diff options
Diffstat (limited to 'drivers/net/igbvf/netdev.c')
-rw-r--r-- | drivers/net/igbvf/netdev.c | 2922 |
1 files changed, 2922 insertions, 0 deletions
diff --git a/drivers/net/igbvf/netdev.c b/drivers/net/igbvf/netdev.c new file mode 100644 index 000000000000..b774666ad3cf --- /dev/null +++ b/drivers/net/igbvf/netdev.c | |||
@@ -0,0 +1,2922 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) 82576 Virtual Function Linux driver | ||
4 | Copyright(c) 2009 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #include <linux/module.h> | ||
29 | #include <linux/types.h> | ||
30 | #include <linux/init.h> | ||
31 | #include <linux/pci.h> | ||
32 | #include <linux/vmalloc.h> | ||
33 | #include <linux/pagemap.h> | ||
34 | #include <linux/delay.h> | ||
35 | #include <linux/netdevice.h> | ||
36 | #include <linux/tcp.h> | ||
37 | #include <linux/ipv6.h> | ||
38 | #include <net/checksum.h> | ||
39 | #include <net/ip6_checksum.h> | ||
40 | #include <linux/mii.h> | ||
41 | #include <linux/ethtool.h> | ||
42 | #include <linux/if_vlan.h> | ||
43 | #include <linux/pm_qos_params.h> | ||
44 | |||
45 | #include "igbvf.h" | ||
46 | |||
47 | #define DRV_VERSION "1.0.0-k0" | ||
48 | char igbvf_driver_name[] = "igbvf"; | ||
49 | const char igbvf_driver_version[] = DRV_VERSION; | ||
50 | static const char igbvf_driver_string[] = | ||
51 | "Intel(R) Virtual Function Network Driver"; | ||
52 | static const char igbvf_copyright[] = "Copyright (c) 2009 Intel Corporation."; | ||
53 | |||
54 | static int igbvf_poll(struct napi_struct *napi, int budget); | ||
55 | static void igbvf_reset(struct igbvf_adapter *); | ||
56 | static void igbvf_set_interrupt_capability(struct igbvf_adapter *); | ||
57 | static void igbvf_reset_interrupt_capability(struct igbvf_adapter *); | ||
58 | |||
59 | static struct igbvf_info igbvf_vf_info = { | ||
60 | .mac = e1000_vfadapt, | ||
61 | .flags = FLAG_HAS_JUMBO_FRAMES | ||
62 | | FLAG_RX_CSUM_ENABLED, | ||
63 | .pba = 10, | ||
64 | .init_ops = e1000_init_function_pointers_vf, | ||
65 | }; | ||
66 | |||
67 | static const struct igbvf_info *igbvf_info_tbl[] = { | ||
68 | [board_vf] = &igbvf_vf_info, | ||
69 | }; | ||
70 | |||
71 | /** | ||
72 | * igbvf_desc_unused - calculate if we have unused descriptors | ||
73 | **/ | ||
74 | static int igbvf_desc_unused(struct igbvf_ring *ring) | ||
75 | { | ||
76 | if (ring->next_to_clean > ring->next_to_use) | ||
77 | return ring->next_to_clean - ring->next_to_use - 1; | ||
78 | |||
79 | return ring->count + ring->next_to_clean - ring->next_to_use - 1; | ||
80 | } | ||
81 | |||
82 | /** | ||
83 | * igbvf_receive_skb - helper function to handle Rx indications | ||
84 | * @adapter: board private structure | ||
85 | * @status: descriptor status field as written by hardware | ||
86 | * @vlan: descriptor vlan field as written by hardware (no le/be conversion) | ||
87 | * @skb: pointer to sk_buff to be indicated to stack | ||
88 | **/ | ||
89 | static void igbvf_receive_skb(struct igbvf_adapter *adapter, | ||
90 | struct net_device *netdev, | ||
91 | struct sk_buff *skb, | ||
92 | u32 status, u16 vlan) | ||
93 | { | ||
94 | if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) | ||
95 | vlan_hwaccel_receive_skb(skb, adapter->vlgrp, | ||
96 | le16_to_cpu(vlan) & | ||
97 | E1000_RXD_SPC_VLAN_MASK); | ||
98 | else | ||
99 | netif_receive_skb(skb); | ||
100 | |||
101 | netdev->last_rx = jiffies; | ||
102 | } | ||
103 | |||
104 | static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter, | ||
105 | u32 status_err, struct sk_buff *skb) | ||
106 | { | ||
107 | skb->ip_summed = CHECKSUM_NONE; | ||
108 | |||
109 | /* Ignore Checksum bit is set or checksum is disabled through ethtool */ | ||
110 | if ((status_err & E1000_RXD_STAT_IXSM)) | ||
111 | return; | ||
112 | /* TCP/UDP checksum error bit is set */ | ||
113 | if (status_err & | ||
114 | (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { | ||
115 | /* let the stack verify checksum errors */ | ||
116 | adapter->hw_csum_err++; | ||
117 | return; | ||
118 | } | ||
119 | /* It must be a TCP or UDP packet with a valid checksum */ | ||
120 | if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) | ||
121 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
122 | |||
123 | adapter->hw_csum_good++; | ||
124 | } | ||
125 | |||
126 | /** | ||
127 | * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split | ||
128 | * @rx_ring: address of ring structure to repopulate | ||
129 | * @cleaned_count: number of buffers to repopulate | ||
130 | **/ | ||
131 | static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring, | ||
132 | int cleaned_count) | ||
133 | { | ||
134 | struct igbvf_adapter *adapter = rx_ring->adapter; | ||
135 | struct net_device *netdev = adapter->netdev; | ||
136 | struct pci_dev *pdev = adapter->pdev; | ||
137 | union e1000_adv_rx_desc *rx_desc; | ||
138 | struct igbvf_buffer *buffer_info; | ||
139 | struct sk_buff *skb; | ||
140 | unsigned int i; | ||
141 | int bufsz; | ||
142 | |||
143 | i = rx_ring->next_to_use; | ||
144 | buffer_info = &rx_ring->buffer_info[i]; | ||
145 | |||
146 | if (adapter->rx_ps_hdr_size) | ||
147 | bufsz = adapter->rx_ps_hdr_size; | ||
148 | else | ||
149 | bufsz = adapter->rx_buffer_len; | ||
150 | bufsz += NET_IP_ALIGN; | ||
151 | |||
152 | while (cleaned_count--) { | ||
153 | rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); | ||
154 | |||
155 | if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) { | ||
156 | if (!buffer_info->page) { | ||
157 | buffer_info->page = alloc_page(GFP_ATOMIC); | ||
158 | if (!buffer_info->page) { | ||
159 | adapter->alloc_rx_buff_failed++; | ||
160 | goto no_buffers; | ||
161 | } | ||
162 | buffer_info->page_offset = 0; | ||
163 | } else { | ||
164 | buffer_info->page_offset ^= PAGE_SIZE / 2; | ||
165 | } | ||
166 | buffer_info->page_dma = | ||
167 | pci_map_page(pdev, buffer_info->page, | ||
168 | buffer_info->page_offset, | ||
169 | PAGE_SIZE / 2, | ||
170 | PCI_DMA_FROMDEVICE); | ||
171 | } | ||
172 | |||
173 | if (!buffer_info->skb) { | ||
174 | skb = netdev_alloc_skb(netdev, bufsz); | ||
175 | if (!skb) { | ||
176 | adapter->alloc_rx_buff_failed++; | ||
177 | goto no_buffers; | ||
178 | } | ||
179 | |||
180 | /* Make buffer alignment 2 beyond a 16 byte boundary | ||
181 | * this will result in a 16 byte aligned IP header after | ||
182 | * the 14 byte MAC header is removed | ||
183 | */ | ||
184 | skb_reserve(skb, NET_IP_ALIGN); | ||
185 | |||
186 | buffer_info->skb = skb; | ||
187 | buffer_info->dma = pci_map_single(pdev, skb->data, | ||
188 | bufsz, | ||
189 | PCI_DMA_FROMDEVICE); | ||
190 | } | ||
191 | /* Refresh the desc even if buffer_addrs didn't change because | ||
192 | * each write-back erases this info. */ | ||
193 | if (adapter->rx_ps_hdr_size) { | ||
194 | rx_desc->read.pkt_addr = | ||
195 | cpu_to_le64(buffer_info->page_dma); | ||
196 | rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); | ||
197 | } else { | ||
198 | rx_desc->read.pkt_addr = | ||
199 | cpu_to_le64(buffer_info->dma); | ||
200 | rx_desc->read.hdr_addr = 0; | ||
201 | } | ||
202 | |||
203 | i++; | ||
204 | if (i == rx_ring->count) | ||
205 | i = 0; | ||
206 | buffer_info = &rx_ring->buffer_info[i]; | ||
207 | } | ||
208 | |||
209 | no_buffers: | ||
210 | if (rx_ring->next_to_use != i) { | ||
211 | rx_ring->next_to_use = i; | ||
212 | if (i == 0) | ||
213 | i = (rx_ring->count - 1); | ||
214 | else | ||
215 | i--; | ||
216 | |||
217 | /* Force memory writes to complete before letting h/w | ||
218 | * know there are new descriptors to fetch. (Only | ||
219 | * applicable for weak-ordered memory model archs, | ||
220 | * such as IA-64). */ | ||
221 | wmb(); | ||
222 | writel(i, adapter->hw.hw_addr + rx_ring->tail); | ||
223 | } | ||
224 | } | ||
225 | |||
226 | /** | ||
227 | * igbvf_clean_rx_irq - Send received data up the network stack; legacy | ||
228 | * @adapter: board private structure | ||
229 | * | ||
230 | * the return value indicates whether actual cleaning was done, there | ||
231 | * is no guarantee that everything was cleaned | ||
232 | **/ | ||
233 | static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter, | ||
234 | int *work_done, int work_to_do) | ||
235 | { | ||
236 | struct igbvf_ring *rx_ring = adapter->rx_ring; | ||
237 | struct net_device *netdev = adapter->netdev; | ||
238 | struct pci_dev *pdev = adapter->pdev; | ||
239 | union e1000_adv_rx_desc *rx_desc, *next_rxd; | ||
240 | struct igbvf_buffer *buffer_info, *next_buffer; | ||
241 | struct sk_buff *skb; | ||
242 | bool cleaned = false; | ||
243 | int cleaned_count = 0; | ||
244 | unsigned int total_bytes = 0, total_packets = 0; | ||
245 | unsigned int i; | ||
246 | u32 length, hlen, staterr; | ||
247 | |||
248 | i = rx_ring->next_to_clean; | ||
249 | rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); | ||
250 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
251 | |||
252 | while (staterr & E1000_RXD_STAT_DD) { | ||
253 | if (*work_done >= work_to_do) | ||
254 | break; | ||
255 | (*work_done)++; | ||
256 | |||
257 | buffer_info = &rx_ring->buffer_info[i]; | ||
258 | |||
259 | /* HW will not DMA in data larger than the given buffer, even | ||
260 | * if it parses the (NFS, of course) header to be larger. In | ||
261 | * that case, it fills the header buffer and spills the rest | ||
262 | * into the page. | ||
263 | */ | ||
264 | hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) & | ||
265 | E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT; | ||
266 | if (hlen > adapter->rx_ps_hdr_size) | ||
267 | hlen = adapter->rx_ps_hdr_size; | ||
268 | |||
269 | length = le16_to_cpu(rx_desc->wb.upper.length); | ||
270 | cleaned = true; | ||
271 | cleaned_count++; | ||
272 | |||
273 | skb = buffer_info->skb; | ||
274 | prefetch(skb->data - NET_IP_ALIGN); | ||
275 | buffer_info->skb = NULL; | ||
276 | if (!adapter->rx_ps_hdr_size) { | ||
277 | pci_unmap_single(pdev, buffer_info->dma, | ||
278 | adapter->rx_buffer_len, | ||
279 | PCI_DMA_FROMDEVICE); | ||
280 | buffer_info->dma = 0; | ||
281 | skb_put(skb, length); | ||
282 | goto send_up; | ||
283 | } | ||
284 | |||
285 | if (!skb_shinfo(skb)->nr_frags) { | ||
286 | pci_unmap_single(pdev, buffer_info->dma, | ||
287 | adapter->rx_ps_hdr_size + NET_IP_ALIGN, | ||
288 | PCI_DMA_FROMDEVICE); | ||
289 | skb_put(skb, hlen); | ||
290 | } | ||
291 | |||
292 | if (length) { | ||
293 | pci_unmap_page(pdev, buffer_info->page_dma, | ||
294 | PAGE_SIZE / 2, | ||
295 | PCI_DMA_FROMDEVICE); | ||
296 | buffer_info->page_dma = 0; | ||
297 | |||
298 | skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++, | ||
299 | buffer_info->page, | ||
300 | buffer_info->page_offset, | ||
301 | length); | ||
302 | |||
303 | if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) || | ||
304 | (page_count(buffer_info->page) != 1)) | ||
305 | buffer_info->page = NULL; | ||
306 | else | ||
307 | get_page(buffer_info->page); | ||
308 | |||
309 | skb->len += length; | ||
310 | skb->data_len += length; | ||
311 | skb->truesize += length; | ||
312 | } | ||
313 | send_up: | ||
314 | i++; | ||
315 | if (i == rx_ring->count) | ||
316 | i = 0; | ||
317 | next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i); | ||
318 | prefetch(next_rxd); | ||
319 | next_buffer = &rx_ring->buffer_info[i]; | ||
320 | |||
321 | if (!(staterr & E1000_RXD_STAT_EOP)) { | ||
322 | buffer_info->skb = next_buffer->skb; | ||
323 | buffer_info->dma = next_buffer->dma; | ||
324 | next_buffer->skb = skb; | ||
325 | next_buffer->dma = 0; | ||
326 | goto next_desc; | ||
327 | } | ||
328 | |||
329 | if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { | ||
330 | dev_kfree_skb_irq(skb); | ||
331 | goto next_desc; | ||
332 | } | ||
333 | |||
334 | total_bytes += skb->len; | ||
335 | total_packets++; | ||
336 | |||
337 | igbvf_rx_checksum_adv(adapter, staterr, skb); | ||
338 | |||
339 | skb->protocol = eth_type_trans(skb, netdev); | ||
340 | |||
341 | igbvf_receive_skb(adapter, netdev, skb, staterr, | ||
342 | rx_desc->wb.upper.vlan); | ||
343 | |||
344 | netdev->last_rx = jiffies; | ||
345 | |||
346 | next_desc: | ||
347 | rx_desc->wb.upper.status_error = 0; | ||
348 | |||
349 | /* return some buffers to hardware, one at a time is too slow */ | ||
350 | if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) { | ||
351 | igbvf_alloc_rx_buffers(rx_ring, cleaned_count); | ||
352 | cleaned_count = 0; | ||
353 | } | ||
354 | |||
355 | /* use prefetched values */ | ||
356 | rx_desc = next_rxd; | ||
357 | buffer_info = next_buffer; | ||
358 | |||
359 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
360 | } | ||
361 | |||
362 | rx_ring->next_to_clean = i; | ||
363 | cleaned_count = igbvf_desc_unused(rx_ring); | ||
364 | |||
365 | if (cleaned_count) | ||
366 | igbvf_alloc_rx_buffers(rx_ring, cleaned_count); | ||
367 | |||
368 | adapter->total_rx_packets += total_packets; | ||
369 | adapter->total_rx_bytes += total_bytes; | ||
370 | adapter->net_stats.rx_bytes += total_bytes; | ||
371 | adapter->net_stats.rx_packets += total_packets; | ||
372 | return cleaned; | ||
373 | } | ||
374 | |||
375 | static void igbvf_put_txbuf(struct igbvf_adapter *adapter, | ||
376 | struct igbvf_buffer *buffer_info) | ||
377 | { | ||
378 | buffer_info->dma = 0; | ||
379 | if (buffer_info->skb) { | ||
380 | skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb, | ||
381 | DMA_TO_DEVICE); | ||
382 | dev_kfree_skb_any(buffer_info->skb); | ||
383 | buffer_info->skb = NULL; | ||
384 | } | ||
385 | buffer_info->time_stamp = 0; | ||
386 | } | ||
387 | |||
388 | static void igbvf_print_tx_hang(struct igbvf_adapter *adapter) | ||
389 | { | ||
390 | struct igbvf_ring *tx_ring = adapter->tx_ring; | ||
391 | unsigned int i = tx_ring->next_to_clean; | ||
392 | unsigned int eop = tx_ring->buffer_info[i].next_to_watch; | ||
393 | union e1000_adv_tx_desc *eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop); | ||
394 | |||
395 | /* detected Tx unit hang */ | ||
396 | dev_err(&adapter->pdev->dev, | ||
397 | "Detected Tx Unit Hang:\n" | ||
398 | " TDH <%x>\n" | ||
399 | " TDT <%x>\n" | ||
400 | " next_to_use <%x>\n" | ||
401 | " next_to_clean <%x>\n" | ||
402 | "buffer_info[next_to_clean]:\n" | ||
403 | " time_stamp <%lx>\n" | ||
404 | " next_to_watch <%x>\n" | ||
405 | " jiffies <%lx>\n" | ||
406 | " next_to_watch.status <%x>\n", | ||
407 | readl(adapter->hw.hw_addr + tx_ring->head), | ||
408 | readl(adapter->hw.hw_addr + tx_ring->tail), | ||
409 | tx_ring->next_to_use, | ||
410 | tx_ring->next_to_clean, | ||
411 | tx_ring->buffer_info[eop].time_stamp, | ||
412 | eop, | ||
413 | jiffies, | ||
414 | eop_desc->wb.status); | ||
415 | } | ||
416 | |||
417 | /** | ||
418 | * igbvf_setup_tx_resources - allocate Tx resources (Descriptors) | ||
419 | * @adapter: board private structure | ||
420 | * | ||
421 | * Return 0 on success, negative on failure | ||
422 | **/ | ||
423 | int igbvf_setup_tx_resources(struct igbvf_adapter *adapter, | ||
424 | struct igbvf_ring *tx_ring) | ||
425 | { | ||
426 | struct pci_dev *pdev = adapter->pdev; | ||
427 | int size; | ||
428 | |||
429 | size = sizeof(struct igbvf_buffer) * tx_ring->count; | ||
430 | tx_ring->buffer_info = vmalloc(size); | ||
431 | if (!tx_ring->buffer_info) | ||
432 | goto err; | ||
433 | memset(tx_ring->buffer_info, 0, size); | ||
434 | |||
435 | /* round up to nearest 4K */ | ||
436 | tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); | ||
437 | tx_ring->size = ALIGN(tx_ring->size, 4096); | ||
438 | |||
439 | tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size, | ||
440 | &tx_ring->dma); | ||
441 | |||
442 | if (!tx_ring->desc) | ||
443 | goto err; | ||
444 | |||
445 | tx_ring->adapter = adapter; | ||
446 | tx_ring->next_to_use = 0; | ||
447 | tx_ring->next_to_clean = 0; | ||
448 | |||
449 | return 0; | ||
450 | err: | ||
451 | vfree(tx_ring->buffer_info); | ||
452 | dev_err(&adapter->pdev->dev, | ||
453 | "Unable to allocate memory for the transmit descriptor ring\n"); | ||
454 | return -ENOMEM; | ||
455 | } | ||
456 | |||
457 | /** | ||
458 | * igbvf_setup_rx_resources - allocate Rx resources (Descriptors) | ||
459 | * @adapter: board private structure | ||
460 | * | ||
461 | * Returns 0 on success, negative on failure | ||
462 | **/ | ||
463 | int igbvf_setup_rx_resources(struct igbvf_adapter *adapter, | ||
464 | struct igbvf_ring *rx_ring) | ||
465 | { | ||
466 | struct pci_dev *pdev = adapter->pdev; | ||
467 | int size, desc_len; | ||
468 | |||
469 | size = sizeof(struct igbvf_buffer) * rx_ring->count; | ||
470 | rx_ring->buffer_info = vmalloc(size); | ||
471 | if (!rx_ring->buffer_info) | ||
472 | goto err; | ||
473 | memset(rx_ring->buffer_info, 0, size); | ||
474 | |||
475 | desc_len = sizeof(union e1000_adv_rx_desc); | ||
476 | |||
477 | /* Round up to nearest 4K */ | ||
478 | rx_ring->size = rx_ring->count * desc_len; | ||
479 | rx_ring->size = ALIGN(rx_ring->size, 4096); | ||
480 | |||
481 | rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size, | ||
482 | &rx_ring->dma); | ||
483 | |||
484 | if (!rx_ring->desc) | ||
485 | goto err; | ||
486 | |||
487 | rx_ring->next_to_clean = 0; | ||
488 | rx_ring->next_to_use = 0; | ||
489 | |||
490 | rx_ring->adapter = adapter; | ||
491 | |||
492 | return 0; | ||
493 | |||
494 | err: | ||
495 | vfree(rx_ring->buffer_info); | ||
496 | rx_ring->buffer_info = NULL; | ||
497 | dev_err(&adapter->pdev->dev, | ||
498 | "Unable to allocate memory for the receive descriptor ring\n"); | ||
499 | return -ENOMEM; | ||
500 | } | ||
501 | |||
502 | /** | ||
503 | * igbvf_clean_tx_ring - Free Tx Buffers | ||
504 | * @tx_ring: ring to be cleaned | ||
505 | **/ | ||
506 | static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring) | ||
507 | { | ||
508 | struct igbvf_adapter *adapter = tx_ring->adapter; | ||
509 | struct igbvf_buffer *buffer_info; | ||
510 | unsigned long size; | ||
511 | unsigned int i; | ||
512 | |||
513 | if (!tx_ring->buffer_info) | ||
514 | return; | ||
515 | |||
516 | /* Free all the Tx ring sk_buffs */ | ||
517 | for (i = 0; i < tx_ring->count; i++) { | ||
518 | buffer_info = &tx_ring->buffer_info[i]; | ||
519 | igbvf_put_txbuf(adapter, buffer_info); | ||
520 | } | ||
521 | |||
522 | size = sizeof(struct igbvf_buffer) * tx_ring->count; | ||
523 | memset(tx_ring->buffer_info, 0, size); | ||
524 | |||
525 | /* Zero out the descriptor ring */ | ||
526 | memset(tx_ring->desc, 0, tx_ring->size); | ||
527 | |||
528 | tx_ring->next_to_use = 0; | ||
529 | tx_ring->next_to_clean = 0; | ||
530 | |||
531 | writel(0, adapter->hw.hw_addr + tx_ring->head); | ||
532 | writel(0, adapter->hw.hw_addr + tx_ring->tail); | ||
533 | } | ||
534 | |||
535 | /** | ||
536 | * igbvf_free_tx_resources - Free Tx Resources per Queue | ||
537 | * @tx_ring: ring to free resources from | ||
538 | * | ||
539 | * Free all transmit software resources | ||
540 | **/ | ||
541 | void igbvf_free_tx_resources(struct igbvf_ring *tx_ring) | ||
542 | { | ||
543 | struct pci_dev *pdev = tx_ring->adapter->pdev; | ||
544 | |||
545 | igbvf_clean_tx_ring(tx_ring); | ||
546 | |||
547 | vfree(tx_ring->buffer_info); | ||
548 | tx_ring->buffer_info = NULL; | ||
549 | |||
550 | pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma); | ||
551 | |||
552 | tx_ring->desc = NULL; | ||
553 | } | ||
554 | |||
555 | /** | ||
556 | * igbvf_clean_rx_ring - Free Rx Buffers per Queue | ||
557 | * @adapter: board private structure | ||
558 | **/ | ||
559 | static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring) | ||
560 | { | ||
561 | struct igbvf_adapter *adapter = rx_ring->adapter; | ||
562 | struct igbvf_buffer *buffer_info; | ||
563 | struct pci_dev *pdev = adapter->pdev; | ||
564 | unsigned long size; | ||
565 | unsigned int i; | ||
566 | |||
567 | if (!rx_ring->buffer_info) | ||
568 | return; | ||
569 | |||
570 | /* Free all the Rx ring sk_buffs */ | ||
571 | for (i = 0; i < rx_ring->count; i++) { | ||
572 | buffer_info = &rx_ring->buffer_info[i]; | ||
573 | if (buffer_info->dma) { | ||
574 | if (adapter->rx_ps_hdr_size){ | ||
575 | pci_unmap_single(pdev, buffer_info->dma, | ||
576 | adapter->rx_ps_hdr_size, | ||
577 | PCI_DMA_FROMDEVICE); | ||
578 | } else { | ||
579 | pci_unmap_single(pdev, buffer_info->dma, | ||
580 | adapter->rx_buffer_len, | ||
581 | PCI_DMA_FROMDEVICE); | ||
582 | } | ||
583 | buffer_info->dma = 0; | ||
584 | } | ||
585 | |||
586 | if (buffer_info->skb) { | ||
587 | dev_kfree_skb(buffer_info->skb); | ||
588 | buffer_info->skb = NULL; | ||
589 | } | ||
590 | |||
591 | if (buffer_info->page) { | ||
592 | if (buffer_info->page_dma) | ||
593 | pci_unmap_page(pdev, buffer_info->page_dma, | ||
594 | PAGE_SIZE / 2, | ||
595 | PCI_DMA_FROMDEVICE); | ||
596 | put_page(buffer_info->page); | ||
597 | buffer_info->page = NULL; | ||
598 | buffer_info->page_dma = 0; | ||
599 | buffer_info->page_offset = 0; | ||
600 | } | ||
601 | } | ||
602 | |||
603 | size = sizeof(struct igbvf_buffer) * rx_ring->count; | ||
604 | memset(rx_ring->buffer_info, 0, size); | ||
605 | |||
606 | /* Zero out the descriptor ring */ | ||
607 | memset(rx_ring->desc, 0, rx_ring->size); | ||
608 | |||
609 | rx_ring->next_to_clean = 0; | ||
610 | rx_ring->next_to_use = 0; | ||
611 | |||
612 | writel(0, adapter->hw.hw_addr + rx_ring->head); | ||
613 | writel(0, adapter->hw.hw_addr + rx_ring->tail); | ||
614 | } | ||
615 | |||
616 | /** | ||
617 | * igbvf_free_rx_resources - Free Rx Resources | ||
618 | * @rx_ring: ring to clean the resources from | ||
619 | * | ||
620 | * Free all receive software resources | ||
621 | **/ | ||
622 | |||
623 | void igbvf_free_rx_resources(struct igbvf_ring *rx_ring) | ||
624 | { | ||
625 | struct pci_dev *pdev = rx_ring->adapter->pdev; | ||
626 | |||
627 | igbvf_clean_rx_ring(rx_ring); | ||
628 | |||
629 | vfree(rx_ring->buffer_info); | ||
630 | rx_ring->buffer_info = NULL; | ||
631 | |||
632 | dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, | ||
633 | rx_ring->dma); | ||
634 | rx_ring->desc = NULL; | ||
635 | } | ||
636 | |||
637 | /** | ||
638 | * igbvf_update_itr - update the dynamic ITR value based on statistics | ||
639 | * @adapter: pointer to adapter | ||
640 | * @itr_setting: current adapter->itr | ||
641 | * @packets: the number of packets during this measurement interval | ||
642 | * @bytes: the number of bytes during this measurement interval | ||
643 | * | ||
644 | * Stores a new ITR value based on packets and byte | ||
645 | * counts during the last interrupt. The advantage of per interrupt | ||
646 | * computation is faster updates and more accurate ITR for the current | ||
647 | * traffic pattern. Constants in this function were computed | ||
648 | * based on theoretical maximum wire speed and thresholds were set based | ||
649 | * on testing data as well as attempting to minimize response time | ||
650 | * while increasing bulk throughput. This functionality is controlled | ||
651 | * by the InterruptThrottleRate module parameter. | ||
652 | **/ | ||
653 | static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter, | ||
654 | u16 itr_setting, int packets, | ||
655 | int bytes) | ||
656 | { | ||
657 | unsigned int retval = itr_setting; | ||
658 | |||
659 | if (packets == 0) | ||
660 | goto update_itr_done; | ||
661 | |||
662 | switch (itr_setting) { | ||
663 | case lowest_latency: | ||
664 | /* handle TSO and jumbo frames */ | ||
665 | if (bytes/packets > 8000) | ||
666 | retval = bulk_latency; | ||
667 | else if ((packets < 5) && (bytes > 512)) | ||
668 | retval = low_latency; | ||
669 | break; | ||
670 | case low_latency: /* 50 usec aka 20000 ints/s */ | ||
671 | if (bytes > 10000) { | ||
672 | /* this if handles the TSO accounting */ | ||
673 | if (bytes/packets > 8000) | ||
674 | retval = bulk_latency; | ||
675 | else if ((packets < 10) || ((bytes/packets) > 1200)) | ||
676 | retval = bulk_latency; | ||
677 | else if ((packets > 35)) | ||
678 | retval = lowest_latency; | ||
679 | } else if (bytes/packets > 2000) { | ||
680 | retval = bulk_latency; | ||
681 | } else if (packets <= 2 && bytes < 512) { | ||
682 | retval = lowest_latency; | ||
683 | } | ||
684 | break; | ||
685 | case bulk_latency: /* 250 usec aka 4000 ints/s */ | ||
686 | if (bytes > 25000) { | ||
687 | if (packets > 35) | ||
688 | retval = low_latency; | ||
689 | } else if (bytes < 6000) { | ||
690 | retval = low_latency; | ||
691 | } | ||
692 | break; | ||
693 | } | ||
694 | |||
695 | update_itr_done: | ||
696 | return retval; | ||
697 | } | ||
698 | |||
699 | static void igbvf_set_itr(struct igbvf_adapter *adapter) | ||
700 | { | ||
701 | struct e1000_hw *hw = &adapter->hw; | ||
702 | u16 current_itr; | ||
703 | u32 new_itr = adapter->itr; | ||
704 | |||
705 | adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr, | ||
706 | adapter->total_tx_packets, | ||
707 | adapter->total_tx_bytes); | ||
708 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
709 | if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) | ||
710 | adapter->tx_itr = low_latency; | ||
711 | |||
712 | adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr, | ||
713 | adapter->total_rx_packets, | ||
714 | adapter->total_rx_bytes); | ||
715 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
716 | if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) | ||
717 | adapter->rx_itr = low_latency; | ||
718 | |||
719 | current_itr = max(adapter->rx_itr, adapter->tx_itr); | ||
720 | |||
721 | switch (current_itr) { | ||
722 | /* counts and packets in update_itr are dependent on these numbers */ | ||
723 | case lowest_latency: | ||
724 | new_itr = 70000; | ||
725 | break; | ||
726 | case low_latency: | ||
727 | new_itr = 20000; /* aka hwitr = ~200 */ | ||
728 | break; | ||
729 | case bulk_latency: | ||
730 | new_itr = 4000; | ||
731 | break; | ||
732 | default: | ||
733 | break; | ||
734 | } | ||
735 | |||
736 | if (new_itr != adapter->itr) { | ||
737 | /* | ||
738 | * this attempts to bias the interrupt rate towards Bulk | ||
739 | * by adding intermediate steps when interrupt rate is | ||
740 | * increasing | ||
741 | */ | ||
742 | new_itr = new_itr > adapter->itr ? | ||
743 | min(adapter->itr + (new_itr >> 2), new_itr) : | ||
744 | new_itr; | ||
745 | adapter->itr = new_itr; | ||
746 | adapter->rx_ring->itr_val = 1952; | ||
747 | |||
748 | if (adapter->msix_entries) | ||
749 | adapter->rx_ring->set_itr = 1; | ||
750 | else | ||
751 | ew32(ITR, 1952); | ||
752 | } | ||
753 | } | ||
754 | |||
755 | /** | ||
756 | * igbvf_clean_tx_irq - Reclaim resources after transmit completes | ||
757 | * @adapter: board private structure | ||
758 | * returns true if ring is completely cleaned | ||
759 | **/ | ||
760 | static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring) | ||
761 | { | ||
762 | struct igbvf_adapter *adapter = tx_ring->adapter; | ||
763 | struct e1000_hw *hw = &adapter->hw; | ||
764 | struct net_device *netdev = adapter->netdev; | ||
765 | struct igbvf_buffer *buffer_info; | ||
766 | struct sk_buff *skb; | ||
767 | union e1000_adv_tx_desc *tx_desc, *eop_desc; | ||
768 | unsigned int total_bytes = 0, total_packets = 0; | ||
769 | unsigned int i, eop, count = 0; | ||
770 | bool cleaned = false; | ||
771 | |||
772 | i = tx_ring->next_to_clean; | ||
773 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
774 | eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop); | ||
775 | |||
776 | while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) && | ||
777 | (count < tx_ring->count)) { | ||
778 | for (cleaned = false; !cleaned; count++) { | ||
779 | tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); | ||
780 | buffer_info = &tx_ring->buffer_info[i]; | ||
781 | cleaned = (i == eop); | ||
782 | skb = buffer_info->skb; | ||
783 | |||
784 | if (skb) { | ||
785 | unsigned int segs, bytecount; | ||
786 | |||
787 | /* gso_segs is currently only valid for tcp */ | ||
788 | segs = skb_shinfo(skb)->gso_segs ?: 1; | ||
789 | /* multiply data chunks by size of headers */ | ||
790 | bytecount = ((segs - 1) * skb_headlen(skb)) + | ||
791 | skb->len; | ||
792 | total_packets += segs; | ||
793 | total_bytes += bytecount; | ||
794 | } | ||
795 | |||
796 | igbvf_put_txbuf(adapter, buffer_info); | ||
797 | tx_desc->wb.status = 0; | ||
798 | |||
799 | i++; | ||
800 | if (i == tx_ring->count) | ||
801 | i = 0; | ||
802 | } | ||
803 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
804 | eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop); | ||
805 | } | ||
806 | |||
807 | tx_ring->next_to_clean = i; | ||
808 | |||
809 | if (unlikely(count && | ||
810 | netif_carrier_ok(netdev) && | ||
811 | igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) { | ||
812 | /* Make sure that anybody stopping the queue after this | ||
813 | * sees the new next_to_clean. | ||
814 | */ | ||
815 | smp_mb(); | ||
816 | if (netif_queue_stopped(netdev) && | ||
817 | !(test_bit(__IGBVF_DOWN, &adapter->state))) { | ||
818 | netif_wake_queue(netdev); | ||
819 | ++adapter->restart_queue; | ||
820 | } | ||
821 | } | ||
822 | |||
823 | if (adapter->detect_tx_hung) { | ||
824 | /* Detect a transmit hang in hardware, this serializes the | ||
825 | * check with the clearing of time_stamp and movement of i */ | ||
826 | adapter->detect_tx_hung = false; | ||
827 | if (tx_ring->buffer_info[i].time_stamp && | ||
828 | time_after(jiffies, tx_ring->buffer_info[i].time_stamp + | ||
829 | (adapter->tx_timeout_factor * HZ)) | ||
830 | && !(er32(STATUS) & E1000_STATUS_TXOFF)) { | ||
831 | |||
832 | tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); | ||
833 | /* detected Tx unit hang */ | ||
834 | igbvf_print_tx_hang(adapter); | ||
835 | |||
836 | netif_stop_queue(netdev); | ||
837 | } | ||
838 | } | ||
839 | adapter->net_stats.tx_bytes += total_bytes; | ||
840 | adapter->net_stats.tx_packets += total_packets; | ||
841 | return (count < tx_ring->count); | ||
842 | } | ||
843 | |||
844 | static irqreturn_t igbvf_msix_other(int irq, void *data) | ||
845 | { | ||
846 | struct net_device *netdev = data; | ||
847 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
848 | struct e1000_hw *hw = &adapter->hw; | ||
849 | |||
850 | adapter->int_counter1++; | ||
851 | |||
852 | netif_carrier_off(netdev); | ||
853 | hw->mac.get_link_status = 1; | ||
854 | if (!test_bit(__IGBVF_DOWN, &adapter->state)) | ||
855 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
856 | |||
857 | ew32(EIMS, adapter->eims_other); | ||
858 | |||
859 | return IRQ_HANDLED; | ||
860 | } | ||
861 | |||
862 | static irqreturn_t igbvf_intr_msix_tx(int irq, void *data) | ||
863 | { | ||
864 | struct net_device *netdev = data; | ||
865 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
866 | struct e1000_hw *hw = &adapter->hw; | ||
867 | struct igbvf_ring *tx_ring = adapter->tx_ring; | ||
868 | |||
869 | |||
870 | adapter->total_tx_bytes = 0; | ||
871 | adapter->total_tx_packets = 0; | ||
872 | |||
873 | /* auto mask will automatically reenable the interrupt when we write | ||
874 | * EICS */ | ||
875 | if (!igbvf_clean_tx_irq(tx_ring)) | ||
876 | /* Ring was not completely cleaned, so fire another interrupt */ | ||
877 | ew32(EICS, tx_ring->eims_value); | ||
878 | else | ||
879 | ew32(EIMS, tx_ring->eims_value); | ||
880 | |||
881 | return IRQ_HANDLED; | ||
882 | } | ||
883 | |||
884 | static irqreturn_t igbvf_intr_msix_rx(int irq, void *data) | ||
885 | { | ||
886 | struct net_device *netdev = data; | ||
887 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
888 | |||
889 | adapter->int_counter0++; | ||
890 | |||
891 | /* Write the ITR value calculated at the end of the | ||
892 | * previous interrupt. | ||
893 | */ | ||
894 | if (adapter->rx_ring->set_itr) { | ||
895 | writel(adapter->rx_ring->itr_val, | ||
896 | adapter->hw.hw_addr + adapter->rx_ring->itr_register); | ||
897 | adapter->rx_ring->set_itr = 0; | ||
898 | } | ||
899 | |||
900 | if (napi_schedule_prep(&adapter->rx_ring->napi)) { | ||
901 | adapter->total_rx_bytes = 0; | ||
902 | adapter->total_rx_packets = 0; | ||
903 | __napi_schedule(&adapter->rx_ring->napi); | ||
904 | } | ||
905 | |||
906 | return IRQ_HANDLED; | ||
907 | } | ||
908 | |||
909 | #define IGBVF_NO_QUEUE -1 | ||
910 | |||
911 | static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue, | ||
912 | int tx_queue, int msix_vector) | ||
913 | { | ||
914 | struct e1000_hw *hw = &adapter->hw; | ||
915 | u32 ivar, index; | ||
916 | |||
917 | /* 82576 uses a table-based method for assigning vectors. | ||
918 | Each queue has a single entry in the table to which we write | ||
919 | a vector number along with a "valid" bit. Sadly, the layout | ||
920 | of the table is somewhat counterintuitive. */ | ||
921 | if (rx_queue > IGBVF_NO_QUEUE) { | ||
922 | index = (rx_queue >> 1); | ||
923 | ivar = array_er32(IVAR0, index); | ||
924 | if (rx_queue & 0x1) { | ||
925 | /* vector goes into third byte of register */ | ||
926 | ivar = ivar & 0xFF00FFFF; | ||
927 | ivar |= (msix_vector | E1000_IVAR_VALID) << 16; | ||
928 | } else { | ||
929 | /* vector goes into low byte of register */ | ||
930 | ivar = ivar & 0xFFFFFF00; | ||
931 | ivar |= msix_vector | E1000_IVAR_VALID; | ||
932 | } | ||
933 | adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector; | ||
934 | array_ew32(IVAR0, index, ivar); | ||
935 | } | ||
936 | if (tx_queue > IGBVF_NO_QUEUE) { | ||
937 | index = (tx_queue >> 1); | ||
938 | ivar = array_er32(IVAR0, index); | ||
939 | if (tx_queue & 0x1) { | ||
940 | /* vector goes into high byte of register */ | ||
941 | ivar = ivar & 0x00FFFFFF; | ||
942 | ivar |= (msix_vector | E1000_IVAR_VALID) << 24; | ||
943 | } else { | ||
944 | /* vector goes into second byte of register */ | ||
945 | ivar = ivar & 0xFFFF00FF; | ||
946 | ivar |= (msix_vector | E1000_IVAR_VALID) << 8; | ||
947 | } | ||
948 | adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector; | ||
949 | array_ew32(IVAR0, index, ivar); | ||
950 | } | ||
951 | } | ||
952 | |||
953 | /** | ||
954 | * igbvf_configure_msix - Configure MSI-X hardware | ||
955 | * | ||
956 | * igbvf_configure_msix sets up the hardware to properly | ||
957 | * generate MSI-X interrupts. | ||
958 | **/ | ||
959 | static void igbvf_configure_msix(struct igbvf_adapter *adapter) | ||
960 | { | ||
961 | u32 tmp; | ||
962 | struct e1000_hw *hw = &adapter->hw; | ||
963 | struct igbvf_ring *tx_ring = adapter->tx_ring; | ||
964 | struct igbvf_ring *rx_ring = adapter->rx_ring; | ||
965 | int vector = 0; | ||
966 | |||
967 | adapter->eims_enable_mask = 0; | ||
968 | |||
969 | igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++); | ||
970 | adapter->eims_enable_mask |= tx_ring->eims_value; | ||
971 | if (tx_ring->itr_val) | ||
972 | writel(tx_ring->itr_val, | ||
973 | hw->hw_addr + tx_ring->itr_register); | ||
974 | else | ||
975 | writel(1952, hw->hw_addr + tx_ring->itr_register); | ||
976 | |||
977 | igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++); | ||
978 | adapter->eims_enable_mask |= rx_ring->eims_value; | ||
979 | if (rx_ring->itr_val) | ||
980 | writel(rx_ring->itr_val, | ||
981 | hw->hw_addr + rx_ring->itr_register); | ||
982 | else | ||
983 | writel(1952, hw->hw_addr + rx_ring->itr_register); | ||
984 | |||
985 | /* set vector for other causes, i.e. link changes */ | ||
986 | |||
987 | tmp = (vector++ | E1000_IVAR_VALID); | ||
988 | |||
989 | ew32(IVAR_MISC, tmp); | ||
990 | |||
991 | adapter->eims_enable_mask = (1 << (vector)) - 1; | ||
992 | adapter->eims_other = 1 << (vector - 1); | ||
993 | e1e_flush(); | ||
994 | } | ||
995 | |||
996 | static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter) | ||
997 | { | ||
998 | if (adapter->msix_entries) { | ||
999 | pci_disable_msix(adapter->pdev); | ||
1000 | kfree(adapter->msix_entries); | ||
1001 | adapter->msix_entries = NULL; | ||
1002 | } | ||
1003 | } | ||
1004 | |||
1005 | /** | ||
1006 | * igbvf_set_interrupt_capability - set MSI or MSI-X if supported | ||
1007 | * | ||
1008 | * Attempt to configure interrupts using the best available | ||
1009 | * capabilities of the hardware and kernel. | ||
1010 | **/ | ||
1011 | static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter) | ||
1012 | { | ||
1013 | int err = -ENOMEM; | ||
1014 | int i; | ||
1015 | |||
1016 | /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */ | ||
1017 | adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry), | ||
1018 | GFP_KERNEL); | ||
1019 | if (adapter->msix_entries) { | ||
1020 | for (i = 0; i < 3; i++) | ||
1021 | adapter->msix_entries[i].entry = i; | ||
1022 | |||
1023 | err = pci_enable_msix(adapter->pdev, | ||
1024 | adapter->msix_entries, 3); | ||
1025 | } | ||
1026 | |||
1027 | if (err) { | ||
1028 | /* MSI-X failed */ | ||
1029 | dev_err(&adapter->pdev->dev, | ||
1030 | "Failed to initialize MSI-X interrupts.\n"); | ||
1031 | igbvf_reset_interrupt_capability(adapter); | ||
1032 | } | ||
1033 | } | ||
1034 | |||
1035 | /** | ||
1036 | * igbvf_request_msix - Initialize MSI-X interrupts | ||
1037 | * | ||
1038 | * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the | ||
1039 | * kernel. | ||
1040 | **/ | ||
1041 | static int igbvf_request_msix(struct igbvf_adapter *adapter) | ||
1042 | { | ||
1043 | struct net_device *netdev = adapter->netdev; | ||
1044 | int err = 0, vector = 0; | ||
1045 | |||
1046 | if (strlen(netdev->name) < (IFNAMSIZ - 5)) { | ||
1047 | sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name); | ||
1048 | sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name); | ||
1049 | } else { | ||
1050 | memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); | ||
1051 | memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); | ||
1052 | } | ||
1053 | |||
1054 | err = request_irq(adapter->msix_entries[vector].vector, | ||
1055 | &igbvf_intr_msix_tx, 0, adapter->tx_ring->name, | ||
1056 | netdev); | ||
1057 | if (err) | ||
1058 | goto out; | ||
1059 | |||
1060 | adapter->tx_ring->itr_register = E1000_EITR(vector); | ||
1061 | adapter->tx_ring->itr_val = 1952; | ||
1062 | vector++; | ||
1063 | |||
1064 | err = request_irq(adapter->msix_entries[vector].vector, | ||
1065 | &igbvf_intr_msix_rx, 0, adapter->rx_ring->name, | ||
1066 | netdev); | ||
1067 | if (err) | ||
1068 | goto out; | ||
1069 | |||
1070 | adapter->rx_ring->itr_register = E1000_EITR(vector); | ||
1071 | adapter->rx_ring->itr_val = 1952; | ||
1072 | vector++; | ||
1073 | |||
1074 | err = request_irq(adapter->msix_entries[vector].vector, | ||
1075 | &igbvf_msix_other, 0, netdev->name, netdev); | ||
1076 | if (err) | ||
1077 | goto out; | ||
1078 | |||
1079 | igbvf_configure_msix(adapter); | ||
1080 | return 0; | ||
1081 | out: | ||
1082 | return err; | ||
1083 | } | ||
1084 | |||
1085 | /** | ||
1086 | * igbvf_alloc_queues - Allocate memory for all rings | ||
1087 | * @adapter: board private structure to initialize | ||
1088 | **/ | ||
1089 | static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter) | ||
1090 | { | ||
1091 | struct net_device *netdev = adapter->netdev; | ||
1092 | |||
1093 | adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); | ||
1094 | if (!adapter->tx_ring) | ||
1095 | return -ENOMEM; | ||
1096 | |||
1097 | adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); | ||
1098 | if (!adapter->rx_ring) { | ||
1099 | kfree(adapter->tx_ring); | ||
1100 | return -ENOMEM; | ||
1101 | } | ||
1102 | |||
1103 | netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64); | ||
1104 | |||
1105 | return 0; | ||
1106 | } | ||
1107 | |||
1108 | /** | ||
1109 | * igbvf_request_irq - initialize interrupts | ||
1110 | * | ||
1111 | * Attempts to configure interrupts using the best available | ||
1112 | * capabilities of the hardware and kernel. | ||
1113 | **/ | ||
1114 | static int igbvf_request_irq(struct igbvf_adapter *adapter) | ||
1115 | { | ||
1116 | int err = -1; | ||
1117 | |||
1118 | /* igbvf supports msi-x only */ | ||
1119 | if (adapter->msix_entries) | ||
1120 | err = igbvf_request_msix(adapter); | ||
1121 | |||
1122 | if (!err) | ||
1123 | return err; | ||
1124 | |||
1125 | dev_err(&adapter->pdev->dev, | ||
1126 | "Unable to allocate interrupt, Error: %d\n", err); | ||
1127 | |||
1128 | return err; | ||
1129 | } | ||
1130 | |||
1131 | static void igbvf_free_irq(struct igbvf_adapter *adapter) | ||
1132 | { | ||
1133 | struct net_device *netdev = adapter->netdev; | ||
1134 | int vector; | ||
1135 | |||
1136 | if (adapter->msix_entries) { | ||
1137 | for (vector = 0; vector < 3; vector++) | ||
1138 | free_irq(adapter->msix_entries[vector].vector, netdev); | ||
1139 | } | ||
1140 | } | ||
1141 | |||
1142 | /** | ||
1143 | * igbvf_irq_disable - Mask off interrupt generation on the NIC | ||
1144 | **/ | ||
1145 | static void igbvf_irq_disable(struct igbvf_adapter *adapter) | ||
1146 | { | ||
1147 | struct e1000_hw *hw = &adapter->hw; | ||
1148 | |||
1149 | ew32(EIMC, ~0); | ||
1150 | |||
1151 | if (adapter->msix_entries) | ||
1152 | ew32(EIAC, 0); | ||
1153 | } | ||
1154 | |||
1155 | /** | ||
1156 | * igbvf_irq_enable - Enable default interrupt generation settings | ||
1157 | **/ | ||
1158 | static void igbvf_irq_enable(struct igbvf_adapter *adapter) | ||
1159 | { | ||
1160 | struct e1000_hw *hw = &adapter->hw; | ||
1161 | |||
1162 | ew32(EIAC, adapter->eims_enable_mask); | ||
1163 | ew32(EIAM, adapter->eims_enable_mask); | ||
1164 | ew32(EIMS, adapter->eims_enable_mask); | ||
1165 | } | ||
1166 | |||
1167 | /** | ||
1168 | * igbvf_poll - NAPI Rx polling callback | ||
1169 | * @napi: struct associated with this polling callback | ||
1170 | * @budget: amount of packets driver is allowed to process this poll | ||
1171 | **/ | ||
1172 | static int igbvf_poll(struct napi_struct *napi, int budget) | ||
1173 | { | ||
1174 | struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi); | ||
1175 | struct igbvf_adapter *adapter = rx_ring->adapter; | ||
1176 | struct e1000_hw *hw = &adapter->hw; | ||
1177 | int work_done = 0; | ||
1178 | |||
1179 | igbvf_clean_rx_irq(adapter, &work_done, budget); | ||
1180 | |||
1181 | /* If not enough Rx work done, exit the polling mode */ | ||
1182 | if (work_done < budget) { | ||
1183 | napi_complete(napi); | ||
1184 | |||
1185 | if (adapter->itr_setting & 3) | ||
1186 | igbvf_set_itr(adapter); | ||
1187 | |||
1188 | if (!test_bit(__IGBVF_DOWN, &adapter->state)) | ||
1189 | ew32(EIMS, adapter->rx_ring->eims_value); | ||
1190 | } | ||
1191 | |||
1192 | return work_done; | ||
1193 | } | ||
1194 | |||
1195 | /** | ||
1196 | * igbvf_set_rlpml - set receive large packet maximum length | ||
1197 | * @adapter: board private structure | ||
1198 | * | ||
1199 | * Configure the maximum size of packets that will be received | ||
1200 | */ | ||
1201 | static void igbvf_set_rlpml(struct igbvf_adapter *adapter) | ||
1202 | { | ||
1203 | int max_frame_size = adapter->max_frame_size; | ||
1204 | struct e1000_hw *hw = &adapter->hw; | ||
1205 | |||
1206 | if (adapter->vlgrp) | ||
1207 | max_frame_size += VLAN_TAG_SIZE; | ||
1208 | |||
1209 | e1000_rlpml_set_vf(hw, max_frame_size); | ||
1210 | } | ||
1211 | |||
1212 | static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | ||
1213 | { | ||
1214 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1215 | struct e1000_hw *hw = &adapter->hw; | ||
1216 | |||
1217 | if (hw->mac.ops.set_vfta(hw, vid, true)) | ||
1218 | dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid); | ||
1219 | } | ||
1220 | |||
1221 | static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | ||
1222 | { | ||
1223 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1224 | struct e1000_hw *hw = &adapter->hw; | ||
1225 | |||
1226 | igbvf_irq_disable(adapter); | ||
1227 | vlan_group_set_device(adapter->vlgrp, vid, NULL); | ||
1228 | |||
1229 | if (!test_bit(__IGBVF_DOWN, &adapter->state)) | ||
1230 | igbvf_irq_enable(adapter); | ||
1231 | |||
1232 | if (hw->mac.ops.set_vfta(hw, vid, false)) | ||
1233 | dev_err(&adapter->pdev->dev, | ||
1234 | "Failed to remove vlan id %d\n", vid); | ||
1235 | } | ||
1236 | |||
1237 | static void igbvf_vlan_rx_register(struct net_device *netdev, | ||
1238 | struct vlan_group *grp) | ||
1239 | { | ||
1240 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1241 | |||
1242 | adapter->vlgrp = grp; | ||
1243 | } | ||
1244 | |||
1245 | static void igbvf_restore_vlan(struct igbvf_adapter *adapter) | ||
1246 | { | ||
1247 | u16 vid; | ||
1248 | |||
1249 | if (!adapter->vlgrp) | ||
1250 | return; | ||
1251 | |||
1252 | for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { | ||
1253 | if (!vlan_group_get_device(adapter->vlgrp, vid)) | ||
1254 | continue; | ||
1255 | igbvf_vlan_rx_add_vid(adapter->netdev, vid); | ||
1256 | } | ||
1257 | |||
1258 | igbvf_set_rlpml(adapter); | ||
1259 | } | ||
1260 | |||
1261 | /** | ||
1262 | * igbvf_configure_tx - Configure Transmit Unit after Reset | ||
1263 | * @adapter: board private structure | ||
1264 | * | ||
1265 | * Configure the Tx unit of the MAC after a reset. | ||
1266 | **/ | ||
1267 | static void igbvf_configure_tx(struct igbvf_adapter *adapter) | ||
1268 | { | ||
1269 | struct e1000_hw *hw = &adapter->hw; | ||
1270 | struct igbvf_ring *tx_ring = adapter->tx_ring; | ||
1271 | u64 tdba; | ||
1272 | u32 txdctl, dca_txctrl; | ||
1273 | |||
1274 | /* disable transmits */ | ||
1275 | txdctl = er32(TXDCTL(0)); | ||
1276 | ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); | ||
1277 | msleep(10); | ||
1278 | |||
1279 | /* Setup the HW Tx Head and Tail descriptor pointers */ | ||
1280 | ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc)); | ||
1281 | tdba = tx_ring->dma; | ||
1282 | ew32(TDBAL(0), (tdba & DMA_32BIT_MASK)); | ||
1283 | ew32(TDBAH(0), (tdba >> 32)); | ||
1284 | ew32(TDH(0), 0); | ||
1285 | ew32(TDT(0), 0); | ||
1286 | tx_ring->head = E1000_TDH(0); | ||
1287 | tx_ring->tail = E1000_TDT(0); | ||
1288 | |||
1289 | /* Turn off Relaxed Ordering on head write-backs. The writebacks | ||
1290 | * MUST be delivered in order or it will completely screw up | ||
1291 | * our bookeeping. | ||
1292 | */ | ||
1293 | dca_txctrl = er32(DCA_TXCTRL(0)); | ||
1294 | dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN; | ||
1295 | ew32(DCA_TXCTRL(0), dca_txctrl); | ||
1296 | |||
1297 | /* enable transmits */ | ||
1298 | txdctl |= E1000_TXDCTL_QUEUE_ENABLE; | ||
1299 | ew32(TXDCTL(0), txdctl); | ||
1300 | |||
1301 | /* Setup Transmit Descriptor Settings for eop descriptor */ | ||
1302 | adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS; | ||
1303 | |||
1304 | /* enable Report Status bit */ | ||
1305 | adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS; | ||
1306 | |||
1307 | adapter->tx_queue_len = adapter->netdev->tx_queue_len; | ||
1308 | } | ||
1309 | |||
1310 | /** | ||
1311 | * igbvf_setup_srrctl - configure the receive control registers | ||
1312 | * @adapter: Board private structure | ||
1313 | **/ | ||
1314 | static void igbvf_setup_srrctl(struct igbvf_adapter *adapter) | ||
1315 | { | ||
1316 | struct e1000_hw *hw = &adapter->hw; | ||
1317 | u32 srrctl = 0; | ||
1318 | |||
1319 | srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK | | ||
1320 | E1000_SRRCTL_BSIZEHDR_MASK | | ||
1321 | E1000_SRRCTL_BSIZEPKT_MASK); | ||
1322 | |||
1323 | /* Enable queue drop to avoid head of line blocking */ | ||
1324 | srrctl |= E1000_SRRCTL_DROP_EN; | ||
1325 | |||
1326 | /* Setup buffer sizes */ | ||
1327 | srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >> | ||
1328 | E1000_SRRCTL_BSIZEPKT_SHIFT; | ||
1329 | |||
1330 | if (adapter->rx_buffer_len < 2048) { | ||
1331 | adapter->rx_ps_hdr_size = 0; | ||
1332 | srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; | ||
1333 | } else { | ||
1334 | adapter->rx_ps_hdr_size = 128; | ||
1335 | srrctl |= adapter->rx_ps_hdr_size << | ||
1336 | E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; | ||
1337 | srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; | ||
1338 | } | ||
1339 | |||
1340 | ew32(SRRCTL(0), srrctl); | ||
1341 | } | ||
1342 | |||
1343 | /** | ||
1344 | * igbvf_configure_rx - Configure Receive Unit after Reset | ||
1345 | * @adapter: board private structure | ||
1346 | * | ||
1347 | * Configure the Rx unit of the MAC after a reset. | ||
1348 | **/ | ||
1349 | static void igbvf_configure_rx(struct igbvf_adapter *adapter) | ||
1350 | { | ||
1351 | struct e1000_hw *hw = &adapter->hw; | ||
1352 | struct igbvf_ring *rx_ring = adapter->rx_ring; | ||
1353 | u64 rdba; | ||
1354 | u32 rdlen, rxdctl; | ||
1355 | |||
1356 | /* disable receives */ | ||
1357 | rxdctl = er32(RXDCTL(0)); | ||
1358 | ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); | ||
1359 | msleep(10); | ||
1360 | |||
1361 | rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc); | ||
1362 | |||
1363 | /* | ||
1364 | * Setup the HW Rx Head and Tail Descriptor Pointers and | ||
1365 | * the Base and Length of the Rx Descriptor Ring | ||
1366 | */ | ||
1367 | rdba = rx_ring->dma; | ||
1368 | ew32(RDBAL(0), (rdba & DMA_32BIT_MASK)); | ||
1369 | ew32(RDBAH(0), (rdba >> 32)); | ||
1370 | ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc)); | ||
1371 | rx_ring->head = E1000_RDH(0); | ||
1372 | rx_ring->tail = E1000_RDT(0); | ||
1373 | ew32(RDH(0), 0); | ||
1374 | ew32(RDT(0), 0); | ||
1375 | |||
1376 | rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; | ||
1377 | rxdctl &= 0xFFF00000; | ||
1378 | rxdctl |= IGBVF_RX_PTHRESH; | ||
1379 | rxdctl |= IGBVF_RX_HTHRESH << 8; | ||
1380 | rxdctl |= IGBVF_RX_WTHRESH << 16; | ||
1381 | |||
1382 | igbvf_set_rlpml(adapter); | ||
1383 | |||
1384 | /* enable receives */ | ||
1385 | ew32(RXDCTL(0), rxdctl); | ||
1386 | } | ||
1387 | |||
1388 | /** | ||
1389 | * igbvf_set_multi - Multicast and Promiscuous mode set | ||
1390 | * @netdev: network interface device structure | ||
1391 | * | ||
1392 | * The set_multi entry point is called whenever the multicast address | ||
1393 | * list or the network interface flags are updated. This routine is | ||
1394 | * responsible for configuring the hardware for proper multicast, | ||
1395 | * promiscuous mode, and all-multi behavior. | ||
1396 | **/ | ||
1397 | static void igbvf_set_multi(struct net_device *netdev) | ||
1398 | { | ||
1399 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1400 | struct e1000_hw *hw = &adapter->hw; | ||
1401 | struct dev_mc_list *mc_ptr; | ||
1402 | u8 *mta_list = NULL; | ||
1403 | int i; | ||
1404 | |||
1405 | if (netdev->mc_count) { | ||
1406 | mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC); | ||
1407 | if (!mta_list) { | ||
1408 | dev_err(&adapter->pdev->dev, | ||
1409 | "failed to allocate multicast filter list\n"); | ||
1410 | return; | ||
1411 | } | ||
1412 | } | ||
1413 | |||
1414 | /* prepare a packed array of only addresses. */ | ||
1415 | mc_ptr = netdev->mc_list; | ||
1416 | |||
1417 | for (i = 0; i < netdev->mc_count; i++) { | ||
1418 | if (!mc_ptr) | ||
1419 | break; | ||
1420 | memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, | ||
1421 | ETH_ALEN); | ||
1422 | mc_ptr = mc_ptr->next; | ||
1423 | } | ||
1424 | |||
1425 | hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0); | ||
1426 | kfree(mta_list); | ||
1427 | } | ||
1428 | |||
1429 | /** | ||
1430 | * igbvf_configure - configure the hardware for Rx and Tx | ||
1431 | * @adapter: private board structure | ||
1432 | **/ | ||
1433 | static void igbvf_configure(struct igbvf_adapter *adapter) | ||
1434 | { | ||
1435 | igbvf_set_multi(adapter->netdev); | ||
1436 | |||
1437 | igbvf_restore_vlan(adapter); | ||
1438 | |||
1439 | igbvf_configure_tx(adapter); | ||
1440 | igbvf_setup_srrctl(adapter); | ||
1441 | igbvf_configure_rx(adapter); | ||
1442 | igbvf_alloc_rx_buffers(adapter->rx_ring, | ||
1443 | igbvf_desc_unused(adapter->rx_ring)); | ||
1444 | } | ||
1445 | |||
1446 | /* igbvf_reset - bring the hardware into a known good state | ||
1447 | * | ||
1448 | * This function boots the hardware and enables some settings that | ||
1449 | * require a configuration cycle of the hardware - those cannot be | ||
1450 | * set/changed during runtime. After reset the device needs to be | ||
1451 | * properly configured for Rx, Tx etc. | ||
1452 | */ | ||
1453 | static void igbvf_reset(struct igbvf_adapter *adapter) | ||
1454 | { | ||
1455 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
1456 | struct net_device *netdev = adapter->netdev; | ||
1457 | struct e1000_hw *hw = &adapter->hw; | ||
1458 | |||
1459 | /* Allow time for pending master requests to run */ | ||
1460 | if (mac->ops.reset_hw(hw)) | ||
1461 | dev_err(&adapter->pdev->dev, "PF still resetting\n"); | ||
1462 | |||
1463 | mac->ops.init_hw(hw); | ||
1464 | |||
1465 | if (is_valid_ether_addr(adapter->hw.mac.addr)) { | ||
1466 | memcpy(netdev->dev_addr, adapter->hw.mac.addr, | ||
1467 | netdev->addr_len); | ||
1468 | memcpy(netdev->perm_addr, adapter->hw.mac.addr, | ||
1469 | netdev->addr_len); | ||
1470 | } | ||
1471 | } | ||
1472 | |||
1473 | int igbvf_up(struct igbvf_adapter *adapter) | ||
1474 | { | ||
1475 | struct e1000_hw *hw = &adapter->hw; | ||
1476 | |||
1477 | /* hardware has been reset, we need to reload some things */ | ||
1478 | igbvf_configure(adapter); | ||
1479 | |||
1480 | clear_bit(__IGBVF_DOWN, &adapter->state); | ||
1481 | |||
1482 | napi_enable(&adapter->rx_ring->napi); | ||
1483 | if (adapter->msix_entries) | ||
1484 | igbvf_configure_msix(adapter); | ||
1485 | |||
1486 | /* Clear any pending interrupts. */ | ||
1487 | er32(EICR); | ||
1488 | igbvf_irq_enable(adapter); | ||
1489 | |||
1490 | /* start the watchdog */ | ||
1491 | hw->mac.get_link_status = 1; | ||
1492 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
1493 | |||
1494 | |||
1495 | return 0; | ||
1496 | } | ||
1497 | |||
1498 | void igbvf_down(struct igbvf_adapter *adapter) | ||
1499 | { | ||
1500 | struct net_device *netdev = adapter->netdev; | ||
1501 | struct e1000_hw *hw = &adapter->hw; | ||
1502 | u32 rxdctl, txdctl; | ||
1503 | |||
1504 | /* | ||
1505 | * signal that we're down so the interrupt handler does not | ||
1506 | * reschedule our watchdog timer | ||
1507 | */ | ||
1508 | set_bit(__IGBVF_DOWN, &adapter->state); | ||
1509 | |||
1510 | /* disable receives in the hardware */ | ||
1511 | rxdctl = er32(RXDCTL(0)); | ||
1512 | ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); | ||
1513 | |||
1514 | netif_stop_queue(netdev); | ||
1515 | |||
1516 | /* disable transmits in the hardware */ | ||
1517 | txdctl = er32(TXDCTL(0)); | ||
1518 | ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); | ||
1519 | |||
1520 | /* flush both disables and wait for them to finish */ | ||
1521 | e1e_flush(); | ||
1522 | msleep(10); | ||
1523 | |||
1524 | napi_disable(&adapter->rx_ring->napi); | ||
1525 | |||
1526 | igbvf_irq_disable(adapter); | ||
1527 | |||
1528 | del_timer_sync(&adapter->watchdog_timer); | ||
1529 | |||
1530 | netdev->tx_queue_len = adapter->tx_queue_len; | ||
1531 | netif_carrier_off(netdev); | ||
1532 | |||
1533 | /* record the stats before reset*/ | ||
1534 | igbvf_update_stats(adapter); | ||
1535 | |||
1536 | adapter->link_speed = 0; | ||
1537 | adapter->link_duplex = 0; | ||
1538 | |||
1539 | igbvf_reset(adapter); | ||
1540 | igbvf_clean_tx_ring(adapter->tx_ring); | ||
1541 | igbvf_clean_rx_ring(adapter->rx_ring); | ||
1542 | } | ||
1543 | |||
1544 | void igbvf_reinit_locked(struct igbvf_adapter *adapter) | ||
1545 | { | ||
1546 | might_sleep(); | ||
1547 | while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) | ||
1548 | msleep(1); | ||
1549 | igbvf_down(adapter); | ||
1550 | igbvf_up(adapter); | ||
1551 | clear_bit(__IGBVF_RESETTING, &adapter->state); | ||
1552 | } | ||
1553 | |||
1554 | /** | ||
1555 | * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter) | ||
1556 | * @adapter: board private structure to initialize | ||
1557 | * | ||
1558 | * igbvf_sw_init initializes the Adapter private data structure. | ||
1559 | * Fields are initialized based on PCI device information and | ||
1560 | * OS network device settings (MTU size). | ||
1561 | **/ | ||
1562 | static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter) | ||
1563 | { | ||
1564 | struct net_device *netdev = adapter->netdev; | ||
1565 | s32 rc; | ||
1566 | |||
1567 | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; | ||
1568 | adapter->rx_ps_hdr_size = 0; | ||
1569 | adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; | ||
1570 | adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; | ||
1571 | |||
1572 | adapter->tx_int_delay = 8; | ||
1573 | adapter->tx_abs_int_delay = 32; | ||
1574 | adapter->rx_int_delay = 0; | ||
1575 | adapter->rx_abs_int_delay = 8; | ||
1576 | adapter->itr_setting = 3; | ||
1577 | adapter->itr = 20000; | ||
1578 | |||
1579 | /* Set various function pointers */ | ||
1580 | adapter->ei->init_ops(&adapter->hw); | ||
1581 | |||
1582 | rc = adapter->hw.mac.ops.init_params(&adapter->hw); | ||
1583 | if (rc) | ||
1584 | return rc; | ||
1585 | |||
1586 | rc = adapter->hw.mbx.ops.init_params(&adapter->hw); | ||
1587 | if (rc) | ||
1588 | return rc; | ||
1589 | |||
1590 | igbvf_set_interrupt_capability(adapter); | ||
1591 | |||
1592 | if (igbvf_alloc_queues(adapter)) | ||
1593 | return -ENOMEM; | ||
1594 | |||
1595 | spin_lock_init(&adapter->tx_queue_lock); | ||
1596 | |||
1597 | /* Explicitly disable IRQ since the NIC can be in any state. */ | ||
1598 | igbvf_irq_disable(adapter); | ||
1599 | |||
1600 | spin_lock_init(&adapter->stats_lock); | ||
1601 | |||
1602 | set_bit(__IGBVF_DOWN, &adapter->state); | ||
1603 | return 0; | ||
1604 | } | ||
1605 | |||
1606 | static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter) | ||
1607 | { | ||
1608 | struct e1000_hw *hw = &adapter->hw; | ||
1609 | |||
1610 | adapter->stats.last_gprc = er32(VFGPRC); | ||
1611 | adapter->stats.last_gorc = er32(VFGORC); | ||
1612 | adapter->stats.last_gptc = er32(VFGPTC); | ||
1613 | adapter->stats.last_gotc = er32(VFGOTC); | ||
1614 | adapter->stats.last_mprc = er32(VFMPRC); | ||
1615 | adapter->stats.last_gotlbc = er32(VFGOTLBC); | ||
1616 | adapter->stats.last_gptlbc = er32(VFGPTLBC); | ||
1617 | adapter->stats.last_gorlbc = er32(VFGORLBC); | ||
1618 | adapter->stats.last_gprlbc = er32(VFGPRLBC); | ||
1619 | |||
1620 | adapter->stats.base_gprc = er32(VFGPRC); | ||
1621 | adapter->stats.base_gorc = er32(VFGORC); | ||
1622 | adapter->stats.base_gptc = er32(VFGPTC); | ||
1623 | adapter->stats.base_gotc = er32(VFGOTC); | ||
1624 | adapter->stats.base_mprc = er32(VFMPRC); | ||
1625 | adapter->stats.base_gotlbc = er32(VFGOTLBC); | ||
1626 | adapter->stats.base_gptlbc = er32(VFGPTLBC); | ||
1627 | adapter->stats.base_gorlbc = er32(VFGORLBC); | ||
1628 | adapter->stats.base_gprlbc = er32(VFGPRLBC); | ||
1629 | } | ||
1630 | |||
1631 | /** | ||
1632 | * igbvf_open - Called when a network interface is made active | ||
1633 | * @netdev: network interface device structure | ||
1634 | * | ||
1635 | * Returns 0 on success, negative value on failure | ||
1636 | * | ||
1637 | * The open entry point is called when a network interface is made | ||
1638 | * active by the system (IFF_UP). At this point all resources needed | ||
1639 | * for transmit and receive operations are allocated, the interrupt | ||
1640 | * handler is registered with the OS, the watchdog timer is started, | ||
1641 | * and the stack is notified that the interface is ready. | ||
1642 | **/ | ||
1643 | static int igbvf_open(struct net_device *netdev) | ||
1644 | { | ||
1645 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1646 | struct e1000_hw *hw = &adapter->hw; | ||
1647 | int err; | ||
1648 | |||
1649 | /* disallow open during test */ | ||
1650 | if (test_bit(__IGBVF_TESTING, &adapter->state)) | ||
1651 | return -EBUSY; | ||
1652 | |||
1653 | /* allocate transmit descriptors */ | ||
1654 | err = igbvf_setup_tx_resources(adapter, adapter->tx_ring); | ||
1655 | if (err) | ||
1656 | goto err_setup_tx; | ||
1657 | |||
1658 | /* allocate receive descriptors */ | ||
1659 | err = igbvf_setup_rx_resources(adapter, adapter->rx_ring); | ||
1660 | if (err) | ||
1661 | goto err_setup_rx; | ||
1662 | |||
1663 | /* | ||
1664 | * before we allocate an interrupt, we must be ready to handle it. | ||
1665 | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | ||
1666 | * as soon as we call pci_request_irq, so we have to setup our | ||
1667 | * clean_rx handler before we do so. | ||
1668 | */ | ||
1669 | igbvf_configure(adapter); | ||
1670 | |||
1671 | err = igbvf_request_irq(adapter); | ||
1672 | if (err) | ||
1673 | goto err_req_irq; | ||
1674 | |||
1675 | /* From here on the code is the same as igbvf_up() */ | ||
1676 | clear_bit(__IGBVF_DOWN, &adapter->state); | ||
1677 | |||
1678 | napi_enable(&adapter->rx_ring->napi); | ||
1679 | |||
1680 | /* clear any pending interrupts */ | ||
1681 | er32(EICR); | ||
1682 | |||
1683 | igbvf_irq_enable(adapter); | ||
1684 | |||
1685 | /* start the watchdog */ | ||
1686 | hw->mac.get_link_status = 1; | ||
1687 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
1688 | |||
1689 | return 0; | ||
1690 | |||
1691 | err_req_irq: | ||
1692 | igbvf_free_rx_resources(adapter->rx_ring); | ||
1693 | err_setup_rx: | ||
1694 | igbvf_free_tx_resources(adapter->tx_ring); | ||
1695 | err_setup_tx: | ||
1696 | igbvf_reset(adapter); | ||
1697 | |||
1698 | return err; | ||
1699 | } | ||
1700 | |||
1701 | /** | ||
1702 | * igbvf_close - Disables a network interface | ||
1703 | * @netdev: network interface device structure | ||
1704 | * | ||
1705 | * Returns 0, this is not allowed to fail | ||
1706 | * | ||
1707 | * The close entry point is called when an interface is de-activated | ||
1708 | * by the OS. The hardware is still under the drivers control, but | ||
1709 | * needs to be disabled. A global MAC reset is issued to stop the | ||
1710 | * hardware, and all transmit and receive resources are freed. | ||
1711 | **/ | ||
1712 | static int igbvf_close(struct net_device *netdev) | ||
1713 | { | ||
1714 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1715 | |||
1716 | WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); | ||
1717 | igbvf_down(adapter); | ||
1718 | |||
1719 | igbvf_free_irq(adapter); | ||
1720 | |||
1721 | igbvf_free_tx_resources(adapter->tx_ring); | ||
1722 | igbvf_free_rx_resources(adapter->rx_ring); | ||
1723 | |||
1724 | return 0; | ||
1725 | } | ||
1726 | /** | ||
1727 | * igbvf_set_mac - Change the Ethernet Address of the NIC | ||
1728 | * @netdev: network interface device structure | ||
1729 | * @p: pointer to an address structure | ||
1730 | * | ||
1731 | * Returns 0 on success, negative on failure | ||
1732 | **/ | ||
1733 | static int igbvf_set_mac(struct net_device *netdev, void *p) | ||
1734 | { | ||
1735 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1736 | struct e1000_hw *hw = &adapter->hw; | ||
1737 | struct sockaddr *addr = p; | ||
1738 | |||
1739 | if (!is_valid_ether_addr(addr->sa_data)) | ||
1740 | return -EADDRNOTAVAIL; | ||
1741 | |||
1742 | memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); | ||
1743 | |||
1744 | hw->mac.ops.rar_set(hw, hw->mac.addr, 0); | ||
1745 | |||
1746 | if (memcmp(addr->sa_data, hw->mac.addr, 6)) | ||
1747 | return -EADDRNOTAVAIL; | ||
1748 | |||
1749 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | ||
1750 | |||
1751 | return 0; | ||
1752 | } | ||
1753 | |||
1754 | #define UPDATE_VF_COUNTER(reg, name) \ | ||
1755 | { \ | ||
1756 | u32 current_counter = er32(reg); \ | ||
1757 | if (current_counter < adapter->stats.last_##name) \ | ||
1758 | adapter->stats.name += 0x100000000LL; \ | ||
1759 | adapter->stats.last_##name = current_counter; \ | ||
1760 | adapter->stats.name &= 0xFFFFFFFF00000000LL; \ | ||
1761 | adapter->stats.name |= current_counter; \ | ||
1762 | } | ||
1763 | |||
1764 | /** | ||
1765 | * igbvf_update_stats - Update the board statistics counters | ||
1766 | * @adapter: board private structure | ||
1767 | **/ | ||
1768 | void igbvf_update_stats(struct igbvf_adapter *adapter) | ||
1769 | { | ||
1770 | struct e1000_hw *hw = &adapter->hw; | ||
1771 | struct pci_dev *pdev = adapter->pdev; | ||
1772 | |||
1773 | /* | ||
1774 | * Prevent stats update while adapter is being reset, link is down | ||
1775 | * or if the pci connection is down. | ||
1776 | */ | ||
1777 | if (adapter->link_speed == 0) | ||
1778 | return; | ||
1779 | |||
1780 | if (test_bit(__IGBVF_RESETTING, &adapter->state)) | ||
1781 | return; | ||
1782 | |||
1783 | if (pci_channel_offline(pdev)) | ||
1784 | return; | ||
1785 | |||
1786 | UPDATE_VF_COUNTER(VFGPRC, gprc); | ||
1787 | UPDATE_VF_COUNTER(VFGORC, gorc); | ||
1788 | UPDATE_VF_COUNTER(VFGPTC, gptc); | ||
1789 | UPDATE_VF_COUNTER(VFGOTC, gotc); | ||
1790 | UPDATE_VF_COUNTER(VFMPRC, mprc); | ||
1791 | UPDATE_VF_COUNTER(VFGOTLBC, gotlbc); | ||
1792 | UPDATE_VF_COUNTER(VFGPTLBC, gptlbc); | ||
1793 | UPDATE_VF_COUNTER(VFGORLBC, gorlbc); | ||
1794 | UPDATE_VF_COUNTER(VFGPRLBC, gprlbc); | ||
1795 | |||
1796 | /* Fill out the OS statistics structure */ | ||
1797 | adapter->net_stats.multicast = adapter->stats.mprc; | ||
1798 | } | ||
1799 | |||
1800 | static void igbvf_print_link_info(struct igbvf_adapter *adapter) | ||
1801 | { | ||
1802 | dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n", | ||
1803 | adapter->link_speed, | ||
1804 | ((adapter->link_duplex == FULL_DUPLEX) ? | ||
1805 | "Full Duplex" : "Half Duplex")); | ||
1806 | } | ||
1807 | |||
1808 | static bool igbvf_has_link(struct igbvf_adapter *adapter) | ||
1809 | { | ||
1810 | struct e1000_hw *hw = &adapter->hw; | ||
1811 | s32 ret_val = E1000_SUCCESS; | ||
1812 | bool link_active; | ||
1813 | |||
1814 | ret_val = hw->mac.ops.check_for_link(hw); | ||
1815 | link_active = !hw->mac.get_link_status; | ||
1816 | |||
1817 | /* if check for link returns error we will need to reset */ | ||
1818 | if (ret_val) | ||
1819 | schedule_work(&adapter->reset_task); | ||
1820 | |||
1821 | return link_active; | ||
1822 | } | ||
1823 | |||
1824 | /** | ||
1825 | * igbvf_watchdog - Timer Call-back | ||
1826 | * @data: pointer to adapter cast into an unsigned long | ||
1827 | **/ | ||
1828 | static void igbvf_watchdog(unsigned long data) | ||
1829 | { | ||
1830 | struct igbvf_adapter *adapter = (struct igbvf_adapter *) data; | ||
1831 | |||
1832 | /* Do the rest outside of interrupt context */ | ||
1833 | schedule_work(&adapter->watchdog_task); | ||
1834 | } | ||
1835 | |||
1836 | static void igbvf_watchdog_task(struct work_struct *work) | ||
1837 | { | ||
1838 | struct igbvf_adapter *adapter = container_of(work, | ||
1839 | struct igbvf_adapter, | ||
1840 | watchdog_task); | ||
1841 | struct net_device *netdev = adapter->netdev; | ||
1842 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
1843 | struct igbvf_ring *tx_ring = adapter->tx_ring; | ||
1844 | struct e1000_hw *hw = &adapter->hw; | ||
1845 | u32 link; | ||
1846 | int tx_pending = 0; | ||
1847 | |||
1848 | link = igbvf_has_link(adapter); | ||
1849 | |||
1850 | if (link) { | ||
1851 | if (!netif_carrier_ok(netdev)) { | ||
1852 | bool txb2b = 1; | ||
1853 | |||
1854 | mac->ops.get_link_up_info(&adapter->hw, | ||
1855 | &adapter->link_speed, | ||
1856 | &adapter->link_duplex); | ||
1857 | igbvf_print_link_info(adapter); | ||
1858 | |||
1859 | /* | ||
1860 | * tweak tx_queue_len according to speed/duplex | ||
1861 | * and adjust the timeout factor | ||
1862 | */ | ||
1863 | netdev->tx_queue_len = adapter->tx_queue_len; | ||
1864 | adapter->tx_timeout_factor = 1; | ||
1865 | switch (adapter->link_speed) { | ||
1866 | case SPEED_10: | ||
1867 | txb2b = 0; | ||
1868 | netdev->tx_queue_len = 10; | ||
1869 | adapter->tx_timeout_factor = 16; | ||
1870 | break; | ||
1871 | case SPEED_100: | ||
1872 | txb2b = 0; | ||
1873 | netdev->tx_queue_len = 100; | ||
1874 | /* maybe add some timeout factor ? */ | ||
1875 | break; | ||
1876 | } | ||
1877 | |||
1878 | netif_carrier_on(netdev); | ||
1879 | netif_wake_queue(netdev); | ||
1880 | } | ||
1881 | } else { | ||
1882 | if (netif_carrier_ok(netdev)) { | ||
1883 | adapter->link_speed = 0; | ||
1884 | adapter->link_duplex = 0; | ||
1885 | dev_info(&adapter->pdev->dev, "Link is Down\n"); | ||
1886 | netif_carrier_off(netdev); | ||
1887 | netif_stop_queue(netdev); | ||
1888 | } | ||
1889 | } | ||
1890 | |||
1891 | if (netif_carrier_ok(netdev)) { | ||
1892 | igbvf_update_stats(adapter); | ||
1893 | } else { | ||
1894 | tx_pending = (igbvf_desc_unused(tx_ring) + 1 < | ||
1895 | tx_ring->count); | ||
1896 | if (tx_pending) { | ||
1897 | /* | ||
1898 | * We've lost link, so the controller stops DMA, | ||
1899 | * but we've got queued Tx work that's never going | ||
1900 | * to get done, so reset controller to flush Tx. | ||
1901 | * (Do the reset outside of interrupt context). | ||
1902 | */ | ||
1903 | adapter->tx_timeout_count++; | ||
1904 | schedule_work(&adapter->reset_task); | ||
1905 | } | ||
1906 | } | ||
1907 | |||
1908 | /* Cause software interrupt to ensure Rx ring is cleaned */ | ||
1909 | ew32(EICS, adapter->rx_ring->eims_value); | ||
1910 | |||
1911 | /* Force detection of hung controller every watchdog period */ | ||
1912 | adapter->detect_tx_hung = 1; | ||
1913 | |||
1914 | /* Reset the timer */ | ||
1915 | if (!test_bit(__IGBVF_DOWN, &adapter->state)) | ||
1916 | mod_timer(&adapter->watchdog_timer, | ||
1917 | round_jiffies(jiffies + (2 * HZ))); | ||
1918 | } | ||
1919 | |||
1920 | #define IGBVF_TX_FLAGS_CSUM 0x00000001 | ||
1921 | #define IGBVF_TX_FLAGS_VLAN 0x00000002 | ||
1922 | #define IGBVF_TX_FLAGS_TSO 0x00000004 | ||
1923 | #define IGBVF_TX_FLAGS_IPV4 0x00000008 | ||
1924 | #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000 | ||
1925 | #define IGBVF_TX_FLAGS_VLAN_SHIFT 16 | ||
1926 | |||
1927 | static int igbvf_tso(struct igbvf_adapter *adapter, | ||
1928 | struct igbvf_ring *tx_ring, | ||
1929 | struct sk_buff *skb, u32 tx_flags, u8 *hdr_len) | ||
1930 | { | ||
1931 | struct e1000_adv_tx_context_desc *context_desc; | ||
1932 | unsigned int i; | ||
1933 | int err; | ||
1934 | struct igbvf_buffer *buffer_info; | ||
1935 | u32 info = 0, tu_cmd = 0; | ||
1936 | u32 mss_l4len_idx, l4len; | ||
1937 | *hdr_len = 0; | ||
1938 | |||
1939 | if (skb_header_cloned(skb)) { | ||
1940 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | ||
1941 | if (err) { | ||
1942 | dev_err(&adapter->pdev->dev, | ||
1943 | "igbvf_tso returning an error\n"); | ||
1944 | return err; | ||
1945 | } | ||
1946 | } | ||
1947 | |||
1948 | l4len = tcp_hdrlen(skb); | ||
1949 | *hdr_len += l4len; | ||
1950 | |||
1951 | if (skb->protocol == htons(ETH_P_IP)) { | ||
1952 | struct iphdr *iph = ip_hdr(skb); | ||
1953 | iph->tot_len = 0; | ||
1954 | iph->check = 0; | ||
1955 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, | ||
1956 | iph->daddr, 0, | ||
1957 | IPPROTO_TCP, | ||
1958 | 0); | ||
1959 | } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) { | ||
1960 | ipv6_hdr(skb)->payload_len = 0; | ||
1961 | tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | ||
1962 | &ipv6_hdr(skb)->daddr, | ||
1963 | 0, IPPROTO_TCP, 0); | ||
1964 | } | ||
1965 | |||
1966 | i = tx_ring->next_to_use; | ||
1967 | |||
1968 | buffer_info = &tx_ring->buffer_info[i]; | ||
1969 | context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i); | ||
1970 | /* VLAN MACLEN IPLEN */ | ||
1971 | if (tx_flags & IGBVF_TX_FLAGS_VLAN) | ||
1972 | info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK); | ||
1973 | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); | ||
1974 | *hdr_len += skb_network_offset(skb); | ||
1975 | info |= (skb_transport_header(skb) - skb_network_header(skb)); | ||
1976 | *hdr_len += (skb_transport_header(skb) - skb_network_header(skb)); | ||
1977 | context_desc->vlan_macip_lens = cpu_to_le32(info); | ||
1978 | |||
1979 | /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ | ||
1980 | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); | ||
1981 | |||
1982 | if (skb->protocol == htons(ETH_P_IP)) | ||
1983 | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; | ||
1984 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
1985 | |||
1986 | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); | ||
1987 | |||
1988 | /* MSS L4LEN IDX */ | ||
1989 | mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT); | ||
1990 | mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT); | ||
1991 | |||
1992 | context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); | ||
1993 | context_desc->seqnum_seed = 0; | ||
1994 | |||
1995 | buffer_info->time_stamp = jiffies; | ||
1996 | buffer_info->next_to_watch = i; | ||
1997 | buffer_info->dma = 0; | ||
1998 | i++; | ||
1999 | if (i == tx_ring->count) | ||
2000 | i = 0; | ||
2001 | |||
2002 | tx_ring->next_to_use = i; | ||
2003 | |||
2004 | return true; | ||
2005 | } | ||
2006 | |||
2007 | static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter, | ||
2008 | struct igbvf_ring *tx_ring, | ||
2009 | struct sk_buff *skb, u32 tx_flags) | ||
2010 | { | ||
2011 | struct e1000_adv_tx_context_desc *context_desc; | ||
2012 | unsigned int i; | ||
2013 | struct igbvf_buffer *buffer_info; | ||
2014 | u32 info = 0, tu_cmd = 0; | ||
2015 | |||
2016 | if ((skb->ip_summed == CHECKSUM_PARTIAL) || | ||
2017 | (tx_flags & IGBVF_TX_FLAGS_VLAN)) { | ||
2018 | i = tx_ring->next_to_use; | ||
2019 | buffer_info = &tx_ring->buffer_info[i]; | ||
2020 | context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i); | ||
2021 | |||
2022 | if (tx_flags & IGBVF_TX_FLAGS_VLAN) | ||
2023 | info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK); | ||
2024 | |||
2025 | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); | ||
2026 | if (skb->ip_summed == CHECKSUM_PARTIAL) | ||
2027 | info |= (skb_transport_header(skb) - | ||
2028 | skb_network_header(skb)); | ||
2029 | |||
2030 | |||
2031 | context_desc->vlan_macip_lens = cpu_to_le32(info); | ||
2032 | |||
2033 | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); | ||
2034 | |||
2035 | if (skb->ip_summed == CHECKSUM_PARTIAL) { | ||
2036 | switch (skb->protocol) { | ||
2037 | case __constant_htons(ETH_P_IP): | ||
2038 | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; | ||
2039 | if (ip_hdr(skb)->protocol == IPPROTO_TCP) | ||
2040 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
2041 | break; | ||
2042 | case __constant_htons(ETH_P_IPV6): | ||
2043 | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | ||
2044 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
2045 | break; | ||
2046 | default: | ||
2047 | break; | ||
2048 | } | ||
2049 | } | ||
2050 | |||
2051 | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); | ||
2052 | context_desc->seqnum_seed = 0; | ||
2053 | context_desc->mss_l4len_idx = 0; | ||
2054 | |||
2055 | buffer_info->time_stamp = jiffies; | ||
2056 | buffer_info->next_to_watch = i; | ||
2057 | buffer_info->dma = 0; | ||
2058 | i++; | ||
2059 | if (i == tx_ring->count) | ||
2060 | i = 0; | ||
2061 | tx_ring->next_to_use = i; | ||
2062 | |||
2063 | return true; | ||
2064 | } | ||
2065 | |||
2066 | return false; | ||
2067 | } | ||
2068 | |||
2069 | static int igbvf_maybe_stop_tx(struct net_device *netdev, int size) | ||
2070 | { | ||
2071 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2072 | |||
2073 | /* there is enough descriptors then we don't need to worry */ | ||
2074 | if (igbvf_desc_unused(adapter->tx_ring) >= size) | ||
2075 | return 0; | ||
2076 | |||
2077 | netif_stop_queue(netdev); | ||
2078 | |||
2079 | smp_mb(); | ||
2080 | |||
2081 | /* We need to check again just in case room has been made available */ | ||
2082 | if (igbvf_desc_unused(adapter->tx_ring) < size) | ||
2083 | return -EBUSY; | ||
2084 | |||
2085 | netif_wake_queue(netdev); | ||
2086 | |||
2087 | ++adapter->restart_queue; | ||
2088 | return 0; | ||
2089 | } | ||
2090 | |||
2091 | #define IGBVF_MAX_TXD_PWR 16 | ||
2092 | #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR) | ||
2093 | |||
2094 | static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter, | ||
2095 | struct igbvf_ring *tx_ring, | ||
2096 | struct sk_buff *skb, | ||
2097 | unsigned int first) | ||
2098 | { | ||
2099 | struct igbvf_buffer *buffer_info; | ||
2100 | unsigned int len = skb_headlen(skb); | ||
2101 | unsigned int count = 0, i; | ||
2102 | unsigned int f; | ||
2103 | dma_addr_t *map; | ||
2104 | |||
2105 | i = tx_ring->next_to_use; | ||
2106 | |||
2107 | if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) { | ||
2108 | dev_err(&adapter->pdev->dev, "TX DMA map failed\n"); | ||
2109 | return 0; | ||
2110 | } | ||
2111 | |||
2112 | map = skb_shinfo(skb)->dma_maps; | ||
2113 | |||
2114 | buffer_info = &tx_ring->buffer_info[i]; | ||
2115 | BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); | ||
2116 | buffer_info->length = len; | ||
2117 | /* set time_stamp *before* dma to help avoid a possible race */ | ||
2118 | buffer_info->time_stamp = jiffies; | ||
2119 | buffer_info->next_to_watch = i; | ||
2120 | buffer_info->dma = map[count]; | ||
2121 | count++; | ||
2122 | |||
2123 | for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { | ||
2124 | struct skb_frag_struct *frag; | ||
2125 | |||
2126 | i++; | ||
2127 | if (i == tx_ring->count) | ||
2128 | i = 0; | ||
2129 | |||
2130 | frag = &skb_shinfo(skb)->frags[f]; | ||
2131 | len = frag->size; | ||
2132 | |||
2133 | buffer_info = &tx_ring->buffer_info[i]; | ||
2134 | BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); | ||
2135 | buffer_info->length = len; | ||
2136 | buffer_info->time_stamp = jiffies; | ||
2137 | buffer_info->next_to_watch = i; | ||
2138 | buffer_info->dma = map[count]; | ||
2139 | count++; | ||
2140 | } | ||
2141 | |||
2142 | tx_ring->buffer_info[i].skb = skb; | ||
2143 | tx_ring->buffer_info[first].next_to_watch = i; | ||
2144 | |||
2145 | return count; | ||
2146 | } | ||
2147 | |||
2148 | static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter, | ||
2149 | struct igbvf_ring *tx_ring, | ||
2150 | int tx_flags, int count, u32 paylen, | ||
2151 | u8 hdr_len) | ||
2152 | { | ||
2153 | union e1000_adv_tx_desc *tx_desc = NULL; | ||
2154 | struct igbvf_buffer *buffer_info; | ||
2155 | u32 olinfo_status = 0, cmd_type_len; | ||
2156 | unsigned int i; | ||
2157 | |||
2158 | cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | | ||
2159 | E1000_ADVTXD_DCMD_DEXT); | ||
2160 | |||
2161 | if (tx_flags & IGBVF_TX_FLAGS_VLAN) | ||
2162 | cmd_type_len |= E1000_ADVTXD_DCMD_VLE; | ||
2163 | |||
2164 | if (tx_flags & IGBVF_TX_FLAGS_TSO) { | ||
2165 | cmd_type_len |= E1000_ADVTXD_DCMD_TSE; | ||
2166 | |||
2167 | /* insert tcp checksum */ | ||
2168 | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; | ||
2169 | |||
2170 | /* insert ip checksum */ | ||
2171 | if (tx_flags & IGBVF_TX_FLAGS_IPV4) | ||
2172 | olinfo_status |= E1000_TXD_POPTS_IXSM << 8; | ||
2173 | |||
2174 | } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) { | ||
2175 | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; | ||
2176 | } | ||
2177 | |||
2178 | olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); | ||
2179 | |||
2180 | i = tx_ring->next_to_use; | ||
2181 | while (count--) { | ||
2182 | buffer_info = &tx_ring->buffer_info[i]; | ||
2183 | tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); | ||
2184 | tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); | ||
2185 | tx_desc->read.cmd_type_len = | ||
2186 | cpu_to_le32(cmd_type_len | buffer_info->length); | ||
2187 | tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); | ||
2188 | i++; | ||
2189 | if (i == tx_ring->count) | ||
2190 | i = 0; | ||
2191 | } | ||
2192 | |||
2193 | tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd); | ||
2194 | /* Force memory writes to complete before letting h/w | ||
2195 | * know there are new descriptors to fetch. (Only | ||
2196 | * applicable for weak-ordered memory model archs, | ||
2197 | * such as IA-64). */ | ||
2198 | wmb(); | ||
2199 | |||
2200 | tx_ring->next_to_use = i; | ||
2201 | writel(i, adapter->hw.hw_addr + tx_ring->tail); | ||
2202 | /* we need this if more than one processor can write to our tail | ||
2203 | * at a time, it syncronizes IO on IA64/Altix systems */ | ||
2204 | mmiowb(); | ||
2205 | } | ||
2206 | |||
2207 | static int igbvf_xmit_frame_ring_adv(struct sk_buff *skb, | ||
2208 | struct net_device *netdev, | ||
2209 | struct igbvf_ring *tx_ring) | ||
2210 | { | ||
2211 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2212 | unsigned int first, tx_flags = 0; | ||
2213 | u8 hdr_len = 0; | ||
2214 | int count = 0; | ||
2215 | int tso = 0; | ||
2216 | |||
2217 | if (test_bit(__IGBVF_DOWN, &adapter->state)) { | ||
2218 | dev_kfree_skb_any(skb); | ||
2219 | return NETDEV_TX_OK; | ||
2220 | } | ||
2221 | |||
2222 | if (skb->len <= 0) { | ||
2223 | dev_kfree_skb_any(skb); | ||
2224 | return NETDEV_TX_OK; | ||
2225 | } | ||
2226 | |||
2227 | /* | ||
2228 | * need: count + 4 desc gap to keep tail from touching | ||
2229 | * + 2 desc gap to keep tail from touching head, | ||
2230 | * + 1 desc for skb->data, | ||
2231 | * + 1 desc for context descriptor, | ||
2232 | * head, otherwise try next time | ||
2233 | */ | ||
2234 | if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) { | ||
2235 | /* this is a hard error */ | ||
2236 | return NETDEV_TX_BUSY; | ||
2237 | } | ||
2238 | |||
2239 | if (adapter->vlgrp && vlan_tx_tag_present(skb)) { | ||
2240 | tx_flags |= IGBVF_TX_FLAGS_VLAN; | ||
2241 | tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT); | ||
2242 | } | ||
2243 | |||
2244 | if (skb->protocol == htons(ETH_P_IP)) | ||
2245 | tx_flags |= IGBVF_TX_FLAGS_IPV4; | ||
2246 | |||
2247 | first = tx_ring->next_to_use; | ||
2248 | |||
2249 | tso = skb_is_gso(skb) ? | ||
2250 | igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0; | ||
2251 | if (unlikely(tso < 0)) { | ||
2252 | dev_kfree_skb_any(skb); | ||
2253 | return NETDEV_TX_OK; | ||
2254 | } | ||
2255 | |||
2256 | if (tso) | ||
2257 | tx_flags |= IGBVF_TX_FLAGS_TSO; | ||
2258 | else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) && | ||
2259 | (skb->ip_summed == CHECKSUM_PARTIAL)) | ||
2260 | tx_flags |= IGBVF_TX_FLAGS_CSUM; | ||
2261 | |||
2262 | /* | ||
2263 | * count reflects descriptors mapped, if 0 then mapping error | ||
2264 | * has occured and we need to rewind the descriptor queue | ||
2265 | */ | ||
2266 | count = igbvf_tx_map_adv(adapter, tx_ring, skb, first); | ||
2267 | |||
2268 | if (count) { | ||
2269 | igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count, | ||
2270 | skb->len, hdr_len); | ||
2271 | netdev->trans_start = jiffies; | ||
2272 | /* Make sure there is space in the ring for the next send. */ | ||
2273 | igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4); | ||
2274 | } else { | ||
2275 | dev_kfree_skb_any(skb); | ||
2276 | tx_ring->buffer_info[first].time_stamp = 0; | ||
2277 | tx_ring->next_to_use = first; | ||
2278 | } | ||
2279 | |||
2280 | return NETDEV_TX_OK; | ||
2281 | } | ||
2282 | |||
2283 | static int igbvf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | ||
2284 | { | ||
2285 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2286 | struct igbvf_ring *tx_ring; | ||
2287 | int retval; | ||
2288 | |||
2289 | if (test_bit(__IGBVF_DOWN, &adapter->state)) { | ||
2290 | dev_kfree_skb_any(skb); | ||
2291 | return NETDEV_TX_OK; | ||
2292 | } | ||
2293 | |||
2294 | tx_ring = &adapter->tx_ring[0]; | ||
2295 | |||
2296 | retval = igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring); | ||
2297 | |||
2298 | return retval; | ||
2299 | } | ||
2300 | |||
2301 | /** | ||
2302 | * igbvf_tx_timeout - Respond to a Tx Hang | ||
2303 | * @netdev: network interface device structure | ||
2304 | **/ | ||
2305 | static void igbvf_tx_timeout(struct net_device *netdev) | ||
2306 | { | ||
2307 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2308 | |||
2309 | /* Do the reset outside of interrupt context */ | ||
2310 | adapter->tx_timeout_count++; | ||
2311 | schedule_work(&adapter->reset_task); | ||
2312 | } | ||
2313 | |||
2314 | static void igbvf_reset_task(struct work_struct *work) | ||
2315 | { | ||
2316 | struct igbvf_adapter *adapter; | ||
2317 | adapter = container_of(work, struct igbvf_adapter, reset_task); | ||
2318 | |||
2319 | igbvf_reinit_locked(adapter); | ||
2320 | } | ||
2321 | |||
2322 | /** | ||
2323 | * igbvf_get_stats - Get System Network Statistics | ||
2324 | * @netdev: network interface device structure | ||
2325 | * | ||
2326 | * Returns the address of the device statistics structure. | ||
2327 | * The statistics are actually updated from the timer callback. | ||
2328 | **/ | ||
2329 | static struct net_device_stats *igbvf_get_stats(struct net_device *netdev) | ||
2330 | { | ||
2331 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2332 | |||
2333 | /* only return the current stats */ | ||
2334 | return &adapter->net_stats; | ||
2335 | } | ||
2336 | |||
2337 | /** | ||
2338 | * igbvf_change_mtu - Change the Maximum Transfer Unit | ||
2339 | * @netdev: network interface device structure | ||
2340 | * @new_mtu: new value for maximum frame size | ||
2341 | * | ||
2342 | * Returns 0 on success, negative on failure | ||
2343 | **/ | ||
2344 | static int igbvf_change_mtu(struct net_device *netdev, int new_mtu) | ||
2345 | { | ||
2346 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2347 | int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; | ||
2348 | |||
2349 | if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { | ||
2350 | dev_err(&adapter->pdev->dev, "Invalid MTU setting\n"); | ||
2351 | return -EINVAL; | ||
2352 | } | ||
2353 | |||
2354 | /* Jumbo frame size limits */ | ||
2355 | if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) { | ||
2356 | if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { | ||
2357 | dev_err(&adapter->pdev->dev, | ||
2358 | "Jumbo Frames not supported.\n"); | ||
2359 | return -EINVAL; | ||
2360 | } | ||
2361 | } | ||
2362 | |||
2363 | #define MAX_STD_JUMBO_FRAME_SIZE 9234 | ||
2364 | if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { | ||
2365 | dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n"); | ||
2366 | return -EINVAL; | ||
2367 | } | ||
2368 | |||
2369 | while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) | ||
2370 | msleep(1); | ||
2371 | /* igbvf_down has a dependency on max_frame_size */ | ||
2372 | adapter->max_frame_size = max_frame; | ||
2373 | if (netif_running(netdev)) | ||
2374 | igbvf_down(adapter); | ||
2375 | |||
2376 | /* | ||
2377 | * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | ||
2378 | * means we reserve 2 more, this pushes us to allocate from the next | ||
2379 | * larger slab size. | ||
2380 | * i.e. RXBUFFER_2048 --> size-4096 slab | ||
2381 | * However with the new *_jumbo_rx* routines, jumbo receives will use | ||
2382 | * fragmented skbs | ||
2383 | */ | ||
2384 | |||
2385 | if (max_frame <= 1024) | ||
2386 | adapter->rx_buffer_len = 1024; | ||
2387 | else if (max_frame <= 2048) | ||
2388 | adapter->rx_buffer_len = 2048; | ||
2389 | else | ||
2390 | #if (PAGE_SIZE / 2) > 16384 | ||
2391 | adapter->rx_buffer_len = 16384; | ||
2392 | #else | ||
2393 | adapter->rx_buffer_len = PAGE_SIZE / 2; | ||
2394 | #endif | ||
2395 | |||
2396 | |||
2397 | /* adjust allocation if LPE protects us, and we aren't using SBP */ | ||
2398 | if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || | ||
2399 | (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) | ||
2400 | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + | ||
2401 | ETH_FCS_LEN; | ||
2402 | |||
2403 | dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n", | ||
2404 | netdev->mtu, new_mtu); | ||
2405 | netdev->mtu = new_mtu; | ||
2406 | |||
2407 | if (netif_running(netdev)) | ||
2408 | igbvf_up(adapter); | ||
2409 | else | ||
2410 | igbvf_reset(adapter); | ||
2411 | |||
2412 | clear_bit(__IGBVF_RESETTING, &adapter->state); | ||
2413 | |||
2414 | return 0; | ||
2415 | } | ||
2416 | |||
2417 | static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
2418 | { | ||
2419 | switch (cmd) { | ||
2420 | default: | ||
2421 | return -EOPNOTSUPP; | ||
2422 | } | ||
2423 | } | ||
2424 | |||
2425 | static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state) | ||
2426 | { | ||
2427 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2428 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2429 | #ifdef CONFIG_PM | ||
2430 | int retval = 0; | ||
2431 | #endif | ||
2432 | |||
2433 | netif_device_detach(netdev); | ||
2434 | |||
2435 | if (netif_running(netdev)) { | ||
2436 | WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); | ||
2437 | igbvf_down(adapter); | ||
2438 | igbvf_free_irq(adapter); | ||
2439 | } | ||
2440 | |||
2441 | #ifdef CONFIG_PM | ||
2442 | retval = pci_save_state(pdev); | ||
2443 | if (retval) | ||
2444 | return retval; | ||
2445 | #endif | ||
2446 | |||
2447 | pci_disable_device(pdev); | ||
2448 | |||
2449 | return 0; | ||
2450 | } | ||
2451 | |||
2452 | #ifdef CONFIG_PM | ||
2453 | static int igbvf_resume(struct pci_dev *pdev) | ||
2454 | { | ||
2455 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2456 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2457 | u32 err; | ||
2458 | |||
2459 | pci_restore_state(pdev); | ||
2460 | err = pci_enable_device_mem(pdev); | ||
2461 | if (err) { | ||
2462 | dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); | ||
2463 | return err; | ||
2464 | } | ||
2465 | |||
2466 | pci_set_master(pdev); | ||
2467 | |||
2468 | if (netif_running(netdev)) { | ||
2469 | err = igbvf_request_irq(adapter); | ||
2470 | if (err) | ||
2471 | return err; | ||
2472 | } | ||
2473 | |||
2474 | igbvf_reset(adapter); | ||
2475 | |||
2476 | if (netif_running(netdev)) | ||
2477 | igbvf_up(adapter); | ||
2478 | |||
2479 | netif_device_attach(netdev); | ||
2480 | |||
2481 | return 0; | ||
2482 | } | ||
2483 | #endif | ||
2484 | |||
2485 | static void igbvf_shutdown(struct pci_dev *pdev) | ||
2486 | { | ||
2487 | igbvf_suspend(pdev, PMSG_SUSPEND); | ||
2488 | } | ||
2489 | |||
2490 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
2491 | /* | ||
2492 | * Polling 'interrupt' - used by things like netconsole to send skbs | ||
2493 | * without having to re-enable interrupts. It's not called while | ||
2494 | * the interrupt routine is executing. | ||
2495 | */ | ||
2496 | static void igbvf_netpoll(struct net_device *netdev) | ||
2497 | { | ||
2498 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2499 | |||
2500 | disable_irq(adapter->pdev->irq); | ||
2501 | |||
2502 | igbvf_clean_tx_irq(adapter->tx_ring); | ||
2503 | |||
2504 | enable_irq(adapter->pdev->irq); | ||
2505 | } | ||
2506 | #endif | ||
2507 | |||
2508 | /** | ||
2509 | * igbvf_io_error_detected - called when PCI error is detected | ||
2510 | * @pdev: Pointer to PCI device | ||
2511 | * @state: The current pci connection state | ||
2512 | * | ||
2513 | * This function is called after a PCI bus error affecting | ||
2514 | * this device has been detected. | ||
2515 | */ | ||
2516 | static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev, | ||
2517 | pci_channel_state_t state) | ||
2518 | { | ||
2519 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2520 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2521 | |||
2522 | netif_device_detach(netdev); | ||
2523 | |||
2524 | if (netif_running(netdev)) | ||
2525 | igbvf_down(adapter); | ||
2526 | pci_disable_device(pdev); | ||
2527 | |||
2528 | /* Request a slot slot reset. */ | ||
2529 | return PCI_ERS_RESULT_NEED_RESET; | ||
2530 | } | ||
2531 | |||
2532 | /** | ||
2533 | * igbvf_io_slot_reset - called after the pci bus has been reset. | ||
2534 | * @pdev: Pointer to PCI device | ||
2535 | * | ||
2536 | * Restart the card from scratch, as if from a cold-boot. Implementation | ||
2537 | * resembles the first-half of the igbvf_resume routine. | ||
2538 | */ | ||
2539 | static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev) | ||
2540 | { | ||
2541 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2542 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2543 | |||
2544 | if (pci_enable_device_mem(pdev)) { | ||
2545 | dev_err(&pdev->dev, | ||
2546 | "Cannot re-enable PCI device after reset.\n"); | ||
2547 | return PCI_ERS_RESULT_DISCONNECT; | ||
2548 | } | ||
2549 | pci_set_master(pdev); | ||
2550 | |||
2551 | igbvf_reset(adapter); | ||
2552 | |||
2553 | return PCI_ERS_RESULT_RECOVERED; | ||
2554 | } | ||
2555 | |||
2556 | /** | ||
2557 | * igbvf_io_resume - called when traffic can start flowing again. | ||
2558 | * @pdev: Pointer to PCI device | ||
2559 | * | ||
2560 | * This callback is called when the error recovery driver tells us that | ||
2561 | * its OK to resume normal operation. Implementation resembles the | ||
2562 | * second-half of the igbvf_resume routine. | ||
2563 | */ | ||
2564 | static void igbvf_io_resume(struct pci_dev *pdev) | ||
2565 | { | ||
2566 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2567 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2568 | |||
2569 | if (netif_running(netdev)) { | ||
2570 | if (igbvf_up(adapter)) { | ||
2571 | dev_err(&pdev->dev, | ||
2572 | "can't bring device back up after reset\n"); | ||
2573 | return; | ||
2574 | } | ||
2575 | } | ||
2576 | |||
2577 | netif_device_attach(netdev); | ||
2578 | } | ||
2579 | |||
2580 | static void igbvf_print_device_info(struct igbvf_adapter *adapter) | ||
2581 | { | ||
2582 | struct e1000_hw *hw = &adapter->hw; | ||
2583 | struct net_device *netdev = adapter->netdev; | ||
2584 | struct pci_dev *pdev = adapter->pdev; | ||
2585 | |||
2586 | dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n"); | ||
2587 | dev_info(&pdev->dev, "Address: %02x:%02x:%02x:%02x:%02x:%02x\n", | ||
2588 | /* MAC address */ | ||
2589 | netdev->dev_addr[0], netdev->dev_addr[1], | ||
2590 | netdev->dev_addr[2], netdev->dev_addr[3], | ||
2591 | netdev->dev_addr[4], netdev->dev_addr[5]); | ||
2592 | dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); | ||
2593 | } | ||
2594 | |||
2595 | static const struct net_device_ops igbvf_netdev_ops = { | ||
2596 | .ndo_open = igbvf_open, | ||
2597 | .ndo_stop = igbvf_close, | ||
2598 | .ndo_start_xmit = igbvf_xmit_frame, | ||
2599 | .ndo_get_stats = igbvf_get_stats, | ||
2600 | .ndo_set_multicast_list = igbvf_set_multi, | ||
2601 | .ndo_set_mac_address = igbvf_set_mac, | ||
2602 | .ndo_change_mtu = igbvf_change_mtu, | ||
2603 | .ndo_do_ioctl = igbvf_ioctl, | ||
2604 | .ndo_tx_timeout = igbvf_tx_timeout, | ||
2605 | .ndo_vlan_rx_register = igbvf_vlan_rx_register, | ||
2606 | .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid, | ||
2607 | .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid, | ||
2608 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
2609 | .ndo_poll_controller = igbvf_netpoll, | ||
2610 | #endif | ||
2611 | }; | ||
2612 | |||
2613 | /** | ||
2614 | * igbvf_probe - Device Initialization Routine | ||
2615 | * @pdev: PCI device information struct | ||
2616 | * @ent: entry in igbvf_pci_tbl | ||
2617 | * | ||
2618 | * Returns 0 on success, negative on failure | ||
2619 | * | ||
2620 | * igbvf_probe initializes an adapter identified by a pci_dev structure. | ||
2621 | * The OS initialization, configuring of the adapter private structure, | ||
2622 | * and a hardware reset occur. | ||
2623 | **/ | ||
2624 | static int __devinit igbvf_probe(struct pci_dev *pdev, | ||
2625 | const struct pci_device_id *ent) | ||
2626 | { | ||
2627 | struct net_device *netdev; | ||
2628 | struct igbvf_adapter *adapter; | ||
2629 | struct e1000_hw *hw; | ||
2630 | const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data]; | ||
2631 | |||
2632 | static int cards_found; | ||
2633 | int err, pci_using_dac; | ||
2634 | |||
2635 | err = pci_enable_device_mem(pdev); | ||
2636 | if (err) | ||
2637 | return err; | ||
2638 | |||
2639 | pci_using_dac = 0; | ||
2640 | err = pci_set_dma_mask(pdev, DMA_64BIT_MASK); | ||
2641 | if (!err) { | ||
2642 | err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); | ||
2643 | if (!err) | ||
2644 | pci_using_dac = 1; | ||
2645 | } else { | ||
2646 | err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); | ||
2647 | if (err) { | ||
2648 | err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); | ||
2649 | if (err) { | ||
2650 | dev_err(&pdev->dev, "No usable DMA " | ||
2651 | "configuration, aborting\n"); | ||
2652 | goto err_dma; | ||
2653 | } | ||
2654 | } | ||
2655 | } | ||
2656 | |||
2657 | err = pci_request_regions(pdev, igbvf_driver_name); | ||
2658 | if (err) | ||
2659 | goto err_pci_reg; | ||
2660 | |||
2661 | pci_set_master(pdev); | ||
2662 | |||
2663 | err = -ENOMEM; | ||
2664 | netdev = alloc_etherdev(sizeof(struct igbvf_adapter)); | ||
2665 | if (!netdev) | ||
2666 | goto err_alloc_etherdev; | ||
2667 | |||
2668 | SET_NETDEV_DEV(netdev, &pdev->dev); | ||
2669 | |||
2670 | pci_set_drvdata(pdev, netdev); | ||
2671 | adapter = netdev_priv(netdev); | ||
2672 | hw = &adapter->hw; | ||
2673 | adapter->netdev = netdev; | ||
2674 | adapter->pdev = pdev; | ||
2675 | adapter->ei = ei; | ||
2676 | adapter->pba = ei->pba; | ||
2677 | adapter->flags = ei->flags; | ||
2678 | adapter->hw.back = adapter; | ||
2679 | adapter->hw.mac.type = ei->mac; | ||
2680 | adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; | ||
2681 | |||
2682 | /* PCI config space info */ | ||
2683 | |||
2684 | hw->vendor_id = pdev->vendor; | ||
2685 | hw->device_id = pdev->device; | ||
2686 | hw->subsystem_vendor_id = pdev->subsystem_vendor; | ||
2687 | hw->subsystem_device_id = pdev->subsystem_device; | ||
2688 | |||
2689 | pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); | ||
2690 | |||
2691 | err = -EIO; | ||
2692 | adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0), | ||
2693 | pci_resource_len(pdev, 0)); | ||
2694 | |||
2695 | if (!adapter->hw.hw_addr) | ||
2696 | goto err_ioremap; | ||
2697 | |||
2698 | if (ei->get_variants) { | ||
2699 | err = ei->get_variants(adapter); | ||
2700 | if (err) | ||
2701 | goto err_ioremap; | ||
2702 | } | ||
2703 | |||
2704 | /* setup adapter struct */ | ||
2705 | err = igbvf_sw_init(adapter); | ||
2706 | if (err) | ||
2707 | goto err_sw_init; | ||
2708 | |||
2709 | /* construct the net_device struct */ | ||
2710 | netdev->netdev_ops = &igbvf_netdev_ops; | ||
2711 | |||
2712 | igbvf_set_ethtool_ops(netdev); | ||
2713 | netdev->watchdog_timeo = 5 * HZ; | ||
2714 | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | ||
2715 | |||
2716 | adapter->bd_number = cards_found++; | ||
2717 | |||
2718 | netdev->features = NETIF_F_SG | | ||
2719 | NETIF_F_IP_CSUM | | ||
2720 | NETIF_F_HW_VLAN_TX | | ||
2721 | NETIF_F_HW_VLAN_RX | | ||
2722 | NETIF_F_HW_VLAN_FILTER; | ||
2723 | |||
2724 | netdev->features |= NETIF_F_IPV6_CSUM; | ||
2725 | netdev->features |= NETIF_F_TSO; | ||
2726 | netdev->features |= NETIF_F_TSO6; | ||
2727 | |||
2728 | if (pci_using_dac) | ||
2729 | netdev->features |= NETIF_F_HIGHDMA; | ||
2730 | |||
2731 | netdev->vlan_features |= NETIF_F_TSO; | ||
2732 | netdev->vlan_features |= NETIF_F_TSO6; | ||
2733 | netdev->vlan_features |= NETIF_F_IP_CSUM; | ||
2734 | netdev->vlan_features |= NETIF_F_IPV6_CSUM; | ||
2735 | netdev->vlan_features |= NETIF_F_SG; | ||
2736 | |||
2737 | /*reset the controller to put the device in a known good state */ | ||
2738 | err = hw->mac.ops.reset_hw(hw); | ||
2739 | if (err) { | ||
2740 | dev_info(&pdev->dev, | ||
2741 | "PF still in reset state, assigning new address\n"); | ||
2742 | random_ether_addr(hw->mac.addr); | ||
2743 | } else { | ||
2744 | err = hw->mac.ops.read_mac_addr(hw); | ||
2745 | if (err) { | ||
2746 | dev_err(&pdev->dev, "Error reading MAC address\n"); | ||
2747 | goto err_hw_init; | ||
2748 | } | ||
2749 | } | ||
2750 | |||
2751 | memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); | ||
2752 | memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); | ||
2753 | |||
2754 | if (!is_valid_ether_addr(netdev->perm_addr)) { | ||
2755 | dev_err(&pdev->dev, "Invalid MAC Address: " | ||
2756 | "%02x:%02x:%02x:%02x:%02x:%02x\n", | ||
2757 | netdev->dev_addr[0], netdev->dev_addr[1], | ||
2758 | netdev->dev_addr[2], netdev->dev_addr[3], | ||
2759 | netdev->dev_addr[4], netdev->dev_addr[5]); | ||
2760 | err = -EIO; | ||
2761 | goto err_hw_init; | ||
2762 | } | ||
2763 | |||
2764 | setup_timer(&adapter->watchdog_timer, &igbvf_watchdog, | ||
2765 | (unsigned long) adapter); | ||
2766 | |||
2767 | INIT_WORK(&adapter->reset_task, igbvf_reset_task); | ||
2768 | INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task); | ||
2769 | |||
2770 | /* ring size defaults */ | ||
2771 | adapter->rx_ring->count = 1024; | ||
2772 | adapter->tx_ring->count = 1024; | ||
2773 | |||
2774 | /* reset the hardware with the new settings */ | ||
2775 | igbvf_reset(adapter); | ||
2776 | |||
2777 | /* tell the stack to leave us alone until igbvf_open() is called */ | ||
2778 | netif_carrier_off(netdev); | ||
2779 | netif_stop_queue(netdev); | ||
2780 | |||
2781 | strcpy(netdev->name, "eth%d"); | ||
2782 | err = register_netdev(netdev); | ||
2783 | if (err) | ||
2784 | goto err_hw_init; | ||
2785 | |||
2786 | igbvf_print_device_info(adapter); | ||
2787 | |||
2788 | igbvf_initialize_last_counter_stats(adapter); | ||
2789 | |||
2790 | return 0; | ||
2791 | |||
2792 | err_hw_init: | ||
2793 | kfree(adapter->tx_ring); | ||
2794 | kfree(adapter->rx_ring); | ||
2795 | err_sw_init: | ||
2796 | igbvf_reset_interrupt_capability(adapter); | ||
2797 | iounmap(adapter->hw.hw_addr); | ||
2798 | err_ioremap: | ||
2799 | free_netdev(netdev); | ||
2800 | err_alloc_etherdev: | ||
2801 | pci_release_regions(pdev); | ||
2802 | err_pci_reg: | ||
2803 | err_dma: | ||
2804 | pci_disable_device(pdev); | ||
2805 | return err; | ||
2806 | } | ||
2807 | |||
2808 | /** | ||
2809 | * igbvf_remove - Device Removal Routine | ||
2810 | * @pdev: PCI device information struct | ||
2811 | * | ||
2812 | * igbvf_remove is called by the PCI subsystem to alert the driver | ||
2813 | * that it should release a PCI device. The could be caused by a | ||
2814 | * Hot-Plug event, or because the driver is going to be removed from | ||
2815 | * memory. | ||
2816 | **/ | ||
2817 | static void __devexit igbvf_remove(struct pci_dev *pdev) | ||
2818 | { | ||
2819 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2820 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2821 | struct e1000_hw *hw = &adapter->hw; | ||
2822 | |||
2823 | /* | ||
2824 | * flush_scheduled work may reschedule our watchdog task, so | ||
2825 | * explicitly disable watchdog tasks from being rescheduled | ||
2826 | */ | ||
2827 | set_bit(__IGBVF_DOWN, &adapter->state); | ||
2828 | del_timer_sync(&adapter->watchdog_timer); | ||
2829 | |||
2830 | flush_scheduled_work(); | ||
2831 | |||
2832 | unregister_netdev(netdev); | ||
2833 | |||
2834 | igbvf_reset_interrupt_capability(adapter); | ||
2835 | |||
2836 | /* | ||
2837 | * it is important to delete the napi struct prior to freeing the | ||
2838 | * rx ring so that you do not end up with null pointer refs | ||
2839 | */ | ||
2840 | netif_napi_del(&adapter->rx_ring->napi); | ||
2841 | kfree(adapter->tx_ring); | ||
2842 | kfree(adapter->rx_ring); | ||
2843 | |||
2844 | iounmap(hw->hw_addr); | ||
2845 | if (hw->flash_address) | ||
2846 | iounmap(hw->flash_address); | ||
2847 | pci_release_regions(pdev); | ||
2848 | |||
2849 | free_netdev(netdev); | ||
2850 | |||
2851 | pci_disable_device(pdev); | ||
2852 | } | ||
2853 | |||
2854 | /* PCI Error Recovery (ERS) */ | ||
2855 | static struct pci_error_handlers igbvf_err_handler = { | ||
2856 | .error_detected = igbvf_io_error_detected, | ||
2857 | .slot_reset = igbvf_io_slot_reset, | ||
2858 | .resume = igbvf_io_resume, | ||
2859 | }; | ||
2860 | |||
2861 | static struct pci_device_id igbvf_pci_tbl[] = { | ||
2862 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf }, | ||
2863 | { } /* terminate list */ | ||
2864 | }; | ||
2865 | MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl); | ||
2866 | |||
2867 | /* PCI Device API Driver */ | ||
2868 | static struct pci_driver igbvf_driver = { | ||
2869 | .name = igbvf_driver_name, | ||
2870 | .id_table = igbvf_pci_tbl, | ||
2871 | .probe = igbvf_probe, | ||
2872 | .remove = __devexit_p(igbvf_remove), | ||
2873 | #ifdef CONFIG_PM | ||
2874 | /* Power Management Hooks */ | ||
2875 | .suspend = igbvf_suspend, | ||
2876 | .resume = igbvf_resume, | ||
2877 | #endif | ||
2878 | .shutdown = igbvf_shutdown, | ||
2879 | .err_handler = &igbvf_err_handler | ||
2880 | }; | ||
2881 | |||
2882 | /** | ||
2883 | * igbvf_init_module - Driver Registration Routine | ||
2884 | * | ||
2885 | * igbvf_init_module is the first routine called when the driver is | ||
2886 | * loaded. All it does is register with the PCI subsystem. | ||
2887 | **/ | ||
2888 | static int __init igbvf_init_module(void) | ||
2889 | { | ||
2890 | int ret; | ||
2891 | printk(KERN_INFO "%s - version %s\n", | ||
2892 | igbvf_driver_string, igbvf_driver_version); | ||
2893 | printk(KERN_INFO "%s\n", igbvf_copyright); | ||
2894 | |||
2895 | ret = pci_register_driver(&igbvf_driver); | ||
2896 | pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name, | ||
2897 | PM_QOS_DEFAULT_VALUE); | ||
2898 | |||
2899 | return ret; | ||
2900 | } | ||
2901 | module_init(igbvf_init_module); | ||
2902 | |||
2903 | /** | ||
2904 | * igbvf_exit_module - Driver Exit Cleanup Routine | ||
2905 | * | ||
2906 | * igbvf_exit_module is called just before the driver is removed | ||
2907 | * from memory. | ||
2908 | **/ | ||
2909 | static void __exit igbvf_exit_module(void) | ||
2910 | { | ||
2911 | pci_unregister_driver(&igbvf_driver); | ||
2912 | pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name); | ||
2913 | } | ||
2914 | module_exit(igbvf_exit_module); | ||
2915 | |||
2916 | |||
2917 | MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); | ||
2918 | MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver"); | ||
2919 | MODULE_LICENSE("GPL"); | ||
2920 | MODULE_VERSION(DRV_VERSION); | ||
2921 | |||
2922 | /* netdev.c */ | ||