diff options
Diffstat (limited to 'drivers/net/sungem_phy.c')
-rw-r--r-- | drivers/net/sungem_phy.c | 872 |
1 files changed, 872 insertions, 0 deletions
diff --git a/drivers/net/sungem_phy.c b/drivers/net/sungem_phy.c new file mode 100644 index 000000000000..0fca414d3657 --- /dev/null +++ b/drivers/net/sungem_phy.c | |||
@@ -0,0 +1,872 @@ | |||
1 | /* | ||
2 | * PHY drivers for the sungem ethernet driver. | ||
3 | * | ||
4 | * This file could be shared with other drivers. | ||
5 | * | ||
6 | * (c) 2002, Benjamin Herrenscmidt (benh@kernel.crashing.org) | ||
7 | * | ||
8 | * TODO: | ||
9 | * - Implement WOL | ||
10 | * - Add support for PHYs that provide an IRQ line | ||
11 | * - Eventually moved the entire polling state machine in | ||
12 | * there (out of the eth driver), so that it can easily be | ||
13 | * skipped on PHYs that implement it in hardware. | ||
14 | * - On LXT971 & BCM5201, Apple uses some chip specific regs | ||
15 | * to read the link status. Figure out why and if it makes | ||
16 | * sense to do the same (magic aneg ?) | ||
17 | * - Apple has some additional power management code for some | ||
18 | * Broadcom PHYs that they "hide" from the OpenSource version | ||
19 | * of darwin, still need to reverse engineer that | ||
20 | */ | ||
21 | |||
22 | #include <linux/config.h> | ||
23 | |||
24 | #include <linux/module.h> | ||
25 | |||
26 | #include <linux/kernel.h> | ||
27 | #include <linux/sched.h> | ||
28 | #include <linux/types.h> | ||
29 | #include <linux/netdevice.h> | ||
30 | #include <linux/etherdevice.h> | ||
31 | #include <linux/mii.h> | ||
32 | #include <linux/ethtool.h> | ||
33 | #include <linux/delay.h> | ||
34 | |||
35 | #include "sungem_phy.h" | ||
36 | |||
37 | /* Link modes of the BCM5400 PHY */ | ||
38 | static int phy_BCM5400_link_table[8][3] = { | ||
39 | { 0, 0, 0 }, /* No link */ | ||
40 | { 0, 0, 0 }, /* 10BT Half Duplex */ | ||
41 | { 1, 0, 0 }, /* 10BT Full Duplex */ | ||
42 | { 0, 1, 0 }, /* 100BT Half Duplex */ | ||
43 | { 0, 1, 0 }, /* 100BT Half Duplex */ | ||
44 | { 1, 1, 0 }, /* 100BT Full Duplex*/ | ||
45 | { 1, 0, 1 }, /* 1000BT */ | ||
46 | { 1, 0, 1 }, /* 1000BT */ | ||
47 | }; | ||
48 | |||
49 | static inline int __phy_read(struct mii_phy* phy, int id, int reg) | ||
50 | { | ||
51 | return phy->mdio_read(phy->dev, id, reg); | ||
52 | } | ||
53 | |||
54 | static inline void __phy_write(struct mii_phy* phy, int id, int reg, int val) | ||
55 | { | ||
56 | phy->mdio_write(phy->dev, id, reg, val); | ||
57 | } | ||
58 | |||
59 | static inline int phy_read(struct mii_phy* phy, int reg) | ||
60 | { | ||
61 | return phy->mdio_read(phy->dev, phy->mii_id, reg); | ||
62 | } | ||
63 | |||
64 | static inline void phy_write(struct mii_phy* phy, int reg, int val) | ||
65 | { | ||
66 | phy->mdio_write(phy->dev, phy->mii_id, reg, val); | ||
67 | } | ||
68 | |||
69 | static int reset_one_mii_phy(struct mii_phy* phy, int phy_id) | ||
70 | { | ||
71 | u16 val; | ||
72 | int limit = 10000; | ||
73 | |||
74 | val = __phy_read(phy, phy_id, MII_BMCR); | ||
75 | val &= ~(BMCR_ISOLATE | BMCR_PDOWN); | ||
76 | val |= BMCR_RESET; | ||
77 | __phy_write(phy, phy_id, MII_BMCR, val); | ||
78 | |||
79 | udelay(100); | ||
80 | |||
81 | while (limit--) { | ||
82 | val = __phy_read(phy, phy_id, MII_BMCR); | ||
83 | if ((val & BMCR_RESET) == 0) | ||
84 | break; | ||
85 | udelay(10); | ||
86 | } | ||
87 | if ((val & BMCR_ISOLATE) && limit > 0) | ||
88 | __phy_write(phy, phy_id, MII_BMCR, val & ~BMCR_ISOLATE); | ||
89 | |||
90 | return (limit <= 0); | ||
91 | } | ||
92 | |||
93 | static int bcm5201_init(struct mii_phy* phy) | ||
94 | { | ||
95 | u16 data; | ||
96 | |||
97 | data = phy_read(phy, MII_BCM5201_MULTIPHY); | ||
98 | data &= ~MII_BCM5201_MULTIPHY_SUPERISOLATE; | ||
99 | phy_write(phy, MII_BCM5201_MULTIPHY, data); | ||
100 | |||
101 | phy_write(phy, MII_BCM5201_INTERRUPT, 0); | ||
102 | |||
103 | return 0; | ||
104 | } | ||
105 | |||
106 | static int bcm5201_suspend(struct mii_phy* phy) | ||
107 | { | ||
108 | phy_write(phy, MII_BCM5201_INTERRUPT, 0); | ||
109 | phy_write(phy, MII_BCM5201_MULTIPHY, MII_BCM5201_MULTIPHY_SUPERISOLATE); | ||
110 | |||
111 | return 0; | ||
112 | } | ||
113 | |||
114 | static int bcm5221_init(struct mii_phy* phy) | ||
115 | { | ||
116 | u16 data; | ||
117 | |||
118 | data = phy_read(phy, MII_BCM5221_TEST); | ||
119 | phy_write(phy, MII_BCM5221_TEST, | ||
120 | data | MII_BCM5221_TEST_ENABLE_SHADOWS); | ||
121 | |||
122 | data = phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2); | ||
123 | phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2, | ||
124 | data | MII_BCM5221_SHDOW_AUX_STAT2_APD); | ||
125 | |||
126 | data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4); | ||
127 | phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4, | ||
128 | data | MII_BCM5221_SHDOW_AUX_MODE4_CLKLOPWR); | ||
129 | |||
130 | data = phy_read(phy, MII_BCM5221_TEST); | ||
131 | phy_write(phy, MII_BCM5221_TEST, | ||
132 | data & ~MII_BCM5221_TEST_ENABLE_SHADOWS); | ||
133 | |||
134 | return 0; | ||
135 | } | ||
136 | |||
137 | static int bcm5221_suspend(struct mii_phy* phy) | ||
138 | { | ||
139 | u16 data; | ||
140 | |||
141 | data = phy_read(phy, MII_BCM5221_TEST); | ||
142 | phy_write(phy, MII_BCM5221_TEST, | ||
143 | data | MII_BCM5221_TEST_ENABLE_SHADOWS); | ||
144 | |||
145 | data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4); | ||
146 | phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4, | ||
147 | data | MII_BCM5221_SHDOW_AUX_MODE4_IDDQMODE); | ||
148 | |||
149 | return 0; | ||
150 | } | ||
151 | |||
152 | static int bcm5400_init(struct mii_phy* phy) | ||
153 | { | ||
154 | u16 data; | ||
155 | |||
156 | /* Configure for gigabit full duplex */ | ||
157 | data = phy_read(phy, MII_BCM5400_AUXCONTROL); | ||
158 | data |= MII_BCM5400_AUXCONTROL_PWR10BASET; | ||
159 | phy_write(phy, MII_BCM5400_AUXCONTROL, data); | ||
160 | |||
161 | data = phy_read(phy, MII_BCM5400_GB_CONTROL); | ||
162 | data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP; | ||
163 | phy_write(phy, MII_BCM5400_GB_CONTROL, data); | ||
164 | |||
165 | udelay(100); | ||
166 | |||
167 | /* Reset and configure cascaded 10/100 PHY */ | ||
168 | (void)reset_one_mii_phy(phy, 0x1f); | ||
169 | |||
170 | data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY); | ||
171 | data |= MII_BCM5201_MULTIPHY_SERIALMODE; | ||
172 | __phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data); | ||
173 | |||
174 | data = phy_read(phy, MII_BCM5400_AUXCONTROL); | ||
175 | data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET; | ||
176 | phy_write(phy, MII_BCM5400_AUXCONTROL, data); | ||
177 | |||
178 | return 0; | ||
179 | } | ||
180 | |||
181 | static int bcm5400_suspend(struct mii_phy* phy) | ||
182 | { | ||
183 | #if 0 /* Commented out in Darwin... someone has those dawn docs ? */ | ||
184 | phy_write(phy, MII_BMCR, BMCR_PDOWN); | ||
185 | #endif | ||
186 | return 0; | ||
187 | } | ||
188 | |||
189 | static int bcm5401_init(struct mii_phy* phy) | ||
190 | { | ||
191 | u16 data; | ||
192 | int rev; | ||
193 | |||
194 | rev = phy_read(phy, MII_PHYSID2) & 0x000f; | ||
195 | if (rev == 0 || rev == 3) { | ||
196 | /* Some revisions of 5401 appear to need this | ||
197 | * initialisation sequence to disable, according | ||
198 | * to OF, "tap power management" | ||
199 | * | ||
200 | * WARNING ! OF and Darwin don't agree on the | ||
201 | * register addresses. OF seem to interpret the | ||
202 | * register numbers below as decimal | ||
203 | * | ||
204 | * Note: This should (and does) match tg3_init_5401phy_dsp | ||
205 | * in the tg3.c driver. -DaveM | ||
206 | */ | ||
207 | phy_write(phy, 0x18, 0x0c20); | ||
208 | phy_write(phy, 0x17, 0x0012); | ||
209 | phy_write(phy, 0x15, 0x1804); | ||
210 | phy_write(phy, 0x17, 0x0013); | ||
211 | phy_write(phy, 0x15, 0x1204); | ||
212 | phy_write(phy, 0x17, 0x8006); | ||
213 | phy_write(phy, 0x15, 0x0132); | ||
214 | phy_write(phy, 0x17, 0x8006); | ||
215 | phy_write(phy, 0x15, 0x0232); | ||
216 | phy_write(phy, 0x17, 0x201f); | ||
217 | phy_write(phy, 0x15, 0x0a20); | ||
218 | } | ||
219 | |||
220 | /* Configure for gigabit full duplex */ | ||
221 | data = phy_read(phy, MII_BCM5400_GB_CONTROL); | ||
222 | data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP; | ||
223 | phy_write(phy, MII_BCM5400_GB_CONTROL, data); | ||
224 | |||
225 | udelay(10); | ||
226 | |||
227 | /* Reset and configure cascaded 10/100 PHY */ | ||
228 | (void)reset_one_mii_phy(phy, 0x1f); | ||
229 | |||
230 | data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY); | ||
231 | data |= MII_BCM5201_MULTIPHY_SERIALMODE; | ||
232 | __phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data); | ||
233 | |||
234 | return 0; | ||
235 | } | ||
236 | |||
237 | static int bcm5401_suspend(struct mii_phy* phy) | ||
238 | { | ||
239 | #if 0 /* Commented out in Darwin... someone has those dawn docs ? */ | ||
240 | phy_write(phy, MII_BMCR, BMCR_PDOWN); | ||
241 | #endif | ||
242 | return 0; | ||
243 | } | ||
244 | |||
245 | static int bcm5411_init(struct mii_phy* phy) | ||
246 | { | ||
247 | u16 data; | ||
248 | |||
249 | /* Here's some more Apple black magic to setup | ||
250 | * some voltage stuffs. | ||
251 | */ | ||
252 | phy_write(phy, 0x1c, 0x8c23); | ||
253 | phy_write(phy, 0x1c, 0x8ca3); | ||
254 | phy_write(phy, 0x1c, 0x8c23); | ||
255 | |||
256 | /* Here, Apple seems to want to reset it, do | ||
257 | * it as well | ||
258 | */ | ||
259 | phy_write(phy, MII_BMCR, BMCR_RESET); | ||
260 | phy_write(phy, MII_BMCR, 0x1340); | ||
261 | |||
262 | data = phy_read(phy, MII_BCM5400_GB_CONTROL); | ||
263 | data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP; | ||
264 | phy_write(phy, MII_BCM5400_GB_CONTROL, data); | ||
265 | |||
266 | udelay(10); | ||
267 | |||
268 | /* Reset and configure cascaded 10/100 PHY */ | ||
269 | (void)reset_one_mii_phy(phy, 0x1f); | ||
270 | |||
271 | return 0; | ||
272 | } | ||
273 | |||
274 | static int bcm5411_suspend(struct mii_phy* phy) | ||
275 | { | ||
276 | phy_write(phy, MII_BMCR, BMCR_PDOWN); | ||
277 | |||
278 | return 0; | ||
279 | } | ||
280 | |||
281 | static int bcm5421_init(struct mii_phy* phy) | ||
282 | { | ||
283 | u16 data; | ||
284 | int rev; | ||
285 | |||
286 | rev = phy_read(phy, MII_PHYSID2) & 0x000f; | ||
287 | if (rev == 0) { | ||
288 | /* This is borrowed from MacOS | ||
289 | */ | ||
290 | phy_write(phy, 0x18, 0x1007); | ||
291 | data = phy_read(phy, 0x18); | ||
292 | phy_write(phy, 0x18, data | 0x0400); | ||
293 | phy_write(phy, 0x18, 0x0007); | ||
294 | data = phy_read(phy, 0x18); | ||
295 | phy_write(phy, 0x18, data | 0x0800); | ||
296 | phy_write(phy, 0x17, 0x000a); | ||
297 | data = phy_read(phy, 0x15); | ||
298 | phy_write(phy, 0x15, data | 0x0200); | ||
299 | } | ||
300 | #if 0 | ||
301 | /* This has to be verified before I enable it */ | ||
302 | /* Enable automatic low-power */ | ||
303 | phy_write(phy, 0x1c, 0x9002); | ||
304 | phy_write(phy, 0x1c, 0xa821); | ||
305 | phy_write(phy, 0x1c, 0x941d); | ||
306 | #endif | ||
307 | return 0; | ||
308 | } | ||
309 | |||
310 | static int bcm5421k2_init(struct mii_phy* phy) | ||
311 | { | ||
312 | /* Init code borrowed from OF */ | ||
313 | phy_write(phy, 4, 0x01e1); | ||
314 | phy_write(phy, 9, 0x0300); | ||
315 | |||
316 | return 0; | ||
317 | } | ||
318 | |||
319 | static int bcm54xx_setup_aneg(struct mii_phy *phy, u32 advertise) | ||
320 | { | ||
321 | u16 ctl, adv; | ||
322 | |||
323 | phy->autoneg = 1; | ||
324 | phy->speed = SPEED_10; | ||
325 | phy->duplex = DUPLEX_HALF; | ||
326 | phy->pause = 0; | ||
327 | phy->advertising = advertise; | ||
328 | |||
329 | /* Setup standard advertise */ | ||
330 | adv = phy_read(phy, MII_ADVERTISE); | ||
331 | adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4); | ||
332 | if (advertise & ADVERTISED_10baseT_Half) | ||
333 | adv |= ADVERTISE_10HALF; | ||
334 | if (advertise & ADVERTISED_10baseT_Full) | ||
335 | adv |= ADVERTISE_10FULL; | ||
336 | if (advertise & ADVERTISED_100baseT_Half) | ||
337 | adv |= ADVERTISE_100HALF; | ||
338 | if (advertise & ADVERTISED_100baseT_Full) | ||
339 | adv |= ADVERTISE_100FULL; | ||
340 | phy_write(phy, MII_ADVERTISE, adv); | ||
341 | |||
342 | /* Setup 1000BT advertise */ | ||
343 | adv = phy_read(phy, MII_1000BASETCONTROL); | ||
344 | adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP|MII_1000BASETCONTROL_HALFDUPLEXCAP); | ||
345 | if (advertise & SUPPORTED_1000baseT_Half) | ||
346 | adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP; | ||
347 | if (advertise & SUPPORTED_1000baseT_Full) | ||
348 | adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP; | ||
349 | phy_write(phy, MII_1000BASETCONTROL, adv); | ||
350 | |||
351 | /* Start/Restart aneg */ | ||
352 | ctl = phy_read(phy, MII_BMCR); | ||
353 | ctl |= (BMCR_ANENABLE | BMCR_ANRESTART); | ||
354 | phy_write(phy, MII_BMCR, ctl); | ||
355 | |||
356 | return 0; | ||
357 | } | ||
358 | |||
359 | static int bcm54xx_setup_forced(struct mii_phy *phy, int speed, int fd) | ||
360 | { | ||
361 | u16 ctl; | ||
362 | |||
363 | phy->autoneg = 0; | ||
364 | phy->speed = speed; | ||
365 | phy->duplex = fd; | ||
366 | phy->pause = 0; | ||
367 | |||
368 | ctl = phy_read(phy, MII_BMCR); | ||
369 | ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE); | ||
370 | |||
371 | /* First reset the PHY */ | ||
372 | phy_write(phy, MII_BMCR, ctl | BMCR_RESET); | ||
373 | |||
374 | /* Select speed & duplex */ | ||
375 | switch(speed) { | ||
376 | case SPEED_10: | ||
377 | break; | ||
378 | case SPEED_100: | ||
379 | ctl |= BMCR_SPEED100; | ||
380 | break; | ||
381 | case SPEED_1000: | ||
382 | ctl |= BMCR_SPD2; | ||
383 | } | ||
384 | if (fd == DUPLEX_FULL) | ||
385 | ctl |= BMCR_FULLDPLX; | ||
386 | |||
387 | // XXX Should we set the sungem to GII now on 1000BT ? | ||
388 | |||
389 | phy_write(phy, MII_BMCR, ctl); | ||
390 | |||
391 | return 0; | ||
392 | } | ||
393 | |||
394 | static int bcm54xx_read_link(struct mii_phy *phy) | ||
395 | { | ||
396 | int link_mode; | ||
397 | u16 val; | ||
398 | |||
399 | if (phy->autoneg) { | ||
400 | val = phy_read(phy, MII_BCM5400_AUXSTATUS); | ||
401 | link_mode = ((val & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >> | ||
402 | MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT); | ||
403 | phy->duplex = phy_BCM5400_link_table[link_mode][0] ? DUPLEX_FULL : DUPLEX_HALF; | ||
404 | phy->speed = phy_BCM5400_link_table[link_mode][2] ? | ||
405 | SPEED_1000 : | ||
406 | (phy_BCM5400_link_table[link_mode][1] ? SPEED_100 : SPEED_10); | ||
407 | val = phy_read(phy, MII_LPA); | ||
408 | phy->pause = ((val & LPA_PAUSE) != 0); | ||
409 | } | ||
410 | /* On non-aneg, we assume what we put in BMCR is the speed, | ||
411 | * though magic-aneg shouldn't prevent this case from occurring | ||
412 | */ | ||
413 | |||
414 | return 0; | ||
415 | } | ||
416 | |||
417 | static int marvell_setup_aneg(struct mii_phy *phy, u32 advertise) | ||
418 | { | ||
419 | u16 ctl, adv; | ||
420 | |||
421 | phy->autoneg = 1; | ||
422 | phy->speed = SPEED_10; | ||
423 | phy->duplex = DUPLEX_HALF; | ||
424 | phy->pause = 0; | ||
425 | phy->advertising = advertise; | ||
426 | |||
427 | /* Setup standard advertise */ | ||
428 | adv = phy_read(phy, MII_ADVERTISE); | ||
429 | adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4); | ||
430 | if (advertise & ADVERTISED_10baseT_Half) | ||
431 | adv |= ADVERTISE_10HALF; | ||
432 | if (advertise & ADVERTISED_10baseT_Full) | ||
433 | adv |= ADVERTISE_10FULL; | ||
434 | if (advertise & ADVERTISED_100baseT_Half) | ||
435 | adv |= ADVERTISE_100HALF; | ||
436 | if (advertise & ADVERTISED_100baseT_Full) | ||
437 | adv |= ADVERTISE_100FULL; | ||
438 | phy_write(phy, MII_ADVERTISE, adv); | ||
439 | |||
440 | /* Setup 1000BT advertise & enable crossover detect | ||
441 | * XXX How do we advertise 1000BT ? Darwin source is | ||
442 | * confusing here, they read from specific control and | ||
443 | * write to control... Someone has specs for those | ||
444 | * beasts ? | ||
445 | */ | ||
446 | adv = phy_read(phy, MII_M1011_PHY_SPEC_CONTROL); | ||
447 | adv |= MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX; | ||
448 | adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP | | ||
449 | MII_1000BASETCONTROL_HALFDUPLEXCAP); | ||
450 | if (advertise & SUPPORTED_1000baseT_Half) | ||
451 | adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP; | ||
452 | if (advertise & SUPPORTED_1000baseT_Full) | ||
453 | adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP; | ||
454 | phy_write(phy, MII_1000BASETCONTROL, adv); | ||
455 | |||
456 | /* Start/Restart aneg */ | ||
457 | ctl = phy_read(phy, MII_BMCR); | ||
458 | ctl |= (BMCR_ANENABLE | BMCR_ANRESTART); | ||
459 | phy_write(phy, MII_BMCR, ctl); | ||
460 | |||
461 | return 0; | ||
462 | } | ||
463 | |||
464 | static int marvell_setup_forced(struct mii_phy *phy, int speed, int fd) | ||
465 | { | ||
466 | u16 ctl, ctl2; | ||
467 | |||
468 | phy->autoneg = 0; | ||
469 | phy->speed = speed; | ||
470 | phy->duplex = fd; | ||
471 | phy->pause = 0; | ||
472 | |||
473 | ctl = phy_read(phy, MII_BMCR); | ||
474 | ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE); | ||
475 | ctl |= BMCR_RESET; | ||
476 | |||
477 | /* Select speed & duplex */ | ||
478 | switch(speed) { | ||
479 | case SPEED_10: | ||
480 | break; | ||
481 | case SPEED_100: | ||
482 | ctl |= BMCR_SPEED100; | ||
483 | break; | ||
484 | /* I'm not sure about the one below, again, Darwin source is | ||
485 | * quite confusing and I lack chip specs | ||
486 | */ | ||
487 | case SPEED_1000: | ||
488 | ctl |= BMCR_SPD2; | ||
489 | } | ||
490 | if (fd == DUPLEX_FULL) | ||
491 | ctl |= BMCR_FULLDPLX; | ||
492 | |||
493 | /* Disable crossover. Again, the way Apple does it is strange, | ||
494 | * though I don't assume they are wrong ;) | ||
495 | */ | ||
496 | ctl2 = phy_read(phy, MII_M1011_PHY_SPEC_CONTROL); | ||
497 | ctl2 &= ~(MII_M1011_PHY_SPEC_CONTROL_MANUAL_MDIX | | ||
498 | MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX | | ||
499 | MII_1000BASETCONTROL_FULLDUPLEXCAP | | ||
500 | MII_1000BASETCONTROL_HALFDUPLEXCAP); | ||
501 | if (speed == SPEED_1000) | ||
502 | ctl2 |= (fd == DUPLEX_FULL) ? | ||
503 | MII_1000BASETCONTROL_FULLDUPLEXCAP : | ||
504 | MII_1000BASETCONTROL_HALFDUPLEXCAP; | ||
505 | phy_write(phy, MII_1000BASETCONTROL, ctl2); | ||
506 | |||
507 | // XXX Should we set the sungem to GII now on 1000BT ? | ||
508 | |||
509 | phy_write(phy, MII_BMCR, ctl); | ||
510 | |||
511 | return 0; | ||
512 | } | ||
513 | |||
514 | static int marvell_read_link(struct mii_phy *phy) | ||
515 | { | ||
516 | u16 status; | ||
517 | |||
518 | if (phy->autoneg) { | ||
519 | status = phy_read(phy, MII_M1011_PHY_SPEC_STATUS); | ||
520 | if ((status & MII_M1011_PHY_SPEC_STATUS_RESOLVED) == 0) | ||
521 | return -EAGAIN; | ||
522 | if (status & MII_M1011_PHY_SPEC_STATUS_1000) | ||
523 | phy->speed = SPEED_1000; | ||
524 | else if (status & MII_M1011_PHY_SPEC_STATUS_100) | ||
525 | phy->speed = SPEED_100; | ||
526 | else | ||
527 | phy->speed = SPEED_10; | ||
528 | if (status & MII_M1011_PHY_SPEC_STATUS_FULLDUPLEX) | ||
529 | phy->duplex = DUPLEX_FULL; | ||
530 | else | ||
531 | phy->duplex = DUPLEX_HALF; | ||
532 | phy->pause = 0; /* XXX Check against spec ! */ | ||
533 | } | ||
534 | /* On non-aneg, we assume what we put in BMCR is the speed, | ||
535 | * though magic-aneg shouldn't prevent this case from occurring | ||
536 | */ | ||
537 | |||
538 | return 0; | ||
539 | } | ||
540 | |||
541 | static int genmii_setup_aneg(struct mii_phy *phy, u32 advertise) | ||
542 | { | ||
543 | u16 ctl, adv; | ||
544 | |||
545 | phy->autoneg = 1; | ||
546 | phy->speed = SPEED_10; | ||
547 | phy->duplex = DUPLEX_HALF; | ||
548 | phy->pause = 0; | ||
549 | phy->advertising = advertise; | ||
550 | |||
551 | /* Setup standard advertise */ | ||
552 | adv = phy_read(phy, MII_ADVERTISE); | ||
553 | adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4); | ||
554 | if (advertise & ADVERTISED_10baseT_Half) | ||
555 | adv |= ADVERTISE_10HALF; | ||
556 | if (advertise & ADVERTISED_10baseT_Full) | ||
557 | adv |= ADVERTISE_10FULL; | ||
558 | if (advertise & ADVERTISED_100baseT_Half) | ||
559 | adv |= ADVERTISE_100HALF; | ||
560 | if (advertise & ADVERTISED_100baseT_Full) | ||
561 | adv |= ADVERTISE_100FULL; | ||
562 | phy_write(phy, MII_ADVERTISE, adv); | ||
563 | |||
564 | /* Start/Restart aneg */ | ||
565 | ctl = phy_read(phy, MII_BMCR); | ||
566 | ctl |= (BMCR_ANENABLE | BMCR_ANRESTART); | ||
567 | phy_write(phy, MII_BMCR, ctl); | ||
568 | |||
569 | return 0; | ||
570 | } | ||
571 | |||
572 | static int genmii_setup_forced(struct mii_phy *phy, int speed, int fd) | ||
573 | { | ||
574 | u16 ctl; | ||
575 | |||
576 | phy->autoneg = 0; | ||
577 | phy->speed = speed; | ||
578 | phy->duplex = fd; | ||
579 | phy->pause = 0; | ||
580 | |||
581 | ctl = phy_read(phy, MII_BMCR); | ||
582 | ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_ANENABLE); | ||
583 | |||
584 | /* First reset the PHY */ | ||
585 | phy_write(phy, MII_BMCR, ctl | BMCR_RESET); | ||
586 | |||
587 | /* Select speed & duplex */ | ||
588 | switch(speed) { | ||
589 | case SPEED_10: | ||
590 | break; | ||
591 | case SPEED_100: | ||
592 | ctl |= BMCR_SPEED100; | ||
593 | break; | ||
594 | case SPEED_1000: | ||
595 | default: | ||
596 | return -EINVAL; | ||
597 | } | ||
598 | if (fd == DUPLEX_FULL) | ||
599 | ctl |= BMCR_FULLDPLX; | ||
600 | phy_write(phy, MII_BMCR, ctl); | ||
601 | |||
602 | return 0; | ||
603 | } | ||
604 | |||
605 | static int genmii_poll_link(struct mii_phy *phy) | ||
606 | { | ||
607 | u16 status; | ||
608 | |||
609 | (void)phy_read(phy, MII_BMSR); | ||
610 | status = phy_read(phy, MII_BMSR); | ||
611 | if ((status & BMSR_LSTATUS) == 0) | ||
612 | return 0; | ||
613 | if (phy->autoneg && !(status & BMSR_ANEGCOMPLETE)) | ||
614 | return 0; | ||
615 | return 1; | ||
616 | } | ||
617 | |||
618 | static int genmii_read_link(struct mii_phy *phy) | ||
619 | { | ||
620 | u16 lpa; | ||
621 | |||
622 | if (phy->autoneg) { | ||
623 | lpa = phy_read(phy, MII_LPA); | ||
624 | |||
625 | if (lpa & (LPA_10FULL | LPA_100FULL)) | ||
626 | phy->duplex = DUPLEX_FULL; | ||
627 | else | ||
628 | phy->duplex = DUPLEX_HALF; | ||
629 | if (lpa & (LPA_100FULL | LPA_100HALF)) | ||
630 | phy->speed = SPEED_100; | ||
631 | else | ||
632 | phy->speed = SPEED_10; | ||
633 | phy->pause = 0; | ||
634 | } | ||
635 | /* On non-aneg, we assume what we put in BMCR is the speed, | ||
636 | * though magic-aneg shouldn't prevent this case from occurring | ||
637 | */ | ||
638 | |||
639 | return 0; | ||
640 | } | ||
641 | |||
642 | |||
643 | #define MII_BASIC_FEATURES (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \ | ||
644 | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \ | ||
645 | SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII) | ||
646 | #define MII_GBIT_FEATURES (MII_BASIC_FEATURES | \ | ||
647 | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full) | ||
648 | |||
649 | /* Broadcom BCM 5201 */ | ||
650 | static struct mii_phy_ops bcm5201_phy_ops = { | ||
651 | .init = bcm5201_init, | ||
652 | .suspend = bcm5201_suspend, | ||
653 | .setup_aneg = genmii_setup_aneg, | ||
654 | .setup_forced = genmii_setup_forced, | ||
655 | .poll_link = genmii_poll_link, | ||
656 | .read_link = genmii_read_link, | ||
657 | }; | ||
658 | |||
659 | static struct mii_phy_def bcm5201_phy_def = { | ||
660 | .phy_id = 0x00406210, | ||
661 | .phy_id_mask = 0xfffffff0, | ||
662 | .name = "BCM5201", | ||
663 | .features = MII_BASIC_FEATURES, | ||
664 | .magic_aneg = 1, | ||
665 | .ops = &bcm5201_phy_ops | ||
666 | }; | ||
667 | |||
668 | /* Broadcom BCM 5221 */ | ||
669 | static struct mii_phy_ops bcm5221_phy_ops = { | ||
670 | .suspend = bcm5221_suspend, | ||
671 | .init = bcm5221_init, | ||
672 | .setup_aneg = genmii_setup_aneg, | ||
673 | .setup_forced = genmii_setup_forced, | ||
674 | .poll_link = genmii_poll_link, | ||
675 | .read_link = genmii_read_link, | ||
676 | }; | ||
677 | |||
678 | static struct mii_phy_def bcm5221_phy_def = { | ||
679 | .phy_id = 0x004061e0, | ||
680 | .phy_id_mask = 0xfffffff0, | ||
681 | .name = "BCM5221", | ||
682 | .features = MII_BASIC_FEATURES, | ||
683 | .magic_aneg = 1, | ||
684 | .ops = &bcm5221_phy_ops | ||
685 | }; | ||
686 | |||
687 | /* Broadcom BCM 5400 */ | ||
688 | static struct mii_phy_ops bcm5400_phy_ops = { | ||
689 | .init = bcm5400_init, | ||
690 | .suspend = bcm5400_suspend, | ||
691 | .setup_aneg = bcm54xx_setup_aneg, | ||
692 | .setup_forced = bcm54xx_setup_forced, | ||
693 | .poll_link = genmii_poll_link, | ||
694 | .read_link = bcm54xx_read_link, | ||
695 | }; | ||
696 | |||
697 | static struct mii_phy_def bcm5400_phy_def = { | ||
698 | .phy_id = 0x00206040, | ||
699 | .phy_id_mask = 0xfffffff0, | ||
700 | .name = "BCM5400", | ||
701 | .features = MII_GBIT_FEATURES, | ||
702 | .magic_aneg = 1, | ||
703 | .ops = &bcm5400_phy_ops | ||
704 | }; | ||
705 | |||
706 | /* Broadcom BCM 5401 */ | ||
707 | static struct mii_phy_ops bcm5401_phy_ops = { | ||
708 | .init = bcm5401_init, | ||
709 | .suspend = bcm5401_suspend, | ||
710 | .setup_aneg = bcm54xx_setup_aneg, | ||
711 | .setup_forced = bcm54xx_setup_forced, | ||
712 | .poll_link = genmii_poll_link, | ||
713 | .read_link = bcm54xx_read_link, | ||
714 | }; | ||
715 | |||
716 | static struct mii_phy_def bcm5401_phy_def = { | ||
717 | .phy_id = 0x00206050, | ||
718 | .phy_id_mask = 0xfffffff0, | ||
719 | .name = "BCM5401", | ||
720 | .features = MII_GBIT_FEATURES, | ||
721 | .magic_aneg = 1, | ||
722 | .ops = &bcm5401_phy_ops | ||
723 | }; | ||
724 | |||
725 | /* Broadcom BCM 5411 */ | ||
726 | static struct mii_phy_ops bcm5411_phy_ops = { | ||
727 | .init = bcm5411_init, | ||
728 | .suspend = bcm5411_suspend, | ||
729 | .setup_aneg = bcm54xx_setup_aneg, | ||
730 | .setup_forced = bcm54xx_setup_forced, | ||
731 | .poll_link = genmii_poll_link, | ||
732 | .read_link = bcm54xx_read_link, | ||
733 | }; | ||
734 | |||
735 | static struct mii_phy_def bcm5411_phy_def = { | ||
736 | .phy_id = 0x00206070, | ||
737 | .phy_id_mask = 0xfffffff0, | ||
738 | .name = "BCM5411", | ||
739 | .features = MII_GBIT_FEATURES, | ||
740 | .magic_aneg = 1, | ||
741 | .ops = &bcm5411_phy_ops | ||
742 | }; | ||
743 | |||
744 | /* Broadcom BCM 5421 */ | ||
745 | static struct mii_phy_ops bcm5421_phy_ops = { | ||
746 | .init = bcm5421_init, | ||
747 | .suspend = bcm5411_suspend, | ||
748 | .setup_aneg = bcm54xx_setup_aneg, | ||
749 | .setup_forced = bcm54xx_setup_forced, | ||
750 | .poll_link = genmii_poll_link, | ||
751 | .read_link = bcm54xx_read_link, | ||
752 | }; | ||
753 | |||
754 | static struct mii_phy_def bcm5421_phy_def = { | ||
755 | .phy_id = 0x002060e0, | ||
756 | .phy_id_mask = 0xfffffff0, | ||
757 | .name = "BCM5421", | ||
758 | .features = MII_GBIT_FEATURES, | ||
759 | .magic_aneg = 1, | ||
760 | .ops = &bcm5421_phy_ops | ||
761 | }; | ||
762 | |||
763 | /* Broadcom BCM 5421 built-in K2 */ | ||
764 | static struct mii_phy_ops bcm5421k2_phy_ops = { | ||
765 | .init = bcm5421k2_init, | ||
766 | .suspend = bcm5411_suspend, | ||
767 | .setup_aneg = bcm54xx_setup_aneg, | ||
768 | .setup_forced = bcm54xx_setup_forced, | ||
769 | .poll_link = genmii_poll_link, | ||
770 | .read_link = bcm54xx_read_link, | ||
771 | }; | ||
772 | |||
773 | static struct mii_phy_def bcm5421k2_phy_def = { | ||
774 | .phy_id = 0x002062e0, | ||
775 | .phy_id_mask = 0xfffffff0, | ||
776 | .name = "BCM5421-K2", | ||
777 | .features = MII_GBIT_FEATURES, | ||
778 | .magic_aneg = 1, | ||
779 | .ops = &bcm5421k2_phy_ops | ||
780 | }; | ||
781 | |||
782 | /* Marvell 88E1101 (Apple seem to deal with 2 different revs, | ||
783 | * I masked out the 8 last bits to get both, but some specs | ||
784 | * would be useful here) --BenH. | ||
785 | */ | ||
786 | static struct mii_phy_ops marvell_phy_ops = { | ||
787 | .setup_aneg = marvell_setup_aneg, | ||
788 | .setup_forced = marvell_setup_forced, | ||
789 | .poll_link = genmii_poll_link, | ||
790 | .read_link = marvell_read_link | ||
791 | }; | ||
792 | |||
793 | static struct mii_phy_def marvell_phy_def = { | ||
794 | .phy_id = 0x01410c00, | ||
795 | .phy_id_mask = 0xffffff00, | ||
796 | .name = "Marvell 88E1101", | ||
797 | .features = MII_GBIT_FEATURES, | ||
798 | .magic_aneg = 1, | ||
799 | .ops = &marvell_phy_ops | ||
800 | }; | ||
801 | |||
802 | /* Generic implementation for most 10/100 PHYs */ | ||
803 | static struct mii_phy_ops generic_phy_ops = { | ||
804 | .setup_aneg = genmii_setup_aneg, | ||
805 | .setup_forced = genmii_setup_forced, | ||
806 | .poll_link = genmii_poll_link, | ||
807 | .read_link = genmii_read_link | ||
808 | }; | ||
809 | |||
810 | static struct mii_phy_def genmii_phy_def = { | ||
811 | .phy_id = 0x00000000, | ||
812 | .phy_id_mask = 0x00000000, | ||
813 | .name = "Generic MII", | ||
814 | .features = MII_BASIC_FEATURES, | ||
815 | .magic_aneg = 0, | ||
816 | .ops = &generic_phy_ops | ||
817 | }; | ||
818 | |||
819 | static struct mii_phy_def* mii_phy_table[] = { | ||
820 | &bcm5201_phy_def, | ||
821 | &bcm5221_phy_def, | ||
822 | &bcm5400_phy_def, | ||
823 | &bcm5401_phy_def, | ||
824 | &bcm5411_phy_def, | ||
825 | &bcm5421_phy_def, | ||
826 | &bcm5421k2_phy_def, | ||
827 | &marvell_phy_def, | ||
828 | &genmii_phy_def, | ||
829 | NULL | ||
830 | }; | ||
831 | |||
832 | int mii_phy_probe(struct mii_phy *phy, int mii_id) | ||
833 | { | ||
834 | int rc; | ||
835 | u32 id; | ||
836 | struct mii_phy_def* def; | ||
837 | int i; | ||
838 | |||
839 | /* We do not reset the mii_phy structure as the driver | ||
840 | * may re-probe the PHY regulary | ||
841 | */ | ||
842 | phy->mii_id = mii_id; | ||
843 | |||
844 | /* Take PHY out of isloate mode and reset it. */ | ||
845 | rc = reset_one_mii_phy(phy, mii_id); | ||
846 | if (rc) | ||
847 | goto fail; | ||
848 | |||
849 | /* Read ID and find matching entry */ | ||
850 | id = (phy_read(phy, MII_PHYSID1) << 16 | phy_read(phy, MII_PHYSID2)); | ||
851 | printk(KERN_DEBUG "PHY ID: %x, addr: %x\n", id, mii_id); | ||
852 | for (i=0; (def = mii_phy_table[i]) != NULL; i++) | ||
853 | if ((id & def->phy_id_mask) == def->phy_id) | ||
854 | break; | ||
855 | /* Should never be NULL (we have a generic entry), but... */ | ||
856 | if (def == NULL) | ||
857 | goto fail; | ||
858 | |||
859 | phy->def = def; | ||
860 | |||
861 | return 0; | ||
862 | fail: | ||
863 | phy->speed = 0; | ||
864 | phy->duplex = 0; | ||
865 | phy->pause = 0; | ||
866 | phy->advertising = 0; | ||
867 | return -ENODEV; | ||
868 | } | ||
869 | |||
870 | EXPORT_SYMBOL(mii_phy_probe); | ||
871 | MODULE_LICENSE("GPL"); | ||
872 | |||