aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/sk98lin/skge.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/sk98lin/skge.c')
-rw-r--r--drivers/net/sk98lin/skge.c5219
1 files changed, 5219 insertions, 0 deletions
diff --git a/drivers/net/sk98lin/skge.c b/drivers/net/sk98lin/skge.c
new file mode 100644
index 000000000000..7dc9c9ebf5e7
--- /dev/null
+++ b/drivers/net/sk98lin/skge.c
@@ -0,0 +1,5219 @@
1/******************************************************************************
2 *
3 * Name: skge.c
4 * Project: GEnesis, PCI Gigabit Ethernet Adapter
5 * Version: $Revision: 1.45 $
6 * Date: $Date: 2004/02/12 14:41:02 $
7 * Purpose: The main driver source module
8 *
9 ******************************************************************************/
10
11/******************************************************************************
12 *
13 * (C)Copyright 1998-2002 SysKonnect GmbH.
14 * (C)Copyright 2002-2003 Marvell.
15 *
16 * Driver for Marvell Yukon chipset and SysKonnect Gigabit Ethernet
17 * Server Adapters.
18 *
19 * Created 10-Feb-1999, based on Linux' acenic.c, 3c59x.c and
20 * SysKonnects GEnesis Solaris driver
21 * Author: Christoph Goos (cgoos@syskonnect.de)
22 * Mirko Lindner (mlindner@syskonnect.de)
23 *
24 * Address all question to: linux@syskonnect.de
25 *
26 * The technical manual for the adapters is available from SysKonnect's
27 * web pages: www.syskonnect.com
28 * Goto "Support" and search Knowledge Base for "manual".
29 *
30 * This program is free software; you can redistribute it and/or modify
31 * it under the terms of the GNU General Public License as published by
32 * the Free Software Foundation; either version 2 of the License, or
33 * (at your option) any later version.
34 *
35 * The information in this file is provided "AS IS" without warranty.
36 *
37 ******************************************************************************/
38
39/******************************************************************************
40 *
41 * Possible compiler options (#define xxx / -Dxxx):
42 *
43 * debugging can be enable by changing SK_DEBUG_CHKMOD and
44 * SK_DEBUG_CHKCAT in makefile (described there).
45 *
46 ******************************************************************************/
47
48/******************************************************************************
49 *
50 * Description:
51 *
52 * This is the main module of the Linux GE driver.
53 *
54 * All source files except skge.c, skdrv1st.h, skdrv2nd.h and sktypes.h
55 * are part of SysKonnect's COMMON MODULES for the SK-98xx adapters.
56 * Those are used for drivers on multiple OS', so some thing may seem
57 * unnecessary complicated on Linux. Please do not try to 'clean up'
58 * them without VERY good reasons, because this will make it more
59 * difficult to keep the Linux driver in synchronisation with the
60 * other versions.
61 *
62 * Include file hierarchy:
63 *
64 * <linux/module.h>
65 *
66 * "h/skdrv1st.h"
67 * <linux/types.h>
68 * <linux/kernel.h>
69 * <linux/string.h>
70 * <linux/errno.h>
71 * <linux/ioport.h>
72 * <linux/slab.h>
73 * <linux/interrupt.h>
74 * <linux/pci.h>
75 * <linux/bitops.h>
76 * <asm/byteorder.h>
77 * <asm/io.h>
78 * <linux/netdevice.h>
79 * <linux/etherdevice.h>
80 * <linux/skbuff.h>
81 * those three depending on kernel version used:
82 * <linux/bios32.h>
83 * <linux/init.h>
84 * <asm/uaccess.h>
85 * <net/checksum.h>
86 *
87 * "h/skerror.h"
88 * "h/skdebug.h"
89 * "h/sktypes.h"
90 * "h/lm80.h"
91 * "h/xmac_ii.h"
92 *
93 * "h/skdrv2nd.h"
94 * "h/skqueue.h"
95 * "h/skgehwt.h"
96 * "h/sktimer.h"
97 * "h/ski2c.h"
98 * "h/skgepnmi.h"
99 * "h/skvpd.h"
100 * "h/skgehw.h"
101 * "h/skgeinit.h"
102 * "h/skaddr.h"
103 * "h/skgesirq.h"
104 * "h/skrlmt.h"
105 *
106 ******************************************************************************/
107
108#include "h/skversion.h"
109
110#include <linux/in.h>
111#include <linux/module.h>
112#include <linux/moduleparam.h>
113#include <linux/init.h>
114#include <linux/dma-mapping.h>
115#include <linux/ip.h>
116#include <linux/mii.h>
117#include <linux/mm.h>
118
119#include "h/skdrv1st.h"
120#include "h/skdrv2nd.h"
121
122/*******************************************************************************
123 *
124 * Defines
125 *
126 ******************************************************************************/
127
128/* for debuging on x86 only */
129/* #define BREAKPOINT() asm(" int $3"); */
130
131/* use the transmit hw checksum driver functionality */
132#define USE_SK_TX_CHECKSUM
133
134/* use the receive hw checksum driver functionality */
135#define USE_SK_RX_CHECKSUM
136
137/* use the scatter-gather functionality with sendfile() */
138#define SK_ZEROCOPY
139
140/* use of a transmit complete interrupt */
141#define USE_TX_COMPLETE
142
143/*
144 * threshold for copying small receive frames
145 * set to 0 to avoid copying, set to 9001 to copy all frames
146 */
147#define SK_COPY_THRESHOLD 50
148
149/* number of adapters that can be configured via command line params */
150#define SK_MAX_CARD_PARAM 16
151
152
153
154/*
155 * use those defines for a compile-in version of the driver instead
156 * of command line parameters
157 */
158// #define LINK_SPEED_A {"Auto", }
159// #define LINK_SPEED_B {"Auto", }
160// #define AUTO_NEG_A {"Sense", }
161// #define AUTO_NEG_B {"Sense", }
162// #define DUP_CAP_A {"Both", }
163// #define DUP_CAP_B {"Both", }
164// #define FLOW_CTRL_A {"SymOrRem", }
165// #define FLOW_CTRL_B {"SymOrRem", }
166// #define ROLE_A {"Auto", }
167// #define ROLE_B {"Auto", }
168// #define PREF_PORT {"A", }
169// #define CON_TYPE {"Auto", }
170// #define RLMT_MODE {"CheckLinkState", }
171
172#define DEV_KFREE_SKB(skb) dev_kfree_skb(skb)
173#define DEV_KFREE_SKB_IRQ(skb) dev_kfree_skb_irq(skb)
174#define DEV_KFREE_SKB_ANY(skb) dev_kfree_skb_any(skb)
175
176
177/* Set blink mode*/
178#define OEM_CONFIG_VALUE ( SK_ACT_LED_BLINK | \
179 SK_DUP_LED_NORMAL | \
180 SK_LED_LINK100_ON)
181
182
183/* Isr return value */
184#define SkIsrRetVar irqreturn_t
185#define SkIsrRetNone IRQ_NONE
186#define SkIsrRetHandled IRQ_HANDLED
187
188
189/*******************************************************************************
190 *
191 * Local Function Prototypes
192 *
193 ******************************************************************************/
194
195static void FreeResources(struct SK_NET_DEVICE *dev);
196static int SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC);
197static SK_BOOL BoardAllocMem(SK_AC *pAC);
198static void BoardFreeMem(SK_AC *pAC);
199static void BoardInitMem(SK_AC *pAC);
200static void SetupRing(SK_AC*, void*, uintptr_t, RXD**, RXD**, RXD**, int*, SK_BOOL);
201static SkIsrRetVar SkGeIsr(int irq, void *dev_id);
202static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id);
203static int SkGeOpen(struct SK_NET_DEVICE *dev);
204static int SkGeClose(struct SK_NET_DEVICE *dev);
205static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev);
206static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p);
207static void SkGeSetRxMode(struct SK_NET_DEVICE *dev);
208static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev);
209static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd);
210static void GetConfiguration(SK_AC*);
211static int XmitFrame(SK_AC*, TX_PORT*, struct sk_buff*);
212static void FreeTxDescriptors(SK_AC*pAC, TX_PORT*);
213static void FillRxRing(SK_AC*, RX_PORT*);
214static SK_BOOL FillRxDescriptor(SK_AC*, RX_PORT*);
215static void ReceiveIrq(SK_AC*, RX_PORT*, SK_BOOL);
216static void ClearAndStartRx(SK_AC*, int);
217static void ClearTxIrq(SK_AC*, int, int);
218static void ClearRxRing(SK_AC*, RX_PORT*);
219static void ClearTxRing(SK_AC*, TX_PORT*);
220static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int new_mtu);
221static void PortReInitBmu(SK_AC*, int);
222static int SkGeIocMib(DEV_NET*, unsigned int, int);
223static int SkGeInitPCI(SK_AC *pAC);
224static void StartDrvCleanupTimer(SK_AC *pAC);
225static void StopDrvCleanupTimer(SK_AC *pAC);
226static int XmitFrameSG(SK_AC*, TX_PORT*, struct sk_buff*);
227
228#ifdef SK_DIAG_SUPPORT
229static SK_U32 ParseDeviceNbrFromSlotName(const char *SlotName);
230static int SkDrvInitAdapter(SK_AC *pAC, int devNbr);
231static int SkDrvDeInitAdapter(SK_AC *pAC, int devNbr);
232#endif
233
234/*******************************************************************************
235 *
236 * Extern Function Prototypes
237 *
238 ******************************************************************************/
239extern void SkDimEnableModerationIfNeeded(SK_AC *pAC);
240extern void SkDimDisplayModerationSettings(SK_AC *pAC);
241extern void SkDimStartModerationTimer(SK_AC *pAC);
242extern void SkDimModerate(SK_AC *pAC);
243extern void SkGeBlinkTimer(unsigned long data);
244
245#ifdef DEBUG
246static void DumpMsg(struct sk_buff*, char*);
247static void DumpData(char*, int);
248static void DumpLong(char*, int);
249#endif
250
251/* global variables *********************************************************/
252static SK_BOOL DoPrintInterfaceChange = SK_TRUE;
253extern const struct ethtool_ops SkGeEthtoolOps;
254
255/* local variables **********************************************************/
256static uintptr_t TxQueueAddr[SK_MAX_MACS][2] = {{0x680, 0x600},{0x780, 0x700}};
257static uintptr_t RxQueueAddr[SK_MAX_MACS] = {0x400, 0x480};
258
259/*****************************************************************************
260 *
261 * SkPciWriteCfgDWord - write a 32 bit value to pci config space
262 *
263 * Description:
264 * This routine writes a 32 bit value to the pci configuration
265 * space.
266 *
267 * Returns:
268 * 0 - indicate everything worked ok.
269 * != 0 - error indication
270 */
271static inline int SkPciWriteCfgDWord(
272SK_AC *pAC, /* Adapter Control structure pointer */
273int PciAddr, /* PCI register address */
274SK_U32 Val) /* pointer to store the read value */
275{
276 pci_write_config_dword(pAC->PciDev, PciAddr, Val);
277 return(0);
278} /* SkPciWriteCfgDWord */
279
280/*****************************************************************************
281 *
282 * SkGeInitPCI - Init the PCI resources
283 *
284 * Description:
285 * This function initialize the PCI resources and IO
286 *
287 * Returns:
288 * 0 - indicate everything worked ok.
289 * != 0 - error indication
290 */
291static __devinit int SkGeInitPCI(SK_AC *pAC)
292{
293 struct SK_NET_DEVICE *dev = pAC->dev[0];
294 struct pci_dev *pdev = pAC->PciDev;
295 int retval;
296
297 dev->mem_start = pci_resource_start (pdev, 0);
298 pci_set_master(pdev);
299
300 retval = pci_request_regions(pdev, "sk98lin");
301 if (retval)
302 goto out;
303
304#ifdef SK_BIG_ENDIAN
305 /*
306 * On big endian machines, we use the adapter's aibility of
307 * reading the descriptors as big endian.
308 */
309 {
310 SK_U32 our2;
311 SkPciReadCfgDWord(pAC, PCI_OUR_REG_2, &our2);
312 our2 |= PCI_REV_DESC;
313 SkPciWriteCfgDWord(pAC, PCI_OUR_REG_2, our2);
314 }
315#endif
316
317 /*
318 * Remap the regs into kernel space.
319 */
320 pAC->IoBase = ioremap_nocache(dev->mem_start, 0x4000);
321 if (!pAC->IoBase) {
322 retval = -EIO;
323 goto out_release;
324 }
325
326 return 0;
327
328 out_release:
329 pci_release_regions(pdev);
330 out:
331 return retval;
332}
333
334
335/*****************************************************************************
336 *
337 * FreeResources - release resources allocated for adapter
338 *
339 * Description:
340 * This function releases the IRQ, unmaps the IO and
341 * frees the desriptor ring.
342 *
343 * Returns: N/A
344 *
345 */
346static void FreeResources(struct SK_NET_DEVICE *dev)
347{
348SK_U32 AllocFlag;
349DEV_NET *pNet;
350SK_AC *pAC;
351
352 pNet = netdev_priv(dev);
353 pAC = pNet->pAC;
354 AllocFlag = pAC->AllocFlag;
355 if (pAC->PciDev) {
356 pci_release_regions(pAC->PciDev);
357 }
358 if (AllocFlag & SK_ALLOC_IRQ) {
359 free_irq(dev->irq, dev);
360 }
361 if (pAC->IoBase) {
362 iounmap(pAC->IoBase);
363 }
364 if (pAC->pDescrMem) {
365 BoardFreeMem(pAC);
366 }
367
368} /* FreeResources */
369
370MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
371MODULE_DESCRIPTION("SysKonnect SK-NET Gigabit Ethernet SK-98xx driver");
372MODULE_LICENSE("GPL");
373
374#ifdef LINK_SPEED_A
375static char *Speed_A[SK_MAX_CARD_PARAM] = LINK_SPEED;
376#else
377static char *Speed_A[SK_MAX_CARD_PARAM] = {"", };
378#endif
379
380#ifdef LINK_SPEED_B
381static char *Speed_B[SK_MAX_CARD_PARAM] = LINK_SPEED;
382#else
383static char *Speed_B[SK_MAX_CARD_PARAM] = {"", };
384#endif
385
386#ifdef AUTO_NEG_A
387static char *AutoNeg_A[SK_MAX_CARD_PARAM] = AUTO_NEG_A;
388#else
389static char *AutoNeg_A[SK_MAX_CARD_PARAM] = {"", };
390#endif
391
392#ifdef DUP_CAP_A
393static char *DupCap_A[SK_MAX_CARD_PARAM] = DUP_CAP_A;
394#else
395static char *DupCap_A[SK_MAX_CARD_PARAM] = {"", };
396#endif
397
398#ifdef FLOW_CTRL_A
399static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = FLOW_CTRL_A;
400#else
401static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = {"", };
402#endif
403
404#ifdef ROLE_A
405static char *Role_A[SK_MAX_CARD_PARAM] = ROLE_A;
406#else
407static char *Role_A[SK_MAX_CARD_PARAM] = {"", };
408#endif
409
410#ifdef AUTO_NEG_B
411static char *AutoNeg_B[SK_MAX_CARD_PARAM] = AUTO_NEG_B;
412#else
413static char *AutoNeg_B[SK_MAX_CARD_PARAM] = {"", };
414#endif
415
416#ifdef DUP_CAP_B
417static char *DupCap_B[SK_MAX_CARD_PARAM] = DUP_CAP_B;
418#else
419static char *DupCap_B[SK_MAX_CARD_PARAM] = {"", };
420#endif
421
422#ifdef FLOW_CTRL_B
423static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = FLOW_CTRL_B;
424#else
425static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = {"", };
426#endif
427
428#ifdef ROLE_B
429static char *Role_B[SK_MAX_CARD_PARAM] = ROLE_B;
430#else
431static char *Role_B[SK_MAX_CARD_PARAM] = {"", };
432#endif
433
434#ifdef CON_TYPE
435static char *ConType[SK_MAX_CARD_PARAM] = CON_TYPE;
436#else
437static char *ConType[SK_MAX_CARD_PARAM] = {"", };
438#endif
439
440#ifdef PREF_PORT
441static char *PrefPort[SK_MAX_CARD_PARAM] = PREF_PORT;
442#else
443static char *PrefPort[SK_MAX_CARD_PARAM] = {"", };
444#endif
445
446#ifdef RLMT_MODE
447static char *RlmtMode[SK_MAX_CARD_PARAM] = RLMT_MODE;
448#else
449static char *RlmtMode[SK_MAX_CARD_PARAM] = {"", };
450#endif
451
452static int IntsPerSec[SK_MAX_CARD_PARAM];
453static char *Moderation[SK_MAX_CARD_PARAM];
454static char *ModerationMask[SK_MAX_CARD_PARAM];
455static char *AutoSizing[SK_MAX_CARD_PARAM];
456static char *Stats[SK_MAX_CARD_PARAM];
457
458module_param_array(Speed_A, charp, NULL, 0);
459module_param_array(Speed_B, charp, NULL, 0);
460module_param_array(AutoNeg_A, charp, NULL, 0);
461module_param_array(AutoNeg_B, charp, NULL, 0);
462module_param_array(DupCap_A, charp, NULL, 0);
463module_param_array(DupCap_B, charp, NULL, 0);
464module_param_array(FlowCtrl_A, charp, NULL, 0);
465module_param_array(FlowCtrl_B, charp, NULL, 0);
466module_param_array(Role_A, charp, NULL, 0);
467module_param_array(Role_B, charp, NULL, 0);
468module_param_array(ConType, charp, NULL, 0);
469module_param_array(PrefPort, charp, NULL, 0);
470module_param_array(RlmtMode, charp, NULL, 0);
471/* used for interrupt moderation */
472module_param_array(IntsPerSec, int, NULL, 0);
473module_param_array(Moderation, charp, NULL, 0);
474module_param_array(Stats, charp, NULL, 0);
475module_param_array(ModerationMask, charp, NULL, 0);
476module_param_array(AutoSizing, charp, NULL, 0);
477
478/*****************************************************************************
479 *
480 * SkGeBoardInit - do level 0 and 1 initialization
481 *
482 * Description:
483 * This function prepares the board hardware for running. The desriptor
484 * ring is set up, the IRQ is allocated and the configuration settings
485 * are examined.
486 *
487 * Returns:
488 * 0, if everything is ok
489 * !=0, on error
490 */
491static int __devinit SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC)
492{
493short i;
494unsigned long Flags;
495char *DescrString = "sk98lin: Driver for Linux"; /* this is given to PNMI */
496char *VerStr = VER_STRING;
497int Ret; /* return code of request_irq */
498SK_BOOL DualNet;
499
500 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
501 ("IoBase: %08lX\n", (unsigned long)pAC->IoBase));
502 for (i=0; i<SK_MAX_MACS; i++) {
503 pAC->TxPort[i][0].HwAddr = pAC->IoBase + TxQueueAddr[i][0];
504 pAC->TxPort[i][0].PortIndex = i;
505 pAC->RxPort[i].HwAddr = pAC->IoBase + RxQueueAddr[i];
506 pAC->RxPort[i].PortIndex = i;
507 }
508
509 /* Initialize the mutexes */
510 for (i=0; i<SK_MAX_MACS; i++) {
511 spin_lock_init(&pAC->TxPort[i][0].TxDesRingLock);
512 spin_lock_init(&pAC->RxPort[i].RxDesRingLock);
513 }
514 spin_lock_init(&pAC->SlowPathLock);
515
516 /* setup phy_id blink timer */
517 pAC->BlinkTimer.function = SkGeBlinkTimer;
518 pAC->BlinkTimer.data = (unsigned long) dev;
519 init_timer(&pAC->BlinkTimer);
520
521 /* level 0 init common modules here */
522
523 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
524 /* Does a RESET on board ...*/
525 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_DATA) != 0) {
526 printk("HWInit (0) failed.\n");
527 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
528 return -EIO;
529 }
530 SkI2cInit( pAC, pAC->IoBase, SK_INIT_DATA);
531 SkEventInit(pAC, pAC->IoBase, SK_INIT_DATA);
532 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_DATA);
533 SkAddrInit( pAC, pAC->IoBase, SK_INIT_DATA);
534 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_DATA);
535 SkTimerInit(pAC, pAC->IoBase, SK_INIT_DATA);
536
537 pAC->BoardLevel = SK_INIT_DATA;
538 pAC->RxBufSize = ETH_BUF_SIZE;
539
540 SK_PNMI_SET_DRIVER_DESCR(pAC, DescrString);
541 SK_PNMI_SET_DRIVER_VER(pAC, VerStr);
542
543 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
544
545 /* level 1 init common modules here (HW init) */
546 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
547 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
548 printk("sk98lin: HWInit (1) failed.\n");
549 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
550 return -EIO;
551 }
552 SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
553 SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
554 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
555 SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
556 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
557 SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
558
559 /* Set chipset type support */
560 pAC->ChipsetType = 0;
561 if ((pAC->GIni.GIChipId == CHIP_ID_YUKON) ||
562 (pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE)) {
563 pAC->ChipsetType = 1;
564 }
565
566 GetConfiguration(pAC);
567 if (pAC->RlmtNets == 2) {
568 pAC->GIni.GIPortUsage = SK_MUL_LINK;
569 }
570
571 pAC->BoardLevel = SK_INIT_IO;
572 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
573
574 if (pAC->GIni.GIMacsFound == 2) {
575 Ret = request_irq(dev->irq, SkGeIsr, IRQF_SHARED, "sk98lin", dev);
576 } else if (pAC->GIni.GIMacsFound == 1) {
577 Ret = request_irq(dev->irq, SkGeIsrOnePort, IRQF_SHARED,
578 "sk98lin", dev);
579 } else {
580 printk(KERN_WARNING "sk98lin: Illegal number of ports: %d\n",
581 pAC->GIni.GIMacsFound);
582 return -EIO;
583 }
584
585 if (Ret) {
586 printk(KERN_WARNING "sk98lin: Requested IRQ %d is busy.\n",
587 dev->irq);
588 return Ret;
589 }
590 pAC->AllocFlag |= SK_ALLOC_IRQ;
591
592 /* Alloc memory for this board (Mem for RxD/TxD) : */
593 if(!BoardAllocMem(pAC)) {
594 printk("No memory for descriptor rings.\n");
595 return -ENOMEM;
596 }
597
598 BoardInitMem(pAC);
599 /* tschilling: New common function with minimum size check. */
600 DualNet = SK_FALSE;
601 if (pAC->RlmtNets == 2) {
602 DualNet = SK_TRUE;
603 }
604
605 if (SkGeInitAssignRamToQueues(
606 pAC,
607 pAC->ActivePort,
608 DualNet)) {
609 BoardFreeMem(pAC);
610 printk("sk98lin: SkGeInitAssignRamToQueues failed.\n");
611 return -EIO;
612 }
613
614 return (0);
615} /* SkGeBoardInit */
616
617
618/*****************************************************************************
619 *
620 * BoardAllocMem - allocate the memory for the descriptor rings
621 *
622 * Description:
623 * This function allocates the memory for all descriptor rings.
624 * Each ring is aligned for the desriptor alignment and no ring
625 * has a 4 GByte boundary in it (because the upper 32 bit must
626 * be constant for all descriptiors in one rings).
627 *
628 * Returns:
629 * SK_TRUE, if all memory could be allocated
630 * SK_FALSE, if not
631 */
632static __devinit SK_BOOL BoardAllocMem(SK_AC *pAC)
633{
634caddr_t pDescrMem; /* pointer to descriptor memory area */
635size_t AllocLength; /* length of complete descriptor area */
636int i; /* loop counter */
637unsigned long BusAddr;
638
639
640 /* rings plus one for alignment (do not cross 4 GB boundary) */
641 /* RX_RING_SIZE is assumed bigger than TX_RING_SIZE */
642#if (BITS_PER_LONG == 32)
643 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
644#else
645 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
646 + RX_RING_SIZE + 8;
647#endif
648
649 pDescrMem = pci_alloc_consistent(pAC->PciDev, AllocLength,
650 &pAC->pDescrMemDMA);
651
652 if (pDescrMem == NULL) {
653 return (SK_FALSE);
654 }
655 pAC->pDescrMem = pDescrMem;
656 BusAddr = (unsigned long) pAC->pDescrMemDMA;
657
658 /* Descriptors need 8 byte alignment, and this is ensured
659 * by pci_alloc_consistent.
660 */
661 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
662 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
663 ("TX%d/A: pDescrMem: %lX, PhysDescrMem: %lX\n",
664 i, (unsigned long) pDescrMem,
665 BusAddr));
666 pAC->TxPort[i][0].pTxDescrRing = pDescrMem;
667 pAC->TxPort[i][0].VTxDescrRing = BusAddr;
668 pDescrMem += TX_RING_SIZE;
669 BusAddr += TX_RING_SIZE;
670
671 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
672 ("RX%d: pDescrMem: %lX, PhysDescrMem: %lX\n",
673 i, (unsigned long) pDescrMem,
674 (unsigned long)BusAddr));
675 pAC->RxPort[i].pRxDescrRing = pDescrMem;
676 pAC->RxPort[i].VRxDescrRing = BusAddr;
677 pDescrMem += RX_RING_SIZE;
678 BusAddr += RX_RING_SIZE;
679 } /* for */
680
681 return (SK_TRUE);
682} /* BoardAllocMem */
683
684
685/****************************************************************************
686 *
687 * BoardFreeMem - reverse of BoardAllocMem
688 *
689 * Description:
690 * Free all memory allocated in BoardAllocMem: adapter context,
691 * descriptor rings, locks.
692 *
693 * Returns: N/A
694 */
695static void BoardFreeMem(
696SK_AC *pAC)
697{
698size_t AllocLength; /* length of complete descriptor area */
699
700 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
701 ("BoardFreeMem\n"));
702#if (BITS_PER_LONG == 32)
703 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
704#else
705 AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
706 + RX_RING_SIZE + 8;
707#endif
708
709 pci_free_consistent(pAC->PciDev, AllocLength,
710 pAC->pDescrMem, pAC->pDescrMemDMA);
711 pAC->pDescrMem = NULL;
712} /* BoardFreeMem */
713
714
715/*****************************************************************************
716 *
717 * BoardInitMem - initiate the descriptor rings
718 *
719 * Description:
720 * This function sets the descriptor rings up in memory.
721 * The adapter is initialized with the descriptor start addresses.
722 *
723 * Returns: N/A
724 */
725static __devinit void BoardInitMem(SK_AC *pAC)
726{
727int i; /* loop counter */
728int RxDescrSize; /* the size of a rx descriptor rounded up to alignment*/
729int TxDescrSize; /* the size of a tx descriptor rounded up to alignment*/
730
731 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
732 ("BoardInitMem\n"));
733
734 RxDescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
735 pAC->RxDescrPerRing = RX_RING_SIZE / RxDescrSize;
736 TxDescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
737 pAC->TxDescrPerRing = TX_RING_SIZE / RxDescrSize;
738
739 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
740 SetupRing(
741 pAC,
742 pAC->TxPort[i][0].pTxDescrRing,
743 pAC->TxPort[i][0].VTxDescrRing,
744 (RXD**)&pAC->TxPort[i][0].pTxdRingHead,
745 (RXD**)&pAC->TxPort[i][0].pTxdRingTail,
746 (RXD**)&pAC->TxPort[i][0].pTxdRingPrev,
747 &pAC->TxPort[i][0].TxdRingFree,
748 SK_TRUE);
749 SetupRing(
750 pAC,
751 pAC->RxPort[i].pRxDescrRing,
752 pAC->RxPort[i].VRxDescrRing,
753 &pAC->RxPort[i].pRxdRingHead,
754 &pAC->RxPort[i].pRxdRingTail,
755 &pAC->RxPort[i].pRxdRingPrev,
756 &pAC->RxPort[i].RxdRingFree,
757 SK_FALSE);
758 }
759} /* BoardInitMem */
760
761
762/*****************************************************************************
763 *
764 * SetupRing - create one descriptor ring
765 *
766 * Description:
767 * This function creates one descriptor ring in the given memory area.
768 * The head, tail and number of free descriptors in the ring are set.
769 *
770 * Returns:
771 * none
772 */
773static void SetupRing(
774SK_AC *pAC,
775void *pMemArea, /* a pointer to the memory area for the ring */
776uintptr_t VMemArea, /* the virtual bus address of the memory area */
777RXD **ppRingHead, /* address where the head should be written */
778RXD **ppRingTail, /* address where the tail should be written */
779RXD **ppRingPrev, /* address where the tail should be written */
780int *pRingFree, /* address where the # of free descr. goes */
781SK_BOOL IsTx) /* flag: is this a tx ring */
782{
783int i; /* loop counter */
784int DescrSize; /* the size of a descriptor rounded up to alignment*/
785int DescrNum; /* number of descriptors per ring */
786RXD *pDescr; /* pointer to a descriptor (receive or transmit) */
787RXD *pNextDescr; /* pointer to the next descriptor */
788RXD *pPrevDescr; /* pointer to the previous descriptor */
789uintptr_t VNextDescr; /* the virtual bus address of the next descriptor */
790
791 if (IsTx == SK_TRUE) {
792 DescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) *
793 DESCR_ALIGN;
794 DescrNum = TX_RING_SIZE / DescrSize;
795 } else {
796 DescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) *
797 DESCR_ALIGN;
798 DescrNum = RX_RING_SIZE / DescrSize;
799 }
800
801 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
802 ("Descriptor size: %d Descriptor Number: %d\n",
803 DescrSize,DescrNum));
804
805 pDescr = (RXD*) pMemArea;
806 pPrevDescr = NULL;
807 pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
808 VNextDescr = VMemArea + DescrSize;
809 for(i=0; i<DescrNum; i++) {
810 /* set the pointers right */
811 pDescr->VNextRxd = VNextDescr & 0xffffffffULL;
812 pDescr->pNextRxd = pNextDescr;
813 if (!IsTx) pDescr->TcpSumStarts = ETH_HLEN << 16 | ETH_HLEN;
814
815 /* advance one step */
816 pPrevDescr = pDescr;
817 pDescr = pNextDescr;
818 pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
819 VNextDescr += DescrSize;
820 }
821 pPrevDescr->pNextRxd = (RXD*) pMemArea;
822 pPrevDescr->VNextRxd = VMemArea;
823 pDescr = (RXD*) pMemArea;
824 *ppRingHead = (RXD*) pMemArea;
825 *ppRingTail = *ppRingHead;
826 *ppRingPrev = pPrevDescr;
827 *pRingFree = DescrNum;
828} /* SetupRing */
829
830
831/*****************************************************************************
832 *
833 * PortReInitBmu - re-initiate the descriptor rings for one port
834 *
835 * Description:
836 * This function reinitializes the descriptor rings of one port
837 * in memory. The port must be stopped before.
838 * The HW is initialized with the descriptor start addresses.
839 *
840 * Returns:
841 * none
842 */
843static void PortReInitBmu(
844SK_AC *pAC, /* pointer to adapter context */
845int PortIndex) /* index of the port for which to re-init */
846{
847 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
848 ("PortReInitBmu "));
849
850 /* set address of first descriptor of ring in BMU */
851 SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_L,
852 (uint32_t)(((caddr_t)
853 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
854 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
855 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) &
856 0xFFFFFFFF));
857 SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_H,
858 (uint32_t)(((caddr_t)
859 (pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
860 pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
861 pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) >> 32));
862 SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_L,
863 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
864 pAC->RxPort[PortIndex].pRxDescrRing +
865 pAC->RxPort[PortIndex].VRxDescrRing) & 0xFFFFFFFF));
866 SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_H,
867 (uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
868 pAC->RxPort[PortIndex].pRxDescrRing +
869 pAC->RxPort[PortIndex].VRxDescrRing) >> 32));
870} /* PortReInitBmu */
871
872
873/****************************************************************************
874 *
875 * SkGeIsr - handle adapter interrupts
876 *
877 * Description:
878 * The interrupt routine is called when the network adapter
879 * generates an interrupt. It may also be called if another device
880 * shares this interrupt vector with the driver.
881 *
882 * Returns: N/A
883 *
884 */
885static SkIsrRetVar SkGeIsr(int irq, void *dev_id)
886{
887struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
888DEV_NET *pNet;
889SK_AC *pAC;
890SK_U32 IntSrc; /* interrupts source register contents */
891
892 pNet = netdev_priv(dev);
893 pAC = pNet->pAC;
894
895 /*
896 * Check and process if its our interrupt
897 */
898 SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
899 if (IntSrc == 0) {
900 return SkIsrRetNone;
901 }
902
903 while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
904#if 0 /* software irq currently not used */
905 if (IntSrc & IS_IRQ_SW) {
906 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
907 SK_DBGCAT_DRV_INT_SRC,
908 ("Software IRQ\n"));
909 }
910#endif
911 if (IntSrc & IS_R1_F) {
912 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
913 SK_DBGCAT_DRV_INT_SRC,
914 ("EOF RX1 IRQ\n"));
915 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
916 SK_PNMI_CNT_RX_INTR(pAC, 0);
917 }
918 if (IntSrc & IS_R2_F) {
919 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
920 SK_DBGCAT_DRV_INT_SRC,
921 ("EOF RX2 IRQ\n"));
922 ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
923 SK_PNMI_CNT_RX_INTR(pAC, 1);
924 }
925#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
926 if (IntSrc & IS_XA1_F) {
927 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
928 SK_DBGCAT_DRV_INT_SRC,
929 ("EOF AS TX1 IRQ\n"));
930 SK_PNMI_CNT_TX_INTR(pAC, 0);
931 spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
932 FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
933 spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
934 }
935 if (IntSrc & IS_XA2_F) {
936 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
937 SK_DBGCAT_DRV_INT_SRC,
938 ("EOF AS TX2 IRQ\n"));
939 SK_PNMI_CNT_TX_INTR(pAC, 1);
940 spin_lock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
941 FreeTxDescriptors(pAC, &pAC->TxPort[1][TX_PRIO_LOW]);
942 spin_unlock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
943 }
944#if 0 /* only if sync. queues used */
945 if (IntSrc & IS_XS1_F) {
946 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
947 SK_DBGCAT_DRV_INT_SRC,
948 ("EOF SY TX1 IRQ\n"));
949 SK_PNMI_CNT_TX_INTR(pAC, 1);
950 spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
951 FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
952 spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
953 ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
954 }
955 if (IntSrc & IS_XS2_F) {
956 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
957 SK_DBGCAT_DRV_INT_SRC,
958 ("EOF SY TX2 IRQ\n"));
959 SK_PNMI_CNT_TX_INTR(pAC, 1);
960 spin_lock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
961 FreeTxDescriptors(pAC, 1, TX_PRIO_HIGH);
962 spin_unlock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
963 ClearTxIrq(pAC, 1, TX_PRIO_HIGH);
964 }
965#endif
966#endif
967
968 /* do all IO at once */
969 if (IntSrc & IS_R1_F)
970 ClearAndStartRx(pAC, 0);
971 if (IntSrc & IS_R2_F)
972 ClearAndStartRx(pAC, 1);
973#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
974 if (IntSrc & IS_XA1_F)
975 ClearTxIrq(pAC, 0, TX_PRIO_LOW);
976 if (IntSrc & IS_XA2_F)
977 ClearTxIrq(pAC, 1, TX_PRIO_LOW);
978#endif
979 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
980 } /* while (IntSrc & IRQ_MASK != 0) */
981
982 IntSrc &= pAC->GIni.GIValIrqMask;
983 if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
984 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
985 ("SPECIAL IRQ DP-Cards => %x\n", IntSrc));
986 pAC->CheckQueue = SK_FALSE;
987 spin_lock(&pAC->SlowPathLock);
988 if (IntSrc & SPECIAL_IRQS)
989 SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
990
991 SkEventDispatcher(pAC, pAC->IoBase);
992 spin_unlock(&pAC->SlowPathLock);
993 }
994 /*
995 * do it all again is case we cleared an interrupt that
996 * came in after handling the ring (OUTs may be delayed
997 * in hardware buffers, but are through after IN)
998 *
999 * rroesler: has been commented out and shifted to
1000 * SkGeDrvEvent(), because it is timer
1001 * guarded now
1002 *
1003 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1004 ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
1005 */
1006
1007 if (pAC->CheckQueue) {
1008 pAC->CheckQueue = SK_FALSE;
1009 spin_lock(&pAC->SlowPathLock);
1010 SkEventDispatcher(pAC, pAC->IoBase);
1011 spin_unlock(&pAC->SlowPathLock);
1012 }
1013
1014 /* IRQ is processed - Enable IRQs again*/
1015 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1016
1017 return SkIsrRetHandled;
1018} /* SkGeIsr */
1019
1020
1021/****************************************************************************
1022 *
1023 * SkGeIsrOnePort - handle adapter interrupts for single port adapter
1024 *
1025 * Description:
1026 * The interrupt routine is called when the network adapter
1027 * generates an interrupt. It may also be called if another device
1028 * shares this interrupt vector with the driver.
1029 * This is the same as above, but handles only one port.
1030 *
1031 * Returns: N/A
1032 *
1033 */
1034static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id)
1035{
1036struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
1037DEV_NET *pNet;
1038SK_AC *pAC;
1039SK_U32 IntSrc; /* interrupts source register contents */
1040
1041 pNet = netdev_priv(dev);
1042 pAC = pNet->pAC;
1043
1044 /*
1045 * Check and process if its our interrupt
1046 */
1047 SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
1048 if (IntSrc == 0) {
1049 return SkIsrRetNone;
1050 }
1051
1052 while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
1053#if 0 /* software irq currently not used */
1054 if (IntSrc & IS_IRQ_SW) {
1055 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1056 SK_DBGCAT_DRV_INT_SRC,
1057 ("Software IRQ\n"));
1058 }
1059#endif
1060 if (IntSrc & IS_R1_F) {
1061 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1062 SK_DBGCAT_DRV_INT_SRC,
1063 ("EOF RX1 IRQ\n"));
1064 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1065 SK_PNMI_CNT_RX_INTR(pAC, 0);
1066 }
1067#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1068 if (IntSrc & IS_XA1_F) {
1069 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1070 SK_DBGCAT_DRV_INT_SRC,
1071 ("EOF AS TX1 IRQ\n"));
1072 SK_PNMI_CNT_TX_INTR(pAC, 0);
1073 spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1074 FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
1075 spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
1076 }
1077#if 0 /* only if sync. queues used */
1078 if (IntSrc & IS_XS1_F) {
1079 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1080 SK_DBGCAT_DRV_INT_SRC,
1081 ("EOF SY TX1 IRQ\n"));
1082 SK_PNMI_CNT_TX_INTR(pAC, 0);
1083 spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1084 FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
1085 spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
1086 ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
1087 }
1088#endif
1089#endif
1090
1091 /* do all IO at once */
1092 if (IntSrc & IS_R1_F)
1093 ClearAndStartRx(pAC, 0);
1094#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
1095 if (IntSrc & IS_XA1_F)
1096 ClearTxIrq(pAC, 0, TX_PRIO_LOW);
1097#endif
1098 SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
1099 } /* while (IntSrc & IRQ_MASK != 0) */
1100
1101 IntSrc &= pAC->GIni.GIValIrqMask;
1102 if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
1103 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
1104 ("SPECIAL IRQ SP-Cards => %x\n", IntSrc));
1105 pAC->CheckQueue = SK_FALSE;
1106 spin_lock(&pAC->SlowPathLock);
1107 if (IntSrc & SPECIAL_IRQS)
1108 SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
1109
1110 SkEventDispatcher(pAC, pAC->IoBase);
1111 spin_unlock(&pAC->SlowPathLock);
1112 }
1113 /*
1114 * do it all again is case we cleared an interrupt that
1115 * came in after handling the ring (OUTs may be delayed
1116 * in hardware buffers, but are through after IN)
1117 *
1118 * rroesler: has been commented out and shifted to
1119 * SkGeDrvEvent(), because it is timer
1120 * guarded now
1121 *
1122 ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
1123 */
1124
1125 /* IRQ is processed - Enable IRQs again*/
1126 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1127
1128 return SkIsrRetHandled;
1129} /* SkGeIsrOnePort */
1130
1131#ifdef CONFIG_NET_POLL_CONTROLLER
1132/****************************************************************************
1133 *
1134 * SkGePollController - polling receive, for netconsole
1135 *
1136 * Description:
1137 * Polling receive - used by netconsole and other diagnostic tools
1138 * to allow network i/o with interrupts disabled.
1139 *
1140 * Returns: N/A
1141 */
1142static void SkGePollController(struct net_device *dev)
1143{
1144 disable_irq(dev->irq);
1145 SkGeIsr(dev->irq, dev);
1146 enable_irq(dev->irq);
1147}
1148#endif
1149
1150/****************************************************************************
1151 *
1152 * SkGeOpen - handle start of initialized adapter
1153 *
1154 * Description:
1155 * This function starts the initialized adapter.
1156 * The board level variable is set and the adapter is
1157 * brought to full functionality.
1158 * The device flags are set for operation.
1159 * Do all necessary level 2 initialization, enable interrupts and
1160 * give start command to RLMT.
1161 *
1162 * Returns:
1163 * 0 on success
1164 * != 0 on error
1165 */
1166static int SkGeOpen(
1167struct SK_NET_DEVICE *dev)
1168{
1169 DEV_NET *pNet;
1170 SK_AC *pAC;
1171 unsigned long Flags; /* for spin lock */
1172 int i;
1173 SK_EVPARA EvPara; /* an event parameter union */
1174
1175 pNet = netdev_priv(dev);
1176 pAC = pNet->pAC;
1177
1178 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1179 ("SkGeOpen: pAC=0x%lX:\n", (unsigned long)pAC));
1180
1181#ifdef SK_DIAG_SUPPORT
1182 if (pAC->DiagModeActive == DIAG_ACTIVE) {
1183 if (pAC->Pnmi.DiagAttached == SK_DIAG_RUNNING) {
1184 return (-1); /* still in use by diag; deny actions */
1185 }
1186 }
1187#endif
1188
1189 /* Set blink mode */
1190 if ((pAC->PciDev->vendor == 0x1186) || (pAC->PciDev->vendor == 0x11ab ))
1191 pAC->GIni.GILedBlinkCtrl = OEM_CONFIG_VALUE;
1192
1193 if (pAC->BoardLevel == SK_INIT_DATA) {
1194 /* level 1 init common modules here */
1195 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
1196 printk("%s: HWInit (1) failed.\n", pAC->dev[pNet->PortNr]->name);
1197 return (-1);
1198 }
1199 SkI2cInit (pAC, pAC->IoBase, SK_INIT_IO);
1200 SkEventInit (pAC, pAC->IoBase, SK_INIT_IO);
1201 SkPnmiInit (pAC, pAC->IoBase, SK_INIT_IO);
1202 SkAddrInit (pAC, pAC->IoBase, SK_INIT_IO);
1203 SkRlmtInit (pAC, pAC->IoBase, SK_INIT_IO);
1204 SkTimerInit (pAC, pAC->IoBase, SK_INIT_IO);
1205 pAC->BoardLevel = SK_INIT_IO;
1206 }
1207
1208 if (pAC->BoardLevel != SK_INIT_RUN) {
1209 /* tschilling: Level 2 init modules here, check return value. */
1210 if (SkGeInit(pAC, pAC->IoBase, SK_INIT_RUN) != 0) {
1211 printk("%s: HWInit (2) failed.\n", pAC->dev[pNet->PortNr]->name);
1212 return (-1);
1213 }
1214 SkI2cInit (pAC, pAC->IoBase, SK_INIT_RUN);
1215 SkEventInit (pAC, pAC->IoBase, SK_INIT_RUN);
1216 SkPnmiInit (pAC, pAC->IoBase, SK_INIT_RUN);
1217 SkAddrInit (pAC, pAC->IoBase, SK_INIT_RUN);
1218 SkRlmtInit (pAC, pAC->IoBase, SK_INIT_RUN);
1219 SkTimerInit (pAC, pAC->IoBase, SK_INIT_RUN);
1220 pAC->BoardLevel = SK_INIT_RUN;
1221 }
1222
1223 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1224 /* Enable transmit descriptor polling. */
1225 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
1226 FillRxRing(pAC, &pAC->RxPort[i]);
1227 }
1228 SkGeYellowLED(pAC, pAC->IoBase, 1);
1229
1230 StartDrvCleanupTimer(pAC);
1231 SkDimEnableModerationIfNeeded(pAC);
1232 SkDimDisplayModerationSettings(pAC);
1233
1234 pAC->GIni.GIValIrqMask &= IRQ_MASK;
1235
1236 /* enable Interrupts */
1237 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
1238 SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
1239
1240 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1241
1242 if ((pAC->RlmtMode != 0) && (pAC->MaxPorts == 0)) {
1243 EvPara.Para32[0] = pAC->RlmtNets;
1244 EvPara.Para32[1] = -1;
1245 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS,
1246 EvPara);
1247 EvPara.Para32[0] = pAC->RlmtMode;
1248 EvPara.Para32[1] = 0;
1249 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_MODE_CHANGE,
1250 EvPara);
1251 }
1252
1253 EvPara.Para32[0] = pNet->NetNr;
1254 EvPara.Para32[1] = -1;
1255 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
1256 SkEventDispatcher(pAC, pAC->IoBase);
1257 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1258
1259 pAC->MaxPorts++;
1260
1261
1262 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1263 ("SkGeOpen suceeded\n"));
1264
1265 return (0);
1266} /* SkGeOpen */
1267
1268
1269/****************************************************************************
1270 *
1271 * SkGeClose - Stop initialized adapter
1272 *
1273 * Description:
1274 * Close initialized adapter.
1275 *
1276 * Returns:
1277 * 0 - on success
1278 * error code - on error
1279 */
1280static int SkGeClose(
1281struct SK_NET_DEVICE *dev)
1282{
1283 DEV_NET *pNet;
1284 DEV_NET *newPtrNet;
1285 SK_AC *pAC;
1286
1287 unsigned long Flags; /* for spin lock */
1288 int i;
1289 int PortIdx;
1290 SK_EVPARA EvPara;
1291
1292 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1293 ("SkGeClose: pAC=0x%lX ", (unsigned long)pAC));
1294
1295 pNet = netdev_priv(dev);
1296 pAC = pNet->pAC;
1297
1298#ifdef SK_DIAG_SUPPORT
1299 if (pAC->DiagModeActive == DIAG_ACTIVE) {
1300 if (pAC->DiagFlowCtrl == SK_FALSE) {
1301 /*
1302 ** notify that the interface which has been closed
1303 ** by operator interaction must not be started up
1304 ** again when the DIAG has finished.
1305 */
1306 newPtrNet = netdev_priv(pAC->dev[0]);
1307 if (newPtrNet == pNet) {
1308 pAC->WasIfUp[0] = SK_FALSE;
1309 } else {
1310 pAC->WasIfUp[1] = SK_FALSE;
1311 }
1312 return 0; /* return to system everything is fine... */
1313 } else {
1314 pAC->DiagFlowCtrl = SK_FALSE;
1315 }
1316 }
1317#endif
1318
1319 netif_stop_queue(dev);
1320
1321 if (pAC->RlmtNets == 1)
1322 PortIdx = pAC->ActivePort;
1323 else
1324 PortIdx = pNet->NetNr;
1325
1326 StopDrvCleanupTimer(pAC);
1327
1328 /*
1329 * Clear multicast table, promiscuous mode ....
1330 */
1331 SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
1332 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
1333 SK_PROM_MODE_NONE);
1334
1335 if (pAC->MaxPorts == 1) {
1336 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1337 /* disable interrupts */
1338 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1339 EvPara.Para32[0] = pNet->NetNr;
1340 EvPara.Para32[1] = -1;
1341 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1342 SkEventDispatcher(pAC, pAC->IoBase);
1343 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
1344 /* stop the hardware */
1345 SkGeDeInit(pAC, pAC->IoBase);
1346 pAC->BoardLevel = SK_INIT_DATA;
1347 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1348 } else {
1349
1350 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
1351 EvPara.Para32[0] = pNet->NetNr;
1352 EvPara.Para32[1] = -1;
1353 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
1354 SkPnmiEvent(pAC, pAC->IoBase, SK_PNMI_EVT_XMAC_RESET, EvPara);
1355 SkEventDispatcher(pAC, pAC->IoBase);
1356 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
1357
1358 /* Stop port */
1359 spin_lock_irqsave(&pAC->TxPort[pNet->PortNr]
1360 [TX_PRIO_LOW].TxDesRingLock, Flags);
1361 SkGeStopPort(pAC, pAC->IoBase, pNet->PortNr,
1362 SK_STOP_ALL, SK_HARD_RST);
1363 spin_unlock_irqrestore(&pAC->TxPort[pNet->PortNr]
1364 [TX_PRIO_LOW].TxDesRingLock, Flags);
1365 }
1366
1367 if (pAC->RlmtNets == 1) {
1368 /* clear all descriptor rings */
1369 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
1370 ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
1371 ClearRxRing(pAC, &pAC->RxPort[i]);
1372 ClearTxRing(pAC, &pAC->TxPort[i][TX_PRIO_LOW]);
1373 }
1374 } else {
1375 /* clear port descriptor rings */
1376 ReceiveIrq(pAC, &pAC->RxPort[pNet->PortNr], SK_TRUE);
1377 ClearRxRing(pAC, &pAC->RxPort[pNet->PortNr]);
1378 ClearTxRing(pAC, &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW]);
1379 }
1380
1381 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
1382 ("SkGeClose: done "));
1383
1384 SK_MEMSET(&(pAC->PnmiBackup), 0, sizeof(SK_PNMI_STRUCT_DATA));
1385 SK_MEMCPY(&(pAC->PnmiBackup), &(pAC->PnmiStruct),
1386 sizeof(SK_PNMI_STRUCT_DATA));
1387
1388 pAC->MaxPorts--;
1389
1390 return (0);
1391} /* SkGeClose */
1392
1393
1394/*****************************************************************************
1395 *
1396 * SkGeXmit - Linux frame transmit function
1397 *
1398 * Description:
1399 * The system calls this function to send frames onto the wire.
1400 * It puts the frame in the tx descriptor ring. If the ring is
1401 * full then, the 'tbusy' flag is set.
1402 *
1403 * Returns:
1404 * 0, if everything is ok
1405 * !=0, on error
1406 * WARNING: returning 1 in 'tbusy' case caused system crashes (double
1407 * allocated skb's) !!!
1408 */
1409static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev)
1410{
1411DEV_NET *pNet;
1412SK_AC *pAC;
1413int Rc; /* return code of XmitFrame */
1414
1415 pNet = netdev_priv(dev);
1416 pAC = pNet->pAC;
1417
1418 if ((!skb_shinfo(skb)->nr_frags) ||
1419 (pAC->GIni.GIChipId == CHIP_ID_GENESIS)) {
1420 /* Don't activate scatter-gather and hardware checksum */
1421
1422 if (pAC->RlmtNets == 2)
1423 Rc = XmitFrame(
1424 pAC,
1425 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1426 skb);
1427 else
1428 Rc = XmitFrame(
1429 pAC,
1430 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1431 skb);
1432 } else {
1433 /* scatter-gather and hardware TCP checksumming anabled*/
1434 if (pAC->RlmtNets == 2)
1435 Rc = XmitFrameSG(
1436 pAC,
1437 &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
1438 skb);
1439 else
1440 Rc = XmitFrameSG(
1441 pAC,
1442 &pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
1443 skb);
1444 }
1445
1446 /* Transmitter out of resources? */
1447 if (Rc <= 0) {
1448 netif_stop_queue(dev);
1449 }
1450
1451 /* If not taken, give buffer ownership back to the
1452 * queueing layer.
1453 */
1454 if (Rc < 0)
1455 return (1);
1456
1457 dev->trans_start = jiffies;
1458 return (0);
1459} /* SkGeXmit */
1460
1461
1462/*****************************************************************************
1463 *
1464 * XmitFrame - fill one socket buffer into the transmit ring
1465 *
1466 * Description:
1467 * This function puts a message into the transmit descriptor ring
1468 * if there is a descriptors left.
1469 * Linux skb's consist of only one continuous buffer.
1470 * The first step locks the ring. It is held locked
1471 * all time to avoid problems with SWITCH_../PORT_RESET.
1472 * Then the descriptoris allocated.
1473 * The second part is linking the buffer to the descriptor.
1474 * At the very last, the Control field of the descriptor
1475 * is made valid for the BMU and a start TX command is given
1476 * if necessary.
1477 *
1478 * Returns:
1479 * > 0 - on succes: the number of bytes in the message
1480 * = 0 - on resource shortage: this frame sent or dropped, now
1481 * the ring is full ( -> set tbusy)
1482 * < 0 - on failure: other problems ( -> return failure to upper layers)
1483 */
1484static int XmitFrame(
1485SK_AC *pAC, /* pointer to adapter context */
1486TX_PORT *pTxPort, /* pointer to struct of port to send to */
1487struct sk_buff *pMessage) /* pointer to send-message */
1488{
1489 TXD *pTxd; /* the rxd to fill */
1490 TXD *pOldTxd;
1491 unsigned long Flags;
1492 SK_U64 PhysAddr;
1493 int BytesSend = pMessage->len;
1494
1495 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS, ("X"));
1496
1497 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
1498#ifndef USE_TX_COMPLETE
1499 FreeTxDescriptors(pAC, pTxPort);
1500#endif
1501 if (pTxPort->TxdRingFree == 0) {
1502 /*
1503 ** no enough free descriptors in ring at the moment.
1504 ** Maybe free'ing some old one help?
1505 */
1506 FreeTxDescriptors(pAC, pTxPort);
1507 if (pTxPort->TxdRingFree == 0) {
1508 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1509 SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
1510 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1511 SK_DBGCAT_DRV_TX_PROGRESS,
1512 ("XmitFrame failed\n"));
1513 /*
1514 ** the desired message can not be sent
1515 ** Because tbusy seems to be set, the message
1516 ** should not be freed here. It will be used
1517 ** by the scheduler of the ethernet handler
1518 */
1519 return (-1);
1520 }
1521 }
1522
1523 /*
1524 ** If the passed socket buffer is of smaller MTU-size than 60,
1525 ** copy everything into new buffer and fill all bytes between
1526 ** the original packet end and the new packet end of 60 with 0x00.
1527 ** This is to resolve faulty padding by the HW with 0xaa bytes.
1528 */
1529 if (BytesSend < C_LEN_ETHERNET_MINSIZE) {
1530 if (skb_padto(pMessage, C_LEN_ETHERNET_MINSIZE)) {
1531 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1532 return 0;
1533 }
1534 pMessage->len = C_LEN_ETHERNET_MINSIZE;
1535 }
1536
1537 /*
1538 ** advance head counter behind descriptor needed for this frame,
1539 ** so that needed descriptor is reserved from that on. The next
1540 ** action will be to add the passed buffer to the TX-descriptor
1541 */
1542 pTxd = pTxPort->pTxdRingHead;
1543 pTxPort->pTxdRingHead = pTxd->pNextTxd;
1544 pTxPort->TxdRingFree--;
1545
1546#ifdef SK_DUMP_TX
1547 DumpMsg(pMessage, "XmitFrame");
1548#endif
1549
1550 /*
1551 ** First step is to map the data to be sent via the adapter onto
1552 ** the DMA memory. Kernel 2.2 uses virt_to_bus(), but kernels 2.4
1553 ** and 2.6 need to use pci_map_page() for that mapping.
1554 */
1555 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1556 virt_to_page(pMessage->data),
1557 ((unsigned long) pMessage->data & ~PAGE_MASK),
1558 pMessage->len,
1559 PCI_DMA_TODEVICE);
1560 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1561 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1562 pTxd->pMBuf = pMessage;
1563
1564 if (pMessage->ip_summed == CHECKSUM_PARTIAL) {
1565 u16 hdrlen = skb_transport_offset(pMessage);
1566 u16 offset = hdrlen + pMessage->csum_offset;
1567
1568 if ((ipip_hdr(pMessage)->protocol == IPPROTO_UDP) &&
1569 (pAC->GIni.GIChipRev == 0) &&
1570 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1571 pTxd->TBControl = BMU_TCP_CHECK;
1572 } else {
1573 pTxd->TBControl = BMU_UDP_CHECK;
1574 }
1575
1576 pTxd->TcpSumOfs = 0;
1577 pTxd->TcpSumSt = hdrlen;
1578 pTxd->TcpSumWr = offset;
1579
1580 pTxd->TBControl |= BMU_OWN | BMU_STF |
1581 BMU_SW | BMU_EOF |
1582#ifdef USE_TX_COMPLETE
1583 BMU_IRQ_EOF |
1584#endif
1585 pMessage->len;
1586 } else {
1587 pTxd->TBControl = BMU_OWN | BMU_STF | BMU_CHECK |
1588 BMU_SW | BMU_EOF |
1589#ifdef USE_TX_COMPLETE
1590 BMU_IRQ_EOF |
1591#endif
1592 pMessage->len;
1593 }
1594
1595 /*
1596 ** If previous descriptor already done, give TX start cmd
1597 */
1598 pOldTxd = xchg(&pTxPort->pTxdRingPrev, pTxd);
1599 if ((pOldTxd->TBControl & BMU_OWN) == 0) {
1600 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
1601 }
1602
1603 /*
1604 ** after releasing the lock, the skb may immediately be free'd
1605 */
1606 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1607 if (pTxPort->TxdRingFree != 0) {
1608 return (BytesSend);
1609 } else {
1610 return (0);
1611 }
1612
1613} /* XmitFrame */
1614
1615/*****************************************************************************
1616 *
1617 * XmitFrameSG - fill one socket buffer into the transmit ring
1618 * (use SG and TCP/UDP hardware checksumming)
1619 *
1620 * Description:
1621 * This function puts a message into the transmit descriptor ring
1622 * if there is a descriptors left.
1623 *
1624 * Returns:
1625 * > 0 - on succes: the number of bytes in the message
1626 * = 0 - on resource shortage: this frame sent or dropped, now
1627 * the ring is full ( -> set tbusy)
1628 * < 0 - on failure: other problems ( -> return failure to upper layers)
1629 */
1630static int XmitFrameSG(
1631SK_AC *pAC, /* pointer to adapter context */
1632TX_PORT *pTxPort, /* pointer to struct of port to send to */
1633struct sk_buff *pMessage) /* pointer to send-message */
1634{
1635
1636 TXD *pTxd;
1637 TXD *pTxdFst;
1638 TXD *pTxdLst;
1639 int CurrFrag;
1640 int BytesSend;
1641 skb_frag_t *sk_frag;
1642 SK_U64 PhysAddr;
1643 unsigned long Flags;
1644 SK_U32 Control;
1645
1646 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
1647#ifndef USE_TX_COMPLETE
1648 FreeTxDescriptors(pAC, pTxPort);
1649#endif
1650 if ((skb_shinfo(pMessage)->nr_frags +1) > pTxPort->TxdRingFree) {
1651 FreeTxDescriptors(pAC, pTxPort);
1652 if ((skb_shinfo(pMessage)->nr_frags + 1) > pTxPort->TxdRingFree) {
1653 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1654 SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
1655 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1656 SK_DBGCAT_DRV_TX_PROGRESS,
1657 ("XmitFrameSG failed - Ring full\n"));
1658 /* this message can not be sent now */
1659 return(-1);
1660 }
1661 }
1662
1663 pTxd = pTxPort->pTxdRingHead;
1664 pTxdFst = pTxd;
1665 pTxdLst = pTxd;
1666 BytesSend = 0;
1667
1668 /*
1669 ** Map the first fragment (header) into the DMA-space
1670 */
1671 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1672 virt_to_page(pMessage->data),
1673 ((unsigned long) pMessage->data & ~PAGE_MASK),
1674 skb_headlen(pMessage),
1675 PCI_DMA_TODEVICE);
1676
1677 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1678 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1679
1680 /*
1681 ** Does the HW need to evaluate checksum for TCP or UDP packets?
1682 */
1683 if (pMessage->ip_summed == CHECKSUM_PARTIAL) {
1684 u16 hdrlen = skb_transport_offset(pMessage);
1685 u16 offset = hdrlen + pMessage->csum_offset;
1686
1687 Control = BMU_STFWD;
1688
1689 /*
1690 ** We have to use the opcode for tcp here, because the
1691 ** opcode for udp is not working in the hardware yet
1692 ** (Revision 2.0)
1693 */
1694 if ((ipip_hdr(pMessage)->protocol == IPPROTO_UDP) &&
1695 (pAC->GIni.GIChipRev == 0) &&
1696 (pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
1697 Control |= BMU_TCP_CHECK;
1698 } else {
1699 Control |= BMU_UDP_CHECK;
1700 }
1701
1702 pTxd->TcpSumOfs = 0;
1703 pTxd->TcpSumSt = hdrlen;
1704 pTxd->TcpSumWr = offset;
1705 } else
1706 Control = BMU_CHECK | BMU_SW;
1707
1708 pTxd->TBControl = BMU_STF | Control | skb_headlen(pMessage);
1709
1710 pTxd = pTxd->pNextTxd;
1711 pTxPort->TxdRingFree--;
1712 BytesSend += skb_headlen(pMessage);
1713
1714 /*
1715 ** Browse over all SG fragments and map each of them into the DMA space
1716 */
1717 for (CurrFrag = 0; CurrFrag < skb_shinfo(pMessage)->nr_frags; CurrFrag++) {
1718 sk_frag = &skb_shinfo(pMessage)->frags[CurrFrag];
1719 /*
1720 ** we already have the proper value in entry
1721 */
1722 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1723 sk_frag->page,
1724 sk_frag->page_offset,
1725 sk_frag->size,
1726 PCI_DMA_TODEVICE);
1727
1728 pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1729 pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1730 pTxd->pMBuf = pMessage;
1731
1732 pTxd->TBControl = Control | BMU_OWN | sk_frag->size;
1733
1734 /*
1735 ** Do we have the last fragment?
1736 */
1737 if( (CurrFrag+1) == skb_shinfo(pMessage)->nr_frags ) {
1738#ifdef USE_TX_COMPLETE
1739 pTxd->TBControl |= BMU_EOF | BMU_IRQ_EOF;
1740#else
1741 pTxd->TBControl |= BMU_EOF;
1742#endif
1743 pTxdFst->TBControl |= BMU_OWN | BMU_SW;
1744 }
1745 pTxdLst = pTxd;
1746 pTxd = pTxd->pNextTxd;
1747 pTxPort->TxdRingFree--;
1748 BytesSend += sk_frag->size;
1749 }
1750
1751 /*
1752 ** If previous descriptor already done, give TX start cmd
1753 */
1754 if ((pTxPort->pTxdRingPrev->TBControl & BMU_OWN) == 0) {
1755 SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
1756 }
1757
1758 pTxPort->pTxdRingPrev = pTxdLst;
1759 pTxPort->pTxdRingHead = pTxd;
1760
1761 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
1762
1763 if (pTxPort->TxdRingFree > 0) {
1764 return (BytesSend);
1765 } else {
1766 return (0);
1767 }
1768}
1769
1770/*****************************************************************************
1771 *
1772 * FreeTxDescriptors - release descriptors from the descriptor ring
1773 *
1774 * Description:
1775 * This function releases descriptors from a transmit ring if they
1776 * have been sent by the BMU.
1777 * If a descriptors is sent, it can be freed and the message can
1778 * be freed, too.
1779 * The SOFTWARE controllable bit is used to prevent running around a
1780 * completely free ring for ever. If this bit is no set in the
1781 * frame (by XmitFrame), this frame has never been sent or is
1782 * already freed.
1783 * The Tx descriptor ring lock must be held while calling this function !!!
1784 *
1785 * Returns:
1786 * none
1787 */
1788static void FreeTxDescriptors(
1789SK_AC *pAC, /* pointer to the adapter context */
1790TX_PORT *pTxPort) /* pointer to destination port structure */
1791{
1792TXD *pTxd; /* pointer to the checked descriptor */
1793TXD *pNewTail; /* pointer to 'end' of the ring */
1794SK_U32 Control; /* TBControl field of descriptor */
1795SK_U64 PhysAddr; /* address of DMA mapping */
1796
1797 pNewTail = pTxPort->pTxdRingTail;
1798 pTxd = pNewTail;
1799 /*
1800 ** loop forever; exits if BMU_SW bit not set in start frame
1801 ** or BMU_OWN bit set in any frame
1802 */
1803 while (1) {
1804 Control = pTxd->TBControl;
1805 if ((Control & BMU_SW) == 0) {
1806 /*
1807 ** software controllable bit is set in first
1808 ** fragment when given to BMU. Not set means that
1809 ** this fragment was never sent or is already
1810 ** freed ( -> ring completely free now).
1811 */
1812 pTxPort->pTxdRingTail = pTxd;
1813 netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
1814 return;
1815 }
1816 if (Control & BMU_OWN) {
1817 pTxPort->pTxdRingTail = pTxd;
1818 if (pTxPort->TxdRingFree > 0) {
1819 netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
1820 }
1821 return;
1822 }
1823
1824 /*
1825 ** release the DMA mapping, because until not unmapped
1826 ** this buffer is considered being under control of the
1827 ** adapter card!
1828 */
1829 PhysAddr = ((SK_U64) pTxd->VDataHigh) << (SK_U64) 32;
1830 PhysAddr |= (SK_U64) pTxd->VDataLow;
1831 pci_unmap_page(pAC->PciDev, PhysAddr,
1832 pTxd->pMBuf->len,
1833 PCI_DMA_TODEVICE);
1834
1835 if (Control & BMU_EOF)
1836 DEV_KFREE_SKB_ANY(pTxd->pMBuf); /* free message */
1837
1838 pTxPort->TxdRingFree++;
1839 pTxd->TBControl &= ~BMU_SW;
1840 pTxd = pTxd->pNextTxd; /* point behind fragment with EOF */
1841 } /* while(forever) */
1842} /* FreeTxDescriptors */
1843
1844/*****************************************************************************
1845 *
1846 * FillRxRing - fill the receive ring with valid descriptors
1847 *
1848 * Description:
1849 * This function fills the receive ring descriptors with data
1850 * segments and makes them valid for the BMU.
1851 * The active ring is filled completely, if possible.
1852 * The non-active ring is filled only partial to save memory.
1853 *
1854 * Description of rx ring structure:
1855 * head - points to the descriptor which will be used next by the BMU
1856 * tail - points to the next descriptor to give to the BMU
1857 *
1858 * Returns: N/A
1859 */
1860static void FillRxRing(
1861SK_AC *pAC, /* pointer to the adapter context */
1862RX_PORT *pRxPort) /* ptr to port struct for which the ring
1863 should be filled */
1864{
1865unsigned long Flags;
1866
1867 spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
1868 while (pRxPort->RxdRingFree > pRxPort->RxFillLimit) {
1869 if(!FillRxDescriptor(pAC, pRxPort))
1870 break;
1871 }
1872 spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
1873} /* FillRxRing */
1874
1875
1876/*****************************************************************************
1877 *
1878 * FillRxDescriptor - fill one buffer into the receive ring
1879 *
1880 * Description:
1881 * The function allocates a new receive buffer and
1882 * puts it into the next descriptor.
1883 *
1884 * Returns:
1885 * SK_TRUE - a buffer was added to the ring
1886 * SK_FALSE - a buffer could not be added
1887 */
1888static SK_BOOL FillRxDescriptor(
1889SK_AC *pAC, /* pointer to the adapter context struct */
1890RX_PORT *pRxPort) /* ptr to port struct of ring to fill */
1891{
1892struct sk_buff *pMsgBlock; /* pointer to a new message block */
1893RXD *pRxd; /* the rxd to fill */
1894SK_U16 Length; /* data fragment length */
1895SK_U64 PhysAddr; /* physical address of a rx buffer */
1896
1897 pMsgBlock = alloc_skb(pAC->RxBufSize, GFP_ATOMIC);
1898 if (pMsgBlock == NULL) {
1899 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
1900 SK_DBGCAT_DRV_ENTRY,
1901 ("%s: Allocation of rx buffer failed !\n",
1902 pAC->dev[pRxPort->PortIndex]->name));
1903 SK_PNMI_CNT_NO_RX_BUF(pAC, pRxPort->PortIndex);
1904 return(SK_FALSE);
1905 }
1906 skb_reserve(pMsgBlock, 2); /* to align IP frames */
1907 /* skb allocated ok, so add buffer */
1908 pRxd = pRxPort->pRxdRingTail;
1909 pRxPort->pRxdRingTail = pRxd->pNextRxd;
1910 pRxPort->RxdRingFree--;
1911 Length = pAC->RxBufSize;
1912 PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
1913 virt_to_page(pMsgBlock->data),
1914 ((unsigned long) pMsgBlock->data &
1915 ~PAGE_MASK),
1916 pAC->RxBufSize - 2,
1917 PCI_DMA_FROMDEVICE);
1918
1919 pRxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
1920 pRxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
1921 pRxd->pMBuf = pMsgBlock;
1922 pRxd->RBControl = BMU_OWN |
1923 BMU_STF |
1924 BMU_IRQ_EOF |
1925 BMU_TCP_CHECK |
1926 Length;
1927 return (SK_TRUE);
1928
1929} /* FillRxDescriptor */
1930
1931
1932/*****************************************************************************
1933 *
1934 * ReQueueRxBuffer - fill one buffer back into the receive ring
1935 *
1936 * Description:
1937 * Fill a given buffer back into the rx ring. The buffer
1938 * has been previously allocated and aligned, and its phys.
1939 * address calculated, so this is no more necessary.
1940 *
1941 * Returns: N/A
1942 */
1943static void ReQueueRxBuffer(
1944SK_AC *pAC, /* pointer to the adapter context struct */
1945RX_PORT *pRxPort, /* ptr to port struct of ring to fill */
1946struct sk_buff *pMsg, /* pointer to the buffer */
1947SK_U32 PhysHigh, /* phys address high dword */
1948SK_U32 PhysLow) /* phys address low dword */
1949{
1950RXD *pRxd; /* the rxd to fill */
1951SK_U16 Length; /* data fragment length */
1952
1953 pRxd = pRxPort->pRxdRingTail;
1954 pRxPort->pRxdRingTail = pRxd->pNextRxd;
1955 pRxPort->RxdRingFree--;
1956 Length = pAC->RxBufSize;
1957
1958 pRxd->VDataLow = PhysLow;
1959 pRxd->VDataHigh = PhysHigh;
1960 pRxd->pMBuf = pMsg;
1961 pRxd->RBControl = BMU_OWN |
1962 BMU_STF |
1963 BMU_IRQ_EOF |
1964 BMU_TCP_CHECK |
1965 Length;
1966 return;
1967} /* ReQueueRxBuffer */
1968
1969/*****************************************************************************
1970 *
1971 * ReceiveIrq - handle a receive IRQ
1972 *
1973 * Description:
1974 * This function is called when a receive IRQ is set.
1975 * It walks the receive descriptor ring and sends up all
1976 * frames that are complete.
1977 *
1978 * Returns: N/A
1979 */
1980static void ReceiveIrq(
1981 SK_AC *pAC, /* pointer to adapter context */
1982 RX_PORT *pRxPort, /* pointer to receive port struct */
1983 SK_BOOL SlowPathLock) /* indicates if SlowPathLock is needed */
1984{
1985RXD *pRxd; /* pointer to receive descriptors */
1986SK_U32 Control; /* control field of descriptor */
1987struct sk_buff *pMsg; /* pointer to message holding frame */
1988struct sk_buff *pNewMsg; /* pointer to a new message for copying frame */
1989int FrameLength; /* total length of received frame */
1990SK_MBUF *pRlmtMbuf; /* ptr to a buffer for giving a frame to rlmt */
1991SK_EVPARA EvPara; /* an event parameter union */
1992unsigned long Flags; /* for spin lock */
1993int PortIndex = pRxPort->PortIndex;
1994unsigned int Offset;
1995unsigned int NumBytes;
1996unsigned int ForRlmt;
1997SK_BOOL IsBc;
1998SK_BOOL IsMc;
1999SK_BOOL IsBadFrame; /* Bad frame */
2000
2001SK_U32 FrameStat;
2002SK_U64 PhysAddr;
2003
2004rx_start:
2005 /* do forever; exit if BMU_OWN found */
2006 for ( pRxd = pRxPort->pRxdRingHead ;
2007 pRxPort->RxdRingFree < pAC->RxDescrPerRing ;
2008 pRxd = pRxd->pNextRxd,
2009 pRxPort->pRxdRingHead = pRxd,
2010 pRxPort->RxdRingFree ++) {
2011
2012 /*
2013 * For a better understanding of this loop
2014 * Go through every descriptor beginning at the head
2015 * Please note: the ring might be completely received so the OWN bit
2016 * set is not a good crirteria to leave that loop.
2017 * Therefore the RingFree counter is used.
2018 * On entry of this loop pRxd is a pointer to the Rxd that needs
2019 * to be checked next.
2020 */
2021
2022 Control = pRxd->RBControl;
2023
2024 /* check if this descriptor is ready */
2025 if ((Control & BMU_OWN) != 0) {
2026 /* this descriptor is not yet ready */
2027 /* This is the usual end of the loop */
2028 /* We don't need to start the ring again */
2029 FillRxRing(pAC, pRxPort);
2030 return;
2031 }
2032 pAC->DynIrqModInfo.NbrProcessedDescr++;
2033
2034 /* get length of frame and check it */
2035 FrameLength = Control & BMU_BBC;
2036 if (FrameLength > pAC->RxBufSize) {
2037 goto rx_failed;
2038 }
2039
2040 /* check for STF and EOF */
2041 if ((Control & (BMU_STF | BMU_EOF)) != (BMU_STF | BMU_EOF)) {
2042 goto rx_failed;
2043 }
2044
2045 /* here we have a complete frame in the ring */
2046 pMsg = pRxd->pMBuf;
2047
2048 FrameStat = pRxd->FrameStat;
2049
2050 /* check for frame length mismatch */
2051#define XMR_FS_LEN_SHIFT 18
2052#define GMR_FS_LEN_SHIFT 16
2053 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2054 if (FrameLength != (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)) {
2055 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2056 SK_DBGCAT_DRV_RX_PROGRESS,
2057 ("skge: Frame length mismatch (%u/%u).\n",
2058 FrameLength,
2059 (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2060 goto rx_failed;
2061 }
2062 }
2063 else {
2064 if (FrameLength != (SK_U32) (FrameStat >> GMR_FS_LEN_SHIFT)) {
2065 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2066 SK_DBGCAT_DRV_RX_PROGRESS,
2067 ("skge: Frame length mismatch (%u/%u).\n",
2068 FrameLength,
2069 (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
2070 goto rx_failed;
2071 }
2072 }
2073
2074 /* Set Rx Status */
2075 if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
2076 IsBc = (FrameStat & XMR_FS_BC) != 0;
2077 IsMc = (FrameStat & XMR_FS_MC) != 0;
2078 IsBadFrame = (FrameStat &
2079 (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0;
2080 } else {
2081 IsBc = (FrameStat & GMR_FS_BC) != 0;
2082 IsMc = (FrameStat & GMR_FS_MC) != 0;
2083 IsBadFrame = (((FrameStat & GMR_FS_ANY_ERR) != 0) ||
2084 ((FrameStat & GMR_FS_RX_OK) == 0));
2085 }
2086
2087 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2088 ("Received frame of length %d on port %d\n",
2089 FrameLength, PortIndex));
2090 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
2091 ("Number of free rx descriptors: %d\n",
2092 pRxPort->RxdRingFree));
2093/* DumpMsg(pMsg, "Rx"); */
2094
2095 if ((Control & BMU_STAT_VAL) != BMU_STAT_VAL || (IsBadFrame)) {
2096#if 0
2097 (FrameStat & (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0) {
2098#endif
2099 /* there is a receive error in this frame */
2100 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2101 SK_DBGCAT_DRV_RX_PROGRESS,
2102 ("skge: Error in received frame, dropped!\n"
2103 "Control: %x\nRxStat: %x\n",
2104 Control, FrameStat));
2105
2106 ReQueueRxBuffer(pAC, pRxPort, pMsg,
2107 pRxd->VDataHigh, pRxd->VDataLow);
2108
2109 continue;
2110 }
2111
2112 /*
2113 * if short frame then copy data to reduce memory waste
2114 */
2115 if ((FrameLength < SK_COPY_THRESHOLD) &&
2116 ((pNewMsg = alloc_skb(FrameLength+2, GFP_ATOMIC)) != NULL)) {
2117 /*
2118 * Short frame detected and allocation successfull
2119 */
2120 /* use new skb and copy data */
2121 skb_reserve(pNewMsg, 2);
2122 skb_put(pNewMsg, FrameLength);
2123 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2124 PhysAddr |= (SK_U64) pRxd->VDataLow;
2125
2126 pci_dma_sync_single_for_cpu(pAC->PciDev,
2127 (dma_addr_t) PhysAddr,
2128 FrameLength,
2129 PCI_DMA_FROMDEVICE);
2130 skb_copy_to_linear_data(pNewMsg, pMsg, FrameLength);
2131
2132 pci_dma_sync_single_for_device(pAC->PciDev,
2133 (dma_addr_t) PhysAddr,
2134 FrameLength,
2135 PCI_DMA_FROMDEVICE);
2136 ReQueueRxBuffer(pAC, pRxPort, pMsg,
2137 pRxd->VDataHigh, pRxd->VDataLow);
2138
2139 pMsg = pNewMsg;
2140
2141 }
2142 else {
2143 /*
2144 * if large frame, or SKB allocation failed, pass
2145 * the SKB directly to the networking
2146 */
2147
2148 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2149 PhysAddr |= (SK_U64) pRxd->VDataLow;
2150
2151 /* release the DMA mapping */
2152 pci_unmap_single(pAC->PciDev,
2153 PhysAddr,
2154 pAC->RxBufSize - 2,
2155 PCI_DMA_FROMDEVICE);
2156
2157 /* set length in message */
2158 skb_put(pMsg, FrameLength);
2159 } /* frame > SK_COPY_TRESHOLD */
2160
2161#ifdef USE_SK_RX_CHECKSUM
2162 pMsg->csum = pRxd->TcpSums & 0xffff;
2163 pMsg->ip_summed = CHECKSUM_COMPLETE;
2164#else
2165 pMsg->ip_summed = CHECKSUM_NONE;
2166#endif
2167
2168 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("V"));
2169 ForRlmt = SK_RLMT_RX_PROTOCOL;
2170#if 0
2171 IsBc = (FrameStat & XMR_FS_BC)==XMR_FS_BC;
2172#endif
2173 SK_RLMT_PRE_LOOKAHEAD(pAC, PortIndex, FrameLength,
2174 IsBc, &Offset, &NumBytes);
2175 if (NumBytes != 0) {
2176#if 0
2177 IsMc = (FrameStat & XMR_FS_MC)==XMR_FS_MC;
2178#endif
2179 SK_RLMT_LOOKAHEAD(pAC, PortIndex,
2180 &pMsg->data[Offset],
2181 IsBc, IsMc, &ForRlmt);
2182 }
2183 if (ForRlmt == SK_RLMT_RX_PROTOCOL) {
2184 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("W"));
2185 /* send up only frames from active port */
2186 if ((PortIndex == pAC->ActivePort) ||
2187 (pAC->RlmtNets == 2)) {
2188 /* frame for upper layer */
2189 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("U"));
2190#ifdef xDEBUG
2191 DumpMsg(pMsg, "Rx");
2192#endif
2193 SK_PNMI_CNT_RX_OCTETS_DELIVERED(pAC,
2194 FrameLength, pRxPort->PortIndex);
2195
2196 pMsg->protocol = eth_type_trans(pMsg,
2197 pAC->dev[pRxPort->PortIndex]);
2198 netif_rx(pMsg);
2199 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2200 }
2201 else {
2202 /* drop frame */
2203 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2204 SK_DBGCAT_DRV_RX_PROGRESS,
2205 ("D"));
2206 DEV_KFREE_SKB(pMsg);
2207 }
2208
2209 } /* if not for rlmt */
2210 else {
2211 /* packet for rlmt */
2212 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2213 SK_DBGCAT_DRV_RX_PROGRESS, ("R"));
2214 pRlmtMbuf = SkDrvAllocRlmtMbuf(pAC,
2215 pAC->IoBase, FrameLength);
2216 if (pRlmtMbuf != NULL) {
2217 pRlmtMbuf->pNext = NULL;
2218 pRlmtMbuf->Length = FrameLength;
2219 pRlmtMbuf->PortIdx = PortIndex;
2220 EvPara.pParaPtr = pRlmtMbuf;
2221 memcpy((char*)(pRlmtMbuf->pData),
2222 (char*)(pMsg->data),
2223 FrameLength);
2224
2225 /* SlowPathLock needed? */
2226 if (SlowPathLock == SK_TRUE) {
2227 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2228 SkEventQueue(pAC, SKGE_RLMT,
2229 SK_RLMT_PACKET_RECEIVED,
2230 EvPara);
2231 pAC->CheckQueue = SK_TRUE;
2232 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2233 } else {
2234 SkEventQueue(pAC, SKGE_RLMT,
2235 SK_RLMT_PACKET_RECEIVED,
2236 EvPara);
2237 pAC->CheckQueue = SK_TRUE;
2238 }
2239
2240 SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
2241 SK_DBGCAT_DRV_RX_PROGRESS,
2242 ("Q"));
2243 }
2244 if ((pAC->dev[pRxPort->PortIndex]->flags &
2245 (IFF_PROMISC | IFF_ALLMULTI)) != 0 ||
2246 (ForRlmt & SK_RLMT_RX_PROTOCOL) ==
2247 SK_RLMT_RX_PROTOCOL) {
2248 pMsg->protocol = eth_type_trans(pMsg,
2249 pAC->dev[pRxPort->PortIndex]);
2250 netif_rx(pMsg);
2251 pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
2252 }
2253 else {
2254 DEV_KFREE_SKB(pMsg);
2255 }
2256
2257 } /* if packet for rlmt */
2258 } /* for ... scanning the RXD ring */
2259
2260 /* RXD ring is empty -> fill and restart */
2261 FillRxRing(pAC, pRxPort);
2262 /* do not start if called from Close */
2263 if (pAC->BoardLevel > SK_INIT_DATA) {
2264 ClearAndStartRx(pAC, PortIndex);
2265 }
2266 return;
2267
2268rx_failed:
2269 /* remove error frame */
2270 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
2271 ("Schrottdescriptor, length: 0x%x\n", FrameLength));
2272
2273 /* release the DMA mapping */
2274
2275 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2276 PhysAddr |= (SK_U64) pRxd->VDataLow;
2277 pci_unmap_page(pAC->PciDev,
2278 PhysAddr,
2279 pAC->RxBufSize - 2,
2280 PCI_DMA_FROMDEVICE);
2281 DEV_KFREE_SKB_IRQ(pRxd->pMBuf);
2282 pRxd->pMBuf = NULL;
2283 pRxPort->RxdRingFree++;
2284 pRxPort->pRxdRingHead = pRxd->pNextRxd;
2285 goto rx_start;
2286
2287} /* ReceiveIrq */
2288
2289
2290/*****************************************************************************
2291 *
2292 * ClearAndStartRx - give a start receive command to BMU, clear IRQ
2293 *
2294 * Description:
2295 * This function sends a start command and a clear interrupt
2296 * command for one receive queue to the BMU.
2297 *
2298 * Returns: N/A
2299 * none
2300 */
2301static void ClearAndStartRx(
2302SK_AC *pAC, /* pointer to the adapter context */
2303int PortIndex) /* index of the receive port (XMAC) */
2304{
2305 SK_OUT8(pAC->IoBase,
2306 RxQueueAddr[PortIndex]+Q_CSR,
2307 CSR_START | CSR_IRQ_CL_F);
2308} /* ClearAndStartRx */
2309
2310
2311/*****************************************************************************
2312 *
2313 * ClearTxIrq - give a clear transmit IRQ command to BMU
2314 *
2315 * Description:
2316 * This function sends a clear tx IRQ command for one
2317 * transmit queue to the BMU.
2318 *
2319 * Returns: N/A
2320 */
2321static void ClearTxIrq(
2322SK_AC *pAC, /* pointer to the adapter context */
2323int PortIndex, /* index of the transmit port (XMAC) */
2324int Prio) /* priority or normal queue */
2325{
2326 SK_OUT8(pAC->IoBase,
2327 TxQueueAddr[PortIndex][Prio]+Q_CSR,
2328 CSR_IRQ_CL_F);
2329} /* ClearTxIrq */
2330
2331
2332/*****************************************************************************
2333 *
2334 * ClearRxRing - remove all buffers from the receive ring
2335 *
2336 * Description:
2337 * This function removes all receive buffers from the ring.
2338 * The receive BMU must be stopped before calling this function.
2339 *
2340 * Returns: N/A
2341 */
2342static void ClearRxRing(
2343SK_AC *pAC, /* pointer to adapter context */
2344RX_PORT *pRxPort) /* pointer to rx port struct */
2345{
2346RXD *pRxd; /* pointer to the current descriptor */
2347unsigned long Flags;
2348SK_U64 PhysAddr;
2349
2350 if (pRxPort->RxdRingFree == pAC->RxDescrPerRing) {
2351 return;
2352 }
2353 spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
2354 pRxd = pRxPort->pRxdRingHead;
2355 do {
2356 if (pRxd->pMBuf != NULL) {
2357
2358 PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
2359 PhysAddr |= (SK_U64) pRxd->VDataLow;
2360 pci_unmap_page(pAC->PciDev,
2361 PhysAddr,
2362 pAC->RxBufSize - 2,
2363 PCI_DMA_FROMDEVICE);
2364 DEV_KFREE_SKB(pRxd->pMBuf);
2365 pRxd->pMBuf = NULL;
2366 }
2367 pRxd->RBControl &= BMU_OWN;
2368 pRxd = pRxd->pNextRxd;
2369 pRxPort->RxdRingFree++;
2370 } while (pRxd != pRxPort->pRxdRingTail);
2371 pRxPort->pRxdRingTail = pRxPort->pRxdRingHead;
2372 spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
2373} /* ClearRxRing */
2374
2375/*****************************************************************************
2376 *
2377 * ClearTxRing - remove all buffers from the transmit ring
2378 *
2379 * Description:
2380 * This function removes all transmit buffers from the ring.
2381 * The transmit BMU must be stopped before calling this function
2382 * and transmitting at the upper level must be disabled.
2383 * The BMU own bit of all descriptors is cleared, the rest is
2384 * done by calling FreeTxDescriptors.
2385 *
2386 * Returns: N/A
2387 */
2388static void ClearTxRing(
2389SK_AC *pAC, /* pointer to adapter context */
2390TX_PORT *pTxPort) /* pointer to tx prt struct */
2391{
2392TXD *pTxd; /* pointer to the current descriptor */
2393int i;
2394unsigned long Flags;
2395
2396 spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
2397 pTxd = pTxPort->pTxdRingHead;
2398 for (i=0; i<pAC->TxDescrPerRing; i++) {
2399 pTxd->TBControl &= ~BMU_OWN;
2400 pTxd = pTxd->pNextTxd;
2401 }
2402 FreeTxDescriptors(pAC, pTxPort);
2403 spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
2404} /* ClearTxRing */
2405
2406/*****************************************************************************
2407 *
2408 * SkGeSetMacAddr - Set the hardware MAC address
2409 *
2410 * Description:
2411 * This function sets the MAC address used by the adapter.
2412 *
2413 * Returns:
2414 * 0, if everything is ok
2415 * !=0, on error
2416 */
2417static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p)
2418{
2419
2420DEV_NET *pNet = netdev_priv(dev);
2421SK_AC *pAC = pNet->pAC;
2422
2423struct sockaddr *addr = p;
2424unsigned long Flags;
2425
2426 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2427 ("SkGeSetMacAddr starts now...\n"));
2428 if(netif_running(dev))
2429 return -EBUSY;
2430
2431 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2432
2433 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2434
2435 if (pAC->RlmtNets == 2)
2436 SkAddrOverride(pAC, pAC->IoBase, pNet->NetNr,
2437 (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2438 else
2439 SkAddrOverride(pAC, pAC->IoBase, pAC->ActivePort,
2440 (SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
2441
2442
2443
2444 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2445 return 0;
2446} /* SkGeSetMacAddr */
2447
2448
2449/*****************************************************************************
2450 *
2451 * SkGeSetRxMode - set receive mode
2452 *
2453 * Description:
2454 * This function sets the receive mode of an adapter. The adapter
2455 * supports promiscuous mode, allmulticast mode and a number of
2456 * multicast addresses. If more multicast addresses the available
2457 * are selected, a hash function in the hardware is used.
2458 *
2459 * Returns:
2460 * 0, if everything is ok
2461 * !=0, on error
2462 */
2463static void SkGeSetRxMode(struct SK_NET_DEVICE *dev)
2464{
2465
2466DEV_NET *pNet;
2467SK_AC *pAC;
2468
2469struct dev_mc_list *pMcList;
2470int i;
2471int PortIdx;
2472unsigned long Flags;
2473
2474 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2475 ("SkGeSetRxMode starts now... "));
2476
2477 pNet = netdev_priv(dev);
2478 pAC = pNet->pAC;
2479 if (pAC->RlmtNets == 1)
2480 PortIdx = pAC->ActivePort;
2481 else
2482 PortIdx = pNet->NetNr;
2483
2484 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2485 if (dev->flags & IFF_PROMISC) {
2486 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2487 ("PROMISCUOUS mode\n"));
2488 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2489 SK_PROM_MODE_LLC);
2490 } else if (dev->flags & IFF_ALLMULTI) {
2491 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2492 ("ALLMULTI mode\n"));
2493 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2494 SK_PROM_MODE_ALL_MC);
2495 } else {
2496 SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
2497 SK_PROM_MODE_NONE);
2498 SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
2499
2500 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2501 ("Number of MC entries: %d ", dev->mc_count));
2502
2503 pMcList = dev->mc_list;
2504 for (i=0; i<dev->mc_count; i++, pMcList = pMcList->next) {
2505 SkAddrMcAdd(pAC, pAC->IoBase, PortIdx,
2506 (SK_MAC_ADDR*)pMcList->dmi_addr, 0);
2507 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_MCA,
2508 ("%02x:%02x:%02x:%02x:%02x:%02x\n",
2509 pMcList->dmi_addr[0],
2510 pMcList->dmi_addr[1],
2511 pMcList->dmi_addr[2],
2512 pMcList->dmi_addr[3],
2513 pMcList->dmi_addr[4],
2514 pMcList->dmi_addr[5]));
2515 }
2516 SkAddrMcUpdate(pAC, pAC->IoBase, PortIdx);
2517 }
2518 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2519
2520 return;
2521} /* SkGeSetRxMode */
2522
2523
2524/*****************************************************************************
2525 *
2526 * SkGeChangeMtu - set the MTU to another value
2527 *
2528 * Description:
2529 * This function sets is called whenever the MTU size is changed
2530 * (ifconfig mtu xxx dev ethX). If the MTU is bigger than standard
2531 * ethernet MTU size, long frame support is activated.
2532 *
2533 * Returns:
2534 * 0, if everything is ok
2535 * !=0, on error
2536 */
2537static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int NewMtu)
2538{
2539DEV_NET *pNet;
2540struct net_device *pOtherDev;
2541SK_AC *pAC;
2542unsigned long Flags;
2543int i;
2544SK_EVPARA EvPara;
2545
2546 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2547 ("SkGeChangeMtu starts now...\n"));
2548
2549 pNet = netdev_priv(dev);
2550 pAC = pNet->pAC;
2551
2552 if ((NewMtu < 68) || (NewMtu > SK_JUMBO_MTU)) {
2553 return -EINVAL;
2554 }
2555
2556 if(pAC->BoardLevel != SK_INIT_RUN) {
2557 return -EINVAL;
2558 }
2559
2560#ifdef SK_DIAG_SUPPORT
2561 if (pAC->DiagModeActive == DIAG_ACTIVE) {
2562 if (pAC->DiagFlowCtrl == SK_FALSE) {
2563 return -1; /* still in use, deny any actions of MTU */
2564 } else {
2565 pAC->DiagFlowCtrl = SK_FALSE;
2566 }
2567 }
2568#endif
2569
2570 pOtherDev = pAC->dev[1 - pNet->NetNr];
2571
2572 if ( netif_running(pOtherDev) && (pOtherDev->mtu > 1500)
2573 && (NewMtu <= 1500))
2574 return 0;
2575
2576 pAC->RxBufSize = NewMtu + 32;
2577 dev->mtu = NewMtu;
2578
2579 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2580 ("New MTU: %d\n", NewMtu));
2581
2582 /*
2583 ** Prevent any reconfiguration while changing the MTU
2584 ** by disabling any interrupts
2585 */
2586 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
2587 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2588
2589 /*
2590 ** Notify RLMT that any ports are to be stopped
2591 */
2592 EvPara.Para32[0] = 0;
2593 EvPara.Para32[1] = -1;
2594 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2595 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2596 EvPara.Para32[0] = 1;
2597 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2598 } else {
2599 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
2600 }
2601
2602 /*
2603 ** After calling the SkEventDispatcher(), RLMT is aware about
2604 ** the stopped ports -> configuration can take place!
2605 */
2606 SkEventDispatcher(pAC, pAC->IoBase);
2607
2608 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2609 spin_lock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
2610 netif_stop_queue(pAC->dev[i]);
2611
2612 }
2613
2614 /*
2615 ** Depending on the desired MTU size change, a different number of
2616 ** RX buffers need to be allocated
2617 */
2618 if (NewMtu > 1500) {
2619 /*
2620 ** Use less rx buffers
2621 */
2622 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2623 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2624 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2625 (pAC->RxDescrPerRing / 4);
2626 } else {
2627 if (i == pAC->ActivePort) {
2628 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2629 (pAC->RxDescrPerRing / 4);
2630 } else {
2631 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2632 (pAC->RxDescrPerRing / 10);
2633 }
2634 }
2635 }
2636 } else {
2637 /*
2638 ** Use the normal amount of rx buffers
2639 */
2640 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2641 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2642 pAC->RxPort[i].RxFillLimit = 1;
2643 } else {
2644 if (i == pAC->ActivePort) {
2645 pAC->RxPort[i].RxFillLimit = 1;
2646 } else {
2647 pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
2648 (pAC->RxDescrPerRing / 4);
2649 }
2650 }
2651 }
2652 }
2653
2654 SkGeDeInit(pAC, pAC->IoBase);
2655
2656 /*
2657 ** enable/disable hardware support for long frames
2658 */
2659 if (NewMtu > 1500) {
2660// pAC->JumboActivated = SK_TRUE; /* is never set back !!! */
2661 pAC->GIni.GIPortUsage = SK_JUMBO_LINK;
2662 } else {
2663 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2664 pAC->GIni.GIPortUsage = SK_MUL_LINK;
2665 } else {
2666 pAC->GIni.GIPortUsage = SK_RED_LINK;
2667 }
2668 }
2669
2670 SkGeInit( pAC, pAC->IoBase, SK_INIT_IO);
2671 SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
2672 SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
2673 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
2674 SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
2675 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
2676 SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
2677
2678 /*
2679 ** tschilling:
2680 ** Speed and others are set back to default in level 1 init!
2681 */
2682 GetConfiguration(pAC);
2683
2684 SkGeInit( pAC, pAC->IoBase, SK_INIT_RUN);
2685 SkI2cInit( pAC, pAC->IoBase, SK_INIT_RUN);
2686 SkEventInit(pAC, pAC->IoBase, SK_INIT_RUN);
2687 SkPnmiInit( pAC, pAC->IoBase, SK_INIT_RUN);
2688 SkAddrInit( pAC, pAC->IoBase, SK_INIT_RUN);
2689 SkRlmtInit( pAC, pAC->IoBase, SK_INIT_RUN);
2690 SkTimerInit(pAC, pAC->IoBase, SK_INIT_RUN);
2691
2692 /*
2693 ** clear and reinit the rx rings here
2694 */
2695 for (i=0; i<pAC->GIni.GIMacsFound; i++) {
2696 ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
2697 ClearRxRing(pAC, &pAC->RxPort[i]);
2698 FillRxRing(pAC, &pAC->RxPort[i]);
2699
2700 /*
2701 ** Enable transmit descriptor polling
2702 */
2703 SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
2704 FillRxRing(pAC, &pAC->RxPort[i]);
2705 };
2706
2707 SkGeYellowLED(pAC, pAC->IoBase, 1);
2708 SkDimEnableModerationIfNeeded(pAC);
2709 SkDimDisplayModerationSettings(pAC);
2710
2711 netif_start_queue(pAC->dev[pNet->PortNr]);
2712 for (i=pAC->GIni.GIMacsFound-1; i>=0; i--) {
2713 spin_unlock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
2714 }
2715
2716 /*
2717 ** Enable Interrupts again
2718 */
2719 SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
2720 SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
2721
2722 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2723 SkEventDispatcher(pAC, pAC->IoBase);
2724
2725 /*
2726 ** Notify RLMT about the changing and restarting one (or more) ports
2727 */
2728 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
2729 EvPara.Para32[0] = pAC->RlmtNets;
2730 EvPara.Para32[1] = -1;
2731 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS, EvPara);
2732 EvPara.Para32[0] = pNet->PortNr;
2733 EvPara.Para32[1] = -1;
2734 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2735
2736 if (netif_running(pOtherDev)) {
2737 DEV_NET *pOtherNet = netdev_priv(pOtherDev);
2738 EvPara.Para32[0] = pOtherNet->PortNr;
2739 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2740 }
2741 } else {
2742 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
2743 }
2744
2745 SkEventDispatcher(pAC, pAC->IoBase);
2746 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2747
2748 /*
2749 ** While testing this driver with latest kernel 2.5 (2.5.70), it
2750 ** seems as if upper layers have a problem to handle a successful
2751 ** return value of '0'. If such a zero is returned, the complete
2752 ** system hangs for several minutes (!), which is in acceptable.
2753 **
2754 ** Currently it is not clear, what the exact reason for this problem
2755 ** is. The implemented workaround for 2.5 is to return the desired
2756 ** new MTU size if all needed changes for the new MTU size where
2757 ** performed. In kernels 2.2 and 2.4, a zero value is returned,
2758 ** which indicates the successful change of the mtu-size.
2759 */
2760 return NewMtu;
2761
2762} /* SkGeChangeMtu */
2763
2764
2765/*****************************************************************************
2766 *
2767 * SkGeStats - return ethernet device statistics
2768 *
2769 * Description:
2770 * This function return statistic data about the ethernet device
2771 * to the operating system.
2772 *
2773 * Returns:
2774 * pointer to the statistic structure.
2775 */
2776static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev)
2777{
2778DEV_NET *pNet = netdev_priv(dev);
2779SK_AC *pAC = pNet->pAC;
2780SK_PNMI_STRUCT_DATA *pPnmiStruct; /* structure for all Pnmi-Data */
2781SK_PNMI_STAT *pPnmiStat; /* pointer to virtual XMAC stat. data */
2782SK_PNMI_CONF *pPnmiConf; /* pointer to virtual link config. */
2783unsigned int Size; /* size of pnmi struct */
2784unsigned long Flags; /* for spin lock */
2785
2786 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2787 ("SkGeStats starts now...\n"));
2788 pPnmiStruct = &pAC->PnmiStruct;
2789
2790#ifdef SK_DIAG_SUPPORT
2791 if ((pAC->DiagModeActive == DIAG_NOTACTIVE) &&
2792 (pAC->BoardLevel == SK_INIT_RUN)) {
2793#endif
2794 SK_MEMSET(pPnmiStruct, 0, sizeof(SK_PNMI_STRUCT_DATA));
2795 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2796 Size = SK_PNMI_STRUCT_SIZE;
2797 SkPnmiGetStruct(pAC, pAC->IoBase, pPnmiStruct, &Size, pNet->NetNr);
2798 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2799#ifdef SK_DIAG_SUPPORT
2800 }
2801#endif
2802
2803 pPnmiStat = &pPnmiStruct->Stat[0];
2804 pPnmiConf = &pPnmiStruct->Conf[0];
2805
2806 pAC->stats.rx_packets = (SK_U32) pPnmiStruct->RxDeliveredCts & 0xFFFFFFFF;
2807 pAC->stats.tx_packets = (SK_U32) pPnmiStat->StatTxOkCts & 0xFFFFFFFF;
2808 pAC->stats.rx_bytes = (SK_U32) pPnmiStruct->RxOctetsDeliveredCts;
2809 pAC->stats.tx_bytes = (SK_U32) pPnmiStat->StatTxOctetsOkCts;
2810
2811 if (dev->mtu <= 1500) {
2812 pAC->stats.rx_errors = (SK_U32) pPnmiStruct->InErrorsCts & 0xFFFFFFFF;
2813 } else {
2814 pAC->stats.rx_errors = (SK_U32) ((pPnmiStruct->InErrorsCts -
2815 pPnmiStat->StatRxTooLongCts) & 0xFFFFFFFF);
2816 }
2817
2818
2819 if (pAC->GIni.GP[0].PhyType == SK_PHY_XMAC && pAC->HWRevision < 12)
2820 pAC->stats.rx_errors = pAC->stats.rx_errors - pPnmiStat->StatRxShortsCts;
2821
2822 pAC->stats.tx_errors = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
2823 pAC->stats.rx_dropped = (SK_U32) pPnmiStruct->RxNoBufCts & 0xFFFFFFFF;
2824 pAC->stats.tx_dropped = (SK_U32) pPnmiStruct->TxNoBufCts & 0xFFFFFFFF;
2825 pAC->stats.multicast = (SK_U32) pPnmiStat->StatRxMulticastOkCts & 0xFFFFFFFF;
2826 pAC->stats.collisions = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
2827
2828 /* detailed rx_errors: */
2829 pAC->stats.rx_length_errors = (SK_U32) pPnmiStat->StatRxRuntCts & 0xFFFFFFFF;
2830 pAC->stats.rx_over_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
2831 pAC->stats.rx_crc_errors = (SK_U32) pPnmiStat->StatRxFcsCts & 0xFFFFFFFF;
2832 pAC->stats.rx_frame_errors = (SK_U32) pPnmiStat->StatRxFramingCts & 0xFFFFFFFF;
2833 pAC->stats.rx_fifo_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
2834 pAC->stats.rx_missed_errors = (SK_U32) pPnmiStat->StatRxMissedCts & 0xFFFFFFFF;
2835
2836 /* detailed tx_errors */
2837 pAC->stats.tx_aborted_errors = (SK_U32) 0;
2838 pAC->stats.tx_carrier_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
2839 pAC->stats.tx_fifo_errors = (SK_U32) pPnmiStat->StatTxFifoUnderrunCts & 0xFFFFFFFF;
2840 pAC->stats.tx_heartbeat_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
2841 pAC->stats.tx_window_errors = (SK_U32) 0;
2842
2843 return(&pAC->stats);
2844} /* SkGeStats */
2845
2846/*
2847 * Basic MII register access
2848 */
2849static int SkGeMiiIoctl(struct net_device *dev,
2850 struct mii_ioctl_data *data, int cmd)
2851{
2852 DEV_NET *pNet = netdev_priv(dev);
2853 SK_AC *pAC = pNet->pAC;
2854 SK_IOC IoC = pAC->IoBase;
2855 int Port = pNet->PortNr;
2856 SK_GEPORT *pPrt = &pAC->GIni.GP[Port];
2857 unsigned long Flags;
2858 int err = 0;
2859 int reg = data->reg_num & 0x1f;
2860 SK_U16 val = data->val_in;
2861
2862 if (!netif_running(dev))
2863 return -ENODEV; /* Phy still in reset */
2864
2865 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
2866 switch(cmd) {
2867 case SIOCGMIIPHY:
2868 data->phy_id = pPrt->PhyAddr;
2869
2870 /* fallthru */
2871 case SIOCGMIIREG:
2872 if (pAC->GIni.GIGenesis)
2873 SkXmPhyRead(pAC, IoC, Port, reg, &val);
2874 else
2875 SkGmPhyRead(pAC, IoC, Port, reg, &val);
2876
2877 data->val_out = val;
2878 break;
2879
2880 case SIOCSMIIREG:
2881 if (!capable(CAP_NET_ADMIN))
2882 err = -EPERM;
2883
2884 else if (pAC->GIni.GIGenesis)
2885 SkXmPhyWrite(pAC, IoC, Port, reg, val);
2886 else
2887 SkGmPhyWrite(pAC, IoC, Port, reg, val);
2888 break;
2889 default:
2890 err = -EOPNOTSUPP;
2891 }
2892 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
2893 return err;
2894}
2895
2896
2897/*****************************************************************************
2898 *
2899 * SkGeIoctl - IO-control function
2900 *
2901 * Description:
2902 * This function is called if an ioctl is issued on the device.
2903 * There are three subfunction for reading, writing and test-writing
2904 * the private MIB data structure (useful for SysKonnect-internal tools).
2905 *
2906 * Returns:
2907 * 0, if everything is ok
2908 * !=0, on error
2909 */
2910static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd)
2911{
2912DEV_NET *pNet;
2913SK_AC *pAC;
2914void *pMemBuf;
2915struct pci_dev *pdev = NULL;
2916SK_GE_IOCTL Ioctl;
2917unsigned int Err = 0;
2918int Size = 0;
2919int Ret = 0;
2920unsigned int Length = 0;
2921int HeaderLength = sizeof(SK_U32) + sizeof(SK_U32);
2922
2923 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
2924 ("SkGeIoctl starts now...\n"));
2925
2926 pNet = netdev_priv(dev);
2927 pAC = pNet->pAC;
2928
2929 if (cmd == SIOCGMIIPHY || cmd == SIOCSMIIREG || cmd == SIOCGMIIREG)
2930 return SkGeMiiIoctl(dev, if_mii(rq), cmd);
2931
2932 if(copy_from_user(&Ioctl, rq->ifr_data, sizeof(SK_GE_IOCTL))) {
2933 return -EFAULT;
2934 }
2935
2936 switch(cmd) {
2937 case SK_IOCTL_SETMIB:
2938 case SK_IOCTL_PRESETMIB:
2939 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2940 case SK_IOCTL_GETMIB:
2941 if(copy_from_user(&pAC->PnmiStruct, Ioctl.pData,
2942 Ioctl.Len<sizeof(pAC->PnmiStruct)?
2943 Ioctl.Len : sizeof(pAC->PnmiStruct))) {
2944 return -EFAULT;
2945 }
2946 Size = SkGeIocMib(pNet, Ioctl.Len, cmd);
2947 if(copy_to_user(Ioctl.pData, &pAC->PnmiStruct,
2948 Ioctl.Len<Size? Ioctl.Len : Size)) {
2949 return -EFAULT;
2950 }
2951 Ioctl.Len = Size;
2952 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
2953 return -EFAULT;
2954 }
2955 break;
2956 case SK_IOCTL_GEN:
2957 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
2958 Length = Ioctl.Len;
2959 } else {
2960 Length = sizeof(pAC->PnmiStruct) + HeaderLength;
2961 }
2962 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
2963 return -ENOMEM;
2964 }
2965 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
2966 Err = -EFAULT;
2967 goto fault_gen;
2968 }
2969 if ((Ret = SkPnmiGenIoctl(pAC, pAC->IoBase, pMemBuf, &Length, 0)) < 0) {
2970 Err = -EFAULT;
2971 goto fault_gen;
2972 }
2973 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
2974 Err = -EFAULT;
2975 goto fault_gen;
2976 }
2977 Ioctl.Len = Length;
2978 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
2979 Err = -EFAULT;
2980 goto fault_gen;
2981 }
2982fault_gen:
2983 kfree(pMemBuf); /* cleanup everything */
2984 break;
2985#ifdef SK_DIAG_SUPPORT
2986 case SK_IOCTL_DIAG:
2987 if (!capable(CAP_NET_ADMIN)) return -EPERM;
2988 if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
2989 Length = Ioctl.Len;
2990 } else {
2991 Length = sizeof(pAC->PnmiStruct) + HeaderLength;
2992 }
2993 if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
2994 return -ENOMEM;
2995 }
2996 if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
2997 Err = -EFAULT;
2998 goto fault_diag;
2999 }
3000 pdev = pAC->PciDev;
3001 Length = 3 * sizeof(SK_U32); /* Error, Bus and Device */
3002 /*
3003 ** While coding this new IOCTL interface, only a few lines of code
3004 ** are to to be added. Therefore no dedicated function has been
3005 ** added. If more functionality is added, a separate function
3006 ** should be used...
3007 */
3008 * ((SK_U32 *)pMemBuf) = 0;
3009 * ((SK_U32 *)pMemBuf + 1) = pdev->bus->number;
3010 * ((SK_U32 *)pMemBuf + 2) = ParseDeviceNbrFromSlotName(pci_name(pdev));
3011 if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
3012 Err = -EFAULT;
3013 goto fault_diag;
3014 }
3015 Ioctl.Len = Length;
3016 if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
3017 Err = -EFAULT;
3018 goto fault_diag;
3019 }
3020fault_diag:
3021 kfree(pMemBuf); /* cleanup everything */
3022 break;
3023#endif
3024 default:
3025 Err = -EOPNOTSUPP;
3026 }
3027
3028 return(Err);
3029
3030} /* SkGeIoctl */
3031
3032
3033/*****************************************************************************
3034 *
3035 * SkGeIocMib - handle a GetMib, SetMib- or PresetMib-ioctl message
3036 *
3037 * Description:
3038 * This function reads/writes the MIB data using PNMI (Private Network
3039 * Management Interface).
3040 * The destination for the data must be provided with the
3041 * ioctl call and is given to the driver in the form of
3042 * a user space address.
3043 * Copying from the user-provided data area into kernel messages
3044 * and back is done by copy_from_user and copy_to_user calls in
3045 * SkGeIoctl.
3046 *
3047 * Returns:
3048 * returned size from PNMI call
3049 */
3050static int SkGeIocMib(
3051DEV_NET *pNet, /* pointer to the adapter context */
3052unsigned int Size, /* length of ioctl data */
3053int mode) /* flag for set/preset */
3054{
3055unsigned long Flags; /* for spin lock */
3056SK_AC *pAC;
3057
3058 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3059 ("SkGeIocMib starts now...\n"));
3060 pAC = pNet->pAC;
3061 /* access MIB */
3062 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3063 switch(mode) {
3064 case SK_IOCTL_GETMIB:
3065 SkPnmiGetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3066 pNet->NetNr);
3067 break;
3068 case SK_IOCTL_PRESETMIB:
3069 SkPnmiPreSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3070 pNet->NetNr);
3071 break;
3072 case SK_IOCTL_SETMIB:
3073 SkPnmiSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
3074 pNet->NetNr);
3075 break;
3076 default:
3077 break;
3078 }
3079 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3080 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
3081 ("MIB data access succeeded\n"));
3082 return (Size);
3083} /* SkGeIocMib */
3084
3085
3086/*****************************************************************************
3087 *
3088 * GetConfiguration - read configuration information
3089 *
3090 * Description:
3091 * This function reads per-adapter configuration information from
3092 * the options provided on the command line.
3093 *
3094 * Returns:
3095 * none
3096 */
3097static void GetConfiguration(
3098SK_AC *pAC) /* pointer to the adapter context structure */
3099{
3100SK_I32 Port; /* preferred port */
3101SK_BOOL AutoSet;
3102SK_BOOL DupSet;
3103int LinkSpeed = SK_LSPEED_AUTO; /* Link speed */
3104int AutoNeg = 1; /* autoneg off (0) or on (1) */
3105int DuplexCap = 0; /* 0=both,1=full,2=half */
3106int FlowCtrl = SK_FLOW_MODE_SYM_OR_REM; /* FlowControl */
3107int MSMode = SK_MS_MODE_AUTO; /* master/slave mode */
3108
3109SK_BOOL IsConTypeDefined = SK_TRUE;
3110SK_BOOL IsLinkSpeedDefined = SK_TRUE;
3111SK_BOOL IsFlowCtrlDefined = SK_TRUE;
3112SK_BOOL IsRoleDefined = SK_TRUE;
3113SK_BOOL IsModeDefined = SK_TRUE;
3114/*
3115 * The two parameters AutoNeg. and DuplexCap. map to one configuration
3116 * parameter. The mapping is described by this table:
3117 * DuplexCap -> | both | full | half |
3118 * AutoNeg | | | |
3119 * -----------------------------------------------------------------
3120 * Off | illegal | Full | Half |
3121 * -----------------------------------------------------------------
3122 * On | AutoBoth | AutoFull | AutoHalf |
3123 * -----------------------------------------------------------------
3124 * Sense | AutoSense | AutoSense | AutoSense |
3125 */
3126int Capabilities[3][3] =
3127 { { -1, SK_LMODE_FULL , SK_LMODE_HALF },
3128 {SK_LMODE_AUTOBOTH , SK_LMODE_AUTOFULL , SK_LMODE_AUTOHALF },
3129 {SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE} };
3130
3131#define DC_BOTH 0
3132#define DC_FULL 1
3133#define DC_HALF 2
3134#define AN_OFF 0
3135#define AN_ON 1
3136#define AN_SENS 2
3137#define M_CurrPort pAC->GIni.GP[Port]
3138
3139
3140 /*
3141 ** Set the default values first for both ports!
3142 */
3143 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3144 M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3145 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3146 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3147 M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
3148 }
3149
3150 /*
3151 ** Check merged parameter ConType. If it has not been used,
3152 ** verify any other parameter (e.g. AutoNeg) and use default values.
3153 **
3154 ** Stating both ConType and other lowlevel link parameters is also
3155 ** possible. If this is the case, the passed ConType-parameter is
3156 ** overwritten by the lowlevel link parameter.
3157 **
3158 ** The following settings are used for a merged ConType-parameter:
3159 **
3160 ** ConType DupCap AutoNeg FlowCtrl Role Speed
3161 ** ------- ------ ------- -------- ---------- -----
3162 ** Auto Both On SymOrRem Auto Auto
3163 ** 100FD Full Off None <ignored> 100
3164 ** 100HD Half Off None <ignored> 100
3165 ** 10FD Full Off None <ignored> 10
3166 ** 10HD Half Off None <ignored> 10
3167 **
3168 ** This ConType parameter is used for all ports of the adapter!
3169 */
3170 if ( (ConType != NULL) &&
3171 (pAC->Index < SK_MAX_CARD_PARAM) &&
3172 (ConType[pAC->Index] != NULL) ) {
3173
3174 /* Check chipset family */
3175 if ((!pAC->ChipsetType) &&
3176 (strcmp(ConType[pAC->Index],"Auto")!=0) &&
3177 (strcmp(ConType[pAC->Index],"")!=0)) {
3178 /* Set the speed parameter back */
3179 printk("sk98lin: Illegal value \"%s\" "
3180 "for ConType."
3181 " Using Auto.\n",
3182 ConType[pAC->Index]);
3183
3184 sprintf(ConType[pAC->Index], "Auto");
3185 }
3186
3187 if (strcmp(ConType[pAC->Index],"")==0) {
3188 IsConTypeDefined = SK_FALSE; /* No ConType defined */
3189 } else if (strcmp(ConType[pAC->Index],"Auto")==0) {
3190 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3191 M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
3192 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
3193 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3194 M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
3195 }
3196 } else if (strcmp(ConType[pAC->Index],"100FD")==0) {
3197 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3198 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3199 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3200 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3201 M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
3202 }
3203 } else if (strcmp(ConType[pAC->Index],"100HD")==0) {
3204 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3205 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3206 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3207 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3208 M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
3209 }
3210 } else if (strcmp(ConType[pAC->Index],"10FD")==0) {
3211 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3212 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
3213 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3214 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3215 M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
3216 }
3217 } else if (strcmp(ConType[pAC->Index],"10HD")==0) {
3218 for (Port = 0; Port < SK_MAX_MACS; Port++) {
3219 M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
3220 M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
3221 M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
3222 M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
3223 }
3224 } else {
3225 printk("sk98lin: Illegal value \"%s\" for ConType\n",
3226 ConType[pAC->Index]);
3227 IsConTypeDefined = SK_FALSE; /* Wrong ConType defined */
3228 }
3229 } else {
3230 IsConTypeDefined = SK_FALSE; /* No ConType defined */
3231 }
3232
3233 /*
3234 ** Parse any parameter settings for port A:
3235 ** a) any LinkSpeed stated?
3236 */
3237 if (Speed_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3238 Speed_A[pAC->Index] != NULL) {
3239 if (strcmp(Speed_A[pAC->Index],"")==0) {
3240 IsLinkSpeedDefined = SK_FALSE;
3241 } else if (strcmp(Speed_A[pAC->Index],"Auto")==0) {
3242 LinkSpeed = SK_LSPEED_AUTO;
3243 } else if (strcmp(Speed_A[pAC->Index],"10")==0) {
3244 LinkSpeed = SK_LSPEED_10MBPS;
3245 } else if (strcmp(Speed_A[pAC->Index],"100")==0) {
3246 LinkSpeed = SK_LSPEED_100MBPS;
3247 } else if (strcmp(Speed_A[pAC->Index],"1000")==0) {
3248 LinkSpeed = SK_LSPEED_1000MBPS;
3249 } else {
3250 printk("sk98lin: Illegal value \"%s\" for Speed_A\n",
3251 Speed_A[pAC->Index]);
3252 IsLinkSpeedDefined = SK_FALSE;
3253 }
3254 } else {
3255 IsLinkSpeedDefined = SK_FALSE;
3256 }
3257
3258 /*
3259 ** Check speed parameter:
3260 ** Only copper type adapter and GE V2 cards
3261 */
3262 if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3263 ((LinkSpeed != SK_LSPEED_AUTO) &&
3264 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3265 printk("sk98lin: Illegal value for Speed_A. "
3266 "Not a copper card or GE V2 card\n Using "
3267 "speed 1000\n");
3268 LinkSpeed = SK_LSPEED_1000MBPS;
3269 }
3270
3271 /*
3272 ** Decide whether to set new config value if somethig valid has
3273 ** been received.
3274 */
3275 if (IsLinkSpeedDefined) {
3276 pAC->GIni.GP[0].PLinkSpeed = LinkSpeed;
3277 }
3278
3279 /*
3280 ** b) Any Autonegotiation and DuplexCapabilities set?
3281 ** Please note that both belong together...
3282 */
3283 AutoNeg = AN_ON; /* tschilling: Default: Autonegotiation on! */
3284 AutoSet = SK_FALSE;
3285 if (AutoNeg_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3286 AutoNeg_A[pAC->Index] != NULL) {
3287 AutoSet = SK_TRUE;
3288 if (strcmp(AutoNeg_A[pAC->Index],"")==0) {
3289 AutoSet = SK_FALSE;
3290 } else if (strcmp(AutoNeg_A[pAC->Index],"On")==0) {
3291 AutoNeg = AN_ON;
3292 } else if (strcmp(AutoNeg_A[pAC->Index],"Off")==0) {
3293 AutoNeg = AN_OFF;
3294 } else if (strcmp(AutoNeg_A[pAC->Index],"Sense")==0) {
3295 AutoNeg = AN_SENS;
3296 } else {
3297 printk("sk98lin: Illegal value \"%s\" for AutoNeg_A\n",
3298 AutoNeg_A[pAC->Index]);
3299 }
3300 }
3301
3302 DuplexCap = DC_BOTH;
3303 DupSet = SK_FALSE;
3304 if (DupCap_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3305 DupCap_A[pAC->Index] != NULL) {
3306 DupSet = SK_TRUE;
3307 if (strcmp(DupCap_A[pAC->Index],"")==0) {
3308 DupSet = SK_FALSE;
3309 } else if (strcmp(DupCap_A[pAC->Index],"Both")==0) {
3310 DuplexCap = DC_BOTH;
3311 } else if (strcmp(DupCap_A[pAC->Index],"Full")==0) {
3312 DuplexCap = DC_FULL;
3313 } else if (strcmp(DupCap_A[pAC->Index],"Half")==0) {
3314 DuplexCap = DC_HALF;
3315 } else {
3316 printk("sk98lin: Illegal value \"%s\" for DupCap_A\n",
3317 DupCap_A[pAC->Index]);
3318 }
3319 }
3320
3321 /*
3322 ** Check for illegal combinations
3323 */
3324 if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3325 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3326 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3327 (pAC->ChipsetType)) {
3328 printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3329 " Using Full Duplex.\n");
3330 DuplexCap = DC_FULL;
3331 }
3332
3333 if ( AutoSet && AutoNeg==AN_SENS && DupSet) {
3334 printk("sk98lin, Port A: DuplexCapabilities"
3335 " ignored using Sense mode\n");
3336 }
3337
3338 if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3339 printk("sk98lin: Port A: Illegal combination"
3340 " of values AutoNeg. and DuplexCap.\n Using "
3341 "Full Duplex\n");
3342 DuplexCap = DC_FULL;
3343 }
3344
3345 if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3346 DuplexCap = DC_FULL;
3347 }
3348
3349 if (!AutoSet && DupSet) {
3350 printk("sk98lin: Port A: Duplex setting not"
3351 " possible in\n default AutoNegotiation mode"
3352 " (Sense).\n Using AutoNegotiation On\n");
3353 AutoNeg = AN_ON;
3354 }
3355
3356 /*
3357 ** set the desired mode
3358 */
3359 if (AutoSet || DupSet) {
3360 pAC->GIni.GP[0].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3361 }
3362
3363 /*
3364 ** c) Any Flowcontrol-parameter set?
3365 */
3366 if (FlowCtrl_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3367 FlowCtrl_A[pAC->Index] != NULL) {
3368 if (strcmp(FlowCtrl_A[pAC->Index],"") == 0) {
3369 IsFlowCtrlDefined = SK_FALSE;
3370 } else if (strcmp(FlowCtrl_A[pAC->Index],"SymOrRem") == 0) {
3371 FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3372 } else if (strcmp(FlowCtrl_A[pAC->Index],"Sym")==0) {
3373 FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3374 } else if (strcmp(FlowCtrl_A[pAC->Index],"LocSend")==0) {
3375 FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3376 } else if (strcmp(FlowCtrl_A[pAC->Index],"None")==0) {
3377 FlowCtrl = SK_FLOW_MODE_NONE;
3378 } else {
3379 printk("sk98lin: Illegal value \"%s\" for FlowCtrl_A\n",
3380 FlowCtrl_A[pAC->Index]);
3381 IsFlowCtrlDefined = SK_FALSE;
3382 }
3383 } else {
3384 IsFlowCtrlDefined = SK_FALSE;
3385 }
3386
3387 if (IsFlowCtrlDefined) {
3388 if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
3389 printk("sk98lin: Port A: FlowControl"
3390 " impossible without AutoNegotiation,"
3391 " disabled\n");
3392 FlowCtrl = SK_FLOW_MODE_NONE;
3393 }
3394 pAC->GIni.GP[0].PFlowCtrlMode = FlowCtrl;
3395 }
3396
3397 /*
3398 ** d) What is with the RoleParameter?
3399 */
3400 if (Role_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3401 Role_A[pAC->Index] != NULL) {
3402 if (strcmp(Role_A[pAC->Index],"")==0) {
3403 IsRoleDefined = SK_FALSE;
3404 } else if (strcmp(Role_A[pAC->Index],"Auto")==0) {
3405 MSMode = SK_MS_MODE_AUTO;
3406 } else if (strcmp(Role_A[pAC->Index],"Master")==0) {
3407 MSMode = SK_MS_MODE_MASTER;
3408 } else if (strcmp(Role_A[pAC->Index],"Slave")==0) {
3409 MSMode = SK_MS_MODE_SLAVE;
3410 } else {
3411 printk("sk98lin: Illegal value \"%s\" for Role_A\n",
3412 Role_A[pAC->Index]);
3413 IsRoleDefined = SK_FALSE;
3414 }
3415 } else {
3416 IsRoleDefined = SK_FALSE;
3417 }
3418
3419 if (IsRoleDefined == SK_TRUE) {
3420 pAC->GIni.GP[0].PMSMode = MSMode;
3421 }
3422
3423
3424
3425 /*
3426 ** Parse any parameter settings for port B:
3427 ** a) any LinkSpeed stated?
3428 */
3429 IsConTypeDefined = SK_TRUE;
3430 IsLinkSpeedDefined = SK_TRUE;
3431 IsFlowCtrlDefined = SK_TRUE;
3432 IsModeDefined = SK_TRUE;
3433
3434 if (Speed_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3435 Speed_B[pAC->Index] != NULL) {
3436 if (strcmp(Speed_B[pAC->Index],"")==0) {
3437 IsLinkSpeedDefined = SK_FALSE;
3438 } else if (strcmp(Speed_B[pAC->Index],"Auto")==0) {
3439 LinkSpeed = SK_LSPEED_AUTO;
3440 } else if (strcmp(Speed_B[pAC->Index],"10")==0) {
3441 LinkSpeed = SK_LSPEED_10MBPS;
3442 } else if (strcmp(Speed_B[pAC->Index],"100")==0) {
3443 LinkSpeed = SK_LSPEED_100MBPS;
3444 } else if (strcmp(Speed_B[pAC->Index],"1000")==0) {
3445 LinkSpeed = SK_LSPEED_1000MBPS;
3446 } else {
3447 printk("sk98lin: Illegal value \"%s\" for Speed_B\n",
3448 Speed_B[pAC->Index]);
3449 IsLinkSpeedDefined = SK_FALSE;
3450 }
3451 } else {
3452 IsLinkSpeedDefined = SK_FALSE;
3453 }
3454
3455 /*
3456 ** Check speed parameter:
3457 ** Only copper type adapter and GE V2 cards
3458 */
3459 if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
3460 ((LinkSpeed != SK_LSPEED_AUTO) &&
3461 (LinkSpeed != SK_LSPEED_1000MBPS))) {
3462 printk("sk98lin: Illegal value for Speed_B. "
3463 "Not a copper card or GE V2 card\n Using "
3464 "speed 1000\n");
3465 LinkSpeed = SK_LSPEED_1000MBPS;
3466 }
3467
3468 /*
3469 ** Decide whether to set new config value if somethig valid has
3470 ** been received.
3471 */
3472 if (IsLinkSpeedDefined) {
3473 pAC->GIni.GP[1].PLinkSpeed = LinkSpeed;
3474 }
3475
3476 /*
3477 ** b) Any Autonegotiation and DuplexCapabilities set?
3478 ** Please note that both belong together...
3479 */
3480 AutoNeg = AN_SENS; /* default: do auto Sense */
3481 AutoSet = SK_FALSE;
3482 if (AutoNeg_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3483 AutoNeg_B[pAC->Index] != NULL) {
3484 AutoSet = SK_TRUE;
3485 if (strcmp(AutoNeg_B[pAC->Index],"")==0) {
3486 AutoSet = SK_FALSE;
3487 } else if (strcmp(AutoNeg_B[pAC->Index],"On")==0) {
3488 AutoNeg = AN_ON;
3489 } else if (strcmp(AutoNeg_B[pAC->Index],"Off")==0) {
3490 AutoNeg = AN_OFF;
3491 } else if (strcmp(AutoNeg_B[pAC->Index],"Sense")==0) {
3492 AutoNeg = AN_SENS;
3493 } else {
3494 printk("sk98lin: Illegal value \"%s\" for AutoNeg_B\n",
3495 AutoNeg_B[pAC->Index]);
3496 }
3497 }
3498
3499 DuplexCap = DC_BOTH;
3500 DupSet = SK_FALSE;
3501 if (DupCap_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3502 DupCap_B[pAC->Index] != NULL) {
3503 DupSet = SK_TRUE;
3504 if (strcmp(DupCap_B[pAC->Index],"")==0) {
3505 DupSet = SK_FALSE;
3506 } else if (strcmp(DupCap_B[pAC->Index],"Both")==0) {
3507 DuplexCap = DC_BOTH;
3508 } else if (strcmp(DupCap_B[pAC->Index],"Full")==0) {
3509 DuplexCap = DC_FULL;
3510 } else if (strcmp(DupCap_B[pAC->Index],"Half")==0) {
3511 DuplexCap = DC_HALF;
3512 } else {
3513 printk("sk98lin: Illegal value \"%s\" for DupCap_B\n",
3514 DupCap_B[pAC->Index]);
3515 }
3516 }
3517
3518
3519 /*
3520 ** Check for illegal combinations
3521 */
3522 if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
3523 ((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
3524 (DuplexCap == SK_LMODE_STAT_HALF)) &&
3525 (pAC->ChipsetType)) {
3526 printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
3527 " Using Full Duplex.\n");
3528 DuplexCap = DC_FULL;
3529 }
3530
3531 if (AutoSet && AutoNeg==AN_SENS && DupSet) {
3532 printk("sk98lin, Port B: DuplexCapabilities"
3533 " ignored using Sense mode\n");
3534 }
3535
3536 if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
3537 printk("sk98lin: Port B: Illegal combination"
3538 " of values AutoNeg. and DuplexCap.\n Using "
3539 "Full Duplex\n");
3540 DuplexCap = DC_FULL;
3541 }
3542
3543 if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
3544 DuplexCap = DC_FULL;
3545 }
3546
3547 if (!AutoSet && DupSet) {
3548 printk("sk98lin: Port B: Duplex setting not"
3549 " possible in\n default AutoNegotiation mode"
3550 " (Sense).\n Using AutoNegotiation On\n");
3551 AutoNeg = AN_ON;
3552 }
3553
3554 /*
3555 ** set the desired mode
3556 */
3557 if (AutoSet || DupSet) {
3558 pAC->GIni.GP[1].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
3559 }
3560
3561 /*
3562 ** c) Any FlowCtrl parameter set?
3563 */
3564 if (FlowCtrl_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3565 FlowCtrl_B[pAC->Index] != NULL) {
3566 if (strcmp(FlowCtrl_B[pAC->Index],"") == 0) {
3567 IsFlowCtrlDefined = SK_FALSE;
3568 } else if (strcmp(FlowCtrl_B[pAC->Index],"SymOrRem") == 0) {
3569 FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
3570 } else if (strcmp(FlowCtrl_B[pAC->Index],"Sym")==0) {
3571 FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
3572 } else if (strcmp(FlowCtrl_B[pAC->Index],"LocSend")==0) {
3573 FlowCtrl = SK_FLOW_MODE_LOC_SEND;
3574 } else if (strcmp(FlowCtrl_B[pAC->Index],"None")==0) {
3575 FlowCtrl = SK_FLOW_MODE_NONE;
3576 } else {
3577 printk("sk98lin: Illegal value \"%s\" for FlowCtrl_B\n",
3578 FlowCtrl_B[pAC->Index]);
3579 IsFlowCtrlDefined = SK_FALSE;
3580 }
3581 } else {
3582 IsFlowCtrlDefined = SK_FALSE;
3583 }
3584
3585 if (IsFlowCtrlDefined) {
3586 if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
3587 printk("sk98lin: Port B: FlowControl"
3588 " impossible without AutoNegotiation,"
3589 " disabled\n");
3590 FlowCtrl = SK_FLOW_MODE_NONE;
3591 }
3592 pAC->GIni.GP[1].PFlowCtrlMode = FlowCtrl;
3593 }
3594
3595 /*
3596 ** d) What is the RoleParameter?
3597 */
3598 if (Role_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3599 Role_B[pAC->Index] != NULL) {
3600 if (strcmp(Role_B[pAC->Index],"")==0) {
3601 IsRoleDefined = SK_FALSE;
3602 } else if (strcmp(Role_B[pAC->Index],"Auto")==0) {
3603 MSMode = SK_MS_MODE_AUTO;
3604 } else if (strcmp(Role_B[pAC->Index],"Master")==0) {
3605 MSMode = SK_MS_MODE_MASTER;
3606 } else if (strcmp(Role_B[pAC->Index],"Slave")==0) {
3607 MSMode = SK_MS_MODE_SLAVE;
3608 } else {
3609 printk("sk98lin: Illegal value \"%s\" for Role_B\n",
3610 Role_B[pAC->Index]);
3611 IsRoleDefined = SK_FALSE;
3612 }
3613 } else {
3614 IsRoleDefined = SK_FALSE;
3615 }
3616
3617 if (IsRoleDefined) {
3618 pAC->GIni.GP[1].PMSMode = MSMode;
3619 }
3620
3621 /*
3622 ** Evaluate settings for both ports
3623 */
3624 pAC->ActivePort = 0;
3625 if (PrefPort != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3626 PrefPort[pAC->Index] != NULL) {
3627 if (strcmp(PrefPort[pAC->Index],"") == 0) { /* Auto */
3628 pAC->ActivePort = 0;
3629 pAC->Rlmt.Net[0].Preference = -1; /* auto */
3630 pAC->Rlmt.Net[0].PrefPort = 0;
3631 } else if (strcmp(PrefPort[pAC->Index],"A") == 0) {
3632 /*
3633 ** do not set ActivePort here, thus a port
3634 ** switch is issued after net up.
3635 */
3636 Port = 0;
3637 pAC->Rlmt.Net[0].Preference = Port;
3638 pAC->Rlmt.Net[0].PrefPort = Port;
3639 } else if (strcmp(PrefPort[pAC->Index],"B") == 0) {
3640 /*
3641 ** do not set ActivePort here, thus a port
3642 ** switch is issued after net up.
3643 */
3644 if (pAC->GIni.GIMacsFound == 1) {
3645 printk("sk98lin: Illegal value \"B\" for PrefPort.\n"
3646 " Port B not available on single port adapters.\n");
3647
3648 pAC->ActivePort = 0;
3649 pAC->Rlmt.Net[0].Preference = -1; /* auto */
3650 pAC->Rlmt.Net[0].PrefPort = 0;
3651 } else {
3652 Port = 1;
3653 pAC->Rlmt.Net[0].Preference = Port;
3654 pAC->Rlmt.Net[0].PrefPort = Port;
3655 }
3656 } else {
3657 printk("sk98lin: Illegal value \"%s\" for PrefPort\n",
3658 PrefPort[pAC->Index]);
3659 }
3660 }
3661
3662 pAC->RlmtNets = 1;
3663
3664 if (RlmtMode != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
3665 RlmtMode[pAC->Index] != NULL) {
3666 if (strcmp(RlmtMode[pAC->Index], "") == 0) {
3667 pAC->RlmtMode = 0;
3668 } else if (strcmp(RlmtMode[pAC->Index], "CheckLinkState") == 0) {
3669 pAC->RlmtMode = SK_RLMT_CHECK_LINK;
3670 } else if (strcmp(RlmtMode[pAC->Index], "CheckLocalPort") == 0) {
3671 pAC->RlmtMode = SK_RLMT_CHECK_LINK |
3672 SK_RLMT_CHECK_LOC_LINK;
3673 } else if (strcmp(RlmtMode[pAC->Index], "CheckSeg") == 0) {
3674 pAC->RlmtMode = SK_RLMT_CHECK_LINK |
3675 SK_RLMT_CHECK_LOC_LINK |
3676 SK_RLMT_CHECK_SEG;
3677 } else if ((strcmp(RlmtMode[pAC->Index], "DualNet") == 0) &&
3678 (pAC->GIni.GIMacsFound == 2)) {
3679 pAC->RlmtMode = SK_RLMT_CHECK_LINK;
3680 pAC->RlmtNets = 2;
3681 } else {
3682 printk("sk98lin: Illegal value \"%s\" for"
3683 " RlmtMode, using default\n",
3684 RlmtMode[pAC->Index]);
3685 pAC->RlmtMode = 0;
3686 }
3687 } else {
3688 pAC->RlmtMode = 0;
3689 }
3690
3691 /*
3692 ** Check the interrupt moderation parameters
3693 */
3694 if (Moderation[pAC->Index] != NULL) {
3695 if (strcmp(Moderation[pAC->Index], "") == 0) {
3696 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3697 } else if (strcmp(Moderation[pAC->Index], "Static") == 0) {
3698 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_STATIC;
3699 } else if (strcmp(Moderation[pAC->Index], "Dynamic") == 0) {
3700 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_DYNAMIC;
3701 } else if (strcmp(Moderation[pAC->Index], "None") == 0) {
3702 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3703 } else {
3704 printk("sk98lin: Illegal value \"%s\" for Moderation.\n"
3705 " Disable interrupt moderation.\n",
3706 Moderation[pAC->Index]);
3707 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3708 }
3709 } else {
3710 pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
3711 }
3712
3713 if (Stats[pAC->Index] != NULL) {
3714 if (strcmp(Stats[pAC->Index], "Yes") == 0) {
3715 pAC->DynIrqModInfo.DisplayStats = SK_TRUE;
3716 } else {
3717 pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
3718 }
3719 } else {
3720 pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
3721 }
3722
3723 if (ModerationMask[pAC->Index] != NULL) {
3724 if (strcmp(ModerationMask[pAC->Index], "Rx") == 0) {
3725 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
3726 } else if (strcmp(ModerationMask[pAC->Index], "Tx") == 0) {
3727 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_ONLY;
3728 } else if (strcmp(ModerationMask[pAC->Index], "Sp") == 0) {
3729 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_ONLY;
3730 } else if (strcmp(ModerationMask[pAC->Index], "RxSp") == 0) {
3731 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
3732 } else if (strcmp(ModerationMask[pAC->Index], "SpRx") == 0) {
3733 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
3734 } else if (strcmp(ModerationMask[pAC->Index], "RxTx") == 0) {
3735 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3736 } else if (strcmp(ModerationMask[pAC->Index], "TxRx") == 0) {
3737 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3738 } else if (strcmp(ModerationMask[pAC->Index], "TxSp") == 0) {
3739 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
3740 } else if (strcmp(ModerationMask[pAC->Index], "SpTx") == 0) {
3741 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
3742 } else if (strcmp(ModerationMask[pAC->Index], "RxTxSp") == 0) {
3743 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3744 } else if (strcmp(ModerationMask[pAC->Index], "RxSpTx") == 0) {
3745 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3746 } else if (strcmp(ModerationMask[pAC->Index], "TxRxSp") == 0) {
3747 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3748 } else if (strcmp(ModerationMask[pAC->Index], "TxSpRx") == 0) {
3749 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3750 } else if (strcmp(ModerationMask[pAC->Index], "SpTxRx") == 0) {
3751 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3752 } else if (strcmp(ModerationMask[pAC->Index], "SpRxTx") == 0) {
3753 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
3754 } else { /* some rubbish */
3755 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
3756 }
3757 } else { /* operator has stated nothing */
3758 pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
3759 }
3760
3761 if (AutoSizing[pAC->Index] != NULL) {
3762 if (strcmp(AutoSizing[pAC->Index], "On") == 0) {
3763 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3764 } else {
3765 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3766 }
3767 } else { /* operator has stated nothing */
3768 pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
3769 }
3770
3771 if (IntsPerSec[pAC->Index] != 0) {
3772 if ((IntsPerSec[pAC->Index]< C_INT_MOD_IPS_LOWER_RANGE) ||
3773 (IntsPerSec[pAC->Index] > C_INT_MOD_IPS_UPPER_RANGE)) {
3774 printk("sk98lin: Illegal value \"%d\" for IntsPerSec. (Range: %d - %d)\n"
3775 " Using default value of %i.\n",
3776 IntsPerSec[pAC->Index],
3777 C_INT_MOD_IPS_LOWER_RANGE,
3778 C_INT_MOD_IPS_UPPER_RANGE,
3779 C_INTS_PER_SEC_DEFAULT);
3780 pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
3781 } else {
3782 pAC->DynIrqModInfo.MaxModIntsPerSec = IntsPerSec[pAC->Index];
3783 }
3784 } else {
3785 pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
3786 }
3787
3788 /*
3789 ** Evaluate upper and lower moderation threshold
3790 */
3791 pAC->DynIrqModInfo.MaxModIntsPerSecUpperLimit =
3792 pAC->DynIrqModInfo.MaxModIntsPerSec +
3793 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
3794
3795 pAC->DynIrqModInfo.MaxModIntsPerSecLowerLimit =
3796 pAC->DynIrqModInfo.MaxModIntsPerSec -
3797 (pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
3798
3799 pAC->DynIrqModInfo.PrevTimeVal = jiffies; /* initial value */
3800
3801
3802} /* GetConfiguration */
3803
3804
3805/*****************************************************************************
3806 *
3807 * ProductStr - return a adapter identification string from vpd
3808 *
3809 * Description:
3810 * This function reads the product name string from the vpd area
3811 * and puts it the field pAC->DeviceString.
3812 *
3813 * Returns: N/A
3814 */
3815static inline int ProductStr(
3816 SK_AC *pAC, /* pointer to adapter context */
3817 char *DeviceStr, /* result string */
3818 int StrLen /* length of the string */
3819)
3820{
3821char Keyword[] = VPD_NAME; /* vpd productname identifier */
3822int ReturnCode; /* return code from vpd_read */
3823unsigned long Flags;
3824
3825 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
3826 ReturnCode = VpdRead(pAC, pAC->IoBase, Keyword, DeviceStr, &StrLen);
3827 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
3828
3829 return ReturnCode;
3830} /* ProductStr */
3831
3832/*****************************************************************************
3833 *
3834 * StartDrvCleanupTimer - Start timer to check for descriptors which
3835 * might be placed in descriptor ring, but
3836 * havent been handled up to now
3837 *
3838 * Description:
3839 * This function requests a HW-timer fo the Yukon card. The actions to
3840 * perform when this timer expires, are located in the SkDrvEvent().
3841 *
3842 * Returns: N/A
3843 */
3844static void
3845StartDrvCleanupTimer(SK_AC *pAC) {
3846 SK_EVPARA EventParam; /* Event struct for timer event */
3847
3848 SK_MEMSET((char *) &EventParam, 0, sizeof(EventParam));
3849 EventParam.Para32[0] = SK_DRV_RX_CLEANUP_TIMER;
3850 SkTimerStart(pAC, pAC->IoBase, &pAC->DrvCleanupTimer,
3851 SK_DRV_RX_CLEANUP_TIMER_LENGTH,
3852 SKGE_DRV, SK_DRV_TIMER, EventParam);
3853}
3854
3855/*****************************************************************************
3856 *
3857 * StopDrvCleanupTimer - Stop timer to check for descriptors
3858 *
3859 * Description:
3860 * This function requests a HW-timer fo the Yukon card. The actions to
3861 * perform when this timer expires, are located in the SkDrvEvent().
3862 *
3863 * Returns: N/A
3864 */
3865static void
3866StopDrvCleanupTimer(SK_AC *pAC) {
3867 SkTimerStop(pAC, pAC->IoBase, &pAC->DrvCleanupTimer);
3868 SK_MEMSET((char *) &pAC->DrvCleanupTimer, 0, sizeof(SK_TIMER));
3869}
3870
3871/****************************************************************************/
3872/* functions for common modules *********************************************/
3873/****************************************************************************/
3874
3875
3876/*****************************************************************************
3877 *
3878 * SkDrvAllocRlmtMbuf - allocate an RLMT mbuf
3879 *
3880 * Description:
3881 * This routine returns an RLMT mbuf or NULL. The RLMT Mbuf structure
3882 * is embedded into a socket buff data area.
3883 *
3884 * Context:
3885 * runtime
3886 *
3887 * Returns:
3888 * NULL or pointer to Mbuf.
3889 */
3890SK_MBUF *SkDrvAllocRlmtMbuf(
3891SK_AC *pAC, /* pointer to adapter context */
3892SK_IOC IoC, /* the IO-context */
3893unsigned BufferSize) /* size of the requested buffer */
3894{
3895SK_MBUF *pRlmtMbuf; /* pointer to a new rlmt-mbuf structure */
3896struct sk_buff *pMsgBlock; /* pointer to a new message block */
3897
3898 pMsgBlock = alloc_skb(BufferSize + sizeof(SK_MBUF), GFP_ATOMIC);
3899 if (pMsgBlock == NULL) {
3900 return (NULL);
3901 }
3902 pRlmtMbuf = (SK_MBUF*) pMsgBlock->data;
3903 skb_reserve(pMsgBlock, sizeof(SK_MBUF));
3904 pRlmtMbuf->pNext = NULL;
3905 pRlmtMbuf->pOs = pMsgBlock;
3906 pRlmtMbuf->pData = pMsgBlock->data; /* Data buffer. */
3907 pRlmtMbuf->Size = BufferSize; /* Data buffer size. */
3908 pRlmtMbuf->Length = 0; /* Length of packet (<= Size). */
3909 return (pRlmtMbuf);
3910
3911} /* SkDrvAllocRlmtMbuf */
3912
3913
3914/*****************************************************************************
3915 *
3916 * SkDrvFreeRlmtMbuf - free an RLMT mbuf
3917 *
3918 * Description:
3919 * This routine frees one or more RLMT mbuf(s).
3920 *
3921 * Context:
3922 * runtime
3923 *
3924 * Returns:
3925 * Nothing
3926 */
3927void SkDrvFreeRlmtMbuf(
3928SK_AC *pAC, /* pointer to adapter context */
3929SK_IOC IoC, /* the IO-context */
3930SK_MBUF *pMbuf) /* size of the requested buffer */
3931{
3932SK_MBUF *pFreeMbuf;
3933SK_MBUF *pNextMbuf;
3934
3935 pFreeMbuf = pMbuf;
3936 do {
3937 pNextMbuf = pFreeMbuf->pNext;
3938 DEV_KFREE_SKB_ANY(pFreeMbuf->pOs);
3939 pFreeMbuf = pNextMbuf;
3940 } while ( pFreeMbuf != NULL );
3941} /* SkDrvFreeRlmtMbuf */
3942
3943
3944/*****************************************************************************
3945 *
3946 * SkOsGetTime - provide a time value
3947 *
3948 * Description:
3949 * This routine provides a time value. The unit is 1/HZ (defined by Linux).
3950 * It is not used for absolute time, but only for time differences.
3951 *
3952 *
3953 * Returns:
3954 * Time value
3955 */
3956SK_U64 SkOsGetTime(SK_AC *pAC)
3957{
3958 SK_U64 PrivateJiffies;
3959 SkOsGetTimeCurrent(pAC, &PrivateJiffies);
3960 return PrivateJiffies;
3961} /* SkOsGetTime */
3962
3963
3964/*****************************************************************************
3965 *
3966 * SkPciReadCfgDWord - read a 32 bit value from pci config space
3967 *
3968 * Description:
3969 * This routine reads a 32 bit value from the pci configuration
3970 * space.
3971 *
3972 * Returns:
3973 * 0 - indicate everything worked ok.
3974 * != 0 - error indication
3975 */
3976int SkPciReadCfgDWord(
3977SK_AC *pAC, /* Adapter Control structure pointer */
3978int PciAddr, /* PCI register address */
3979SK_U32 *pVal) /* pointer to store the read value */
3980{
3981 pci_read_config_dword(pAC->PciDev, PciAddr, pVal);
3982 return(0);
3983} /* SkPciReadCfgDWord */
3984
3985
3986/*****************************************************************************
3987 *
3988 * SkPciReadCfgWord - read a 16 bit value from pci config space
3989 *
3990 * Description:
3991 * This routine reads a 16 bit value from the pci configuration
3992 * space.
3993 *
3994 * Returns:
3995 * 0 - indicate everything worked ok.
3996 * != 0 - error indication
3997 */
3998int SkPciReadCfgWord(
3999SK_AC *pAC, /* Adapter Control structure pointer */
4000int PciAddr, /* PCI register address */
4001SK_U16 *pVal) /* pointer to store the read value */
4002{
4003 pci_read_config_word(pAC->PciDev, PciAddr, pVal);
4004 return(0);
4005} /* SkPciReadCfgWord */
4006
4007
4008/*****************************************************************************
4009 *
4010 * SkPciReadCfgByte - read a 8 bit value from pci config space
4011 *
4012 * Description:
4013 * This routine reads a 8 bit value from the pci configuration
4014 * space.
4015 *
4016 * Returns:
4017 * 0 - indicate everything worked ok.
4018 * != 0 - error indication
4019 */
4020int SkPciReadCfgByte(
4021SK_AC *pAC, /* Adapter Control structure pointer */
4022int PciAddr, /* PCI register address */
4023SK_U8 *pVal) /* pointer to store the read value */
4024{
4025 pci_read_config_byte(pAC->PciDev, PciAddr, pVal);
4026 return(0);
4027} /* SkPciReadCfgByte */
4028
4029
4030/*****************************************************************************
4031 *
4032 * SkPciWriteCfgWord - write a 16 bit value to pci config space
4033 *
4034 * Description:
4035 * This routine writes a 16 bit value to the pci configuration
4036 * space. The flag PciConfigUp indicates whether the config space
4037 * is accesible or must be set up first.
4038 *
4039 * Returns:
4040 * 0 - indicate everything worked ok.
4041 * != 0 - error indication
4042 */
4043int SkPciWriteCfgWord(
4044SK_AC *pAC, /* Adapter Control structure pointer */
4045int PciAddr, /* PCI register address */
4046SK_U16 Val) /* pointer to store the read value */
4047{
4048 pci_write_config_word(pAC->PciDev, PciAddr, Val);
4049 return(0);
4050} /* SkPciWriteCfgWord */
4051
4052
4053/*****************************************************************************
4054 *
4055 * SkPciWriteCfgWord - write a 8 bit value to pci config space
4056 *
4057 * Description:
4058 * This routine writes a 8 bit value to the pci configuration
4059 * space. The flag PciConfigUp indicates whether the config space
4060 * is accesible or must be set up first.
4061 *
4062 * Returns:
4063 * 0 - indicate everything worked ok.
4064 * != 0 - error indication
4065 */
4066int SkPciWriteCfgByte(
4067SK_AC *pAC, /* Adapter Control structure pointer */
4068int PciAddr, /* PCI register address */
4069SK_U8 Val) /* pointer to store the read value */
4070{
4071 pci_write_config_byte(pAC->PciDev, PciAddr, Val);
4072 return(0);
4073} /* SkPciWriteCfgByte */
4074
4075
4076/*****************************************************************************
4077 *
4078 * SkDrvEvent - handle driver events
4079 *
4080 * Description:
4081 * This function handles events from all modules directed to the driver
4082 *
4083 * Context:
4084 * Is called under protection of slow path lock.
4085 *
4086 * Returns:
4087 * 0 if everything ok
4088 * < 0 on error
4089 *
4090 */
4091int SkDrvEvent(
4092SK_AC *pAC, /* pointer to adapter context */
4093SK_IOC IoC, /* io-context */
4094SK_U32 Event, /* event-id */
4095SK_EVPARA Param) /* event-parameter */
4096{
4097SK_MBUF *pRlmtMbuf; /* pointer to a rlmt-mbuf structure */
4098struct sk_buff *pMsg; /* pointer to a message block */
4099int FromPort; /* the port from which we switch away */
4100int ToPort; /* the port we switch to */
4101SK_EVPARA NewPara; /* parameter for further events */
4102int Stat;
4103unsigned long Flags;
4104SK_BOOL DualNet;
4105
4106 switch (Event) {
4107 case SK_DRV_ADAP_FAIL:
4108 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4109 ("ADAPTER FAIL EVENT\n"));
4110 printk("%s: Adapter failed.\n", pAC->dev[0]->name);
4111 /* disable interrupts */
4112 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
4113 /* cgoos */
4114 break;
4115 case SK_DRV_PORT_FAIL:
4116 FromPort = Param.Para32[0];
4117 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4118 ("PORT FAIL EVENT, Port: %d\n", FromPort));
4119 if (FromPort == 0) {
4120 printk("%s: Port A failed.\n", pAC->dev[0]->name);
4121 } else {
4122 printk("%s: Port B failed.\n", pAC->dev[1]->name);
4123 }
4124 /* cgoos */
4125 break;
4126 case SK_DRV_PORT_RESET: /* SK_U32 PortIdx */
4127 /* action list 4 */
4128 FromPort = Param.Para32[0];
4129 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4130 ("PORT RESET EVENT, Port: %d ", FromPort));
4131 NewPara.Para64 = FromPort;
4132 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4133 spin_lock_irqsave(
4134 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4135 Flags);
4136
4137 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_HARD_RST);
4138 netif_carrier_off(pAC->dev[Param.Para32[0]]);
4139 spin_unlock_irqrestore(
4140 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4141 Flags);
4142
4143 /* clear rx ring from received frames */
4144 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE);
4145
4146 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4147 spin_lock_irqsave(
4148 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4149 Flags);
4150
4151 /* tschilling: Handling of return value inserted. */
4152 if (SkGeInitPort(pAC, IoC, FromPort)) {
4153 if (FromPort == 0) {
4154 printk("%s: SkGeInitPort A failed.\n", pAC->dev[0]->name);
4155 } else {
4156 printk("%s: SkGeInitPort B failed.\n", pAC->dev[1]->name);
4157 }
4158 }
4159 SkAddrMcUpdate(pAC,IoC, FromPort);
4160 PortReInitBmu(pAC, FromPort);
4161 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4162 ClearAndStartRx(pAC, FromPort);
4163 spin_unlock_irqrestore(
4164 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4165 Flags);
4166 break;
4167 case SK_DRV_NET_UP: /* SK_U32 PortIdx */
4168 { struct net_device *dev = pAC->dev[Param.Para32[0]];
4169 /* action list 5 */
4170 FromPort = Param.Para32[0];
4171 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4172 ("NET UP EVENT, Port: %d ", Param.Para32[0]));
4173 /* Mac update */
4174 SkAddrMcUpdate(pAC,IoC, FromPort);
4175
4176 if (DoPrintInterfaceChange) {
4177 printk("%s: network connection up using"
4178 " port %c\n", pAC->dev[Param.Para32[0]]->name, 'A'+Param.Para32[0]);
4179
4180 /* tschilling: Values changed according to LinkSpeedUsed. */
4181 Stat = pAC->GIni.GP[FromPort].PLinkSpeedUsed;
4182 if (Stat == SK_LSPEED_STAT_10MBPS) {
4183 printk(" speed: 10\n");
4184 } else if (Stat == SK_LSPEED_STAT_100MBPS) {
4185 printk(" speed: 100\n");
4186 } else if (Stat == SK_LSPEED_STAT_1000MBPS) {
4187 printk(" speed: 1000\n");
4188 } else {
4189 printk(" speed: unknown\n");
4190 }
4191
4192
4193 Stat = pAC->GIni.GP[FromPort].PLinkModeStatus;
4194 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4195 Stat == SK_LMODE_STAT_AUTOFULL) {
4196 printk(" autonegotiation: yes\n");
4197 }
4198 else {
4199 printk(" autonegotiation: no\n");
4200 }
4201 if (Stat == SK_LMODE_STAT_AUTOHALF ||
4202 Stat == SK_LMODE_STAT_HALF) {
4203 printk(" duplex mode: half\n");
4204 }
4205 else {
4206 printk(" duplex mode: full\n");
4207 }
4208 Stat = pAC->GIni.GP[FromPort].PFlowCtrlStatus;
4209 if (Stat == SK_FLOW_STAT_REM_SEND ) {
4210 printk(" flowctrl: remote send\n");
4211 }
4212 else if (Stat == SK_FLOW_STAT_LOC_SEND ){
4213 printk(" flowctrl: local send\n");
4214 }
4215 else if (Stat == SK_FLOW_STAT_SYMMETRIC ){
4216 printk(" flowctrl: symmetric\n");
4217 }
4218 else {
4219 printk(" flowctrl: none\n");
4220 }
4221
4222 /* tschilling: Check against CopperType now. */
4223 if ((pAC->GIni.GICopperType == SK_TRUE) &&
4224 (pAC->GIni.GP[FromPort].PLinkSpeedUsed ==
4225 SK_LSPEED_STAT_1000MBPS)) {
4226 Stat = pAC->GIni.GP[FromPort].PMSStatus;
4227 if (Stat == SK_MS_STAT_MASTER ) {
4228 printk(" role: master\n");
4229 }
4230 else if (Stat == SK_MS_STAT_SLAVE ) {
4231 printk(" role: slave\n");
4232 }
4233 else {
4234 printk(" role: ???\n");
4235 }
4236 }
4237
4238 /*
4239 Display dim (dynamic interrupt moderation)
4240 informations
4241 */
4242 if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_STATIC)
4243 printk(" irq moderation: static (%d ints/sec)\n",
4244 pAC->DynIrqModInfo.MaxModIntsPerSec);
4245 else if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_DYNAMIC)
4246 printk(" irq moderation: dynamic (%d ints/sec)\n",
4247 pAC->DynIrqModInfo.MaxModIntsPerSec);
4248 else
4249 printk(" irq moderation: disabled\n");
4250
4251
4252 printk(" scatter-gather: %s\n",
4253 (dev->features & NETIF_F_SG) ? "enabled" : "disabled");
4254 printk(" tx-checksum: %s\n",
4255 (dev->features & NETIF_F_IP_CSUM) ? "enabled" : "disabled");
4256 printk(" rx-checksum: %s\n",
4257 pAC->RxPort[Param.Para32[0]].RxCsum ? "enabled" : "disabled");
4258
4259 } else {
4260 DoPrintInterfaceChange = SK_TRUE;
4261 }
4262
4263 if ((Param.Para32[0] != pAC->ActivePort) &&
4264 (pAC->RlmtNets == 1)) {
4265 NewPara.Para32[0] = pAC->ActivePort;
4266 NewPara.Para32[1] = Param.Para32[0];
4267 SkEventQueue(pAC, SKGE_DRV, SK_DRV_SWITCH_INTERN,
4268 NewPara);
4269 }
4270
4271 /* Inform the world that link protocol is up. */
4272 netif_carrier_on(dev);
4273 break;
4274 }
4275 case SK_DRV_NET_DOWN: /* SK_U32 Reason */
4276 /* action list 7 */
4277 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4278 ("NET DOWN EVENT "));
4279 if (DoPrintInterfaceChange) {
4280 printk("%s: network connection down\n",
4281 pAC->dev[Param.Para32[1]]->name);
4282 } else {
4283 DoPrintInterfaceChange = SK_TRUE;
4284 }
4285 netif_carrier_off(pAC->dev[Param.Para32[1]]);
4286 break;
4287 case SK_DRV_SWITCH_HARD: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4288 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4289 ("PORT SWITCH HARD "));
4290 case SK_DRV_SWITCH_SOFT: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4291 /* action list 6 */
4292 printk("%s: switching to port %c\n", pAC->dev[0]->name,
4293 'A'+Param.Para32[1]);
4294 case SK_DRV_SWITCH_INTERN: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
4295 FromPort = Param.Para32[0];
4296 ToPort = Param.Para32[1];
4297 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4298 ("PORT SWITCH EVENT, From: %d To: %d (Pref %d) ",
4299 FromPort, ToPort, pAC->Rlmt.Net[0].PrefPort));
4300 NewPara.Para64 = FromPort;
4301 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4302 NewPara.Para64 = ToPort;
4303 SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
4304 spin_lock_irqsave(
4305 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4306 Flags);
4307 spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4308 SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_SOFT_RST);
4309 SkGeStopPort(pAC, IoC, ToPort, SK_STOP_ALL, SK_SOFT_RST);
4310 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4311 spin_unlock_irqrestore(
4312 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4313 Flags);
4314
4315 ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE); /* clears rx ring */
4316 ReceiveIrq(pAC, &pAC->RxPort[ToPort], SK_FALSE); /* clears rx ring */
4317
4318 ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
4319 ClearTxRing(pAC, &pAC->TxPort[ToPort][TX_PRIO_LOW]);
4320 spin_lock_irqsave(
4321 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4322 Flags);
4323 spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4324 pAC->ActivePort = ToPort;
4325#if 0
4326 SetQueueSizes(pAC);
4327#else
4328 /* tschilling: New common function with minimum size check. */
4329 DualNet = SK_FALSE;
4330 if (pAC->RlmtNets == 2) {
4331 DualNet = SK_TRUE;
4332 }
4333
4334 if (SkGeInitAssignRamToQueues(
4335 pAC,
4336 pAC->ActivePort,
4337 DualNet)) {
4338 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4339 spin_unlock_irqrestore(
4340 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4341 Flags);
4342 printk("SkGeInitAssignRamToQueues failed.\n");
4343 break;
4344 }
4345#endif
4346 /* tschilling: Handling of return values inserted. */
4347 if (SkGeInitPort(pAC, IoC, FromPort) ||
4348 SkGeInitPort(pAC, IoC, ToPort)) {
4349 printk("%s: SkGeInitPort failed.\n", pAC->dev[0]->name);
4350 }
4351 if (Event == SK_DRV_SWITCH_SOFT) {
4352 SkMacRxTxEnable(pAC, IoC, FromPort);
4353 }
4354 SkMacRxTxEnable(pAC, IoC, ToPort);
4355 SkAddrSwap(pAC, IoC, FromPort, ToPort);
4356 SkAddrMcUpdate(pAC, IoC, FromPort);
4357 SkAddrMcUpdate(pAC, IoC, ToPort);
4358 PortReInitBmu(pAC, FromPort);
4359 PortReInitBmu(pAC, ToPort);
4360 SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
4361 SkGePollTxD(pAC, IoC, ToPort, SK_TRUE);
4362 ClearAndStartRx(pAC, FromPort);
4363 ClearAndStartRx(pAC, ToPort);
4364 spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
4365 spin_unlock_irqrestore(
4366 &pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
4367 Flags);
4368 break;
4369 case SK_DRV_RLMT_SEND: /* SK_MBUF *pMb */
4370 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4371 ("RLS "));
4372 pRlmtMbuf = (SK_MBUF*) Param.pParaPtr;
4373 pMsg = (struct sk_buff*) pRlmtMbuf->pOs;
4374 skb_put(pMsg, pRlmtMbuf->Length);
4375 if (XmitFrame(pAC, &pAC->TxPort[pRlmtMbuf->PortIdx][TX_PRIO_LOW],
4376 pMsg) < 0)
4377
4378 DEV_KFREE_SKB_ANY(pMsg);
4379 break;
4380 case SK_DRV_TIMER:
4381 if (Param.Para32[0] == SK_DRV_MODERATION_TIMER) {
4382 /*
4383 ** expiration of the moderation timer implies that
4384 ** dynamic moderation is to be applied
4385 */
4386 SkDimStartModerationTimer(pAC);
4387 SkDimModerate(pAC);
4388 if (pAC->DynIrqModInfo.DisplayStats) {
4389 SkDimDisplayModerationSettings(pAC);
4390 }
4391 } else if (Param.Para32[0] == SK_DRV_RX_CLEANUP_TIMER) {
4392 /*
4393 ** check if we need to check for descriptors which
4394 ** haven't been handled the last millisecs
4395 */
4396 StartDrvCleanupTimer(pAC);
4397 if (pAC->GIni.GIMacsFound == 2) {
4398 ReceiveIrq(pAC, &pAC->RxPort[1], SK_FALSE);
4399 }
4400 ReceiveIrq(pAC, &pAC->RxPort[0], SK_FALSE);
4401 } else {
4402 printk("Expiration of unknown timer\n");
4403 }
4404 break;
4405 default:
4406 break;
4407 }
4408 SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
4409 ("END EVENT "));
4410
4411 return (0);
4412} /* SkDrvEvent */
4413
4414
4415/*****************************************************************************
4416 *
4417 * SkErrorLog - log errors
4418 *
4419 * Description:
4420 * This function logs errors to the system buffer and to the console
4421 *
4422 * Returns:
4423 * 0 if everything ok
4424 * < 0 on error
4425 *
4426 */
4427void SkErrorLog(
4428SK_AC *pAC,
4429int ErrClass,
4430int ErrNum,
4431char *pErrorMsg)
4432{
4433char ClassStr[80];
4434
4435 switch (ErrClass) {
4436 case SK_ERRCL_OTHER:
4437 strcpy(ClassStr, "Other error");
4438 break;
4439 case SK_ERRCL_CONFIG:
4440 strcpy(ClassStr, "Configuration error");
4441 break;
4442 case SK_ERRCL_INIT:
4443 strcpy(ClassStr, "Initialization error");
4444 break;
4445 case SK_ERRCL_NORES:
4446 strcpy(ClassStr, "Out of resources error");
4447 break;
4448 case SK_ERRCL_SW:
4449 strcpy(ClassStr, "internal Software error");
4450 break;
4451 case SK_ERRCL_HW:
4452 strcpy(ClassStr, "Hardware failure");
4453 break;
4454 case SK_ERRCL_COMM:
4455 strcpy(ClassStr, "Communication error");
4456 break;
4457 }
4458 printk(KERN_INFO "%s: -- ERROR --\n Class: %s\n"
4459 " Nr: 0x%x\n Msg: %s\n", pAC->dev[0]->name,
4460 ClassStr, ErrNum, pErrorMsg);
4461
4462} /* SkErrorLog */
4463
4464#ifdef SK_DIAG_SUPPORT
4465
4466/*****************************************************************************
4467 *
4468 * SkDrvEnterDiagMode - handles DIAG attach request
4469 *
4470 * Description:
4471 * Notify the kernel to NOT access the card any longer due to DIAG
4472 * Deinitialize the Card
4473 *
4474 * Returns:
4475 * int
4476 */
4477int SkDrvEnterDiagMode(
4478SK_AC *pAc) /* pointer to adapter context */
4479{
4480 DEV_NET *pNet = netdev_priv(pAc->dev[0]);
4481 SK_AC *pAC = pNet->pAC;
4482
4483 SK_MEMCPY(&(pAc->PnmiBackup), &(pAc->PnmiStruct),
4484 sizeof(SK_PNMI_STRUCT_DATA));
4485
4486 pAC->DiagModeActive = DIAG_ACTIVE;
4487 if (pAC->BoardLevel > SK_INIT_DATA) {
4488 if (netif_running(pAC->dev[0])) {
4489 pAC->WasIfUp[0] = SK_TRUE;
4490 pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4491 DoPrintInterfaceChange = SK_FALSE;
4492 SkDrvDeInitAdapter(pAC, 0); /* performs SkGeClose */
4493 } else {
4494 pAC->WasIfUp[0] = SK_FALSE;
4495 }
4496 if (pNet != netdev_priv(pAC->dev[1])) {
4497 pNet = netdev_priv(pAC->dev[1]);
4498 if (netif_running(pAC->dev[1])) {
4499 pAC->WasIfUp[1] = SK_TRUE;
4500 pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4501 DoPrintInterfaceChange = SK_FALSE;
4502 SkDrvDeInitAdapter(pAC, 1); /* do SkGeClose */
4503 } else {
4504 pAC->WasIfUp[1] = SK_FALSE;
4505 }
4506 }
4507 pAC->BoardLevel = SK_INIT_DATA;
4508 }
4509 return(0);
4510}
4511
4512/*****************************************************************************
4513 *
4514 * SkDrvLeaveDiagMode - handles DIAG detach request
4515 *
4516 * Description:
4517 * Notify the kernel to may access the card again after use by DIAG
4518 * Initialize the Card
4519 *
4520 * Returns:
4521 * int
4522 */
4523int SkDrvLeaveDiagMode(
4524SK_AC *pAc) /* pointer to adapter control context */
4525{
4526 SK_MEMCPY(&(pAc->PnmiStruct), &(pAc->PnmiBackup),
4527 sizeof(SK_PNMI_STRUCT_DATA));
4528 pAc->DiagModeActive = DIAG_NOTACTIVE;
4529 pAc->Pnmi.DiagAttached = SK_DIAG_IDLE;
4530 if (pAc->WasIfUp[0] == SK_TRUE) {
4531 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4532 DoPrintInterfaceChange = SK_FALSE;
4533 SkDrvInitAdapter(pAc, 0); /* first device */
4534 }
4535 if (pAc->WasIfUp[1] == SK_TRUE) {
4536 pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
4537 DoPrintInterfaceChange = SK_FALSE;
4538 SkDrvInitAdapter(pAc, 1); /* second device */
4539 }
4540 return(0);
4541}
4542
4543/*****************************************************************************
4544 *
4545 * ParseDeviceNbrFromSlotName - Evaluate PCI device number
4546 *
4547 * Description:
4548 * This function parses the PCI slot name information string and will
4549 * retrieve the devcie number out of it. The slot_name maintianed by
4550 * linux is in the form of '02:0a.0', whereas the first two characters
4551 * represent the bus number in hex (in the sample above this is
4552 * pci bus 0x02) and the next two characters the device number (0x0a).
4553 *
4554 * Returns:
4555 * SK_U32: The device number from the PCI slot name
4556 */
4557
4558static SK_U32 ParseDeviceNbrFromSlotName(
4559const char *SlotName) /* pointer to pci slot name eg. '02:0a.0' */
4560{
4561 char *CurrCharPos = (char *) SlotName;
4562 int FirstNibble = -1;
4563 int SecondNibble = -1;
4564 SK_U32 Result = 0;
4565
4566 while (*CurrCharPos != '\0') {
4567 if (*CurrCharPos == ':') {
4568 while (*CurrCharPos != '.') {
4569 CurrCharPos++;
4570 if ( (*CurrCharPos >= '0') &&
4571 (*CurrCharPos <= '9')) {
4572 if (FirstNibble == -1) {
4573 /* dec. value for '0' */
4574 FirstNibble = *CurrCharPos - 48;
4575 } else {
4576 SecondNibble = *CurrCharPos - 48;
4577 }
4578 } else if ( (*CurrCharPos >= 'a') &&
4579 (*CurrCharPos <= 'f') ) {
4580 if (FirstNibble == -1) {
4581 FirstNibble = *CurrCharPos - 87;
4582 } else {
4583 SecondNibble = *CurrCharPos - 87;
4584 }
4585 } else {
4586 Result = 0;
4587 }
4588 }
4589
4590 Result = FirstNibble;
4591 Result = Result << 4; /* first nibble is higher one */
4592 Result = Result | SecondNibble;
4593 }
4594 CurrCharPos++; /* next character */
4595 }
4596 return (Result);
4597}
4598
4599/****************************************************************************
4600 *
4601 * SkDrvDeInitAdapter - deinitialize adapter (this function is only
4602 * called if Diag attaches to that card)
4603 *
4604 * Description:
4605 * Close initialized adapter.
4606 *
4607 * Returns:
4608 * 0 - on success
4609 * error code - on error
4610 */
4611static int SkDrvDeInitAdapter(
4612SK_AC *pAC, /* pointer to adapter context */
4613int devNbr) /* what device is to be handled */
4614{
4615 struct SK_NET_DEVICE *dev;
4616
4617 dev = pAC->dev[devNbr];
4618
4619 /* On Linux 2.6 the network driver does NOT mess with reference
4620 ** counts. The driver MUST be able to be unloaded at any time
4621 ** due to the possibility of hotplug.
4622 */
4623 if (SkGeClose(dev) != 0) {
4624 return (-1);
4625 }
4626 return (0);
4627
4628} /* SkDrvDeInitAdapter() */
4629
4630/****************************************************************************
4631 *
4632 * SkDrvInitAdapter - Initialize adapter (this function is only
4633 * called if Diag deattaches from that card)
4634 *
4635 * Description:
4636 * Close initialized adapter.
4637 *
4638 * Returns:
4639 * 0 - on success
4640 * error code - on error
4641 */
4642static int SkDrvInitAdapter(
4643SK_AC *pAC, /* pointer to adapter context */
4644int devNbr) /* what device is to be handled */
4645{
4646 struct SK_NET_DEVICE *dev;
4647
4648 dev = pAC->dev[devNbr];
4649
4650 if (SkGeOpen(dev) != 0) {
4651 return (-1);
4652 }
4653
4654 /*
4655 ** Use correct MTU size and indicate to kernel TX queue can be started
4656 */
4657 if (SkGeChangeMtu(dev, dev->mtu) != 0) {
4658 return (-1);
4659 }
4660 return (0);
4661
4662} /* SkDrvInitAdapter */
4663
4664#endif
4665
4666#ifdef DEBUG
4667/****************************************************************************/
4668/* "debug only" section *****************************************************/
4669/****************************************************************************/
4670
4671
4672/*****************************************************************************
4673 *
4674 * DumpMsg - print a frame
4675 *
4676 * Description:
4677 * This function prints frames to the system logfile/to the console.
4678 *
4679 * Returns: N/A
4680 *
4681 */
4682static void DumpMsg(struct sk_buff *skb, char *str)
4683{
4684 int msglen;
4685
4686 if (skb == NULL) {
4687 printk("DumpMsg(): NULL-Message\n");
4688 return;
4689 }
4690
4691 if (skb->data == NULL) {
4692 printk("DumpMsg(): Message empty\n");
4693 return;
4694 }
4695
4696 msglen = skb->len;
4697 if (msglen > 64)
4698 msglen = 64;
4699
4700 printk("--- Begin of message from %s , len %d (from %d) ----\n", str, msglen, skb->len);
4701
4702 DumpData((char *)skb->data, msglen);
4703
4704 printk("------- End of message ---------\n");
4705} /* DumpMsg */
4706
4707
4708
4709/*****************************************************************************
4710 *
4711 * DumpData - print a data area
4712 *
4713 * Description:
4714 * This function prints a area of data to the system logfile/to the
4715 * console.
4716 *
4717 * Returns: N/A
4718 *
4719 */
4720static void DumpData(char *p, int size)
4721{
4722register int i;
4723int haddr, addr;
4724char hex_buffer[180];
4725char asc_buffer[180];
4726char HEXCHAR[] = "0123456789ABCDEF";
4727
4728 addr = 0;
4729 haddr = 0;
4730 hex_buffer[0] = 0;
4731 asc_buffer[0] = 0;
4732 for (i=0; i < size; ) {
4733 if (*p >= '0' && *p <='z')
4734 asc_buffer[addr] = *p;
4735 else
4736 asc_buffer[addr] = '.';
4737 addr++;
4738 asc_buffer[addr] = 0;
4739 hex_buffer[haddr] = HEXCHAR[(*p & 0xf0) >> 4];
4740 haddr++;
4741 hex_buffer[haddr] = HEXCHAR[*p & 0x0f];
4742 haddr++;
4743 hex_buffer[haddr] = ' ';
4744 haddr++;
4745 hex_buffer[haddr] = 0;
4746 p++;
4747 i++;
4748 if (i%16 == 0) {
4749 printk("%s %s\n", hex_buffer, asc_buffer);
4750 addr = 0;
4751 haddr = 0;
4752 }
4753 }
4754} /* DumpData */
4755
4756
4757/*****************************************************************************
4758 *
4759 * DumpLong - print a data area as long values
4760 *
4761 * Description:
4762 * This function prints a area of data to the system logfile/to the
4763 * console.
4764 *
4765 * Returns: N/A
4766 *
4767 */
4768static void DumpLong(char *pc, int size)
4769{
4770register int i;
4771int haddr, addr;
4772char hex_buffer[180];
4773char asc_buffer[180];
4774char HEXCHAR[] = "0123456789ABCDEF";
4775long *p;
4776int l;
4777
4778 addr = 0;
4779 haddr = 0;
4780 hex_buffer[0] = 0;
4781 asc_buffer[0] = 0;
4782 p = (long*) pc;
4783 for (i=0; i < size; ) {
4784 l = (long) *p;
4785 hex_buffer[haddr] = HEXCHAR[(l >> 28) & 0xf];
4786 haddr++;
4787 hex_buffer[haddr] = HEXCHAR[(l >> 24) & 0xf];
4788 haddr++;
4789 hex_buffer[haddr] = HEXCHAR[(l >> 20) & 0xf];
4790 haddr++;
4791 hex_buffer[haddr] = HEXCHAR[(l >> 16) & 0xf];
4792 haddr++;
4793 hex_buffer[haddr] = HEXCHAR[(l >> 12) & 0xf];
4794 haddr++;
4795 hex_buffer[haddr] = HEXCHAR[(l >> 8) & 0xf];
4796 haddr++;
4797 hex_buffer[haddr] = HEXCHAR[(l >> 4) & 0xf];
4798 haddr++;
4799 hex_buffer[haddr] = HEXCHAR[l & 0x0f];
4800 haddr++;
4801 hex_buffer[haddr] = ' ';
4802 haddr++;
4803 hex_buffer[haddr] = 0;
4804 p++;
4805 i++;
4806 if (i%8 == 0) {
4807 printk("%4x %s\n", (i-8)*4, hex_buffer);
4808 haddr = 0;
4809 }
4810 }
4811 printk("------------------------\n");
4812} /* DumpLong */
4813
4814#endif
4815
4816static int __devinit skge_probe_one(struct pci_dev *pdev,
4817 const struct pci_device_id *ent)
4818{
4819 SK_AC *pAC;
4820 DEV_NET *pNet = NULL;
4821 struct net_device *dev = NULL;
4822 static int boards_found = 0;
4823 int error = -ENODEV;
4824 int using_dac = 0;
4825 char DeviceStr[80];
4826
4827 if (pci_enable_device(pdev))
4828 goto out;
4829
4830 /* Configure DMA attributes. */
4831 if (sizeof(dma_addr_t) > sizeof(u32) &&
4832 !(error = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
4833 using_dac = 1;
4834 error = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4835 if (error < 0) {
4836 printk(KERN_ERR "sk98lin %s unable to obtain 64 bit DMA "
4837 "for consistent allocations\n", pci_name(pdev));
4838 goto out_disable_device;
4839 }
4840 } else {
4841 error = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4842 if (error) {
4843 printk(KERN_ERR "sk98lin %s no usable DMA configuration\n",
4844 pci_name(pdev));
4845 goto out_disable_device;
4846 }
4847 }
4848
4849 error = -ENOMEM;
4850 dev = alloc_etherdev(sizeof(DEV_NET));
4851 if (!dev) {
4852 printk(KERN_ERR "sk98lin: unable to allocate etherdev "
4853 "structure!\n");
4854 goto out_disable_device;
4855 }
4856
4857 pNet = netdev_priv(dev);
4858 pNet->pAC = kzalloc(sizeof(SK_AC), GFP_KERNEL);
4859 if (!pNet->pAC) {
4860 printk(KERN_ERR "sk98lin: unable to allocate adapter "
4861 "structure!\n");
4862 goto out_free_netdev;
4863 }
4864
4865 pAC = pNet->pAC;
4866 pAC->PciDev = pdev;
4867
4868 pAC->dev[0] = dev;
4869 pAC->dev[1] = dev;
4870 pAC->CheckQueue = SK_FALSE;
4871
4872 dev->irq = pdev->irq;
4873
4874 error = SkGeInitPCI(pAC);
4875 if (error) {
4876 printk(KERN_ERR "sk98lin: PCI setup failed: %i\n", error);
4877 goto out_free_netdev;
4878 }
4879
4880 SET_MODULE_OWNER(dev);
4881 dev->open = &SkGeOpen;
4882 dev->stop = &SkGeClose;
4883 dev->hard_start_xmit = &SkGeXmit;
4884 dev->get_stats = &SkGeStats;
4885 dev->set_multicast_list = &SkGeSetRxMode;
4886 dev->set_mac_address = &SkGeSetMacAddr;
4887 dev->do_ioctl = &SkGeIoctl;
4888 dev->change_mtu = &SkGeChangeMtu;
4889#ifdef CONFIG_NET_POLL_CONTROLLER
4890 dev->poll_controller = &SkGePollController;
4891#endif
4892 SET_NETDEV_DEV(dev, &pdev->dev);
4893 SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
4894
4895 /* Use only if yukon hardware */
4896 if (pAC->ChipsetType) {
4897#ifdef USE_SK_TX_CHECKSUM
4898 dev->features |= NETIF_F_IP_CSUM;
4899#endif
4900#ifdef SK_ZEROCOPY
4901 dev->features |= NETIF_F_SG;
4902#endif
4903#ifdef USE_SK_RX_CHECKSUM
4904 pAC->RxPort[0].RxCsum = 1;
4905#endif
4906 }
4907
4908 if (using_dac)
4909 dev->features |= NETIF_F_HIGHDMA;
4910
4911 pAC->Index = boards_found++;
4912
4913 error = SkGeBoardInit(dev, pAC);
4914 if (error)
4915 goto out_free_netdev;
4916
4917 /* Read Adapter name from VPD */
4918 if (ProductStr(pAC, DeviceStr, sizeof(DeviceStr)) != 0) {
4919 error = -EIO;
4920 printk(KERN_ERR "sk98lin: Could not read VPD data.\n");
4921 goto out_free_resources;
4922 }
4923
4924 /* Register net device */
4925 error = register_netdev(dev);
4926 if (error) {
4927 printk(KERN_ERR "sk98lin: Could not register device.\n");
4928 goto out_free_resources;
4929 }
4930
4931 /* Print adapter specific string from vpd */
4932 printk("%s: %s\n", dev->name, DeviceStr);
4933
4934 /* Print configuration settings */
4935 printk(" PrefPort:%c RlmtMode:%s\n",
4936 'A' + pAC->Rlmt.Net[0].Port[pAC->Rlmt.Net[0].PrefPort]->PortNumber,
4937 (pAC->RlmtMode==0) ? "Check Link State" :
4938 ((pAC->RlmtMode==1) ? "Check Link State" :
4939 ((pAC->RlmtMode==3) ? "Check Local Port" :
4940 ((pAC->RlmtMode==7) ? "Check Segmentation" :
4941 ((pAC->RlmtMode==17) ? "Dual Check Link State" :"Error")))));
4942
4943 SkGeYellowLED(pAC, pAC->IoBase, 1);
4944
4945 memcpy(&dev->dev_addr, &pAC->Addr.Net[0].CurrentMacAddress, 6);
4946 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
4947
4948 pNet->PortNr = 0;
4949 pNet->NetNr = 0;
4950
4951 boards_found++;
4952
4953 pci_set_drvdata(pdev, dev);
4954
4955 /* More then one port found */
4956 if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
4957 dev = alloc_etherdev(sizeof(DEV_NET));
4958 if (!dev) {
4959 printk(KERN_ERR "sk98lin: unable to allocate etherdev "
4960 "structure!\n");
4961 goto single_port;
4962 }
4963
4964 pNet = netdev_priv(dev);
4965 pNet->PortNr = 1;
4966 pNet->NetNr = 1;
4967 pNet->pAC = pAC;
4968
4969 dev->open = &SkGeOpen;
4970 dev->stop = &SkGeClose;
4971 dev->hard_start_xmit = &SkGeXmit;
4972 dev->get_stats = &SkGeStats;
4973 dev->set_multicast_list = &SkGeSetRxMode;
4974 dev->set_mac_address = &SkGeSetMacAddr;
4975 dev->do_ioctl = &SkGeIoctl;
4976 dev->change_mtu = &SkGeChangeMtu;
4977 SET_NETDEV_DEV(dev, &pdev->dev);
4978 SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
4979
4980 if (pAC->ChipsetType) {
4981#ifdef USE_SK_TX_CHECKSUM
4982 dev->features |= NETIF_F_IP_CSUM;
4983#endif
4984#ifdef SK_ZEROCOPY
4985 dev->features |= NETIF_F_SG;
4986#endif
4987#ifdef USE_SK_RX_CHECKSUM
4988 pAC->RxPort[1].RxCsum = 1;
4989#endif
4990 }
4991
4992 if (using_dac)
4993 dev->features |= NETIF_F_HIGHDMA;
4994
4995 error = register_netdev(dev);
4996 if (error) {
4997 printk(KERN_ERR "sk98lin: Could not register device"
4998 " for second port. (%d)\n", error);
4999 free_netdev(dev);
5000 goto single_port;
5001 }
5002
5003 pAC->dev[1] = dev;
5004 memcpy(&dev->dev_addr,
5005 &pAC->Addr.Net[1].CurrentMacAddress, 6);
5006 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5007
5008 printk("%s: %s\n", dev->name, DeviceStr);
5009 printk(" PrefPort:B RlmtMode:Dual Check Link State\n");
5010 }
5011
5012single_port:
5013
5014 /* Save the hardware revision */
5015 pAC->HWRevision = (((pAC->GIni.GIPciHwRev >> 4) & 0x0F)*10) +
5016 (pAC->GIni.GIPciHwRev & 0x0F);
5017
5018 /* Set driver globals */
5019 pAC->Pnmi.pDriverFileName = DRIVER_FILE_NAME;
5020 pAC->Pnmi.pDriverReleaseDate = DRIVER_REL_DATE;
5021
5022 memset(&pAC->PnmiBackup, 0, sizeof(SK_PNMI_STRUCT_DATA));
5023 memcpy(&pAC->PnmiBackup, &pAC->PnmiStruct, sizeof(SK_PNMI_STRUCT_DATA));
5024
5025 return 0;
5026
5027 out_free_resources:
5028 FreeResources(dev);
5029 out_free_netdev:
5030 free_netdev(dev);
5031 out_disable_device:
5032 pci_disable_device(pdev);
5033 out:
5034 return error;
5035}
5036
5037static void __devexit skge_remove_one(struct pci_dev *pdev)
5038{
5039 struct net_device *dev = pci_get_drvdata(pdev);
5040 DEV_NET *pNet = netdev_priv(dev);
5041 SK_AC *pAC = pNet->pAC;
5042 struct net_device *otherdev = pAC->dev[1];
5043
5044 unregister_netdev(dev);
5045
5046 SkGeYellowLED(pAC, pAC->IoBase, 0);
5047
5048 if (pAC->BoardLevel == SK_INIT_RUN) {
5049 SK_EVPARA EvPara;
5050 unsigned long Flags;
5051
5052 /* board is still alive */
5053 spin_lock_irqsave(&pAC->SlowPathLock, Flags);
5054 EvPara.Para32[0] = 0;
5055 EvPara.Para32[1] = -1;
5056 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
5057 EvPara.Para32[0] = 1;
5058 EvPara.Para32[1] = -1;
5059 SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
5060 SkEventDispatcher(pAC, pAC->IoBase);
5061 /* disable interrupts */
5062 SK_OUT32(pAC->IoBase, B0_IMSK, 0);
5063 SkGeDeInit(pAC, pAC->IoBase);
5064 spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
5065 pAC->BoardLevel = SK_INIT_DATA;
5066 /* We do NOT check here, if IRQ was pending, of course*/
5067 }
5068
5069 if (pAC->BoardLevel == SK_INIT_IO) {
5070 /* board is still alive */
5071 SkGeDeInit(pAC, pAC->IoBase);
5072 pAC->BoardLevel = SK_INIT_DATA;
5073 }
5074
5075 FreeResources(dev);
5076 free_netdev(dev);
5077 if (otherdev != dev)
5078 free_netdev(otherdev);
5079 kfree(pAC);
5080}
5081
5082#ifdef CONFIG_PM
5083static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
5084{
5085 struct net_device *dev = pci_get_drvdata(pdev);
5086 DEV_NET *pNet = netdev_priv(dev);
5087 SK_AC *pAC = pNet->pAC;
5088 struct net_device *otherdev = pAC->dev[1];
5089
5090 if (netif_running(dev)) {
5091 netif_carrier_off(dev);
5092 DoPrintInterfaceChange = SK_FALSE;
5093 SkDrvDeInitAdapter(pAC, 0); /* performs SkGeClose */
5094 netif_device_detach(dev);
5095 }
5096 if (otherdev != dev) {
5097 if (netif_running(otherdev)) {
5098 netif_carrier_off(otherdev);
5099 DoPrintInterfaceChange = SK_FALSE;
5100 SkDrvDeInitAdapter(pAC, 1); /* performs SkGeClose */
5101 netif_device_detach(otherdev);
5102 }
5103 }
5104
5105 pci_save_state(pdev);
5106 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
5107 if (pAC->AllocFlag & SK_ALLOC_IRQ) {
5108 free_irq(dev->irq, dev);
5109 }
5110 pci_disable_device(pdev);
5111 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5112
5113 return 0;
5114}
5115
5116static int skge_resume(struct pci_dev *pdev)
5117{
5118 struct net_device *dev = pci_get_drvdata(pdev);
5119 DEV_NET *pNet = netdev_priv(dev);
5120 SK_AC *pAC = pNet->pAC;
5121 struct net_device *otherdev = pAC->dev[1];
5122 int ret;
5123
5124 pci_set_power_state(pdev, PCI_D0);
5125 pci_restore_state(pdev);
5126 ret = pci_enable_device(pdev);
5127 if (ret) {
5128 printk(KERN_WARNING "sk98lin: unable to enable device %s "
5129 "in resume\n", dev->name);
5130 goto err_out;
5131 }
5132 pci_set_master(pdev);
5133 if (pAC->GIni.GIMacsFound == 2)
5134 ret = request_irq(dev->irq, SkGeIsr, IRQF_SHARED, "sk98lin", dev);
5135 else
5136 ret = request_irq(dev->irq, SkGeIsrOnePort, IRQF_SHARED, "sk98lin", dev);
5137 if (ret) {
5138 printk(KERN_WARNING "sk98lin: unable to acquire IRQ %d\n", dev->irq);
5139 ret = -EBUSY;
5140 goto err_out_disable_pdev;
5141 }
5142
5143 netif_device_attach(dev);
5144 if (netif_running(dev)) {
5145 DoPrintInterfaceChange = SK_FALSE;
5146 SkDrvInitAdapter(pAC, 0); /* first device */
5147 }
5148 if (otherdev != dev) {
5149 netif_device_attach(otherdev);
5150 if (netif_running(otherdev)) {
5151 DoPrintInterfaceChange = SK_FALSE;
5152 SkDrvInitAdapter(pAC, 1); /* second device */
5153 }
5154 }
5155
5156 return 0;
5157
5158err_out_disable_pdev:
5159 pci_disable_device(pdev);
5160err_out:
5161 pAC->AllocFlag &= ~SK_ALLOC_IRQ;
5162 dev->irq = 0;
5163 return ret;
5164}
5165#else
5166#define skge_suspend NULL
5167#define skge_resume NULL
5168#endif
5169
5170static struct pci_device_id skge_pci_tbl[] = {
5171#ifdef SK98LIN_ALL_DEVICES
5172 { PCI_VENDOR_ID_3COM, 0x1700, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5173 { PCI_VENDOR_ID_3COM, 0x80eb, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5174#endif
5175#ifdef GENESIS
5176 /* Generic SysKonnect SK-98xx Gigabit Ethernet Server Adapter */
5177 { PCI_VENDOR_ID_SYSKONNECT, 0x4300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5178#endif
5179 /* Generic SysKonnect SK-98xx V2.0 Gigabit Ethernet Adapter */
5180 { PCI_VENDOR_ID_SYSKONNECT, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5181#ifdef SK98LIN_ALL_DEVICES
5182/* DLink card does not have valid VPD so this driver gags
5183 * { PCI_VENDOR_ID_DLINK, 0x4c00, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5184 */
5185 { PCI_VENDOR_ID_MARVELL, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5186 { PCI_VENDOR_ID_MARVELL, 0x5005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5187 { PCI_VENDOR_ID_CNET, 0x434e, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5188 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
5189 { PCI_VENDOR_ID_LINKSYS, 0x1064, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
5190#endif
5191 { 0 }
5192};
5193
5194MODULE_DEVICE_TABLE(pci, skge_pci_tbl);
5195
5196static struct pci_driver skge_driver = {
5197 .name = "sk98lin",
5198 .id_table = skge_pci_tbl,
5199 .probe = skge_probe_one,
5200 .remove = __devexit_p(skge_remove_one),
5201 .suspend = skge_suspend,
5202 .resume = skge_resume,
5203};
5204
5205static int __init skge_init(void)
5206{
5207 printk(KERN_NOTICE "sk98lin: driver has been replaced by the skge driver"
5208 " and is scheduled for removal\n");
5209
5210 return pci_register_driver(&skge_driver);
5211}
5212
5213static void __exit skge_exit(void)
5214{
5215 pci_unregister_driver(&skge_driver);
5216}
5217
5218module_init(skge_init);
5219module_exit(skge_exit);