diff options
Diffstat (limited to 'drivers/net/skge.c')
-rw-r--r-- | drivers/net/skge.c | 3386 |
1 files changed, 3386 insertions, 0 deletions
diff --git a/drivers/net/skge.c b/drivers/net/skge.c new file mode 100644 index 000000000000..30e8d589d167 --- /dev/null +++ b/drivers/net/skge.c | |||
@@ -0,0 +1,3386 @@ | |||
1 | /* | ||
2 | * New driver for Marvell Yukon chipset and SysKonnect Gigabit | ||
3 | * Ethernet adapters. Based on earlier sk98lin, e100 and | ||
4 | * FreeBSD if_sk drivers. | ||
5 | * | ||
6 | * This driver intentionally does not support all the features | ||
7 | * of the original driver such as link fail-over and link management because | ||
8 | * those should be done at higher levels. | ||
9 | * | ||
10 | * Copyright (C) 2004, Stephen Hemminger <shemminger@osdl.org> | ||
11 | * | ||
12 | * This program is free software; you can redistribute it and/or modify | ||
13 | * it under the terms of the GNU General Public License as published by | ||
14 | * the Free Software Foundation; either version 2 of the License, or | ||
15 | * (at your option) any later version. | ||
16 | * | ||
17 | * This program is distributed in the hope that it will be useful, | ||
18 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
20 | * GNU General Public License for more details. | ||
21 | * | ||
22 | * You should have received a copy of the GNU General Public License | ||
23 | * along with this program; if not, write to the Free Software | ||
24 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
25 | */ | ||
26 | |||
27 | #include <linux/config.h> | ||
28 | #include <linux/kernel.h> | ||
29 | #include <linux/module.h> | ||
30 | #include <linux/moduleparam.h> | ||
31 | #include <linux/netdevice.h> | ||
32 | #include <linux/etherdevice.h> | ||
33 | #include <linux/ethtool.h> | ||
34 | #include <linux/pci.h> | ||
35 | #include <linux/if_vlan.h> | ||
36 | #include <linux/ip.h> | ||
37 | #include <linux/delay.h> | ||
38 | #include <linux/crc32.h> | ||
39 | #include <linux/dma-mapping.h> | ||
40 | #include <asm/irq.h> | ||
41 | |||
42 | #include "skge.h" | ||
43 | |||
44 | #define DRV_NAME "skge" | ||
45 | #define DRV_VERSION "0.6" | ||
46 | #define PFX DRV_NAME " " | ||
47 | |||
48 | #define DEFAULT_TX_RING_SIZE 128 | ||
49 | #define DEFAULT_RX_RING_SIZE 512 | ||
50 | #define MAX_TX_RING_SIZE 1024 | ||
51 | #define MAX_RX_RING_SIZE 4096 | ||
52 | #define PHY_RETRIES 1000 | ||
53 | #define ETH_JUMBO_MTU 9000 | ||
54 | #define TX_WATCHDOG (5 * HZ) | ||
55 | #define NAPI_WEIGHT 64 | ||
56 | #define BLINK_HZ (HZ/4) | ||
57 | #define LINK_POLL_HZ (HZ/10) | ||
58 | |||
59 | MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver"); | ||
60 | MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>"); | ||
61 | MODULE_LICENSE("GPL"); | ||
62 | MODULE_VERSION(DRV_VERSION); | ||
63 | |||
64 | static const u32 default_msg | ||
65 | = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK | ||
66 | | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN; | ||
67 | |||
68 | static int debug = -1; /* defaults above */ | ||
69 | module_param(debug, int, 0); | ||
70 | MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); | ||
71 | |||
72 | static const struct pci_device_id skge_id_table[] = { | ||
73 | { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940, | ||
74 | PCI_ANY_ID, PCI_ANY_ID }, | ||
75 | { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B, | ||
76 | PCI_ANY_ID, PCI_ANY_ID }, | ||
77 | { PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE, | ||
78 | PCI_ANY_ID, PCI_ANY_ID }, | ||
79 | { PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU, | ||
80 | PCI_ANY_ID, PCI_ANY_ID }, | ||
81 | { PCI_VENDOR_ID_SYSKONNECT, 0x9E00, /* SK-9Exx */ | ||
82 | PCI_ANY_ID, PCI_ANY_ID }, | ||
83 | { PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T, | ||
84 | PCI_ANY_ID, PCI_ANY_ID }, | ||
85 | { PCI_VENDOR_ID_MARVELL, 0x4320, /* Gigabit Ethernet Controller */ | ||
86 | PCI_ANY_ID, PCI_ANY_ID }, | ||
87 | { PCI_VENDOR_ID_MARVELL, 0x5005, /* Marvell (11ab), Belkin */ | ||
88 | PCI_ANY_ID, PCI_ANY_ID }, | ||
89 | { PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD, | ||
90 | PCI_ANY_ID, PCI_ANY_ID }, | ||
91 | { PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1032, | ||
92 | PCI_ANY_ID, PCI_ANY_ID }, | ||
93 | { PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064, | ||
94 | PCI_ANY_ID, PCI_ANY_ID }, | ||
95 | { 0 } | ||
96 | }; | ||
97 | MODULE_DEVICE_TABLE(pci, skge_id_table); | ||
98 | |||
99 | static int skge_up(struct net_device *dev); | ||
100 | static int skge_down(struct net_device *dev); | ||
101 | static void skge_tx_clean(struct skge_port *skge); | ||
102 | static void skge_xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); | ||
103 | static void skge_gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); | ||
104 | static void genesis_get_stats(struct skge_port *skge, u64 *data); | ||
105 | static void yukon_get_stats(struct skge_port *skge, u64 *data); | ||
106 | static void yukon_init(struct skge_hw *hw, int port); | ||
107 | static void yukon_reset(struct skge_hw *hw, int port); | ||
108 | static void genesis_mac_init(struct skge_hw *hw, int port); | ||
109 | static void genesis_reset(struct skge_hw *hw, int port); | ||
110 | |||
111 | static const int txqaddr[] = { Q_XA1, Q_XA2 }; | ||
112 | static const int rxqaddr[] = { Q_R1, Q_R2 }; | ||
113 | static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F }; | ||
114 | static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F }; | ||
115 | |||
116 | /* Don't need to look at whole 16K. | ||
117 | * last interesting register is descriptor poll timer. | ||
118 | */ | ||
119 | #define SKGE_REGS_LEN (29*128) | ||
120 | |||
121 | static int skge_get_regs_len(struct net_device *dev) | ||
122 | { | ||
123 | return SKGE_REGS_LEN; | ||
124 | } | ||
125 | |||
126 | /* | ||
127 | * Returns copy of control register region | ||
128 | * I/O region is divided into banks and certain regions are unreadable | ||
129 | */ | ||
130 | static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs, | ||
131 | void *p) | ||
132 | { | ||
133 | const struct skge_port *skge = netdev_priv(dev); | ||
134 | unsigned long offs; | ||
135 | const void __iomem *io = skge->hw->regs; | ||
136 | static const unsigned long bankmap | ||
137 | = (1<<0) | (1<<2) | (1<<8) | (1<<9) | ||
138 | | (1<<12) | (1<<13) | (1<<14) | (1<<15) | (1<<16) | ||
139 | | (1<<17) | (1<<20) | (1<<21) | (1<<22) | (1<<23) | ||
140 | | (1<<24) | (1<<25) | (1<<26) | (1<<27) | (1<<28); | ||
141 | |||
142 | regs->version = 1; | ||
143 | for (offs = 0; offs < regs->len; offs += 128) { | ||
144 | u32 len = min_t(u32, 128, regs->len - offs); | ||
145 | |||
146 | if (bankmap & (1<<(offs/128))) | ||
147 | memcpy_fromio(p + offs, io + offs, len); | ||
148 | else | ||
149 | memset(p + offs, 0, len); | ||
150 | } | ||
151 | } | ||
152 | |||
153 | /* Wake on Lan only supported on Yukon chps with rev 1 or above */ | ||
154 | static int wol_supported(const struct skge_hw *hw) | ||
155 | { | ||
156 | return !((hw->chip_id == CHIP_ID_GENESIS || | ||
157 | (hw->chip_id == CHIP_ID_YUKON && chip_rev(hw) == 0))); | ||
158 | } | ||
159 | |||
160 | static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) | ||
161 | { | ||
162 | struct skge_port *skge = netdev_priv(dev); | ||
163 | |||
164 | wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0; | ||
165 | wol->wolopts = skge->wol ? WAKE_MAGIC : 0; | ||
166 | } | ||
167 | |||
168 | static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) | ||
169 | { | ||
170 | struct skge_port *skge = netdev_priv(dev); | ||
171 | struct skge_hw *hw = skge->hw; | ||
172 | |||
173 | if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0) | ||
174 | return -EOPNOTSUPP; | ||
175 | |||
176 | if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw)) | ||
177 | return -EOPNOTSUPP; | ||
178 | |||
179 | skge->wol = wol->wolopts == WAKE_MAGIC; | ||
180 | |||
181 | if (skge->wol) { | ||
182 | memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN); | ||
183 | |||
184 | skge_write16(hw, WOL_CTRL_STAT, | ||
185 | WOL_CTL_ENA_PME_ON_MAGIC_PKT | | ||
186 | WOL_CTL_ENA_MAGIC_PKT_UNIT); | ||
187 | } else | ||
188 | skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT); | ||
189 | |||
190 | return 0; | ||
191 | } | ||
192 | |||
193 | |||
194 | static int skge_get_settings(struct net_device *dev, | ||
195 | struct ethtool_cmd *ecmd) | ||
196 | { | ||
197 | struct skge_port *skge = netdev_priv(dev); | ||
198 | struct skge_hw *hw = skge->hw; | ||
199 | |||
200 | ecmd->transceiver = XCVR_INTERNAL; | ||
201 | |||
202 | if (iscopper(hw)) { | ||
203 | if (hw->chip_id == CHIP_ID_GENESIS) | ||
204 | ecmd->supported = SUPPORTED_1000baseT_Full | ||
205 | | SUPPORTED_1000baseT_Half | ||
206 | | SUPPORTED_Autoneg | SUPPORTED_TP; | ||
207 | else { | ||
208 | ecmd->supported = SUPPORTED_10baseT_Half | ||
209 | | SUPPORTED_10baseT_Full | ||
210 | | SUPPORTED_100baseT_Half | ||
211 | | SUPPORTED_100baseT_Full | ||
212 | | SUPPORTED_1000baseT_Half | ||
213 | | SUPPORTED_1000baseT_Full | ||
214 | | SUPPORTED_Autoneg| SUPPORTED_TP; | ||
215 | |||
216 | if (hw->chip_id == CHIP_ID_YUKON) | ||
217 | ecmd->supported &= ~SUPPORTED_1000baseT_Half; | ||
218 | |||
219 | else if (hw->chip_id == CHIP_ID_YUKON_FE) | ||
220 | ecmd->supported &= ~(SUPPORTED_1000baseT_Half | ||
221 | | SUPPORTED_1000baseT_Full); | ||
222 | } | ||
223 | |||
224 | ecmd->port = PORT_TP; | ||
225 | ecmd->phy_address = hw->phy_addr; | ||
226 | } else { | ||
227 | ecmd->supported = SUPPORTED_1000baseT_Full | ||
228 | | SUPPORTED_FIBRE | ||
229 | | SUPPORTED_Autoneg; | ||
230 | |||
231 | ecmd->port = PORT_FIBRE; | ||
232 | } | ||
233 | |||
234 | ecmd->advertising = skge->advertising; | ||
235 | ecmd->autoneg = skge->autoneg; | ||
236 | ecmd->speed = skge->speed; | ||
237 | ecmd->duplex = skge->duplex; | ||
238 | return 0; | ||
239 | } | ||
240 | |||
241 | static u32 skge_modes(const struct skge_hw *hw) | ||
242 | { | ||
243 | u32 modes = ADVERTISED_Autoneg | ||
244 | | ADVERTISED_1000baseT_Full | ADVERTISED_1000baseT_Half | ||
245 | | ADVERTISED_100baseT_Full | ADVERTISED_100baseT_Half | ||
246 | | ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half; | ||
247 | |||
248 | if (iscopper(hw)) { | ||
249 | modes |= ADVERTISED_TP; | ||
250 | switch(hw->chip_id) { | ||
251 | case CHIP_ID_GENESIS: | ||
252 | modes &= ~(ADVERTISED_100baseT_Full | ||
253 | | ADVERTISED_100baseT_Half | ||
254 | | ADVERTISED_10baseT_Full | ||
255 | | ADVERTISED_10baseT_Half); | ||
256 | break; | ||
257 | |||
258 | case CHIP_ID_YUKON: | ||
259 | modes &= ~ADVERTISED_1000baseT_Half; | ||
260 | break; | ||
261 | |||
262 | case CHIP_ID_YUKON_FE: | ||
263 | modes &= ~(ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full); | ||
264 | break; | ||
265 | } | ||
266 | } else { | ||
267 | modes |= ADVERTISED_FIBRE; | ||
268 | modes &= ~ADVERTISED_1000baseT_Half; | ||
269 | } | ||
270 | return modes; | ||
271 | } | ||
272 | |||
273 | static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | ||
274 | { | ||
275 | struct skge_port *skge = netdev_priv(dev); | ||
276 | const struct skge_hw *hw = skge->hw; | ||
277 | |||
278 | if (ecmd->autoneg == AUTONEG_ENABLE) { | ||
279 | if (ecmd->advertising & skge_modes(hw)) | ||
280 | return -EINVAL; | ||
281 | } else { | ||
282 | switch(ecmd->speed) { | ||
283 | case SPEED_1000: | ||
284 | if (hw->chip_id == CHIP_ID_YUKON_FE) | ||
285 | return -EINVAL; | ||
286 | break; | ||
287 | case SPEED_100: | ||
288 | case SPEED_10: | ||
289 | if (iscopper(hw) || hw->chip_id == CHIP_ID_GENESIS) | ||
290 | return -EINVAL; | ||
291 | break; | ||
292 | default: | ||
293 | return -EINVAL; | ||
294 | } | ||
295 | } | ||
296 | |||
297 | skge->autoneg = ecmd->autoneg; | ||
298 | skge->speed = ecmd->speed; | ||
299 | skge->duplex = ecmd->duplex; | ||
300 | skge->advertising = ecmd->advertising; | ||
301 | |||
302 | if (netif_running(dev)) { | ||
303 | skge_down(dev); | ||
304 | skge_up(dev); | ||
305 | } | ||
306 | return (0); | ||
307 | } | ||
308 | |||
309 | static void skge_get_drvinfo(struct net_device *dev, | ||
310 | struct ethtool_drvinfo *info) | ||
311 | { | ||
312 | struct skge_port *skge = netdev_priv(dev); | ||
313 | |||
314 | strcpy(info->driver, DRV_NAME); | ||
315 | strcpy(info->version, DRV_VERSION); | ||
316 | strcpy(info->fw_version, "N/A"); | ||
317 | strcpy(info->bus_info, pci_name(skge->hw->pdev)); | ||
318 | } | ||
319 | |||
320 | static const struct skge_stat { | ||
321 | char name[ETH_GSTRING_LEN]; | ||
322 | u16 xmac_offset; | ||
323 | u16 gma_offset; | ||
324 | } skge_stats[] = { | ||
325 | { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI }, | ||
326 | { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI }, | ||
327 | |||
328 | { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK }, | ||
329 | { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK }, | ||
330 | { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK }, | ||
331 | { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK }, | ||
332 | { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK }, | ||
333 | { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK }, | ||
334 | { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE }, | ||
335 | { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE }, | ||
336 | |||
337 | { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL }, | ||
338 | { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL }, | ||
339 | { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL }, | ||
340 | { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL }, | ||
341 | { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR }, | ||
342 | { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV }, | ||
343 | |||
344 | { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, | ||
345 | { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT }, | ||
346 | { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG }, | ||
347 | { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, | ||
348 | { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR }, | ||
349 | }; | ||
350 | |||
351 | static int skge_get_stats_count(struct net_device *dev) | ||
352 | { | ||
353 | return ARRAY_SIZE(skge_stats); | ||
354 | } | ||
355 | |||
356 | static void skge_get_ethtool_stats(struct net_device *dev, | ||
357 | struct ethtool_stats *stats, u64 *data) | ||
358 | { | ||
359 | struct skge_port *skge = netdev_priv(dev); | ||
360 | |||
361 | if (skge->hw->chip_id == CHIP_ID_GENESIS) | ||
362 | genesis_get_stats(skge, data); | ||
363 | else | ||
364 | yukon_get_stats(skge, data); | ||
365 | } | ||
366 | |||
367 | /* Use hardware MIB variables for critical path statistics and | ||
368 | * transmit feedback not reported at interrupt. | ||
369 | * Other errors are accounted for in interrupt handler. | ||
370 | */ | ||
371 | static struct net_device_stats *skge_get_stats(struct net_device *dev) | ||
372 | { | ||
373 | struct skge_port *skge = netdev_priv(dev); | ||
374 | u64 data[ARRAY_SIZE(skge_stats)]; | ||
375 | |||
376 | if (skge->hw->chip_id == CHIP_ID_GENESIS) | ||
377 | genesis_get_stats(skge, data); | ||
378 | else | ||
379 | yukon_get_stats(skge, data); | ||
380 | |||
381 | skge->net_stats.tx_bytes = data[0]; | ||
382 | skge->net_stats.rx_bytes = data[1]; | ||
383 | skge->net_stats.tx_packets = data[2] + data[4] + data[6]; | ||
384 | skge->net_stats.rx_packets = data[3] + data[5] + data[7]; | ||
385 | skge->net_stats.multicast = data[5] + data[7]; | ||
386 | skge->net_stats.collisions = data[10]; | ||
387 | skge->net_stats.tx_aborted_errors = data[12]; | ||
388 | |||
389 | return &skge->net_stats; | ||
390 | } | ||
391 | |||
392 | static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data) | ||
393 | { | ||
394 | int i; | ||
395 | |||
396 | switch(stringset) { | ||
397 | case ETH_SS_STATS: | ||
398 | for (i = 0; i < ARRAY_SIZE(skge_stats); i++) | ||
399 | memcpy(data + i * ETH_GSTRING_LEN, | ||
400 | skge_stats[i].name, ETH_GSTRING_LEN); | ||
401 | break; | ||
402 | } | ||
403 | } | ||
404 | |||
405 | static void skge_get_ring_param(struct net_device *dev, | ||
406 | struct ethtool_ringparam *p) | ||
407 | { | ||
408 | struct skge_port *skge = netdev_priv(dev); | ||
409 | |||
410 | p->rx_max_pending = MAX_RX_RING_SIZE; | ||
411 | p->tx_max_pending = MAX_TX_RING_SIZE; | ||
412 | p->rx_mini_max_pending = 0; | ||
413 | p->rx_jumbo_max_pending = 0; | ||
414 | |||
415 | p->rx_pending = skge->rx_ring.count; | ||
416 | p->tx_pending = skge->tx_ring.count; | ||
417 | p->rx_mini_pending = 0; | ||
418 | p->rx_jumbo_pending = 0; | ||
419 | } | ||
420 | |||
421 | static int skge_set_ring_param(struct net_device *dev, | ||
422 | struct ethtool_ringparam *p) | ||
423 | { | ||
424 | struct skge_port *skge = netdev_priv(dev); | ||
425 | |||
426 | if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE || | ||
427 | p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE) | ||
428 | return -EINVAL; | ||
429 | |||
430 | skge->rx_ring.count = p->rx_pending; | ||
431 | skge->tx_ring.count = p->tx_pending; | ||
432 | |||
433 | if (netif_running(dev)) { | ||
434 | skge_down(dev); | ||
435 | skge_up(dev); | ||
436 | } | ||
437 | |||
438 | return 0; | ||
439 | } | ||
440 | |||
441 | static u32 skge_get_msglevel(struct net_device *netdev) | ||
442 | { | ||
443 | struct skge_port *skge = netdev_priv(netdev); | ||
444 | return skge->msg_enable; | ||
445 | } | ||
446 | |||
447 | static void skge_set_msglevel(struct net_device *netdev, u32 value) | ||
448 | { | ||
449 | struct skge_port *skge = netdev_priv(netdev); | ||
450 | skge->msg_enable = value; | ||
451 | } | ||
452 | |||
453 | static int skge_nway_reset(struct net_device *dev) | ||
454 | { | ||
455 | struct skge_port *skge = netdev_priv(dev); | ||
456 | struct skge_hw *hw = skge->hw; | ||
457 | int port = skge->port; | ||
458 | |||
459 | if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev)) | ||
460 | return -EINVAL; | ||
461 | |||
462 | spin_lock_bh(&hw->phy_lock); | ||
463 | if (hw->chip_id == CHIP_ID_GENESIS) { | ||
464 | genesis_reset(hw, port); | ||
465 | genesis_mac_init(hw, port); | ||
466 | } else { | ||
467 | yukon_reset(hw, port); | ||
468 | yukon_init(hw, port); | ||
469 | } | ||
470 | spin_unlock_bh(&hw->phy_lock); | ||
471 | return 0; | ||
472 | } | ||
473 | |||
474 | static int skge_set_sg(struct net_device *dev, u32 data) | ||
475 | { | ||
476 | struct skge_port *skge = netdev_priv(dev); | ||
477 | struct skge_hw *hw = skge->hw; | ||
478 | |||
479 | if (hw->chip_id == CHIP_ID_GENESIS && data) | ||
480 | return -EOPNOTSUPP; | ||
481 | return ethtool_op_set_sg(dev, data); | ||
482 | } | ||
483 | |||
484 | static int skge_set_tx_csum(struct net_device *dev, u32 data) | ||
485 | { | ||
486 | struct skge_port *skge = netdev_priv(dev); | ||
487 | struct skge_hw *hw = skge->hw; | ||
488 | |||
489 | if (hw->chip_id == CHIP_ID_GENESIS && data) | ||
490 | return -EOPNOTSUPP; | ||
491 | |||
492 | return ethtool_op_set_tx_csum(dev, data); | ||
493 | } | ||
494 | |||
495 | static u32 skge_get_rx_csum(struct net_device *dev) | ||
496 | { | ||
497 | struct skge_port *skge = netdev_priv(dev); | ||
498 | |||
499 | return skge->rx_csum; | ||
500 | } | ||
501 | |||
502 | /* Only Yukon supports checksum offload. */ | ||
503 | static int skge_set_rx_csum(struct net_device *dev, u32 data) | ||
504 | { | ||
505 | struct skge_port *skge = netdev_priv(dev); | ||
506 | |||
507 | if (skge->hw->chip_id == CHIP_ID_GENESIS && data) | ||
508 | return -EOPNOTSUPP; | ||
509 | |||
510 | skge->rx_csum = data; | ||
511 | return 0; | ||
512 | } | ||
513 | |||
514 | /* Only Yukon II supports TSO (not implemented yet) */ | ||
515 | static int skge_set_tso(struct net_device *dev, u32 data) | ||
516 | { | ||
517 | if (data) | ||
518 | return -EOPNOTSUPP; | ||
519 | return 0; | ||
520 | } | ||
521 | |||
522 | static void skge_get_pauseparam(struct net_device *dev, | ||
523 | struct ethtool_pauseparam *ecmd) | ||
524 | { | ||
525 | struct skge_port *skge = netdev_priv(dev); | ||
526 | |||
527 | ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND) | ||
528 | || (skge->flow_control == FLOW_MODE_SYMMETRIC); | ||
529 | ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND) | ||
530 | || (skge->flow_control == FLOW_MODE_SYMMETRIC); | ||
531 | |||
532 | ecmd->autoneg = skge->autoneg; | ||
533 | } | ||
534 | |||
535 | static int skge_set_pauseparam(struct net_device *dev, | ||
536 | struct ethtool_pauseparam *ecmd) | ||
537 | { | ||
538 | struct skge_port *skge = netdev_priv(dev); | ||
539 | |||
540 | skge->autoneg = ecmd->autoneg; | ||
541 | if (ecmd->rx_pause && ecmd->tx_pause) | ||
542 | skge->flow_control = FLOW_MODE_SYMMETRIC; | ||
543 | else if(ecmd->rx_pause && !ecmd->tx_pause) | ||
544 | skge->flow_control = FLOW_MODE_REM_SEND; | ||
545 | else if(!ecmd->rx_pause && ecmd->tx_pause) | ||
546 | skge->flow_control = FLOW_MODE_LOC_SEND; | ||
547 | else | ||
548 | skge->flow_control = FLOW_MODE_NONE; | ||
549 | |||
550 | if (netif_running(dev)) { | ||
551 | skge_down(dev); | ||
552 | skge_up(dev); | ||
553 | } | ||
554 | return 0; | ||
555 | } | ||
556 | |||
557 | /* Chip internal frequency for clock calculations */ | ||
558 | static inline u32 hwkhz(const struct skge_hw *hw) | ||
559 | { | ||
560 | if (hw->chip_id == CHIP_ID_GENESIS) | ||
561 | return 53215; /* or: 53.125 MHz */ | ||
562 | else if (hw->chip_id == CHIP_ID_YUKON_EC) | ||
563 | return 125000; /* or: 125.000 MHz */ | ||
564 | else | ||
565 | return 78215; /* or: 78.125 MHz */ | ||
566 | } | ||
567 | |||
568 | /* Chip hz to microseconds */ | ||
569 | static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks) | ||
570 | { | ||
571 | return (ticks * 1000) / hwkhz(hw); | ||
572 | } | ||
573 | |||
574 | /* Microseconds to chip hz */ | ||
575 | static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec) | ||
576 | { | ||
577 | return hwkhz(hw) * usec / 1000; | ||
578 | } | ||
579 | |||
580 | static int skge_get_coalesce(struct net_device *dev, | ||
581 | struct ethtool_coalesce *ecmd) | ||
582 | { | ||
583 | struct skge_port *skge = netdev_priv(dev); | ||
584 | struct skge_hw *hw = skge->hw; | ||
585 | int port = skge->port; | ||
586 | |||
587 | ecmd->rx_coalesce_usecs = 0; | ||
588 | ecmd->tx_coalesce_usecs = 0; | ||
589 | |||
590 | if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) { | ||
591 | u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI)); | ||
592 | u32 msk = skge_read32(hw, B2_IRQM_MSK); | ||
593 | |||
594 | if (msk & rxirqmask[port]) | ||
595 | ecmd->rx_coalesce_usecs = delay; | ||
596 | if (msk & txirqmask[port]) | ||
597 | ecmd->tx_coalesce_usecs = delay; | ||
598 | } | ||
599 | |||
600 | return 0; | ||
601 | } | ||
602 | |||
603 | /* Note: interrupt timer is per board, but can turn on/off per port */ | ||
604 | static int skge_set_coalesce(struct net_device *dev, | ||
605 | struct ethtool_coalesce *ecmd) | ||
606 | { | ||
607 | struct skge_port *skge = netdev_priv(dev); | ||
608 | struct skge_hw *hw = skge->hw; | ||
609 | int port = skge->port; | ||
610 | u32 msk = skge_read32(hw, B2_IRQM_MSK); | ||
611 | u32 delay = 25; | ||
612 | |||
613 | if (ecmd->rx_coalesce_usecs == 0) | ||
614 | msk &= ~rxirqmask[port]; | ||
615 | else if (ecmd->rx_coalesce_usecs < 25 || | ||
616 | ecmd->rx_coalesce_usecs > 33333) | ||
617 | return -EINVAL; | ||
618 | else { | ||
619 | msk |= rxirqmask[port]; | ||
620 | delay = ecmd->rx_coalesce_usecs; | ||
621 | } | ||
622 | |||
623 | if (ecmd->tx_coalesce_usecs == 0) | ||
624 | msk &= ~txirqmask[port]; | ||
625 | else if (ecmd->tx_coalesce_usecs < 25 || | ||
626 | ecmd->tx_coalesce_usecs > 33333) | ||
627 | return -EINVAL; | ||
628 | else { | ||
629 | msk |= txirqmask[port]; | ||
630 | delay = min(delay, ecmd->rx_coalesce_usecs); | ||
631 | } | ||
632 | |||
633 | skge_write32(hw, B2_IRQM_MSK, msk); | ||
634 | if (msk == 0) | ||
635 | skge_write32(hw, B2_IRQM_CTRL, TIM_STOP); | ||
636 | else { | ||
637 | skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay)); | ||
638 | skge_write32(hw, B2_IRQM_CTRL, TIM_START); | ||
639 | } | ||
640 | return 0; | ||
641 | } | ||
642 | |||
643 | static void skge_led_on(struct skge_hw *hw, int port) | ||
644 | { | ||
645 | if (hw->chip_id == CHIP_ID_GENESIS) { | ||
646 | skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_ON); | ||
647 | skge_write8(hw, B0_LED, LED_STAT_ON); | ||
648 | |||
649 | skge_write8(hw, SKGEMAC_REG(port, RX_LED_TST), LED_T_ON); | ||
650 | skge_write32(hw, SKGEMAC_REG(port, RX_LED_VAL), 100); | ||
651 | skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_START); | ||
652 | |||
653 | switch (hw->phy_type) { | ||
654 | case SK_PHY_BCOM: | ||
655 | skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, | ||
656 | PHY_B_PEC_LED_ON); | ||
657 | break; | ||
658 | case SK_PHY_LONE: | ||
659 | skge_xm_phy_write(hw, port, PHY_LONE_LED_CFG, | ||
660 | 0x0800); | ||
661 | break; | ||
662 | default: | ||
663 | skge_write8(hw, SKGEMAC_REG(port, TX_LED_TST), LED_T_ON); | ||
664 | skge_write32(hw, SKGEMAC_REG(port, TX_LED_VAL), 100); | ||
665 | skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_START); | ||
666 | } | ||
667 | } else { | ||
668 | skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); | ||
669 | skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER, | ||
670 | PHY_M_LED_MO_DUP(MO_LED_ON) | | ||
671 | PHY_M_LED_MO_10(MO_LED_ON) | | ||
672 | PHY_M_LED_MO_100(MO_LED_ON) | | ||
673 | PHY_M_LED_MO_1000(MO_LED_ON) | | ||
674 | PHY_M_LED_MO_RX(MO_LED_ON)); | ||
675 | } | ||
676 | } | ||
677 | |||
678 | static void skge_led_off(struct skge_hw *hw, int port) | ||
679 | { | ||
680 | if (hw->chip_id == CHIP_ID_GENESIS) { | ||
681 | skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_OFF); | ||
682 | skge_write8(hw, B0_LED, LED_STAT_OFF); | ||
683 | |||
684 | skge_write32(hw, SKGEMAC_REG(port, RX_LED_VAL), 0); | ||
685 | skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_T_OFF); | ||
686 | |||
687 | switch (hw->phy_type) { | ||
688 | case SK_PHY_BCOM: | ||
689 | skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, | ||
690 | PHY_B_PEC_LED_OFF); | ||
691 | break; | ||
692 | case SK_PHY_LONE: | ||
693 | skge_xm_phy_write(hw, port, PHY_LONE_LED_CFG, | ||
694 | PHY_L_LC_LEDT); | ||
695 | break; | ||
696 | default: | ||
697 | skge_write32(hw, SKGEMAC_REG(port, TX_LED_VAL), 0); | ||
698 | skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_T_OFF); | ||
699 | } | ||
700 | } else { | ||
701 | skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); | ||
702 | skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER, | ||
703 | PHY_M_LED_MO_DUP(MO_LED_OFF) | | ||
704 | PHY_M_LED_MO_10(MO_LED_OFF) | | ||
705 | PHY_M_LED_MO_100(MO_LED_OFF) | | ||
706 | PHY_M_LED_MO_1000(MO_LED_OFF) | | ||
707 | PHY_M_LED_MO_RX(MO_LED_OFF)); | ||
708 | } | ||
709 | } | ||
710 | |||
711 | static void skge_blink_timer(unsigned long data) | ||
712 | { | ||
713 | struct skge_port *skge = (struct skge_port *) data; | ||
714 | struct skge_hw *hw = skge->hw; | ||
715 | unsigned long flags; | ||
716 | |||
717 | spin_lock_irqsave(&hw->phy_lock, flags); | ||
718 | if (skge->blink_on) | ||
719 | skge_led_on(hw, skge->port); | ||
720 | else | ||
721 | skge_led_off(hw, skge->port); | ||
722 | spin_unlock_irqrestore(&hw->phy_lock, flags); | ||
723 | |||
724 | skge->blink_on = !skge->blink_on; | ||
725 | mod_timer(&skge->led_blink, jiffies + BLINK_HZ); | ||
726 | } | ||
727 | |||
728 | /* blink LED's for finding board */ | ||
729 | static int skge_phys_id(struct net_device *dev, u32 data) | ||
730 | { | ||
731 | struct skge_port *skge = netdev_priv(dev); | ||
732 | |||
733 | if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) | ||
734 | data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); | ||
735 | |||
736 | /* start blinking */ | ||
737 | skge->blink_on = 1; | ||
738 | mod_timer(&skge->led_blink, jiffies+1); | ||
739 | |||
740 | msleep_interruptible(data * 1000); | ||
741 | del_timer_sync(&skge->led_blink); | ||
742 | |||
743 | skge_led_off(skge->hw, skge->port); | ||
744 | |||
745 | return 0; | ||
746 | } | ||
747 | |||
748 | static struct ethtool_ops skge_ethtool_ops = { | ||
749 | .get_settings = skge_get_settings, | ||
750 | .set_settings = skge_set_settings, | ||
751 | .get_drvinfo = skge_get_drvinfo, | ||
752 | .get_regs_len = skge_get_regs_len, | ||
753 | .get_regs = skge_get_regs, | ||
754 | .get_wol = skge_get_wol, | ||
755 | .set_wol = skge_set_wol, | ||
756 | .get_msglevel = skge_get_msglevel, | ||
757 | .set_msglevel = skge_set_msglevel, | ||
758 | .nway_reset = skge_nway_reset, | ||
759 | .get_link = ethtool_op_get_link, | ||
760 | .get_ringparam = skge_get_ring_param, | ||
761 | .set_ringparam = skge_set_ring_param, | ||
762 | .get_pauseparam = skge_get_pauseparam, | ||
763 | .set_pauseparam = skge_set_pauseparam, | ||
764 | .get_coalesce = skge_get_coalesce, | ||
765 | .set_coalesce = skge_set_coalesce, | ||
766 | .get_tso = ethtool_op_get_tso, | ||
767 | .set_tso = skge_set_tso, | ||
768 | .get_sg = ethtool_op_get_sg, | ||
769 | .set_sg = skge_set_sg, | ||
770 | .get_tx_csum = ethtool_op_get_tx_csum, | ||
771 | .set_tx_csum = skge_set_tx_csum, | ||
772 | .get_rx_csum = skge_get_rx_csum, | ||
773 | .set_rx_csum = skge_set_rx_csum, | ||
774 | .get_strings = skge_get_strings, | ||
775 | .phys_id = skge_phys_id, | ||
776 | .get_stats_count = skge_get_stats_count, | ||
777 | .get_ethtool_stats = skge_get_ethtool_stats, | ||
778 | }; | ||
779 | |||
780 | /* | ||
781 | * Allocate ring elements and chain them together | ||
782 | * One-to-one association of board descriptors with ring elements | ||
783 | */ | ||
784 | static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base) | ||
785 | { | ||
786 | struct skge_tx_desc *d; | ||
787 | struct skge_element *e; | ||
788 | int i; | ||
789 | |||
790 | ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL); | ||
791 | if (!ring->start) | ||
792 | return -ENOMEM; | ||
793 | |||
794 | for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) { | ||
795 | e->desc = d; | ||
796 | if (i == ring->count - 1) { | ||
797 | e->next = ring->start; | ||
798 | d->next_offset = base; | ||
799 | } else { | ||
800 | e->next = e + 1; | ||
801 | d->next_offset = base + (i+1) * sizeof(*d); | ||
802 | } | ||
803 | } | ||
804 | ring->to_use = ring->to_clean = ring->start; | ||
805 | |||
806 | return 0; | ||
807 | } | ||
808 | |||
809 | /* Setup buffer for receiving */ | ||
810 | static inline int skge_rx_alloc(struct skge_port *skge, | ||
811 | struct skge_element *e) | ||
812 | { | ||
813 | unsigned long bufsize = skge->netdev->mtu + ETH_HLEN; /* VLAN? */ | ||
814 | struct skge_rx_desc *rd = e->desc; | ||
815 | struct sk_buff *skb; | ||
816 | u64 map; | ||
817 | |||
818 | skb = dev_alloc_skb(bufsize + NET_IP_ALIGN); | ||
819 | if (unlikely(!skb)) { | ||
820 | printk(KERN_DEBUG PFX "%s: out of memory for receive\n", | ||
821 | skge->netdev->name); | ||
822 | return -ENOMEM; | ||
823 | } | ||
824 | |||
825 | skb->dev = skge->netdev; | ||
826 | skb_reserve(skb, NET_IP_ALIGN); | ||
827 | |||
828 | map = pci_map_single(skge->hw->pdev, skb->data, bufsize, | ||
829 | PCI_DMA_FROMDEVICE); | ||
830 | |||
831 | rd->dma_lo = map; | ||
832 | rd->dma_hi = map >> 32; | ||
833 | e->skb = skb; | ||
834 | rd->csum1_start = ETH_HLEN; | ||
835 | rd->csum2_start = ETH_HLEN; | ||
836 | rd->csum1 = 0; | ||
837 | rd->csum2 = 0; | ||
838 | |||
839 | wmb(); | ||
840 | |||
841 | rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize; | ||
842 | pci_unmap_addr_set(e, mapaddr, map); | ||
843 | pci_unmap_len_set(e, maplen, bufsize); | ||
844 | return 0; | ||
845 | } | ||
846 | |||
847 | /* Free all unused buffers in receive ring, assumes receiver stopped */ | ||
848 | static void skge_rx_clean(struct skge_port *skge) | ||
849 | { | ||
850 | struct skge_hw *hw = skge->hw; | ||
851 | struct skge_ring *ring = &skge->rx_ring; | ||
852 | struct skge_element *e; | ||
853 | |||
854 | for (e = ring->to_clean; e != ring->to_use; e = e->next) { | ||
855 | struct skge_rx_desc *rd = e->desc; | ||
856 | rd->control = 0; | ||
857 | |||
858 | pci_unmap_single(hw->pdev, | ||
859 | pci_unmap_addr(e, mapaddr), | ||
860 | pci_unmap_len(e, maplen), | ||
861 | PCI_DMA_FROMDEVICE); | ||
862 | dev_kfree_skb(e->skb); | ||
863 | e->skb = NULL; | ||
864 | } | ||
865 | ring->to_clean = e; | ||
866 | } | ||
867 | |||
868 | /* Allocate buffers for receive ring | ||
869 | * For receive: to_use is refill location | ||
870 | * to_clean is next received frame. | ||
871 | * | ||
872 | * if (to_use == to_clean) | ||
873 | * then ring all frames in ring need buffers | ||
874 | * if (to_use->next == to_clean) | ||
875 | * then ring all frames in ring have buffers | ||
876 | */ | ||
877 | static int skge_rx_fill(struct skge_port *skge) | ||
878 | { | ||
879 | struct skge_ring *ring = &skge->rx_ring; | ||
880 | struct skge_element *e; | ||
881 | int ret = 0; | ||
882 | |||
883 | for (e = ring->to_use; e->next != ring->to_clean; e = e->next) { | ||
884 | if (skge_rx_alloc(skge, e)) { | ||
885 | ret = 1; | ||
886 | break; | ||
887 | } | ||
888 | |||
889 | } | ||
890 | ring->to_use = e; | ||
891 | |||
892 | return ret; | ||
893 | } | ||
894 | |||
895 | static void skge_link_up(struct skge_port *skge) | ||
896 | { | ||
897 | netif_carrier_on(skge->netdev); | ||
898 | if (skge->tx_avail > MAX_SKB_FRAGS + 1) | ||
899 | netif_wake_queue(skge->netdev); | ||
900 | |||
901 | if (netif_msg_link(skge)) | ||
902 | printk(KERN_INFO PFX | ||
903 | "%s: Link is up at %d Mbps, %s duplex, flow control %s\n", | ||
904 | skge->netdev->name, skge->speed, | ||
905 | skge->duplex == DUPLEX_FULL ? "full" : "half", | ||
906 | (skge->flow_control == FLOW_MODE_NONE) ? "none" : | ||
907 | (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" : | ||
908 | (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" : | ||
909 | (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" : | ||
910 | "unknown"); | ||
911 | } | ||
912 | |||
913 | static void skge_link_down(struct skge_port *skge) | ||
914 | { | ||
915 | netif_carrier_off(skge->netdev); | ||
916 | netif_stop_queue(skge->netdev); | ||
917 | |||
918 | if (netif_msg_link(skge)) | ||
919 | printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name); | ||
920 | } | ||
921 | |||
922 | static u16 skge_xm_phy_read(struct skge_hw *hw, int port, u16 reg) | ||
923 | { | ||
924 | int i; | ||
925 | u16 v; | ||
926 | |||
927 | skge_xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); | ||
928 | v = skge_xm_read16(hw, port, XM_PHY_DATA); | ||
929 | if (hw->phy_type != SK_PHY_XMAC) { | ||
930 | for (i = 0; i < PHY_RETRIES; i++) { | ||
931 | udelay(1); | ||
932 | if (skge_xm_read16(hw, port, XM_MMU_CMD) | ||
933 | & XM_MMU_PHY_RDY) | ||
934 | goto ready; | ||
935 | } | ||
936 | |||
937 | printk(KERN_WARNING PFX "%s: phy read timed out\n", | ||
938 | hw->dev[port]->name); | ||
939 | return 0; | ||
940 | ready: | ||
941 | v = skge_xm_read16(hw, port, XM_PHY_DATA); | ||
942 | } | ||
943 | |||
944 | return v; | ||
945 | } | ||
946 | |||
947 | static void skge_xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) | ||
948 | { | ||
949 | int i; | ||
950 | |||
951 | skge_xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); | ||
952 | for (i = 0; i < PHY_RETRIES; i++) { | ||
953 | if (!(skge_xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) | ||
954 | goto ready; | ||
955 | cpu_relax(); | ||
956 | } | ||
957 | printk(KERN_WARNING PFX "%s: phy write failed to come ready\n", | ||
958 | hw->dev[port]->name); | ||
959 | |||
960 | |||
961 | ready: | ||
962 | skge_xm_write16(hw, port, XM_PHY_DATA, val); | ||
963 | for (i = 0; i < PHY_RETRIES; i++) { | ||
964 | udelay(1); | ||
965 | if (!(skge_xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) | ||
966 | return; | ||
967 | } | ||
968 | printk(KERN_WARNING PFX "%s: phy write timed out\n", | ||
969 | hw->dev[port]->name); | ||
970 | } | ||
971 | |||
972 | static void genesis_init(struct skge_hw *hw) | ||
973 | { | ||
974 | /* set blink source counter */ | ||
975 | skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100); | ||
976 | skge_write8(hw, B2_BSC_CTRL, BSC_START); | ||
977 | |||
978 | /* configure mac arbiter */ | ||
979 | skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); | ||
980 | |||
981 | /* configure mac arbiter timeout values */ | ||
982 | skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53); | ||
983 | skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53); | ||
984 | skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53); | ||
985 | skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53); | ||
986 | |||
987 | skge_write8(hw, B3_MA_RCINI_RX1, 0); | ||
988 | skge_write8(hw, B3_MA_RCINI_RX2, 0); | ||
989 | skge_write8(hw, B3_MA_RCINI_TX1, 0); | ||
990 | skge_write8(hw, B3_MA_RCINI_TX2, 0); | ||
991 | |||
992 | /* configure packet arbiter timeout */ | ||
993 | skge_write16(hw, B3_PA_CTRL, PA_RST_CLR); | ||
994 | skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX); | ||
995 | skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX); | ||
996 | skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX); | ||
997 | skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX); | ||
998 | } | ||
999 | |||
1000 | static void genesis_reset(struct skge_hw *hw, int port) | ||
1001 | { | ||
1002 | int i; | ||
1003 | u64 zero = 0; | ||
1004 | |||
1005 | /* reset the statistics module */ | ||
1006 | skge_xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT); | ||
1007 | skge_xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */ | ||
1008 | skge_xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */ | ||
1009 | skge_xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */ | ||
1010 | skge_xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */ | ||
1011 | |||
1012 | /* disable all PHY IRQs */ | ||
1013 | if (hw->phy_type == SK_PHY_BCOM) | ||
1014 | skge_xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff); | ||
1015 | |||
1016 | skge_xm_outhash(hw, port, XM_HSM, (u8 *) &zero); | ||
1017 | for (i = 0; i < 15; i++) | ||
1018 | skge_xm_outaddr(hw, port, XM_EXM(i), (u8 *) &zero); | ||
1019 | skge_xm_outhash(hw, port, XM_SRC_CHK, (u8 *) &zero); | ||
1020 | } | ||
1021 | |||
1022 | |||
1023 | static void genesis_mac_init(struct skge_hw *hw, int port) | ||
1024 | { | ||
1025 | struct skge_port *skge = netdev_priv(hw->dev[port]); | ||
1026 | int i; | ||
1027 | u32 r; | ||
1028 | u16 id1; | ||
1029 | u16 ctrl1, ctrl2, ctrl3, ctrl4, ctrl5; | ||
1030 | |||
1031 | /* magic workaround patterns for Broadcom */ | ||
1032 | static const struct { | ||
1033 | u16 reg; | ||
1034 | u16 val; | ||
1035 | } A1hack[] = { | ||
1036 | { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, | ||
1037 | { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 }, | ||
1038 | { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 }, | ||
1039 | { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, | ||
1040 | }, C0hack[] = { | ||
1041 | { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 }, | ||
1042 | { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 }, | ||
1043 | }; | ||
1044 | |||
1045 | |||
1046 | /* initialize Rx, Tx and Link LED */ | ||
1047 | skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_ON); | ||
1048 | skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON); | ||
1049 | |||
1050 | skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_START); | ||
1051 | skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_START); | ||
1052 | |||
1053 | /* Unreset the XMAC. */ | ||
1054 | skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); | ||
1055 | |||
1056 | /* | ||
1057 | * Perform additional initialization for external PHYs, | ||
1058 | * namely for the 1000baseTX cards that use the XMAC's | ||
1059 | * GMII mode. | ||
1060 | */ | ||
1061 | spin_lock_bh(&hw->phy_lock); | ||
1062 | if (hw->phy_type != SK_PHY_XMAC) { | ||
1063 | /* Take PHY out of reset. */ | ||
1064 | r = skge_read32(hw, B2_GP_IO); | ||
1065 | if (port == 0) | ||
1066 | r |= GP_DIR_0|GP_IO_0; | ||
1067 | else | ||
1068 | r |= GP_DIR_2|GP_IO_2; | ||
1069 | |||
1070 | skge_write32(hw, B2_GP_IO, r); | ||
1071 | skge_read32(hw, B2_GP_IO); | ||
1072 | |||
1073 | /* Enable GMII mode on the XMAC. */ | ||
1074 | skge_xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD); | ||
1075 | |||
1076 | id1 = skge_xm_phy_read(hw, port, PHY_XMAC_ID1); | ||
1077 | |||
1078 | /* Optimize MDIO transfer by suppressing preamble. */ | ||
1079 | skge_xm_write16(hw, port, XM_MMU_CMD, | ||
1080 | skge_xm_read16(hw, port, XM_MMU_CMD) | ||
1081 | | XM_MMU_NO_PRE); | ||
1082 | |||
1083 | if (id1 == PHY_BCOM_ID1_C0) { | ||
1084 | /* | ||
1085 | * Workaround BCOM Errata for the C0 type. | ||
1086 | * Write magic patterns to reserved registers. | ||
1087 | */ | ||
1088 | for (i = 0; i < ARRAY_SIZE(C0hack); i++) | ||
1089 | skge_xm_phy_write(hw, port, | ||
1090 | C0hack[i].reg, C0hack[i].val); | ||
1091 | |||
1092 | } else if (id1 == PHY_BCOM_ID1_A1) { | ||
1093 | /* | ||
1094 | * Workaround BCOM Errata for the A1 type. | ||
1095 | * Write magic patterns to reserved registers. | ||
1096 | */ | ||
1097 | for (i = 0; i < ARRAY_SIZE(A1hack); i++) | ||
1098 | skge_xm_phy_write(hw, port, | ||
1099 | A1hack[i].reg, A1hack[i].val); | ||
1100 | } | ||
1101 | |||
1102 | /* | ||
1103 | * Workaround BCOM Errata (#10523) for all BCom PHYs. | ||
1104 | * Disable Power Management after reset. | ||
1105 | */ | ||
1106 | r = skge_xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL); | ||
1107 | skge_xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r | PHY_B_AC_DIS_PM); | ||
1108 | } | ||
1109 | |||
1110 | /* Dummy read */ | ||
1111 | skge_xm_read16(hw, port, XM_ISRC); | ||
1112 | |||
1113 | r = skge_xm_read32(hw, port, XM_MODE); | ||
1114 | skge_xm_write32(hw, port, XM_MODE, r|XM_MD_CSA); | ||
1115 | |||
1116 | /* We don't need the FCS appended to the packet. */ | ||
1117 | r = skge_xm_read16(hw, port, XM_RX_CMD); | ||
1118 | skge_xm_write16(hw, port, XM_RX_CMD, r | XM_RX_STRIP_FCS); | ||
1119 | |||
1120 | /* We want short frames padded to 60 bytes. */ | ||
1121 | r = skge_xm_read16(hw, port, XM_TX_CMD); | ||
1122 | skge_xm_write16(hw, port, XM_TX_CMD, r | XM_TX_AUTO_PAD); | ||
1123 | |||
1124 | /* | ||
1125 | * Enable the reception of all error frames. This is is | ||
1126 | * a necessary evil due to the design of the XMAC. The | ||
1127 | * XMAC's receive FIFO is only 8K in size, however jumbo | ||
1128 | * frames can be up to 9000 bytes in length. When bad | ||
1129 | * frame filtering is enabled, the XMAC's RX FIFO operates | ||
1130 | * in 'store and forward' mode. For this to work, the | ||
1131 | * entire frame has to fit into the FIFO, but that means | ||
1132 | * that jumbo frames larger than 8192 bytes will be | ||
1133 | * truncated. Disabling all bad frame filtering causes | ||
1134 | * the RX FIFO to operate in streaming mode, in which | ||
1135 | * case the XMAC will start transfering frames out of the | ||
1136 | * RX FIFO as soon as the FIFO threshold is reached. | ||
1137 | */ | ||
1138 | r = skge_xm_read32(hw, port, XM_MODE); | ||
1139 | skge_xm_write32(hw, port, XM_MODE, | ||
1140 | XM_MD_RX_CRCE|XM_MD_RX_LONG|XM_MD_RX_RUNT| | ||
1141 | XM_MD_RX_ERR|XM_MD_RX_IRLE); | ||
1142 | |||
1143 | skge_xm_outaddr(hw, port, XM_SA, hw->dev[port]->dev_addr); | ||
1144 | skge_xm_outaddr(hw, port, XM_EXM(0), hw->dev[port]->dev_addr); | ||
1145 | |||
1146 | /* | ||
1147 | * Bump up the transmit threshold. This helps hold off transmit | ||
1148 | * underruns when we're blasting traffic from both ports at once. | ||
1149 | */ | ||
1150 | skge_xm_write16(hw, port, XM_TX_THR, 512); | ||
1151 | |||
1152 | /* Configure MAC arbiter */ | ||
1153 | skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); | ||
1154 | |||
1155 | /* configure timeout values */ | ||
1156 | skge_write8(hw, B3_MA_TOINI_RX1, 72); | ||
1157 | skge_write8(hw, B3_MA_TOINI_RX2, 72); | ||
1158 | skge_write8(hw, B3_MA_TOINI_TX1, 72); | ||
1159 | skge_write8(hw, B3_MA_TOINI_TX2, 72); | ||
1160 | |||
1161 | skge_write8(hw, B3_MA_RCINI_RX1, 0); | ||
1162 | skge_write8(hw, B3_MA_RCINI_RX2, 0); | ||
1163 | skge_write8(hw, B3_MA_RCINI_TX1, 0); | ||
1164 | skge_write8(hw, B3_MA_RCINI_TX2, 0); | ||
1165 | |||
1166 | /* Configure Rx MAC FIFO */ | ||
1167 | skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_RST_CLR); | ||
1168 | skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT); | ||
1169 | skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD); | ||
1170 | |||
1171 | /* Configure Tx MAC FIFO */ | ||
1172 | skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_RST_CLR); | ||
1173 | skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); | ||
1174 | skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD); | ||
1175 | |||
1176 | if (hw->dev[port]->mtu > ETH_DATA_LEN) { | ||
1177 | /* Enable frame flushing if jumbo frames used */ | ||
1178 | skge_write16(hw, SKGEMAC_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH); | ||
1179 | } else { | ||
1180 | /* enable timeout timers if normal frames */ | ||
1181 | skge_write16(hw, B3_PA_CTRL, | ||
1182 | port == 0 ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2); | ||
1183 | } | ||
1184 | |||
1185 | |||
1186 | r = skge_xm_read16(hw, port, XM_RX_CMD); | ||
1187 | if (hw->dev[port]->mtu > ETH_DATA_LEN) | ||
1188 | skge_xm_write16(hw, port, XM_RX_CMD, r | XM_RX_BIG_PK_OK); | ||
1189 | else | ||
1190 | skge_xm_write16(hw, port, XM_RX_CMD, r & ~(XM_RX_BIG_PK_OK)); | ||
1191 | |||
1192 | switch (hw->phy_type) { | ||
1193 | case SK_PHY_XMAC: | ||
1194 | if (skge->autoneg == AUTONEG_ENABLE) { | ||
1195 | ctrl1 = PHY_X_AN_FD | PHY_X_AN_HD; | ||
1196 | |||
1197 | switch (skge->flow_control) { | ||
1198 | case FLOW_MODE_NONE: | ||
1199 | ctrl1 |= PHY_X_P_NO_PAUSE; | ||
1200 | break; | ||
1201 | case FLOW_MODE_LOC_SEND: | ||
1202 | ctrl1 |= PHY_X_P_ASYM_MD; | ||
1203 | break; | ||
1204 | case FLOW_MODE_SYMMETRIC: | ||
1205 | ctrl1 |= PHY_X_P_SYM_MD; | ||
1206 | break; | ||
1207 | case FLOW_MODE_REM_SEND: | ||
1208 | ctrl1 |= PHY_X_P_BOTH_MD; | ||
1209 | break; | ||
1210 | } | ||
1211 | |||
1212 | skge_xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl1); | ||
1213 | ctrl2 = PHY_CT_ANE | PHY_CT_RE_CFG; | ||
1214 | } else { | ||
1215 | ctrl2 = 0; | ||
1216 | if (skge->duplex == DUPLEX_FULL) | ||
1217 | ctrl2 |= PHY_CT_DUP_MD; | ||
1218 | } | ||
1219 | |||
1220 | skge_xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl2); | ||
1221 | break; | ||
1222 | |||
1223 | case SK_PHY_BCOM: | ||
1224 | ctrl1 = PHY_CT_SP1000; | ||
1225 | ctrl2 = 0; | ||
1226 | ctrl3 = PHY_SEL_TYPE; | ||
1227 | ctrl4 = PHY_B_PEC_EN_LTR; | ||
1228 | ctrl5 = PHY_B_AC_TX_TST; | ||
1229 | |||
1230 | if (skge->autoneg == AUTONEG_ENABLE) { | ||
1231 | /* | ||
1232 | * Workaround BCOM Errata #1 for the C5 type. | ||
1233 | * 1000Base-T Link Acquisition Failure in Slave Mode | ||
1234 | * Set Repeater/DTE bit 10 of the 1000Base-T Control Register | ||
1235 | */ | ||
1236 | ctrl2 |= PHY_B_1000C_RD; | ||
1237 | if (skge->advertising & ADVERTISED_1000baseT_Half) | ||
1238 | ctrl2 |= PHY_B_1000C_AHD; | ||
1239 | if (skge->advertising & ADVERTISED_1000baseT_Full) | ||
1240 | ctrl2 |= PHY_B_1000C_AFD; | ||
1241 | |||
1242 | /* Set Flow-control capabilities */ | ||
1243 | switch (skge->flow_control) { | ||
1244 | case FLOW_MODE_NONE: | ||
1245 | ctrl3 |= PHY_B_P_NO_PAUSE; | ||
1246 | break; | ||
1247 | case FLOW_MODE_LOC_SEND: | ||
1248 | ctrl3 |= PHY_B_P_ASYM_MD; | ||
1249 | break; | ||
1250 | case FLOW_MODE_SYMMETRIC: | ||
1251 | ctrl3 |= PHY_B_P_SYM_MD; | ||
1252 | break; | ||
1253 | case FLOW_MODE_REM_SEND: | ||
1254 | ctrl3 |= PHY_B_P_BOTH_MD; | ||
1255 | break; | ||
1256 | } | ||
1257 | |||
1258 | /* Restart Auto-negotiation */ | ||
1259 | ctrl1 |= PHY_CT_ANE | PHY_CT_RE_CFG; | ||
1260 | } else { | ||
1261 | if (skge->duplex == DUPLEX_FULL) | ||
1262 | ctrl1 |= PHY_CT_DUP_MD; | ||
1263 | |||
1264 | ctrl2 |= PHY_B_1000C_MSE; /* set it to Slave */ | ||
1265 | } | ||
1266 | |||
1267 | skge_xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, ctrl2); | ||
1268 | skge_xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, ctrl3); | ||
1269 | |||
1270 | if (skge->netdev->mtu > ETH_DATA_LEN) { | ||
1271 | ctrl4 |= PHY_B_PEC_HIGH_LA; | ||
1272 | ctrl5 |= PHY_B_AC_LONG_PACK; | ||
1273 | |||
1274 | skge_xm_phy_write(hw, port,PHY_BCOM_AUX_CTRL, ctrl5); | ||
1275 | } | ||
1276 | |||
1277 | skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ctrl4); | ||
1278 | skge_xm_phy_write(hw, port, PHY_BCOM_CTRL, ctrl1); | ||
1279 | break; | ||
1280 | } | ||
1281 | spin_unlock_bh(&hw->phy_lock); | ||
1282 | |||
1283 | /* Clear MIB counters */ | ||
1284 | skge_xm_write16(hw, port, XM_STAT_CMD, | ||
1285 | XM_SC_CLR_RXC | XM_SC_CLR_TXC); | ||
1286 | /* Clear two times according to Errata #3 */ | ||
1287 | skge_xm_write16(hw, port, XM_STAT_CMD, | ||
1288 | XM_SC_CLR_RXC | XM_SC_CLR_TXC); | ||
1289 | |||
1290 | /* Start polling for link status */ | ||
1291 | mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ); | ||
1292 | } | ||
1293 | |||
1294 | static void genesis_stop(struct skge_port *skge) | ||
1295 | { | ||
1296 | struct skge_hw *hw = skge->hw; | ||
1297 | int port = skge->port; | ||
1298 | |||
1299 | /* Clear Tx packet arbiter timeout IRQ */ | ||
1300 | skge_write16(hw, B3_PA_CTRL, | ||
1301 | port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2); | ||
1302 | |||
1303 | /* | ||
1304 | * If the transfer stucks at the MAC the STOP command will not | ||
1305 | * terminate if we don't flush the XMAC's transmit FIFO ! | ||
1306 | */ | ||
1307 | skge_xm_write32(hw, port, XM_MODE, | ||
1308 | skge_xm_read32(hw, port, XM_MODE)|XM_MD_FTF); | ||
1309 | |||
1310 | |||
1311 | /* Reset the MAC */ | ||
1312 | skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST); | ||
1313 | |||
1314 | /* For external PHYs there must be special handling */ | ||
1315 | if (hw->phy_type != SK_PHY_XMAC) { | ||
1316 | u32 reg = skge_read32(hw, B2_GP_IO); | ||
1317 | |||
1318 | if (port == 0) { | ||
1319 | reg |= GP_DIR_0; | ||
1320 | reg &= ~GP_IO_0; | ||
1321 | } else { | ||
1322 | reg |= GP_DIR_2; | ||
1323 | reg &= ~GP_IO_2; | ||
1324 | } | ||
1325 | skge_write32(hw, B2_GP_IO, reg); | ||
1326 | skge_read32(hw, B2_GP_IO); | ||
1327 | } | ||
1328 | |||
1329 | skge_xm_write16(hw, port, XM_MMU_CMD, | ||
1330 | skge_xm_read16(hw, port, XM_MMU_CMD) | ||
1331 | & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX)); | ||
1332 | |||
1333 | skge_xm_read16(hw, port, XM_MMU_CMD); | ||
1334 | } | ||
1335 | |||
1336 | |||
1337 | static void genesis_get_stats(struct skge_port *skge, u64 *data) | ||
1338 | { | ||
1339 | struct skge_hw *hw = skge->hw; | ||
1340 | int port = skge->port; | ||
1341 | int i; | ||
1342 | unsigned long timeout = jiffies + HZ; | ||
1343 | |||
1344 | skge_xm_write16(hw, port, | ||
1345 | XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC); | ||
1346 | |||
1347 | /* wait for update to complete */ | ||
1348 | while (skge_xm_read16(hw, port, XM_STAT_CMD) | ||
1349 | & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) { | ||
1350 | if (time_after(jiffies, timeout)) | ||
1351 | break; | ||
1352 | udelay(10); | ||
1353 | } | ||
1354 | |||
1355 | /* special case for 64 bit octet counter */ | ||
1356 | data[0] = (u64) skge_xm_read32(hw, port, XM_TXO_OK_HI) << 32 | ||
1357 | | skge_xm_read32(hw, port, XM_TXO_OK_LO); | ||
1358 | data[1] = (u64) skge_xm_read32(hw, port, XM_RXO_OK_HI) << 32 | ||
1359 | | skge_xm_read32(hw, port, XM_RXO_OK_LO); | ||
1360 | |||
1361 | for (i = 2; i < ARRAY_SIZE(skge_stats); i++) | ||
1362 | data[i] = skge_xm_read32(hw, port, skge_stats[i].xmac_offset); | ||
1363 | } | ||
1364 | |||
1365 | static void genesis_mac_intr(struct skge_hw *hw, int port) | ||
1366 | { | ||
1367 | struct skge_port *skge = netdev_priv(hw->dev[port]); | ||
1368 | u16 status = skge_xm_read16(hw, port, XM_ISRC); | ||
1369 | |||
1370 | pr_debug("genesis_intr status %x\n", status); | ||
1371 | if (hw->phy_type == SK_PHY_XMAC) { | ||
1372 | /* LInk down, start polling for state change */ | ||
1373 | if (status & XM_IS_INP_ASS) { | ||
1374 | skge_xm_write16(hw, port, XM_IMSK, | ||
1375 | skge_xm_read16(hw, port, XM_IMSK) | XM_IS_INP_ASS); | ||
1376 | mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ); | ||
1377 | } | ||
1378 | else if (status & XM_IS_AND) | ||
1379 | mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ); | ||
1380 | } | ||
1381 | |||
1382 | if (status & XM_IS_TXF_UR) { | ||
1383 | skge_xm_write32(hw, port, XM_MODE, XM_MD_FTF); | ||
1384 | ++skge->net_stats.tx_fifo_errors; | ||
1385 | } | ||
1386 | if (status & XM_IS_RXF_OV) { | ||
1387 | skge_xm_write32(hw, port, XM_MODE, XM_MD_FRF); | ||
1388 | ++skge->net_stats.rx_fifo_errors; | ||
1389 | } | ||
1390 | } | ||
1391 | |||
1392 | static void skge_gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) | ||
1393 | { | ||
1394 | int i; | ||
1395 | |||
1396 | skge_gma_write16(hw, port, GM_SMI_DATA, val); | ||
1397 | skge_gma_write16(hw, port, GM_SMI_CTRL, | ||
1398 | GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg)); | ||
1399 | for (i = 0; i < PHY_RETRIES; i++) { | ||
1400 | udelay(1); | ||
1401 | |||
1402 | if (!(skge_gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY)) | ||
1403 | break; | ||
1404 | } | ||
1405 | } | ||
1406 | |||
1407 | static u16 skge_gm_phy_read(struct skge_hw *hw, int port, u16 reg) | ||
1408 | { | ||
1409 | int i; | ||
1410 | |||
1411 | skge_gma_write16(hw, port, GM_SMI_CTRL, | ||
1412 | GM_SMI_CT_PHY_AD(hw->phy_addr) | ||
1413 | | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); | ||
1414 | |||
1415 | for (i = 0; i < PHY_RETRIES; i++) { | ||
1416 | udelay(1); | ||
1417 | if (skge_gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) | ||
1418 | goto ready; | ||
1419 | } | ||
1420 | |||
1421 | printk(KERN_WARNING PFX "%s: phy read timeout\n", | ||
1422 | hw->dev[port]->name); | ||
1423 | return 0; | ||
1424 | ready: | ||
1425 | return skge_gma_read16(hw, port, GM_SMI_DATA); | ||
1426 | } | ||
1427 | |||
1428 | static void genesis_link_down(struct skge_port *skge) | ||
1429 | { | ||
1430 | struct skge_hw *hw = skge->hw; | ||
1431 | int port = skge->port; | ||
1432 | |||
1433 | pr_debug("genesis_link_down\n"); | ||
1434 | |||
1435 | skge_xm_write16(hw, port, XM_MMU_CMD, | ||
1436 | skge_xm_read16(hw, port, XM_MMU_CMD) | ||
1437 | & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX)); | ||
1438 | |||
1439 | /* dummy read to ensure writing */ | ||
1440 | (void) skge_xm_read16(hw, port, XM_MMU_CMD); | ||
1441 | |||
1442 | skge_link_down(skge); | ||
1443 | } | ||
1444 | |||
1445 | static void genesis_link_up(struct skge_port *skge) | ||
1446 | { | ||
1447 | struct skge_hw *hw = skge->hw; | ||
1448 | int port = skge->port; | ||
1449 | u16 cmd; | ||
1450 | u32 mode, msk; | ||
1451 | |||
1452 | pr_debug("genesis_link_up\n"); | ||
1453 | cmd = skge_xm_read16(hw, port, XM_MMU_CMD); | ||
1454 | |||
1455 | /* | ||
1456 | * enabling pause frame reception is required for 1000BT | ||
1457 | * because the XMAC is not reset if the link is going down | ||
1458 | */ | ||
1459 | if (skge->flow_control == FLOW_MODE_NONE || | ||
1460 | skge->flow_control == FLOW_MODE_LOC_SEND) | ||
1461 | cmd |= XM_MMU_IGN_PF; | ||
1462 | else | ||
1463 | /* Enable Pause Frame Reception */ | ||
1464 | cmd &= ~XM_MMU_IGN_PF; | ||
1465 | |||
1466 | skge_xm_write16(hw, port, XM_MMU_CMD, cmd); | ||
1467 | |||
1468 | mode = skge_xm_read32(hw, port, XM_MODE); | ||
1469 | if (skge->flow_control == FLOW_MODE_SYMMETRIC || | ||
1470 | skge->flow_control == FLOW_MODE_LOC_SEND) { | ||
1471 | /* | ||
1472 | * Configure Pause Frame Generation | ||
1473 | * Use internal and external Pause Frame Generation. | ||
1474 | * Sending pause frames is edge triggered. | ||
1475 | * Send a Pause frame with the maximum pause time if | ||
1476 | * internal oder external FIFO full condition occurs. | ||
1477 | * Send a zero pause time frame to re-start transmission. | ||
1478 | */ | ||
1479 | /* XM_PAUSE_DA = '010000C28001' (default) */ | ||
1480 | /* XM_MAC_PTIME = 0xffff (maximum) */ | ||
1481 | /* remember this value is defined in big endian (!) */ | ||
1482 | skge_xm_write16(hw, port, XM_MAC_PTIME, 0xffff); | ||
1483 | |||
1484 | mode |= XM_PAUSE_MODE; | ||
1485 | skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE); | ||
1486 | } else { | ||
1487 | /* | ||
1488 | * disable pause frame generation is required for 1000BT | ||
1489 | * because the XMAC is not reset if the link is going down | ||
1490 | */ | ||
1491 | /* Disable Pause Mode in Mode Register */ | ||
1492 | mode &= ~XM_PAUSE_MODE; | ||
1493 | |||
1494 | skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE); | ||
1495 | } | ||
1496 | |||
1497 | skge_xm_write32(hw, port, XM_MODE, mode); | ||
1498 | |||
1499 | msk = XM_DEF_MSK; | ||
1500 | if (hw->phy_type != SK_PHY_XMAC) | ||
1501 | msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */ | ||
1502 | |||
1503 | skge_xm_write16(hw, port, XM_IMSK, msk); | ||
1504 | skge_xm_read16(hw, port, XM_ISRC); | ||
1505 | |||
1506 | /* get MMU Command Reg. */ | ||
1507 | cmd = skge_xm_read16(hw, port, XM_MMU_CMD); | ||
1508 | if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL) | ||
1509 | cmd |= XM_MMU_GMII_FD; | ||
1510 | |||
1511 | if (hw->phy_type == SK_PHY_BCOM) { | ||
1512 | /* | ||
1513 | * Workaround BCOM Errata (#10523) for all BCom Phys | ||
1514 | * Enable Power Management after link up | ||
1515 | */ | ||
1516 | skge_xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, | ||
1517 | skge_xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL) | ||
1518 | & ~PHY_B_AC_DIS_PM); | ||
1519 | skge_xm_phy_write(hw, port, PHY_BCOM_INT_MASK, | ||
1520 | PHY_B_DEF_MSK); | ||
1521 | } | ||
1522 | |||
1523 | /* enable Rx/Tx */ | ||
1524 | skge_xm_write16(hw, port, XM_MMU_CMD, | ||
1525 | cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX); | ||
1526 | skge_link_up(skge); | ||
1527 | } | ||
1528 | |||
1529 | |||
1530 | static void genesis_bcom_intr(struct skge_port *skge) | ||
1531 | { | ||
1532 | struct skge_hw *hw = skge->hw; | ||
1533 | int port = skge->port; | ||
1534 | u16 stat = skge_xm_phy_read(hw, port, PHY_BCOM_INT_STAT); | ||
1535 | |||
1536 | pr_debug("genesis_bcom intr stat=%x\n", stat); | ||
1537 | |||
1538 | /* Workaround BCom Errata: | ||
1539 | * enable and disable loopback mode if "NO HCD" occurs. | ||
1540 | */ | ||
1541 | if (stat & PHY_B_IS_NO_HDCL) { | ||
1542 | u16 ctrl = skge_xm_phy_read(hw, port, PHY_BCOM_CTRL); | ||
1543 | skge_xm_phy_write(hw, port, PHY_BCOM_CTRL, | ||
1544 | ctrl | PHY_CT_LOOP); | ||
1545 | skge_xm_phy_write(hw, port, PHY_BCOM_CTRL, | ||
1546 | ctrl & ~PHY_CT_LOOP); | ||
1547 | } | ||
1548 | |||
1549 | stat = skge_xm_phy_read(hw, port, PHY_BCOM_STAT); | ||
1550 | if (stat & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) { | ||
1551 | u16 aux = skge_xm_phy_read(hw, port, PHY_BCOM_AUX_STAT); | ||
1552 | if ( !(aux & PHY_B_AS_LS) && netif_carrier_ok(skge->netdev)) | ||
1553 | genesis_link_down(skge); | ||
1554 | |||
1555 | else if (stat & PHY_B_IS_LST_CHANGE) { | ||
1556 | if (aux & PHY_B_AS_AN_C) { | ||
1557 | switch (aux & PHY_B_AS_AN_RES_MSK) { | ||
1558 | case PHY_B_RES_1000FD: | ||
1559 | skge->duplex = DUPLEX_FULL; | ||
1560 | break; | ||
1561 | case PHY_B_RES_1000HD: | ||
1562 | skge->duplex = DUPLEX_HALF; | ||
1563 | break; | ||
1564 | } | ||
1565 | |||
1566 | switch (aux & PHY_B_AS_PAUSE_MSK) { | ||
1567 | case PHY_B_AS_PAUSE_MSK: | ||
1568 | skge->flow_control = FLOW_MODE_SYMMETRIC; | ||
1569 | break; | ||
1570 | case PHY_B_AS_PRR: | ||
1571 | skge->flow_control = FLOW_MODE_REM_SEND; | ||
1572 | break; | ||
1573 | case PHY_B_AS_PRT: | ||
1574 | skge->flow_control = FLOW_MODE_LOC_SEND; | ||
1575 | break; | ||
1576 | default: | ||
1577 | skge->flow_control = FLOW_MODE_NONE; | ||
1578 | } | ||
1579 | skge->speed = SPEED_1000; | ||
1580 | } | ||
1581 | genesis_link_up(skge); | ||
1582 | } | ||
1583 | else | ||
1584 | mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ); | ||
1585 | } | ||
1586 | } | ||
1587 | |||
1588 | /* Perodic poll of phy status to check for link transistion */ | ||
1589 | static void skge_link_timer(unsigned long __arg) | ||
1590 | { | ||
1591 | struct skge_port *skge = (struct skge_port *) __arg; | ||
1592 | struct skge_hw *hw = skge->hw; | ||
1593 | int port = skge->port; | ||
1594 | |||
1595 | if (hw->chip_id != CHIP_ID_GENESIS || !netif_running(skge->netdev)) | ||
1596 | return; | ||
1597 | |||
1598 | spin_lock_bh(&hw->phy_lock); | ||
1599 | if (hw->phy_type == SK_PHY_BCOM) | ||
1600 | genesis_bcom_intr(skge); | ||
1601 | else { | ||
1602 | int i; | ||
1603 | for (i = 0; i < 3; i++) | ||
1604 | if (skge_xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS) | ||
1605 | break; | ||
1606 | |||
1607 | if (i == 3) | ||
1608 | mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ); | ||
1609 | else | ||
1610 | genesis_link_up(skge); | ||
1611 | } | ||
1612 | spin_unlock_bh(&hw->phy_lock); | ||
1613 | } | ||
1614 | |||
1615 | /* Marvell Phy Initailization */ | ||
1616 | static void yukon_init(struct skge_hw *hw, int port) | ||
1617 | { | ||
1618 | struct skge_port *skge = netdev_priv(hw->dev[port]); | ||
1619 | u16 ctrl, ct1000, adv; | ||
1620 | u16 ledctrl, ledover; | ||
1621 | |||
1622 | pr_debug("yukon_init\n"); | ||
1623 | if (skge->autoneg == AUTONEG_ENABLE) { | ||
1624 | u16 ectrl = skge_gm_phy_read(hw, port, PHY_MARV_EXT_CTRL); | ||
1625 | |||
1626 | ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK | | ||
1627 | PHY_M_EC_MAC_S_MSK); | ||
1628 | ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ); | ||
1629 | |||
1630 | /* on PHY 88E1111 there is a change for downshift control */ | ||
1631 | if (hw->chip_id == CHIP_ID_YUKON_EC) | ||
1632 | ectrl |= PHY_M_EC_M_DSC_2(0) | PHY_M_EC_DOWN_S_ENA; | ||
1633 | else | ||
1634 | ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1); | ||
1635 | |||
1636 | skge_gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl); | ||
1637 | } | ||
1638 | |||
1639 | ctrl = skge_gm_phy_read(hw, port, PHY_MARV_CTRL); | ||
1640 | if (skge->autoneg == AUTONEG_DISABLE) | ||
1641 | ctrl &= ~PHY_CT_ANE; | ||
1642 | |||
1643 | ctrl |= PHY_CT_RESET; | ||
1644 | skge_gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); | ||
1645 | |||
1646 | ctrl = 0; | ||
1647 | ct1000 = 0; | ||
1648 | adv = PHY_SEL_TYPE; | ||
1649 | |||
1650 | if (skge->autoneg == AUTONEG_ENABLE) { | ||
1651 | if (iscopper(hw)) { | ||
1652 | if (skge->advertising & ADVERTISED_1000baseT_Full) | ||
1653 | ct1000 |= PHY_M_1000C_AFD; | ||
1654 | if (skge->advertising & ADVERTISED_1000baseT_Half) | ||
1655 | ct1000 |= PHY_M_1000C_AHD; | ||
1656 | if (skge->advertising & ADVERTISED_100baseT_Full) | ||
1657 | adv |= PHY_M_AN_100_FD; | ||
1658 | if (skge->advertising & ADVERTISED_100baseT_Half) | ||
1659 | adv |= PHY_M_AN_100_HD; | ||
1660 | if (skge->advertising & ADVERTISED_10baseT_Full) | ||
1661 | adv |= PHY_M_AN_10_FD; | ||
1662 | if (skge->advertising & ADVERTISED_10baseT_Half) | ||
1663 | adv |= PHY_M_AN_10_HD; | ||
1664 | |||
1665 | /* Set Flow-control capabilities */ | ||
1666 | switch (skge->flow_control) { | ||
1667 | case FLOW_MODE_NONE: | ||
1668 | adv |= PHY_B_P_NO_PAUSE; | ||
1669 | break; | ||
1670 | case FLOW_MODE_LOC_SEND: | ||
1671 | adv |= PHY_B_P_ASYM_MD; | ||
1672 | break; | ||
1673 | case FLOW_MODE_SYMMETRIC: | ||
1674 | adv |= PHY_B_P_SYM_MD; | ||
1675 | break; | ||
1676 | case FLOW_MODE_REM_SEND: | ||
1677 | adv |= PHY_B_P_BOTH_MD; | ||
1678 | break; | ||
1679 | } | ||
1680 | } else { /* special defines for FIBER (88E1011S only) */ | ||
1681 | adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD; | ||
1682 | |||
1683 | /* Set Flow-control capabilities */ | ||
1684 | switch (skge->flow_control) { | ||
1685 | case FLOW_MODE_NONE: | ||
1686 | adv |= PHY_M_P_NO_PAUSE_X; | ||
1687 | break; | ||
1688 | case FLOW_MODE_LOC_SEND: | ||
1689 | adv |= PHY_M_P_ASYM_MD_X; | ||
1690 | break; | ||
1691 | case FLOW_MODE_SYMMETRIC: | ||
1692 | adv |= PHY_M_P_SYM_MD_X; | ||
1693 | break; | ||
1694 | case FLOW_MODE_REM_SEND: | ||
1695 | adv |= PHY_M_P_BOTH_MD_X; | ||
1696 | break; | ||
1697 | } | ||
1698 | } | ||
1699 | /* Restart Auto-negotiation */ | ||
1700 | ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG; | ||
1701 | } else { | ||
1702 | /* forced speed/duplex settings */ | ||
1703 | ct1000 = PHY_M_1000C_MSE; | ||
1704 | |||
1705 | if (skge->duplex == DUPLEX_FULL) | ||
1706 | ctrl |= PHY_CT_DUP_MD; | ||
1707 | |||
1708 | switch (skge->speed) { | ||
1709 | case SPEED_1000: | ||
1710 | ctrl |= PHY_CT_SP1000; | ||
1711 | break; | ||
1712 | case SPEED_100: | ||
1713 | ctrl |= PHY_CT_SP100; | ||
1714 | break; | ||
1715 | } | ||
1716 | |||
1717 | ctrl |= PHY_CT_RESET; | ||
1718 | } | ||
1719 | |||
1720 | if (hw->chip_id != CHIP_ID_YUKON_FE) | ||
1721 | skge_gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000); | ||
1722 | |||
1723 | skge_gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv); | ||
1724 | skge_gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); | ||
1725 | |||
1726 | /* Setup Phy LED's */ | ||
1727 | ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS); | ||
1728 | ledover = 0; | ||
1729 | |||
1730 | if (hw->chip_id == CHIP_ID_YUKON_FE) { | ||
1731 | /* on 88E3082 these bits are at 11..9 (shifted left) */ | ||
1732 | ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1; | ||
1733 | |||
1734 | skge_gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, | ||
1735 | ((skge_gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR) | ||
1736 | |||
1737 | & ~PHY_M_FELP_LED1_MSK) | ||
1738 | | PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL))); | ||
1739 | } else { | ||
1740 | /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */ | ||
1741 | ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL; | ||
1742 | |||
1743 | /* turn off the Rx LED (LED_RX) */ | ||
1744 | ledover |= PHY_M_LED_MO_RX(MO_LED_OFF); | ||
1745 | } | ||
1746 | |||
1747 | /* disable blink mode (LED_DUPLEX) on collisions */ | ||
1748 | ctrl |= PHY_M_LEDC_DP_CTRL; | ||
1749 | skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl); | ||
1750 | |||
1751 | if (skge->autoneg == AUTONEG_DISABLE || skge->speed == SPEED_100) { | ||
1752 | /* turn on 100 Mbps LED (LED_LINK100) */ | ||
1753 | ledover |= PHY_M_LED_MO_100(MO_LED_ON); | ||
1754 | } | ||
1755 | |||
1756 | if (ledover) | ||
1757 | skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover); | ||
1758 | |||
1759 | /* Enable phy interrupt on autonegotiation complete (or link up) */ | ||
1760 | if (skge->autoneg == AUTONEG_ENABLE) | ||
1761 | skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL); | ||
1762 | else | ||
1763 | skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK); | ||
1764 | } | ||
1765 | |||
1766 | static void yukon_reset(struct skge_hw *hw, int port) | ||
1767 | { | ||
1768 | skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */ | ||
1769 | skge_gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */ | ||
1770 | skge_gma_write16(hw, port, GM_MC_ADDR_H2, 0); | ||
1771 | skge_gma_write16(hw, port, GM_MC_ADDR_H3, 0); | ||
1772 | skge_gma_write16(hw, port, GM_MC_ADDR_H4, 0); | ||
1773 | |||
1774 | skge_gma_write16(hw, port, GM_RX_CTRL, | ||
1775 | skge_gma_read16(hw, port, GM_RX_CTRL) | ||
1776 | | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); | ||
1777 | } | ||
1778 | |||
1779 | static void yukon_mac_init(struct skge_hw *hw, int port) | ||
1780 | { | ||
1781 | struct skge_port *skge = netdev_priv(hw->dev[port]); | ||
1782 | int i; | ||
1783 | u32 reg; | ||
1784 | const u8 *addr = hw->dev[port]->dev_addr; | ||
1785 | |||
1786 | /* WA code for COMA mode -- set PHY reset */ | ||
1787 | if (hw->chip_id == CHIP_ID_YUKON_LITE && | ||
1788 | chip_rev(hw) == CHIP_REV_YU_LITE_A3) | ||
1789 | skge_write32(hw, B2_GP_IO, | ||
1790 | (skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9)); | ||
1791 | |||
1792 | /* hard reset */ | ||
1793 | skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), GPC_RST_SET); | ||
1794 | skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_RST_SET); | ||
1795 | |||
1796 | /* WA code for COMA mode -- clear PHY reset */ | ||
1797 | if (hw->chip_id == CHIP_ID_YUKON_LITE && | ||
1798 | chip_rev(hw) == CHIP_REV_YU_LITE_A3) | ||
1799 | skge_write32(hw, B2_GP_IO, | ||
1800 | (skge_read32(hw, B2_GP_IO) | GP_DIR_9) | ||
1801 | & ~GP_IO_9); | ||
1802 | |||
1803 | /* Set hardware config mode */ | ||
1804 | reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP | | ||
1805 | GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE; | ||
1806 | reg |= iscopper(hw) ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB; | ||
1807 | |||
1808 | /* Clear GMC reset */ | ||
1809 | skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), reg | GPC_RST_SET); | ||
1810 | skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), reg | GPC_RST_CLR); | ||
1811 | skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR); | ||
1812 | if (skge->autoneg == AUTONEG_DISABLE) { | ||
1813 | reg = GM_GPCR_AU_ALL_DIS; | ||
1814 | skge_gma_write16(hw, port, GM_GP_CTRL, | ||
1815 | skge_gma_read16(hw, port, GM_GP_CTRL) | reg); | ||
1816 | |||
1817 | switch (skge->speed) { | ||
1818 | case SPEED_1000: | ||
1819 | reg |= GM_GPCR_SPEED_1000; | ||
1820 | /* fallthru */ | ||
1821 | case SPEED_100: | ||
1822 | reg |= GM_GPCR_SPEED_100; | ||
1823 | } | ||
1824 | |||
1825 | if (skge->duplex == DUPLEX_FULL) | ||
1826 | reg |= GM_GPCR_DUP_FULL; | ||
1827 | } else | ||
1828 | reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL; | ||
1829 | switch (skge->flow_control) { | ||
1830 | case FLOW_MODE_NONE: | ||
1831 | skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); | ||
1832 | reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; | ||
1833 | break; | ||
1834 | case FLOW_MODE_LOC_SEND: | ||
1835 | /* disable Rx flow-control */ | ||
1836 | reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; | ||
1837 | } | ||
1838 | |||
1839 | skge_gma_write16(hw, port, GM_GP_CTRL, reg); | ||
1840 | skge_read16(hw, GMAC_IRQ_SRC); | ||
1841 | |||
1842 | spin_lock_bh(&hw->phy_lock); | ||
1843 | yukon_init(hw, port); | ||
1844 | spin_unlock_bh(&hw->phy_lock); | ||
1845 | |||
1846 | /* MIB clear */ | ||
1847 | reg = skge_gma_read16(hw, port, GM_PHY_ADDR); | ||
1848 | skge_gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR); | ||
1849 | |||
1850 | for (i = 0; i < GM_MIB_CNT_SIZE; i++) | ||
1851 | skge_gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i); | ||
1852 | skge_gma_write16(hw, port, GM_PHY_ADDR, reg); | ||
1853 | |||
1854 | /* transmit control */ | ||
1855 | skge_gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); | ||
1856 | |||
1857 | /* receive control reg: unicast + multicast + no FCS */ | ||
1858 | skge_gma_write16(hw, port, GM_RX_CTRL, | ||
1859 | GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA); | ||
1860 | |||
1861 | /* transmit flow control */ | ||
1862 | skge_gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff); | ||
1863 | |||
1864 | /* transmit parameter */ | ||
1865 | skge_gma_write16(hw, port, GM_TX_PARAM, | ||
1866 | TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | | ||
1867 | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | | ||
1868 | TX_IPG_JAM_DATA(TX_IPG_JAM_DEF)); | ||
1869 | |||
1870 | /* serial mode register */ | ||
1871 | reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF); | ||
1872 | if (hw->dev[port]->mtu > 1500) | ||
1873 | reg |= GM_SMOD_JUMBO_ENA; | ||
1874 | |||
1875 | skge_gma_write16(hw, port, GM_SERIAL_MODE, reg); | ||
1876 | |||
1877 | /* physical address: used for pause frames */ | ||
1878 | skge_gm_set_addr(hw, port, GM_SRC_ADDR_1L, addr); | ||
1879 | /* virtual address for data */ | ||
1880 | skge_gm_set_addr(hw, port, GM_SRC_ADDR_2L, addr); | ||
1881 | |||
1882 | /* enable interrupt mask for counter overflows */ | ||
1883 | skge_gma_write16(hw, port, GM_TX_IRQ_MSK, 0); | ||
1884 | skge_gma_write16(hw, port, GM_RX_IRQ_MSK, 0); | ||
1885 | skge_gma_write16(hw, port, GM_TR_IRQ_MSK, 0); | ||
1886 | |||
1887 | /* Initialize Mac Fifo */ | ||
1888 | |||
1889 | /* Configure Rx MAC FIFO */ | ||
1890 | skge_write16(hw, SKGEMAC_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK); | ||
1891 | reg = GMF_OPER_ON | GMF_RX_F_FL_ON; | ||
1892 | if (hw->chip_id == CHIP_ID_YUKON_LITE && | ||
1893 | chip_rev(hw) == CHIP_REV_YU_LITE_A3) | ||
1894 | reg &= ~GMF_RX_F_FL_ON; | ||
1895 | skge_write8(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR); | ||
1896 | skge_write16(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), reg); | ||
1897 | skge_write16(hw, SKGEMAC_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF); | ||
1898 | |||
1899 | /* Configure Tx MAC FIFO */ | ||
1900 | skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR); | ||
1901 | skge_write16(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON); | ||
1902 | } | ||
1903 | |||
1904 | static void yukon_stop(struct skge_port *skge) | ||
1905 | { | ||
1906 | struct skge_hw *hw = skge->hw; | ||
1907 | int port = skge->port; | ||
1908 | |||
1909 | if (hw->chip_id == CHIP_ID_YUKON_LITE && | ||
1910 | chip_rev(hw) == CHIP_REV_YU_LITE_A3) { | ||
1911 | skge_write32(hw, B2_GP_IO, | ||
1912 | skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9); | ||
1913 | } | ||
1914 | |||
1915 | skge_gma_write16(hw, port, GM_GP_CTRL, | ||
1916 | skge_gma_read16(hw, port, GM_GP_CTRL) | ||
1917 | & ~(GM_GPCR_RX_ENA|GM_GPCR_RX_ENA)); | ||
1918 | skge_gma_read16(hw, port, GM_GP_CTRL); | ||
1919 | |||
1920 | /* set GPHY Control reset */ | ||
1921 | skge_gma_write32(hw, port, GPHY_CTRL, GPC_RST_SET); | ||
1922 | skge_gma_write32(hw, port, GMAC_CTRL, GMC_RST_SET); | ||
1923 | } | ||
1924 | |||
1925 | static void yukon_get_stats(struct skge_port *skge, u64 *data) | ||
1926 | { | ||
1927 | struct skge_hw *hw = skge->hw; | ||
1928 | int port = skge->port; | ||
1929 | int i; | ||
1930 | |||
1931 | data[0] = (u64) skge_gma_read32(hw, port, GM_TXO_OK_HI) << 32 | ||
1932 | | skge_gma_read32(hw, port, GM_TXO_OK_LO); | ||
1933 | data[1] = (u64) skge_gma_read32(hw, port, GM_RXO_OK_HI) << 32 | ||
1934 | | skge_gma_read32(hw, port, GM_RXO_OK_LO); | ||
1935 | |||
1936 | for (i = 2; i < ARRAY_SIZE(skge_stats); i++) | ||
1937 | data[i] = skge_gma_read32(hw, port, | ||
1938 | skge_stats[i].gma_offset); | ||
1939 | } | ||
1940 | |||
1941 | static void yukon_mac_intr(struct skge_hw *hw, int port) | ||
1942 | { | ||
1943 | struct skge_port *skge = netdev_priv(hw->dev[port]); | ||
1944 | u8 status = skge_read8(hw, SKGEMAC_REG(port, GMAC_IRQ_SRC)); | ||
1945 | |||
1946 | pr_debug("yukon_intr status %x\n", status); | ||
1947 | if (status & GM_IS_RX_FF_OR) { | ||
1948 | ++skge->net_stats.rx_fifo_errors; | ||
1949 | skge_gma_write8(hw, port, RX_GMF_CTRL_T, GMF_CLI_RX_FO); | ||
1950 | } | ||
1951 | if (status & GM_IS_TX_FF_UR) { | ||
1952 | ++skge->net_stats.tx_fifo_errors; | ||
1953 | skge_gma_write8(hw, port, TX_GMF_CTRL_T, GMF_CLI_TX_FU); | ||
1954 | } | ||
1955 | |||
1956 | } | ||
1957 | |||
1958 | static u16 yukon_speed(const struct skge_hw *hw, u16 aux) | ||
1959 | { | ||
1960 | if (hw->chip_id == CHIP_ID_YUKON_FE) | ||
1961 | return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10; | ||
1962 | |||
1963 | switch(aux & PHY_M_PS_SPEED_MSK) { | ||
1964 | case PHY_M_PS_SPEED_1000: | ||
1965 | return SPEED_1000; | ||
1966 | case PHY_M_PS_SPEED_100: | ||
1967 | return SPEED_100; | ||
1968 | default: | ||
1969 | return SPEED_10; | ||
1970 | } | ||
1971 | } | ||
1972 | |||
1973 | static void yukon_link_up(struct skge_port *skge) | ||
1974 | { | ||
1975 | struct skge_hw *hw = skge->hw; | ||
1976 | int port = skge->port; | ||
1977 | u16 reg; | ||
1978 | |||
1979 | pr_debug("yukon_link_up\n"); | ||
1980 | |||
1981 | /* Enable Transmit FIFO Underrun */ | ||
1982 | skge_write8(hw, GMAC_IRQ_MSK, GMAC_DEF_MSK); | ||
1983 | |||
1984 | reg = skge_gma_read16(hw, port, GM_GP_CTRL); | ||
1985 | if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE) | ||
1986 | reg |= GM_GPCR_DUP_FULL; | ||
1987 | |||
1988 | /* enable Rx/Tx */ | ||
1989 | reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; | ||
1990 | skge_gma_write16(hw, port, GM_GP_CTRL, reg); | ||
1991 | |||
1992 | skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK); | ||
1993 | skge_link_up(skge); | ||
1994 | } | ||
1995 | |||
1996 | static void yukon_link_down(struct skge_port *skge) | ||
1997 | { | ||
1998 | struct skge_hw *hw = skge->hw; | ||
1999 | int port = skge->port; | ||
2000 | |||
2001 | pr_debug("yukon_link_down\n"); | ||
2002 | skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0); | ||
2003 | skge_gm_phy_write(hw, port, GM_GP_CTRL, | ||
2004 | skge_gm_phy_read(hw, port, GM_GP_CTRL) | ||
2005 | & ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)); | ||
2006 | |||
2007 | if (hw->chip_id != CHIP_ID_YUKON_FE && | ||
2008 | skge->flow_control == FLOW_MODE_REM_SEND) { | ||
2009 | /* restore Asymmetric Pause bit */ | ||
2010 | skge_gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, | ||
2011 | skge_gm_phy_read(hw, port, | ||
2012 | PHY_MARV_AUNE_ADV) | ||
2013 | | PHY_M_AN_ASP); | ||
2014 | |||
2015 | } | ||
2016 | |||
2017 | yukon_reset(hw, port); | ||
2018 | skge_link_down(skge); | ||
2019 | |||
2020 | yukon_init(hw, port); | ||
2021 | } | ||
2022 | |||
2023 | static void yukon_phy_intr(struct skge_port *skge) | ||
2024 | { | ||
2025 | struct skge_hw *hw = skge->hw; | ||
2026 | int port = skge->port; | ||
2027 | const char *reason = NULL; | ||
2028 | u16 istatus, phystat; | ||
2029 | |||
2030 | istatus = skge_gm_phy_read(hw, port, PHY_MARV_INT_STAT); | ||
2031 | phystat = skge_gm_phy_read(hw, port, PHY_MARV_PHY_STAT); | ||
2032 | pr_debug("yukon phy intr istat=%x phy_stat=%x\n", istatus, phystat); | ||
2033 | |||
2034 | if (istatus & PHY_M_IS_AN_COMPL) { | ||
2035 | if (skge_gm_phy_read(hw, port, PHY_MARV_AUNE_LP) | ||
2036 | & PHY_M_AN_RF) { | ||
2037 | reason = "remote fault"; | ||
2038 | goto failed; | ||
2039 | } | ||
2040 | |||
2041 | if (!(hw->chip_id == CHIP_ID_YUKON_FE || hw->chip_id == CHIP_ID_YUKON_EC) | ||
2042 | && (skge_gm_phy_read(hw, port, PHY_MARV_1000T_STAT) | ||
2043 | & PHY_B_1000S_MSF)) { | ||
2044 | reason = "master/slave fault"; | ||
2045 | goto failed; | ||
2046 | } | ||
2047 | |||
2048 | if (!(phystat & PHY_M_PS_SPDUP_RES)) { | ||
2049 | reason = "speed/duplex"; | ||
2050 | goto failed; | ||
2051 | } | ||
2052 | |||
2053 | skge->duplex = (phystat & PHY_M_PS_FULL_DUP) | ||
2054 | ? DUPLEX_FULL : DUPLEX_HALF; | ||
2055 | skge->speed = yukon_speed(hw, phystat); | ||
2056 | |||
2057 | /* Tx & Rx Pause Enabled bits are at 9..8 */ | ||
2058 | if (hw->chip_id == CHIP_ID_YUKON_XL) | ||
2059 | phystat >>= 6; | ||
2060 | |||
2061 | /* We are using IEEE 802.3z/D5.0 Table 37-4 */ | ||
2062 | switch (phystat & PHY_M_PS_PAUSE_MSK) { | ||
2063 | case PHY_M_PS_PAUSE_MSK: | ||
2064 | skge->flow_control = FLOW_MODE_SYMMETRIC; | ||
2065 | break; | ||
2066 | case PHY_M_PS_RX_P_EN: | ||
2067 | skge->flow_control = FLOW_MODE_REM_SEND; | ||
2068 | break; | ||
2069 | case PHY_M_PS_TX_P_EN: | ||
2070 | skge->flow_control = FLOW_MODE_LOC_SEND; | ||
2071 | break; | ||
2072 | default: | ||
2073 | skge->flow_control = FLOW_MODE_NONE; | ||
2074 | } | ||
2075 | |||
2076 | if (skge->flow_control == FLOW_MODE_NONE || | ||
2077 | (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF)) | ||
2078 | skge_write8(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); | ||
2079 | else | ||
2080 | skge_write8(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_ON); | ||
2081 | yukon_link_up(skge); | ||
2082 | return; | ||
2083 | } | ||
2084 | |||
2085 | if (istatus & PHY_M_IS_LSP_CHANGE) | ||
2086 | skge->speed = yukon_speed(hw, phystat); | ||
2087 | |||
2088 | if (istatus & PHY_M_IS_DUP_CHANGE) | ||
2089 | skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; | ||
2090 | if (istatus & PHY_M_IS_LST_CHANGE) { | ||
2091 | if (phystat & PHY_M_PS_LINK_UP) | ||
2092 | yukon_link_up(skge); | ||
2093 | else | ||
2094 | yukon_link_down(skge); | ||
2095 | } | ||
2096 | return; | ||
2097 | failed: | ||
2098 | printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n", | ||
2099 | skge->netdev->name, reason); | ||
2100 | |||
2101 | /* XXX restart autonegotiation? */ | ||
2102 | } | ||
2103 | |||
2104 | static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len) | ||
2105 | { | ||
2106 | u32 end; | ||
2107 | |||
2108 | start /= 8; | ||
2109 | len /= 8; | ||
2110 | end = start + len - 1; | ||
2111 | |||
2112 | skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR); | ||
2113 | skge_write32(hw, RB_ADDR(q, RB_START), start); | ||
2114 | skge_write32(hw, RB_ADDR(q, RB_WP), start); | ||
2115 | skge_write32(hw, RB_ADDR(q, RB_RP), start); | ||
2116 | skge_write32(hw, RB_ADDR(q, RB_END), end); | ||
2117 | |||
2118 | if (q == Q_R1 || q == Q_R2) { | ||
2119 | /* Set thresholds on receive queue's */ | ||
2120 | skge_write32(hw, RB_ADDR(q, RB_RX_UTPP), | ||
2121 | start + (2*len)/3); | ||
2122 | skge_write32(hw, RB_ADDR(q, RB_RX_LTPP), | ||
2123 | start + (len/3)); | ||
2124 | } else { | ||
2125 | /* Enable store & forward on Tx queue's because | ||
2126 | * Tx FIFO is only 4K on Genesis and 1K on Yukon | ||
2127 | */ | ||
2128 | skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD); | ||
2129 | } | ||
2130 | |||
2131 | skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD); | ||
2132 | } | ||
2133 | |||
2134 | /* Setup Bus Memory Interface */ | ||
2135 | static void skge_qset(struct skge_port *skge, u16 q, | ||
2136 | const struct skge_element *e) | ||
2137 | { | ||
2138 | struct skge_hw *hw = skge->hw; | ||
2139 | u32 watermark = 0x600; | ||
2140 | u64 base = skge->dma + (e->desc - skge->mem); | ||
2141 | |||
2142 | /* optimization to reduce window on 32bit/33mhz */ | ||
2143 | if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0) | ||
2144 | watermark /= 2; | ||
2145 | |||
2146 | skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET); | ||
2147 | skge_write32(hw, Q_ADDR(q, Q_F), watermark); | ||
2148 | skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32)); | ||
2149 | skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base); | ||
2150 | } | ||
2151 | |||
2152 | static int skge_up(struct net_device *dev) | ||
2153 | { | ||
2154 | struct skge_port *skge = netdev_priv(dev); | ||
2155 | struct skge_hw *hw = skge->hw; | ||
2156 | int port = skge->port; | ||
2157 | u32 chunk, ram_addr; | ||
2158 | size_t rx_size, tx_size; | ||
2159 | int err; | ||
2160 | |||
2161 | if (netif_msg_ifup(skge)) | ||
2162 | printk(KERN_INFO PFX "%s: enabling interface\n", dev->name); | ||
2163 | |||
2164 | rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc); | ||
2165 | tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc); | ||
2166 | skge->mem_size = tx_size + rx_size; | ||
2167 | skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma); | ||
2168 | if (!skge->mem) | ||
2169 | return -ENOMEM; | ||
2170 | |||
2171 | memset(skge->mem, 0, skge->mem_size); | ||
2172 | |||
2173 | if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma))) | ||
2174 | goto free_pci_mem; | ||
2175 | |||
2176 | if (skge_rx_fill(skge)) | ||
2177 | goto free_rx_ring; | ||
2178 | |||
2179 | if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size, | ||
2180 | skge->dma + rx_size))) | ||
2181 | goto free_rx_ring; | ||
2182 | |||
2183 | skge->tx_avail = skge->tx_ring.count - 1; | ||
2184 | |||
2185 | /* Initialze MAC */ | ||
2186 | if (hw->chip_id == CHIP_ID_GENESIS) | ||
2187 | genesis_mac_init(hw, port); | ||
2188 | else | ||
2189 | yukon_mac_init(hw, port); | ||
2190 | |||
2191 | /* Configure RAMbuffers */ | ||
2192 | chunk = hw->ram_size / (isdualport(hw) ? 4 : 2); | ||
2193 | ram_addr = hw->ram_offset + 2 * chunk * port; | ||
2194 | |||
2195 | skge_ramset(hw, rxqaddr[port], ram_addr, chunk); | ||
2196 | skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean); | ||
2197 | |||
2198 | BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean); | ||
2199 | skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk); | ||
2200 | skge_qset(skge, txqaddr[port], skge->tx_ring.to_use); | ||
2201 | |||
2202 | /* Start receiver BMU */ | ||
2203 | wmb(); | ||
2204 | skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F); | ||
2205 | |||
2206 | pr_debug("skge_up completed\n"); | ||
2207 | return 0; | ||
2208 | |||
2209 | free_rx_ring: | ||
2210 | skge_rx_clean(skge); | ||
2211 | kfree(skge->rx_ring.start); | ||
2212 | free_pci_mem: | ||
2213 | pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); | ||
2214 | |||
2215 | return err; | ||
2216 | } | ||
2217 | |||
2218 | static int skge_down(struct net_device *dev) | ||
2219 | { | ||
2220 | struct skge_port *skge = netdev_priv(dev); | ||
2221 | struct skge_hw *hw = skge->hw; | ||
2222 | int port = skge->port; | ||
2223 | |||
2224 | if (netif_msg_ifdown(skge)) | ||
2225 | printk(KERN_INFO PFX "%s: disabling interface\n", dev->name); | ||
2226 | |||
2227 | netif_stop_queue(dev); | ||
2228 | |||
2229 | del_timer_sync(&skge->led_blink); | ||
2230 | del_timer_sync(&skge->link_check); | ||
2231 | |||
2232 | /* Stop transmitter */ | ||
2233 | skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP); | ||
2234 | skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), | ||
2235 | RB_RST_SET|RB_DIS_OP_MD); | ||
2236 | |||
2237 | if (hw->chip_id == CHIP_ID_GENESIS) | ||
2238 | genesis_stop(skge); | ||
2239 | else | ||
2240 | yukon_stop(skge); | ||
2241 | |||
2242 | /* Disable Force Sync bit and Enable Alloc bit */ | ||
2243 | skge_write8(hw, SKGEMAC_REG(port, TXA_CTRL), | ||
2244 | TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); | ||
2245 | |||
2246 | /* Stop Interval Timer and Limit Counter of Tx Arbiter */ | ||
2247 | skge_write32(hw, SKGEMAC_REG(port, TXA_ITI_INI), 0L); | ||
2248 | skge_write32(hw, SKGEMAC_REG(port, TXA_LIM_INI), 0L); | ||
2249 | |||
2250 | /* Reset PCI FIFO */ | ||
2251 | skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET); | ||
2252 | skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET); | ||
2253 | |||
2254 | /* Reset the RAM Buffer async Tx queue */ | ||
2255 | skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET); | ||
2256 | /* stop receiver */ | ||
2257 | skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP); | ||
2258 | skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL), | ||
2259 | RB_RST_SET|RB_DIS_OP_MD); | ||
2260 | skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET); | ||
2261 | |||
2262 | if (hw->chip_id == CHIP_ID_GENESIS) { | ||
2263 | skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_RST_SET); | ||
2264 | skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_RST_SET); | ||
2265 | skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_STOP); | ||
2266 | skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_STOP); | ||
2267 | } else { | ||
2268 | skge_write8(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); | ||
2269 | skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_RST_SET); | ||
2270 | } | ||
2271 | |||
2272 | /* turn off led's */ | ||
2273 | skge_write16(hw, B0_LED, LED_STAT_OFF); | ||
2274 | |||
2275 | skge_tx_clean(skge); | ||
2276 | skge_rx_clean(skge); | ||
2277 | |||
2278 | kfree(skge->rx_ring.start); | ||
2279 | kfree(skge->tx_ring.start); | ||
2280 | pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); | ||
2281 | return 0; | ||
2282 | } | ||
2283 | |||
2284 | static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev) | ||
2285 | { | ||
2286 | struct skge_port *skge = netdev_priv(dev); | ||
2287 | struct skge_hw *hw = skge->hw; | ||
2288 | struct skge_ring *ring = &skge->tx_ring; | ||
2289 | struct skge_element *e; | ||
2290 | struct skge_tx_desc *td; | ||
2291 | int i; | ||
2292 | u32 control, len; | ||
2293 | u64 map; | ||
2294 | unsigned long flags; | ||
2295 | |||
2296 | skb = skb_padto(skb, ETH_ZLEN); | ||
2297 | if (!skb) | ||
2298 | return NETDEV_TX_OK; | ||
2299 | |||
2300 | local_irq_save(flags); | ||
2301 | if (!spin_trylock(&skge->tx_lock)) { | ||
2302 | /* Collision - tell upper layer to requeue */ | ||
2303 | local_irq_restore(flags); | ||
2304 | return NETDEV_TX_LOCKED; | ||
2305 | } | ||
2306 | |||
2307 | if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) { | ||
2308 | netif_stop_queue(dev); | ||
2309 | spin_unlock_irqrestore(&skge->tx_lock, flags); | ||
2310 | |||
2311 | printk(KERN_WARNING PFX "%s: ring full when queue awake!\n", | ||
2312 | dev->name); | ||
2313 | return NETDEV_TX_BUSY; | ||
2314 | } | ||
2315 | |||
2316 | e = ring->to_use; | ||
2317 | td = e->desc; | ||
2318 | e->skb = skb; | ||
2319 | len = skb_headlen(skb); | ||
2320 | map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE); | ||
2321 | pci_unmap_addr_set(e, mapaddr, map); | ||
2322 | pci_unmap_len_set(e, maplen, len); | ||
2323 | |||
2324 | td->dma_lo = map; | ||
2325 | td->dma_hi = map >> 32; | ||
2326 | |||
2327 | if (skb->ip_summed == CHECKSUM_HW) { | ||
2328 | const struct iphdr *ip | ||
2329 | = (const struct iphdr *) (skb->data + ETH_HLEN); | ||
2330 | int offset = skb->h.raw - skb->data; | ||
2331 | |||
2332 | /* This seems backwards, but it is what the sk98lin | ||
2333 | * does. Looks like hardware is wrong? | ||
2334 | */ | ||
2335 | if (ip->protocol == IPPROTO_UDP | ||
2336 | && chip_rev(hw) == 0 && hw->chip_id == CHIP_ID_YUKON) | ||
2337 | control = BMU_TCP_CHECK; | ||
2338 | else | ||
2339 | control = BMU_UDP_CHECK; | ||
2340 | |||
2341 | td->csum_offs = 0; | ||
2342 | td->csum_start = offset; | ||
2343 | td->csum_write = offset + skb->csum; | ||
2344 | } else | ||
2345 | control = BMU_CHECK; | ||
2346 | |||
2347 | if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */ | ||
2348 | control |= BMU_EOF| BMU_IRQ_EOF; | ||
2349 | else { | ||
2350 | struct skge_tx_desc *tf = td; | ||
2351 | |||
2352 | control |= BMU_STFWD; | ||
2353 | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | ||
2354 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | ||
2355 | |||
2356 | map = pci_map_page(hw->pdev, frag->page, frag->page_offset, | ||
2357 | frag->size, PCI_DMA_TODEVICE); | ||
2358 | |||
2359 | e = e->next; | ||
2360 | e->skb = NULL; | ||
2361 | tf = e->desc; | ||
2362 | tf->dma_lo = map; | ||
2363 | tf->dma_hi = (u64) map >> 32; | ||
2364 | pci_unmap_addr_set(e, mapaddr, map); | ||
2365 | pci_unmap_len_set(e, maplen, frag->size); | ||
2366 | |||
2367 | tf->control = BMU_OWN | BMU_SW | control | frag->size; | ||
2368 | } | ||
2369 | tf->control |= BMU_EOF | BMU_IRQ_EOF; | ||
2370 | } | ||
2371 | /* Make sure all the descriptors written */ | ||
2372 | wmb(); | ||
2373 | td->control = BMU_OWN | BMU_SW | BMU_STF | control | len; | ||
2374 | wmb(); | ||
2375 | |||
2376 | skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START); | ||
2377 | |||
2378 | if (netif_msg_tx_queued(skge)) | ||
2379 | printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n", | ||
2380 | dev->name, e - ring->start, skb->len); | ||
2381 | |||
2382 | ring->to_use = e->next; | ||
2383 | skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1; | ||
2384 | if (skge->tx_avail <= MAX_SKB_FRAGS + 1) { | ||
2385 | pr_debug("%s: transmit queue full\n", dev->name); | ||
2386 | netif_stop_queue(dev); | ||
2387 | } | ||
2388 | |||
2389 | dev->trans_start = jiffies; | ||
2390 | spin_unlock_irqrestore(&skge->tx_lock, flags); | ||
2391 | |||
2392 | return NETDEV_TX_OK; | ||
2393 | } | ||
2394 | |||
2395 | static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e) | ||
2396 | { | ||
2397 | if (e->skb) { | ||
2398 | pci_unmap_single(hw->pdev, | ||
2399 | pci_unmap_addr(e, mapaddr), | ||
2400 | pci_unmap_len(e, maplen), | ||
2401 | PCI_DMA_TODEVICE); | ||
2402 | dev_kfree_skb_any(e->skb); | ||
2403 | e->skb = NULL; | ||
2404 | } else { | ||
2405 | pci_unmap_page(hw->pdev, | ||
2406 | pci_unmap_addr(e, mapaddr), | ||
2407 | pci_unmap_len(e, maplen), | ||
2408 | PCI_DMA_TODEVICE); | ||
2409 | } | ||
2410 | } | ||
2411 | |||
2412 | static void skge_tx_clean(struct skge_port *skge) | ||
2413 | { | ||
2414 | struct skge_ring *ring = &skge->tx_ring; | ||
2415 | struct skge_element *e; | ||
2416 | unsigned long flags; | ||
2417 | |||
2418 | spin_lock_irqsave(&skge->tx_lock, flags); | ||
2419 | for (e = ring->to_clean; e != ring->to_use; e = e->next) { | ||
2420 | ++skge->tx_avail; | ||
2421 | skge_tx_free(skge->hw, e); | ||
2422 | } | ||
2423 | ring->to_clean = e; | ||
2424 | spin_unlock_irqrestore(&skge->tx_lock, flags); | ||
2425 | } | ||
2426 | |||
2427 | static void skge_tx_timeout(struct net_device *dev) | ||
2428 | { | ||
2429 | struct skge_port *skge = netdev_priv(dev); | ||
2430 | |||
2431 | if (netif_msg_timer(skge)) | ||
2432 | printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name); | ||
2433 | |||
2434 | skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP); | ||
2435 | skge_tx_clean(skge); | ||
2436 | } | ||
2437 | |||
2438 | static int skge_change_mtu(struct net_device *dev, int new_mtu) | ||
2439 | { | ||
2440 | int err = 0; | ||
2441 | |||
2442 | if(new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU) | ||
2443 | return -EINVAL; | ||
2444 | |||
2445 | dev->mtu = new_mtu; | ||
2446 | |||
2447 | if (netif_running(dev)) { | ||
2448 | skge_down(dev); | ||
2449 | skge_up(dev); | ||
2450 | } | ||
2451 | |||
2452 | return err; | ||
2453 | } | ||
2454 | |||
2455 | static void genesis_set_multicast(struct net_device *dev) | ||
2456 | { | ||
2457 | struct skge_port *skge = netdev_priv(dev); | ||
2458 | struct skge_hw *hw = skge->hw; | ||
2459 | int port = skge->port; | ||
2460 | int i, count = dev->mc_count; | ||
2461 | struct dev_mc_list *list = dev->mc_list; | ||
2462 | u32 mode; | ||
2463 | u8 filter[8]; | ||
2464 | |||
2465 | mode = skge_xm_read32(hw, port, XM_MODE); | ||
2466 | mode |= XM_MD_ENA_HASH; | ||
2467 | if (dev->flags & IFF_PROMISC) | ||
2468 | mode |= XM_MD_ENA_PROM; | ||
2469 | else | ||
2470 | mode &= ~XM_MD_ENA_PROM; | ||
2471 | |||
2472 | if (dev->flags & IFF_ALLMULTI) | ||
2473 | memset(filter, 0xff, sizeof(filter)); | ||
2474 | else { | ||
2475 | memset(filter, 0, sizeof(filter)); | ||
2476 | for(i = 0; list && i < count; i++, list = list->next) { | ||
2477 | u32 crc = crc32_le(~0, list->dmi_addr, ETH_ALEN); | ||
2478 | u8 bit = 63 - (crc & 63); | ||
2479 | |||
2480 | filter[bit/8] |= 1 << (bit%8); | ||
2481 | } | ||
2482 | } | ||
2483 | |||
2484 | skge_xm_outhash(hw, port, XM_HSM, filter); | ||
2485 | |||
2486 | skge_xm_write32(hw, port, XM_MODE, mode); | ||
2487 | } | ||
2488 | |||
2489 | static void yukon_set_multicast(struct net_device *dev) | ||
2490 | { | ||
2491 | struct skge_port *skge = netdev_priv(dev); | ||
2492 | struct skge_hw *hw = skge->hw; | ||
2493 | int port = skge->port; | ||
2494 | struct dev_mc_list *list = dev->mc_list; | ||
2495 | u16 reg; | ||
2496 | u8 filter[8]; | ||
2497 | |||
2498 | memset(filter, 0, sizeof(filter)); | ||
2499 | |||
2500 | reg = skge_gma_read16(hw, port, GM_RX_CTRL); | ||
2501 | reg |= GM_RXCR_UCF_ENA; | ||
2502 | |||
2503 | if (dev->flags & IFF_PROMISC) /* promiscious */ | ||
2504 | reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); | ||
2505 | else if (dev->flags & IFF_ALLMULTI) /* all multicast */ | ||
2506 | memset(filter, 0xff, sizeof(filter)); | ||
2507 | else if (dev->mc_count == 0) /* no multicast */ | ||
2508 | reg &= ~GM_RXCR_MCF_ENA; | ||
2509 | else { | ||
2510 | int i; | ||
2511 | reg |= GM_RXCR_MCF_ENA; | ||
2512 | |||
2513 | for(i = 0; list && i < dev->mc_count; i++, list = list->next) { | ||
2514 | u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f; | ||
2515 | filter[bit/8] |= 1 << (bit%8); | ||
2516 | } | ||
2517 | } | ||
2518 | |||
2519 | |||
2520 | skge_gma_write16(hw, port, GM_MC_ADDR_H1, | ||
2521 | (u16)filter[0] | ((u16)filter[1] << 8)); | ||
2522 | skge_gma_write16(hw, port, GM_MC_ADDR_H2, | ||
2523 | (u16)filter[2] | ((u16)filter[3] << 8)); | ||
2524 | skge_gma_write16(hw, port, GM_MC_ADDR_H3, | ||
2525 | (u16)filter[4] | ((u16)filter[5] << 8)); | ||
2526 | skge_gma_write16(hw, port, GM_MC_ADDR_H4, | ||
2527 | (u16)filter[6] | ((u16)filter[7] << 8)); | ||
2528 | |||
2529 | skge_gma_write16(hw, port, GM_RX_CTRL, reg); | ||
2530 | } | ||
2531 | |||
2532 | static inline int bad_phy_status(const struct skge_hw *hw, u32 status) | ||
2533 | { | ||
2534 | if (hw->chip_id == CHIP_ID_GENESIS) | ||
2535 | return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0; | ||
2536 | else | ||
2537 | return (status & GMR_FS_ANY_ERR) || | ||
2538 | (status & GMR_FS_RX_OK) == 0; | ||
2539 | } | ||
2540 | |||
2541 | static void skge_rx_error(struct skge_port *skge, int slot, | ||
2542 | u32 control, u32 status) | ||
2543 | { | ||
2544 | if (netif_msg_rx_err(skge)) | ||
2545 | printk(KERN_DEBUG PFX "%s: rx err, slot %d control 0x%x status 0x%x\n", | ||
2546 | skge->netdev->name, slot, control, status); | ||
2547 | |||
2548 | if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF) | ||
2549 | || (control & BMU_BBC) > skge->netdev->mtu + VLAN_ETH_HLEN) | ||
2550 | skge->net_stats.rx_length_errors++; | ||
2551 | else { | ||
2552 | if (skge->hw->chip_id == CHIP_ID_GENESIS) { | ||
2553 | if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR)) | ||
2554 | skge->net_stats.rx_length_errors++; | ||
2555 | if (status & XMR_FS_FRA_ERR) | ||
2556 | skge->net_stats.rx_frame_errors++; | ||
2557 | if (status & XMR_FS_FCS_ERR) | ||
2558 | skge->net_stats.rx_crc_errors++; | ||
2559 | } else { | ||
2560 | if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE)) | ||
2561 | skge->net_stats.rx_length_errors++; | ||
2562 | if (status & GMR_FS_FRAGMENT) | ||
2563 | skge->net_stats.rx_frame_errors++; | ||
2564 | if (status & GMR_FS_CRC_ERR) | ||
2565 | skge->net_stats.rx_crc_errors++; | ||
2566 | } | ||
2567 | } | ||
2568 | } | ||
2569 | |||
2570 | static int skge_poll(struct net_device *dev, int *budget) | ||
2571 | { | ||
2572 | struct skge_port *skge = netdev_priv(dev); | ||
2573 | struct skge_hw *hw = skge->hw; | ||
2574 | struct skge_ring *ring = &skge->rx_ring; | ||
2575 | struct skge_element *e; | ||
2576 | unsigned int to_do = min(dev->quota, *budget); | ||
2577 | unsigned int work_done = 0; | ||
2578 | int done; | ||
2579 | static const u32 irqmask[] = { IS_PORT_1, IS_PORT_2 }; | ||
2580 | |||
2581 | for (e = ring->to_clean; e != ring->to_use && work_done < to_do; | ||
2582 | e = e->next) { | ||
2583 | struct skge_rx_desc *rd = e->desc; | ||
2584 | struct sk_buff *skb = e->skb; | ||
2585 | u32 control, len, status; | ||
2586 | |||
2587 | rmb(); | ||
2588 | control = rd->control; | ||
2589 | if (control & BMU_OWN) | ||
2590 | break; | ||
2591 | |||
2592 | len = control & BMU_BBC; | ||
2593 | e->skb = NULL; | ||
2594 | |||
2595 | pci_unmap_single(hw->pdev, | ||
2596 | pci_unmap_addr(e, mapaddr), | ||
2597 | pci_unmap_len(e, maplen), | ||
2598 | PCI_DMA_FROMDEVICE); | ||
2599 | |||
2600 | status = rd->status; | ||
2601 | if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF) | ||
2602 | || len > dev->mtu + VLAN_ETH_HLEN | ||
2603 | || bad_phy_status(hw, status)) { | ||
2604 | skge_rx_error(skge, e - ring->start, control, status); | ||
2605 | dev_kfree_skb(skb); | ||
2606 | continue; | ||
2607 | } | ||
2608 | |||
2609 | if (netif_msg_rx_status(skge)) | ||
2610 | printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n", | ||
2611 | dev->name, e - ring->start, rd->status, len); | ||
2612 | |||
2613 | skb_put(skb, len); | ||
2614 | skb->protocol = eth_type_trans(skb, dev); | ||
2615 | |||
2616 | if (skge->rx_csum) { | ||
2617 | skb->csum = le16_to_cpu(rd->csum2); | ||
2618 | skb->ip_summed = CHECKSUM_HW; | ||
2619 | } | ||
2620 | |||
2621 | dev->last_rx = jiffies; | ||
2622 | netif_receive_skb(skb); | ||
2623 | |||
2624 | ++work_done; | ||
2625 | } | ||
2626 | ring->to_clean = e; | ||
2627 | |||
2628 | *budget -= work_done; | ||
2629 | dev->quota -= work_done; | ||
2630 | done = work_done < to_do; | ||
2631 | |||
2632 | if (skge_rx_fill(skge)) | ||
2633 | done = 0; | ||
2634 | |||
2635 | /* restart receiver */ | ||
2636 | wmb(); | ||
2637 | skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), | ||
2638 | CSR_START | CSR_IRQ_CL_F); | ||
2639 | |||
2640 | if (done) { | ||
2641 | local_irq_disable(); | ||
2642 | hw->intr_mask |= irqmask[skge->port]; | ||
2643 | /* Order is important since data can get interrupted */ | ||
2644 | skge_write32(hw, B0_IMSK, hw->intr_mask); | ||
2645 | __netif_rx_complete(dev); | ||
2646 | local_irq_enable(); | ||
2647 | } | ||
2648 | |||
2649 | return !done; | ||
2650 | } | ||
2651 | |||
2652 | static inline void skge_tx_intr(struct net_device *dev) | ||
2653 | { | ||
2654 | struct skge_port *skge = netdev_priv(dev); | ||
2655 | struct skge_hw *hw = skge->hw; | ||
2656 | struct skge_ring *ring = &skge->tx_ring; | ||
2657 | struct skge_element *e; | ||
2658 | |||
2659 | spin_lock(&skge->tx_lock); | ||
2660 | for(e = ring->to_clean; e != ring->to_use; e = e->next) { | ||
2661 | struct skge_tx_desc *td = e->desc; | ||
2662 | u32 control; | ||
2663 | |||
2664 | rmb(); | ||
2665 | control = td->control; | ||
2666 | if (control & BMU_OWN) | ||
2667 | break; | ||
2668 | |||
2669 | if (unlikely(netif_msg_tx_done(skge))) | ||
2670 | printk(KERN_DEBUG PFX "%s: tx done slot %td status 0x%x\n", | ||
2671 | dev->name, e - ring->start, td->status); | ||
2672 | |||
2673 | skge_tx_free(hw, e); | ||
2674 | e->skb = NULL; | ||
2675 | ++skge->tx_avail; | ||
2676 | } | ||
2677 | ring->to_clean = e; | ||
2678 | skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); | ||
2679 | |||
2680 | if (skge->tx_avail > MAX_SKB_FRAGS + 1) | ||
2681 | netif_wake_queue(dev); | ||
2682 | |||
2683 | spin_unlock(&skge->tx_lock); | ||
2684 | } | ||
2685 | |||
2686 | static void skge_mac_parity(struct skge_hw *hw, int port) | ||
2687 | { | ||
2688 | printk(KERN_ERR PFX "%s: mac data parity error\n", | ||
2689 | hw->dev[port] ? hw->dev[port]->name | ||
2690 | : (port == 0 ? "(port A)": "(port B")); | ||
2691 | |||
2692 | if (hw->chip_id == CHIP_ID_GENESIS) | ||
2693 | skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), | ||
2694 | MFF_CLR_PERR); | ||
2695 | else | ||
2696 | /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */ | ||
2697 | skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), | ||
2698 | (hw->chip_id == CHIP_ID_YUKON && chip_rev(hw) == 0) | ||
2699 | ? GMF_CLI_TX_FC : GMF_CLI_TX_PE); | ||
2700 | } | ||
2701 | |||
2702 | static void skge_pci_clear(struct skge_hw *hw) | ||
2703 | { | ||
2704 | u16 status; | ||
2705 | |||
2706 | status = skge_read16(hw, SKGEPCI_REG(PCI_STATUS)); | ||
2707 | skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); | ||
2708 | skge_write16(hw, SKGEPCI_REG(PCI_STATUS), | ||
2709 | status | PCI_STATUS_ERROR_BITS); | ||
2710 | skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); | ||
2711 | } | ||
2712 | |||
2713 | static void skge_mac_intr(struct skge_hw *hw, int port) | ||
2714 | { | ||
2715 | if (hw->chip_id == CHIP_ID_GENESIS) | ||
2716 | genesis_mac_intr(hw, port); | ||
2717 | else | ||
2718 | yukon_mac_intr(hw, port); | ||
2719 | } | ||
2720 | |||
2721 | /* Handle device specific framing and timeout interrupts */ | ||
2722 | static void skge_error_irq(struct skge_hw *hw) | ||
2723 | { | ||
2724 | u32 hwstatus = skge_read32(hw, B0_HWE_ISRC); | ||
2725 | |||
2726 | if (hw->chip_id == CHIP_ID_GENESIS) { | ||
2727 | /* clear xmac errors */ | ||
2728 | if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1)) | ||
2729 | skge_write16(hw, SKGEMAC_REG(0, RX_MFF_CTRL1), MFF_CLR_INSTAT); | ||
2730 | if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2)) | ||
2731 | skge_write16(hw, SKGEMAC_REG(0, RX_MFF_CTRL2), MFF_CLR_INSTAT); | ||
2732 | } else { | ||
2733 | /* Timestamp (unused) overflow */ | ||
2734 | if (hwstatus & IS_IRQ_TIST_OV) | ||
2735 | skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); | ||
2736 | |||
2737 | if (hwstatus & IS_IRQ_SENSOR) { | ||
2738 | /* no sensors on 32-bit Yukon */ | ||
2739 | if (!(skge_read16(hw, B0_CTST) & CS_BUS_SLOT_SZ)) { | ||
2740 | printk(KERN_ERR PFX "ignoring bogus sensor interrups\n"); | ||
2741 | skge_write32(hw, B0_HWE_IMSK, | ||
2742 | IS_ERR_MSK & ~IS_IRQ_SENSOR); | ||
2743 | } else | ||
2744 | printk(KERN_WARNING PFX "sensor interrupt\n"); | ||
2745 | } | ||
2746 | |||
2747 | |||
2748 | } | ||
2749 | |||
2750 | if (hwstatus & IS_RAM_RD_PAR) { | ||
2751 | printk(KERN_ERR PFX "Ram read data parity error\n"); | ||
2752 | skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR); | ||
2753 | } | ||
2754 | |||
2755 | if (hwstatus & IS_RAM_WR_PAR) { | ||
2756 | printk(KERN_ERR PFX "Ram write data parity error\n"); | ||
2757 | skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR); | ||
2758 | } | ||
2759 | |||
2760 | if (hwstatus & IS_M1_PAR_ERR) | ||
2761 | skge_mac_parity(hw, 0); | ||
2762 | |||
2763 | if (hwstatus & IS_M2_PAR_ERR) | ||
2764 | skge_mac_parity(hw, 1); | ||
2765 | |||
2766 | if (hwstatus & IS_R1_PAR_ERR) | ||
2767 | skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P); | ||
2768 | |||
2769 | if (hwstatus & IS_R2_PAR_ERR) | ||
2770 | skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P); | ||
2771 | |||
2772 | if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) { | ||
2773 | printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n", | ||
2774 | hwstatus); | ||
2775 | |||
2776 | skge_pci_clear(hw); | ||
2777 | |||
2778 | hwstatus = skge_read32(hw, B0_HWE_ISRC); | ||
2779 | if (hwstatus & IS_IRQ_STAT) { | ||
2780 | printk(KERN_WARNING PFX "IRQ status %x: still set ignoring hardware errors\n", | ||
2781 | hwstatus); | ||
2782 | hw->intr_mask &= ~IS_HW_ERR; | ||
2783 | } | ||
2784 | } | ||
2785 | } | ||
2786 | |||
2787 | /* | ||
2788 | * Interrrupt from PHY are handled in tasklet (soft irq) | ||
2789 | * because accessing phy registers requires spin wait which might | ||
2790 | * cause excess interrupt latency. | ||
2791 | */ | ||
2792 | static void skge_extirq(unsigned long data) | ||
2793 | { | ||
2794 | struct skge_hw *hw = (struct skge_hw *) data; | ||
2795 | int port; | ||
2796 | |||
2797 | spin_lock(&hw->phy_lock); | ||
2798 | for (port = 0; port < 2; port++) { | ||
2799 | struct net_device *dev = hw->dev[port]; | ||
2800 | |||
2801 | if (dev && netif_running(dev)) { | ||
2802 | struct skge_port *skge = netdev_priv(dev); | ||
2803 | |||
2804 | if (hw->chip_id != CHIP_ID_GENESIS) | ||
2805 | yukon_phy_intr(skge); | ||
2806 | else if (hw->phy_type == SK_PHY_BCOM) | ||
2807 | genesis_bcom_intr(skge); | ||
2808 | } | ||
2809 | } | ||
2810 | spin_unlock(&hw->phy_lock); | ||
2811 | |||
2812 | local_irq_disable(); | ||
2813 | hw->intr_mask |= IS_EXT_REG; | ||
2814 | skge_write32(hw, B0_IMSK, hw->intr_mask); | ||
2815 | local_irq_enable(); | ||
2816 | } | ||
2817 | |||
2818 | static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs) | ||
2819 | { | ||
2820 | struct skge_hw *hw = dev_id; | ||
2821 | u32 status = skge_read32(hw, B0_SP_ISRC); | ||
2822 | |||
2823 | if (status == 0 || status == ~0) /* hotplug or shared irq */ | ||
2824 | return IRQ_NONE; | ||
2825 | |||
2826 | status &= hw->intr_mask; | ||
2827 | |||
2828 | if ((status & IS_R1_F) && netif_rx_schedule_prep(hw->dev[0])) { | ||
2829 | status &= ~IS_R1_F; | ||
2830 | hw->intr_mask &= ~IS_R1_F; | ||
2831 | skge_write32(hw, B0_IMSK, hw->intr_mask); | ||
2832 | __netif_rx_schedule(hw->dev[0]); | ||
2833 | } | ||
2834 | |||
2835 | if ((status & IS_R2_F) && netif_rx_schedule_prep(hw->dev[1])) { | ||
2836 | status &= ~IS_R2_F; | ||
2837 | hw->intr_mask &= ~IS_R2_F; | ||
2838 | skge_write32(hw, B0_IMSK, hw->intr_mask); | ||
2839 | __netif_rx_schedule(hw->dev[1]); | ||
2840 | } | ||
2841 | |||
2842 | if (status & IS_XA1_F) | ||
2843 | skge_tx_intr(hw->dev[0]); | ||
2844 | |||
2845 | if (status & IS_XA2_F) | ||
2846 | skge_tx_intr(hw->dev[1]); | ||
2847 | |||
2848 | if (status & IS_MAC1) | ||
2849 | skge_mac_intr(hw, 0); | ||
2850 | |||
2851 | if (status & IS_MAC2) | ||
2852 | skge_mac_intr(hw, 1); | ||
2853 | |||
2854 | if (status & IS_HW_ERR) | ||
2855 | skge_error_irq(hw); | ||
2856 | |||
2857 | if (status & IS_EXT_REG) { | ||
2858 | hw->intr_mask &= ~IS_EXT_REG; | ||
2859 | tasklet_schedule(&hw->ext_tasklet); | ||
2860 | } | ||
2861 | |||
2862 | if (status) | ||
2863 | skge_write32(hw, B0_IMSK, hw->intr_mask); | ||
2864 | |||
2865 | return IRQ_HANDLED; | ||
2866 | } | ||
2867 | |||
2868 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
2869 | static void skge_netpoll(struct net_device *dev) | ||
2870 | { | ||
2871 | struct skge_port *skge = netdev_priv(dev); | ||
2872 | |||
2873 | disable_irq(dev->irq); | ||
2874 | skge_intr(dev->irq, skge->hw, NULL); | ||
2875 | enable_irq(dev->irq); | ||
2876 | } | ||
2877 | #endif | ||
2878 | |||
2879 | static int skge_set_mac_address(struct net_device *dev, void *p) | ||
2880 | { | ||
2881 | struct skge_port *skge = netdev_priv(dev); | ||
2882 | struct sockaddr *addr = p; | ||
2883 | int err = 0; | ||
2884 | |||
2885 | if (!is_valid_ether_addr(addr->sa_data)) | ||
2886 | return -EADDRNOTAVAIL; | ||
2887 | |||
2888 | skge_down(dev); | ||
2889 | memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); | ||
2890 | memcpy_toio(skge->hw->regs + B2_MAC_1 + skge->port*8, | ||
2891 | dev->dev_addr, ETH_ALEN); | ||
2892 | memcpy_toio(skge->hw->regs + B2_MAC_2 + skge->port*8, | ||
2893 | dev->dev_addr, ETH_ALEN); | ||
2894 | if (dev->flags & IFF_UP) | ||
2895 | err = skge_up(dev); | ||
2896 | return err; | ||
2897 | } | ||
2898 | |||
2899 | static const struct { | ||
2900 | u8 id; | ||
2901 | const char *name; | ||
2902 | } skge_chips[] = { | ||
2903 | { CHIP_ID_GENESIS, "Genesis" }, | ||
2904 | { CHIP_ID_YUKON, "Yukon" }, | ||
2905 | { CHIP_ID_YUKON_LITE, "Yukon-Lite"}, | ||
2906 | { CHIP_ID_YUKON_LP, "Yukon-LP"}, | ||
2907 | { CHIP_ID_YUKON_XL, "Yukon-2 XL"}, | ||
2908 | { CHIP_ID_YUKON_EC, "YUKON-2 EC"}, | ||
2909 | { CHIP_ID_YUKON_FE, "YUKON-2 FE"}, | ||
2910 | }; | ||
2911 | |||
2912 | static const char *skge_board_name(const struct skge_hw *hw) | ||
2913 | { | ||
2914 | int i; | ||
2915 | static char buf[16]; | ||
2916 | |||
2917 | for (i = 0; i < ARRAY_SIZE(skge_chips); i++) | ||
2918 | if (skge_chips[i].id == hw->chip_id) | ||
2919 | return skge_chips[i].name; | ||
2920 | |||
2921 | snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id); | ||
2922 | return buf; | ||
2923 | } | ||
2924 | |||
2925 | |||
2926 | /* | ||
2927 | * Setup the board data structure, but don't bring up | ||
2928 | * the port(s) | ||
2929 | */ | ||
2930 | static int skge_reset(struct skge_hw *hw) | ||
2931 | { | ||
2932 | u16 ctst; | ||
2933 | u8 t8; | ||
2934 | int i, ports; | ||
2935 | |||
2936 | ctst = skge_read16(hw, B0_CTST); | ||
2937 | |||
2938 | /* do a SW reset */ | ||
2939 | skge_write8(hw, B0_CTST, CS_RST_SET); | ||
2940 | skge_write8(hw, B0_CTST, CS_RST_CLR); | ||
2941 | |||
2942 | /* clear PCI errors, if any */ | ||
2943 | skge_pci_clear(hw); | ||
2944 | |||
2945 | skge_write8(hw, B0_CTST, CS_MRST_CLR); | ||
2946 | |||
2947 | /* restore CLK_RUN bits (for Yukon-Lite) */ | ||
2948 | skge_write16(hw, B0_CTST, | ||
2949 | ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA)); | ||
2950 | |||
2951 | hw->chip_id = skge_read8(hw, B2_CHIP_ID); | ||
2952 | hw->phy_type = skge_read8(hw, B2_E_1) & 0xf; | ||
2953 | hw->pmd_type = skge_read8(hw, B2_PMD_TYP); | ||
2954 | |||
2955 | switch(hw->chip_id) { | ||
2956 | case CHIP_ID_GENESIS: | ||
2957 | switch (hw->phy_type) { | ||
2958 | case SK_PHY_XMAC: | ||
2959 | hw->phy_addr = PHY_ADDR_XMAC; | ||
2960 | break; | ||
2961 | case SK_PHY_BCOM: | ||
2962 | hw->phy_addr = PHY_ADDR_BCOM; | ||
2963 | break; | ||
2964 | default: | ||
2965 | printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n", | ||
2966 | pci_name(hw->pdev), hw->phy_type); | ||
2967 | return -EOPNOTSUPP; | ||
2968 | } | ||
2969 | break; | ||
2970 | |||
2971 | case CHIP_ID_YUKON: | ||
2972 | case CHIP_ID_YUKON_LITE: | ||
2973 | case CHIP_ID_YUKON_LP: | ||
2974 | if (hw->phy_type < SK_PHY_MARV_COPPER && hw->pmd_type != 'S') | ||
2975 | hw->phy_type = SK_PHY_MARV_COPPER; | ||
2976 | |||
2977 | hw->phy_addr = PHY_ADDR_MARV; | ||
2978 | if (!iscopper(hw)) | ||
2979 | hw->phy_type = SK_PHY_MARV_FIBER; | ||
2980 | |||
2981 | break; | ||
2982 | |||
2983 | default: | ||
2984 | printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n", | ||
2985 | pci_name(hw->pdev), hw->chip_id); | ||
2986 | return -EOPNOTSUPP; | ||
2987 | } | ||
2988 | |||
2989 | hw->mac_cfg = skge_read8(hw, B2_MAC_CFG); | ||
2990 | ports = isdualport(hw) ? 2 : 1; | ||
2991 | |||
2992 | /* read the adapters RAM size */ | ||
2993 | t8 = skge_read8(hw, B2_E_0); | ||
2994 | if (hw->chip_id == CHIP_ID_GENESIS) { | ||
2995 | if (t8 == 3) { | ||
2996 | /* special case: 4 x 64k x 36, offset = 0x80000 */ | ||
2997 | hw->ram_size = 0x100000; | ||
2998 | hw->ram_offset = 0x80000; | ||
2999 | } else | ||
3000 | hw->ram_size = t8 * 512; | ||
3001 | } | ||
3002 | else if (t8 == 0) | ||
3003 | hw->ram_size = 0x20000; | ||
3004 | else | ||
3005 | hw->ram_size = t8 * 4096; | ||
3006 | |||
3007 | if (hw->chip_id == CHIP_ID_GENESIS) | ||
3008 | genesis_init(hw); | ||
3009 | else { | ||
3010 | /* switch power to VCC (WA for VAUX problem) */ | ||
3011 | skge_write8(hw, B0_POWER_CTRL, | ||
3012 | PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); | ||
3013 | for (i = 0; i < ports; i++) { | ||
3014 | skge_write16(hw, SKGEMAC_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET); | ||
3015 | skge_write16(hw, SKGEMAC_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR); | ||
3016 | } | ||
3017 | } | ||
3018 | |||
3019 | /* turn off hardware timer (unused) */ | ||
3020 | skge_write8(hw, B2_TI_CTRL, TIM_STOP); | ||
3021 | skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ); | ||
3022 | skge_write8(hw, B0_LED, LED_STAT_ON); | ||
3023 | |||
3024 | /* enable the Tx Arbiters */ | ||
3025 | for (i = 0; i < ports; i++) | ||
3026 | skge_write8(hw, SKGEMAC_REG(i, TXA_CTRL), TXA_ENA_ARB); | ||
3027 | |||
3028 | /* Initialize ram interface */ | ||
3029 | skge_write16(hw, B3_RI_CTRL, RI_RST_CLR); | ||
3030 | |||
3031 | skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53); | ||
3032 | skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53); | ||
3033 | skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53); | ||
3034 | skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53); | ||
3035 | skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53); | ||
3036 | skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53); | ||
3037 | skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53); | ||
3038 | skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53); | ||
3039 | skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53); | ||
3040 | skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53); | ||
3041 | skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53); | ||
3042 | skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53); | ||
3043 | |||
3044 | skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK); | ||
3045 | |||
3046 | /* Set interrupt moderation for Transmit only | ||
3047 | * Receive interrupts avoided by NAPI | ||
3048 | */ | ||
3049 | skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F); | ||
3050 | skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100)); | ||
3051 | skge_write32(hw, B2_IRQM_CTRL, TIM_START); | ||
3052 | |||
3053 | hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1; | ||
3054 | if (isdualport(hw)) | ||
3055 | hw->intr_mask |= IS_PORT_2; | ||
3056 | skge_write32(hw, B0_IMSK, hw->intr_mask); | ||
3057 | |||
3058 | if (hw->chip_id != CHIP_ID_GENESIS) | ||
3059 | skge_write8(hw, GMAC_IRQ_MSK, 0); | ||
3060 | |||
3061 | spin_lock_bh(&hw->phy_lock); | ||
3062 | for (i = 0; i < ports; i++) { | ||
3063 | if (hw->chip_id == CHIP_ID_GENESIS) | ||
3064 | genesis_reset(hw, i); | ||
3065 | else | ||
3066 | yukon_reset(hw, i); | ||
3067 | } | ||
3068 | spin_unlock_bh(&hw->phy_lock); | ||
3069 | |||
3070 | return 0; | ||
3071 | } | ||
3072 | |||
3073 | /* Initialize network device */ | ||
3074 | static struct net_device *skge_devinit(struct skge_hw *hw, int port) | ||
3075 | { | ||
3076 | struct skge_port *skge; | ||
3077 | struct net_device *dev = alloc_etherdev(sizeof(*skge)); | ||
3078 | |||
3079 | if (!dev) { | ||
3080 | printk(KERN_ERR "skge etherdev alloc failed"); | ||
3081 | return NULL; | ||
3082 | } | ||
3083 | |||
3084 | SET_MODULE_OWNER(dev); | ||
3085 | SET_NETDEV_DEV(dev, &hw->pdev->dev); | ||
3086 | dev->open = skge_up; | ||
3087 | dev->stop = skge_down; | ||
3088 | dev->hard_start_xmit = skge_xmit_frame; | ||
3089 | dev->get_stats = skge_get_stats; | ||
3090 | if (hw->chip_id == CHIP_ID_GENESIS) | ||
3091 | dev->set_multicast_list = genesis_set_multicast; | ||
3092 | else | ||
3093 | dev->set_multicast_list = yukon_set_multicast; | ||
3094 | |||
3095 | dev->set_mac_address = skge_set_mac_address; | ||
3096 | dev->change_mtu = skge_change_mtu; | ||
3097 | SET_ETHTOOL_OPS(dev, &skge_ethtool_ops); | ||
3098 | dev->tx_timeout = skge_tx_timeout; | ||
3099 | dev->watchdog_timeo = TX_WATCHDOG; | ||
3100 | dev->poll = skge_poll; | ||
3101 | dev->weight = NAPI_WEIGHT; | ||
3102 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
3103 | dev->poll_controller = skge_netpoll; | ||
3104 | #endif | ||
3105 | dev->irq = hw->pdev->irq; | ||
3106 | dev->features = NETIF_F_LLTX; | ||
3107 | |||
3108 | skge = netdev_priv(dev); | ||
3109 | skge->netdev = dev; | ||
3110 | skge->hw = hw; | ||
3111 | skge->msg_enable = netif_msg_init(debug, default_msg); | ||
3112 | skge->tx_ring.count = DEFAULT_TX_RING_SIZE; | ||
3113 | skge->rx_ring.count = DEFAULT_RX_RING_SIZE; | ||
3114 | |||
3115 | /* Auto speed and flow control */ | ||
3116 | skge->autoneg = AUTONEG_ENABLE; | ||
3117 | skge->flow_control = FLOW_MODE_SYMMETRIC; | ||
3118 | skge->duplex = -1; | ||
3119 | skge->speed = -1; | ||
3120 | skge->advertising = skge_modes(hw); | ||
3121 | |||
3122 | hw->dev[port] = dev; | ||
3123 | |||
3124 | skge->port = port; | ||
3125 | |||
3126 | spin_lock_init(&skge->tx_lock); | ||
3127 | |||
3128 | init_timer(&skge->link_check); | ||
3129 | skge->link_check.function = skge_link_timer; | ||
3130 | skge->link_check.data = (unsigned long) skge; | ||
3131 | |||
3132 | init_timer(&skge->led_blink); | ||
3133 | skge->led_blink.function = skge_blink_timer; | ||
3134 | skge->led_blink.data = (unsigned long) skge; | ||
3135 | |||
3136 | if (hw->chip_id != CHIP_ID_GENESIS) { | ||
3137 | dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; | ||
3138 | skge->rx_csum = 1; | ||
3139 | } | ||
3140 | |||
3141 | /* read the mac address */ | ||
3142 | memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN); | ||
3143 | |||
3144 | /* device is off until link detection */ | ||
3145 | netif_carrier_off(dev); | ||
3146 | netif_stop_queue(dev); | ||
3147 | |||
3148 | return dev; | ||
3149 | } | ||
3150 | |||
3151 | static void __devinit skge_show_addr(struct net_device *dev) | ||
3152 | { | ||
3153 | const struct skge_port *skge = netdev_priv(dev); | ||
3154 | |||
3155 | if (netif_msg_probe(skge)) | ||
3156 | printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n", | ||
3157 | dev->name, | ||
3158 | dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], | ||
3159 | dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); | ||
3160 | } | ||
3161 | |||
3162 | static int __devinit skge_probe(struct pci_dev *pdev, | ||
3163 | const struct pci_device_id *ent) | ||
3164 | { | ||
3165 | struct net_device *dev, *dev1; | ||
3166 | struct skge_hw *hw; | ||
3167 | int err, using_dac = 0; | ||
3168 | |||
3169 | if ((err = pci_enable_device(pdev))) { | ||
3170 | printk(KERN_ERR PFX "%s cannot enable PCI device\n", | ||
3171 | pci_name(pdev)); | ||
3172 | goto err_out; | ||
3173 | } | ||
3174 | |||
3175 | if ((err = pci_request_regions(pdev, DRV_NAME))) { | ||
3176 | printk(KERN_ERR PFX "%s cannot obtain PCI resources\n", | ||
3177 | pci_name(pdev)); | ||
3178 | goto err_out_disable_pdev; | ||
3179 | } | ||
3180 | |||
3181 | pci_set_master(pdev); | ||
3182 | |||
3183 | if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) | ||
3184 | using_dac = 1; | ||
3185 | else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) { | ||
3186 | printk(KERN_ERR PFX "%s no usable DMA configuration\n", | ||
3187 | pci_name(pdev)); | ||
3188 | goto err_out_free_regions; | ||
3189 | } | ||
3190 | |||
3191 | #ifdef __BIG_ENDIAN | ||
3192 | /* byte swap decriptors in hardware */ | ||
3193 | { | ||
3194 | u32 reg; | ||
3195 | |||
3196 | pci_read_config_dword(pdev, PCI_DEV_REG2, ®); | ||
3197 | reg |= PCI_REV_DESC; | ||
3198 | pci_write_config_dword(pdev, PCI_DEV_REG2, reg); | ||
3199 | } | ||
3200 | #endif | ||
3201 | |||
3202 | err = -ENOMEM; | ||
3203 | hw = kmalloc(sizeof(*hw), GFP_KERNEL); | ||
3204 | if (!hw) { | ||
3205 | printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n", | ||
3206 | pci_name(pdev)); | ||
3207 | goto err_out_free_regions; | ||
3208 | } | ||
3209 | |||
3210 | memset(hw, 0, sizeof(*hw)); | ||
3211 | hw->pdev = pdev; | ||
3212 | spin_lock_init(&hw->phy_lock); | ||
3213 | tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw); | ||
3214 | |||
3215 | hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000); | ||
3216 | if (!hw->regs) { | ||
3217 | printk(KERN_ERR PFX "%s: cannot map device registers\n", | ||
3218 | pci_name(pdev)); | ||
3219 | goto err_out_free_hw; | ||
3220 | } | ||
3221 | |||
3222 | if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) { | ||
3223 | printk(KERN_ERR PFX "%s: cannot assign irq %d\n", | ||
3224 | pci_name(pdev), pdev->irq); | ||
3225 | goto err_out_iounmap; | ||
3226 | } | ||
3227 | pci_set_drvdata(pdev, hw); | ||
3228 | |||
3229 | err = skge_reset(hw); | ||
3230 | if (err) | ||
3231 | goto err_out_free_irq; | ||
3232 | |||
3233 | printk(KERN_INFO PFX "addr 0x%lx irq %d chip %s rev %d\n", | ||
3234 | pci_resource_start(pdev, 0), pdev->irq, | ||
3235 | skge_board_name(hw), chip_rev(hw)); | ||
3236 | |||
3237 | if ((dev = skge_devinit(hw, 0)) == NULL) | ||
3238 | goto err_out_led_off; | ||
3239 | |||
3240 | if (using_dac) | ||
3241 | dev->features |= NETIF_F_HIGHDMA; | ||
3242 | |||
3243 | if ((err = register_netdev(dev))) { | ||
3244 | printk(KERN_ERR PFX "%s: cannot register net device\n", | ||
3245 | pci_name(pdev)); | ||
3246 | goto err_out_free_netdev; | ||
3247 | } | ||
3248 | |||
3249 | skge_show_addr(dev); | ||
3250 | |||
3251 | if (isdualport(hw) && (dev1 = skge_devinit(hw, 1))) { | ||
3252 | if (using_dac) | ||
3253 | dev1->features |= NETIF_F_HIGHDMA; | ||
3254 | |||
3255 | if (register_netdev(dev1) == 0) | ||
3256 | skge_show_addr(dev1); | ||
3257 | else { | ||
3258 | /* Failure to register second port need not be fatal */ | ||
3259 | printk(KERN_WARNING PFX "register of second port failed\n"); | ||
3260 | hw->dev[1] = NULL; | ||
3261 | free_netdev(dev1); | ||
3262 | } | ||
3263 | } | ||
3264 | |||
3265 | return 0; | ||
3266 | |||
3267 | err_out_free_netdev: | ||
3268 | free_netdev(dev); | ||
3269 | err_out_led_off: | ||
3270 | skge_write16(hw, B0_LED, LED_STAT_OFF); | ||
3271 | err_out_free_irq: | ||
3272 | free_irq(pdev->irq, hw); | ||
3273 | err_out_iounmap: | ||
3274 | iounmap(hw->regs); | ||
3275 | err_out_free_hw: | ||
3276 | kfree(hw); | ||
3277 | err_out_free_regions: | ||
3278 | pci_release_regions(pdev); | ||
3279 | err_out_disable_pdev: | ||
3280 | pci_disable_device(pdev); | ||
3281 | pci_set_drvdata(pdev, NULL); | ||
3282 | err_out: | ||
3283 | return err; | ||
3284 | } | ||
3285 | |||
3286 | static void __devexit skge_remove(struct pci_dev *pdev) | ||
3287 | { | ||
3288 | struct skge_hw *hw = pci_get_drvdata(pdev); | ||
3289 | struct net_device *dev0, *dev1; | ||
3290 | |||
3291 | if(!hw) | ||
3292 | return; | ||
3293 | |||
3294 | if ((dev1 = hw->dev[1])) | ||
3295 | unregister_netdev(dev1); | ||
3296 | dev0 = hw->dev[0]; | ||
3297 | unregister_netdev(dev0); | ||
3298 | |||
3299 | tasklet_kill(&hw->ext_tasklet); | ||
3300 | |||
3301 | free_irq(pdev->irq, hw); | ||
3302 | pci_release_regions(pdev); | ||
3303 | pci_disable_device(pdev); | ||
3304 | if (dev1) | ||
3305 | free_netdev(dev1); | ||
3306 | free_netdev(dev0); | ||
3307 | skge_write16(hw, B0_LED, LED_STAT_OFF); | ||
3308 | iounmap(hw->regs); | ||
3309 | kfree(hw); | ||
3310 | pci_set_drvdata(pdev, NULL); | ||
3311 | } | ||
3312 | |||
3313 | #ifdef CONFIG_PM | ||
3314 | static int skge_suspend(struct pci_dev *pdev, u32 state) | ||
3315 | { | ||
3316 | struct skge_hw *hw = pci_get_drvdata(pdev); | ||
3317 | int i, wol = 0; | ||
3318 | |||
3319 | for(i = 0; i < 2; i++) { | ||
3320 | struct net_device *dev = hw->dev[i]; | ||
3321 | |||
3322 | if (dev) { | ||
3323 | struct skge_port *skge = netdev_priv(dev); | ||
3324 | if (netif_running(dev)) { | ||
3325 | netif_carrier_off(dev); | ||
3326 | skge_down(dev); | ||
3327 | } | ||
3328 | netif_device_detach(dev); | ||
3329 | wol |= skge->wol; | ||
3330 | } | ||
3331 | } | ||
3332 | |||
3333 | pci_save_state(pdev); | ||
3334 | pci_enable_wake(pdev, state, wol); | ||
3335 | pci_disable_device(pdev); | ||
3336 | pci_set_power_state(pdev, pci_choose_state(pdev, state)); | ||
3337 | |||
3338 | return 0; | ||
3339 | } | ||
3340 | |||
3341 | static int skge_resume(struct pci_dev *pdev) | ||
3342 | { | ||
3343 | struct skge_hw *hw = pci_get_drvdata(pdev); | ||
3344 | int i; | ||
3345 | |||
3346 | pci_set_power_state(pdev, PCI_D0); | ||
3347 | pci_restore_state(pdev); | ||
3348 | pci_enable_wake(pdev, PCI_D0, 0); | ||
3349 | |||
3350 | skge_reset(hw); | ||
3351 | |||
3352 | for(i = 0; i < 2; i++) { | ||
3353 | struct net_device *dev = hw->dev[i]; | ||
3354 | if (dev) { | ||
3355 | netif_device_attach(dev); | ||
3356 | if(netif_running(dev)) | ||
3357 | skge_up(dev); | ||
3358 | } | ||
3359 | } | ||
3360 | return 0; | ||
3361 | } | ||
3362 | #endif | ||
3363 | |||
3364 | static struct pci_driver skge_driver = { | ||
3365 | .name = DRV_NAME, | ||
3366 | .id_table = skge_id_table, | ||
3367 | .probe = skge_probe, | ||
3368 | .remove = __devexit_p(skge_remove), | ||
3369 | #ifdef CONFIG_PM | ||
3370 | .suspend = skge_suspend, | ||
3371 | .resume = skge_resume, | ||
3372 | #endif | ||
3373 | }; | ||
3374 | |||
3375 | static int __init skge_init_module(void) | ||
3376 | { | ||
3377 | return pci_module_init(&skge_driver); | ||
3378 | } | ||
3379 | |||
3380 | static void __exit skge_cleanup_module(void) | ||
3381 | { | ||
3382 | pci_unregister_driver(&skge_driver); | ||
3383 | } | ||
3384 | |||
3385 | module_init(skge_init_module); | ||
3386 | module_exit(skge_cleanup_module); | ||