aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/igbvf
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/igbvf')
-rw-r--r--drivers/net/igbvf/Makefile38
-rw-r--r--drivers/net/igbvf/defines.h125
-rw-r--r--drivers/net/igbvf/ethtool.c540
-rw-r--r--drivers/net/igbvf/igbvf.h332
-rw-r--r--drivers/net/igbvf/mbx.c350
-rw-r--r--drivers/net/igbvf/mbx.h75
-rw-r--r--drivers/net/igbvf/netdev.c2922
-rw-r--r--drivers/net/igbvf/regs.h108
-rw-r--r--drivers/net/igbvf/vf.c398
-rw-r--r--drivers/net/igbvf/vf.h264
10 files changed, 5152 insertions, 0 deletions
diff --git a/drivers/net/igbvf/Makefile b/drivers/net/igbvf/Makefile
new file mode 100644
index 000000000000..c2f150d8f2d9
--- /dev/null
+++ b/drivers/net/igbvf/Makefile
@@ -0,0 +1,38 @@
1################################################################################
2#
3# Intel(R) 82576 Virtual Function Linux driver
4# Copyright(c) 2009 Intel Corporation.
5#
6# This program is free software; you can redistribute it and/or modify it
7# under the terms and conditions of the GNU General Public License,
8# version 2, as published by the Free Software Foundation.
9#
10# This program is distributed in the hope it will be useful, but WITHOUT
11# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13# more details.
14#
15# You should have received a copy of the GNU General Public License along with
16# this program; if not, write to the Free Software Foundation, Inc.,
17# 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18#
19# The full GNU General Public License is included in this distribution in
20# the file called "COPYING".
21#
22# Contact Information:
23# e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24# Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25#
26################################################################################
27
28#
29# Makefile for the Intel(R) 82576 VF ethernet driver
30#
31
32obj-$(CONFIG_IGBVF) += igbvf.o
33
34igbvf-objs := vf.o \
35 mbx.o \
36 ethtool.o \
37 netdev.o
38
diff --git a/drivers/net/igbvf/defines.h b/drivers/net/igbvf/defines.h
new file mode 100644
index 000000000000..88a47537518a
--- /dev/null
+++ b/drivers/net/igbvf/defines.h
@@ -0,0 +1,125 @@
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#ifndef _E1000_DEFINES_H_
29#define _E1000_DEFINES_H_
30
31/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
32#define REQ_TX_DESCRIPTOR_MULTIPLE 8
33#define REQ_RX_DESCRIPTOR_MULTIPLE 8
34
35/* IVAR valid bit */
36#define E1000_IVAR_VALID 0x80
37
38/* Receive Descriptor bit definitions */
39#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
40#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
41#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
42#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
43#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */
44#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
45#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
46#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
47#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
48
49#define E1000_RXDEXT_STATERR_CE 0x01000000
50#define E1000_RXDEXT_STATERR_SE 0x02000000
51#define E1000_RXDEXT_STATERR_SEQ 0x04000000
52#define E1000_RXDEXT_STATERR_CXE 0x10000000
53#define E1000_RXDEXT_STATERR_TCPE 0x20000000
54#define E1000_RXDEXT_STATERR_IPE 0x40000000
55#define E1000_RXDEXT_STATERR_RXE 0x80000000
56
57
58/* Same mask, but for extended and packet split descriptors */
59#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
60 E1000_RXDEXT_STATERR_CE | \
61 E1000_RXDEXT_STATERR_SE | \
62 E1000_RXDEXT_STATERR_SEQ | \
63 E1000_RXDEXT_STATERR_CXE | \
64 E1000_RXDEXT_STATERR_RXE)
65
66/* Device Control */
67#define E1000_CTRL_RST 0x04000000 /* Global reset */
68
69/* Device Status */
70#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
71#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
72#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
73#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
74#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
75#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
76
77#define SPEED_10 10
78#define SPEED_100 100
79#define SPEED_1000 1000
80#define HALF_DUPLEX 1
81#define FULL_DUPLEX 2
82
83/* Transmit Descriptor bit definitions */
84#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
85#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
86#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
87#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
88
89#define MAX_JUMBO_FRAME_SIZE 0x3F00
90
91/* 802.1q VLAN Packet Size */
92#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */
93
94/* Error Codes */
95#define E1000_SUCCESS 0
96#define E1000_ERR_CONFIG 3
97#define E1000_ERR_MAC_INIT 5
98#define E1000_ERR_MBX 15
99
100#ifndef ETH_ADDR_LEN
101#define ETH_ADDR_LEN 6
102#endif
103
104/* SRRCTL bit definitions */
105#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */
106#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00
107#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */
108#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000
109#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000
110#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000
111#define E1000_SRRCTL_DROP_EN 0x80000000
112
113#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F
114#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00
115
116/* Additional Descriptor Control definitions */
117#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Tx Queue */
118#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Rx Queue */
119
120/* Direct Cache Access (DCA) definitions */
121#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */
122
123#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */
124
125#endif /* _E1000_DEFINES_H_ */
diff --git a/drivers/net/igbvf/ethtool.c b/drivers/net/igbvf/ethtool.c
new file mode 100644
index 000000000000..1dcaa6905312
--- /dev/null
+++ b/drivers/net/igbvf/ethtool.c
@@ -0,0 +1,540 @@
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igbvf */
29
30#include <linux/netdevice.h>
31#include <linux/ethtool.h>
32#include <linux/pci.h>
33#include <linux/vmalloc.h>
34#include <linux/delay.h>
35
36#include "igbvf.h"
37#include <linux/if_vlan.h>
38
39
40struct igbvf_stats {
41 char stat_string[ETH_GSTRING_LEN];
42 int sizeof_stat;
43 int stat_offset;
44 int base_stat_offset;
45};
46
47#define IGBVF_STAT(current, base) \
48 sizeof(((struct igbvf_adapter *)0)->current), \
49 offsetof(struct igbvf_adapter, current), \
50 offsetof(struct igbvf_adapter, base)
51
52static const struct igbvf_stats igbvf_gstrings_stats[] = {
53 { "rx_packets", IGBVF_STAT(stats.gprc, stats.base_gprc) },
54 { "tx_packets", IGBVF_STAT(stats.gptc, stats.base_gptc) },
55 { "rx_bytes", IGBVF_STAT(stats.gorc, stats.base_gorc) },
56 { "tx_bytes", IGBVF_STAT(stats.gotc, stats.base_gotc) },
57 { "multicast", IGBVF_STAT(stats.mprc, stats.base_mprc) },
58 { "lbrx_bytes", IGBVF_STAT(stats.gorlbc, stats.base_gorlbc) },
59 { "lbrx_packets", IGBVF_STAT(stats.gprlbc, stats.base_gprlbc) },
60 { "tx_restart_queue", IGBVF_STAT(restart_queue, zero_base) },
61 { "rx_long_byte_count", IGBVF_STAT(stats.gorc, stats.base_gorc) },
62 { "rx_csum_offload_good", IGBVF_STAT(hw_csum_good, zero_base) },
63 { "rx_csum_offload_errors", IGBVF_STAT(hw_csum_err, zero_base) },
64 { "rx_header_split", IGBVF_STAT(rx_hdr_split, zero_base) },
65 { "alloc_rx_buff_failed", IGBVF_STAT(alloc_rx_buff_failed, zero_base) },
66};
67
68#define IGBVF_GLOBAL_STATS_LEN ARRAY_SIZE(igbvf_gstrings_stats)
69
70static const char igbvf_gstrings_test[][ETH_GSTRING_LEN] = {
71 "Link test (on/offline)"
72};
73
74#define IGBVF_TEST_LEN ARRAY_SIZE(igbvf_gstrings_test)
75
76static int igbvf_get_settings(struct net_device *netdev,
77 struct ethtool_cmd *ecmd)
78{
79 struct igbvf_adapter *adapter = netdev_priv(netdev);
80 struct e1000_hw *hw = &adapter->hw;
81 u32 status;
82
83 ecmd->supported = SUPPORTED_1000baseT_Full;
84
85 ecmd->advertising = ADVERTISED_1000baseT_Full;
86
87 ecmd->port = -1;
88 ecmd->transceiver = XCVR_DUMMY1;
89
90 status = er32(STATUS);
91 if (status & E1000_STATUS_LU) {
92 if (status & E1000_STATUS_SPEED_1000)
93 ecmd->speed = 1000;
94 else if (status & E1000_STATUS_SPEED_100)
95 ecmd->speed = 100;
96 else
97 ecmd->speed = 10;
98
99 if (status & E1000_STATUS_FD)
100 ecmd->duplex = DUPLEX_FULL;
101 else
102 ecmd->duplex = DUPLEX_HALF;
103 } else {
104 ecmd->speed = -1;
105 ecmd->duplex = -1;
106 }
107
108 ecmd->autoneg = AUTONEG_DISABLE;
109
110 return 0;
111}
112
113static u32 igbvf_get_link(struct net_device *netdev)
114{
115 return netif_carrier_ok(netdev);
116}
117
118static int igbvf_set_settings(struct net_device *netdev,
119 struct ethtool_cmd *ecmd)
120{
121 return -EOPNOTSUPP;
122}
123
124static void igbvf_get_pauseparam(struct net_device *netdev,
125 struct ethtool_pauseparam *pause)
126{
127 return;
128}
129
130static int igbvf_set_pauseparam(struct net_device *netdev,
131 struct ethtool_pauseparam *pause)
132{
133 return -EOPNOTSUPP;
134}
135
136static u32 igbvf_get_tx_csum(struct net_device *netdev)
137{
138 return ((netdev->features & NETIF_F_IP_CSUM) != 0);
139}
140
141static int igbvf_set_tx_csum(struct net_device *netdev, u32 data)
142{
143 if (data)
144 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
145 else
146 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
147 return 0;
148}
149
150static int igbvf_set_tso(struct net_device *netdev, u32 data)
151{
152 struct igbvf_adapter *adapter = netdev_priv(netdev);
153 int i;
154 struct net_device *v_netdev;
155
156 if (data) {
157 netdev->features |= NETIF_F_TSO;
158 netdev->features |= NETIF_F_TSO6;
159 } else {
160 netdev->features &= ~NETIF_F_TSO;
161 netdev->features &= ~NETIF_F_TSO6;
162 /* disable TSO on all VLANs if they're present */
163 if (!adapter->vlgrp)
164 goto tso_out;
165 for (i = 0; i < VLAN_GROUP_ARRAY_LEN; i++) {
166 v_netdev = vlan_group_get_device(adapter->vlgrp, i);
167 if (!v_netdev)
168 continue;
169
170 v_netdev->features &= ~NETIF_F_TSO;
171 v_netdev->features &= ~NETIF_F_TSO6;
172 vlan_group_set_device(adapter->vlgrp, i, v_netdev);
173 }
174 }
175
176tso_out:
177 dev_info(&adapter->pdev->dev, "TSO is %s\n",
178 data ? "Enabled" : "Disabled");
179 adapter->flags |= FLAG_TSO_FORCE;
180 return 0;
181}
182
183static u32 igbvf_get_msglevel(struct net_device *netdev)
184{
185 struct igbvf_adapter *adapter = netdev_priv(netdev);
186 return adapter->msg_enable;
187}
188
189static void igbvf_set_msglevel(struct net_device *netdev, u32 data)
190{
191 struct igbvf_adapter *adapter = netdev_priv(netdev);
192 adapter->msg_enable = data;
193}
194
195static int igbvf_get_regs_len(struct net_device *netdev)
196{
197#define IGBVF_REGS_LEN 8
198 return IGBVF_REGS_LEN * sizeof(u32);
199}
200
201static void igbvf_get_regs(struct net_device *netdev,
202 struct ethtool_regs *regs, void *p)
203{
204 struct igbvf_adapter *adapter = netdev_priv(netdev);
205 struct e1000_hw *hw = &adapter->hw;
206 u32 *regs_buff = p;
207 u8 revision_id;
208
209 memset(p, 0, IGBVF_REGS_LEN * sizeof(u32));
210
211 pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
212
213 regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
214
215 regs_buff[0] = er32(CTRL);
216 regs_buff[1] = er32(STATUS);
217
218 regs_buff[2] = er32(RDLEN(0));
219 regs_buff[3] = er32(RDH(0));
220 regs_buff[4] = er32(RDT(0));
221
222 regs_buff[5] = er32(TDLEN(0));
223 regs_buff[6] = er32(TDH(0));
224 regs_buff[7] = er32(TDT(0));
225}
226
227static int igbvf_get_eeprom_len(struct net_device *netdev)
228{
229 return 0;
230}
231
232static int igbvf_get_eeprom(struct net_device *netdev,
233 struct ethtool_eeprom *eeprom, u8 *bytes)
234{
235 return -EOPNOTSUPP;
236}
237
238static int igbvf_set_eeprom(struct net_device *netdev,
239 struct ethtool_eeprom *eeprom, u8 *bytes)
240{
241 return -EOPNOTSUPP;
242}
243
244static void igbvf_get_drvinfo(struct net_device *netdev,
245 struct ethtool_drvinfo *drvinfo)
246{
247 struct igbvf_adapter *adapter = netdev_priv(netdev);
248 char firmware_version[32] = "N/A";
249
250 strncpy(drvinfo->driver, igbvf_driver_name, 32);
251 strncpy(drvinfo->version, igbvf_driver_version, 32);
252 strncpy(drvinfo->fw_version, firmware_version, 32);
253 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
254 drvinfo->regdump_len = igbvf_get_regs_len(netdev);
255 drvinfo->eedump_len = igbvf_get_eeprom_len(netdev);
256}
257
258static void igbvf_get_ringparam(struct net_device *netdev,
259 struct ethtool_ringparam *ring)
260{
261 struct igbvf_adapter *adapter = netdev_priv(netdev);
262 struct igbvf_ring *tx_ring = adapter->tx_ring;
263 struct igbvf_ring *rx_ring = adapter->rx_ring;
264
265 ring->rx_max_pending = IGBVF_MAX_RXD;
266 ring->tx_max_pending = IGBVF_MAX_TXD;
267 ring->rx_mini_max_pending = 0;
268 ring->rx_jumbo_max_pending = 0;
269 ring->rx_pending = rx_ring->count;
270 ring->tx_pending = tx_ring->count;
271 ring->rx_mini_pending = 0;
272 ring->rx_jumbo_pending = 0;
273}
274
275static int igbvf_set_ringparam(struct net_device *netdev,
276 struct ethtool_ringparam *ring)
277{
278 struct igbvf_adapter *adapter = netdev_priv(netdev);
279 struct igbvf_ring *temp_ring;
280 int err;
281 u32 new_rx_count, new_tx_count;
282
283 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
284 return -EINVAL;
285
286 new_rx_count = max(ring->rx_pending, (u32)IGBVF_MIN_RXD);
287 new_rx_count = min(new_rx_count, (u32)IGBVF_MAX_RXD);
288 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
289
290 new_tx_count = max(ring->tx_pending, (u32)IGBVF_MIN_TXD);
291 new_tx_count = min(new_tx_count, (u32)IGBVF_MAX_TXD);
292 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
293
294 if ((new_tx_count == adapter->tx_ring->count) &&
295 (new_rx_count == adapter->rx_ring->count)) {
296 /* nothing to do */
297 return 0;
298 }
299
300 temp_ring = vmalloc(sizeof(struct igbvf_ring));
301 if (!temp_ring)
302 return -ENOMEM;
303
304 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
305 msleep(1);
306
307 if (netif_running(adapter->netdev))
308 igbvf_down(adapter);
309
310 /*
311 * We can't just free everything and then setup again,
312 * because the ISRs in MSI-X mode get passed pointers
313 * to the tx and rx ring structs.
314 */
315 if (new_tx_count != adapter->tx_ring->count) {
316 memcpy(temp_ring, adapter->tx_ring, sizeof(struct igbvf_ring));
317
318 temp_ring->count = new_tx_count;
319 err = igbvf_setup_tx_resources(adapter, temp_ring);
320 if (err)
321 goto err_setup;
322
323 igbvf_free_tx_resources(adapter->tx_ring);
324
325 memcpy(adapter->tx_ring, temp_ring, sizeof(struct igbvf_ring));
326 }
327
328 if (new_rx_count != adapter->rx_ring->count) {
329 memcpy(temp_ring, adapter->rx_ring, sizeof(struct igbvf_ring));
330
331 temp_ring->count = new_rx_count;
332 err = igbvf_setup_rx_resources(adapter, temp_ring);
333 if (err)
334 goto err_setup;
335
336 igbvf_free_rx_resources(adapter->rx_ring);
337
338 memcpy(adapter->rx_ring, temp_ring,sizeof(struct igbvf_ring));
339 }
340
341 err = 0;
342err_setup:
343 if (netif_running(adapter->netdev))
344 igbvf_up(adapter);
345
346 clear_bit(__IGBVF_RESETTING, &adapter->state);
347 vfree(temp_ring);
348 return err;
349}
350
351static int igbvf_link_test(struct igbvf_adapter *adapter, u64 *data)
352{
353 struct e1000_hw *hw = &adapter->hw;
354 *data = 0;
355
356 hw->mac.ops.check_for_link(hw);
357
358 if (!(er32(STATUS) & E1000_STATUS_LU))
359 *data = 1;
360
361 return *data;
362}
363
364static int igbvf_get_self_test_count(struct net_device *netdev)
365{
366 return IGBVF_TEST_LEN;
367}
368
369static int igbvf_get_stats_count(struct net_device *netdev)
370{
371 return IGBVF_GLOBAL_STATS_LEN;
372}
373
374static void igbvf_diag_test(struct net_device *netdev,
375 struct ethtool_test *eth_test, u64 *data)
376{
377 struct igbvf_adapter *adapter = netdev_priv(netdev);
378
379 set_bit(__IGBVF_TESTING, &adapter->state);
380
381 /*
382 * Link test performed before hardware reset so autoneg doesn't
383 * interfere with test result
384 */
385 if (igbvf_link_test(adapter, &data[0]))
386 eth_test->flags |= ETH_TEST_FL_FAILED;
387
388 clear_bit(__IGBVF_TESTING, &adapter->state);
389 msleep_interruptible(4 * 1000);
390}
391
392static void igbvf_get_wol(struct net_device *netdev,
393 struct ethtool_wolinfo *wol)
394{
395 wol->supported = 0;
396 wol->wolopts = 0;
397
398 return;
399}
400
401static int igbvf_set_wol(struct net_device *netdev,
402 struct ethtool_wolinfo *wol)
403{
404 return -EOPNOTSUPP;
405}
406
407static int igbvf_phys_id(struct net_device *netdev, u32 data)
408{
409 return 0;
410}
411
412static int igbvf_get_coalesce(struct net_device *netdev,
413 struct ethtool_coalesce *ec)
414{
415 struct igbvf_adapter *adapter = netdev_priv(netdev);
416
417 if (adapter->itr_setting <= 3)
418 ec->rx_coalesce_usecs = adapter->itr_setting;
419 else
420 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
421
422 return 0;
423}
424
425static int igbvf_set_coalesce(struct net_device *netdev,
426 struct ethtool_coalesce *ec)
427{
428 struct igbvf_adapter *adapter = netdev_priv(netdev);
429 struct e1000_hw *hw = &adapter->hw;
430
431 if ((ec->rx_coalesce_usecs > IGBVF_MAX_ITR_USECS) ||
432 ((ec->rx_coalesce_usecs > 3) &&
433 (ec->rx_coalesce_usecs < IGBVF_MIN_ITR_USECS)) ||
434 (ec->rx_coalesce_usecs == 2))
435 return -EINVAL;
436
437 /* convert to rate of irq's per second */
438 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
439 adapter->itr = IGBVF_START_ITR;
440 adapter->itr_setting = ec->rx_coalesce_usecs;
441 } else {
442 adapter->itr = ec->rx_coalesce_usecs << 2;
443 adapter->itr_setting = adapter->itr;
444 }
445
446 writel(adapter->itr,
447 hw->hw_addr + adapter->rx_ring[0].itr_register);
448
449 return 0;
450}
451
452static int igbvf_nway_reset(struct net_device *netdev)
453{
454 struct igbvf_adapter *adapter = netdev_priv(netdev);
455 if (netif_running(netdev))
456 igbvf_reinit_locked(adapter);
457 return 0;
458}
459
460
461static void igbvf_get_ethtool_stats(struct net_device *netdev,
462 struct ethtool_stats *stats,
463 u64 *data)
464{
465 struct igbvf_adapter *adapter = netdev_priv(netdev);
466 int i;
467
468 igbvf_update_stats(adapter);
469 for (i = 0; i < IGBVF_GLOBAL_STATS_LEN; i++) {
470 char *p = (char *)adapter +
471 igbvf_gstrings_stats[i].stat_offset;
472 char *b = (char *)adapter +
473 igbvf_gstrings_stats[i].base_stat_offset;
474 data[i] = ((igbvf_gstrings_stats[i].sizeof_stat ==
475 sizeof(u64)) ? (*(u64 *)p - *(u64 *)b) :
476 (*(u32 *)p - *(u32 *)b));
477 }
478
479}
480
481static void igbvf_get_strings(struct net_device *netdev, u32 stringset,
482 u8 *data)
483{
484 u8 *p = data;
485 int i;
486
487 switch (stringset) {
488 case ETH_SS_TEST:
489 memcpy(data, *igbvf_gstrings_test, sizeof(igbvf_gstrings_test));
490 break;
491 case ETH_SS_STATS:
492 for (i = 0; i < IGBVF_GLOBAL_STATS_LEN; i++) {
493 memcpy(p, igbvf_gstrings_stats[i].stat_string,
494 ETH_GSTRING_LEN);
495 p += ETH_GSTRING_LEN;
496 }
497 break;
498 }
499}
500
501static const struct ethtool_ops igbvf_ethtool_ops = {
502 .get_settings = igbvf_get_settings,
503 .set_settings = igbvf_set_settings,
504 .get_drvinfo = igbvf_get_drvinfo,
505 .get_regs_len = igbvf_get_regs_len,
506 .get_regs = igbvf_get_regs,
507 .get_wol = igbvf_get_wol,
508 .set_wol = igbvf_set_wol,
509 .get_msglevel = igbvf_get_msglevel,
510 .set_msglevel = igbvf_set_msglevel,
511 .nway_reset = igbvf_nway_reset,
512 .get_link = igbvf_get_link,
513 .get_eeprom_len = igbvf_get_eeprom_len,
514 .get_eeprom = igbvf_get_eeprom,
515 .set_eeprom = igbvf_set_eeprom,
516 .get_ringparam = igbvf_get_ringparam,
517 .set_ringparam = igbvf_set_ringparam,
518 .get_pauseparam = igbvf_get_pauseparam,
519 .set_pauseparam = igbvf_set_pauseparam,
520 .get_tx_csum = igbvf_get_tx_csum,
521 .set_tx_csum = igbvf_set_tx_csum,
522 .get_sg = ethtool_op_get_sg,
523 .set_sg = ethtool_op_set_sg,
524 .get_tso = ethtool_op_get_tso,
525 .set_tso = igbvf_set_tso,
526 .self_test = igbvf_diag_test,
527 .get_strings = igbvf_get_strings,
528 .phys_id = igbvf_phys_id,
529 .get_ethtool_stats = igbvf_get_ethtool_stats,
530 .self_test_count = igbvf_get_self_test_count,
531 .get_stats_count = igbvf_get_stats_count,
532 .get_coalesce = igbvf_get_coalesce,
533 .set_coalesce = igbvf_set_coalesce,
534};
535
536void igbvf_set_ethtool_ops(struct net_device *netdev)
537{
538 /* have to "undeclare" const on this struct to remove warnings */
539 SET_ETHTOOL_OPS(netdev, (struct ethtool_ops *)&igbvf_ethtool_ops);
540}
diff --git a/drivers/net/igbvf/igbvf.h b/drivers/net/igbvf/igbvf.h
new file mode 100644
index 000000000000..4bff35e46871
--- /dev/null
+++ b/drivers/net/igbvf/igbvf.h
@@ -0,0 +1,332 @@
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* Linux PRO/1000 Ethernet Driver main header file */
29
30#ifndef _IGBVF_H_
31#define _IGBVF_H_
32
33#include <linux/types.h>
34#include <linux/timer.h>
35#include <linux/io.h>
36#include <linux/netdevice.h>
37
38
39#include "vf.h"
40
41/* Forward declarations */
42struct igbvf_info;
43struct igbvf_adapter;
44
45/* Interrupt defines */
46#define IGBVF_START_ITR 648 /* ~6000 ints/sec */
47
48/* Interrupt modes, as used by the IntMode paramter */
49#define IGBVF_INT_MODE_LEGACY 0
50#define IGBVF_INT_MODE_MSI 1
51#define IGBVF_INT_MODE_MSIX 2
52
53/* Tx/Rx descriptor defines */
54#define IGBVF_DEFAULT_TXD 256
55#define IGBVF_MAX_TXD 4096
56#define IGBVF_MIN_TXD 80
57
58#define IGBVF_DEFAULT_RXD 256
59#define IGBVF_MAX_RXD 4096
60#define IGBVF_MIN_RXD 80
61
62#define IGBVF_MIN_ITR_USECS 10 /* 100000 irq/sec */
63#define IGBVF_MAX_ITR_USECS 10000 /* 100 irq/sec */
64
65/* RX descriptor control thresholds.
66 * PTHRESH - MAC will consider prefetch if it has fewer than this number of
67 * descriptors available in its onboard memory.
68 * Setting this to 0 disables RX descriptor prefetch.
69 * HTHRESH - MAC will only prefetch if there are at least this many descriptors
70 * available in host memory.
71 * If PTHRESH is 0, this should also be 0.
72 * WTHRESH - RX descriptor writeback threshold - MAC will delay writing back
73 * descriptors until either it has this many to write back, or the
74 * ITR timer expires.
75 */
76#define IGBVF_RX_PTHRESH 16
77#define IGBVF_RX_HTHRESH 8
78#define IGBVF_RX_WTHRESH 1
79
80/* this is the size past which hardware will drop packets when setting LPE=0 */
81#define MAXIMUM_ETHERNET_VLAN_SIZE 1522
82
83#define IGBVF_FC_PAUSE_TIME 0x0680 /* 858 usec */
84
85/* How many Tx Descriptors do we need to call netif_wake_queue ? */
86#define IGBVF_TX_QUEUE_WAKE 32
87/* How many Rx Buffers do we bundle into one write to the hardware ? */
88#define IGBVF_RX_BUFFER_WRITE 16 /* Must be power of 2 */
89
90#define AUTO_ALL_MODES 0
91#define IGBVF_EEPROM_APME 0x0400
92
93#define IGBVF_MNG_VLAN_NONE (-1)
94
95/* Number of packet split data buffers (not including the header buffer) */
96#define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1)
97
98enum igbvf_boards {
99 board_vf,
100};
101
102struct igbvf_queue_stats {
103 u64 packets;
104 u64 bytes;
105};
106
107/*
108 * wrappers around a pointer to a socket buffer,
109 * so a DMA handle can be stored along with the buffer
110 */
111struct igbvf_buffer {
112 dma_addr_t dma;
113 struct sk_buff *skb;
114 union {
115 /* Tx */
116 struct {
117 unsigned long time_stamp;
118 u16 length;
119 u16 next_to_watch;
120 };
121 /* Rx */
122 struct {
123 struct page *page;
124 u64 page_dma;
125 unsigned int page_offset;
126 };
127 };
128 struct page *page;
129};
130
131union igbvf_desc {
132 union e1000_adv_rx_desc rx_desc;
133 union e1000_adv_tx_desc tx_desc;
134 struct e1000_adv_tx_context_desc tx_context_desc;
135};
136
137struct igbvf_ring {
138 struct igbvf_adapter *adapter; /* backlink */
139 union igbvf_desc *desc; /* pointer to ring memory */
140 dma_addr_t dma; /* phys address of ring */
141 unsigned int size; /* length of ring in bytes */
142 unsigned int count; /* number of desc. in ring */
143
144 u16 next_to_use;
145 u16 next_to_clean;
146
147 u16 head;
148 u16 tail;
149
150 /* array of buffer information structs */
151 struct igbvf_buffer *buffer_info;
152 struct napi_struct napi;
153
154 char name[IFNAMSIZ + 5];
155 u32 eims_value;
156 u32 itr_val;
157 u16 itr_register;
158 int set_itr;
159
160 struct sk_buff *rx_skb_top;
161
162 struct igbvf_queue_stats stats;
163};
164
165/* board specific private data structure */
166struct igbvf_adapter {
167 struct timer_list watchdog_timer;
168 struct timer_list blink_timer;
169
170 struct work_struct reset_task;
171 struct work_struct watchdog_task;
172
173 const struct igbvf_info *ei;
174
175 struct vlan_group *vlgrp;
176 u32 bd_number;
177 u32 rx_buffer_len;
178 u32 polling_interval;
179 u16 mng_vlan_id;
180 u16 link_speed;
181 u16 link_duplex;
182
183 spinlock_t tx_queue_lock; /* prevent concurrent tail updates */
184
185 /* track device up/down/testing state */
186 unsigned long state;
187
188 /* Interrupt Throttle Rate */
189 u32 itr;
190 u32 itr_setting;
191 u16 tx_itr;
192 u16 rx_itr;
193
194 /*
195 * Tx
196 */
197 struct igbvf_ring *tx_ring /* One per active queue */
198 ____cacheline_aligned_in_smp;
199
200 unsigned long tx_queue_len;
201 unsigned int restart_queue;
202 u32 txd_cmd;
203
204 bool detect_tx_hung;
205 u8 tx_timeout_factor;
206
207 u32 tx_int_delay;
208 u32 tx_abs_int_delay;
209
210 unsigned int total_tx_bytes;
211 unsigned int total_tx_packets;
212 unsigned int total_rx_bytes;
213 unsigned int total_rx_packets;
214
215 /* Tx stats */
216 u32 tx_timeout_count;
217 u32 tx_fifo_head;
218 u32 tx_head_addr;
219 u32 tx_fifo_size;
220 u32 tx_dma_failed;
221
222 /*
223 * Rx
224 */
225 struct igbvf_ring *rx_ring;
226
227 u32 rx_int_delay;
228 u32 rx_abs_int_delay;
229
230 /* Rx stats */
231 u64 hw_csum_err;
232 u64 hw_csum_good;
233 u64 rx_hdr_split;
234 u32 alloc_rx_buff_failed;
235 u32 rx_dma_failed;
236
237 unsigned int rx_ps_hdr_size;
238 u32 max_frame_size;
239 u32 min_frame_size;
240
241 /* OS defined structs */
242 struct net_device *netdev;
243 struct pci_dev *pdev;
244 struct net_device_stats net_stats;
245 spinlock_t stats_lock; /* prevent concurrent stats updates */
246
247 /* structs defined in e1000_hw.h */
248 struct e1000_hw hw;
249
250 /* The VF counters don't clear on read so we have to get a base
251 * count on driver start up and always subtract that base on
252 * on the first update, thus the flag..
253 */
254 struct e1000_vf_stats stats;
255 u64 zero_base;
256
257 struct igbvf_ring test_tx_ring;
258 struct igbvf_ring test_rx_ring;
259 u32 test_icr;
260
261 u32 msg_enable;
262 struct msix_entry *msix_entries;
263 int int_mode;
264 u32 eims_enable_mask;
265 u32 eims_other;
266 u32 int_counter0;
267 u32 int_counter1;
268
269 u32 eeprom_wol;
270 u32 wol;
271 u32 pba;
272
273 bool fc_autoneg;
274
275 unsigned long led_status;
276
277 unsigned int flags;
278};
279
280struct igbvf_info {
281 enum e1000_mac_type mac;
282 unsigned int flags;
283 u32 pba;
284 void (*init_ops)(struct e1000_hw *);
285 s32 (*get_variants)(struct igbvf_adapter *);
286};
287
288/* hardware capability, feature, and workaround flags */
289#define FLAG_HAS_HW_VLAN_FILTER (1 << 0)
290#define FLAG_HAS_JUMBO_FRAMES (1 << 1)
291#define FLAG_MSI_ENABLED (1 << 2)
292#define FLAG_RX_CSUM_ENABLED (1 << 3)
293#define FLAG_TSO_FORCE (1 << 4)
294
295#define IGBVF_RX_DESC_ADV(R, i) \
296 (&((((R).desc))[i].rx_desc))
297#define IGBVF_TX_DESC_ADV(R, i) \
298 (&((((R).desc))[i].tx_desc))
299#define IGBVF_TX_CTXTDESC_ADV(R, i) \
300 (&((((R).desc))[i].tx_context_desc))
301
302enum igbvf_state_t {
303 __IGBVF_TESTING,
304 __IGBVF_RESETTING,
305 __IGBVF_DOWN
306};
307
308enum latency_range {
309 lowest_latency = 0,
310 low_latency = 1,
311 bulk_latency = 2,
312 latency_invalid = 255
313};
314
315extern char igbvf_driver_name[];
316extern const char igbvf_driver_version[];
317
318extern void igbvf_check_options(struct igbvf_adapter *);
319extern void igbvf_set_ethtool_ops(struct net_device *);
320
321extern int igbvf_up(struct igbvf_adapter *);
322extern void igbvf_down(struct igbvf_adapter *);
323extern void igbvf_reinit_locked(struct igbvf_adapter *);
324extern int igbvf_setup_rx_resources(struct igbvf_adapter *, struct igbvf_ring *);
325extern int igbvf_setup_tx_resources(struct igbvf_adapter *, struct igbvf_ring *);
326extern void igbvf_free_rx_resources(struct igbvf_ring *);
327extern void igbvf_free_tx_resources(struct igbvf_ring *);
328extern void igbvf_update_stats(struct igbvf_adapter *);
329
330extern unsigned int copybreak;
331
332#endif /* _IGBVF_H_ */
diff --git a/drivers/net/igbvf/mbx.c b/drivers/net/igbvf/mbx.c
new file mode 100644
index 000000000000..819a8ec901dc
--- /dev/null
+++ b/drivers/net/igbvf/mbx.c
@@ -0,0 +1,350 @@
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include "mbx.h"
29
30/**
31 * e1000_poll_for_msg - Wait for message notification
32 * @hw: pointer to the HW structure
33 *
34 * returns SUCCESS if it successfully received a message notification
35 **/
36static s32 e1000_poll_for_msg(struct e1000_hw *hw)
37{
38 struct e1000_mbx_info *mbx = &hw->mbx;
39 int countdown = mbx->timeout;
40
41 if (!mbx->ops.check_for_msg)
42 goto out;
43
44 while (countdown && mbx->ops.check_for_msg(hw)) {
45 countdown--;
46 udelay(mbx->usec_delay);
47 }
48
49 /* if we failed, all future posted messages fail until reset */
50 if (!countdown)
51 mbx->timeout = 0;
52out:
53 return countdown ? E1000_SUCCESS : -E1000_ERR_MBX;
54}
55
56/**
57 * e1000_poll_for_ack - Wait for message acknowledgement
58 * @hw: pointer to the HW structure
59 *
60 * returns SUCCESS if it successfully received a message acknowledgement
61 **/
62static s32 e1000_poll_for_ack(struct e1000_hw *hw)
63{
64 struct e1000_mbx_info *mbx = &hw->mbx;
65 int countdown = mbx->timeout;
66
67 if (!mbx->ops.check_for_ack)
68 goto out;
69
70 while (countdown && mbx->ops.check_for_ack(hw)) {
71 countdown--;
72 udelay(mbx->usec_delay);
73 }
74
75 /* if we failed, all future posted messages fail until reset */
76 if (!countdown)
77 mbx->timeout = 0;
78out:
79 return countdown ? E1000_SUCCESS : -E1000_ERR_MBX;
80}
81
82/**
83 * e1000_read_posted_mbx - Wait for message notification and receive message
84 * @hw: pointer to the HW structure
85 * @msg: The message buffer
86 * @size: Length of buffer
87 *
88 * returns SUCCESS if it successfully received a message notification and
89 * copied it into the receive buffer.
90 **/
91static s32 e1000_read_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size)
92{
93 struct e1000_mbx_info *mbx = &hw->mbx;
94 s32 ret_val = -E1000_ERR_MBX;
95
96 if (!mbx->ops.read)
97 goto out;
98
99 ret_val = e1000_poll_for_msg(hw);
100
101 /* if ack received read message, otherwise we timed out */
102 if (!ret_val)
103 ret_val = mbx->ops.read(hw, msg, size);
104out:
105 return ret_val;
106}
107
108/**
109 * e1000_write_posted_mbx - Write a message to the mailbox, wait for ack
110 * @hw: pointer to the HW structure
111 * @msg: The message buffer
112 * @size: Length of buffer
113 *
114 * returns SUCCESS if it successfully copied message into the buffer and
115 * received an ack to that message within delay * timeout period
116 **/
117static s32 e1000_write_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size)
118{
119 struct e1000_mbx_info *mbx = &hw->mbx;
120 s32 ret_val = -E1000_ERR_MBX;
121
122 /* exit if we either can't write or there isn't a defined timeout */
123 if (!mbx->ops.write || !mbx->timeout)
124 goto out;
125
126 /* send msg*/
127 ret_val = mbx->ops.write(hw, msg, size);
128
129 /* if msg sent wait until we receive an ack */
130 if (!ret_val)
131 ret_val = e1000_poll_for_ack(hw);
132out:
133 return ret_val;
134}
135
136/**
137 * e1000_read_v2p_mailbox - read v2p mailbox
138 * @hw: pointer to the HW structure
139 *
140 * This function is used to read the v2p mailbox without losing the read to
141 * clear status bits.
142 **/
143static u32 e1000_read_v2p_mailbox(struct e1000_hw *hw)
144{
145 u32 v2p_mailbox = er32(V2PMAILBOX(0));
146
147 v2p_mailbox |= hw->dev_spec.vf.v2p_mailbox;
148 hw->dev_spec.vf.v2p_mailbox |= v2p_mailbox & E1000_V2PMAILBOX_R2C_BITS;
149
150 return v2p_mailbox;
151}
152
153/**
154 * e1000_check_for_bit_vf - Determine if a status bit was set
155 * @hw: pointer to the HW structure
156 * @mask: bitmask for bits to be tested and cleared
157 *
158 * This function is used to check for the read to clear bits within
159 * the V2P mailbox.
160 **/
161static s32 e1000_check_for_bit_vf(struct e1000_hw *hw, u32 mask)
162{
163 u32 v2p_mailbox = e1000_read_v2p_mailbox(hw);
164 s32 ret_val = -E1000_ERR_MBX;
165
166 if (v2p_mailbox & mask)
167 ret_val = E1000_SUCCESS;
168
169 hw->dev_spec.vf.v2p_mailbox &= ~mask;
170
171 return ret_val;
172}
173
174/**
175 * e1000_check_for_msg_vf - checks to see if the PF has sent mail
176 * @hw: pointer to the HW structure
177 *
178 * returns SUCCESS if the PF has set the Status bit or else ERR_MBX
179 **/
180static s32 e1000_check_for_msg_vf(struct e1000_hw *hw)
181{
182 s32 ret_val = -E1000_ERR_MBX;
183
184 if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFSTS)) {
185 ret_val = E1000_SUCCESS;
186 hw->mbx.stats.reqs++;
187 }
188
189 return ret_val;
190}
191
192/**
193 * e1000_check_for_ack_vf - checks to see if the PF has ACK'd
194 * @hw: pointer to the HW structure
195 *
196 * returns SUCCESS if the PF has set the ACK bit or else ERR_MBX
197 **/
198static s32 e1000_check_for_ack_vf(struct e1000_hw *hw)
199{
200 s32 ret_val = -E1000_ERR_MBX;
201
202 if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFACK)) {
203 ret_val = E1000_SUCCESS;
204 hw->mbx.stats.acks++;
205 }
206
207 return ret_val;
208}
209
210/**
211 * e1000_check_for_rst_vf - checks to see if the PF has reset
212 * @hw: pointer to the HW structure
213 *
214 * returns true if the PF has set the reset done bit or else false
215 **/
216static s32 e1000_check_for_rst_vf(struct e1000_hw *hw)
217{
218 s32 ret_val = -E1000_ERR_MBX;
219
220 if (!e1000_check_for_bit_vf(hw, (E1000_V2PMAILBOX_RSTD |
221 E1000_V2PMAILBOX_RSTI))) {
222 ret_val = E1000_SUCCESS;
223 hw->mbx.stats.rsts++;
224 }
225
226 return ret_val;
227}
228
229/**
230 * e1000_obtain_mbx_lock_vf - obtain mailbox lock
231 * @hw: pointer to the HW structure
232 *
233 * return SUCCESS if we obtained the mailbox lock
234 **/
235static s32 e1000_obtain_mbx_lock_vf(struct e1000_hw *hw)
236{
237 s32 ret_val = -E1000_ERR_MBX;
238
239 /* Take ownership of the buffer */
240 ew32(V2PMAILBOX(0), E1000_V2PMAILBOX_VFU);
241
242 /* reserve mailbox for vf use */
243 if (e1000_read_v2p_mailbox(hw) & E1000_V2PMAILBOX_VFU)
244 ret_val = E1000_SUCCESS;
245
246 return ret_val;
247}
248
249/**
250 * e1000_write_mbx_vf - Write a message to the mailbox
251 * @hw: pointer to the HW structure
252 * @msg: The message buffer
253 * @size: Length of buffer
254 *
255 * returns SUCCESS if it successfully copied message into the buffer
256 **/
257static s32 e1000_write_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size)
258{
259 s32 err;
260 u16 i;
261
262 /* lock the mailbox to prevent pf/vf race condition */
263 err = e1000_obtain_mbx_lock_vf(hw);
264 if (err)
265 goto out_no_write;
266
267 /* flush any ack or msg as we are going to overwrite mailbox */
268 e1000_check_for_ack_vf(hw);
269 e1000_check_for_msg_vf(hw);
270
271 /* copy the caller specified message to the mailbox memory buffer */
272 for (i = 0; i < size; i++)
273 array_ew32(VMBMEM(0), i, msg[i]);
274
275 /* update stats */
276 hw->mbx.stats.msgs_tx++;
277
278 /* Drop VFU and interrupt the PF to tell it a message has been sent */
279 ew32(V2PMAILBOX(0), E1000_V2PMAILBOX_REQ);
280
281out_no_write:
282 return err;
283}
284
285/**
286 * e1000_read_mbx_vf - Reads a message from the inbox intended for vf
287 * @hw: pointer to the HW structure
288 * @msg: The message buffer
289 * @size: Length of buffer
290 *
291 * returns SUCCESS if it successfuly read message from buffer
292 **/
293static s32 e1000_read_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size)
294{
295 s32 err;
296 u16 i;
297
298 /* lock the mailbox to prevent pf/vf race condition */
299 err = e1000_obtain_mbx_lock_vf(hw);
300 if (err)
301 goto out_no_read;
302
303 /* copy the message from the mailbox memory buffer */
304 for (i = 0; i < size; i++)
305 msg[i] = array_er32(VMBMEM(0), i);
306
307 /* Acknowledge receipt and release mailbox, then we're done */
308 ew32(V2PMAILBOX(0), E1000_V2PMAILBOX_ACK);
309
310 /* update stats */
311 hw->mbx.stats.msgs_rx++;
312
313out_no_read:
314 return err;
315}
316
317/**
318 * e1000_init_mbx_params_vf - set initial values for vf mailbox
319 * @hw: pointer to the HW structure
320 *
321 * Initializes the hw->mbx struct to correct values for vf mailbox
322 */
323s32 e1000_init_mbx_params_vf(struct e1000_hw *hw)
324{
325 struct e1000_mbx_info *mbx = &hw->mbx;
326
327 /* start mailbox as timed out and let the reset_hw call set the timeout
328 * value to being communications */
329 mbx->timeout = 0;
330 mbx->usec_delay = E1000_VF_MBX_INIT_DELAY;
331
332 mbx->size = E1000_VFMAILBOX_SIZE;
333
334 mbx->ops.read = e1000_read_mbx_vf;
335 mbx->ops.write = e1000_write_mbx_vf;
336 mbx->ops.read_posted = e1000_read_posted_mbx;
337 mbx->ops.write_posted = e1000_write_posted_mbx;
338 mbx->ops.check_for_msg = e1000_check_for_msg_vf;
339 mbx->ops.check_for_ack = e1000_check_for_ack_vf;
340 mbx->ops.check_for_rst = e1000_check_for_rst_vf;
341
342 mbx->stats.msgs_tx = 0;
343 mbx->stats.msgs_rx = 0;
344 mbx->stats.reqs = 0;
345 mbx->stats.acks = 0;
346 mbx->stats.rsts = 0;
347
348 return E1000_SUCCESS;
349}
350
diff --git a/drivers/net/igbvf/mbx.h b/drivers/net/igbvf/mbx.h
new file mode 100644
index 000000000000..4938609dbfb5
--- /dev/null
+++ b/drivers/net/igbvf/mbx.h
@@ -0,0 +1,75 @@
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#ifndef _E1000_MBX_H_
29#define _E1000_MBX_H_
30
31#include "vf.h"
32
33#define E1000_V2PMAILBOX_REQ 0x00000001 /* Request for PF Ready bit */
34#define E1000_V2PMAILBOX_ACK 0x00000002 /* Ack PF message received */
35#define E1000_V2PMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */
36#define E1000_V2PMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */
37#define E1000_V2PMAILBOX_PFSTS 0x00000010 /* PF wrote a message in the MB */
38#define E1000_V2PMAILBOX_PFACK 0x00000020 /* PF ack the previous VF msg */
39#define E1000_V2PMAILBOX_RSTI 0x00000040 /* PF has reset indication */
40#define E1000_V2PMAILBOX_RSTD 0x00000080 /* PF has indicated reset done */
41#define E1000_V2PMAILBOX_R2C_BITS 0x000000B0 /* All read to clear bits */
42
43#define E1000_VFMAILBOX_SIZE 16 /* 16 32 bit words - 64 bytes */
44
45/* If it's a E1000_VF_* msg then it originates in the VF and is sent to the
46 * PF. The reverse is true if it is E1000_PF_*.
47 * Message ACK's are the value or'd with 0xF0000000
48 */
49#define E1000_VT_MSGTYPE_ACK 0x80000000 /* Messages below or'd with
50 * this are the ACK */
51#define E1000_VT_MSGTYPE_NACK 0x40000000 /* Messages below or'd with
52 * this are the NACK */
53#define E1000_VT_MSGTYPE_CTS 0x20000000 /* Indicates that VF is still
54 clear to send requests */
55
56/* We have a total wait time of 1s for vf mailbox posted messages */
57#define E1000_VF_MBX_INIT_TIMEOUT 2000 /* retry count for mailbox timeout */
58#define E1000_VF_MBX_INIT_DELAY 500 /* usec delay between retries */
59
60#define E1000_VT_MSGINFO_SHIFT 16
61/* bits 23:16 are used for exra info for certain messages */
62#define E1000_VT_MSGINFO_MASK (0xFF << E1000_VT_MSGINFO_SHIFT)
63
64#define E1000_VF_RESET 0x01 /* VF requests reset */
65#define E1000_VF_SET_MAC_ADDR 0x02 /* VF requests PF to set MAC addr */
66#define E1000_VF_SET_MULTICAST 0x03 /* VF requests PF to set MC addr */
67#define E1000_VF_SET_VLAN 0x04 /* VF requests PF to set VLAN */
68#define E1000_VF_SET_LPE 0x05 /* VF requests PF to set VMOLR.LPE */
69
70#define E1000_PF_CONTROL_MSG 0x0100 /* PF control message */
71
72void e1000_init_mbx_ops_generic(struct e1000_hw *hw);
73s32 e1000_init_mbx_params_vf(struct e1000_hw *);
74
75#endif /* _E1000_MBX_H_ */
diff --git a/drivers/net/igbvf/netdev.c b/drivers/net/igbvf/netdev.c
new file mode 100644
index 000000000000..b774666ad3cf
--- /dev/null
+++ b/drivers/net/igbvf/netdev.c
@@ -0,0 +1,2922 @@
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/pci.h>
32#include <linux/vmalloc.h>
33#include <linux/pagemap.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/tcp.h>
37#include <linux/ipv6.h>
38#include <net/checksum.h>
39#include <net/ip6_checksum.h>
40#include <linux/mii.h>
41#include <linux/ethtool.h>
42#include <linux/if_vlan.h>
43#include <linux/pm_qos_params.h>
44
45#include "igbvf.h"
46
47#define DRV_VERSION "1.0.0-k0"
48char igbvf_driver_name[] = "igbvf";
49const char igbvf_driver_version[] = DRV_VERSION;
50static const char igbvf_driver_string[] =
51 "Intel(R) Virtual Function Network Driver";
52static const char igbvf_copyright[] = "Copyright (c) 2009 Intel Corporation.";
53
54static int igbvf_poll(struct napi_struct *napi, int budget);
55static void igbvf_reset(struct igbvf_adapter *);
56static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
57static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
58
59static struct igbvf_info igbvf_vf_info = {
60 .mac = e1000_vfadapt,
61 .flags = FLAG_HAS_JUMBO_FRAMES
62 | FLAG_RX_CSUM_ENABLED,
63 .pba = 10,
64 .init_ops = e1000_init_function_pointers_vf,
65};
66
67static const struct igbvf_info *igbvf_info_tbl[] = {
68 [board_vf] = &igbvf_vf_info,
69};
70
71/**
72 * igbvf_desc_unused - calculate if we have unused descriptors
73 **/
74static int igbvf_desc_unused(struct igbvf_ring *ring)
75{
76 if (ring->next_to_clean > ring->next_to_use)
77 return ring->next_to_clean - ring->next_to_use - 1;
78
79 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
80}
81
82/**
83 * igbvf_receive_skb - helper function to handle Rx indications
84 * @adapter: board private structure
85 * @status: descriptor status field as written by hardware
86 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
87 * @skb: pointer to sk_buff to be indicated to stack
88 **/
89static void igbvf_receive_skb(struct igbvf_adapter *adapter,
90 struct net_device *netdev,
91 struct sk_buff *skb,
92 u32 status, u16 vlan)
93{
94 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
95 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
96 le16_to_cpu(vlan) &
97 E1000_RXD_SPC_VLAN_MASK);
98 else
99 netif_receive_skb(skb);
100
101 netdev->last_rx = jiffies;
102}
103
104static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
105 u32 status_err, struct sk_buff *skb)
106{
107 skb->ip_summed = CHECKSUM_NONE;
108
109 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
110 if ((status_err & E1000_RXD_STAT_IXSM))
111 return;
112 /* TCP/UDP checksum error bit is set */
113 if (status_err &
114 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
115 /* let the stack verify checksum errors */
116 adapter->hw_csum_err++;
117 return;
118 }
119 /* It must be a TCP or UDP packet with a valid checksum */
120 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
121 skb->ip_summed = CHECKSUM_UNNECESSARY;
122
123 adapter->hw_csum_good++;
124}
125
126/**
127 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
128 * @rx_ring: address of ring structure to repopulate
129 * @cleaned_count: number of buffers to repopulate
130 **/
131static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
132 int cleaned_count)
133{
134 struct igbvf_adapter *adapter = rx_ring->adapter;
135 struct net_device *netdev = adapter->netdev;
136 struct pci_dev *pdev = adapter->pdev;
137 union e1000_adv_rx_desc *rx_desc;
138 struct igbvf_buffer *buffer_info;
139 struct sk_buff *skb;
140 unsigned int i;
141 int bufsz;
142
143 i = rx_ring->next_to_use;
144 buffer_info = &rx_ring->buffer_info[i];
145
146 if (adapter->rx_ps_hdr_size)
147 bufsz = adapter->rx_ps_hdr_size;
148 else
149 bufsz = adapter->rx_buffer_len;
150 bufsz += NET_IP_ALIGN;
151
152 while (cleaned_count--) {
153 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
154
155 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
156 if (!buffer_info->page) {
157 buffer_info->page = alloc_page(GFP_ATOMIC);
158 if (!buffer_info->page) {
159 adapter->alloc_rx_buff_failed++;
160 goto no_buffers;
161 }
162 buffer_info->page_offset = 0;
163 } else {
164 buffer_info->page_offset ^= PAGE_SIZE / 2;
165 }
166 buffer_info->page_dma =
167 pci_map_page(pdev, buffer_info->page,
168 buffer_info->page_offset,
169 PAGE_SIZE / 2,
170 PCI_DMA_FROMDEVICE);
171 }
172
173 if (!buffer_info->skb) {
174 skb = netdev_alloc_skb(netdev, bufsz);
175 if (!skb) {
176 adapter->alloc_rx_buff_failed++;
177 goto no_buffers;
178 }
179
180 /* Make buffer alignment 2 beyond a 16 byte boundary
181 * this will result in a 16 byte aligned IP header after
182 * the 14 byte MAC header is removed
183 */
184 skb_reserve(skb, NET_IP_ALIGN);
185
186 buffer_info->skb = skb;
187 buffer_info->dma = pci_map_single(pdev, skb->data,
188 bufsz,
189 PCI_DMA_FROMDEVICE);
190 }
191 /* Refresh the desc even if buffer_addrs didn't change because
192 * each write-back erases this info. */
193 if (adapter->rx_ps_hdr_size) {
194 rx_desc->read.pkt_addr =
195 cpu_to_le64(buffer_info->page_dma);
196 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
197 } else {
198 rx_desc->read.pkt_addr =
199 cpu_to_le64(buffer_info->dma);
200 rx_desc->read.hdr_addr = 0;
201 }
202
203 i++;
204 if (i == rx_ring->count)
205 i = 0;
206 buffer_info = &rx_ring->buffer_info[i];
207 }
208
209no_buffers:
210 if (rx_ring->next_to_use != i) {
211 rx_ring->next_to_use = i;
212 if (i == 0)
213 i = (rx_ring->count - 1);
214 else
215 i--;
216
217 /* Force memory writes to complete before letting h/w
218 * know there are new descriptors to fetch. (Only
219 * applicable for weak-ordered memory model archs,
220 * such as IA-64). */
221 wmb();
222 writel(i, adapter->hw.hw_addr + rx_ring->tail);
223 }
224}
225
226/**
227 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
228 * @adapter: board private structure
229 *
230 * the return value indicates whether actual cleaning was done, there
231 * is no guarantee that everything was cleaned
232 **/
233static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
234 int *work_done, int work_to_do)
235{
236 struct igbvf_ring *rx_ring = adapter->rx_ring;
237 struct net_device *netdev = adapter->netdev;
238 struct pci_dev *pdev = adapter->pdev;
239 union e1000_adv_rx_desc *rx_desc, *next_rxd;
240 struct igbvf_buffer *buffer_info, *next_buffer;
241 struct sk_buff *skb;
242 bool cleaned = false;
243 int cleaned_count = 0;
244 unsigned int total_bytes = 0, total_packets = 0;
245 unsigned int i;
246 u32 length, hlen, staterr;
247
248 i = rx_ring->next_to_clean;
249 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
250 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
251
252 while (staterr & E1000_RXD_STAT_DD) {
253 if (*work_done >= work_to_do)
254 break;
255 (*work_done)++;
256
257 buffer_info = &rx_ring->buffer_info[i];
258
259 /* HW will not DMA in data larger than the given buffer, even
260 * if it parses the (NFS, of course) header to be larger. In
261 * that case, it fills the header buffer and spills the rest
262 * into the page.
263 */
264 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
265 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
266 if (hlen > adapter->rx_ps_hdr_size)
267 hlen = adapter->rx_ps_hdr_size;
268
269 length = le16_to_cpu(rx_desc->wb.upper.length);
270 cleaned = true;
271 cleaned_count++;
272
273 skb = buffer_info->skb;
274 prefetch(skb->data - NET_IP_ALIGN);
275 buffer_info->skb = NULL;
276 if (!adapter->rx_ps_hdr_size) {
277 pci_unmap_single(pdev, buffer_info->dma,
278 adapter->rx_buffer_len,
279 PCI_DMA_FROMDEVICE);
280 buffer_info->dma = 0;
281 skb_put(skb, length);
282 goto send_up;
283 }
284
285 if (!skb_shinfo(skb)->nr_frags) {
286 pci_unmap_single(pdev, buffer_info->dma,
287 adapter->rx_ps_hdr_size + NET_IP_ALIGN,
288 PCI_DMA_FROMDEVICE);
289 skb_put(skb, hlen);
290 }
291
292 if (length) {
293 pci_unmap_page(pdev, buffer_info->page_dma,
294 PAGE_SIZE / 2,
295 PCI_DMA_FROMDEVICE);
296 buffer_info->page_dma = 0;
297
298 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
299 buffer_info->page,
300 buffer_info->page_offset,
301 length);
302
303 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
304 (page_count(buffer_info->page) != 1))
305 buffer_info->page = NULL;
306 else
307 get_page(buffer_info->page);
308
309 skb->len += length;
310 skb->data_len += length;
311 skb->truesize += length;
312 }
313send_up:
314 i++;
315 if (i == rx_ring->count)
316 i = 0;
317 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
318 prefetch(next_rxd);
319 next_buffer = &rx_ring->buffer_info[i];
320
321 if (!(staterr & E1000_RXD_STAT_EOP)) {
322 buffer_info->skb = next_buffer->skb;
323 buffer_info->dma = next_buffer->dma;
324 next_buffer->skb = skb;
325 next_buffer->dma = 0;
326 goto next_desc;
327 }
328
329 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
330 dev_kfree_skb_irq(skb);
331 goto next_desc;
332 }
333
334 total_bytes += skb->len;
335 total_packets++;
336
337 igbvf_rx_checksum_adv(adapter, staterr, skb);
338
339 skb->protocol = eth_type_trans(skb, netdev);
340
341 igbvf_receive_skb(adapter, netdev, skb, staterr,
342 rx_desc->wb.upper.vlan);
343
344 netdev->last_rx = jiffies;
345
346next_desc:
347 rx_desc->wb.upper.status_error = 0;
348
349 /* return some buffers to hardware, one at a time is too slow */
350 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
351 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
352 cleaned_count = 0;
353 }
354
355 /* use prefetched values */
356 rx_desc = next_rxd;
357 buffer_info = next_buffer;
358
359 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
360 }
361
362 rx_ring->next_to_clean = i;
363 cleaned_count = igbvf_desc_unused(rx_ring);
364
365 if (cleaned_count)
366 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
367
368 adapter->total_rx_packets += total_packets;
369 adapter->total_rx_bytes += total_bytes;
370 adapter->net_stats.rx_bytes += total_bytes;
371 adapter->net_stats.rx_packets += total_packets;
372 return cleaned;
373}
374
375static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
376 struct igbvf_buffer *buffer_info)
377{
378 buffer_info->dma = 0;
379 if (buffer_info->skb) {
380 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
381 DMA_TO_DEVICE);
382 dev_kfree_skb_any(buffer_info->skb);
383 buffer_info->skb = NULL;
384 }
385 buffer_info->time_stamp = 0;
386}
387
388static void igbvf_print_tx_hang(struct igbvf_adapter *adapter)
389{
390 struct igbvf_ring *tx_ring = adapter->tx_ring;
391 unsigned int i = tx_ring->next_to_clean;
392 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
393 union e1000_adv_tx_desc *eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
394
395 /* detected Tx unit hang */
396 dev_err(&adapter->pdev->dev,
397 "Detected Tx Unit Hang:\n"
398 " TDH <%x>\n"
399 " TDT <%x>\n"
400 " next_to_use <%x>\n"
401 " next_to_clean <%x>\n"
402 "buffer_info[next_to_clean]:\n"
403 " time_stamp <%lx>\n"
404 " next_to_watch <%x>\n"
405 " jiffies <%lx>\n"
406 " next_to_watch.status <%x>\n",
407 readl(adapter->hw.hw_addr + tx_ring->head),
408 readl(adapter->hw.hw_addr + tx_ring->tail),
409 tx_ring->next_to_use,
410 tx_ring->next_to_clean,
411 tx_ring->buffer_info[eop].time_stamp,
412 eop,
413 jiffies,
414 eop_desc->wb.status);
415}
416
417/**
418 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
419 * @adapter: board private structure
420 *
421 * Return 0 on success, negative on failure
422 **/
423int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
424 struct igbvf_ring *tx_ring)
425{
426 struct pci_dev *pdev = adapter->pdev;
427 int size;
428
429 size = sizeof(struct igbvf_buffer) * tx_ring->count;
430 tx_ring->buffer_info = vmalloc(size);
431 if (!tx_ring->buffer_info)
432 goto err;
433 memset(tx_ring->buffer_info, 0, size);
434
435 /* round up to nearest 4K */
436 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
437 tx_ring->size = ALIGN(tx_ring->size, 4096);
438
439 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
440 &tx_ring->dma);
441
442 if (!tx_ring->desc)
443 goto err;
444
445 tx_ring->adapter = adapter;
446 tx_ring->next_to_use = 0;
447 tx_ring->next_to_clean = 0;
448
449 return 0;
450err:
451 vfree(tx_ring->buffer_info);
452 dev_err(&adapter->pdev->dev,
453 "Unable to allocate memory for the transmit descriptor ring\n");
454 return -ENOMEM;
455}
456
457/**
458 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
459 * @adapter: board private structure
460 *
461 * Returns 0 on success, negative on failure
462 **/
463int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
464 struct igbvf_ring *rx_ring)
465{
466 struct pci_dev *pdev = adapter->pdev;
467 int size, desc_len;
468
469 size = sizeof(struct igbvf_buffer) * rx_ring->count;
470 rx_ring->buffer_info = vmalloc(size);
471 if (!rx_ring->buffer_info)
472 goto err;
473 memset(rx_ring->buffer_info, 0, size);
474
475 desc_len = sizeof(union e1000_adv_rx_desc);
476
477 /* Round up to nearest 4K */
478 rx_ring->size = rx_ring->count * desc_len;
479 rx_ring->size = ALIGN(rx_ring->size, 4096);
480
481 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
482 &rx_ring->dma);
483
484 if (!rx_ring->desc)
485 goto err;
486
487 rx_ring->next_to_clean = 0;
488 rx_ring->next_to_use = 0;
489
490 rx_ring->adapter = adapter;
491
492 return 0;
493
494err:
495 vfree(rx_ring->buffer_info);
496 rx_ring->buffer_info = NULL;
497 dev_err(&adapter->pdev->dev,
498 "Unable to allocate memory for the receive descriptor ring\n");
499 return -ENOMEM;
500}
501
502/**
503 * igbvf_clean_tx_ring - Free Tx Buffers
504 * @tx_ring: ring to be cleaned
505 **/
506static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
507{
508 struct igbvf_adapter *adapter = tx_ring->adapter;
509 struct igbvf_buffer *buffer_info;
510 unsigned long size;
511 unsigned int i;
512
513 if (!tx_ring->buffer_info)
514 return;
515
516 /* Free all the Tx ring sk_buffs */
517 for (i = 0; i < tx_ring->count; i++) {
518 buffer_info = &tx_ring->buffer_info[i];
519 igbvf_put_txbuf(adapter, buffer_info);
520 }
521
522 size = sizeof(struct igbvf_buffer) * tx_ring->count;
523 memset(tx_ring->buffer_info, 0, size);
524
525 /* Zero out the descriptor ring */
526 memset(tx_ring->desc, 0, tx_ring->size);
527
528 tx_ring->next_to_use = 0;
529 tx_ring->next_to_clean = 0;
530
531 writel(0, adapter->hw.hw_addr + tx_ring->head);
532 writel(0, adapter->hw.hw_addr + tx_ring->tail);
533}
534
535/**
536 * igbvf_free_tx_resources - Free Tx Resources per Queue
537 * @tx_ring: ring to free resources from
538 *
539 * Free all transmit software resources
540 **/
541void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
542{
543 struct pci_dev *pdev = tx_ring->adapter->pdev;
544
545 igbvf_clean_tx_ring(tx_ring);
546
547 vfree(tx_ring->buffer_info);
548 tx_ring->buffer_info = NULL;
549
550 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
551
552 tx_ring->desc = NULL;
553}
554
555/**
556 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
557 * @adapter: board private structure
558 **/
559static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
560{
561 struct igbvf_adapter *adapter = rx_ring->adapter;
562 struct igbvf_buffer *buffer_info;
563 struct pci_dev *pdev = adapter->pdev;
564 unsigned long size;
565 unsigned int i;
566
567 if (!rx_ring->buffer_info)
568 return;
569
570 /* Free all the Rx ring sk_buffs */
571 for (i = 0; i < rx_ring->count; i++) {
572 buffer_info = &rx_ring->buffer_info[i];
573 if (buffer_info->dma) {
574 if (adapter->rx_ps_hdr_size){
575 pci_unmap_single(pdev, buffer_info->dma,
576 adapter->rx_ps_hdr_size,
577 PCI_DMA_FROMDEVICE);
578 } else {
579 pci_unmap_single(pdev, buffer_info->dma,
580 adapter->rx_buffer_len,
581 PCI_DMA_FROMDEVICE);
582 }
583 buffer_info->dma = 0;
584 }
585
586 if (buffer_info->skb) {
587 dev_kfree_skb(buffer_info->skb);
588 buffer_info->skb = NULL;
589 }
590
591 if (buffer_info->page) {
592 if (buffer_info->page_dma)
593 pci_unmap_page(pdev, buffer_info->page_dma,
594 PAGE_SIZE / 2,
595 PCI_DMA_FROMDEVICE);
596 put_page(buffer_info->page);
597 buffer_info->page = NULL;
598 buffer_info->page_dma = 0;
599 buffer_info->page_offset = 0;
600 }
601 }
602
603 size = sizeof(struct igbvf_buffer) * rx_ring->count;
604 memset(rx_ring->buffer_info, 0, size);
605
606 /* Zero out the descriptor ring */
607 memset(rx_ring->desc, 0, rx_ring->size);
608
609 rx_ring->next_to_clean = 0;
610 rx_ring->next_to_use = 0;
611
612 writel(0, adapter->hw.hw_addr + rx_ring->head);
613 writel(0, adapter->hw.hw_addr + rx_ring->tail);
614}
615
616/**
617 * igbvf_free_rx_resources - Free Rx Resources
618 * @rx_ring: ring to clean the resources from
619 *
620 * Free all receive software resources
621 **/
622
623void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
624{
625 struct pci_dev *pdev = rx_ring->adapter->pdev;
626
627 igbvf_clean_rx_ring(rx_ring);
628
629 vfree(rx_ring->buffer_info);
630 rx_ring->buffer_info = NULL;
631
632 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
633 rx_ring->dma);
634 rx_ring->desc = NULL;
635}
636
637/**
638 * igbvf_update_itr - update the dynamic ITR value based on statistics
639 * @adapter: pointer to adapter
640 * @itr_setting: current adapter->itr
641 * @packets: the number of packets during this measurement interval
642 * @bytes: the number of bytes during this measurement interval
643 *
644 * Stores a new ITR value based on packets and byte
645 * counts during the last interrupt. The advantage of per interrupt
646 * computation is faster updates and more accurate ITR for the current
647 * traffic pattern. Constants in this function were computed
648 * based on theoretical maximum wire speed and thresholds were set based
649 * on testing data as well as attempting to minimize response time
650 * while increasing bulk throughput. This functionality is controlled
651 * by the InterruptThrottleRate module parameter.
652 **/
653static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
654 u16 itr_setting, int packets,
655 int bytes)
656{
657 unsigned int retval = itr_setting;
658
659 if (packets == 0)
660 goto update_itr_done;
661
662 switch (itr_setting) {
663 case lowest_latency:
664 /* handle TSO and jumbo frames */
665 if (bytes/packets > 8000)
666 retval = bulk_latency;
667 else if ((packets < 5) && (bytes > 512))
668 retval = low_latency;
669 break;
670 case low_latency: /* 50 usec aka 20000 ints/s */
671 if (bytes > 10000) {
672 /* this if handles the TSO accounting */
673 if (bytes/packets > 8000)
674 retval = bulk_latency;
675 else if ((packets < 10) || ((bytes/packets) > 1200))
676 retval = bulk_latency;
677 else if ((packets > 35))
678 retval = lowest_latency;
679 } else if (bytes/packets > 2000) {
680 retval = bulk_latency;
681 } else if (packets <= 2 && bytes < 512) {
682 retval = lowest_latency;
683 }
684 break;
685 case bulk_latency: /* 250 usec aka 4000 ints/s */
686 if (bytes > 25000) {
687 if (packets > 35)
688 retval = low_latency;
689 } else if (bytes < 6000) {
690 retval = low_latency;
691 }
692 break;
693 }
694
695update_itr_done:
696 return retval;
697}
698
699static void igbvf_set_itr(struct igbvf_adapter *adapter)
700{
701 struct e1000_hw *hw = &adapter->hw;
702 u16 current_itr;
703 u32 new_itr = adapter->itr;
704
705 adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
706 adapter->total_tx_packets,
707 adapter->total_tx_bytes);
708 /* conservative mode (itr 3) eliminates the lowest_latency setting */
709 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
710 adapter->tx_itr = low_latency;
711
712 adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
713 adapter->total_rx_packets,
714 adapter->total_rx_bytes);
715 /* conservative mode (itr 3) eliminates the lowest_latency setting */
716 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
717 adapter->rx_itr = low_latency;
718
719 current_itr = max(adapter->rx_itr, adapter->tx_itr);
720
721 switch (current_itr) {
722 /* counts and packets in update_itr are dependent on these numbers */
723 case lowest_latency:
724 new_itr = 70000;
725 break;
726 case low_latency:
727 new_itr = 20000; /* aka hwitr = ~200 */
728 break;
729 case bulk_latency:
730 new_itr = 4000;
731 break;
732 default:
733 break;
734 }
735
736 if (new_itr != adapter->itr) {
737 /*
738 * this attempts to bias the interrupt rate towards Bulk
739 * by adding intermediate steps when interrupt rate is
740 * increasing
741 */
742 new_itr = new_itr > adapter->itr ?
743 min(adapter->itr + (new_itr >> 2), new_itr) :
744 new_itr;
745 adapter->itr = new_itr;
746 adapter->rx_ring->itr_val = 1952;
747
748 if (adapter->msix_entries)
749 adapter->rx_ring->set_itr = 1;
750 else
751 ew32(ITR, 1952);
752 }
753}
754
755/**
756 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
757 * @adapter: board private structure
758 * returns true if ring is completely cleaned
759 **/
760static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
761{
762 struct igbvf_adapter *adapter = tx_ring->adapter;
763 struct e1000_hw *hw = &adapter->hw;
764 struct net_device *netdev = adapter->netdev;
765 struct igbvf_buffer *buffer_info;
766 struct sk_buff *skb;
767 union e1000_adv_tx_desc *tx_desc, *eop_desc;
768 unsigned int total_bytes = 0, total_packets = 0;
769 unsigned int i, eop, count = 0;
770 bool cleaned = false;
771
772 i = tx_ring->next_to_clean;
773 eop = tx_ring->buffer_info[i].next_to_watch;
774 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
775
776 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
777 (count < tx_ring->count)) {
778 for (cleaned = false; !cleaned; count++) {
779 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
780 buffer_info = &tx_ring->buffer_info[i];
781 cleaned = (i == eop);
782 skb = buffer_info->skb;
783
784 if (skb) {
785 unsigned int segs, bytecount;
786
787 /* gso_segs is currently only valid for tcp */
788 segs = skb_shinfo(skb)->gso_segs ?: 1;
789 /* multiply data chunks by size of headers */
790 bytecount = ((segs - 1) * skb_headlen(skb)) +
791 skb->len;
792 total_packets += segs;
793 total_bytes += bytecount;
794 }
795
796 igbvf_put_txbuf(adapter, buffer_info);
797 tx_desc->wb.status = 0;
798
799 i++;
800 if (i == tx_ring->count)
801 i = 0;
802 }
803 eop = tx_ring->buffer_info[i].next_to_watch;
804 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
805 }
806
807 tx_ring->next_to_clean = i;
808
809 if (unlikely(count &&
810 netif_carrier_ok(netdev) &&
811 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
812 /* Make sure that anybody stopping the queue after this
813 * sees the new next_to_clean.
814 */
815 smp_mb();
816 if (netif_queue_stopped(netdev) &&
817 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
818 netif_wake_queue(netdev);
819 ++adapter->restart_queue;
820 }
821 }
822
823 if (adapter->detect_tx_hung) {
824 /* Detect a transmit hang in hardware, this serializes the
825 * check with the clearing of time_stamp and movement of i */
826 adapter->detect_tx_hung = false;
827 if (tx_ring->buffer_info[i].time_stamp &&
828 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
829 (adapter->tx_timeout_factor * HZ))
830 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
831
832 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
833 /* detected Tx unit hang */
834 igbvf_print_tx_hang(adapter);
835
836 netif_stop_queue(netdev);
837 }
838 }
839 adapter->net_stats.tx_bytes += total_bytes;
840 adapter->net_stats.tx_packets += total_packets;
841 return (count < tx_ring->count);
842}
843
844static irqreturn_t igbvf_msix_other(int irq, void *data)
845{
846 struct net_device *netdev = data;
847 struct igbvf_adapter *adapter = netdev_priv(netdev);
848 struct e1000_hw *hw = &adapter->hw;
849
850 adapter->int_counter1++;
851
852 netif_carrier_off(netdev);
853 hw->mac.get_link_status = 1;
854 if (!test_bit(__IGBVF_DOWN, &adapter->state))
855 mod_timer(&adapter->watchdog_timer, jiffies + 1);
856
857 ew32(EIMS, adapter->eims_other);
858
859 return IRQ_HANDLED;
860}
861
862static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
863{
864 struct net_device *netdev = data;
865 struct igbvf_adapter *adapter = netdev_priv(netdev);
866 struct e1000_hw *hw = &adapter->hw;
867 struct igbvf_ring *tx_ring = adapter->tx_ring;
868
869
870 adapter->total_tx_bytes = 0;
871 adapter->total_tx_packets = 0;
872
873 /* auto mask will automatically reenable the interrupt when we write
874 * EICS */
875 if (!igbvf_clean_tx_irq(tx_ring))
876 /* Ring was not completely cleaned, so fire another interrupt */
877 ew32(EICS, tx_ring->eims_value);
878 else
879 ew32(EIMS, tx_ring->eims_value);
880
881 return IRQ_HANDLED;
882}
883
884static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
885{
886 struct net_device *netdev = data;
887 struct igbvf_adapter *adapter = netdev_priv(netdev);
888
889 adapter->int_counter0++;
890
891 /* Write the ITR value calculated at the end of the
892 * previous interrupt.
893 */
894 if (adapter->rx_ring->set_itr) {
895 writel(adapter->rx_ring->itr_val,
896 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
897 adapter->rx_ring->set_itr = 0;
898 }
899
900 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
901 adapter->total_rx_bytes = 0;
902 adapter->total_rx_packets = 0;
903 __napi_schedule(&adapter->rx_ring->napi);
904 }
905
906 return IRQ_HANDLED;
907}
908
909#define IGBVF_NO_QUEUE -1
910
911static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
912 int tx_queue, int msix_vector)
913{
914 struct e1000_hw *hw = &adapter->hw;
915 u32 ivar, index;
916
917 /* 82576 uses a table-based method for assigning vectors.
918 Each queue has a single entry in the table to which we write
919 a vector number along with a "valid" bit. Sadly, the layout
920 of the table is somewhat counterintuitive. */
921 if (rx_queue > IGBVF_NO_QUEUE) {
922 index = (rx_queue >> 1);
923 ivar = array_er32(IVAR0, index);
924 if (rx_queue & 0x1) {
925 /* vector goes into third byte of register */
926 ivar = ivar & 0xFF00FFFF;
927 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
928 } else {
929 /* vector goes into low byte of register */
930 ivar = ivar & 0xFFFFFF00;
931 ivar |= msix_vector | E1000_IVAR_VALID;
932 }
933 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
934 array_ew32(IVAR0, index, ivar);
935 }
936 if (tx_queue > IGBVF_NO_QUEUE) {
937 index = (tx_queue >> 1);
938 ivar = array_er32(IVAR0, index);
939 if (tx_queue & 0x1) {
940 /* vector goes into high byte of register */
941 ivar = ivar & 0x00FFFFFF;
942 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
943 } else {
944 /* vector goes into second byte of register */
945 ivar = ivar & 0xFFFF00FF;
946 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
947 }
948 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
949 array_ew32(IVAR0, index, ivar);
950 }
951}
952
953/**
954 * igbvf_configure_msix - Configure MSI-X hardware
955 *
956 * igbvf_configure_msix sets up the hardware to properly
957 * generate MSI-X interrupts.
958 **/
959static void igbvf_configure_msix(struct igbvf_adapter *adapter)
960{
961 u32 tmp;
962 struct e1000_hw *hw = &adapter->hw;
963 struct igbvf_ring *tx_ring = adapter->tx_ring;
964 struct igbvf_ring *rx_ring = adapter->rx_ring;
965 int vector = 0;
966
967 adapter->eims_enable_mask = 0;
968
969 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
970 adapter->eims_enable_mask |= tx_ring->eims_value;
971 if (tx_ring->itr_val)
972 writel(tx_ring->itr_val,
973 hw->hw_addr + tx_ring->itr_register);
974 else
975 writel(1952, hw->hw_addr + tx_ring->itr_register);
976
977 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
978 adapter->eims_enable_mask |= rx_ring->eims_value;
979 if (rx_ring->itr_val)
980 writel(rx_ring->itr_val,
981 hw->hw_addr + rx_ring->itr_register);
982 else
983 writel(1952, hw->hw_addr + rx_ring->itr_register);
984
985 /* set vector for other causes, i.e. link changes */
986
987 tmp = (vector++ | E1000_IVAR_VALID);
988
989 ew32(IVAR_MISC, tmp);
990
991 adapter->eims_enable_mask = (1 << (vector)) - 1;
992 adapter->eims_other = 1 << (vector - 1);
993 e1e_flush();
994}
995
996static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
997{
998 if (adapter->msix_entries) {
999 pci_disable_msix(adapter->pdev);
1000 kfree(adapter->msix_entries);
1001 adapter->msix_entries = NULL;
1002 }
1003}
1004
1005/**
1006 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1007 *
1008 * Attempt to configure interrupts using the best available
1009 * capabilities of the hardware and kernel.
1010 **/
1011static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1012{
1013 int err = -ENOMEM;
1014 int i;
1015
1016 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1017 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1018 GFP_KERNEL);
1019 if (adapter->msix_entries) {
1020 for (i = 0; i < 3; i++)
1021 adapter->msix_entries[i].entry = i;
1022
1023 err = pci_enable_msix(adapter->pdev,
1024 adapter->msix_entries, 3);
1025 }
1026
1027 if (err) {
1028 /* MSI-X failed */
1029 dev_err(&adapter->pdev->dev,
1030 "Failed to initialize MSI-X interrupts.\n");
1031 igbvf_reset_interrupt_capability(adapter);
1032 }
1033}
1034
1035/**
1036 * igbvf_request_msix - Initialize MSI-X interrupts
1037 *
1038 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1039 * kernel.
1040 **/
1041static int igbvf_request_msix(struct igbvf_adapter *adapter)
1042{
1043 struct net_device *netdev = adapter->netdev;
1044 int err = 0, vector = 0;
1045
1046 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1047 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1048 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1049 } else {
1050 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1051 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1052 }
1053
1054 err = request_irq(adapter->msix_entries[vector].vector,
1055 &igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1056 netdev);
1057 if (err)
1058 goto out;
1059
1060 adapter->tx_ring->itr_register = E1000_EITR(vector);
1061 adapter->tx_ring->itr_val = 1952;
1062 vector++;
1063
1064 err = request_irq(adapter->msix_entries[vector].vector,
1065 &igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1066 netdev);
1067 if (err)
1068 goto out;
1069
1070 adapter->rx_ring->itr_register = E1000_EITR(vector);
1071 adapter->rx_ring->itr_val = 1952;
1072 vector++;
1073
1074 err = request_irq(adapter->msix_entries[vector].vector,
1075 &igbvf_msix_other, 0, netdev->name, netdev);
1076 if (err)
1077 goto out;
1078
1079 igbvf_configure_msix(adapter);
1080 return 0;
1081out:
1082 return err;
1083}
1084
1085/**
1086 * igbvf_alloc_queues - Allocate memory for all rings
1087 * @adapter: board private structure to initialize
1088 **/
1089static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1090{
1091 struct net_device *netdev = adapter->netdev;
1092
1093 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1094 if (!adapter->tx_ring)
1095 return -ENOMEM;
1096
1097 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1098 if (!adapter->rx_ring) {
1099 kfree(adapter->tx_ring);
1100 return -ENOMEM;
1101 }
1102
1103 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1104
1105 return 0;
1106}
1107
1108/**
1109 * igbvf_request_irq - initialize interrupts
1110 *
1111 * Attempts to configure interrupts using the best available
1112 * capabilities of the hardware and kernel.
1113 **/
1114static int igbvf_request_irq(struct igbvf_adapter *adapter)
1115{
1116 int err = -1;
1117
1118 /* igbvf supports msi-x only */
1119 if (adapter->msix_entries)
1120 err = igbvf_request_msix(adapter);
1121
1122 if (!err)
1123 return err;
1124
1125 dev_err(&adapter->pdev->dev,
1126 "Unable to allocate interrupt, Error: %d\n", err);
1127
1128 return err;
1129}
1130
1131static void igbvf_free_irq(struct igbvf_adapter *adapter)
1132{
1133 struct net_device *netdev = adapter->netdev;
1134 int vector;
1135
1136 if (adapter->msix_entries) {
1137 for (vector = 0; vector < 3; vector++)
1138 free_irq(adapter->msix_entries[vector].vector, netdev);
1139 }
1140}
1141
1142/**
1143 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1144 **/
1145static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1146{
1147 struct e1000_hw *hw = &adapter->hw;
1148
1149 ew32(EIMC, ~0);
1150
1151 if (adapter->msix_entries)
1152 ew32(EIAC, 0);
1153}
1154
1155/**
1156 * igbvf_irq_enable - Enable default interrupt generation settings
1157 **/
1158static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1159{
1160 struct e1000_hw *hw = &adapter->hw;
1161
1162 ew32(EIAC, adapter->eims_enable_mask);
1163 ew32(EIAM, adapter->eims_enable_mask);
1164 ew32(EIMS, adapter->eims_enable_mask);
1165}
1166
1167/**
1168 * igbvf_poll - NAPI Rx polling callback
1169 * @napi: struct associated with this polling callback
1170 * @budget: amount of packets driver is allowed to process this poll
1171 **/
1172static int igbvf_poll(struct napi_struct *napi, int budget)
1173{
1174 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1175 struct igbvf_adapter *adapter = rx_ring->adapter;
1176 struct e1000_hw *hw = &adapter->hw;
1177 int work_done = 0;
1178
1179 igbvf_clean_rx_irq(adapter, &work_done, budget);
1180
1181 /* If not enough Rx work done, exit the polling mode */
1182 if (work_done < budget) {
1183 napi_complete(napi);
1184
1185 if (adapter->itr_setting & 3)
1186 igbvf_set_itr(adapter);
1187
1188 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1189 ew32(EIMS, adapter->rx_ring->eims_value);
1190 }
1191
1192 return work_done;
1193}
1194
1195/**
1196 * igbvf_set_rlpml - set receive large packet maximum length
1197 * @adapter: board private structure
1198 *
1199 * Configure the maximum size of packets that will be received
1200 */
1201static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1202{
1203 int max_frame_size = adapter->max_frame_size;
1204 struct e1000_hw *hw = &adapter->hw;
1205
1206 if (adapter->vlgrp)
1207 max_frame_size += VLAN_TAG_SIZE;
1208
1209 e1000_rlpml_set_vf(hw, max_frame_size);
1210}
1211
1212static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1213{
1214 struct igbvf_adapter *adapter = netdev_priv(netdev);
1215 struct e1000_hw *hw = &adapter->hw;
1216
1217 if (hw->mac.ops.set_vfta(hw, vid, true))
1218 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1219}
1220
1221static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1222{
1223 struct igbvf_adapter *adapter = netdev_priv(netdev);
1224 struct e1000_hw *hw = &adapter->hw;
1225
1226 igbvf_irq_disable(adapter);
1227 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1228
1229 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1230 igbvf_irq_enable(adapter);
1231
1232 if (hw->mac.ops.set_vfta(hw, vid, false))
1233 dev_err(&adapter->pdev->dev,
1234 "Failed to remove vlan id %d\n", vid);
1235}
1236
1237static void igbvf_vlan_rx_register(struct net_device *netdev,
1238 struct vlan_group *grp)
1239{
1240 struct igbvf_adapter *adapter = netdev_priv(netdev);
1241
1242 adapter->vlgrp = grp;
1243}
1244
1245static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1246{
1247 u16 vid;
1248
1249 if (!adapter->vlgrp)
1250 return;
1251
1252 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1253 if (!vlan_group_get_device(adapter->vlgrp, vid))
1254 continue;
1255 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1256 }
1257
1258 igbvf_set_rlpml(adapter);
1259}
1260
1261/**
1262 * igbvf_configure_tx - Configure Transmit Unit after Reset
1263 * @adapter: board private structure
1264 *
1265 * Configure the Tx unit of the MAC after a reset.
1266 **/
1267static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1268{
1269 struct e1000_hw *hw = &adapter->hw;
1270 struct igbvf_ring *tx_ring = adapter->tx_ring;
1271 u64 tdba;
1272 u32 txdctl, dca_txctrl;
1273
1274 /* disable transmits */
1275 txdctl = er32(TXDCTL(0));
1276 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1277 msleep(10);
1278
1279 /* Setup the HW Tx Head and Tail descriptor pointers */
1280 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1281 tdba = tx_ring->dma;
1282 ew32(TDBAL(0), (tdba & DMA_32BIT_MASK));
1283 ew32(TDBAH(0), (tdba >> 32));
1284 ew32(TDH(0), 0);
1285 ew32(TDT(0), 0);
1286 tx_ring->head = E1000_TDH(0);
1287 tx_ring->tail = E1000_TDT(0);
1288
1289 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1290 * MUST be delivered in order or it will completely screw up
1291 * our bookeeping.
1292 */
1293 dca_txctrl = er32(DCA_TXCTRL(0));
1294 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1295 ew32(DCA_TXCTRL(0), dca_txctrl);
1296
1297 /* enable transmits */
1298 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1299 ew32(TXDCTL(0), txdctl);
1300
1301 /* Setup Transmit Descriptor Settings for eop descriptor */
1302 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1303
1304 /* enable Report Status bit */
1305 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1306
1307 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1308}
1309
1310/**
1311 * igbvf_setup_srrctl - configure the receive control registers
1312 * @adapter: Board private structure
1313 **/
1314static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1315{
1316 struct e1000_hw *hw = &adapter->hw;
1317 u32 srrctl = 0;
1318
1319 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1320 E1000_SRRCTL_BSIZEHDR_MASK |
1321 E1000_SRRCTL_BSIZEPKT_MASK);
1322
1323 /* Enable queue drop to avoid head of line blocking */
1324 srrctl |= E1000_SRRCTL_DROP_EN;
1325
1326 /* Setup buffer sizes */
1327 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1328 E1000_SRRCTL_BSIZEPKT_SHIFT;
1329
1330 if (adapter->rx_buffer_len < 2048) {
1331 adapter->rx_ps_hdr_size = 0;
1332 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1333 } else {
1334 adapter->rx_ps_hdr_size = 128;
1335 srrctl |= adapter->rx_ps_hdr_size <<
1336 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1337 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1338 }
1339
1340 ew32(SRRCTL(0), srrctl);
1341}
1342
1343/**
1344 * igbvf_configure_rx - Configure Receive Unit after Reset
1345 * @adapter: board private structure
1346 *
1347 * Configure the Rx unit of the MAC after a reset.
1348 **/
1349static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1350{
1351 struct e1000_hw *hw = &adapter->hw;
1352 struct igbvf_ring *rx_ring = adapter->rx_ring;
1353 u64 rdba;
1354 u32 rdlen, rxdctl;
1355
1356 /* disable receives */
1357 rxdctl = er32(RXDCTL(0));
1358 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1359 msleep(10);
1360
1361 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1362
1363 /*
1364 * Setup the HW Rx Head and Tail Descriptor Pointers and
1365 * the Base and Length of the Rx Descriptor Ring
1366 */
1367 rdba = rx_ring->dma;
1368 ew32(RDBAL(0), (rdba & DMA_32BIT_MASK));
1369 ew32(RDBAH(0), (rdba >> 32));
1370 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1371 rx_ring->head = E1000_RDH(0);
1372 rx_ring->tail = E1000_RDT(0);
1373 ew32(RDH(0), 0);
1374 ew32(RDT(0), 0);
1375
1376 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1377 rxdctl &= 0xFFF00000;
1378 rxdctl |= IGBVF_RX_PTHRESH;
1379 rxdctl |= IGBVF_RX_HTHRESH << 8;
1380 rxdctl |= IGBVF_RX_WTHRESH << 16;
1381
1382 igbvf_set_rlpml(adapter);
1383
1384 /* enable receives */
1385 ew32(RXDCTL(0), rxdctl);
1386}
1387
1388/**
1389 * igbvf_set_multi - Multicast and Promiscuous mode set
1390 * @netdev: network interface device structure
1391 *
1392 * The set_multi entry point is called whenever the multicast address
1393 * list or the network interface flags are updated. This routine is
1394 * responsible for configuring the hardware for proper multicast,
1395 * promiscuous mode, and all-multi behavior.
1396 **/
1397static void igbvf_set_multi(struct net_device *netdev)
1398{
1399 struct igbvf_adapter *adapter = netdev_priv(netdev);
1400 struct e1000_hw *hw = &adapter->hw;
1401 struct dev_mc_list *mc_ptr;
1402 u8 *mta_list = NULL;
1403 int i;
1404
1405 if (netdev->mc_count) {
1406 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
1407 if (!mta_list) {
1408 dev_err(&adapter->pdev->dev,
1409 "failed to allocate multicast filter list\n");
1410 return;
1411 }
1412 }
1413
1414 /* prepare a packed array of only addresses. */
1415 mc_ptr = netdev->mc_list;
1416
1417 for (i = 0; i < netdev->mc_count; i++) {
1418 if (!mc_ptr)
1419 break;
1420 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
1421 ETH_ALEN);
1422 mc_ptr = mc_ptr->next;
1423 }
1424
1425 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1426 kfree(mta_list);
1427}
1428
1429/**
1430 * igbvf_configure - configure the hardware for Rx and Tx
1431 * @adapter: private board structure
1432 **/
1433static void igbvf_configure(struct igbvf_adapter *adapter)
1434{
1435 igbvf_set_multi(adapter->netdev);
1436
1437 igbvf_restore_vlan(adapter);
1438
1439 igbvf_configure_tx(adapter);
1440 igbvf_setup_srrctl(adapter);
1441 igbvf_configure_rx(adapter);
1442 igbvf_alloc_rx_buffers(adapter->rx_ring,
1443 igbvf_desc_unused(adapter->rx_ring));
1444}
1445
1446/* igbvf_reset - bring the hardware into a known good state
1447 *
1448 * This function boots the hardware and enables some settings that
1449 * require a configuration cycle of the hardware - those cannot be
1450 * set/changed during runtime. After reset the device needs to be
1451 * properly configured for Rx, Tx etc.
1452 */
1453static void igbvf_reset(struct igbvf_adapter *adapter)
1454{
1455 struct e1000_mac_info *mac = &adapter->hw.mac;
1456 struct net_device *netdev = adapter->netdev;
1457 struct e1000_hw *hw = &adapter->hw;
1458
1459 /* Allow time for pending master requests to run */
1460 if (mac->ops.reset_hw(hw))
1461 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1462
1463 mac->ops.init_hw(hw);
1464
1465 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1466 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1467 netdev->addr_len);
1468 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1469 netdev->addr_len);
1470 }
1471}
1472
1473int igbvf_up(struct igbvf_adapter *adapter)
1474{
1475 struct e1000_hw *hw = &adapter->hw;
1476
1477 /* hardware has been reset, we need to reload some things */
1478 igbvf_configure(adapter);
1479
1480 clear_bit(__IGBVF_DOWN, &adapter->state);
1481
1482 napi_enable(&adapter->rx_ring->napi);
1483 if (adapter->msix_entries)
1484 igbvf_configure_msix(adapter);
1485
1486 /* Clear any pending interrupts. */
1487 er32(EICR);
1488 igbvf_irq_enable(adapter);
1489
1490 /* start the watchdog */
1491 hw->mac.get_link_status = 1;
1492 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1493
1494
1495 return 0;
1496}
1497
1498void igbvf_down(struct igbvf_adapter *adapter)
1499{
1500 struct net_device *netdev = adapter->netdev;
1501 struct e1000_hw *hw = &adapter->hw;
1502 u32 rxdctl, txdctl;
1503
1504 /*
1505 * signal that we're down so the interrupt handler does not
1506 * reschedule our watchdog timer
1507 */
1508 set_bit(__IGBVF_DOWN, &adapter->state);
1509
1510 /* disable receives in the hardware */
1511 rxdctl = er32(RXDCTL(0));
1512 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1513
1514 netif_stop_queue(netdev);
1515
1516 /* disable transmits in the hardware */
1517 txdctl = er32(TXDCTL(0));
1518 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1519
1520 /* flush both disables and wait for them to finish */
1521 e1e_flush();
1522 msleep(10);
1523
1524 napi_disable(&adapter->rx_ring->napi);
1525
1526 igbvf_irq_disable(adapter);
1527
1528 del_timer_sync(&adapter->watchdog_timer);
1529
1530 netdev->tx_queue_len = adapter->tx_queue_len;
1531 netif_carrier_off(netdev);
1532
1533 /* record the stats before reset*/
1534 igbvf_update_stats(adapter);
1535
1536 adapter->link_speed = 0;
1537 adapter->link_duplex = 0;
1538
1539 igbvf_reset(adapter);
1540 igbvf_clean_tx_ring(adapter->tx_ring);
1541 igbvf_clean_rx_ring(adapter->rx_ring);
1542}
1543
1544void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1545{
1546 might_sleep();
1547 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1548 msleep(1);
1549 igbvf_down(adapter);
1550 igbvf_up(adapter);
1551 clear_bit(__IGBVF_RESETTING, &adapter->state);
1552}
1553
1554/**
1555 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1556 * @adapter: board private structure to initialize
1557 *
1558 * igbvf_sw_init initializes the Adapter private data structure.
1559 * Fields are initialized based on PCI device information and
1560 * OS network device settings (MTU size).
1561 **/
1562static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1563{
1564 struct net_device *netdev = adapter->netdev;
1565 s32 rc;
1566
1567 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1568 adapter->rx_ps_hdr_size = 0;
1569 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1570 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1571
1572 adapter->tx_int_delay = 8;
1573 adapter->tx_abs_int_delay = 32;
1574 adapter->rx_int_delay = 0;
1575 adapter->rx_abs_int_delay = 8;
1576 adapter->itr_setting = 3;
1577 adapter->itr = 20000;
1578
1579 /* Set various function pointers */
1580 adapter->ei->init_ops(&adapter->hw);
1581
1582 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1583 if (rc)
1584 return rc;
1585
1586 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1587 if (rc)
1588 return rc;
1589
1590 igbvf_set_interrupt_capability(adapter);
1591
1592 if (igbvf_alloc_queues(adapter))
1593 return -ENOMEM;
1594
1595 spin_lock_init(&adapter->tx_queue_lock);
1596
1597 /* Explicitly disable IRQ since the NIC can be in any state. */
1598 igbvf_irq_disable(adapter);
1599
1600 spin_lock_init(&adapter->stats_lock);
1601
1602 set_bit(__IGBVF_DOWN, &adapter->state);
1603 return 0;
1604}
1605
1606static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1607{
1608 struct e1000_hw *hw = &adapter->hw;
1609
1610 adapter->stats.last_gprc = er32(VFGPRC);
1611 adapter->stats.last_gorc = er32(VFGORC);
1612 adapter->stats.last_gptc = er32(VFGPTC);
1613 adapter->stats.last_gotc = er32(VFGOTC);
1614 adapter->stats.last_mprc = er32(VFMPRC);
1615 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1616 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1617 adapter->stats.last_gorlbc = er32(VFGORLBC);
1618 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1619
1620 adapter->stats.base_gprc = er32(VFGPRC);
1621 adapter->stats.base_gorc = er32(VFGORC);
1622 adapter->stats.base_gptc = er32(VFGPTC);
1623 adapter->stats.base_gotc = er32(VFGOTC);
1624 adapter->stats.base_mprc = er32(VFMPRC);
1625 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1626 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1627 adapter->stats.base_gorlbc = er32(VFGORLBC);
1628 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1629}
1630
1631/**
1632 * igbvf_open - Called when a network interface is made active
1633 * @netdev: network interface device structure
1634 *
1635 * Returns 0 on success, negative value on failure
1636 *
1637 * The open entry point is called when a network interface is made
1638 * active by the system (IFF_UP). At this point all resources needed
1639 * for transmit and receive operations are allocated, the interrupt
1640 * handler is registered with the OS, the watchdog timer is started,
1641 * and the stack is notified that the interface is ready.
1642 **/
1643static int igbvf_open(struct net_device *netdev)
1644{
1645 struct igbvf_adapter *adapter = netdev_priv(netdev);
1646 struct e1000_hw *hw = &adapter->hw;
1647 int err;
1648
1649 /* disallow open during test */
1650 if (test_bit(__IGBVF_TESTING, &adapter->state))
1651 return -EBUSY;
1652
1653 /* allocate transmit descriptors */
1654 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1655 if (err)
1656 goto err_setup_tx;
1657
1658 /* allocate receive descriptors */
1659 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1660 if (err)
1661 goto err_setup_rx;
1662
1663 /*
1664 * before we allocate an interrupt, we must be ready to handle it.
1665 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1666 * as soon as we call pci_request_irq, so we have to setup our
1667 * clean_rx handler before we do so.
1668 */
1669 igbvf_configure(adapter);
1670
1671 err = igbvf_request_irq(adapter);
1672 if (err)
1673 goto err_req_irq;
1674
1675 /* From here on the code is the same as igbvf_up() */
1676 clear_bit(__IGBVF_DOWN, &adapter->state);
1677
1678 napi_enable(&adapter->rx_ring->napi);
1679
1680 /* clear any pending interrupts */
1681 er32(EICR);
1682
1683 igbvf_irq_enable(adapter);
1684
1685 /* start the watchdog */
1686 hw->mac.get_link_status = 1;
1687 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1688
1689 return 0;
1690
1691err_req_irq:
1692 igbvf_free_rx_resources(adapter->rx_ring);
1693err_setup_rx:
1694 igbvf_free_tx_resources(adapter->tx_ring);
1695err_setup_tx:
1696 igbvf_reset(adapter);
1697
1698 return err;
1699}
1700
1701/**
1702 * igbvf_close - Disables a network interface
1703 * @netdev: network interface device structure
1704 *
1705 * Returns 0, this is not allowed to fail
1706 *
1707 * The close entry point is called when an interface is de-activated
1708 * by the OS. The hardware is still under the drivers control, but
1709 * needs to be disabled. A global MAC reset is issued to stop the
1710 * hardware, and all transmit and receive resources are freed.
1711 **/
1712static int igbvf_close(struct net_device *netdev)
1713{
1714 struct igbvf_adapter *adapter = netdev_priv(netdev);
1715
1716 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1717 igbvf_down(adapter);
1718
1719 igbvf_free_irq(adapter);
1720
1721 igbvf_free_tx_resources(adapter->tx_ring);
1722 igbvf_free_rx_resources(adapter->rx_ring);
1723
1724 return 0;
1725}
1726/**
1727 * igbvf_set_mac - Change the Ethernet Address of the NIC
1728 * @netdev: network interface device structure
1729 * @p: pointer to an address structure
1730 *
1731 * Returns 0 on success, negative on failure
1732 **/
1733static int igbvf_set_mac(struct net_device *netdev, void *p)
1734{
1735 struct igbvf_adapter *adapter = netdev_priv(netdev);
1736 struct e1000_hw *hw = &adapter->hw;
1737 struct sockaddr *addr = p;
1738
1739 if (!is_valid_ether_addr(addr->sa_data))
1740 return -EADDRNOTAVAIL;
1741
1742 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1743
1744 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1745
1746 if (memcmp(addr->sa_data, hw->mac.addr, 6))
1747 return -EADDRNOTAVAIL;
1748
1749 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1750
1751 return 0;
1752}
1753
1754#define UPDATE_VF_COUNTER(reg, name) \
1755 { \
1756 u32 current_counter = er32(reg); \
1757 if (current_counter < adapter->stats.last_##name) \
1758 adapter->stats.name += 0x100000000LL; \
1759 adapter->stats.last_##name = current_counter; \
1760 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1761 adapter->stats.name |= current_counter; \
1762 }
1763
1764/**
1765 * igbvf_update_stats - Update the board statistics counters
1766 * @adapter: board private structure
1767**/
1768void igbvf_update_stats(struct igbvf_adapter *adapter)
1769{
1770 struct e1000_hw *hw = &adapter->hw;
1771 struct pci_dev *pdev = adapter->pdev;
1772
1773 /*
1774 * Prevent stats update while adapter is being reset, link is down
1775 * or if the pci connection is down.
1776 */
1777 if (adapter->link_speed == 0)
1778 return;
1779
1780 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1781 return;
1782
1783 if (pci_channel_offline(pdev))
1784 return;
1785
1786 UPDATE_VF_COUNTER(VFGPRC, gprc);
1787 UPDATE_VF_COUNTER(VFGORC, gorc);
1788 UPDATE_VF_COUNTER(VFGPTC, gptc);
1789 UPDATE_VF_COUNTER(VFGOTC, gotc);
1790 UPDATE_VF_COUNTER(VFMPRC, mprc);
1791 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1792 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1793 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1794 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1795
1796 /* Fill out the OS statistics structure */
1797 adapter->net_stats.multicast = adapter->stats.mprc;
1798}
1799
1800static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1801{
1802 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1803 adapter->link_speed,
1804 ((adapter->link_duplex == FULL_DUPLEX) ?
1805 "Full Duplex" : "Half Duplex"));
1806}
1807
1808static bool igbvf_has_link(struct igbvf_adapter *adapter)
1809{
1810 struct e1000_hw *hw = &adapter->hw;
1811 s32 ret_val = E1000_SUCCESS;
1812 bool link_active;
1813
1814 ret_val = hw->mac.ops.check_for_link(hw);
1815 link_active = !hw->mac.get_link_status;
1816
1817 /* if check for link returns error we will need to reset */
1818 if (ret_val)
1819 schedule_work(&adapter->reset_task);
1820
1821 return link_active;
1822}
1823
1824/**
1825 * igbvf_watchdog - Timer Call-back
1826 * @data: pointer to adapter cast into an unsigned long
1827 **/
1828static void igbvf_watchdog(unsigned long data)
1829{
1830 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1831
1832 /* Do the rest outside of interrupt context */
1833 schedule_work(&adapter->watchdog_task);
1834}
1835
1836static void igbvf_watchdog_task(struct work_struct *work)
1837{
1838 struct igbvf_adapter *adapter = container_of(work,
1839 struct igbvf_adapter,
1840 watchdog_task);
1841 struct net_device *netdev = adapter->netdev;
1842 struct e1000_mac_info *mac = &adapter->hw.mac;
1843 struct igbvf_ring *tx_ring = adapter->tx_ring;
1844 struct e1000_hw *hw = &adapter->hw;
1845 u32 link;
1846 int tx_pending = 0;
1847
1848 link = igbvf_has_link(adapter);
1849
1850 if (link) {
1851 if (!netif_carrier_ok(netdev)) {
1852 bool txb2b = 1;
1853
1854 mac->ops.get_link_up_info(&adapter->hw,
1855 &adapter->link_speed,
1856 &adapter->link_duplex);
1857 igbvf_print_link_info(adapter);
1858
1859 /*
1860 * tweak tx_queue_len according to speed/duplex
1861 * and adjust the timeout factor
1862 */
1863 netdev->tx_queue_len = adapter->tx_queue_len;
1864 adapter->tx_timeout_factor = 1;
1865 switch (adapter->link_speed) {
1866 case SPEED_10:
1867 txb2b = 0;
1868 netdev->tx_queue_len = 10;
1869 adapter->tx_timeout_factor = 16;
1870 break;
1871 case SPEED_100:
1872 txb2b = 0;
1873 netdev->tx_queue_len = 100;
1874 /* maybe add some timeout factor ? */
1875 break;
1876 }
1877
1878 netif_carrier_on(netdev);
1879 netif_wake_queue(netdev);
1880 }
1881 } else {
1882 if (netif_carrier_ok(netdev)) {
1883 adapter->link_speed = 0;
1884 adapter->link_duplex = 0;
1885 dev_info(&adapter->pdev->dev, "Link is Down\n");
1886 netif_carrier_off(netdev);
1887 netif_stop_queue(netdev);
1888 }
1889 }
1890
1891 if (netif_carrier_ok(netdev)) {
1892 igbvf_update_stats(adapter);
1893 } else {
1894 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1895 tx_ring->count);
1896 if (tx_pending) {
1897 /*
1898 * We've lost link, so the controller stops DMA,
1899 * but we've got queued Tx work that's never going
1900 * to get done, so reset controller to flush Tx.
1901 * (Do the reset outside of interrupt context).
1902 */
1903 adapter->tx_timeout_count++;
1904 schedule_work(&adapter->reset_task);
1905 }
1906 }
1907
1908 /* Cause software interrupt to ensure Rx ring is cleaned */
1909 ew32(EICS, adapter->rx_ring->eims_value);
1910
1911 /* Force detection of hung controller every watchdog period */
1912 adapter->detect_tx_hung = 1;
1913
1914 /* Reset the timer */
1915 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1916 mod_timer(&adapter->watchdog_timer,
1917 round_jiffies(jiffies + (2 * HZ)));
1918}
1919
1920#define IGBVF_TX_FLAGS_CSUM 0x00000001
1921#define IGBVF_TX_FLAGS_VLAN 0x00000002
1922#define IGBVF_TX_FLAGS_TSO 0x00000004
1923#define IGBVF_TX_FLAGS_IPV4 0x00000008
1924#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1925#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1926
1927static int igbvf_tso(struct igbvf_adapter *adapter,
1928 struct igbvf_ring *tx_ring,
1929 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1930{
1931 struct e1000_adv_tx_context_desc *context_desc;
1932 unsigned int i;
1933 int err;
1934 struct igbvf_buffer *buffer_info;
1935 u32 info = 0, tu_cmd = 0;
1936 u32 mss_l4len_idx, l4len;
1937 *hdr_len = 0;
1938
1939 if (skb_header_cloned(skb)) {
1940 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1941 if (err) {
1942 dev_err(&adapter->pdev->dev,
1943 "igbvf_tso returning an error\n");
1944 return err;
1945 }
1946 }
1947
1948 l4len = tcp_hdrlen(skb);
1949 *hdr_len += l4len;
1950
1951 if (skb->protocol == htons(ETH_P_IP)) {
1952 struct iphdr *iph = ip_hdr(skb);
1953 iph->tot_len = 0;
1954 iph->check = 0;
1955 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1956 iph->daddr, 0,
1957 IPPROTO_TCP,
1958 0);
1959 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
1960 ipv6_hdr(skb)->payload_len = 0;
1961 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1962 &ipv6_hdr(skb)->daddr,
1963 0, IPPROTO_TCP, 0);
1964 }
1965
1966 i = tx_ring->next_to_use;
1967
1968 buffer_info = &tx_ring->buffer_info[i];
1969 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1970 /* VLAN MACLEN IPLEN */
1971 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1972 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1973 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1974 *hdr_len += skb_network_offset(skb);
1975 info |= (skb_transport_header(skb) - skb_network_header(skb));
1976 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1977 context_desc->vlan_macip_lens = cpu_to_le32(info);
1978
1979 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1980 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1981
1982 if (skb->protocol == htons(ETH_P_IP))
1983 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1984 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1985
1986 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1987
1988 /* MSS L4LEN IDX */
1989 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1990 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1991
1992 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1993 context_desc->seqnum_seed = 0;
1994
1995 buffer_info->time_stamp = jiffies;
1996 buffer_info->next_to_watch = i;
1997 buffer_info->dma = 0;
1998 i++;
1999 if (i == tx_ring->count)
2000 i = 0;
2001
2002 tx_ring->next_to_use = i;
2003
2004 return true;
2005}
2006
2007static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
2008 struct igbvf_ring *tx_ring,
2009 struct sk_buff *skb, u32 tx_flags)
2010{
2011 struct e1000_adv_tx_context_desc *context_desc;
2012 unsigned int i;
2013 struct igbvf_buffer *buffer_info;
2014 u32 info = 0, tu_cmd = 0;
2015
2016 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2017 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2018 i = tx_ring->next_to_use;
2019 buffer_info = &tx_ring->buffer_info[i];
2020 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2021
2022 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2023 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2024
2025 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2026 if (skb->ip_summed == CHECKSUM_PARTIAL)
2027 info |= (skb_transport_header(skb) -
2028 skb_network_header(skb));
2029
2030
2031 context_desc->vlan_macip_lens = cpu_to_le32(info);
2032
2033 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2034
2035 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2036 switch (skb->protocol) {
2037 case __constant_htons(ETH_P_IP):
2038 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2039 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2040 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2041 break;
2042 case __constant_htons(ETH_P_IPV6):
2043 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2044 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2045 break;
2046 default:
2047 break;
2048 }
2049 }
2050
2051 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2052 context_desc->seqnum_seed = 0;
2053 context_desc->mss_l4len_idx = 0;
2054
2055 buffer_info->time_stamp = jiffies;
2056 buffer_info->next_to_watch = i;
2057 buffer_info->dma = 0;
2058 i++;
2059 if (i == tx_ring->count)
2060 i = 0;
2061 tx_ring->next_to_use = i;
2062
2063 return true;
2064 }
2065
2066 return false;
2067}
2068
2069static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2070{
2071 struct igbvf_adapter *adapter = netdev_priv(netdev);
2072
2073 /* there is enough descriptors then we don't need to worry */
2074 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2075 return 0;
2076
2077 netif_stop_queue(netdev);
2078
2079 smp_mb();
2080
2081 /* We need to check again just in case room has been made available */
2082 if (igbvf_desc_unused(adapter->tx_ring) < size)
2083 return -EBUSY;
2084
2085 netif_wake_queue(netdev);
2086
2087 ++adapter->restart_queue;
2088 return 0;
2089}
2090
2091#define IGBVF_MAX_TXD_PWR 16
2092#define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2093
2094static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2095 struct igbvf_ring *tx_ring,
2096 struct sk_buff *skb,
2097 unsigned int first)
2098{
2099 struct igbvf_buffer *buffer_info;
2100 unsigned int len = skb_headlen(skb);
2101 unsigned int count = 0, i;
2102 unsigned int f;
2103 dma_addr_t *map;
2104
2105 i = tx_ring->next_to_use;
2106
2107 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
2108 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2109 return 0;
2110 }
2111
2112 map = skb_shinfo(skb)->dma_maps;
2113
2114 buffer_info = &tx_ring->buffer_info[i];
2115 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2116 buffer_info->length = len;
2117 /* set time_stamp *before* dma to help avoid a possible race */
2118 buffer_info->time_stamp = jiffies;
2119 buffer_info->next_to_watch = i;
2120 buffer_info->dma = map[count];
2121 count++;
2122
2123 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2124 struct skb_frag_struct *frag;
2125
2126 i++;
2127 if (i == tx_ring->count)
2128 i = 0;
2129
2130 frag = &skb_shinfo(skb)->frags[f];
2131 len = frag->size;
2132
2133 buffer_info = &tx_ring->buffer_info[i];
2134 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2135 buffer_info->length = len;
2136 buffer_info->time_stamp = jiffies;
2137 buffer_info->next_to_watch = i;
2138 buffer_info->dma = map[count];
2139 count++;
2140 }
2141
2142 tx_ring->buffer_info[i].skb = skb;
2143 tx_ring->buffer_info[first].next_to_watch = i;
2144
2145 return count;
2146}
2147
2148static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2149 struct igbvf_ring *tx_ring,
2150 int tx_flags, int count, u32 paylen,
2151 u8 hdr_len)
2152{
2153 union e1000_adv_tx_desc *tx_desc = NULL;
2154 struct igbvf_buffer *buffer_info;
2155 u32 olinfo_status = 0, cmd_type_len;
2156 unsigned int i;
2157
2158 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2159 E1000_ADVTXD_DCMD_DEXT);
2160
2161 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2162 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2163
2164 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2165 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2166
2167 /* insert tcp checksum */
2168 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2169
2170 /* insert ip checksum */
2171 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2172 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2173
2174 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2175 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2176 }
2177
2178 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2179
2180 i = tx_ring->next_to_use;
2181 while (count--) {
2182 buffer_info = &tx_ring->buffer_info[i];
2183 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2184 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2185 tx_desc->read.cmd_type_len =
2186 cpu_to_le32(cmd_type_len | buffer_info->length);
2187 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2188 i++;
2189 if (i == tx_ring->count)
2190 i = 0;
2191 }
2192
2193 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2194 /* Force memory writes to complete before letting h/w
2195 * know there are new descriptors to fetch. (Only
2196 * applicable for weak-ordered memory model archs,
2197 * such as IA-64). */
2198 wmb();
2199
2200 tx_ring->next_to_use = i;
2201 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2202 /* we need this if more than one processor can write to our tail
2203 * at a time, it syncronizes IO on IA64/Altix systems */
2204 mmiowb();
2205}
2206
2207static int igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2208 struct net_device *netdev,
2209 struct igbvf_ring *tx_ring)
2210{
2211 struct igbvf_adapter *adapter = netdev_priv(netdev);
2212 unsigned int first, tx_flags = 0;
2213 u8 hdr_len = 0;
2214 int count = 0;
2215 int tso = 0;
2216
2217 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2218 dev_kfree_skb_any(skb);
2219 return NETDEV_TX_OK;
2220 }
2221
2222 if (skb->len <= 0) {
2223 dev_kfree_skb_any(skb);
2224 return NETDEV_TX_OK;
2225 }
2226
2227 /*
2228 * need: count + 4 desc gap to keep tail from touching
2229 * + 2 desc gap to keep tail from touching head,
2230 * + 1 desc for skb->data,
2231 * + 1 desc for context descriptor,
2232 * head, otherwise try next time
2233 */
2234 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2235 /* this is a hard error */
2236 return NETDEV_TX_BUSY;
2237 }
2238
2239 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2240 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2241 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2242 }
2243
2244 if (skb->protocol == htons(ETH_P_IP))
2245 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2246
2247 first = tx_ring->next_to_use;
2248
2249 tso = skb_is_gso(skb) ?
2250 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2251 if (unlikely(tso < 0)) {
2252 dev_kfree_skb_any(skb);
2253 return NETDEV_TX_OK;
2254 }
2255
2256 if (tso)
2257 tx_flags |= IGBVF_TX_FLAGS_TSO;
2258 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2259 (skb->ip_summed == CHECKSUM_PARTIAL))
2260 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2261
2262 /*
2263 * count reflects descriptors mapped, if 0 then mapping error
2264 * has occured and we need to rewind the descriptor queue
2265 */
2266 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2267
2268 if (count) {
2269 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2270 skb->len, hdr_len);
2271 netdev->trans_start = jiffies;
2272 /* Make sure there is space in the ring for the next send. */
2273 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2274 } else {
2275 dev_kfree_skb_any(skb);
2276 tx_ring->buffer_info[first].time_stamp = 0;
2277 tx_ring->next_to_use = first;
2278 }
2279
2280 return NETDEV_TX_OK;
2281}
2282
2283static int igbvf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2284{
2285 struct igbvf_adapter *adapter = netdev_priv(netdev);
2286 struct igbvf_ring *tx_ring;
2287 int retval;
2288
2289 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2290 dev_kfree_skb_any(skb);
2291 return NETDEV_TX_OK;
2292 }
2293
2294 tx_ring = &adapter->tx_ring[0];
2295
2296 retval = igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2297
2298 return retval;
2299}
2300
2301/**
2302 * igbvf_tx_timeout - Respond to a Tx Hang
2303 * @netdev: network interface device structure
2304 **/
2305static void igbvf_tx_timeout(struct net_device *netdev)
2306{
2307 struct igbvf_adapter *adapter = netdev_priv(netdev);
2308
2309 /* Do the reset outside of interrupt context */
2310 adapter->tx_timeout_count++;
2311 schedule_work(&adapter->reset_task);
2312}
2313
2314static void igbvf_reset_task(struct work_struct *work)
2315{
2316 struct igbvf_adapter *adapter;
2317 adapter = container_of(work, struct igbvf_adapter, reset_task);
2318
2319 igbvf_reinit_locked(adapter);
2320}
2321
2322/**
2323 * igbvf_get_stats - Get System Network Statistics
2324 * @netdev: network interface device structure
2325 *
2326 * Returns the address of the device statistics structure.
2327 * The statistics are actually updated from the timer callback.
2328 **/
2329static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2330{
2331 struct igbvf_adapter *adapter = netdev_priv(netdev);
2332
2333 /* only return the current stats */
2334 return &adapter->net_stats;
2335}
2336
2337/**
2338 * igbvf_change_mtu - Change the Maximum Transfer Unit
2339 * @netdev: network interface device structure
2340 * @new_mtu: new value for maximum frame size
2341 *
2342 * Returns 0 on success, negative on failure
2343 **/
2344static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2345{
2346 struct igbvf_adapter *adapter = netdev_priv(netdev);
2347 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2348
2349 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2350 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2351 return -EINVAL;
2352 }
2353
2354 /* Jumbo frame size limits */
2355 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
2356 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
2357 dev_err(&adapter->pdev->dev,
2358 "Jumbo Frames not supported.\n");
2359 return -EINVAL;
2360 }
2361 }
2362
2363#define MAX_STD_JUMBO_FRAME_SIZE 9234
2364 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2365 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2366 return -EINVAL;
2367 }
2368
2369 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2370 msleep(1);
2371 /* igbvf_down has a dependency on max_frame_size */
2372 adapter->max_frame_size = max_frame;
2373 if (netif_running(netdev))
2374 igbvf_down(adapter);
2375
2376 /*
2377 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2378 * means we reserve 2 more, this pushes us to allocate from the next
2379 * larger slab size.
2380 * i.e. RXBUFFER_2048 --> size-4096 slab
2381 * However with the new *_jumbo_rx* routines, jumbo receives will use
2382 * fragmented skbs
2383 */
2384
2385 if (max_frame <= 1024)
2386 adapter->rx_buffer_len = 1024;
2387 else if (max_frame <= 2048)
2388 adapter->rx_buffer_len = 2048;
2389 else
2390#if (PAGE_SIZE / 2) > 16384
2391 adapter->rx_buffer_len = 16384;
2392#else
2393 adapter->rx_buffer_len = PAGE_SIZE / 2;
2394#endif
2395
2396
2397 /* adjust allocation if LPE protects us, and we aren't using SBP */
2398 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2399 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2400 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2401 ETH_FCS_LEN;
2402
2403 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2404 netdev->mtu, new_mtu);
2405 netdev->mtu = new_mtu;
2406
2407 if (netif_running(netdev))
2408 igbvf_up(adapter);
2409 else
2410 igbvf_reset(adapter);
2411
2412 clear_bit(__IGBVF_RESETTING, &adapter->state);
2413
2414 return 0;
2415}
2416
2417static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2418{
2419 switch (cmd) {
2420 default:
2421 return -EOPNOTSUPP;
2422 }
2423}
2424
2425static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2426{
2427 struct net_device *netdev = pci_get_drvdata(pdev);
2428 struct igbvf_adapter *adapter = netdev_priv(netdev);
2429#ifdef CONFIG_PM
2430 int retval = 0;
2431#endif
2432
2433 netif_device_detach(netdev);
2434
2435 if (netif_running(netdev)) {
2436 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2437 igbvf_down(adapter);
2438 igbvf_free_irq(adapter);
2439 }
2440
2441#ifdef CONFIG_PM
2442 retval = pci_save_state(pdev);
2443 if (retval)
2444 return retval;
2445#endif
2446
2447 pci_disable_device(pdev);
2448
2449 return 0;
2450}
2451
2452#ifdef CONFIG_PM
2453static int igbvf_resume(struct pci_dev *pdev)
2454{
2455 struct net_device *netdev = pci_get_drvdata(pdev);
2456 struct igbvf_adapter *adapter = netdev_priv(netdev);
2457 u32 err;
2458
2459 pci_restore_state(pdev);
2460 err = pci_enable_device_mem(pdev);
2461 if (err) {
2462 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2463 return err;
2464 }
2465
2466 pci_set_master(pdev);
2467
2468 if (netif_running(netdev)) {
2469 err = igbvf_request_irq(adapter);
2470 if (err)
2471 return err;
2472 }
2473
2474 igbvf_reset(adapter);
2475
2476 if (netif_running(netdev))
2477 igbvf_up(adapter);
2478
2479 netif_device_attach(netdev);
2480
2481 return 0;
2482}
2483#endif
2484
2485static void igbvf_shutdown(struct pci_dev *pdev)
2486{
2487 igbvf_suspend(pdev, PMSG_SUSPEND);
2488}
2489
2490#ifdef CONFIG_NET_POLL_CONTROLLER
2491/*
2492 * Polling 'interrupt' - used by things like netconsole to send skbs
2493 * without having to re-enable interrupts. It's not called while
2494 * the interrupt routine is executing.
2495 */
2496static void igbvf_netpoll(struct net_device *netdev)
2497{
2498 struct igbvf_adapter *adapter = netdev_priv(netdev);
2499
2500 disable_irq(adapter->pdev->irq);
2501
2502 igbvf_clean_tx_irq(adapter->tx_ring);
2503
2504 enable_irq(adapter->pdev->irq);
2505}
2506#endif
2507
2508/**
2509 * igbvf_io_error_detected - called when PCI error is detected
2510 * @pdev: Pointer to PCI device
2511 * @state: The current pci connection state
2512 *
2513 * This function is called after a PCI bus error affecting
2514 * this device has been detected.
2515 */
2516static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2517 pci_channel_state_t state)
2518{
2519 struct net_device *netdev = pci_get_drvdata(pdev);
2520 struct igbvf_adapter *adapter = netdev_priv(netdev);
2521
2522 netif_device_detach(netdev);
2523
2524 if (netif_running(netdev))
2525 igbvf_down(adapter);
2526 pci_disable_device(pdev);
2527
2528 /* Request a slot slot reset. */
2529 return PCI_ERS_RESULT_NEED_RESET;
2530}
2531
2532/**
2533 * igbvf_io_slot_reset - called after the pci bus has been reset.
2534 * @pdev: Pointer to PCI device
2535 *
2536 * Restart the card from scratch, as if from a cold-boot. Implementation
2537 * resembles the first-half of the igbvf_resume routine.
2538 */
2539static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2540{
2541 struct net_device *netdev = pci_get_drvdata(pdev);
2542 struct igbvf_adapter *adapter = netdev_priv(netdev);
2543
2544 if (pci_enable_device_mem(pdev)) {
2545 dev_err(&pdev->dev,
2546 "Cannot re-enable PCI device after reset.\n");
2547 return PCI_ERS_RESULT_DISCONNECT;
2548 }
2549 pci_set_master(pdev);
2550
2551 igbvf_reset(adapter);
2552
2553 return PCI_ERS_RESULT_RECOVERED;
2554}
2555
2556/**
2557 * igbvf_io_resume - called when traffic can start flowing again.
2558 * @pdev: Pointer to PCI device
2559 *
2560 * This callback is called when the error recovery driver tells us that
2561 * its OK to resume normal operation. Implementation resembles the
2562 * second-half of the igbvf_resume routine.
2563 */
2564static void igbvf_io_resume(struct pci_dev *pdev)
2565{
2566 struct net_device *netdev = pci_get_drvdata(pdev);
2567 struct igbvf_adapter *adapter = netdev_priv(netdev);
2568
2569 if (netif_running(netdev)) {
2570 if (igbvf_up(adapter)) {
2571 dev_err(&pdev->dev,
2572 "can't bring device back up after reset\n");
2573 return;
2574 }
2575 }
2576
2577 netif_device_attach(netdev);
2578}
2579
2580static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2581{
2582 struct e1000_hw *hw = &adapter->hw;
2583 struct net_device *netdev = adapter->netdev;
2584 struct pci_dev *pdev = adapter->pdev;
2585
2586 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2587 dev_info(&pdev->dev, "Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
2588 /* MAC address */
2589 netdev->dev_addr[0], netdev->dev_addr[1],
2590 netdev->dev_addr[2], netdev->dev_addr[3],
2591 netdev->dev_addr[4], netdev->dev_addr[5]);
2592 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
2593}
2594
2595static const struct net_device_ops igbvf_netdev_ops = {
2596 .ndo_open = igbvf_open,
2597 .ndo_stop = igbvf_close,
2598 .ndo_start_xmit = igbvf_xmit_frame,
2599 .ndo_get_stats = igbvf_get_stats,
2600 .ndo_set_multicast_list = igbvf_set_multi,
2601 .ndo_set_mac_address = igbvf_set_mac,
2602 .ndo_change_mtu = igbvf_change_mtu,
2603 .ndo_do_ioctl = igbvf_ioctl,
2604 .ndo_tx_timeout = igbvf_tx_timeout,
2605 .ndo_vlan_rx_register = igbvf_vlan_rx_register,
2606 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2607 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2608#ifdef CONFIG_NET_POLL_CONTROLLER
2609 .ndo_poll_controller = igbvf_netpoll,
2610#endif
2611};
2612
2613/**
2614 * igbvf_probe - Device Initialization Routine
2615 * @pdev: PCI device information struct
2616 * @ent: entry in igbvf_pci_tbl
2617 *
2618 * Returns 0 on success, negative on failure
2619 *
2620 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2621 * The OS initialization, configuring of the adapter private structure,
2622 * and a hardware reset occur.
2623 **/
2624static int __devinit igbvf_probe(struct pci_dev *pdev,
2625 const struct pci_device_id *ent)
2626{
2627 struct net_device *netdev;
2628 struct igbvf_adapter *adapter;
2629 struct e1000_hw *hw;
2630 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2631
2632 static int cards_found;
2633 int err, pci_using_dac;
2634
2635 err = pci_enable_device_mem(pdev);
2636 if (err)
2637 return err;
2638
2639 pci_using_dac = 0;
2640 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
2641 if (!err) {
2642 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
2643 if (!err)
2644 pci_using_dac = 1;
2645 } else {
2646 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2647 if (err) {
2648 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2649 if (err) {
2650 dev_err(&pdev->dev, "No usable DMA "
2651 "configuration, aborting\n");
2652 goto err_dma;
2653 }
2654 }
2655 }
2656
2657 err = pci_request_regions(pdev, igbvf_driver_name);
2658 if (err)
2659 goto err_pci_reg;
2660
2661 pci_set_master(pdev);
2662
2663 err = -ENOMEM;
2664 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2665 if (!netdev)
2666 goto err_alloc_etherdev;
2667
2668 SET_NETDEV_DEV(netdev, &pdev->dev);
2669
2670 pci_set_drvdata(pdev, netdev);
2671 adapter = netdev_priv(netdev);
2672 hw = &adapter->hw;
2673 adapter->netdev = netdev;
2674 adapter->pdev = pdev;
2675 adapter->ei = ei;
2676 adapter->pba = ei->pba;
2677 adapter->flags = ei->flags;
2678 adapter->hw.back = adapter;
2679 adapter->hw.mac.type = ei->mac;
2680 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2681
2682 /* PCI config space info */
2683
2684 hw->vendor_id = pdev->vendor;
2685 hw->device_id = pdev->device;
2686 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2687 hw->subsystem_device_id = pdev->subsystem_device;
2688
2689 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2690
2691 err = -EIO;
2692 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2693 pci_resource_len(pdev, 0));
2694
2695 if (!adapter->hw.hw_addr)
2696 goto err_ioremap;
2697
2698 if (ei->get_variants) {
2699 err = ei->get_variants(adapter);
2700 if (err)
2701 goto err_ioremap;
2702 }
2703
2704 /* setup adapter struct */
2705 err = igbvf_sw_init(adapter);
2706 if (err)
2707 goto err_sw_init;
2708
2709 /* construct the net_device struct */
2710 netdev->netdev_ops = &igbvf_netdev_ops;
2711
2712 igbvf_set_ethtool_ops(netdev);
2713 netdev->watchdog_timeo = 5 * HZ;
2714 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2715
2716 adapter->bd_number = cards_found++;
2717
2718 netdev->features = NETIF_F_SG |
2719 NETIF_F_IP_CSUM |
2720 NETIF_F_HW_VLAN_TX |
2721 NETIF_F_HW_VLAN_RX |
2722 NETIF_F_HW_VLAN_FILTER;
2723
2724 netdev->features |= NETIF_F_IPV6_CSUM;
2725 netdev->features |= NETIF_F_TSO;
2726 netdev->features |= NETIF_F_TSO6;
2727
2728 if (pci_using_dac)
2729 netdev->features |= NETIF_F_HIGHDMA;
2730
2731 netdev->vlan_features |= NETIF_F_TSO;
2732 netdev->vlan_features |= NETIF_F_TSO6;
2733 netdev->vlan_features |= NETIF_F_IP_CSUM;
2734 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2735 netdev->vlan_features |= NETIF_F_SG;
2736
2737 /*reset the controller to put the device in a known good state */
2738 err = hw->mac.ops.reset_hw(hw);
2739 if (err) {
2740 dev_info(&pdev->dev,
2741 "PF still in reset state, assigning new address\n");
2742 random_ether_addr(hw->mac.addr);
2743 } else {
2744 err = hw->mac.ops.read_mac_addr(hw);
2745 if (err) {
2746 dev_err(&pdev->dev, "Error reading MAC address\n");
2747 goto err_hw_init;
2748 }
2749 }
2750
2751 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2752 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2753
2754 if (!is_valid_ether_addr(netdev->perm_addr)) {
2755 dev_err(&pdev->dev, "Invalid MAC Address: "
2756 "%02x:%02x:%02x:%02x:%02x:%02x\n",
2757 netdev->dev_addr[0], netdev->dev_addr[1],
2758 netdev->dev_addr[2], netdev->dev_addr[3],
2759 netdev->dev_addr[4], netdev->dev_addr[5]);
2760 err = -EIO;
2761 goto err_hw_init;
2762 }
2763
2764 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2765 (unsigned long) adapter);
2766
2767 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2768 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2769
2770 /* ring size defaults */
2771 adapter->rx_ring->count = 1024;
2772 adapter->tx_ring->count = 1024;
2773
2774 /* reset the hardware with the new settings */
2775 igbvf_reset(adapter);
2776
2777 /* tell the stack to leave us alone until igbvf_open() is called */
2778 netif_carrier_off(netdev);
2779 netif_stop_queue(netdev);
2780
2781 strcpy(netdev->name, "eth%d");
2782 err = register_netdev(netdev);
2783 if (err)
2784 goto err_hw_init;
2785
2786 igbvf_print_device_info(adapter);
2787
2788 igbvf_initialize_last_counter_stats(adapter);
2789
2790 return 0;
2791
2792err_hw_init:
2793 kfree(adapter->tx_ring);
2794 kfree(adapter->rx_ring);
2795err_sw_init:
2796 igbvf_reset_interrupt_capability(adapter);
2797 iounmap(adapter->hw.hw_addr);
2798err_ioremap:
2799 free_netdev(netdev);
2800err_alloc_etherdev:
2801 pci_release_regions(pdev);
2802err_pci_reg:
2803err_dma:
2804 pci_disable_device(pdev);
2805 return err;
2806}
2807
2808/**
2809 * igbvf_remove - Device Removal Routine
2810 * @pdev: PCI device information struct
2811 *
2812 * igbvf_remove is called by the PCI subsystem to alert the driver
2813 * that it should release a PCI device. The could be caused by a
2814 * Hot-Plug event, or because the driver is going to be removed from
2815 * memory.
2816 **/
2817static void __devexit igbvf_remove(struct pci_dev *pdev)
2818{
2819 struct net_device *netdev = pci_get_drvdata(pdev);
2820 struct igbvf_adapter *adapter = netdev_priv(netdev);
2821 struct e1000_hw *hw = &adapter->hw;
2822
2823 /*
2824 * flush_scheduled work may reschedule our watchdog task, so
2825 * explicitly disable watchdog tasks from being rescheduled
2826 */
2827 set_bit(__IGBVF_DOWN, &adapter->state);
2828 del_timer_sync(&adapter->watchdog_timer);
2829
2830 flush_scheduled_work();
2831
2832 unregister_netdev(netdev);
2833
2834 igbvf_reset_interrupt_capability(adapter);
2835
2836 /*
2837 * it is important to delete the napi struct prior to freeing the
2838 * rx ring so that you do not end up with null pointer refs
2839 */
2840 netif_napi_del(&adapter->rx_ring->napi);
2841 kfree(adapter->tx_ring);
2842 kfree(adapter->rx_ring);
2843
2844 iounmap(hw->hw_addr);
2845 if (hw->flash_address)
2846 iounmap(hw->flash_address);
2847 pci_release_regions(pdev);
2848
2849 free_netdev(netdev);
2850
2851 pci_disable_device(pdev);
2852}
2853
2854/* PCI Error Recovery (ERS) */
2855static struct pci_error_handlers igbvf_err_handler = {
2856 .error_detected = igbvf_io_error_detected,
2857 .slot_reset = igbvf_io_slot_reset,
2858 .resume = igbvf_io_resume,
2859};
2860
2861static struct pci_device_id igbvf_pci_tbl[] = {
2862 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2863 { } /* terminate list */
2864};
2865MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2866
2867/* PCI Device API Driver */
2868static struct pci_driver igbvf_driver = {
2869 .name = igbvf_driver_name,
2870 .id_table = igbvf_pci_tbl,
2871 .probe = igbvf_probe,
2872 .remove = __devexit_p(igbvf_remove),
2873#ifdef CONFIG_PM
2874 /* Power Management Hooks */
2875 .suspend = igbvf_suspend,
2876 .resume = igbvf_resume,
2877#endif
2878 .shutdown = igbvf_shutdown,
2879 .err_handler = &igbvf_err_handler
2880};
2881
2882/**
2883 * igbvf_init_module - Driver Registration Routine
2884 *
2885 * igbvf_init_module is the first routine called when the driver is
2886 * loaded. All it does is register with the PCI subsystem.
2887 **/
2888static int __init igbvf_init_module(void)
2889{
2890 int ret;
2891 printk(KERN_INFO "%s - version %s\n",
2892 igbvf_driver_string, igbvf_driver_version);
2893 printk(KERN_INFO "%s\n", igbvf_copyright);
2894
2895 ret = pci_register_driver(&igbvf_driver);
2896 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name,
2897 PM_QOS_DEFAULT_VALUE);
2898
2899 return ret;
2900}
2901module_init(igbvf_init_module);
2902
2903/**
2904 * igbvf_exit_module - Driver Exit Cleanup Routine
2905 *
2906 * igbvf_exit_module is called just before the driver is removed
2907 * from memory.
2908 **/
2909static void __exit igbvf_exit_module(void)
2910{
2911 pci_unregister_driver(&igbvf_driver);
2912 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name);
2913}
2914module_exit(igbvf_exit_module);
2915
2916
2917MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2918MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2919MODULE_LICENSE("GPL");
2920MODULE_VERSION(DRV_VERSION);
2921
2922/* netdev.c */
diff --git a/drivers/net/igbvf/regs.h b/drivers/net/igbvf/regs.h
new file mode 100644
index 000000000000..b9e24ed70d0a
--- /dev/null
+++ b/drivers/net/igbvf/regs.h
@@ -0,0 +1,108 @@
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#ifndef _E1000_REGS_H_
29#define _E1000_REGS_H_
30
31#define E1000_CTRL 0x00000 /* Device Control - RW */
32#define E1000_STATUS 0x00008 /* Device Status - RO */
33#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
34#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */
35#define E1000_EITR(_n) (0x01680 + (0x4 * (_n)))
36#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */
37#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */
38#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */
39#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */
40#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */
41#define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */
42#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */
43/*
44 * Convenience macros
45 *
46 * Note: "_n" is the queue number of the register to be written to.
47 *
48 * Example usage:
49 * E1000_RDBAL_REG(current_rx_queue)
50 */
51#define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : \
52 (0x0C000 + ((_n) * 0x40)))
53#define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : \
54 (0x0C004 + ((_n) * 0x40)))
55#define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : \
56 (0x0C008 + ((_n) * 0x40)))
57#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \
58 (0x0C00C + ((_n) * 0x40)))
59#define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : \
60 (0x0C010 + ((_n) * 0x40)))
61#define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : \
62 (0x0C018 + ((_n) * 0x40)))
63#define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : \
64 (0x0C028 + ((_n) * 0x40)))
65#define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : \
66 (0x0E000 + ((_n) * 0x40)))
67#define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : \
68 (0x0E004 + ((_n) * 0x40)))
69#define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : \
70 (0x0E008 + ((_n) * 0x40)))
71#define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : \
72 (0x0E010 + ((_n) * 0x40)))
73#define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : \
74 (0x0E018 + ((_n) * 0x40)))
75#define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : \
76 (0x0E028 + ((_n) * 0x40)))
77#define E1000_DCA_TXCTRL(_n) (0x03814 + (_n << 8))
78#define E1000_DCA_RXCTRL(_n) (0x02814 + (_n << 8))
79#define E1000_RAL(_i) (((_i) <= 15) ? (0x05400 + ((_i) * 8)) : \
80 (0x054E0 + ((_i - 16) * 8)))
81#define E1000_RAH(_i) (((_i) <= 15) ? (0x05404 + ((_i) * 8)) : \
82 (0x054E4 + ((_i - 16) * 8)))
83
84/* Statistics registers */
85#define E1000_VFGPRC 0x00F10
86#define E1000_VFGORC 0x00F18
87#define E1000_VFMPRC 0x00F3C
88#define E1000_VFGPTC 0x00F14
89#define E1000_VFGOTC 0x00F34
90#define E1000_VFGOTLBC 0x00F50
91#define E1000_VFGPTLBC 0x00F44
92#define E1000_VFGORLBC 0x00F48
93#define E1000_VFGPRLBC 0x00F40
94
95/* These act per VF so an array friendly macro is used */
96#define E1000_V2PMAILBOX(_n) (0x00C40 + (4 * (_n)))
97#define E1000_VMBMEM(_n) (0x00800 + (64 * (_n)))
98
99/* Define macros for handling registers */
100#define er32(reg) readl(hw->hw_addr + E1000_##reg)
101#define ew32(reg, val) writel((val), hw->hw_addr + E1000_##reg)
102#define array_er32(reg, offset) \
103 readl(hw->hw_addr + E1000_##reg + (offset << 2))
104#define array_ew32(reg, offset, val) \
105 writel((val), hw->hw_addr + E1000_##reg + (offset << 2))
106#define e1e_flush() er32(STATUS)
107
108#endif
diff --git a/drivers/net/igbvf/vf.c b/drivers/net/igbvf/vf.c
new file mode 100644
index 000000000000..2a4faf9ade69
--- /dev/null
+++ b/drivers/net/igbvf/vf.c
@@ -0,0 +1,398 @@
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28
29#include "vf.h"
30
31static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
32static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
33 u16 *duplex);
34static s32 e1000_init_hw_vf(struct e1000_hw *hw);
35static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
36
37static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *,
38 u32, u32, u32);
39static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
40static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
41static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool);
42
43/**
44 * e1000_init_mac_params_vf - Inits MAC params
45 * @hw: pointer to the HW structure
46 **/
47static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
48{
49 struct e1000_mac_info *mac = &hw->mac;
50
51 /* VF's have no MTA Registers - PF feature only */
52 mac->mta_reg_count = 128;
53 /* VF's have no access to RAR entries */
54 mac->rar_entry_count = 1;
55
56 /* Function pointers */
57 /* reset */
58 mac->ops.reset_hw = e1000_reset_hw_vf;
59 /* hw initialization */
60 mac->ops.init_hw = e1000_init_hw_vf;
61 /* check for link */
62 mac->ops.check_for_link = e1000_check_for_link_vf;
63 /* link info */
64 mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
65 /* multicast address update */
66 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
67 /* set mac address */
68 mac->ops.rar_set = e1000_rar_set_vf;
69 /* read mac address */
70 mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
71 /* set vlan filter table array */
72 mac->ops.set_vfta = e1000_set_vfta_vf;
73
74 return E1000_SUCCESS;
75}
76
77/**
78 * e1000_init_function_pointers_vf - Inits function pointers
79 * @hw: pointer to the HW structure
80 **/
81void e1000_init_function_pointers_vf(struct e1000_hw *hw)
82{
83 hw->mac.ops.init_params = e1000_init_mac_params_vf;
84 hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
85}
86
87/**
88 * e1000_get_link_up_info_vf - Gets link info.
89 * @hw: pointer to the HW structure
90 * @speed: pointer to 16 bit value to store link speed.
91 * @duplex: pointer to 16 bit value to store duplex.
92 *
93 * Since we cannot read the PHY and get accurate link info, we must rely upon
94 * the status register's data which is often stale and inaccurate.
95 **/
96static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
97 u16 *duplex)
98{
99 s32 status;
100
101 status = er32(STATUS);
102 if (status & E1000_STATUS_SPEED_1000)
103 *speed = SPEED_1000;
104 else if (status & E1000_STATUS_SPEED_100)
105 *speed = SPEED_100;
106 else
107 *speed = SPEED_10;
108
109 if (status & E1000_STATUS_FD)
110 *duplex = FULL_DUPLEX;
111 else
112 *duplex = HALF_DUPLEX;
113
114 return E1000_SUCCESS;
115}
116
117/**
118 * e1000_reset_hw_vf - Resets the HW
119 * @hw: pointer to the HW structure
120 *
121 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
122 * This is all the reset we can perform on a VF.
123 **/
124static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
125{
126 struct e1000_mbx_info *mbx = &hw->mbx;
127 u32 timeout = E1000_VF_INIT_TIMEOUT;
128 u32 ret_val = -E1000_ERR_MAC_INIT;
129 u32 msgbuf[3];
130 u8 *addr = (u8 *)(&msgbuf[1]);
131 u32 ctrl;
132
133 /* assert vf queue/interrupt reset */
134 ctrl = er32(CTRL);
135 ew32(CTRL, ctrl | E1000_CTRL_RST);
136
137 /* we cannot initialize while the RSTI / RSTD bits are asserted */
138 while (!mbx->ops.check_for_rst(hw) && timeout) {
139 timeout--;
140 udelay(5);
141 }
142
143 if (timeout) {
144 /* mailbox timeout can now become active */
145 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
146
147 /* notify pf of vf reset completion */
148 msgbuf[0] = E1000_VF_RESET;
149 mbx->ops.write_posted(hw, msgbuf, 1);
150
151 msleep(10);
152
153 /* set our "perm_addr" based on info provided by PF */
154 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
155 if (!ret_val) {
156 if (msgbuf[0] == (E1000_VF_RESET | E1000_VT_MSGTYPE_ACK))
157 memcpy(hw->mac.perm_addr, addr, 6);
158 else
159 ret_val = -E1000_ERR_MAC_INIT;
160 }
161 }
162
163 return ret_val;
164}
165
166/**
167 * e1000_init_hw_vf - Inits the HW
168 * @hw: pointer to the HW structure
169 *
170 * Not much to do here except clear the PF Reset indication if there is one.
171 **/
172static s32 e1000_init_hw_vf(struct e1000_hw *hw)
173{
174 /* attempt to set and restore our mac address */
175 e1000_rar_set_vf(hw, hw->mac.addr, 0);
176
177 return E1000_SUCCESS;
178}
179
180/**
181 * e1000_hash_mc_addr_vf - Generate a multicast hash value
182 * @hw: pointer to the HW structure
183 * @mc_addr: pointer to a multicast address
184 *
185 * Generates a multicast address hash value which is used to determine
186 * the multicast filter table array address and new table value. See
187 * e1000_mta_set_generic()
188 **/
189static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
190{
191 u32 hash_value, hash_mask;
192 u8 bit_shift = 0;
193
194 /* Register count multiplied by bits per register */
195 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
196
197 /*
198 * The bit_shift is the number of left-shifts
199 * where 0xFF would still fall within the hash mask.
200 */
201 while (hash_mask >> bit_shift != 0xFF)
202 bit_shift++;
203
204 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
205 (((u16) mc_addr[5]) << bit_shift)));
206
207 return hash_value;
208}
209
210/**
211 * e1000_update_mc_addr_list_vf - Update Multicast addresses
212 * @hw: pointer to the HW structure
213 * @mc_addr_list: array of multicast addresses to program
214 * @mc_addr_count: number of multicast addresses to program
215 * @rar_used_count: the first RAR register free to program
216 * @rar_count: total number of supported Receive Address Registers
217 *
218 * Updates the Receive Address Registers and Multicast Table Array.
219 * The caller must have a packed mc_addr_list of multicast addresses.
220 * The parameter rar_count will usually be hw->mac.rar_entry_count
221 * unless there are workarounds that change this.
222 **/
223void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
224 u8 *mc_addr_list, u32 mc_addr_count,
225 u32 rar_used_count, u32 rar_count)
226{
227 struct e1000_mbx_info *mbx = &hw->mbx;
228 u32 msgbuf[E1000_VFMAILBOX_SIZE];
229 u16 *hash_list = (u16 *)&msgbuf[1];
230 u32 hash_value;
231 u32 cnt, i;
232
233 /* Each entry in the list uses 1 16 bit word. We have 30
234 * 16 bit words available in our HW msg buffer (minus 1 for the
235 * msg type). That's 30 hash values if we pack 'em right. If
236 * there are more than 30 MC addresses to add then punt the
237 * extras for now and then add code to handle more than 30 later.
238 * It would be unusual for a server to request that many multi-cast
239 * addresses except for in large enterprise network environments.
240 */
241
242 cnt = (mc_addr_count > 30) ? 30 : mc_addr_count;
243 msgbuf[0] = E1000_VF_SET_MULTICAST;
244 msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT;
245
246 for (i = 0; i < cnt; i++) {
247 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
248 hash_list[i] = hash_value & 0x0FFFF;
249 mc_addr_list += ETH_ADDR_LEN;
250 }
251
252 mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE);
253}
254
255/**
256 * e1000_set_vfta_vf - Set/Unset vlan filter table address
257 * @hw: pointer to the HW structure
258 * @vid: determines the vfta register and bit to set/unset
259 * @set: if true then set bit, else clear bit
260 **/
261static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set)
262{
263 struct e1000_mbx_info *mbx = &hw->mbx;
264 u32 msgbuf[2];
265 s32 err;
266
267 msgbuf[0] = E1000_VF_SET_VLAN;
268 msgbuf[1] = vid;
269 /* Setting the 8 bit field MSG INFO to true indicates "add" */
270 if (set)
271 msgbuf[0] |= 1 << E1000_VT_MSGINFO_SHIFT;
272
273 mbx->ops.write_posted(hw, msgbuf, 2);
274
275 err = mbx->ops.read_posted(hw, msgbuf, 2);
276
277 /* if nacked the vlan was rejected */
278 if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)))
279 err = -E1000_ERR_MAC_INIT;
280
281 return err;
282}
283
284/** e1000_rlpml_set_vf - Set the maximum receive packet length
285 * @hw: pointer to the HW structure
286 * @max_size: value to assign to max frame size
287 **/
288void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
289{
290 struct e1000_mbx_info *mbx = &hw->mbx;
291 u32 msgbuf[2];
292
293 msgbuf[0] = E1000_VF_SET_LPE;
294 msgbuf[1] = max_size;
295
296 mbx->ops.write_posted(hw, msgbuf, 2);
297}
298
299/**
300 * e1000_rar_set_vf - set device MAC address
301 * @hw: pointer to the HW structure
302 * @addr: pointer to the receive address
303 * @index receive address array register
304 **/
305static void e1000_rar_set_vf(struct e1000_hw *hw, u8 * addr, u32 index)
306{
307 struct e1000_mbx_info *mbx = &hw->mbx;
308 u32 msgbuf[3];
309 u8 *msg_addr = (u8 *)(&msgbuf[1]);
310 s32 ret_val;
311
312 memset(msgbuf, 0, 12);
313 msgbuf[0] = E1000_VF_SET_MAC_ADDR;
314 memcpy(msg_addr, addr, 6);
315 ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
316
317 if (!ret_val)
318 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
319
320 /* if nacked the address was rejected, use "perm_addr" */
321 if (!ret_val &&
322 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
323 e1000_read_mac_addr_vf(hw);
324}
325
326/**
327 * e1000_read_mac_addr_vf - Read device MAC address
328 * @hw: pointer to the HW structure
329 **/
330static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
331{
332 int i;
333
334 for (i = 0; i < ETH_ADDR_LEN; i++)
335 hw->mac.addr[i] = hw->mac.perm_addr[i];
336
337 return E1000_SUCCESS;
338}
339
340/**
341 * e1000_check_for_link_vf - Check for link for a virtual interface
342 * @hw: pointer to the HW structure
343 *
344 * Checks to see if the underlying PF is still talking to the VF and
345 * if it is then it reports the link state to the hardware, otherwise
346 * it reports link down and returns an error.
347 **/
348static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
349{
350 struct e1000_mbx_info *mbx = &hw->mbx;
351 struct e1000_mac_info *mac = &hw->mac;
352 s32 ret_val = E1000_SUCCESS;
353 u32 in_msg = 0;
354
355 /*
356 * We only want to run this if there has been a rst asserted.
357 * in this case that could mean a link change, device reset,
358 * or a virtual function reset
359 */
360
361 /* If we were hit with a reset drop the link */
362 if (!mbx->ops.check_for_rst(hw))
363 mac->get_link_status = true;
364
365 if (!mac->get_link_status)
366 goto out;
367
368 /* if link status is down no point in checking to see if pf is up */
369 if (!(er32(STATUS) & E1000_STATUS_LU))
370 goto out;
371
372 /* if the read failed it could just be a mailbox collision, best wait
373 * until we are called again and don't report an error */
374 if (mbx->ops.read(hw, &in_msg, 1))
375 goto out;
376
377 /* if incoming message isn't clear to send we are waiting on response */
378 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
379 /* message is not CTS and is NACK we must have lost CTS status */
380 if (in_msg & E1000_VT_MSGTYPE_NACK)
381 ret_val = -E1000_ERR_MAC_INIT;
382 goto out;
383 }
384
385 /* the pf is talking, if we timed out in the past we reinit */
386 if (!mbx->timeout) {
387 ret_val = -E1000_ERR_MAC_INIT;
388 goto out;
389 }
390
391 /* if we passed all the tests above then the link is up and we no
392 * longer need to check for link */
393 mac->get_link_status = false;
394
395out:
396 return ret_val;
397}
398
diff --git a/drivers/net/igbvf/vf.h b/drivers/net/igbvf/vf.h
new file mode 100644
index 000000000000..1e8ce3741a67
--- /dev/null
+++ b/drivers/net/igbvf/vf.h
@@ -0,0 +1,264 @@
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#ifndef _E1000_VF_H_
29#define _E1000_VF_H_
30
31#include <linux/pci.h>
32#include <linux/delay.h>
33#include <linux/interrupt.h>
34#include <linux/if_ether.h>
35
36#include "regs.h"
37#include "defines.h"
38
39struct e1000_hw;
40
41#define E1000_DEV_ID_82576_VF 0x10CA
42#define E1000_REVISION_0 0
43#define E1000_REVISION_1 1
44#define E1000_REVISION_2 2
45#define E1000_REVISION_3 3
46#define E1000_REVISION_4 4
47
48#define E1000_FUNC_0 0
49#define E1000_FUNC_1 1
50
51/*
52 * Receive Address Register Count
53 * Number of high/low register pairs in the RAR. The RAR (Receive Address
54 * Registers) holds the directed and multicast addresses that we monitor.
55 * These entries are also used for MAC-based filtering.
56 */
57#define E1000_RAR_ENTRIES_VF 1
58
59/* Receive Descriptor - Advanced */
60union e1000_adv_rx_desc {
61 struct {
62 u64 pkt_addr; /* Packet buffer address */
63 u64 hdr_addr; /* Header buffer address */
64 } read;
65 struct {
66 struct {
67 union {
68 u32 data;
69 struct {
70 u16 pkt_info; /* RSS/Packet type */
71 u16 hdr_info; /* Split Header,
72 * hdr buffer length */
73 } hs_rss;
74 } lo_dword;
75 union {
76 u32 rss; /* RSS Hash */
77 struct {
78 u16 ip_id; /* IP id */
79 u16 csum; /* Packet Checksum */
80 } csum_ip;
81 } hi_dword;
82 } lower;
83 struct {
84 u32 status_error; /* ext status/error */
85 u16 length; /* Packet length */
86 u16 vlan; /* VLAN tag */
87 } upper;
88 } wb; /* writeback */
89};
90
91#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0
92#define E1000_RXDADV_HDRBUFLEN_SHIFT 5
93
94/* Transmit Descriptor - Advanced */
95union e1000_adv_tx_desc {
96 struct {
97 u64 buffer_addr; /* Address of descriptor's data buf */
98 u32 cmd_type_len;
99 u32 olinfo_status;
100 } read;
101 struct {
102 u64 rsvd; /* Reserved */
103 u32 nxtseq_seed;
104 u32 status;
105 } wb;
106};
107
108/* Adv Transmit Descriptor Config Masks */
109#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */
110#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */
111#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */
112#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
113#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */
114#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */
115#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */
116#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */
117#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */
118
119/* Context descriptors */
120struct e1000_adv_tx_context_desc {
121 u32 vlan_macip_lens;
122 u32 seqnum_seed;
123 u32 type_tucmd_mlhl;
124 u32 mss_l4len_idx;
125};
126
127#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */
128#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */
129#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */
130#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */
131#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */
132
133enum e1000_mac_type {
134 e1000_undefined = 0,
135 e1000_vfadapt,
136 e1000_num_macs /* List is 1-based, so subtract 1 for true count. */
137};
138
139struct e1000_vf_stats {
140 u64 base_gprc;
141 u64 base_gptc;
142 u64 base_gorc;
143 u64 base_gotc;
144 u64 base_mprc;
145 u64 base_gotlbc;
146 u64 base_gptlbc;
147 u64 base_gorlbc;
148 u64 base_gprlbc;
149
150 u32 last_gprc;
151 u32 last_gptc;
152 u32 last_gorc;
153 u32 last_gotc;
154 u32 last_mprc;
155 u32 last_gotlbc;
156 u32 last_gptlbc;
157 u32 last_gorlbc;
158 u32 last_gprlbc;
159
160 u64 gprc;
161 u64 gptc;
162 u64 gorc;
163 u64 gotc;
164 u64 mprc;
165 u64 gotlbc;
166 u64 gptlbc;
167 u64 gorlbc;
168 u64 gprlbc;
169};
170
171#include "mbx.h"
172
173struct e1000_mac_operations {
174 /* Function pointers for the MAC. */
175 s32 (*init_params)(struct e1000_hw *);
176 s32 (*check_for_link)(struct e1000_hw *);
177 void (*clear_vfta)(struct e1000_hw *);
178 s32 (*get_bus_info)(struct e1000_hw *);
179 s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
180 void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32, u32, u32);
181 s32 (*reset_hw)(struct e1000_hw *);
182 s32 (*init_hw)(struct e1000_hw *);
183 s32 (*setup_link)(struct e1000_hw *);
184 void (*write_vfta)(struct e1000_hw *, u32, u32);
185 void (*mta_set)(struct e1000_hw *, u32);
186 void (*rar_set)(struct e1000_hw *, u8*, u32);
187 s32 (*read_mac_addr)(struct e1000_hw *);
188 s32 (*set_vfta)(struct e1000_hw *, u16, bool);
189};
190
191struct e1000_mac_info {
192 struct e1000_mac_operations ops;
193 u8 addr[6];
194 u8 perm_addr[6];
195
196 enum e1000_mac_type type;
197
198 u16 mta_reg_count;
199 u16 rar_entry_count;
200
201 bool get_link_status;
202};
203
204struct e1000_mbx_operations {
205 s32 (*init_params)(struct e1000_hw *hw);
206 s32 (*read)(struct e1000_hw *, u32 *, u16);
207 s32 (*write)(struct e1000_hw *, u32 *, u16);
208 s32 (*read_posted)(struct e1000_hw *, u32 *, u16);
209 s32 (*write_posted)(struct e1000_hw *, u32 *, u16);
210 s32 (*check_for_msg)(struct e1000_hw *);
211 s32 (*check_for_ack)(struct e1000_hw *);
212 s32 (*check_for_rst)(struct e1000_hw *);
213};
214
215struct e1000_mbx_stats {
216 u32 msgs_tx;
217 u32 msgs_rx;
218
219 u32 acks;
220 u32 reqs;
221 u32 rsts;
222};
223
224struct e1000_mbx_info {
225 struct e1000_mbx_operations ops;
226 struct e1000_mbx_stats stats;
227 u32 timeout;
228 u32 usec_delay;
229 u16 size;
230};
231
232struct e1000_dev_spec_vf {
233 u32 vf_number;
234 u32 v2p_mailbox;
235};
236
237struct e1000_hw {
238 void *back;
239
240 u8 __iomem *hw_addr;
241 u8 __iomem *flash_address;
242 unsigned long io_base;
243
244 struct e1000_mac_info mac;
245 struct e1000_mbx_info mbx;
246
247 union {
248 struct e1000_dev_spec_vf vf;
249 } dev_spec;
250
251 u16 device_id;
252 u16 subsystem_vendor_id;
253 u16 subsystem_device_id;
254 u16 vendor_id;
255
256 u8 revision_id;
257};
258
259/* These functions must be implemented by drivers */
260void e1000_rlpml_set_vf(struct e1000_hw *, u16);
261void e1000_init_function_pointers_vf(struct e1000_hw *hw);
262
263
264#endif /* _E1000_VF_H_ */