aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/wan/z85230.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/wan/z85230.c')
-rw-r--r--drivers/net/wan/z85230.c1851
1 files changed, 1851 insertions, 0 deletions
diff --git a/drivers/net/wan/z85230.c b/drivers/net/wan/z85230.c
new file mode 100644
index 000000000000..caa48f12fd0f
--- /dev/null
+++ b/drivers/net/wan/z85230.c
@@ -0,0 +1,1851 @@
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
8 * (c) Copyright 2000, 2001 Red Hat Inc
9 *
10 * Development of this driver was funded by Equiinet Ltd
11 * http://www.equiinet.com
12 *
13 * ChangeLog:
14 *
15 * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
16 * unification of all the Z85x30 asynchronous drivers for real.
17 *
18 * DMA now uses get_free_page as kmalloc buffers may span a 64K
19 * boundary.
20 *
21 * Modified for SMP safety and SMP locking by Alan Cox <alan@redhat.com>
22 *
23 * Performance
24 *
25 * Z85230:
26 * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
27 * X.25 is not unrealistic on all machines. DMA mode can in theory
28 * handle T1/E1 quite nicely. In practice the limit seems to be about
29 * 512Kbit->1Mbit depending on motherboard.
30 *
31 * Z85C30:
32 * 64K will take DMA, 9600 baud X.25 should be ok.
33 *
34 * Z8530:
35 * Synchronous mode without DMA is unlikely to pass about 2400 baud.
36 */
37
38#include <linux/module.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/net.h>
42#include <linux/skbuff.h>
43#include <linux/netdevice.h>
44#include <linux/if_arp.h>
45#include <linux/delay.h>
46#include <linux/ioport.h>
47#include <linux/init.h>
48#include <asm/dma.h>
49#include <asm/io.h>
50#define RT_LOCK
51#define RT_UNLOCK
52#include <linux/spinlock.h>
53
54#include <net/syncppp.h>
55#include "z85230.h"
56
57
58/**
59 * z8530_read_port - Architecture specific interface function
60 * @p: port to read
61 *
62 * Provided port access methods. The Comtrol SV11 requires no delays
63 * between accesses and uses PC I/O. Some drivers may need a 5uS delay
64 *
65 * In the longer term this should become an architecture specific
66 * section so that this can become a generic driver interface for all
67 * platforms. For now we only handle PC I/O ports with or without the
68 * dread 5uS sanity delay.
69 *
70 * The caller must hold sufficient locks to avoid violating the horrible
71 * 5uS delay rule.
72 */
73
74static inline int z8530_read_port(unsigned long p)
75{
76 u8 r=inb(Z8530_PORT_OF(p));
77 if(p&Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */
78 udelay(5);
79 return r;
80}
81
82/**
83 * z8530_write_port - Architecture specific interface function
84 * @p: port to write
85 * @d: value to write
86 *
87 * Write a value to a port with delays if need be. Note that the
88 * caller must hold locks to avoid read/writes from other contexts
89 * violating the 5uS rule
90 *
91 * In the longer term this should become an architecture specific
92 * section so that this can become a generic driver interface for all
93 * platforms. For now we only handle PC I/O ports with or without the
94 * dread 5uS sanity delay.
95 */
96
97
98static inline void z8530_write_port(unsigned long p, u8 d)
99{
100 outb(d,Z8530_PORT_OF(p));
101 if(p&Z8530_PORT_SLEEP)
102 udelay(5);
103}
104
105
106
107static void z8530_rx_done(struct z8530_channel *c);
108static void z8530_tx_done(struct z8530_channel *c);
109
110
111/**
112 * read_zsreg - Read a register from a Z85230
113 * @c: Z8530 channel to read from (2 per chip)
114 * @reg: Register to read
115 * FIXME: Use a spinlock.
116 *
117 * Most of the Z8530 registers are indexed off the control registers.
118 * A read is done by writing to the control register and reading the
119 * register back. The caller must hold the lock
120 */
121
122static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
123{
124 if(reg)
125 z8530_write_port(c->ctrlio, reg);
126 return z8530_read_port(c->ctrlio);
127}
128
129/**
130 * read_zsdata - Read the data port of a Z8530 channel
131 * @c: The Z8530 channel to read the data port from
132 *
133 * The data port provides fast access to some things. We still
134 * have all the 5uS delays to worry about.
135 */
136
137static inline u8 read_zsdata(struct z8530_channel *c)
138{
139 u8 r;
140 r=z8530_read_port(c->dataio);
141 return r;
142}
143
144/**
145 * write_zsreg - Write to a Z8530 channel register
146 * @c: The Z8530 channel
147 * @reg: Register number
148 * @val: Value to write
149 *
150 * Write a value to an indexed register. The caller must hold the lock
151 * to honour the irritating delay rules. We know about register 0
152 * being fast to access.
153 *
154 * Assumes c->lock is held.
155 */
156static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
157{
158 if(reg)
159 z8530_write_port(c->ctrlio, reg);
160 z8530_write_port(c->ctrlio, val);
161
162}
163
164/**
165 * write_zsctrl - Write to a Z8530 control register
166 * @c: The Z8530 channel
167 * @val: Value to write
168 *
169 * Write directly to the control register on the Z8530
170 */
171
172static inline void write_zsctrl(struct z8530_channel *c, u8 val)
173{
174 z8530_write_port(c->ctrlio, val);
175}
176
177/**
178 * write_zsdata - Write to a Z8530 control register
179 * @c: The Z8530 channel
180 * @val: Value to write
181 *
182 * Write directly to the data register on the Z8530
183 */
184
185
186static inline void write_zsdata(struct z8530_channel *c, u8 val)
187{
188 z8530_write_port(c->dataio, val);
189}
190
191/*
192 * Register loading parameters for a dead port
193 */
194
195u8 z8530_dead_port[]=
196{
197 255
198};
199
200EXPORT_SYMBOL(z8530_dead_port);
201
202/*
203 * Register loading parameters for currently supported circuit types
204 */
205
206
207/*
208 * Data clocked by telco end. This is the correct data for the UK
209 * "kilostream" service, and most other similar services.
210 */
211
212u8 z8530_hdlc_kilostream[]=
213{
214 4, SYNC_ENAB|SDLC|X1CLK,
215 2, 0, /* No vector */
216 1, 0,
217 3, ENT_HM|RxCRC_ENAB|Rx8,
218 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
219 9, 0, /* Disable interrupts */
220 6, 0xFF,
221 7, FLAG,
222 10, ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
223 11, TCTRxCP,
224 14, DISDPLL,
225 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
226 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
227 9, NV|MIE|NORESET,
228 255
229};
230
231EXPORT_SYMBOL(z8530_hdlc_kilostream);
232
233/*
234 * As above but for enhanced chips.
235 */
236
237u8 z8530_hdlc_kilostream_85230[]=
238{
239 4, SYNC_ENAB|SDLC|X1CLK,
240 2, 0, /* No vector */
241 1, 0,
242 3, ENT_HM|RxCRC_ENAB|Rx8,
243 5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
244 9, 0, /* Disable interrupts */
245 6, 0xFF,
246 7, FLAG,
247 10, ABUNDER|NRZ|CRCPS, /* MARKIDLE?? */
248 11, TCTRxCP,
249 14, DISDPLL,
250 15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
251 1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
252 9, NV|MIE|NORESET,
253 23, 3, /* Extended mode AUTO TX and EOM*/
254
255 255
256};
257
258EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
259
260/**
261 * z8530_flush_fifo - Flush on chip RX FIFO
262 * @c: Channel to flush
263 *
264 * Flush the receive FIFO. There is no specific option for this, we
265 * blindly read bytes and discard them. Reading when there is no data
266 * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
267 *
268 * All locking is handled for the caller. On return data may still be
269 * present if it arrived during the flush.
270 */
271
272static void z8530_flush_fifo(struct z8530_channel *c)
273{
274 read_zsreg(c, R1);
275 read_zsreg(c, R1);
276 read_zsreg(c, R1);
277 read_zsreg(c, R1);
278 if(c->dev->type==Z85230)
279 {
280 read_zsreg(c, R1);
281 read_zsreg(c, R1);
282 read_zsreg(c, R1);
283 read_zsreg(c, R1);
284 }
285}
286
287/**
288 * z8530_rtsdtr - Control the outgoing DTS/RTS line
289 * @c: The Z8530 channel to control;
290 * @set: 1 to set, 0 to clear
291 *
292 * Sets or clears DTR/RTS on the requested line. All locking is handled
293 * by the caller. For now we assume all boards use the actual RTS/DTR
294 * on the chip. Apparently one or two don't. We'll scream about them
295 * later.
296 */
297
298static void z8530_rtsdtr(struct z8530_channel *c, int set)
299{
300 if (set)
301 c->regs[5] |= (RTS | DTR);
302 else
303 c->regs[5] &= ~(RTS | DTR);
304 write_zsreg(c, R5, c->regs[5]);
305}
306
307/**
308 * z8530_rx - Handle a PIO receive event
309 * @c: Z8530 channel to process
310 *
311 * Receive handler for receiving in PIO mode. This is much like the
312 * async one but not quite the same or as complex
313 *
314 * Note: Its intended that this handler can easily be separated from
315 * the main code to run realtime. That'll be needed for some machines
316 * (eg to ever clock 64kbits on a sparc ;)).
317 *
318 * The RT_LOCK macros don't do anything now. Keep the code covered
319 * by them as short as possible in all circumstances - clocks cost
320 * baud. The interrupt handler is assumed to be atomic w.r.t. to
321 * other code - this is true in the RT case too.
322 *
323 * We only cover the sync cases for this. If you want 2Mbit async
324 * do it yourself but consider medical assistance first. This non DMA
325 * synchronous mode is portable code. The DMA mode assumes PCI like
326 * ISA DMA
327 *
328 * Called with the device lock held
329 */
330
331static void z8530_rx(struct z8530_channel *c)
332{
333 u8 ch,stat;
334 spin_lock(c->lock);
335
336 while(1)
337 {
338 /* FIFO empty ? */
339 if(!(read_zsreg(c, R0)&1))
340 break;
341 ch=read_zsdata(c);
342 stat=read_zsreg(c, R1);
343
344 /*
345 * Overrun ?
346 */
347 if(c->count < c->max)
348 {
349 *c->dptr++=ch;
350 c->count++;
351 }
352
353 if(stat&END_FR)
354 {
355
356 /*
357 * Error ?
358 */
359 if(stat&(Rx_OVR|CRC_ERR))
360 {
361 /* Rewind the buffer and return */
362 if(c->skb)
363 c->dptr=c->skb->data;
364 c->count=0;
365 if(stat&Rx_OVR)
366 {
367 printk(KERN_WARNING "%s: overrun\n", c->dev->name);
368 c->rx_overrun++;
369 }
370 if(stat&CRC_ERR)
371 {
372 c->rx_crc_err++;
373 /* printk("crc error\n"); */
374 }
375 /* Shove the frame upstream */
376 }
377 else
378 {
379 /*
380 * Drop the lock for RX processing, or
381 * there are deadlocks
382 */
383 z8530_rx_done(c);
384 write_zsctrl(c, RES_Rx_CRC);
385 }
386 }
387 }
388 /*
389 * Clear irq
390 */
391 write_zsctrl(c, ERR_RES);
392 write_zsctrl(c, RES_H_IUS);
393 spin_unlock(c->lock);
394}
395
396
397/**
398 * z8530_tx - Handle a PIO transmit event
399 * @c: Z8530 channel to process
400 *
401 * Z8530 transmit interrupt handler for the PIO mode. The basic
402 * idea is to attempt to keep the FIFO fed. We fill as many bytes
403 * in as possible, its quite possible that we won't keep up with the
404 * data rate otherwise.
405 */
406
407static void z8530_tx(struct z8530_channel *c)
408{
409 spin_lock(c->lock);
410 while(c->txcount) {
411 /* FIFO full ? */
412 if(!(read_zsreg(c, R0)&4))
413 break;
414 c->txcount--;
415 /*
416 * Shovel out the byte
417 */
418 write_zsreg(c, R8, *c->tx_ptr++);
419 write_zsctrl(c, RES_H_IUS);
420 /* We are about to underflow */
421 if(c->txcount==0)
422 {
423 write_zsctrl(c, RES_EOM_L);
424 write_zsreg(c, R10, c->regs[10]&~ABUNDER);
425 }
426 }
427
428
429 /*
430 * End of frame TX - fire another one
431 */
432
433 write_zsctrl(c, RES_Tx_P);
434
435 z8530_tx_done(c);
436 write_zsctrl(c, RES_H_IUS);
437 spin_unlock(c->lock);
438}
439
440/**
441 * z8530_status - Handle a PIO status exception
442 * @chan: Z8530 channel to process
443 *
444 * A status event occurred in PIO synchronous mode. There are several
445 * reasons the chip will bother us here. A transmit underrun means we
446 * failed to feed the chip fast enough and just broke a packet. A DCD
447 * change is a line up or down. We communicate that back to the protocol
448 * layer for synchronous PPP to renegotiate.
449 */
450
451static void z8530_status(struct z8530_channel *chan)
452{
453 u8 status, altered;
454
455 spin_lock(chan->lock);
456 status=read_zsreg(chan, R0);
457 altered=chan->status^status;
458
459 chan->status=status;
460
461 if(status&TxEOM)
462 {
463/* printk("%s: Tx underrun.\n", chan->dev->name); */
464 chan->stats.tx_fifo_errors++;
465 write_zsctrl(chan, ERR_RES);
466 z8530_tx_done(chan);
467 }
468
469 if(altered&chan->dcdcheck)
470 {
471 if(status&chan->dcdcheck)
472 {
473 printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
474 write_zsreg(chan, R3, chan->regs[3]|RxENABLE);
475 if(chan->netdevice &&
476 ((chan->netdevice->type == ARPHRD_HDLC) ||
477 (chan->netdevice->type == ARPHRD_PPP)))
478 sppp_reopen(chan->netdevice);
479 }
480 else
481 {
482 printk(KERN_INFO "%s: DCD lost\n", chan->dev->name);
483 write_zsreg(chan, R3, chan->regs[3]&~RxENABLE);
484 z8530_flush_fifo(chan);
485 }
486
487 }
488 write_zsctrl(chan, RES_EXT_INT);
489 write_zsctrl(chan, RES_H_IUS);
490 spin_unlock(chan->lock);
491}
492
493struct z8530_irqhandler z8530_sync=
494{
495 z8530_rx,
496 z8530_tx,
497 z8530_status
498};
499
500EXPORT_SYMBOL(z8530_sync);
501
502/**
503 * z8530_dma_rx - Handle a DMA RX event
504 * @chan: Channel to handle
505 *
506 * Non bus mastering DMA interfaces for the Z8x30 devices. This
507 * is really pretty PC specific. The DMA mode means that most receive
508 * events are handled by the DMA hardware. We get a kick here only if
509 * a frame ended.
510 */
511
512static void z8530_dma_rx(struct z8530_channel *chan)
513{
514 spin_lock(chan->lock);
515 if(chan->rxdma_on)
516 {
517 /* Special condition check only */
518 u8 status;
519
520 read_zsreg(chan, R7);
521 read_zsreg(chan, R6);
522
523 status=read_zsreg(chan, R1);
524
525 if(status&END_FR)
526 {
527 z8530_rx_done(chan); /* Fire up the next one */
528 }
529 write_zsctrl(chan, ERR_RES);
530 write_zsctrl(chan, RES_H_IUS);
531 }
532 else
533 {
534 /* DMA is off right now, drain the slow way */
535 z8530_rx(chan);
536 }
537 spin_unlock(chan->lock);
538}
539
540/**
541 * z8530_dma_tx - Handle a DMA TX event
542 * @chan: The Z8530 channel to handle
543 *
544 * We have received an interrupt while doing DMA transmissions. It
545 * shouldn't happen. Scream loudly if it does.
546 */
547
548static void z8530_dma_tx(struct z8530_channel *chan)
549{
550 spin_lock(chan->lock);
551 if(!chan->dma_tx)
552 {
553 printk(KERN_WARNING "Hey who turned the DMA off?\n");
554 z8530_tx(chan);
555 return;
556 }
557 /* This shouldnt occur in DMA mode */
558 printk(KERN_ERR "DMA tx - bogus event!\n");
559 z8530_tx(chan);
560 spin_unlock(chan->lock);
561}
562
563/**
564 * z8530_dma_status - Handle a DMA status exception
565 * @chan: Z8530 channel to process
566 *
567 * A status event occurred on the Z8530. We receive these for two reasons
568 * when in DMA mode. Firstly if we finished a packet transfer we get one
569 * and kick the next packet out. Secondly we may see a DCD change and
570 * have to poke the protocol layer.
571 *
572 */
573
574static void z8530_dma_status(struct z8530_channel *chan)
575{
576 u8 status, altered;
577
578 status=read_zsreg(chan, R0);
579 altered=chan->status^status;
580
581 chan->status=status;
582
583
584 if(chan->dma_tx)
585 {
586 if(status&TxEOM)
587 {
588 unsigned long flags;
589
590 flags=claim_dma_lock();
591 disable_dma(chan->txdma);
592 clear_dma_ff(chan->txdma);
593 chan->txdma_on=0;
594 release_dma_lock(flags);
595 z8530_tx_done(chan);
596 }
597 }
598
599 spin_lock(chan->lock);
600 if(altered&chan->dcdcheck)
601 {
602 if(status&chan->dcdcheck)
603 {
604 printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
605 write_zsreg(chan, R3, chan->regs[3]|RxENABLE);
606 if(chan->netdevice &&
607 ((chan->netdevice->type == ARPHRD_HDLC) ||
608 (chan->netdevice->type == ARPHRD_PPP)))
609 sppp_reopen(chan->netdevice);
610 }
611 else
612 {
613 printk(KERN_INFO "%s:DCD lost\n", chan->dev->name);
614 write_zsreg(chan, R3, chan->regs[3]&~RxENABLE);
615 z8530_flush_fifo(chan);
616 }
617 }
618
619 write_zsctrl(chan, RES_EXT_INT);
620 write_zsctrl(chan, RES_H_IUS);
621 spin_unlock(chan->lock);
622}
623
624struct z8530_irqhandler z8530_dma_sync=
625{
626 z8530_dma_rx,
627 z8530_dma_tx,
628 z8530_dma_status
629};
630
631EXPORT_SYMBOL(z8530_dma_sync);
632
633struct z8530_irqhandler z8530_txdma_sync=
634{
635 z8530_rx,
636 z8530_dma_tx,
637 z8530_dma_status
638};
639
640EXPORT_SYMBOL(z8530_txdma_sync);
641
642/**
643 * z8530_rx_clear - Handle RX events from a stopped chip
644 * @c: Z8530 channel to shut up
645 *
646 * Receive interrupt vectors for a Z8530 that is in 'parked' mode.
647 * For machines with PCI Z85x30 cards, or level triggered interrupts
648 * (eg the MacII) we must clear the interrupt cause or die.
649 */
650
651
652static void z8530_rx_clear(struct z8530_channel *c)
653{
654 /*
655 * Data and status bytes
656 */
657 u8 stat;
658
659 read_zsdata(c);
660 stat=read_zsreg(c, R1);
661
662 if(stat&END_FR)
663 write_zsctrl(c, RES_Rx_CRC);
664 /*
665 * Clear irq
666 */
667 write_zsctrl(c, ERR_RES);
668 write_zsctrl(c, RES_H_IUS);
669}
670
671/**
672 * z8530_tx_clear - Handle TX events from a stopped chip
673 * @c: Z8530 channel to shut up
674 *
675 * Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
676 * For machines with PCI Z85x30 cards, or level triggered interrupts
677 * (eg the MacII) we must clear the interrupt cause or die.
678 */
679
680static void z8530_tx_clear(struct z8530_channel *c)
681{
682 write_zsctrl(c, RES_Tx_P);
683 write_zsctrl(c, RES_H_IUS);
684}
685
686/**
687 * z8530_status_clear - Handle status events from a stopped chip
688 * @chan: Z8530 channel to shut up
689 *
690 * Status interrupt vectors for a Z8530 that is in 'parked' mode.
691 * For machines with PCI Z85x30 cards, or level triggered interrupts
692 * (eg the MacII) we must clear the interrupt cause or die.
693 */
694
695static void z8530_status_clear(struct z8530_channel *chan)
696{
697 u8 status=read_zsreg(chan, R0);
698 if(status&TxEOM)
699 write_zsctrl(chan, ERR_RES);
700 write_zsctrl(chan, RES_EXT_INT);
701 write_zsctrl(chan, RES_H_IUS);
702}
703
704struct z8530_irqhandler z8530_nop=
705{
706 z8530_rx_clear,
707 z8530_tx_clear,
708 z8530_status_clear
709};
710
711
712EXPORT_SYMBOL(z8530_nop);
713
714/**
715 * z8530_interrupt - Handle an interrupt from a Z8530
716 * @irq: Interrupt number
717 * @dev_id: The Z8530 device that is interrupting.
718 * @regs: unused
719 *
720 * A Z85[2]30 device has stuck its hand in the air for attention.
721 * We scan both the channels on the chip for events and then call
722 * the channel specific call backs for each channel that has events.
723 * We have to use callback functions because the two channels can be
724 * in different modes.
725 *
726 * Locking is done for the handlers. Note that locking is done
727 * at the chip level (the 5uS delay issue is per chip not per
728 * channel). c->lock for both channels points to dev->lock
729 */
730
731irqreturn_t z8530_interrupt(int irq, void *dev_id, struct pt_regs *regs)
732{
733 struct z8530_dev *dev=dev_id;
734 u8 intr;
735 static volatile int locker=0;
736 int work=0;
737 struct z8530_irqhandler *irqs;
738
739 if(locker)
740 {
741 printk(KERN_ERR "IRQ re-enter\n");
742 return IRQ_NONE;
743 }
744 locker=1;
745
746 spin_lock(&dev->lock);
747
748 while(++work<5000)
749 {
750
751 intr = read_zsreg(&dev->chanA, R3);
752 if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
753 break;
754
755 /* This holds the IRQ status. On the 8530 you must read it from chan
756 A even though it applies to the whole chip */
757
758 /* Now walk the chip and see what it is wanting - it may be
759 an IRQ for someone else remember */
760
761 irqs=dev->chanA.irqs;
762
763 if(intr & (CHARxIP|CHATxIP|CHAEXT))
764 {
765 if(intr&CHARxIP)
766 irqs->rx(&dev->chanA);
767 if(intr&CHATxIP)
768 irqs->tx(&dev->chanA);
769 if(intr&CHAEXT)
770 irqs->status(&dev->chanA);
771 }
772
773 irqs=dev->chanB.irqs;
774
775 if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
776 {
777 if(intr&CHBRxIP)
778 irqs->rx(&dev->chanB);
779 if(intr&CHBTxIP)
780 irqs->tx(&dev->chanB);
781 if(intr&CHBEXT)
782 irqs->status(&dev->chanB);
783 }
784 }
785 spin_unlock(&dev->lock);
786 if(work==5000)
787 printk(KERN_ERR "%s: interrupt jammed - abort(0x%X)!\n", dev->name, intr);
788 /* Ok all done */
789 locker=0;
790 return IRQ_HANDLED;
791}
792
793EXPORT_SYMBOL(z8530_interrupt);
794
795static char reg_init[16]=
796{
797 0,0,0,0,
798 0,0,0,0,
799 0,0,0,0,
800 0x55,0,0,0
801};
802
803
804/**
805 * z8530_sync_open - Open a Z8530 channel for PIO
806 * @dev: The network interface we are using
807 * @c: The Z8530 channel to open in synchronous PIO mode
808 *
809 * Switch a Z8530 into synchronous mode without DMA assist. We
810 * raise the RTS/DTR and commence network operation.
811 */
812
813int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
814{
815 unsigned long flags;
816
817 spin_lock_irqsave(c->lock, flags);
818
819 c->sync = 1;
820 c->mtu = dev->mtu+64;
821 c->count = 0;
822 c->skb = NULL;
823 c->skb2 = NULL;
824 c->irqs = &z8530_sync;
825
826 /* This loads the double buffer up */
827 z8530_rx_done(c); /* Load the frame ring */
828 z8530_rx_done(c); /* Load the backup frame */
829 z8530_rtsdtr(c,1);
830 c->dma_tx = 0;
831 c->regs[R1]|=TxINT_ENAB;
832 write_zsreg(c, R1, c->regs[R1]);
833 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
834
835 spin_unlock_irqrestore(c->lock, flags);
836 return 0;
837}
838
839
840EXPORT_SYMBOL(z8530_sync_open);
841
842/**
843 * z8530_sync_close - Close a PIO Z8530 channel
844 * @dev: Network device to close
845 * @c: Z8530 channel to disassociate and move to idle
846 *
847 * Close down a Z8530 interface and switch its interrupt handlers
848 * to discard future events.
849 */
850
851int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
852{
853 u8 chk;
854 unsigned long flags;
855
856 spin_lock_irqsave(c->lock, flags);
857 c->irqs = &z8530_nop;
858 c->max = 0;
859 c->sync = 0;
860
861 chk=read_zsreg(c,R0);
862 write_zsreg(c, R3, c->regs[R3]);
863 z8530_rtsdtr(c,0);
864
865 spin_unlock_irqrestore(c->lock, flags);
866 return 0;
867}
868
869EXPORT_SYMBOL(z8530_sync_close);
870
871/**
872 * z8530_sync_dma_open - Open a Z8530 for DMA I/O
873 * @dev: The network device to attach
874 * @c: The Z8530 channel to configure in sync DMA mode.
875 *
876 * Set up a Z85x30 device for synchronous DMA in both directions. Two
877 * ISA DMA channels must be available for this to work. We assume ISA
878 * DMA driven I/O and PC limits on access.
879 */
880
881int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
882{
883 unsigned long cflags, dflags;
884
885 c->sync = 1;
886 c->mtu = dev->mtu+64;
887 c->count = 0;
888 c->skb = NULL;
889 c->skb2 = NULL;
890 /*
891 * Load the DMA interfaces up
892 */
893 c->rxdma_on = 0;
894 c->txdma_on = 0;
895
896 /*
897 * Allocate the DMA flip buffers. Limit by page size.
898 * Everyone runs 1500 mtu or less on wan links so this
899 * should be fine.
900 */
901
902 if(c->mtu > PAGE_SIZE/2)
903 return -EMSGSIZE;
904
905 c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
906 if(c->rx_buf[0]==NULL)
907 return -ENOBUFS;
908 c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
909
910 c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
911 if(c->tx_dma_buf[0]==NULL)
912 {
913 free_page((unsigned long)c->rx_buf[0]);
914 c->rx_buf[0]=NULL;
915 return -ENOBUFS;
916 }
917 c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
918
919 c->tx_dma_used=0;
920 c->dma_tx = 1;
921 c->dma_num=0;
922 c->dma_ready=1;
923
924 /*
925 * Enable DMA control mode
926 */
927
928 spin_lock_irqsave(c->lock, cflags);
929
930 /*
931 * TX DMA via DIR/REQ
932 */
933
934 c->regs[R14]|= DTRREQ;
935 write_zsreg(c, R14, c->regs[R14]);
936
937 c->regs[R1]&= ~TxINT_ENAB;
938 write_zsreg(c, R1, c->regs[R1]);
939
940 /*
941 * RX DMA via W/Req
942 */
943
944 c->regs[R1]|= WT_FN_RDYFN;
945 c->regs[R1]|= WT_RDY_RT;
946 c->regs[R1]|= INT_ERR_Rx;
947 c->regs[R1]&= ~TxINT_ENAB;
948 write_zsreg(c, R1, c->regs[R1]);
949 c->regs[R1]|= WT_RDY_ENAB;
950 write_zsreg(c, R1, c->regs[R1]);
951
952 /*
953 * DMA interrupts
954 */
955
956 /*
957 * Set up the DMA configuration
958 */
959
960 dflags=claim_dma_lock();
961
962 disable_dma(c->rxdma);
963 clear_dma_ff(c->rxdma);
964 set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
965 set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
966 set_dma_count(c->rxdma, c->mtu);
967 enable_dma(c->rxdma);
968
969 disable_dma(c->txdma);
970 clear_dma_ff(c->txdma);
971 set_dma_mode(c->txdma, DMA_MODE_WRITE);
972 disable_dma(c->txdma);
973
974 release_dma_lock(dflags);
975
976 /*
977 * Select the DMA interrupt handlers
978 */
979
980 c->rxdma_on = 1;
981 c->txdma_on = 1;
982 c->tx_dma_used = 1;
983
984 c->irqs = &z8530_dma_sync;
985 z8530_rtsdtr(c,1);
986 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
987
988 spin_unlock_irqrestore(c->lock, cflags);
989
990 return 0;
991}
992
993EXPORT_SYMBOL(z8530_sync_dma_open);
994
995/**
996 * z8530_sync_dma_close - Close down DMA I/O
997 * @dev: Network device to detach
998 * @c: Z8530 channel to move into discard mode
999 *
1000 * Shut down a DMA mode synchronous interface. Halt the DMA, and
1001 * free the buffers.
1002 */
1003
1004int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
1005{
1006 u8 chk;
1007 unsigned long flags;
1008
1009 c->irqs = &z8530_nop;
1010 c->max = 0;
1011 c->sync = 0;
1012
1013 /*
1014 * Disable the PC DMA channels
1015 */
1016
1017 flags=claim_dma_lock();
1018 disable_dma(c->rxdma);
1019 clear_dma_ff(c->rxdma);
1020
1021 c->rxdma_on = 0;
1022
1023 disable_dma(c->txdma);
1024 clear_dma_ff(c->txdma);
1025 release_dma_lock(flags);
1026
1027 c->txdma_on = 0;
1028 c->tx_dma_used = 0;
1029
1030 spin_lock_irqsave(c->lock, flags);
1031
1032 /*
1033 * Disable DMA control mode
1034 */
1035
1036 c->regs[R1]&= ~WT_RDY_ENAB;
1037 write_zsreg(c, R1, c->regs[R1]);
1038 c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1039 c->regs[R1]|= INT_ALL_Rx;
1040 write_zsreg(c, R1, c->regs[R1]);
1041 c->regs[R14]&= ~DTRREQ;
1042 write_zsreg(c, R14, c->regs[R14]);
1043
1044 if(c->rx_buf[0])
1045 {
1046 free_page((unsigned long)c->rx_buf[0]);
1047 c->rx_buf[0]=NULL;
1048 }
1049 if(c->tx_dma_buf[0])
1050 {
1051 free_page((unsigned long)c->tx_dma_buf[0]);
1052 c->tx_dma_buf[0]=NULL;
1053 }
1054 chk=read_zsreg(c,R0);
1055 write_zsreg(c, R3, c->regs[R3]);
1056 z8530_rtsdtr(c,0);
1057
1058 spin_unlock_irqrestore(c->lock, flags);
1059
1060 return 0;
1061}
1062
1063EXPORT_SYMBOL(z8530_sync_dma_close);
1064
1065/**
1066 * z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1067 * @dev: The network device to attach
1068 * @c: The Z8530 channel to configure in sync DMA mode.
1069 *
1070 * Set up a Z85x30 device for synchronous DMA tranmission. One
1071 * ISA DMA channel must be available for this to work. The receive
1072 * side is run in PIO mode, but then it has the bigger FIFO.
1073 */
1074
1075int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
1076{
1077 unsigned long cflags, dflags;
1078
1079 printk("Opening sync interface for TX-DMA\n");
1080 c->sync = 1;
1081 c->mtu = dev->mtu+64;
1082 c->count = 0;
1083 c->skb = NULL;
1084 c->skb2 = NULL;
1085
1086 /*
1087 * Allocate the DMA flip buffers. Limit by page size.
1088 * Everyone runs 1500 mtu or less on wan links so this
1089 * should be fine.
1090 */
1091
1092 if(c->mtu > PAGE_SIZE/2)
1093 return -EMSGSIZE;
1094
1095 c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
1096 if(c->tx_dma_buf[0]==NULL)
1097 return -ENOBUFS;
1098
1099 c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
1100
1101
1102 spin_lock_irqsave(c->lock, cflags);
1103
1104 /*
1105 * Load the PIO receive ring
1106 */
1107
1108 z8530_rx_done(c);
1109 z8530_rx_done(c);
1110
1111 /*
1112 * Load the DMA interfaces up
1113 */
1114
1115 c->rxdma_on = 0;
1116 c->txdma_on = 0;
1117
1118 c->tx_dma_used=0;
1119 c->dma_num=0;
1120 c->dma_ready=1;
1121 c->dma_tx = 1;
1122
1123 /*
1124 * Enable DMA control mode
1125 */
1126
1127 /*
1128 * TX DMA via DIR/REQ
1129 */
1130 c->regs[R14]|= DTRREQ;
1131 write_zsreg(c, R14, c->regs[R14]);
1132
1133 c->regs[R1]&= ~TxINT_ENAB;
1134 write_zsreg(c, R1, c->regs[R1]);
1135
1136 /*
1137 * Set up the DMA configuration
1138 */
1139
1140 dflags = claim_dma_lock();
1141
1142 disable_dma(c->txdma);
1143 clear_dma_ff(c->txdma);
1144 set_dma_mode(c->txdma, DMA_MODE_WRITE);
1145 disable_dma(c->txdma);
1146
1147 release_dma_lock(dflags);
1148
1149 /*
1150 * Select the DMA interrupt handlers
1151 */
1152
1153 c->rxdma_on = 0;
1154 c->txdma_on = 1;
1155 c->tx_dma_used = 1;
1156
1157 c->irqs = &z8530_txdma_sync;
1158 z8530_rtsdtr(c,1);
1159 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1160 spin_unlock_irqrestore(c->lock, cflags);
1161
1162 return 0;
1163}
1164
1165EXPORT_SYMBOL(z8530_sync_txdma_open);
1166
1167/**
1168 * z8530_sync_txdma_close - Close down a TX driven DMA channel
1169 * @dev: Network device to detach
1170 * @c: Z8530 channel to move into discard mode
1171 *
1172 * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
1173 * and free the buffers.
1174 */
1175
1176int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
1177{
1178 unsigned long dflags, cflags;
1179 u8 chk;
1180
1181
1182 spin_lock_irqsave(c->lock, cflags);
1183
1184 c->irqs = &z8530_nop;
1185 c->max = 0;
1186 c->sync = 0;
1187
1188 /*
1189 * Disable the PC DMA channels
1190 */
1191
1192 dflags = claim_dma_lock();
1193
1194 disable_dma(c->txdma);
1195 clear_dma_ff(c->txdma);
1196 c->txdma_on = 0;
1197 c->tx_dma_used = 0;
1198
1199 release_dma_lock(dflags);
1200
1201 /*
1202 * Disable DMA control mode
1203 */
1204
1205 c->regs[R1]&= ~WT_RDY_ENAB;
1206 write_zsreg(c, R1, c->regs[R1]);
1207 c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1208 c->regs[R1]|= INT_ALL_Rx;
1209 write_zsreg(c, R1, c->regs[R1]);
1210 c->regs[R14]&= ~DTRREQ;
1211 write_zsreg(c, R14, c->regs[R14]);
1212
1213 if(c->tx_dma_buf[0])
1214 {
1215 free_page((unsigned long)c->tx_dma_buf[0]);
1216 c->tx_dma_buf[0]=NULL;
1217 }
1218 chk=read_zsreg(c,R0);
1219 write_zsreg(c, R3, c->regs[R3]);
1220 z8530_rtsdtr(c,0);
1221
1222 spin_unlock_irqrestore(c->lock, cflags);
1223 return 0;
1224}
1225
1226
1227EXPORT_SYMBOL(z8530_sync_txdma_close);
1228
1229
1230/*
1231 * Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1232 * it exists...
1233 */
1234
1235static char *z8530_type_name[]={
1236 "Z8530",
1237 "Z85C30",
1238 "Z85230"
1239};
1240
1241/**
1242 * z8530_describe - Uniformly describe a Z8530 port
1243 * @dev: Z8530 device to describe
1244 * @mapping: string holding mapping type (eg "I/O" or "Mem")
1245 * @io: the port value in question
1246 *
1247 * Describe a Z8530 in a standard format. We must pass the I/O as
1248 * the port offset isnt predictable. The main reason for this function
1249 * is to try and get a common format of report.
1250 */
1251
1252void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
1253{
1254 printk(KERN_INFO "%s: %s found at %s 0x%lX, IRQ %d.\n",
1255 dev->name,
1256 z8530_type_name[dev->type],
1257 mapping,
1258 Z8530_PORT_OF(io),
1259 dev->irq);
1260}
1261
1262EXPORT_SYMBOL(z8530_describe);
1263
1264/*
1265 * Locked operation part of the z8530 init code
1266 */
1267
1268static inline int do_z8530_init(struct z8530_dev *dev)
1269{
1270 /* NOP the interrupt handlers first - we might get a
1271 floating IRQ transition when we reset the chip */
1272 dev->chanA.irqs=&z8530_nop;
1273 dev->chanB.irqs=&z8530_nop;
1274 dev->chanA.dcdcheck=DCD;
1275 dev->chanB.dcdcheck=DCD;
1276
1277 /* Reset the chip */
1278 write_zsreg(&dev->chanA, R9, 0xC0);
1279 udelay(200);
1280 /* Now check its valid */
1281 write_zsreg(&dev->chanA, R12, 0xAA);
1282 if(read_zsreg(&dev->chanA, R12)!=0xAA)
1283 return -ENODEV;
1284 write_zsreg(&dev->chanA, R12, 0x55);
1285 if(read_zsreg(&dev->chanA, R12)!=0x55)
1286 return -ENODEV;
1287
1288 dev->type=Z8530;
1289
1290 /*
1291 * See the application note.
1292 */
1293
1294 write_zsreg(&dev->chanA, R15, 0x01);
1295
1296 /*
1297 * If we can set the low bit of R15 then
1298 * the chip is enhanced.
1299 */
1300
1301 if(read_zsreg(&dev->chanA, R15)==0x01)
1302 {
1303 /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1304 /* Put a char in the fifo */
1305 write_zsreg(&dev->chanA, R8, 0);
1306 if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
1307 dev->type = Z85230; /* Has a FIFO */
1308 else
1309 dev->type = Z85C30; /* Z85C30, 1 byte FIFO */
1310 }
1311
1312 /*
1313 * The code assumes R7' and friends are
1314 * off. Use write_zsext() for these and keep
1315 * this bit clear.
1316 */
1317
1318 write_zsreg(&dev->chanA, R15, 0);
1319
1320 /*
1321 * At this point it looks like the chip is behaving
1322 */
1323
1324 memcpy(dev->chanA.regs, reg_init, 16);
1325 memcpy(dev->chanB.regs, reg_init ,16);
1326
1327 return 0;
1328}
1329
1330/**
1331 * z8530_init - Initialise a Z8530 device
1332 * @dev: Z8530 device to initialise.
1333 *
1334 * Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1335 * is present, identify the type and then program it to hopefully
1336 * keep quite and behave. This matters a lot, a Z8530 in the wrong
1337 * state will sometimes get into stupid modes generating 10Khz
1338 * interrupt streams and the like.
1339 *
1340 * We set the interrupt handler up to discard any events, in case
1341 * we get them during reset or setp.
1342 *
1343 * Return 0 for success, or a negative value indicating the problem
1344 * in errno form.
1345 */
1346
1347int z8530_init(struct z8530_dev *dev)
1348{
1349 unsigned long flags;
1350 int ret;
1351
1352 /* Set up the chip level lock */
1353 spin_lock_init(&dev->lock);
1354 dev->chanA.lock = &dev->lock;
1355 dev->chanB.lock = &dev->lock;
1356
1357 spin_lock_irqsave(&dev->lock, flags);
1358 ret = do_z8530_init(dev);
1359 spin_unlock_irqrestore(&dev->lock, flags);
1360
1361 return ret;
1362}
1363
1364
1365EXPORT_SYMBOL(z8530_init);
1366
1367/**
1368 * z8530_shutdown - Shutdown a Z8530 device
1369 * @dev: The Z8530 chip to shutdown
1370 *
1371 * We set the interrupt handlers to silence any interrupts. We then
1372 * reset the chip and wait 100uS to be sure the reset completed. Just
1373 * in case the caller then tries to do stuff.
1374 *
1375 * This is called without the lock held
1376 */
1377
1378int z8530_shutdown(struct z8530_dev *dev)
1379{
1380 unsigned long flags;
1381 /* Reset the chip */
1382
1383 spin_lock_irqsave(&dev->lock, flags);
1384 dev->chanA.irqs=&z8530_nop;
1385 dev->chanB.irqs=&z8530_nop;
1386 write_zsreg(&dev->chanA, R9, 0xC0);
1387 /* We must lock the udelay, the chip is offlimits here */
1388 udelay(100);
1389 spin_unlock_irqrestore(&dev->lock, flags);
1390 return 0;
1391}
1392
1393EXPORT_SYMBOL(z8530_shutdown);
1394
1395/**
1396 * z8530_channel_load - Load channel data
1397 * @c: Z8530 channel to configure
1398 * @rtable: table of register, value pairs
1399 * FIXME: ioctl to allow user uploaded tables
1400 *
1401 * Load a Z8530 channel up from the system data. We use +16 to
1402 * indicate the "prime" registers. The value 255 terminates the
1403 * table.
1404 */
1405
1406int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
1407{
1408 unsigned long flags;
1409
1410 spin_lock_irqsave(c->lock, flags);
1411
1412 while(*rtable!=255)
1413 {
1414 int reg=*rtable++;
1415 if(reg>0x0F)
1416 write_zsreg(c, R15, c->regs[15]|1);
1417 write_zsreg(c, reg&0x0F, *rtable);
1418 if(reg>0x0F)
1419 write_zsreg(c, R15, c->regs[15]&~1);
1420 c->regs[reg]=*rtable++;
1421 }
1422 c->rx_function=z8530_null_rx;
1423 c->skb=NULL;
1424 c->tx_skb=NULL;
1425 c->tx_next_skb=NULL;
1426 c->mtu=1500;
1427 c->max=0;
1428 c->count=0;
1429 c->status=read_zsreg(c, R0);
1430 c->sync=1;
1431 write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1432
1433 spin_unlock_irqrestore(c->lock, flags);
1434 return 0;
1435}
1436
1437EXPORT_SYMBOL(z8530_channel_load);
1438
1439
1440/**
1441 * z8530_tx_begin - Begin packet transmission
1442 * @c: The Z8530 channel to kick
1443 *
1444 * This is the speed sensitive side of transmission. If we are called
1445 * and no buffer is being transmitted we commence the next buffer. If
1446 * nothing is queued we idle the sync.
1447 *
1448 * Note: We are handling this code path in the interrupt path, keep it
1449 * fast or bad things will happen.
1450 *
1451 * Called with the lock held.
1452 */
1453
1454static void z8530_tx_begin(struct z8530_channel *c)
1455{
1456 unsigned long flags;
1457 if(c->tx_skb)
1458 return;
1459
1460 c->tx_skb=c->tx_next_skb;
1461 c->tx_next_skb=NULL;
1462 c->tx_ptr=c->tx_next_ptr;
1463
1464 if(c->tx_skb==NULL)
1465 {
1466 /* Idle on */
1467 if(c->dma_tx)
1468 {
1469 flags=claim_dma_lock();
1470 disable_dma(c->txdma);
1471 /*
1472 * Check if we crapped out.
1473 */
1474 if(get_dma_residue(c->txdma))
1475 {
1476 c->stats.tx_dropped++;
1477 c->stats.tx_fifo_errors++;
1478 }
1479 release_dma_lock(flags);
1480 }
1481 c->txcount=0;
1482 }
1483 else
1484 {
1485 c->txcount=c->tx_skb->len;
1486
1487
1488 if(c->dma_tx)
1489 {
1490 /*
1491 * FIXME. DMA is broken for the original 8530,
1492 * on the older parts we need to set a flag and
1493 * wait for a further TX interrupt to fire this
1494 * stage off
1495 */
1496
1497 flags=claim_dma_lock();
1498 disable_dma(c->txdma);
1499
1500 /*
1501 * These two are needed by the 8530/85C30
1502 * and must be issued when idling.
1503 */
1504
1505 if(c->dev->type!=Z85230)
1506 {
1507 write_zsctrl(c, RES_Tx_CRC);
1508 write_zsctrl(c, RES_EOM_L);
1509 }
1510 write_zsreg(c, R10, c->regs[10]&~ABUNDER);
1511 clear_dma_ff(c->txdma);
1512 set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
1513 set_dma_count(c->txdma, c->txcount);
1514 enable_dma(c->txdma);
1515 release_dma_lock(flags);
1516 write_zsctrl(c, RES_EOM_L);
1517 write_zsreg(c, R5, c->regs[R5]|TxENAB);
1518 }
1519 else
1520 {
1521
1522 /* ABUNDER off */
1523 write_zsreg(c, R10, c->regs[10]);
1524 write_zsctrl(c, RES_Tx_CRC);
1525
1526 while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
1527 {
1528 write_zsreg(c, R8, *c->tx_ptr++);
1529 c->txcount--;
1530 }
1531
1532 }
1533 }
1534 /*
1535 * Since we emptied tx_skb we can ask for more
1536 */
1537 netif_wake_queue(c->netdevice);
1538}
1539
1540/**
1541 * z8530_tx_done - TX complete callback
1542 * @c: The channel that completed a transmit.
1543 *
1544 * This is called when we complete a packet send. We wake the queue,
1545 * start the next packet going and then free the buffer of the existing
1546 * packet. This code is fairly timing sensitive.
1547 *
1548 * Called with the register lock held.
1549 */
1550
1551static void z8530_tx_done(struct z8530_channel *c)
1552{
1553 struct sk_buff *skb;
1554
1555 /* Actually this can happen.*/
1556 if(c->tx_skb==NULL)
1557 return;
1558
1559 skb=c->tx_skb;
1560 c->tx_skb=NULL;
1561 z8530_tx_begin(c);
1562 c->stats.tx_packets++;
1563 c->stats.tx_bytes+=skb->len;
1564 dev_kfree_skb_irq(skb);
1565}
1566
1567/**
1568 * z8530_null_rx - Discard a packet
1569 * @c: The channel the packet arrived on
1570 * @skb: The buffer
1571 *
1572 * We point the receive handler at this function when idle. Instead
1573 * of syncppp processing the frames we get to throw them away.
1574 */
1575
1576void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
1577{
1578 dev_kfree_skb_any(skb);
1579}
1580
1581EXPORT_SYMBOL(z8530_null_rx);
1582
1583/**
1584 * z8530_rx_done - Receive completion callback
1585 * @c: The channel that completed a receive
1586 *
1587 * A new packet is complete. Our goal here is to get back into receive
1588 * mode as fast as possible. On the Z85230 we could change to using
1589 * ESCC mode, but on the older chips we have no choice. We flip to the
1590 * new buffer immediately in DMA mode so that the DMA of the next
1591 * frame can occur while we are copying the previous buffer to an sk_buff
1592 *
1593 * Called with the lock held
1594 */
1595
1596static void z8530_rx_done(struct z8530_channel *c)
1597{
1598 struct sk_buff *skb;
1599 int ct;
1600
1601 /*
1602 * Is our receive engine in DMA mode
1603 */
1604
1605 if(c->rxdma_on)
1606 {
1607 /*
1608 * Save the ready state and the buffer currently
1609 * being used as the DMA target
1610 */
1611
1612 int ready=c->dma_ready;
1613 unsigned char *rxb=c->rx_buf[c->dma_num];
1614 unsigned long flags;
1615
1616 /*
1617 * Complete this DMA. Neccessary to find the length
1618 */
1619
1620 flags=claim_dma_lock();
1621
1622 disable_dma(c->rxdma);
1623 clear_dma_ff(c->rxdma);
1624 c->rxdma_on=0;
1625 ct=c->mtu-get_dma_residue(c->rxdma);
1626 if(ct<0)
1627 ct=2; /* Shit happens.. */
1628 c->dma_ready=0;
1629
1630 /*
1631 * Normal case: the other slot is free, start the next DMA
1632 * into it immediately.
1633 */
1634
1635 if(ready)
1636 {
1637 c->dma_num^=1;
1638 set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
1639 set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
1640 set_dma_count(c->rxdma, c->mtu);
1641 c->rxdma_on = 1;
1642 enable_dma(c->rxdma);
1643 /* Stop any frames that we missed the head of
1644 from passing */
1645 write_zsreg(c, R0, RES_Rx_CRC);
1646 }
1647 else
1648 /* Can't occur as we dont reenable the DMA irq until
1649 after the flip is done */
1650 printk(KERN_WARNING "%s: DMA flip overrun!\n", c->netdevice->name);
1651
1652 release_dma_lock(flags);
1653
1654 /*
1655 * Shove the old buffer into an sk_buff. We can't DMA
1656 * directly into one on a PC - it might be above the 16Mb
1657 * boundary. Optimisation - we could check to see if we
1658 * can avoid the copy. Optimisation 2 - make the memcpy
1659 * a copychecksum.
1660 */
1661
1662 skb=dev_alloc_skb(ct);
1663 if(skb==NULL)
1664 {
1665 c->stats.rx_dropped++;
1666 printk(KERN_WARNING "%s: Memory squeeze.\n", c->netdevice->name);
1667 }
1668 else
1669 {
1670 skb_put(skb, ct);
1671 memcpy(skb->data, rxb, ct);
1672 c->stats.rx_packets++;
1673 c->stats.rx_bytes+=ct;
1674 }
1675 c->dma_ready=1;
1676 }
1677 else
1678 {
1679 RT_LOCK;
1680 skb=c->skb;
1681
1682 /*
1683 * The game we play for non DMA is similar. We want to
1684 * get the controller set up for the next packet as fast
1685 * as possible. We potentially only have one byte + the
1686 * fifo length for this. Thus we want to flip to the new
1687 * buffer and then mess around copying and allocating
1688 * things. For the current case it doesn't matter but
1689 * if you build a system where the sync irq isnt blocked
1690 * by the kernel IRQ disable then you need only block the
1691 * sync IRQ for the RT_LOCK area.
1692 *
1693 */
1694 ct=c->count;
1695
1696 c->skb = c->skb2;
1697 c->count = 0;
1698 c->max = c->mtu;
1699 if(c->skb)
1700 {
1701 c->dptr = c->skb->data;
1702 c->max = c->mtu;
1703 }
1704 else
1705 {
1706 c->count= 0;
1707 c->max = 0;
1708 }
1709 RT_UNLOCK;
1710
1711 c->skb2 = dev_alloc_skb(c->mtu);
1712 if(c->skb2==NULL)
1713 printk(KERN_WARNING "%s: memory squeeze.\n",
1714 c->netdevice->name);
1715 else
1716 {
1717 skb_put(c->skb2,c->mtu);
1718 }
1719 c->stats.rx_packets++;
1720 c->stats.rx_bytes+=ct;
1721
1722 }
1723 /*
1724 * If we received a frame we must now process it.
1725 */
1726 if(skb)
1727 {
1728 skb_trim(skb, ct);
1729 c->rx_function(c,skb);
1730 }
1731 else
1732 {
1733 c->stats.rx_dropped++;
1734 printk(KERN_ERR "%s: Lost a frame\n", c->netdevice->name);
1735 }
1736}
1737
1738/**
1739 * spans_boundary - Check a packet can be ISA DMA'd
1740 * @skb: The buffer to check
1741 *
1742 * Returns true if the buffer cross a DMA boundary on a PC. The poor
1743 * thing can only DMA within a 64K block not across the edges of it.
1744 */
1745
1746static inline int spans_boundary(struct sk_buff *skb)
1747{
1748 unsigned long a=(unsigned long)skb->data;
1749 a^=(a+skb->len);
1750 if(a&0x00010000) /* If the 64K bit is different.. */
1751 return 1;
1752 return 0;
1753}
1754
1755/**
1756 * z8530_queue_xmit - Queue a packet
1757 * @c: The channel to use
1758 * @skb: The packet to kick down the channel
1759 *
1760 * Queue a packet for transmission. Because we have rather
1761 * hard to hit interrupt latencies for the Z85230 per packet
1762 * even in DMA mode we do the flip to DMA buffer if needed here
1763 * not in the IRQ.
1764 *
1765 * Called from the network code. The lock is not held at this
1766 * point.
1767 */
1768
1769int z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
1770{
1771 unsigned long flags;
1772
1773 netif_stop_queue(c->netdevice);
1774 if(c->tx_next_skb)
1775 {
1776 return 1;
1777 }
1778
1779 /* PC SPECIFIC - DMA limits */
1780
1781 /*
1782 * If we will DMA the transmit and its gone over the ISA bus
1783 * limit, then copy to the flip buffer
1784 */
1785
1786 if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
1787 {
1788 /*
1789 * Send the flip buffer, and flip the flippy bit.
1790 * We don't care which is used when just so long as
1791 * we never use the same buffer twice in a row. Since
1792 * only one buffer can be going out at a time the other
1793 * has to be safe.
1794 */
1795 c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
1796 c->tx_dma_used^=1; /* Flip temp buffer */
1797 memcpy(c->tx_next_ptr, skb->data, skb->len);
1798 }
1799 else
1800 c->tx_next_ptr=skb->data;
1801 RT_LOCK;
1802 c->tx_next_skb=skb;
1803 RT_UNLOCK;
1804
1805 spin_lock_irqsave(c->lock, flags);
1806 z8530_tx_begin(c);
1807 spin_unlock_irqrestore(c->lock, flags);
1808
1809 return 0;
1810}
1811
1812EXPORT_SYMBOL(z8530_queue_xmit);
1813
1814/**
1815 * z8530_get_stats - Get network statistics
1816 * @c: The channel to use
1817 *
1818 * Get the statistics block. We keep the statistics in software as
1819 * the chip doesn't do it for us.
1820 *
1821 * Locking is ignored here - we could lock for a copy but its
1822 * not likely to be that big an issue
1823 */
1824
1825struct net_device_stats *z8530_get_stats(struct z8530_channel *c)
1826{
1827 return &c->stats;
1828}
1829
1830EXPORT_SYMBOL(z8530_get_stats);
1831
1832/*
1833 * Module support
1834 */
1835static char banner[] __initdata = KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
1836
1837static int __init z85230_init_driver(void)
1838{
1839 printk(banner);
1840 return 0;
1841}
1842module_init(z85230_init_driver);
1843
1844static void __exit z85230_cleanup_driver(void)
1845{
1846}
1847module_exit(z85230_cleanup_driver);
1848
1849MODULE_AUTHOR("Red Hat Inc.");
1850MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1851MODULE_LICENSE("GPL");