aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/iwlwifi/dvm/commands.h
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/wireless/iwlwifi/dvm/commands.h')
-rw-r--r--drivers/net/wireless/iwlwifi/dvm/commands.h3994
1 files changed, 3994 insertions, 0 deletions
diff --git a/drivers/net/wireless/iwlwifi/dvm/commands.h b/drivers/net/wireless/iwlwifi/dvm/commands.h
new file mode 100644
index 000000000000..97bea16f3592
--- /dev/null
+++ b/drivers/net/wireless/iwlwifi/dvm/commands.h
@@ -0,0 +1,3994 @@
1/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
63/*
64 * Please use this file (commands.h) only for uCode API definitions.
65 * Please use iwl-xxxx-hw.h for hardware-related definitions.
66 * Please use dev.h for driver implementation definitions.
67 */
68
69#ifndef __iwl_commands_h__
70#define __iwl_commands_h__
71
72#include <linux/ieee80211.h>
73#include <linux/types.h>
74
75
76enum {
77 REPLY_ALIVE = 0x1,
78 REPLY_ERROR = 0x2,
79 REPLY_ECHO = 0x3, /* test command */
80
81 /* RXON and QOS commands */
82 REPLY_RXON = 0x10,
83 REPLY_RXON_ASSOC = 0x11,
84 REPLY_QOS_PARAM = 0x13,
85 REPLY_RXON_TIMING = 0x14,
86
87 /* Multi-Station support */
88 REPLY_ADD_STA = 0x18,
89 REPLY_REMOVE_STA = 0x19,
90 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
91 REPLY_TXFIFO_FLUSH = 0x1e,
92
93 /* Security */
94 REPLY_WEPKEY = 0x20,
95
96 /* RX, TX, LEDs */
97 REPLY_TX = 0x1c,
98 REPLY_LEDS_CMD = 0x48,
99 REPLY_TX_LINK_QUALITY_CMD = 0x4e,
100
101 /* WiMAX coexistence */
102 COEX_PRIORITY_TABLE_CMD = 0x5a,
103 COEX_MEDIUM_NOTIFICATION = 0x5b,
104 COEX_EVENT_CMD = 0x5c,
105
106 /* Calibration */
107 TEMPERATURE_NOTIFICATION = 0x62,
108 CALIBRATION_CFG_CMD = 0x65,
109 CALIBRATION_RES_NOTIFICATION = 0x66,
110 CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
111
112 /* 802.11h related */
113 REPLY_QUIET_CMD = 0x71, /* not used */
114 REPLY_CHANNEL_SWITCH = 0x72,
115 CHANNEL_SWITCH_NOTIFICATION = 0x73,
116 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
117 SPECTRUM_MEASURE_NOTIFICATION = 0x75,
118
119 /* Power Management */
120 POWER_TABLE_CMD = 0x77,
121 PM_SLEEP_NOTIFICATION = 0x7A,
122 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
123
124 /* Scan commands and notifications */
125 REPLY_SCAN_CMD = 0x80,
126 REPLY_SCAN_ABORT_CMD = 0x81,
127 SCAN_START_NOTIFICATION = 0x82,
128 SCAN_RESULTS_NOTIFICATION = 0x83,
129 SCAN_COMPLETE_NOTIFICATION = 0x84,
130
131 /* IBSS/AP commands */
132 BEACON_NOTIFICATION = 0x90,
133 REPLY_TX_BEACON = 0x91,
134 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
135
136 /* Miscellaneous commands */
137 REPLY_TX_POWER_DBM_CMD = 0x95,
138 QUIET_NOTIFICATION = 0x96, /* not used */
139 REPLY_TX_PWR_TABLE_CMD = 0x97,
140 REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */
141 TX_ANT_CONFIGURATION_CMD = 0x98,
142 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
143
144 /* Bluetooth device coexistence config command */
145 REPLY_BT_CONFIG = 0x9b,
146
147 /* Statistics */
148 REPLY_STATISTICS_CMD = 0x9c,
149 STATISTICS_NOTIFICATION = 0x9d,
150
151 /* RF-KILL commands and notifications */
152 REPLY_CARD_STATE_CMD = 0xa0,
153 CARD_STATE_NOTIFICATION = 0xa1,
154
155 /* Missed beacons notification */
156 MISSED_BEACONS_NOTIFICATION = 0xa2,
157
158 REPLY_CT_KILL_CONFIG_CMD = 0xa4,
159 SENSITIVITY_CMD = 0xa8,
160 REPLY_PHY_CALIBRATION_CMD = 0xb0,
161 REPLY_RX_PHY_CMD = 0xc0,
162 REPLY_RX_MPDU_CMD = 0xc1,
163 REPLY_RX = 0xc3,
164 REPLY_COMPRESSED_BA = 0xc5,
165
166 /* BT Coex */
167 REPLY_BT_COEX_PRIO_TABLE = 0xcc,
168 REPLY_BT_COEX_PROT_ENV = 0xcd,
169 REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
170
171 /* PAN commands */
172 REPLY_WIPAN_PARAMS = 0xb2,
173 REPLY_WIPAN_RXON = 0xb3, /* use REPLY_RXON structure */
174 REPLY_WIPAN_RXON_TIMING = 0xb4, /* use REPLY_RXON_TIMING structure */
175 REPLY_WIPAN_RXON_ASSOC = 0xb6, /* use REPLY_RXON_ASSOC structure */
176 REPLY_WIPAN_QOS_PARAM = 0xb7, /* use REPLY_QOS_PARAM structure */
177 REPLY_WIPAN_WEPKEY = 0xb8, /* use REPLY_WEPKEY structure */
178 REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
179 REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
180 REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
181
182 REPLY_WOWLAN_PATTERNS = 0xe0,
183 REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
184 REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
185 REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
186 REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
187 REPLY_WOWLAN_GET_STATUS = 0xe5,
188 REPLY_D3_CONFIG = 0xd3,
189
190 REPLY_MAX = 0xff
191};
192
193/*
194 * Minimum number of queues. MAX_NUM is defined in hw specific files.
195 * Set the minimum to accommodate
196 * - 4 standard TX queues
197 * - the command queue
198 * - 4 PAN TX queues
199 * - the PAN multicast queue, and
200 * - the AUX (TX during scan dwell) queue.
201 */
202#define IWL_MIN_NUM_QUEUES 11
203
204/*
205 * Command queue depends on iPAN support.
206 */
207#define IWL_DEFAULT_CMD_QUEUE_NUM 4
208#define IWL_IPAN_CMD_QUEUE_NUM 9
209
210#define IWL_TX_FIFO_BK 0 /* shared */
211#define IWL_TX_FIFO_BE 1
212#define IWL_TX_FIFO_VI 2 /* shared */
213#define IWL_TX_FIFO_VO 3
214#define IWL_TX_FIFO_BK_IPAN IWL_TX_FIFO_BK
215#define IWL_TX_FIFO_BE_IPAN 4
216#define IWL_TX_FIFO_VI_IPAN IWL_TX_FIFO_VI
217#define IWL_TX_FIFO_VO_IPAN 5
218/* re-uses the VO FIFO, uCode will properly flush/schedule */
219#define IWL_TX_FIFO_AUX 5
220#define IWL_TX_FIFO_UNUSED 255
221
222#define IWLAGN_CMD_FIFO_NUM 7
223
224/*
225 * This queue number is required for proper operation
226 * because the ucode will stop/start the scheduler as
227 * required.
228 */
229#define IWL_IPAN_MCAST_QUEUE 8
230
231/******************************************************************************
232 * (0)
233 * Commonly used structures and definitions:
234 * Command header, rate_n_flags, txpower
235 *
236 *****************************************************************************/
237
238/**
239 * iwlagn rate_n_flags bit fields
240 *
241 * rate_n_flags format is used in following iwlagn commands:
242 * REPLY_RX (response only)
243 * REPLY_RX_MPDU (response only)
244 * REPLY_TX (both command and response)
245 * REPLY_TX_LINK_QUALITY_CMD
246 *
247 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
248 * 2-0: 0) 6 Mbps
249 * 1) 12 Mbps
250 * 2) 18 Mbps
251 * 3) 24 Mbps
252 * 4) 36 Mbps
253 * 5) 48 Mbps
254 * 6) 54 Mbps
255 * 7) 60 Mbps
256 *
257 * 4-3: 0) Single stream (SISO)
258 * 1) Dual stream (MIMO)
259 * 2) Triple stream (MIMO)
260 *
261 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
262 *
263 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
264 * 3-0: 0xD) 6 Mbps
265 * 0xF) 9 Mbps
266 * 0x5) 12 Mbps
267 * 0x7) 18 Mbps
268 * 0x9) 24 Mbps
269 * 0xB) 36 Mbps
270 * 0x1) 48 Mbps
271 * 0x3) 54 Mbps
272 *
273 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
274 * 6-0: 10) 1 Mbps
275 * 20) 2 Mbps
276 * 55) 5.5 Mbps
277 * 110) 11 Mbps
278 */
279#define RATE_MCS_CODE_MSK 0x7
280#define RATE_MCS_SPATIAL_POS 3
281#define RATE_MCS_SPATIAL_MSK 0x18
282#define RATE_MCS_HT_DUP_POS 5
283#define RATE_MCS_HT_DUP_MSK 0x20
284/* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
285#define RATE_MCS_RATE_MSK 0xff
286
287/* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
288#define RATE_MCS_FLAGS_POS 8
289#define RATE_MCS_HT_POS 8
290#define RATE_MCS_HT_MSK 0x100
291
292/* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
293#define RATE_MCS_CCK_POS 9
294#define RATE_MCS_CCK_MSK 0x200
295
296/* Bit 10: (1) Use Green Field preamble */
297#define RATE_MCS_GF_POS 10
298#define RATE_MCS_GF_MSK 0x400
299
300/* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
301#define RATE_MCS_HT40_POS 11
302#define RATE_MCS_HT40_MSK 0x800
303
304/* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
305#define RATE_MCS_DUP_POS 12
306#define RATE_MCS_DUP_MSK 0x1000
307
308/* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
309#define RATE_MCS_SGI_POS 13
310#define RATE_MCS_SGI_MSK 0x2000
311
312/**
313 * rate_n_flags Tx antenna masks
314 * 4965 has 2 transmitters
315 * 5100 has 1 transmitter B
316 * 5150 has 1 transmitter A
317 * 5300 has 3 transmitters
318 * 5350 has 3 transmitters
319 * bit14:16
320 */
321#define RATE_MCS_ANT_POS 14
322#define RATE_MCS_ANT_A_MSK 0x04000
323#define RATE_MCS_ANT_B_MSK 0x08000
324#define RATE_MCS_ANT_C_MSK 0x10000
325#define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
326#define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
327#define RATE_ANT_NUM 3
328
329#define POWER_TABLE_NUM_ENTRIES 33
330#define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
331#define POWER_TABLE_CCK_ENTRY 32
332
333#define IWL_PWR_NUM_HT_OFDM_ENTRIES 24
334#define IWL_PWR_CCK_ENTRIES 2
335
336/**
337 * struct tx_power_dual_stream
338 *
339 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
340 *
341 * Same format as iwl_tx_power_dual_stream, but __le32
342 */
343struct tx_power_dual_stream {
344 __le32 dw;
345} __packed;
346
347/**
348 * Command REPLY_TX_POWER_DBM_CMD = 0x98
349 * struct iwlagn_tx_power_dbm_cmd
350 */
351#define IWLAGN_TX_POWER_AUTO 0x7f
352#define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
353
354struct iwlagn_tx_power_dbm_cmd {
355 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
356 u8 flags;
357 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
358 u8 reserved;
359} __packed;
360
361/**
362 * Command TX_ANT_CONFIGURATION_CMD = 0x98
363 * This command is used to configure valid Tx antenna.
364 * By default uCode concludes the valid antenna according to the radio flavor.
365 * This command enables the driver to override/modify this conclusion.
366 */
367struct iwl_tx_ant_config_cmd {
368 __le32 valid;
369} __packed;
370
371/******************************************************************************
372 * (0a)
373 * Alive and Error Commands & Responses:
374 *
375 *****************************************************************************/
376
377#define UCODE_VALID_OK cpu_to_le32(0x1)
378
379/**
380 * REPLY_ALIVE = 0x1 (response only, not a command)
381 *
382 * uCode issues this "alive" notification once the runtime image is ready
383 * to receive commands from the driver. This is the *second* "alive"
384 * notification that the driver will receive after rebooting uCode;
385 * this "alive" is indicated by subtype field != 9.
386 *
387 * See comments documenting "BSM" (bootstrap state machine).
388 *
389 * This response includes two pointers to structures within the device's
390 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
391 *
392 * 1) log_event_table_ptr indicates base of the event log. This traces
393 * a 256-entry history of uCode execution within a circular buffer.
394 * Its header format is:
395 *
396 * __le32 log_size; log capacity (in number of entries)
397 * __le32 type; (1) timestamp with each entry, (0) no timestamp
398 * __le32 wraps; # times uCode has wrapped to top of circular buffer
399 * __le32 write_index; next circular buffer entry that uCode would fill
400 *
401 * The header is followed by the circular buffer of log entries. Entries
402 * with timestamps have the following format:
403 *
404 * __le32 event_id; range 0 - 1500
405 * __le32 timestamp; low 32 bits of TSF (of network, if associated)
406 * __le32 data; event_id-specific data value
407 *
408 * Entries without timestamps contain only event_id and data.
409 *
410 *
411 * 2) error_event_table_ptr indicates base of the error log. This contains
412 * information about any uCode error that occurs. For agn, the format
413 * of the error log is defined by struct iwl_error_event_table.
414 *
415 * The Linux driver can print both logs to the system log when a uCode error
416 * occurs.
417 */
418
419/*
420 * Note: This structure is read from the device with IO accesses,
421 * and the reading already does the endian conversion. As it is
422 * read with u32-sized accesses, any members with a different size
423 * need to be ordered correctly though!
424 */
425struct iwl_error_event_table {
426 u32 valid; /* (nonzero) valid, (0) log is empty */
427 u32 error_id; /* type of error */
428 u32 pc; /* program counter */
429 u32 blink1; /* branch link */
430 u32 blink2; /* branch link */
431 u32 ilink1; /* interrupt link */
432 u32 ilink2; /* interrupt link */
433 u32 data1; /* error-specific data */
434 u32 data2; /* error-specific data */
435 u32 line; /* source code line of error */
436 u32 bcon_time; /* beacon timer */
437 u32 tsf_low; /* network timestamp function timer */
438 u32 tsf_hi; /* network timestamp function timer */
439 u32 gp1; /* GP1 timer register */
440 u32 gp2; /* GP2 timer register */
441 u32 gp3; /* GP3 timer register */
442 u32 ucode_ver; /* uCode version */
443 u32 hw_ver; /* HW Silicon version */
444 u32 brd_ver; /* HW board version */
445 u32 log_pc; /* log program counter */
446 u32 frame_ptr; /* frame pointer */
447 u32 stack_ptr; /* stack pointer */
448 u32 hcmd; /* last host command header */
449 u32 isr0; /* isr status register LMPM_NIC_ISR0:
450 * rxtx_flag */
451 u32 isr1; /* isr status register LMPM_NIC_ISR1:
452 * host_flag */
453 u32 isr2; /* isr status register LMPM_NIC_ISR2:
454 * enc_flag */
455 u32 isr3; /* isr status register LMPM_NIC_ISR3:
456 * time_flag */
457 u32 isr4; /* isr status register LMPM_NIC_ISR4:
458 * wico interrupt */
459 u32 isr_pref; /* isr status register LMPM_NIC_PREF_STAT */
460 u32 wait_event; /* wait event() caller address */
461 u32 l2p_control; /* L2pControlField */
462 u32 l2p_duration; /* L2pDurationField */
463 u32 l2p_mhvalid; /* L2pMhValidBits */
464 u32 l2p_addr_match; /* L2pAddrMatchStat */
465 u32 lmpm_pmg_sel; /* indicate which clocks are turned on
466 * (LMPM_PMG_SEL) */
467 u32 u_timestamp; /* indicate when the date and time of the
468 * compilation */
469 u32 flow_handler; /* FH read/write pointers, RX credit */
470} __packed;
471
472struct iwl_alive_resp {
473 u8 ucode_minor;
474 u8 ucode_major;
475 __le16 reserved1;
476 u8 sw_rev[8];
477 u8 ver_type;
478 u8 ver_subtype; /* not "9" for runtime alive */
479 __le16 reserved2;
480 __le32 log_event_table_ptr; /* SRAM address for event log */
481 __le32 error_event_table_ptr; /* SRAM address for error log */
482 __le32 timestamp;
483 __le32 is_valid;
484} __packed;
485
486/*
487 * REPLY_ERROR = 0x2 (response only, not a command)
488 */
489struct iwl_error_resp {
490 __le32 error_type;
491 u8 cmd_id;
492 u8 reserved1;
493 __le16 bad_cmd_seq_num;
494 __le32 error_info;
495 __le64 timestamp;
496} __packed;
497
498/******************************************************************************
499 * (1)
500 * RXON Commands & Responses:
501 *
502 *****************************************************************************/
503
504/*
505 * Rx config defines & structure
506 */
507/* rx_config device types */
508enum {
509 RXON_DEV_TYPE_AP = 1,
510 RXON_DEV_TYPE_ESS = 3,
511 RXON_DEV_TYPE_IBSS = 4,
512 RXON_DEV_TYPE_SNIFFER = 6,
513 RXON_DEV_TYPE_CP = 7,
514 RXON_DEV_TYPE_2STA = 8,
515 RXON_DEV_TYPE_P2P = 9,
516};
517
518
519#define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0)
520#define RXON_RX_CHAIN_DRIVER_FORCE_POS (0)
521#define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1)
522#define RXON_RX_CHAIN_VALID_POS (1)
523#define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4)
524#define RXON_RX_CHAIN_FORCE_SEL_POS (4)
525#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7)
526#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
527#define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10)
528#define RXON_RX_CHAIN_CNT_POS (10)
529#define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12)
530#define RXON_RX_CHAIN_MIMO_CNT_POS (12)
531#define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14)
532#define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
533
534/* rx_config flags */
535/* band & modulation selection */
536#define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0)
537#define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1)
538/* auto detection enable */
539#define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2)
540/* TGg protection when tx */
541#define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3)
542/* cck short slot & preamble */
543#define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4)
544#define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5)
545/* antenna selection */
546#define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7)
547#define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00)
548#define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
549#define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
550/* radar detection enable */
551#define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12)
552#define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13)
553/* rx response to host with 8-byte TSF
554* (according to ON_AIR deassertion) */
555#define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15)
556
557
558/* HT flags */
559#define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
560#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22)
561
562#define RXON_FLG_HT_OPERATING_MODE_POS (23)
563
564#define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23)
565#define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23)
566
567#define RXON_FLG_CHANNEL_MODE_POS (25)
568#define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25)
569
570/* channel mode */
571enum {
572 CHANNEL_MODE_LEGACY = 0,
573 CHANNEL_MODE_PURE_40 = 1,
574 CHANNEL_MODE_MIXED = 2,
575 CHANNEL_MODE_RESERVED = 3,
576};
577#define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
578#define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
579#define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
580
581/* CTS to self (if spec allows) flag */
582#define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30)
583
584/* rx_config filter flags */
585/* accept all data frames */
586#define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0)
587/* pass control & management to host */
588#define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1)
589/* accept multi-cast */
590#define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2)
591/* don't decrypt uni-cast frames */
592#define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3)
593/* don't decrypt multi-cast frames */
594#define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
595/* STA is associated */
596#define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5)
597/* transfer to host non bssid beacons in associated state */
598#define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6)
599
600/**
601 * REPLY_RXON = 0x10 (command, has simple generic response)
602 *
603 * RXON tunes the radio tuner to a service channel, and sets up a number
604 * of parameters that are used primarily for Rx, but also for Tx operations.
605 *
606 * NOTE: When tuning to a new channel, driver must set the
607 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
608 * info within the device, including the station tables, tx retry
609 * rate tables, and txpower tables. Driver must build a new station
610 * table and txpower table before transmitting anything on the RXON
611 * channel.
612 *
613 * NOTE: All RXONs wipe clean the internal txpower table. Driver must
614 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
615 * regardless of whether RXON_FILTER_ASSOC_MSK is set.
616 */
617
618struct iwl_rxon_cmd {
619 u8 node_addr[6];
620 __le16 reserved1;
621 u8 bssid_addr[6];
622 __le16 reserved2;
623 u8 wlap_bssid_addr[6];
624 __le16 reserved3;
625 u8 dev_type;
626 u8 air_propagation;
627 __le16 rx_chain;
628 u8 ofdm_basic_rates;
629 u8 cck_basic_rates;
630 __le16 assoc_id;
631 __le32 flags;
632 __le32 filter_flags;
633 __le16 channel;
634 u8 ofdm_ht_single_stream_basic_rates;
635 u8 ofdm_ht_dual_stream_basic_rates;
636 u8 ofdm_ht_triple_stream_basic_rates;
637 u8 reserved5;
638 __le16 acquisition_data;
639 __le16 reserved6;
640} __packed;
641
642/*
643 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
644 */
645struct iwl_rxon_assoc_cmd {
646 __le32 flags;
647 __le32 filter_flags;
648 u8 ofdm_basic_rates;
649 u8 cck_basic_rates;
650 __le16 reserved1;
651 u8 ofdm_ht_single_stream_basic_rates;
652 u8 ofdm_ht_dual_stream_basic_rates;
653 u8 ofdm_ht_triple_stream_basic_rates;
654 u8 reserved2;
655 __le16 rx_chain_select_flags;
656 __le16 acquisition_data;
657 __le32 reserved3;
658} __packed;
659
660#define IWL_CONN_MAX_LISTEN_INTERVAL 10
661#define IWL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */
662
663/*
664 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
665 */
666struct iwl_rxon_time_cmd {
667 __le64 timestamp;
668 __le16 beacon_interval;
669 __le16 atim_window;
670 __le32 beacon_init_val;
671 __le16 listen_interval;
672 u8 dtim_period;
673 u8 delta_cp_bss_tbtts;
674} __packed;
675
676/*
677 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
678 */
679/**
680 * struct iwl5000_channel_switch_cmd
681 * @band: 0- 5.2GHz, 1- 2.4GHz
682 * @expect_beacon: 0- resume transmits after channel switch
683 * 1- wait for beacon to resume transmits
684 * @channel: new channel number
685 * @rxon_flags: Rx on flags
686 * @rxon_filter_flags: filtering parameters
687 * @switch_time: switch time in extended beacon format
688 * @reserved: reserved bytes
689 */
690struct iwl5000_channel_switch_cmd {
691 u8 band;
692 u8 expect_beacon;
693 __le16 channel;
694 __le32 rxon_flags;
695 __le32 rxon_filter_flags;
696 __le32 switch_time;
697 __le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
698} __packed;
699
700/**
701 * struct iwl6000_channel_switch_cmd
702 * @band: 0- 5.2GHz, 1- 2.4GHz
703 * @expect_beacon: 0- resume transmits after channel switch
704 * 1- wait for beacon to resume transmits
705 * @channel: new channel number
706 * @rxon_flags: Rx on flags
707 * @rxon_filter_flags: filtering parameters
708 * @switch_time: switch time in extended beacon format
709 * @reserved: reserved bytes
710 */
711struct iwl6000_channel_switch_cmd {
712 u8 band;
713 u8 expect_beacon;
714 __le16 channel;
715 __le32 rxon_flags;
716 __le32 rxon_filter_flags;
717 __le32 switch_time;
718 __le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
719} __packed;
720
721/*
722 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
723 */
724struct iwl_csa_notification {
725 __le16 band;
726 __le16 channel;
727 __le32 status; /* 0 - OK, 1 - fail */
728} __packed;
729
730/******************************************************************************
731 * (2)
732 * Quality-of-Service (QOS) Commands & Responses:
733 *
734 *****************************************************************************/
735
736/**
737 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
738 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
739 *
740 * @cw_min: Contention window, start value in numbers of slots.
741 * Should be a power-of-2, minus 1. Device's default is 0x0f.
742 * @cw_max: Contention window, max value in numbers of slots.
743 * Should be a power-of-2, minus 1. Device's default is 0x3f.
744 * @aifsn: Number of slots in Arbitration Interframe Space (before
745 * performing random backoff timing prior to Tx). Device default 1.
746 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
747 *
748 * Device will automatically increase contention window by (2*CW) + 1 for each
749 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
750 * value, to cap the CW value.
751 */
752struct iwl_ac_qos {
753 __le16 cw_min;
754 __le16 cw_max;
755 u8 aifsn;
756 u8 reserved1;
757 __le16 edca_txop;
758} __packed;
759
760/* QoS flags defines */
761#define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01)
762#define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02)
763#define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10)
764
765/* Number of Access Categories (AC) (EDCA), queues 0..3 */
766#define AC_NUM 4
767
768/*
769 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
770 *
771 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
772 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
773 */
774struct iwl_qosparam_cmd {
775 __le32 qos_flags;
776 struct iwl_ac_qos ac[AC_NUM];
777} __packed;
778
779/******************************************************************************
780 * (3)
781 * Add/Modify Stations Commands & Responses:
782 *
783 *****************************************************************************/
784/*
785 * Multi station support
786 */
787
788/* Special, dedicated locations within device's station table */
789#define IWL_AP_ID 0
790#define IWL_AP_ID_PAN 1
791#define IWL_STA_ID 2
792#define IWLAGN_PAN_BCAST_ID 14
793#define IWLAGN_BROADCAST_ID 15
794#define IWLAGN_STATION_COUNT 16
795
796#define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
797
798#define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2)
799#define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8)
800#define STA_FLG_PAN_STATION cpu_to_le32(1 << 13)
801#define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17)
802#define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18)
803#define STA_FLG_MAX_AGG_SIZE_POS (19)
804#define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19)
805#define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21)
806#define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22)
807#define STA_FLG_AGG_MPDU_DENSITY_POS (23)
808#define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23)
809
810/* Use in mode field. 1: modify existing entry, 0: add new station entry */
811#define STA_CONTROL_MODIFY_MSK 0x01
812
813/* key flags __le16*/
814#define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007)
815#define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000)
816#define STA_KEY_FLG_WEP cpu_to_le16(0x0001)
817#define STA_KEY_FLG_CCMP cpu_to_le16(0x0002)
818#define STA_KEY_FLG_TKIP cpu_to_le16(0x0003)
819
820#define STA_KEY_FLG_KEYID_POS 8
821#define STA_KEY_FLG_INVALID cpu_to_le16(0x0800)
822/* wep key is either from global key (0) or from station info array (1) */
823#define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008)
824
825/* wep key in STA: 5-bytes (0) or 13-bytes (1) */
826#define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000)
827#define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000)
828#define STA_KEY_MAX_NUM 8
829#define STA_KEY_MAX_NUM_PAN 16
830/* must not match WEP_INVALID_OFFSET */
831#define IWLAGN_HW_KEY_DEFAULT 0xfe
832
833/* Flags indicate whether to modify vs. don't change various station params */
834#define STA_MODIFY_KEY_MASK 0x01
835#define STA_MODIFY_TID_DISABLE_TX 0x02
836#define STA_MODIFY_TX_RATE_MSK 0x04
837#define STA_MODIFY_ADDBA_TID_MSK 0x08
838#define STA_MODIFY_DELBA_TID_MSK 0x10
839#define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20
840
841/* Receiver address (actually, Rx station's index into station table),
842 * combined with Traffic ID (QOS priority), in format used by Tx Scheduler */
843#define BUILD_RAxTID(sta_id, tid) (((sta_id) << 4) + (tid))
844
845/* agn */
846struct iwl_keyinfo {
847 __le16 key_flags;
848 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
849 u8 reserved1;
850 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
851 u8 key_offset;
852 u8 reserved2;
853 u8 key[16]; /* 16-byte unicast decryption key */
854 __le64 tx_secur_seq_cnt;
855 __le64 hw_tkip_mic_rx_key;
856 __le64 hw_tkip_mic_tx_key;
857} __packed;
858
859/**
860 * struct sta_id_modify
861 * @addr[ETH_ALEN]: station's MAC address
862 * @sta_id: index of station in uCode's station table
863 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
864 *
865 * Driver selects unused table index when adding new station,
866 * or the index to a pre-existing station entry when modifying that station.
867 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
868 *
869 * modify_mask flags select which parameters to modify vs. leave alone.
870 */
871struct sta_id_modify {
872 u8 addr[ETH_ALEN];
873 __le16 reserved1;
874 u8 sta_id;
875 u8 modify_mask;
876 __le16 reserved2;
877} __packed;
878
879/*
880 * REPLY_ADD_STA = 0x18 (command)
881 *
882 * The device contains an internal table of per-station information,
883 * with info on security keys, aggregation parameters, and Tx rates for
884 * initial Tx attempt and any retries (agn devices uses
885 * REPLY_TX_LINK_QUALITY_CMD,
886 *
887 * REPLY_ADD_STA sets up the table entry for one station, either creating
888 * a new entry, or modifying a pre-existing one.
889 *
890 * NOTE: RXON command (without "associated" bit set) wipes the station table
891 * clean. Moving into RF_KILL state does this also. Driver must set up
892 * new station table before transmitting anything on the RXON channel
893 * (except active scans or active measurements; those commands carry
894 * their own txpower/rate setup data).
895 *
896 * When getting started on a new channel, driver must set up the
897 * IWL_BROADCAST_ID entry (last entry in the table). For a client
898 * station in a BSS, once an AP is selected, driver sets up the AP STA
899 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP
900 * are all that are needed for a BSS client station. If the device is
901 * used as AP, or in an IBSS network, driver must set up station table
902 * entries for all STAs in network, starting with index IWL_STA_ID.
903 */
904
905struct iwl_addsta_cmd {
906 u8 mode; /* 1: modify existing, 0: add new station */
907 u8 reserved[3];
908 struct sta_id_modify sta;
909 struct iwl_keyinfo key;
910 __le32 station_flags; /* STA_FLG_* */
911 __le32 station_flags_msk; /* STA_FLG_* */
912
913 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
914 * corresponding to bit (e.g. bit 5 controls TID 5).
915 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
916 __le16 tid_disable_tx;
917 __le16 legacy_reserved;
918
919 /* TID for which to add block-ack support.
920 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
921 u8 add_immediate_ba_tid;
922
923 /* TID for which to remove block-ack support.
924 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
925 u8 remove_immediate_ba_tid;
926
927 /* Starting Sequence Number for added block-ack support.
928 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
929 __le16 add_immediate_ba_ssn;
930
931 /*
932 * Number of packets OK to transmit to station even though
933 * it is asleep -- used to synchronise PS-poll and u-APSD
934 * responses while ucode keeps track of STA sleep state.
935 */
936 __le16 sleep_tx_count;
937
938 __le16 reserved2;
939} __packed;
940
941
942#define ADD_STA_SUCCESS_MSK 0x1
943#define ADD_STA_NO_ROOM_IN_TABLE 0x2
944#define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
945#define ADD_STA_MODIFY_NON_EXIST_STA 0x8
946/*
947 * REPLY_ADD_STA = 0x18 (response)
948 */
949struct iwl_add_sta_resp {
950 u8 status; /* ADD_STA_* */
951} __packed;
952
953#define REM_STA_SUCCESS_MSK 0x1
954/*
955 * REPLY_REM_STA = 0x19 (response)
956 */
957struct iwl_rem_sta_resp {
958 u8 status;
959} __packed;
960
961/*
962 * REPLY_REM_STA = 0x19 (command)
963 */
964struct iwl_rem_sta_cmd {
965 u8 num_sta; /* number of removed stations */
966 u8 reserved[3];
967 u8 addr[ETH_ALEN]; /* MAC addr of the first station */
968 u8 reserved2[2];
969} __packed;
970
971
972/* WiFi queues mask */
973#define IWL_SCD_BK_MSK cpu_to_le32(BIT(0))
974#define IWL_SCD_BE_MSK cpu_to_le32(BIT(1))
975#define IWL_SCD_VI_MSK cpu_to_le32(BIT(2))
976#define IWL_SCD_VO_MSK cpu_to_le32(BIT(3))
977#define IWL_SCD_MGMT_MSK cpu_to_le32(BIT(3))
978
979/* PAN queues mask */
980#define IWL_PAN_SCD_BK_MSK cpu_to_le32(BIT(4))
981#define IWL_PAN_SCD_BE_MSK cpu_to_le32(BIT(5))
982#define IWL_PAN_SCD_VI_MSK cpu_to_le32(BIT(6))
983#define IWL_PAN_SCD_VO_MSK cpu_to_le32(BIT(7))
984#define IWL_PAN_SCD_MGMT_MSK cpu_to_le32(BIT(7))
985#define IWL_PAN_SCD_MULTICAST_MSK cpu_to_le32(BIT(8))
986
987#define IWL_AGG_TX_QUEUE_MSK cpu_to_le32(0xffc00)
988
989#define IWL_DROP_SINGLE 0
990#define IWL_DROP_ALL (BIT(IWL_RXON_CTX_BSS) | BIT(IWL_RXON_CTX_PAN))
991
992/*
993 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
994 *
995 * When using full FIFO flush this command checks the scheduler HW block WR/RD
996 * pointers to check if all the frames were transferred by DMA into the
997 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
998 * empty the command can finish.
999 * This command is used to flush the TXFIFO from transmit commands, it may
1000 * operate on single or multiple queues, the command queue can't be flushed by
1001 * this command. The command response is returned when all the queue flush
1002 * operations are done. Each TX command flushed return response with the FLUSH
1003 * status set in the TX response status. When FIFO flush operation is used,
1004 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
1005 * are set.
1006 *
1007 * @fifo_control: bit mask for which queues to flush
1008 * @flush_control: flush controls
1009 * 0: Dump single MSDU
1010 * 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
1011 * 2: Dump all FIFO
1012 */
1013struct iwl_txfifo_flush_cmd {
1014 __le32 fifo_control;
1015 __le16 flush_control;
1016 __le16 reserved;
1017} __packed;
1018
1019/*
1020 * REPLY_WEP_KEY = 0x20
1021 */
1022struct iwl_wep_key {
1023 u8 key_index;
1024 u8 key_offset;
1025 u8 reserved1[2];
1026 u8 key_size;
1027 u8 reserved2[3];
1028 u8 key[16];
1029} __packed;
1030
1031struct iwl_wep_cmd {
1032 u8 num_keys;
1033 u8 global_key_type;
1034 u8 flags;
1035 u8 reserved;
1036 struct iwl_wep_key key[0];
1037} __packed;
1038
1039#define WEP_KEY_WEP_TYPE 1
1040#define WEP_KEYS_MAX 4
1041#define WEP_INVALID_OFFSET 0xff
1042#define WEP_KEY_LEN_64 5
1043#define WEP_KEY_LEN_128 13
1044
1045/******************************************************************************
1046 * (4)
1047 * Rx Responses:
1048 *
1049 *****************************************************************************/
1050
1051#define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0)
1052#define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1)
1053
1054#define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0)
1055#define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1)
1056#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2)
1057#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3)
1058#define RX_RES_PHY_FLAGS_ANTENNA_MSK 0xf0
1059#define RX_RES_PHY_FLAGS_ANTENNA_POS 4
1060
1061#define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
1062#define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
1063#define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
1064#define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
1065#define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
1066#define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8)
1067
1068#define RX_RES_STATUS_STATION_FOUND (1<<6)
1069#define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7)
1070
1071#define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
1072#define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
1073#define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
1074#define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
1075#define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
1076
1077#define RX_MPDU_RES_STATUS_ICV_OK (0x20)
1078#define RX_MPDU_RES_STATUS_MIC_OK (0x40)
1079#define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7)
1080#define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800)
1081
1082
1083#define IWLAGN_RX_RES_PHY_CNT 8
1084#define IWLAGN_RX_RES_AGC_IDX 1
1085#define IWLAGN_RX_RES_RSSI_AB_IDX 2
1086#define IWLAGN_RX_RES_RSSI_C_IDX 3
1087#define IWLAGN_OFDM_AGC_MSK 0xfe00
1088#define IWLAGN_OFDM_AGC_BIT_POS 9
1089#define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1090#define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1091#define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1092#define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1093#define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1094#define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1095#define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1096#define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1097#define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1098
1099struct iwlagn_non_cfg_phy {
1100 __le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT]; /* up to 8 phy entries */
1101} __packed;
1102
1103
1104/*
1105 * REPLY_RX = 0xc3 (response only, not a command)
1106 * Used only for legacy (non 11n) frames.
1107 */
1108struct iwl_rx_phy_res {
1109 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
1110 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
1111 u8 stat_id; /* configurable DSP phy data set ID */
1112 u8 reserved1;
1113 __le64 timestamp; /* TSF at on air rise */
1114 __le32 beacon_time_stamp; /* beacon at on-air rise */
1115 __le16 phy_flags; /* general phy flags: band, modulation, ... */
1116 __le16 channel; /* channel number */
1117 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1118 __le32 rate_n_flags; /* RATE_MCS_* */
1119 __le16 byte_count; /* frame's byte-count */
1120 __le16 frame_time; /* frame's time on the air */
1121} __packed;
1122
1123struct iwl_rx_mpdu_res_start {
1124 __le16 byte_count;
1125 __le16 reserved;
1126} __packed;
1127
1128
1129/******************************************************************************
1130 * (5)
1131 * Tx Commands & Responses:
1132 *
1133 * Driver must place each REPLY_TX command into one of the prioritized Tx
1134 * queues in host DRAM, shared between driver and device (see comments for
1135 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
1136 * are preparing to transmit, the device pulls the Tx command over the PCI
1137 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1138 * from which data will be transmitted.
1139 *
1140 * uCode handles all timing and protocol related to control frames
1141 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
1142 * handle reception of block-acks; uCode updates the host driver via
1143 * REPLY_COMPRESSED_BA.
1144 *
1145 * uCode handles retrying Tx when an ACK is expected but not received.
1146 * This includes trying lower data rates than the one requested in the Tx
1147 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1148 *
1149 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1150 * This command must be executed after every RXON command, before Tx can occur.
1151 *****************************************************************************/
1152
1153/* REPLY_TX Tx flags field */
1154
1155/*
1156 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1157 * before this frame. if CTS-to-self required check
1158 * RXON_FLG_SELF_CTS_EN status.
1159 */
1160#define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1161
1162/* 1: Expect ACK from receiving station
1163 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1164 * Set this for unicast frames, but not broadcast/multicast. */
1165#define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1166
1167/* For agn devices:
1168 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1169 * Tx command's initial_rate_index indicates first rate to try;
1170 * uCode walks through table for additional Tx attempts.
1171 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1172 * This rate will be used for all Tx attempts; it will not be scaled. */
1173#define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1174
1175/* 1: Expect immediate block-ack.
1176 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
1177#define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6)
1178
1179/* Tx antenna selection field; reserved (0) for agn devices. */
1180#define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1181
1182/* 1: Ignore Bluetooth priority for this frame.
1183 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1184#define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1185
1186/* 1: uCode overrides sequence control field in MAC header.
1187 * 0: Driver provides sequence control field in MAC header.
1188 * Set this for management frames, non-QOS data frames, non-unicast frames,
1189 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1190#define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1191
1192/* 1: This frame is non-last MPDU; more fragments are coming.
1193 * 0: Last fragment, or not using fragmentation. */
1194#define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1195
1196/* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1197 * 0: No TSF required in outgoing frame.
1198 * Set this for transmitting beacons and probe responses. */
1199#define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1200
1201/* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1202 * alignment of frame's payload data field.
1203 * 0: No pad
1204 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1205 * field (but not both). Driver must align frame data (i.e. data following
1206 * MAC header) to DWORD boundary. */
1207#define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1208
1209/* accelerate aggregation support
1210 * 0 - no CCMP encryption; 1 - CCMP encryption */
1211#define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1212
1213/* HCCA-AP - disable duration overwriting. */
1214#define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1215
1216
1217/*
1218 * TX command security control
1219 */
1220#define TX_CMD_SEC_WEP 0x01
1221#define TX_CMD_SEC_CCM 0x02
1222#define TX_CMD_SEC_TKIP 0x03
1223#define TX_CMD_SEC_MSK 0x03
1224#define TX_CMD_SEC_SHIFT 6
1225#define TX_CMD_SEC_KEY128 0x08
1226
1227/*
1228 * security overhead sizes
1229 */
1230#define WEP_IV_LEN 4
1231#define WEP_ICV_LEN 4
1232#define CCMP_MIC_LEN 8
1233#define TKIP_ICV_LEN 4
1234
1235/*
1236 * REPLY_TX = 0x1c (command)
1237 */
1238
1239/*
1240 * 4965 uCode updates these Tx attempt count values in host DRAM.
1241 * Used for managing Tx retries when expecting block-acks.
1242 * Driver should set these fields to 0.
1243 */
1244struct iwl_dram_scratch {
1245 u8 try_cnt; /* Tx attempts */
1246 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
1247 __le16 reserved;
1248} __packed;
1249
1250struct iwl_tx_cmd {
1251 /*
1252 * MPDU byte count:
1253 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1254 * + 8 byte IV for CCM or TKIP (not used for WEP)
1255 * + Data payload
1256 * + 8-byte MIC (not used for CCM/WEP)
1257 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1258 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1259 * Range: 14-2342 bytes.
1260 */
1261 __le16 len;
1262
1263 /*
1264 * MPDU or MSDU byte count for next frame.
1265 * Used for fragmentation and bursting, but not 11n aggregation.
1266 * Same as "len", but for next frame. Set to 0 if not applicable.
1267 */
1268 __le16 next_frame_len;
1269
1270 __le32 tx_flags; /* TX_CMD_FLG_* */
1271
1272 /* uCode may modify this field of the Tx command (in host DRAM!).
1273 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1274 struct iwl_dram_scratch scratch;
1275
1276 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1277 __le32 rate_n_flags; /* RATE_MCS_* */
1278
1279 /* Index of destination station in uCode's station table */
1280 u8 sta_id;
1281
1282 /* Type of security encryption: CCM or TKIP */
1283 u8 sec_ctl; /* TX_CMD_SEC_* */
1284
1285 /*
1286 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1287 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
1288 * data frames, this field may be used to selectively reduce initial
1289 * rate (via non-0 value) for special frames (e.g. management), while
1290 * still supporting rate scaling for all frames.
1291 */
1292 u8 initial_rate_index;
1293 u8 reserved;
1294 u8 key[16];
1295 __le16 next_frame_flags;
1296 __le16 reserved2;
1297 union {
1298 __le32 life_time;
1299 __le32 attempt;
1300 } stop_time;
1301
1302 /* Host DRAM physical address pointer to "scratch" in this command.
1303 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
1304 __le32 dram_lsb_ptr;
1305 u8 dram_msb_ptr;
1306
1307 u8 rts_retry_limit; /*byte 50 */
1308 u8 data_retry_limit; /*byte 51 */
1309 u8 tid_tspec;
1310 union {
1311 __le16 pm_frame_timeout;
1312 __le16 attempt_duration;
1313 } timeout;
1314
1315 /*
1316 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1317 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1318 */
1319 __le16 driver_txop;
1320
1321 /*
1322 * MAC header goes here, followed by 2 bytes padding if MAC header
1323 * length is 26 or 30 bytes, followed by payload data
1324 */
1325 u8 payload[0];
1326 struct ieee80211_hdr hdr[0];
1327} __packed;
1328
1329/*
1330 * TX command response is sent after *agn* transmission attempts.
1331 *
1332 * both postpone and abort status are expected behavior from uCode. there is
1333 * no special operation required from driver; except for RFKILL_FLUSH,
1334 * which required tx flush host command to flush all the tx frames in queues
1335 */
1336enum {
1337 TX_STATUS_SUCCESS = 0x01,
1338 TX_STATUS_DIRECT_DONE = 0x02,
1339 /* postpone TX */
1340 TX_STATUS_POSTPONE_DELAY = 0x40,
1341 TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1342 TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1343 TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1344 TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1345 /* abort TX */
1346 TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1347 TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1348 TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1349 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1350 TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1351 TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1352 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1353 TX_STATUS_FAIL_DEST_PS = 0x88,
1354 TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1355 TX_STATUS_FAIL_BT_RETRY = 0x8a,
1356 TX_STATUS_FAIL_STA_INVALID = 0x8b,
1357 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1358 TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1359 TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1360 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1361 TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1362 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1363};
1364
1365#define TX_PACKET_MODE_REGULAR 0x0000
1366#define TX_PACKET_MODE_BURST_SEQ 0x0100
1367#define TX_PACKET_MODE_BURST_FIRST 0x0200
1368
1369enum {
1370 TX_POWER_PA_NOT_ACTIVE = 0x0,
1371};
1372
1373enum {
1374 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
1375 TX_STATUS_DELAY_MSK = 0x00000040,
1376 TX_STATUS_ABORT_MSK = 0x00000080,
1377 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
1378 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
1379 TX_RESERVED = 0x00780000, /* bits 19:22 */
1380 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
1381 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
1382};
1383
1384/* *******************************
1385 * TX aggregation status
1386 ******************************* */
1387
1388enum {
1389 AGG_TX_STATE_TRANSMITTED = 0x00,
1390 AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1391 AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1392 AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1393 AGG_TX_STATE_ABORT_MSK = 0x08,
1394 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1395 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1396 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1397 AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1398 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1399 AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1400 AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1401 AGG_TX_STATE_DELAY_TX_MSK = 0x400
1402};
1403
1404#define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */
1405#define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */
1406
1407#define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1408 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1409 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1410
1411/* # tx attempts for first frame in aggregation */
1412#define AGG_TX_STATE_TRY_CNT_POS 12
1413#define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1414
1415/* Command ID and sequence number of Tx command for this frame */
1416#define AGG_TX_STATE_SEQ_NUM_POS 16
1417#define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1418
1419/*
1420 * REPLY_TX = 0x1c (response)
1421 *
1422 * This response may be in one of two slightly different formats, indicated
1423 * by the frame_count field:
1424 *
1425 * 1) No aggregation (frame_count == 1). This reports Tx results for
1426 * a single frame. Multiple attempts, at various bit rates, may have
1427 * been made for this frame.
1428 *
1429 * 2) Aggregation (frame_count > 1). This reports Tx results for
1430 * 2 or more frames that used block-acknowledge. All frames were
1431 * transmitted at same rate. Rate scaling may have been used if first
1432 * frame in this new agg block failed in previous agg block(s).
1433 *
1434 * Note that, for aggregation, ACK (block-ack) status is not delivered here;
1435 * block-ack has not been received by the time the agn device records
1436 * this status.
1437 * This status relates to reasons the tx might have been blocked or aborted
1438 * within the sending station (this agn device), rather than whether it was
1439 * received successfully by the destination station.
1440 */
1441struct agg_tx_status {
1442 __le16 status;
1443 __le16 sequence;
1444} __packed;
1445
1446/*
1447 * definitions for initial rate index field
1448 * bits [3:0] initial rate index
1449 * bits [6:4] rate table color, used for the initial rate
1450 * bit-7 invalid rate indication
1451 * i.e. rate was not chosen from rate table
1452 * or rate table color was changed during frame retries
1453 * refer tlc rate info
1454 */
1455
1456#define IWL50_TX_RES_INIT_RATE_INDEX_POS 0
1457#define IWL50_TX_RES_INIT_RATE_INDEX_MSK 0x0f
1458#define IWL50_TX_RES_RATE_TABLE_COLOR_POS 4
1459#define IWL50_TX_RES_RATE_TABLE_COLOR_MSK 0x70
1460#define IWL50_TX_RES_INV_RATE_INDEX_MSK 0x80
1461
1462/* refer to ra_tid */
1463#define IWLAGN_TX_RES_TID_POS 0
1464#define IWLAGN_TX_RES_TID_MSK 0x0f
1465#define IWLAGN_TX_RES_RA_POS 4
1466#define IWLAGN_TX_RES_RA_MSK 0xf0
1467
1468struct iwlagn_tx_resp {
1469 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1470 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1471 u8 failure_rts; /* # failures due to unsuccessful RTS */
1472 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1473
1474 /* For non-agg: Rate at which frame was successful.
1475 * For agg: Rate at which all frames were transmitted. */
1476 __le32 rate_n_flags; /* RATE_MCS_* */
1477
1478 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1479 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1480 __le16 wireless_media_time; /* uSecs */
1481
1482 u8 pa_status; /* RF power amplifier measurement (not used) */
1483 u8 pa_integ_res_a[3];
1484 u8 pa_integ_res_b[3];
1485 u8 pa_integ_res_C[3];
1486
1487 __le32 tfd_info;
1488 __le16 seq_ctl;
1489 __le16 byte_cnt;
1490 u8 tlc_info;
1491 u8 ra_tid; /* tid (0:3), sta_id (4:7) */
1492 __le16 frame_ctrl;
1493 /*
1494 * For non-agg: frame status TX_STATUS_*
1495 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1496 * fields follow this one, up to frame_count.
1497 * Bit fields:
1498 * 11- 0: AGG_TX_STATE_* status code
1499 * 15-12: Retry count for 1st frame in aggregation (retries
1500 * occur if tx failed for this frame when it was a
1501 * member of a previous aggregation block). If rate
1502 * scaling is used, retry count indicates the rate
1503 * table entry used for all frames in the new agg.
1504 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1505 */
1506 struct agg_tx_status status; /* TX status (in aggregation -
1507 * status of 1st frame) */
1508} __packed;
1509/*
1510 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1511 *
1512 * Reports Block-Acknowledge from recipient station
1513 */
1514struct iwl_compressed_ba_resp {
1515 __le32 sta_addr_lo32;
1516 __le16 sta_addr_hi16;
1517 __le16 reserved;
1518
1519 /* Index of recipient (BA-sending) station in uCode's station table */
1520 u8 sta_id;
1521 u8 tid;
1522 __le16 seq_ctl;
1523 __le64 bitmap;
1524 __le16 scd_flow;
1525 __le16 scd_ssn;
1526 u8 txed; /* number of frames sent */
1527 u8 txed_2_done; /* number of frames acked */
1528} __packed;
1529
1530/*
1531 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1532 *
1533 */
1534
1535/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1536#define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
1537
1538/* # of EDCA prioritized tx fifos */
1539#define LINK_QUAL_AC_NUM AC_NUM
1540
1541/* # entries in rate scale table to support Tx retries */
1542#define LINK_QUAL_MAX_RETRY_NUM 16
1543
1544/* Tx antenna selection values */
1545#define LINK_QUAL_ANT_A_MSK (1 << 0)
1546#define LINK_QUAL_ANT_B_MSK (1 << 1)
1547#define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1548
1549
1550/**
1551 * struct iwl_link_qual_general_params
1552 *
1553 * Used in REPLY_TX_LINK_QUALITY_CMD
1554 */
1555struct iwl_link_qual_general_params {
1556 u8 flags;
1557
1558 /* No entries at or above this (driver chosen) index contain MIMO */
1559 u8 mimo_delimiter;
1560
1561 /* Best single antenna to use for single stream (legacy, SISO). */
1562 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
1563
1564 /* Best antennas to use for MIMO (unused for 4965, assumes both). */
1565 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
1566
1567 /*
1568 * If driver needs to use different initial rates for different
1569 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1570 * this table will set that up, by indicating the indexes in the
1571 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1572 * Otherwise, driver should set all entries to 0.
1573 *
1574 * Entry usage:
1575 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1576 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1577 */
1578 u8 start_rate_index[LINK_QUAL_AC_NUM];
1579} __packed;
1580
1581#define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */
1582#define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000)
1583#define LINK_QUAL_AGG_TIME_LIMIT_MIN (100)
1584
1585#define LINK_QUAL_AGG_DISABLE_START_DEF (3)
1586#define LINK_QUAL_AGG_DISABLE_START_MAX (255)
1587#define LINK_QUAL_AGG_DISABLE_START_MIN (0)
1588
1589#define LINK_QUAL_AGG_FRAME_LIMIT_DEF (63)
1590#define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63)
1591#define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0)
1592
1593/**
1594 * struct iwl_link_qual_agg_params
1595 *
1596 * Used in REPLY_TX_LINK_QUALITY_CMD
1597 */
1598struct iwl_link_qual_agg_params {
1599
1600 /*
1601 *Maximum number of uSec in aggregation.
1602 * default set to 4000 (4 milliseconds) if not configured in .cfg
1603 */
1604 __le16 agg_time_limit;
1605
1606 /*
1607 * Number of Tx retries allowed for a frame, before that frame will
1608 * no longer be considered for the start of an aggregation sequence
1609 * (scheduler will then try to tx it as single frame).
1610 * Driver should set this to 3.
1611 */
1612 u8 agg_dis_start_th;
1613
1614 /*
1615 * Maximum number of frames in aggregation.
1616 * 0 = no limit (default). 1 = no aggregation.
1617 * Other values = max # frames in aggregation.
1618 */
1619 u8 agg_frame_cnt_limit;
1620
1621 __le32 reserved;
1622} __packed;
1623
1624/*
1625 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1626 *
1627 * For agn devices
1628 *
1629 * Each station in the agn device's internal station table has its own table
1630 * of 16
1631 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1632 * an ACK is not received. This command replaces the entire table for
1633 * one station.
1634 *
1635 * NOTE: Station must already be in agn device's station table.
1636 * Use REPLY_ADD_STA.
1637 *
1638 * The rate scaling procedures described below work well. Of course, other
1639 * procedures are possible, and may work better for particular environments.
1640 *
1641 *
1642 * FILLING THE RATE TABLE
1643 *
1644 * Given a particular initial rate and mode, as determined by the rate
1645 * scaling algorithm described below, the Linux driver uses the following
1646 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1647 * Link Quality command:
1648 *
1649 *
1650 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
1651 * a) Use this same initial rate for first 3 entries.
1652 * b) Find next lower available rate using same mode (SISO or MIMO),
1653 * use for next 3 entries. If no lower rate available, switch to
1654 * legacy mode (no HT40 channel, no MIMO, no short guard interval).
1655 * c) If using MIMO, set command's mimo_delimiter to number of entries
1656 * using MIMO (3 or 6).
1657 * d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1658 * no MIMO, no short guard interval), at the next lower bit rate
1659 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1660 * legacy procedure for remaining table entries.
1661 *
1662 * 2) If using legacy initial rate:
1663 * a) Use the initial rate for only one entry.
1664 * b) For each following entry, reduce the rate to next lower available
1665 * rate, until reaching the lowest available rate.
1666 * c) When reducing rate, also switch antenna selection.
1667 * d) Once lowest available rate is reached, repeat this rate until
1668 * rate table is filled (16 entries), switching antenna each entry.
1669 *
1670 *
1671 * ACCUMULATING HISTORY
1672 *
1673 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1674 * uses two sets of frame Tx success history: One for the current/active
1675 * modulation mode, and one for a speculative/search mode that is being
1676 * attempted. If the speculative mode turns out to be more effective (i.e.
1677 * actual transfer rate is better), then the driver continues to use the
1678 * speculative mode as the new current active mode.
1679 *
1680 * Each history set contains, separately for each possible rate, data for a
1681 * sliding window of the 62 most recent tx attempts at that rate. The data
1682 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1683 * and attempted frames, from which the driver can additionally calculate a
1684 * success ratio (success / attempted) and number of failures
1685 * (attempted - success), and control the size of the window (attempted).
1686 * The driver uses the bit map to remove successes from the success sum, as
1687 * the oldest tx attempts fall out of the window.
1688 *
1689 * When the agn device makes multiple tx attempts for a given frame, each
1690 * attempt might be at a different rate, and have different modulation
1691 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1692 * up in the rate scaling table in the Link Quality command. The driver must
1693 * determine which rate table entry was used for each tx attempt, to determine
1694 * which rate-specific history to update, and record only those attempts that
1695 * match the modulation characteristics of the history set.
1696 *
1697 * When using block-ack (aggregation), all frames are transmitted at the same
1698 * rate, since there is no per-attempt acknowledgment from the destination
1699 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in
1700 * rate_n_flags field. After receiving a block-ack, the driver can update
1701 * history for the entire block all at once.
1702 *
1703 *
1704 * FINDING BEST STARTING RATE:
1705 *
1706 * When working with a selected initial modulation mode (see below), the
1707 * driver attempts to find a best initial rate. The initial rate is the
1708 * first entry in the Link Quality command's rate table.
1709 *
1710 * 1) Calculate actual throughput (success ratio * expected throughput, see
1711 * table below) for current initial rate. Do this only if enough frames
1712 * have been attempted to make the value meaningful: at least 6 failed
1713 * tx attempts, or at least 8 successes. If not enough, don't try rate
1714 * scaling yet.
1715 *
1716 * 2) Find available rates adjacent to current initial rate. Available means:
1717 * a) supported by hardware &&
1718 * b) supported by association &&
1719 * c) within any constraints selected by user
1720 *
1721 * 3) Gather measured throughputs for adjacent rates. These might not have
1722 * enough history to calculate a throughput. That's okay, we might try
1723 * using one of them anyway!
1724 *
1725 * 4) Try decreasing rate if, for current rate:
1726 * a) success ratio is < 15% ||
1727 * b) lower adjacent rate has better measured throughput ||
1728 * c) higher adjacent rate has worse throughput, and lower is unmeasured
1729 *
1730 * As a sanity check, if decrease was determined above, leave rate
1731 * unchanged if:
1732 * a) lower rate unavailable
1733 * b) success ratio at current rate > 85% (very good)
1734 * c) current measured throughput is better than expected throughput
1735 * of lower rate (under perfect 100% tx conditions, see table below)
1736 *
1737 * 5) Try increasing rate if, for current rate:
1738 * a) success ratio is < 15% ||
1739 * b) both adjacent rates' throughputs are unmeasured (try it!) ||
1740 * b) higher adjacent rate has better measured throughput ||
1741 * c) lower adjacent rate has worse throughput, and higher is unmeasured
1742 *
1743 * As a sanity check, if increase was determined above, leave rate
1744 * unchanged if:
1745 * a) success ratio at current rate < 70%. This is not particularly
1746 * good performance; higher rate is sure to have poorer success.
1747 *
1748 * 6) Re-evaluate the rate after each tx frame. If working with block-
1749 * acknowledge, history and statistics may be calculated for the entire
1750 * block (including prior history that fits within the history windows),
1751 * before re-evaluation.
1752 *
1753 * FINDING BEST STARTING MODULATION MODE:
1754 *
1755 * After working with a modulation mode for a "while" (and doing rate scaling),
1756 * the driver searches for a new initial mode in an attempt to improve
1757 * throughput. The "while" is measured by numbers of attempted frames:
1758 *
1759 * For legacy mode, search for new mode after:
1760 * 480 successful frames, or 160 failed frames
1761 * For high-throughput modes (SISO or MIMO), search for new mode after:
1762 * 4500 successful frames, or 400 failed frames
1763 *
1764 * Mode switch possibilities are (3 for each mode):
1765 *
1766 * For legacy:
1767 * Change antenna, try SISO (if HT association), try MIMO (if HT association)
1768 * For SISO:
1769 * Change antenna, try MIMO, try shortened guard interval (SGI)
1770 * For MIMO:
1771 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1772 *
1773 * When trying a new mode, use the same bit rate as the old/current mode when
1774 * trying antenna switches and shortened guard interval. When switching to
1775 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1776 * for which the expected throughput (under perfect conditions) is about the
1777 * same or slightly better than the actual measured throughput delivered by
1778 * the old/current mode.
1779 *
1780 * Actual throughput can be estimated by multiplying the expected throughput
1781 * by the success ratio (successful / attempted tx frames). Frame size is
1782 * not considered in this calculation; it assumes that frame size will average
1783 * out to be fairly consistent over several samples. The following are
1784 * metric values for expected throughput assuming 100% success ratio.
1785 * Only G band has support for CCK rates:
1786 *
1787 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
1788 *
1789 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186
1790 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186
1791 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
1792 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
1793 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
1794 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
1795 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
1796 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
1797 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
1798 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
1799 *
1800 * After the new mode has been tried for a short while (minimum of 6 failed
1801 * frames or 8 successful frames), compare success ratio and actual throughput
1802 * estimate of the new mode with the old. If either is better with the new
1803 * mode, continue to use the new mode.
1804 *
1805 * Continue comparing modes until all 3 possibilities have been tried.
1806 * If moving from legacy to HT, try all 3 possibilities from the new HT
1807 * mode. After trying all 3, a best mode is found. Continue to use this mode
1808 * for the longer "while" described above (e.g. 480 successful frames for
1809 * legacy), and then repeat the search process.
1810 *
1811 */
1812struct iwl_link_quality_cmd {
1813
1814 /* Index of destination/recipient station in uCode's station table */
1815 u8 sta_id;
1816 u8 reserved1;
1817 __le16 control; /* not used */
1818 struct iwl_link_qual_general_params general_params;
1819 struct iwl_link_qual_agg_params agg_params;
1820
1821 /*
1822 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1823 * specifies 1st Tx rate attempted, via index into this table.
1824 * agn devices works its way through table when retrying Tx.
1825 */
1826 struct {
1827 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */
1828 } rs_table[LINK_QUAL_MAX_RETRY_NUM];
1829 __le32 reserved2;
1830} __packed;
1831
1832/*
1833 * BT configuration enable flags:
1834 * bit 0 - 1: BT channel announcement enabled
1835 * 0: disable
1836 * bit 1 - 1: priority of BT device enabled
1837 * 0: disable
1838 * bit 2 - 1: BT 2 wire support enabled
1839 * 0: disable
1840 */
1841#define BT_COEX_DISABLE (0x0)
1842#define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1843#define BT_ENABLE_PRIORITY BIT(1)
1844#define BT_ENABLE_2_WIRE BIT(2)
1845
1846#define BT_COEX_DISABLE (0x0)
1847#define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1848
1849#define BT_LEAD_TIME_MIN (0x0)
1850#define BT_LEAD_TIME_DEF (0x1E)
1851#define BT_LEAD_TIME_MAX (0xFF)
1852
1853#define BT_MAX_KILL_MIN (0x1)
1854#define BT_MAX_KILL_DEF (0x5)
1855#define BT_MAX_KILL_MAX (0xFF)
1856
1857#define BT_DURATION_LIMIT_DEF 625
1858#define BT_DURATION_LIMIT_MAX 1250
1859#define BT_DURATION_LIMIT_MIN 625
1860
1861#define BT_ON_THRESHOLD_DEF 4
1862#define BT_ON_THRESHOLD_MAX 1000
1863#define BT_ON_THRESHOLD_MIN 1
1864
1865#define BT_FRAG_THRESHOLD_DEF 0
1866#define BT_FRAG_THRESHOLD_MAX 0
1867#define BT_FRAG_THRESHOLD_MIN 0
1868
1869#define BT_AGG_THRESHOLD_DEF 1200
1870#define BT_AGG_THRESHOLD_MAX 8000
1871#define BT_AGG_THRESHOLD_MIN 400
1872
1873/*
1874 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1875 *
1876 * agn devices support hardware handshake with Bluetooth device on
1877 * same platform. Bluetooth device alerts wireless device when it will Tx;
1878 * wireless device can delay or kill its own Tx to accommodate.
1879 */
1880struct iwl_bt_cmd {
1881 u8 flags;
1882 u8 lead_time;
1883 u8 max_kill;
1884 u8 reserved;
1885 __le32 kill_ack_mask;
1886 __le32 kill_cts_mask;
1887} __packed;
1888
1889#define IWLAGN_BT_FLAG_CHANNEL_INHIBITION BIT(0)
1890
1891#define IWLAGN_BT_FLAG_COEX_MODE_MASK (BIT(3)|BIT(4)|BIT(5))
1892#define IWLAGN_BT_FLAG_COEX_MODE_SHIFT 3
1893#define IWLAGN_BT_FLAG_COEX_MODE_DISABLED 0
1894#define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W 1
1895#define IWLAGN_BT_FLAG_COEX_MODE_3W 2
1896#define IWLAGN_BT_FLAG_COEX_MODE_4W 3
1897
1898#define IWLAGN_BT_FLAG_UCODE_DEFAULT BIT(6)
1899/* Disable Sync PSPoll on SCO/eSCO */
1900#define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE BIT(7)
1901
1902#define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD -75 /* dBm */
1903#define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD -65 /* dBm */
1904
1905#define IWLAGN_BT_PRIO_BOOST_MAX 0xFF
1906#define IWLAGN_BT_PRIO_BOOST_MIN 0x00
1907#define IWLAGN_BT_PRIO_BOOST_DEFAULT 0xF0
1908
1909#define IWLAGN_BT_MAX_KILL_DEFAULT 5
1910
1911#define IWLAGN_BT3_T7_DEFAULT 1
1912
1913enum iwl_bt_kill_idx {
1914 IWL_BT_KILL_DEFAULT = 0,
1915 IWL_BT_KILL_OVERRIDE = 1,
1916 IWL_BT_KILL_REDUCE = 2,
1917};
1918
1919#define IWLAGN_BT_KILL_ACK_MASK_DEFAULT cpu_to_le32(0xffff0000)
1920#define IWLAGN_BT_KILL_CTS_MASK_DEFAULT cpu_to_le32(0xffff0000)
1921#define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO cpu_to_le32(0xffffffff)
1922#define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE cpu_to_le32(0)
1923
1924#define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT 2
1925
1926#define IWLAGN_BT3_T2_DEFAULT 0xc
1927
1928#define IWLAGN_BT_VALID_ENABLE_FLAGS cpu_to_le16(BIT(0))
1929#define IWLAGN_BT_VALID_BOOST cpu_to_le16(BIT(1))
1930#define IWLAGN_BT_VALID_MAX_KILL cpu_to_le16(BIT(2))
1931#define IWLAGN_BT_VALID_3W_TIMERS cpu_to_le16(BIT(3))
1932#define IWLAGN_BT_VALID_KILL_ACK_MASK cpu_to_le16(BIT(4))
1933#define IWLAGN_BT_VALID_KILL_CTS_MASK cpu_to_le16(BIT(5))
1934#define IWLAGN_BT_VALID_REDUCED_TX_PWR cpu_to_le16(BIT(6))
1935#define IWLAGN_BT_VALID_3W_LUT cpu_to_le16(BIT(7))
1936
1937#define IWLAGN_BT_ALL_VALID_MSK (IWLAGN_BT_VALID_ENABLE_FLAGS | \
1938 IWLAGN_BT_VALID_BOOST | \
1939 IWLAGN_BT_VALID_MAX_KILL | \
1940 IWLAGN_BT_VALID_3W_TIMERS | \
1941 IWLAGN_BT_VALID_KILL_ACK_MASK | \
1942 IWLAGN_BT_VALID_KILL_CTS_MASK | \
1943 IWLAGN_BT_VALID_REDUCED_TX_PWR | \
1944 IWLAGN_BT_VALID_3W_LUT)
1945
1946#define IWLAGN_BT_REDUCED_TX_PWR BIT(0)
1947
1948#define IWLAGN_BT_DECISION_LUT_SIZE 12
1949
1950struct iwl_basic_bt_cmd {
1951 u8 flags;
1952 u8 ledtime; /* unused */
1953 u8 max_kill;
1954 u8 bt3_timer_t7_value;
1955 __le32 kill_ack_mask;
1956 __le32 kill_cts_mask;
1957 u8 bt3_prio_sample_time;
1958 u8 bt3_timer_t2_value;
1959 __le16 bt4_reaction_time; /* unused */
1960 __le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
1961 /*
1962 * bit 0: use reduced tx power for control frame
1963 * bit 1 - 7: reserved
1964 */
1965 u8 reduce_txpower;
1966 u8 reserved;
1967 __le16 valid;
1968};
1969
1970struct iwl_bt_cmd_v1 {
1971 struct iwl_basic_bt_cmd basic;
1972 u8 prio_boost;
1973 /*
1974 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1975 * if configure the following patterns
1976 */
1977 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1978 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1979};
1980
1981struct iwl_bt_cmd_v2 {
1982 struct iwl_basic_bt_cmd basic;
1983 __le32 prio_boost;
1984 /*
1985 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1986 * if configure the following patterns
1987 */
1988 u8 reserved;
1989 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1990 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1991};
1992
1993#define IWLAGN_BT_SCO_ACTIVE cpu_to_le32(BIT(0))
1994
1995struct iwlagn_bt_sco_cmd {
1996 __le32 flags;
1997};
1998
1999/******************************************************************************
2000 * (6)
2001 * Spectrum Management (802.11h) Commands, Responses, Notifications:
2002 *
2003 *****************************************************************************/
2004
2005/*
2006 * Spectrum Management
2007 */
2008#define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
2009 RXON_FILTER_CTL2HOST_MSK | \
2010 RXON_FILTER_ACCEPT_GRP_MSK | \
2011 RXON_FILTER_DIS_DECRYPT_MSK | \
2012 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
2013 RXON_FILTER_ASSOC_MSK | \
2014 RXON_FILTER_BCON_AWARE_MSK)
2015
2016struct iwl_measure_channel {
2017 __le32 duration; /* measurement duration in extended beacon
2018 * format */
2019 u8 channel; /* channel to measure */
2020 u8 type; /* see enum iwl_measure_type */
2021 __le16 reserved;
2022} __packed;
2023
2024/*
2025 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
2026 */
2027struct iwl_spectrum_cmd {
2028 __le16 len; /* number of bytes starting from token */
2029 u8 token; /* token id */
2030 u8 id; /* measurement id -- 0 or 1 */
2031 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
2032 u8 periodic; /* 1 = periodic */
2033 __le16 path_loss_timeout;
2034 __le32 start_time; /* start time in extended beacon format */
2035 __le32 reserved2;
2036 __le32 flags; /* rxon flags */
2037 __le32 filter_flags; /* rxon filter flags */
2038 __le16 channel_count; /* minimum 1, maximum 10 */
2039 __le16 reserved3;
2040 struct iwl_measure_channel channels[10];
2041} __packed;
2042
2043/*
2044 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2045 */
2046struct iwl_spectrum_resp {
2047 u8 token;
2048 u8 id; /* id of the prior command replaced, or 0xff */
2049 __le16 status; /* 0 - command will be handled
2050 * 1 - cannot handle (conflicts with another
2051 * measurement) */
2052} __packed;
2053
2054enum iwl_measurement_state {
2055 IWL_MEASUREMENT_START = 0,
2056 IWL_MEASUREMENT_STOP = 1,
2057};
2058
2059enum iwl_measurement_status {
2060 IWL_MEASUREMENT_OK = 0,
2061 IWL_MEASUREMENT_CONCURRENT = 1,
2062 IWL_MEASUREMENT_CSA_CONFLICT = 2,
2063 IWL_MEASUREMENT_TGH_CONFLICT = 3,
2064 /* 4-5 reserved */
2065 IWL_MEASUREMENT_STOPPED = 6,
2066 IWL_MEASUREMENT_TIMEOUT = 7,
2067 IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2068};
2069
2070#define NUM_ELEMENTS_IN_HISTOGRAM 8
2071
2072struct iwl_measurement_histogram {
2073 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
2074 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
2075} __packed;
2076
2077/* clear channel availability counters */
2078struct iwl_measurement_cca_counters {
2079 __le32 ofdm;
2080 __le32 cck;
2081} __packed;
2082
2083enum iwl_measure_type {
2084 IWL_MEASURE_BASIC = (1 << 0),
2085 IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2086 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2087 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2088 IWL_MEASURE_FRAME = (1 << 4),
2089 /* bits 5:6 are reserved */
2090 IWL_MEASURE_IDLE = (1 << 7),
2091};
2092
2093/*
2094 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2095 */
2096struct iwl_spectrum_notification {
2097 u8 id; /* measurement id -- 0 or 1 */
2098 u8 token;
2099 u8 channel_index; /* index in measurement channel list */
2100 u8 state; /* 0 - start, 1 - stop */
2101 __le32 start_time; /* lower 32-bits of TSF */
2102 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
2103 u8 channel;
2104 u8 type; /* see enum iwl_measurement_type */
2105 u8 reserved1;
2106 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
2107 * valid if applicable for measurement type requested. */
2108 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
2109 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
2110 __le32 cca_time; /* channel load time in usecs */
2111 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
2112 * unidentified */
2113 u8 reserved2[3];
2114 struct iwl_measurement_histogram histogram;
2115 __le32 stop_time; /* lower 32-bits of TSF */
2116 __le32 status; /* see iwl_measurement_status */
2117} __packed;
2118
2119/******************************************************************************
2120 * (7)
2121 * Power Management Commands, Responses, Notifications:
2122 *
2123 *****************************************************************************/
2124
2125/**
2126 * struct iwl_powertable_cmd - Power Table Command
2127 * @flags: See below:
2128 *
2129 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2130 *
2131 * PM allow:
2132 * bit 0 - '0' Driver not allow power management
2133 * '1' Driver allow PM (use rest of parameters)
2134 *
2135 * uCode send sleep notifications:
2136 * bit 1 - '0' Don't send sleep notification
2137 * '1' send sleep notification (SEND_PM_NOTIFICATION)
2138 *
2139 * Sleep over DTIM
2140 * bit 2 - '0' PM have to walk up every DTIM
2141 * '1' PM could sleep over DTIM till listen Interval.
2142 *
2143 * PCI power managed
2144 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2145 * '1' !(PCI_CFG_LINK_CTRL & 0x1)
2146 *
2147 * Fast PD
2148 * bit 4 - '1' Put radio to sleep when receiving frame for others
2149 *
2150 * Force sleep Modes
2151 * bit 31/30- '00' use both mac/xtal sleeps
2152 * '01' force Mac sleep
2153 * '10' force xtal sleep
2154 * '11' Illegal set
2155 *
2156 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2157 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2158 * for every DTIM.
2159 */
2160#define IWL_POWER_VEC_SIZE 5
2161
2162#define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0))
2163#define IWL_POWER_POWER_SAVE_ENA_MSK cpu_to_le16(BIT(0))
2164#define IWL_POWER_POWER_MANAGEMENT_ENA_MSK cpu_to_le16(BIT(1))
2165#define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2))
2166#define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3))
2167#define IWL_POWER_FAST_PD cpu_to_le16(BIT(4))
2168#define IWL_POWER_BEACON_FILTERING cpu_to_le16(BIT(5))
2169#define IWL_POWER_SHADOW_REG_ENA cpu_to_le16(BIT(6))
2170#define IWL_POWER_CT_KILL_SET cpu_to_le16(BIT(7))
2171#define IWL_POWER_BT_SCO_ENA cpu_to_le16(BIT(8))
2172#define IWL_POWER_ADVANCE_PM_ENA_MSK cpu_to_le16(BIT(9))
2173
2174struct iwl_powertable_cmd {
2175 __le16 flags;
2176 u8 keep_alive_seconds;
2177 u8 debug_flags;
2178 __le32 rx_data_timeout;
2179 __le32 tx_data_timeout;
2180 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2181 __le32 keep_alive_beacons;
2182} __packed;
2183
2184/*
2185 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2186 * all devices identical.
2187 */
2188struct iwl_sleep_notification {
2189 u8 pm_sleep_mode;
2190 u8 pm_wakeup_src;
2191 __le16 reserved;
2192 __le32 sleep_time;
2193 __le32 tsf_low;
2194 __le32 bcon_timer;
2195} __packed;
2196
2197/* Sleep states. all devices identical. */
2198enum {
2199 IWL_PM_NO_SLEEP = 0,
2200 IWL_PM_SLP_MAC = 1,
2201 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2202 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2203 IWL_PM_SLP_PHY = 4,
2204 IWL_PM_SLP_REPENT = 5,
2205 IWL_PM_WAKEUP_BY_TIMER = 6,
2206 IWL_PM_WAKEUP_BY_DRIVER = 7,
2207 IWL_PM_WAKEUP_BY_RFKILL = 8,
2208 /* 3 reserved */
2209 IWL_PM_NUM_OF_MODES = 12,
2210};
2211
2212/*
2213 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2214 */
2215#define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
2216#define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
2217#define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
2218struct iwl_card_state_cmd {
2219 __le32 status; /* CARD_STATE_CMD_* request new power state */
2220} __packed;
2221
2222/*
2223 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2224 */
2225struct iwl_card_state_notif {
2226 __le32 flags;
2227} __packed;
2228
2229#define HW_CARD_DISABLED 0x01
2230#define SW_CARD_DISABLED 0x02
2231#define CT_CARD_DISABLED 0x04
2232#define RXON_CARD_DISABLED 0x10
2233
2234struct iwl_ct_kill_config {
2235 __le32 reserved;
2236 __le32 critical_temperature_M;
2237 __le32 critical_temperature_R;
2238} __packed;
2239
2240/* 1000, and 6x00 */
2241struct iwl_ct_kill_throttling_config {
2242 __le32 critical_temperature_exit;
2243 __le32 reserved;
2244 __le32 critical_temperature_enter;
2245} __packed;
2246
2247/******************************************************************************
2248 * (8)
2249 * Scan Commands, Responses, Notifications:
2250 *
2251 *****************************************************************************/
2252
2253#define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2254#define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1)
2255
2256/**
2257 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2258 *
2259 * One for each channel in the scan list.
2260 * Each channel can independently select:
2261 * 1) SSID for directed active scans
2262 * 2) Txpower setting (for rate specified within Tx command)
2263 * 3) How long to stay on-channel (behavior may be modified by quiet_time,
2264 * quiet_plcp_th, good_CRC_th)
2265 *
2266 * To avoid uCode errors, make sure the following are true (see comments
2267 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2268 * 1) If using passive_dwell (i.e. passive_dwell != 0):
2269 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2270 * 2) quiet_time <= active_dwell
2271 * 3) If restricting off-channel time (i.e. max_out_time !=0):
2272 * passive_dwell < max_out_time
2273 * active_dwell < max_out_time
2274 */
2275
2276struct iwl_scan_channel {
2277 /*
2278 * type is defined as:
2279 * 0:0 1 = active, 0 = passive
2280 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2281 * SSID IE is transmitted in probe request.
2282 * 21:31 reserved
2283 */
2284 __le32 type;
2285 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */
2286 u8 tx_gain; /* gain for analog radio */
2287 u8 dsp_atten; /* gain for DSP */
2288 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2289 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2290} __packed;
2291
2292/* set number of direct probes __le32 type */
2293#define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2294
2295/**
2296 * struct iwl_ssid_ie - directed scan network information element
2297 *
2298 * Up to 20 of these may appear in REPLY_SCAN_CMD,
2299 * selected by "type" bit field in struct iwl_scan_channel;
2300 * each channel may select different ssids from among the 20 entries.
2301 * SSID IEs get transmitted in reverse order of entry.
2302 */
2303struct iwl_ssid_ie {
2304 u8 id;
2305 u8 len;
2306 u8 ssid[32];
2307} __packed;
2308
2309#define PROBE_OPTION_MAX 20
2310#define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF)
2311#define IWL_GOOD_CRC_TH_DISABLED 0
2312#define IWL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1)
2313#define IWL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff)
2314#define IWL_MAX_CMD_SIZE 4096
2315
2316/*
2317 * REPLY_SCAN_CMD = 0x80 (command)
2318 *
2319 * The hardware scan command is very powerful; the driver can set it up to
2320 * maintain (relatively) normal network traffic while doing a scan in the
2321 * background. The max_out_time and suspend_time control the ratio of how
2322 * long the device stays on an associated network channel ("service channel")
2323 * vs. how long it's away from the service channel, i.e. tuned to other channels
2324 * for scanning.
2325 *
2326 * max_out_time is the max time off-channel (in usec), and suspend_time
2327 * is how long (in "extended beacon" format) that the scan is "suspended"
2328 * after returning to the service channel. That is, suspend_time is the
2329 * time that we stay on the service channel, doing normal work, between
2330 * scan segments. The driver may set these parameters differently to support
2331 * scanning when associated vs. not associated, and light vs. heavy traffic
2332 * loads when associated.
2333 *
2334 * After receiving this command, the device's scan engine does the following;
2335 *
2336 * 1) Sends SCAN_START notification to driver
2337 * 2) Checks to see if it has time to do scan for one channel
2338 * 3) Sends NULL packet, with power-save (PS) bit set to 1,
2339 * to tell AP that we're going off-channel
2340 * 4) Tunes to first channel in scan list, does active or passive scan
2341 * 5) Sends SCAN_RESULT notification to driver
2342 * 6) Checks to see if it has time to do scan on *next* channel in list
2343 * 7) Repeats 4-6 until it no longer has time to scan the next channel
2344 * before max_out_time expires
2345 * 8) Returns to service channel
2346 * 9) Sends NULL packet with PS=0 to tell AP that we're back
2347 * 10) Stays on service channel until suspend_time expires
2348 * 11) Repeats entire process 2-10 until list is complete
2349 * 12) Sends SCAN_COMPLETE notification
2350 *
2351 * For fast, efficient scans, the scan command also has support for staying on
2352 * a channel for just a short time, if doing active scanning and getting no
2353 * responses to the transmitted probe request. This time is controlled by
2354 * quiet_time, and the number of received packets below which a channel is
2355 * considered "quiet" is controlled by quiet_plcp_threshold.
2356 *
2357 * For active scanning on channels that have regulatory restrictions against
2358 * blindly transmitting, the scan can listen before transmitting, to make sure
2359 * that there is already legitimate activity on the channel. If enough
2360 * packets are cleanly received on the channel (controlled by good_CRC_th,
2361 * typical value 1), the scan engine starts transmitting probe requests.
2362 *
2363 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2364 *
2365 * To avoid uCode errors, see timing restrictions described under
2366 * struct iwl_scan_channel.
2367 */
2368
2369enum iwl_scan_flags {
2370 /* BIT(0) currently unused */
2371 IWL_SCAN_FLAGS_ACTION_FRAME_TX = BIT(1),
2372 /* bits 2-7 reserved */
2373};
2374
2375struct iwl_scan_cmd {
2376 __le16 len;
2377 u8 scan_flags; /* scan flags: see enum iwl_scan_flags */
2378 u8 channel_count; /* # channels in channel list */
2379 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2380 * (only for active scan) */
2381 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2382 __le16 good_CRC_th; /* passive -> active promotion threshold */
2383 __le16 rx_chain; /* RXON_RX_CHAIN_* */
2384 __le32 max_out_time; /* max usec to be away from associated (service)
2385 * channel */
2386 __le32 suspend_time; /* pause scan this long (in "extended beacon
2387 * format") when returning to service chnl:
2388 */
2389 __le32 flags; /* RXON_FLG_* */
2390 __le32 filter_flags; /* RXON_FILTER_* */
2391
2392 /* For active scans (set to all-0s for passive scans).
2393 * Does not include payload. Must specify Tx rate; no rate scaling. */
2394 struct iwl_tx_cmd tx_cmd;
2395
2396 /* For directed active scans (set to all-0s otherwise) */
2397 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2398
2399 /*
2400 * Probe request frame, followed by channel list.
2401 *
2402 * Size of probe request frame is specified by byte count in tx_cmd.
2403 * Channel list follows immediately after probe request frame.
2404 * Number of channels in list is specified by channel_count.
2405 * Each channel in list is of type:
2406 *
2407 * struct iwl_scan_channel channels[0];
2408 *
2409 * NOTE: Only one band of channels can be scanned per pass. You
2410 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2411 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2412 * before requesting another scan.
2413 */
2414 u8 data[0];
2415} __packed;
2416
2417/* Can abort will notify by complete notification with abort status. */
2418#define CAN_ABORT_STATUS cpu_to_le32(0x1)
2419/* complete notification statuses */
2420#define ABORT_STATUS 0x2
2421
2422/*
2423 * REPLY_SCAN_CMD = 0x80 (response)
2424 */
2425struct iwl_scanreq_notification {
2426 __le32 status; /* 1: okay, 2: cannot fulfill request */
2427} __packed;
2428
2429/*
2430 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2431 */
2432struct iwl_scanstart_notification {
2433 __le32 tsf_low;
2434 __le32 tsf_high;
2435 __le32 beacon_timer;
2436 u8 channel;
2437 u8 band;
2438 u8 reserved[2];
2439 __le32 status;
2440} __packed;
2441
2442#define SCAN_OWNER_STATUS 0x1
2443#define MEASURE_OWNER_STATUS 0x2
2444
2445#define IWL_PROBE_STATUS_OK 0
2446#define IWL_PROBE_STATUS_TX_FAILED BIT(0)
2447/* error statuses combined with TX_FAILED */
2448#define IWL_PROBE_STATUS_FAIL_TTL BIT(1)
2449#define IWL_PROBE_STATUS_FAIL_BT BIT(2)
2450
2451#define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
2452/*
2453 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2454 */
2455struct iwl_scanresults_notification {
2456 u8 channel;
2457 u8 band;
2458 u8 probe_status;
2459 u8 num_probe_not_sent; /* not enough time to send */
2460 __le32 tsf_low;
2461 __le32 tsf_high;
2462 __le32 statistics[NUMBER_OF_STATISTICS];
2463} __packed;
2464
2465/*
2466 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2467 */
2468struct iwl_scancomplete_notification {
2469 u8 scanned_channels;
2470 u8 status;
2471 u8 bt_status; /* BT On/Off status */
2472 u8 last_channel;
2473 __le32 tsf_low;
2474 __le32 tsf_high;
2475} __packed;
2476
2477
2478/******************************************************************************
2479 * (9)
2480 * IBSS/AP Commands and Notifications:
2481 *
2482 *****************************************************************************/
2483
2484enum iwl_ibss_manager {
2485 IWL_NOT_IBSS_MANAGER = 0,
2486 IWL_IBSS_MANAGER = 1,
2487};
2488
2489/*
2490 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2491 */
2492
2493struct iwlagn_beacon_notif {
2494 struct iwlagn_tx_resp beacon_notify_hdr;
2495 __le32 low_tsf;
2496 __le32 high_tsf;
2497 __le32 ibss_mgr_status;
2498} __packed;
2499
2500/*
2501 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2502 */
2503
2504struct iwl_tx_beacon_cmd {
2505 struct iwl_tx_cmd tx;
2506 __le16 tim_idx;
2507 u8 tim_size;
2508 u8 reserved1;
2509 struct ieee80211_hdr frame[0]; /* beacon frame */
2510} __packed;
2511
2512/******************************************************************************
2513 * (10)
2514 * Statistics Commands and Notifications:
2515 *
2516 *****************************************************************************/
2517
2518#define IWL_TEMP_CONVERT 260
2519
2520#define SUP_RATE_11A_MAX_NUM_CHANNELS 8
2521#define SUP_RATE_11B_MAX_NUM_CHANNELS 4
2522#define SUP_RATE_11G_MAX_NUM_CHANNELS 12
2523
2524/* Used for passing to driver number of successes and failures per rate */
2525struct rate_histogram {
2526 union {
2527 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2528 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2529 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2530 } success;
2531 union {
2532 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2533 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2534 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2535 } failed;
2536} __packed;
2537
2538/* statistics command response */
2539
2540struct statistics_dbg {
2541 __le32 burst_check;
2542 __le32 burst_count;
2543 __le32 wait_for_silence_timeout_cnt;
2544 __le32 reserved[3];
2545} __packed;
2546
2547struct statistics_rx_phy {
2548 __le32 ina_cnt;
2549 __le32 fina_cnt;
2550 __le32 plcp_err;
2551 __le32 crc32_err;
2552 __le32 overrun_err;
2553 __le32 early_overrun_err;
2554 __le32 crc32_good;
2555 __le32 false_alarm_cnt;
2556 __le32 fina_sync_err_cnt;
2557 __le32 sfd_timeout;
2558 __le32 fina_timeout;
2559 __le32 unresponded_rts;
2560 __le32 rxe_frame_limit_overrun;
2561 __le32 sent_ack_cnt;
2562 __le32 sent_cts_cnt;
2563 __le32 sent_ba_rsp_cnt;
2564 __le32 dsp_self_kill;
2565 __le32 mh_format_err;
2566 __le32 re_acq_main_rssi_sum;
2567 __le32 reserved3;
2568} __packed;
2569
2570struct statistics_rx_ht_phy {
2571 __le32 plcp_err;
2572 __le32 overrun_err;
2573 __le32 early_overrun_err;
2574 __le32 crc32_good;
2575 __le32 crc32_err;
2576 __le32 mh_format_err;
2577 __le32 agg_crc32_good;
2578 __le32 agg_mpdu_cnt;
2579 __le32 agg_cnt;
2580 __le32 unsupport_mcs;
2581} __packed;
2582
2583#define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1)
2584
2585struct statistics_rx_non_phy {
2586 __le32 bogus_cts; /* CTS received when not expecting CTS */
2587 __le32 bogus_ack; /* ACK received when not expecting ACK */
2588 __le32 non_bssid_frames; /* number of frames with BSSID that
2589 * doesn't belong to the STA BSSID */
2590 __le32 filtered_frames; /* count frames that were dumped in the
2591 * filtering process */
2592 __le32 non_channel_beacons; /* beacons with our bss id but not on
2593 * our serving channel */
2594 __le32 channel_beacons; /* beacons with our bss id and in our
2595 * serving channel */
2596 __le32 num_missed_bcon; /* number of missed beacons */
2597 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the
2598 * ADC was in saturation */
2599 __le32 ina_detection_search_time;/* total time (in 0.8us) searched
2600 * for INA */
2601 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
2602 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
2603 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
2604 __le32 interference_data_flag; /* flag for interference data
2605 * availability. 1 when data is
2606 * available. */
2607 __le32 channel_load; /* counts RX Enable time in uSec */
2608 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM
2609 * and CCK) counter */
2610 __le32 beacon_rssi_a;
2611 __le32 beacon_rssi_b;
2612 __le32 beacon_rssi_c;
2613 __le32 beacon_energy_a;
2614 __le32 beacon_energy_b;
2615 __le32 beacon_energy_c;
2616} __packed;
2617
2618struct statistics_rx_non_phy_bt {
2619 struct statistics_rx_non_phy common;
2620 /* additional stats for bt */
2621 __le32 num_bt_kills;
2622 __le32 reserved[2];
2623} __packed;
2624
2625struct statistics_rx {
2626 struct statistics_rx_phy ofdm;
2627 struct statistics_rx_phy cck;
2628 struct statistics_rx_non_phy general;
2629 struct statistics_rx_ht_phy ofdm_ht;
2630} __packed;
2631
2632struct statistics_rx_bt {
2633 struct statistics_rx_phy ofdm;
2634 struct statistics_rx_phy cck;
2635 struct statistics_rx_non_phy_bt general;
2636 struct statistics_rx_ht_phy ofdm_ht;
2637} __packed;
2638
2639/**
2640 * struct statistics_tx_power - current tx power
2641 *
2642 * @ant_a: current tx power on chain a in 1/2 dB step
2643 * @ant_b: current tx power on chain b in 1/2 dB step
2644 * @ant_c: current tx power on chain c in 1/2 dB step
2645 */
2646struct statistics_tx_power {
2647 u8 ant_a;
2648 u8 ant_b;
2649 u8 ant_c;
2650 u8 reserved;
2651} __packed;
2652
2653struct statistics_tx_non_phy_agg {
2654 __le32 ba_timeout;
2655 __le32 ba_reschedule_frames;
2656 __le32 scd_query_agg_frame_cnt;
2657 __le32 scd_query_no_agg;
2658 __le32 scd_query_agg;
2659 __le32 scd_query_mismatch;
2660 __le32 frame_not_ready;
2661 __le32 underrun;
2662 __le32 bt_prio_kill;
2663 __le32 rx_ba_rsp_cnt;
2664} __packed;
2665
2666struct statistics_tx {
2667 __le32 preamble_cnt;
2668 __le32 rx_detected_cnt;
2669 __le32 bt_prio_defer_cnt;
2670 __le32 bt_prio_kill_cnt;
2671 __le32 few_bytes_cnt;
2672 __le32 cts_timeout;
2673 __le32 ack_timeout;
2674 __le32 expected_ack_cnt;
2675 __le32 actual_ack_cnt;
2676 __le32 dump_msdu_cnt;
2677 __le32 burst_abort_next_frame_mismatch_cnt;
2678 __le32 burst_abort_missing_next_frame_cnt;
2679 __le32 cts_timeout_collision;
2680 __le32 ack_or_ba_timeout_collision;
2681 struct statistics_tx_non_phy_agg agg;
2682 /*
2683 * "tx_power" are optional parameters provided by uCode,
2684 * 6000 series is the only device provide the information,
2685 * Those are reserved fields for all the other devices
2686 */
2687 struct statistics_tx_power tx_power;
2688 __le32 reserved1;
2689} __packed;
2690
2691
2692struct statistics_div {
2693 __le32 tx_on_a;
2694 __le32 tx_on_b;
2695 __le32 exec_time;
2696 __le32 probe_time;
2697 __le32 reserved1;
2698 __le32 reserved2;
2699} __packed;
2700
2701struct statistics_general_common {
2702 __le32 temperature; /* radio temperature */
2703 __le32 temperature_m; /* radio voltage */
2704 struct statistics_dbg dbg;
2705 __le32 sleep_time;
2706 __le32 slots_out;
2707 __le32 slots_idle;
2708 __le32 ttl_timestamp;
2709 struct statistics_div div;
2710 __le32 rx_enable_counter;
2711 /*
2712 * num_of_sos_states:
2713 * count the number of times we have to re-tune
2714 * in order to get out of bad PHY status
2715 */
2716 __le32 num_of_sos_states;
2717} __packed;
2718
2719struct statistics_bt_activity {
2720 /* Tx statistics */
2721 __le32 hi_priority_tx_req_cnt;
2722 __le32 hi_priority_tx_denied_cnt;
2723 __le32 lo_priority_tx_req_cnt;
2724 __le32 lo_priority_tx_denied_cnt;
2725 /* Rx statistics */
2726 __le32 hi_priority_rx_req_cnt;
2727 __le32 hi_priority_rx_denied_cnt;
2728 __le32 lo_priority_rx_req_cnt;
2729 __le32 lo_priority_rx_denied_cnt;
2730} __packed;
2731
2732struct statistics_general {
2733 struct statistics_general_common common;
2734 __le32 reserved2;
2735 __le32 reserved3;
2736} __packed;
2737
2738struct statistics_general_bt {
2739 struct statistics_general_common common;
2740 struct statistics_bt_activity activity;
2741 __le32 reserved2;
2742 __le32 reserved3;
2743} __packed;
2744
2745#define UCODE_STATISTICS_CLEAR_MSK (0x1 << 0)
2746#define UCODE_STATISTICS_FREQUENCY_MSK (0x1 << 1)
2747#define UCODE_STATISTICS_NARROW_BAND_MSK (0x1 << 2)
2748
2749/*
2750 * REPLY_STATISTICS_CMD = 0x9c,
2751 * all devices identical.
2752 *
2753 * This command triggers an immediate response containing uCode statistics.
2754 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2755 *
2756 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2757 * internal copy of the statistics (counters) after issuing the response.
2758 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2759 *
2760 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2761 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
2762 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2763 */
2764#define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */
2765#define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2766struct iwl_statistics_cmd {
2767 __le32 configuration_flags; /* IWL_STATS_CONF_* */
2768} __packed;
2769
2770/*
2771 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2772 *
2773 * By default, uCode issues this notification after receiving a beacon
2774 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the
2775 * REPLY_STATISTICS_CMD 0x9c, above.
2776 *
2777 * Statistics counters continue to increment beacon after beacon, but are
2778 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2779 * 0x9c with CLEAR_STATS bit set (see above).
2780 *
2781 * uCode also issues this notification during scans. uCode clears statistics
2782 * appropriately so that each notification contains statistics for only the
2783 * one channel that has just been scanned.
2784 */
2785#define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2)
2786#define STATISTICS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8)
2787
2788struct iwl_notif_statistics {
2789 __le32 flag;
2790 struct statistics_rx rx;
2791 struct statistics_tx tx;
2792 struct statistics_general general;
2793} __packed;
2794
2795struct iwl_bt_notif_statistics {
2796 __le32 flag;
2797 struct statistics_rx_bt rx;
2798 struct statistics_tx tx;
2799 struct statistics_general_bt general;
2800} __packed;
2801
2802/*
2803 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2804 *
2805 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2806 * in regardless of how many missed beacons, which mean when driver receive the
2807 * notification, inside the command, it can find all the beacons information
2808 * which include number of total missed beacons, number of consecutive missed
2809 * beacons, number of beacons received and number of beacons expected to
2810 * receive.
2811 *
2812 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2813 * in order to bring the radio/PHY back to working state; which has no relation
2814 * to when driver will perform sensitivity calibration.
2815 *
2816 * Driver should set it own missed_beacon_threshold to decide when to perform
2817 * sensitivity calibration based on number of consecutive missed beacons in
2818 * order to improve overall performance, especially in noisy environment.
2819 *
2820 */
2821
2822#define IWL_MISSED_BEACON_THRESHOLD_MIN (1)
2823#define IWL_MISSED_BEACON_THRESHOLD_DEF (5)
2824#define IWL_MISSED_BEACON_THRESHOLD_MAX IWL_MISSED_BEACON_THRESHOLD_DEF
2825
2826struct iwl_missed_beacon_notif {
2827 __le32 consecutive_missed_beacons;
2828 __le32 total_missed_becons;
2829 __le32 num_expected_beacons;
2830 __le32 num_recvd_beacons;
2831} __packed;
2832
2833
2834/******************************************************************************
2835 * (11)
2836 * Rx Calibration Commands:
2837 *
2838 * With the uCode used for open source drivers, most Tx calibration (except
2839 * for Tx Power) and most Rx calibration is done by uCode during the
2840 * "initialize" phase of uCode boot. Driver must calibrate only:
2841 *
2842 * 1) Tx power (depends on temperature), described elsewhere
2843 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2844 * 3) Receiver sensitivity (to optimize signal detection)
2845 *
2846 *****************************************************************************/
2847
2848/**
2849 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2850 *
2851 * This command sets up the Rx signal detector for a sensitivity level that
2852 * is high enough to lock onto all signals within the associated network,
2853 * but low enough to ignore signals that are below a certain threshold, so as
2854 * not to have too many "false alarms". False alarms are signals that the
2855 * Rx DSP tries to lock onto, but then discards after determining that they
2856 * are noise.
2857 *
2858 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2859 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2860 * time listening, not transmitting). Driver must adjust sensitivity so that
2861 * the ratio of actual false alarms to actual Rx time falls within this range.
2862 *
2863 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2864 * received beacon. These provide information to the driver to analyze the
2865 * sensitivity. Don't analyze statistics that come in from scanning, or any
2866 * other non-associated-network source. Pertinent statistics include:
2867 *
2868 * From "general" statistics (struct statistics_rx_non_phy):
2869 *
2870 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2871 * Measure of energy of desired signal. Used for establishing a level
2872 * below which the device does not detect signals.
2873 *
2874 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2875 * Measure of background noise in silent period after beacon.
2876 *
2877 * channel_load
2878 * uSecs of actual Rx time during beacon period (varies according to
2879 * how much time was spent transmitting).
2880 *
2881 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2882 *
2883 * false_alarm_cnt
2884 * Signal locks abandoned early (before phy-level header).
2885 *
2886 * plcp_err
2887 * Signal locks abandoned late (during phy-level header).
2888 *
2889 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
2890 * beacon to beacon, i.e. each value is an accumulation of all errors
2891 * before and including the latest beacon. Values will wrap around to 0
2892 * after counting up to 2^32 - 1. Driver must differentiate vs.
2893 * previous beacon's values to determine # false alarms in the current
2894 * beacon period.
2895 *
2896 * Total number of false alarms = false_alarms + plcp_errs
2897 *
2898 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2899 * (notice that the start points for OFDM are at or close to settings for
2900 * maximum sensitivity):
2901 *
2902 * START / MIN / MAX
2903 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120
2904 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210
2905 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140
2906 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270
2907 *
2908 * If actual rate of OFDM false alarms (+ plcp_errors) is too high
2909 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2910 * by *adding* 1 to all 4 of the table entries above, up to the max for
2911 * each entry. Conversely, if false alarm rate is too low (less than 5
2912 * for each 204.8 msecs listening), *subtract* 1 from each entry to
2913 * increase sensitivity.
2914 *
2915 * For CCK sensitivity, keep track of the following:
2916 *
2917 * 1). 20-beacon history of maximum background noise, indicated by
2918 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2919 * 3 receivers. For any given beacon, the "silence reference" is
2920 * the maximum of last 60 samples (20 beacons * 3 receivers).
2921 *
2922 * 2). 10-beacon history of strongest signal level, as indicated
2923 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2924 * i.e. the strength of the signal through the best receiver at the
2925 * moment. These measurements are "upside down", with lower values
2926 * for stronger signals, so max energy will be *minimum* value.
2927 *
2928 * Then for any given beacon, the driver must determine the *weakest*
2929 * of the strongest signals; this is the minimum level that needs to be
2930 * successfully detected, when using the best receiver at the moment.
2931 * "Max cck energy" is the maximum (higher value means lower energy!)
2932 * of the last 10 minima. Once this is determined, driver must add
2933 * a little margin by adding "6" to it.
2934 *
2935 * 3). Number of consecutive beacon periods with too few false alarms.
2936 * Reset this to 0 at the first beacon period that falls within the
2937 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2938 *
2939 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2940 * (notice that the start points for CCK are at maximum sensitivity):
2941 *
2942 * START / MIN / MAX
2943 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200
2944 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400
2945 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100
2946 *
2947 * If actual rate of CCK false alarms (+ plcp_errors) is too high
2948 * (greater than 50 for each 204.8 msecs listening), method for reducing
2949 * sensitivity is:
2950 *
2951 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2952 * up to max 400.
2953 *
2954 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2955 * sensitivity has been reduced a significant amount; bring it up to
2956 * a moderate 161. Otherwise, *add* 3, up to max 200.
2957 *
2958 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2959 * sensitivity has been reduced only a moderate or small amount;
2960 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2961 * down to min 0. Otherwise (if gain has been significantly reduced),
2962 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2963 *
2964 * b) Save a snapshot of the "silence reference".
2965 *
2966 * If actual rate of CCK false alarms (+ plcp_errors) is too low
2967 * (less than 5 for each 204.8 msecs listening), method for increasing
2968 * sensitivity is used only if:
2969 *
2970 * 1a) Previous beacon did not have too many false alarms
2971 * 1b) AND difference between previous "silence reference" and current
2972 * "silence reference" (prev - current) is 2 or more,
2973 * OR 2) 100 or more consecutive beacon periods have had rate of
2974 * less than 5 false alarms per 204.8 milliseconds rx time.
2975 *
2976 * Method for increasing sensitivity:
2977 *
2978 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2979 * down to min 125.
2980 *
2981 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2982 * down to min 200.
2983 *
2984 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2985 *
2986 * If actual rate of CCK false alarms (+ plcp_errors) is within good range
2987 * (between 5 and 50 for each 204.8 msecs listening):
2988 *
2989 * 1) Save a snapshot of the silence reference.
2990 *
2991 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
2992 * give some extra margin to energy threshold by *subtracting* 8
2993 * from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2994 *
2995 * For all cases (too few, too many, good range), make sure that the CCK
2996 * detection threshold (energy) is below the energy level for robust
2997 * detection over the past 10 beacon periods, the "Max cck energy".
2998 * Lower values mean higher energy; this means making sure that the value
2999 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
3000 *
3001 */
3002
3003/*
3004 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
3005 */
3006#define HD_TABLE_SIZE (11) /* number of entries */
3007#define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */
3008#define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
3009#define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
3010#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
3011#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
3012#define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
3013#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
3014#define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
3015#define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
3016#define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
3017#define HD_OFDM_ENERGY_TH_IN_INDEX (10)
3018
3019/*
3020 * Additional table entries in enhance SENSITIVITY_CMD
3021 */
3022#define HD_INA_NON_SQUARE_DET_OFDM_INDEX (11)
3023#define HD_INA_NON_SQUARE_DET_CCK_INDEX (12)
3024#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX (13)
3025#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX (14)
3026#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (15)
3027#define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX (16)
3028#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX (17)
3029#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX (18)
3030#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (19)
3031#define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX (20)
3032#define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX (21)
3033#define HD_RESERVED (22)
3034
3035/* number of entries for enhanced tbl */
3036#define ENHANCE_HD_TABLE_SIZE (23)
3037
3038/* number of additional entries for enhanced tbl */
3039#define ENHANCE_HD_TABLE_ENTRIES (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3040
3041#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1 cpu_to_le16(0)
3042#define HD_INA_NON_SQUARE_DET_CCK_DATA_V1 cpu_to_le16(0)
3043#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1 cpu_to_le16(0)
3044#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(668)
3045#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3046#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(486)
3047#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(37)
3048#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(853)
3049#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3050#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(476)
3051#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(99)
3052
3053#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2 cpu_to_le16(1)
3054#define HD_INA_NON_SQUARE_DET_CCK_DATA_V2 cpu_to_le16(1)
3055#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2 cpu_to_le16(1)
3056#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(600)
3057#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(40)
3058#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(486)
3059#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(45)
3060#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(853)
3061#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(60)
3062#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(476)
3063#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(99)
3064
3065
3066/* Control field in struct iwl_sensitivity_cmd */
3067#define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0)
3068#define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1)
3069
3070/**
3071 * struct iwl_sensitivity_cmd
3072 * @control: (1) updates working table, (0) updates default table
3073 * @table: energy threshold values, use HD_* as index into table
3074 *
3075 * Always use "1" in "control" to update uCode's working table and DSP.
3076 */
3077struct iwl_sensitivity_cmd {
3078 __le16 control; /* always use "1" */
3079 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */
3080} __packed;
3081
3082/*
3083 *
3084 */
3085struct iwl_enhance_sensitivity_cmd {
3086 __le16 control; /* always use "1" */
3087 __le16 enhance_table[ENHANCE_HD_TABLE_SIZE]; /* use HD_* as index */
3088} __packed;
3089
3090
3091/**
3092 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3093 *
3094 * This command sets the relative gains of agn device's 3 radio receiver chains.
3095 *
3096 * After the first association, driver should accumulate signal and noise
3097 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3098 * beacons from the associated network (don't collect statistics that come
3099 * in from scanning, or any other non-network source).
3100 *
3101 * DISCONNECTED ANTENNA:
3102 *
3103 * Driver should determine which antennas are actually connected, by comparing
3104 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the
3105 * following values over 20 beacons, one accumulator for each of the chains
3106 * a/b/c, from struct statistics_rx_non_phy:
3107 *
3108 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3109 *
3110 * Find the strongest signal from among a/b/c. Compare the other two to the
3111 * strongest. If any signal is more than 15 dB (times 20, unless you
3112 * divide the accumulated values by 20) below the strongest, the driver
3113 * considers that antenna to be disconnected, and should not try to use that
3114 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
3115 * driver should declare the stronger one as connected, and attempt to use it
3116 * (A and B are the only 2 Tx chains!).
3117 *
3118 *
3119 * RX BALANCE:
3120 *
3121 * Driver should balance the 3 receivers (but just the ones that are connected
3122 * to antennas, see above) for gain, by comparing the average signal levels
3123 * detected during the silence after each beacon (background noise).
3124 * Accumulate (add) the following values over 20 beacons, one accumulator for
3125 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3126 *
3127 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3128 *
3129 * Find the weakest background noise level from among a/b/c. This Rx chain
3130 * will be the reference, with 0 gain adjustment. Attenuate other channels by
3131 * finding noise difference:
3132 *
3133 * (accum_noise[i] - accum_noise[reference]) / 30
3134 *
3135 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3136 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3137 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3138 * and set bit 2 to indicate "reduce gain". The value for the reference
3139 * (weakest) chain should be "0".
3140 *
3141 * diff_gain_[abc] bit fields:
3142 * 2: (1) reduce gain, (0) increase gain
3143 * 1-0: amount of gain, units of 1.5 dB
3144 */
3145
3146/* Phy calibration command for series */
3147enum {
3148 IWL_PHY_CALIBRATE_DC_CMD = 8,
3149 IWL_PHY_CALIBRATE_LO_CMD = 9,
3150 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11,
3151 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15,
3152 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16,
3153 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17,
3154 IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD = 18,
3155};
3156
3157/* This enum defines the bitmap of various calibrations to enable in both
3158 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3159 */
3160enum iwl_ucode_calib_cfg {
3161 IWL_CALIB_CFG_RX_BB_IDX = BIT(0),
3162 IWL_CALIB_CFG_DC_IDX = BIT(1),
3163 IWL_CALIB_CFG_LO_IDX = BIT(2),
3164 IWL_CALIB_CFG_TX_IQ_IDX = BIT(3),
3165 IWL_CALIB_CFG_RX_IQ_IDX = BIT(4),
3166 IWL_CALIB_CFG_NOISE_IDX = BIT(5),
3167 IWL_CALIB_CFG_CRYSTAL_IDX = BIT(6),
3168 IWL_CALIB_CFG_TEMPERATURE_IDX = BIT(7),
3169 IWL_CALIB_CFG_PAPD_IDX = BIT(8),
3170 IWL_CALIB_CFG_SENSITIVITY_IDX = BIT(9),
3171 IWL_CALIB_CFG_TX_PWR_IDX = BIT(10),
3172};
3173
3174#define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3175 IWL_CALIB_CFG_DC_IDX | \
3176 IWL_CALIB_CFG_LO_IDX | \
3177 IWL_CALIB_CFG_TX_IQ_IDX | \
3178 IWL_CALIB_CFG_RX_IQ_IDX | \
3179 IWL_CALIB_CFG_CRYSTAL_IDX)
3180
3181#define IWL_CALIB_RT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3182 IWL_CALIB_CFG_DC_IDX | \
3183 IWL_CALIB_CFG_LO_IDX | \
3184 IWL_CALIB_CFG_TX_IQ_IDX | \
3185 IWL_CALIB_CFG_RX_IQ_IDX | \
3186 IWL_CALIB_CFG_TEMPERATURE_IDX | \
3187 IWL_CALIB_CFG_PAPD_IDX | \
3188 IWL_CALIB_CFG_TX_PWR_IDX | \
3189 IWL_CALIB_CFG_CRYSTAL_IDX)
3190
3191#define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK cpu_to_le32(BIT(0))
3192
3193struct iwl_calib_cfg_elmnt_s {
3194 __le32 is_enable;
3195 __le32 start;
3196 __le32 send_res;
3197 __le32 apply_res;
3198 __le32 reserved;
3199} __packed;
3200
3201struct iwl_calib_cfg_status_s {
3202 struct iwl_calib_cfg_elmnt_s once;
3203 struct iwl_calib_cfg_elmnt_s perd;
3204 __le32 flags;
3205} __packed;
3206
3207struct iwl_calib_cfg_cmd {
3208 struct iwl_calib_cfg_status_s ucd_calib_cfg;
3209 struct iwl_calib_cfg_status_s drv_calib_cfg;
3210 __le32 reserved1;
3211} __packed;
3212
3213struct iwl_calib_hdr {
3214 u8 op_code;
3215 u8 first_group;
3216 u8 groups_num;
3217 u8 data_valid;
3218} __packed;
3219
3220struct iwl_calib_cmd {
3221 struct iwl_calib_hdr hdr;
3222 u8 data[0];
3223} __packed;
3224
3225struct iwl_calib_xtal_freq_cmd {
3226 struct iwl_calib_hdr hdr;
3227 u8 cap_pin1;
3228 u8 cap_pin2;
3229 u8 pad[2];
3230} __packed;
3231
3232#define DEFAULT_RADIO_SENSOR_OFFSET cpu_to_le16(2700)
3233struct iwl_calib_temperature_offset_cmd {
3234 struct iwl_calib_hdr hdr;
3235 __le16 radio_sensor_offset;
3236 __le16 reserved;
3237} __packed;
3238
3239struct iwl_calib_temperature_offset_v2_cmd {
3240 struct iwl_calib_hdr hdr;
3241 __le16 radio_sensor_offset_high;
3242 __le16 radio_sensor_offset_low;
3243 __le16 burntVoltageRef;
3244 __le16 reserved;
3245} __packed;
3246
3247/* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3248struct iwl_calib_chain_noise_reset_cmd {
3249 struct iwl_calib_hdr hdr;
3250 u8 data[0];
3251};
3252
3253/* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3254struct iwl_calib_chain_noise_gain_cmd {
3255 struct iwl_calib_hdr hdr;
3256 u8 delta_gain_1;
3257 u8 delta_gain_2;
3258 u8 pad[2];
3259} __packed;
3260
3261/******************************************************************************
3262 * (12)
3263 * Miscellaneous Commands:
3264 *
3265 *****************************************************************************/
3266
3267/*
3268 * LEDs Command & Response
3269 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3270 *
3271 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3272 * this command turns it on or off, or sets up a periodic blinking cycle.
3273 */
3274struct iwl_led_cmd {
3275 __le32 interval; /* "interval" in uSec */
3276 u8 id; /* 1: Activity, 2: Link, 3: Tech */
3277 u8 off; /* # intervals off while blinking;
3278 * "0", with >0 "on" value, turns LED on */
3279 u8 on; /* # intervals on while blinking;
3280 * "0", regardless of "off", turns LED off */
3281 u8 reserved;
3282} __packed;
3283
3284/*
3285 * station priority table entries
3286 * also used as potential "events" value for both
3287 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3288 */
3289
3290/*
3291 * COEX events entry flag masks
3292 * RP - Requested Priority
3293 * WP - Win Medium Priority: priority assigned when the contention has been won
3294 */
3295#define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG (0x1)
3296#define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG (0x2)
3297#define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG (0x4)
3298
3299#define COEX_CU_UNASSOC_IDLE_RP 4
3300#define COEX_CU_UNASSOC_MANUAL_SCAN_RP 4
3301#define COEX_CU_UNASSOC_AUTO_SCAN_RP 4
3302#define COEX_CU_CALIBRATION_RP 4
3303#define COEX_CU_PERIODIC_CALIBRATION_RP 4
3304#define COEX_CU_CONNECTION_ESTAB_RP 4
3305#define COEX_CU_ASSOCIATED_IDLE_RP 4
3306#define COEX_CU_ASSOC_MANUAL_SCAN_RP 4
3307#define COEX_CU_ASSOC_AUTO_SCAN_RP 4
3308#define COEX_CU_ASSOC_ACTIVE_LEVEL_RP 4
3309#define COEX_CU_RF_ON_RP 6
3310#define COEX_CU_RF_OFF_RP 4
3311#define COEX_CU_STAND_ALONE_DEBUG_RP 6
3312#define COEX_CU_IPAN_ASSOC_LEVEL_RP 4
3313#define COEX_CU_RSRVD1_RP 4
3314#define COEX_CU_RSRVD2_RP 4
3315
3316#define COEX_CU_UNASSOC_IDLE_WP 3
3317#define COEX_CU_UNASSOC_MANUAL_SCAN_WP 3
3318#define COEX_CU_UNASSOC_AUTO_SCAN_WP 3
3319#define COEX_CU_CALIBRATION_WP 3
3320#define COEX_CU_PERIODIC_CALIBRATION_WP 3
3321#define COEX_CU_CONNECTION_ESTAB_WP 3
3322#define COEX_CU_ASSOCIATED_IDLE_WP 3
3323#define COEX_CU_ASSOC_MANUAL_SCAN_WP 3
3324#define COEX_CU_ASSOC_AUTO_SCAN_WP 3
3325#define COEX_CU_ASSOC_ACTIVE_LEVEL_WP 3
3326#define COEX_CU_RF_ON_WP 3
3327#define COEX_CU_RF_OFF_WP 3
3328#define COEX_CU_STAND_ALONE_DEBUG_WP 6
3329#define COEX_CU_IPAN_ASSOC_LEVEL_WP 3
3330#define COEX_CU_RSRVD1_WP 3
3331#define COEX_CU_RSRVD2_WP 3
3332
3333#define COEX_UNASSOC_IDLE_FLAGS 0
3334#define COEX_UNASSOC_MANUAL_SCAN_FLAGS \
3335 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3336 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3337#define COEX_UNASSOC_AUTO_SCAN_FLAGS \
3338 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3339 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3340#define COEX_CALIBRATION_FLAGS \
3341 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3342 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3343#define COEX_PERIODIC_CALIBRATION_FLAGS 0
3344/*
3345 * COEX_CONNECTION_ESTAB:
3346 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3347 */
3348#define COEX_CONNECTION_ESTAB_FLAGS \
3349 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3350 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3351 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3352#define COEX_ASSOCIATED_IDLE_FLAGS 0
3353#define COEX_ASSOC_MANUAL_SCAN_FLAGS \
3354 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3355 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3356#define COEX_ASSOC_AUTO_SCAN_FLAGS \
3357 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3358 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3359#define COEX_ASSOC_ACTIVE_LEVEL_FLAGS 0
3360#define COEX_RF_ON_FLAGS 0
3361#define COEX_RF_OFF_FLAGS 0
3362#define COEX_STAND_ALONE_DEBUG_FLAGS \
3363 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3364 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3365#define COEX_IPAN_ASSOC_LEVEL_FLAGS \
3366 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3367 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3368 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3369#define COEX_RSRVD1_FLAGS 0
3370#define COEX_RSRVD2_FLAGS 0
3371/*
3372 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3373 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3374 */
3375#define COEX_CU_RF_ON_FLAGS \
3376 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3377 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3378 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3379
3380
3381enum {
3382 /* un-association part */
3383 COEX_UNASSOC_IDLE = 0,
3384 COEX_UNASSOC_MANUAL_SCAN = 1,
3385 COEX_UNASSOC_AUTO_SCAN = 2,
3386 /* calibration */
3387 COEX_CALIBRATION = 3,
3388 COEX_PERIODIC_CALIBRATION = 4,
3389 /* connection */
3390 COEX_CONNECTION_ESTAB = 5,
3391 /* association part */
3392 COEX_ASSOCIATED_IDLE = 6,
3393 COEX_ASSOC_MANUAL_SCAN = 7,
3394 COEX_ASSOC_AUTO_SCAN = 8,
3395 COEX_ASSOC_ACTIVE_LEVEL = 9,
3396 /* RF ON/OFF */
3397 COEX_RF_ON = 10,
3398 COEX_RF_OFF = 11,
3399 COEX_STAND_ALONE_DEBUG = 12,
3400 /* IPAN */
3401 COEX_IPAN_ASSOC_LEVEL = 13,
3402 /* reserved */
3403 COEX_RSRVD1 = 14,
3404 COEX_RSRVD2 = 15,
3405 COEX_NUM_OF_EVENTS = 16
3406};
3407
3408/*
3409 * Coexistence WIFI/WIMAX Command
3410 * COEX_PRIORITY_TABLE_CMD = 0x5a
3411 *
3412 */
3413struct iwl_wimax_coex_event_entry {
3414 u8 request_prio;
3415 u8 win_medium_prio;
3416 u8 reserved;
3417 u8 flags;
3418} __packed;
3419
3420/* COEX flag masks */
3421
3422/* Station table is valid */
3423#define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1)
3424/* UnMask wake up src at unassociated sleep */
3425#define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4)
3426/* UnMask wake up src at associated sleep */
3427#define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8)
3428/* Enable CoEx feature. */
3429#define COEX_FLAGS_COEX_ENABLE_MSK (0x80)
3430
3431struct iwl_wimax_coex_cmd {
3432 u8 flags;
3433 u8 reserved[3];
3434 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3435} __packed;
3436
3437/*
3438 * Coexistence MEDIUM NOTIFICATION
3439 * COEX_MEDIUM_NOTIFICATION = 0x5b
3440 *
3441 * notification from uCode to host to indicate medium changes
3442 *
3443 */
3444/*
3445 * status field
3446 * bit 0 - 2: medium status
3447 * bit 3: medium change indication
3448 * bit 4 - 31: reserved
3449 */
3450/* status option values, (0 - 2 bits) */
3451#define COEX_MEDIUM_BUSY (0x0) /* radio belongs to WiMAX */
3452#define COEX_MEDIUM_ACTIVE (0x1) /* radio belongs to WiFi */
3453#define COEX_MEDIUM_PRE_RELEASE (0x2) /* received radio release */
3454#define COEX_MEDIUM_MSK (0x7)
3455
3456/* send notification status (1 bit) */
3457#define COEX_MEDIUM_CHANGED (0x8)
3458#define COEX_MEDIUM_CHANGED_MSK (0x8)
3459#define COEX_MEDIUM_SHIFT (3)
3460
3461struct iwl_coex_medium_notification {
3462 __le32 status;
3463 __le32 events;
3464} __packed;
3465
3466/*
3467 * Coexistence EVENT Command
3468 * COEX_EVENT_CMD = 0x5c
3469 *
3470 * send from host to uCode for coex event request.
3471 */
3472/* flags options */
3473#define COEX_EVENT_REQUEST_MSK (0x1)
3474
3475struct iwl_coex_event_cmd {
3476 u8 flags;
3477 u8 event;
3478 __le16 reserved;
3479} __packed;
3480
3481struct iwl_coex_event_resp {
3482 __le32 status;
3483} __packed;
3484
3485
3486/******************************************************************************
3487 * Bluetooth Coexistence commands
3488 *
3489 *****************************************************************************/
3490
3491/*
3492 * BT Status notification
3493 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3494 */
3495enum iwl_bt_coex_profile_traffic_load {
3496 IWL_BT_COEX_TRAFFIC_LOAD_NONE = 0,
3497 IWL_BT_COEX_TRAFFIC_LOAD_LOW = 1,
3498 IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 2,
3499 IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS = 3,
3500/*
3501 * There are no more even though below is a u8, the
3502 * indication from the BT device only has two bits.
3503 */
3504};
3505
3506#define BT_SESSION_ACTIVITY_1_UART_MSG 0x1
3507#define BT_SESSION_ACTIVITY_2_UART_MSG 0x2
3508
3509/* BT UART message - Share Part (BT -> WiFi) */
3510#define BT_UART_MSG_FRAME1MSGTYPE_POS (0)
3511#define BT_UART_MSG_FRAME1MSGTYPE_MSK \
3512 (0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3513#define BT_UART_MSG_FRAME1SSN_POS (3)
3514#define BT_UART_MSG_FRAME1SSN_MSK \
3515 (0x3 << BT_UART_MSG_FRAME1SSN_POS)
3516#define BT_UART_MSG_FRAME1UPDATEREQ_POS (5)
3517#define BT_UART_MSG_FRAME1UPDATEREQ_MSK \
3518 (0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3519#define BT_UART_MSG_FRAME1RESERVED_POS (6)
3520#define BT_UART_MSG_FRAME1RESERVED_MSK \
3521 (0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3522
3523#define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS (0)
3524#define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK \
3525 (0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3526#define BT_UART_MSG_FRAME2TRAFFICLOAD_POS (2)
3527#define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK \
3528 (0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3529#define BT_UART_MSG_FRAME2CHLSEQN_POS (4)
3530#define BT_UART_MSG_FRAME2CHLSEQN_MSK \
3531 (0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3532#define BT_UART_MSG_FRAME2INBAND_POS (5)
3533#define BT_UART_MSG_FRAME2INBAND_MSK \
3534 (0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3535#define BT_UART_MSG_FRAME2RESERVED_POS (6)
3536#define BT_UART_MSG_FRAME2RESERVED_MSK \
3537 (0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3538
3539#define BT_UART_MSG_FRAME3SCOESCO_POS (0)
3540#define BT_UART_MSG_FRAME3SCOESCO_MSK \
3541 (0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3542#define BT_UART_MSG_FRAME3SNIFF_POS (1)
3543#define BT_UART_MSG_FRAME3SNIFF_MSK \
3544 (0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3545#define BT_UART_MSG_FRAME3A2DP_POS (2)
3546#define BT_UART_MSG_FRAME3A2DP_MSK \
3547 (0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3548#define BT_UART_MSG_FRAME3ACL_POS (3)
3549#define BT_UART_MSG_FRAME3ACL_MSK \
3550 (0x1 << BT_UART_MSG_FRAME3ACL_POS)
3551#define BT_UART_MSG_FRAME3MASTER_POS (4)
3552#define BT_UART_MSG_FRAME3MASTER_MSK \
3553 (0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3554#define BT_UART_MSG_FRAME3OBEX_POS (5)
3555#define BT_UART_MSG_FRAME3OBEX_MSK \
3556 (0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3557#define BT_UART_MSG_FRAME3RESERVED_POS (6)
3558#define BT_UART_MSG_FRAME3RESERVED_MSK \
3559 (0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3560
3561#define BT_UART_MSG_FRAME4IDLEDURATION_POS (0)
3562#define BT_UART_MSG_FRAME4IDLEDURATION_MSK \
3563 (0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3564#define BT_UART_MSG_FRAME4RESERVED_POS (6)
3565#define BT_UART_MSG_FRAME4RESERVED_MSK \
3566 (0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3567
3568#define BT_UART_MSG_FRAME5TXACTIVITY_POS (0)
3569#define BT_UART_MSG_FRAME5TXACTIVITY_MSK \
3570 (0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3571#define BT_UART_MSG_FRAME5RXACTIVITY_POS (2)
3572#define BT_UART_MSG_FRAME5RXACTIVITY_MSK \
3573 (0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3574#define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS (4)
3575#define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK \
3576 (0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3577#define BT_UART_MSG_FRAME5RESERVED_POS (6)
3578#define BT_UART_MSG_FRAME5RESERVED_MSK \
3579 (0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3580
3581#define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS (0)
3582#define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK \
3583 (0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3584#define BT_UART_MSG_FRAME6DISCOVERABLE_POS (5)
3585#define BT_UART_MSG_FRAME6DISCOVERABLE_MSK \
3586 (0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3587#define BT_UART_MSG_FRAME6RESERVED_POS (6)
3588#define BT_UART_MSG_FRAME6RESERVED_MSK \
3589 (0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3590
3591#define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS (0)
3592#define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK \
3593 (0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3594#define BT_UART_MSG_FRAME7PAGE_POS (3)
3595#define BT_UART_MSG_FRAME7PAGE_MSK \
3596 (0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3597#define BT_UART_MSG_FRAME7INQUIRY_POS (4)
3598#define BT_UART_MSG_FRAME7INQUIRY_MSK \
3599 (0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3600#define BT_UART_MSG_FRAME7CONNECTABLE_POS (5)
3601#define BT_UART_MSG_FRAME7CONNECTABLE_MSK \
3602 (0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3603#define BT_UART_MSG_FRAME7RESERVED_POS (6)
3604#define BT_UART_MSG_FRAME7RESERVED_MSK \
3605 (0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3606
3607/* BT Session Activity 2 UART message (BT -> WiFi) */
3608#define BT_UART_MSG_2_FRAME1RESERVED1_POS (5)
3609#define BT_UART_MSG_2_FRAME1RESERVED1_MSK \
3610 (0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3611#define BT_UART_MSG_2_FRAME1RESERVED2_POS (6)
3612#define BT_UART_MSG_2_FRAME1RESERVED2_MSK \
3613 (0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3614
3615#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS (0)
3616#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK \
3617 (0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3618#define BT_UART_MSG_2_FRAME2RESERVED_POS (6)
3619#define BT_UART_MSG_2_FRAME2RESERVED_MSK \
3620 (0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3621
3622#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS (0)
3623#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK \
3624 (0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3625#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS (4)
3626#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK \
3627 (0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3628#define BT_UART_MSG_2_FRAME3LEMASTER_POS (5)
3629#define BT_UART_MSG_2_FRAME3LEMASTER_MSK \
3630 (0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3631#define BT_UART_MSG_2_FRAME3RESERVED_POS (6)
3632#define BT_UART_MSG_2_FRAME3RESERVED_MSK \
3633 (0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3634
3635#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS (0)
3636#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK \
3637 (0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3638#define BT_UART_MSG_2_FRAME4NUMLECONN_POS (4)
3639#define BT_UART_MSG_2_FRAME4NUMLECONN_MSK \
3640 (0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3641#define BT_UART_MSG_2_FRAME4RESERVED_POS (6)
3642#define BT_UART_MSG_2_FRAME4RESERVED_MSK \
3643 (0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3644
3645#define BT_UART_MSG_2_FRAME5BTMINRSSI_POS (0)
3646#define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK \
3647 (0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3648#define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS (4)
3649#define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK \
3650 (0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3651#define BT_UART_MSG_2_FRAME5LEADVERMODE_POS (5)
3652#define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK \
3653 (0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3654#define BT_UART_MSG_2_FRAME5RESERVED_POS (6)
3655#define BT_UART_MSG_2_FRAME5RESERVED_MSK \
3656 (0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3657
3658#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS (0)
3659#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK \
3660 (0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3661#define BT_UART_MSG_2_FRAME6RFU_POS (5)
3662#define BT_UART_MSG_2_FRAME6RFU_MSK \
3663 (0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3664#define BT_UART_MSG_2_FRAME6RESERVED_POS (6)
3665#define BT_UART_MSG_2_FRAME6RESERVED_MSK \
3666 (0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3667
3668#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS (0)
3669#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK \
3670 (0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3671#define BT_UART_MSG_2_FRAME7LEPROFILE1_POS (3)
3672#define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK \
3673 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3674#define BT_UART_MSG_2_FRAME7LEPROFILE2_POS (4)
3675#define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK \
3676 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3677#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS (5)
3678#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK \
3679 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3680#define BT_UART_MSG_2_FRAME7RESERVED_POS (6)
3681#define BT_UART_MSG_2_FRAME7RESERVED_MSK \
3682 (0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3683
3684
3685#define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD (-62)
3686#define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD (-65)
3687
3688struct iwl_bt_uart_msg {
3689 u8 header;
3690 u8 frame1;
3691 u8 frame2;
3692 u8 frame3;
3693 u8 frame4;
3694 u8 frame5;
3695 u8 frame6;
3696 u8 frame7;
3697} __attribute__((packed));
3698
3699struct iwl_bt_coex_profile_notif {
3700 struct iwl_bt_uart_msg last_bt_uart_msg;
3701 u8 bt_status; /* 0 - off, 1 - on */
3702 u8 bt_traffic_load; /* 0 .. 3? */
3703 u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3704 u8 reserved;
3705} __attribute__((packed));
3706
3707#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS 0
3708#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK 0x1
3709#define IWL_BT_COEX_PRIO_TBL_PRIO_POS 1
3710#define IWL_BT_COEX_PRIO_TBL_PRIO_MASK 0x0e
3711#define IWL_BT_COEX_PRIO_TBL_RESERVED_POS 4
3712#define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK 0xf0
3713#define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT 1
3714
3715/*
3716 * BT Coexistence Priority table
3717 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3718 */
3719enum bt_coex_prio_table_events {
3720 BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3721 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3722 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3723 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3724 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3725 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3726 BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3727 BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3728 BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3729 BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3730 BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3731 BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3732 BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3733 BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3734 BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3735 BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3736 /* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3737 BT_COEX_PRIO_TBL_EVT_MAX,
3738};
3739
3740enum bt_coex_prio_table_priorities {
3741 BT_COEX_PRIO_TBL_DISABLED = 0,
3742 BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3743 BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3744 BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3745 BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3746 BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3747 BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3748 BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3749 BT_COEX_PRIO_TBL_MAX,
3750};
3751
3752struct iwl_bt_coex_prio_table_cmd {
3753 u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3754} __attribute__((packed));
3755
3756#define IWL_BT_COEX_ENV_CLOSE 0
3757#define IWL_BT_COEX_ENV_OPEN 1
3758/*
3759 * BT Protection Envelope
3760 * REPLY_BT_COEX_PROT_ENV = 0xcd
3761 */
3762struct iwl_bt_coex_prot_env_cmd {
3763 u8 action; /* 0 = closed, 1 = open */
3764 u8 type; /* 0 .. 15 */
3765 u8 reserved[2];
3766} __attribute__((packed));
3767
3768/*
3769 * REPLY_D3_CONFIG
3770 */
3771enum iwlagn_d3_wakeup_filters {
3772 IWLAGN_D3_WAKEUP_RFKILL = BIT(0),
3773 IWLAGN_D3_WAKEUP_SYSASSERT = BIT(1),
3774};
3775
3776struct iwlagn_d3_config_cmd {
3777 __le32 min_sleep_time;
3778 __le32 wakeup_flags;
3779} __packed;
3780
3781/*
3782 * REPLY_WOWLAN_PATTERNS
3783 */
3784#define IWLAGN_WOWLAN_MIN_PATTERN_LEN 16
3785#define IWLAGN_WOWLAN_MAX_PATTERN_LEN 128
3786
3787struct iwlagn_wowlan_pattern {
3788 u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3789 u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3790 u8 mask_size;
3791 u8 pattern_size;
3792 __le16 reserved;
3793} __packed;
3794
3795#define IWLAGN_WOWLAN_MAX_PATTERNS 20
3796
3797struct iwlagn_wowlan_patterns_cmd {
3798 __le32 n_patterns;
3799 struct iwlagn_wowlan_pattern patterns[];
3800} __packed;
3801
3802/*
3803 * REPLY_WOWLAN_WAKEUP_FILTER
3804 */
3805enum iwlagn_wowlan_wakeup_filters {
3806 IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET = BIT(0),
3807 IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH = BIT(1),
3808 IWLAGN_WOWLAN_WAKEUP_BEACON_MISS = BIT(2),
3809 IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE = BIT(3),
3810 IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL = BIT(4),
3811 IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ = BIT(5),
3812 IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE = BIT(6),
3813 IWLAGN_WOWLAN_WAKEUP_ALWAYS = BIT(7),
3814 IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT = BIT(8),
3815};
3816
3817struct iwlagn_wowlan_wakeup_filter_cmd {
3818 __le32 enabled;
3819 __le16 non_qos_seq;
3820 __le16 reserved;
3821 __le16 qos_seq[8];
3822};
3823
3824/*
3825 * REPLY_WOWLAN_TSC_RSC_PARAMS
3826 */
3827#define IWLAGN_NUM_RSC 16
3828
3829struct tkip_sc {
3830 __le16 iv16;
3831 __le16 pad;
3832 __le32 iv32;
3833} __packed;
3834
3835struct iwlagn_tkip_rsc_tsc {
3836 struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3837 struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3838 struct tkip_sc tsc;
3839} __packed;
3840
3841struct aes_sc {
3842 __le64 pn;
3843} __packed;
3844
3845struct iwlagn_aes_rsc_tsc {
3846 struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3847 struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3848 struct aes_sc tsc;
3849} __packed;
3850
3851union iwlagn_all_tsc_rsc {
3852 struct iwlagn_tkip_rsc_tsc tkip;
3853 struct iwlagn_aes_rsc_tsc aes;
3854};
3855
3856struct iwlagn_wowlan_rsc_tsc_params_cmd {
3857 union iwlagn_all_tsc_rsc all_tsc_rsc;
3858} __packed;
3859
3860/*
3861 * REPLY_WOWLAN_TKIP_PARAMS
3862 */
3863#define IWLAGN_MIC_KEY_SIZE 8
3864#define IWLAGN_P1K_SIZE 5
3865struct iwlagn_mic_keys {
3866 u8 tx[IWLAGN_MIC_KEY_SIZE];
3867 u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3868 u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3869} __packed;
3870
3871struct iwlagn_p1k_cache {
3872 __le16 p1k[IWLAGN_P1K_SIZE];
3873} __packed;
3874
3875#define IWLAGN_NUM_RX_P1K_CACHE 2
3876
3877struct iwlagn_wowlan_tkip_params_cmd {
3878 struct iwlagn_mic_keys mic_keys;
3879 struct iwlagn_p1k_cache tx;
3880 struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3881 struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3882} __packed;
3883
3884/*
3885 * REPLY_WOWLAN_KEK_KCK_MATERIAL
3886 */
3887
3888#define IWLAGN_KCK_MAX_SIZE 32
3889#define IWLAGN_KEK_MAX_SIZE 32
3890
3891struct iwlagn_wowlan_kek_kck_material_cmd {
3892 u8 kck[IWLAGN_KCK_MAX_SIZE];
3893 u8 kek[IWLAGN_KEK_MAX_SIZE];
3894 __le16 kck_len;
3895 __le16 kek_len;
3896 __le64 replay_ctr;
3897} __packed;
3898
3899/*
3900 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3901 */
3902
3903/*
3904 * Minimum slot time in TU
3905 */
3906#define IWL_MIN_SLOT_TIME 20
3907
3908/**
3909 * struct iwl_wipan_slot
3910 * @width: Time in TU
3911 * @type:
3912 * 0 - BSS
3913 * 1 - PAN
3914 */
3915struct iwl_wipan_slot {
3916 __le16 width;
3917 u8 type;
3918 u8 reserved;
3919} __packed;
3920
3921#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS BIT(1) /* reserved */
3922#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET BIT(2) /* reserved */
3923#define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE BIT(3) /* reserved */
3924#define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF BIT(4)
3925#define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE BIT(5)
3926
3927/**
3928 * struct iwl_wipan_params_cmd
3929 * @flags:
3930 * bit0: reserved
3931 * bit1: CP leave channel with CTS
3932 * bit2: CP leave channel qith Quiet
3933 * bit3: slotted mode
3934 * 1 - work in slotted mode
3935 * 0 - work in non slotted mode
3936 * bit4: filter beacon notification
3937 * bit5: full tx slotted mode. if this flag is set,
3938 * uCode will perform leaving channel methods in context switch
3939 * also when working in same channel mode
3940 * @num_slots: 1 - 10
3941 */
3942struct iwl_wipan_params_cmd {
3943 __le16 flags;
3944 u8 reserved;
3945 u8 num_slots;
3946 struct iwl_wipan_slot slots[10];
3947} __packed;
3948
3949/*
3950 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3951 *
3952 * TODO: Figure out what this is used for,
3953 * it can only switch between 2.4 GHz
3954 * channels!!
3955 */
3956
3957struct iwl_wipan_p2p_channel_switch_cmd {
3958 __le16 channel;
3959 __le16 reserved;
3960};
3961
3962/*
3963 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3964 *
3965 * This is used by the device to notify us of the
3966 * NoA schedule it determined so we can forward it
3967 * to userspace for inclusion in probe responses.
3968 *
3969 * In beacons, the NoA schedule is simply appended
3970 * to the frame we give the device.
3971 */
3972
3973struct iwl_wipan_noa_descriptor {
3974 u8 count;
3975 __le32 duration;
3976 __le32 interval;
3977 __le32 starttime;
3978} __packed;
3979
3980struct iwl_wipan_noa_attribute {
3981 u8 id;
3982 __le16 length;
3983 u8 index;
3984 u8 ct_window;
3985 struct iwl_wipan_noa_descriptor descr0, descr1;
3986 u8 reserved;
3987} __packed;
3988
3989struct iwl_wipan_noa_notification {
3990 u32 noa_active;
3991 struct iwl_wipan_noa_attribute noa_attribute;
3992} __packed;
3993
3994#endif /* __iwl_commands_h__ */