diff options
Diffstat (limited to 'drivers/net/wireless/iwlwifi/iwl-calib.c')
-rw-r--r-- | drivers/net/wireless/iwlwifi/iwl-calib.c | 802 |
1 files changed, 802 insertions, 0 deletions
diff --git a/drivers/net/wireless/iwlwifi/iwl-calib.c b/drivers/net/wireless/iwlwifi/iwl-calib.c new file mode 100644 index 000000000000..ef49440bd7f6 --- /dev/null +++ b/drivers/net/wireless/iwlwifi/iwl-calib.c | |||
@@ -0,0 +1,802 @@ | |||
1 | /****************************************************************************** | ||
2 | * | ||
3 | * This file is provided under a dual BSD/GPLv2 license. When using or | ||
4 | * redistributing this file, you may do so under either license. | ||
5 | * | ||
6 | * GPL LICENSE SUMMARY | ||
7 | * | ||
8 | * Copyright(c) 2008 Intel Corporation. All rights reserved. | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or modify | ||
11 | * it under the terms of version 2 of the GNU General Public License as | ||
12 | * published by the Free Software Foundation. | ||
13 | * | ||
14 | * This program is distributed in the hope that it will be useful, but | ||
15 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
17 | * General Public License for more details. | ||
18 | * | ||
19 | * You should have received a copy of the GNU General Public License | ||
20 | * along with this program; if not, write to the Free Software | ||
21 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, | ||
22 | * USA | ||
23 | * | ||
24 | * The full GNU General Public License is included in this distribution | ||
25 | * in the file called LICENSE.GPL. | ||
26 | * | ||
27 | * Contact Information: | ||
28 | * Tomas Winkler <tomas.winkler@intel.com> | ||
29 | * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
30 | * | ||
31 | * BSD LICENSE | ||
32 | * | ||
33 | * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved. | ||
34 | * All rights reserved. | ||
35 | * | ||
36 | * Redistribution and use in source and binary forms, with or without | ||
37 | * modification, are permitted provided that the following conditions | ||
38 | * are met: | ||
39 | * | ||
40 | * * Redistributions of source code must retain the above copyright | ||
41 | * notice, this list of conditions and the following disclaimer. | ||
42 | * * Redistributions in binary form must reproduce the above copyright | ||
43 | * notice, this list of conditions and the following disclaimer in | ||
44 | * the documentation and/or other materials provided with the | ||
45 | * distribution. | ||
46 | * * Neither the name Intel Corporation nor the names of its | ||
47 | * contributors may be used to endorse or promote products derived | ||
48 | * from this software without specific prior written permission. | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||
51 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||
52 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||
53 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||
54 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||
56 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||
57 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||
58 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
59 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
60 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
61 | *****************************************************************************/ | ||
62 | |||
63 | #include <net/mac80211.h> | ||
64 | |||
65 | #include "iwl-dev.h" | ||
66 | #include "iwl-core.h" | ||
67 | #include "iwl-calib.h" | ||
68 | |||
69 | /* "false alarms" are signals that our DSP tries to lock onto, | ||
70 | * but then determines that they are either noise, or transmissions | ||
71 | * from a distant wireless network (also "noise", really) that get | ||
72 | * "stepped on" by stronger transmissions within our own network. | ||
73 | * This algorithm attempts to set a sensitivity level that is high | ||
74 | * enough to receive all of our own network traffic, but not so | ||
75 | * high that our DSP gets too busy trying to lock onto non-network | ||
76 | * activity/noise. */ | ||
77 | static int iwl_sens_energy_cck(struct iwl_priv *priv, | ||
78 | u32 norm_fa, | ||
79 | u32 rx_enable_time, | ||
80 | struct statistics_general_data *rx_info) | ||
81 | { | ||
82 | u32 max_nrg_cck = 0; | ||
83 | int i = 0; | ||
84 | u8 max_silence_rssi = 0; | ||
85 | u32 silence_ref = 0; | ||
86 | u8 silence_rssi_a = 0; | ||
87 | u8 silence_rssi_b = 0; | ||
88 | u8 silence_rssi_c = 0; | ||
89 | u32 val; | ||
90 | |||
91 | /* "false_alarms" values below are cross-multiplications to assess the | ||
92 | * numbers of false alarms within the measured period of actual Rx | ||
93 | * (Rx is off when we're txing), vs the min/max expected false alarms | ||
94 | * (some should be expected if rx is sensitive enough) in a | ||
95 | * hypothetical listening period of 200 time units (TU), 204.8 msec: | ||
96 | * | ||
97 | * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time | ||
98 | * | ||
99 | * */ | ||
100 | u32 false_alarms = norm_fa * 200 * 1024; | ||
101 | u32 max_false_alarms = MAX_FA_CCK * rx_enable_time; | ||
102 | u32 min_false_alarms = MIN_FA_CCK * rx_enable_time; | ||
103 | struct iwl_sensitivity_data *data = NULL; | ||
104 | const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; | ||
105 | |||
106 | data = &(priv->sensitivity_data); | ||
107 | |||
108 | data->nrg_auto_corr_silence_diff = 0; | ||
109 | |||
110 | /* Find max silence rssi among all 3 receivers. | ||
111 | * This is background noise, which may include transmissions from other | ||
112 | * networks, measured during silence before our network's beacon */ | ||
113 | silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a & | ||
114 | ALL_BAND_FILTER) >> 8); | ||
115 | silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b & | ||
116 | ALL_BAND_FILTER) >> 8); | ||
117 | silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c & | ||
118 | ALL_BAND_FILTER) >> 8); | ||
119 | |||
120 | val = max(silence_rssi_b, silence_rssi_c); | ||
121 | max_silence_rssi = max(silence_rssi_a, (u8) val); | ||
122 | |||
123 | /* Store silence rssi in 20-beacon history table */ | ||
124 | data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi; | ||
125 | data->nrg_silence_idx++; | ||
126 | if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L) | ||
127 | data->nrg_silence_idx = 0; | ||
128 | |||
129 | /* Find max silence rssi across 20 beacon history */ | ||
130 | for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) { | ||
131 | val = data->nrg_silence_rssi[i]; | ||
132 | silence_ref = max(silence_ref, val); | ||
133 | } | ||
134 | IWL_DEBUG_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n", | ||
135 | silence_rssi_a, silence_rssi_b, silence_rssi_c, | ||
136 | silence_ref); | ||
137 | |||
138 | /* Find max rx energy (min value!) among all 3 receivers, | ||
139 | * measured during beacon frame. | ||
140 | * Save it in 10-beacon history table. */ | ||
141 | i = data->nrg_energy_idx; | ||
142 | val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c); | ||
143 | data->nrg_value[i] = min(rx_info->beacon_energy_a, val); | ||
144 | |||
145 | data->nrg_energy_idx++; | ||
146 | if (data->nrg_energy_idx >= 10) | ||
147 | data->nrg_energy_idx = 0; | ||
148 | |||
149 | /* Find min rx energy (max value) across 10 beacon history. | ||
150 | * This is the minimum signal level that we want to receive well. | ||
151 | * Add backoff (margin so we don't miss slightly lower energy frames). | ||
152 | * This establishes an upper bound (min value) for energy threshold. */ | ||
153 | max_nrg_cck = data->nrg_value[0]; | ||
154 | for (i = 1; i < 10; i++) | ||
155 | max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i])); | ||
156 | max_nrg_cck += 6; | ||
157 | |||
158 | IWL_DEBUG_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n", | ||
159 | rx_info->beacon_energy_a, rx_info->beacon_energy_b, | ||
160 | rx_info->beacon_energy_c, max_nrg_cck - 6); | ||
161 | |||
162 | /* Count number of consecutive beacons with fewer-than-desired | ||
163 | * false alarms. */ | ||
164 | if (false_alarms < min_false_alarms) | ||
165 | data->num_in_cck_no_fa++; | ||
166 | else | ||
167 | data->num_in_cck_no_fa = 0; | ||
168 | IWL_DEBUG_CALIB("consecutive bcns with few false alarms = %u\n", | ||
169 | data->num_in_cck_no_fa); | ||
170 | |||
171 | /* If we got too many false alarms this time, reduce sensitivity */ | ||
172 | if ((false_alarms > max_false_alarms) && | ||
173 | (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) { | ||
174 | IWL_DEBUG_CALIB("norm FA %u > max FA %u\n", | ||
175 | false_alarms, max_false_alarms); | ||
176 | IWL_DEBUG_CALIB("... reducing sensitivity\n"); | ||
177 | data->nrg_curr_state = IWL_FA_TOO_MANY; | ||
178 | /* Store for "fewer than desired" on later beacon */ | ||
179 | data->nrg_silence_ref = silence_ref; | ||
180 | |||
181 | /* increase energy threshold (reduce nrg value) | ||
182 | * to decrease sensitivity */ | ||
183 | if (data->nrg_th_cck > | ||
184 | (ranges->max_nrg_cck + NRG_STEP_CCK)) | ||
185 | data->nrg_th_cck = data->nrg_th_cck | ||
186 | - NRG_STEP_CCK; | ||
187 | else | ||
188 | data->nrg_th_cck = ranges->max_nrg_cck; | ||
189 | /* Else if we got fewer than desired, increase sensitivity */ | ||
190 | } else if (false_alarms < min_false_alarms) { | ||
191 | data->nrg_curr_state = IWL_FA_TOO_FEW; | ||
192 | |||
193 | /* Compare silence level with silence level for most recent | ||
194 | * healthy number or too many false alarms */ | ||
195 | data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref - | ||
196 | (s32)silence_ref; | ||
197 | |||
198 | IWL_DEBUG_CALIB("norm FA %u < min FA %u, silence diff %d\n", | ||
199 | false_alarms, min_false_alarms, | ||
200 | data->nrg_auto_corr_silence_diff); | ||
201 | |||
202 | /* Increase value to increase sensitivity, but only if: | ||
203 | * 1a) previous beacon did *not* have *too many* false alarms | ||
204 | * 1b) AND there's a significant difference in Rx levels | ||
205 | * from a previous beacon with too many, or healthy # FAs | ||
206 | * OR 2) We've seen a lot of beacons (100) with too few | ||
207 | * false alarms */ | ||
208 | if ((data->nrg_prev_state != IWL_FA_TOO_MANY) && | ||
209 | ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || | ||
210 | (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { | ||
211 | |||
212 | IWL_DEBUG_CALIB("... increasing sensitivity\n"); | ||
213 | /* Increase nrg value to increase sensitivity */ | ||
214 | val = data->nrg_th_cck + NRG_STEP_CCK; | ||
215 | data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val); | ||
216 | } else { | ||
217 | IWL_DEBUG_CALIB("... but not changing sensitivity\n"); | ||
218 | } | ||
219 | |||
220 | /* Else we got a healthy number of false alarms, keep status quo */ | ||
221 | } else { | ||
222 | IWL_DEBUG_CALIB(" FA in safe zone\n"); | ||
223 | data->nrg_curr_state = IWL_FA_GOOD_RANGE; | ||
224 | |||
225 | /* Store for use in "fewer than desired" with later beacon */ | ||
226 | data->nrg_silence_ref = silence_ref; | ||
227 | |||
228 | /* If previous beacon had too many false alarms, | ||
229 | * give it some extra margin by reducing sensitivity again | ||
230 | * (but don't go below measured energy of desired Rx) */ | ||
231 | if (IWL_FA_TOO_MANY == data->nrg_prev_state) { | ||
232 | IWL_DEBUG_CALIB("... increasing margin\n"); | ||
233 | if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN)) | ||
234 | data->nrg_th_cck -= NRG_MARGIN; | ||
235 | else | ||
236 | data->nrg_th_cck = max_nrg_cck; | ||
237 | } | ||
238 | } | ||
239 | |||
240 | /* Make sure the energy threshold does not go above the measured | ||
241 | * energy of the desired Rx signals (reduced by backoff margin), | ||
242 | * or else we might start missing Rx frames. | ||
243 | * Lower value is higher energy, so we use max()! | ||
244 | */ | ||
245 | data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck); | ||
246 | IWL_DEBUG_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck); | ||
247 | |||
248 | data->nrg_prev_state = data->nrg_curr_state; | ||
249 | |||
250 | /* Auto-correlation CCK algorithm */ | ||
251 | if (false_alarms > min_false_alarms) { | ||
252 | |||
253 | /* increase auto_corr values to decrease sensitivity | ||
254 | * so the DSP won't be disturbed by the noise | ||
255 | */ | ||
256 | if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK) | ||
257 | data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1; | ||
258 | else { | ||
259 | val = data->auto_corr_cck + AUTO_CORR_STEP_CCK; | ||
260 | data->auto_corr_cck = | ||
261 | min((u32)ranges->auto_corr_max_cck, val); | ||
262 | } | ||
263 | val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK; | ||
264 | data->auto_corr_cck_mrc = | ||
265 | min((u32)ranges->auto_corr_max_cck_mrc, val); | ||
266 | } else if ((false_alarms < min_false_alarms) && | ||
267 | ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || | ||
268 | (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { | ||
269 | |||
270 | /* Decrease auto_corr values to increase sensitivity */ | ||
271 | val = data->auto_corr_cck - AUTO_CORR_STEP_CCK; | ||
272 | data->auto_corr_cck = | ||
273 | max((u32)ranges->auto_corr_min_cck, val); | ||
274 | val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK; | ||
275 | data->auto_corr_cck_mrc = | ||
276 | max((u32)ranges->auto_corr_min_cck_mrc, val); | ||
277 | } | ||
278 | |||
279 | return 0; | ||
280 | } | ||
281 | |||
282 | |||
283 | static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv, | ||
284 | u32 norm_fa, | ||
285 | u32 rx_enable_time) | ||
286 | { | ||
287 | u32 val; | ||
288 | u32 false_alarms = norm_fa * 200 * 1024; | ||
289 | u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time; | ||
290 | u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time; | ||
291 | struct iwl_sensitivity_data *data = NULL; | ||
292 | const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; | ||
293 | |||
294 | data = &(priv->sensitivity_data); | ||
295 | |||
296 | /* If we got too many false alarms this time, reduce sensitivity */ | ||
297 | if (false_alarms > max_false_alarms) { | ||
298 | |||
299 | IWL_DEBUG_CALIB("norm FA %u > max FA %u)\n", | ||
300 | false_alarms, max_false_alarms); | ||
301 | |||
302 | val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM; | ||
303 | data->auto_corr_ofdm = | ||
304 | min((u32)ranges->auto_corr_max_ofdm, val); | ||
305 | |||
306 | val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM; | ||
307 | data->auto_corr_ofdm_mrc = | ||
308 | min((u32)ranges->auto_corr_max_ofdm_mrc, val); | ||
309 | |||
310 | val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM; | ||
311 | data->auto_corr_ofdm_x1 = | ||
312 | min((u32)ranges->auto_corr_max_ofdm_x1, val); | ||
313 | |||
314 | val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM; | ||
315 | data->auto_corr_ofdm_mrc_x1 = | ||
316 | min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val); | ||
317 | } | ||
318 | |||
319 | /* Else if we got fewer than desired, increase sensitivity */ | ||
320 | else if (false_alarms < min_false_alarms) { | ||
321 | |||
322 | IWL_DEBUG_CALIB("norm FA %u < min FA %u\n", | ||
323 | false_alarms, min_false_alarms); | ||
324 | |||
325 | val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM; | ||
326 | data->auto_corr_ofdm = | ||
327 | max((u32)ranges->auto_corr_min_ofdm, val); | ||
328 | |||
329 | val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM; | ||
330 | data->auto_corr_ofdm_mrc = | ||
331 | max((u32)ranges->auto_corr_min_ofdm_mrc, val); | ||
332 | |||
333 | val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM; | ||
334 | data->auto_corr_ofdm_x1 = | ||
335 | max((u32)ranges->auto_corr_min_ofdm_x1, val); | ||
336 | |||
337 | val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM; | ||
338 | data->auto_corr_ofdm_mrc_x1 = | ||
339 | max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val); | ||
340 | } else { | ||
341 | IWL_DEBUG_CALIB("min FA %u < norm FA %u < max FA %u OK\n", | ||
342 | min_false_alarms, false_alarms, max_false_alarms); | ||
343 | } | ||
344 | return 0; | ||
345 | } | ||
346 | |||
347 | /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ | ||
348 | static int iwl_sensitivity_write(struct iwl_priv *priv) | ||
349 | { | ||
350 | int ret = 0; | ||
351 | struct iwl_sensitivity_cmd cmd ; | ||
352 | struct iwl_sensitivity_data *data = NULL; | ||
353 | struct iwl_host_cmd cmd_out = { | ||
354 | .id = SENSITIVITY_CMD, | ||
355 | .len = sizeof(struct iwl_sensitivity_cmd), | ||
356 | .meta.flags = CMD_ASYNC, | ||
357 | .data = &cmd, | ||
358 | }; | ||
359 | |||
360 | data = &(priv->sensitivity_data); | ||
361 | |||
362 | memset(&cmd, 0, sizeof(cmd)); | ||
363 | |||
364 | cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] = | ||
365 | cpu_to_le16((u16)data->auto_corr_ofdm); | ||
366 | cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] = | ||
367 | cpu_to_le16((u16)data->auto_corr_ofdm_mrc); | ||
368 | cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] = | ||
369 | cpu_to_le16((u16)data->auto_corr_ofdm_x1); | ||
370 | cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] = | ||
371 | cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1); | ||
372 | |||
373 | cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] = | ||
374 | cpu_to_le16((u16)data->auto_corr_cck); | ||
375 | cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] = | ||
376 | cpu_to_le16((u16)data->auto_corr_cck_mrc); | ||
377 | |||
378 | cmd.table[HD_MIN_ENERGY_CCK_DET_INDEX] = | ||
379 | cpu_to_le16((u16)data->nrg_th_cck); | ||
380 | cmd.table[HD_MIN_ENERGY_OFDM_DET_INDEX] = | ||
381 | cpu_to_le16((u16)data->nrg_th_ofdm); | ||
382 | |||
383 | cmd.table[HD_BARKER_CORR_TH_ADD_MIN_INDEX] = | ||
384 | __constant_cpu_to_le16(190); | ||
385 | cmd.table[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] = | ||
386 | __constant_cpu_to_le16(390); | ||
387 | cmd.table[HD_OFDM_ENERGY_TH_IN_INDEX] = | ||
388 | __constant_cpu_to_le16(62); | ||
389 | |||
390 | IWL_DEBUG_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n", | ||
391 | data->auto_corr_ofdm, data->auto_corr_ofdm_mrc, | ||
392 | data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1, | ||
393 | data->nrg_th_ofdm); | ||
394 | |||
395 | IWL_DEBUG_CALIB("cck: ac %u mrc %u thresh %u\n", | ||
396 | data->auto_corr_cck, data->auto_corr_cck_mrc, | ||
397 | data->nrg_th_cck); | ||
398 | |||
399 | /* Update uCode's "work" table, and copy it to DSP */ | ||
400 | cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; | ||
401 | |||
402 | /* Don't send command to uCode if nothing has changed */ | ||
403 | if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]), | ||
404 | sizeof(u16)*HD_TABLE_SIZE)) { | ||
405 | IWL_DEBUG_CALIB("No change in SENSITIVITY_CMD\n"); | ||
406 | return 0; | ||
407 | } | ||
408 | |||
409 | /* Copy table for comparison next time */ | ||
410 | memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]), | ||
411 | sizeof(u16)*HD_TABLE_SIZE); | ||
412 | |||
413 | ret = iwl_send_cmd(priv, &cmd_out); | ||
414 | if (ret) | ||
415 | IWL_ERROR("SENSITIVITY_CMD failed\n"); | ||
416 | |||
417 | return ret; | ||
418 | } | ||
419 | |||
420 | void iwl_init_sensitivity(struct iwl_priv *priv) | ||
421 | { | ||
422 | int ret = 0; | ||
423 | int i; | ||
424 | struct iwl_sensitivity_data *data = NULL; | ||
425 | const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; | ||
426 | |||
427 | if (priv->disable_sens_cal) | ||
428 | return; | ||
429 | |||
430 | IWL_DEBUG_CALIB("Start iwl_init_sensitivity\n"); | ||
431 | |||
432 | /* Clear driver's sensitivity algo data */ | ||
433 | data = &(priv->sensitivity_data); | ||
434 | |||
435 | if (ranges == NULL) | ||
436 | return; | ||
437 | |||
438 | memset(data, 0, sizeof(struct iwl_sensitivity_data)); | ||
439 | |||
440 | data->num_in_cck_no_fa = 0; | ||
441 | data->nrg_curr_state = IWL_FA_TOO_MANY; | ||
442 | data->nrg_prev_state = IWL_FA_TOO_MANY; | ||
443 | data->nrg_silence_ref = 0; | ||
444 | data->nrg_silence_idx = 0; | ||
445 | data->nrg_energy_idx = 0; | ||
446 | |||
447 | for (i = 0; i < 10; i++) | ||
448 | data->nrg_value[i] = 0; | ||
449 | |||
450 | for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) | ||
451 | data->nrg_silence_rssi[i] = 0; | ||
452 | |||
453 | data->auto_corr_ofdm = 90; | ||
454 | data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc; | ||
455 | data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1; | ||
456 | data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1; | ||
457 | data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF; | ||
458 | data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc; | ||
459 | data->nrg_th_cck = ranges->nrg_th_cck; | ||
460 | data->nrg_th_ofdm = ranges->nrg_th_ofdm; | ||
461 | |||
462 | data->last_bad_plcp_cnt_ofdm = 0; | ||
463 | data->last_fa_cnt_ofdm = 0; | ||
464 | data->last_bad_plcp_cnt_cck = 0; | ||
465 | data->last_fa_cnt_cck = 0; | ||
466 | |||
467 | ret |= iwl_sensitivity_write(priv); | ||
468 | IWL_DEBUG_CALIB("<<return 0x%X\n", ret); | ||
469 | } | ||
470 | EXPORT_SYMBOL(iwl_init_sensitivity); | ||
471 | |||
472 | void iwl_sensitivity_calibration(struct iwl_priv *priv, | ||
473 | struct iwl_notif_statistics *resp) | ||
474 | { | ||
475 | u32 rx_enable_time; | ||
476 | u32 fa_cck; | ||
477 | u32 fa_ofdm; | ||
478 | u32 bad_plcp_cck; | ||
479 | u32 bad_plcp_ofdm; | ||
480 | u32 norm_fa_ofdm; | ||
481 | u32 norm_fa_cck; | ||
482 | struct iwl_sensitivity_data *data = NULL; | ||
483 | struct statistics_rx_non_phy *rx_info = &(resp->rx.general); | ||
484 | struct statistics_rx *statistics = &(resp->rx); | ||
485 | unsigned long flags; | ||
486 | struct statistics_general_data statis; | ||
487 | |||
488 | if (priv->disable_sens_cal) | ||
489 | return; | ||
490 | |||
491 | data = &(priv->sensitivity_data); | ||
492 | |||
493 | if (!iwl_is_associated(priv)) { | ||
494 | IWL_DEBUG_CALIB("<< - not associated\n"); | ||
495 | return; | ||
496 | } | ||
497 | |||
498 | spin_lock_irqsave(&priv->lock, flags); | ||
499 | if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { | ||
500 | IWL_DEBUG_CALIB("<< invalid data.\n"); | ||
501 | spin_unlock_irqrestore(&priv->lock, flags); | ||
502 | return; | ||
503 | } | ||
504 | |||
505 | /* Extract Statistics: */ | ||
506 | rx_enable_time = le32_to_cpu(rx_info->channel_load); | ||
507 | fa_cck = le32_to_cpu(statistics->cck.false_alarm_cnt); | ||
508 | fa_ofdm = le32_to_cpu(statistics->ofdm.false_alarm_cnt); | ||
509 | bad_plcp_cck = le32_to_cpu(statistics->cck.plcp_err); | ||
510 | bad_plcp_ofdm = le32_to_cpu(statistics->ofdm.plcp_err); | ||
511 | |||
512 | statis.beacon_silence_rssi_a = | ||
513 | le32_to_cpu(statistics->general.beacon_silence_rssi_a); | ||
514 | statis.beacon_silence_rssi_b = | ||
515 | le32_to_cpu(statistics->general.beacon_silence_rssi_b); | ||
516 | statis.beacon_silence_rssi_c = | ||
517 | le32_to_cpu(statistics->general.beacon_silence_rssi_c); | ||
518 | statis.beacon_energy_a = | ||
519 | le32_to_cpu(statistics->general.beacon_energy_a); | ||
520 | statis.beacon_energy_b = | ||
521 | le32_to_cpu(statistics->general.beacon_energy_b); | ||
522 | statis.beacon_energy_c = | ||
523 | le32_to_cpu(statistics->general.beacon_energy_c); | ||
524 | |||
525 | spin_unlock_irqrestore(&priv->lock, flags); | ||
526 | |||
527 | IWL_DEBUG_CALIB("rx_enable_time = %u usecs\n", rx_enable_time); | ||
528 | |||
529 | if (!rx_enable_time) { | ||
530 | IWL_DEBUG_CALIB("<< RX Enable Time == 0! \n"); | ||
531 | return; | ||
532 | } | ||
533 | |||
534 | /* These statistics increase monotonically, and do not reset | ||
535 | * at each beacon. Calculate difference from last value, or just | ||
536 | * use the new statistics value if it has reset or wrapped around. */ | ||
537 | if (data->last_bad_plcp_cnt_cck > bad_plcp_cck) | ||
538 | data->last_bad_plcp_cnt_cck = bad_plcp_cck; | ||
539 | else { | ||
540 | bad_plcp_cck -= data->last_bad_plcp_cnt_cck; | ||
541 | data->last_bad_plcp_cnt_cck += bad_plcp_cck; | ||
542 | } | ||
543 | |||
544 | if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm) | ||
545 | data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm; | ||
546 | else { | ||
547 | bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm; | ||
548 | data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm; | ||
549 | } | ||
550 | |||
551 | if (data->last_fa_cnt_ofdm > fa_ofdm) | ||
552 | data->last_fa_cnt_ofdm = fa_ofdm; | ||
553 | else { | ||
554 | fa_ofdm -= data->last_fa_cnt_ofdm; | ||
555 | data->last_fa_cnt_ofdm += fa_ofdm; | ||
556 | } | ||
557 | |||
558 | if (data->last_fa_cnt_cck > fa_cck) | ||
559 | data->last_fa_cnt_cck = fa_cck; | ||
560 | else { | ||
561 | fa_cck -= data->last_fa_cnt_cck; | ||
562 | data->last_fa_cnt_cck += fa_cck; | ||
563 | } | ||
564 | |||
565 | /* Total aborted signal locks */ | ||
566 | norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm; | ||
567 | norm_fa_cck = fa_cck + bad_plcp_cck; | ||
568 | |||
569 | IWL_DEBUG_CALIB("cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck, | ||
570 | bad_plcp_cck, fa_ofdm, bad_plcp_ofdm); | ||
571 | |||
572 | iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time); | ||
573 | iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis); | ||
574 | iwl_sensitivity_write(priv); | ||
575 | |||
576 | return; | ||
577 | } | ||
578 | EXPORT_SYMBOL(iwl_sensitivity_calibration); | ||
579 | |||
580 | /* | ||
581 | * Accumulate 20 beacons of signal and noise statistics for each of | ||
582 | * 3 receivers/antennas/rx-chains, then figure out: | ||
583 | * 1) Which antennas are connected. | ||
584 | * 2) Differential rx gain settings to balance the 3 receivers. | ||
585 | */ | ||
586 | void iwl_chain_noise_calibration(struct iwl_priv *priv, | ||
587 | struct iwl_notif_statistics *stat_resp) | ||
588 | { | ||
589 | struct iwl_chain_noise_data *data = NULL; | ||
590 | |||
591 | u32 chain_noise_a; | ||
592 | u32 chain_noise_b; | ||
593 | u32 chain_noise_c; | ||
594 | u32 chain_sig_a; | ||
595 | u32 chain_sig_b; | ||
596 | u32 chain_sig_c; | ||
597 | u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; | ||
598 | u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; | ||
599 | u32 max_average_sig; | ||
600 | u16 max_average_sig_antenna_i; | ||
601 | u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE; | ||
602 | u16 min_average_noise_antenna_i = INITIALIZATION_VALUE; | ||
603 | u16 i = 0; | ||
604 | u16 rxon_chnum = INITIALIZATION_VALUE; | ||
605 | u16 stat_chnum = INITIALIZATION_VALUE; | ||
606 | u8 rxon_band24; | ||
607 | u8 stat_band24; | ||
608 | u32 active_chains = 0; | ||
609 | u8 num_tx_chains; | ||
610 | unsigned long flags; | ||
611 | struct statistics_rx_non_phy *rx_info = &(stat_resp->rx.general); | ||
612 | |||
613 | if (priv->disable_chain_noise_cal) | ||
614 | return; | ||
615 | |||
616 | data = &(priv->chain_noise_data); | ||
617 | |||
618 | /* Accumulate just the first 20 beacons after the first association, | ||
619 | * then we're done forever. */ | ||
620 | if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) { | ||
621 | if (data->state == IWL_CHAIN_NOISE_ALIVE) | ||
622 | IWL_DEBUG_CALIB("Wait for noise calib reset\n"); | ||
623 | return; | ||
624 | } | ||
625 | |||
626 | spin_lock_irqsave(&priv->lock, flags); | ||
627 | if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { | ||
628 | IWL_DEBUG_CALIB(" << Interference data unavailable\n"); | ||
629 | spin_unlock_irqrestore(&priv->lock, flags); | ||
630 | return; | ||
631 | } | ||
632 | |||
633 | rxon_band24 = !!(priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK); | ||
634 | rxon_chnum = le16_to_cpu(priv->staging_rxon.channel); | ||
635 | stat_band24 = !!(stat_resp->flag & STATISTICS_REPLY_FLG_BAND_24G_MSK); | ||
636 | stat_chnum = le32_to_cpu(stat_resp->flag) >> 16; | ||
637 | |||
638 | /* Make sure we accumulate data for just the associated channel | ||
639 | * (even if scanning). */ | ||
640 | if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) { | ||
641 | IWL_DEBUG_CALIB("Stats not from chan=%d, band24=%d\n", | ||
642 | rxon_chnum, rxon_band24); | ||
643 | spin_unlock_irqrestore(&priv->lock, flags); | ||
644 | return; | ||
645 | } | ||
646 | |||
647 | /* Accumulate beacon statistics values across 20 beacons */ | ||
648 | chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) & | ||
649 | IN_BAND_FILTER; | ||
650 | chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) & | ||
651 | IN_BAND_FILTER; | ||
652 | chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) & | ||
653 | IN_BAND_FILTER; | ||
654 | |||
655 | chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER; | ||
656 | chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER; | ||
657 | chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER; | ||
658 | |||
659 | spin_unlock_irqrestore(&priv->lock, flags); | ||
660 | |||
661 | data->beacon_count++; | ||
662 | |||
663 | data->chain_noise_a = (chain_noise_a + data->chain_noise_a); | ||
664 | data->chain_noise_b = (chain_noise_b + data->chain_noise_b); | ||
665 | data->chain_noise_c = (chain_noise_c + data->chain_noise_c); | ||
666 | |||
667 | data->chain_signal_a = (chain_sig_a + data->chain_signal_a); | ||
668 | data->chain_signal_b = (chain_sig_b + data->chain_signal_b); | ||
669 | data->chain_signal_c = (chain_sig_c + data->chain_signal_c); | ||
670 | |||
671 | IWL_DEBUG_CALIB("chan=%d, band24=%d, beacon=%d\n", | ||
672 | rxon_chnum, rxon_band24, data->beacon_count); | ||
673 | IWL_DEBUG_CALIB("chain_sig: a %d b %d c %d\n", | ||
674 | chain_sig_a, chain_sig_b, chain_sig_c); | ||
675 | IWL_DEBUG_CALIB("chain_noise: a %d b %d c %d\n", | ||
676 | chain_noise_a, chain_noise_b, chain_noise_c); | ||
677 | |||
678 | /* If this is the 20th beacon, determine: | ||
679 | * 1) Disconnected antennas (using signal strengths) | ||
680 | * 2) Differential gain (using silence noise) to balance receivers */ | ||
681 | if (data->beacon_count != CAL_NUM_OF_BEACONS) | ||
682 | return; | ||
683 | |||
684 | /* Analyze signal for disconnected antenna */ | ||
685 | average_sig[0] = (data->chain_signal_a) / CAL_NUM_OF_BEACONS; | ||
686 | average_sig[1] = (data->chain_signal_b) / CAL_NUM_OF_BEACONS; | ||
687 | average_sig[2] = (data->chain_signal_c) / CAL_NUM_OF_BEACONS; | ||
688 | |||
689 | if (average_sig[0] >= average_sig[1]) { | ||
690 | max_average_sig = average_sig[0]; | ||
691 | max_average_sig_antenna_i = 0; | ||
692 | active_chains = (1 << max_average_sig_antenna_i); | ||
693 | } else { | ||
694 | max_average_sig = average_sig[1]; | ||
695 | max_average_sig_antenna_i = 1; | ||
696 | active_chains = (1 << max_average_sig_antenna_i); | ||
697 | } | ||
698 | |||
699 | if (average_sig[2] >= max_average_sig) { | ||
700 | max_average_sig = average_sig[2]; | ||
701 | max_average_sig_antenna_i = 2; | ||
702 | active_chains = (1 << max_average_sig_antenna_i); | ||
703 | } | ||
704 | |||
705 | IWL_DEBUG_CALIB("average_sig: a %d b %d c %d\n", | ||
706 | average_sig[0], average_sig[1], average_sig[2]); | ||
707 | IWL_DEBUG_CALIB("max_average_sig = %d, antenna %d\n", | ||
708 | max_average_sig, max_average_sig_antenna_i); | ||
709 | |||
710 | /* Compare signal strengths for all 3 receivers. */ | ||
711 | for (i = 0; i < NUM_RX_CHAINS; i++) { | ||
712 | if (i != max_average_sig_antenna_i) { | ||
713 | s32 rssi_delta = (max_average_sig - average_sig[i]); | ||
714 | |||
715 | /* If signal is very weak, compared with | ||
716 | * strongest, mark it as disconnected. */ | ||
717 | if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS) | ||
718 | data->disconn_array[i] = 1; | ||
719 | else | ||
720 | active_chains |= (1 << i); | ||
721 | IWL_DEBUG_CALIB("i = %d rssiDelta = %d " | ||
722 | "disconn_array[i] = %d\n", | ||
723 | i, rssi_delta, data->disconn_array[i]); | ||
724 | } | ||
725 | } | ||
726 | |||
727 | num_tx_chains = 0; | ||
728 | for (i = 0; i < NUM_RX_CHAINS; i++) { | ||
729 | /* loops on all the bits of | ||
730 | * priv->hw_setting.valid_tx_ant */ | ||
731 | u8 ant_msk = (1 << i); | ||
732 | if (!(priv->hw_params.valid_tx_ant & ant_msk)) | ||
733 | continue; | ||
734 | |||
735 | num_tx_chains++; | ||
736 | if (data->disconn_array[i] == 0) | ||
737 | /* there is a Tx antenna connected */ | ||
738 | break; | ||
739 | if (num_tx_chains == priv->hw_params.tx_chains_num && | ||
740 | data->disconn_array[i]) { | ||
741 | /* This is the last TX antenna and is also | ||
742 | * disconnected connect it anyway */ | ||
743 | data->disconn_array[i] = 0; | ||
744 | active_chains |= ant_msk; | ||
745 | IWL_DEBUG_CALIB("All Tx chains are disconnected W/A - " | ||
746 | "declare %d as connected\n", i); | ||
747 | break; | ||
748 | } | ||
749 | } | ||
750 | |||
751 | IWL_DEBUG_CALIB("active_chains (bitwise) = 0x%x\n", | ||
752 | active_chains); | ||
753 | |||
754 | /* Save for use within RXON, TX, SCAN commands, etc. */ | ||
755 | /*priv->valid_antenna = active_chains;*/ | ||
756 | /*FIXME: should be reflected in RX chains in RXON */ | ||
757 | |||
758 | /* Analyze noise for rx balance */ | ||
759 | average_noise[0] = ((data->chain_noise_a)/CAL_NUM_OF_BEACONS); | ||
760 | average_noise[1] = ((data->chain_noise_b)/CAL_NUM_OF_BEACONS); | ||
761 | average_noise[2] = ((data->chain_noise_c)/CAL_NUM_OF_BEACONS); | ||
762 | |||
763 | for (i = 0; i < NUM_RX_CHAINS; i++) { | ||
764 | if (!(data->disconn_array[i]) && | ||
765 | (average_noise[i] <= min_average_noise)) { | ||
766 | /* This means that chain i is active and has | ||
767 | * lower noise values so far: */ | ||
768 | min_average_noise = average_noise[i]; | ||
769 | min_average_noise_antenna_i = i; | ||
770 | } | ||
771 | } | ||
772 | |||
773 | IWL_DEBUG_CALIB("average_noise: a %d b %d c %d\n", | ||
774 | average_noise[0], average_noise[1], | ||
775 | average_noise[2]); | ||
776 | |||
777 | IWL_DEBUG_CALIB("min_average_noise = %d, antenna %d\n", | ||
778 | min_average_noise, min_average_noise_antenna_i); | ||
779 | |||
780 | priv->cfg->ops->utils->gain_computation(priv, average_noise, | ||
781 | min_average_noise_antenna_i, min_average_noise); | ||
782 | } | ||
783 | EXPORT_SYMBOL(iwl_chain_noise_calibration); | ||
784 | |||
785 | |||
786 | void iwl_reset_run_time_calib(struct iwl_priv *priv) | ||
787 | { | ||
788 | int i; | ||
789 | memset(&(priv->sensitivity_data), 0, | ||
790 | sizeof(struct iwl_sensitivity_data)); | ||
791 | memset(&(priv->chain_noise_data), 0, | ||
792 | sizeof(struct iwl_chain_noise_data)); | ||
793 | for (i = 0; i < NUM_RX_CHAINS; i++) | ||
794 | priv->chain_noise_data.delta_gain_code[i] = | ||
795 | CHAIN_NOISE_DELTA_GAIN_INIT_VAL; | ||
796 | |||
797 | /* Ask for statistics now, the uCode will send notification | ||
798 | * periodically after association */ | ||
799 | iwl_send_statistics_request(priv, CMD_ASYNC); | ||
800 | } | ||
801 | EXPORT_SYMBOL(iwl_reset_run_time_calib); | ||
802 | |||