diff options
Diffstat (limited to 'drivers/net/lguest_net.c')
-rw-r--r-- | drivers/net/lguest_net.c | 237 |
1 files changed, 220 insertions, 17 deletions
diff --git a/drivers/net/lguest_net.c b/drivers/net/lguest_net.c index 112778652f7d..cab57911a80e 100644 --- a/drivers/net/lguest_net.c +++ b/drivers/net/lguest_net.c | |||
@@ -1,6 +1,13 @@ | |||
1 | /* A simple network driver for lguest. | 1 | /*D:500 |
2 | * The Guest network driver. | ||
2 | * | 3 | * |
3 | * Copyright 2006 Rusty Russell <rusty@rustcorp.com.au> IBM Corporation | 4 | * This is very simple a virtual network driver, and our last Guest driver. |
5 | * The only trick is that it can talk directly to multiple other recipients | ||
6 | * (ie. other Guests on the same network). It can also be used with only the | ||
7 | * Host on the network. | ||
8 | :*/ | ||
9 | |||
10 | /* Copyright 2006 Rusty Russell <rusty@rustcorp.com.au> IBM Corporation | ||
4 | * | 11 | * |
5 | * This program is free software; you can redistribute it and/or modify | 12 | * This program is free software; you can redistribute it and/or modify |
6 | * it under the terms of the GNU General Public License as published by | 13 | * it under the terms of the GNU General Public License as published by |
@@ -28,23 +35,47 @@ | |||
28 | #define MAX_LANS 4 | 35 | #define MAX_LANS 4 |
29 | #define NUM_SKBS 8 | 36 | #define NUM_SKBS 8 |
30 | 37 | ||
38 | /*M:011 Network code master Jeff Garzik points out numerous shortcomings in | ||
39 | * this driver if it aspires to greatness. | ||
40 | * | ||
41 | * Firstly, it doesn't use "NAPI": the networking's New API, and is poorer for | ||
42 | * it. As he says "NAPI means system-wide load leveling, across multiple | ||
43 | * network interfaces. Lack of NAPI can mean competition at higher loads." | ||
44 | * | ||
45 | * He also points out that we don't implement set_mac_address, so users cannot | ||
46 | * change the devices hardware address. When I asked why one would want to: | ||
47 | * "Bonding, and situations where you /do/ want the MAC address to "leak" out | ||
48 | * of the host onto the wider net." | ||
49 | * | ||
50 | * Finally, he would like module unloading: "It is not unrealistic to think of | ||
51 | * [un|re|]loading the net support module in an lguest guest. And, adding | ||
52 | * module support makes the programmer more responsible, because they now have | ||
53 | * to learn to clean up after themselves. Any driver that cannot clean up | ||
54 | * after itself is an incomplete driver in my book." | ||
55 | :*/ | ||
56 | |||
57 | /*D:530 The "struct lguestnet_info" contains all the information we need to | ||
58 | * know about the network device. */ | ||
31 | struct lguestnet_info | 59 | struct lguestnet_info |
32 | { | 60 | { |
33 | /* The shared page(s). */ | 61 | /* The mapped device page(s) (an array of "struct lguest_net"). */ |
34 | struct lguest_net *peer; | 62 | struct lguest_net *peer; |
63 | /* The physical address of the device page(s) */ | ||
35 | unsigned long peer_phys; | 64 | unsigned long peer_phys; |
65 | /* The size of the device page(s). */ | ||
36 | unsigned long mapsize; | 66 | unsigned long mapsize; |
37 | 67 | ||
38 | /* The lguest_device I come from */ | 68 | /* The lguest_device I come from */ |
39 | struct lguest_device *lgdev; | 69 | struct lguest_device *lgdev; |
40 | 70 | ||
41 | /* My peerid. */ | 71 | /* My peerid (ie. my slot in the array). */ |
42 | unsigned int me; | 72 | unsigned int me; |
43 | 73 | ||
44 | /* Receive queue. */ | 74 | /* Receive queue: the network packets waiting to be filled. */ |
45 | struct sk_buff *skb[NUM_SKBS]; | 75 | struct sk_buff *skb[NUM_SKBS]; |
46 | struct lguest_dma dma[NUM_SKBS]; | 76 | struct lguest_dma dma[NUM_SKBS]; |
47 | }; | 77 | }; |
78 | /*:*/ | ||
48 | 79 | ||
49 | /* How many bytes left in this page. */ | 80 | /* How many bytes left in this page. */ |
50 | static unsigned int rest_of_page(void *data) | 81 | static unsigned int rest_of_page(void *data) |
@@ -52,39 +83,82 @@ static unsigned int rest_of_page(void *data) | |||
52 | return PAGE_SIZE - ((unsigned long)data % PAGE_SIZE); | 83 | return PAGE_SIZE - ((unsigned long)data % PAGE_SIZE); |
53 | } | 84 | } |
54 | 85 | ||
55 | /* Simple convention: offset 4 * peernum. */ | 86 | /*D:570 Each peer (ie. Guest or Host) on the network binds their receive |
87 | * buffers to a different key: we simply use the physical address of the | ||
88 | * device's memory page plus the peer number. The Host insists that all keys | ||
89 | * be a multiple of 4, so we multiply the peer number by 4. */ | ||
56 | static unsigned long peer_key(struct lguestnet_info *info, unsigned peernum) | 90 | static unsigned long peer_key(struct lguestnet_info *info, unsigned peernum) |
57 | { | 91 | { |
58 | return info->peer_phys + 4 * peernum; | 92 | return info->peer_phys + 4 * peernum; |
59 | } | 93 | } |
60 | 94 | ||
95 | /* This is the routine which sets up a "struct lguest_dma" to point to a | ||
96 | * network packet, similar to req_to_dma() in lguest_blk.c. The structure of a | ||
97 | * "struct sk_buff" has grown complex over the years: it consists of a "head" | ||
98 | * linear section pointed to by "skb->data", and possibly an array of | ||
99 | * "fragments" in the case of a non-linear packet. | ||
100 | * | ||
101 | * Our receive buffers don't use fragments at all but outgoing skbs might, so | ||
102 | * we handle it. */ | ||
61 | static void skb_to_dma(const struct sk_buff *skb, unsigned int headlen, | 103 | static void skb_to_dma(const struct sk_buff *skb, unsigned int headlen, |
62 | struct lguest_dma *dma) | 104 | struct lguest_dma *dma) |
63 | { | 105 | { |
64 | unsigned int i, seg; | 106 | unsigned int i, seg; |
65 | 107 | ||
108 | /* First, we put the linear region into the "struct lguest_dma". Each | ||
109 | * entry can't go over a page boundary, so even though all our packets | ||
110 | * are 1514 bytes or less, we might need to use two entries here: */ | ||
66 | for (i = seg = 0; i < headlen; seg++, i += rest_of_page(skb->data+i)) { | 111 | for (i = seg = 0; i < headlen; seg++, i += rest_of_page(skb->data+i)) { |
67 | dma->addr[seg] = virt_to_phys(skb->data + i); | 112 | dma->addr[seg] = virt_to_phys(skb->data + i); |
68 | dma->len[seg] = min((unsigned)(headlen - i), | 113 | dma->len[seg] = min((unsigned)(headlen - i), |
69 | rest_of_page(skb->data + i)); | 114 | rest_of_page(skb->data + i)); |
70 | } | 115 | } |
116 | |||
117 | /* Now we handle the fragments: at least they're guaranteed not to go | ||
118 | * over a page. skb_shinfo(skb) returns a pointer to the structure | ||
119 | * which tells us about the number of fragments and the fragment | ||
120 | * array. */ | ||
71 | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, seg++) { | 121 | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, seg++) { |
72 | const skb_frag_t *f = &skb_shinfo(skb)->frags[i]; | 122 | const skb_frag_t *f = &skb_shinfo(skb)->frags[i]; |
73 | /* Should not happen with MTU less than 64k - 2 * PAGE_SIZE. */ | 123 | /* Should not happen with MTU less than 64k - 2 * PAGE_SIZE. */ |
74 | if (seg == LGUEST_MAX_DMA_SECTIONS) { | 124 | if (seg == LGUEST_MAX_DMA_SECTIONS) { |
125 | /* We will end up sending a truncated packet should | ||
126 | * this ever happen. Plus, a cool log message! */ | ||
75 | printk("Woah dude! Megapacket!\n"); | 127 | printk("Woah dude! Megapacket!\n"); |
76 | break; | 128 | break; |
77 | } | 129 | } |
78 | dma->addr[seg] = page_to_phys(f->page) + f->page_offset; | 130 | dma->addr[seg] = page_to_phys(f->page) + f->page_offset; |
79 | dma->len[seg] = f->size; | 131 | dma->len[seg] = f->size; |
80 | } | 132 | } |
133 | |||
134 | /* If after all that we didn't use the entire "struct lguest_dma" | ||
135 | * array, we terminate it with a 0 length. */ | ||
81 | if (seg < LGUEST_MAX_DMA_SECTIONS) | 136 | if (seg < LGUEST_MAX_DMA_SECTIONS) |
82 | dma->len[seg] = 0; | 137 | dma->len[seg] = 0; |
83 | } | 138 | } |
84 | 139 | ||
85 | /* We overload multicast bit to show promiscuous mode. */ | 140 | /* |
141 | * Packet transmission. | ||
142 | * | ||
143 | * Our packet transmission is a little unusual. A real network card would just | ||
144 | * send out the packet and leave the receivers to decide if they're interested. | ||
145 | * Instead, we look through the network device memory page and see if any of | ||
146 | * the ethernet addresses match the packet destination, and if so we send it to | ||
147 | * that Guest. | ||
148 | * | ||
149 | * This is made a little more complicated in two cases. The first case is | ||
150 | * broadcast packets: for that we send the packet to all Guests on the network, | ||
151 | * one at a time. The second case is "promiscuous" mode, where a Guest wants | ||
152 | * to see all the packets on the network. We need a way for the Guest to tell | ||
153 | * us it wants to see all packets, so it sets the "multicast" bit on its | ||
154 | * published MAC address, which is never valid in a real ethernet address. | ||
155 | */ | ||
86 | #define PROMISC_BIT 0x01 | 156 | #define PROMISC_BIT 0x01 |
87 | 157 | ||
158 | /* This is the callback which is summoned whenever the network device's | ||
159 | * multicast or promiscuous state changes. If the card is in promiscuous mode, | ||
160 | * we advertise that in our ethernet address in the device's memory. We do the | ||
161 | * same if Linux wants any or all multicast traffic. */ | ||
88 | static void lguestnet_set_multicast(struct net_device *dev) | 162 | static void lguestnet_set_multicast(struct net_device *dev) |
89 | { | 163 | { |
90 | struct lguestnet_info *info = netdev_priv(dev); | 164 | struct lguestnet_info *info = netdev_priv(dev); |
@@ -95,11 +169,14 @@ static void lguestnet_set_multicast(struct net_device *dev) | |||
95 | info->peer[info->me].mac[0] &= ~PROMISC_BIT; | 169 | info->peer[info->me].mac[0] &= ~PROMISC_BIT; |
96 | } | 170 | } |
97 | 171 | ||
172 | /* A simple test function to see if a peer wants to see all packets.*/ | ||
98 | static int promisc(struct lguestnet_info *info, unsigned int peer) | 173 | static int promisc(struct lguestnet_info *info, unsigned int peer) |
99 | { | 174 | { |
100 | return info->peer[peer].mac[0] & PROMISC_BIT; | 175 | return info->peer[peer].mac[0] & PROMISC_BIT; |
101 | } | 176 | } |
102 | 177 | ||
178 | /* Another simple function to see if a peer's advertised ethernet address | ||
179 | * matches a packet's destination ethernet address. */ | ||
103 | static int mac_eq(const unsigned char mac[ETH_ALEN], | 180 | static int mac_eq(const unsigned char mac[ETH_ALEN], |
104 | struct lguestnet_info *info, unsigned int peer) | 181 | struct lguestnet_info *info, unsigned int peer) |
105 | { | 182 | { |
@@ -109,6 +186,8 @@ static int mac_eq(const unsigned char mac[ETH_ALEN], | |||
109 | return memcmp(mac+1, info->peer[peer].mac+1, ETH_ALEN-1) == 0; | 186 | return memcmp(mac+1, info->peer[peer].mac+1, ETH_ALEN-1) == 0; |
110 | } | 187 | } |
111 | 188 | ||
189 | /* This is the function which actually sends a packet once we've decided a | ||
190 | * peer wants it: */ | ||
112 | static void transfer_packet(struct net_device *dev, | 191 | static void transfer_packet(struct net_device *dev, |
113 | struct sk_buff *skb, | 192 | struct sk_buff *skb, |
114 | unsigned int peernum) | 193 | unsigned int peernum) |
@@ -116,76 +195,134 @@ static void transfer_packet(struct net_device *dev, | |||
116 | struct lguestnet_info *info = netdev_priv(dev); | 195 | struct lguestnet_info *info = netdev_priv(dev); |
117 | struct lguest_dma dma; | 196 | struct lguest_dma dma; |
118 | 197 | ||
198 | /* We use our handy "struct lguest_dma" packing function to prepare | ||
199 | * the skb for sending. */ | ||
119 | skb_to_dma(skb, skb_headlen(skb), &dma); | 200 | skb_to_dma(skb, skb_headlen(skb), &dma); |
120 | pr_debug("xfer length %04x (%u)\n", htons(skb->len), skb->len); | 201 | pr_debug("xfer length %04x (%u)\n", htons(skb->len), skb->len); |
121 | 202 | ||
203 | /* This is the actual send call which copies the packet. */ | ||
122 | lguest_send_dma(peer_key(info, peernum), &dma); | 204 | lguest_send_dma(peer_key(info, peernum), &dma); |
205 | |||
206 | /* Check that the entire packet was transmitted. If not, it could mean | ||
207 | * that the other Guest registered a short receive buffer, but this | ||
208 | * driver should never do that. More likely, the peer is dead. */ | ||
123 | if (dma.used_len != skb->len) { | 209 | if (dma.used_len != skb->len) { |
124 | dev->stats.tx_carrier_errors++; | 210 | dev->stats.tx_carrier_errors++; |
125 | pr_debug("Bad xfer to peer %i: %i of %i (dma %p/%i)\n", | 211 | pr_debug("Bad xfer to peer %i: %i of %i (dma %p/%i)\n", |
126 | peernum, dma.used_len, skb->len, | 212 | peernum, dma.used_len, skb->len, |
127 | (void *)dma.addr[0], dma.len[0]); | 213 | (void *)dma.addr[0], dma.len[0]); |
128 | } else { | 214 | } else { |
215 | /* On success we update the stats. */ | ||
129 | dev->stats.tx_bytes += skb->len; | 216 | dev->stats.tx_bytes += skb->len; |
130 | dev->stats.tx_packets++; | 217 | dev->stats.tx_packets++; |
131 | } | 218 | } |
132 | } | 219 | } |
133 | 220 | ||
221 | /* Another helper function to tell is if a slot in the device memory is unused. | ||
222 | * Since we always set the Local Assignment bit in the ethernet address, the | ||
223 | * first byte can never be 0. */ | ||
134 | static int unused_peer(const struct lguest_net peer[], unsigned int num) | 224 | static int unused_peer(const struct lguest_net peer[], unsigned int num) |
135 | { | 225 | { |
136 | return peer[num].mac[0] == 0; | 226 | return peer[num].mac[0] == 0; |
137 | } | 227 | } |
138 | 228 | ||
229 | /* Finally, here is the routine which handles an outgoing packet. It's called | ||
230 | * "start_xmit" for traditional reasons. */ | ||
139 | static int lguestnet_start_xmit(struct sk_buff *skb, struct net_device *dev) | 231 | static int lguestnet_start_xmit(struct sk_buff *skb, struct net_device *dev) |
140 | { | 232 | { |
141 | unsigned int i; | 233 | unsigned int i; |
142 | int broadcast; | 234 | int broadcast; |
143 | struct lguestnet_info *info = netdev_priv(dev); | 235 | struct lguestnet_info *info = netdev_priv(dev); |
236 | /* Extract the destination ethernet address from the packet. */ | ||
144 | const unsigned char *dest = ((struct ethhdr *)skb->data)->h_dest; | 237 | const unsigned char *dest = ((struct ethhdr *)skb->data)->h_dest; |
145 | 238 | ||
146 | pr_debug("%s: xmit %02x:%02x:%02x:%02x:%02x:%02x\n", | 239 | pr_debug("%s: xmit %02x:%02x:%02x:%02x:%02x:%02x\n", |
147 | dev->name, dest[0],dest[1],dest[2],dest[3],dest[4],dest[5]); | 240 | dev->name, dest[0],dest[1],dest[2],dest[3],dest[4],dest[5]); |
148 | 241 | ||
242 | /* If it's a multicast packet, we broadcast to everyone. That's not | ||
243 | * very efficient, but there are very few applications which actually | ||
244 | * use multicast, which is a shame really. | ||
245 | * | ||
246 | * As etherdevice.h points out: "By definition the broadcast address is | ||
247 | * also a multicast address." So we don't have to test for broadcast | ||
248 | * packets separately. */ | ||
149 | broadcast = is_multicast_ether_addr(dest); | 249 | broadcast = is_multicast_ether_addr(dest); |
250 | |||
251 | /* Look through all the published ethernet addresses to see if we | ||
252 | * should send this packet. */ | ||
150 | for (i = 0; i < info->mapsize/sizeof(struct lguest_net); i++) { | 253 | for (i = 0; i < info->mapsize/sizeof(struct lguest_net); i++) { |
254 | /* We don't send to ourselves (we actually can't SEND_DMA to | ||
255 | * ourselves anyway), and don't send to unused slots.*/ | ||
151 | if (i == info->me || unused_peer(info->peer, i)) | 256 | if (i == info->me || unused_peer(info->peer, i)) |
152 | continue; | 257 | continue; |
153 | 258 | ||
259 | /* If it's broadcast we send it. If they want every packet we | ||
260 | * send it. If the destination matches their address we send | ||
261 | * it. Otherwise we go to the next peer. */ | ||
154 | if (!broadcast && !promisc(info, i) && !mac_eq(dest, info, i)) | 262 | if (!broadcast && !promisc(info, i) && !mac_eq(dest, info, i)) |
155 | continue; | 263 | continue; |
156 | 264 | ||
157 | pr_debug("lguestnet %s: sending from %i to %i\n", | 265 | pr_debug("lguestnet %s: sending from %i to %i\n", |
158 | dev->name, info->me, i); | 266 | dev->name, info->me, i); |
267 | /* Our routine which actually does the transfer. */ | ||
159 | transfer_packet(dev, skb, i); | 268 | transfer_packet(dev, skb, i); |
160 | } | 269 | } |
270 | |||
271 | /* An xmit routine is expected to dispose of the packet, so we do. */ | ||
161 | dev_kfree_skb(skb); | 272 | dev_kfree_skb(skb); |
273 | |||
274 | /* As per kernel convention, 0 means success. This is why I love | ||
275 | * networking: even if we never sent to anyone, that's still | ||
276 | * success! */ | ||
162 | return 0; | 277 | return 0; |
163 | } | 278 | } |
164 | 279 | ||
165 | /* Find a new skb to put in this slot in shared mem. */ | 280 | /*D:560 |
281 | * Packet receiving. | ||
282 | * | ||
283 | * First, here's a helper routine which fills one of our array of receive | ||
284 | * buffers: */ | ||
166 | static int fill_slot(struct net_device *dev, unsigned int slot) | 285 | static int fill_slot(struct net_device *dev, unsigned int slot) |
167 | { | 286 | { |
168 | struct lguestnet_info *info = netdev_priv(dev); | 287 | struct lguestnet_info *info = netdev_priv(dev); |
169 | /* Try to create and register a new one. */ | 288 | |
289 | /* We can receive ETH_DATA_LEN (1500) byte packets, plus a standard | ||
290 | * ethernet header of ETH_HLEN (14) bytes. */ | ||
170 | info->skb[slot] = netdev_alloc_skb(dev, ETH_HLEN + ETH_DATA_LEN); | 291 | info->skb[slot] = netdev_alloc_skb(dev, ETH_HLEN + ETH_DATA_LEN); |
171 | if (!info->skb[slot]) { | 292 | if (!info->skb[slot]) { |
172 | printk("%s: could not fill slot %i\n", dev->name, slot); | 293 | printk("%s: could not fill slot %i\n", dev->name, slot); |
173 | return -ENOMEM; | 294 | return -ENOMEM; |
174 | } | 295 | } |
175 | 296 | ||
297 | /* skb_to_dma() is a helper which sets up the "struct lguest_dma" to | ||
298 | * point to the data in the skb: we also use it for sending out a | ||
299 | * packet. */ | ||
176 | skb_to_dma(info->skb[slot], ETH_HLEN + ETH_DATA_LEN, &info->dma[slot]); | 300 | skb_to_dma(info->skb[slot], ETH_HLEN + ETH_DATA_LEN, &info->dma[slot]); |
301 | |||
302 | /* This is a Write Memory Barrier: it ensures that the entry in the | ||
303 | * receive buffer array is written *before* we set the "used_len" entry | ||
304 | * to 0. If the Host were looking at the receive buffer array from a | ||
305 | * different CPU, it could potentially see "used_len = 0" and not see | ||
306 | * the updated receive buffer information. This would be a horribly | ||
307 | * nasty bug, so make sure the compiler and CPU know this has to happen | ||
308 | * first. */ | ||
177 | wmb(); | 309 | wmb(); |
178 | /* Now we tell hypervisor it can use the slot. */ | 310 | /* Writing 0 to "used_len" tells the Host it can use this receive |
311 | * buffer now. */ | ||
179 | info->dma[slot].used_len = 0; | 312 | info->dma[slot].used_len = 0; |
180 | return 0; | 313 | return 0; |
181 | } | 314 | } |
182 | 315 | ||
316 | /* This is the actual receive routine. When we receive an interrupt from the | ||
317 | * Host to tell us a packet has been delivered, we arrive here: */ | ||
183 | static irqreturn_t lguestnet_rcv(int irq, void *dev_id) | 318 | static irqreturn_t lguestnet_rcv(int irq, void *dev_id) |
184 | { | 319 | { |
185 | struct net_device *dev = dev_id; | 320 | struct net_device *dev = dev_id; |
186 | struct lguestnet_info *info = netdev_priv(dev); | 321 | struct lguestnet_info *info = netdev_priv(dev); |
187 | unsigned int i, done = 0; | 322 | unsigned int i, done = 0; |
188 | 323 | ||
324 | /* Look through our entire receive array for an entry which has data | ||
325 | * in it. */ | ||
189 | for (i = 0; i < ARRAY_SIZE(info->dma); i++) { | 326 | for (i = 0; i < ARRAY_SIZE(info->dma); i++) { |
190 | unsigned int length; | 327 | unsigned int length; |
191 | struct sk_buff *skb; | 328 | struct sk_buff *skb; |
@@ -194,10 +331,16 @@ static irqreturn_t lguestnet_rcv(int irq, void *dev_id) | |||
194 | if (length == 0) | 331 | if (length == 0) |
195 | continue; | 332 | continue; |
196 | 333 | ||
334 | /* We've found one! Remember the skb (we grabbed the length | ||
335 | * above), and immediately refill the slot we've taken it | ||
336 | * from. */ | ||
197 | done++; | 337 | done++; |
198 | skb = info->skb[i]; | 338 | skb = info->skb[i]; |
199 | fill_slot(dev, i); | 339 | fill_slot(dev, i); |
200 | 340 | ||
341 | /* This shouldn't happen: micropackets could be sent by a | ||
342 | * badly-behaved Guest on the network, but the Host will never | ||
343 | * stuff more data in the buffer than the buffer length. */ | ||
201 | if (length < ETH_HLEN || length > ETH_HLEN + ETH_DATA_LEN) { | 344 | if (length < ETH_HLEN || length > ETH_HLEN + ETH_DATA_LEN) { |
202 | pr_debug(KERN_WARNING "%s: unbelievable skb len: %i\n", | 345 | pr_debug(KERN_WARNING "%s: unbelievable skb len: %i\n", |
203 | dev->name, length); | 346 | dev->name, length); |
@@ -205,36 +348,72 @@ static irqreturn_t lguestnet_rcv(int irq, void *dev_id) | |||
205 | continue; | 348 | continue; |
206 | } | 349 | } |
207 | 350 | ||
351 | /* skb_put(), what a great function! I've ranted about this | ||
352 | * function before (http://lkml.org/lkml/1999/9/26/24). You | ||
353 | * call it after you've added data to the end of an skb (in | ||
354 | * this case, it was the Host which wrote the data). */ | ||
208 | skb_put(skb, length); | 355 | skb_put(skb, length); |
356 | |||
357 | /* The ethernet header contains a protocol field: we use the | ||
358 | * standard helper to extract it, and place the result in | ||
359 | * skb->protocol. The helper also sets up skb->pkt_type and | ||
360 | * eats up the ethernet header from the front of the packet. */ | ||
209 | skb->protocol = eth_type_trans(skb, dev); | 361 | skb->protocol = eth_type_trans(skb, dev); |
210 | /* This is a reliable transport. */ | 362 | |
363 | /* If this device doesn't need checksums for sending, we also | ||
364 | * don't need to check the packets when they come in. */ | ||
211 | if (dev->features & NETIF_F_NO_CSUM) | 365 | if (dev->features & NETIF_F_NO_CSUM) |
212 | skb->ip_summed = CHECKSUM_UNNECESSARY; | 366 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
367 | |||
368 | /* As a last resort for debugging the driver or the lguest I/O | ||
369 | * subsystem, you can uncomment the "#define DEBUG" at the top | ||
370 | * of this file, which turns all the pr_debug() into printk() | ||
371 | * and floods the logs. */ | ||
213 | pr_debug("Receiving skb proto 0x%04x len %i type %i\n", | 372 | pr_debug("Receiving skb proto 0x%04x len %i type %i\n", |
214 | ntohs(skb->protocol), skb->len, skb->pkt_type); | 373 | ntohs(skb->protocol), skb->len, skb->pkt_type); |
215 | 374 | ||
375 | /* Update the packet and byte counts (visible from ifconfig, | ||
376 | * and good for debugging). */ | ||
216 | dev->stats.rx_bytes += skb->len; | 377 | dev->stats.rx_bytes += skb->len; |
217 | dev->stats.rx_packets++; | 378 | dev->stats.rx_packets++; |
379 | |||
380 | /* Hand our fresh network packet into the stack's "network | ||
381 | * interface receive" routine. That will free the packet | ||
382 | * itself when it's finished. */ | ||
218 | netif_rx(skb); | 383 | netif_rx(skb); |
219 | } | 384 | } |
385 | |||
386 | /* If we found any packets, we assume the interrupt was for us. */ | ||
220 | return done ? IRQ_HANDLED : IRQ_NONE; | 387 | return done ? IRQ_HANDLED : IRQ_NONE; |
221 | } | 388 | } |
222 | 389 | ||
390 | /*D:550 This is where we start: when the device is brought up by dhcpd or | ||
391 | * ifconfig. At this point we advertise our MAC address to the rest of the | ||
392 | * network, and register receive buffers ready for incoming packets. */ | ||
223 | static int lguestnet_open(struct net_device *dev) | 393 | static int lguestnet_open(struct net_device *dev) |
224 | { | 394 | { |
225 | int i; | 395 | int i; |
226 | struct lguestnet_info *info = netdev_priv(dev); | 396 | struct lguestnet_info *info = netdev_priv(dev); |
227 | 397 | ||
228 | /* Set up our MAC address */ | 398 | /* Copy our MAC address into the device page, so others on the network |
399 | * can find us. */ | ||
229 | memcpy(info->peer[info->me].mac, dev->dev_addr, ETH_ALEN); | 400 | memcpy(info->peer[info->me].mac, dev->dev_addr, ETH_ALEN); |
230 | 401 | ||
231 | /* Turn on promisc mode if needed */ | 402 | /* We might already be in promisc mode (dev->flags & IFF_PROMISC). Our |
403 | * set_multicast callback handles this already, so we call it now. */ | ||
232 | lguestnet_set_multicast(dev); | 404 | lguestnet_set_multicast(dev); |
233 | 405 | ||
406 | /* Allocate packets and put them into our "struct lguest_dma" array. | ||
407 | * If we fail to allocate all the packets we could still limp along, | ||
408 | * but it's a sign of real stress so we should probably give up now. */ | ||
234 | for (i = 0; i < ARRAY_SIZE(info->dma); i++) { | 409 | for (i = 0; i < ARRAY_SIZE(info->dma); i++) { |
235 | if (fill_slot(dev, i) != 0) | 410 | if (fill_slot(dev, i) != 0) |
236 | goto cleanup; | 411 | goto cleanup; |
237 | } | 412 | } |
413 | |||
414 | /* Finally we tell the Host where our array of "struct lguest_dma" | ||
415 | * receive buffers is, binding it to the key corresponding to the | ||
416 | * device's physical memory plus our peerid. */ | ||
238 | if (lguest_bind_dma(peer_key(info,info->me), info->dma, | 417 | if (lguest_bind_dma(peer_key(info,info->me), info->dma, |
239 | NUM_SKBS, lgdev_irq(info->lgdev)) != 0) | 418 | NUM_SKBS, lgdev_irq(info->lgdev)) != 0) |
240 | goto cleanup; | 419 | goto cleanup; |
@@ -245,22 +424,29 @@ cleanup: | |||
245 | dev_kfree_skb(info->skb[i]); | 424 | dev_kfree_skb(info->skb[i]); |
246 | return -ENOMEM; | 425 | return -ENOMEM; |
247 | } | 426 | } |
427 | /*:*/ | ||
248 | 428 | ||
429 | /* The close routine is called when the device is no longer in use: we clean up | ||
430 | * elegantly. */ | ||
249 | static int lguestnet_close(struct net_device *dev) | 431 | static int lguestnet_close(struct net_device *dev) |
250 | { | 432 | { |
251 | unsigned int i; | 433 | unsigned int i; |
252 | struct lguestnet_info *info = netdev_priv(dev); | 434 | struct lguestnet_info *info = netdev_priv(dev); |
253 | 435 | ||
254 | /* Clear all trace: others might deliver packets, we'll ignore it. */ | 436 | /* Clear all trace of our existence out of the device memory by setting |
437 | * the slot which held our MAC address to 0 (unused). */ | ||
255 | memset(&info->peer[info->me], 0, sizeof(info->peer[info->me])); | 438 | memset(&info->peer[info->me], 0, sizeof(info->peer[info->me])); |
256 | 439 | ||
257 | /* Deregister sg lists. */ | 440 | /* Unregister our array of receive buffers */ |
258 | lguest_unbind_dma(peer_key(info, info->me), info->dma); | 441 | lguest_unbind_dma(peer_key(info, info->me), info->dma); |
259 | for (i = 0; i < ARRAY_SIZE(info->dma); i++) | 442 | for (i = 0; i < ARRAY_SIZE(info->dma); i++) |
260 | dev_kfree_skb(info->skb[i]); | 443 | dev_kfree_skb(info->skb[i]); |
261 | return 0; | 444 | return 0; |
262 | } | 445 | } |
263 | 446 | ||
447 | /*D:510 The network device probe function is basically a standard ethernet | ||
448 | * device setup. It reads the "struct lguest_device_desc" and sets the "struct | ||
449 | * net_device". Oh, the line-by-line excitement! Let's skip over it. :*/ | ||
264 | static int lguestnet_probe(struct lguest_device *lgdev) | 450 | static int lguestnet_probe(struct lguest_device *lgdev) |
265 | { | 451 | { |
266 | int err, irqf = IRQF_SHARED; | 452 | int err, irqf = IRQF_SHARED; |
@@ -290,10 +476,16 @@ static int lguestnet_probe(struct lguest_device *lgdev) | |||
290 | dev->stop = lguestnet_close; | 476 | dev->stop = lguestnet_close; |
291 | dev->hard_start_xmit = lguestnet_start_xmit; | 477 | dev->hard_start_xmit = lguestnet_start_xmit; |
292 | 478 | ||
293 | /* Turning on/off promisc will call dev->set_multicast_list. | 479 | /* We don't actually support multicast yet, but turning on/off |
294 | * We don't actually support multicast yet */ | 480 | * promisc also calls dev->set_multicast_list. */ |
295 | dev->set_multicast_list = lguestnet_set_multicast; | 481 | dev->set_multicast_list = lguestnet_set_multicast; |
296 | SET_NETDEV_DEV(dev, &lgdev->dev); | 482 | SET_NETDEV_DEV(dev, &lgdev->dev); |
483 | |||
484 | /* The network code complains if you have "scatter-gather" capability | ||
485 | * if you don't also handle checksums (it seem that would be | ||
486 | * "illogical"). So we use a lie of omission and don't tell it that we | ||
487 | * can handle scattered packets unless we also don't want checksums, | ||
488 | * even though to us they're completely independent. */ | ||
297 | if (desc->features & LGUEST_NET_F_NOCSUM) | 489 | if (desc->features & LGUEST_NET_F_NOCSUM) |
298 | dev->features = NETIF_F_SG|NETIF_F_NO_CSUM; | 490 | dev->features = NETIF_F_SG|NETIF_F_NO_CSUM; |
299 | 491 | ||
@@ -325,6 +517,9 @@ static int lguestnet_probe(struct lguest_device *lgdev) | |||
325 | } | 517 | } |
326 | 518 | ||
327 | pr_debug("lguestnet: registered device %s\n", dev->name); | 519 | pr_debug("lguestnet: registered device %s\n", dev->name); |
520 | /* Finally, we put the "struct net_device" in the generic "struct | ||
521 | * lguest_device"s private pointer. Again, it's not necessary, but | ||
522 | * makes sure the cool kernel kids don't tease us. */ | ||
328 | lgdev->private = dev; | 523 | lgdev->private = dev; |
329 | return 0; | 524 | return 0; |
330 | 525 | ||
@@ -352,3 +547,11 @@ module_init(lguestnet_init); | |||
352 | 547 | ||
353 | MODULE_DESCRIPTION("Lguest network driver"); | 548 | MODULE_DESCRIPTION("Lguest network driver"); |
354 | MODULE_LICENSE("GPL"); | 549 | MODULE_LICENSE("GPL"); |
550 | |||
551 | /*D:580 | ||
552 | * This is the last of the Drivers, and with this we have covered the many and | ||
553 | * wonderous and fine (and boring) details of the Guest. | ||
554 | * | ||
555 | * "make Launcher" beckons, where we answer questions like "Where do Guests | ||
556 | * come from?", and "What do you do when someone asks for optimization?" | ||
557 | */ | ||