diff options
Diffstat (limited to 'drivers/net/tsi108_eth.c')
-rw-r--r-- | drivers/net/tsi108_eth.c | 1708 |
1 files changed, 1708 insertions, 0 deletions
diff --git a/drivers/net/tsi108_eth.c b/drivers/net/tsi108_eth.c new file mode 100644 index 000000000000..893808ab3742 --- /dev/null +++ b/drivers/net/tsi108_eth.c | |||
@@ -0,0 +1,1708 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Copyright(c) 2006 Tundra Semiconductor Corporation. | ||
4 | |||
5 | This program is free software; you can redistribute it and/or modify it | ||
6 | under the terms of the GNU General Public License as published by the Free | ||
7 | Software Foundation; either version 2 of the License, or (at your option) | ||
8 | any later version. | ||
9 | |||
10 | This program is distributed in the hope that it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., 59 | ||
17 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
18 | |||
19 | *******************************************************************************/ | ||
20 | |||
21 | /* This driver is based on the driver code originally developed | ||
22 | * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by | ||
23 | * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation | ||
24 | * | ||
25 | * Currently changes from original version are: | ||
26 | * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com) | ||
27 | * - modifications to handle two ports independently and support for | ||
28 | * additional PHY devices (alexandre.bounine@tundra.com) | ||
29 | * - Get hardware information from platform device. (tie-fei.zang@freescale.com) | ||
30 | * | ||
31 | */ | ||
32 | |||
33 | #include <linux/module.h> | ||
34 | #include <linux/types.h> | ||
35 | #include <linux/init.h> | ||
36 | #include <linux/net.h> | ||
37 | #include <linux/netdevice.h> | ||
38 | #include <linux/etherdevice.h> | ||
39 | #include <linux/skbuff.h> | ||
40 | #include <linux/slab.h> | ||
41 | #include <linux/sched.h> | ||
42 | #include <linux/spinlock.h> | ||
43 | #include <linux/delay.h> | ||
44 | #include <linux/crc32.h> | ||
45 | #include <linux/mii.h> | ||
46 | #include <linux/device.h> | ||
47 | #include <linux/pci.h> | ||
48 | #include <linux/rtnetlink.h> | ||
49 | #include <linux/timer.h> | ||
50 | #include <linux/platform_device.h> | ||
51 | #include <linux/etherdevice.h> | ||
52 | |||
53 | #include <asm/system.h> | ||
54 | #include <asm/io.h> | ||
55 | #include <asm/tsi108.h> | ||
56 | |||
57 | #include "tsi108_eth.h" | ||
58 | |||
59 | #define MII_READ_DELAY 10000 /* max link wait time in msec */ | ||
60 | |||
61 | #define TSI108_RXRING_LEN 256 | ||
62 | |||
63 | /* NOTE: The driver currently does not support receiving packets | ||
64 | * larger than the buffer size, so don't decrease this (unless you | ||
65 | * want to add such support). | ||
66 | */ | ||
67 | #define TSI108_RXBUF_SIZE 1536 | ||
68 | |||
69 | #define TSI108_TXRING_LEN 256 | ||
70 | |||
71 | #define TSI108_TX_INT_FREQ 64 | ||
72 | |||
73 | /* Check the phy status every half a second. */ | ||
74 | #define CHECK_PHY_INTERVAL (HZ/2) | ||
75 | |||
76 | static int tsi108_init_one(struct platform_device *pdev); | ||
77 | static int tsi108_ether_remove(struct platform_device *pdev); | ||
78 | |||
79 | struct tsi108_prv_data { | ||
80 | void __iomem *regs; /* Base of normal regs */ | ||
81 | void __iomem *phyregs; /* Base of register bank used for PHY access */ | ||
82 | |||
83 | unsigned int phy; /* Index of PHY for this interface */ | ||
84 | unsigned int irq_num; | ||
85 | unsigned int id; | ||
86 | |||
87 | struct timer_list timer;/* Timer that triggers the check phy function */ | ||
88 | unsigned int rxtail; /* Next entry in rxring to read */ | ||
89 | unsigned int rxhead; /* Next entry in rxring to give a new buffer */ | ||
90 | unsigned int rxfree; /* Number of free, allocated RX buffers */ | ||
91 | |||
92 | unsigned int rxpending; /* Non-zero if there are still descriptors | ||
93 | * to be processed from a previous descriptor | ||
94 | * interrupt condition that has been cleared */ | ||
95 | |||
96 | unsigned int txtail; /* Next TX descriptor to check status on */ | ||
97 | unsigned int txhead; /* Next TX descriptor to use */ | ||
98 | |||
99 | /* Number of free TX descriptors. This could be calculated from | ||
100 | * rxhead and rxtail if one descriptor were left unused to disambiguate | ||
101 | * full and empty conditions, but it's simpler to just keep track | ||
102 | * explicitly. */ | ||
103 | |||
104 | unsigned int txfree; | ||
105 | |||
106 | unsigned int phy_ok; /* The PHY is currently powered on. */ | ||
107 | |||
108 | /* PHY status (duplex is 1 for half, 2 for full, | ||
109 | * so that the default 0 indicates that neither has | ||
110 | * yet been configured). */ | ||
111 | |||
112 | unsigned int link_up; | ||
113 | unsigned int speed; | ||
114 | unsigned int duplex; | ||
115 | |||
116 | tx_desc *txring; | ||
117 | rx_desc *rxring; | ||
118 | struct sk_buff *txskbs[TSI108_TXRING_LEN]; | ||
119 | struct sk_buff *rxskbs[TSI108_RXRING_LEN]; | ||
120 | |||
121 | dma_addr_t txdma, rxdma; | ||
122 | |||
123 | /* txlock nests in misclock and phy_lock */ | ||
124 | |||
125 | spinlock_t txlock, misclock; | ||
126 | |||
127 | /* stats is used to hold the upper bits of each hardware counter, | ||
128 | * and tmpstats is used to hold the full values for returning | ||
129 | * to the caller of get_stats(). They must be separate in case | ||
130 | * an overflow interrupt occurs before the stats are consumed. | ||
131 | */ | ||
132 | |||
133 | struct net_device_stats stats; | ||
134 | struct net_device_stats tmpstats; | ||
135 | |||
136 | /* These stats are kept separate in hardware, thus require individual | ||
137 | * fields for handling carry. They are combined in get_stats. | ||
138 | */ | ||
139 | |||
140 | unsigned long rx_fcs; /* Add to rx_frame_errors */ | ||
141 | unsigned long rx_short_fcs; /* Add to rx_frame_errors */ | ||
142 | unsigned long rx_long_fcs; /* Add to rx_frame_errors */ | ||
143 | unsigned long rx_underruns; /* Add to rx_length_errors */ | ||
144 | unsigned long rx_overruns; /* Add to rx_length_errors */ | ||
145 | |||
146 | unsigned long tx_coll_abort; /* Add to tx_aborted_errors/collisions */ | ||
147 | unsigned long tx_pause_drop; /* Add to tx_aborted_errors */ | ||
148 | |||
149 | unsigned long mc_hash[16]; | ||
150 | u32 msg_enable; /* debug message level */ | ||
151 | struct mii_if_info mii_if; | ||
152 | unsigned int init_media; | ||
153 | }; | ||
154 | |||
155 | /* Structure for a device driver */ | ||
156 | |||
157 | static struct platform_driver tsi_eth_driver = { | ||
158 | .probe = tsi108_init_one, | ||
159 | .remove = tsi108_ether_remove, | ||
160 | .driver = { | ||
161 | .name = "tsi-ethernet", | ||
162 | }, | ||
163 | }; | ||
164 | |||
165 | static void tsi108_timed_checker(unsigned long dev_ptr); | ||
166 | |||
167 | static void dump_eth_one(struct net_device *dev) | ||
168 | { | ||
169 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
170 | |||
171 | printk("Dumping %s...\n", dev->name); | ||
172 | printk("intstat %x intmask %x phy_ok %d" | ||
173 | " link %d speed %d duplex %d\n", | ||
174 | TSI_READ(TSI108_EC_INTSTAT), | ||
175 | TSI_READ(TSI108_EC_INTMASK), data->phy_ok, | ||
176 | data->link_up, data->speed, data->duplex); | ||
177 | |||
178 | printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n", | ||
179 | data->txhead, data->txtail, data->txfree, | ||
180 | TSI_READ(TSI108_EC_TXSTAT), | ||
181 | TSI_READ(TSI108_EC_TXESTAT), | ||
182 | TSI_READ(TSI108_EC_TXERR)); | ||
183 | |||
184 | printk("RX: head %d, tail %d, free %d, stat %x," | ||
185 | " estat %x, err %x, pending %d\n\n", | ||
186 | data->rxhead, data->rxtail, data->rxfree, | ||
187 | TSI_READ(TSI108_EC_RXSTAT), | ||
188 | TSI_READ(TSI108_EC_RXESTAT), | ||
189 | TSI_READ(TSI108_EC_RXERR), data->rxpending); | ||
190 | } | ||
191 | |||
192 | /* Synchronization is needed between the thread and up/down events. | ||
193 | * Note that the PHY is accessed through the same registers for both | ||
194 | * interfaces, so this can't be made interface-specific. | ||
195 | */ | ||
196 | |||
197 | static DEFINE_SPINLOCK(phy_lock); | ||
198 | |||
199 | static int tsi108_read_mii(struct tsi108_prv_data *data, int reg) | ||
200 | { | ||
201 | unsigned i; | ||
202 | |||
203 | TSI_WRITE_PHY(TSI108_MAC_MII_ADDR, | ||
204 | (data->phy << TSI108_MAC_MII_ADDR_PHY) | | ||
205 | (reg << TSI108_MAC_MII_ADDR_REG)); | ||
206 | TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0); | ||
207 | TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ); | ||
208 | for (i = 0; i < 100; i++) { | ||
209 | if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) & | ||
210 | (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY))) | ||
211 | break; | ||
212 | udelay(10); | ||
213 | } | ||
214 | |||
215 | if (i == 100) | ||
216 | return 0xffff; | ||
217 | else | ||
218 | return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN)); | ||
219 | } | ||
220 | |||
221 | static void tsi108_write_mii(struct tsi108_prv_data *data, | ||
222 | int reg, u16 val) | ||
223 | { | ||
224 | unsigned i = 100; | ||
225 | TSI_WRITE_PHY(TSI108_MAC_MII_ADDR, | ||
226 | (data->phy << TSI108_MAC_MII_ADDR_PHY) | | ||
227 | (reg << TSI108_MAC_MII_ADDR_REG)); | ||
228 | TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val); | ||
229 | while (i--) { | ||
230 | if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) & | ||
231 | TSI108_MAC_MII_IND_BUSY)) | ||
232 | break; | ||
233 | udelay(10); | ||
234 | } | ||
235 | } | ||
236 | |||
237 | static int tsi108_mdio_read(struct net_device *dev, int addr, int reg) | ||
238 | { | ||
239 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
240 | return tsi108_read_mii(data, reg); | ||
241 | } | ||
242 | |||
243 | static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val) | ||
244 | { | ||
245 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
246 | tsi108_write_mii(data, reg, val); | ||
247 | } | ||
248 | |||
249 | static inline void tsi108_write_tbi(struct tsi108_prv_data *data, | ||
250 | int reg, u16 val) | ||
251 | { | ||
252 | unsigned i = 1000; | ||
253 | TSI_WRITE(TSI108_MAC_MII_ADDR, | ||
254 | (0x1e << TSI108_MAC_MII_ADDR_PHY) | ||
255 | | (reg << TSI108_MAC_MII_ADDR_REG)); | ||
256 | TSI_WRITE(TSI108_MAC_MII_DATAOUT, val); | ||
257 | while(i--) { | ||
258 | if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY)) | ||
259 | return; | ||
260 | udelay(10); | ||
261 | } | ||
262 | printk(KERN_ERR "%s function time out \n", __FUNCTION__); | ||
263 | } | ||
264 | |||
265 | static int mii_speed(struct mii_if_info *mii) | ||
266 | { | ||
267 | int advert, lpa, val, media; | ||
268 | int lpa2 = 0; | ||
269 | int speed; | ||
270 | |||
271 | if (!mii_link_ok(mii)) | ||
272 | return 0; | ||
273 | |||
274 | val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR); | ||
275 | if ((val & BMSR_ANEGCOMPLETE) == 0) | ||
276 | return 0; | ||
277 | |||
278 | advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE); | ||
279 | lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA); | ||
280 | media = mii_nway_result(advert & lpa); | ||
281 | |||
282 | if (mii->supports_gmii) | ||
283 | lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000); | ||
284 | |||
285 | speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 : | ||
286 | (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10); | ||
287 | return speed; | ||
288 | } | ||
289 | |||
290 | static void tsi108_check_phy(struct net_device *dev) | ||
291 | { | ||
292 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
293 | u32 mac_cfg2_reg, portctrl_reg; | ||
294 | u32 duplex; | ||
295 | u32 speed; | ||
296 | unsigned long flags; | ||
297 | |||
298 | /* Do a dummy read, as for some reason the first read | ||
299 | * after a link becomes up returns link down, even if | ||
300 | * it's been a while since the link came up. | ||
301 | */ | ||
302 | |||
303 | spin_lock_irqsave(&phy_lock, flags); | ||
304 | |||
305 | if (!data->phy_ok) | ||
306 | goto out; | ||
307 | |||
308 | tsi108_read_mii(data, MII_BMSR); | ||
309 | |||
310 | duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media); | ||
311 | data->init_media = 0; | ||
312 | |||
313 | if (netif_carrier_ok(dev)) { | ||
314 | |||
315 | speed = mii_speed(&data->mii_if); | ||
316 | |||
317 | if ((speed != data->speed) || duplex) { | ||
318 | |||
319 | mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2); | ||
320 | portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL); | ||
321 | |||
322 | mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK; | ||
323 | |||
324 | if (speed == 1000) { | ||
325 | mac_cfg2_reg |= TSI108_MAC_CFG2_GIG; | ||
326 | portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG; | ||
327 | } else { | ||
328 | mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG; | ||
329 | portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG; | ||
330 | } | ||
331 | |||
332 | data->speed = speed; | ||
333 | |||
334 | if (data->mii_if.full_duplex) { | ||
335 | mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX; | ||
336 | portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX; | ||
337 | data->duplex = 2; | ||
338 | } else { | ||
339 | mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX; | ||
340 | portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX; | ||
341 | data->duplex = 1; | ||
342 | } | ||
343 | |||
344 | TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg); | ||
345 | TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg); | ||
346 | |||
347 | if (data->link_up == 0) { | ||
348 | /* The manual says it can take 3-4 usecs for the speed change | ||
349 | * to take effect. | ||
350 | */ | ||
351 | udelay(5); | ||
352 | |||
353 | spin_lock(&data->txlock); | ||
354 | if (is_valid_ether_addr(dev->dev_addr) && data->txfree) | ||
355 | netif_wake_queue(dev); | ||
356 | |||
357 | data->link_up = 1; | ||
358 | spin_unlock(&data->txlock); | ||
359 | } | ||
360 | } | ||
361 | |||
362 | } else { | ||
363 | if (data->link_up == 1) { | ||
364 | netif_stop_queue(dev); | ||
365 | data->link_up = 0; | ||
366 | printk(KERN_NOTICE "%s : link is down\n", dev->name); | ||
367 | } | ||
368 | |||
369 | goto out; | ||
370 | } | ||
371 | |||
372 | |||
373 | out: | ||
374 | spin_unlock_irqrestore(&phy_lock, flags); | ||
375 | } | ||
376 | |||
377 | static inline void | ||
378 | tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift, | ||
379 | unsigned long *upper) | ||
380 | { | ||
381 | if (carry & carry_bit) | ||
382 | *upper += carry_shift; | ||
383 | } | ||
384 | |||
385 | static void tsi108_stat_carry(struct net_device *dev) | ||
386 | { | ||
387 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
388 | u32 carry1, carry2; | ||
389 | |||
390 | spin_lock_irq(&data->misclock); | ||
391 | |||
392 | carry1 = TSI_READ(TSI108_STAT_CARRY1); | ||
393 | carry2 = TSI_READ(TSI108_STAT_CARRY2); | ||
394 | |||
395 | TSI_WRITE(TSI108_STAT_CARRY1, carry1); | ||
396 | TSI_WRITE(TSI108_STAT_CARRY2, carry2); | ||
397 | |||
398 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES, | ||
399 | TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes); | ||
400 | |||
401 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS, | ||
402 | TSI108_STAT_RXPKTS_CARRY, | ||
403 | &data->stats.rx_packets); | ||
404 | |||
405 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS, | ||
406 | TSI108_STAT_RXFCS_CARRY, &data->rx_fcs); | ||
407 | |||
408 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST, | ||
409 | TSI108_STAT_RXMCAST_CARRY, | ||
410 | &data->stats.multicast); | ||
411 | |||
412 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN, | ||
413 | TSI108_STAT_RXALIGN_CARRY, | ||
414 | &data->stats.rx_frame_errors); | ||
415 | |||
416 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH, | ||
417 | TSI108_STAT_RXLENGTH_CARRY, | ||
418 | &data->stats.rx_length_errors); | ||
419 | |||
420 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT, | ||
421 | TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns); | ||
422 | |||
423 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO, | ||
424 | TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns); | ||
425 | |||
426 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG, | ||
427 | TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs); | ||
428 | |||
429 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER, | ||
430 | TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs); | ||
431 | |||
432 | tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP, | ||
433 | TSI108_STAT_RXDROP_CARRY, | ||
434 | &data->stats.rx_missed_errors); | ||
435 | |||
436 | tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES, | ||
437 | TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes); | ||
438 | |||
439 | tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS, | ||
440 | TSI108_STAT_TXPKTS_CARRY, | ||
441 | &data->stats.tx_packets); | ||
442 | |||
443 | tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF, | ||
444 | TSI108_STAT_TXEXDEF_CARRY, | ||
445 | &data->stats.tx_aborted_errors); | ||
446 | |||
447 | tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL, | ||
448 | TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort); | ||
449 | |||
450 | tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL, | ||
451 | TSI108_STAT_TXTCOL_CARRY, | ||
452 | &data->stats.collisions); | ||
453 | |||
454 | tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE, | ||
455 | TSI108_STAT_TXPAUSEDROP_CARRY, | ||
456 | &data->tx_pause_drop); | ||
457 | |||
458 | spin_unlock_irq(&data->misclock); | ||
459 | } | ||
460 | |||
461 | /* Read a stat counter atomically with respect to carries. | ||
462 | * data->misclock must be held. | ||
463 | */ | ||
464 | static inline unsigned long | ||
465 | tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit, | ||
466 | int carry_shift, unsigned long *upper) | ||
467 | { | ||
468 | int carryreg; | ||
469 | unsigned long val; | ||
470 | |||
471 | if (reg < 0xb0) | ||
472 | carryreg = TSI108_STAT_CARRY1; | ||
473 | else | ||
474 | carryreg = TSI108_STAT_CARRY2; | ||
475 | |||
476 | again: | ||
477 | val = TSI_READ(reg) | *upper; | ||
478 | |||
479 | /* Check to see if it overflowed, but the interrupt hasn't | ||
480 | * been serviced yet. If so, handle the carry here, and | ||
481 | * try again. | ||
482 | */ | ||
483 | |||
484 | if (unlikely(TSI_READ(carryreg) & carry_bit)) { | ||
485 | *upper += carry_shift; | ||
486 | TSI_WRITE(carryreg, carry_bit); | ||
487 | goto again; | ||
488 | } | ||
489 | |||
490 | return val; | ||
491 | } | ||
492 | |||
493 | static struct net_device_stats *tsi108_get_stats(struct net_device *dev) | ||
494 | { | ||
495 | unsigned long excol; | ||
496 | |||
497 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
498 | spin_lock_irq(&data->misclock); | ||
499 | |||
500 | data->tmpstats.rx_packets = | ||
501 | tsi108_read_stat(data, TSI108_STAT_RXPKTS, | ||
502 | TSI108_STAT_CARRY1_RXPKTS, | ||
503 | TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets); | ||
504 | |||
505 | data->tmpstats.tx_packets = | ||
506 | tsi108_read_stat(data, TSI108_STAT_TXPKTS, | ||
507 | TSI108_STAT_CARRY2_TXPKTS, | ||
508 | TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets); | ||
509 | |||
510 | data->tmpstats.rx_bytes = | ||
511 | tsi108_read_stat(data, TSI108_STAT_RXBYTES, | ||
512 | TSI108_STAT_CARRY1_RXBYTES, | ||
513 | TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes); | ||
514 | |||
515 | data->tmpstats.tx_bytes = | ||
516 | tsi108_read_stat(data, TSI108_STAT_TXBYTES, | ||
517 | TSI108_STAT_CARRY2_TXBYTES, | ||
518 | TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes); | ||
519 | |||
520 | data->tmpstats.multicast = | ||
521 | tsi108_read_stat(data, TSI108_STAT_RXMCAST, | ||
522 | TSI108_STAT_CARRY1_RXMCAST, | ||
523 | TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast); | ||
524 | |||
525 | excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL, | ||
526 | TSI108_STAT_CARRY2_TXEXCOL, | ||
527 | TSI108_STAT_TXEXCOL_CARRY, | ||
528 | &data->tx_coll_abort); | ||
529 | |||
530 | data->tmpstats.collisions = | ||
531 | tsi108_read_stat(data, TSI108_STAT_TXTCOL, | ||
532 | TSI108_STAT_CARRY2_TXTCOL, | ||
533 | TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions); | ||
534 | |||
535 | data->tmpstats.collisions += excol; | ||
536 | |||
537 | data->tmpstats.rx_length_errors = | ||
538 | tsi108_read_stat(data, TSI108_STAT_RXLENGTH, | ||
539 | TSI108_STAT_CARRY1_RXLENGTH, | ||
540 | TSI108_STAT_RXLENGTH_CARRY, | ||
541 | &data->stats.rx_length_errors); | ||
542 | |||
543 | data->tmpstats.rx_length_errors += | ||
544 | tsi108_read_stat(data, TSI108_STAT_RXRUNT, | ||
545 | TSI108_STAT_CARRY1_RXRUNT, | ||
546 | TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns); | ||
547 | |||
548 | data->tmpstats.rx_length_errors += | ||
549 | tsi108_read_stat(data, TSI108_STAT_RXJUMBO, | ||
550 | TSI108_STAT_CARRY1_RXJUMBO, | ||
551 | TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns); | ||
552 | |||
553 | data->tmpstats.rx_frame_errors = | ||
554 | tsi108_read_stat(data, TSI108_STAT_RXALIGN, | ||
555 | TSI108_STAT_CARRY1_RXALIGN, | ||
556 | TSI108_STAT_RXALIGN_CARRY, | ||
557 | &data->stats.rx_frame_errors); | ||
558 | |||
559 | data->tmpstats.rx_frame_errors += | ||
560 | tsi108_read_stat(data, TSI108_STAT_RXFCS, | ||
561 | TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY, | ||
562 | &data->rx_fcs); | ||
563 | |||
564 | data->tmpstats.rx_frame_errors += | ||
565 | tsi108_read_stat(data, TSI108_STAT_RXFRAG, | ||
566 | TSI108_STAT_CARRY1_RXFRAG, | ||
567 | TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs); | ||
568 | |||
569 | data->tmpstats.rx_missed_errors = | ||
570 | tsi108_read_stat(data, TSI108_STAT_RXDROP, | ||
571 | TSI108_STAT_CARRY1_RXDROP, | ||
572 | TSI108_STAT_RXDROP_CARRY, | ||
573 | &data->stats.rx_missed_errors); | ||
574 | |||
575 | /* These three are maintained by software. */ | ||
576 | data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors; | ||
577 | data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors; | ||
578 | |||
579 | data->tmpstats.tx_aborted_errors = | ||
580 | tsi108_read_stat(data, TSI108_STAT_TXEXDEF, | ||
581 | TSI108_STAT_CARRY2_TXEXDEF, | ||
582 | TSI108_STAT_TXEXDEF_CARRY, | ||
583 | &data->stats.tx_aborted_errors); | ||
584 | |||
585 | data->tmpstats.tx_aborted_errors += | ||
586 | tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP, | ||
587 | TSI108_STAT_CARRY2_TXPAUSE, | ||
588 | TSI108_STAT_TXPAUSEDROP_CARRY, | ||
589 | &data->tx_pause_drop); | ||
590 | |||
591 | data->tmpstats.tx_aborted_errors += excol; | ||
592 | |||
593 | data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors; | ||
594 | data->tmpstats.rx_errors = data->tmpstats.rx_length_errors + | ||
595 | data->tmpstats.rx_crc_errors + | ||
596 | data->tmpstats.rx_frame_errors + | ||
597 | data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors; | ||
598 | |||
599 | spin_unlock_irq(&data->misclock); | ||
600 | return &data->tmpstats; | ||
601 | } | ||
602 | |||
603 | static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev) | ||
604 | { | ||
605 | TSI_WRITE(TSI108_EC_RXQ_PTRHIGH, | ||
606 | TSI108_EC_RXQ_PTRHIGH_VALID); | ||
607 | |||
608 | TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO | ||
609 | | TSI108_EC_RXCTRL_QUEUE0); | ||
610 | } | ||
611 | |||
612 | static void tsi108_restart_tx(struct tsi108_prv_data * data) | ||
613 | { | ||
614 | TSI_WRITE(TSI108_EC_TXQ_PTRHIGH, | ||
615 | TSI108_EC_TXQ_PTRHIGH_VALID); | ||
616 | |||
617 | TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT | | ||
618 | TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0); | ||
619 | } | ||
620 | |||
621 | /* txlock must be held by caller, with IRQs disabled, and | ||
622 | * with permission to re-enable them when the lock is dropped. | ||
623 | */ | ||
624 | static void tsi108_complete_tx(struct net_device *dev) | ||
625 | { | ||
626 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
627 | int tx; | ||
628 | struct sk_buff *skb; | ||
629 | int release = 0; | ||
630 | |||
631 | while (!data->txfree || data->txhead != data->txtail) { | ||
632 | tx = data->txtail; | ||
633 | |||
634 | if (data->txring[tx].misc & TSI108_TX_OWN) | ||
635 | break; | ||
636 | |||
637 | skb = data->txskbs[tx]; | ||
638 | |||
639 | if (!(data->txring[tx].misc & TSI108_TX_OK)) | ||
640 | printk("%s: bad tx packet, misc %x\n", | ||
641 | dev->name, data->txring[tx].misc); | ||
642 | |||
643 | data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN; | ||
644 | data->txfree++; | ||
645 | |||
646 | if (data->txring[tx].misc & TSI108_TX_EOF) { | ||
647 | dev_kfree_skb_any(skb); | ||
648 | release++; | ||
649 | } | ||
650 | } | ||
651 | |||
652 | if (release) { | ||
653 | if (is_valid_ether_addr(dev->dev_addr) && data->link_up) | ||
654 | netif_wake_queue(dev); | ||
655 | } | ||
656 | } | ||
657 | |||
658 | static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev) | ||
659 | { | ||
660 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
661 | int frags = skb_shinfo(skb)->nr_frags + 1; | ||
662 | int i; | ||
663 | |||
664 | if (!data->phy_ok && net_ratelimit()) | ||
665 | printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name); | ||
666 | |||
667 | if (!data->link_up) { | ||
668 | printk(KERN_ERR "%s: Transmit while link is down!\n", | ||
669 | dev->name); | ||
670 | netif_stop_queue(dev); | ||
671 | return NETDEV_TX_BUSY; | ||
672 | } | ||
673 | |||
674 | if (data->txfree < MAX_SKB_FRAGS + 1) { | ||
675 | netif_stop_queue(dev); | ||
676 | |||
677 | if (net_ratelimit()) | ||
678 | printk(KERN_ERR "%s: Transmit with full tx ring!\n", | ||
679 | dev->name); | ||
680 | return NETDEV_TX_BUSY; | ||
681 | } | ||
682 | |||
683 | if (data->txfree - frags < MAX_SKB_FRAGS + 1) { | ||
684 | netif_stop_queue(dev); | ||
685 | } | ||
686 | |||
687 | spin_lock_irq(&data->txlock); | ||
688 | |||
689 | for (i = 0; i < frags; i++) { | ||
690 | int misc = 0; | ||
691 | int tx = data->txhead; | ||
692 | |||
693 | /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with | ||
694 | * the interrupt bit. TX descriptor-complete interrupts are | ||
695 | * enabled when the queue fills up, and masked when there is | ||
696 | * still free space. This way, when saturating the outbound | ||
697 | * link, the tx interrupts are kept to a reasonable level. | ||
698 | * When the queue is not full, reclamation of skbs still occurs | ||
699 | * as new packets are transmitted, or on a queue-empty | ||
700 | * interrupt. | ||
701 | */ | ||
702 | |||
703 | if ((tx % TSI108_TX_INT_FREQ == 0) && | ||
704 | ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ)) | ||
705 | misc = TSI108_TX_INT; | ||
706 | |||
707 | data->txskbs[tx] = skb; | ||
708 | |||
709 | if (i == 0) { | ||
710 | data->txring[tx].buf0 = dma_map_single(NULL, skb->data, | ||
711 | skb->len - skb->data_len, DMA_TO_DEVICE); | ||
712 | data->txring[tx].len = skb->len - skb->data_len; | ||
713 | misc |= TSI108_TX_SOF; | ||
714 | } else { | ||
715 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; | ||
716 | |||
717 | data->txring[tx].buf0 = | ||
718 | dma_map_page(NULL, frag->page, frag->page_offset, | ||
719 | frag->size, DMA_TO_DEVICE); | ||
720 | data->txring[tx].len = frag->size; | ||
721 | } | ||
722 | |||
723 | if (i == frags - 1) | ||
724 | misc |= TSI108_TX_EOF; | ||
725 | |||
726 | if (netif_msg_pktdata(data)) { | ||
727 | int i; | ||
728 | printk("%s: Tx Frame contents (%d)\n", dev->name, | ||
729 | skb->len); | ||
730 | for (i = 0; i < skb->len; i++) | ||
731 | printk(" %2.2x", skb->data[i]); | ||
732 | printk(".\n"); | ||
733 | } | ||
734 | data->txring[tx].misc = misc | TSI108_TX_OWN; | ||
735 | |||
736 | data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN; | ||
737 | data->txfree--; | ||
738 | } | ||
739 | |||
740 | tsi108_complete_tx(dev); | ||
741 | |||
742 | /* This must be done after the check for completed tx descriptors, | ||
743 | * so that the tail pointer is correct. | ||
744 | */ | ||
745 | |||
746 | if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0)) | ||
747 | tsi108_restart_tx(data); | ||
748 | |||
749 | spin_unlock_irq(&data->txlock); | ||
750 | return NETDEV_TX_OK; | ||
751 | } | ||
752 | |||
753 | static int tsi108_complete_rx(struct net_device *dev, int budget) | ||
754 | { | ||
755 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
756 | int done = 0; | ||
757 | |||
758 | while (data->rxfree && done != budget) { | ||
759 | int rx = data->rxtail; | ||
760 | struct sk_buff *skb; | ||
761 | |||
762 | if (data->rxring[rx].misc & TSI108_RX_OWN) | ||
763 | break; | ||
764 | |||
765 | skb = data->rxskbs[rx]; | ||
766 | data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN; | ||
767 | data->rxfree--; | ||
768 | done++; | ||
769 | |||
770 | if (data->rxring[rx].misc & TSI108_RX_BAD) { | ||
771 | spin_lock_irq(&data->misclock); | ||
772 | |||
773 | if (data->rxring[rx].misc & TSI108_RX_CRC) | ||
774 | data->stats.rx_crc_errors++; | ||
775 | if (data->rxring[rx].misc & TSI108_RX_OVER) | ||
776 | data->stats.rx_fifo_errors++; | ||
777 | |||
778 | spin_unlock_irq(&data->misclock); | ||
779 | |||
780 | dev_kfree_skb_any(skb); | ||
781 | continue; | ||
782 | } | ||
783 | if (netif_msg_pktdata(data)) { | ||
784 | int i; | ||
785 | printk("%s: Rx Frame contents (%d)\n", | ||
786 | dev->name, data->rxring[rx].len); | ||
787 | for (i = 0; i < data->rxring[rx].len; i++) | ||
788 | printk(" %2.2x", skb->data[i]); | ||
789 | printk(".\n"); | ||
790 | } | ||
791 | |||
792 | skb->dev = dev; | ||
793 | skb_put(skb, data->rxring[rx].len); | ||
794 | skb->protocol = eth_type_trans(skb, dev); | ||
795 | netif_receive_skb(skb); | ||
796 | dev->last_rx = jiffies; | ||
797 | } | ||
798 | |||
799 | return done; | ||
800 | } | ||
801 | |||
802 | static int tsi108_refill_rx(struct net_device *dev, int budget) | ||
803 | { | ||
804 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
805 | int done = 0; | ||
806 | |||
807 | while (data->rxfree != TSI108_RXRING_LEN && done != budget) { | ||
808 | int rx = data->rxhead; | ||
809 | struct sk_buff *skb; | ||
810 | |||
811 | data->rxskbs[rx] = skb = dev_alloc_skb(TSI108_RXBUF_SIZE + 2); | ||
812 | if (!skb) | ||
813 | break; | ||
814 | |||
815 | skb_reserve(skb, 2); /* Align the data on a 4-byte boundary. */ | ||
816 | |||
817 | data->rxring[rx].buf0 = dma_map_single(NULL, skb->data, | ||
818 | TSI108_RX_SKB_SIZE, | ||
819 | DMA_FROM_DEVICE); | ||
820 | |||
821 | /* Sometimes the hardware sets blen to zero after packet | ||
822 | * reception, even though the manual says that it's only ever | ||
823 | * modified by the driver. | ||
824 | */ | ||
825 | |||
826 | data->rxring[rx].blen = TSI108_RX_SKB_SIZE; | ||
827 | data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT; | ||
828 | |||
829 | data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN; | ||
830 | data->rxfree++; | ||
831 | done++; | ||
832 | } | ||
833 | |||
834 | if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) & | ||
835 | TSI108_EC_RXSTAT_QUEUE0)) | ||
836 | tsi108_restart_rx(data, dev); | ||
837 | |||
838 | return done; | ||
839 | } | ||
840 | |||
841 | static int tsi108_poll(struct net_device *dev, int *budget) | ||
842 | { | ||
843 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
844 | u32 estat = TSI_READ(TSI108_EC_RXESTAT); | ||
845 | u32 intstat = TSI_READ(TSI108_EC_INTSTAT); | ||
846 | int total_budget = min(*budget, dev->quota); | ||
847 | int num_received = 0, num_filled = 0, budget_used; | ||
848 | |||
849 | intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH | | ||
850 | TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT; | ||
851 | |||
852 | TSI_WRITE(TSI108_EC_RXESTAT, estat); | ||
853 | TSI_WRITE(TSI108_EC_INTSTAT, intstat); | ||
854 | |||
855 | if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT)) | ||
856 | num_received = tsi108_complete_rx(dev, total_budget); | ||
857 | |||
858 | /* This should normally fill no more slots than the number of | ||
859 | * packets received in tsi108_complete_rx(). The exception | ||
860 | * is when we previously ran out of memory for RX SKBs. In that | ||
861 | * case, it's helpful to obey the budget, not only so that the | ||
862 | * CPU isn't hogged, but so that memory (which may still be low) | ||
863 | * is not hogged by one device. | ||
864 | * | ||
865 | * A work unit is considered to be two SKBs to allow us to catch | ||
866 | * up when the ring has shrunk due to out-of-memory but we're | ||
867 | * still removing the full budget's worth of packets each time. | ||
868 | */ | ||
869 | |||
870 | if (data->rxfree < TSI108_RXRING_LEN) | ||
871 | num_filled = tsi108_refill_rx(dev, total_budget * 2); | ||
872 | |||
873 | if (intstat & TSI108_INT_RXERROR) { | ||
874 | u32 err = TSI_READ(TSI108_EC_RXERR); | ||
875 | TSI_WRITE(TSI108_EC_RXERR, err); | ||
876 | |||
877 | if (err) { | ||
878 | if (net_ratelimit()) | ||
879 | printk(KERN_DEBUG "%s: RX error %x\n", | ||
880 | dev->name, err); | ||
881 | |||
882 | if (!(TSI_READ(TSI108_EC_RXSTAT) & | ||
883 | TSI108_EC_RXSTAT_QUEUE0)) | ||
884 | tsi108_restart_rx(data, dev); | ||
885 | } | ||
886 | } | ||
887 | |||
888 | if (intstat & TSI108_INT_RXOVERRUN) { | ||
889 | spin_lock_irq(&data->misclock); | ||
890 | data->stats.rx_fifo_errors++; | ||
891 | spin_unlock_irq(&data->misclock); | ||
892 | } | ||
893 | |||
894 | budget_used = max(num_received, num_filled / 2); | ||
895 | |||
896 | *budget -= budget_used; | ||
897 | dev->quota -= budget_used; | ||
898 | |||
899 | if (budget_used != total_budget) { | ||
900 | data->rxpending = 0; | ||
901 | netif_rx_complete(dev); | ||
902 | |||
903 | TSI_WRITE(TSI108_EC_INTMASK, | ||
904 | TSI_READ(TSI108_EC_INTMASK) | ||
905 | & ~(TSI108_INT_RXQUEUE0 | ||
906 | | TSI108_INT_RXTHRESH | | ||
907 | TSI108_INT_RXOVERRUN | | ||
908 | TSI108_INT_RXERROR | | ||
909 | TSI108_INT_RXWAIT)); | ||
910 | |||
911 | /* IRQs are level-triggered, so no need to re-check */ | ||
912 | return 0; | ||
913 | } else { | ||
914 | data->rxpending = 1; | ||
915 | } | ||
916 | |||
917 | return 1; | ||
918 | } | ||
919 | |||
920 | static void tsi108_rx_int(struct net_device *dev) | ||
921 | { | ||
922 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
923 | |||
924 | /* A race could cause dev to already be scheduled, so it's not an | ||
925 | * error if that happens (and interrupts shouldn't be re-masked, | ||
926 | * because that can cause harmful races, if poll has already | ||
927 | * unmasked them but not cleared LINK_STATE_SCHED). | ||
928 | * | ||
929 | * This can happen if this code races with tsi108_poll(), which masks | ||
930 | * the interrupts after tsi108_irq_one() read the mask, but before | ||
931 | * netif_rx_schedule is called. It could also happen due to calls | ||
932 | * from tsi108_check_rxring(). | ||
933 | */ | ||
934 | |||
935 | if (netif_rx_schedule_prep(dev)) { | ||
936 | /* Mask, rather than ack, the receive interrupts. The ack | ||
937 | * will happen in tsi108_poll(). | ||
938 | */ | ||
939 | |||
940 | TSI_WRITE(TSI108_EC_INTMASK, | ||
941 | TSI_READ(TSI108_EC_INTMASK) | | ||
942 | TSI108_INT_RXQUEUE0 | ||
943 | | TSI108_INT_RXTHRESH | | ||
944 | TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | | ||
945 | TSI108_INT_RXWAIT); | ||
946 | __netif_rx_schedule(dev); | ||
947 | } else { | ||
948 | if (!netif_running(dev)) { | ||
949 | /* This can happen if an interrupt occurs while the | ||
950 | * interface is being brought down, as the START | ||
951 | * bit is cleared before the stop function is called. | ||
952 | * | ||
953 | * In this case, the interrupts must be masked, or | ||
954 | * they will continue indefinitely. | ||
955 | * | ||
956 | * There's a race here if the interface is brought down | ||
957 | * and then up in rapid succession, as the device could | ||
958 | * be made running after the above check and before | ||
959 | * the masking below. This will only happen if the IRQ | ||
960 | * thread has a lower priority than the task brining | ||
961 | * up the interface. Fixing this race would likely | ||
962 | * require changes in generic code. | ||
963 | */ | ||
964 | |||
965 | TSI_WRITE(TSI108_EC_INTMASK, | ||
966 | TSI_READ | ||
967 | (TSI108_EC_INTMASK) | | ||
968 | TSI108_INT_RXQUEUE0 | | ||
969 | TSI108_INT_RXTHRESH | | ||
970 | TSI108_INT_RXOVERRUN | | ||
971 | TSI108_INT_RXERROR | | ||
972 | TSI108_INT_RXWAIT); | ||
973 | } | ||
974 | } | ||
975 | } | ||
976 | |||
977 | /* If the RX ring has run out of memory, try periodically | ||
978 | * to allocate some more, as otherwise poll would never | ||
979 | * get called (apart from the initial end-of-queue condition). | ||
980 | * | ||
981 | * This is called once per second (by default) from the thread. | ||
982 | */ | ||
983 | |||
984 | static void tsi108_check_rxring(struct net_device *dev) | ||
985 | { | ||
986 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
987 | |||
988 | /* A poll is scheduled, as opposed to caling tsi108_refill_rx | ||
989 | * directly, so as to keep the receive path single-threaded | ||
990 | * (and thus not needing a lock). | ||
991 | */ | ||
992 | |||
993 | if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4) | ||
994 | tsi108_rx_int(dev); | ||
995 | } | ||
996 | |||
997 | static void tsi108_tx_int(struct net_device *dev) | ||
998 | { | ||
999 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
1000 | u32 estat = TSI_READ(TSI108_EC_TXESTAT); | ||
1001 | |||
1002 | TSI_WRITE(TSI108_EC_TXESTAT, estat); | ||
1003 | TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 | | ||
1004 | TSI108_INT_TXIDLE | TSI108_INT_TXERROR); | ||
1005 | if (estat & TSI108_EC_TXESTAT_Q0_ERR) { | ||
1006 | u32 err = TSI_READ(TSI108_EC_TXERR); | ||
1007 | TSI_WRITE(TSI108_EC_TXERR, err); | ||
1008 | |||
1009 | if (err && net_ratelimit()) | ||
1010 | printk(KERN_ERR "%s: TX error %x\n", dev->name, err); | ||
1011 | } | ||
1012 | |||
1013 | if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) { | ||
1014 | spin_lock(&data->txlock); | ||
1015 | tsi108_complete_tx(dev); | ||
1016 | spin_unlock(&data->txlock); | ||
1017 | } | ||
1018 | } | ||
1019 | |||
1020 | |||
1021 | static irqreturn_t tsi108_irq(int irq, void *dev_id) | ||
1022 | { | ||
1023 | struct net_device *dev = dev_id; | ||
1024 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
1025 | u32 stat = TSI_READ(TSI108_EC_INTSTAT); | ||
1026 | |||
1027 | if (!(stat & TSI108_INT_ANY)) | ||
1028 | return IRQ_NONE; /* Not our interrupt */ | ||
1029 | |||
1030 | stat &= ~TSI_READ(TSI108_EC_INTMASK); | ||
1031 | |||
1032 | if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE | | ||
1033 | TSI108_INT_TXERROR)) | ||
1034 | tsi108_tx_int(dev); | ||
1035 | if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH | | ||
1036 | TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN | | ||
1037 | TSI108_INT_RXERROR)) | ||
1038 | tsi108_rx_int(dev); | ||
1039 | |||
1040 | if (stat & TSI108_INT_SFN) { | ||
1041 | if (net_ratelimit()) | ||
1042 | printk(KERN_DEBUG "%s: SFN error\n", dev->name); | ||
1043 | TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN); | ||
1044 | } | ||
1045 | |||
1046 | if (stat & TSI108_INT_STATCARRY) { | ||
1047 | tsi108_stat_carry(dev); | ||
1048 | TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY); | ||
1049 | } | ||
1050 | |||
1051 | return IRQ_HANDLED; | ||
1052 | } | ||
1053 | |||
1054 | static void tsi108_stop_ethernet(struct net_device *dev) | ||
1055 | { | ||
1056 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
1057 | int i = 1000; | ||
1058 | /* Disable all TX and RX queues ... */ | ||
1059 | TSI_WRITE(TSI108_EC_TXCTRL, 0); | ||
1060 | TSI_WRITE(TSI108_EC_RXCTRL, 0); | ||
1061 | |||
1062 | /* ...and wait for them to become idle */ | ||
1063 | while(i--) { | ||
1064 | if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE)) | ||
1065 | break; | ||
1066 | udelay(10); | ||
1067 | } | ||
1068 | i = 1000; | ||
1069 | while(i--){ | ||
1070 | if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE)) | ||
1071 | return; | ||
1072 | udelay(10); | ||
1073 | } | ||
1074 | printk(KERN_ERR "%s function time out \n", __FUNCTION__); | ||
1075 | } | ||
1076 | |||
1077 | static void tsi108_reset_ether(struct tsi108_prv_data * data) | ||
1078 | { | ||
1079 | TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST); | ||
1080 | udelay(100); | ||
1081 | TSI_WRITE(TSI108_MAC_CFG1, 0); | ||
1082 | |||
1083 | TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST); | ||
1084 | udelay(100); | ||
1085 | TSI_WRITE(TSI108_EC_PORTCTRL, | ||
1086 | TSI_READ(TSI108_EC_PORTCTRL) & | ||
1087 | ~TSI108_EC_PORTCTRL_STATRST); | ||
1088 | |||
1089 | TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST); | ||
1090 | udelay(100); | ||
1091 | TSI_WRITE(TSI108_EC_TXCFG, | ||
1092 | TSI_READ(TSI108_EC_TXCFG) & | ||
1093 | ~TSI108_EC_TXCFG_RST); | ||
1094 | |||
1095 | TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST); | ||
1096 | udelay(100); | ||
1097 | TSI_WRITE(TSI108_EC_RXCFG, | ||
1098 | TSI_READ(TSI108_EC_RXCFG) & | ||
1099 | ~TSI108_EC_RXCFG_RST); | ||
1100 | |||
1101 | TSI_WRITE(TSI108_MAC_MII_MGMT_CFG, | ||
1102 | TSI_READ(TSI108_MAC_MII_MGMT_CFG) | | ||
1103 | TSI108_MAC_MII_MGMT_RST); | ||
1104 | udelay(100); | ||
1105 | TSI_WRITE(TSI108_MAC_MII_MGMT_CFG, | ||
1106 | (TSI_READ(TSI108_MAC_MII_MGMT_CFG) & | ||
1107 | ~(TSI108_MAC_MII_MGMT_RST | | ||
1108 | TSI108_MAC_MII_MGMT_CLK)) | 0x07); | ||
1109 | } | ||
1110 | |||
1111 | static int tsi108_get_mac(struct net_device *dev) | ||
1112 | { | ||
1113 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
1114 | u32 word1 = TSI_READ(TSI108_MAC_ADDR1); | ||
1115 | u32 word2 = TSI_READ(TSI108_MAC_ADDR2); | ||
1116 | |||
1117 | /* Note that the octets are reversed from what the manual says, | ||
1118 | * producing an even weirder ordering... | ||
1119 | */ | ||
1120 | if (word2 == 0 && word1 == 0) { | ||
1121 | dev->dev_addr[0] = 0x00; | ||
1122 | dev->dev_addr[1] = 0x06; | ||
1123 | dev->dev_addr[2] = 0xd2; | ||
1124 | dev->dev_addr[3] = 0x00; | ||
1125 | dev->dev_addr[4] = 0x00; | ||
1126 | if (0x8 == data->phy) | ||
1127 | dev->dev_addr[5] = 0x01; | ||
1128 | else | ||
1129 | dev->dev_addr[5] = 0x02; | ||
1130 | |||
1131 | word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24); | ||
1132 | |||
1133 | word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) | | ||
1134 | (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24); | ||
1135 | |||
1136 | TSI_WRITE(TSI108_MAC_ADDR1, word1); | ||
1137 | TSI_WRITE(TSI108_MAC_ADDR2, word2); | ||
1138 | } else { | ||
1139 | dev->dev_addr[0] = (word2 >> 16) & 0xff; | ||
1140 | dev->dev_addr[1] = (word2 >> 24) & 0xff; | ||
1141 | dev->dev_addr[2] = (word1 >> 0) & 0xff; | ||
1142 | dev->dev_addr[3] = (word1 >> 8) & 0xff; | ||
1143 | dev->dev_addr[4] = (word1 >> 16) & 0xff; | ||
1144 | dev->dev_addr[5] = (word1 >> 24) & 0xff; | ||
1145 | } | ||
1146 | |||
1147 | if (!is_valid_ether_addr(dev->dev_addr)) { | ||
1148 | printk("KERN_ERR: word1: %08x, word2: %08x\n", word1, word2); | ||
1149 | return -EINVAL; | ||
1150 | } | ||
1151 | |||
1152 | return 0; | ||
1153 | } | ||
1154 | |||
1155 | static int tsi108_set_mac(struct net_device *dev, void *addr) | ||
1156 | { | ||
1157 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
1158 | u32 word1, word2; | ||
1159 | int i; | ||
1160 | |||
1161 | if (!is_valid_ether_addr(addr)) | ||
1162 | return -EINVAL; | ||
1163 | |||
1164 | for (i = 0; i < 6; i++) | ||
1165 | /* +2 is for the offset of the HW addr type */ | ||
1166 | dev->dev_addr[i] = ((unsigned char *)addr)[i + 2]; | ||
1167 | |||
1168 | word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24); | ||
1169 | |||
1170 | word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) | | ||
1171 | (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24); | ||
1172 | |||
1173 | spin_lock_irq(&data->misclock); | ||
1174 | TSI_WRITE(TSI108_MAC_ADDR1, word1); | ||
1175 | TSI_WRITE(TSI108_MAC_ADDR2, word2); | ||
1176 | spin_lock(&data->txlock); | ||
1177 | |||
1178 | if (data->txfree && data->link_up) | ||
1179 | netif_wake_queue(dev); | ||
1180 | |||
1181 | spin_unlock(&data->txlock); | ||
1182 | spin_unlock_irq(&data->misclock); | ||
1183 | return 0; | ||
1184 | } | ||
1185 | |||
1186 | /* Protected by dev->xmit_lock. */ | ||
1187 | static void tsi108_set_rx_mode(struct net_device *dev) | ||
1188 | { | ||
1189 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
1190 | u32 rxcfg = TSI_READ(TSI108_EC_RXCFG); | ||
1191 | |||
1192 | if (dev->flags & IFF_PROMISC) { | ||
1193 | rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH); | ||
1194 | rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE; | ||
1195 | goto out; | ||
1196 | } | ||
1197 | |||
1198 | rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE); | ||
1199 | |||
1200 | if (dev->flags & IFF_ALLMULTI || dev->mc_count) { | ||
1201 | int i; | ||
1202 | struct dev_mc_list *mc = dev->mc_list; | ||
1203 | rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH; | ||
1204 | |||
1205 | memset(data->mc_hash, 0, sizeof(data->mc_hash)); | ||
1206 | |||
1207 | while (mc) { | ||
1208 | u32 hash, crc; | ||
1209 | |||
1210 | if (mc->dmi_addrlen == 6) { | ||
1211 | crc = ether_crc(6, mc->dmi_addr); | ||
1212 | hash = crc >> 23; | ||
1213 | |||
1214 | __set_bit(hash, &data->mc_hash[0]); | ||
1215 | } else { | ||
1216 | printk(KERN_ERR | ||
1217 | "%s: got multicast address of length %d " | ||
1218 | "instead of 6.\n", dev->name, | ||
1219 | mc->dmi_addrlen); | ||
1220 | } | ||
1221 | |||
1222 | mc = mc->next; | ||
1223 | } | ||
1224 | |||
1225 | TSI_WRITE(TSI108_EC_HASHADDR, | ||
1226 | TSI108_EC_HASHADDR_AUTOINC | | ||
1227 | TSI108_EC_HASHADDR_MCAST); | ||
1228 | |||
1229 | for (i = 0; i < 16; i++) { | ||
1230 | /* The manual says that the hardware may drop | ||
1231 | * back-to-back writes to the data register. | ||
1232 | */ | ||
1233 | udelay(1); | ||
1234 | TSI_WRITE(TSI108_EC_HASHDATA, | ||
1235 | data->mc_hash[i]); | ||
1236 | } | ||
1237 | } | ||
1238 | |||
1239 | out: | ||
1240 | TSI_WRITE(TSI108_EC_RXCFG, rxcfg); | ||
1241 | } | ||
1242 | |||
1243 | static void tsi108_init_phy(struct net_device *dev) | ||
1244 | { | ||
1245 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
1246 | u32 i = 0; | ||
1247 | u16 phyval = 0; | ||
1248 | unsigned long flags; | ||
1249 | |||
1250 | spin_lock_irqsave(&phy_lock, flags); | ||
1251 | |||
1252 | tsi108_write_mii(data, MII_BMCR, BMCR_RESET); | ||
1253 | while (i--){ | ||
1254 | if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET)) | ||
1255 | break; | ||
1256 | udelay(10); | ||
1257 | } | ||
1258 | if (i == 0) | ||
1259 | printk(KERN_ERR "%s function time out \n", __FUNCTION__); | ||
1260 | |||
1261 | #if (TSI108_PHY_TYPE == PHY_BCM54XX) /* Broadcom BCM54xx PHY */ | ||
1262 | tsi108_write_mii(data, 0x09, 0x0300); | ||
1263 | tsi108_write_mii(data, 0x10, 0x1020); | ||
1264 | tsi108_write_mii(data, 0x1c, 0x8c00); | ||
1265 | #endif | ||
1266 | |||
1267 | tsi108_write_mii(data, | ||
1268 | MII_BMCR, | ||
1269 | BMCR_ANENABLE | BMCR_ANRESTART); | ||
1270 | while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART) | ||
1271 | cpu_relax(); | ||
1272 | |||
1273 | /* Set G/MII mode and receive clock select in TBI control #2. The | ||
1274 | * second port won't work if this isn't done, even though we don't | ||
1275 | * use TBI mode. | ||
1276 | */ | ||
1277 | |||
1278 | tsi108_write_tbi(data, 0x11, 0x30); | ||
1279 | |||
1280 | /* FIXME: It seems to take more than 2 back-to-back reads to the | ||
1281 | * PHY_STAT register before the link up status bit is set. | ||
1282 | */ | ||
1283 | |||
1284 | data->link_up = 1; | ||
1285 | |||
1286 | while (!((phyval = tsi108_read_mii(data, MII_BMSR)) & | ||
1287 | BMSR_LSTATUS)) { | ||
1288 | if (i++ > (MII_READ_DELAY / 10)) { | ||
1289 | data->link_up = 0; | ||
1290 | break; | ||
1291 | } | ||
1292 | spin_unlock_irqrestore(&phy_lock, flags); | ||
1293 | msleep(10); | ||
1294 | spin_lock_irqsave(&phy_lock, flags); | ||
1295 | } | ||
1296 | |||
1297 | printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval); | ||
1298 | data->phy_ok = 1; | ||
1299 | data->init_media = 1; | ||
1300 | spin_unlock_irqrestore(&phy_lock, flags); | ||
1301 | } | ||
1302 | |||
1303 | static void tsi108_kill_phy(struct net_device *dev) | ||
1304 | { | ||
1305 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
1306 | unsigned long flags; | ||
1307 | |||
1308 | spin_lock_irqsave(&phy_lock, flags); | ||
1309 | tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN); | ||
1310 | data->phy_ok = 0; | ||
1311 | spin_unlock_irqrestore(&phy_lock, flags); | ||
1312 | } | ||
1313 | |||
1314 | static int tsi108_open(struct net_device *dev) | ||
1315 | { | ||
1316 | int i; | ||
1317 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
1318 | unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc); | ||
1319 | unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc); | ||
1320 | |||
1321 | i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev); | ||
1322 | if (i != 0) { | ||
1323 | printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n", | ||
1324 | data->id, data->irq_num); | ||
1325 | return i; | ||
1326 | } else { | ||
1327 | dev->irq = data->irq_num; | ||
1328 | printk(KERN_NOTICE | ||
1329 | "tsi108_open : Port %d Assigned IRQ %d to %s\n", | ||
1330 | data->id, dev->irq, dev->name); | ||
1331 | } | ||
1332 | |||
1333 | data->rxring = dma_alloc_coherent(NULL, rxring_size, | ||
1334 | &data->rxdma, GFP_KERNEL); | ||
1335 | |||
1336 | if (!data->rxring) { | ||
1337 | printk(KERN_DEBUG | ||
1338 | "TSI108_ETH: failed to allocate memory for rxring!\n"); | ||
1339 | return -ENOMEM; | ||
1340 | } else { | ||
1341 | memset(data->rxring, 0, rxring_size); | ||
1342 | } | ||
1343 | |||
1344 | data->txring = dma_alloc_coherent(NULL, txring_size, | ||
1345 | &data->txdma, GFP_KERNEL); | ||
1346 | |||
1347 | if (!data->txring) { | ||
1348 | printk(KERN_DEBUG | ||
1349 | "TSI108_ETH: failed to allocate memory for txring!\n"); | ||
1350 | pci_free_consistent(0, rxring_size, data->rxring, data->rxdma); | ||
1351 | return -ENOMEM; | ||
1352 | } else { | ||
1353 | memset(data->txring, 0, txring_size); | ||
1354 | } | ||
1355 | |||
1356 | for (i = 0; i < TSI108_RXRING_LEN; i++) { | ||
1357 | data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc); | ||
1358 | data->rxring[i].blen = TSI108_RXBUF_SIZE; | ||
1359 | data->rxring[i].vlan = 0; | ||
1360 | } | ||
1361 | |||
1362 | data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma; | ||
1363 | |||
1364 | data->rxtail = 0; | ||
1365 | data->rxhead = 0; | ||
1366 | |||
1367 | for (i = 0; i < TSI108_RXRING_LEN; i++) { | ||
1368 | struct sk_buff *skb = dev_alloc_skb(TSI108_RXBUF_SIZE + NET_IP_ALIGN); | ||
1369 | |||
1370 | if (!skb) { | ||
1371 | /* Bah. No memory for now, but maybe we'll get | ||
1372 | * some more later. | ||
1373 | * For now, we'll live with the smaller ring. | ||
1374 | */ | ||
1375 | printk(KERN_WARNING | ||
1376 | "%s: Could only allocate %d receive skb(s).\n", | ||
1377 | dev->name, i); | ||
1378 | data->rxhead = i; | ||
1379 | break; | ||
1380 | } | ||
1381 | |||
1382 | data->rxskbs[i] = skb; | ||
1383 | /* Align the payload on a 4-byte boundary */ | ||
1384 | skb_reserve(skb, 2); | ||
1385 | data->rxskbs[i] = skb; | ||
1386 | data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data); | ||
1387 | data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT; | ||
1388 | } | ||
1389 | |||
1390 | data->rxfree = i; | ||
1391 | TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma); | ||
1392 | |||
1393 | for (i = 0; i < TSI108_TXRING_LEN; i++) { | ||
1394 | data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc); | ||
1395 | data->txring[i].misc = 0; | ||
1396 | } | ||
1397 | |||
1398 | data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma; | ||
1399 | data->txtail = 0; | ||
1400 | data->txhead = 0; | ||
1401 | data->txfree = TSI108_TXRING_LEN; | ||
1402 | TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma); | ||
1403 | tsi108_init_phy(dev); | ||
1404 | |||
1405 | setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev); | ||
1406 | mod_timer(&data->timer, jiffies + 1); | ||
1407 | |||
1408 | tsi108_restart_rx(data, dev); | ||
1409 | |||
1410 | TSI_WRITE(TSI108_EC_INTSTAT, ~0); | ||
1411 | |||
1412 | TSI_WRITE(TSI108_EC_INTMASK, | ||
1413 | ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR | | ||
1414 | TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 | | ||
1415 | TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT | | ||
1416 | TSI108_INT_SFN | TSI108_INT_STATCARRY)); | ||
1417 | |||
1418 | TSI_WRITE(TSI108_MAC_CFG1, | ||
1419 | TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN); | ||
1420 | netif_start_queue(dev); | ||
1421 | return 0; | ||
1422 | } | ||
1423 | |||
1424 | static int tsi108_close(struct net_device *dev) | ||
1425 | { | ||
1426 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
1427 | |||
1428 | netif_stop_queue(dev); | ||
1429 | |||
1430 | del_timer_sync(&data->timer); | ||
1431 | |||
1432 | tsi108_stop_ethernet(dev); | ||
1433 | tsi108_kill_phy(dev); | ||
1434 | TSI_WRITE(TSI108_EC_INTMASK, ~0); | ||
1435 | TSI_WRITE(TSI108_MAC_CFG1, 0); | ||
1436 | |||
1437 | /* Check for any pending TX packets, and drop them. */ | ||
1438 | |||
1439 | while (!data->txfree || data->txhead != data->txtail) { | ||
1440 | int tx = data->txtail; | ||
1441 | struct sk_buff *skb; | ||
1442 | skb = data->txskbs[tx]; | ||
1443 | data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN; | ||
1444 | data->txfree++; | ||
1445 | dev_kfree_skb(skb); | ||
1446 | } | ||
1447 | |||
1448 | synchronize_irq(data->irq_num); | ||
1449 | free_irq(data->irq_num, dev); | ||
1450 | |||
1451 | /* Discard the RX ring. */ | ||
1452 | |||
1453 | while (data->rxfree) { | ||
1454 | int rx = data->rxtail; | ||
1455 | struct sk_buff *skb; | ||
1456 | |||
1457 | skb = data->rxskbs[rx]; | ||
1458 | data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN; | ||
1459 | data->rxfree--; | ||
1460 | dev_kfree_skb(skb); | ||
1461 | } | ||
1462 | |||
1463 | dma_free_coherent(0, | ||
1464 | TSI108_RXRING_LEN * sizeof(rx_desc), | ||
1465 | data->rxring, data->rxdma); | ||
1466 | dma_free_coherent(0, | ||
1467 | TSI108_TXRING_LEN * sizeof(tx_desc), | ||
1468 | data->txring, data->txdma); | ||
1469 | |||
1470 | return 0; | ||
1471 | } | ||
1472 | |||
1473 | static void tsi108_init_mac(struct net_device *dev) | ||
1474 | { | ||
1475 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
1476 | |||
1477 | TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE | | ||
1478 | TSI108_MAC_CFG2_PADCRC); | ||
1479 | |||
1480 | TSI_WRITE(TSI108_EC_TXTHRESH, | ||
1481 | (192 << TSI108_EC_TXTHRESH_STARTFILL) | | ||
1482 | (192 << TSI108_EC_TXTHRESH_STOPFILL)); | ||
1483 | |||
1484 | TSI_WRITE(TSI108_STAT_CARRYMASK1, | ||
1485 | ~(TSI108_STAT_CARRY1_RXBYTES | | ||
1486 | TSI108_STAT_CARRY1_RXPKTS | | ||
1487 | TSI108_STAT_CARRY1_RXFCS | | ||
1488 | TSI108_STAT_CARRY1_RXMCAST | | ||
1489 | TSI108_STAT_CARRY1_RXALIGN | | ||
1490 | TSI108_STAT_CARRY1_RXLENGTH | | ||
1491 | TSI108_STAT_CARRY1_RXRUNT | | ||
1492 | TSI108_STAT_CARRY1_RXJUMBO | | ||
1493 | TSI108_STAT_CARRY1_RXFRAG | | ||
1494 | TSI108_STAT_CARRY1_RXJABBER | | ||
1495 | TSI108_STAT_CARRY1_RXDROP)); | ||
1496 | |||
1497 | TSI_WRITE(TSI108_STAT_CARRYMASK2, | ||
1498 | ~(TSI108_STAT_CARRY2_TXBYTES | | ||
1499 | TSI108_STAT_CARRY2_TXPKTS | | ||
1500 | TSI108_STAT_CARRY2_TXEXDEF | | ||
1501 | TSI108_STAT_CARRY2_TXEXCOL | | ||
1502 | TSI108_STAT_CARRY2_TXTCOL | | ||
1503 | TSI108_STAT_CARRY2_TXPAUSE)); | ||
1504 | |||
1505 | TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN); | ||
1506 | TSI_WRITE(TSI108_MAC_CFG1, 0); | ||
1507 | |||
1508 | TSI_WRITE(TSI108_EC_RXCFG, | ||
1509 | TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE); | ||
1510 | |||
1511 | TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT | | ||
1512 | TSI108_EC_TXQ_CFG_EOQ_OWN_INT | | ||
1513 | TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT << | ||
1514 | TSI108_EC_TXQ_CFG_SFNPORT)); | ||
1515 | |||
1516 | TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT | | ||
1517 | TSI108_EC_RXQ_CFG_EOQ_OWN_INT | | ||
1518 | TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT << | ||
1519 | TSI108_EC_RXQ_CFG_SFNPORT)); | ||
1520 | |||
1521 | TSI_WRITE(TSI108_EC_TXQ_BUFCFG, | ||
1522 | TSI108_EC_TXQ_BUFCFG_BURST256 | | ||
1523 | TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT << | ||
1524 | TSI108_EC_TXQ_BUFCFG_SFNPORT)); | ||
1525 | |||
1526 | TSI_WRITE(TSI108_EC_RXQ_BUFCFG, | ||
1527 | TSI108_EC_RXQ_BUFCFG_BURST256 | | ||
1528 | TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT << | ||
1529 | TSI108_EC_RXQ_BUFCFG_SFNPORT)); | ||
1530 | |||
1531 | TSI_WRITE(TSI108_EC_INTMASK, ~0); | ||
1532 | } | ||
1533 | |||
1534 | static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | ||
1535 | { | ||
1536 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
1537 | return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL); | ||
1538 | } | ||
1539 | |||
1540 | static int | ||
1541 | tsi108_init_one(struct platform_device *pdev) | ||
1542 | { | ||
1543 | struct net_device *dev = NULL; | ||
1544 | struct tsi108_prv_data *data = NULL; | ||
1545 | hw_info *einfo; | ||
1546 | int err = 0; | ||
1547 | |||
1548 | einfo = pdev->dev.platform_data; | ||
1549 | |||
1550 | if (NULL == einfo) { | ||
1551 | printk(KERN_ERR "tsi-eth %d: Missing additional data!\n", | ||
1552 | pdev->id); | ||
1553 | return -ENODEV; | ||
1554 | } | ||
1555 | |||
1556 | /* Create an ethernet device instance */ | ||
1557 | |||
1558 | dev = alloc_etherdev(sizeof(struct tsi108_prv_data)); | ||
1559 | if (!dev) { | ||
1560 | printk("tsi108_eth: Could not allocate a device structure\n"); | ||
1561 | return -ENOMEM; | ||
1562 | } | ||
1563 | |||
1564 | printk("tsi108_eth%d: probe...\n", pdev->id); | ||
1565 | data = netdev_priv(dev); | ||
1566 | |||
1567 | pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n", | ||
1568 | pdev->id, einfo->regs, einfo->phyregs, | ||
1569 | einfo->phy, einfo->irq_num); | ||
1570 | |||
1571 | data->regs = ioremap(einfo->regs, 0x400); | ||
1572 | if (NULL == data->regs) { | ||
1573 | err = -ENOMEM; | ||
1574 | goto regs_fail; | ||
1575 | } | ||
1576 | |||
1577 | data->phyregs = ioremap(einfo->phyregs, 0x400); | ||
1578 | if (NULL == data->phyregs) { | ||
1579 | err = -ENOMEM; | ||
1580 | goto regs_fail; | ||
1581 | } | ||
1582 | /* MII setup */ | ||
1583 | data->mii_if.dev = dev; | ||
1584 | data->mii_if.mdio_read = tsi108_mdio_read; | ||
1585 | data->mii_if.mdio_write = tsi108_mdio_write; | ||
1586 | data->mii_if.phy_id = einfo->phy; | ||
1587 | data->mii_if.phy_id_mask = 0x1f; | ||
1588 | data->mii_if.reg_num_mask = 0x1f; | ||
1589 | data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if); | ||
1590 | |||
1591 | data->phy = einfo->phy; | ||
1592 | data->irq_num = einfo->irq_num; | ||
1593 | data->id = pdev->id; | ||
1594 | dev->open = tsi108_open; | ||
1595 | dev->stop = tsi108_close; | ||
1596 | dev->hard_start_xmit = tsi108_send_packet; | ||
1597 | dev->set_mac_address = tsi108_set_mac; | ||
1598 | dev->set_multicast_list = tsi108_set_rx_mode; | ||
1599 | dev->get_stats = tsi108_get_stats; | ||
1600 | dev->poll = tsi108_poll; | ||
1601 | dev->do_ioctl = tsi108_do_ioctl; | ||
1602 | dev->weight = 64; /* 64 is more suitable for GigE interface - klai */ | ||
1603 | |||
1604 | /* Apparently, the Linux networking code won't use scatter-gather | ||
1605 | * if the hardware doesn't do checksums. However, it's faster | ||
1606 | * to checksum in place and use SG, as (among other reasons) | ||
1607 | * the cache won't be dirtied (which then has to be flushed | ||
1608 | * before DMA). The checksumming is done by the driver (via | ||
1609 | * a new function skb_csum_dev() in net/core/skbuff.c). | ||
1610 | */ | ||
1611 | |||
1612 | dev->features = NETIF_F_HIGHDMA; | ||
1613 | SET_MODULE_OWNER(dev); | ||
1614 | |||
1615 | spin_lock_init(&data->txlock); | ||
1616 | spin_lock_init(&data->misclock); | ||
1617 | |||
1618 | tsi108_reset_ether(data); | ||
1619 | tsi108_kill_phy(dev); | ||
1620 | |||
1621 | if ((err = tsi108_get_mac(dev)) != 0) { | ||
1622 | printk(KERN_ERR "%s: Invalid MAC address. Please correct.\n", | ||
1623 | dev->name); | ||
1624 | goto register_fail; | ||
1625 | } | ||
1626 | |||
1627 | tsi108_init_mac(dev); | ||
1628 | err = register_netdev(dev); | ||
1629 | if (err) { | ||
1630 | printk(KERN_ERR "%s: Cannot register net device, aborting.\n", | ||
1631 | dev->name); | ||
1632 | goto register_fail; | ||
1633 | } | ||
1634 | |||
1635 | printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: " | ||
1636 | "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name, | ||
1637 | dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], | ||
1638 | dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); | ||
1639 | #ifdef DEBUG | ||
1640 | data->msg_enable = DEBUG; | ||
1641 | dump_eth_one(dev); | ||
1642 | #endif | ||
1643 | |||
1644 | return 0; | ||
1645 | |||
1646 | register_fail: | ||
1647 | iounmap(data->regs); | ||
1648 | iounmap(data->phyregs); | ||
1649 | |||
1650 | regs_fail: | ||
1651 | free_netdev(dev); | ||
1652 | return err; | ||
1653 | } | ||
1654 | |||
1655 | /* There's no way to either get interrupts from the PHY when | ||
1656 | * something changes, or to have the Tsi108 automatically communicate | ||
1657 | * with the PHY to reconfigure itself. | ||
1658 | * | ||
1659 | * Thus, we have to do it using a timer. | ||
1660 | */ | ||
1661 | |||
1662 | static void tsi108_timed_checker(unsigned long dev_ptr) | ||
1663 | { | ||
1664 | struct net_device *dev = (struct net_device *)dev_ptr; | ||
1665 | struct tsi108_prv_data *data = netdev_priv(dev); | ||
1666 | |||
1667 | tsi108_check_phy(dev); | ||
1668 | tsi108_check_rxring(dev); | ||
1669 | mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL); | ||
1670 | } | ||
1671 | |||
1672 | static int tsi108_ether_init(void) | ||
1673 | { | ||
1674 | int ret; | ||
1675 | ret = platform_driver_register (&tsi_eth_driver); | ||
1676 | if (ret < 0){ | ||
1677 | printk("tsi108_ether_init: error initializing ethernet " | ||
1678 | "device\n"); | ||
1679 | return ret; | ||
1680 | } | ||
1681 | return 0; | ||
1682 | } | ||
1683 | |||
1684 | static int tsi108_ether_remove(struct platform_device *pdev) | ||
1685 | { | ||
1686 | struct net_device *dev = platform_get_drvdata(pdev); | ||
1687 | struct tsi108_prv_data *priv = netdev_priv(dev); | ||
1688 | |||
1689 | unregister_netdev(dev); | ||
1690 | tsi108_stop_ethernet(dev); | ||
1691 | platform_set_drvdata(pdev, NULL); | ||
1692 | iounmap(priv->regs); | ||
1693 | iounmap(priv->phyregs); | ||
1694 | free_netdev(dev); | ||
1695 | |||
1696 | return 0; | ||
1697 | } | ||
1698 | static void tsi108_ether_exit(void) | ||
1699 | { | ||
1700 | platform_driver_unregister(&tsi_eth_driver); | ||
1701 | } | ||
1702 | |||
1703 | module_init(tsi108_ether_init); | ||
1704 | module_exit(tsi108_ether_exit); | ||
1705 | |||
1706 | MODULE_AUTHOR("Tundra Semiconductor Corporation"); | ||
1707 | MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver"); | ||
1708 | MODULE_LICENSE("GPL"); | ||