 0);
654 asd_write_reg_byte(asd_ha, LmSEQ_EST_NEXUS_SCB_TAIL(lseq), 0);
655 asd_write_reg_byte(asd_ha, LmSEQ_EST_NEXUS_BUF_AVAIL(lseq), 0);
656 asd_write_reg_dword(asd_ha, LmSEQ_TIMEOUT_CONST(lseq), 0);
657 asd_write_reg_word(asd_ha, LmSEQ_ISR_SAVE_SINDEX(lseq), 0);
658 asd_write_reg_word(asd_ha, LmSEQ_ISR_SAVE_DINDEX(lseq), 0);
659
660 /* LSEQ Mode Independent page 2 setup. */
661 asd_write_reg_word(asd_ha, LmSEQ_EMPTY_SCB_PTR0(lseq), 0xFFFF);
662 asd_write_reg_word(asd_ha, LmSEQ_EMPTY_SCB_PTR1(lseq), 0xFFFF);
663 asd_write_reg_word(asd_ha, LmSEQ_EMPTY_SCB_PTR2(lseq), 0xFFFF);
664 asd_write_reg_word(asd_ha, LmSEQ_EMPTY_SCB_PTR3(lseq), 0xFFFF);
665 asd_write_reg_byte(asd_ha, LmSEQ_EMPTY_SCB_OPCD0(lseq), 0);
666 asd_write_reg_byte(asd_ha, LmSEQ_EMPTY_SCB_OPCD1(lseq), 0);
667 asd_write_reg_byte(asd_ha, LmSEQ_EMPTY_SCB_OPCD2(lseq), 0);
668 asd_write_reg_byte(asd_ha, LmSEQ_EMPTY_SCB_OPCD3(lseq), 0);
669 asd_write_reg_byte(asd_ha, LmSEQ_EMPTY_SCB_HEAD(lseq), 0);
670 asd_write_reg_byte(asd_ha, LmSEQ_EMPTY_SCB_TAIL(lseq), 0);
671 asd_write_reg_byte(asd_ha, LmSEQ_EMPTY_BUFS_AVAIL(lseq), 0);
672 for (i = 0; i < 12; i += 4)
673 asd_write_reg_dword(asd_ha, LmSEQ_ATA_SCR_REGS(lseq) + i, 0);
674
675 /* LSEQ Mode Independent page 3 setup. */
676
677 /* Device present timer timeout */
678 asd_write_reg_dword(asd_ha, LmSEQ_DEV_PRES_TMR_TOUT_CONST(lseq),
679 ASD_DEV_PRESENT_TIMEOUT);
680
681 /* SATA interlock timer disabled */
682 asd_write_reg_dword(asd_ha, LmSEQ_SATA_INTERLOCK_TIMEOUT(lseq),
683 ASD_SATA_INTERLOCK_TIMEOUT);
684
685 /* STP shutdown timer timeout constant, IGNORED by the sequencer,
686 * always 0. */
687 asd_write_reg_dword(asd_ha, LmSEQ_STP_SHUTDOWN_TIMEOUT(lseq),
688 ASD_STP_SHUTDOWN_TIMEOUT);
689
690 asd_write_reg_dword(asd_ha, LmSEQ_SRST_ASSERT_TIMEOUT(lseq),
691 ASD_SRST_ASSERT_TIMEOUT);
692
693 asd_write_reg_dword(asd_ha, LmSEQ_RCV_FIS_TIMEOUT(lseq),
694 ASD_RCV_FIS_TIMEOUT);
695
696 asd_write_reg_dword(asd_ha, LmSEQ_ONE_MILLISEC_TIMEOUT(lseq),
697 ASD_ONE_MILLISEC_TIMEOUT);
698
699 /* COM_INIT timer */
700 asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(lseq),
701 ASD_TEN_MILLISEC_TIMEOUT);
702
703 asd_write_reg_dword(asd_ha, LmSEQ_SMP_RCV_TIMEOUT(lseq),
704 ASD_SMP_RCV_TIMEOUT);
705}
706
707/**
708 * asd_init_lseq_mdp -- initialize LSEQ mode dependent pages.
709 * @asd_ha: pointer to host adapter structure
710 */
711static void asd_init_lseq_mdp(struct asd_ha_struct *asd_ha, int lseq)
712{
713 int i;
714 u32 moffs;
715 u16 ret_addr[] = {
716 0xFFFF, /* mode 0 */
717 0xFFFF, /* mode 1 */
718 mode2_task, /* mode 2 */
719 0,
720 0xFFFF, /* mode 4/5 */
721 0xFFFF, /* mode 4/5 */
722 };
723
724 /*
725 * Mode 0,1,2 and 4/5 have common field on page 0 for the first
726 * 14 bytes.
727 */
728 for (i = 0; i < 3; i++) {
729 moffs = i * LSEQ_MODE_SCRATCH_SIZE;
730 asd_write_reg_word(asd_ha, LmSEQ_RET_ADDR(lseq)+moffs,
731 ret_addr[i]);
732 asd_write_reg_word(asd_ha, LmSEQ_REG0_MODE(lseq)+moffs, 0);
733 asd_write_reg_word(asd_ha, LmSEQ_MODE_FLAGS(lseq)+moffs, 0);
734 asd_write_reg_word(asd_ha, LmSEQ_RET_ADDR2(lseq)+moffs,0xFFFF);
735 asd_write_reg_word(asd_ha, LmSEQ_RET_ADDR1(lseq)+moffs,0xFFFF);
736 asd_write_reg_byte(asd_ha, LmSEQ_OPCODE_TO_CSEQ(lseq)+moffs,0);
737 asd_write_reg_word(asd_ha, LmSEQ_DATA_TO_CSEQ(lseq)+moffs,0);
738 }
739 /*
740 * Mode 5 page 0 overlaps the same scratch page with Mode 0 page 3.
741 */
742 asd_write_reg_word(asd_ha,
743 LmSEQ_RET_ADDR(lseq)+LSEQ_MODE5_PAGE0_OFFSET,
744 ret_addr[5]);
745 asd_write_reg_word(asd_ha,
746 LmSEQ_REG0_MODE(lseq)+LSEQ_MODE5_PAGE0_OFFSET,0);
747 asd_write_reg_word(asd_ha,
748 LmSEQ_MODE_FLAGS(lseq)+LSEQ_MODE5_PAGE0_OFFSET, 0);
749 asd_write_reg_word(asd_ha,
750 LmSEQ_RET_ADDR2(lseq)+LSEQ_MODE5_PAGE0_OFFSET,0xFFFF);
751 asd_write_reg_word(asd_ha,
752 LmSEQ_RET_ADDR1(lseq)+LSEQ_MODE5_PAGE0_OFFSET,0xFFFF);
753 asd_write_reg_byte(asd_ha,
754 LmSEQ_OPCODE_TO_CSEQ(lseq)+LSEQ_MODE5_PAGE0_OFFSET,0);
755 asd_write_reg_word(asd_ha,
756 LmSEQ_DATA_TO_CSEQ(lseq)+LSEQ_MODE5_PAGE0_OFFSET, 0);
757
758 /* LSEQ Mode dependent 0, page 0 setup. */
759 asd_write_reg_word(asd_ha, LmSEQ_FIRST_INV_DDB_SITE(lseq),
760 (u16)asd_ha->hw_prof.max_ddbs);
761 asd_write_reg_word(asd_ha, LmSEQ_EMPTY_TRANS_CTX(lseq), 0);
762 asd_write_reg_word(asd_ha, LmSEQ_RESP_LEN(lseq), 0);
763 asd_write_reg_word(asd_ha, LmSEQ_FIRST_INV_SCB_SITE(lseq),
764 (u16)last_scb_site_no+1);
765 asd_write_reg_word(asd_ha, LmSEQ_INTEN_SAVE(lseq),
766 (u16) LmM0INTEN_MASK & 0xFFFF0000 >> 16);
767 asd_write_reg_word(asd_ha, LmSEQ_INTEN_SAVE(lseq) + 2,
768 (u16) LmM0INTEN_MASK & 0xFFFF);
769 asd_write_reg_byte(asd_ha, LmSEQ_LINK_RST_FRM_LEN(lseq), 0);
770 asd_write_reg_byte(asd_ha, LmSEQ_LINK_RST_PROTOCOL(lseq), 0);
771 asd_write_reg_byte(asd_ha, LmSEQ_RESP_STATUS(lseq), 0);
772 asd_write_reg_byte(asd_ha, LmSEQ_LAST_LOADED_SGE(lseq), 0);
773 asd_write_reg_word(asd_ha, LmSEQ_SAVE_SCBPTR(lseq), 0);
774
775 /* LSEQ mode dependent, mode 1, page 0 setup. */
776 asd_write_reg_word(asd_ha, LmSEQ_Q_XMIT_HEAD(lseq), 0xFFFF);
777 asd_write_reg_word(asd_ha, LmSEQ_M1_EMPTY_TRANS_CTX(lseq), 0);
778 asd_write_reg_word(asd_ha, LmSEQ_INI_CONN_TAG(lseq), 0);
779 asd_write_reg_byte(asd_ha, LmSEQ_FAILED_OPEN_STATUS(lseq), 0);
780 asd_write_reg_byte(asd_ha, LmSEQ_XMIT_REQUEST_TYPE(lseq), 0);
781 asd_write_reg_byte(asd_ha, LmSEQ_M1_RESP_STATUS(lseq), 0);
782 asd_write_reg_byte(asd_ha, LmSEQ_M1_LAST_LOADED_SGE(lseq), 0);
783 asd_write_reg_word(asd_ha, LmSEQ_M1_SAVE_SCBPTR(lseq), 0);
784
785 /* LSEQ Mode dependent mode 2, page 0 setup */
786 asd_write_reg_word(asd_ha, LmSEQ_PORT_COUNTER(lseq), 0);
787 asd_write_reg_word(asd_ha, LmSEQ_PM_TABLE_PTR(lseq), 0);
788 asd_write_reg_word(asd_ha, LmSEQ_SATA_INTERLOCK_TMR_SAVE(lseq), 0);
789 asd_write_reg_word(asd_ha, LmSEQ_IP_BITL(lseq), 0);
790 asd_write_reg_word(asd_ha, LmSEQ_COPY_SMP_CONN_TAG(lseq), 0);
791 asd_write_reg_byte(asd_ha, LmSEQ_P0M2_OFFS1AH(lseq), 0);
792
793 /* LSEQ Mode dependent, mode 4/5, page 0 setup. */
794 asd_write_reg_byte(asd_ha, LmSEQ_SAVED_OOB_STATUS(lseq), 0);
795 asd_write_reg_byte(asd_ha, LmSEQ_SAVED_OOB_MODE(lseq), 0);
796 asd_write_reg_word(asd_ha, LmSEQ_Q_LINK_HEAD(lseq), 0xFFFF);
797 asd_write_reg_byte(asd_ha, LmSEQ_LINK_RST_ERR(lseq), 0);
798 asd_write_reg_byte(asd_ha, LmSEQ_SAVED_OOB_SIGNALS(lseq), 0);
799 asd_write_reg_byte(asd_ha, LmSEQ_SAS_RESET_MODE(lseq), 0);
800 asd_write_reg_byte(asd_ha, LmSEQ_LINK_RESET_RETRY_COUNT(lseq), 0);
801 asd_write_reg_byte(asd_ha, LmSEQ_NUM_LINK_RESET_RETRIES(lseq), 0);
802 asd_write_reg_word(asd_ha, LmSEQ_OOB_INT_ENABLES(lseq), 0);
803 /*
804 * Set the desired interval between transmissions of the NOTIFY
805 * (ENABLE SPINUP) primitive. Must be initilized to val - 1.
806 */
807 asd_write_reg_word(asd_ha, LmSEQ_NOTIFY_TIMER_TIMEOUT(lseq),
808 ASD_NOTIFY_TIMEOUT - 1);
809 /* No delay for the first NOTIFY to be sent to the attached target. */
810 asd_write_reg_word(asd_ha, LmSEQ_NOTIFY_TIMER_DOWN_COUNT(lseq),
811 ASD_NOTIFY_DOWN_COUNT);
812
813 /* LSEQ Mode dependent, mode 0 and 1, page 1 setup. */
814 for (i = 0; i < 2; i++) {
815 int j;
816 /* Start from Page 1 of Mode 0 and 1. */
817 moffs = LSEQ_PAGE_SIZE + i*LSEQ_MODE_SCRATCH_SIZE;
818 /* All the fields of page 1 can be intialized to 0. */
819 for (j = 0; j < LSEQ_PAGE_SIZE; j += 4)
820 asd_write_reg_dword(asd_ha, LmSCRATCH(lseq)+moffs+j,0);
821 }
822
823 /* LSEQ Mode dependent, mode 2, page 1 setup. */
824 asd_write_reg_dword(asd_ha, LmSEQ_INVALID_DWORD_COUNT(lseq), 0);
825 asd_write_reg_dword(asd_ha, LmSEQ_DISPARITY_ERROR_COUNT(lseq), 0);
826 asd_write_reg_dword(asd_ha, LmSEQ_LOSS_OF_SYNC_COUNT(lseq), 0);
827
828 /* LSEQ Mode dependent, mode 4/5, page 1. */
829 for (i = 0; i < LSEQ_PAGE_SIZE; i+=4)
830 asd_write_reg_dword(asd_ha, LmSEQ_FRAME_TYPE_MASK(lseq)+i, 0);
831 asd_write_reg_byte(asd_ha, LmSEQ_FRAME_TYPE_MASK(lseq), 0xFF);
832 asd_write_reg_byte(asd_ha, LmSEQ_HASHED_DEST_ADDR_MASK(lseq), 0xFF);
833 asd_write_reg_byte(asd_ha, LmSEQ_HASHED_DEST_ADDR_MASK(lseq)+1,0xFF);
834 asd_write_reg_byte(asd_ha, LmSEQ_HASHED_DEST_ADDR_MASK(lseq)+2,0xFF);
835 asd_write_reg_byte(asd_ha, LmSEQ_HASHED_SRC_ADDR_MASK(lseq), 0xFF);
836 asd_write_reg_byte(asd_ha, LmSEQ_HASHED_SRC_ADDR_MASK(lseq)+1, 0xFF);
837 asd_write_reg_byte(asd_ha, LmSEQ_HASHED_SRC_ADDR_MASK(lseq)+2, 0xFF);
838 asd_write_reg_dword(asd_ha, LmSEQ_DATA_OFFSET(lseq), 0xFFFFFFFF);
839
840 /* LSEQ Mode dependent, mode 0, page 2 setup. */
841 asd_write_reg_dword(asd_ha, LmSEQ_SMP_RCV_TIMER_TERM_TS(lseq), 0);
842 asd_write_reg_byte(asd_ha, LmSEQ_DEVICE_BITS(lseq), 0);
843 asd_write_reg_word(asd_ha, LmSEQ_SDB_DDB(lseq), 0);
844 asd_write_reg_byte(asd_ha, LmSEQ_SDB_NUM_TAGS(lseq), 0);
845 asd_write_reg_byte(asd_ha, LmSEQ_SDB_CURR_TAG(lseq), 0);
846
847 /* LSEQ Mode Dependent 1, page 2 setup. */
848 asd_write_reg_dword(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(lseq), 0);
849 asd_write_reg_dword(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(lseq)+4, 0);
850 asd_write_reg_dword(asd_ha, LmSEQ_OPEN_TIMER_TERM_TS(lseq), 0);
851 asd_write_reg_dword(asd_ha, LmSEQ_SRST_AS_TIMER_TERM_TS(lseq), 0);
852 asd_write_reg_dword(asd_ha, LmSEQ_LAST_LOADED_SG_EL(lseq), 0);
853
854 /* LSEQ Mode Dependent 2, page 2 setup. */
855 /* The LmSEQ_STP_SHUTDOWN_TIMER_TERM_TS is IGNORED by the sequencer,
856 * i.e. always 0. */
857 asd_write_reg_dword(asd_ha, LmSEQ_STP_SHUTDOWN_TIMER_TERM_TS(lseq),0);
858 asd_write_reg_dword(asd_ha, LmSEQ_CLOSE_TIMER_TERM_TS(lseq), 0);
859 asd_write_reg_dword(asd_ha, LmSEQ_BREAK_TIMER_TERM_TS(lseq), 0);
860 asd_write_reg_dword(asd_ha, LmSEQ_DWS_RESET_TIMER_TERM_TS(lseq), 0);
861 asd_write_reg_dword(asd_ha,LmSEQ_SATA_INTERLOCK_TIMER_TERM_TS(lseq),0);
862 asd_write_reg_dword(asd_ha, LmSEQ_MCTL_TIMER_TERM_TS(lseq), 0);
863
864 /* LSEQ Mode Dependent 4/5, page 2 setup. */
865 asd_write_reg_dword(asd_ha, LmSEQ_COMINIT_TIMER_TERM_TS(lseq), 0);
866 asd_write_reg_dword(asd_ha, LmSEQ_RCV_ID_TIMER_TERM_TS(lseq), 0);
867 asd_write_reg_dword(asd_ha, LmSEQ_RCV_FIS_TIMER_TERM_TS(lseq), 0);
868 asd_write_reg_dword(asd_ha, LmSEQ_DEV_PRES_TIMER_TERM_TS(lseq), 0);
869}
870
871/**
872 * asd_init_lseq_scratch -- setup and init link sequencers
873 * @asd_ha: pointer to host adapter struct
874 */
875static void asd_init_lseq_scratch(struct asd_ha_struct *asd_ha)
876{
877 u8 lseq;
878 u8 lseq_mask;
879
880 lseq_mask = asd_ha->hw_prof.enabled_phys;
881 for_each_sequencer(lseq_mask, lseq_mask, lseq) {
882 asd_init_lseq_mip(asd_ha, lseq);
883 asd_init_lseq_mdp(asd_ha, lseq);
884 }
885}
886
887/**
888 * asd_init_scb_sites -- initialize sequencer SCB sites (memory).
889 * @asd_ha: pointer to host adapter structure
890 *
891 * This should be done before initializing common CSEQ and LSEQ
892 * scratch since those areas depend on some computed values here,
893 * last_scb_site_no, etc.
894 */
895static void asd_init_scb_sites(struct asd_ha_struct *asd_ha)
896{
897 u16 site_no;
898 u16 max_scbs = 0;
899
900 for (site_no = asd_ha->hw_prof.max_scbs-1;
901 site_no != (u16) -1;
902 site_no--) {
903 u16 i;
904
905 /* Initialize all fields in the SCB site to 0. */
906 for (i = 0; i < ASD_SCB_SIZE; i += 4)
907 asd_scbsite_write_dword(asd_ha, site_no, i, 0);
908
909 /* Workaround needed by SEQ to fix a SATA issue is to exclude
910 * certain SCB sites from the free list. */
911 if (!SCB_SITE_VALID(site_no))
912 continue;
913
914 if (last_scb_site_no == 0)
915 last_scb_site_no = site_no;
916
917 /* For every SCB site, we need to initialize the
918 * following fields: Q_NEXT, SCB_OPCODE, SCB_FLAGS,
919 * and SG Element Flag. */
920
921 /* Q_NEXT field of the last SCB is invalidated. */
922 asd_scbsite_write_word(asd_ha, site_no, 0, first_scb_site_no);
923
924 /* Initialize SCB Site Opcode field to invalid. */
925 asd_scbsite_write_byte(asd_ha, site_no,
926 offsetof(struct scb_header, opcode),
927 0xFF);
928
929 /* Initialize SCB Site Flags field to mean a response
930 * frame has been received. This means inadvertent
931 * frames received to be dropped. */
932 asd_scbsite_write_byte(asd_ha, site_no, 0x49, 0x01);
933
934 first_scb_site_no = site_no;
935 max_scbs++;
936 }
937 asd_ha->hw_prof.max_scbs = max_scbs;
938 ASD_DPRINTK("max_scbs:%d\n", asd_ha->hw_prof.max_scbs);
939 ASD_DPRINTK("first_scb_site_no:0x%x\n", first_scb_site_no);
940 ASD_DPRINTK("last_scb_site_no:0x%x\n", last_scb_site_no);
941}
942
943/**
944 * asd_init_cseq_cio - initialize CSEQ CIO registers
945 * @asd_ha: pointer to host adapter structure
946 */
947static void asd_init_cseq_cio(struct asd_ha_struct *asd_ha)
948{
949 int i;
950
951 asd_write_reg_byte(asd_ha, CSEQCOMINTEN, 0);
952 asd_write_reg_byte(asd_ha, CSEQDLCTL, ASD_DL_SIZE_BITS);
953 asd_write_reg_byte(asd_ha, CSEQDLOFFS, 0);
954 asd_write_reg_byte(asd_ha, CSEQDLOFFS+1, 0);
955 asd_ha->seq.scbpro = 0;
956 asd_write_reg_dword(asd_ha, SCBPRO, 0);
957 asd_write_reg_dword(asd_ha, CSEQCON, 0);
958
959 /* Intialize CSEQ Mode 11 Interrupt Vectors.
960 * The addresses are 16 bit wide and in dword units.
961 * The values of their macros are in byte units.
962 * Thus we have to divide by 4. */
963 asd_write_reg_word(asd_ha, CM11INTVEC0, cseq_vecs[0]);
964 asd_write_reg_word(asd_ha, CM11INTVEC1, cseq_vecs[1]);
965 asd_write_reg_word(asd_ha, CM11INTVEC2, cseq_vecs[2]);
966
967 /* Enable ARP2HALTC (ARP2 Halted from Halt Code Write). */
968 asd_write_reg_byte(asd_ha, CARP2INTEN, EN_ARP2HALTC);
969
970 /* Initialize CSEQ Scratch Page to 0x04. */
971 asd_write_reg_byte(asd_ha, CSCRATCHPAGE, 0x04);
972
973 /* Initialize CSEQ Mode[0-8] Dependent registers. */
974 /* Initialize Scratch Page to 0. */
975 for (i = 0; i < 9; i++)
976 asd_write_reg_byte(asd_ha, CMnSCRATCHPAGE(i), 0);
977
978 /* Reset the ARP2 Program Count. */
979 asd_write_reg_word(asd_ha, CPRGMCNT, cseq_idle_loop);
980
981 for (i = 0; i < 8; i++) {
982 /* Intialize Mode n Link m Interrupt Enable. */
983 asd_write_reg_dword(asd_ha, CMnINTEN(i), EN_CMnRSPMBXF);
984 /* Initialize Mode n Request Mailbox. */
985 asd_write_reg_dword(asd_ha, CMnREQMBX(i), 0);
986 }
987}
988
989/**
990 * asd_init_lseq_cio -- initialize LmSEQ CIO registers
991 * @asd_ha: pointer to host adapter structure
992 */
993static void asd_init_lseq_cio(struct asd_ha_struct *asd_ha, int lseq)
994{
995 u8 *sas_addr;
996 int i;
997
998 /* Enable ARP2HALTC (ARP2 Halted from Halt Code Write). */
999 asd_write_reg_dword(asd_ha, LmARP2INTEN(lseq), EN_ARP2HALTC);
1000
1001 asd_write_reg_byte(asd_ha, LmSCRATCHPAGE(lseq), 0);
1002
1003 /* Initialize Mode 0,1, and 2 SCRATCHPAGE to 0. */
1004 for (i = 0; i < 3; i++)
1005 asd_write_reg_byte(asd_ha, LmMnSCRATCHPAGE(lseq, i), 0);
1006
1007 /* Initialize Mode 5 SCRATCHPAGE to 0. */
1008 asd_write_reg_byte(asd_ha, LmMnSCRATCHPAGE(lseq, 5), 0);
1009
1010 asd_write_reg_dword(asd_ha, LmRSPMBX(lseq), 0);
1011 /* Initialize Mode 0,1,2 and 5 Interrupt Enable and
1012 * Interrupt registers. */
1013 asd_write_reg_dword(asd_ha, LmMnINTEN(lseq, 0), LmM0INTEN_MASK);
1014 asd_write_reg_dword(asd_ha, LmMnINT(lseq, 0), 0xFFFFFFFF);
1015 /* Mode 1 */
1016 asd_write_reg_dword(asd_ha, LmMnINTEN(lseq, 1), LmM1INTEN_MASK);
1017 asd_write_reg_dword(asd_ha, LmMnINT(lseq, 1), 0xFFFFFFFF);
1018 /* Mode 2 */
1019 asd_write_reg_dword(asd_ha, LmMnINTEN(lseq, 2), LmM2INTEN_MASK);
1020 asd_write_reg_dword(asd_ha, LmMnINT(lseq, 2), 0xFFFFFFFF);
1021 /* Mode 5 */
1022 asd_write_reg_dword(asd_ha, LmMnINTEN(lseq, 5), LmM5INTEN_MASK);
1023 asd_write_reg_dword(asd_ha, LmMnINT(lseq, 5), 0xFFFFFFFF);
1024
1025 /* Enable HW Timer status. */
1026 asd_write_reg_byte(asd_ha, LmHWTSTATEN(lseq), LmHWTSTATEN_MASK);
1027
1028 /* Enable Primitive Status 0 and 1. */
1029 asd_write_reg_dword(asd_ha, LmPRIMSTAT0EN(lseq), LmPRIMSTAT0EN_MASK);
1030 asd_write_reg_dword(asd_ha, LmPRIMSTAT1EN(lseq), LmPRIMSTAT1EN_MASK);
1031
1032 /* Enable Frame Error. */
1033 asd_write_reg_dword(asd_ha, LmFRMERREN(lseq), LmFRMERREN_MASK);
1034 asd_write_reg_byte(asd_ha, LmMnHOLDLVL(lseq, 0), 0x50);
1035
1036 /* Initialize Mode 0 Transfer Level to 512. */
1037 asd_write_reg_byte(asd_ha, LmMnXFRLVL(lseq, 0), LmMnXFRLVL_512);
1038 /* Initialize Mode 1 Transfer Level to 256. */
1039 asd_write_reg_byte(asd_ha, LmMnXFRLVL(lseq, 1), LmMnXFRLVL_256);
1040
1041 /* Initialize Program Count. */
1042 asd_write_reg_word(asd_ha, LmPRGMCNT(lseq), lseq_idle_loop);
1043
1044 /* Enable Blind SG Move. */
1045 asd_write_reg_dword(asd_ha, LmMODECTL(lseq), LmBLIND48);
1046 asd_write_reg_word(asd_ha, LmM3SATATIMER(lseq),
1047 ASD_SATA_INTERLOCK_TIMEOUT);
1048
1049 (void) asd_read_reg_dword(asd_ha, LmREQMBX(lseq));
1050
1051 /* Clear Primitive Status 0 and 1. */
1052 asd_write_reg_dword(asd_ha, LmPRMSTAT0(lseq), 0xFFFFFFFF);
1053 asd_write_reg_dword(asd_ha, LmPRMSTAT1(lseq), 0xFFFFFFFF);
1054
1055 /* Clear HW Timer status. */
1056 asd_write_reg_byte(asd_ha, LmHWTSTAT(lseq), 0xFF);
1057
1058 /* Clear DMA Errors for Mode 0 and 1. */
1059 asd_write_reg_byte(asd_ha, LmMnDMAERRS(lseq, 0), 0xFF);
1060 asd_write_reg_byte(asd_ha, LmMnDMAERRS(lseq, 1), 0xFF);
1061
1062 /* Clear SG DMA Errors for Mode 0 and 1. */
1063 asd_write_reg_byte(asd_ha, LmMnSGDMAERRS(lseq, 0), 0xFF);
1064 asd_write_reg_byte(asd_ha, LmMnSGDMAERRS(lseq, 1), 0xFF);
1065
1066 /* Clear Mode 0 Buffer Parity Error. */
1067 asd_write_reg_byte(asd_ha, LmMnBUFSTAT(lseq, 0), LmMnBUFPERR);
1068
1069 /* Clear Mode 0 Frame Error register. */
1070 asd_write_reg_dword(asd_ha, LmMnFRMERR(lseq, 0), 0xFFFFFFFF);
1071
1072 /* Reset LSEQ external interrupt arbiter. */
1073 asd_write_reg_byte(asd_ha, LmARP2INTCTL(lseq), RSTINTCTL);
1074
1075 /* Set the Phy SAS for the LmSEQ WWN. */
1076 sas_addr = asd_ha->phys[lseq].phy_desc->sas_addr;
1077 for (i = 0; i < SAS_ADDR_SIZE; i++)
1078 asd_write_reg_byte(asd_ha, LmWWN(lseq) + i, sas_addr[i]);
1079
1080 /* Set the Transmit Size to 1024 bytes, 0 = 256 Dwords. */
1081 asd_write_reg_byte(asd_ha, LmMnXMTSIZE(lseq, 1), 0);
1082
1083 /* Set the Bus Inactivity Time Limit Timer. */
1084 asd_write_reg_word(asd_ha, LmBITL_TIMER(lseq), 9);
1085
1086 /* Enable SATA Port Multiplier. */
1087 asd_write_reg_byte(asd_ha, LmMnSATAFS(lseq, 1), 0x80);
1088
1089 /* Initialize Interrupt Vector[0-10] address in Mode 3.
1090 * See the comment on CSEQ_INT_* */
1091 asd_write_reg_word(asd_ha, LmM3INTVEC0(lseq), lseq_vecs[0]);
1092 asd_write_reg_word(asd_ha, LmM3INTVEC1(lseq), lseq_vecs[1]);
1093 asd_write_reg_word(asd_ha, LmM3INTVEC2(lseq), lseq_vecs[2]);
1094 asd_write_reg_word(asd_ha, LmM3INTVEC3(lseq), lseq_vecs[3]);
1095 asd_write_reg_word(asd_ha, LmM3INTVEC4(lseq), lseq_vecs[4]);
1096 asd_write_reg_word(asd_ha, LmM3INTVEC5(lseq), lseq_vecs[5]);
1097 asd_write_reg_word(asd_ha, LmM3INTVEC6(lseq), lseq_vecs[6]);
1098 asd_write_reg_word(asd_ha, LmM3INTVEC7(lseq), lseq_vecs[7]);
1099 asd_write_reg_word(asd_ha, LmM3INTVEC8(lseq), lseq_vecs[8]);
1100 asd_write_reg_word(asd_ha, LmM3INTVEC9(lseq), lseq_vecs[9]);
1101 asd_write_reg_word(asd_ha, LmM3INTVEC10(lseq), lseq_vecs[10]);
1102 /*
1103 * Program the Link LED control, applicable only for
1104 * Chip Rev. B or later.
1105 */
1106 asd_write_reg_dword(asd_ha, LmCONTROL(lseq),
1107 (LEDTIMER | LEDMODE_TXRX | LEDTIMERS_100ms));
1108
1109 /* Set the Align Rate for SAS and STP mode. */
1110 asd_write_reg_byte(asd_ha, LmM1SASALIGN(lseq), SAS_ALIGN_DEFAULT);
1111 asd_write_reg_byte(asd_ha, LmM1STPALIGN(lseq), STP_ALIGN_DEFAULT);
1112}
1113
1114
1115/**
1116 * asd_post_init_cseq -- clear CSEQ Mode n Int. status and Response mailbox
1117 * @asd_ha: pointer to host adapter struct
1118 */
1119static void asd_post_init_cseq(struct asd_ha_struct *asd_ha)
1120{
1121 int i;
1122
1123 for (i = 0; i < 8; i++)
1124 asd_write_reg_dword(asd_ha, CMnINT(i), 0xFFFFFFFF);
1125 for (i = 0; i < 8; i++)
1126 asd_read_reg_dword(asd_ha, CMnRSPMBX(i));
1127 /* Reset the external interrupt arbiter. */
1128 asd_write_reg_byte(asd_ha, CARP2INTCTL, RSTINTCTL);
1129}
1130
1131/**
1132 * asd_init_ddb_0 -- initialize DDB 0
1133 * @asd_ha: pointer to host adapter structure
1134 *
1135 * Initialize DDB site 0 which is used internally by the sequencer.
1136 */
1137static void asd_init_ddb_0(struct asd_ha_struct *asd_ha)
1138{
1139 int i;
1140
1141 /* Zero out the DDB explicitly */
1142 for (i = 0; i < sizeof(struct asd_ddb_seq_shared); i+=4)
1143 asd_ddbsite_write_dword(asd_ha, 0, i, 0);
1144
1145 asd_ddbsite_write_word(asd_ha, 0,
1146 offsetof(struct asd_ddb_seq_shared, q_free_ddb_head), 0);
1147 asd_ddbsite_write_word(asd_ha, 0,
1148 offsetof(struct asd_ddb_seq_shared, q_free_ddb_tail),
1149 asd_ha->hw_prof.max_ddbs-1);
1150 asd_ddbsite_write_word(asd_ha, 0,
1151 offsetof(struct asd_ddb_seq_shared, q_free_ddb_cnt), 0);
1152 asd_ddbsite_write_word(asd_ha, 0,
1153 offsetof(struct asd_ddb_seq_shared, q_used_ddb_head), 0xFFFF);
1154 asd_ddbsite_write_word(asd_ha, 0,
1155 offsetof(struct asd_ddb_seq_shared, q_used_ddb_tail), 0xFFFF);
1156 asd_ddbsite_write_word(asd_ha, 0,
1157 offsetof(struct asd_ddb_seq_shared, shared_mem_lock), 0);
1158 asd_ddbsite_write_word(asd_ha, 0,
1159 offsetof(struct asd_ddb_seq_shared, smp_conn_tag), 0);
1160 asd_ddbsite_write_word(asd_ha, 0,
1161 offsetof(struct asd_ddb_seq_shared, est_nexus_buf_cnt), 0);
1162 asd_ddbsite_write_word(asd_ha, 0,
1163 offsetof(struct asd_ddb_seq_shared, est_nexus_buf_thresh),
1164 asd_ha->hw_prof.num_phys * 2);
1165 asd_ddbsite_write_byte(asd_ha, 0,
1166 offsetof(struct asd_ddb_seq_shared, settable_max_contexts),0);
1167 asd_ddbsite_write_byte(asd_ha, 0,
1168 offsetof(struct asd_ddb_seq_shared, conn_not_active), 0xFF);
1169 asd_ddbsite_write_byte(asd_ha, 0,
1170 offsetof(struct asd_ddb_seq_shared, phy_is_up), 0x00);
1171 /* DDB 0 is reserved */
1172 set_bit(0, asd_ha->hw_prof.ddb_bitmap);
1173}
1174
1175/**
1176 * asd_seq_setup_seqs -- setup and initialize central and link sequencers
1177 * @asd_ha: pointer to host adapter structure
1178 */
1179static void asd_seq_setup_seqs(struct asd_ha_struct *asd_ha)
1180{
1181 int lseq;
1182 u8 lseq_mask;
1183
1184 /* Initialize SCB sites. Done first to compute some values which
1185 * the rest of the init code depends on. */
1186 asd_init_scb_sites(asd_ha);
1187
1188 /* Initialize CSEQ Scratch RAM registers. */
1189 asd_init_cseq_scratch(asd_ha);
1190
1191 /* Initialize LmSEQ Scratch RAM registers. */
1192 asd_init_lseq_scratch(asd_ha);
1193
1194 /* Initialize CSEQ CIO registers. */
1195 asd_init_cseq_cio(asd_ha);
1196
1197 asd_init_ddb_0(asd_ha);
1198
1199 /* Initialize LmSEQ CIO registers. */
1200 lseq_mask = asd_ha->hw_prof.enabled_phys;
1201 for_each_sequencer(lseq_mask, lseq_mask, lseq)
1202 asd_init_lseq_cio(asd_ha, lseq);
1203 asd_post_init_cseq(asd_ha);
1204}
1205
1206
1207/**
1208 * asd_seq_start_cseq -- start the central sequencer, CSEQ
1209 * @asd_ha: pointer to host adapter structure
1210 */
1211static int asd_seq_start_cseq(struct asd_ha_struct *asd_ha)
1212{
1213 /* Reset the ARP2 instruction to location zero. */
1214 asd_write_reg_word(asd_ha, CPRGMCNT, cseq_idle_loop);
1215
1216 /* Unpause the CSEQ */
1217 return asd_unpause_cseq(asd_ha);
1218}
1219
1220/**
1221 * asd_seq_start_lseq -- start a link sequencer
1222 * @asd_ha: pointer to host adapter structure
1223 * @lseq: the link sequencer of interest
1224 */
1225static int asd_seq_start_lseq(struct asd_ha_struct *asd_ha, int lseq)
1226{
1227 /* Reset the ARP2 instruction to location zero. */
1228 asd_write_reg_word(asd_ha, LmPRGMCNT(lseq), lseq_idle_loop);
1229
1230 /* Unpause the LmSEQ */
1231 return asd_seq_unpause_lseq(asd_ha, lseq);
1232}
1233
1234static int asd_request_firmware(struct asd_ha_struct *asd_ha)
1235{
1236 int err, i;
1237 struct sequencer_file_header header, *hdr_ptr;
1238 u32 csum = 0;
1239 u16 *ptr_cseq_vecs, *ptr_lseq_vecs;
1240
1241 if (sequencer_fw)
1242 /* already loaded */
1243 return 0;
1244
1245 err = request_firmware(&sequencer_fw,
1246 SAS_RAZOR_SEQUENCER_FW_FILE,
1247 &asd_ha->pcidev->dev);
1248 if (err)
1249 return err;
1250
1251 hdr_ptr = (struct sequencer_file_header *)sequencer_fw->data;
1252
1253 header.csum = le32_to_cpu(hdr_ptr->csum);
1254 header.major = le32_to_cpu(hdr_ptr->major);
1255 header.minor = le32_to_cpu(hdr_ptr->minor);
1256 sequencer_version = hdr_ptr->version;
1257 header.cseq_table_offset = le32_to_cpu(hdr_ptr->cseq_table_offset);
1258 header.cseq_table_size = le32_to_cpu(hdr_ptr->cseq_table_size);
1259 header.lseq_table_offset = le32_to_cpu(hdr_ptr->lseq_table_offset);
1260 header.lseq_table_size = le32_to_cpu(hdr_ptr->lseq_table_size);
1261 header.cseq_code_offset = le32_to_cpu(hdr_ptr->cseq_code_offset);
1262 header.cseq_code_size = le32_to_cpu(hdr_ptr->cseq_code_size);
1263 header.lseq_code_offset = le32_to_cpu(hdr_ptr->lseq_code_offset);
1264 header.lseq_code_size = le32_to_cpu(hdr_ptr->lseq_code_size);
1265 header.mode2_task = le16_to_cpu(hdr_ptr->mode2_task);
1266 header.cseq_idle_loop = le16_to_cpu(hdr_ptr->cseq_idle_loop);
1267 header.lseq_idle_loop = le16_to_cpu(hdr_ptr->lseq_idle_loop);
1268
1269 for (i = sizeof(header.csum); i < sequencer_fw->size; i++)
1270 csum += sequencer_fw->data[i];
1271
1272 if (csum != header.csum) {
1273 asd_printk("Firmware file checksum mismatch\n");
1274 return -EINVAL;
1275 }
1276
1277 if (header.cseq_table_size != CSEQ_NUM_VECS ||
1278 header.lseq_table_size != LSEQ_NUM_VECS) {
1279 asd_printk("Firmware file table size mismatch\n");
1280 return -EINVAL;
1281 }
1282
1283 ptr_cseq_vecs = (u16 *)&sequencer_fw->data[header.cseq_table_offset];
1284 ptr_lseq_vecs = (u16 *)&sequencer_fw->data[header.lseq_table_offset];
1285 mode2_task = header.mode2_task;
1286 cseq_idle_loop = header.cseq_idle_loop;
1287 lseq_idle_loop = header.lseq_idle_loop;
1288
1289 for (i = 0; i < CSEQ_NUM_VECS; i++)
1290 cseq_vecs[i] = le16_to_cpu(ptr_cseq_vecs[i]);
1291
1292 for (i = 0; i < LSEQ_NUM_VECS; i++)
1293 lseq_vecs[i] = le16_to_cpu(ptr_lseq_vecs[i]);
1294
1295 cseq_code = &sequencer_fw->data[header.cseq_code_offset];
1296 cseq_code_size = header.cseq_code_size;
1297 lseq_code = &sequencer_fw->data[header.lseq_code_offset];
1298 lseq_code_size = header.lseq_code_size;
1299
1300 return 0;
1301}
1302
1303int asd_init_seqs(struct asd_ha_struct *asd_ha)
1304{
1305 int err;
1306
1307 err = asd_request_firmware(asd_ha);
1308
1309 if (err) {
1310 asd_printk("Failed to load sequencer firmware file %s, error %d\n",
1311 SAS_RAZOR_SEQUENCER_FW_FILE, err);
1312 return err;
1313 }
1314
1315 asd_printk("using sequencer %s\n", sequencer_version);
1316 err = asd_seq_download_seqs(asd_ha);
1317 if (err) {
1318 asd_printk("couldn't download sequencers for %s\n",
1319 pci_name(asd_ha->pcidev));
1320 return err;
1321 }
1322
1323 asd_seq_setup_seqs(asd_ha);
1324
1325 return 0;
1326}
1327
1328int asd_start_seqs(struct asd_ha_struct *asd_ha)
1329{
1330 int err;
1331 u8 lseq_mask;
1332 int lseq;
1333
1334 err = asd_seq_start_cseq(asd_ha);
1335 if (err) {
1336 asd_printk("couldn't start CSEQ for %s\n",
1337 pci_name(asd_ha->pcidev));
1338 return err;
1339 }
1340
1341 lseq_mask = asd_ha->hw_prof.enabled_phys;
1342 for_each_sequencer(lseq_mask, lseq_mask, lseq) {
1343 err = asd_seq_start_lseq(asd_ha, lseq);
1344 if (err) {
1345 asd_printk("coudln't start LSEQ %d for %s\n", lseq,
1346 pci_name(asd_ha->pcidev));
1347 return err;
1348 }
1349 }
1350
1351 return 0;
1352}
1353
1354/**
1355 * asd_update_port_links -- update port_map_by_links and phy_is_up
1356 * @sas_phy: pointer to the phy which has been added to a port
1357 *
1358 * 1) When a link reset has completed and we got BYTES DMAED with a
1359 * valid frame we call this function for that phy, to indicate that
1360 * the phy is up, i.e. we update the phy_is_up in DDB 0. The
1361 * sequencer checks phy_is_up when pending SCBs are to be sent, and
1362 * when an open address frame has been received.
1363 *
1364 * 2) When we know of ports, we call this function to update the map
1365 * of phys participaing in that port, i.e. we update the
1366 * port_map_by_links in DDB 0. When a HARD_RESET primitive has been
1367 * received, the sequencer disables all phys in that port.
1368 * port_map_by_links is also used as the conn_mask byte in the
1369 * initiator/target port DDB.
1370 */
1371void asd_update_port_links(struct asd_sas_phy *sas_phy)
1372{
1373 struct asd_ha_struct *asd_ha = sas_phy->ha->lldd_ha;
1374 const u8 phy_mask = (u8) sas_phy->port->phy_mask;
1375 u8 phy_is_up;
1376 u8 mask;
1377 int i, err;
1378
1379 for_each_phy(phy_mask, mask, i)
1380 asd_ddbsite_write_byte(asd_ha, 0,
1381 offsetof(struct asd_ddb_seq_shared,
1382 port_map_by_links)+i,phy_mask);
1383
1384 for (i = 0; i < 12; i++) {
1385 phy_is_up = asd_ddbsite_read_byte(asd_ha, 0,
1386 offsetof(struct asd_ddb_seq_shared, phy_is_up));
1387 err = asd_ddbsite_update_byte(asd_ha, 0,
1388 offsetof(struct asd_ddb_seq_shared, phy_is_up),
1389 phy_is_up,
1390 phy_is_up | phy_mask);
1391 if (!err)
1392 break;
1393 else if (err == -EFAULT) {
1394 asd_printk("phy_is_up: parity error in DDB 0\n");
1395 break;
1396 }
1397 }
1398
1399 if (err)
1400 asd_printk("couldn't update DDB 0:error:%d\n", err);
1401}
diff --git a/drivers/scsi/aic94xx/aic94xx_seq.h b/drivers/scsi/aic94xx/aic94xx_seq.h
new file mode 100644
index 000000000000..42281c36153b
--- /dev/null
+++ b/drivers/scsi/aic94xx/aic94xx_seq.h
@@ -0,0 +1,70 @@
1/*
2 * Aic94xx SAS/SATA driver sequencer interface header file.
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This file is part of the aic94xx driver.
10 *
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
14 * License.
15 *
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 *
25 */
26
27#ifndef _AIC94XX_SEQ_H_
28#define _AIC94XX_SEQ_H_
29
30#define CSEQ_NUM_VECS 3
31#define LSEQ_NUM_VECS 11
32
33#define SAS_RAZOR_SEQUENCER_FW_FILE "aic94xx-seq.fw"
34
35/* Note: All quantites in the sequencer file are little endian */
36struct sequencer_file_header {
37 /* Checksum of the entire contents of the sequencer excluding
38 * these four bytes */
39 u32 csum;
40 /* numeric major version */
41 u32 major;
42 /* numeric minor version */
43 u32 minor;
44 /* version string printed by driver */
45 char version[16];
46 u32 cseq_table_offset;
47 u32 cseq_table_size;
48 u32 lseq_table_offset;
49 u32 lseq_table_size;
50 u32 cseq_code_offset;
51 u32 cseq_code_size;
52 u32 lseq_code_offset;
53 u32 lseq_code_size;
54 u16 mode2_task;
55 u16 cseq_idle_loop;
56 u16 lseq_idle_loop;
57} __attribute__((packed));
58
59#ifdef __KERNEL__
60int asd_pause_cseq(struct asd_ha_struct *asd_ha);
61int asd_unpause_cseq(struct asd_ha_struct *asd_ha);
62int asd_pause_lseq(struct asd_ha_struct *asd_ha, u8 lseq_mask);
63int asd_unpause_lseq(struct asd_ha_struct *asd_ha, u8 lseq_mask);
64int asd_init_seqs(struct asd_ha_struct *asd_ha);
65int asd_start_seqs(struct asd_ha_struct *asd_ha);
66
67void asd_update_port_links(struct asd_sas_phy *phy);
68#endif
69
70#endif
diff --git a/drivers/scsi/aic94xx/aic94xx_task.c b/drivers/scsi/aic94xx/aic94xx_task.c
new file mode 100644
index 000000000000..285e70dae933
--- /dev/null
+++ b/drivers/scsi/aic94xx/aic94xx_task.c
@@ -0,0 +1,642 @@
1/*
2 * Aic94xx SAS/SATA Tasks
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This file is part of the aic94xx driver.
10 *
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
14 * License.
15 *
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 *
25 */
26
27#include <linux/spinlock.h>
28#include "aic94xx.h"
29#include "aic94xx_sas.h"
30#include "aic94xx_hwi.h"
31
32static void asd_unbuild_ata_ascb(struct asd_ascb *a);
33static void asd_unbuild_smp_ascb(struct asd_ascb *a);
34static void asd_unbuild_ssp_ascb(struct asd_ascb *a);
35
36static inline void asd_can_dequeue(struct asd_ha_struct *asd_ha, int num)
37{
38 unsigned long flags;
39
40 spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
41 asd_ha->seq.can_queue += num;
42 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
43}
44
45/* PCI_DMA_... to our direction translation.
46 */
47static const u8 data_dir_flags[] = {
48 [PCI_DMA_BIDIRECTIONAL] = DATA_DIR_BYRECIPIENT, /* UNSPECIFIED */
49 [PCI_DMA_TODEVICE] = DATA_DIR_OUT, /* OUTBOUND */
50 [PCI_DMA_FROMDEVICE] = DATA_DIR_IN, /* INBOUND */
51 [PCI_DMA_NONE] = DATA_DIR_NONE, /* NO TRANSFER */
52};
53
54static inline int asd_map_scatterlist(struct sas_task *task,
55 struct sg_el *sg_arr,
56 unsigned long gfp_flags)
57{
58 struct asd_ascb *ascb = task->lldd_task;
59 struct asd_ha_struct *asd_ha = ascb->ha;
60 struct scatterlist *sc;
61 int num_sg, res;
62
63 if (task->data_dir == PCI_DMA_NONE)
64 return 0;
65
66 if (task->num_scatter == 0) {
67 void *p = task->scatter;
68 dma_addr_t dma = pci_map_single(asd_ha->pcidev, p,
69 task->total_xfer_len,
70 task->data_dir);
71 sg_arr[0].bus_addr = cpu_to_le64((u64)dma);
72 sg_arr[0].size = cpu_to_le32(task->total_xfer_len);
73 sg_arr[0].flags |= ASD_SG_EL_LIST_EOL;
74 return 0;
75 }
76
77 num_sg = pci_map_sg(asd_ha->pcidev, task->scatter, task->num_scatter,
78 task->data_dir);
79 if (num_sg == 0)
80 return -ENOMEM;
81
82 if (num_sg > 3) {
83 int i;
84
85 ascb->sg_arr = asd_alloc_coherent(asd_ha,
86 num_sg*sizeof(struct sg_el),
87 gfp_flags);
88 if (!ascb->sg_arr) {
89 res = -ENOMEM;
90 goto err_unmap;
91 }
92 for (sc = task->scatter, i = 0; i < num_sg; i++, sc++) {
93 struct sg_el *sg =
94 &((struct sg_el *)ascb->sg_arr->vaddr)[i];
95 sg->bus_addr = cpu_to_le64((u64)sg_dma_address(sc));
96 sg->size = cpu_to_le32((u32)sg_dma_len(sc));
97 if (i == num_sg-1)
98 sg->flags |= ASD_SG_EL_LIST_EOL;
99 }
100
101 for (sc = task->scatter, i = 0; i < 2; i++, sc++) {
102 sg_arr[i].bus_addr =
103 cpu_to_le64((u64)sg_dma_address(sc));
104 sg_arr[i].size = cpu_to_le32((u32)sg_dma_len(sc));
105 }
106 sg_arr[1].next_sg_offs = 2 * sizeof(*sg_arr);
107 sg_arr[1].flags |= ASD_SG_EL_LIST_EOS;
108
109 memset(&sg_arr[2], 0, sizeof(*sg_arr));
110 sg_arr[2].bus_addr=cpu_to_le64((u64)ascb->sg_arr->dma_handle);
111 } else {
112 int i;
113 for (sc = task->scatter, i = 0; i < num_sg; i++, sc++) {
114 sg_arr[i].bus_addr =
115 cpu_to_le64((u64)sg_dma_address(sc));
116 sg_arr[i].size = cpu_to_le32((u32)sg_dma_len(sc));
117 }
118 sg_arr[i-1].flags |= ASD_SG_EL_LIST_EOL;
119 }
120
121 return 0;
122err_unmap:
123 pci_unmap_sg(asd_ha->pcidev, task->scatter, task->num_scatter,
124 task->data_dir);
125 return res;
126}
127
128static inline void asd_unmap_scatterlist(struct asd_ascb *ascb)
129{
130 struct asd_ha_struct *asd_ha = ascb->ha;
131 struct sas_task *task = ascb->uldd_task;
132
133 if (task->data_dir == PCI_DMA_NONE)
134 return;
135
136 if (task->num_scatter == 0) {
137 dma_addr_t dma = (dma_addr_t)
138 le64_to_cpu(ascb->scb->ssp_task.sg_element[0].bus_addr);
139 pci_unmap_single(ascb->ha->pcidev, dma, task->total_xfer_len,
140 task->data_dir);
141 return;
142 }
143
144 asd_free_coherent(asd_ha, ascb->sg_arr);
145 pci_unmap_sg(asd_ha->pcidev, task->scatter, task->num_scatter,
146 task->data_dir);
147}
148
149/* ---------- Task complete tasklet ---------- */
150
151static void asd_get_response_tasklet(struct asd_ascb *ascb,
152 struct done_list_struct *dl)
153{
154 struct asd_ha_struct *asd_ha = ascb->ha;
155 struct sas_task *task = ascb->uldd_task;
156 struct task_status_struct *ts = &task->task_status;
157 unsigned long flags;
158 struct tc_resp_sb_struct {
159 __le16 index_escb;
160 u8 len_lsb;
161 u8 flags;
162 } __attribute__ ((packed)) *resp_sb = (void *) dl->status_block;
163
164/* int size = ((resp_sb->flags & 7) << 8) | resp_sb->len_lsb; */
165 int edb_id = ((resp_sb->flags & 0x70) >> 4)-1;
166 struct asd_ascb *escb;
167 struct asd_dma_tok *edb;
168 void *r;
169
170 spin_lock_irqsave(&asd_ha->seq.tc_index_lock, flags);
171 escb = asd_tc_index_find(&asd_ha->seq,
172 (int)le16_to_cpu(resp_sb->index_escb));
173 spin_unlock_irqrestore(&asd_ha->seq.tc_index_lock, flags);
174
175 if (!escb) {
176 ASD_DPRINTK("Uh-oh! No escb for this dl?!\n");
177 return;
178 }
179
180 ts->buf_valid_size = 0;
181 edb = asd_ha->seq.edb_arr[edb_id + escb->edb_index];
182 r = edb->vaddr;
183 if (task->task_proto == SAS_PROTO_SSP) {
184 struct ssp_response_iu *iu =
185 r + 16 + sizeof(struct ssp_frame_hdr);
186
187 ts->residual = le32_to_cpu(*(__le32 *)r);
188 ts->resp = SAS_TASK_COMPLETE;
189 if (iu->datapres == 0)
190 ts->stat = iu->status;
191 else if (iu->datapres == 1)
192 ts->stat = iu->resp_data[3];
193 else if (iu->datapres == 2) {
194 ts->stat = SAM_CHECK_COND;
195 ts->buf_valid_size = min((u32) SAS_STATUS_BUF_SIZE,
196 be32_to_cpu(iu->sense_data_len));
197 memcpy(ts->buf, iu->sense_data, ts->buf_valid_size);
198 if (iu->status != SAM_CHECK_COND) {
199 ASD_DPRINTK("device %llx sent sense data, but "
200 "stat(0x%x) is not CHECK_CONDITION"
201 "\n",
202 SAS_ADDR(task->dev->sas_addr),
203 ts->stat);
204 }
205 }
206 } else {
207 struct ata_task_resp *resp = (void *) &ts->buf[0];
208
209 ts->residual = le32_to_cpu(*(__le32 *)r);
210
211 if (SAS_STATUS_BUF_SIZE >= sizeof(*resp)) {
212 resp->frame_len = le16_to_cpu(*(__le16 *)(r+6));
213 memcpy(&resp->ending_fis[0], r+16, 24);
214 ts->buf_valid_size = sizeof(*resp);
215 }
216 }
217
218 asd_invalidate_edb(escb, edb_id);
219}
220
221static void asd_task_tasklet_complete(struct asd_ascb *ascb,
222 struct done_list_struct *dl)
223{
224 struct sas_task *task = ascb->uldd_task;
225 struct task_status_struct *ts = &task->task_status;
226 unsigned long flags;
227 u8 opcode = dl->opcode;
228
229 asd_can_dequeue(ascb->ha, 1);
230
231Again:
232 switch (opcode) {
233 case TC_NO_ERROR:
234 ts->resp = SAS_TASK_COMPLETE;
235 ts->stat = SAM_GOOD;
236 break;
237 case TC_UNDERRUN:
238 ts->resp = SAS_TASK_COMPLETE;
239 ts->stat = SAS_DATA_UNDERRUN;
240 ts->residual = le32_to_cpu(*(__le32 *)dl->status_block);
241 break;
242 case TC_OVERRUN:
243 ts->resp = SAS_TASK_COMPLETE;
244 ts->stat = SAS_DATA_OVERRUN;
245 ts->residual = 0;
246 break;
247 case TC_SSP_RESP:
248 case TC_ATA_RESP:
249 ts->resp = SAS_TASK_COMPLETE;
250 ts->stat = SAS_PROTO_RESPONSE;
251 asd_get_response_tasklet(ascb, dl);
252 break;
253 case TF_OPEN_REJECT:
254 ts->resp = SAS_TASK_UNDELIVERED;
255 ts->stat = SAS_OPEN_REJECT;
256 if (dl->status_block[1] & 2)
257 ts->open_rej_reason = 1 + dl->status_block[2];
258 else if (dl->status_block[1] & 1)
259 ts->open_rej_reason = (dl->status_block[2] >> 4)+10;
260 else
261 ts->open_rej_reason = SAS_OREJ_UNKNOWN;
262 break;
263 case TF_OPEN_TO:
264 ts->resp = SAS_TASK_UNDELIVERED;
265 ts->stat = SAS_OPEN_TO;
266 break;
267 case TF_PHY_DOWN:
268 case TU_PHY_DOWN:
269 ts->resp = SAS_TASK_UNDELIVERED;
270 ts->stat = SAS_PHY_DOWN;
271 break;
272 case TI_PHY_DOWN:
273 ts->resp = SAS_TASK_COMPLETE;
274 ts->stat = SAS_PHY_DOWN;
275 break;
276 case TI_BREAK:
277 case TI_PROTO_ERR:
278 case TI_NAK:
279 case TI_ACK_NAK_TO:
280 case TF_SMP_XMIT_RCV_ERR:
281 case TC_ATA_R_ERR_RECV:
282 ts->resp = SAS_TASK_COMPLETE;
283 ts->stat = SAS_INTERRUPTED;
284 break;
285 case TF_BREAK:
286 case TU_BREAK:
287 case TU_ACK_NAK_TO:
288 case TF_SMPRSP_TO:
289 ts->resp = SAS_TASK_UNDELIVERED;
290 ts->stat = SAS_DEV_NO_RESPONSE;
291 break;
292 case TF_NAK_RECV:
293 ts->resp = SAS_TASK_COMPLETE;
294 ts->stat = SAS_NAK_R_ERR;
295 break;
296 case TA_I_T_NEXUS_LOSS:
297 opcode = dl->status_block[0];
298 goto Again;
299 break;
300 case TF_INV_CONN_HANDLE:
301 ts->resp = SAS_TASK_UNDELIVERED;
302 ts->stat = SAS_DEVICE_UNKNOWN;
303 break;
304 case TF_REQUESTED_N_PENDING:
305 ts->resp = SAS_TASK_UNDELIVERED;
306 ts->stat = SAS_PENDING;
307 break;
308 case TC_TASK_CLEARED:
309 case TA_ON_REQ:
310 ts->resp = SAS_TASK_COMPLETE;
311 ts->stat = SAS_ABORTED_TASK;
312 break;
313
314 case TF_NO_SMP_CONN:
315 case TF_TMF_NO_CTX:
316 case TF_TMF_NO_TAG:
317 case TF_TMF_TAG_FREE:
318 case TF_TMF_TASK_DONE:
319 case TF_TMF_NO_CONN_HANDLE:
320 case TF_IRTT_TO:
321 case TF_IU_SHORT:
322 case TF_DATA_OFFS_ERR:
323 ts->resp = SAS_TASK_UNDELIVERED;
324 ts->stat = SAS_DEV_NO_RESPONSE;
325 break;
326
327 case TC_LINK_ADM_RESP:
328 case TC_CONTROL_PHY:
329 case TC_RESUME:
330 case TC_PARTIAL_SG_LIST:
331 default:
332 ASD_DPRINTK("%s: dl opcode: 0x%x?\n", __FUNCTION__, opcode);
333 break;
334 }
335
336 switch (task->task_proto) {
337 case SATA_PROTO:
338 case SAS_PROTO_STP:
339 asd_unbuild_ata_ascb(ascb);
340 break;
341 case SAS_PROTO_SMP:
342 asd_unbuild_smp_ascb(ascb);
343 break;
344 case SAS_PROTO_SSP:
345 asd_unbuild_ssp_ascb(ascb);
346 default:
347 break;
348 }
349
350 spin_lock_irqsave(&task->task_state_lock, flags);
351 task->task_state_flags &= ~SAS_TASK_STATE_PENDING;
352 task->task_state_flags |= SAS_TASK_STATE_DONE;
353 if (unlikely((task->task_state_flags & SAS_TASK_STATE_ABORTED))) {
354 spin_unlock_irqrestore(&task->task_state_lock, flags);
355 ASD_DPRINTK("task 0x%p done with opcode 0x%x resp 0x%x "
356 "stat 0x%x but aborted by upper layer!\n",
357 task, opcode, ts->resp, ts->stat);
358 complete(&ascb->completion);
359 } else {
360 spin_unlock_irqrestore(&task->task_state_lock, flags);
361 task->lldd_task = NULL;
362 asd_ascb_free(ascb);
363 mb();
364 task->task_done(task);
365 }
366}
367
368/* ---------- ATA ---------- */
369
370static int asd_build_ata_ascb(struct asd_ascb *ascb, struct sas_task *task,
371 unsigned long gfp_flags)
372{
373 struct domain_device *dev = task->dev;
374 struct scb *scb;
375 u8 flags;
376 int res = 0;
377
378 scb = ascb->scb;
379
380 if (unlikely(task->ata_task.device_control_reg_update))
381 scb->header.opcode = CONTROL_ATA_DEV;
382 else if (dev->sata_dev.command_set == ATA_COMMAND_SET)
383 scb->header.opcode = INITIATE_ATA_TASK;
384 else
385 scb->header.opcode = INITIATE_ATAPI_TASK;
386
387 scb->ata_task.proto_conn_rate = (1 << 5); /* STP */
388 if (dev->port->oob_mode == SAS_OOB_MODE)
389 scb->ata_task.proto_conn_rate |= dev->linkrate;
390
391 scb->ata_task.total_xfer_len = cpu_to_le32(task->total_xfer_len);
392 scb->ata_task.fis = task->ata_task.fis;
393 scb->ata_task.fis.fis_type = 0x27;
394 if (likely(!task->ata_task.device_control_reg_update))
395 scb->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */
396 scb->ata_task.fis.flags &= 0xF0; /* PM_PORT field shall be 0 */
397 if (dev->sata_dev.command_set == ATAPI_COMMAND_SET)
398 memcpy(scb->ata_task.atapi_packet, task->ata_task.atapi_packet,
399 16);
400 scb->ata_task.sister_scb = cpu_to_le16(0xFFFF);
401 scb->ata_task.conn_handle = cpu_to_le16(
402 (u16)(unsigned long)dev->lldd_dev);
403
404 if (likely(!task->ata_task.device_control_reg_update)) {
405 flags = 0;
406 if (task->ata_task.dma_xfer)
407 flags |= DATA_XFER_MODE_DMA;
408 if (task->ata_task.use_ncq &&
409 dev->sata_dev.command_set != ATAPI_COMMAND_SET)
410 flags |= ATA_Q_TYPE_NCQ;
411 flags |= data_dir_flags[task->data_dir];
412 scb->ata_task.ata_flags = flags;
413
414 scb->ata_task.retry_count = task->ata_task.retry_count;
415
416 flags = 0;
417 if (task->ata_task.set_affil_pol)
418 flags |= SET_AFFIL_POLICY;
419 if (task->ata_task.stp_affil_pol)
420 flags |= STP_AFFIL_POLICY;
421 scb->ata_task.flags = flags;
422 }
423 ascb->tasklet_complete = asd_task_tasklet_complete;
424
425 if (likely(!task->ata_task.device_control_reg_update))
426 res = asd_map_scatterlist(task, scb->ata_task.sg_element,
427 gfp_flags);
428
429 return res;
430}
431
432static void asd_unbuild_ata_ascb(struct asd_ascb *a)
433{
434 asd_unmap_scatterlist(a);
435}
436
437/* ---------- SMP ---------- */
438
439static int asd_build_smp_ascb(struct asd_ascb *ascb, struct sas_task *task,
440 unsigned long gfp_flags)
441{
442 struct asd_ha_struct *asd_ha = ascb->ha;
443 struct domain_device *dev = task->dev;
444 struct scb *scb;
445
446 pci_map_sg(asd_ha->pcidev, &task->smp_task.smp_req, 1,
447 PCI_DMA_FROMDEVICE);
448 pci_map_sg(asd_ha->pcidev, &task->smp_task.smp_resp, 1,
449 PCI_DMA_FROMDEVICE);
450
451 scb = ascb->scb;
452
453 scb->header.opcode = INITIATE_SMP_TASK;
454
455 scb->smp_task.proto_conn_rate = dev->linkrate;
456
457 scb->smp_task.smp_req.bus_addr =
458 cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_req));
459 scb->smp_task.smp_req.size =
460 cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-4);
461
462 scb->smp_task.smp_resp.bus_addr =
463 cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_resp));
464 scb->smp_task.smp_resp.size =
465 cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_resp)-4);
466
467 scb->smp_task.sister_scb = cpu_to_le16(0xFFFF);
468 scb->smp_task.conn_handle = cpu_to_le16((u16)
469 (unsigned long)dev->lldd_dev);
470
471 ascb->tasklet_complete = asd_task_tasklet_complete;
472
473 return 0;
474}
475
476static void asd_unbuild_smp_ascb(struct asd_ascb *a)
477{
478 struct sas_task *task = a->uldd_task;
479
480 BUG_ON(!task);
481 pci_unmap_sg(a->ha->pcidev, &task->smp_task.smp_req, 1,
482 PCI_DMA_FROMDEVICE);
483 pci_unmap_sg(a->ha->pcidev, &task->smp_task.smp_resp, 1,
484 PCI_DMA_FROMDEVICE);
485}
486
487/* ---------- SSP ---------- */
488
489static int asd_build_ssp_ascb(struct asd_ascb *ascb, struct sas_task *task,
490 unsigned long gfp_flags)
491{
492 struct domain_device *dev = task->dev;
493 struct scb *scb;
494 int res = 0;
495
496 scb = ascb->scb;
497
498 scb->header.opcode = INITIATE_SSP_TASK;
499
500 scb->ssp_task.proto_conn_rate = (1 << 4); /* SSP */
501 scb->ssp_task.proto_conn_rate |= dev->linkrate;
502 scb->ssp_task.total_xfer_len = cpu_to_le32(task->total_xfer_len);
503 scb->ssp_task.ssp_frame.frame_type = SSP_DATA;
504 memcpy(scb->ssp_task.ssp_frame.hashed_dest_addr, dev->hashed_sas_addr,
505 HASHED_SAS_ADDR_SIZE);
506 memcpy(scb->ssp_task.ssp_frame.hashed_src_addr,
507 dev->port->ha->hashed_sas_addr, HASHED_SAS_ADDR_SIZE);
508 scb->ssp_task.ssp_frame.tptt = cpu_to_be16(0xFFFF);
509
510 memcpy(scb->ssp_task.ssp_cmd.lun, task->ssp_task.LUN, 8);
511 if (task->ssp_task.enable_first_burst)
512 scb->ssp_task.ssp_cmd.efb_prio_attr |= EFB_MASK;
513 scb->ssp_task.ssp_cmd.efb_prio_attr |= (task->ssp_task.task_prio << 3);
514 scb->ssp_task.ssp_cmd.efb_prio_attr |= (task->ssp_task.task_attr & 7);
515 memcpy(scb->ssp_task.ssp_cmd.cdb, task->ssp_task.cdb, 16);
516
517 scb->ssp_task.sister_scb = cpu_to_le16(0xFFFF);
518 scb->ssp_task.conn_handle = cpu_to_le16(
519 (u16)(unsigned long)dev->lldd_dev);
520 scb->ssp_task.data_dir = data_dir_flags[task->data_dir];
521 scb->ssp_task.retry_count = scb->ssp_task.retry_count;
522
523 ascb->tasklet_complete = asd_task_tasklet_complete;
524
525 res = asd_map_scatterlist(task, scb->ssp_task.sg_element, gfp_flags);
526
527 return res;
528}
529
530static void asd_unbuild_ssp_ascb(struct asd_ascb *a)
531{
532 asd_unmap_scatterlist(a);
533}
534
535/* ---------- Execute Task ---------- */
536
537static inline int asd_can_queue(struct asd_ha_struct *asd_ha, int num)
538{
539 int res = 0;
540 unsigned long flags;
541
542 spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
543 if ((asd_ha->seq.can_queue - num) < 0)
544 res = -SAS_QUEUE_FULL;
545 else
546 asd_ha->seq.can_queue -= num;
547 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
548
549 return res;
550}
551
552int asd_execute_task(struct sas_task *task, const int num,
553 unsigned long gfp_flags)
554{
555 int res = 0;
556 LIST_HEAD(alist);
557 struct sas_task *t = task;
558 struct asd_ascb *ascb = NULL, *a;
559 struct asd_ha_struct *asd_ha = task->dev->port->ha->lldd_ha;
560
561 res = asd_can_queue(asd_ha, num);
562 if (res)
563 return res;
564
565 res = num;
566 ascb = asd_ascb_alloc_list(asd_ha, &res, gfp_flags);
567 if (res) {
568 res = -ENOMEM;
569 goto out_err;
570 }
571
572 __list_add(&alist, ascb->list.prev, &ascb->list);
573 list_for_each_entry(a, &alist, list) {
574 a->uldd_task = t;
575 t->lldd_task = a;
576 t = list_entry(t->list.next, struct sas_task, list);
577 }
578 list_for_each_entry(a, &alist, list) {
579 t = a->uldd_task;
580 a->uldd_timer = 1;
581 if (t->task_proto & SAS_PROTO_STP)
582 t->task_proto = SAS_PROTO_STP;
583 switch (t->task_proto) {
584 case SATA_PROTO:
585 case SAS_PROTO_STP:
586 res = asd_build_ata_ascb(a, t, gfp_flags);
587 break;
588 case SAS_PROTO_SMP:
589 res = asd_build_smp_ascb(a, t, gfp_flags);
590 break;
591 case SAS_PROTO_SSP:
592 res = asd_build_ssp_ascb(a, t, gfp_flags);
593 break;
594 default:
595 asd_printk("unknown sas_task proto: 0x%x\n",
596 t->task_proto);
597 res = -ENOMEM;
598 break;
599 }
600 if (res)
601 goto out_err_unmap;
602 }
603 list_del_init(&alist);
604
605 res = asd_post_ascb_list(asd_ha, ascb, num);
606 if (unlikely(res)) {
607 a = NULL;
608 __list_add(&alist, ascb->list.prev, &ascb->list);
609 goto out_err_unmap;
610 }
611
612 return 0;
613out_err_unmap:
614 {
615 struct asd_ascb *b = a;
616 list_for_each_entry(a, &alist, list) {
617 if (a == b)
618 break;
619 t = a->uldd_task;
620 switch (t->task_proto) {
621 case SATA_PROTO:
622 case SAS_PROTO_STP:
623 asd_unbuild_ata_ascb(a);
624 break;
625 case SAS_PROTO_SMP:
626 asd_unbuild_smp_ascb(a);
627 break;
628 case SAS_PROTO_SSP:
629 asd_unbuild_ssp_ascb(a);
630 default:
631 break;
632 }
633 t->lldd_task = NULL;
634 }
635 }
636 list_del_init(&alist);
637out_err:
638 if (ascb)
639 asd_ascb_free_list(ascb);
640 asd_can_dequeue(asd_ha, num);
641 return res;
642}
diff --git a/drivers/scsi/aic94xx/aic94xx_tmf.c b/drivers/scsi/aic94xx/aic94xx_tmf.c
new file mode 100644
index 000000000000..61234384503b
--- /dev/null
+++ b/drivers/scsi/aic94xx/aic94xx_tmf.c
@@ -0,0 +1,636 @@
1/*
2 * Aic94xx Task Management Functions
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This file is part of the aic94xx driver.
10 *
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
14 * License.
15 *
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 *
25 */
26
27#include <linux/spinlock.h>
28#include "aic94xx.h"
29#include "aic94xx_sas.h"
30#include "aic94xx_hwi.h"
31
32/* ---------- Internal enqueue ---------- */
33
34static int asd_enqueue_internal(struct asd_ascb *ascb,
35 void (*tasklet_complete)(struct asd_ascb *,
36 struct done_list_struct *),
37 void (*timed_out)(unsigned long))
38{
39 int res;
40
41 ascb->tasklet_complete = tasklet_complete;
42 ascb->uldd_timer = 1;
43
44 ascb->timer.data = (unsigned long) ascb;
45 ascb->timer.function = timed_out;
46 ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
47
48 add_timer(&ascb->timer);
49
50 res = asd_post_ascb_list(ascb->ha, ascb, 1);
51 if (unlikely(res))
52 del_timer(&ascb->timer);
53 return res;
54}
55
56static inline void asd_timedout_common(unsigned long data)
57{
58 struct asd_ascb *ascb = (void *) data;
59 struct asd_seq_data *seq = &ascb->ha->seq;
60 unsigned long flags;
61
62 spin_lock_irqsave(&seq->pend_q_lock, flags);
63 seq->pending--;
64 list_del_init(&ascb->list);
65 spin_unlock_irqrestore(&seq->pend_q_lock, flags);
66}
67
68/* ---------- CLEAR NEXUS ---------- */
69
70static void asd_clear_nexus_tasklet_complete(struct asd_ascb *ascb,
71 struct done_list_struct *dl)
72{
73 ASD_DPRINTK("%s: here\n", __FUNCTION__);
74 if (!del_timer(&ascb->timer)) {
75 ASD_DPRINTK("%s: couldn't delete timer\n", __FUNCTION__);
76 return;
77 }
78 ASD_DPRINTK("%s: opcode: 0x%x\n", __FUNCTION__, dl->opcode);
79 ascb->uldd_task = (void *) (unsigned long) dl->opcode;
80 complete(&ascb->completion);
81}
82
83static void asd_clear_nexus_timedout(unsigned long data)
84{
85 struct asd_ascb *ascb = (void *) data;
86
87 ASD_DPRINTK("%s: here\n", __FUNCTION__);
88 asd_timedout_common(data);
89 ascb->uldd_task = (void *) TMF_RESP_FUNC_FAILED;
90 complete(&ascb->completion);
91}
92
93#define CLEAR_NEXUS_PRE \
94 ASD_DPRINTK("%s: PRE\n", __FUNCTION__); \
95 res = 1; \
96 ascb = asd_ascb_alloc_list(asd_ha, &res, GFP_KERNEL); \
97 if (!ascb) \
98 return -ENOMEM; \
99 \
100 scb = ascb->scb; \
101 scb->header.opcode = CLEAR_NEXUS
102
103#define CLEAR_NEXUS_POST \
104 ASD_DPRINTK("%s: POST\n", __FUNCTION__); \
105 res = asd_enqueue_internal(ascb, asd_clear_nexus_tasklet_complete, \
106 asd_clear_nexus_timedout); \
107 if (res) \
108 goto out_err; \
109 ASD_DPRINTK("%s: clear nexus posted, waiting...\n", __FUNCTION__); \
110 wait_for_completion(&ascb->completion); \
111 res = (int) (unsigned long) ascb->uldd_task; \
112 if (res == TC_NO_ERROR) \
113 res = TMF_RESP_FUNC_COMPLETE; \
114out_err: \
115 asd_ascb_free(ascb); \
116 return res
117
118int asd_clear_nexus_ha(struct sas_ha_struct *sas_ha)
119{
120 struct asd_ha_struct *asd_ha = sas_ha->lldd_ha;
121 struct asd_ascb *ascb;
122 struct scb *scb;
123 int res;
124
125 CLEAR_NEXUS_PRE;
126 scb->clear_nexus.nexus = NEXUS_ADAPTER;
127 CLEAR_NEXUS_POST;
128}
129
130int asd_clear_nexus_port(struct asd_sas_port *port)
131{
132 struct asd_ha_struct *asd_ha = port->ha->lldd_ha;
133 struct asd_ascb *ascb;
134 struct scb *scb;
135 int res;
136
137 CLEAR_NEXUS_PRE;
138 scb->clear_nexus.nexus = NEXUS_PORT;
139 scb->clear_nexus.conn_mask = port->phy_mask;
140 CLEAR_NEXUS_POST;
141}
142
143#if 0
144static int asd_clear_nexus_I_T(struct domain_device *dev)
145{
146 struct asd_ha_struct *asd_ha = dev->port->ha->lldd_ha;
147 struct asd_ascb *ascb;
148 struct scb *scb;
149 int res;
150
151 CLEAR_NEXUS_PRE;
152 scb->clear_nexus.nexus = NEXUS_I_T;
153 scb->clear_nexus.flags = SEND_Q | EXEC_Q | NOTINQ;
154 if (dev->tproto)
155 scb->clear_nexus.flags |= SUSPEND_TX;
156 scb->clear_nexus.conn_handle = cpu_to_le16((u16)(unsigned long)
157 dev->lldd_dev);
158 CLEAR_NEXUS_POST;
159}
160#endif
161
162static int asd_clear_nexus_I_T_L(struct domain_device *dev, u8 *lun)
163{
164 struct asd_ha_struct *asd_ha = dev->port->ha->lldd_ha;
165 struct asd_ascb *ascb;
166 struct scb *scb;
167 int res;
168
169 CLEAR_NEXUS_PRE;
170 scb->clear_nexus.nexus = NEXUS_I_T_L;
171 scb->clear_nexus.flags = SEND_Q | EXEC_Q | NOTINQ;
172 if (dev->tproto)
173 scb->clear_nexus.flags |= SUSPEND_TX;
174 memcpy(scb->clear_nexus.ssp_task.lun, lun, 8);
175 scb->clear_nexus.conn_handle = cpu_to_le16((u16)(unsigned long)
176 dev->lldd_dev);
177 CLEAR_NEXUS_POST;
178}
179
180static int asd_clear_nexus_tag(struct sas_task *task)
181{
182 struct asd_ha_struct *asd_ha = task->dev->port->ha->lldd_ha;
183 struct asd_ascb *tascb = task->lldd_task;
184 struct asd_ascb *ascb;
185 struct scb *scb;
186 int res;
187
188 CLEAR_NEXUS_PRE;
189 scb->clear_nexus.nexus = NEXUS_TAG;
190 memcpy(scb->clear_nexus.ssp_task.lun, task->ssp_task.LUN, 8);
191 scb->clear_nexus.ssp_task.tag = tascb->tag;
192 if (task->dev->tproto)
193 scb->clear_nexus.conn_handle = cpu_to_le16((u16)(unsigned long)
194 task->dev->lldd_dev);
195 CLEAR_NEXUS_POST;
196}
197
198static int asd_clear_nexus_index(struct sas_task *task)
199{
200 struct asd_ha_struct *asd_ha = task->dev->port->ha->lldd_ha;
201 struct asd_ascb *tascb = task->lldd_task;
202 struct asd_ascb *ascb;
203 struct scb *scb;
204 int res;
205
206 CLEAR_NEXUS_PRE;
207 scb->clear_nexus.nexus = NEXUS_TRANS_CX;
208 if (task->dev->tproto)
209 scb->clear_nexus.conn_handle = cpu_to_le16((u16)(unsigned long)
210 task->dev->lldd_dev);
211 scb->clear_nexus.index = cpu_to_le16(tascb->tc_index);
212 CLEAR_NEXUS_POST;
213}
214
215/* ---------- TMFs ---------- */
216
217static void asd_tmf_timedout(unsigned long data)
218{
219 struct asd_ascb *ascb = (void *) data;
220
221 ASD_DPRINTK("tmf timed out\n");
222 asd_timedout_common(data);
223 ascb->uldd_task = (void *) TMF_RESP_FUNC_FAILED;
224 complete(&ascb->completion);
225}
226
227static int asd_get_tmf_resp_tasklet(struct asd_ascb *ascb,
228 struct done_list_struct *dl)
229{
230 struct asd_ha_struct *asd_ha = ascb->ha;
231 unsigned long flags;
232 struct tc_resp_sb_struct {
233 __le16 index_escb;
234 u8 len_lsb;
235 u8 flags;
236 } __attribute__ ((packed)) *resp_sb = (void *) dl->status_block;
237
238 int edb_id = ((resp_sb->flags & 0x70) >> 4)-1;
239 struct asd_ascb *escb;
240 struct asd_dma_tok *edb;
241 struct ssp_frame_hdr *fh;
242 struct ssp_response_iu *ru;
243 int res = TMF_RESP_FUNC_FAILED;
244
245 ASD_DPRINTK("tmf resp tasklet\n");
246
247 spin_lock_irqsave(&asd_ha->seq.tc_index_lock, flags);
248 escb = asd_tc_index_find(&asd_ha->seq,
249 (int)le16_to_cpu(resp_sb->index_escb));
250 spin_unlock_irqrestore(&asd_ha->seq.tc_index_lock, flags);
251
252 if (!escb) {
253 ASD_DPRINTK("Uh-oh! No escb for this dl?!\n");
254 return res;
255 }
256
257 edb = asd_ha->seq.edb_arr[edb_id + escb->edb_index];
258 ascb->tag = *(__be16 *)(edb->vaddr+4);
259 fh = edb->vaddr + 16;
260 ru = edb->vaddr + 16 + sizeof(*fh);
261 res = ru->status;
262 if (ru->datapres == 1) /* Response data present */
263 res = ru->resp_data[3];
264#if 0
265 ascb->tag = fh->tag;
266#endif
267 ascb->tag_valid = 1;
268
269 asd_invalidate_edb(escb, edb_id);
270 return res;
271}
272
273static void asd_tmf_tasklet_complete(struct asd_ascb *ascb,
274 struct done_list_struct *dl)
275{
276 if (!del_timer(&ascb->timer))
277 return;
278
279 ASD_DPRINTK("tmf tasklet complete\n");
280
281 if (dl->opcode == TC_SSP_RESP)
282 ascb->uldd_task = (void *) (unsigned long)
283 asd_get_tmf_resp_tasklet(ascb, dl);
284 else
285 ascb->uldd_task = (void *) 0xFF00 + (unsigned long) dl->opcode;
286
287 complete(&ascb->completion);
288}
289
290static inline int asd_clear_nexus(struct sas_task *task)
291{
292 int res = TMF_RESP_FUNC_FAILED;
293 struct asd_ascb *tascb = task->lldd_task;
294 unsigned long flags;
295
296 ASD_DPRINTK("task not done, clearing nexus\n");
297 if (tascb->tag_valid)
298 res = asd_clear_nexus_tag(task);
299 else
300 res = asd_clear_nexus_index(task);
301 wait_for_completion_timeout(&tascb->completion,
302 AIC94XX_SCB_TIMEOUT);
303 ASD_DPRINTK("came back from clear nexus\n");
304 spin_lock_irqsave(&task->task_state_lock, flags);
305 if (task->task_state_flags & SAS_TASK_STATE_DONE)
306 res = TMF_RESP_FUNC_COMPLETE;
307 spin_unlock_irqrestore(&task->task_state_lock, flags);
308
309 return res;
310}
311
312/**
313 * asd_abort_task -- ABORT TASK TMF
314 * @task: the task to be aborted
315 *
316 * Before calling ABORT TASK the task state flags should be ORed with
317 * SAS_TASK_STATE_ABORTED (unless SAS_TASK_STATE_DONE is set) under
318 * the task_state_lock IRQ spinlock, then ABORT TASK *must* be called.
319 *
320 * Implements the ABORT TASK TMF, I_T_L_Q nexus.
321 * Returns: SAS TMF responses (see sas_task.h),
322 * -ENOMEM,
323 * -SAS_QUEUE_FULL.
324 *
325 * When ABORT TASK returns, the caller of ABORT TASK checks first the
326 * task->task_state_flags, and then the return value of ABORT TASK.
327 *
328 * If the task has task state bit SAS_TASK_STATE_DONE set, then the
329 * task was completed successfully prior to it being aborted. The
330 * caller of ABORT TASK has responsibility to call task->task_done()
331 * xor free the task, depending on their framework. The return code
332 * is TMF_RESP_FUNC_FAILED in this case.
333 *
334 * Else the SAS_TASK_STATE_DONE bit is not set,
335 * If the return code is TMF_RESP_FUNC_COMPLETE, then
336 * the task was aborted successfully. The caller of
337 * ABORT TASK has responsibility to call task->task_done()
338 * to finish the task, xor free the task depending on their
339 * framework.
340 * else
341 * the ABORT TASK returned some kind of error. The task
342 * was _not_ cancelled. Nothing can be assumed.
343 * The caller of ABORT TASK may wish to retry.
344 */
345int asd_abort_task(struct sas_task *task)
346{
347 struct asd_ascb *tascb = task->lldd_task;
348 struct asd_ha_struct *asd_ha = tascb->ha;
349 int res = 1;
350 unsigned long flags;
351 struct asd_ascb *ascb = NULL;
352 struct scb *scb;
353
354 spin_lock_irqsave(&task->task_state_lock, flags);
355 if (task->task_state_flags & SAS_TASK_STATE_DONE) {
356 spin_unlock_irqrestore(&task->task_state_lock, flags);
357 res = TMF_RESP_FUNC_COMPLETE;
358 ASD_DPRINTK("%s: task 0x%p done\n", __FUNCTION__, task);
359 goto out_done;
360 }
361 spin_unlock_irqrestore(&task->task_state_lock, flags);
362
363 ascb = asd_ascb_alloc_list(asd_ha, &res, GFP_KERNEL);
364 if (!ascb)
365 return -ENOMEM;
366 scb = ascb->scb;
367
368 scb->header.opcode = ABORT_TASK;
369
370 switch (task->task_proto) {
371 case SATA_PROTO:
372 case SAS_PROTO_STP:
373 scb->abort_task.proto_conn_rate = (1 << 5); /* STP */
374 break;
375 case SAS_PROTO_SSP:
376 scb->abort_task.proto_conn_rate = (1 << 4); /* SSP */
377 scb->abort_task.proto_conn_rate |= task->dev->linkrate;
378 break;
379 case SAS_PROTO_SMP:
380 break;
381 default:
382 break;
383 }
384
385 if (task->task_proto == SAS_PROTO_SSP) {
386 scb->abort_task.ssp_frame.frame_type = SSP_TASK;
387 memcpy(scb->abort_task.ssp_frame.hashed_dest_addr,
388 task->dev->hashed_sas_addr, HASHED_SAS_ADDR_SIZE);
389 memcpy(scb->abort_task.ssp_frame.hashed_src_addr,
390 task->dev->port->ha->hashed_sas_addr,
391 HASHED_SAS_ADDR_SIZE);
392 scb->abort_task.ssp_frame.tptt = cpu_to_be16(0xFFFF);
393
394 memcpy(scb->abort_task.ssp_task.lun, task->ssp_task.LUN, 8);
395 scb->abort_task.ssp_task.tmf = TMF_ABORT_TASK;
396 scb->abort_task.ssp_task.tag = cpu_to_be16(0xFFFF);
397 }
398
399 scb->abort_task.sister_scb = cpu_to_le16(0xFFFF);
400 scb->abort_task.conn_handle = cpu_to_le16(
401 (u16)(unsigned long)task->dev->lldd_dev);
402 scb->abort_task.retry_count = 1;
403 scb->abort_task.index = cpu_to_le16((u16)tascb->tc_index);
404 scb->abort_task.itnl_to = cpu_to_le16(ITNL_TIMEOUT_CONST);
405
406 res = asd_enqueue_internal(ascb, asd_tmf_tasklet_complete,
407 asd_tmf_timedout);
408 if (res)
409 goto out;
410 wait_for_completion(&ascb->completion);
411 ASD_DPRINTK("tmf came back\n");
412
413 res = (int) (unsigned long) ascb->uldd_task;
414 tascb->tag = ascb->tag;
415 tascb->tag_valid = ascb->tag_valid;
416
417 spin_lock_irqsave(&task->task_state_lock, flags);
418 if (task->task_state_flags & SAS_TASK_STATE_DONE) {
419 spin_unlock_irqrestore(&task->task_state_lock, flags);
420 res = TMF_RESP_FUNC_COMPLETE;
421 ASD_DPRINTK("%s: task 0x%p done\n", __FUNCTION__, task);
422 goto out_done;
423 }
424 spin_unlock_irqrestore(&task->task_state_lock, flags);
425
426 switch (res) {
427 /* The task to be aborted has been sent to the device.
428 * We got a Response IU for the ABORT TASK TMF. */
429 case TC_NO_ERROR + 0xFF00:
430 case TMF_RESP_FUNC_COMPLETE:
431 case TMF_RESP_FUNC_FAILED:
432 res = asd_clear_nexus(task);
433 break;
434 case TMF_RESP_INVALID_FRAME:
435 case TMF_RESP_OVERLAPPED_TAG:
436 case TMF_RESP_FUNC_ESUPP:
437 case TMF_RESP_NO_LUN:
438 goto out_done; break;
439 }
440 /* In the following we assume that the managing layer
441 * will _never_ make a mistake, when issuing ABORT TASK.
442 */
443 switch (res) {
444 default:
445 res = asd_clear_nexus(task);
446 /* fallthrough */
447 case TC_NO_ERROR + 0xFF00:
448 case TMF_RESP_FUNC_COMPLETE:
449 break;
450 /* The task hasn't been sent to the device xor we never got
451 * a (sane) Response IU for the ABORT TASK TMF.
452 */
453 case TF_NAK_RECV + 0xFF00:
454 res = TMF_RESP_INVALID_FRAME;
455 break;
456 case TF_TMF_TASK_DONE + 0xFF00: /* done but not reported yet */
457 res = TMF_RESP_FUNC_FAILED;
458 wait_for_completion_timeout(&tascb->completion,
459 AIC94XX_SCB_TIMEOUT);
460 spin_lock_irqsave(&task->task_state_lock, flags);
461 if (task->task_state_flags & SAS_TASK_STATE_DONE)
462 res = TMF_RESP_FUNC_COMPLETE;
463 spin_unlock_irqrestore(&task->task_state_lock, flags);
464 goto out_done;
465 case TF_TMF_NO_TAG + 0xFF00:
466 case TF_TMF_TAG_FREE + 0xFF00: /* the tag is in the free list */
467 case TF_TMF_NO_CONN_HANDLE + 0xFF00: /* no such device */
468 res = TMF_RESP_FUNC_COMPLETE;
469 goto out_done;
470 case TF_TMF_NO_CTX + 0xFF00: /* not in seq, or proto != SSP */
471 res = TMF_RESP_FUNC_ESUPP;
472 goto out;
473 }
474out_done:
475 if (res == TMF_RESP_FUNC_COMPLETE) {
476 task->lldd_task = NULL;
477 mb();
478 asd_ascb_free(tascb);
479 }
480out:
481 asd_ascb_free(ascb);
482 ASD_DPRINTK("task 0x%p aborted, res: 0x%x\n", task, res);
483 return res;
484}
485
486/**
487 * asd_initiate_ssp_tmf -- send a TMF to an I_T_L or I_T_L_Q nexus
488 * @dev: pointer to struct domain_device of interest
489 * @lun: pointer to u8[8] which is the LUN
490 * @tmf: the TMF to be performed (see sas_task.h or the SAS spec)
491 * @index: the transaction context of the task to be queried if QT TMF
492 *
493 * This function is used to send ABORT TASK SET, CLEAR ACA,
494 * CLEAR TASK SET, LU RESET and QUERY TASK TMFs.
495 *
496 * No SCBs should be queued to the I_T_L nexus when this SCB is
497 * pending.
498 *
499 * Returns: TMF response code (see sas_task.h or the SAS spec)
500 */
501static int asd_initiate_ssp_tmf(struct domain_device *dev, u8 *lun,
502 int tmf, int index)
503{
504 struct asd_ha_struct *asd_ha = dev->port->ha->lldd_ha;
505 struct asd_ascb *ascb;
506 int res = 1;
507 struct scb *scb;
508
509 if (!(dev->tproto & SAS_PROTO_SSP))
510 return TMF_RESP_FUNC_ESUPP;
511
512 ascb = asd_ascb_alloc_list(asd_ha, &res, GFP_KERNEL);
513 if (!ascb)
514 return -ENOMEM;
515 scb = ascb->scb;
516
517 if (tmf == TMF_QUERY_TASK)
518 scb->header.opcode = QUERY_SSP_TASK;
519 else
520 scb->header.opcode = INITIATE_SSP_TMF;
521
522 scb->ssp_tmf.proto_conn_rate = (1 << 4); /* SSP */
523 scb->ssp_tmf.proto_conn_rate |= dev->linkrate;
524 /* SSP frame header */
525 scb->ssp_tmf.ssp_frame.frame_type = SSP_TASK;
526 memcpy(scb->ssp_tmf.ssp_frame.hashed_dest_addr,
527 dev->hashed_sas_addr, HASHED_SAS_ADDR_SIZE);
528 memcpy(scb->ssp_tmf.ssp_frame.hashed_src_addr,
529 dev->port->ha->hashed_sas_addr, HASHED_SAS_ADDR_SIZE);
530 scb->ssp_tmf.ssp_frame.tptt = cpu_to_be16(0xFFFF);
531 /* SSP Task IU */
532 memcpy(scb->ssp_tmf.ssp_task.lun, lun, 8);
533 scb->ssp_tmf.ssp_task.tmf = tmf;
534
535 scb->ssp_tmf.sister_scb = cpu_to_le16(0xFFFF);
536 scb->ssp_tmf.conn_handle= cpu_to_le16((u16)(unsigned long)
537 dev->lldd_dev);
538 scb->ssp_tmf.retry_count = 1;
539 scb->ssp_tmf.itnl_to = cpu_to_le16(ITNL_TIMEOUT_CONST);
540 if (tmf == TMF_QUERY_TASK)
541 scb->ssp_tmf.index = cpu_to_le16(index);
542
543 res = asd_enqueue_internal(ascb, asd_tmf_tasklet_complete,
544 asd_tmf_timedout);
545 if (res)
546 goto out_err;
547 wait_for_completion(&ascb->completion);
548 res = (int) (unsigned long) ascb->uldd_task;
549
550 switch (res) {
551 case TC_NO_ERROR + 0xFF00:
552 res = TMF_RESP_FUNC_COMPLETE;
553 break;
554 case TF_NAK_RECV + 0xFF00:
555 res = TMF_RESP_INVALID_FRAME;
556 break;
557 case TF_TMF_TASK_DONE + 0xFF00:
558 res = TMF_RESP_FUNC_FAILED;
559 break;
560 case TF_TMF_NO_TAG + 0xFF00:
561 case TF_TMF_TAG_FREE + 0xFF00: /* the tag is in the free list */
562 case TF_TMF_NO_CONN_HANDLE + 0xFF00: /* no such device */
563 res = TMF_RESP_FUNC_COMPLETE;
564 break;
565 case TF_TMF_NO_CTX + 0xFF00: /* not in seq, or proto != SSP */
566 res = TMF_RESP_FUNC_ESUPP;
567 break;
568 default:
569 ASD_DPRINTK("%s: converting result 0x%x to TMF_RESP_FUNC_FAILED\n",
570 __FUNCTION__, res);
571 res = TMF_RESP_FUNC_FAILED;
572 break;
573 }
574out_err:
575 asd_ascb_free(ascb);
576 return res;
577}
578
579int asd_abort_task_set(struct domain_device *dev, u8 *lun)
580{
581 int res = asd_initiate_ssp_tmf(dev, lun, TMF_ABORT_TASK_SET, 0);
582
583 if (res == TMF_RESP_FUNC_COMPLETE)
584 asd_clear_nexus_I_T_L(dev, lun);
585 return res;
586}
587
588int asd_clear_aca(struct domain_device *dev, u8 *lun)
589{
590 int res = asd_initiate_ssp_tmf(dev, lun, TMF_CLEAR_ACA, 0);
591
592 if (res == TMF_RESP_FUNC_COMPLETE)
593 asd_clear_nexus_I_T_L(dev, lun);
594 return res;
595}
596
597int asd_clear_task_set(struct domain_device *dev, u8 *lun)
598{
599 int res = asd_initiate_ssp_tmf(dev, lun, TMF_CLEAR_TASK_SET, 0);
600
601 if (res == TMF_RESP_FUNC_COMPLETE)
602 asd_clear_nexus_I_T_L(dev, lun);
603 return res;
604}
605
606int asd_lu_reset(struct domain_device *dev, u8 *lun)
607{
608 int res = asd_initiate_ssp_tmf(dev, lun, TMF_LU_RESET, 0);
609
610 if (res == TMF_RESP_FUNC_COMPLETE)
611 asd_clear_nexus_I_T_L(dev, lun);
612 return res;
613}
614
615/**
616 * asd_query_task -- send a QUERY TASK TMF to an I_T_L_Q nexus
617 * task: pointer to sas_task struct of interest
618 *
619 * Returns: TMF_RESP_FUNC_COMPLETE if the task is not in the task set,
620 * or TMF_RESP_FUNC_SUCC if the task is in the task set.
621 *
622 * Normally the management layer sets the task to aborted state,
623 * and then calls query task and then abort task.
624 */
625int asd_query_task(struct sas_task *task)
626{
627 struct asd_ascb *ascb = task->lldd_task;
628 int index;
629
630 if (ascb) {
631 index = ascb->tc_index;
632 return asd_initiate_ssp_tmf(task->dev, task->ssp_task.LUN,
633 TMF_QUERY_TASK, index);
634 }
635 return TMF_RESP_FUNC_COMPLETE;
636}