aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/rt2x00/rt2x00queue.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/wireless/rt2x00/rt2x00queue.c')
-rw-r--r--drivers/net/wireless/rt2x00/rt2x00queue.c413
1 files changed, 397 insertions, 16 deletions
diff --git a/drivers/net/wireless/rt2x00/rt2x00queue.c b/drivers/net/wireless/rt2x00/rt2x00queue.c
index 659e9f44c40c..7f442030f5ad 100644
--- a/drivers/net/wireless/rt2x00/rt2x00queue.c
+++ b/drivers/net/wireless/rt2x00/rt2x00queue.c
@@ -25,24 +25,370 @@
25 25
26#include <linux/kernel.h> 26#include <linux/kernel.h>
27#include <linux/module.h> 27#include <linux/module.h>
28#include <linux/dma-mapping.h>
28 29
29#include "rt2x00.h" 30#include "rt2x00.h"
30#include "rt2x00lib.h" 31#include "rt2x00lib.h"
31 32
33struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
34 struct queue_entry *entry)
35{
36 unsigned int frame_size;
37 unsigned int reserved_size;
38 struct sk_buff *skb;
39 struct skb_frame_desc *skbdesc;
40
41 /*
42 * The frame size includes descriptor size, because the
43 * hardware directly receive the frame into the skbuffer.
44 */
45 frame_size = entry->queue->data_size + entry->queue->desc_size;
46
47 /*
48 * The payload should be aligned to a 4-byte boundary,
49 * this means we need at least 3 bytes for moving the frame
50 * into the correct offset.
51 */
52 reserved_size = 4;
53
54 /*
55 * Allocate skbuffer.
56 */
57 skb = dev_alloc_skb(frame_size + reserved_size);
58 if (!skb)
59 return NULL;
60
61 skb_reserve(skb, reserved_size);
62 skb_put(skb, frame_size);
63
64 /*
65 * Populate skbdesc.
66 */
67 skbdesc = get_skb_frame_desc(skb);
68 memset(skbdesc, 0, sizeof(*skbdesc));
69 skbdesc->entry = entry;
70
71 if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
72 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
73 skb->data,
74 skb->len,
75 DMA_FROM_DEVICE);
76 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
77 }
78
79 return skb;
80}
81
82void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
83{
84 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
85
86 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
87 DMA_TO_DEVICE);
88 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
89}
90EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
91
92void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
93{
94 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
95
96 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
97 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
98 DMA_FROM_DEVICE);
99 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
100 }
101
102 if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
103 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
104 DMA_TO_DEVICE);
105 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
106 }
107}
108
109void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
110{
111 if (!skb)
112 return;
113
114 rt2x00queue_unmap_skb(rt2x00dev, skb);
115 dev_kfree_skb_any(skb);
116}
117
118static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
119 struct txentry_desc *txdesc)
120{
121 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
122 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
123 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
124 struct ieee80211_rate *rate =
125 ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
126 const struct rt2x00_rate *hwrate;
127 unsigned int data_length;
128 unsigned int duration;
129 unsigned int residual;
130
131 memset(txdesc, 0, sizeof(*txdesc));
132
133 /*
134 * Initialize information from queue
135 */
136 txdesc->queue = entry->queue->qid;
137 txdesc->cw_min = entry->queue->cw_min;
138 txdesc->cw_max = entry->queue->cw_max;
139 txdesc->aifs = entry->queue->aifs;
140
141 /* Data length should be extended with 4 bytes for CRC */
142 data_length = entry->skb->len + 4;
143
144 /*
145 * Check whether this frame is to be acked.
146 */
147 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
148 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
149
150 /*
151 * Check if this is a RTS/CTS frame
152 */
153 if (ieee80211_is_rts(hdr->frame_control) ||
154 ieee80211_is_cts(hdr->frame_control)) {
155 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
156 if (ieee80211_is_rts(hdr->frame_control))
157 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
158 else
159 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
160 if (tx_info->control.rts_cts_rate_idx >= 0)
161 rate =
162 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
163 }
164
165 /*
166 * Determine retry information.
167 */
168 txdesc->retry_limit = tx_info->control.retry_limit;
169 if (tx_info->flags & IEEE80211_TX_CTL_LONG_RETRY_LIMIT)
170 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
171
172 /*
173 * Check if more fragments are pending
174 */
175 if (ieee80211_has_morefrags(hdr->frame_control)) {
176 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
177 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
178 }
179
180 /*
181 * Beacons and probe responses require the tsf timestamp
182 * to be inserted into the frame.
183 */
184 if (ieee80211_is_beacon(hdr->frame_control) ||
185 ieee80211_is_probe_resp(hdr->frame_control))
186 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
187
188 /*
189 * Determine with what IFS priority this frame should be send.
190 * Set ifs to IFS_SIFS when the this is not the first fragment,
191 * or this fragment came after RTS/CTS.
192 */
193 if (test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
194 txdesc->ifs = IFS_SIFS;
195 } else if (tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) {
196 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
197 txdesc->ifs = IFS_BACKOFF;
198 } else {
199 txdesc->ifs = IFS_SIFS;
200 }
201
202 /*
203 * PLCP setup
204 * Length calculation depends on OFDM/CCK rate.
205 */
206 hwrate = rt2x00_get_rate(rate->hw_value);
207 txdesc->signal = hwrate->plcp;
208 txdesc->service = 0x04;
209
210 if (hwrate->flags & DEV_RATE_OFDM) {
211 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags);
212
213 txdesc->length_high = (data_length >> 6) & 0x3f;
214 txdesc->length_low = data_length & 0x3f;
215 } else {
216 /*
217 * Convert length to microseconds.
218 */
219 residual = get_duration_res(data_length, hwrate->bitrate);
220 duration = get_duration(data_length, hwrate->bitrate);
221
222 if (residual != 0) {
223 duration++;
224
225 /*
226 * Check if we need to set the Length Extension
227 */
228 if (hwrate->bitrate == 110 && residual <= 30)
229 txdesc->service |= 0x80;
230 }
231
232 txdesc->length_high = (duration >> 8) & 0xff;
233 txdesc->length_low = duration & 0xff;
234
235 /*
236 * When preamble is enabled we should set the
237 * preamble bit for the signal.
238 */
239 if (rt2x00_get_rate_preamble(rate->hw_value))
240 txdesc->signal |= 0x08;
241 }
242}
243
244static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
245 struct txentry_desc *txdesc)
246{
247 struct data_queue *queue = entry->queue;
248 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
249
250 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
251
252 /*
253 * All processing on the frame has been completed, this means
254 * it is now ready to be dumped to userspace through debugfs.
255 */
256 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
257
258 /*
259 * Check if we need to kick the queue, there are however a few rules
260 * 1) Don't kick beacon queue
261 * 2) Don't kick unless this is the last in frame in a burst.
262 * When the burst flag is set, this frame is always followed
263 * by another frame which in some way are related to eachother.
264 * This is true for fragments, RTS or CTS-to-self frames.
265 * 3) Rule 2 can be broken when the available entries
266 * in the queue are less then a certain threshold.
267 */
268 if (entry->queue->qid == QID_BEACON)
269 return;
270
271 if (rt2x00queue_threshold(queue) ||
272 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
273 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
274}
275
276int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb)
277{
278 struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
279 struct txentry_desc txdesc;
280 struct skb_frame_desc *skbdesc;
281
282 if (unlikely(rt2x00queue_full(queue)))
283 return -EINVAL;
284
285 if (__test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
286 ERROR(queue->rt2x00dev,
287 "Arrived at non-free entry in the non-full queue %d.\n"
288 "Please file bug report to %s.\n",
289 queue->qid, DRV_PROJECT);
290 return -EINVAL;
291 }
292
293 /*
294 * Copy all TX descriptor information into txdesc,
295 * after that we are free to use the skb->cb array
296 * for our information.
297 */
298 entry->skb = skb;
299 rt2x00queue_create_tx_descriptor(entry, &txdesc);
300
301 /*
302 * skb->cb array is now ours and we are free to use it.
303 */
304 skbdesc = get_skb_frame_desc(entry->skb);
305 memset(skbdesc, 0, sizeof(*skbdesc));
306 skbdesc->entry = entry;
307
308 if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
309 __clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
310 return -EIO;
311 }
312
313 if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
314 rt2x00queue_map_txskb(queue->rt2x00dev, skb);
315
316 __set_bit(ENTRY_DATA_PENDING, &entry->flags);
317
318 rt2x00queue_index_inc(queue, Q_INDEX);
319 rt2x00queue_write_tx_descriptor(entry, &txdesc);
320
321 return 0;
322}
323
324int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
325 struct ieee80211_vif *vif)
326{
327 struct rt2x00_intf *intf = vif_to_intf(vif);
328 struct skb_frame_desc *skbdesc;
329 struct txentry_desc txdesc;
330 __le32 desc[16];
331
332 if (unlikely(!intf->beacon))
333 return -ENOBUFS;
334
335 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
336 if (!intf->beacon->skb)
337 return -ENOMEM;
338
339 /*
340 * Copy all TX descriptor information into txdesc,
341 * after that we are free to use the skb->cb array
342 * for our information.
343 */
344 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
345
346 /*
347 * For the descriptor we use a local array from where the
348 * driver can move it to the correct location required for
349 * the hardware.
350 */
351 memset(desc, 0, sizeof(desc));
352
353 /*
354 * Fill in skb descriptor
355 */
356 skbdesc = get_skb_frame_desc(intf->beacon->skb);
357 memset(skbdesc, 0, sizeof(*skbdesc));
358 skbdesc->desc = desc;
359 skbdesc->desc_len = intf->beacon->queue->desc_size;
360 skbdesc->entry = intf->beacon;
361
362 /*
363 * Write TX descriptor into reserved room in front of the beacon.
364 */
365 rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
366
367 /*
368 * Send beacon to hardware.
369 * Also enable beacon generation, which might have been disabled
370 * by the driver during the config_beacon() callback function.
371 */
372 rt2x00dev->ops->lib->write_beacon(intf->beacon);
373 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
374
375 return 0;
376}
377
32struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev, 378struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
33 const unsigned int queue) 379 const enum data_queue_qid queue)
34{ 380{
35 int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags); 381 int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
36 382
37 if (queue < rt2x00dev->hw->queues && rt2x00dev->tx) 383 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
38 return &rt2x00dev->tx[queue]; 384 return &rt2x00dev->tx[queue];
39 385
40 if (!rt2x00dev->bcn) 386 if (!rt2x00dev->bcn)
41 return NULL; 387 return NULL;
42 388
43 if (queue == RT2X00_BCN_QUEUE_BEACON) 389 if (queue == QID_BEACON)
44 return &rt2x00dev->bcn[0]; 390 return &rt2x00dev->bcn[0];
45 else if (queue == RT2X00_BCN_QUEUE_ATIM && atim) 391 else if (queue == QID_ATIM && atim)
46 return &rt2x00dev->bcn[1]; 392 return &rt2x00dev->bcn[1];
47 393
48 return NULL; 394 return NULL;
@@ -96,7 +442,6 @@ void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
96 442
97 spin_unlock_irqrestore(&queue->lock, irqflags); 443 spin_unlock_irqrestore(&queue->lock, irqflags);
98} 444}
99EXPORT_SYMBOL_GPL(rt2x00queue_index_inc);
100 445
101static void rt2x00queue_reset(struct data_queue *queue) 446static void rt2x00queue_reset(struct data_queue *queue)
102{ 447{
@@ -153,6 +498,7 @@ static int rt2x00queue_alloc_entries(struct data_queue *queue,
153 rt2x00queue_reset(queue); 498 rt2x00queue_reset(queue);
154 499
155 queue->limit = qdesc->entry_num; 500 queue->limit = qdesc->entry_num;
501 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
156 queue->data_size = qdesc->data_size; 502 queue->data_size = qdesc->data_size;
157 queue->desc_size = qdesc->desc_size; 503 queue->desc_size = qdesc->desc_size;
158 504
@@ -185,12 +531,41 @@ static int rt2x00queue_alloc_entries(struct data_queue *queue,
185 return 0; 531 return 0;
186} 532}
187 533
534static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
535 struct data_queue *queue)
536{
537 unsigned int i;
538
539 if (!queue->entries)
540 return;
541
542 for (i = 0; i < queue->limit; i++) {
543 if (queue->entries[i].skb)
544 rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
545 }
546}
547
548static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
549 struct data_queue *queue)
550{
551 unsigned int i;
552 struct sk_buff *skb;
553
554 for (i = 0; i < queue->limit; i++) {
555 skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
556 if (!skb)
557 return -ENOMEM;
558 queue->entries[i].skb = skb;
559 }
560
561 return 0;
562}
563
188int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev) 564int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
189{ 565{
190 struct data_queue *queue; 566 struct data_queue *queue;
191 int status; 567 int status;
192 568
193
194 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx); 569 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
195 if (status) 570 if (status)
196 goto exit; 571 goto exit;
@@ -205,11 +580,14 @@ int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
205 if (status) 580 if (status)
206 goto exit; 581 goto exit;
207 582
208 if (!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) 583 if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
209 return 0; 584 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
585 rt2x00dev->ops->atim);
586 if (status)
587 goto exit;
588 }
210 589
211 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1], 590 status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
212 rt2x00dev->ops->atim);
213 if (status) 591 if (status)
214 goto exit; 592 goto exit;
215 593
@@ -227,6 +605,8 @@ void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
227{ 605{
228 struct data_queue *queue; 606 struct data_queue *queue;
229 607
608 rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
609
230 queue_for_each(rt2x00dev, queue) { 610 queue_for_each(rt2x00dev, queue) {
231 kfree(queue->entries); 611 kfree(queue->entries);
232 queue->entries = NULL; 612 queue->entries = NULL;
@@ -255,11 +635,11 @@ int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
255 /* 635 /*
256 * We need the following queues: 636 * We need the following queues:
257 * RX: 1 637 * RX: 1
258 * TX: hw->queues 638 * TX: ops->tx_queues
259 * Beacon: 1 639 * Beacon: 1
260 * Atim: 1 (if required) 640 * Atim: 1 (if required)
261 */ 641 */
262 rt2x00dev->data_queues = 2 + rt2x00dev->hw->queues + req_atim; 642 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
263 643
264 queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL); 644 queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
265 if (!queue) { 645 if (!queue) {
@@ -272,7 +652,7 @@ int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
272 */ 652 */
273 rt2x00dev->rx = queue; 653 rt2x00dev->rx = queue;
274 rt2x00dev->tx = &queue[1]; 654 rt2x00dev->tx = &queue[1];
275 rt2x00dev->bcn = &queue[1 + rt2x00dev->hw->queues]; 655 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
276 656
277 /* 657 /*
278 * Initialize queue parameters. 658 * Initialize queue parameters.
@@ -280,7 +660,8 @@ int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
280 * TX: qid = QID_AC_BE + index 660 * TX: qid = QID_AC_BE + index
281 * TX: cw_min: 2^5 = 32. 661 * TX: cw_min: 2^5 = 32.
282 * TX: cw_max: 2^10 = 1024. 662 * TX: cw_max: 2^10 = 1024.
283 * BCN & Atim: qid = QID_MGMT 663 * BCN: qid = QID_BEACON
664 * ATIM: qid = QID_ATIM
284 */ 665 */
285 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX); 666 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
286 667
@@ -288,9 +669,9 @@ int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
288 tx_queue_for_each(rt2x00dev, queue) 669 tx_queue_for_each(rt2x00dev, queue)
289 rt2x00queue_init(rt2x00dev, queue, qid++); 670 rt2x00queue_init(rt2x00dev, queue, qid++);
290 671
291 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_MGMT); 672 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
292 if (req_atim) 673 if (req_atim)
293 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_MGMT); 674 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
294 675
295 return 0; 676 return 0;
296} 677}