diff options
Diffstat (limited to 'drivers/net/wireless/ath/ath5k/phy.c')
| -rw-r--r-- | drivers/net/wireless/ath/ath5k/phy.c | 2599 |
1 files changed, 2599 insertions, 0 deletions
diff --git a/drivers/net/wireless/ath/ath5k/phy.c b/drivers/net/wireless/ath/ath5k/phy.c new file mode 100644 index 000000000000..9e2faae5ae94 --- /dev/null +++ b/drivers/net/wireless/ath/ath5k/phy.c | |||
| @@ -0,0 +1,2599 @@ | |||
| 1 | /* | ||
| 2 | * PHY functions | ||
| 3 | * | ||
| 4 | * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org> | ||
| 5 | * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> | ||
| 6 | * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> | ||
| 7 | * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org> | ||
| 8 | * | ||
| 9 | * Permission to use, copy, modify, and distribute this software for any | ||
| 10 | * purpose with or without fee is hereby granted, provided that the above | ||
| 11 | * copyright notice and this permission notice appear in all copies. | ||
| 12 | * | ||
| 13 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
| 14 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
| 15 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
| 16 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
| 17 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
| 18 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
| 19 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
| 20 | * | ||
| 21 | */ | ||
| 22 | |||
| 23 | #define _ATH5K_PHY | ||
| 24 | |||
| 25 | #include <linux/delay.h> | ||
| 26 | |||
| 27 | #include "ath5k.h" | ||
| 28 | #include "reg.h" | ||
| 29 | #include "base.h" | ||
| 30 | #include "rfbuffer.h" | ||
| 31 | #include "rfgain.h" | ||
| 32 | |||
| 33 | /* | ||
| 34 | * Used to modify RF Banks before writing them to AR5K_RF_BUFFER | ||
| 35 | */ | ||
| 36 | static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah, | ||
| 37 | const struct ath5k_rf_reg *rf_regs, | ||
| 38 | u32 val, u8 reg_id, bool set) | ||
| 39 | { | ||
| 40 | const struct ath5k_rf_reg *rfreg = NULL; | ||
| 41 | u8 offset, bank, num_bits, col, position; | ||
| 42 | u16 entry; | ||
| 43 | u32 mask, data, last_bit, bits_shifted, first_bit; | ||
| 44 | u32 *rfb; | ||
| 45 | s32 bits_left; | ||
| 46 | int i; | ||
| 47 | |||
| 48 | data = 0; | ||
| 49 | rfb = ah->ah_rf_banks; | ||
| 50 | |||
| 51 | for (i = 0; i < ah->ah_rf_regs_count; i++) { | ||
| 52 | if (rf_regs[i].index == reg_id) { | ||
| 53 | rfreg = &rf_regs[i]; | ||
| 54 | break; | ||
| 55 | } | ||
| 56 | } | ||
| 57 | |||
| 58 | if (rfb == NULL || rfreg == NULL) { | ||
| 59 | ATH5K_PRINTF("Rf register not found!\n"); | ||
| 60 | /* should not happen */ | ||
| 61 | return 0; | ||
| 62 | } | ||
| 63 | |||
| 64 | bank = rfreg->bank; | ||
| 65 | num_bits = rfreg->field.len; | ||
| 66 | first_bit = rfreg->field.pos; | ||
| 67 | col = rfreg->field.col; | ||
| 68 | |||
| 69 | /* first_bit is an offset from bank's | ||
| 70 | * start. Since we have all banks on | ||
| 71 | * the same array, we use this offset | ||
| 72 | * to mark each bank's start */ | ||
| 73 | offset = ah->ah_offset[bank]; | ||
| 74 | |||
| 75 | /* Boundary check */ | ||
| 76 | if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) { | ||
| 77 | ATH5K_PRINTF("invalid values at offset %u\n", offset); | ||
| 78 | return 0; | ||
| 79 | } | ||
| 80 | |||
| 81 | entry = ((first_bit - 1) / 8) + offset; | ||
| 82 | position = (first_bit - 1) % 8; | ||
| 83 | |||
| 84 | if (set) | ||
| 85 | data = ath5k_hw_bitswap(val, num_bits); | ||
| 86 | |||
| 87 | for (bits_shifted = 0, bits_left = num_bits; bits_left > 0; | ||
| 88 | position = 0, entry++) { | ||
| 89 | |||
| 90 | last_bit = (position + bits_left > 8) ? 8 : | ||
| 91 | position + bits_left; | ||
| 92 | |||
| 93 | mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) << | ||
| 94 | (col * 8); | ||
| 95 | |||
| 96 | if (set) { | ||
| 97 | rfb[entry] &= ~mask; | ||
| 98 | rfb[entry] |= ((data << position) << (col * 8)) & mask; | ||
| 99 | data >>= (8 - position); | ||
| 100 | } else { | ||
| 101 | data |= (((rfb[entry] & mask) >> (col * 8)) >> position) | ||
| 102 | << bits_shifted; | ||
| 103 | bits_shifted += last_bit - position; | ||
| 104 | } | ||
| 105 | |||
| 106 | bits_left -= 8 - position; | ||
| 107 | } | ||
| 108 | |||
| 109 | data = set ? 1 : ath5k_hw_bitswap(data, num_bits); | ||
| 110 | |||
| 111 | return data; | ||
| 112 | } | ||
| 113 | |||
| 114 | /**********************\ | ||
| 115 | * RF Gain optimization * | ||
| 116 | \**********************/ | ||
| 117 | |||
| 118 | /* | ||
| 119 | * This code is used to optimize rf gain on different environments | ||
| 120 | * (temprature mostly) based on feedback from a power detector. | ||
| 121 | * | ||
| 122 | * It's only used on RF5111 and RF5112, later RF chips seem to have | ||
| 123 | * auto adjustment on hw -notice they have a much smaller BANK 7 and | ||
| 124 | * no gain optimization ladder-. | ||
| 125 | * | ||
| 126 | * For more infos check out this patent doc | ||
| 127 | * http://www.freepatentsonline.com/7400691.html | ||
| 128 | * | ||
| 129 | * This paper describes power drops as seen on the receiver due to | ||
| 130 | * probe packets | ||
| 131 | * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues | ||
| 132 | * %20of%20Power%20Control.pdf | ||
| 133 | * | ||
| 134 | * And this is the MadWiFi bug entry related to the above | ||
| 135 | * http://madwifi-project.org/ticket/1659 | ||
| 136 | * with various measurements and diagrams | ||
| 137 | * | ||
| 138 | * TODO: Deal with power drops due to probes by setting an apropriate | ||
| 139 | * tx power on the probe packets ! Make this part of the calibration process. | ||
| 140 | */ | ||
| 141 | |||
| 142 | /* Initialize ah_gain durring attach */ | ||
| 143 | int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah) | ||
| 144 | { | ||
| 145 | /* Initialize the gain optimization values */ | ||
| 146 | switch (ah->ah_radio) { | ||
| 147 | case AR5K_RF5111: | ||
| 148 | ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default; | ||
| 149 | ah->ah_gain.g_low = 20; | ||
| 150 | ah->ah_gain.g_high = 35; | ||
| 151 | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; | ||
| 152 | break; | ||
| 153 | case AR5K_RF5112: | ||
| 154 | ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default; | ||
| 155 | ah->ah_gain.g_low = 20; | ||
| 156 | ah->ah_gain.g_high = 85; | ||
| 157 | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; | ||
| 158 | break; | ||
| 159 | default: | ||
| 160 | return -EINVAL; | ||
| 161 | } | ||
| 162 | |||
| 163 | return 0; | ||
| 164 | } | ||
| 165 | |||
| 166 | /* Schedule a gain probe check on the next transmited packet. | ||
| 167 | * That means our next packet is going to be sent with lower | ||
| 168 | * tx power and a Peak to Average Power Detector (PAPD) will try | ||
| 169 | * to measure the gain. | ||
| 170 | * | ||
| 171 | * TODO: Use propper tx power setting for the probe packet so | ||
| 172 | * that we don't observe a serious power drop on the receiver | ||
| 173 | * | ||
| 174 | * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc) | ||
| 175 | * just after we enable the probe so that we don't mess with | ||
| 176 | * standard traffic ? Maybe it's time to use sw interrupts and | ||
| 177 | * a probe tasklet !!! | ||
| 178 | */ | ||
| 179 | static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah) | ||
| 180 | { | ||
| 181 | |||
| 182 | /* Skip if gain calibration is inactive or | ||
| 183 | * we already handle a probe request */ | ||
| 184 | if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE) | ||
| 185 | return; | ||
| 186 | |||
| 187 | /* Send the packet with 2dB below max power as | ||
| 188 | * patent doc suggest */ | ||
| 189 | ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max_pwr - 4, | ||
| 190 | AR5K_PHY_PAPD_PROBE_TXPOWER) | | ||
| 191 | AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE); | ||
| 192 | |||
| 193 | ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED; | ||
| 194 | |||
| 195 | } | ||
| 196 | |||
| 197 | /* Calculate gain_F measurement correction | ||
| 198 | * based on the current step for RF5112 rev. 2 */ | ||
| 199 | static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah) | ||
| 200 | { | ||
| 201 | u32 mix, step; | ||
| 202 | u32 *rf; | ||
| 203 | const struct ath5k_gain_opt *go; | ||
| 204 | const struct ath5k_gain_opt_step *g_step; | ||
| 205 | const struct ath5k_rf_reg *rf_regs; | ||
| 206 | |||
| 207 | /* Only RF5112 Rev. 2 supports it */ | ||
| 208 | if ((ah->ah_radio != AR5K_RF5112) || | ||
| 209 | (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A)) | ||
| 210 | return 0; | ||
| 211 | |||
| 212 | go = &rfgain_opt_5112; | ||
| 213 | rf_regs = rf_regs_5112a; | ||
| 214 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); | ||
| 215 | |||
| 216 | g_step = &go->go_step[ah->ah_gain.g_step_idx]; | ||
| 217 | |||
| 218 | if (ah->ah_rf_banks == NULL) | ||
| 219 | return 0; | ||
| 220 | |||
| 221 | rf = ah->ah_rf_banks; | ||
| 222 | ah->ah_gain.g_f_corr = 0; | ||
| 223 | |||
| 224 | /* No VGA (Variable Gain Amplifier) override, skip */ | ||
| 225 | if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1) | ||
| 226 | return 0; | ||
| 227 | |||
| 228 | /* Mix gain stepping */ | ||
| 229 | step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false); | ||
| 230 | |||
| 231 | /* Mix gain override */ | ||
| 232 | mix = g_step->gos_param[0]; | ||
| 233 | |||
| 234 | switch (mix) { | ||
| 235 | case 3: | ||
| 236 | ah->ah_gain.g_f_corr = step * 2; | ||
| 237 | break; | ||
| 238 | case 2: | ||
| 239 | ah->ah_gain.g_f_corr = (step - 5) * 2; | ||
| 240 | break; | ||
| 241 | case 1: | ||
| 242 | ah->ah_gain.g_f_corr = step; | ||
| 243 | break; | ||
| 244 | default: | ||
| 245 | ah->ah_gain.g_f_corr = 0; | ||
| 246 | break; | ||
| 247 | } | ||
| 248 | |||
| 249 | return ah->ah_gain.g_f_corr; | ||
| 250 | } | ||
| 251 | |||
| 252 | /* Check if current gain_F measurement is in the range of our | ||
| 253 | * power detector windows. If we get a measurement outside range | ||
| 254 | * we know it's not accurate (detectors can't measure anything outside | ||
| 255 | * their detection window) so we must ignore it */ | ||
| 256 | static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah) | ||
| 257 | { | ||
| 258 | const struct ath5k_rf_reg *rf_regs; | ||
| 259 | u32 step, mix_ovr, level[4]; | ||
| 260 | u32 *rf; | ||
| 261 | |||
| 262 | if (ah->ah_rf_banks == NULL) | ||
| 263 | return false; | ||
| 264 | |||
| 265 | rf = ah->ah_rf_banks; | ||
| 266 | |||
| 267 | if (ah->ah_radio == AR5K_RF5111) { | ||
| 268 | |||
| 269 | rf_regs = rf_regs_5111; | ||
| 270 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); | ||
| 271 | |||
| 272 | step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP, | ||
| 273 | false); | ||
| 274 | |||
| 275 | level[0] = 0; | ||
| 276 | level[1] = (step == 63) ? 50 : step + 4; | ||
| 277 | level[2] = (step != 63) ? 64 : level[0]; | ||
| 278 | level[3] = level[2] + 50 ; | ||
| 279 | |||
| 280 | ah->ah_gain.g_high = level[3] - | ||
| 281 | (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5); | ||
| 282 | ah->ah_gain.g_low = level[0] + | ||
| 283 | (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0); | ||
| 284 | } else { | ||
| 285 | |||
| 286 | rf_regs = rf_regs_5112; | ||
| 287 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); | ||
| 288 | |||
| 289 | mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, | ||
| 290 | false); | ||
| 291 | |||
| 292 | level[0] = level[2] = 0; | ||
| 293 | |||
| 294 | if (mix_ovr == 1) { | ||
| 295 | level[1] = level[3] = 83; | ||
| 296 | } else { | ||
| 297 | level[1] = level[3] = 107; | ||
| 298 | ah->ah_gain.g_high = 55; | ||
| 299 | } | ||
| 300 | } | ||
| 301 | |||
| 302 | return (ah->ah_gain.g_current >= level[0] && | ||
| 303 | ah->ah_gain.g_current <= level[1]) || | ||
| 304 | (ah->ah_gain.g_current >= level[2] && | ||
| 305 | ah->ah_gain.g_current <= level[3]); | ||
| 306 | } | ||
| 307 | |||
| 308 | /* Perform gain_F adjustment by choosing the right set | ||
| 309 | * of parameters from rf gain optimization ladder */ | ||
| 310 | static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah) | ||
| 311 | { | ||
| 312 | const struct ath5k_gain_opt *go; | ||
| 313 | const struct ath5k_gain_opt_step *g_step; | ||
| 314 | int ret = 0; | ||
| 315 | |||
| 316 | switch (ah->ah_radio) { | ||
| 317 | case AR5K_RF5111: | ||
| 318 | go = &rfgain_opt_5111; | ||
| 319 | break; | ||
| 320 | case AR5K_RF5112: | ||
| 321 | go = &rfgain_opt_5112; | ||
| 322 | break; | ||
| 323 | default: | ||
| 324 | return 0; | ||
| 325 | } | ||
| 326 | |||
| 327 | g_step = &go->go_step[ah->ah_gain.g_step_idx]; | ||
| 328 | |||
| 329 | if (ah->ah_gain.g_current >= ah->ah_gain.g_high) { | ||
| 330 | |||
| 331 | /* Reached maximum */ | ||
| 332 | if (ah->ah_gain.g_step_idx == 0) | ||
| 333 | return -1; | ||
| 334 | |||
| 335 | for (ah->ah_gain.g_target = ah->ah_gain.g_current; | ||
| 336 | ah->ah_gain.g_target >= ah->ah_gain.g_high && | ||
| 337 | ah->ah_gain.g_step_idx > 0; | ||
| 338 | g_step = &go->go_step[ah->ah_gain.g_step_idx]) | ||
| 339 | ah->ah_gain.g_target -= 2 * | ||
| 340 | (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain - | ||
| 341 | g_step->gos_gain); | ||
| 342 | |||
| 343 | ret = 1; | ||
| 344 | goto done; | ||
| 345 | } | ||
| 346 | |||
| 347 | if (ah->ah_gain.g_current <= ah->ah_gain.g_low) { | ||
| 348 | |||
| 349 | /* Reached minimum */ | ||
| 350 | if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1)) | ||
| 351 | return -2; | ||
| 352 | |||
| 353 | for (ah->ah_gain.g_target = ah->ah_gain.g_current; | ||
| 354 | ah->ah_gain.g_target <= ah->ah_gain.g_low && | ||
| 355 | ah->ah_gain.g_step_idx < go->go_steps_count-1; | ||
| 356 | g_step = &go->go_step[ah->ah_gain.g_step_idx]) | ||
| 357 | ah->ah_gain.g_target -= 2 * | ||
| 358 | (go->go_step[++ah->ah_gain.g_step_idx].gos_gain - | ||
| 359 | g_step->gos_gain); | ||
| 360 | |||
| 361 | ret = 2; | ||
| 362 | goto done; | ||
| 363 | } | ||
| 364 | |||
| 365 | done: | ||
| 366 | ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE, | ||
| 367 | "ret %d, gain step %u, current gain %u, target gain %u\n", | ||
| 368 | ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current, | ||
| 369 | ah->ah_gain.g_target); | ||
| 370 | |||
| 371 | return ret; | ||
| 372 | } | ||
| 373 | |||
| 374 | /* Main callback for thermal rf gain calibration engine | ||
| 375 | * Check for a new gain reading and schedule an adjustment | ||
| 376 | * if needed. | ||
| 377 | * | ||
| 378 | * TODO: Use sw interrupt to schedule reset if gain_F needs | ||
| 379 | * adjustment */ | ||
| 380 | enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah) | ||
| 381 | { | ||
| 382 | u32 data, type; | ||
| 383 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | ||
| 384 | |||
| 385 | ATH5K_TRACE(ah->ah_sc); | ||
| 386 | |||
| 387 | if (ah->ah_rf_banks == NULL || | ||
| 388 | ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE) | ||
| 389 | return AR5K_RFGAIN_INACTIVE; | ||
| 390 | |||
| 391 | /* No check requested, either engine is inactive | ||
| 392 | * or an adjustment is already requested */ | ||
| 393 | if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED) | ||
| 394 | goto done; | ||
| 395 | |||
| 396 | /* Read the PAPD (Peak to Average Power Detector) | ||
| 397 | * register */ | ||
| 398 | data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE); | ||
| 399 | |||
| 400 | /* No probe is scheduled, read gain_F measurement */ | ||
| 401 | if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) { | ||
| 402 | ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S; | ||
| 403 | type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE); | ||
| 404 | |||
| 405 | /* If tx packet is CCK correct the gain_F measurement | ||
| 406 | * by cck ofdm gain delta */ | ||
| 407 | if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) { | ||
| 408 | if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) | ||
| 409 | ah->ah_gain.g_current += | ||
| 410 | ee->ee_cck_ofdm_gain_delta; | ||
| 411 | else | ||
| 412 | ah->ah_gain.g_current += | ||
| 413 | AR5K_GAIN_CCK_PROBE_CORR; | ||
| 414 | } | ||
| 415 | |||
| 416 | /* Further correct gain_F measurement for | ||
| 417 | * RF5112A radios */ | ||
| 418 | if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { | ||
| 419 | ath5k_hw_rf_gainf_corr(ah); | ||
| 420 | ah->ah_gain.g_current = | ||
| 421 | ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ? | ||
| 422 | (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) : | ||
| 423 | 0; | ||
| 424 | } | ||
| 425 | |||
| 426 | /* Check if measurement is ok and if we need | ||
| 427 | * to adjust gain, schedule a gain adjustment, | ||
| 428 | * else switch back to the acive state */ | ||
| 429 | if (ath5k_hw_rf_check_gainf_readback(ah) && | ||
| 430 | AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) && | ||
| 431 | ath5k_hw_rf_gainf_adjust(ah)) { | ||
| 432 | ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE; | ||
| 433 | } else { | ||
| 434 | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; | ||
| 435 | } | ||
| 436 | } | ||
| 437 | |||
| 438 | done: | ||
| 439 | return ah->ah_gain.g_state; | ||
| 440 | } | ||
| 441 | |||
| 442 | /* Write initial rf gain table to set the RF sensitivity | ||
| 443 | * this one works on all RF chips and has nothing to do | ||
| 444 | * with gain_F calibration */ | ||
| 445 | int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq) | ||
| 446 | { | ||
| 447 | const struct ath5k_ini_rfgain *ath5k_rfg; | ||
| 448 | unsigned int i, size; | ||
| 449 | |||
| 450 | switch (ah->ah_radio) { | ||
| 451 | case AR5K_RF5111: | ||
| 452 | ath5k_rfg = rfgain_5111; | ||
| 453 | size = ARRAY_SIZE(rfgain_5111); | ||
| 454 | break; | ||
| 455 | case AR5K_RF5112: | ||
| 456 | ath5k_rfg = rfgain_5112; | ||
| 457 | size = ARRAY_SIZE(rfgain_5112); | ||
| 458 | break; | ||
| 459 | case AR5K_RF2413: | ||
| 460 | ath5k_rfg = rfgain_2413; | ||
| 461 | size = ARRAY_SIZE(rfgain_2413); | ||
| 462 | break; | ||
| 463 | case AR5K_RF2316: | ||
| 464 | ath5k_rfg = rfgain_2316; | ||
| 465 | size = ARRAY_SIZE(rfgain_2316); | ||
| 466 | break; | ||
| 467 | case AR5K_RF5413: | ||
| 468 | ath5k_rfg = rfgain_5413; | ||
| 469 | size = ARRAY_SIZE(rfgain_5413); | ||
| 470 | break; | ||
| 471 | case AR5K_RF2317: | ||
| 472 | case AR5K_RF2425: | ||
| 473 | ath5k_rfg = rfgain_2425; | ||
| 474 | size = ARRAY_SIZE(rfgain_2425); | ||
| 475 | break; | ||
| 476 | default: | ||
| 477 | return -EINVAL; | ||
| 478 | } | ||
| 479 | |||
| 480 | switch (freq) { | ||
| 481 | case AR5K_INI_RFGAIN_2GHZ: | ||
| 482 | case AR5K_INI_RFGAIN_5GHZ: | ||
| 483 | break; | ||
| 484 | default: | ||
| 485 | return -EINVAL; | ||
| 486 | } | ||
| 487 | |||
| 488 | for (i = 0; i < size; i++) { | ||
| 489 | AR5K_REG_WAIT(i); | ||
| 490 | ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq], | ||
| 491 | (u32)ath5k_rfg[i].rfg_register); | ||
| 492 | } | ||
| 493 | |||
| 494 | return 0; | ||
| 495 | } | ||
| 496 | |||
| 497 | |||
| 498 | |||
| 499 | /********************\ | ||
| 500 | * RF Registers setup * | ||
| 501 | \********************/ | ||
| 502 | |||
| 503 | |||
| 504 | /* | ||
| 505 | * Setup RF registers by writing rf buffer on hw | ||
| 506 | */ | ||
| 507 | int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel, | ||
| 508 | unsigned int mode) | ||
| 509 | { | ||
| 510 | const struct ath5k_rf_reg *rf_regs; | ||
| 511 | const struct ath5k_ini_rfbuffer *ini_rfb; | ||
| 512 | const struct ath5k_gain_opt *go = NULL; | ||
| 513 | const struct ath5k_gain_opt_step *g_step; | ||
| 514 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | ||
| 515 | u8 ee_mode = 0; | ||
| 516 | u32 *rfb; | ||
| 517 | int i, obdb = -1, bank = -1; | ||
| 518 | |||
| 519 | switch (ah->ah_radio) { | ||
| 520 | case AR5K_RF5111: | ||
| 521 | rf_regs = rf_regs_5111; | ||
| 522 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); | ||
| 523 | ini_rfb = rfb_5111; | ||
| 524 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111); | ||
| 525 | go = &rfgain_opt_5111; | ||
| 526 | break; | ||
| 527 | case AR5K_RF5112: | ||
| 528 | if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { | ||
| 529 | rf_regs = rf_regs_5112a; | ||
| 530 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); | ||
| 531 | ini_rfb = rfb_5112a; | ||
| 532 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a); | ||
| 533 | } else { | ||
| 534 | rf_regs = rf_regs_5112; | ||
| 535 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); | ||
| 536 | ini_rfb = rfb_5112; | ||
| 537 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112); | ||
| 538 | } | ||
| 539 | go = &rfgain_opt_5112; | ||
| 540 | break; | ||
| 541 | case AR5K_RF2413: | ||
| 542 | rf_regs = rf_regs_2413; | ||
| 543 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413); | ||
| 544 | ini_rfb = rfb_2413; | ||
| 545 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413); | ||
| 546 | break; | ||
| 547 | case AR5K_RF2316: | ||
| 548 | rf_regs = rf_regs_2316; | ||
| 549 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316); | ||
| 550 | ini_rfb = rfb_2316; | ||
| 551 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316); | ||
| 552 | break; | ||
| 553 | case AR5K_RF5413: | ||
| 554 | rf_regs = rf_regs_5413; | ||
| 555 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413); | ||
| 556 | ini_rfb = rfb_5413; | ||
| 557 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413); | ||
| 558 | break; | ||
| 559 | case AR5K_RF2317: | ||
| 560 | rf_regs = rf_regs_2425; | ||
| 561 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); | ||
| 562 | ini_rfb = rfb_2317; | ||
| 563 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317); | ||
| 564 | break; | ||
| 565 | case AR5K_RF2425: | ||
| 566 | rf_regs = rf_regs_2425; | ||
| 567 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); | ||
| 568 | if (ah->ah_mac_srev < AR5K_SREV_AR2417) { | ||
| 569 | ini_rfb = rfb_2425; | ||
| 570 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425); | ||
| 571 | } else { | ||
| 572 | ini_rfb = rfb_2417; | ||
| 573 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417); | ||
| 574 | } | ||
| 575 | break; | ||
| 576 | default: | ||
| 577 | return -EINVAL; | ||
| 578 | } | ||
| 579 | |||
| 580 | /* If it's the first time we set rf buffer, allocate | ||
| 581 | * ah->ah_rf_banks based on ah->ah_rf_banks_size | ||
| 582 | * we set above */ | ||
| 583 | if (ah->ah_rf_banks == NULL) { | ||
| 584 | ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size, | ||
| 585 | GFP_KERNEL); | ||
| 586 | if (ah->ah_rf_banks == NULL) { | ||
| 587 | ATH5K_ERR(ah->ah_sc, "out of memory\n"); | ||
| 588 | return -ENOMEM; | ||
| 589 | } | ||
| 590 | } | ||
| 591 | |||
| 592 | /* Copy values to modify them */ | ||
| 593 | rfb = ah->ah_rf_banks; | ||
| 594 | |||
| 595 | for (i = 0; i < ah->ah_rf_banks_size; i++) { | ||
| 596 | if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) { | ||
| 597 | ATH5K_ERR(ah->ah_sc, "invalid bank\n"); | ||
| 598 | return -EINVAL; | ||
| 599 | } | ||
| 600 | |||
| 601 | /* Bank changed, write down the offset */ | ||
| 602 | if (bank != ini_rfb[i].rfb_bank) { | ||
| 603 | bank = ini_rfb[i].rfb_bank; | ||
| 604 | ah->ah_offset[bank] = i; | ||
| 605 | } | ||
| 606 | |||
| 607 | rfb[i] = ini_rfb[i].rfb_mode_data[mode]; | ||
| 608 | } | ||
| 609 | |||
| 610 | /* Set Output and Driver bias current (OB/DB) */ | ||
| 611 | if (channel->hw_value & CHANNEL_2GHZ) { | ||
| 612 | |||
| 613 | if (channel->hw_value & CHANNEL_CCK) | ||
| 614 | ee_mode = AR5K_EEPROM_MODE_11B; | ||
| 615 | else | ||
| 616 | ee_mode = AR5K_EEPROM_MODE_11G; | ||
| 617 | |||
| 618 | /* For RF511X/RF211X combination we | ||
| 619 | * use b_OB and b_DB parameters stored | ||
| 620 | * in eeprom on ee->ee_ob[ee_mode][0] | ||
| 621 | * | ||
| 622 | * For all other chips we use OB/DB for 2Ghz | ||
| 623 | * stored in the b/g modal section just like | ||
| 624 | * 802.11a on ee->ee_ob[ee_mode][1] */ | ||
| 625 | if ((ah->ah_radio == AR5K_RF5111) || | ||
| 626 | (ah->ah_radio == AR5K_RF5112)) | ||
| 627 | obdb = 0; | ||
| 628 | else | ||
| 629 | obdb = 1; | ||
| 630 | |||
| 631 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], | ||
| 632 | AR5K_RF_OB_2GHZ, true); | ||
| 633 | |||
| 634 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], | ||
| 635 | AR5K_RF_DB_2GHZ, true); | ||
| 636 | |||
| 637 | /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */ | ||
| 638 | } else if ((channel->hw_value & CHANNEL_5GHZ) || | ||
| 639 | (ah->ah_radio == AR5K_RF5111)) { | ||
| 640 | |||
| 641 | /* For 11a, Turbo and XR we need to choose | ||
| 642 | * OB/DB based on frequency range */ | ||
| 643 | ee_mode = AR5K_EEPROM_MODE_11A; | ||
| 644 | obdb = channel->center_freq >= 5725 ? 3 : | ||
| 645 | (channel->center_freq >= 5500 ? 2 : | ||
| 646 | (channel->center_freq >= 5260 ? 1 : | ||
| 647 | (channel->center_freq > 4000 ? 0 : -1))); | ||
| 648 | |||
| 649 | if (obdb < 0) | ||
| 650 | return -EINVAL; | ||
| 651 | |||
| 652 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], | ||
| 653 | AR5K_RF_OB_5GHZ, true); | ||
| 654 | |||
| 655 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], | ||
| 656 | AR5K_RF_DB_5GHZ, true); | ||
| 657 | } | ||
| 658 | |||
| 659 | g_step = &go->go_step[ah->ah_gain.g_step_idx]; | ||
| 660 | |||
| 661 | /* Bank Modifications (chip-specific) */ | ||
| 662 | if (ah->ah_radio == AR5K_RF5111) { | ||
| 663 | |||
| 664 | /* Set gain_F settings according to current step */ | ||
| 665 | if (channel->hw_value & CHANNEL_OFDM) { | ||
| 666 | |||
| 667 | AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL, | ||
| 668 | AR5K_PHY_FRAME_CTL_TX_CLIP, | ||
| 669 | g_step->gos_param[0]); | ||
| 670 | |||
| 671 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], | ||
| 672 | AR5K_RF_PWD_90, true); | ||
| 673 | |||
| 674 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], | ||
| 675 | AR5K_RF_PWD_84, true); | ||
| 676 | |||
| 677 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], | ||
| 678 | AR5K_RF_RFGAIN_SEL, true); | ||
| 679 | |||
| 680 | /* We programmed gain_F parameters, switch back | ||
| 681 | * to active state */ | ||
| 682 | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; | ||
| 683 | |||
| 684 | } | ||
| 685 | |||
| 686 | /* Bank 6/7 setup */ | ||
| 687 | |||
| 688 | ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode], | ||
| 689 | AR5K_RF_PWD_XPD, true); | ||
| 690 | |||
| 691 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode], | ||
| 692 | AR5K_RF_XPD_GAIN, true); | ||
| 693 | |||
| 694 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], | ||
| 695 | AR5K_RF_GAIN_I, true); | ||
| 696 | |||
| 697 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], | ||
| 698 | AR5K_RF_PLO_SEL, true); | ||
| 699 | |||
| 700 | /* TODO: Half/quarter channel support */ | ||
| 701 | } | ||
| 702 | |||
| 703 | if (ah->ah_radio == AR5K_RF5112) { | ||
| 704 | |||
| 705 | /* Set gain_F settings according to current step */ | ||
| 706 | if (channel->hw_value & CHANNEL_OFDM) { | ||
| 707 | |||
| 708 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0], | ||
| 709 | AR5K_RF_MIXGAIN_OVR, true); | ||
| 710 | |||
| 711 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], | ||
| 712 | AR5K_RF_PWD_138, true); | ||
| 713 | |||
| 714 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], | ||
| 715 | AR5K_RF_PWD_137, true); | ||
| 716 | |||
| 717 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], | ||
| 718 | AR5K_RF_PWD_136, true); | ||
| 719 | |||
| 720 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4], | ||
| 721 | AR5K_RF_PWD_132, true); | ||
| 722 | |||
| 723 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5], | ||
| 724 | AR5K_RF_PWD_131, true); | ||
| 725 | |||
| 726 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6], | ||
| 727 | AR5K_RF_PWD_130, true); | ||
| 728 | |||
| 729 | /* We programmed gain_F parameters, switch back | ||
| 730 | * to active state */ | ||
| 731 | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; | ||
| 732 | } | ||
| 733 | |||
| 734 | /* Bank 6/7 setup */ | ||
| 735 | |||
| 736 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], | ||
| 737 | AR5K_RF_XPD_SEL, true); | ||
| 738 | |||
| 739 | if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) { | ||
| 740 | /* Rev. 1 supports only one xpd */ | ||
| 741 | ath5k_hw_rfb_op(ah, rf_regs, | ||
| 742 | ee->ee_x_gain[ee_mode], | ||
| 743 | AR5K_RF_XPD_GAIN, true); | ||
| 744 | |||
| 745 | } else { | ||
| 746 | /* TODO: Set high and low gain bits */ | ||
| 747 | ath5k_hw_rfb_op(ah, rf_regs, | ||
| 748 | ee->ee_x_gain[ee_mode], | ||
| 749 | AR5K_RF_PD_GAIN_LO, true); | ||
| 750 | ath5k_hw_rfb_op(ah, rf_regs, | ||
| 751 | ee->ee_x_gain[ee_mode], | ||
| 752 | AR5K_RF_PD_GAIN_HI, true); | ||
| 753 | |||
| 754 | /* Lower synth voltage on Rev 2 */ | ||
| 755 | ath5k_hw_rfb_op(ah, rf_regs, 2, | ||
| 756 | AR5K_RF_HIGH_VC_CP, true); | ||
| 757 | |||
| 758 | ath5k_hw_rfb_op(ah, rf_regs, 2, | ||
| 759 | AR5K_RF_MID_VC_CP, true); | ||
| 760 | |||
| 761 | ath5k_hw_rfb_op(ah, rf_regs, 2, | ||
| 762 | AR5K_RF_LOW_VC_CP, true); | ||
| 763 | |||
| 764 | ath5k_hw_rfb_op(ah, rf_regs, 2, | ||
| 765 | AR5K_RF_PUSH_UP, true); | ||
| 766 | |||
| 767 | /* Decrease power consumption on 5213+ BaseBand */ | ||
| 768 | if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { | ||
| 769 | ath5k_hw_rfb_op(ah, rf_regs, 1, | ||
| 770 | AR5K_RF_PAD2GND, true); | ||
| 771 | |||
| 772 | ath5k_hw_rfb_op(ah, rf_regs, 1, | ||
| 773 | AR5K_RF_XB2_LVL, true); | ||
| 774 | |||
| 775 | ath5k_hw_rfb_op(ah, rf_regs, 1, | ||
| 776 | AR5K_RF_XB5_LVL, true); | ||
| 777 | |||
| 778 | ath5k_hw_rfb_op(ah, rf_regs, 1, | ||
| 779 | AR5K_RF_PWD_167, true); | ||
| 780 | |||
| 781 | ath5k_hw_rfb_op(ah, rf_regs, 1, | ||
| 782 | AR5K_RF_PWD_166, true); | ||
| 783 | } | ||
| 784 | } | ||
| 785 | |||
| 786 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], | ||
| 787 | AR5K_RF_GAIN_I, true); | ||
| 788 | |||
| 789 | /* TODO: Half/quarter channel support */ | ||
| 790 | |||
| 791 | } | ||
| 792 | |||
| 793 | if (ah->ah_radio == AR5K_RF5413 && | ||
| 794 | channel->hw_value & CHANNEL_2GHZ) { | ||
| 795 | |||
| 796 | ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE, | ||
| 797 | true); | ||
| 798 | |||
| 799 | /* Set optimum value for early revisions (on pci-e chips) */ | ||
| 800 | if (ah->ah_mac_srev >= AR5K_SREV_AR5424 && | ||
| 801 | ah->ah_mac_srev < AR5K_SREV_AR5413) | ||
| 802 | ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3), | ||
| 803 | AR5K_RF_PWD_ICLOBUF_2G, true); | ||
| 804 | |||
| 805 | } | ||
| 806 | |||
| 807 | /* Write RF banks on hw */ | ||
| 808 | for (i = 0; i < ah->ah_rf_banks_size; i++) { | ||
| 809 | AR5K_REG_WAIT(i); | ||
| 810 | ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register); | ||
| 811 | } | ||
| 812 | |||
| 813 | return 0; | ||
| 814 | } | ||
| 815 | |||
| 816 | |||
| 817 | /**************************\ | ||
| 818 | PHY/RF channel functions | ||
| 819 | \**************************/ | ||
| 820 | |||
| 821 | /* | ||
| 822 | * Check if a channel is supported | ||
| 823 | */ | ||
| 824 | bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags) | ||
| 825 | { | ||
| 826 | /* Check if the channel is in our supported range */ | ||
| 827 | if (flags & CHANNEL_2GHZ) { | ||
| 828 | if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) && | ||
| 829 | (freq <= ah->ah_capabilities.cap_range.range_2ghz_max)) | ||
| 830 | return true; | ||
| 831 | } else if (flags & CHANNEL_5GHZ) | ||
| 832 | if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) && | ||
| 833 | (freq <= ah->ah_capabilities.cap_range.range_5ghz_max)) | ||
| 834 | return true; | ||
| 835 | |||
| 836 | return false; | ||
| 837 | } | ||
| 838 | |||
| 839 | /* | ||
| 840 | * Convertion needed for RF5110 | ||
| 841 | */ | ||
| 842 | static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel) | ||
| 843 | { | ||
| 844 | u32 athchan; | ||
| 845 | |||
| 846 | /* | ||
| 847 | * Convert IEEE channel/MHz to an internal channel value used | ||
| 848 | * by the AR5210 chipset. This has not been verified with | ||
| 849 | * newer chipsets like the AR5212A who have a completely | ||
| 850 | * different RF/PHY part. | ||
| 851 | */ | ||
| 852 | athchan = (ath5k_hw_bitswap( | ||
| 853 | (ieee80211_frequency_to_channel( | ||
| 854 | channel->center_freq) - 24) / 2, 5) | ||
| 855 | << 1) | (1 << 6) | 0x1; | ||
| 856 | return athchan; | ||
| 857 | } | ||
| 858 | |||
| 859 | /* | ||
| 860 | * Set channel on RF5110 | ||
| 861 | */ | ||
| 862 | static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah, | ||
| 863 | struct ieee80211_channel *channel) | ||
| 864 | { | ||
| 865 | u32 data; | ||
| 866 | |||
| 867 | /* | ||
| 868 | * Set the channel and wait | ||
| 869 | */ | ||
| 870 | data = ath5k_hw_rf5110_chan2athchan(channel); | ||
| 871 | ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER); | ||
| 872 | ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0); | ||
| 873 | mdelay(1); | ||
| 874 | |||
| 875 | return 0; | ||
| 876 | } | ||
| 877 | |||
| 878 | /* | ||
| 879 | * Convertion needed for 5111 | ||
| 880 | */ | ||
| 881 | static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee, | ||
| 882 | struct ath5k_athchan_2ghz *athchan) | ||
| 883 | { | ||
| 884 | int channel; | ||
| 885 | |||
| 886 | /* Cast this value to catch negative channel numbers (>= -19) */ | ||
| 887 | channel = (int)ieee; | ||
| 888 | |||
| 889 | /* | ||
| 890 | * Map 2GHz IEEE channel to 5GHz Atheros channel | ||
| 891 | */ | ||
| 892 | if (channel <= 13) { | ||
| 893 | athchan->a2_athchan = 115 + channel; | ||
| 894 | athchan->a2_flags = 0x46; | ||
| 895 | } else if (channel == 14) { | ||
| 896 | athchan->a2_athchan = 124; | ||
| 897 | athchan->a2_flags = 0x44; | ||
| 898 | } else if (channel >= 15 && channel <= 26) { | ||
| 899 | athchan->a2_athchan = ((channel - 14) * 4) + 132; | ||
| 900 | athchan->a2_flags = 0x46; | ||
| 901 | } else | ||
| 902 | return -EINVAL; | ||
| 903 | |||
| 904 | return 0; | ||
| 905 | } | ||
| 906 | |||
| 907 | /* | ||
| 908 | * Set channel on 5111 | ||
| 909 | */ | ||
| 910 | static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah, | ||
| 911 | struct ieee80211_channel *channel) | ||
| 912 | { | ||
| 913 | struct ath5k_athchan_2ghz ath5k_channel_2ghz; | ||
| 914 | unsigned int ath5k_channel = | ||
| 915 | ieee80211_frequency_to_channel(channel->center_freq); | ||
| 916 | u32 data0, data1, clock; | ||
| 917 | int ret; | ||
| 918 | |||
| 919 | /* | ||
| 920 | * Set the channel on the RF5111 radio | ||
| 921 | */ | ||
| 922 | data0 = data1 = 0; | ||
| 923 | |||
| 924 | if (channel->hw_value & CHANNEL_2GHZ) { | ||
| 925 | /* Map 2GHz channel to 5GHz Atheros channel ID */ | ||
| 926 | ret = ath5k_hw_rf5111_chan2athchan( | ||
| 927 | ieee80211_frequency_to_channel(channel->center_freq), | ||
| 928 | &ath5k_channel_2ghz); | ||
| 929 | if (ret) | ||
| 930 | return ret; | ||
| 931 | |||
| 932 | ath5k_channel = ath5k_channel_2ghz.a2_athchan; | ||
| 933 | data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff) | ||
| 934 | << 5) | (1 << 4); | ||
| 935 | } | ||
| 936 | |||
| 937 | if (ath5k_channel < 145 || !(ath5k_channel & 1)) { | ||
| 938 | clock = 1; | ||
| 939 | data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) | | ||
| 940 | (clock << 1) | (1 << 10) | 1; | ||
| 941 | } else { | ||
| 942 | clock = 0; | ||
| 943 | data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff) | ||
| 944 | << 2) | (clock << 1) | (1 << 10) | 1; | ||
| 945 | } | ||
| 946 | |||
| 947 | ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8), | ||
| 948 | AR5K_RF_BUFFER); | ||
| 949 | ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00), | ||
| 950 | AR5K_RF_BUFFER_CONTROL_3); | ||
| 951 | |||
| 952 | return 0; | ||
| 953 | } | ||
| 954 | |||
| 955 | /* | ||
| 956 | * Set channel on 5112 and newer | ||
| 957 | */ | ||
| 958 | static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah, | ||
| 959 | struct ieee80211_channel *channel) | ||
| 960 | { | ||
| 961 | u32 data, data0, data1, data2; | ||
| 962 | u16 c; | ||
| 963 | |||
| 964 | data = data0 = data1 = data2 = 0; | ||
| 965 | c = channel->center_freq; | ||
| 966 | |||
| 967 | if (c < 4800) { | ||
| 968 | if (!((c - 2224) % 5)) { | ||
| 969 | data0 = ((2 * (c - 704)) - 3040) / 10; | ||
| 970 | data1 = 1; | ||
| 971 | } else if (!((c - 2192) % 5)) { | ||
| 972 | data0 = ((2 * (c - 672)) - 3040) / 10; | ||
| 973 | data1 = 0; | ||
| 974 | } else | ||
| 975 | return -EINVAL; | ||
| 976 | |||
| 977 | data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8); | ||
| 978 | } else if ((c - (c % 5)) != 2 || c > 5435) { | ||
| 979 | if (!(c % 20) && c >= 5120) { | ||
| 980 | data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); | ||
| 981 | data2 = ath5k_hw_bitswap(3, 2); | ||
| 982 | } else if (!(c % 10)) { | ||
| 983 | data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); | ||
| 984 | data2 = ath5k_hw_bitswap(2, 2); | ||
| 985 | } else if (!(c % 5)) { | ||
| 986 | data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); | ||
| 987 | data2 = ath5k_hw_bitswap(1, 2); | ||
| 988 | } else | ||
| 989 | return -EINVAL; | ||
| 990 | } else { | ||
| 991 | data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8); | ||
| 992 | data2 = ath5k_hw_bitswap(0, 2); | ||
| 993 | } | ||
| 994 | |||
| 995 | data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001; | ||
| 996 | |||
| 997 | ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); | ||
| 998 | ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); | ||
| 999 | |||
| 1000 | return 0; | ||
| 1001 | } | ||
| 1002 | |||
| 1003 | /* | ||
| 1004 | * Set the channel on the RF2425 | ||
| 1005 | */ | ||
| 1006 | static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah, | ||
| 1007 | struct ieee80211_channel *channel) | ||
| 1008 | { | ||
| 1009 | u32 data, data0, data2; | ||
| 1010 | u16 c; | ||
| 1011 | |||
| 1012 | data = data0 = data2 = 0; | ||
| 1013 | c = channel->center_freq; | ||
| 1014 | |||
| 1015 | if (c < 4800) { | ||
| 1016 | data0 = ath5k_hw_bitswap((c - 2272), 8); | ||
| 1017 | data2 = 0; | ||
| 1018 | /* ? 5GHz ? */ | ||
| 1019 | } else if ((c - (c % 5)) != 2 || c > 5435) { | ||
| 1020 | if (!(c % 20) && c < 5120) | ||
| 1021 | data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); | ||
| 1022 | else if (!(c % 10)) | ||
| 1023 | data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); | ||
| 1024 | else if (!(c % 5)) | ||
| 1025 | data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); | ||
| 1026 | else | ||
| 1027 | return -EINVAL; | ||
| 1028 | data2 = ath5k_hw_bitswap(1, 2); | ||
| 1029 | } else { | ||
| 1030 | data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8); | ||
| 1031 | data2 = ath5k_hw_bitswap(0, 2); | ||
| 1032 | } | ||
| 1033 | |||
| 1034 | data = (data0 << 4) | data2 << 2 | 0x1001; | ||
| 1035 | |||
| 1036 | ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); | ||
| 1037 | ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); | ||
| 1038 | |||
| 1039 | return 0; | ||
| 1040 | } | ||
| 1041 | |||
| 1042 | /* | ||
| 1043 | * Set a channel on the radio chip | ||
| 1044 | */ | ||
| 1045 | int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel) | ||
| 1046 | { | ||
| 1047 | int ret; | ||
| 1048 | /* | ||
| 1049 | * Check bounds supported by the PHY (we don't care about regultory | ||
| 1050 | * restrictions at this point). Note: hw_value already has the band | ||
| 1051 | * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok() | ||
| 1052 | * of the band by that */ | ||
| 1053 | if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) { | ||
| 1054 | ATH5K_ERR(ah->ah_sc, | ||
| 1055 | "channel frequency (%u MHz) out of supported " | ||
| 1056 | "band range\n", | ||
| 1057 | channel->center_freq); | ||
| 1058 | return -EINVAL; | ||
| 1059 | } | ||
| 1060 | |||
| 1061 | /* | ||
| 1062 | * Set the channel and wait | ||
| 1063 | */ | ||
| 1064 | switch (ah->ah_radio) { | ||
| 1065 | case AR5K_RF5110: | ||
| 1066 | ret = ath5k_hw_rf5110_channel(ah, channel); | ||
| 1067 | break; | ||
| 1068 | case AR5K_RF5111: | ||
| 1069 | ret = ath5k_hw_rf5111_channel(ah, channel); | ||
| 1070 | break; | ||
| 1071 | case AR5K_RF2425: | ||
| 1072 | ret = ath5k_hw_rf2425_channel(ah, channel); | ||
| 1073 | break; | ||
| 1074 | default: | ||
| 1075 | ret = ath5k_hw_rf5112_channel(ah, channel); | ||
| 1076 | break; | ||
| 1077 | } | ||
| 1078 | |||
| 1079 | if (ret) | ||
| 1080 | return ret; | ||
| 1081 | |||
| 1082 | /* Set JAPAN setting for channel 14 */ | ||
| 1083 | if (channel->center_freq == 2484) { | ||
| 1084 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, | ||
| 1085 | AR5K_PHY_CCKTXCTL_JAPAN); | ||
| 1086 | } else { | ||
| 1087 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, | ||
| 1088 | AR5K_PHY_CCKTXCTL_WORLD); | ||
| 1089 | } | ||
| 1090 | |||
| 1091 | ah->ah_current_channel.center_freq = channel->center_freq; | ||
| 1092 | ah->ah_current_channel.hw_value = channel->hw_value; | ||
| 1093 | ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false; | ||
| 1094 | |||
| 1095 | return 0; | ||
| 1096 | } | ||
| 1097 | |||
| 1098 | /*****************\ | ||
| 1099 | PHY calibration | ||
| 1100 | \*****************/ | ||
| 1101 | |||
| 1102 | /** | ||
| 1103 | * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration | ||
| 1104 | * | ||
| 1105 | * @ah: struct ath5k_hw pointer we are operating on | ||
| 1106 | * @freq: the channel frequency, just used for error logging | ||
| 1107 | * | ||
| 1108 | * This function performs a noise floor calibration of the PHY and waits for | ||
| 1109 | * it to complete. Then the noise floor value is compared to some maximum | ||
| 1110 | * noise floor we consider valid. | ||
| 1111 | * | ||
| 1112 | * Note that this is different from what the madwifi HAL does: it reads the | ||
| 1113 | * noise floor and afterwards initiates the calibration. Since the noise floor | ||
| 1114 | * calibration can take some time to finish, depending on the current channel | ||
| 1115 | * use, that avoids the occasional timeout warnings we are seeing now. | ||
| 1116 | * | ||
| 1117 | * See the following link for an Atheros patent on noise floor calibration: | ||
| 1118 | * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \ | ||
| 1119 | * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7 | ||
| 1120 | * | ||
| 1121 | * XXX: Since during noise floor calibration antennas are detached according to | ||
| 1122 | * the patent, we should stop tx queues here. | ||
| 1123 | */ | ||
| 1124 | int | ||
| 1125 | ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq) | ||
| 1126 | { | ||
| 1127 | int ret; | ||
| 1128 | unsigned int i; | ||
| 1129 | s32 noise_floor; | ||
| 1130 | |||
| 1131 | /* | ||
| 1132 | * Enable noise floor calibration | ||
| 1133 | */ | ||
| 1134 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, | ||
| 1135 | AR5K_PHY_AGCCTL_NF); | ||
| 1136 | |||
| 1137 | ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, | ||
| 1138 | AR5K_PHY_AGCCTL_NF, 0, false); | ||
| 1139 | if (ret) { | ||
| 1140 | ATH5K_ERR(ah->ah_sc, | ||
| 1141 | "noise floor calibration timeout (%uMHz)\n", freq); | ||
| 1142 | return -EAGAIN; | ||
| 1143 | } | ||
| 1144 | |||
| 1145 | /* Wait until the noise floor is calibrated and read the value */ | ||
| 1146 | for (i = 20; i > 0; i--) { | ||
| 1147 | mdelay(1); | ||
| 1148 | noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF); | ||
| 1149 | noise_floor = AR5K_PHY_NF_RVAL(noise_floor); | ||
| 1150 | if (noise_floor & AR5K_PHY_NF_ACTIVE) { | ||
| 1151 | noise_floor = AR5K_PHY_NF_AVAL(noise_floor); | ||
| 1152 | |||
| 1153 | if (noise_floor <= AR5K_TUNE_NOISE_FLOOR) | ||
| 1154 | break; | ||
| 1155 | } | ||
| 1156 | } | ||
| 1157 | |||
| 1158 | ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE, | ||
| 1159 | "noise floor %d\n", noise_floor); | ||
| 1160 | |||
| 1161 | if (noise_floor > AR5K_TUNE_NOISE_FLOOR) { | ||
| 1162 | ATH5K_ERR(ah->ah_sc, | ||
| 1163 | "noise floor calibration failed (%uMHz)\n", freq); | ||
| 1164 | return -EAGAIN; | ||
| 1165 | } | ||
| 1166 | |||
| 1167 | ah->ah_noise_floor = noise_floor; | ||
| 1168 | |||
| 1169 | return 0; | ||
| 1170 | } | ||
| 1171 | |||
| 1172 | /* | ||
| 1173 | * Perform a PHY calibration on RF5110 | ||
| 1174 | * -Fix BPSK/QAM Constellation (I/Q correction) | ||
| 1175 | * -Calculate Noise Floor | ||
| 1176 | */ | ||
| 1177 | static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah, | ||
| 1178 | struct ieee80211_channel *channel) | ||
| 1179 | { | ||
| 1180 | u32 phy_sig, phy_agc, phy_sat, beacon; | ||
| 1181 | int ret; | ||
| 1182 | |||
| 1183 | /* | ||
| 1184 | * Disable beacons and RX/TX queues, wait | ||
| 1185 | */ | ||
| 1186 | AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210, | ||
| 1187 | AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210); | ||
| 1188 | beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210); | ||
| 1189 | ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210); | ||
| 1190 | |||
| 1191 | mdelay(2); | ||
| 1192 | |||
| 1193 | /* | ||
| 1194 | * Set the channel (with AGC turned off) | ||
| 1195 | */ | ||
| 1196 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); | ||
| 1197 | udelay(10); | ||
| 1198 | ret = ath5k_hw_channel(ah, channel); | ||
| 1199 | |||
| 1200 | /* | ||
| 1201 | * Activate PHY and wait | ||
| 1202 | */ | ||
| 1203 | ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); | ||
| 1204 | mdelay(1); | ||
| 1205 | |||
| 1206 | AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); | ||
| 1207 | |||
| 1208 | if (ret) | ||
| 1209 | return ret; | ||
| 1210 | |||
| 1211 | /* | ||
| 1212 | * Calibrate the radio chip | ||
| 1213 | */ | ||
| 1214 | |||
| 1215 | /* Remember normal state */ | ||
| 1216 | phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG); | ||
| 1217 | phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE); | ||
| 1218 | phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT); | ||
| 1219 | |||
| 1220 | /* Update radio registers */ | ||
| 1221 | ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) | | ||
| 1222 | AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG); | ||
| 1223 | |||
| 1224 | ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI | | ||
| 1225 | AR5K_PHY_AGCCOARSE_LO)) | | ||
| 1226 | AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) | | ||
| 1227 | AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE); | ||
| 1228 | |||
| 1229 | ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT | | ||
| 1230 | AR5K_PHY_ADCSAT_THR)) | | ||
| 1231 | AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) | | ||
| 1232 | AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT); | ||
| 1233 | |||
| 1234 | udelay(20); | ||
| 1235 | |||
| 1236 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); | ||
| 1237 | udelay(10); | ||
| 1238 | ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG); | ||
| 1239 | AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); | ||
| 1240 | |||
| 1241 | mdelay(1); | ||
| 1242 | |||
| 1243 | /* | ||
| 1244 | * Enable calibration and wait until completion | ||
| 1245 | */ | ||
| 1246 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL); | ||
| 1247 | |||
| 1248 | ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, | ||
| 1249 | AR5K_PHY_AGCCTL_CAL, 0, false); | ||
| 1250 | |||
| 1251 | /* Reset to normal state */ | ||
| 1252 | ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG); | ||
| 1253 | ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE); | ||
| 1254 | ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT); | ||
| 1255 | |||
| 1256 | if (ret) { | ||
| 1257 | ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n", | ||
| 1258 | channel->center_freq); | ||
| 1259 | return ret; | ||
| 1260 | } | ||
| 1261 | |||
| 1262 | ath5k_hw_noise_floor_calibration(ah, channel->center_freq); | ||
| 1263 | |||
| 1264 | /* | ||
| 1265 | * Re-enable RX/TX and beacons | ||
| 1266 | */ | ||
| 1267 | AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210, | ||
| 1268 | AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210); | ||
| 1269 | ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210); | ||
| 1270 | |||
| 1271 | return 0; | ||
| 1272 | } | ||
| 1273 | |||
| 1274 | /* | ||
| 1275 | * Perform a PHY calibration on RF5111/5112 and newer chips | ||
| 1276 | */ | ||
| 1277 | static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah, | ||
| 1278 | struct ieee80211_channel *channel) | ||
| 1279 | { | ||
| 1280 | u32 i_pwr, q_pwr; | ||
| 1281 | s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd; | ||
| 1282 | int i; | ||
| 1283 | ATH5K_TRACE(ah->ah_sc); | ||
| 1284 | |||
| 1285 | if (!ah->ah_calibration || | ||
| 1286 | ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) | ||
| 1287 | goto done; | ||
| 1288 | |||
| 1289 | /* Calibration has finished, get the results and re-run */ | ||
| 1290 | for (i = 0; i <= 10; i++) { | ||
| 1291 | iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR); | ||
| 1292 | i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I); | ||
| 1293 | q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q); | ||
| 1294 | } | ||
| 1295 | |||
| 1296 | i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7; | ||
| 1297 | q_coffd = q_pwr >> 7; | ||
| 1298 | |||
| 1299 | /* No correction */ | ||
| 1300 | if (i_coffd == 0 || q_coffd == 0) | ||
| 1301 | goto done; | ||
| 1302 | |||
| 1303 | i_coff = ((-iq_corr) / i_coffd) & 0x3f; | ||
| 1304 | |||
| 1305 | /* Boundary check */ | ||
| 1306 | if (i_coff > 31) | ||
| 1307 | i_coff = 31; | ||
| 1308 | if (i_coff < -32) | ||
| 1309 | i_coff = -32; | ||
| 1310 | |||
| 1311 | q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f; | ||
| 1312 | |||
| 1313 | /* Boundary check */ | ||
| 1314 | if (q_coff > 15) | ||
| 1315 | q_coff = 15; | ||
| 1316 | if (q_coff < -16) | ||
| 1317 | q_coff = -16; | ||
| 1318 | |||
| 1319 | /* Commit new I/Q value */ | ||
| 1320 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE | | ||
| 1321 | ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S)); | ||
| 1322 | |||
| 1323 | /* Re-enable calibration -if we don't we'll commit | ||
| 1324 | * the same values again and again */ | ||
| 1325 | AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, | ||
| 1326 | AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); | ||
| 1327 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN); | ||
| 1328 | |||
| 1329 | done: | ||
| 1330 | |||
| 1331 | /* TODO: Separate noise floor calibration from I/Q calibration | ||
| 1332 | * since noise floor calibration interrupts rx path while I/Q | ||
| 1333 | * calibration doesn't. We don't need to run noise floor calibration | ||
| 1334 | * as often as I/Q calibration.*/ | ||
| 1335 | ath5k_hw_noise_floor_calibration(ah, channel->center_freq); | ||
| 1336 | |||
| 1337 | /* Initiate a gain_F calibration */ | ||
| 1338 | ath5k_hw_request_rfgain_probe(ah); | ||
| 1339 | |||
| 1340 | return 0; | ||
| 1341 | } | ||
| 1342 | |||
| 1343 | /* | ||
| 1344 | * Perform a PHY calibration | ||
| 1345 | */ | ||
| 1346 | int ath5k_hw_phy_calibrate(struct ath5k_hw *ah, | ||
| 1347 | struct ieee80211_channel *channel) | ||
| 1348 | { | ||
| 1349 | int ret; | ||
| 1350 | |||
| 1351 | if (ah->ah_radio == AR5K_RF5110) | ||
| 1352 | ret = ath5k_hw_rf5110_calibrate(ah, channel); | ||
| 1353 | else | ||
| 1354 | ret = ath5k_hw_rf511x_calibrate(ah, channel); | ||
| 1355 | |||
| 1356 | return ret; | ||
| 1357 | } | ||
| 1358 | |||
| 1359 | int ath5k_hw_phy_disable(struct ath5k_hw *ah) | ||
| 1360 | { | ||
| 1361 | ATH5K_TRACE(ah->ah_sc); | ||
| 1362 | /*Just a try M.F.*/ | ||
| 1363 | ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); | ||
| 1364 | |||
| 1365 | return 0; | ||
| 1366 | } | ||
| 1367 | |||
| 1368 | /********************\ | ||
| 1369 | Misc PHY functions | ||
| 1370 | \********************/ | ||
| 1371 | |||
| 1372 | /* | ||
| 1373 | * Get the PHY Chip revision | ||
| 1374 | */ | ||
| 1375 | u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan) | ||
| 1376 | { | ||
| 1377 | unsigned int i; | ||
| 1378 | u32 srev; | ||
| 1379 | u16 ret; | ||
| 1380 | |||
| 1381 | ATH5K_TRACE(ah->ah_sc); | ||
| 1382 | |||
| 1383 | /* | ||
| 1384 | * Set the radio chip access register | ||
| 1385 | */ | ||
| 1386 | switch (chan) { | ||
| 1387 | case CHANNEL_2GHZ: | ||
| 1388 | ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0)); | ||
| 1389 | break; | ||
| 1390 | case CHANNEL_5GHZ: | ||
| 1391 | ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); | ||
| 1392 | break; | ||
| 1393 | default: | ||
| 1394 | return 0; | ||
| 1395 | } | ||
| 1396 | |||
| 1397 | mdelay(2); | ||
| 1398 | |||
| 1399 | /* ...wait until PHY is ready and read the selected radio revision */ | ||
| 1400 | ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34)); | ||
| 1401 | |||
| 1402 | for (i = 0; i < 8; i++) | ||
| 1403 | ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20)); | ||
| 1404 | |||
| 1405 | if (ah->ah_version == AR5K_AR5210) { | ||
| 1406 | srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf; | ||
| 1407 | ret = (u16)ath5k_hw_bitswap(srev, 4) + 1; | ||
| 1408 | } else { | ||
| 1409 | srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff; | ||
| 1410 | ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) | | ||
| 1411 | ((srev & 0x0f) << 4), 8); | ||
| 1412 | } | ||
| 1413 | |||
| 1414 | /* Reset to the 5GHz mode */ | ||
| 1415 | ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); | ||
| 1416 | |||
| 1417 | return ret; | ||
| 1418 | } | ||
| 1419 | |||
| 1420 | void /*TODO:Boundary check*/ | ||
| 1421 | ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant) | ||
| 1422 | { | ||
| 1423 | ATH5K_TRACE(ah->ah_sc); | ||
| 1424 | /*Just a try M.F.*/ | ||
| 1425 | if (ah->ah_version != AR5K_AR5210) | ||
| 1426 | ath5k_hw_reg_write(ah, ant, AR5K_DEFAULT_ANTENNA); | ||
| 1427 | } | ||
| 1428 | |||
| 1429 | unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah) | ||
| 1430 | { | ||
| 1431 | ATH5K_TRACE(ah->ah_sc); | ||
| 1432 | /*Just a try M.F.*/ | ||
| 1433 | if (ah->ah_version != AR5K_AR5210) | ||
| 1434 | return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA); | ||
| 1435 | |||
| 1436 | return false; /*XXX: What do we return for 5210 ?*/ | ||
| 1437 | } | ||
| 1438 | |||
| 1439 | |||
| 1440 | /****************\ | ||
| 1441 | * TX power setup * | ||
| 1442 | \****************/ | ||
| 1443 | |||
| 1444 | /* | ||
| 1445 | * Helper functions | ||
| 1446 | */ | ||
| 1447 | |||
| 1448 | /* | ||
| 1449 | * Do linear interpolation between two given (x, y) points | ||
| 1450 | */ | ||
| 1451 | static s16 | ||
| 1452 | ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right, | ||
| 1453 | s16 y_left, s16 y_right) | ||
| 1454 | { | ||
| 1455 | s16 ratio, result; | ||
| 1456 | |||
| 1457 | /* Avoid divide by zero and skip interpolation | ||
| 1458 | * if we have the same point */ | ||
| 1459 | if ((x_left == x_right) || (y_left == y_right)) | ||
| 1460 | return y_left; | ||
| 1461 | |||
| 1462 | /* | ||
| 1463 | * Since we use ints and not fps, we need to scale up in | ||
| 1464 | * order to get a sane ratio value (or else we 'll eg. get | ||
| 1465 | * always 1 instead of 1.25, 1.75 etc). We scale up by 100 | ||
| 1466 | * to have some accuracy both for 0.5 and 0.25 steps. | ||
| 1467 | */ | ||
| 1468 | ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left)); | ||
| 1469 | |||
| 1470 | /* Now scale down to be in range */ | ||
| 1471 | result = y_left + (ratio * (target - x_left) / 100); | ||
| 1472 | |||
| 1473 | return result; | ||
| 1474 | } | ||
| 1475 | |||
| 1476 | /* | ||
| 1477 | * Find vertical boundary (min pwr) for the linear PCDAC curve. | ||
| 1478 | * | ||
| 1479 | * Since we have the top of the curve and we draw the line below | ||
| 1480 | * until we reach 1 (1 pcdac step) we need to know which point | ||
| 1481 | * (x value) that is so that we don't go below y axis and have negative | ||
| 1482 | * pcdac values when creating the curve, or fill the table with zeroes. | ||
| 1483 | */ | ||
| 1484 | static s16 | ||
| 1485 | ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR, | ||
| 1486 | const s16 *pwrL, const s16 *pwrR) | ||
| 1487 | { | ||
| 1488 | s8 tmp; | ||
| 1489 | s16 min_pwrL, min_pwrR; | ||
| 1490 | s16 pwr_i = pwrL[0]; | ||
| 1491 | |||
| 1492 | do { | ||
| 1493 | pwr_i--; | ||
| 1494 | tmp = (s8) ath5k_get_interpolated_value(pwr_i, | ||
| 1495 | pwrL[0], pwrL[1], | ||
| 1496 | stepL[0], stepL[1]); | ||
| 1497 | |||
| 1498 | } while (tmp > 1); | ||
| 1499 | |||
| 1500 | min_pwrL = pwr_i; | ||
| 1501 | |||
| 1502 | pwr_i = pwrR[0]; | ||
| 1503 | do { | ||
| 1504 | pwr_i--; | ||
| 1505 | tmp = (s8) ath5k_get_interpolated_value(pwr_i, | ||
| 1506 | pwrR[0], pwrR[1], | ||
| 1507 | stepR[0], stepR[1]); | ||
| 1508 | |||
| 1509 | } while (tmp > 1); | ||
| 1510 | |||
| 1511 | min_pwrR = pwr_i; | ||
| 1512 | |||
| 1513 | /* Keep the right boundary so that it works for both curves */ | ||
| 1514 | return max(min_pwrL, min_pwrR); | ||
| 1515 | } | ||
| 1516 | |||
| 1517 | /* | ||
| 1518 | * Interpolate (pwr,vpd) points to create a Power to PDADC or a | ||
| 1519 | * Power to PCDAC curve. | ||
| 1520 | * | ||
| 1521 | * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC | ||
| 1522 | * steps (offsets) on y axis. Power can go up to 31.5dB and max | ||
| 1523 | * PCDAC/PDADC step for each curve is 64 but we can write more than | ||
| 1524 | * one curves on hw so we can go up to 128 (which is the max step we | ||
| 1525 | * can write on the final table). | ||
| 1526 | * | ||
| 1527 | * We write y values (PCDAC/PDADC steps) on hw. | ||
| 1528 | */ | ||
| 1529 | static void | ||
| 1530 | ath5k_create_power_curve(s16 pmin, s16 pmax, | ||
| 1531 | const s16 *pwr, const u8 *vpd, | ||
| 1532 | u8 num_points, | ||
| 1533 | u8 *vpd_table, u8 type) | ||
| 1534 | { | ||
| 1535 | u8 idx[2] = { 0, 1 }; | ||
| 1536 | s16 pwr_i = 2*pmin; | ||
| 1537 | int i; | ||
| 1538 | |||
| 1539 | if (num_points < 2) | ||
| 1540 | return; | ||
| 1541 | |||
| 1542 | /* We want the whole line, so adjust boundaries | ||
| 1543 | * to cover the entire power range. Note that | ||
| 1544 | * power values are already 0.25dB so no need | ||
| 1545 | * to multiply pwr_i by 2 */ | ||
| 1546 | if (type == AR5K_PWRTABLE_LINEAR_PCDAC) { | ||
| 1547 | pwr_i = pmin; | ||
| 1548 | pmin = 0; | ||
| 1549 | pmax = 63; | ||
| 1550 | } | ||
| 1551 | |||
| 1552 | /* Find surrounding turning points (TPs) | ||
| 1553 | * and interpolate between them */ | ||
| 1554 | for (i = 0; (i <= (u16) (pmax - pmin)) && | ||
| 1555 | (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { | ||
| 1556 | |||
| 1557 | /* We passed the right TP, move to the next set of TPs | ||
| 1558 | * if we pass the last TP, extrapolate above using the last | ||
| 1559 | * two TPs for ratio */ | ||
| 1560 | if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) { | ||
| 1561 | idx[0]++; | ||
| 1562 | idx[1]++; | ||
| 1563 | } | ||
| 1564 | |||
| 1565 | vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i, | ||
| 1566 | pwr[idx[0]], pwr[idx[1]], | ||
| 1567 | vpd[idx[0]], vpd[idx[1]]); | ||
| 1568 | |||
| 1569 | /* Increase by 0.5dB | ||
| 1570 | * (0.25 dB units) */ | ||
| 1571 | pwr_i += 2; | ||
| 1572 | } | ||
| 1573 | } | ||
| 1574 | |||
| 1575 | /* | ||
| 1576 | * Get the surrounding per-channel power calibration piers | ||
| 1577 | * for a given frequency so that we can interpolate between | ||
| 1578 | * them and come up with an apropriate dataset for our current | ||
| 1579 | * channel. | ||
| 1580 | */ | ||
| 1581 | static void | ||
| 1582 | ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah, | ||
| 1583 | struct ieee80211_channel *channel, | ||
| 1584 | struct ath5k_chan_pcal_info **pcinfo_l, | ||
| 1585 | struct ath5k_chan_pcal_info **pcinfo_r) | ||
| 1586 | { | ||
| 1587 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | ||
| 1588 | struct ath5k_chan_pcal_info *pcinfo; | ||
| 1589 | u8 idx_l, idx_r; | ||
| 1590 | u8 mode, max, i; | ||
| 1591 | u32 target = channel->center_freq; | ||
| 1592 | |||
| 1593 | idx_l = 0; | ||
| 1594 | idx_r = 0; | ||
| 1595 | |||
| 1596 | if (!(channel->hw_value & CHANNEL_OFDM)) { | ||
| 1597 | pcinfo = ee->ee_pwr_cal_b; | ||
| 1598 | mode = AR5K_EEPROM_MODE_11B; | ||
| 1599 | } else if (channel->hw_value & CHANNEL_2GHZ) { | ||
| 1600 | pcinfo = ee->ee_pwr_cal_g; | ||
| 1601 | mode = AR5K_EEPROM_MODE_11G; | ||
| 1602 | } else { | ||
| 1603 | pcinfo = ee->ee_pwr_cal_a; | ||
| 1604 | mode = AR5K_EEPROM_MODE_11A; | ||
| 1605 | } | ||
| 1606 | max = ee->ee_n_piers[mode] - 1; | ||
| 1607 | |||
| 1608 | /* Frequency is below our calibrated | ||
| 1609 | * range. Use the lowest power curve | ||
| 1610 | * we have */ | ||
| 1611 | if (target < pcinfo[0].freq) { | ||
| 1612 | idx_l = idx_r = 0; | ||
| 1613 | goto done; | ||
| 1614 | } | ||
| 1615 | |||
| 1616 | /* Frequency is above our calibrated | ||
| 1617 | * range. Use the highest power curve | ||
| 1618 | * we have */ | ||
| 1619 | if (target > pcinfo[max].freq) { | ||
| 1620 | idx_l = idx_r = max; | ||
| 1621 | goto done; | ||
| 1622 | } | ||
| 1623 | |||
| 1624 | /* Frequency is inside our calibrated | ||
| 1625 | * channel range. Pick the surrounding | ||
| 1626 | * calibration piers so that we can | ||
| 1627 | * interpolate */ | ||
| 1628 | for (i = 0; i <= max; i++) { | ||
| 1629 | |||
| 1630 | /* Frequency matches one of our calibration | ||
| 1631 | * piers, no need to interpolate, just use | ||
| 1632 | * that calibration pier */ | ||
| 1633 | if (pcinfo[i].freq == target) { | ||
| 1634 | idx_l = idx_r = i; | ||
| 1635 | goto done; | ||
| 1636 | } | ||
| 1637 | |||
| 1638 | /* We found a calibration pier that's above | ||
| 1639 | * frequency, use this pier and the previous | ||
| 1640 | * one to interpolate */ | ||
| 1641 | if (target < pcinfo[i].freq) { | ||
| 1642 | idx_r = i; | ||
| 1643 | idx_l = idx_r - 1; | ||
| 1644 | goto done; | ||
| 1645 | } | ||
| 1646 | } | ||
| 1647 | |||
| 1648 | done: | ||
| 1649 | *pcinfo_l = &pcinfo[idx_l]; | ||
| 1650 | *pcinfo_r = &pcinfo[idx_r]; | ||
| 1651 | |||
| 1652 | return; | ||
| 1653 | } | ||
| 1654 | |||
| 1655 | /* | ||
| 1656 | * Get the surrounding per-rate power calibration data | ||
| 1657 | * for a given frequency and interpolate between power | ||
| 1658 | * values to set max target power supported by hw for | ||
| 1659 | * each rate. | ||
| 1660 | */ | ||
| 1661 | static void | ||
| 1662 | ath5k_get_rate_pcal_data(struct ath5k_hw *ah, | ||
| 1663 | struct ieee80211_channel *channel, | ||
| 1664 | struct ath5k_rate_pcal_info *rates) | ||
| 1665 | { | ||
| 1666 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | ||
| 1667 | struct ath5k_rate_pcal_info *rpinfo; | ||
| 1668 | u8 idx_l, idx_r; | ||
| 1669 | u8 mode, max, i; | ||
| 1670 | u32 target = channel->center_freq; | ||
| 1671 | |||
| 1672 | idx_l = 0; | ||
| 1673 | idx_r = 0; | ||
| 1674 | |||
| 1675 | if (!(channel->hw_value & CHANNEL_OFDM)) { | ||
| 1676 | rpinfo = ee->ee_rate_tpwr_b; | ||
| 1677 | mode = AR5K_EEPROM_MODE_11B; | ||
| 1678 | } else if (channel->hw_value & CHANNEL_2GHZ) { | ||
| 1679 | rpinfo = ee->ee_rate_tpwr_g; | ||
| 1680 | mode = AR5K_EEPROM_MODE_11G; | ||
| 1681 | } else { | ||
| 1682 | rpinfo = ee->ee_rate_tpwr_a; | ||
| 1683 | mode = AR5K_EEPROM_MODE_11A; | ||
| 1684 | } | ||
| 1685 | max = ee->ee_rate_target_pwr_num[mode] - 1; | ||
| 1686 | |||
| 1687 | /* Get the surrounding calibration | ||
| 1688 | * piers - same as above */ | ||
| 1689 | if (target < rpinfo[0].freq) { | ||
| 1690 | idx_l = idx_r = 0; | ||
| 1691 | goto done; | ||
| 1692 | } | ||
| 1693 | |||
| 1694 | if (target > rpinfo[max].freq) { | ||
| 1695 | idx_l = idx_r = max; | ||
| 1696 | goto done; | ||
| 1697 | } | ||
| 1698 | |||
| 1699 | for (i = 0; i <= max; i++) { | ||
| 1700 | |||
| 1701 | if (rpinfo[i].freq == target) { | ||
| 1702 | idx_l = idx_r = i; | ||
| 1703 | goto done; | ||
| 1704 | } | ||
| 1705 | |||
| 1706 | if (target < rpinfo[i].freq) { | ||
| 1707 | idx_r = i; | ||
| 1708 | idx_l = idx_r - 1; | ||
| 1709 | goto done; | ||
| 1710 | } | ||
| 1711 | } | ||
| 1712 | |||
| 1713 | done: | ||
| 1714 | /* Now interpolate power value, based on the frequency */ | ||
| 1715 | rates->freq = target; | ||
| 1716 | |||
| 1717 | rates->target_power_6to24 = | ||
| 1718 | ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, | ||
| 1719 | rpinfo[idx_r].freq, | ||
| 1720 | rpinfo[idx_l].target_power_6to24, | ||
| 1721 | rpinfo[idx_r].target_power_6to24); | ||
| 1722 | |||
| 1723 | rates->target_power_36 = | ||
| 1724 | ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, | ||
| 1725 | rpinfo[idx_r].freq, | ||
| 1726 | rpinfo[idx_l].target_power_36, | ||
| 1727 | rpinfo[idx_r].target_power_36); | ||
| 1728 | |||
| 1729 | rates->target_power_48 = | ||
| 1730 | ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, | ||
| 1731 | rpinfo[idx_r].freq, | ||
| 1732 | rpinfo[idx_l].target_power_48, | ||
| 1733 | rpinfo[idx_r].target_power_48); | ||
| 1734 | |||
| 1735 | rates->target_power_54 = | ||
| 1736 | ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, | ||
| 1737 | rpinfo[idx_r].freq, | ||
| 1738 | rpinfo[idx_l].target_power_54, | ||
| 1739 | rpinfo[idx_r].target_power_54); | ||
| 1740 | } | ||
| 1741 | |||
| 1742 | /* | ||
| 1743 | * Get the max edge power for this channel if | ||
| 1744 | * we have such data from EEPROM's Conformance Test | ||
| 1745 | * Limits (CTL), and limit max power if needed. | ||
| 1746 | * | ||
| 1747 | * FIXME: Only works for world regulatory domains | ||
| 1748 | */ | ||
| 1749 | static void | ||
| 1750 | ath5k_get_max_ctl_power(struct ath5k_hw *ah, | ||
| 1751 | struct ieee80211_channel *channel) | ||
| 1752 | { | ||
| 1753 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | ||
| 1754 | struct ath5k_edge_power *rep = ee->ee_ctl_pwr; | ||
| 1755 | u8 *ctl_val = ee->ee_ctl; | ||
| 1756 | s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4; | ||
| 1757 | s16 edge_pwr = 0; | ||
| 1758 | u8 rep_idx; | ||
| 1759 | u8 i, ctl_mode; | ||
| 1760 | u8 ctl_idx = 0xFF; | ||
| 1761 | u32 target = channel->center_freq; | ||
| 1762 | |||
| 1763 | /* Find out a CTL for our mode that's not mapped | ||
| 1764 | * on a specific reg domain. | ||
| 1765 | * | ||
| 1766 | * TODO: Map our current reg domain to one of the 3 available | ||
| 1767 | * reg domain ids so that we can support more CTLs. */ | ||
| 1768 | switch (channel->hw_value & CHANNEL_MODES) { | ||
| 1769 | case CHANNEL_A: | ||
| 1770 | ctl_mode = AR5K_CTL_11A | AR5K_CTL_NO_REGDOMAIN; | ||
| 1771 | break; | ||
| 1772 | case CHANNEL_G: | ||
| 1773 | ctl_mode = AR5K_CTL_11G | AR5K_CTL_NO_REGDOMAIN; | ||
| 1774 | break; | ||
| 1775 | case CHANNEL_B: | ||
| 1776 | ctl_mode = AR5K_CTL_11B | AR5K_CTL_NO_REGDOMAIN; | ||
| 1777 | break; | ||
| 1778 | case CHANNEL_T: | ||
| 1779 | ctl_mode = AR5K_CTL_TURBO | AR5K_CTL_NO_REGDOMAIN; | ||
| 1780 | break; | ||
| 1781 | case CHANNEL_TG: | ||
| 1782 | ctl_mode = AR5K_CTL_TURBOG | AR5K_CTL_NO_REGDOMAIN; | ||
| 1783 | break; | ||
| 1784 | case CHANNEL_XR: | ||
| 1785 | /* Fall through */ | ||
| 1786 | default: | ||
| 1787 | return; | ||
| 1788 | } | ||
| 1789 | |||
| 1790 | for (i = 0; i < ee->ee_ctls; i++) { | ||
| 1791 | if (ctl_val[i] == ctl_mode) { | ||
| 1792 | ctl_idx = i; | ||
| 1793 | break; | ||
| 1794 | } | ||
| 1795 | } | ||
| 1796 | |||
| 1797 | /* If we have a CTL dataset available grab it and find the | ||
| 1798 | * edge power for our frequency */ | ||
| 1799 | if (ctl_idx == 0xFF) | ||
| 1800 | return; | ||
| 1801 | |||
| 1802 | /* Edge powers are sorted by frequency from lower | ||
| 1803 | * to higher. Each CTL corresponds to 8 edge power | ||
| 1804 | * measurements. */ | ||
| 1805 | rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES; | ||
| 1806 | |||
| 1807 | /* Don't do boundaries check because we | ||
| 1808 | * might have more that one bands defined | ||
| 1809 | * for this mode */ | ||
| 1810 | |||
| 1811 | /* Get the edge power that's closer to our | ||
| 1812 | * frequency */ | ||
| 1813 | for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) { | ||
| 1814 | rep_idx += i; | ||
| 1815 | if (target <= rep[rep_idx].freq) | ||
| 1816 | edge_pwr = (s16) rep[rep_idx].edge; | ||
| 1817 | } | ||
| 1818 | |||
| 1819 | if (edge_pwr) | ||
| 1820 | ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr); | ||
| 1821 | } | ||
| 1822 | |||
| 1823 | |||
| 1824 | /* | ||
| 1825 | * Power to PCDAC table functions | ||
| 1826 | */ | ||
| 1827 | |||
| 1828 | /* | ||
| 1829 | * Fill Power to PCDAC table on RF5111 | ||
| 1830 | * | ||
| 1831 | * No further processing is needed for RF5111, the only thing we have to | ||
| 1832 | * do is fill the values below and above calibration range since eeprom data | ||
| 1833 | * may not cover the entire PCDAC table. | ||
| 1834 | */ | ||
| 1835 | static void | ||
| 1836 | ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min, | ||
| 1837 | s16 *table_max) | ||
| 1838 | { | ||
| 1839 | u8 *pcdac_out = ah->ah_txpower.txp_pd_table; | ||
| 1840 | u8 *pcdac_tmp = ah->ah_txpower.tmpL[0]; | ||
| 1841 | u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i; | ||
| 1842 | s16 min_pwr, max_pwr; | ||
| 1843 | |||
| 1844 | /* Get table boundaries */ | ||
| 1845 | min_pwr = table_min[0]; | ||
| 1846 | pcdac_0 = pcdac_tmp[0]; | ||
| 1847 | |||
| 1848 | max_pwr = table_max[0]; | ||
| 1849 | pcdac_n = pcdac_tmp[table_max[0] - table_min[0]]; | ||
| 1850 | |||
| 1851 | /* Extrapolate below minimum using pcdac_0 */ | ||
| 1852 | pcdac_i = 0; | ||
| 1853 | for (i = 0; i < min_pwr; i++) | ||
| 1854 | pcdac_out[pcdac_i++] = pcdac_0; | ||
| 1855 | |||
| 1856 | /* Copy values from pcdac_tmp */ | ||
| 1857 | pwr_idx = min_pwr; | ||
| 1858 | for (i = 0 ; pwr_idx <= max_pwr && | ||
| 1859 | pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) { | ||
| 1860 | pcdac_out[pcdac_i++] = pcdac_tmp[i]; | ||
| 1861 | pwr_idx++; | ||
| 1862 | } | ||
| 1863 | |||
| 1864 | /* Extrapolate above maximum */ | ||
| 1865 | while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE) | ||
| 1866 | pcdac_out[pcdac_i++] = pcdac_n; | ||
| 1867 | |||
| 1868 | } | ||
| 1869 | |||
| 1870 | /* | ||
| 1871 | * Combine available XPD Curves and fill Linear Power to PCDAC table | ||
| 1872 | * on RF5112 | ||
| 1873 | * | ||
| 1874 | * RFX112 can have up to 2 curves (one for low txpower range and one for | ||
| 1875 | * higher txpower range). We need to put them both on pcdac_out and place | ||
| 1876 | * them in the correct location. In case we only have one curve available | ||
| 1877 | * just fit it on pcdac_out (it's supposed to cover the entire range of | ||
| 1878 | * available pwr levels since it's always the higher power curve). Extrapolate | ||
| 1879 | * below and above final table if needed. | ||
| 1880 | */ | ||
| 1881 | static void | ||
| 1882 | ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min, | ||
| 1883 | s16 *table_max, u8 pdcurves) | ||
| 1884 | { | ||
| 1885 | u8 *pcdac_out = ah->ah_txpower.txp_pd_table; | ||
| 1886 | u8 *pcdac_low_pwr; | ||
| 1887 | u8 *pcdac_high_pwr; | ||
| 1888 | u8 *pcdac_tmp; | ||
| 1889 | u8 pwr; | ||
| 1890 | s16 max_pwr_idx; | ||
| 1891 | s16 min_pwr_idx; | ||
| 1892 | s16 mid_pwr_idx = 0; | ||
| 1893 | /* Edge flag turs on the 7nth bit on the PCDAC | ||
| 1894 | * to delcare the higher power curve (force values | ||
| 1895 | * to be greater than 64). If we only have one curve | ||
| 1896 | * we don't need to set this, if we have 2 curves and | ||
| 1897 | * fill the table backwards this can also be used to | ||
| 1898 | * switch from higher power curve to lower power curve */ | ||
| 1899 | u8 edge_flag; | ||
| 1900 | int i; | ||
| 1901 | |||
| 1902 | /* When we have only one curve available | ||
| 1903 | * that's the higher power curve. If we have | ||
| 1904 | * two curves the first is the high power curve | ||
| 1905 | * and the next is the low power curve. */ | ||
| 1906 | if (pdcurves > 1) { | ||
| 1907 | pcdac_low_pwr = ah->ah_txpower.tmpL[1]; | ||
| 1908 | pcdac_high_pwr = ah->ah_txpower.tmpL[0]; | ||
| 1909 | mid_pwr_idx = table_max[1] - table_min[1] - 1; | ||
| 1910 | max_pwr_idx = (table_max[0] - table_min[0]) / 2; | ||
| 1911 | |||
| 1912 | /* If table size goes beyond 31.5dB, keep the | ||
| 1913 | * upper 31.5dB range when setting tx power. | ||
| 1914 | * Note: 126 = 31.5 dB in quarter dB steps */ | ||
| 1915 | if (table_max[0] - table_min[1] > 126) | ||
| 1916 | min_pwr_idx = table_max[0] - 126; | ||
| 1917 | else | ||
| 1918 | min_pwr_idx = table_min[1]; | ||
| 1919 | |||
| 1920 | /* Since we fill table backwards | ||
| 1921 | * start from high power curve */ | ||
| 1922 | pcdac_tmp = pcdac_high_pwr; | ||
| 1923 | |||
| 1924 | edge_flag = 0x40; | ||
| 1925 | #if 0 | ||
| 1926 | /* If both min and max power limits are in lower | ||
| 1927 | * power curve's range, only use the low power curve. | ||
| 1928 | * TODO: min/max levels are related to target | ||
| 1929 | * power values requested from driver/user | ||
| 1930 | * XXX: Is this really needed ? */ | ||
| 1931 | if (min_pwr < table_max[1] && | ||
| 1932 | max_pwr < table_max[1]) { | ||
| 1933 | edge_flag = 0; | ||
| 1934 | pcdac_tmp = pcdac_low_pwr; | ||
| 1935 | max_pwr_idx = (table_max[1] - table_min[1])/2; | ||
| 1936 | } | ||
| 1937 | #endif | ||
| 1938 | } else { | ||
| 1939 | pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */ | ||
| 1940 | pcdac_high_pwr = ah->ah_txpower.tmpL[0]; | ||
| 1941 | min_pwr_idx = table_min[0]; | ||
| 1942 | max_pwr_idx = (table_max[0] - table_min[0]) / 2; | ||
| 1943 | pcdac_tmp = pcdac_high_pwr; | ||
| 1944 | edge_flag = 0; | ||
| 1945 | } | ||
| 1946 | |||
| 1947 | /* This is used when setting tx power*/ | ||
| 1948 | ah->ah_txpower.txp_min_idx = min_pwr_idx/2; | ||
| 1949 | |||
| 1950 | /* Fill Power to PCDAC table backwards */ | ||
| 1951 | pwr = max_pwr_idx; | ||
| 1952 | for (i = 63; i >= 0; i--) { | ||
| 1953 | /* Entering lower power range, reset | ||
| 1954 | * edge flag and set pcdac_tmp to lower | ||
| 1955 | * power curve.*/ | ||
| 1956 | if (edge_flag == 0x40 && | ||
| 1957 | (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) { | ||
| 1958 | edge_flag = 0x00; | ||
| 1959 | pcdac_tmp = pcdac_low_pwr; | ||
| 1960 | pwr = mid_pwr_idx/2; | ||
| 1961 | } | ||
| 1962 | |||
| 1963 | /* Don't go below 1, extrapolate below if we have | ||
| 1964 | * already swithced to the lower power curve -or | ||
| 1965 | * we only have one curve and edge_flag is zero | ||
| 1966 | * anyway */ | ||
| 1967 | if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) { | ||
| 1968 | while (i >= 0) { | ||
| 1969 | pcdac_out[i] = pcdac_out[i + 1]; | ||
| 1970 | i--; | ||
| 1971 | } | ||
| 1972 | break; | ||
| 1973 | } | ||
| 1974 | |||
| 1975 | pcdac_out[i] = pcdac_tmp[pwr] | edge_flag; | ||
| 1976 | |||
| 1977 | /* Extrapolate above if pcdac is greater than | ||
| 1978 | * 126 -this can happen because we OR pcdac_out | ||
| 1979 | * value with edge_flag on high power curve */ | ||
| 1980 | if (pcdac_out[i] > 126) | ||
| 1981 | pcdac_out[i] = 126; | ||
| 1982 | |||
| 1983 | /* Decrease by a 0.5dB step */ | ||
| 1984 | pwr--; | ||
| 1985 | } | ||
| 1986 | } | ||
| 1987 | |||
| 1988 | /* Write PCDAC values on hw */ | ||
| 1989 | static void | ||
| 1990 | ath5k_setup_pcdac_table(struct ath5k_hw *ah) | ||
| 1991 | { | ||
| 1992 | u8 *pcdac_out = ah->ah_txpower.txp_pd_table; | ||
| 1993 | int i; | ||
| 1994 | |||
| 1995 | /* | ||
| 1996 | * Write TX power values | ||
| 1997 | */ | ||
| 1998 | for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { | ||
| 1999 | ath5k_hw_reg_write(ah, | ||
| 2000 | (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) | | ||
| 2001 | (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16), | ||
| 2002 | AR5K_PHY_PCDAC_TXPOWER(i)); | ||
| 2003 | } | ||
| 2004 | } | ||
| 2005 | |||
| 2006 | |||
| 2007 | /* | ||
| 2008 | * Power to PDADC table functions | ||
| 2009 | */ | ||
| 2010 | |||
| 2011 | /* | ||
| 2012 | * Set the gain boundaries and create final Power to PDADC table | ||
| 2013 | * | ||
| 2014 | * We can have up to 4 pd curves, we need to do a simmilar process | ||
| 2015 | * as we do for RF5112. This time we don't have an edge_flag but we | ||
| 2016 | * set the gain boundaries on a separate register. | ||
| 2017 | */ | ||
| 2018 | static void | ||
| 2019 | ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah, | ||
| 2020 | s16 *pwr_min, s16 *pwr_max, u8 pdcurves) | ||
| 2021 | { | ||
| 2022 | u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS]; | ||
| 2023 | u8 *pdadc_out = ah->ah_txpower.txp_pd_table; | ||
| 2024 | u8 *pdadc_tmp; | ||
| 2025 | s16 pdadc_0; | ||
| 2026 | u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size; | ||
| 2027 | u8 pd_gain_overlap; | ||
| 2028 | |||
| 2029 | /* Note: Register value is initialized on initvals | ||
| 2030 | * there is no feedback from hw. | ||
| 2031 | * XXX: What about pd_gain_overlap from EEPROM ? */ | ||
| 2032 | pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) & | ||
| 2033 | AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP; | ||
| 2034 | |||
| 2035 | /* Create final PDADC table */ | ||
| 2036 | for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) { | ||
| 2037 | pdadc_tmp = ah->ah_txpower.tmpL[pdg]; | ||
| 2038 | |||
| 2039 | if (pdg == pdcurves - 1) | ||
| 2040 | /* 2 dB boundary stretch for last | ||
| 2041 | * (higher power) curve */ | ||
| 2042 | gain_boundaries[pdg] = pwr_max[pdg] + 4; | ||
| 2043 | else | ||
| 2044 | /* Set gain boundary in the middle | ||
| 2045 | * between this curve and the next one */ | ||
| 2046 | gain_boundaries[pdg] = | ||
| 2047 | (pwr_max[pdg] + pwr_min[pdg + 1]) / 2; | ||
| 2048 | |||
| 2049 | /* Sanity check in case our 2 db stretch got out of | ||
| 2050 | * range. */ | ||
| 2051 | if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER) | ||
| 2052 | gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER; | ||
| 2053 | |||
| 2054 | /* For the first curve (lower power) | ||
| 2055 | * start from 0 dB */ | ||
| 2056 | if (pdg == 0) | ||
| 2057 | pdadc_0 = 0; | ||
| 2058 | else | ||
| 2059 | /* For the other curves use the gain overlap */ | ||
| 2060 | pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) - | ||
| 2061 | pd_gain_overlap; | ||
| 2062 | |||
| 2063 | /* Force each power step to be at least 0.5 dB */ | ||
| 2064 | if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1) | ||
| 2065 | pwr_step = pdadc_tmp[1] - pdadc_tmp[0]; | ||
| 2066 | else | ||
| 2067 | pwr_step = 1; | ||
| 2068 | |||
| 2069 | /* If pdadc_0 is negative, we need to extrapolate | ||
| 2070 | * below this pdgain by a number of pwr_steps */ | ||
| 2071 | while ((pdadc_0 < 0) && (pdadc_i < 128)) { | ||
| 2072 | s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step; | ||
| 2073 | pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp; | ||
| 2074 | pdadc_0++; | ||
| 2075 | } | ||
| 2076 | |||
| 2077 | /* Set last pwr level, using gain boundaries */ | ||
| 2078 | pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg]; | ||
| 2079 | /* Limit it to be inside pwr range */ | ||
| 2080 | table_size = pwr_max[pdg] - pwr_min[pdg]; | ||
| 2081 | max_idx = (pdadc_n < table_size) ? pdadc_n : table_size; | ||
| 2082 | |||
| 2083 | /* Fill pdadc_out table */ | ||
| 2084 | while (pdadc_0 < max_idx) | ||
| 2085 | pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++]; | ||
| 2086 | |||
| 2087 | /* Need to extrapolate above this pdgain? */ | ||
| 2088 | if (pdadc_n <= max_idx) | ||
| 2089 | continue; | ||
| 2090 | |||
| 2091 | /* Force each power step to be at least 0.5 dB */ | ||
| 2092 | if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1) | ||
| 2093 | pwr_step = pdadc_tmp[table_size - 1] - | ||
| 2094 | pdadc_tmp[table_size - 2]; | ||
| 2095 | else | ||
| 2096 | pwr_step = 1; | ||
| 2097 | |||
| 2098 | /* Extrapolate above */ | ||
| 2099 | while ((pdadc_0 < (s16) pdadc_n) && | ||
| 2100 | (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) { | ||
| 2101 | s16 tmp = pdadc_tmp[table_size - 1] + | ||
| 2102 | (pdadc_0 - max_idx) * pwr_step; | ||
| 2103 | pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp; | ||
| 2104 | pdadc_0++; | ||
| 2105 | } | ||
| 2106 | } | ||
| 2107 | |||
| 2108 | while (pdg < AR5K_EEPROM_N_PD_GAINS) { | ||
| 2109 | gain_boundaries[pdg] = gain_boundaries[pdg - 1]; | ||
| 2110 | pdg++; | ||
| 2111 | } | ||
| 2112 | |||
| 2113 | while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) { | ||
| 2114 | pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1]; | ||
| 2115 | pdadc_i++; | ||
| 2116 | } | ||
| 2117 | |||
| 2118 | /* Set gain boundaries */ | ||
| 2119 | ath5k_hw_reg_write(ah, | ||
| 2120 | AR5K_REG_SM(pd_gain_overlap, | ||
| 2121 | AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) | | ||
| 2122 | AR5K_REG_SM(gain_boundaries[0], | ||
| 2123 | AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) | | ||
| 2124 | AR5K_REG_SM(gain_boundaries[1], | ||
| 2125 | AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) | | ||
| 2126 | AR5K_REG_SM(gain_boundaries[2], | ||
| 2127 | AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) | | ||
| 2128 | AR5K_REG_SM(gain_boundaries[3], | ||
| 2129 | AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4), | ||
| 2130 | AR5K_PHY_TPC_RG5); | ||
| 2131 | |||
| 2132 | /* Used for setting rate power table */ | ||
| 2133 | ah->ah_txpower.txp_min_idx = pwr_min[0]; | ||
| 2134 | |||
| 2135 | } | ||
| 2136 | |||
| 2137 | /* Write PDADC values on hw */ | ||
| 2138 | static void | ||
| 2139 | ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah, | ||
| 2140 | u8 pdcurves, u8 *pdg_to_idx) | ||
| 2141 | { | ||
| 2142 | u8 *pdadc_out = ah->ah_txpower.txp_pd_table; | ||
| 2143 | u32 reg; | ||
| 2144 | u8 i; | ||
| 2145 | |||
| 2146 | /* Select the right pdgain curves */ | ||
| 2147 | |||
| 2148 | /* Clear current settings */ | ||
| 2149 | reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1); | ||
| 2150 | reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 | | ||
| 2151 | AR5K_PHY_TPC_RG1_PDGAIN_2 | | ||
| 2152 | AR5K_PHY_TPC_RG1_PDGAIN_3 | | ||
| 2153 | AR5K_PHY_TPC_RG1_NUM_PD_GAIN); | ||
| 2154 | |||
| 2155 | /* | ||
| 2156 | * Use pd_gains curve from eeprom | ||
| 2157 | * | ||
| 2158 | * This overrides the default setting from initvals | ||
| 2159 | * in case some vendors (e.g. Zcomax) don't use the default | ||
| 2160 | * curves. If we don't honor their settings we 'll get a | ||
| 2161 | * 5dB (1 * gain overlap ?) drop. | ||
| 2162 | */ | ||
| 2163 | reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN); | ||
| 2164 | |||
| 2165 | switch (pdcurves) { | ||
| 2166 | case 3: | ||
| 2167 | reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3); | ||
| 2168 | /* Fall through */ | ||
| 2169 | case 2: | ||
| 2170 | reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2); | ||
| 2171 | /* Fall through */ | ||
| 2172 | case 1: | ||
| 2173 | reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1); | ||
| 2174 | break; | ||
| 2175 | } | ||
| 2176 | ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1); | ||
| 2177 | |||
| 2178 | /* | ||
| 2179 | * Write TX power values | ||
| 2180 | */ | ||
| 2181 | for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { | ||
| 2182 | ath5k_hw_reg_write(ah, | ||
| 2183 | ((pdadc_out[4*i + 0] & 0xff) << 0) | | ||
| 2184 | ((pdadc_out[4*i + 1] & 0xff) << 8) | | ||
| 2185 | ((pdadc_out[4*i + 2] & 0xff) << 16) | | ||
| 2186 | ((pdadc_out[4*i + 3] & 0xff) << 24), | ||
| 2187 | AR5K_PHY_PDADC_TXPOWER(i)); | ||
| 2188 | } | ||
| 2189 | } | ||
| 2190 | |||
| 2191 | |||
| 2192 | /* | ||
| 2193 | * Common code for PCDAC/PDADC tables | ||
| 2194 | */ | ||
| 2195 | |||
| 2196 | /* | ||
| 2197 | * This is the main function that uses all of the above | ||
| 2198 | * to set PCDAC/PDADC table on hw for the current channel. | ||
| 2199 | * This table is used for tx power calibration on the basband, | ||
| 2200 | * without it we get weird tx power levels and in some cases | ||
| 2201 | * distorted spectral mask | ||
| 2202 | */ | ||
| 2203 | static int | ||
| 2204 | ath5k_setup_channel_powertable(struct ath5k_hw *ah, | ||
| 2205 | struct ieee80211_channel *channel, | ||
| 2206 | u8 ee_mode, u8 type) | ||
| 2207 | { | ||
| 2208 | struct ath5k_pdgain_info *pdg_L, *pdg_R; | ||
| 2209 | struct ath5k_chan_pcal_info *pcinfo_L; | ||
| 2210 | struct ath5k_chan_pcal_info *pcinfo_R; | ||
| 2211 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | ||
| 2212 | u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; | ||
| 2213 | s16 table_min[AR5K_EEPROM_N_PD_GAINS]; | ||
| 2214 | s16 table_max[AR5K_EEPROM_N_PD_GAINS]; | ||
| 2215 | u8 *tmpL; | ||
| 2216 | u8 *tmpR; | ||
| 2217 | u32 target = channel->center_freq; | ||
| 2218 | int pdg, i; | ||
| 2219 | |||
| 2220 | /* Get surounding freq piers for this channel */ | ||
| 2221 | ath5k_get_chan_pcal_surrounding_piers(ah, channel, | ||
| 2222 | &pcinfo_L, | ||
| 2223 | &pcinfo_R); | ||
| 2224 | |||
| 2225 | /* Loop over pd gain curves on | ||
| 2226 | * surounding freq piers by index */ | ||
| 2227 | for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) { | ||
| 2228 | |||
| 2229 | /* Fill curves in reverse order | ||
| 2230 | * from lower power (max gain) | ||
| 2231 | * to higher power. Use curve -> idx | ||
| 2232 | * backmaping we did on eeprom init */ | ||
| 2233 | u8 idx = pdg_curve_to_idx[pdg]; | ||
| 2234 | |||
| 2235 | /* Grab the needed curves by index */ | ||
| 2236 | pdg_L = &pcinfo_L->pd_curves[idx]; | ||
| 2237 | pdg_R = &pcinfo_R->pd_curves[idx]; | ||
| 2238 | |||
| 2239 | /* Initialize the temp tables */ | ||
| 2240 | tmpL = ah->ah_txpower.tmpL[pdg]; | ||
| 2241 | tmpR = ah->ah_txpower.tmpR[pdg]; | ||
| 2242 | |||
| 2243 | /* Set curve's x boundaries and create | ||
| 2244 | * curves so that they cover the same | ||
| 2245 | * range (if we don't do that one table | ||
| 2246 | * will have values on some range and the | ||
| 2247 | * other one won't have any so interpolation | ||
| 2248 | * will fail) */ | ||
| 2249 | table_min[pdg] = min(pdg_L->pd_pwr[0], | ||
| 2250 | pdg_R->pd_pwr[0]) / 2; | ||
| 2251 | |||
| 2252 | table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1], | ||
| 2253 | pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2; | ||
| 2254 | |||
| 2255 | /* Now create the curves on surrounding channels | ||
| 2256 | * and interpolate if needed to get the final | ||
| 2257 | * curve for this gain on this channel */ | ||
| 2258 | switch (type) { | ||
| 2259 | case AR5K_PWRTABLE_LINEAR_PCDAC: | ||
| 2260 | /* Override min/max so that we don't loose | ||
| 2261 | * accuracy (don't divide by 2) */ | ||
| 2262 | table_min[pdg] = min(pdg_L->pd_pwr[0], | ||
| 2263 | pdg_R->pd_pwr[0]); | ||
| 2264 | |||
| 2265 | table_max[pdg] = | ||
| 2266 | max(pdg_L->pd_pwr[pdg_L->pd_points - 1], | ||
| 2267 | pdg_R->pd_pwr[pdg_R->pd_points - 1]); | ||
| 2268 | |||
| 2269 | /* Override minimum so that we don't get | ||
| 2270 | * out of bounds while extrapolating | ||
| 2271 | * below. Don't do this when we have 2 | ||
| 2272 | * curves and we are on the high power curve | ||
| 2273 | * because table_min is ok in this case */ | ||
| 2274 | if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) { | ||
| 2275 | |||
| 2276 | table_min[pdg] = | ||
| 2277 | ath5k_get_linear_pcdac_min(pdg_L->pd_step, | ||
| 2278 | pdg_R->pd_step, | ||
| 2279 | pdg_L->pd_pwr, | ||
| 2280 | pdg_R->pd_pwr); | ||
| 2281 | |||
| 2282 | /* Don't go too low because we will | ||
| 2283 | * miss the upper part of the curve. | ||
| 2284 | * Note: 126 = 31.5dB (max power supported) | ||
| 2285 | * in 0.25dB units */ | ||
| 2286 | if (table_max[pdg] - table_min[pdg] > 126) | ||
| 2287 | table_min[pdg] = table_max[pdg] - 126; | ||
| 2288 | } | ||
| 2289 | |||
| 2290 | /* Fall through */ | ||
| 2291 | case AR5K_PWRTABLE_PWR_TO_PCDAC: | ||
| 2292 | case AR5K_PWRTABLE_PWR_TO_PDADC: | ||
| 2293 | |||
| 2294 | ath5k_create_power_curve(table_min[pdg], | ||
| 2295 | table_max[pdg], | ||
| 2296 | pdg_L->pd_pwr, | ||
| 2297 | pdg_L->pd_step, | ||
| 2298 | pdg_L->pd_points, tmpL, type); | ||
| 2299 | |||
| 2300 | /* We are in a calibration | ||
| 2301 | * pier, no need to interpolate | ||
| 2302 | * between freq piers */ | ||
| 2303 | if (pcinfo_L == pcinfo_R) | ||
| 2304 | continue; | ||
| 2305 | |||
| 2306 | ath5k_create_power_curve(table_min[pdg], | ||
| 2307 | table_max[pdg], | ||
| 2308 | pdg_R->pd_pwr, | ||
| 2309 | pdg_R->pd_step, | ||
| 2310 | pdg_R->pd_points, tmpR, type); | ||
| 2311 | break; | ||
| 2312 | default: | ||
| 2313 | return -EINVAL; | ||
| 2314 | } | ||
| 2315 | |||
| 2316 | /* Interpolate between curves | ||
| 2317 | * of surounding freq piers to | ||
| 2318 | * get the final curve for this | ||
| 2319 | * pd gain. Re-use tmpL for interpolation | ||
| 2320 | * output */ | ||
| 2321 | for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) && | ||
| 2322 | (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { | ||
| 2323 | tmpL[i] = (u8) ath5k_get_interpolated_value(target, | ||
| 2324 | (s16) pcinfo_L->freq, | ||
| 2325 | (s16) pcinfo_R->freq, | ||
| 2326 | (s16) tmpL[i], | ||
| 2327 | (s16) tmpR[i]); | ||
| 2328 | } | ||
| 2329 | } | ||
| 2330 | |||
| 2331 | /* Now we have a set of curves for this | ||
| 2332 | * channel on tmpL (x range is table_max - table_min | ||
| 2333 | * and y values are tmpL[pdg][]) sorted in the same | ||
| 2334 | * order as EEPROM (because we've used the backmaping). | ||
| 2335 | * So for RF5112 it's from higher power to lower power | ||
| 2336 | * and for RF2413 it's from lower power to higher power. | ||
| 2337 | * For RF5111 we only have one curve. */ | ||
| 2338 | |||
| 2339 | /* Fill min and max power levels for this | ||
| 2340 | * channel by interpolating the values on | ||
| 2341 | * surounding channels to complete the dataset */ | ||
| 2342 | ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target, | ||
| 2343 | (s16) pcinfo_L->freq, | ||
| 2344 | (s16) pcinfo_R->freq, | ||
| 2345 | pcinfo_L->min_pwr, pcinfo_R->min_pwr); | ||
| 2346 | |||
| 2347 | ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target, | ||
| 2348 | (s16) pcinfo_L->freq, | ||
| 2349 | (s16) pcinfo_R->freq, | ||
| 2350 | pcinfo_L->max_pwr, pcinfo_R->max_pwr); | ||
| 2351 | |||
| 2352 | /* We are ready to go, fill PCDAC/PDADC | ||
| 2353 | * table and write settings on hardware */ | ||
| 2354 | switch (type) { | ||
| 2355 | case AR5K_PWRTABLE_LINEAR_PCDAC: | ||
| 2356 | /* For RF5112 we can have one or two curves | ||
| 2357 | * and each curve covers a certain power lvl | ||
| 2358 | * range so we need to do some more processing */ | ||
| 2359 | ath5k_combine_linear_pcdac_curves(ah, table_min, table_max, | ||
| 2360 | ee->ee_pd_gains[ee_mode]); | ||
| 2361 | |||
| 2362 | /* Set txp.offset so that we can | ||
| 2363 | * match max power value with max | ||
| 2364 | * table index */ | ||
| 2365 | ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2); | ||
| 2366 | |||
| 2367 | /* Write settings on hw */ | ||
| 2368 | ath5k_setup_pcdac_table(ah); | ||
| 2369 | break; | ||
| 2370 | case AR5K_PWRTABLE_PWR_TO_PCDAC: | ||
| 2371 | /* We are done for RF5111 since it has only | ||
| 2372 | * one curve, just fit the curve on the table */ | ||
| 2373 | ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max); | ||
| 2374 | |||
| 2375 | /* No rate powertable adjustment for RF5111 */ | ||
| 2376 | ah->ah_txpower.txp_min_idx = 0; | ||
| 2377 | ah->ah_txpower.txp_offset = 0; | ||
| 2378 | |||
| 2379 | /* Write settings on hw */ | ||
| 2380 | ath5k_setup_pcdac_table(ah); | ||
| 2381 | break; | ||
| 2382 | case AR5K_PWRTABLE_PWR_TO_PDADC: | ||
| 2383 | /* Set PDADC boundaries and fill | ||
| 2384 | * final PDADC table */ | ||
| 2385 | ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max, | ||
| 2386 | ee->ee_pd_gains[ee_mode]); | ||
| 2387 | |||
| 2388 | /* Write settings on hw */ | ||
| 2389 | ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx); | ||
| 2390 | |||
| 2391 | /* Set txp.offset, note that table_min | ||
| 2392 | * can be negative */ | ||
| 2393 | ah->ah_txpower.txp_offset = table_min[0]; | ||
| 2394 | break; | ||
| 2395 | default: | ||
| 2396 | return -EINVAL; | ||
| 2397 | } | ||
| 2398 | |||
| 2399 | return 0; | ||
| 2400 | } | ||
| 2401 | |||
| 2402 | |||
| 2403 | /* | ||
| 2404 | * Per-rate tx power setting | ||
| 2405 | * | ||
| 2406 | * This is the code that sets the desired tx power (below | ||
| 2407 | * maximum) on hw for each rate (we also have TPC that sets | ||
| 2408 | * power per packet). We do that by providing an index on the | ||
| 2409 | * PCDAC/PDADC table we set up. | ||
| 2410 | */ | ||
| 2411 | |||
| 2412 | /* | ||
| 2413 | * Set rate power table | ||
| 2414 | * | ||
| 2415 | * For now we only limit txpower based on maximum tx power | ||
| 2416 | * supported by hw (what's inside rate_info). We need to limit | ||
| 2417 | * this even more, based on regulatory domain etc. | ||
| 2418 | * | ||
| 2419 | * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps) | ||
| 2420 | * and is indexed as follows: | ||
| 2421 | * rates[0] - rates[7] -> OFDM rates | ||
| 2422 | * rates[8] - rates[14] -> CCK rates | ||
| 2423 | * rates[15] -> XR rates (they all have the same power) | ||
| 2424 | */ | ||
| 2425 | static void | ||
| 2426 | ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, | ||
| 2427 | struct ath5k_rate_pcal_info *rate_info, | ||
| 2428 | u8 ee_mode) | ||
| 2429 | { | ||
| 2430 | unsigned int i; | ||
| 2431 | u16 *rates; | ||
| 2432 | |||
| 2433 | /* max_pwr is power level we got from driver/user in 0.5dB | ||
| 2434 | * units, switch to 0.25dB units so we can compare */ | ||
| 2435 | max_pwr *= 2; | ||
| 2436 | max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2; | ||
| 2437 | |||
| 2438 | /* apply rate limits */ | ||
| 2439 | rates = ah->ah_txpower.txp_rates_power_table; | ||
| 2440 | |||
| 2441 | /* OFDM rates 6 to 24Mb/s */ | ||
| 2442 | for (i = 0; i < 5; i++) | ||
| 2443 | rates[i] = min(max_pwr, rate_info->target_power_6to24); | ||
| 2444 | |||
| 2445 | /* Rest OFDM rates */ | ||
| 2446 | rates[5] = min(rates[0], rate_info->target_power_36); | ||
| 2447 | rates[6] = min(rates[0], rate_info->target_power_48); | ||
| 2448 | rates[7] = min(rates[0], rate_info->target_power_54); | ||
| 2449 | |||
| 2450 | /* CCK rates */ | ||
| 2451 | /* 1L */ | ||
| 2452 | rates[8] = min(rates[0], rate_info->target_power_6to24); | ||
| 2453 | /* 2L */ | ||
| 2454 | rates[9] = min(rates[0], rate_info->target_power_36); | ||
| 2455 | /* 2S */ | ||
| 2456 | rates[10] = min(rates[0], rate_info->target_power_36); | ||
| 2457 | /* 5L */ | ||
| 2458 | rates[11] = min(rates[0], rate_info->target_power_48); | ||
| 2459 | /* 5S */ | ||
| 2460 | rates[12] = min(rates[0], rate_info->target_power_48); | ||
| 2461 | /* 11L */ | ||
| 2462 | rates[13] = min(rates[0], rate_info->target_power_54); | ||
| 2463 | /* 11S */ | ||
| 2464 | rates[14] = min(rates[0], rate_info->target_power_54); | ||
| 2465 | |||
| 2466 | /* XR rates */ | ||
| 2467 | rates[15] = min(rates[0], rate_info->target_power_6to24); | ||
| 2468 | |||
| 2469 | /* CCK rates have different peak to average ratio | ||
| 2470 | * so we have to tweak their power so that gainf | ||
| 2471 | * correction works ok. For this we use OFDM to | ||
| 2472 | * CCK delta from eeprom */ | ||
| 2473 | if ((ee_mode == AR5K_EEPROM_MODE_11G) && | ||
| 2474 | (ah->ah_phy_revision < AR5K_SREV_PHY_5212A)) | ||
| 2475 | for (i = 8; i <= 15; i++) | ||
| 2476 | rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta; | ||
| 2477 | |||
| 2478 | ah->ah_txpower.txp_min_pwr = rates[7]; | ||
| 2479 | ah->ah_txpower.txp_max_pwr = rates[0]; | ||
| 2480 | ah->ah_txpower.txp_ofdm = rates[7]; | ||
| 2481 | } | ||
| 2482 | |||
| 2483 | |||
| 2484 | /* | ||
| 2485 | * Set transmition power | ||
| 2486 | */ | ||
| 2487 | int | ||
| 2488 | ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, | ||
| 2489 | u8 ee_mode, u8 txpower) | ||
| 2490 | { | ||
| 2491 | struct ath5k_rate_pcal_info rate_info; | ||
| 2492 | u8 type; | ||
| 2493 | int ret; | ||
| 2494 | |||
| 2495 | ATH5K_TRACE(ah->ah_sc); | ||
| 2496 | if (txpower > AR5K_TUNE_MAX_TXPOWER) { | ||
| 2497 | ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower); | ||
| 2498 | return -EINVAL; | ||
| 2499 | } | ||
| 2500 | if (txpower == 0) | ||
| 2501 | txpower = AR5K_TUNE_DEFAULT_TXPOWER; | ||
| 2502 | |||
| 2503 | /* Reset TX power values */ | ||
| 2504 | memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower)); | ||
| 2505 | ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER; | ||
| 2506 | ah->ah_txpower.txp_min_pwr = 0; | ||
| 2507 | ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER; | ||
| 2508 | |||
| 2509 | /* Initialize TX power table */ | ||
| 2510 | switch (ah->ah_radio) { | ||
| 2511 | case AR5K_RF5111: | ||
| 2512 | type = AR5K_PWRTABLE_PWR_TO_PCDAC; | ||
| 2513 | break; | ||
| 2514 | case AR5K_RF5112: | ||
| 2515 | type = AR5K_PWRTABLE_LINEAR_PCDAC; | ||
| 2516 | break; | ||
| 2517 | case AR5K_RF2413: | ||
| 2518 | case AR5K_RF5413: | ||
| 2519 | case AR5K_RF2316: | ||
| 2520 | case AR5K_RF2317: | ||
| 2521 | case AR5K_RF2425: | ||
| 2522 | type = AR5K_PWRTABLE_PWR_TO_PDADC; | ||
| 2523 | break; | ||
| 2524 | default: | ||
| 2525 | return -EINVAL; | ||
| 2526 | } | ||
| 2527 | |||
| 2528 | /* FIXME: Only on channel/mode change */ | ||
| 2529 | ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type); | ||
| 2530 | if (ret) | ||
| 2531 | return ret; | ||
| 2532 | |||
| 2533 | /* Limit max power if we have a CTL available */ | ||
| 2534 | ath5k_get_max_ctl_power(ah, channel); | ||
| 2535 | |||
| 2536 | /* FIXME: Tx power limit for this regdomain | ||
| 2537 | * XXX: Mac80211/CRDA will do that anyway ? */ | ||
| 2538 | |||
| 2539 | /* FIXME: Antenna reduction stuff */ | ||
| 2540 | |||
| 2541 | /* FIXME: Limit power on turbo modes */ | ||
| 2542 | |||
| 2543 | /* FIXME: TPC scale reduction */ | ||
| 2544 | |||
| 2545 | /* Get surounding channels for per-rate power table | ||
| 2546 | * calibration */ | ||
| 2547 | ath5k_get_rate_pcal_data(ah, channel, &rate_info); | ||
| 2548 | |||
| 2549 | /* Setup rate power table */ | ||
| 2550 | ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode); | ||
| 2551 | |||
| 2552 | /* Write rate power table on hw */ | ||
| 2553 | ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) | | ||
| 2554 | AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) | | ||
| 2555 | AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1); | ||
| 2556 | |||
| 2557 | ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) | | ||
| 2558 | AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) | | ||
| 2559 | AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2); | ||
| 2560 | |||
| 2561 | ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) | | ||
| 2562 | AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) | | ||
| 2563 | AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3); | ||
| 2564 | |||
| 2565 | ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) | | ||
| 2566 | AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) | | ||
| 2567 | AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4); | ||
| 2568 | |||
| 2569 | /* FIXME: TPC support */ | ||
| 2570 | if (ah->ah_txpower.txp_tpc) { | ||
| 2571 | ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE | | ||
| 2572 | AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); | ||
| 2573 | |||
| 2574 | ath5k_hw_reg_write(ah, | ||
| 2575 | AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) | | ||
| 2576 | AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) | | ||
| 2577 | AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP), | ||
| 2578 | AR5K_TPC); | ||
| 2579 | } else { | ||
| 2580 | ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX | | ||
| 2581 | AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); | ||
| 2582 | } | ||
| 2583 | |||
| 2584 | return 0; | ||
| 2585 | } | ||
| 2586 | |||
| 2587 | int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 mode, u8 txpower) | ||
| 2588 | { | ||
| 2589 | /*Just a try M.F.*/ | ||
| 2590 | struct ieee80211_channel *channel = &ah->ah_current_channel; | ||
| 2591 | |||
| 2592 | ATH5K_TRACE(ah->ah_sc); | ||
| 2593 | ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER, | ||
| 2594 | "changing txpower to %d\n", txpower); | ||
| 2595 | |||
| 2596 | return ath5k_hw_txpower(ah, channel, mode, txpower); | ||
| 2597 | } | ||
| 2598 | |||
| 2599 | #undef _ATH5K_PHY | ||
