diff options
Diffstat (limited to 'drivers/net/igbvf/netdev.c')
-rw-r--r-- | drivers/net/igbvf/netdev.c | 2919 |
1 files changed, 2919 insertions, 0 deletions
diff --git a/drivers/net/igbvf/netdev.c b/drivers/net/igbvf/netdev.c new file mode 100644 index 000000000000..c5648420dedf --- /dev/null +++ b/drivers/net/igbvf/netdev.c | |||
@@ -0,0 +1,2919 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) 82576 Virtual Function Linux driver | ||
4 | Copyright(c) 2009 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #include <linux/module.h> | ||
29 | #include <linux/types.h> | ||
30 | #include <linux/init.h> | ||
31 | #include <linux/pci.h> | ||
32 | #include <linux/vmalloc.h> | ||
33 | #include <linux/pagemap.h> | ||
34 | #include <linux/delay.h> | ||
35 | #include <linux/netdevice.h> | ||
36 | #include <linux/tcp.h> | ||
37 | #include <linux/ipv6.h> | ||
38 | #include <net/checksum.h> | ||
39 | #include <net/ip6_checksum.h> | ||
40 | #include <linux/mii.h> | ||
41 | #include <linux/ethtool.h> | ||
42 | #include <linux/if_vlan.h> | ||
43 | #include <linux/pm_qos_params.h> | ||
44 | |||
45 | #include "igbvf.h" | ||
46 | |||
47 | #define DRV_VERSION "1.0.0-k0" | ||
48 | char igbvf_driver_name[] = "igbvf"; | ||
49 | const char igbvf_driver_version[] = DRV_VERSION; | ||
50 | static const char igbvf_driver_string[] = | ||
51 | "Intel(R) Virtual Function Network Driver"; | ||
52 | static const char igbvf_copyright[] = "Copyright (c) 2009 Intel Corporation."; | ||
53 | |||
54 | static int igbvf_poll(struct napi_struct *napi, int budget); | ||
55 | |||
56 | static struct igbvf_info igbvf_vf_info = { | ||
57 | .mac = e1000_vfadapt, | ||
58 | .flags = FLAG_HAS_JUMBO_FRAMES | ||
59 | | FLAG_RX_CSUM_ENABLED, | ||
60 | .pba = 10, | ||
61 | .init_ops = e1000_init_function_pointers_vf, | ||
62 | }; | ||
63 | |||
64 | static const struct igbvf_info *igbvf_info_tbl[] = { | ||
65 | [board_vf] = &igbvf_vf_info, | ||
66 | }; | ||
67 | |||
68 | /** | ||
69 | * igbvf_desc_unused - calculate if we have unused descriptors | ||
70 | **/ | ||
71 | static int igbvf_desc_unused(struct igbvf_ring *ring) | ||
72 | { | ||
73 | if (ring->next_to_clean > ring->next_to_use) | ||
74 | return ring->next_to_clean - ring->next_to_use - 1; | ||
75 | |||
76 | return ring->count + ring->next_to_clean - ring->next_to_use - 1; | ||
77 | } | ||
78 | |||
79 | /** | ||
80 | * igbvf_receive_skb - helper function to handle Rx indications | ||
81 | * @adapter: board private structure | ||
82 | * @status: descriptor status field as written by hardware | ||
83 | * @vlan: descriptor vlan field as written by hardware (no le/be conversion) | ||
84 | * @skb: pointer to sk_buff to be indicated to stack | ||
85 | **/ | ||
86 | static void igbvf_receive_skb(struct igbvf_adapter *adapter, | ||
87 | struct net_device *netdev, | ||
88 | struct sk_buff *skb, | ||
89 | u32 status, u16 vlan) | ||
90 | { | ||
91 | if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) | ||
92 | vlan_hwaccel_receive_skb(skb, adapter->vlgrp, | ||
93 | le16_to_cpu(vlan) & | ||
94 | E1000_RXD_SPC_VLAN_MASK); | ||
95 | else | ||
96 | netif_receive_skb(skb); | ||
97 | |||
98 | netdev->last_rx = jiffies; | ||
99 | } | ||
100 | |||
101 | static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter, | ||
102 | u32 status_err, struct sk_buff *skb) | ||
103 | { | ||
104 | skb->ip_summed = CHECKSUM_NONE; | ||
105 | |||
106 | /* Ignore Checksum bit is set or checksum is disabled through ethtool */ | ||
107 | if ((status_err & E1000_RXD_STAT_IXSM)) | ||
108 | return; | ||
109 | /* TCP/UDP checksum error bit is set */ | ||
110 | if (status_err & | ||
111 | (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { | ||
112 | /* let the stack verify checksum errors */ | ||
113 | adapter->hw_csum_err++; | ||
114 | return; | ||
115 | } | ||
116 | /* It must be a TCP or UDP packet with a valid checksum */ | ||
117 | if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) | ||
118 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
119 | |||
120 | adapter->hw_csum_good++; | ||
121 | } | ||
122 | |||
123 | /** | ||
124 | * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split | ||
125 | * @rx_ring: address of ring structure to repopulate | ||
126 | * @cleaned_count: number of buffers to repopulate | ||
127 | **/ | ||
128 | static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring, | ||
129 | int cleaned_count) | ||
130 | { | ||
131 | struct igbvf_adapter *adapter = rx_ring->adapter; | ||
132 | struct net_device *netdev = adapter->netdev; | ||
133 | struct pci_dev *pdev = adapter->pdev; | ||
134 | union e1000_adv_rx_desc *rx_desc; | ||
135 | struct igbvf_buffer *buffer_info; | ||
136 | struct sk_buff *skb; | ||
137 | unsigned int i; | ||
138 | int bufsz; | ||
139 | |||
140 | i = rx_ring->next_to_use; | ||
141 | buffer_info = &rx_ring->buffer_info[i]; | ||
142 | |||
143 | if (adapter->rx_ps_hdr_size) | ||
144 | bufsz = adapter->rx_ps_hdr_size; | ||
145 | else | ||
146 | bufsz = adapter->rx_buffer_len; | ||
147 | bufsz += NET_IP_ALIGN; | ||
148 | |||
149 | while (cleaned_count--) { | ||
150 | rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); | ||
151 | |||
152 | if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) { | ||
153 | if (!buffer_info->page) { | ||
154 | buffer_info->page = alloc_page(GFP_ATOMIC); | ||
155 | if (!buffer_info->page) { | ||
156 | adapter->alloc_rx_buff_failed++; | ||
157 | goto no_buffers; | ||
158 | } | ||
159 | buffer_info->page_offset = 0; | ||
160 | } else { | ||
161 | buffer_info->page_offset ^= PAGE_SIZE / 2; | ||
162 | } | ||
163 | buffer_info->page_dma = | ||
164 | pci_map_page(pdev, buffer_info->page, | ||
165 | buffer_info->page_offset, | ||
166 | PAGE_SIZE / 2, | ||
167 | PCI_DMA_FROMDEVICE); | ||
168 | } | ||
169 | |||
170 | if (!buffer_info->skb) { | ||
171 | skb = netdev_alloc_skb(netdev, bufsz); | ||
172 | if (!skb) { | ||
173 | adapter->alloc_rx_buff_failed++; | ||
174 | goto no_buffers; | ||
175 | } | ||
176 | |||
177 | /* Make buffer alignment 2 beyond a 16 byte boundary | ||
178 | * this will result in a 16 byte aligned IP header after | ||
179 | * the 14 byte MAC header is removed | ||
180 | */ | ||
181 | skb_reserve(skb, NET_IP_ALIGN); | ||
182 | |||
183 | buffer_info->skb = skb; | ||
184 | buffer_info->dma = pci_map_single(pdev, skb->data, | ||
185 | bufsz, | ||
186 | PCI_DMA_FROMDEVICE); | ||
187 | } | ||
188 | /* Refresh the desc even if buffer_addrs didn't change because | ||
189 | * each write-back erases this info. */ | ||
190 | if (adapter->rx_ps_hdr_size) { | ||
191 | rx_desc->read.pkt_addr = | ||
192 | cpu_to_le64(buffer_info->page_dma); | ||
193 | rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); | ||
194 | } else { | ||
195 | rx_desc->read.pkt_addr = | ||
196 | cpu_to_le64(buffer_info->dma); | ||
197 | rx_desc->read.hdr_addr = 0; | ||
198 | } | ||
199 | |||
200 | i++; | ||
201 | if (i == rx_ring->count) | ||
202 | i = 0; | ||
203 | buffer_info = &rx_ring->buffer_info[i]; | ||
204 | } | ||
205 | |||
206 | no_buffers: | ||
207 | if (rx_ring->next_to_use != i) { | ||
208 | rx_ring->next_to_use = i; | ||
209 | if (i == 0) | ||
210 | i = (rx_ring->count - 1); | ||
211 | else | ||
212 | i--; | ||
213 | |||
214 | /* Force memory writes to complete before letting h/w | ||
215 | * know there are new descriptors to fetch. (Only | ||
216 | * applicable for weak-ordered memory model archs, | ||
217 | * such as IA-64). */ | ||
218 | wmb(); | ||
219 | writel(i, adapter->hw.hw_addr + rx_ring->tail); | ||
220 | } | ||
221 | } | ||
222 | |||
223 | /** | ||
224 | * igbvf_clean_rx_irq - Send received data up the network stack; legacy | ||
225 | * @adapter: board private structure | ||
226 | * | ||
227 | * the return value indicates whether actual cleaning was done, there | ||
228 | * is no guarantee that everything was cleaned | ||
229 | **/ | ||
230 | static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter, | ||
231 | int *work_done, int work_to_do) | ||
232 | { | ||
233 | struct igbvf_ring *rx_ring = adapter->rx_ring; | ||
234 | struct net_device *netdev = adapter->netdev; | ||
235 | struct pci_dev *pdev = adapter->pdev; | ||
236 | union e1000_adv_rx_desc *rx_desc, *next_rxd; | ||
237 | struct igbvf_buffer *buffer_info, *next_buffer; | ||
238 | struct sk_buff *skb; | ||
239 | bool cleaned = false; | ||
240 | int cleaned_count = 0; | ||
241 | unsigned int total_bytes = 0, total_packets = 0; | ||
242 | unsigned int i; | ||
243 | u32 length, hlen, staterr; | ||
244 | |||
245 | i = rx_ring->next_to_clean; | ||
246 | rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i); | ||
247 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
248 | |||
249 | while (staterr & E1000_RXD_STAT_DD) { | ||
250 | if (*work_done >= work_to_do) | ||
251 | break; | ||
252 | (*work_done)++; | ||
253 | |||
254 | buffer_info = &rx_ring->buffer_info[i]; | ||
255 | |||
256 | /* HW will not DMA in data larger than the given buffer, even | ||
257 | * if it parses the (NFS, of course) header to be larger. In | ||
258 | * that case, it fills the header buffer and spills the rest | ||
259 | * into the page. | ||
260 | */ | ||
261 | hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) & | ||
262 | E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT; | ||
263 | if (hlen > adapter->rx_ps_hdr_size) | ||
264 | hlen = adapter->rx_ps_hdr_size; | ||
265 | |||
266 | length = le16_to_cpu(rx_desc->wb.upper.length); | ||
267 | cleaned = true; | ||
268 | cleaned_count++; | ||
269 | |||
270 | skb = buffer_info->skb; | ||
271 | prefetch(skb->data - NET_IP_ALIGN); | ||
272 | buffer_info->skb = NULL; | ||
273 | if (!adapter->rx_ps_hdr_size) { | ||
274 | pci_unmap_single(pdev, buffer_info->dma, | ||
275 | adapter->rx_buffer_len, | ||
276 | PCI_DMA_FROMDEVICE); | ||
277 | buffer_info->dma = 0; | ||
278 | skb_put(skb, length); | ||
279 | goto send_up; | ||
280 | } | ||
281 | |||
282 | if (!skb_shinfo(skb)->nr_frags) { | ||
283 | pci_unmap_single(pdev, buffer_info->dma, | ||
284 | adapter->rx_ps_hdr_size + NET_IP_ALIGN, | ||
285 | PCI_DMA_FROMDEVICE); | ||
286 | skb_put(skb, hlen); | ||
287 | } | ||
288 | |||
289 | if (length) { | ||
290 | pci_unmap_page(pdev, buffer_info->page_dma, | ||
291 | PAGE_SIZE / 2, | ||
292 | PCI_DMA_FROMDEVICE); | ||
293 | buffer_info->page_dma = 0; | ||
294 | |||
295 | skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++, | ||
296 | buffer_info->page, | ||
297 | buffer_info->page_offset, | ||
298 | length); | ||
299 | |||
300 | if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) || | ||
301 | (page_count(buffer_info->page) != 1)) | ||
302 | buffer_info->page = NULL; | ||
303 | else | ||
304 | get_page(buffer_info->page); | ||
305 | |||
306 | skb->len += length; | ||
307 | skb->data_len += length; | ||
308 | skb->truesize += length; | ||
309 | } | ||
310 | send_up: | ||
311 | i++; | ||
312 | if (i == rx_ring->count) | ||
313 | i = 0; | ||
314 | next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i); | ||
315 | prefetch(next_rxd); | ||
316 | next_buffer = &rx_ring->buffer_info[i]; | ||
317 | |||
318 | if (!(staterr & E1000_RXD_STAT_EOP)) { | ||
319 | buffer_info->skb = next_buffer->skb; | ||
320 | buffer_info->dma = next_buffer->dma; | ||
321 | next_buffer->skb = skb; | ||
322 | next_buffer->dma = 0; | ||
323 | goto next_desc; | ||
324 | } | ||
325 | |||
326 | if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { | ||
327 | dev_kfree_skb_irq(skb); | ||
328 | goto next_desc; | ||
329 | } | ||
330 | |||
331 | total_bytes += skb->len; | ||
332 | total_packets++; | ||
333 | |||
334 | igbvf_rx_checksum_adv(adapter, staterr, skb); | ||
335 | |||
336 | skb->protocol = eth_type_trans(skb, netdev); | ||
337 | |||
338 | igbvf_receive_skb(adapter, netdev, skb, staterr, | ||
339 | rx_desc->wb.upper.vlan); | ||
340 | |||
341 | netdev->last_rx = jiffies; | ||
342 | |||
343 | next_desc: | ||
344 | rx_desc->wb.upper.status_error = 0; | ||
345 | |||
346 | /* return some buffers to hardware, one at a time is too slow */ | ||
347 | if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) { | ||
348 | igbvf_alloc_rx_buffers(rx_ring, cleaned_count); | ||
349 | cleaned_count = 0; | ||
350 | } | ||
351 | |||
352 | /* use prefetched values */ | ||
353 | rx_desc = next_rxd; | ||
354 | buffer_info = next_buffer; | ||
355 | |||
356 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
357 | } | ||
358 | |||
359 | rx_ring->next_to_clean = i; | ||
360 | cleaned_count = igbvf_desc_unused(rx_ring); | ||
361 | |||
362 | if (cleaned_count) | ||
363 | igbvf_alloc_rx_buffers(rx_ring, cleaned_count); | ||
364 | |||
365 | adapter->total_rx_packets += total_packets; | ||
366 | adapter->total_rx_bytes += total_bytes; | ||
367 | adapter->net_stats.rx_bytes += total_bytes; | ||
368 | adapter->net_stats.rx_packets += total_packets; | ||
369 | return cleaned; | ||
370 | } | ||
371 | |||
372 | static void igbvf_put_txbuf(struct igbvf_adapter *adapter, | ||
373 | struct igbvf_buffer *buffer_info) | ||
374 | { | ||
375 | buffer_info->dma = 0; | ||
376 | if (buffer_info->skb) { | ||
377 | skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb, | ||
378 | DMA_TO_DEVICE); | ||
379 | dev_kfree_skb_any(buffer_info->skb); | ||
380 | buffer_info->skb = NULL; | ||
381 | } | ||
382 | buffer_info->time_stamp = 0; | ||
383 | } | ||
384 | |||
385 | static void igbvf_print_tx_hang(struct igbvf_adapter *adapter) | ||
386 | { | ||
387 | struct igbvf_ring *tx_ring = adapter->tx_ring; | ||
388 | unsigned int i = tx_ring->next_to_clean; | ||
389 | unsigned int eop = tx_ring->buffer_info[i].next_to_watch; | ||
390 | union e1000_adv_tx_desc *eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop); | ||
391 | |||
392 | /* detected Tx unit hang */ | ||
393 | dev_err(&adapter->pdev->dev, | ||
394 | "Detected Tx Unit Hang:\n" | ||
395 | " TDH <%x>\n" | ||
396 | " TDT <%x>\n" | ||
397 | " next_to_use <%x>\n" | ||
398 | " next_to_clean <%x>\n" | ||
399 | "buffer_info[next_to_clean]:\n" | ||
400 | " time_stamp <%lx>\n" | ||
401 | " next_to_watch <%x>\n" | ||
402 | " jiffies <%lx>\n" | ||
403 | " next_to_watch.status <%x>\n", | ||
404 | readl(adapter->hw.hw_addr + tx_ring->head), | ||
405 | readl(adapter->hw.hw_addr + tx_ring->tail), | ||
406 | tx_ring->next_to_use, | ||
407 | tx_ring->next_to_clean, | ||
408 | tx_ring->buffer_info[eop].time_stamp, | ||
409 | eop, | ||
410 | jiffies, | ||
411 | eop_desc->wb.status); | ||
412 | } | ||
413 | |||
414 | /** | ||
415 | * igbvf_setup_tx_resources - allocate Tx resources (Descriptors) | ||
416 | * @adapter: board private structure | ||
417 | * | ||
418 | * Return 0 on success, negative on failure | ||
419 | **/ | ||
420 | int igbvf_setup_tx_resources(struct igbvf_adapter *adapter, | ||
421 | struct igbvf_ring *tx_ring) | ||
422 | { | ||
423 | struct pci_dev *pdev = adapter->pdev; | ||
424 | int size; | ||
425 | |||
426 | size = sizeof(struct igbvf_buffer) * tx_ring->count; | ||
427 | tx_ring->buffer_info = vmalloc(size); | ||
428 | if (!tx_ring->buffer_info) | ||
429 | goto err; | ||
430 | memset(tx_ring->buffer_info, 0, size); | ||
431 | |||
432 | /* round up to nearest 4K */ | ||
433 | tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); | ||
434 | tx_ring->size = ALIGN(tx_ring->size, 4096); | ||
435 | |||
436 | tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size, | ||
437 | &tx_ring->dma); | ||
438 | |||
439 | if (!tx_ring->desc) | ||
440 | goto err; | ||
441 | |||
442 | tx_ring->adapter = adapter; | ||
443 | tx_ring->next_to_use = 0; | ||
444 | tx_ring->next_to_clean = 0; | ||
445 | |||
446 | return 0; | ||
447 | err: | ||
448 | vfree(tx_ring->buffer_info); | ||
449 | dev_err(&adapter->pdev->dev, | ||
450 | "Unable to allocate memory for the transmit descriptor ring\n"); | ||
451 | return -ENOMEM; | ||
452 | } | ||
453 | |||
454 | /** | ||
455 | * igbvf_setup_rx_resources - allocate Rx resources (Descriptors) | ||
456 | * @adapter: board private structure | ||
457 | * | ||
458 | * Returns 0 on success, negative on failure | ||
459 | **/ | ||
460 | int igbvf_setup_rx_resources(struct igbvf_adapter *adapter, | ||
461 | struct igbvf_ring *rx_ring) | ||
462 | { | ||
463 | struct pci_dev *pdev = adapter->pdev; | ||
464 | int size, desc_len; | ||
465 | |||
466 | size = sizeof(struct igbvf_buffer) * rx_ring->count; | ||
467 | rx_ring->buffer_info = vmalloc(size); | ||
468 | if (!rx_ring->buffer_info) | ||
469 | goto err; | ||
470 | memset(rx_ring->buffer_info, 0, size); | ||
471 | |||
472 | desc_len = sizeof(union e1000_adv_rx_desc); | ||
473 | |||
474 | /* Round up to nearest 4K */ | ||
475 | rx_ring->size = rx_ring->count * desc_len; | ||
476 | rx_ring->size = ALIGN(rx_ring->size, 4096); | ||
477 | |||
478 | rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size, | ||
479 | &rx_ring->dma); | ||
480 | |||
481 | if (!rx_ring->desc) | ||
482 | goto err; | ||
483 | |||
484 | rx_ring->next_to_clean = 0; | ||
485 | rx_ring->next_to_use = 0; | ||
486 | |||
487 | rx_ring->adapter = adapter; | ||
488 | |||
489 | return 0; | ||
490 | |||
491 | err: | ||
492 | vfree(rx_ring->buffer_info); | ||
493 | rx_ring->buffer_info = NULL; | ||
494 | dev_err(&adapter->pdev->dev, | ||
495 | "Unable to allocate memory for the receive descriptor ring\n"); | ||
496 | return -ENOMEM; | ||
497 | } | ||
498 | |||
499 | /** | ||
500 | * igbvf_clean_tx_ring - Free Tx Buffers | ||
501 | * @tx_ring: ring to be cleaned | ||
502 | **/ | ||
503 | static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring) | ||
504 | { | ||
505 | struct igbvf_adapter *adapter = tx_ring->adapter; | ||
506 | struct igbvf_buffer *buffer_info; | ||
507 | unsigned long size; | ||
508 | unsigned int i; | ||
509 | |||
510 | if (!tx_ring->buffer_info) | ||
511 | return; | ||
512 | |||
513 | /* Free all the Tx ring sk_buffs */ | ||
514 | for (i = 0; i < tx_ring->count; i++) { | ||
515 | buffer_info = &tx_ring->buffer_info[i]; | ||
516 | igbvf_put_txbuf(adapter, buffer_info); | ||
517 | } | ||
518 | |||
519 | size = sizeof(struct igbvf_buffer) * tx_ring->count; | ||
520 | memset(tx_ring->buffer_info, 0, size); | ||
521 | |||
522 | /* Zero out the descriptor ring */ | ||
523 | memset(tx_ring->desc, 0, tx_ring->size); | ||
524 | |||
525 | tx_ring->next_to_use = 0; | ||
526 | tx_ring->next_to_clean = 0; | ||
527 | |||
528 | writel(0, adapter->hw.hw_addr + tx_ring->head); | ||
529 | writel(0, adapter->hw.hw_addr + tx_ring->tail); | ||
530 | } | ||
531 | |||
532 | /** | ||
533 | * igbvf_free_tx_resources - Free Tx Resources per Queue | ||
534 | * @tx_ring: ring to free resources from | ||
535 | * | ||
536 | * Free all transmit software resources | ||
537 | **/ | ||
538 | void igbvf_free_tx_resources(struct igbvf_ring *tx_ring) | ||
539 | { | ||
540 | struct pci_dev *pdev = tx_ring->adapter->pdev; | ||
541 | |||
542 | igbvf_clean_tx_ring(tx_ring); | ||
543 | |||
544 | vfree(tx_ring->buffer_info); | ||
545 | tx_ring->buffer_info = NULL; | ||
546 | |||
547 | pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma); | ||
548 | |||
549 | tx_ring->desc = NULL; | ||
550 | } | ||
551 | |||
552 | /** | ||
553 | * igbvf_clean_rx_ring - Free Rx Buffers per Queue | ||
554 | * @adapter: board private structure | ||
555 | **/ | ||
556 | static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring) | ||
557 | { | ||
558 | struct igbvf_adapter *adapter = rx_ring->adapter; | ||
559 | struct igbvf_buffer *buffer_info; | ||
560 | struct pci_dev *pdev = adapter->pdev; | ||
561 | unsigned long size; | ||
562 | unsigned int i; | ||
563 | |||
564 | if (!rx_ring->buffer_info) | ||
565 | return; | ||
566 | |||
567 | /* Free all the Rx ring sk_buffs */ | ||
568 | for (i = 0; i < rx_ring->count; i++) { | ||
569 | buffer_info = &rx_ring->buffer_info[i]; | ||
570 | if (buffer_info->dma) { | ||
571 | if (adapter->rx_ps_hdr_size){ | ||
572 | pci_unmap_single(pdev, buffer_info->dma, | ||
573 | adapter->rx_ps_hdr_size, | ||
574 | PCI_DMA_FROMDEVICE); | ||
575 | } else { | ||
576 | pci_unmap_single(pdev, buffer_info->dma, | ||
577 | adapter->rx_buffer_len, | ||
578 | PCI_DMA_FROMDEVICE); | ||
579 | } | ||
580 | buffer_info->dma = 0; | ||
581 | } | ||
582 | |||
583 | if (buffer_info->skb) { | ||
584 | dev_kfree_skb(buffer_info->skb); | ||
585 | buffer_info->skb = NULL; | ||
586 | } | ||
587 | |||
588 | if (buffer_info->page) { | ||
589 | if (buffer_info->page_dma) | ||
590 | pci_unmap_page(pdev, buffer_info->page_dma, | ||
591 | PAGE_SIZE / 2, | ||
592 | PCI_DMA_FROMDEVICE); | ||
593 | put_page(buffer_info->page); | ||
594 | buffer_info->page = NULL; | ||
595 | buffer_info->page_dma = 0; | ||
596 | buffer_info->page_offset = 0; | ||
597 | } | ||
598 | } | ||
599 | |||
600 | size = sizeof(struct igbvf_buffer) * rx_ring->count; | ||
601 | memset(rx_ring->buffer_info, 0, size); | ||
602 | |||
603 | /* Zero out the descriptor ring */ | ||
604 | memset(rx_ring->desc, 0, rx_ring->size); | ||
605 | |||
606 | rx_ring->next_to_clean = 0; | ||
607 | rx_ring->next_to_use = 0; | ||
608 | |||
609 | writel(0, adapter->hw.hw_addr + rx_ring->head); | ||
610 | writel(0, adapter->hw.hw_addr + rx_ring->tail); | ||
611 | } | ||
612 | |||
613 | /** | ||
614 | * igbvf_free_rx_resources - Free Rx Resources | ||
615 | * @rx_ring: ring to clean the resources from | ||
616 | * | ||
617 | * Free all receive software resources | ||
618 | **/ | ||
619 | |||
620 | void igbvf_free_rx_resources(struct igbvf_ring *rx_ring) | ||
621 | { | ||
622 | struct pci_dev *pdev = rx_ring->adapter->pdev; | ||
623 | |||
624 | igbvf_clean_rx_ring(rx_ring); | ||
625 | |||
626 | vfree(rx_ring->buffer_info); | ||
627 | rx_ring->buffer_info = NULL; | ||
628 | |||
629 | dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, | ||
630 | rx_ring->dma); | ||
631 | rx_ring->desc = NULL; | ||
632 | } | ||
633 | |||
634 | /** | ||
635 | * igbvf_update_itr - update the dynamic ITR value based on statistics | ||
636 | * @adapter: pointer to adapter | ||
637 | * @itr_setting: current adapter->itr | ||
638 | * @packets: the number of packets during this measurement interval | ||
639 | * @bytes: the number of bytes during this measurement interval | ||
640 | * | ||
641 | * Stores a new ITR value based on packets and byte | ||
642 | * counts during the last interrupt. The advantage of per interrupt | ||
643 | * computation is faster updates and more accurate ITR for the current | ||
644 | * traffic pattern. Constants in this function were computed | ||
645 | * based on theoretical maximum wire speed and thresholds were set based | ||
646 | * on testing data as well as attempting to minimize response time | ||
647 | * while increasing bulk throughput. This functionality is controlled | ||
648 | * by the InterruptThrottleRate module parameter. | ||
649 | **/ | ||
650 | static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter, | ||
651 | u16 itr_setting, int packets, | ||
652 | int bytes) | ||
653 | { | ||
654 | unsigned int retval = itr_setting; | ||
655 | |||
656 | if (packets == 0) | ||
657 | goto update_itr_done; | ||
658 | |||
659 | switch (itr_setting) { | ||
660 | case lowest_latency: | ||
661 | /* handle TSO and jumbo frames */ | ||
662 | if (bytes/packets > 8000) | ||
663 | retval = bulk_latency; | ||
664 | else if ((packets < 5) && (bytes > 512)) | ||
665 | retval = low_latency; | ||
666 | break; | ||
667 | case low_latency: /* 50 usec aka 20000 ints/s */ | ||
668 | if (bytes > 10000) { | ||
669 | /* this if handles the TSO accounting */ | ||
670 | if (bytes/packets > 8000) | ||
671 | retval = bulk_latency; | ||
672 | else if ((packets < 10) || ((bytes/packets) > 1200)) | ||
673 | retval = bulk_latency; | ||
674 | else if ((packets > 35)) | ||
675 | retval = lowest_latency; | ||
676 | } else if (bytes/packets > 2000) { | ||
677 | retval = bulk_latency; | ||
678 | } else if (packets <= 2 && bytes < 512) { | ||
679 | retval = lowest_latency; | ||
680 | } | ||
681 | break; | ||
682 | case bulk_latency: /* 250 usec aka 4000 ints/s */ | ||
683 | if (bytes > 25000) { | ||
684 | if (packets > 35) | ||
685 | retval = low_latency; | ||
686 | } else if (bytes < 6000) { | ||
687 | retval = low_latency; | ||
688 | } | ||
689 | break; | ||
690 | } | ||
691 | |||
692 | update_itr_done: | ||
693 | return retval; | ||
694 | } | ||
695 | |||
696 | static void igbvf_set_itr(struct igbvf_adapter *adapter) | ||
697 | { | ||
698 | struct e1000_hw *hw = &adapter->hw; | ||
699 | u16 current_itr; | ||
700 | u32 new_itr = adapter->itr; | ||
701 | |||
702 | adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr, | ||
703 | adapter->total_tx_packets, | ||
704 | adapter->total_tx_bytes); | ||
705 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
706 | if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) | ||
707 | adapter->tx_itr = low_latency; | ||
708 | |||
709 | adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr, | ||
710 | adapter->total_rx_packets, | ||
711 | adapter->total_rx_bytes); | ||
712 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
713 | if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) | ||
714 | adapter->rx_itr = low_latency; | ||
715 | |||
716 | current_itr = max(adapter->rx_itr, adapter->tx_itr); | ||
717 | |||
718 | switch (current_itr) { | ||
719 | /* counts and packets in update_itr are dependent on these numbers */ | ||
720 | case lowest_latency: | ||
721 | new_itr = 70000; | ||
722 | break; | ||
723 | case low_latency: | ||
724 | new_itr = 20000; /* aka hwitr = ~200 */ | ||
725 | break; | ||
726 | case bulk_latency: | ||
727 | new_itr = 4000; | ||
728 | break; | ||
729 | default: | ||
730 | break; | ||
731 | } | ||
732 | |||
733 | if (new_itr != adapter->itr) { | ||
734 | /* | ||
735 | * this attempts to bias the interrupt rate towards Bulk | ||
736 | * by adding intermediate steps when interrupt rate is | ||
737 | * increasing | ||
738 | */ | ||
739 | new_itr = new_itr > adapter->itr ? | ||
740 | min(adapter->itr + (new_itr >> 2), new_itr) : | ||
741 | new_itr; | ||
742 | adapter->itr = new_itr; | ||
743 | adapter->rx_ring->itr_val = 1952; | ||
744 | |||
745 | if (adapter->msix_entries) | ||
746 | adapter->rx_ring->set_itr = 1; | ||
747 | else | ||
748 | ew32(ITR, 1952); | ||
749 | } | ||
750 | } | ||
751 | |||
752 | /** | ||
753 | * igbvf_clean_tx_irq - Reclaim resources after transmit completes | ||
754 | * @adapter: board private structure | ||
755 | * returns true if ring is completely cleaned | ||
756 | **/ | ||
757 | static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring) | ||
758 | { | ||
759 | struct igbvf_adapter *adapter = tx_ring->adapter; | ||
760 | struct e1000_hw *hw = &adapter->hw; | ||
761 | struct net_device *netdev = adapter->netdev; | ||
762 | struct igbvf_buffer *buffer_info; | ||
763 | struct sk_buff *skb; | ||
764 | union e1000_adv_tx_desc *tx_desc, *eop_desc; | ||
765 | unsigned int total_bytes = 0, total_packets = 0; | ||
766 | unsigned int i, eop, count = 0; | ||
767 | bool cleaned = false; | ||
768 | |||
769 | i = tx_ring->next_to_clean; | ||
770 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
771 | eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop); | ||
772 | |||
773 | while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) && | ||
774 | (count < tx_ring->count)) { | ||
775 | for (cleaned = false; !cleaned; count++) { | ||
776 | tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); | ||
777 | buffer_info = &tx_ring->buffer_info[i]; | ||
778 | cleaned = (i == eop); | ||
779 | skb = buffer_info->skb; | ||
780 | |||
781 | if (skb) { | ||
782 | unsigned int segs, bytecount; | ||
783 | |||
784 | /* gso_segs is currently only valid for tcp */ | ||
785 | segs = skb_shinfo(skb)->gso_segs ?: 1; | ||
786 | /* multiply data chunks by size of headers */ | ||
787 | bytecount = ((segs - 1) * skb_headlen(skb)) + | ||
788 | skb->len; | ||
789 | total_packets += segs; | ||
790 | total_bytes += bytecount; | ||
791 | } | ||
792 | |||
793 | igbvf_put_txbuf(adapter, buffer_info); | ||
794 | tx_desc->wb.status = 0; | ||
795 | |||
796 | i++; | ||
797 | if (i == tx_ring->count) | ||
798 | i = 0; | ||
799 | } | ||
800 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
801 | eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop); | ||
802 | } | ||
803 | |||
804 | tx_ring->next_to_clean = i; | ||
805 | |||
806 | if (unlikely(count && | ||
807 | netif_carrier_ok(netdev) && | ||
808 | igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) { | ||
809 | /* Make sure that anybody stopping the queue after this | ||
810 | * sees the new next_to_clean. | ||
811 | */ | ||
812 | smp_mb(); | ||
813 | if (netif_queue_stopped(netdev) && | ||
814 | !(test_bit(__IGBVF_DOWN, &adapter->state))) { | ||
815 | netif_wake_queue(netdev); | ||
816 | ++adapter->restart_queue; | ||
817 | } | ||
818 | } | ||
819 | |||
820 | if (adapter->detect_tx_hung) { | ||
821 | /* Detect a transmit hang in hardware, this serializes the | ||
822 | * check with the clearing of time_stamp and movement of i */ | ||
823 | adapter->detect_tx_hung = false; | ||
824 | if (tx_ring->buffer_info[i].time_stamp && | ||
825 | time_after(jiffies, tx_ring->buffer_info[i].time_stamp + | ||
826 | (adapter->tx_timeout_factor * HZ)) | ||
827 | && !(er32(STATUS) & E1000_STATUS_TXOFF)) { | ||
828 | |||
829 | tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); | ||
830 | /* detected Tx unit hang */ | ||
831 | igbvf_print_tx_hang(adapter); | ||
832 | |||
833 | netif_stop_queue(netdev); | ||
834 | } | ||
835 | } | ||
836 | adapter->net_stats.tx_bytes += total_bytes; | ||
837 | adapter->net_stats.tx_packets += total_packets; | ||
838 | return (count < tx_ring->count); | ||
839 | } | ||
840 | |||
841 | static irqreturn_t igbvf_msix_other(int irq, void *data) | ||
842 | { | ||
843 | struct net_device *netdev = data; | ||
844 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
845 | struct e1000_hw *hw = &adapter->hw; | ||
846 | |||
847 | adapter->int_counter1++; | ||
848 | |||
849 | netif_carrier_off(netdev); | ||
850 | hw->mac.get_link_status = 1; | ||
851 | if (!test_bit(__IGBVF_DOWN, &adapter->state)) | ||
852 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
853 | |||
854 | ew32(EIMS, adapter->eims_other); | ||
855 | |||
856 | return IRQ_HANDLED; | ||
857 | } | ||
858 | |||
859 | static irqreturn_t igbvf_intr_msix_tx(int irq, void *data) | ||
860 | { | ||
861 | struct net_device *netdev = data; | ||
862 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
863 | struct e1000_hw *hw = &adapter->hw; | ||
864 | struct igbvf_ring *tx_ring = adapter->tx_ring; | ||
865 | |||
866 | |||
867 | adapter->total_tx_bytes = 0; | ||
868 | adapter->total_tx_packets = 0; | ||
869 | |||
870 | /* auto mask will automatically reenable the interrupt when we write | ||
871 | * EICS */ | ||
872 | if (!igbvf_clean_tx_irq(tx_ring)) | ||
873 | /* Ring was not completely cleaned, so fire another interrupt */ | ||
874 | ew32(EICS, tx_ring->eims_value); | ||
875 | else | ||
876 | ew32(EIMS, tx_ring->eims_value); | ||
877 | |||
878 | return IRQ_HANDLED; | ||
879 | } | ||
880 | |||
881 | static irqreturn_t igbvf_intr_msix_rx(int irq, void *data) | ||
882 | { | ||
883 | struct net_device *netdev = data; | ||
884 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
885 | |||
886 | adapter->int_counter0++; | ||
887 | |||
888 | /* Write the ITR value calculated at the end of the | ||
889 | * previous interrupt. | ||
890 | */ | ||
891 | if (adapter->rx_ring->set_itr) { | ||
892 | writel(adapter->rx_ring->itr_val, | ||
893 | adapter->hw.hw_addr + adapter->rx_ring->itr_register); | ||
894 | adapter->rx_ring->set_itr = 0; | ||
895 | } | ||
896 | |||
897 | if (napi_schedule_prep(&adapter->rx_ring->napi)) { | ||
898 | adapter->total_rx_bytes = 0; | ||
899 | adapter->total_rx_packets = 0; | ||
900 | __napi_schedule(&adapter->rx_ring->napi); | ||
901 | } | ||
902 | |||
903 | return IRQ_HANDLED; | ||
904 | } | ||
905 | |||
906 | #define IGBVF_NO_QUEUE -1 | ||
907 | |||
908 | static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue, | ||
909 | int tx_queue, int msix_vector) | ||
910 | { | ||
911 | struct e1000_hw *hw = &adapter->hw; | ||
912 | u32 ivar, index; | ||
913 | |||
914 | /* 82576 uses a table-based method for assigning vectors. | ||
915 | Each queue has a single entry in the table to which we write | ||
916 | a vector number along with a "valid" bit. Sadly, the layout | ||
917 | of the table is somewhat counterintuitive. */ | ||
918 | if (rx_queue > IGBVF_NO_QUEUE) { | ||
919 | index = (rx_queue >> 1); | ||
920 | ivar = array_er32(IVAR0, index); | ||
921 | if (rx_queue & 0x1) { | ||
922 | /* vector goes into third byte of register */ | ||
923 | ivar = ivar & 0xFF00FFFF; | ||
924 | ivar |= (msix_vector | E1000_IVAR_VALID) << 16; | ||
925 | } else { | ||
926 | /* vector goes into low byte of register */ | ||
927 | ivar = ivar & 0xFFFFFF00; | ||
928 | ivar |= msix_vector | E1000_IVAR_VALID; | ||
929 | } | ||
930 | adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector; | ||
931 | array_ew32(IVAR0, index, ivar); | ||
932 | } | ||
933 | if (tx_queue > IGBVF_NO_QUEUE) { | ||
934 | index = (tx_queue >> 1); | ||
935 | ivar = array_er32(IVAR0, index); | ||
936 | if (tx_queue & 0x1) { | ||
937 | /* vector goes into high byte of register */ | ||
938 | ivar = ivar & 0x00FFFFFF; | ||
939 | ivar |= (msix_vector | E1000_IVAR_VALID) << 24; | ||
940 | } else { | ||
941 | /* vector goes into second byte of register */ | ||
942 | ivar = ivar & 0xFFFF00FF; | ||
943 | ivar |= (msix_vector | E1000_IVAR_VALID) << 8; | ||
944 | } | ||
945 | adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector; | ||
946 | array_ew32(IVAR0, index, ivar); | ||
947 | } | ||
948 | } | ||
949 | |||
950 | /** | ||
951 | * igbvf_configure_msix - Configure MSI-X hardware | ||
952 | * | ||
953 | * igbvf_configure_msix sets up the hardware to properly | ||
954 | * generate MSI-X interrupts. | ||
955 | **/ | ||
956 | static void igbvf_configure_msix(struct igbvf_adapter *adapter) | ||
957 | { | ||
958 | u32 tmp; | ||
959 | struct e1000_hw *hw = &adapter->hw; | ||
960 | struct igbvf_ring *tx_ring = adapter->tx_ring; | ||
961 | struct igbvf_ring *rx_ring = adapter->rx_ring; | ||
962 | int vector = 0; | ||
963 | |||
964 | adapter->eims_enable_mask = 0; | ||
965 | |||
966 | igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++); | ||
967 | adapter->eims_enable_mask |= tx_ring->eims_value; | ||
968 | if (tx_ring->itr_val) | ||
969 | writel(tx_ring->itr_val, | ||
970 | hw->hw_addr + tx_ring->itr_register); | ||
971 | else | ||
972 | writel(1952, hw->hw_addr + tx_ring->itr_register); | ||
973 | |||
974 | igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++); | ||
975 | adapter->eims_enable_mask |= rx_ring->eims_value; | ||
976 | if (rx_ring->itr_val) | ||
977 | writel(rx_ring->itr_val, | ||
978 | hw->hw_addr + rx_ring->itr_register); | ||
979 | else | ||
980 | writel(1952, hw->hw_addr + rx_ring->itr_register); | ||
981 | |||
982 | /* set vector for other causes, i.e. link changes */ | ||
983 | |||
984 | tmp = (vector++ | E1000_IVAR_VALID); | ||
985 | |||
986 | ew32(IVAR_MISC, tmp); | ||
987 | |||
988 | adapter->eims_enable_mask = (1 << (vector)) - 1; | ||
989 | adapter->eims_other = 1 << (vector - 1); | ||
990 | e1e_flush(); | ||
991 | } | ||
992 | |||
993 | void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter) | ||
994 | { | ||
995 | if (adapter->msix_entries) { | ||
996 | pci_disable_msix(adapter->pdev); | ||
997 | kfree(adapter->msix_entries); | ||
998 | adapter->msix_entries = NULL; | ||
999 | } | ||
1000 | } | ||
1001 | |||
1002 | /** | ||
1003 | * igbvf_set_interrupt_capability - set MSI or MSI-X if supported | ||
1004 | * | ||
1005 | * Attempt to configure interrupts using the best available | ||
1006 | * capabilities of the hardware and kernel. | ||
1007 | **/ | ||
1008 | void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter) | ||
1009 | { | ||
1010 | int err = -ENOMEM; | ||
1011 | int i; | ||
1012 | |||
1013 | /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */ | ||
1014 | adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry), | ||
1015 | GFP_KERNEL); | ||
1016 | if (adapter->msix_entries) { | ||
1017 | for (i = 0; i < 3; i++) | ||
1018 | adapter->msix_entries[i].entry = i; | ||
1019 | |||
1020 | err = pci_enable_msix(adapter->pdev, | ||
1021 | adapter->msix_entries, 3); | ||
1022 | } | ||
1023 | |||
1024 | if (err) { | ||
1025 | /* MSI-X failed */ | ||
1026 | dev_err(&adapter->pdev->dev, | ||
1027 | "Failed to initialize MSI-X interrupts.\n"); | ||
1028 | igbvf_reset_interrupt_capability(adapter); | ||
1029 | } | ||
1030 | } | ||
1031 | |||
1032 | /** | ||
1033 | * igbvf_request_msix - Initialize MSI-X interrupts | ||
1034 | * | ||
1035 | * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the | ||
1036 | * kernel. | ||
1037 | **/ | ||
1038 | static int igbvf_request_msix(struct igbvf_adapter *adapter) | ||
1039 | { | ||
1040 | struct net_device *netdev = adapter->netdev; | ||
1041 | int err = 0, vector = 0; | ||
1042 | |||
1043 | if (strlen(netdev->name) < (IFNAMSIZ - 5)) { | ||
1044 | sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name); | ||
1045 | sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name); | ||
1046 | } else { | ||
1047 | memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); | ||
1048 | memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); | ||
1049 | } | ||
1050 | |||
1051 | err = request_irq(adapter->msix_entries[vector].vector, | ||
1052 | &igbvf_intr_msix_tx, 0, adapter->tx_ring->name, | ||
1053 | netdev); | ||
1054 | if (err) | ||
1055 | goto out; | ||
1056 | |||
1057 | adapter->tx_ring->itr_register = E1000_EITR(vector); | ||
1058 | adapter->tx_ring->itr_val = 1952; | ||
1059 | vector++; | ||
1060 | |||
1061 | err = request_irq(adapter->msix_entries[vector].vector, | ||
1062 | &igbvf_intr_msix_rx, 0, adapter->rx_ring->name, | ||
1063 | netdev); | ||
1064 | if (err) | ||
1065 | goto out; | ||
1066 | |||
1067 | adapter->rx_ring->itr_register = E1000_EITR(vector); | ||
1068 | adapter->rx_ring->itr_val = 1952; | ||
1069 | vector++; | ||
1070 | |||
1071 | err = request_irq(adapter->msix_entries[vector].vector, | ||
1072 | &igbvf_msix_other, 0, netdev->name, netdev); | ||
1073 | if (err) | ||
1074 | goto out; | ||
1075 | |||
1076 | igbvf_configure_msix(adapter); | ||
1077 | return 0; | ||
1078 | out: | ||
1079 | return err; | ||
1080 | } | ||
1081 | |||
1082 | /** | ||
1083 | * igbvf_alloc_queues - Allocate memory for all rings | ||
1084 | * @adapter: board private structure to initialize | ||
1085 | **/ | ||
1086 | static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter) | ||
1087 | { | ||
1088 | struct net_device *netdev = adapter->netdev; | ||
1089 | |||
1090 | adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); | ||
1091 | if (!adapter->tx_ring) | ||
1092 | return -ENOMEM; | ||
1093 | |||
1094 | adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL); | ||
1095 | if (!adapter->rx_ring) { | ||
1096 | kfree(adapter->tx_ring); | ||
1097 | return -ENOMEM; | ||
1098 | } | ||
1099 | |||
1100 | netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64); | ||
1101 | |||
1102 | return 0; | ||
1103 | } | ||
1104 | |||
1105 | /** | ||
1106 | * igbvf_request_irq - initialize interrupts | ||
1107 | * | ||
1108 | * Attempts to configure interrupts using the best available | ||
1109 | * capabilities of the hardware and kernel. | ||
1110 | **/ | ||
1111 | static int igbvf_request_irq(struct igbvf_adapter *adapter) | ||
1112 | { | ||
1113 | int err = -1; | ||
1114 | |||
1115 | /* igbvf supports msi-x only */ | ||
1116 | if (adapter->msix_entries) | ||
1117 | err = igbvf_request_msix(adapter); | ||
1118 | |||
1119 | if (!err) | ||
1120 | return err; | ||
1121 | |||
1122 | dev_err(&adapter->pdev->dev, | ||
1123 | "Unable to allocate interrupt, Error: %d\n", err); | ||
1124 | |||
1125 | return err; | ||
1126 | } | ||
1127 | |||
1128 | static void igbvf_free_irq(struct igbvf_adapter *adapter) | ||
1129 | { | ||
1130 | struct net_device *netdev = adapter->netdev; | ||
1131 | int vector; | ||
1132 | |||
1133 | if (adapter->msix_entries) { | ||
1134 | for (vector = 0; vector < 3; vector++) | ||
1135 | free_irq(adapter->msix_entries[vector].vector, netdev); | ||
1136 | } | ||
1137 | } | ||
1138 | |||
1139 | /** | ||
1140 | * igbvf_irq_disable - Mask off interrupt generation on the NIC | ||
1141 | **/ | ||
1142 | static void igbvf_irq_disable(struct igbvf_adapter *adapter) | ||
1143 | { | ||
1144 | struct e1000_hw *hw = &adapter->hw; | ||
1145 | |||
1146 | ew32(EIMC, ~0); | ||
1147 | |||
1148 | if (adapter->msix_entries) | ||
1149 | ew32(EIAC, 0); | ||
1150 | } | ||
1151 | |||
1152 | /** | ||
1153 | * igbvf_irq_enable - Enable default interrupt generation settings | ||
1154 | **/ | ||
1155 | static void igbvf_irq_enable(struct igbvf_adapter *adapter) | ||
1156 | { | ||
1157 | struct e1000_hw *hw = &adapter->hw; | ||
1158 | |||
1159 | ew32(EIAC, adapter->eims_enable_mask); | ||
1160 | ew32(EIAM, adapter->eims_enable_mask); | ||
1161 | ew32(EIMS, adapter->eims_enable_mask); | ||
1162 | } | ||
1163 | |||
1164 | /** | ||
1165 | * igbvf_poll - NAPI Rx polling callback | ||
1166 | * @napi: struct associated with this polling callback | ||
1167 | * @budget: amount of packets driver is allowed to process this poll | ||
1168 | **/ | ||
1169 | static int igbvf_poll(struct napi_struct *napi, int budget) | ||
1170 | { | ||
1171 | struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi); | ||
1172 | struct igbvf_adapter *adapter = rx_ring->adapter; | ||
1173 | struct e1000_hw *hw = &adapter->hw; | ||
1174 | int work_done = 0; | ||
1175 | |||
1176 | igbvf_clean_rx_irq(adapter, &work_done, budget); | ||
1177 | |||
1178 | /* If not enough Rx work done, exit the polling mode */ | ||
1179 | if (work_done < budget) { | ||
1180 | napi_complete(napi); | ||
1181 | |||
1182 | if (adapter->itr_setting & 3) | ||
1183 | igbvf_set_itr(adapter); | ||
1184 | |||
1185 | if (!test_bit(__IGBVF_DOWN, &adapter->state)) | ||
1186 | ew32(EIMS, adapter->rx_ring->eims_value); | ||
1187 | } | ||
1188 | |||
1189 | return work_done; | ||
1190 | } | ||
1191 | |||
1192 | /** | ||
1193 | * igbvf_set_rlpml - set receive large packet maximum length | ||
1194 | * @adapter: board private structure | ||
1195 | * | ||
1196 | * Configure the maximum size of packets that will be received | ||
1197 | */ | ||
1198 | static void igbvf_set_rlpml(struct igbvf_adapter *adapter) | ||
1199 | { | ||
1200 | int max_frame_size = adapter->max_frame_size; | ||
1201 | struct e1000_hw *hw = &adapter->hw; | ||
1202 | |||
1203 | if (adapter->vlgrp) | ||
1204 | max_frame_size += VLAN_TAG_SIZE; | ||
1205 | |||
1206 | e1000_rlpml_set_vf(hw, max_frame_size); | ||
1207 | } | ||
1208 | |||
1209 | static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | ||
1210 | { | ||
1211 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1212 | struct e1000_hw *hw = &adapter->hw; | ||
1213 | |||
1214 | if (hw->mac.ops.set_vfta(hw, vid, true)) | ||
1215 | dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid); | ||
1216 | } | ||
1217 | |||
1218 | static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | ||
1219 | { | ||
1220 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1221 | struct e1000_hw *hw = &adapter->hw; | ||
1222 | |||
1223 | igbvf_irq_disable(adapter); | ||
1224 | vlan_group_set_device(adapter->vlgrp, vid, NULL); | ||
1225 | |||
1226 | if (!test_bit(__IGBVF_DOWN, &adapter->state)) | ||
1227 | igbvf_irq_enable(adapter); | ||
1228 | |||
1229 | if (hw->mac.ops.set_vfta(hw, vid, false)) | ||
1230 | dev_err(&adapter->pdev->dev, | ||
1231 | "Failed to remove vlan id %d\n", vid); | ||
1232 | } | ||
1233 | |||
1234 | static void igbvf_vlan_rx_register(struct net_device *netdev, | ||
1235 | struct vlan_group *grp) | ||
1236 | { | ||
1237 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1238 | |||
1239 | adapter->vlgrp = grp; | ||
1240 | } | ||
1241 | |||
1242 | static void igbvf_restore_vlan(struct igbvf_adapter *adapter) | ||
1243 | { | ||
1244 | u16 vid; | ||
1245 | |||
1246 | if (!adapter->vlgrp) | ||
1247 | return; | ||
1248 | |||
1249 | for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { | ||
1250 | if (!vlan_group_get_device(adapter->vlgrp, vid)) | ||
1251 | continue; | ||
1252 | igbvf_vlan_rx_add_vid(adapter->netdev, vid); | ||
1253 | } | ||
1254 | |||
1255 | igbvf_set_rlpml(adapter); | ||
1256 | } | ||
1257 | |||
1258 | /** | ||
1259 | * igbvf_configure_tx - Configure Transmit Unit after Reset | ||
1260 | * @adapter: board private structure | ||
1261 | * | ||
1262 | * Configure the Tx unit of the MAC after a reset. | ||
1263 | **/ | ||
1264 | static void igbvf_configure_tx(struct igbvf_adapter *adapter) | ||
1265 | { | ||
1266 | struct e1000_hw *hw = &adapter->hw; | ||
1267 | struct igbvf_ring *tx_ring = adapter->tx_ring; | ||
1268 | u64 tdba; | ||
1269 | u32 txdctl, dca_txctrl; | ||
1270 | |||
1271 | /* disable transmits */ | ||
1272 | txdctl = er32(TXDCTL(0)); | ||
1273 | ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); | ||
1274 | msleep(10); | ||
1275 | |||
1276 | /* Setup the HW Tx Head and Tail descriptor pointers */ | ||
1277 | ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc)); | ||
1278 | tdba = tx_ring->dma; | ||
1279 | ew32(TDBAL(0), (tdba & DMA_32BIT_MASK)); | ||
1280 | ew32(TDBAH(0), (tdba >> 32)); | ||
1281 | ew32(TDH(0), 0); | ||
1282 | ew32(TDT(0), 0); | ||
1283 | tx_ring->head = E1000_TDH(0); | ||
1284 | tx_ring->tail = E1000_TDT(0); | ||
1285 | |||
1286 | /* Turn off Relaxed Ordering on head write-backs. The writebacks | ||
1287 | * MUST be delivered in order or it will completely screw up | ||
1288 | * our bookeeping. | ||
1289 | */ | ||
1290 | dca_txctrl = er32(DCA_TXCTRL(0)); | ||
1291 | dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN; | ||
1292 | ew32(DCA_TXCTRL(0), dca_txctrl); | ||
1293 | |||
1294 | /* enable transmits */ | ||
1295 | txdctl |= E1000_TXDCTL_QUEUE_ENABLE; | ||
1296 | ew32(TXDCTL(0), txdctl); | ||
1297 | |||
1298 | /* Setup Transmit Descriptor Settings for eop descriptor */ | ||
1299 | adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS; | ||
1300 | |||
1301 | /* enable Report Status bit */ | ||
1302 | adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS; | ||
1303 | |||
1304 | adapter->tx_queue_len = adapter->netdev->tx_queue_len; | ||
1305 | } | ||
1306 | |||
1307 | /** | ||
1308 | * igbvf_setup_srrctl - configure the receive control registers | ||
1309 | * @adapter: Board private structure | ||
1310 | **/ | ||
1311 | static void igbvf_setup_srrctl(struct igbvf_adapter *adapter) | ||
1312 | { | ||
1313 | struct e1000_hw *hw = &adapter->hw; | ||
1314 | u32 srrctl = 0; | ||
1315 | |||
1316 | srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK | | ||
1317 | E1000_SRRCTL_BSIZEHDR_MASK | | ||
1318 | E1000_SRRCTL_BSIZEPKT_MASK); | ||
1319 | |||
1320 | /* Enable queue drop to avoid head of line blocking */ | ||
1321 | srrctl |= E1000_SRRCTL_DROP_EN; | ||
1322 | |||
1323 | /* Setup buffer sizes */ | ||
1324 | srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >> | ||
1325 | E1000_SRRCTL_BSIZEPKT_SHIFT; | ||
1326 | |||
1327 | if (adapter->rx_buffer_len < 2048) { | ||
1328 | adapter->rx_ps_hdr_size = 0; | ||
1329 | srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; | ||
1330 | } else { | ||
1331 | adapter->rx_ps_hdr_size = 128; | ||
1332 | srrctl |= adapter->rx_ps_hdr_size << | ||
1333 | E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; | ||
1334 | srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; | ||
1335 | } | ||
1336 | |||
1337 | ew32(SRRCTL(0), srrctl); | ||
1338 | } | ||
1339 | |||
1340 | /** | ||
1341 | * igbvf_configure_rx - Configure Receive Unit after Reset | ||
1342 | * @adapter: board private structure | ||
1343 | * | ||
1344 | * Configure the Rx unit of the MAC after a reset. | ||
1345 | **/ | ||
1346 | static void igbvf_configure_rx(struct igbvf_adapter *adapter) | ||
1347 | { | ||
1348 | struct e1000_hw *hw = &adapter->hw; | ||
1349 | struct igbvf_ring *rx_ring = adapter->rx_ring; | ||
1350 | u64 rdba; | ||
1351 | u32 rdlen, rxdctl; | ||
1352 | |||
1353 | /* disable receives */ | ||
1354 | rxdctl = er32(RXDCTL(0)); | ||
1355 | ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); | ||
1356 | msleep(10); | ||
1357 | |||
1358 | rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc); | ||
1359 | |||
1360 | /* | ||
1361 | * Setup the HW Rx Head and Tail Descriptor Pointers and | ||
1362 | * the Base and Length of the Rx Descriptor Ring | ||
1363 | */ | ||
1364 | rdba = rx_ring->dma; | ||
1365 | ew32(RDBAL(0), (rdba & DMA_32BIT_MASK)); | ||
1366 | ew32(RDBAH(0), (rdba >> 32)); | ||
1367 | ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc)); | ||
1368 | rx_ring->head = E1000_RDH(0); | ||
1369 | rx_ring->tail = E1000_RDT(0); | ||
1370 | ew32(RDH(0), 0); | ||
1371 | ew32(RDT(0), 0); | ||
1372 | |||
1373 | rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; | ||
1374 | rxdctl &= 0xFFF00000; | ||
1375 | rxdctl |= IGBVF_RX_PTHRESH; | ||
1376 | rxdctl |= IGBVF_RX_HTHRESH << 8; | ||
1377 | rxdctl |= IGBVF_RX_WTHRESH << 16; | ||
1378 | |||
1379 | igbvf_set_rlpml(adapter); | ||
1380 | |||
1381 | /* enable receives */ | ||
1382 | ew32(RXDCTL(0), rxdctl); | ||
1383 | } | ||
1384 | |||
1385 | /** | ||
1386 | * igbvf_set_multi - Multicast and Promiscuous mode set | ||
1387 | * @netdev: network interface device structure | ||
1388 | * | ||
1389 | * The set_multi entry point is called whenever the multicast address | ||
1390 | * list or the network interface flags are updated. This routine is | ||
1391 | * responsible for configuring the hardware for proper multicast, | ||
1392 | * promiscuous mode, and all-multi behavior. | ||
1393 | **/ | ||
1394 | static void igbvf_set_multi(struct net_device *netdev) | ||
1395 | { | ||
1396 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1397 | struct e1000_hw *hw = &adapter->hw; | ||
1398 | struct dev_mc_list *mc_ptr; | ||
1399 | u8 *mta_list = NULL; | ||
1400 | int i; | ||
1401 | |||
1402 | if (netdev->mc_count) { | ||
1403 | mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC); | ||
1404 | if (!mta_list) { | ||
1405 | dev_err(&adapter->pdev->dev, | ||
1406 | "failed to allocate multicast filter list\n"); | ||
1407 | return; | ||
1408 | } | ||
1409 | } | ||
1410 | |||
1411 | /* prepare a packed array of only addresses. */ | ||
1412 | mc_ptr = netdev->mc_list; | ||
1413 | |||
1414 | for (i = 0; i < netdev->mc_count; i++) { | ||
1415 | if (!mc_ptr) | ||
1416 | break; | ||
1417 | memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, | ||
1418 | ETH_ALEN); | ||
1419 | mc_ptr = mc_ptr->next; | ||
1420 | } | ||
1421 | |||
1422 | hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0); | ||
1423 | kfree(mta_list); | ||
1424 | } | ||
1425 | |||
1426 | /** | ||
1427 | * igbvf_configure - configure the hardware for Rx and Tx | ||
1428 | * @adapter: private board structure | ||
1429 | **/ | ||
1430 | static void igbvf_configure(struct igbvf_adapter *adapter) | ||
1431 | { | ||
1432 | igbvf_set_multi(adapter->netdev); | ||
1433 | |||
1434 | igbvf_restore_vlan(adapter); | ||
1435 | |||
1436 | igbvf_configure_tx(adapter); | ||
1437 | igbvf_setup_srrctl(adapter); | ||
1438 | igbvf_configure_rx(adapter); | ||
1439 | igbvf_alloc_rx_buffers(adapter->rx_ring, | ||
1440 | igbvf_desc_unused(adapter->rx_ring)); | ||
1441 | } | ||
1442 | |||
1443 | /* igbvf_reset - bring the hardware into a known good state | ||
1444 | * | ||
1445 | * This function boots the hardware and enables some settings that | ||
1446 | * require a configuration cycle of the hardware - those cannot be | ||
1447 | * set/changed during runtime. After reset the device needs to be | ||
1448 | * properly configured for Rx, Tx etc. | ||
1449 | */ | ||
1450 | void igbvf_reset(struct igbvf_adapter *adapter) | ||
1451 | { | ||
1452 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
1453 | struct net_device *netdev = adapter->netdev; | ||
1454 | struct e1000_hw *hw = &adapter->hw; | ||
1455 | |||
1456 | /* Allow time for pending master requests to run */ | ||
1457 | if (mac->ops.reset_hw(hw)) | ||
1458 | dev_err(&adapter->pdev->dev, "PF still resetting\n"); | ||
1459 | |||
1460 | mac->ops.init_hw(hw); | ||
1461 | |||
1462 | if (is_valid_ether_addr(adapter->hw.mac.addr)) { | ||
1463 | memcpy(netdev->dev_addr, adapter->hw.mac.addr, | ||
1464 | netdev->addr_len); | ||
1465 | memcpy(netdev->perm_addr, adapter->hw.mac.addr, | ||
1466 | netdev->addr_len); | ||
1467 | } | ||
1468 | } | ||
1469 | |||
1470 | int igbvf_up(struct igbvf_adapter *adapter) | ||
1471 | { | ||
1472 | struct e1000_hw *hw = &adapter->hw; | ||
1473 | |||
1474 | /* hardware has been reset, we need to reload some things */ | ||
1475 | igbvf_configure(adapter); | ||
1476 | |||
1477 | clear_bit(__IGBVF_DOWN, &adapter->state); | ||
1478 | |||
1479 | napi_enable(&adapter->rx_ring->napi); | ||
1480 | if (adapter->msix_entries) | ||
1481 | igbvf_configure_msix(adapter); | ||
1482 | |||
1483 | /* Clear any pending interrupts. */ | ||
1484 | er32(EICR); | ||
1485 | igbvf_irq_enable(adapter); | ||
1486 | |||
1487 | /* start the watchdog */ | ||
1488 | hw->mac.get_link_status = 1; | ||
1489 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
1490 | |||
1491 | |||
1492 | return 0; | ||
1493 | } | ||
1494 | |||
1495 | void igbvf_down(struct igbvf_adapter *adapter) | ||
1496 | { | ||
1497 | struct net_device *netdev = adapter->netdev; | ||
1498 | struct e1000_hw *hw = &adapter->hw; | ||
1499 | u32 rxdctl, txdctl; | ||
1500 | |||
1501 | /* | ||
1502 | * signal that we're down so the interrupt handler does not | ||
1503 | * reschedule our watchdog timer | ||
1504 | */ | ||
1505 | set_bit(__IGBVF_DOWN, &adapter->state); | ||
1506 | |||
1507 | /* disable receives in the hardware */ | ||
1508 | rxdctl = er32(RXDCTL(0)); | ||
1509 | ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE); | ||
1510 | |||
1511 | netif_stop_queue(netdev); | ||
1512 | |||
1513 | /* disable transmits in the hardware */ | ||
1514 | txdctl = er32(TXDCTL(0)); | ||
1515 | ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE); | ||
1516 | |||
1517 | /* flush both disables and wait for them to finish */ | ||
1518 | e1e_flush(); | ||
1519 | msleep(10); | ||
1520 | |||
1521 | napi_disable(&adapter->rx_ring->napi); | ||
1522 | |||
1523 | igbvf_irq_disable(adapter); | ||
1524 | |||
1525 | del_timer_sync(&adapter->watchdog_timer); | ||
1526 | |||
1527 | netdev->tx_queue_len = adapter->tx_queue_len; | ||
1528 | netif_carrier_off(netdev); | ||
1529 | |||
1530 | /* record the stats before reset*/ | ||
1531 | igbvf_update_stats(adapter); | ||
1532 | |||
1533 | adapter->link_speed = 0; | ||
1534 | adapter->link_duplex = 0; | ||
1535 | |||
1536 | igbvf_reset(adapter); | ||
1537 | igbvf_clean_tx_ring(adapter->tx_ring); | ||
1538 | igbvf_clean_rx_ring(adapter->rx_ring); | ||
1539 | } | ||
1540 | |||
1541 | void igbvf_reinit_locked(struct igbvf_adapter *adapter) | ||
1542 | { | ||
1543 | might_sleep(); | ||
1544 | while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) | ||
1545 | msleep(1); | ||
1546 | igbvf_down(adapter); | ||
1547 | igbvf_up(adapter); | ||
1548 | clear_bit(__IGBVF_RESETTING, &adapter->state); | ||
1549 | } | ||
1550 | |||
1551 | /** | ||
1552 | * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter) | ||
1553 | * @adapter: board private structure to initialize | ||
1554 | * | ||
1555 | * igbvf_sw_init initializes the Adapter private data structure. | ||
1556 | * Fields are initialized based on PCI device information and | ||
1557 | * OS network device settings (MTU size). | ||
1558 | **/ | ||
1559 | static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter) | ||
1560 | { | ||
1561 | struct net_device *netdev = adapter->netdev; | ||
1562 | s32 rc; | ||
1563 | |||
1564 | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; | ||
1565 | adapter->rx_ps_hdr_size = 0; | ||
1566 | adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; | ||
1567 | adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; | ||
1568 | |||
1569 | adapter->tx_int_delay = 8; | ||
1570 | adapter->tx_abs_int_delay = 32; | ||
1571 | adapter->rx_int_delay = 0; | ||
1572 | adapter->rx_abs_int_delay = 8; | ||
1573 | adapter->itr_setting = 3; | ||
1574 | adapter->itr = 20000; | ||
1575 | |||
1576 | /* Set various function pointers */ | ||
1577 | adapter->ei->init_ops(&adapter->hw); | ||
1578 | |||
1579 | rc = adapter->hw.mac.ops.init_params(&adapter->hw); | ||
1580 | if (rc) | ||
1581 | return rc; | ||
1582 | |||
1583 | rc = adapter->hw.mbx.ops.init_params(&adapter->hw); | ||
1584 | if (rc) | ||
1585 | return rc; | ||
1586 | |||
1587 | igbvf_set_interrupt_capability(adapter); | ||
1588 | |||
1589 | if (igbvf_alloc_queues(adapter)) | ||
1590 | return -ENOMEM; | ||
1591 | |||
1592 | spin_lock_init(&adapter->tx_queue_lock); | ||
1593 | |||
1594 | /* Explicitly disable IRQ since the NIC can be in any state. */ | ||
1595 | igbvf_irq_disable(adapter); | ||
1596 | |||
1597 | spin_lock_init(&adapter->stats_lock); | ||
1598 | |||
1599 | set_bit(__IGBVF_DOWN, &adapter->state); | ||
1600 | return 0; | ||
1601 | } | ||
1602 | |||
1603 | static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter) | ||
1604 | { | ||
1605 | struct e1000_hw *hw = &adapter->hw; | ||
1606 | |||
1607 | adapter->stats.last_gprc = er32(VFGPRC); | ||
1608 | adapter->stats.last_gorc = er32(VFGORC); | ||
1609 | adapter->stats.last_gptc = er32(VFGPTC); | ||
1610 | adapter->stats.last_gotc = er32(VFGOTC); | ||
1611 | adapter->stats.last_mprc = er32(VFMPRC); | ||
1612 | adapter->stats.last_gotlbc = er32(VFGOTLBC); | ||
1613 | adapter->stats.last_gptlbc = er32(VFGPTLBC); | ||
1614 | adapter->stats.last_gorlbc = er32(VFGORLBC); | ||
1615 | adapter->stats.last_gprlbc = er32(VFGPRLBC); | ||
1616 | |||
1617 | adapter->stats.base_gprc = er32(VFGPRC); | ||
1618 | adapter->stats.base_gorc = er32(VFGORC); | ||
1619 | adapter->stats.base_gptc = er32(VFGPTC); | ||
1620 | adapter->stats.base_gotc = er32(VFGOTC); | ||
1621 | adapter->stats.base_mprc = er32(VFMPRC); | ||
1622 | adapter->stats.base_gotlbc = er32(VFGOTLBC); | ||
1623 | adapter->stats.base_gptlbc = er32(VFGPTLBC); | ||
1624 | adapter->stats.base_gorlbc = er32(VFGORLBC); | ||
1625 | adapter->stats.base_gprlbc = er32(VFGPRLBC); | ||
1626 | } | ||
1627 | |||
1628 | /** | ||
1629 | * igbvf_open - Called when a network interface is made active | ||
1630 | * @netdev: network interface device structure | ||
1631 | * | ||
1632 | * Returns 0 on success, negative value on failure | ||
1633 | * | ||
1634 | * The open entry point is called when a network interface is made | ||
1635 | * active by the system (IFF_UP). At this point all resources needed | ||
1636 | * for transmit and receive operations are allocated, the interrupt | ||
1637 | * handler is registered with the OS, the watchdog timer is started, | ||
1638 | * and the stack is notified that the interface is ready. | ||
1639 | **/ | ||
1640 | static int igbvf_open(struct net_device *netdev) | ||
1641 | { | ||
1642 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1643 | struct e1000_hw *hw = &adapter->hw; | ||
1644 | int err; | ||
1645 | |||
1646 | /* disallow open during test */ | ||
1647 | if (test_bit(__IGBVF_TESTING, &adapter->state)) | ||
1648 | return -EBUSY; | ||
1649 | |||
1650 | /* allocate transmit descriptors */ | ||
1651 | err = igbvf_setup_tx_resources(adapter, adapter->tx_ring); | ||
1652 | if (err) | ||
1653 | goto err_setup_tx; | ||
1654 | |||
1655 | /* allocate receive descriptors */ | ||
1656 | err = igbvf_setup_rx_resources(adapter, adapter->rx_ring); | ||
1657 | if (err) | ||
1658 | goto err_setup_rx; | ||
1659 | |||
1660 | /* | ||
1661 | * before we allocate an interrupt, we must be ready to handle it. | ||
1662 | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | ||
1663 | * as soon as we call pci_request_irq, so we have to setup our | ||
1664 | * clean_rx handler before we do so. | ||
1665 | */ | ||
1666 | igbvf_configure(adapter); | ||
1667 | |||
1668 | err = igbvf_request_irq(adapter); | ||
1669 | if (err) | ||
1670 | goto err_req_irq; | ||
1671 | |||
1672 | /* From here on the code is the same as igbvf_up() */ | ||
1673 | clear_bit(__IGBVF_DOWN, &adapter->state); | ||
1674 | |||
1675 | napi_enable(&adapter->rx_ring->napi); | ||
1676 | |||
1677 | /* clear any pending interrupts */ | ||
1678 | er32(EICR); | ||
1679 | |||
1680 | igbvf_irq_enable(adapter); | ||
1681 | |||
1682 | /* start the watchdog */ | ||
1683 | hw->mac.get_link_status = 1; | ||
1684 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
1685 | |||
1686 | return 0; | ||
1687 | |||
1688 | err_req_irq: | ||
1689 | igbvf_free_rx_resources(adapter->rx_ring); | ||
1690 | err_setup_rx: | ||
1691 | igbvf_free_tx_resources(adapter->tx_ring); | ||
1692 | err_setup_tx: | ||
1693 | igbvf_reset(adapter); | ||
1694 | |||
1695 | return err; | ||
1696 | } | ||
1697 | |||
1698 | /** | ||
1699 | * igbvf_close - Disables a network interface | ||
1700 | * @netdev: network interface device structure | ||
1701 | * | ||
1702 | * Returns 0, this is not allowed to fail | ||
1703 | * | ||
1704 | * The close entry point is called when an interface is de-activated | ||
1705 | * by the OS. The hardware is still under the drivers control, but | ||
1706 | * needs to be disabled. A global MAC reset is issued to stop the | ||
1707 | * hardware, and all transmit and receive resources are freed. | ||
1708 | **/ | ||
1709 | static int igbvf_close(struct net_device *netdev) | ||
1710 | { | ||
1711 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1712 | |||
1713 | WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); | ||
1714 | igbvf_down(adapter); | ||
1715 | |||
1716 | igbvf_free_irq(adapter); | ||
1717 | |||
1718 | igbvf_free_tx_resources(adapter->tx_ring); | ||
1719 | igbvf_free_rx_resources(adapter->rx_ring); | ||
1720 | |||
1721 | return 0; | ||
1722 | } | ||
1723 | /** | ||
1724 | * igbvf_set_mac - Change the Ethernet Address of the NIC | ||
1725 | * @netdev: network interface device structure | ||
1726 | * @p: pointer to an address structure | ||
1727 | * | ||
1728 | * Returns 0 on success, negative on failure | ||
1729 | **/ | ||
1730 | static int igbvf_set_mac(struct net_device *netdev, void *p) | ||
1731 | { | ||
1732 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
1733 | struct e1000_hw *hw = &adapter->hw; | ||
1734 | struct sockaddr *addr = p; | ||
1735 | |||
1736 | if (!is_valid_ether_addr(addr->sa_data)) | ||
1737 | return -EADDRNOTAVAIL; | ||
1738 | |||
1739 | memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); | ||
1740 | |||
1741 | hw->mac.ops.rar_set(hw, hw->mac.addr, 0); | ||
1742 | |||
1743 | if (memcmp(addr->sa_data, hw->mac.addr, 6)) | ||
1744 | return -EADDRNOTAVAIL; | ||
1745 | |||
1746 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | ||
1747 | |||
1748 | return 0; | ||
1749 | } | ||
1750 | |||
1751 | #define UPDATE_VF_COUNTER(reg, name) \ | ||
1752 | { \ | ||
1753 | u32 current_counter = er32(reg); \ | ||
1754 | if (current_counter < adapter->stats.last_##name) \ | ||
1755 | adapter->stats.name += 0x100000000LL; \ | ||
1756 | adapter->stats.last_##name = current_counter; \ | ||
1757 | adapter->stats.name &= 0xFFFFFFFF00000000LL; \ | ||
1758 | adapter->stats.name |= current_counter; \ | ||
1759 | } | ||
1760 | |||
1761 | /** | ||
1762 | * igbvf_update_stats - Update the board statistics counters | ||
1763 | * @adapter: board private structure | ||
1764 | **/ | ||
1765 | void igbvf_update_stats(struct igbvf_adapter *adapter) | ||
1766 | { | ||
1767 | struct e1000_hw *hw = &adapter->hw; | ||
1768 | struct pci_dev *pdev = adapter->pdev; | ||
1769 | |||
1770 | /* | ||
1771 | * Prevent stats update while adapter is being reset, link is down | ||
1772 | * or if the pci connection is down. | ||
1773 | */ | ||
1774 | if (adapter->link_speed == 0) | ||
1775 | return; | ||
1776 | |||
1777 | if (test_bit(__IGBVF_RESETTING, &adapter->state)) | ||
1778 | return; | ||
1779 | |||
1780 | if (pci_channel_offline(pdev)) | ||
1781 | return; | ||
1782 | |||
1783 | UPDATE_VF_COUNTER(VFGPRC, gprc); | ||
1784 | UPDATE_VF_COUNTER(VFGORC, gorc); | ||
1785 | UPDATE_VF_COUNTER(VFGPTC, gptc); | ||
1786 | UPDATE_VF_COUNTER(VFGOTC, gotc); | ||
1787 | UPDATE_VF_COUNTER(VFMPRC, mprc); | ||
1788 | UPDATE_VF_COUNTER(VFGOTLBC, gotlbc); | ||
1789 | UPDATE_VF_COUNTER(VFGPTLBC, gptlbc); | ||
1790 | UPDATE_VF_COUNTER(VFGORLBC, gorlbc); | ||
1791 | UPDATE_VF_COUNTER(VFGPRLBC, gprlbc); | ||
1792 | |||
1793 | /* Fill out the OS statistics structure */ | ||
1794 | adapter->net_stats.multicast = adapter->stats.mprc; | ||
1795 | } | ||
1796 | |||
1797 | static void igbvf_print_link_info(struct igbvf_adapter *adapter) | ||
1798 | { | ||
1799 | dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n", | ||
1800 | adapter->link_speed, | ||
1801 | ((adapter->link_duplex == FULL_DUPLEX) ? | ||
1802 | "Full Duplex" : "Half Duplex")); | ||
1803 | } | ||
1804 | |||
1805 | static bool igbvf_has_link(struct igbvf_adapter *adapter) | ||
1806 | { | ||
1807 | struct e1000_hw *hw = &adapter->hw; | ||
1808 | s32 ret_val = E1000_SUCCESS; | ||
1809 | bool link_active; | ||
1810 | |||
1811 | ret_val = hw->mac.ops.check_for_link(hw); | ||
1812 | link_active = !hw->mac.get_link_status; | ||
1813 | |||
1814 | /* if check for link returns error we will need to reset */ | ||
1815 | if (ret_val) | ||
1816 | schedule_work(&adapter->reset_task); | ||
1817 | |||
1818 | return link_active; | ||
1819 | } | ||
1820 | |||
1821 | /** | ||
1822 | * igbvf_watchdog - Timer Call-back | ||
1823 | * @data: pointer to adapter cast into an unsigned long | ||
1824 | **/ | ||
1825 | static void igbvf_watchdog(unsigned long data) | ||
1826 | { | ||
1827 | struct igbvf_adapter *adapter = (struct igbvf_adapter *) data; | ||
1828 | |||
1829 | /* Do the rest outside of interrupt context */ | ||
1830 | schedule_work(&adapter->watchdog_task); | ||
1831 | } | ||
1832 | |||
1833 | static void igbvf_watchdog_task(struct work_struct *work) | ||
1834 | { | ||
1835 | struct igbvf_adapter *adapter = container_of(work, | ||
1836 | struct igbvf_adapter, | ||
1837 | watchdog_task); | ||
1838 | struct net_device *netdev = adapter->netdev; | ||
1839 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
1840 | struct igbvf_ring *tx_ring = adapter->tx_ring; | ||
1841 | struct e1000_hw *hw = &adapter->hw; | ||
1842 | u32 link; | ||
1843 | int tx_pending = 0; | ||
1844 | |||
1845 | link = igbvf_has_link(adapter); | ||
1846 | |||
1847 | if (link) { | ||
1848 | if (!netif_carrier_ok(netdev)) { | ||
1849 | bool txb2b = 1; | ||
1850 | |||
1851 | mac->ops.get_link_up_info(&adapter->hw, | ||
1852 | &adapter->link_speed, | ||
1853 | &adapter->link_duplex); | ||
1854 | igbvf_print_link_info(adapter); | ||
1855 | |||
1856 | /* | ||
1857 | * tweak tx_queue_len according to speed/duplex | ||
1858 | * and adjust the timeout factor | ||
1859 | */ | ||
1860 | netdev->tx_queue_len = adapter->tx_queue_len; | ||
1861 | adapter->tx_timeout_factor = 1; | ||
1862 | switch (adapter->link_speed) { | ||
1863 | case SPEED_10: | ||
1864 | txb2b = 0; | ||
1865 | netdev->tx_queue_len = 10; | ||
1866 | adapter->tx_timeout_factor = 16; | ||
1867 | break; | ||
1868 | case SPEED_100: | ||
1869 | txb2b = 0; | ||
1870 | netdev->tx_queue_len = 100; | ||
1871 | /* maybe add some timeout factor ? */ | ||
1872 | break; | ||
1873 | } | ||
1874 | |||
1875 | netif_carrier_on(netdev); | ||
1876 | netif_wake_queue(netdev); | ||
1877 | } | ||
1878 | } else { | ||
1879 | if (netif_carrier_ok(netdev)) { | ||
1880 | adapter->link_speed = 0; | ||
1881 | adapter->link_duplex = 0; | ||
1882 | dev_info(&adapter->pdev->dev, "Link is Down\n"); | ||
1883 | netif_carrier_off(netdev); | ||
1884 | netif_stop_queue(netdev); | ||
1885 | } | ||
1886 | } | ||
1887 | |||
1888 | if (netif_carrier_ok(netdev)) { | ||
1889 | igbvf_update_stats(adapter); | ||
1890 | } else { | ||
1891 | tx_pending = (igbvf_desc_unused(tx_ring) + 1 < | ||
1892 | tx_ring->count); | ||
1893 | if (tx_pending) { | ||
1894 | /* | ||
1895 | * We've lost link, so the controller stops DMA, | ||
1896 | * but we've got queued Tx work that's never going | ||
1897 | * to get done, so reset controller to flush Tx. | ||
1898 | * (Do the reset outside of interrupt context). | ||
1899 | */ | ||
1900 | adapter->tx_timeout_count++; | ||
1901 | schedule_work(&adapter->reset_task); | ||
1902 | } | ||
1903 | } | ||
1904 | |||
1905 | /* Cause software interrupt to ensure Rx ring is cleaned */ | ||
1906 | ew32(EICS, adapter->rx_ring->eims_value); | ||
1907 | |||
1908 | /* Force detection of hung controller every watchdog period */ | ||
1909 | adapter->detect_tx_hung = 1; | ||
1910 | |||
1911 | /* Reset the timer */ | ||
1912 | if (!test_bit(__IGBVF_DOWN, &adapter->state)) | ||
1913 | mod_timer(&adapter->watchdog_timer, | ||
1914 | round_jiffies(jiffies + (2 * HZ))); | ||
1915 | } | ||
1916 | |||
1917 | #define IGBVF_TX_FLAGS_CSUM 0x00000001 | ||
1918 | #define IGBVF_TX_FLAGS_VLAN 0x00000002 | ||
1919 | #define IGBVF_TX_FLAGS_TSO 0x00000004 | ||
1920 | #define IGBVF_TX_FLAGS_IPV4 0x00000008 | ||
1921 | #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000 | ||
1922 | #define IGBVF_TX_FLAGS_VLAN_SHIFT 16 | ||
1923 | |||
1924 | static int igbvf_tso(struct igbvf_adapter *adapter, | ||
1925 | struct igbvf_ring *tx_ring, | ||
1926 | struct sk_buff *skb, u32 tx_flags, u8 *hdr_len) | ||
1927 | { | ||
1928 | struct e1000_adv_tx_context_desc *context_desc; | ||
1929 | unsigned int i; | ||
1930 | int err; | ||
1931 | struct igbvf_buffer *buffer_info; | ||
1932 | u32 info = 0, tu_cmd = 0; | ||
1933 | u32 mss_l4len_idx, l4len; | ||
1934 | *hdr_len = 0; | ||
1935 | |||
1936 | if (skb_header_cloned(skb)) { | ||
1937 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | ||
1938 | if (err) { | ||
1939 | dev_err(&adapter->pdev->dev, | ||
1940 | "igbvf_tso returning an error\n"); | ||
1941 | return err; | ||
1942 | } | ||
1943 | } | ||
1944 | |||
1945 | l4len = tcp_hdrlen(skb); | ||
1946 | *hdr_len += l4len; | ||
1947 | |||
1948 | if (skb->protocol == htons(ETH_P_IP)) { | ||
1949 | struct iphdr *iph = ip_hdr(skb); | ||
1950 | iph->tot_len = 0; | ||
1951 | iph->check = 0; | ||
1952 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, | ||
1953 | iph->daddr, 0, | ||
1954 | IPPROTO_TCP, | ||
1955 | 0); | ||
1956 | } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) { | ||
1957 | ipv6_hdr(skb)->payload_len = 0; | ||
1958 | tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | ||
1959 | &ipv6_hdr(skb)->daddr, | ||
1960 | 0, IPPROTO_TCP, 0); | ||
1961 | } | ||
1962 | |||
1963 | i = tx_ring->next_to_use; | ||
1964 | |||
1965 | buffer_info = &tx_ring->buffer_info[i]; | ||
1966 | context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i); | ||
1967 | /* VLAN MACLEN IPLEN */ | ||
1968 | if (tx_flags & IGBVF_TX_FLAGS_VLAN) | ||
1969 | info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK); | ||
1970 | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); | ||
1971 | *hdr_len += skb_network_offset(skb); | ||
1972 | info |= (skb_transport_header(skb) - skb_network_header(skb)); | ||
1973 | *hdr_len += (skb_transport_header(skb) - skb_network_header(skb)); | ||
1974 | context_desc->vlan_macip_lens = cpu_to_le32(info); | ||
1975 | |||
1976 | /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ | ||
1977 | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); | ||
1978 | |||
1979 | if (skb->protocol == htons(ETH_P_IP)) | ||
1980 | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; | ||
1981 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
1982 | |||
1983 | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); | ||
1984 | |||
1985 | /* MSS L4LEN IDX */ | ||
1986 | mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT); | ||
1987 | mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT); | ||
1988 | |||
1989 | context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); | ||
1990 | context_desc->seqnum_seed = 0; | ||
1991 | |||
1992 | buffer_info->time_stamp = jiffies; | ||
1993 | buffer_info->next_to_watch = i; | ||
1994 | buffer_info->dma = 0; | ||
1995 | i++; | ||
1996 | if (i == tx_ring->count) | ||
1997 | i = 0; | ||
1998 | |||
1999 | tx_ring->next_to_use = i; | ||
2000 | |||
2001 | return true; | ||
2002 | } | ||
2003 | |||
2004 | static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter, | ||
2005 | struct igbvf_ring *tx_ring, | ||
2006 | struct sk_buff *skb, u32 tx_flags) | ||
2007 | { | ||
2008 | struct e1000_adv_tx_context_desc *context_desc; | ||
2009 | unsigned int i; | ||
2010 | struct igbvf_buffer *buffer_info; | ||
2011 | u32 info = 0, tu_cmd = 0; | ||
2012 | |||
2013 | if ((skb->ip_summed == CHECKSUM_PARTIAL) || | ||
2014 | (tx_flags & IGBVF_TX_FLAGS_VLAN)) { | ||
2015 | i = tx_ring->next_to_use; | ||
2016 | buffer_info = &tx_ring->buffer_info[i]; | ||
2017 | context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i); | ||
2018 | |||
2019 | if (tx_flags & IGBVF_TX_FLAGS_VLAN) | ||
2020 | info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK); | ||
2021 | |||
2022 | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); | ||
2023 | if (skb->ip_summed == CHECKSUM_PARTIAL) | ||
2024 | info |= (skb_transport_header(skb) - | ||
2025 | skb_network_header(skb)); | ||
2026 | |||
2027 | |||
2028 | context_desc->vlan_macip_lens = cpu_to_le32(info); | ||
2029 | |||
2030 | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); | ||
2031 | |||
2032 | if (skb->ip_summed == CHECKSUM_PARTIAL) { | ||
2033 | switch (skb->protocol) { | ||
2034 | case __constant_htons(ETH_P_IP): | ||
2035 | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; | ||
2036 | if (ip_hdr(skb)->protocol == IPPROTO_TCP) | ||
2037 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
2038 | break; | ||
2039 | case __constant_htons(ETH_P_IPV6): | ||
2040 | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | ||
2041 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
2042 | break; | ||
2043 | default: | ||
2044 | break; | ||
2045 | } | ||
2046 | } | ||
2047 | |||
2048 | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); | ||
2049 | context_desc->seqnum_seed = 0; | ||
2050 | context_desc->mss_l4len_idx = 0; | ||
2051 | |||
2052 | buffer_info->time_stamp = jiffies; | ||
2053 | buffer_info->next_to_watch = i; | ||
2054 | buffer_info->dma = 0; | ||
2055 | i++; | ||
2056 | if (i == tx_ring->count) | ||
2057 | i = 0; | ||
2058 | tx_ring->next_to_use = i; | ||
2059 | |||
2060 | return true; | ||
2061 | } | ||
2062 | |||
2063 | return false; | ||
2064 | } | ||
2065 | |||
2066 | static int igbvf_maybe_stop_tx(struct net_device *netdev, int size) | ||
2067 | { | ||
2068 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2069 | |||
2070 | /* there is enough descriptors then we don't need to worry */ | ||
2071 | if (igbvf_desc_unused(adapter->tx_ring) >= size) | ||
2072 | return 0; | ||
2073 | |||
2074 | netif_stop_queue(netdev); | ||
2075 | |||
2076 | smp_mb(); | ||
2077 | |||
2078 | /* We need to check again just in case room has been made available */ | ||
2079 | if (igbvf_desc_unused(adapter->tx_ring) < size) | ||
2080 | return -EBUSY; | ||
2081 | |||
2082 | netif_wake_queue(netdev); | ||
2083 | |||
2084 | ++adapter->restart_queue; | ||
2085 | return 0; | ||
2086 | } | ||
2087 | |||
2088 | #define IGBVF_MAX_TXD_PWR 16 | ||
2089 | #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR) | ||
2090 | |||
2091 | static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter, | ||
2092 | struct igbvf_ring *tx_ring, | ||
2093 | struct sk_buff *skb, | ||
2094 | unsigned int first) | ||
2095 | { | ||
2096 | struct igbvf_buffer *buffer_info; | ||
2097 | unsigned int len = skb_headlen(skb); | ||
2098 | unsigned int count = 0, i; | ||
2099 | unsigned int f; | ||
2100 | dma_addr_t *map; | ||
2101 | |||
2102 | i = tx_ring->next_to_use; | ||
2103 | |||
2104 | if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) { | ||
2105 | dev_err(&adapter->pdev->dev, "TX DMA map failed\n"); | ||
2106 | return 0; | ||
2107 | } | ||
2108 | |||
2109 | map = skb_shinfo(skb)->dma_maps; | ||
2110 | |||
2111 | buffer_info = &tx_ring->buffer_info[i]; | ||
2112 | BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); | ||
2113 | buffer_info->length = len; | ||
2114 | /* set time_stamp *before* dma to help avoid a possible race */ | ||
2115 | buffer_info->time_stamp = jiffies; | ||
2116 | buffer_info->next_to_watch = i; | ||
2117 | buffer_info->dma = map[count]; | ||
2118 | count++; | ||
2119 | |||
2120 | for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { | ||
2121 | struct skb_frag_struct *frag; | ||
2122 | |||
2123 | i++; | ||
2124 | if (i == tx_ring->count) | ||
2125 | i = 0; | ||
2126 | |||
2127 | frag = &skb_shinfo(skb)->frags[f]; | ||
2128 | len = frag->size; | ||
2129 | |||
2130 | buffer_info = &tx_ring->buffer_info[i]; | ||
2131 | BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD); | ||
2132 | buffer_info->length = len; | ||
2133 | buffer_info->time_stamp = jiffies; | ||
2134 | buffer_info->next_to_watch = i; | ||
2135 | buffer_info->dma = map[count]; | ||
2136 | count++; | ||
2137 | } | ||
2138 | |||
2139 | tx_ring->buffer_info[i].skb = skb; | ||
2140 | tx_ring->buffer_info[first].next_to_watch = i; | ||
2141 | |||
2142 | return count; | ||
2143 | } | ||
2144 | |||
2145 | static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter, | ||
2146 | struct igbvf_ring *tx_ring, | ||
2147 | int tx_flags, int count, u32 paylen, | ||
2148 | u8 hdr_len) | ||
2149 | { | ||
2150 | union e1000_adv_tx_desc *tx_desc = NULL; | ||
2151 | struct igbvf_buffer *buffer_info; | ||
2152 | u32 olinfo_status = 0, cmd_type_len; | ||
2153 | unsigned int i; | ||
2154 | |||
2155 | cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | | ||
2156 | E1000_ADVTXD_DCMD_DEXT); | ||
2157 | |||
2158 | if (tx_flags & IGBVF_TX_FLAGS_VLAN) | ||
2159 | cmd_type_len |= E1000_ADVTXD_DCMD_VLE; | ||
2160 | |||
2161 | if (tx_flags & IGBVF_TX_FLAGS_TSO) { | ||
2162 | cmd_type_len |= E1000_ADVTXD_DCMD_TSE; | ||
2163 | |||
2164 | /* insert tcp checksum */ | ||
2165 | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; | ||
2166 | |||
2167 | /* insert ip checksum */ | ||
2168 | if (tx_flags & IGBVF_TX_FLAGS_IPV4) | ||
2169 | olinfo_status |= E1000_TXD_POPTS_IXSM << 8; | ||
2170 | |||
2171 | } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) { | ||
2172 | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; | ||
2173 | } | ||
2174 | |||
2175 | olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); | ||
2176 | |||
2177 | i = tx_ring->next_to_use; | ||
2178 | while (count--) { | ||
2179 | buffer_info = &tx_ring->buffer_info[i]; | ||
2180 | tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i); | ||
2181 | tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); | ||
2182 | tx_desc->read.cmd_type_len = | ||
2183 | cpu_to_le32(cmd_type_len | buffer_info->length); | ||
2184 | tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); | ||
2185 | i++; | ||
2186 | if (i == tx_ring->count) | ||
2187 | i = 0; | ||
2188 | } | ||
2189 | |||
2190 | tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd); | ||
2191 | /* Force memory writes to complete before letting h/w | ||
2192 | * know there are new descriptors to fetch. (Only | ||
2193 | * applicable for weak-ordered memory model archs, | ||
2194 | * such as IA-64). */ | ||
2195 | wmb(); | ||
2196 | |||
2197 | tx_ring->next_to_use = i; | ||
2198 | writel(i, adapter->hw.hw_addr + tx_ring->tail); | ||
2199 | /* we need this if more than one processor can write to our tail | ||
2200 | * at a time, it syncronizes IO on IA64/Altix systems */ | ||
2201 | mmiowb(); | ||
2202 | } | ||
2203 | |||
2204 | static int igbvf_xmit_frame_ring_adv(struct sk_buff *skb, | ||
2205 | struct net_device *netdev, | ||
2206 | struct igbvf_ring *tx_ring) | ||
2207 | { | ||
2208 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2209 | unsigned int first, tx_flags = 0; | ||
2210 | u8 hdr_len = 0; | ||
2211 | int count = 0; | ||
2212 | int tso = 0; | ||
2213 | |||
2214 | if (test_bit(__IGBVF_DOWN, &adapter->state)) { | ||
2215 | dev_kfree_skb_any(skb); | ||
2216 | return NETDEV_TX_OK; | ||
2217 | } | ||
2218 | |||
2219 | if (skb->len <= 0) { | ||
2220 | dev_kfree_skb_any(skb); | ||
2221 | return NETDEV_TX_OK; | ||
2222 | } | ||
2223 | |||
2224 | /* | ||
2225 | * need: count + 4 desc gap to keep tail from touching | ||
2226 | * + 2 desc gap to keep tail from touching head, | ||
2227 | * + 1 desc for skb->data, | ||
2228 | * + 1 desc for context descriptor, | ||
2229 | * head, otherwise try next time | ||
2230 | */ | ||
2231 | if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) { | ||
2232 | /* this is a hard error */ | ||
2233 | return NETDEV_TX_BUSY; | ||
2234 | } | ||
2235 | |||
2236 | if (adapter->vlgrp && vlan_tx_tag_present(skb)) { | ||
2237 | tx_flags |= IGBVF_TX_FLAGS_VLAN; | ||
2238 | tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT); | ||
2239 | } | ||
2240 | |||
2241 | if (skb->protocol == htons(ETH_P_IP)) | ||
2242 | tx_flags |= IGBVF_TX_FLAGS_IPV4; | ||
2243 | |||
2244 | first = tx_ring->next_to_use; | ||
2245 | |||
2246 | tso = skb_is_gso(skb) ? | ||
2247 | igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0; | ||
2248 | if (unlikely(tso < 0)) { | ||
2249 | dev_kfree_skb_any(skb); | ||
2250 | return NETDEV_TX_OK; | ||
2251 | } | ||
2252 | |||
2253 | if (tso) | ||
2254 | tx_flags |= IGBVF_TX_FLAGS_TSO; | ||
2255 | else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) && | ||
2256 | (skb->ip_summed == CHECKSUM_PARTIAL)) | ||
2257 | tx_flags |= IGBVF_TX_FLAGS_CSUM; | ||
2258 | |||
2259 | /* | ||
2260 | * count reflects descriptors mapped, if 0 then mapping error | ||
2261 | * has occured and we need to rewind the descriptor queue | ||
2262 | */ | ||
2263 | count = igbvf_tx_map_adv(adapter, tx_ring, skb, first); | ||
2264 | |||
2265 | if (count) { | ||
2266 | igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count, | ||
2267 | skb->len, hdr_len); | ||
2268 | netdev->trans_start = jiffies; | ||
2269 | /* Make sure there is space in the ring for the next send. */ | ||
2270 | igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4); | ||
2271 | } else { | ||
2272 | dev_kfree_skb_any(skb); | ||
2273 | tx_ring->buffer_info[first].time_stamp = 0; | ||
2274 | tx_ring->next_to_use = first; | ||
2275 | } | ||
2276 | |||
2277 | return NETDEV_TX_OK; | ||
2278 | } | ||
2279 | |||
2280 | static int igbvf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | ||
2281 | { | ||
2282 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2283 | struct igbvf_ring *tx_ring; | ||
2284 | int retval; | ||
2285 | |||
2286 | if (test_bit(__IGBVF_DOWN, &adapter->state)) { | ||
2287 | dev_kfree_skb_any(skb); | ||
2288 | return NETDEV_TX_OK; | ||
2289 | } | ||
2290 | |||
2291 | tx_ring = &adapter->tx_ring[0]; | ||
2292 | |||
2293 | retval = igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring); | ||
2294 | |||
2295 | return retval; | ||
2296 | } | ||
2297 | |||
2298 | /** | ||
2299 | * igbvf_tx_timeout - Respond to a Tx Hang | ||
2300 | * @netdev: network interface device structure | ||
2301 | **/ | ||
2302 | static void igbvf_tx_timeout(struct net_device *netdev) | ||
2303 | { | ||
2304 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2305 | |||
2306 | /* Do the reset outside of interrupt context */ | ||
2307 | adapter->tx_timeout_count++; | ||
2308 | schedule_work(&adapter->reset_task); | ||
2309 | } | ||
2310 | |||
2311 | static void igbvf_reset_task(struct work_struct *work) | ||
2312 | { | ||
2313 | struct igbvf_adapter *adapter; | ||
2314 | adapter = container_of(work, struct igbvf_adapter, reset_task); | ||
2315 | |||
2316 | igbvf_reinit_locked(adapter); | ||
2317 | } | ||
2318 | |||
2319 | /** | ||
2320 | * igbvf_get_stats - Get System Network Statistics | ||
2321 | * @netdev: network interface device structure | ||
2322 | * | ||
2323 | * Returns the address of the device statistics structure. | ||
2324 | * The statistics are actually updated from the timer callback. | ||
2325 | **/ | ||
2326 | static struct net_device_stats *igbvf_get_stats(struct net_device *netdev) | ||
2327 | { | ||
2328 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2329 | |||
2330 | /* only return the current stats */ | ||
2331 | return &adapter->net_stats; | ||
2332 | } | ||
2333 | |||
2334 | /** | ||
2335 | * igbvf_change_mtu - Change the Maximum Transfer Unit | ||
2336 | * @netdev: network interface device structure | ||
2337 | * @new_mtu: new value for maximum frame size | ||
2338 | * | ||
2339 | * Returns 0 on success, negative on failure | ||
2340 | **/ | ||
2341 | static int igbvf_change_mtu(struct net_device *netdev, int new_mtu) | ||
2342 | { | ||
2343 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2344 | int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; | ||
2345 | |||
2346 | if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { | ||
2347 | dev_err(&adapter->pdev->dev, "Invalid MTU setting\n"); | ||
2348 | return -EINVAL; | ||
2349 | } | ||
2350 | |||
2351 | /* Jumbo frame size limits */ | ||
2352 | if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) { | ||
2353 | if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { | ||
2354 | dev_err(&adapter->pdev->dev, | ||
2355 | "Jumbo Frames not supported.\n"); | ||
2356 | return -EINVAL; | ||
2357 | } | ||
2358 | } | ||
2359 | |||
2360 | #define MAX_STD_JUMBO_FRAME_SIZE 9234 | ||
2361 | if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { | ||
2362 | dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n"); | ||
2363 | return -EINVAL; | ||
2364 | } | ||
2365 | |||
2366 | while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state)) | ||
2367 | msleep(1); | ||
2368 | /* igbvf_down has a dependency on max_frame_size */ | ||
2369 | adapter->max_frame_size = max_frame; | ||
2370 | if (netif_running(netdev)) | ||
2371 | igbvf_down(adapter); | ||
2372 | |||
2373 | /* | ||
2374 | * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | ||
2375 | * means we reserve 2 more, this pushes us to allocate from the next | ||
2376 | * larger slab size. | ||
2377 | * i.e. RXBUFFER_2048 --> size-4096 slab | ||
2378 | * However with the new *_jumbo_rx* routines, jumbo receives will use | ||
2379 | * fragmented skbs | ||
2380 | */ | ||
2381 | |||
2382 | if (max_frame <= 1024) | ||
2383 | adapter->rx_buffer_len = 1024; | ||
2384 | else if (max_frame <= 2048) | ||
2385 | adapter->rx_buffer_len = 2048; | ||
2386 | else | ||
2387 | #if (PAGE_SIZE / 2) > 16384 | ||
2388 | adapter->rx_buffer_len = 16384; | ||
2389 | #else | ||
2390 | adapter->rx_buffer_len = PAGE_SIZE / 2; | ||
2391 | #endif | ||
2392 | |||
2393 | |||
2394 | /* adjust allocation if LPE protects us, and we aren't using SBP */ | ||
2395 | if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || | ||
2396 | (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) | ||
2397 | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + | ||
2398 | ETH_FCS_LEN; | ||
2399 | |||
2400 | dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n", | ||
2401 | netdev->mtu, new_mtu); | ||
2402 | netdev->mtu = new_mtu; | ||
2403 | |||
2404 | if (netif_running(netdev)) | ||
2405 | igbvf_up(adapter); | ||
2406 | else | ||
2407 | igbvf_reset(adapter); | ||
2408 | |||
2409 | clear_bit(__IGBVF_RESETTING, &adapter->state); | ||
2410 | |||
2411 | return 0; | ||
2412 | } | ||
2413 | |||
2414 | static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
2415 | { | ||
2416 | switch (cmd) { | ||
2417 | default: | ||
2418 | return -EOPNOTSUPP; | ||
2419 | } | ||
2420 | } | ||
2421 | |||
2422 | static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state) | ||
2423 | { | ||
2424 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2425 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2426 | #ifdef CONFIG_PM | ||
2427 | int retval = 0; | ||
2428 | #endif | ||
2429 | |||
2430 | netif_device_detach(netdev); | ||
2431 | |||
2432 | if (netif_running(netdev)) { | ||
2433 | WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state)); | ||
2434 | igbvf_down(adapter); | ||
2435 | igbvf_free_irq(adapter); | ||
2436 | } | ||
2437 | |||
2438 | #ifdef CONFIG_PM | ||
2439 | retval = pci_save_state(pdev); | ||
2440 | if (retval) | ||
2441 | return retval; | ||
2442 | #endif | ||
2443 | |||
2444 | pci_disable_device(pdev); | ||
2445 | |||
2446 | return 0; | ||
2447 | } | ||
2448 | |||
2449 | #ifdef CONFIG_PM | ||
2450 | static int igbvf_resume(struct pci_dev *pdev) | ||
2451 | { | ||
2452 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2453 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2454 | u32 err; | ||
2455 | |||
2456 | pci_restore_state(pdev); | ||
2457 | err = pci_enable_device_mem(pdev); | ||
2458 | if (err) { | ||
2459 | dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); | ||
2460 | return err; | ||
2461 | } | ||
2462 | |||
2463 | pci_set_master(pdev); | ||
2464 | |||
2465 | if (netif_running(netdev)) { | ||
2466 | err = igbvf_request_irq(adapter); | ||
2467 | if (err) | ||
2468 | return err; | ||
2469 | } | ||
2470 | |||
2471 | igbvf_reset(adapter); | ||
2472 | |||
2473 | if (netif_running(netdev)) | ||
2474 | igbvf_up(adapter); | ||
2475 | |||
2476 | netif_device_attach(netdev); | ||
2477 | |||
2478 | return 0; | ||
2479 | } | ||
2480 | #endif | ||
2481 | |||
2482 | static void igbvf_shutdown(struct pci_dev *pdev) | ||
2483 | { | ||
2484 | igbvf_suspend(pdev, PMSG_SUSPEND); | ||
2485 | } | ||
2486 | |||
2487 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
2488 | /* | ||
2489 | * Polling 'interrupt' - used by things like netconsole to send skbs | ||
2490 | * without having to re-enable interrupts. It's not called while | ||
2491 | * the interrupt routine is executing. | ||
2492 | */ | ||
2493 | static void igbvf_netpoll(struct net_device *netdev) | ||
2494 | { | ||
2495 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2496 | |||
2497 | disable_irq(adapter->pdev->irq); | ||
2498 | |||
2499 | igbvf_clean_tx_irq(adapter->tx_ring); | ||
2500 | |||
2501 | enable_irq(adapter->pdev->irq); | ||
2502 | } | ||
2503 | #endif | ||
2504 | |||
2505 | /** | ||
2506 | * igbvf_io_error_detected - called when PCI error is detected | ||
2507 | * @pdev: Pointer to PCI device | ||
2508 | * @state: The current pci connection state | ||
2509 | * | ||
2510 | * This function is called after a PCI bus error affecting | ||
2511 | * this device has been detected. | ||
2512 | */ | ||
2513 | static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev, | ||
2514 | pci_channel_state_t state) | ||
2515 | { | ||
2516 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2517 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2518 | |||
2519 | netif_device_detach(netdev); | ||
2520 | |||
2521 | if (netif_running(netdev)) | ||
2522 | igbvf_down(adapter); | ||
2523 | pci_disable_device(pdev); | ||
2524 | |||
2525 | /* Request a slot slot reset. */ | ||
2526 | return PCI_ERS_RESULT_NEED_RESET; | ||
2527 | } | ||
2528 | |||
2529 | /** | ||
2530 | * igbvf_io_slot_reset - called after the pci bus has been reset. | ||
2531 | * @pdev: Pointer to PCI device | ||
2532 | * | ||
2533 | * Restart the card from scratch, as if from a cold-boot. Implementation | ||
2534 | * resembles the first-half of the igbvf_resume routine. | ||
2535 | */ | ||
2536 | static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev) | ||
2537 | { | ||
2538 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2539 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2540 | |||
2541 | if (pci_enable_device_mem(pdev)) { | ||
2542 | dev_err(&pdev->dev, | ||
2543 | "Cannot re-enable PCI device after reset.\n"); | ||
2544 | return PCI_ERS_RESULT_DISCONNECT; | ||
2545 | } | ||
2546 | pci_set_master(pdev); | ||
2547 | |||
2548 | igbvf_reset(adapter); | ||
2549 | |||
2550 | return PCI_ERS_RESULT_RECOVERED; | ||
2551 | } | ||
2552 | |||
2553 | /** | ||
2554 | * igbvf_io_resume - called when traffic can start flowing again. | ||
2555 | * @pdev: Pointer to PCI device | ||
2556 | * | ||
2557 | * This callback is called when the error recovery driver tells us that | ||
2558 | * its OK to resume normal operation. Implementation resembles the | ||
2559 | * second-half of the igbvf_resume routine. | ||
2560 | */ | ||
2561 | static void igbvf_io_resume(struct pci_dev *pdev) | ||
2562 | { | ||
2563 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2564 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2565 | |||
2566 | if (netif_running(netdev)) { | ||
2567 | if (igbvf_up(adapter)) { | ||
2568 | dev_err(&pdev->dev, | ||
2569 | "can't bring device back up after reset\n"); | ||
2570 | return; | ||
2571 | } | ||
2572 | } | ||
2573 | |||
2574 | netif_device_attach(netdev); | ||
2575 | } | ||
2576 | |||
2577 | static void igbvf_print_device_info(struct igbvf_adapter *adapter) | ||
2578 | { | ||
2579 | struct e1000_hw *hw = &adapter->hw; | ||
2580 | struct net_device *netdev = adapter->netdev; | ||
2581 | struct pci_dev *pdev = adapter->pdev; | ||
2582 | |||
2583 | dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n"); | ||
2584 | dev_info(&pdev->dev, "Address: %02x:%02x:%02x:%02x:%02x:%02x\n", | ||
2585 | /* MAC address */ | ||
2586 | netdev->dev_addr[0], netdev->dev_addr[1], | ||
2587 | netdev->dev_addr[2], netdev->dev_addr[3], | ||
2588 | netdev->dev_addr[4], netdev->dev_addr[5]); | ||
2589 | dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); | ||
2590 | } | ||
2591 | |||
2592 | static const struct net_device_ops igbvf_netdev_ops = { | ||
2593 | .ndo_open = igbvf_open, | ||
2594 | .ndo_stop = igbvf_close, | ||
2595 | .ndo_start_xmit = igbvf_xmit_frame, | ||
2596 | .ndo_get_stats = igbvf_get_stats, | ||
2597 | .ndo_set_multicast_list = igbvf_set_multi, | ||
2598 | .ndo_set_mac_address = igbvf_set_mac, | ||
2599 | .ndo_change_mtu = igbvf_change_mtu, | ||
2600 | .ndo_do_ioctl = igbvf_ioctl, | ||
2601 | .ndo_tx_timeout = igbvf_tx_timeout, | ||
2602 | .ndo_vlan_rx_register = igbvf_vlan_rx_register, | ||
2603 | .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid, | ||
2604 | .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid, | ||
2605 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
2606 | .ndo_poll_controller = igbvf_netpoll, | ||
2607 | #endif | ||
2608 | }; | ||
2609 | |||
2610 | /** | ||
2611 | * igbvf_probe - Device Initialization Routine | ||
2612 | * @pdev: PCI device information struct | ||
2613 | * @ent: entry in igbvf_pci_tbl | ||
2614 | * | ||
2615 | * Returns 0 on success, negative on failure | ||
2616 | * | ||
2617 | * igbvf_probe initializes an adapter identified by a pci_dev structure. | ||
2618 | * The OS initialization, configuring of the adapter private structure, | ||
2619 | * and a hardware reset occur. | ||
2620 | **/ | ||
2621 | static int __devinit igbvf_probe(struct pci_dev *pdev, | ||
2622 | const struct pci_device_id *ent) | ||
2623 | { | ||
2624 | struct net_device *netdev; | ||
2625 | struct igbvf_adapter *adapter; | ||
2626 | struct e1000_hw *hw; | ||
2627 | const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data]; | ||
2628 | |||
2629 | static int cards_found; | ||
2630 | int err, pci_using_dac; | ||
2631 | |||
2632 | err = pci_enable_device_mem(pdev); | ||
2633 | if (err) | ||
2634 | return err; | ||
2635 | |||
2636 | pci_using_dac = 0; | ||
2637 | err = pci_set_dma_mask(pdev, DMA_64BIT_MASK); | ||
2638 | if (!err) { | ||
2639 | err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); | ||
2640 | if (!err) | ||
2641 | pci_using_dac = 1; | ||
2642 | } else { | ||
2643 | err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); | ||
2644 | if (err) { | ||
2645 | err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); | ||
2646 | if (err) { | ||
2647 | dev_err(&pdev->dev, "No usable DMA " | ||
2648 | "configuration, aborting\n"); | ||
2649 | goto err_dma; | ||
2650 | } | ||
2651 | } | ||
2652 | } | ||
2653 | |||
2654 | err = pci_request_regions(pdev, igbvf_driver_name); | ||
2655 | if (err) | ||
2656 | goto err_pci_reg; | ||
2657 | |||
2658 | pci_set_master(pdev); | ||
2659 | |||
2660 | err = -ENOMEM; | ||
2661 | netdev = alloc_etherdev(sizeof(struct igbvf_adapter)); | ||
2662 | if (!netdev) | ||
2663 | goto err_alloc_etherdev; | ||
2664 | |||
2665 | SET_NETDEV_DEV(netdev, &pdev->dev); | ||
2666 | |||
2667 | pci_set_drvdata(pdev, netdev); | ||
2668 | adapter = netdev_priv(netdev); | ||
2669 | hw = &adapter->hw; | ||
2670 | adapter->netdev = netdev; | ||
2671 | adapter->pdev = pdev; | ||
2672 | adapter->ei = ei; | ||
2673 | adapter->pba = ei->pba; | ||
2674 | adapter->flags = ei->flags; | ||
2675 | adapter->hw.back = adapter; | ||
2676 | adapter->hw.mac.type = ei->mac; | ||
2677 | adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; | ||
2678 | |||
2679 | /* PCI config space info */ | ||
2680 | |||
2681 | hw->vendor_id = pdev->vendor; | ||
2682 | hw->device_id = pdev->device; | ||
2683 | hw->subsystem_vendor_id = pdev->subsystem_vendor; | ||
2684 | hw->subsystem_device_id = pdev->subsystem_device; | ||
2685 | |||
2686 | pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); | ||
2687 | |||
2688 | err = -EIO; | ||
2689 | adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0), | ||
2690 | pci_resource_len(pdev, 0)); | ||
2691 | |||
2692 | if (!adapter->hw.hw_addr) | ||
2693 | goto err_ioremap; | ||
2694 | |||
2695 | if (ei->get_variants) { | ||
2696 | err = ei->get_variants(adapter); | ||
2697 | if (err) | ||
2698 | goto err_ioremap; | ||
2699 | } | ||
2700 | |||
2701 | /* setup adapter struct */ | ||
2702 | err = igbvf_sw_init(adapter); | ||
2703 | if (err) | ||
2704 | goto err_sw_init; | ||
2705 | |||
2706 | /* construct the net_device struct */ | ||
2707 | netdev->netdev_ops = &igbvf_netdev_ops; | ||
2708 | |||
2709 | igbvf_set_ethtool_ops(netdev); | ||
2710 | netdev->watchdog_timeo = 5 * HZ; | ||
2711 | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | ||
2712 | |||
2713 | adapter->bd_number = cards_found++; | ||
2714 | |||
2715 | netdev->features = NETIF_F_SG | | ||
2716 | NETIF_F_IP_CSUM | | ||
2717 | NETIF_F_HW_VLAN_TX | | ||
2718 | NETIF_F_HW_VLAN_RX | | ||
2719 | NETIF_F_HW_VLAN_FILTER; | ||
2720 | |||
2721 | netdev->features |= NETIF_F_IPV6_CSUM; | ||
2722 | netdev->features |= NETIF_F_TSO; | ||
2723 | netdev->features |= NETIF_F_TSO6; | ||
2724 | |||
2725 | if (pci_using_dac) | ||
2726 | netdev->features |= NETIF_F_HIGHDMA; | ||
2727 | |||
2728 | netdev->vlan_features |= NETIF_F_TSO; | ||
2729 | netdev->vlan_features |= NETIF_F_TSO6; | ||
2730 | netdev->vlan_features |= NETIF_F_IP_CSUM; | ||
2731 | netdev->vlan_features |= NETIF_F_IPV6_CSUM; | ||
2732 | netdev->vlan_features |= NETIF_F_SG; | ||
2733 | |||
2734 | /*reset the controller to put the device in a known good state */ | ||
2735 | err = hw->mac.ops.reset_hw(hw); | ||
2736 | if (err) { | ||
2737 | dev_info(&pdev->dev, | ||
2738 | "PF still in reset state, assigning new address\n"); | ||
2739 | random_ether_addr(hw->mac.addr); | ||
2740 | } else { | ||
2741 | err = hw->mac.ops.read_mac_addr(hw); | ||
2742 | if (err) { | ||
2743 | dev_err(&pdev->dev, "Error reading MAC address\n"); | ||
2744 | goto err_hw_init; | ||
2745 | } | ||
2746 | } | ||
2747 | |||
2748 | memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); | ||
2749 | memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); | ||
2750 | |||
2751 | if (!is_valid_ether_addr(netdev->perm_addr)) { | ||
2752 | dev_err(&pdev->dev, "Invalid MAC Address: " | ||
2753 | "%02x:%02x:%02x:%02x:%02x:%02x\n", | ||
2754 | netdev->dev_addr[0], netdev->dev_addr[1], | ||
2755 | netdev->dev_addr[2], netdev->dev_addr[3], | ||
2756 | netdev->dev_addr[4], netdev->dev_addr[5]); | ||
2757 | err = -EIO; | ||
2758 | goto err_hw_init; | ||
2759 | } | ||
2760 | |||
2761 | setup_timer(&adapter->watchdog_timer, &igbvf_watchdog, | ||
2762 | (unsigned long) adapter); | ||
2763 | |||
2764 | INIT_WORK(&adapter->reset_task, igbvf_reset_task); | ||
2765 | INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task); | ||
2766 | |||
2767 | /* ring size defaults */ | ||
2768 | adapter->rx_ring->count = 1024; | ||
2769 | adapter->tx_ring->count = 1024; | ||
2770 | |||
2771 | /* reset the hardware with the new settings */ | ||
2772 | igbvf_reset(adapter); | ||
2773 | |||
2774 | /* tell the stack to leave us alone until igbvf_open() is called */ | ||
2775 | netif_carrier_off(netdev); | ||
2776 | netif_stop_queue(netdev); | ||
2777 | |||
2778 | strcpy(netdev->name, "eth%d"); | ||
2779 | err = register_netdev(netdev); | ||
2780 | if (err) | ||
2781 | goto err_hw_init; | ||
2782 | |||
2783 | igbvf_print_device_info(adapter); | ||
2784 | |||
2785 | igbvf_initialize_last_counter_stats(adapter); | ||
2786 | |||
2787 | return 0; | ||
2788 | |||
2789 | err_hw_init: | ||
2790 | kfree(adapter->tx_ring); | ||
2791 | kfree(adapter->rx_ring); | ||
2792 | err_sw_init: | ||
2793 | igbvf_reset_interrupt_capability(adapter); | ||
2794 | iounmap(adapter->hw.hw_addr); | ||
2795 | err_ioremap: | ||
2796 | free_netdev(netdev); | ||
2797 | err_alloc_etherdev: | ||
2798 | pci_release_regions(pdev); | ||
2799 | err_pci_reg: | ||
2800 | err_dma: | ||
2801 | pci_disable_device(pdev); | ||
2802 | return err; | ||
2803 | } | ||
2804 | |||
2805 | /** | ||
2806 | * igbvf_remove - Device Removal Routine | ||
2807 | * @pdev: PCI device information struct | ||
2808 | * | ||
2809 | * igbvf_remove is called by the PCI subsystem to alert the driver | ||
2810 | * that it should release a PCI device. The could be caused by a | ||
2811 | * Hot-Plug event, or because the driver is going to be removed from | ||
2812 | * memory. | ||
2813 | **/ | ||
2814 | static void __devexit igbvf_remove(struct pci_dev *pdev) | ||
2815 | { | ||
2816 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2817 | struct igbvf_adapter *adapter = netdev_priv(netdev); | ||
2818 | struct e1000_hw *hw = &adapter->hw; | ||
2819 | |||
2820 | /* | ||
2821 | * flush_scheduled work may reschedule our watchdog task, so | ||
2822 | * explicitly disable watchdog tasks from being rescheduled | ||
2823 | */ | ||
2824 | set_bit(__IGBVF_DOWN, &adapter->state); | ||
2825 | del_timer_sync(&adapter->watchdog_timer); | ||
2826 | |||
2827 | flush_scheduled_work(); | ||
2828 | |||
2829 | unregister_netdev(netdev); | ||
2830 | |||
2831 | igbvf_reset_interrupt_capability(adapter); | ||
2832 | |||
2833 | /* | ||
2834 | * it is important to delete the napi struct prior to freeing the | ||
2835 | * rx ring so that you do not end up with null pointer refs | ||
2836 | */ | ||
2837 | netif_napi_del(&adapter->rx_ring->napi); | ||
2838 | kfree(adapter->tx_ring); | ||
2839 | kfree(adapter->rx_ring); | ||
2840 | |||
2841 | iounmap(hw->hw_addr); | ||
2842 | if (hw->flash_address) | ||
2843 | iounmap(hw->flash_address); | ||
2844 | pci_release_regions(pdev); | ||
2845 | |||
2846 | free_netdev(netdev); | ||
2847 | |||
2848 | pci_disable_device(pdev); | ||
2849 | } | ||
2850 | |||
2851 | /* PCI Error Recovery (ERS) */ | ||
2852 | static struct pci_error_handlers igbvf_err_handler = { | ||
2853 | .error_detected = igbvf_io_error_detected, | ||
2854 | .slot_reset = igbvf_io_slot_reset, | ||
2855 | .resume = igbvf_io_resume, | ||
2856 | }; | ||
2857 | |||
2858 | static struct pci_device_id igbvf_pci_tbl[] = { | ||
2859 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf }, | ||
2860 | { } /* terminate list */ | ||
2861 | }; | ||
2862 | MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl); | ||
2863 | |||
2864 | /* PCI Device API Driver */ | ||
2865 | static struct pci_driver igbvf_driver = { | ||
2866 | .name = igbvf_driver_name, | ||
2867 | .id_table = igbvf_pci_tbl, | ||
2868 | .probe = igbvf_probe, | ||
2869 | .remove = __devexit_p(igbvf_remove), | ||
2870 | #ifdef CONFIG_PM | ||
2871 | /* Power Management Hooks */ | ||
2872 | .suspend = igbvf_suspend, | ||
2873 | .resume = igbvf_resume, | ||
2874 | #endif | ||
2875 | .shutdown = igbvf_shutdown, | ||
2876 | .err_handler = &igbvf_err_handler | ||
2877 | }; | ||
2878 | |||
2879 | /** | ||
2880 | * igbvf_init_module - Driver Registration Routine | ||
2881 | * | ||
2882 | * igbvf_init_module is the first routine called when the driver is | ||
2883 | * loaded. All it does is register with the PCI subsystem. | ||
2884 | **/ | ||
2885 | static int __init igbvf_init_module(void) | ||
2886 | { | ||
2887 | int ret; | ||
2888 | printk(KERN_INFO "%s - version %s\n", | ||
2889 | igbvf_driver_string, igbvf_driver_version); | ||
2890 | printk(KERN_INFO "%s\n", igbvf_copyright); | ||
2891 | |||
2892 | ret = pci_register_driver(&igbvf_driver); | ||
2893 | pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name, | ||
2894 | PM_QOS_DEFAULT_VALUE); | ||
2895 | |||
2896 | return ret; | ||
2897 | } | ||
2898 | module_init(igbvf_init_module); | ||
2899 | |||
2900 | /** | ||
2901 | * igbvf_exit_module - Driver Exit Cleanup Routine | ||
2902 | * | ||
2903 | * igbvf_exit_module is called just before the driver is removed | ||
2904 | * from memory. | ||
2905 | **/ | ||
2906 | static void __exit igbvf_exit_module(void) | ||
2907 | { | ||
2908 | pci_unregister_driver(&igbvf_driver); | ||
2909 | pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name); | ||
2910 | } | ||
2911 | module_exit(igbvf_exit_module); | ||
2912 | |||
2913 | |||
2914 | MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); | ||
2915 | MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver"); | ||
2916 | MODULE_LICENSE("GPL"); | ||
2917 | MODULE_VERSION(DRV_VERSION); | ||
2918 | |||
2919 | /* netdev.c */ | ||