aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/lguest_net.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/lguest_net.c')
-rw-r--r--drivers/net/lguest_net.c237
1 files changed, 220 insertions, 17 deletions
diff --git a/drivers/net/lguest_net.c b/drivers/net/lguest_net.c
index 112778652f7d..cab57911a80e 100644
--- a/drivers/net/lguest_net.c
+++ b/drivers/net/lguest_net.c
@@ -1,6 +1,13 @@
1/* A simple network driver for lguest. 1/*D:500
2 * The Guest network driver.
2 * 3 *
3 * Copyright 2006 Rusty Russell <rusty@rustcorp.com.au> IBM Corporation 4 * This is very simple a virtual network driver, and our last Guest driver.
5 * The only trick is that it can talk directly to multiple other recipients
6 * (ie. other Guests on the same network). It can also be used with only the
7 * Host on the network.
8 :*/
9
10/* Copyright 2006 Rusty Russell <rusty@rustcorp.com.au> IBM Corporation
4 * 11 *
5 * This program is free software; you can redistribute it and/or modify 12 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by 13 * it under the terms of the GNU General Public License as published by
@@ -28,23 +35,47 @@
28#define MAX_LANS 4 35#define MAX_LANS 4
29#define NUM_SKBS 8 36#define NUM_SKBS 8
30 37
38/*M:011 Network code master Jeff Garzik points out numerous shortcomings in
39 * this driver if it aspires to greatness.
40 *
41 * Firstly, it doesn't use "NAPI": the networking's New API, and is poorer for
42 * it. As he says "NAPI means system-wide load leveling, across multiple
43 * network interfaces. Lack of NAPI can mean competition at higher loads."
44 *
45 * He also points out that we don't implement set_mac_address, so users cannot
46 * change the devices hardware address. When I asked why one would want to:
47 * "Bonding, and situations where you /do/ want the MAC address to "leak" out
48 * of the host onto the wider net."
49 *
50 * Finally, he would like module unloading: "It is not unrealistic to think of
51 * [un|re|]loading the net support module in an lguest guest. And, adding
52 * module support makes the programmer more responsible, because they now have
53 * to learn to clean up after themselves. Any driver that cannot clean up
54 * after itself is an incomplete driver in my book."
55 :*/
56
57/*D:530 The "struct lguestnet_info" contains all the information we need to
58 * know about the network device. */
31struct lguestnet_info 59struct lguestnet_info
32{ 60{
33 /* The shared page(s). */ 61 /* The mapped device page(s) (an array of "struct lguest_net"). */
34 struct lguest_net *peer; 62 struct lguest_net *peer;
63 /* The physical address of the device page(s) */
35 unsigned long peer_phys; 64 unsigned long peer_phys;
65 /* The size of the device page(s). */
36 unsigned long mapsize; 66 unsigned long mapsize;
37 67
38 /* The lguest_device I come from */ 68 /* The lguest_device I come from */
39 struct lguest_device *lgdev; 69 struct lguest_device *lgdev;
40 70
41 /* My peerid. */ 71 /* My peerid (ie. my slot in the array). */
42 unsigned int me; 72 unsigned int me;
43 73
44 /* Receive queue. */ 74 /* Receive queue: the network packets waiting to be filled. */
45 struct sk_buff *skb[NUM_SKBS]; 75 struct sk_buff *skb[NUM_SKBS];
46 struct lguest_dma dma[NUM_SKBS]; 76 struct lguest_dma dma[NUM_SKBS];
47}; 77};
78/*:*/
48 79
49/* How many bytes left in this page. */ 80/* How many bytes left in this page. */
50static unsigned int rest_of_page(void *data) 81static unsigned int rest_of_page(void *data)
@@ -52,39 +83,82 @@ static unsigned int rest_of_page(void *data)
52 return PAGE_SIZE - ((unsigned long)data % PAGE_SIZE); 83 return PAGE_SIZE - ((unsigned long)data % PAGE_SIZE);
53} 84}
54 85
55/* Simple convention: offset 4 * peernum. */ 86/*D:570 Each peer (ie. Guest or Host) on the network binds their receive
87 * buffers to a different key: we simply use the physical address of the
88 * device's memory page plus the peer number. The Host insists that all keys
89 * be a multiple of 4, so we multiply the peer number by 4. */
56static unsigned long peer_key(struct lguestnet_info *info, unsigned peernum) 90static unsigned long peer_key(struct lguestnet_info *info, unsigned peernum)
57{ 91{
58 return info->peer_phys + 4 * peernum; 92 return info->peer_phys + 4 * peernum;
59} 93}
60 94
95/* This is the routine which sets up a "struct lguest_dma" to point to a
96 * network packet, similar to req_to_dma() in lguest_blk.c. The structure of a
97 * "struct sk_buff" has grown complex over the years: it consists of a "head"
98 * linear section pointed to by "skb->data", and possibly an array of
99 * "fragments" in the case of a non-linear packet.
100 *
101 * Our receive buffers don't use fragments at all but outgoing skbs might, so
102 * we handle it. */
61static void skb_to_dma(const struct sk_buff *skb, unsigned int headlen, 103static void skb_to_dma(const struct sk_buff *skb, unsigned int headlen,
62 struct lguest_dma *dma) 104 struct lguest_dma *dma)
63{ 105{
64 unsigned int i, seg; 106 unsigned int i, seg;
65 107
108 /* First, we put the linear region into the "struct lguest_dma". Each
109 * entry can't go over a page boundary, so even though all our packets
110 * are 1514 bytes or less, we might need to use two entries here: */
66 for (i = seg = 0; i < headlen; seg++, i += rest_of_page(skb->data+i)) { 111 for (i = seg = 0; i < headlen; seg++, i += rest_of_page(skb->data+i)) {
67 dma->addr[seg] = virt_to_phys(skb->data + i); 112 dma->addr[seg] = virt_to_phys(skb->data + i);
68 dma->len[seg] = min((unsigned)(headlen - i), 113 dma->len[seg] = min((unsigned)(headlen - i),
69 rest_of_page(skb->data + i)); 114 rest_of_page(skb->data + i));
70 } 115 }
116
117 /* Now we handle the fragments: at least they're guaranteed not to go
118 * over a page. skb_shinfo(skb) returns a pointer to the structure
119 * which tells us about the number of fragments and the fragment
120 * array. */
71 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, seg++) { 121 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, seg++) {
72 const skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 122 const skb_frag_t *f = &skb_shinfo(skb)->frags[i];
73 /* Should not happen with MTU less than 64k - 2 * PAGE_SIZE. */ 123 /* Should not happen with MTU less than 64k - 2 * PAGE_SIZE. */
74 if (seg == LGUEST_MAX_DMA_SECTIONS) { 124 if (seg == LGUEST_MAX_DMA_SECTIONS) {
125 /* We will end up sending a truncated packet should
126 * this ever happen. Plus, a cool log message! */
75 printk("Woah dude! Megapacket!\n"); 127 printk("Woah dude! Megapacket!\n");
76 break; 128 break;
77 } 129 }
78 dma->addr[seg] = page_to_phys(f->page) + f->page_offset; 130 dma->addr[seg] = page_to_phys(f->page) + f->page_offset;
79 dma->len[seg] = f->size; 131 dma->len[seg] = f->size;
80 } 132 }
133
134 /* If after all that we didn't use the entire "struct lguest_dma"
135 * array, we terminate it with a 0 length. */
81 if (seg < LGUEST_MAX_DMA_SECTIONS) 136 if (seg < LGUEST_MAX_DMA_SECTIONS)
82 dma->len[seg] = 0; 137 dma->len[seg] = 0;
83} 138}
84 139
85/* We overload multicast bit to show promiscuous mode. */ 140/*
141 * Packet transmission.
142 *
143 * Our packet transmission is a little unusual. A real network card would just
144 * send out the packet and leave the receivers to decide if they're interested.
145 * Instead, we look through the network device memory page and see if any of
146 * the ethernet addresses match the packet destination, and if so we send it to
147 * that Guest.
148 *
149 * This is made a little more complicated in two cases. The first case is
150 * broadcast packets: for that we send the packet to all Guests on the network,
151 * one at a time. The second case is "promiscuous" mode, where a Guest wants
152 * to see all the packets on the network. We need a way for the Guest to tell
153 * us it wants to see all packets, so it sets the "multicast" bit on its
154 * published MAC address, which is never valid in a real ethernet address.
155 */
86#define PROMISC_BIT 0x01 156#define PROMISC_BIT 0x01
87 157
158/* This is the callback which is summoned whenever the network device's
159 * multicast or promiscuous state changes. If the card is in promiscuous mode,
160 * we advertise that in our ethernet address in the device's memory. We do the
161 * same if Linux wants any or all multicast traffic. */
88static void lguestnet_set_multicast(struct net_device *dev) 162static void lguestnet_set_multicast(struct net_device *dev)
89{ 163{
90 struct lguestnet_info *info = netdev_priv(dev); 164 struct lguestnet_info *info = netdev_priv(dev);
@@ -95,11 +169,14 @@ static void lguestnet_set_multicast(struct net_device *dev)
95 info->peer[info->me].mac[0] &= ~PROMISC_BIT; 169 info->peer[info->me].mac[0] &= ~PROMISC_BIT;
96} 170}
97 171
172/* A simple test function to see if a peer wants to see all packets.*/
98static int promisc(struct lguestnet_info *info, unsigned int peer) 173static int promisc(struct lguestnet_info *info, unsigned int peer)
99{ 174{
100 return info->peer[peer].mac[0] & PROMISC_BIT; 175 return info->peer[peer].mac[0] & PROMISC_BIT;
101} 176}
102 177
178/* Another simple function to see if a peer's advertised ethernet address
179 * matches a packet's destination ethernet address. */
103static int mac_eq(const unsigned char mac[ETH_ALEN], 180static int mac_eq(const unsigned char mac[ETH_ALEN],
104 struct lguestnet_info *info, unsigned int peer) 181 struct lguestnet_info *info, unsigned int peer)
105{ 182{
@@ -109,6 +186,8 @@ static int mac_eq(const unsigned char mac[ETH_ALEN],
109 return memcmp(mac+1, info->peer[peer].mac+1, ETH_ALEN-1) == 0; 186 return memcmp(mac+1, info->peer[peer].mac+1, ETH_ALEN-1) == 0;
110} 187}
111 188
189/* This is the function which actually sends a packet once we've decided a
190 * peer wants it: */
112static void transfer_packet(struct net_device *dev, 191static void transfer_packet(struct net_device *dev,
113 struct sk_buff *skb, 192 struct sk_buff *skb,
114 unsigned int peernum) 193 unsigned int peernum)
@@ -116,76 +195,134 @@ static void transfer_packet(struct net_device *dev,
116 struct lguestnet_info *info = netdev_priv(dev); 195 struct lguestnet_info *info = netdev_priv(dev);
117 struct lguest_dma dma; 196 struct lguest_dma dma;
118 197
198 /* We use our handy "struct lguest_dma" packing function to prepare
199 * the skb for sending. */
119 skb_to_dma(skb, skb_headlen(skb), &dma); 200 skb_to_dma(skb, skb_headlen(skb), &dma);
120 pr_debug("xfer length %04x (%u)\n", htons(skb->len), skb->len); 201 pr_debug("xfer length %04x (%u)\n", htons(skb->len), skb->len);
121 202
203 /* This is the actual send call which copies the packet. */
122 lguest_send_dma(peer_key(info, peernum), &dma); 204 lguest_send_dma(peer_key(info, peernum), &dma);
205
206 /* Check that the entire packet was transmitted. If not, it could mean
207 * that the other Guest registered a short receive buffer, but this
208 * driver should never do that. More likely, the peer is dead. */
123 if (dma.used_len != skb->len) { 209 if (dma.used_len != skb->len) {
124 dev->stats.tx_carrier_errors++; 210 dev->stats.tx_carrier_errors++;
125 pr_debug("Bad xfer to peer %i: %i of %i (dma %p/%i)\n", 211 pr_debug("Bad xfer to peer %i: %i of %i (dma %p/%i)\n",
126 peernum, dma.used_len, skb->len, 212 peernum, dma.used_len, skb->len,
127 (void *)dma.addr[0], dma.len[0]); 213 (void *)dma.addr[0], dma.len[0]);
128 } else { 214 } else {
215 /* On success we update the stats. */
129 dev->stats.tx_bytes += skb->len; 216 dev->stats.tx_bytes += skb->len;
130 dev->stats.tx_packets++; 217 dev->stats.tx_packets++;
131 } 218 }
132} 219}
133 220
221/* Another helper function to tell is if a slot in the device memory is unused.
222 * Since we always set the Local Assignment bit in the ethernet address, the
223 * first byte can never be 0. */
134static int unused_peer(const struct lguest_net peer[], unsigned int num) 224static int unused_peer(const struct lguest_net peer[], unsigned int num)
135{ 225{
136 return peer[num].mac[0] == 0; 226 return peer[num].mac[0] == 0;
137} 227}
138 228
229/* Finally, here is the routine which handles an outgoing packet. It's called
230 * "start_xmit" for traditional reasons. */
139static int lguestnet_start_xmit(struct sk_buff *skb, struct net_device *dev) 231static int lguestnet_start_xmit(struct sk_buff *skb, struct net_device *dev)
140{ 232{
141 unsigned int i; 233 unsigned int i;
142 int broadcast; 234 int broadcast;
143 struct lguestnet_info *info = netdev_priv(dev); 235 struct lguestnet_info *info = netdev_priv(dev);
236 /* Extract the destination ethernet address from the packet. */
144 const unsigned char *dest = ((struct ethhdr *)skb->data)->h_dest; 237 const unsigned char *dest = ((struct ethhdr *)skb->data)->h_dest;
145 238
146 pr_debug("%s: xmit %02x:%02x:%02x:%02x:%02x:%02x\n", 239 pr_debug("%s: xmit %02x:%02x:%02x:%02x:%02x:%02x\n",
147 dev->name, dest[0],dest[1],dest[2],dest[3],dest[4],dest[5]); 240 dev->name, dest[0],dest[1],dest[2],dest[3],dest[4],dest[5]);
148 241
242 /* If it's a multicast packet, we broadcast to everyone. That's not
243 * very efficient, but there are very few applications which actually
244 * use multicast, which is a shame really.
245 *
246 * As etherdevice.h points out: "By definition the broadcast address is
247 * also a multicast address." So we don't have to test for broadcast
248 * packets separately. */
149 broadcast = is_multicast_ether_addr(dest); 249 broadcast = is_multicast_ether_addr(dest);
250
251 /* Look through all the published ethernet addresses to see if we
252 * should send this packet. */
150 for (i = 0; i < info->mapsize/sizeof(struct lguest_net); i++) { 253 for (i = 0; i < info->mapsize/sizeof(struct lguest_net); i++) {
254 /* We don't send to ourselves (we actually can't SEND_DMA to
255 * ourselves anyway), and don't send to unused slots.*/
151 if (i == info->me || unused_peer(info->peer, i)) 256 if (i == info->me || unused_peer(info->peer, i))
152 continue; 257 continue;
153 258
259 /* If it's broadcast we send it. If they want every packet we
260 * send it. If the destination matches their address we send
261 * it. Otherwise we go to the next peer. */
154 if (!broadcast && !promisc(info, i) && !mac_eq(dest, info, i)) 262 if (!broadcast && !promisc(info, i) && !mac_eq(dest, info, i))
155 continue; 263 continue;
156 264
157 pr_debug("lguestnet %s: sending from %i to %i\n", 265 pr_debug("lguestnet %s: sending from %i to %i\n",
158 dev->name, info->me, i); 266 dev->name, info->me, i);
267 /* Our routine which actually does the transfer. */
159 transfer_packet(dev, skb, i); 268 transfer_packet(dev, skb, i);
160 } 269 }
270
271 /* An xmit routine is expected to dispose of the packet, so we do. */
161 dev_kfree_skb(skb); 272 dev_kfree_skb(skb);
273
274 /* As per kernel convention, 0 means success. This is why I love
275 * networking: even if we never sent to anyone, that's still
276 * success! */
162 return 0; 277 return 0;
163} 278}
164 279
165/* Find a new skb to put in this slot in shared mem. */ 280/*D:560
281 * Packet receiving.
282 *
283 * First, here's a helper routine which fills one of our array of receive
284 * buffers: */
166static int fill_slot(struct net_device *dev, unsigned int slot) 285static int fill_slot(struct net_device *dev, unsigned int slot)
167{ 286{
168 struct lguestnet_info *info = netdev_priv(dev); 287 struct lguestnet_info *info = netdev_priv(dev);
169 /* Try to create and register a new one. */ 288
289 /* We can receive ETH_DATA_LEN (1500) byte packets, plus a standard
290 * ethernet header of ETH_HLEN (14) bytes. */
170 info->skb[slot] = netdev_alloc_skb(dev, ETH_HLEN + ETH_DATA_LEN); 291 info->skb[slot] = netdev_alloc_skb(dev, ETH_HLEN + ETH_DATA_LEN);
171 if (!info->skb[slot]) { 292 if (!info->skb[slot]) {
172 printk("%s: could not fill slot %i\n", dev->name, slot); 293 printk("%s: could not fill slot %i\n", dev->name, slot);
173 return -ENOMEM; 294 return -ENOMEM;
174 } 295 }
175 296
297 /* skb_to_dma() is a helper which sets up the "struct lguest_dma" to
298 * point to the data in the skb: we also use it for sending out a
299 * packet. */
176 skb_to_dma(info->skb[slot], ETH_HLEN + ETH_DATA_LEN, &info->dma[slot]); 300 skb_to_dma(info->skb[slot], ETH_HLEN + ETH_DATA_LEN, &info->dma[slot]);
301
302 /* This is a Write Memory Barrier: it ensures that the entry in the
303 * receive buffer array is written *before* we set the "used_len" entry
304 * to 0. If the Host were looking at the receive buffer array from a
305 * different CPU, it could potentially see "used_len = 0" and not see
306 * the updated receive buffer information. This would be a horribly
307 * nasty bug, so make sure the compiler and CPU know this has to happen
308 * first. */
177 wmb(); 309 wmb();
178 /* Now we tell hypervisor it can use the slot. */ 310 /* Writing 0 to "used_len" tells the Host it can use this receive
311 * buffer now. */
179 info->dma[slot].used_len = 0; 312 info->dma[slot].used_len = 0;
180 return 0; 313 return 0;
181} 314}
182 315
316/* This is the actual receive routine. When we receive an interrupt from the
317 * Host to tell us a packet has been delivered, we arrive here: */
183static irqreturn_t lguestnet_rcv(int irq, void *dev_id) 318static irqreturn_t lguestnet_rcv(int irq, void *dev_id)
184{ 319{
185 struct net_device *dev = dev_id; 320 struct net_device *dev = dev_id;
186 struct lguestnet_info *info = netdev_priv(dev); 321 struct lguestnet_info *info = netdev_priv(dev);
187 unsigned int i, done = 0; 322 unsigned int i, done = 0;
188 323
324 /* Look through our entire receive array for an entry which has data
325 * in it. */
189 for (i = 0; i < ARRAY_SIZE(info->dma); i++) { 326 for (i = 0; i < ARRAY_SIZE(info->dma); i++) {
190 unsigned int length; 327 unsigned int length;
191 struct sk_buff *skb; 328 struct sk_buff *skb;
@@ -194,10 +331,16 @@ static irqreturn_t lguestnet_rcv(int irq, void *dev_id)
194 if (length == 0) 331 if (length == 0)
195 continue; 332 continue;
196 333
334 /* We've found one! Remember the skb (we grabbed the length
335 * above), and immediately refill the slot we've taken it
336 * from. */
197 done++; 337 done++;
198 skb = info->skb[i]; 338 skb = info->skb[i];
199 fill_slot(dev, i); 339 fill_slot(dev, i);
200 340
341 /* This shouldn't happen: micropackets could be sent by a
342 * badly-behaved Guest on the network, but the Host will never
343 * stuff more data in the buffer than the buffer length. */
201 if (length < ETH_HLEN || length > ETH_HLEN + ETH_DATA_LEN) { 344 if (length < ETH_HLEN || length > ETH_HLEN + ETH_DATA_LEN) {
202 pr_debug(KERN_WARNING "%s: unbelievable skb len: %i\n", 345 pr_debug(KERN_WARNING "%s: unbelievable skb len: %i\n",
203 dev->name, length); 346 dev->name, length);
@@ -205,36 +348,72 @@ static irqreturn_t lguestnet_rcv(int irq, void *dev_id)
205 continue; 348 continue;
206 } 349 }
207 350
351 /* skb_put(), what a great function! I've ranted about this
352 * function before (http://lkml.org/lkml/1999/9/26/24). You
353 * call it after you've added data to the end of an skb (in
354 * this case, it was the Host which wrote the data). */
208 skb_put(skb, length); 355 skb_put(skb, length);
356
357 /* The ethernet header contains a protocol field: we use the
358 * standard helper to extract it, and place the result in
359 * skb->protocol. The helper also sets up skb->pkt_type and
360 * eats up the ethernet header from the front of the packet. */
209 skb->protocol = eth_type_trans(skb, dev); 361 skb->protocol = eth_type_trans(skb, dev);
210 /* This is a reliable transport. */ 362
363 /* If this device doesn't need checksums for sending, we also
364 * don't need to check the packets when they come in. */
211 if (dev->features & NETIF_F_NO_CSUM) 365 if (dev->features & NETIF_F_NO_CSUM)
212 skb->ip_summed = CHECKSUM_UNNECESSARY; 366 skb->ip_summed = CHECKSUM_UNNECESSARY;
367
368 /* As a last resort for debugging the driver or the lguest I/O
369 * subsystem, you can uncomment the "#define DEBUG" at the top
370 * of this file, which turns all the pr_debug() into printk()
371 * and floods the logs. */
213 pr_debug("Receiving skb proto 0x%04x len %i type %i\n", 372 pr_debug("Receiving skb proto 0x%04x len %i type %i\n",
214 ntohs(skb->protocol), skb->len, skb->pkt_type); 373 ntohs(skb->protocol), skb->len, skb->pkt_type);
215 374
375 /* Update the packet and byte counts (visible from ifconfig,
376 * and good for debugging). */
216 dev->stats.rx_bytes += skb->len; 377 dev->stats.rx_bytes += skb->len;
217 dev->stats.rx_packets++; 378 dev->stats.rx_packets++;
379
380 /* Hand our fresh network packet into the stack's "network
381 * interface receive" routine. That will free the packet
382 * itself when it's finished. */
218 netif_rx(skb); 383 netif_rx(skb);
219 } 384 }
385
386 /* If we found any packets, we assume the interrupt was for us. */
220 return done ? IRQ_HANDLED : IRQ_NONE; 387 return done ? IRQ_HANDLED : IRQ_NONE;
221} 388}
222 389
390/*D:550 This is where we start: when the device is brought up by dhcpd or
391 * ifconfig. At this point we advertise our MAC address to the rest of the
392 * network, and register receive buffers ready for incoming packets. */
223static int lguestnet_open(struct net_device *dev) 393static int lguestnet_open(struct net_device *dev)
224{ 394{
225 int i; 395 int i;
226 struct lguestnet_info *info = netdev_priv(dev); 396 struct lguestnet_info *info = netdev_priv(dev);
227 397
228 /* Set up our MAC address */ 398 /* Copy our MAC address into the device page, so others on the network
399 * can find us. */
229 memcpy(info->peer[info->me].mac, dev->dev_addr, ETH_ALEN); 400 memcpy(info->peer[info->me].mac, dev->dev_addr, ETH_ALEN);
230 401
231 /* Turn on promisc mode if needed */ 402 /* We might already be in promisc mode (dev->flags & IFF_PROMISC). Our
403 * set_multicast callback handles this already, so we call it now. */
232 lguestnet_set_multicast(dev); 404 lguestnet_set_multicast(dev);
233 405
406 /* Allocate packets and put them into our "struct lguest_dma" array.
407 * If we fail to allocate all the packets we could still limp along,
408 * but it's a sign of real stress so we should probably give up now. */
234 for (i = 0; i < ARRAY_SIZE(info->dma); i++) { 409 for (i = 0; i < ARRAY_SIZE(info->dma); i++) {
235 if (fill_slot(dev, i) != 0) 410 if (fill_slot(dev, i) != 0)
236 goto cleanup; 411 goto cleanup;
237 } 412 }
413
414 /* Finally we tell the Host where our array of "struct lguest_dma"
415 * receive buffers is, binding it to the key corresponding to the
416 * device's physical memory plus our peerid. */
238 if (lguest_bind_dma(peer_key(info,info->me), info->dma, 417 if (lguest_bind_dma(peer_key(info,info->me), info->dma,
239 NUM_SKBS, lgdev_irq(info->lgdev)) != 0) 418 NUM_SKBS, lgdev_irq(info->lgdev)) != 0)
240 goto cleanup; 419 goto cleanup;
@@ -245,22 +424,29 @@ cleanup:
245 dev_kfree_skb(info->skb[i]); 424 dev_kfree_skb(info->skb[i]);
246 return -ENOMEM; 425 return -ENOMEM;
247} 426}
427/*:*/
248 428
429/* The close routine is called when the device is no longer in use: we clean up
430 * elegantly. */
249static int lguestnet_close(struct net_device *dev) 431static int lguestnet_close(struct net_device *dev)
250{ 432{
251 unsigned int i; 433 unsigned int i;
252 struct lguestnet_info *info = netdev_priv(dev); 434 struct lguestnet_info *info = netdev_priv(dev);
253 435
254 /* Clear all trace: others might deliver packets, we'll ignore it. */ 436 /* Clear all trace of our existence out of the device memory by setting
437 * the slot which held our MAC address to 0 (unused). */
255 memset(&info->peer[info->me], 0, sizeof(info->peer[info->me])); 438 memset(&info->peer[info->me], 0, sizeof(info->peer[info->me]));
256 439
257 /* Deregister sg lists. */ 440 /* Unregister our array of receive buffers */
258 lguest_unbind_dma(peer_key(info, info->me), info->dma); 441 lguest_unbind_dma(peer_key(info, info->me), info->dma);
259 for (i = 0; i < ARRAY_SIZE(info->dma); i++) 442 for (i = 0; i < ARRAY_SIZE(info->dma); i++)
260 dev_kfree_skb(info->skb[i]); 443 dev_kfree_skb(info->skb[i]);
261 return 0; 444 return 0;
262} 445}
263 446
447/*D:510 The network device probe function is basically a standard ethernet
448 * device setup. It reads the "struct lguest_device_desc" and sets the "struct
449 * net_device". Oh, the line-by-line excitement! Let's skip over it. :*/
264static int lguestnet_probe(struct lguest_device *lgdev) 450static int lguestnet_probe(struct lguest_device *lgdev)
265{ 451{
266 int err, irqf = IRQF_SHARED; 452 int err, irqf = IRQF_SHARED;
@@ -290,10 +476,16 @@ static int lguestnet_probe(struct lguest_device *lgdev)
290 dev->stop = lguestnet_close; 476 dev->stop = lguestnet_close;
291 dev->hard_start_xmit = lguestnet_start_xmit; 477 dev->hard_start_xmit = lguestnet_start_xmit;
292 478
293 /* Turning on/off promisc will call dev->set_multicast_list. 479 /* We don't actually support multicast yet, but turning on/off
294 * We don't actually support multicast yet */ 480 * promisc also calls dev->set_multicast_list. */
295 dev->set_multicast_list = lguestnet_set_multicast; 481 dev->set_multicast_list = lguestnet_set_multicast;
296 SET_NETDEV_DEV(dev, &lgdev->dev); 482 SET_NETDEV_DEV(dev, &lgdev->dev);
483
484 /* The network code complains if you have "scatter-gather" capability
485 * if you don't also handle checksums (it seem that would be
486 * "illogical"). So we use a lie of omission and don't tell it that we
487 * can handle scattered packets unless we also don't want checksums,
488 * even though to us they're completely independent. */
297 if (desc->features & LGUEST_NET_F_NOCSUM) 489 if (desc->features & LGUEST_NET_F_NOCSUM)
298 dev->features = NETIF_F_SG|NETIF_F_NO_CSUM; 490 dev->features = NETIF_F_SG|NETIF_F_NO_CSUM;
299 491
@@ -325,6 +517,9 @@ static int lguestnet_probe(struct lguest_device *lgdev)
325 } 517 }
326 518
327 pr_debug("lguestnet: registered device %s\n", dev->name); 519 pr_debug("lguestnet: registered device %s\n", dev->name);
520 /* Finally, we put the "struct net_device" in the generic "struct
521 * lguest_device"s private pointer. Again, it's not necessary, but
522 * makes sure the cool kernel kids don't tease us. */
328 lgdev->private = dev; 523 lgdev->private = dev;
329 return 0; 524 return 0;
330 525
@@ -352,3 +547,11 @@ module_init(lguestnet_init);
352 547
353MODULE_DESCRIPTION("Lguest network driver"); 548MODULE_DESCRIPTION("Lguest network driver");
354MODULE_LICENSE("GPL"); 549MODULE_LICENSE("GPL");
550
551/*D:580
552 * This is the last of the Drivers, and with this we have covered the many and
553 * wonderous and fine (and boring) details of the Guest.
554 *
555 * "make Launcher" beckons, where we answer questions like "Where do Guests
556 * come from?", and "What do you do when someone asks for optimization?"
557 */