aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/igb
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/igb')
-rw-r--r--drivers/net/igb/Makefile37
-rw-r--r--drivers/net/igb/e1000_82575.c1269
-rw-r--r--drivers/net/igb/e1000_82575.h150
-rw-r--r--drivers/net/igb/e1000_defines.h772
-rw-r--r--drivers/net/igb/e1000_hw.h599
-rw-r--r--drivers/net/igb/e1000_mac.c1505
-rw-r--r--drivers/net/igb/e1000_mac.h98
-rw-r--r--drivers/net/igb/e1000_nvm.c605
-rw-r--r--drivers/net/igb/e1000_nvm.h40
-rw-r--r--drivers/net/igb/e1000_phy.c1807
-rw-r--r--drivers/net/igb/e1000_phy.h98
-rw-r--r--drivers/net/igb/e1000_regs.h270
-rw-r--r--drivers/net/igb/igb.h300
-rw-r--r--drivers/net/igb/igb_ethtool.c1927
-rw-r--r--drivers/net/igb/igb_main.c4138
15 files changed, 13615 insertions, 0 deletions
diff --git a/drivers/net/igb/Makefile b/drivers/net/igb/Makefile
new file mode 100644
index 000000000000..1927b3fd6f05
--- /dev/null
+++ b/drivers/net/igb/Makefile
@@ -0,0 +1,37 @@
1################################################################################
2#
3# Intel 82575 PCI-Express Ethernet Linux driver
4# Copyright(c) 1999 - 2007 Intel Corporation.
5#
6# This program is free software; you can redistribute it and/or modify it
7# under the terms and conditions of the GNU General Public License,
8# version 2, as published by the Free Software Foundation.
9#
10# This program is distributed in the hope it will be useful, but WITHOUT
11# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13# more details.
14#
15# You should have received a copy of the GNU General Public License along with
16# this program; if not, write to the Free Software Foundation, Inc.,
17# 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18#
19# The full GNU General Public License is included in this distribution in
20# the file called "COPYING".
21#
22# Contact Information:
23# Linux NICS <linux.nics@intel.com>
24# e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25# Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26#
27################################################################################
28
29#
30# Makefile for the Intel(R) 82575 PCI-Express ethernet driver
31#
32
33obj-$(CONFIG_IGB) += igb.o
34
35igb-objs := igb_main.o igb_ethtool.o e1000_82575.o \
36 e1000_mac.o e1000_nvm.o e1000_phy.o
37
diff --git a/drivers/net/igb/e1000_82575.c b/drivers/net/igb/e1000_82575.c
new file mode 100644
index 000000000000..cda3ec879090
--- /dev/null
+++ b/drivers/net/igb/e1000_82575.c
@@ -0,0 +1,1269 @@
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* e1000_82575
29 * e1000_82576
30 */
31
32#include <linux/types.h>
33#include <linux/slab.h>
34
35#include "e1000_mac.h"
36#include "e1000_82575.h"
37
38static s32 igb_get_invariants_82575(struct e1000_hw *);
39static s32 igb_acquire_phy_82575(struct e1000_hw *);
40static void igb_release_phy_82575(struct e1000_hw *);
41static s32 igb_acquire_nvm_82575(struct e1000_hw *);
42static void igb_release_nvm_82575(struct e1000_hw *);
43static s32 igb_check_for_link_82575(struct e1000_hw *);
44static s32 igb_get_cfg_done_82575(struct e1000_hw *);
45static s32 igb_init_hw_82575(struct e1000_hw *);
46static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48static void igb_rar_set_82575(struct e1000_hw *, u8 *, u32);
49static s32 igb_reset_hw_82575(struct e1000_hw *);
50static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
51static s32 igb_setup_copper_link_82575(struct e1000_hw *);
52static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *);
53static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
54static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
55static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
56static s32 igb_configure_pcs_link_82575(struct e1000_hw *);
57static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
58 u16 *);
59static s32 igb_get_phy_id_82575(struct e1000_hw *);
60static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
61static bool igb_sgmii_active_82575(struct e1000_hw *);
62static s32 igb_reset_init_script_82575(struct e1000_hw *);
63static s32 igb_read_mac_addr_82575(struct e1000_hw *);
64
65
66struct e1000_dev_spec_82575 {
67 bool sgmii_active;
68};
69
70static s32 igb_get_invariants_82575(struct e1000_hw *hw)
71{
72 struct e1000_phy_info *phy = &hw->phy;
73 struct e1000_nvm_info *nvm = &hw->nvm;
74 struct e1000_mac_info *mac = &hw->mac;
75 struct e1000_dev_spec_82575 *dev_spec;
76 u32 eecd;
77 s32 ret_val;
78 u16 size;
79 u32 ctrl_ext = 0;
80
81 switch (hw->device_id) {
82 case E1000_DEV_ID_82575EB_COPPER:
83 case E1000_DEV_ID_82575EB_FIBER_SERDES:
84 case E1000_DEV_ID_82575GB_QUAD_COPPER:
85 mac->type = e1000_82575;
86 break;
87 default:
88 return -E1000_ERR_MAC_INIT;
89 break;
90 }
91
92 /* MAC initialization */
93 hw->dev_spec_size = sizeof(struct e1000_dev_spec_82575);
94
95 /* Device-specific structure allocation */
96 hw->dev_spec = kzalloc(hw->dev_spec_size, GFP_KERNEL);
97
98 if (!hw->dev_spec)
99 return -ENOMEM;
100
101 dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec;
102
103 /* Set media type */
104 /*
105 * The 82575 uses bits 22:23 for link mode. The mode can be changed
106 * based on the EEPROM. We cannot rely upon device ID. There
107 * is no distinguishable difference between fiber and internal
108 * SerDes mode on the 82575. There can be an external PHY attached
109 * on the SGMII interface. For this, we'll set sgmii_active to true.
110 */
111 phy->media_type = e1000_media_type_copper;
112 dev_spec->sgmii_active = false;
113
114 ctrl_ext = rd32(E1000_CTRL_EXT);
115 if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) ==
116 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) {
117 hw->phy.media_type = e1000_media_type_internal_serdes;
118 ctrl_ext |= E1000_CTRL_I2C_ENA;
119 } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) {
120 dev_spec->sgmii_active = true;
121 ctrl_ext |= E1000_CTRL_I2C_ENA;
122 } else {
123 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
124 }
125 wr32(E1000_CTRL_EXT, ctrl_ext);
126
127 /* Set mta register count */
128 mac->mta_reg_count = 128;
129 /* Set rar entry count */
130 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
131 /* Set if part includes ASF firmware */
132 mac->asf_firmware_present = true;
133 /* Set if manageability features are enabled. */
134 mac->arc_subsystem_valid =
135 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
136 ? true : false;
137
138 /* physical interface link setup */
139 mac->ops.setup_physical_interface =
140 (hw->phy.media_type == e1000_media_type_copper)
141 ? igb_setup_copper_link_82575
142 : igb_setup_fiber_serdes_link_82575;
143
144 /* NVM initialization */
145 eecd = rd32(E1000_EECD);
146
147 nvm->opcode_bits = 8;
148 nvm->delay_usec = 1;
149 switch (nvm->override) {
150 case e1000_nvm_override_spi_large:
151 nvm->page_size = 32;
152 nvm->address_bits = 16;
153 break;
154 case e1000_nvm_override_spi_small:
155 nvm->page_size = 8;
156 nvm->address_bits = 8;
157 break;
158 default:
159 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
160 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
161 break;
162 }
163
164 nvm->type = e1000_nvm_eeprom_spi;
165
166 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
167 E1000_EECD_SIZE_EX_SHIFT);
168
169 /*
170 * Added to a constant, "size" becomes the left-shift value
171 * for setting word_size.
172 */
173 size += NVM_WORD_SIZE_BASE_SHIFT;
174 nvm->word_size = 1 << size;
175
176 /* setup PHY parameters */
177 if (phy->media_type != e1000_media_type_copper) {
178 phy->type = e1000_phy_none;
179 return 0;
180 }
181
182 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
183 phy->reset_delay_us = 100;
184
185 /* PHY function pointers */
186 if (igb_sgmii_active_82575(hw)) {
187 phy->ops.reset_phy = igb_phy_hw_reset_sgmii_82575;
188 phy->ops.read_phy_reg = igb_read_phy_reg_sgmii_82575;
189 phy->ops.write_phy_reg = igb_write_phy_reg_sgmii_82575;
190 } else {
191 phy->ops.reset_phy = igb_phy_hw_reset;
192 phy->ops.read_phy_reg = igb_read_phy_reg_igp;
193 phy->ops.write_phy_reg = igb_write_phy_reg_igp;
194 }
195
196 /* Set phy->phy_addr and phy->id. */
197 ret_val = igb_get_phy_id_82575(hw);
198 if (ret_val)
199 return ret_val;
200
201 /* Verify phy id and set remaining function pointers */
202 switch (phy->id) {
203 case M88E1111_I_PHY_ID:
204 phy->type = e1000_phy_m88;
205 phy->ops.get_phy_info = igb_get_phy_info_m88;
206 phy->ops.get_cable_length = igb_get_cable_length_m88;
207 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
208 break;
209 case IGP03E1000_E_PHY_ID:
210 phy->type = e1000_phy_igp_3;
211 phy->ops.get_phy_info = igb_get_phy_info_igp;
212 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
213 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
214 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
215 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
216 break;
217 default:
218 return -E1000_ERR_PHY;
219 }
220
221 return 0;
222}
223
224/**
225 * e1000_acquire_phy_82575 - Acquire rights to access PHY
226 * @hw: pointer to the HW structure
227 *
228 * Acquire access rights to the correct PHY. This is a
229 * function pointer entry point called by the api module.
230 **/
231static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
232{
233 u16 mask;
234
235 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
236
237 return igb_acquire_swfw_sync_82575(hw, mask);
238}
239
240/**
241 * e1000_release_phy_82575 - Release rights to access PHY
242 * @hw: pointer to the HW structure
243 *
244 * A wrapper to release access rights to the correct PHY. This is a
245 * function pointer entry point called by the api module.
246 **/
247static void igb_release_phy_82575(struct e1000_hw *hw)
248{
249 u16 mask;
250
251 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
252 igb_release_swfw_sync_82575(hw, mask);
253}
254
255/**
256 * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
257 * @hw: pointer to the HW structure
258 * @offset: register offset to be read
259 * @data: pointer to the read data
260 *
261 * Reads the PHY register at offset using the serial gigabit media independent
262 * interface and stores the retrieved information in data.
263 **/
264static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
265 u16 *data)
266{
267 struct e1000_phy_info *phy = &hw->phy;
268 u32 i, i2ccmd = 0;
269
270 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
271 hw_dbg(hw, "PHY Address %u is out of range\n", offset);
272 return -E1000_ERR_PARAM;
273 }
274
275 /*
276 * Set up Op-code, Phy Address, and register address in the I2CCMD
277 * register. The MAC will take care of interfacing with the
278 * PHY to retrieve the desired data.
279 */
280 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
281 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
282 (E1000_I2CCMD_OPCODE_READ));
283
284 wr32(E1000_I2CCMD, i2ccmd);
285
286 /* Poll the ready bit to see if the I2C read completed */
287 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
288 udelay(50);
289 i2ccmd = rd32(E1000_I2CCMD);
290 if (i2ccmd & E1000_I2CCMD_READY)
291 break;
292 }
293 if (!(i2ccmd & E1000_I2CCMD_READY)) {
294 hw_dbg(hw, "I2CCMD Read did not complete\n");
295 return -E1000_ERR_PHY;
296 }
297 if (i2ccmd & E1000_I2CCMD_ERROR) {
298 hw_dbg(hw, "I2CCMD Error bit set\n");
299 return -E1000_ERR_PHY;
300 }
301
302 /* Need to byte-swap the 16-bit value. */
303 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
304
305 return 0;
306}
307
308/**
309 * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
310 * @hw: pointer to the HW structure
311 * @offset: register offset to write to
312 * @data: data to write at register offset
313 *
314 * Writes the data to PHY register at the offset using the serial gigabit
315 * media independent interface.
316 **/
317static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
318 u16 data)
319{
320 struct e1000_phy_info *phy = &hw->phy;
321 u32 i, i2ccmd = 0;
322 u16 phy_data_swapped;
323
324 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
325 hw_dbg(hw, "PHY Address %d is out of range\n", offset);
326 return -E1000_ERR_PARAM;
327 }
328
329 /* Swap the data bytes for the I2C interface */
330 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
331
332 /*
333 * Set up Op-code, Phy Address, and register address in the I2CCMD
334 * register. The MAC will take care of interfacing with the
335 * PHY to retrieve the desired data.
336 */
337 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
338 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
339 E1000_I2CCMD_OPCODE_WRITE |
340 phy_data_swapped);
341
342 wr32(E1000_I2CCMD, i2ccmd);
343
344 /* Poll the ready bit to see if the I2C read completed */
345 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
346 udelay(50);
347 i2ccmd = rd32(E1000_I2CCMD);
348 if (i2ccmd & E1000_I2CCMD_READY)
349 break;
350 }
351 if (!(i2ccmd & E1000_I2CCMD_READY)) {
352 hw_dbg(hw, "I2CCMD Write did not complete\n");
353 return -E1000_ERR_PHY;
354 }
355 if (i2ccmd & E1000_I2CCMD_ERROR) {
356 hw_dbg(hw, "I2CCMD Error bit set\n");
357 return -E1000_ERR_PHY;
358 }
359
360 return 0;
361}
362
363/**
364 * e1000_get_phy_id_82575 - Retreive PHY addr and id
365 * @hw: pointer to the HW structure
366 *
367 * Retreives the PHY address and ID for both PHY's which do and do not use
368 * sgmi interface.
369 **/
370static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
371{
372 struct e1000_phy_info *phy = &hw->phy;
373 s32 ret_val = 0;
374 u16 phy_id;
375
376 /*
377 * For SGMII PHYs, we try the list of possible addresses until
378 * we find one that works. For non-SGMII PHYs
379 * (e.g. integrated copper PHYs), an address of 1 should
380 * work. The result of this function should mean phy->phy_addr
381 * and phy->id are set correctly.
382 */
383 if (!(igb_sgmii_active_82575(hw))) {
384 phy->addr = 1;
385 ret_val = igb_get_phy_id(hw);
386 goto out;
387 }
388
389 /*
390 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
391 * Therefore, we need to test 1-7
392 */
393 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
394 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
395 if (ret_val == 0) {
396 hw_dbg(hw, "Vendor ID 0x%08X read at address %u\n",
397 phy_id,
398 phy->addr);
399 /*
400 * At the time of this writing, The M88 part is
401 * the only supported SGMII PHY product.
402 */
403 if (phy_id == M88_VENDOR)
404 break;
405 } else {
406 hw_dbg(hw, "PHY address %u was unreadable\n",
407 phy->addr);
408 }
409 }
410
411 /* A valid PHY type couldn't be found. */
412 if (phy->addr == 8) {
413 phy->addr = 0;
414 ret_val = -E1000_ERR_PHY;
415 goto out;
416 }
417
418 ret_val = igb_get_phy_id(hw);
419
420out:
421 return ret_val;
422}
423
424/**
425 * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
426 * @hw: pointer to the HW structure
427 *
428 * Resets the PHY using the serial gigabit media independent interface.
429 **/
430static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
431{
432 s32 ret_val;
433
434 /*
435 * This isn't a true "hard" reset, but is the only reset
436 * available to us at this time.
437 */
438
439 hw_dbg(hw, "Soft resetting SGMII attached PHY...\n");
440
441 /*
442 * SFP documentation requires the following to configure the SPF module
443 * to work on SGMII. No further documentation is given.
444 */
445 ret_val = hw->phy.ops.write_phy_reg(hw, 0x1B, 0x8084);
446 if (ret_val)
447 goto out;
448
449 ret_val = igb_phy_sw_reset(hw);
450
451out:
452 return ret_val;
453}
454
455/**
456 * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
457 * @hw: pointer to the HW structure
458 * @active: true to enable LPLU, false to disable
459 *
460 * Sets the LPLU D0 state according to the active flag. When
461 * activating LPLU this function also disables smart speed
462 * and vice versa. LPLU will not be activated unless the
463 * device autonegotiation advertisement meets standards of
464 * either 10 or 10/100 or 10/100/1000 at all duplexes.
465 * This is a function pointer entry point only called by
466 * PHY setup routines.
467 **/
468static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
469{
470 struct e1000_phy_info *phy = &hw->phy;
471 s32 ret_val;
472 u16 data;
473
474 ret_val = hw->phy.ops.read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
475 &data);
476 if (ret_val)
477 goto out;
478
479 if (active) {
480 data |= IGP02E1000_PM_D0_LPLU;
481 ret_val = hw->phy.ops.write_phy_reg(hw,
482 IGP02E1000_PHY_POWER_MGMT,
483 data);
484 if (ret_val)
485 goto out;
486
487 /* When LPLU is enabled, we should disable SmartSpeed */
488 ret_val = hw->phy.ops.read_phy_reg(hw,
489 IGP01E1000_PHY_PORT_CONFIG,
490 &data);
491 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
492 ret_val = hw->phy.ops.write_phy_reg(hw,
493 IGP01E1000_PHY_PORT_CONFIG,
494 data);
495 if (ret_val)
496 goto out;
497 } else {
498 data &= ~IGP02E1000_PM_D0_LPLU;
499 ret_val = hw->phy.ops.write_phy_reg(hw,
500 IGP02E1000_PHY_POWER_MGMT,
501 data);
502 /*
503 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
504 * during Dx states where the power conservation is most
505 * important. During driver activity we should enable
506 * SmartSpeed, so performance is maintained.
507 */
508 if (phy->smart_speed == e1000_smart_speed_on) {
509 ret_val = hw->phy.ops.read_phy_reg(hw,
510 IGP01E1000_PHY_PORT_CONFIG,
511 &data);
512 if (ret_val)
513 goto out;
514
515 data |= IGP01E1000_PSCFR_SMART_SPEED;
516 ret_val = hw->phy.ops.write_phy_reg(hw,
517 IGP01E1000_PHY_PORT_CONFIG,
518 data);
519 if (ret_val)
520 goto out;
521 } else if (phy->smart_speed == e1000_smart_speed_off) {
522 ret_val = hw->phy.ops.read_phy_reg(hw,
523 IGP01E1000_PHY_PORT_CONFIG,
524 &data);
525 if (ret_val)
526 goto out;
527
528 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
529 ret_val = hw->phy.ops.write_phy_reg(hw,
530 IGP01E1000_PHY_PORT_CONFIG,
531 data);
532 if (ret_val)
533 goto out;
534 }
535 }
536
537out:
538 return ret_val;
539}
540
541/**
542 * e1000_acquire_nvm_82575 - Request for access to EEPROM
543 * @hw: pointer to the HW structure
544 *
545 * Acquire the necessary semaphores for exclussive access to the EEPROM.
546 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
547 * Return successful if access grant bit set, else clear the request for
548 * EEPROM access and return -E1000_ERR_NVM (-1).
549 **/
550static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
551{
552 s32 ret_val;
553
554 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
555 if (ret_val)
556 goto out;
557
558 ret_val = igb_acquire_nvm(hw);
559
560 if (ret_val)
561 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
562
563out:
564 return ret_val;
565}
566
567/**
568 * e1000_release_nvm_82575 - Release exclusive access to EEPROM
569 * @hw: pointer to the HW structure
570 *
571 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
572 * then release the semaphores acquired.
573 **/
574static void igb_release_nvm_82575(struct e1000_hw *hw)
575{
576 igb_release_nvm(hw);
577 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
578}
579
580/**
581 * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
582 * @hw: pointer to the HW structure
583 * @mask: specifies which semaphore to acquire
584 *
585 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
586 * will also specify which port we're acquiring the lock for.
587 **/
588static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
589{
590 u32 swfw_sync;
591 u32 swmask = mask;
592 u32 fwmask = mask << 16;
593 s32 ret_val = 0;
594 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
595
596 while (i < timeout) {
597 if (igb_get_hw_semaphore(hw)) {
598 ret_val = -E1000_ERR_SWFW_SYNC;
599 goto out;
600 }
601
602 swfw_sync = rd32(E1000_SW_FW_SYNC);
603 if (!(swfw_sync & (fwmask | swmask)))
604 break;
605
606 /*
607 * Firmware currently using resource (fwmask)
608 * or other software thread using resource (swmask)
609 */
610 igb_put_hw_semaphore(hw);
611 mdelay(5);
612 i++;
613 }
614
615 if (i == timeout) {
616 hw_dbg(hw, "Can't access resource, SW_FW_SYNC timeout.\n");
617 ret_val = -E1000_ERR_SWFW_SYNC;
618 goto out;
619 }
620
621 swfw_sync |= swmask;
622 wr32(E1000_SW_FW_SYNC, swfw_sync);
623
624 igb_put_hw_semaphore(hw);
625
626out:
627 return ret_val;
628}
629
630/**
631 * e1000_release_swfw_sync_82575 - Release SW/FW semaphore
632 * @hw: pointer to the HW structure
633 * @mask: specifies which semaphore to acquire
634 *
635 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
636 * will also specify which port we're releasing the lock for.
637 **/
638static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
639{
640 u32 swfw_sync;
641
642 while (igb_get_hw_semaphore(hw) != 0);
643 /* Empty */
644
645 swfw_sync = rd32(E1000_SW_FW_SYNC);
646 swfw_sync &= ~mask;
647 wr32(E1000_SW_FW_SYNC, swfw_sync);
648
649 igb_put_hw_semaphore(hw);
650}
651
652/**
653 * e1000_get_cfg_done_82575 - Read config done bit
654 * @hw: pointer to the HW structure
655 *
656 * Read the management control register for the config done bit for
657 * completion status. NOTE: silicon which is EEPROM-less will fail trying
658 * to read the config done bit, so an error is *ONLY* logged and returns
659 * 0. If we were to return with error, EEPROM-less silicon
660 * would not be able to be reset or change link.
661 **/
662static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
663{
664 s32 timeout = PHY_CFG_TIMEOUT;
665 s32 ret_val = 0;
666 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
667
668 if (hw->bus.func == 1)
669 mask = E1000_NVM_CFG_DONE_PORT_1;
670
671 while (timeout) {
672 if (rd32(E1000_EEMNGCTL) & mask)
673 break;
674 msleep(1);
675 timeout--;
676 }
677 if (!timeout)
678 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
679
680 /* If EEPROM is not marked present, init the PHY manually */
681 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
682 (hw->phy.type == e1000_phy_igp_3))
683 igb_phy_init_script_igp3(hw);
684
685 return ret_val;
686}
687
688/**
689 * e1000_check_for_link_82575 - Check for link
690 * @hw: pointer to the HW structure
691 *
692 * If sgmii is enabled, then use the pcs register to determine link, otherwise
693 * use the generic interface for determining link.
694 **/
695static s32 igb_check_for_link_82575(struct e1000_hw *hw)
696{
697 s32 ret_val;
698 u16 speed, duplex;
699
700 /* SGMII link check is done through the PCS register. */
701 if ((hw->phy.media_type != e1000_media_type_copper) ||
702 (igb_sgmii_active_82575(hw)))
703 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
704 &duplex);
705 else
706 ret_val = igb_check_for_copper_link(hw);
707
708 return ret_val;
709}
710
711/**
712 * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
713 * @hw: pointer to the HW structure
714 * @speed: stores the current speed
715 * @duplex: stores the current duplex
716 *
717 * Using the physical coding sub-layer (PCS), retreive the current speed and
718 * duplex, then store the values in the pointers provided.
719 **/
720static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
721 u16 *duplex)
722{
723 struct e1000_mac_info *mac = &hw->mac;
724 u32 pcs;
725
726 /* Set up defaults for the return values of this function */
727 mac->serdes_has_link = false;
728 *speed = 0;
729 *duplex = 0;
730
731 /*
732 * Read the PCS Status register for link state. For non-copper mode,
733 * the status register is not accurate. The PCS status register is
734 * used instead.
735 */
736 pcs = rd32(E1000_PCS_LSTAT);
737
738 /*
739 * The link up bit determines when link is up on autoneg. The sync ok
740 * gets set once both sides sync up and agree upon link. Stable link
741 * can be determined by checking for both link up and link sync ok
742 */
743 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
744 mac->serdes_has_link = true;
745
746 /* Detect and store PCS speed */
747 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
748 *speed = SPEED_1000;
749 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
750 *speed = SPEED_100;
751 } else {
752 *speed = SPEED_10;
753 }
754
755 /* Detect and store PCS duplex */
756 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
757 *duplex = FULL_DUPLEX;
758 } else {
759 *duplex = HALF_DUPLEX;
760 }
761 }
762
763 return 0;
764}
765
766/**
767 * e1000_rar_set_82575 - Set receive address register
768 * @hw: pointer to the HW structure
769 * @addr: pointer to the receive address
770 * @index: receive address array register
771 *
772 * Sets the receive address array register at index to the address passed
773 * in by addr.
774 **/
775static void igb_rar_set_82575(struct e1000_hw *hw, u8 *addr, u32 index)
776{
777 if (index < E1000_RAR_ENTRIES_82575)
778 igb_rar_set(hw, addr, index);
779
780 return;
781}
782
783/**
784 * e1000_reset_hw_82575 - Reset hardware
785 * @hw: pointer to the HW structure
786 *
787 * This resets the hardware into a known state. This is a
788 * function pointer entry point called by the api module.
789 **/
790static s32 igb_reset_hw_82575(struct e1000_hw *hw)
791{
792 u32 ctrl, icr;
793 s32 ret_val;
794
795 /*
796 * Prevent the PCI-E bus from sticking if there is no TLP connection
797 * on the last TLP read/write transaction when MAC is reset.
798 */
799 ret_val = igb_disable_pcie_master(hw);
800 if (ret_val)
801 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
802
803 hw_dbg(hw, "Masking off all interrupts\n");
804 wr32(E1000_IMC, 0xffffffff);
805
806 wr32(E1000_RCTL, 0);
807 wr32(E1000_TCTL, E1000_TCTL_PSP);
808 wrfl();
809
810 msleep(10);
811
812 ctrl = rd32(E1000_CTRL);
813
814 hw_dbg(hw, "Issuing a global reset to MAC\n");
815 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
816
817 ret_val = igb_get_auto_rd_done(hw);
818 if (ret_val) {
819 /*
820 * When auto config read does not complete, do not
821 * return with an error. This can happen in situations
822 * where there is no eeprom and prevents getting link.
823 */
824 hw_dbg(hw, "Auto Read Done did not complete\n");
825 }
826
827 /* If EEPROM is not present, run manual init scripts */
828 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
829 igb_reset_init_script_82575(hw);
830
831 /* Clear any pending interrupt events. */
832 wr32(E1000_IMC, 0xffffffff);
833 icr = rd32(E1000_ICR);
834
835 igb_check_alt_mac_addr(hw);
836
837 return ret_val;
838}
839
840/**
841 * e1000_init_hw_82575 - Initialize hardware
842 * @hw: pointer to the HW structure
843 *
844 * This inits the hardware readying it for operation.
845 **/
846static s32 igb_init_hw_82575(struct e1000_hw *hw)
847{
848 struct e1000_mac_info *mac = &hw->mac;
849 s32 ret_val;
850 u16 i, rar_count = mac->rar_entry_count;
851
852 /* Initialize identification LED */
853 ret_val = igb_id_led_init(hw);
854 if (ret_val) {
855 hw_dbg(hw, "Error initializing identification LED\n");
856 /* This is not fatal and we should not stop init due to this */
857 }
858
859 /* Disabling VLAN filtering */
860 hw_dbg(hw, "Initializing the IEEE VLAN\n");
861 igb_clear_vfta(hw);
862
863 /* Setup the receive address */
864 igb_init_rx_addrs(hw, rar_count);
865 /* Zero out the Multicast HASH table */
866 hw_dbg(hw, "Zeroing the MTA\n");
867 for (i = 0; i < mac->mta_reg_count; i++)
868 array_wr32(E1000_MTA, i, 0);
869
870 /* Setup link and flow control */
871 ret_val = igb_setup_link(hw);
872
873 /*
874 * Clear all of the statistics registers (clear on read). It is
875 * important that we do this after we have tried to establish link
876 * because the symbol error count will increment wildly if there
877 * is no link.
878 */
879 igb_clear_hw_cntrs_82575(hw);
880
881 return ret_val;
882}
883
884/**
885 * e1000_setup_copper_link_82575 - Configure copper link settings
886 * @hw: pointer to the HW structure
887 *
888 * Configures the link for auto-neg or forced speed and duplex. Then we check
889 * for link, once link is established calls to configure collision distance
890 * and flow control are called.
891 **/
892static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
893{
894 u32 ctrl, led_ctrl;
895 s32 ret_val;
896 bool link;
897
898 ctrl = rd32(E1000_CTRL);
899 ctrl |= E1000_CTRL_SLU;
900 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
901 wr32(E1000_CTRL, ctrl);
902
903 switch (hw->phy.type) {
904 case e1000_phy_m88:
905 ret_val = igb_copper_link_setup_m88(hw);
906 break;
907 case e1000_phy_igp_3:
908 ret_val = igb_copper_link_setup_igp(hw);
909 /* Setup activity LED */
910 led_ctrl = rd32(E1000_LEDCTL);
911 led_ctrl &= IGP_ACTIVITY_LED_MASK;
912 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
913 wr32(E1000_LEDCTL, led_ctrl);
914 break;
915 default:
916 ret_val = -E1000_ERR_PHY;
917 break;
918 }
919
920 if (ret_val)
921 goto out;
922
923 if (hw->mac.autoneg) {
924 /*
925 * Setup autoneg and flow control advertisement
926 * and perform autonegotiation.
927 */
928 ret_val = igb_copper_link_autoneg(hw);
929 if (ret_val)
930 goto out;
931 } else {
932 /*
933 * PHY will be set to 10H, 10F, 100H or 100F
934 * depending on user settings.
935 */
936 hw_dbg(hw, "Forcing Speed and Duplex\n");
937 ret_val = igb_phy_force_speed_duplex(hw);
938 if (ret_val) {
939 hw_dbg(hw, "Error Forcing Speed and Duplex\n");
940 goto out;
941 }
942 }
943
944 ret_val = igb_configure_pcs_link_82575(hw);
945 if (ret_val)
946 goto out;
947
948 /*
949 * Check link status. Wait up to 100 microseconds for link to become
950 * valid.
951 */
952 ret_val = igb_phy_has_link(hw,
953 COPPER_LINK_UP_LIMIT,
954 10,
955 &link);
956 if (ret_val)
957 goto out;
958
959 if (link) {
960 hw_dbg(hw, "Valid link established!!!\n");
961 /* Config the MAC and PHY after link is up */
962 igb_config_collision_dist(hw);
963 ret_val = igb_config_fc_after_link_up(hw);
964 } else {
965 hw_dbg(hw, "Unable to establish link!!!\n");
966 }
967
968out:
969 return ret_val;
970}
971
972/**
973 * e1000_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
974 * @hw: pointer to the HW structure
975 *
976 * Configures speed and duplex for fiber and serdes links.
977 **/
978static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
979{
980 u32 reg;
981
982 /*
983 * On the 82575, SerDes loopback mode persists until it is
984 * explicitly turned off or a power cycle is performed. A read to
985 * the register does not indicate its status. Therefore, we ensure
986 * loopback mode is disabled during initialization.
987 */
988 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
989
990 /* Force link up, set 1gb, set both sw defined pins */
991 reg = rd32(E1000_CTRL);
992 reg |= E1000_CTRL_SLU |
993 E1000_CTRL_SPD_1000 |
994 E1000_CTRL_FRCSPD |
995 E1000_CTRL_SWDPIN0 |
996 E1000_CTRL_SWDPIN1;
997 wr32(E1000_CTRL, reg);
998
999 /* Set switch control to serdes energy detect */
1000 reg = rd32(E1000_CONNSW);
1001 reg |= E1000_CONNSW_ENRGSRC;
1002 wr32(E1000_CONNSW, reg);
1003
1004 /*
1005 * New SerDes mode allows for forcing speed or autonegotiating speed
1006 * at 1gb. Autoneg should be default set by most drivers. This is the
1007 * mode that will be compatible with older link partners and switches.
1008 * However, both are supported by the hardware and some drivers/tools.
1009 */
1010 reg = rd32(E1000_PCS_LCTL);
1011
1012 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1013 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1014
1015 if (hw->mac.autoneg) {
1016 /* Set PCS register for autoneg */
1017 reg |= E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1018 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1019 E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1020 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1021 hw_dbg(hw, "Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
1022 } else {
1023 /* Set PCS register for forced speed */
1024 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1025 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1026 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1027 E1000_PCS_LCTL_FSD | /* Force Speed */
1028 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1029 hw_dbg(hw, "Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
1030 }
1031 wr32(E1000_PCS_LCTL, reg);
1032
1033 return 0;
1034}
1035
1036/**
1037 * e1000_configure_pcs_link_82575 - Configure PCS link
1038 * @hw: pointer to the HW structure
1039 *
1040 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1041 * only used on copper connections where the serialized gigabit media
1042 * independent interface (sgmii) is being used. Configures the link
1043 * for auto-negotiation or forces speed/duplex.
1044 **/
1045static s32 igb_configure_pcs_link_82575(struct e1000_hw *hw)
1046{
1047 struct e1000_mac_info *mac = &hw->mac;
1048 u32 reg = 0;
1049
1050 if (hw->phy.media_type != e1000_media_type_copper ||
1051 !(igb_sgmii_active_82575(hw)))
1052 goto out;
1053
1054 /* For SGMII, we need to issue a PCS autoneg restart */
1055 reg = rd32(E1000_PCS_LCTL);
1056
1057 /* AN time out should be disabled for SGMII mode */
1058 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1059
1060 if (mac->autoneg) {
1061 /* Make sure forced speed and force link are not set */
1062 reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1063
1064 /*
1065 * The PHY should be setup prior to calling this function.
1066 * All we need to do is restart autoneg and enable autoneg.
1067 */
1068 reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE;
1069 } else {
1070 /* Set PCS regiseter for forced speed */
1071
1072 /* Turn off bits for full duplex, speed, and autoneg */
1073 reg &= ~(E1000_PCS_LCTL_FSV_1000 |
1074 E1000_PCS_LCTL_FSV_100 |
1075 E1000_PCS_LCTL_FDV_FULL |
1076 E1000_PCS_LCTL_AN_ENABLE);
1077
1078 /* Check for duplex first */
1079 if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX)
1080 reg |= E1000_PCS_LCTL_FDV_FULL;
1081
1082 /* Now set speed */
1083 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED)
1084 reg |= E1000_PCS_LCTL_FSV_100;
1085
1086 /* Force speed and force link */
1087 reg |= E1000_PCS_LCTL_FSD |
1088 E1000_PCS_LCTL_FORCE_LINK |
1089 E1000_PCS_LCTL_FLV_LINK_UP;
1090
1091 hw_dbg(hw,
1092 "Wrote 0x%08X to PCS_LCTL to configure forced link\n",
1093 reg);
1094 }
1095 wr32(E1000_PCS_LCTL, reg);
1096
1097out:
1098 return 0;
1099}
1100
1101/**
1102 * e1000_sgmii_active_82575 - Return sgmii state
1103 * @hw: pointer to the HW structure
1104 *
1105 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1106 * which can be enabled for use in the embedded applications. Simply
1107 * return the current state of the sgmii interface.
1108 **/
1109static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1110{
1111 struct e1000_dev_spec_82575 *dev_spec;
1112 bool ret_val;
1113
1114 if (hw->mac.type != e1000_82575) {
1115 ret_val = false;
1116 goto out;
1117 }
1118
1119 dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec;
1120
1121 ret_val = dev_spec->sgmii_active;
1122
1123out:
1124 return ret_val;
1125}
1126
1127/**
1128 * e1000_reset_init_script_82575 - Inits HW defaults after reset
1129 * @hw: pointer to the HW structure
1130 *
1131 * Inits recommended HW defaults after a reset when there is no EEPROM
1132 * detected. This is only for the 82575.
1133 **/
1134static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1135{
1136 if (hw->mac.type == e1000_82575) {
1137 hw_dbg(hw, "Running reset init script for 82575\n");
1138 /* SerDes configuration via SERDESCTRL */
1139 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1140 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1141 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1142 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1143
1144 /* CCM configuration via CCMCTL register */
1145 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1146 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1147
1148 /* PCIe lanes configuration */
1149 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1150 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1151 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1152 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1153
1154 /* PCIe PLL Configuration */
1155 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1156 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1157 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1158 }
1159
1160 return 0;
1161}
1162
1163/**
1164 * e1000_read_mac_addr_82575 - Read device MAC address
1165 * @hw: pointer to the HW structure
1166 **/
1167static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1168{
1169 s32 ret_val = 0;
1170
1171 if (igb_check_alt_mac_addr(hw))
1172 ret_val = igb_read_mac_addr(hw);
1173
1174 return ret_val;
1175}
1176
1177/**
1178 * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
1179 * @hw: pointer to the HW structure
1180 *
1181 * Clears the hardware counters by reading the counter registers.
1182 **/
1183static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1184{
1185 u32 temp;
1186
1187 igb_clear_hw_cntrs_base(hw);
1188
1189 temp = rd32(E1000_PRC64);
1190 temp = rd32(E1000_PRC127);
1191 temp = rd32(E1000_PRC255);
1192 temp = rd32(E1000_PRC511);
1193 temp = rd32(E1000_PRC1023);
1194 temp = rd32(E1000_PRC1522);
1195 temp = rd32(E1000_PTC64);
1196 temp = rd32(E1000_PTC127);
1197 temp = rd32(E1000_PTC255);
1198 temp = rd32(E1000_PTC511);
1199 temp = rd32(E1000_PTC1023);
1200 temp = rd32(E1000_PTC1522);
1201
1202 temp = rd32(E1000_ALGNERRC);
1203 temp = rd32(E1000_RXERRC);
1204 temp = rd32(E1000_TNCRS);
1205 temp = rd32(E1000_CEXTERR);
1206 temp = rd32(E1000_TSCTC);
1207 temp = rd32(E1000_TSCTFC);
1208
1209 temp = rd32(E1000_MGTPRC);
1210 temp = rd32(E1000_MGTPDC);
1211 temp = rd32(E1000_MGTPTC);
1212
1213 temp = rd32(E1000_IAC);
1214 temp = rd32(E1000_ICRXOC);
1215
1216 temp = rd32(E1000_ICRXPTC);
1217 temp = rd32(E1000_ICRXATC);
1218 temp = rd32(E1000_ICTXPTC);
1219 temp = rd32(E1000_ICTXATC);
1220 temp = rd32(E1000_ICTXQEC);
1221 temp = rd32(E1000_ICTXQMTC);
1222 temp = rd32(E1000_ICRXDMTC);
1223
1224 temp = rd32(E1000_CBTMPC);
1225 temp = rd32(E1000_HTDPMC);
1226 temp = rd32(E1000_CBRMPC);
1227 temp = rd32(E1000_RPTHC);
1228 temp = rd32(E1000_HGPTC);
1229 temp = rd32(E1000_HTCBDPC);
1230 temp = rd32(E1000_HGORCL);
1231 temp = rd32(E1000_HGORCH);
1232 temp = rd32(E1000_HGOTCL);
1233 temp = rd32(E1000_HGOTCH);
1234 temp = rd32(E1000_LENERRS);
1235
1236 /* This register should not be read in copper configurations */
1237 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1238 temp = rd32(E1000_SCVPC);
1239}
1240
1241static struct e1000_mac_operations e1000_mac_ops_82575 = {
1242 .reset_hw = igb_reset_hw_82575,
1243 .init_hw = igb_init_hw_82575,
1244 .check_for_link = igb_check_for_link_82575,
1245 .rar_set = igb_rar_set_82575,
1246 .read_mac_addr = igb_read_mac_addr_82575,
1247 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1248};
1249
1250static struct e1000_phy_operations e1000_phy_ops_82575 = {
1251 .acquire_phy = igb_acquire_phy_82575,
1252 .get_cfg_done = igb_get_cfg_done_82575,
1253 .release_phy = igb_release_phy_82575,
1254};
1255
1256static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
1257 .acquire_nvm = igb_acquire_nvm_82575,
1258 .read_nvm = igb_read_nvm_eerd,
1259 .release_nvm = igb_release_nvm_82575,
1260 .write_nvm = igb_write_nvm_spi,
1261};
1262
1263const struct e1000_info e1000_82575_info = {
1264 .get_invariants = igb_get_invariants_82575,
1265 .mac_ops = &e1000_mac_ops_82575,
1266 .phy_ops = &e1000_phy_ops_82575,
1267 .nvm_ops = &e1000_nvm_ops_82575,
1268};
1269
diff --git a/drivers/net/igb/e1000_82575.h b/drivers/net/igb/e1000_82575.h
new file mode 100644
index 000000000000..6604d96bd567
--- /dev/null
+++ b/drivers/net/igb/e1000_82575.h
@@ -0,0 +1,150 @@
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#ifndef _E1000_82575_H_
29#define _E1000_82575_H_
30
31#define E1000_RAR_ENTRIES_82575 16
32
33/* SRRCTL bit definitions */
34#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */
35#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */
36#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000
37#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000
38
39#define E1000_MRQC_ENABLE_RSS_4Q 0x00000002
40#define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000
41#define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000
42#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000
43
44#define E1000_EICR_TX_QUEUE ( \
45 E1000_EICR_TX_QUEUE0 | \
46 E1000_EICR_TX_QUEUE1 | \
47 E1000_EICR_TX_QUEUE2 | \
48 E1000_EICR_TX_QUEUE3)
49
50#define E1000_EICR_RX_QUEUE ( \
51 E1000_EICR_RX_QUEUE0 | \
52 E1000_EICR_RX_QUEUE1 | \
53 E1000_EICR_RX_QUEUE2 | \
54 E1000_EICR_RX_QUEUE3)
55
56#define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE
57#define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE
58
59/* Immediate Interrupt RX (A.K.A. Low Latency Interrupt) */
60
61/* Receive Descriptor - Advanced */
62union e1000_adv_rx_desc {
63 struct {
64 u64 pkt_addr; /* Packet buffer address */
65 u64 hdr_addr; /* Header buffer address */
66 } read;
67 struct {
68 struct {
69 struct {
70 u16 pkt_info; /* RSS type, Packet type */
71 u16 hdr_info; /* Split Header,
72 * header buffer length */
73 } lo_dword;
74 union {
75 u32 rss; /* RSS Hash */
76 struct {
77 u16 ip_id; /* IP id */
78 u16 csum; /* Packet Checksum */
79 } csum_ip;
80 } hi_dword;
81 } lower;
82 struct {
83 u32 status_error; /* ext status/error */
84 u16 length; /* Packet length */
85 u16 vlan; /* VLAN tag */
86 } upper;
87 } wb; /* writeback */
88};
89
90#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0
91#define E1000_RXDADV_HDRBUFLEN_SHIFT 5
92
93/* RSS Hash results */
94
95/* RSS Packet Types as indicated in the receive descriptor */
96
97/* Transmit Descriptor - Advanced */
98union e1000_adv_tx_desc {
99 struct {
100 u64 buffer_addr; /* Address of descriptor's data buf */
101 u32 cmd_type_len;
102 u32 olinfo_status;
103 } read;
104 struct {
105 u64 rsvd; /* Reserved */
106 u32 nxtseq_seed;
107 u32 status;
108 } wb;
109};
110
111/* Adv Transmit Descriptor Config Masks */
112#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */
113#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */
114#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
115#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */
116#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */
117#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */
118#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */
119
120/* Context descriptors */
121struct e1000_adv_tx_context_desc {
122 u32 vlan_macip_lens;
123 u32 seqnum_seed;
124 u32 type_tucmd_mlhl;
125 u32 mss_l4len_idx;
126};
127
128#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */
129#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */
130#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */
131/* IPSec Encrypt Enable for ESP */
132#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */
133#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */
134/* Adv ctxt IPSec SA IDX mask */
135/* Adv ctxt IPSec ESP len mask */
136
137/* Additional Transmit Descriptor Control definitions */
138#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Tx Queue */
139/* Tx Queue Arbitration Priority 0=low, 1=high */
140
141/* Additional Receive Descriptor Control definitions */
142#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Rx Queue */
143
144/* Direct Cache Access (DCA) definitions */
145
146
147
148#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* TX Desc writeback RO bit */
149
150#endif
diff --git a/drivers/net/igb/e1000_defines.h b/drivers/net/igb/e1000_defines.h
new file mode 100644
index 000000000000..8da9ffedc425
--- /dev/null
+++ b/drivers/net/igb/e1000_defines.h
@@ -0,0 +1,772 @@
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#ifndef _E1000_DEFINES_H_
29#define _E1000_DEFINES_H_
30
31/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
32#define REQ_TX_DESCRIPTOR_MULTIPLE 8
33#define REQ_RX_DESCRIPTOR_MULTIPLE 8
34
35/* Definitions for power management and wakeup registers */
36/* Wake Up Control */
37#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
38
39/* Wake Up Filter Control */
40#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
41#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
42#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
43#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
44#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
45#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
46#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
47#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
48#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
49#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
50#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
51#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
52#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
53
54/* Wake Up Status */
55
56/* Wake Up Packet Length */
57
58/* Four Flexible Filters are supported */
59#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
60
61/* Each Flexible Filter is at most 128 (0x80) bytes in length */
62#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128
63
64
65/* Extended Device Control */
66#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */
67#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */
68#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */
69#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
70#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
71#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
72#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
73#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000
74#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000
75#define E1000_CTRL_EXT_EIAME 0x01000000
76#define E1000_CTRL_EXT_IRCA 0x00000001
77/* Interrupt delay cancellation */
78/* Driver loaded bit for FW */
79#define E1000_CTRL_EXT_DRV_LOAD 0x10000000
80/* Interrupt acknowledge Auto-mask */
81/* Clear Interrupt timers after IMS clear */
82/* packet buffer parity error detection enabled */
83/* descriptor FIFO parity error detection enable */
84#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */
85#define E1000_I2CCMD_REG_ADDR_SHIFT 16
86#define E1000_I2CCMD_PHY_ADDR_SHIFT 24
87#define E1000_I2CCMD_OPCODE_READ 0x08000000
88#define E1000_I2CCMD_OPCODE_WRITE 0x00000000
89#define E1000_I2CCMD_READY 0x20000000
90#define E1000_I2CCMD_ERROR 0x80000000
91#define E1000_MAX_SGMII_PHY_REG_ADDR 255
92#define E1000_I2CCMD_PHY_TIMEOUT 200
93
94/* Receive Decriptor bit definitions */
95#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
96#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
97#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
98#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
99#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum caculated */
100#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
101#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */
102#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
103#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
104#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
105#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
106#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
107#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
108
109#define E1000_RXDEXT_STATERR_CE 0x01000000
110#define E1000_RXDEXT_STATERR_SE 0x02000000
111#define E1000_RXDEXT_STATERR_SEQ 0x04000000
112#define E1000_RXDEXT_STATERR_CXE 0x10000000
113#define E1000_RXDEXT_STATERR_TCPE 0x20000000
114#define E1000_RXDEXT_STATERR_IPE 0x40000000
115#define E1000_RXDEXT_STATERR_RXE 0x80000000
116
117/* mask to determine if packets should be dropped due to frame errors */
118#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
119 E1000_RXD_ERR_CE | \
120 E1000_RXD_ERR_SE | \
121 E1000_RXD_ERR_SEQ | \
122 E1000_RXD_ERR_CXE | \
123 E1000_RXD_ERR_RXE)
124
125/* Same mask, but for extended and packet split descriptors */
126#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
127 E1000_RXDEXT_STATERR_CE | \
128 E1000_RXDEXT_STATERR_SE | \
129 E1000_RXDEXT_STATERR_SEQ | \
130 E1000_RXDEXT_STATERR_CXE | \
131 E1000_RXDEXT_STATERR_RXE)
132
133#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000
134#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000
135#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000
136#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000
137#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000
138
139
140/* Management Control */
141#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
142#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
143#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
144/* Enable Neighbor Discovery Filtering */
145#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
146#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
147/* Enable MAC address filtering */
148#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000
149/* Enable MNG packets to host memory */
150#define E1000_MANC_EN_MNG2HOST 0x00200000
151/* Enable IP address filtering */
152
153
154/* Receive Control */
155#define E1000_RCTL_EN 0x00000002 /* enable */
156#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
157#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */
158#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */
159#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
160#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
161#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
162#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
163#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */
164#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
165#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
166/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
167#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */
168#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */
169#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */
170#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */
171/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
172#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */
173#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */
174#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */
175#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
176#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
177#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
178#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
179
180/*
181 * Use byte values for the following shift parameters
182 * Usage:
183 * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
184 * E1000_PSRCTL_BSIZE0_MASK) |
185 * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
186 * E1000_PSRCTL_BSIZE1_MASK) |
187 * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
188 * E1000_PSRCTL_BSIZE2_MASK) |
189 * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
190 * E1000_PSRCTL_BSIZE3_MASK))
191 * where value0 = [128..16256], default=256
192 * value1 = [1024..64512], default=4096
193 * value2 = [0..64512], default=4096
194 * value3 = [0..64512], default=0
195 */
196
197#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
198#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
199#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
200#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
201
202#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
203#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
204#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
205#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
206
207/* SWFW_SYNC Definitions */
208#define E1000_SWFW_EEP_SM 0x1
209#define E1000_SWFW_PHY0_SM 0x2
210#define E1000_SWFW_PHY1_SM 0x4
211
212/* FACTPS Definitions */
213/* Device Control */
214#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
215#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */
216#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
217#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
218#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
219#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
220#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
221#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
222#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
223#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
224/* Defined polarity of Dock/Undock indication in SDP[0] */
225/* Reset both PHY ports, through PHYRST_N pin */
226/* enable link status from external LINK_0 and LINK_1 pins */
227#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
228#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
229#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
230#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
231#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
232#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
233#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
234#define E1000_CTRL_RST 0x04000000 /* Global reset */
235#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
236#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
237#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
238#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
239/* Initiate an interrupt to manageability engine */
240#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */
241
242/* Bit definitions for the Management Data IO (MDIO) and Management Data
243 * Clock (MDC) pins in the Device Control Register.
244 */
245
246#define E1000_CONNSW_ENRGSRC 0x4
247#define E1000_PCS_LCTL_FLV_LINK_UP 1
248#define E1000_PCS_LCTL_FSV_100 2
249#define E1000_PCS_LCTL_FSV_1000 4
250#define E1000_PCS_LCTL_FDV_FULL 8
251#define E1000_PCS_LCTL_FSD 0x10
252#define E1000_PCS_LCTL_FORCE_LINK 0x20
253#define E1000_PCS_LCTL_AN_ENABLE 0x10000
254#define E1000_PCS_LCTL_AN_RESTART 0x20000
255#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000
256
257#define E1000_PCS_LSTS_LINK_OK 1
258#define E1000_PCS_LSTS_SPEED_100 2
259#define E1000_PCS_LSTS_SPEED_1000 4
260#define E1000_PCS_LSTS_DUPLEX_FULL 8
261#define E1000_PCS_LSTS_SYNK_OK 0x10
262
263/* Device Status */
264#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
265#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
266#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
267#define E1000_STATUS_FUNC_SHIFT 2
268#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
269#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
270#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
271#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
272/* Change in Dock/Undock state. Clear on write '0'. */
273/* Status of Master requests. */
274#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000
275/* BMC external code execution disabled */
276
277/* Constants used to intrepret the masked PCI-X bus speed. */
278
279#define SPEED_10 10
280#define SPEED_100 100
281#define SPEED_1000 1000
282#define HALF_DUPLEX 1
283#define FULL_DUPLEX 2
284
285
286#define ADVERTISE_10_HALF 0x0001
287#define ADVERTISE_10_FULL 0x0002
288#define ADVERTISE_100_HALF 0x0004
289#define ADVERTISE_100_FULL 0x0008
290#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */
291#define ADVERTISE_1000_FULL 0x0020
292
293/* 1000/H is not supported, nor spec-compliant. */
294#define E1000_ALL_SPEED_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
295 ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
296 ADVERTISE_1000_FULL)
297#define E1000_ALL_NOT_GIG (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
298 ADVERTISE_100_HALF | ADVERTISE_100_FULL)
299#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL)
300#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL)
301#define E1000_ALL_FULL_DUPLEX (ADVERTISE_10_FULL | ADVERTISE_100_FULL | \
302 ADVERTISE_1000_FULL)
303#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF)
304
305#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX
306
307/* LED Control */
308#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
309#define E1000_LEDCTL_LED0_MODE_SHIFT 0
310#define E1000_LEDCTL_LED0_IVRT 0x00000040
311#define E1000_LEDCTL_LED0_BLINK 0x00000080
312
313#define E1000_LEDCTL_MODE_LED_ON 0xE
314#define E1000_LEDCTL_MODE_LED_OFF 0xF
315
316/* Transmit Descriptor bit definitions */
317#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
318#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
319#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
320#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
321#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
322#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
323/* Extended desc bits for Linksec and timesync */
324
325/* Transmit Control */
326#define E1000_TCTL_EN 0x00000002 /* enable tx */
327#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
328#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
329#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
330#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
331
332/* Transmit Arbitration Count */
333
334/* SerDes Control */
335#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
336
337/* Receive Checksum Control */
338#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
339#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
340#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */
341
342/* Header split receive */
343
344/* Collision related configuration parameters */
345#define E1000_COLLISION_THRESHOLD 15
346#define E1000_CT_SHIFT 4
347#define E1000_COLLISION_DISTANCE 63
348#define E1000_COLD_SHIFT 12
349
350/* Ethertype field values */
351#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */
352
353#define MAX_JUMBO_FRAME_SIZE 0x3F00
354
355/* Extended Configuration Control and Size */
356#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
357
358/* PBA constants */
359#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */
360#define E1000_PBA_24K 0x0018
361#define E1000_PBA_34K 0x0022
362
363#define IFS_MAX 80
364#define IFS_MIN 40
365#define IFS_RATIO 4
366#define IFS_STEP 10
367#define MIN_NUM_XMITS 1000
368
369/* SW Semaphore Register */
370#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
371#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
372
373/* Interrupt Cause Read */
374#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
375#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
376#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
377#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */
378#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */
379#define E1000_ICR_RXO 0x00000040 /* rx overrun */
380#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */
381#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */
382#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */
383#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
384#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
385#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
386#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
387#define E1000_ICR_TXD_LOW 0x00008000
388#define E1000_ICR_SRPD 0x00010000
389#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */
390#define E1000_ICR_MNG 0x00040000 /* Manageability event */
391#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */
392/* If this bit asserted, the driver should claim the interrupt */
393#define E1000_ICR_INT_ASSERTED 0x80000000
394/* queue 0 Rx descriptor FIFO parity error */
395#define E1000_ICR_RXD_FIFO_PAR0 0x00100000
396/* queue 0 Tx descriptor FIFO parity error */
397#define E1000_ICR_TXD_FIFO_PAR0 0x00200000
398/* host arb read buffer parity error */
399#define E1000_ICR_HOST_ARB_PAR 0x00400000
400#define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */
401/* queue 1 Rx descriptor FIFO parity error */
402#define E1000_ICR_RXD_FIFO_PAR1 0x01000000
403/* queue 1 Tx descriptor FIFO parity error */
404#define E1000_ICR_TXD_FIFO_PAR1 0x02000000
405/* FW changed the status of DISSW bit in the FWSM */
406#define E1000_ICR_DSW 0x00000020
407/* LAN connected device generates an interrupt */
408#define E1000_ICR_PHYINT 0x00001000
409#define E1000_ICR_EPRST 0x00100000 /* ME handware reset occurs */
410
411/* Extended Interrupt Cause Read */
412#define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */
413#define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */
414#define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */
415#define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */
416#define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */
417#define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */
418#define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */
419#define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */
420#define E1000_EICR_TCP_TIMER 0x40000000 /* TCP Timer */
421#define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */
422/* TCP Timer */
423
424/*
425 * This defines the bits that are set in the Interrupt Mask
426 * Set/Read Register. Each bit is documented below:
427 * o RXT0 = Receiver Timer Interrupt (ring 0)
428 * o TXDW = Transmit Descriptor Written Back
429 * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
430 * o RXSEQ = Receive Sequence Error
431 * o LSC = Link Status Change
432 */
433#define IMS_ENABLE_MASK ( \
434 E1000_IMS_RXT0 | \
435 E1000_IMS_TXDW | \
436 E1000_IMS_RXDMT0 | \
437 E1000_IMS_RXSEQ | \
438 E1000_IMS_LSC)
439
440/* Interrupt Mask Set */
441#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
442#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
443#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
444#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
445#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
446/* queue 0 Rx descriptor FIFO parity error */
447/* queue 0 Tx descriptor FIFO parity error */
448/* host arb read buffer parity error */
449/* packet buffer parity error */
450/* queue 1 Rx descriptor FIFO parity error */
451/* queue 1 Tx descriptor FIFO parity error */
452
453/* Extended Interrupt Mask Set */
454#define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
455#define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */
456
457/* Interrupt Cause Set */
458#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
459#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
460/* queue 0 Rx descriptor FIFO parity error */
461/* queue 0 Tx descriptor FIFO parity error */
462/* host arb read buffer parity error */
463/* packet buffer parity error */
464/* queue 1 Rx descriptor FIFO parity error */
465/* queue 1 Tx descriptor FIFO parity error */
466
467/* Extended Interrupt Cause Set */
468
469/* Transmit Descriptor Control */
470/* Enable the counting of descriptors still to be processed. */
471
472/* Flow Control Constants */
473#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
474#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
475#define FLOW_CONTROL_TYPE 0x8808
476
477/* 802.1q VLAN Packet Size */
478#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */
479#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
480
481/* Receive Address */
482/*
483 * Number of high/low register pairs in the RAR. The RAR (Receive Address
484 * Registers) holds the directed and multicast addresses that we monitor.
485 * Technically, we have 16 spots. However, we reserve one of these spots
486 * (RAR[15]) for our directed address used by controllers with
487 * manageability enabled, allowing us room for 15 multicast addresses.
488 */
489#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
490
491/* Error Codes */
492#define E1000_ERR_NVM 1
493#define E1000_ERR_PHY 2
494#define E1000_ERR_CONFIG 3
495#define E1000_ERR_PARAM 4
496#define E1000_ERR_MAC_INIT 5
497#define E1000_ERR_RESET 9
498#define E1000_ERR_MASTER_REQUESTS_PENDING 10
499#define E1000_ERR_HOST_INTERFACE_COMMAND 11
500#define E1000_BLK_PHY_RESET 12
501#define E1000_ERR_SWFW_SYNC 13
502#define E1000_NOT_IMPLEMENTED 14
503
504/* Loop limit on how long we wait for auto-negotiation to complete */
505#define COPPER_LINK_UP_LIMIT 10
506#define PHY_AUTO_NEG_LIMIT 45
507#define PHY_FORCE_LIMIT 20
508/* Number of 100 microseconds we wait for PCI Express master disable */
509#define MASTER_DISABLE_TIMEOUT 800
510/* Number of milliseconds we wait for PHY configuration done after MAC reset */
511#define PHY_CFG_TIMEOUT 100
512/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
513/* Number of milliseconds for NVM auto read done after MAC reset. */
514#define AUTO_READ_DONE_TIMEOUT 10
515
516/* Flow Control */
517#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
518
519/* Transmit Configuration Word */
520#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
521
522/* Receive Configuration Word */
523
524/* PCI Express Control */
525#define E1000_GCR_RXD_NO_SNOOP 0x00000001
526#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002
527#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004
528#define E1000_GCR_TXD_NO_SNOOP 0x00000008
529#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010
530#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020
531
532#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \
533 E1000_GCR_RXDSCW_NO_SNOOP | \
534 E1000_GCR_RXDSCR_NO_SNOOP | \
535 E1000_GCR_TXD_NO_SNOOP | \
536 E1000_GCR_TXDSCW_NO_SNOOP | \
537 E1000_GCR_TXDSCR_NO_SNOOP)
538
539/* PHY Control Register */
540#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
541#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
542#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
543#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
544#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
545#define MII_CR_SPEED_1000 0x0040
546#define MII_CR_SPEED_100 0x2000
547#define MII_CR_SPEED_10 0x0000
548
549/* PHY Status Register */
550#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
551#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
552
553/* Autoneg Advertisement Register */
554#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
555#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
556#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
557#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
558#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
559#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
560
561/* Link Partner Ability Register (Base Page) */
562#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
563#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
564
565/* Autoneg Expansion Register */
566
567/* 1000BASE-T Control Register */
568#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
569#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
570 /* 0=DTE device */
571#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
572 /* 0=Configure PHY as Slave */
573#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
574 /* 0=Automatic Master/Slave config */
575
576/* 1000BASE-T Status Register */
577#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
578#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
579
580
581/* PHY 1000 MII Register/Bit Definitions */
582/* PHY Registers defined by IEEE */
583#define PHY_CONTROL 0x00 /* Control Register */
584#define PHY_STATUS 0x01 /* Status Regiser */
585#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
586#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
587#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
588#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
589#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
590#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
591
592/* NVM Control */
593#define E1000_EECD_SK 0x00000001 /* NVM Clock */
594#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */
595#define E1000_EECD_DI 0x00000004 /* NVM Data In */
596#define E1000_EECD_DO 0x00000008 /* NVM Data Out */
597#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */
598#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */
599#define E1000_EECD_PRES 0x00000100 /* NVM Present */
600/* NVM Addressing bits based on type 0=small, 1=large */
601#define E1000_EECD_ADDR_BITS 0x00000400
602#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */
603#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */
604#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */
605#define E1000_EECD_SIZE_EX_SHIFT 11
606
607/* Offset to data in NVM read/write registers */
608#define E1000_NVM_RW_REG_DATA 16
609#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
610#define E1000_NVM_RW_REG_START 1 /* Start operation */
611#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
612#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */
613
614/* NVM Word Offsets */
615#define NVM_ID_LED_SETTINGS 0x0004
616/* For SERDES output amplitude adjustment. */
617#define NVM_INIT_CONTROL2_REG 0x000F
618#define NVM_INIT_CONTROL3_PORT_A 0x0024
619#define NVM_ALT_MAC_ADDR_PTR 0x0037
620#define NVM_CHECKSUM_REG 0x003F
621
622#define E1000_NVM_CFG_DONE_PORT_0 0x40000 /* MNG config cycle done */
623#define E1000_NVM_CFG_DONE_PORT_1 0x80000 /* ...for second port */
624
625/* Mask bits for fields in Word 0x0f of the NVM */
626#define NVM_WORD0F_PAUSE_MASK 0x3000
627#define NVM_WORD0F_ASM_DIR 0x2000
628
629/* Mask bits for fields in Word 0x1a of the NVM */
630
631/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
632#define NVM_SUM 0xBABA
633
634#define NVM_PBA_OFFSET_0 8
635#define NVM_PBA_OFFSET_1 9
636#define NVM_WORD_SIZE_BASE_SHIFT 6
637
638/* NVM Commands - Microwire */
639
640/* NVM Commands - SPI */
641#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
642#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */
643#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
644#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */
645#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */
646
647/* SPI NVM Status Register */
648#define NVM_STATUS_RDY_SPI 0x01
649
650/* Word definitions for ID LED Settings */
651#define ID_LED_RESERVED_0000 0x0000
652#define ID_LED_RESERVED_FFFF 0xFFFF
653#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
654 (ID_LED_OFF1_OFF2 << 8) | \
655 (ID_LED_DEF1_DEF2 << 4) | \
656 (ID_LED_DEF1_DEF2))
657#define ID_LED_DEF1_DEF2 0x1
658#define ID_LED_DEF1_ON2 0x2
659#define ID_LED_DEF1_OFF2 0x3
660#define ID_LED_ON1_DEF2 0x4
661#define ID_LED_ON1_ON2 0x5
662#define ID_LED_ON1_OFF2 0x6
663#define ID_LED_OFF1_DEF2 0x7
664#define ID_LED_OFF1_ON2 0x8
665#define ID_LED_OFF1_OFF2 0x9
666
667#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
668#define IGP_ACTIVITY_LED_ENABLE 0x0300
669#define IGP_LED3_MODE 0x07000000
670
671/* PCI/PCI-X/PCI-EX Config space */
672#define PCI_HEADER_TYPE_REGISTER 0x0E
673#define PCIE_LINK_STATUS 0x12
674
675#define PCI_HEADER_TYPE_MULTIFUNC 0x80
676#define PCIE_LINK_WIDTH_MASK 0x3F0
677#define PCIE_LINK_WIDTH_SHIFT 4
678
679#define PHY_REVISION_MASK 0xFFFFFFF0
680#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
681#define MAX_PHY_MULTI_PAGE_REG 0xF
682
683/* Bit definitions for valid PHY IDs. */
684/*
685 * I = Integrated
686 * E = External
687 */
688#define M88E1111_I_PHY_ID 0x01410CC0
689#define IGP03E1000_E_PHY_ID 0x02A80390
690#define M88_VENDOR 0x0141
691
692/* M88E1000 Specific Registers */
693#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
694#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
695#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
696
697#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */
698#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
699
700/* M88E1000 PHY Specific Control Register */
701#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
702/* 1=CLK125 low, 0=CLK125 toggling */
703#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
704 /* Manual MDI configuration */
705#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
706/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
707#define M88E1000_PSCR_AUTO_X_1000T 0x0040
708/* Auto crossover enabled all speeds */
709#define M88E1000_PSCR_AUTO_X_MODE 0x0060
710/*
711 * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T RX Threshold
712 * 0=Normal 10BASE-T RX Threshold
713 */
714/* 1=5-bit interface in 100BASE-TX, 0=MII interface in 100BASE-TX */
715#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
716
717/* M88E1000 PHY Specific Status Register */
718#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
719#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
720#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
721/*
722 * 0 = <50M
723 * 1 = 50-80M
724 * 2 = 80-110M
725 * 3 = 110-140M
726 * 4 = >140M
727 */
728#define M88E1000_PSSR_CABLE_LENGTH 0x0380
729#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
730#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
731
732#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
733
734/* M88E1000 Extended PHY Specific Control Register */
735/*
736 * 1 = Lost lock detect enabled.
737 * Will assert lost lock and bring
738 * link down if idle not seen
739 * within 1ms in 1000BASE-T
740 */
741/*
742 * Number of times we will attempt to autonegotiate before downshifting if we
743 * are the master
744 */
745#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
746#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
747/*
748 * Number of times we will attempt to autonegotiate before downshifting if we
749 * are the slave
750 */
751#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
752#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
753#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
754
755/* M88EC018 Rev 2 specific DownShift settings */
756#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
757#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
758
759/* MDI Control */
760#define E1000_MDIC_REG_SHIFT 16
761#define E1000_MDIC_PHY_SHIFT 21
762#define E1000_MDIC_OP_WRITE 0x04000000
763#define E1000_MDIC_OP_READ 0x08000000
764#define E1000_MDIC_READY 0x10000000
765#define E1000_MDIC_ERROR 0x40000000
766
767/* SerDes Control */
768#define E1000_GEN_CTL_READY 0x80000000
769#define E1000_GEN_CTL_ADDRESS_SHIFT 8
770#define E1000_GEN_POLL_TIMEOUT 640
771
772#endif
diff --git a/drivers/net/igb/e1000_hw.h b/drivers/net/igb/e1000_hw.h
new file mode 100644
index 000000000000..161fb68764af
--- /dev/null
+++ b/drivers/net/igb/e1000_hw.h
@@ -0,0 +1,599 @@
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#ifndef _E1000_HW_H_
29#define _E1000_HW_H_
30
31#include <linux/types.h>
32#include <linux/delay.h>
33#include <linux/io.h>
34
35#include "e1000_mac.h"
36#include "e1000_regs.h"
37#include "e1000_defines.h"
38
39struct e1000_hw;
40
41#define E1000_DEV_ID_82575EB_COPPER 0x10A7
42#define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9
43#define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6
44
45#define E1000_REVISION_2 2
46#define E1000_REVISION_4 4
47
48#define E1000_FUNC_1 1
49
50enum e1000_mac_type {
51 e1000_undefined = 0,
52 e1000_82575,
53 e1000_num_macs /* List is 1-based, so subtract 1 for true count. */
54};
55
56enum e1000_media_type {
57 e1000_media_type_unknown = 0,
58 e1000_media_type_copper = 1,
59 e1000_media_type_fiber = 2,
60 e1000_media_type_internal_serdes = 3,
61 e1000_num_media_types
62};
63
64enum e1000_nvm_type {
65 e1000_nvm_unknown = 0,
66 e1000_nvm_none,
67 e1000_nvm_eeprom_spi,
68 e1000_nvm_eeprom_microwire,
69 e1000_nvm_flash_hw,
70 e1000_nvm_flash_sw
71};
72
73enum e1000_nvm_override {
74 e1000_nvm_override_none = 0,
75 e1000_nvm_override_spi_small,
76 e1000_nvm_override_spi_large,
77 e1000_nvm_override_microwire_small,
78 e1000_nvm_override_microwire_large
79};
80
81enum e1000_phy_type {
82 e1000_phy_unknown = 0,
83 e1000_phy_none,
84 e1000_phy_m88,
85 e1000_phy_igp,
86 e1000_phy_igp_2,
87 e1000_phy_gg82563,
88 e1000_phy_igp_3,
89 e1000_phy_ife,
90};
91
92enum e1000_bus_type {
93 e1000_bus_type_unknown = 0,
94 e1000_bus_type_pci,
95 e1000_bus_type_pcix,
96 e1000_bus_type_pci_express,
97 e1000_bus_type_reserved
98};
99
100enum e1000_bus_speed {
101 e1000_bus_speed_unknown = 0,
102 e1000_bus_speed_33,
103 e1000_bus_speed_66,
104 e1000_bus_speed_100,
105 e1000_bus_speed_120,
106 e1000_bus_speed_133,
107 e1000_bus_speed_2500,
108 e1000_bus_speed_5000,
109 e1000_bus_speed_reserved
110};
111
112enum e1000_bus_width {
113 e1000_bus_width_unknown = 0,
114 e1000_bus_width_pcie_x1,
115 e1000_bus_width_pcie_x2,
116 e1000_bus_width_pcie_x4 = 4,
117 e1000_bus_width_pcie_x8 = 8,
118 e1000_bus_width_32,
119 e1000_bus_width_64,
120 e1000_bus_width_reserved
121};
122
123enum e1000_1000t_rx_status {
124 e1000_1000t_rx_status_not_ok = 0,
125 e1000_1000t_rx_status_ok,
126 e1000_1000t_rx_status_undefined = 0xFF
127};
128
129enum e1000_rev_polarity {
130 e1000_rev_polarity_normal = 0,
131 e1000_rev_polarity_reversed,
132 e1000_rev_polarity_undefined = 0xFF
133};
134
135enum e1000_fc_type {
136 e1000_fc_none = 0,
137 e1000_fc_rx_pause,
138 e1000_fc_tx_pause,
139 e1000_fc_full,
140 e1000_fc_default = 0xFF
141};
142
143
144/* Receive Descriptor */
145struct e1000_rx_desc {
146 u64 buffer_addr; /* Address of the descriptor's data buffer */
147 u16 length; /* Length of data DMAed into data buffer */
148 u16 csum; /* Packet checksum */
149 u8 status; /* Descriptor status */
150 u8 errors; /* Descriptor Errors */
151 u16 special;
152};
153
154/* Receive Descriptor - Extended */
155union e1000_rx_desc_extended {
156 struct {
157 u64 buffer_addr;
158 u64 reserved;
159 } read;
160 struct {
161 struct {
162 u32 mrq; /* Multiple Rx Queues */
163 union {
164 u32 rss; /* RSS Hash */
165 struct {
166 u16 ip_id; /* IP id */
167 u16 csum; /* Packet Checksum */
168 } csum_ip;
169 } hi_dword;
170 } lower;
171 struct {
172 u32 status_error; /* ext status/error */
173 u16 length;
174 u16 vlan; /* VLAN tag */
175 } upper;
176 } wb; /* writeback */
177};
178
179#define MAX_PS_BUFFERS 4
180/* Receive Descriptor - Packet Split */
181union e1000_rx_desc_packet_split {
182 struct {
183 /* one buffer for protocol header(s), three data buffers */
184 u64 buffer_addr[MAX_PS_BUFFERS];
185 } read;
186 struct {
187 struct {
188 u32 mrq; /* Multiple Rx Queues */
189 union {
190 u32 rss; /* RSS Hash */
191 struct {
192 u16 ip_id; /* IP id */
193 u16 csum; /* Packet Checksum */
194 } csum_ip;
195 } hi_dword;
196 } lower;
197 struct {
198 u32 status_error; /* ext status/error */
199 u16 length0; /* length of buffer 0 */
200 u16 vlan; /* VLAN tag */
201 } middle;
202 struct {
203 u16 header_status;
204 u16 length[3]; /* length of buffers 1-3 */
205 } upper;
206 u64 reserved;
207 } wb; /* writeback */
208};
209
210/* Transmit Descriptor */
211struct e1000_tx_desc {
212 u64 buffer_addr; /* Address of the descriptor's data buffer */
213 union {
214 u32 data;
215 struct {
216 u16 length; /* Data buffer length */
217 u8 cso; /* Checksum offset */
218 u8 cmd; /* Descriptor control */
219 } flags;
220 } lower;
221 union {
222 u32 data;
223 struct {
224 u8 status; /* Descriptor status */
225 u8 css; /* Checksum start */
226 u16 special;
227 } fields;
228 } upper;
229};
230
231/* Offload Context Descriptor */
232struct e1000_context_desc {
233 union {
234 u32 ip_config;
235 struct {
236 u8 ipcss; /* IP checksum start */
237 u8 ipcso; /* IP checksum offset */
238 u16 ipcse; /* IP checksum end */
239 } ip_fields;
240 } lower_setup;
241 union {
242 u32 tcp_config;
243 struct {
244 u8 tucss; /* TCP checksum start */
245 u8 tucso; /* TCP checksum offset */
246 u16 tucse; /* TCP checksum end */
247 } tcp_fields;
248 } upper_setup;
249 u32 cmd_and_length;
250 union {
251 u32 data;
252 struct {
253 u8 status; /* Descriptor status */
254 u8 hdr_len; /* Header length */
255 u16 mss; /* Maximum segment size */
256 } fields;
257 } tcp_seg_setup;
258};
259
260/* Offload data descriptor */
261struct e1000_data_desc {
262 u64 buffer_addr; /* Address of the descriptor's buffer address */
263 union {
264 u32 data;
265 struct {
266 u16 length; /* Data buffer length */
267 u8 typ_len_ext;
268 u8 cmd;
269 } flags;
270 } lower;
271 union {
272 u32 data;
273 struct {
274 u8 status; /* Descriptor status */
275 u8 popts; /* Packet Options */
276 u16 special;
277 } fields;
278 } upper;
279};
280
281/* Statistics counters collected by the MAC */
282struct e1000_hw_stats {
283 u64 crcerrs;
284 u64 algnerrc;
285 u64 symerrs;
286 u64 rxerrc;
287 u64 mpc;
288 u64 scc;
289 u64 ecol;
290 u64 mcc;
291 u64 latecol;
292 u64 colc;
293 u64 dc;
294 u64 tncrs;
295 u64 sec;
296 u64 cexterr;
297 u64 rlec;
298 u64 xonrxc;
299 u64 xontxc;
300 u64 xoffrxc;
301 u64 xofftxc;
302 u64 fcruc;
303 u64 prc64;
304 u64 prc127;
305 u64 prc255;
306 u64 prc511;
307 u64 prc1023;
308 u64 prc1522;
309 u64 gprc;
310 u64 bprc;
311 u64 mprc;
312 u64 gptc;
313 u64 gorc;
314 u64 gotc;
315 u64 rnbc;
316 u64 ruc;
317 u64 rfc;
318 u64 roc;
319 u64 rjc;
320 u64 mgprc;
321 u64 mgpdc;
322 u64 mgptc;
323 u64 tor;
324 u64 tot;
325 u64 tpr;
326 u64 tpt;
327 u64 ptc64;
328 u64 ptc127;
329 u64 ptc255;
330 u64 ptc511;
331 u64 ptc1023;
332 u64 ptc1522;
333 u64 mptc;
334 u64 bptc;
335 u64 tsctc;
336 u64 tsctfc;
337 u64 iac;
338 u64 icrxptc;
339 u64 icrxatc;
340 u64 ictxptc;
341 u64 ictxatc;
342 u64 ictxqec;
343 u64 ictxqmtc;
344 u64 icrxdmtc;
345 u64 icrxoc;
346 u64 cbtmpc;
347 u64 htdpmc;
348 u64 cbrdpc;
349 u64 cbrmpc;
350 u64 rpthc;
351 u64 hgptc;
352 u64 htcbdpc;
353 u64 hgorc;
354 u64 hgotc;
355 u64 lenerrs;
356 u64 scvpc;
357 u64 hrmpc;
358};
359
360struct e1000_phy_stats {
361 u32 idle_errors;
362 u32 receive_errors;
363};
364
365struct e1000_host_mng_dhcp_cookie {
366 u32 signature;
367 u8 status;
368 u8 reserved0;
369 u16 vlan_id;
370 u32 reserved1;
371 u16 reserved2;
372 u8 reserved3;
373 u8 checksum;
374};
375
376/* Host Interface "Rev 1" */
377struct e1000_host_command_header {
378 u8 command_id;
379 u8 command_length;
380 u8 command_options;
381 u8 checksum;
382};
383
384#define E1000_HI_MAX_DATA_LENGTH 252
385struct e1000_host_command_info {
386 struct e1000_host_command_header command_header;
387 u8 command_data[E1000_HI_MAX_DATA_LENGTH];
388};
389
390/* Host Interface "Rev 2" */
391struct e1000_host_mng_command_header {
392 u8 command_id;
393 u8 checksum;
394 u16 reserved1;
395 u16 reserved2;
396 u16 command_length;
397};
398
399#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8
400struct e1000_host_mng_command_info {
401 struct e1000_host_mng_command_header command_header;
402 u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
403};
404
405#include "e1000_mac.h"
406#include "e1000_phy.h"
407#include "e1000_nvm.h"
408
409struct e1000_mac_operations {
410 s32 (*check_for_link)(struct e1000_hw *);
411 s32 (*reset_hw)(struct e1000_hw *);
412 s32 (*init_hw)(struct e1000_hw *);
413 s32 (*setup_physical_interface)(struct e1000_hw *);
414 void (*rar_set)(struct e1000_hw *, u8 *, u32);
415 s32 (*read_mac_addr)(struct e1000_hw *);
416 s32 (*get_speed_and_duplex)(struct e1000_hw *, u16 *, u16 *);
417};
418
419struct e1000_phy_operations {
420 s32 (*acquire_phy)(struct e1000_hw *);
421 s32 (*force_speed_duplex)(struct e1000_hw *);
422 s32 (*get_cfg_done)(struct e1000_hw *hw);
423 s32 (*get_cable_length)(struct e1000_hw *);
424 s32 (*get_phy_info)(struct e1000_hw *);
425 s32 (*read_phy_reg)(struct e1000_hw *, u32, u16 *);
426 void (*release_phy)(struct e1000_hw *);
427 s32 (*reset_phy)(struct e1000_hw *);
428 s32 (*set_d0_lplu_state)(struct e1000_hw *, bool);
429 s32 (*set_d3_lplu_state)(struct e1000_hw *, bool);
430 s32 (*write_phy_reg)(struct e1000_hw *, u32, u16);
431};
432
433struct e1000_nvm_operations {
434 s32 (*acquire_nvm)(struct e1000_hw *);
435 s32 (*read_nvm)(struct e1000_hw *, u16, u16, u16 *);
436 void (*release_nvm)(struct e1000_hw *);
437 s32 (*write_nvm)(struct e1000_hw *, u16, u16, u16 *);
438};
439
440struct e1000_info {
441 s32 (*get_invariants)(struct e1000_hw *);
442 struct e1000_mac_operations *mac_ops;
443 struct e1000_phy_operations *phy_ops;
444 struct e1000_nvm_operations *nvm_ops;
445};
446
447extern const struct e1000_info e1000_82575_info;
448
449struct e1000_mac_info {
450 struct e1000_mac_operations ops;
451
452 u8 addr[6];
453 u8 perm_addr[6];
454
455 enum e1000_mac_type type;
456
457 u32 collision_delta;
458 u32 ledctl_default;
459 u32 ledctl_mode1;
460 u32 ledctl_mode2;
461 u32 mc_filter_type;
462 u32 tx_packet_delta;
463 u32 txcw;
464
465 u16 current_ifs_val;
466 u16 ifs_max_val;
467 u16 ifs_min_val;
468 u16 ifs_ratio;
469 u16 ifs_step_size;
470 u16 mta_reg_count;
471 u16 rar_entry_count;
472
473 u8 forced_speed_duplex;
474
475 bool adaptive_ifs;
476 bool arc_subsystem_valid;
477 bool asf_firmware_present;
478 bool autoneg;
479 bool autoneg_failed;
480 bool disable_av;
481 bool disable_hw_init_bits;
482 bool get_link_status;
483 bool ifs_params_forced;
484 bool in_ifs_mode;
485 bool report_tx_early;
486 bool serdes_has_link;
487 bool tx_pkt_filtering;
488};
489
490struct e1000_phy_info {
491 struct e1000_phy_operations ops;
492
493 enum e1000_phy_type type;
494
495 enum e1000_1000t_rx_status local_rx;
496 enum e1000_1000t_rx_status remote_rx;
497 enum e1000_ms_type ms_type;
498 enum e1000_ms_type original_ms_type;
499 enum e1000_rev_polarity cable_polarity;
500 enum e1000_smart_speed smart_speed;
501
502 u32 addr;
503 u32 id;
504 u32 reset_delay_us; /* in usec */
505 u32 revision;
506
507 enum e1000_media_type media_type;
508
509 u16 autoneg_advertised;
510 u16 autoneg_mask;
511 u16 cable_length;
512 u16 max_cable_length;
513 u16 min_cable_length;
514
515 u8 mdix;
516
517 bool disable_polarity_correction;
518 bool is_mdix;
519 bool polarity_correction;
520 bool reset_disable;
521 bool speed_downgraded;
522 bool autoneg_wait_to_complete;
523};
524
525struct e1000_nvm_info {
526 struct e1000_nvm_operations ops;
527
528 enum e1000_nvm_type type;
529 enum e1000_nvm_override override;
530
531 u32 flash_bank_size;
532 u32 flash_base_addr;
533
534 u16 word_size;
535 u16 delay_usec;
536 u16 address_bits;
537 u16 opcode_bits;
538 u16 page_size;
539};
540
541struct e1000_bus_info {
542 enum e1000_bus_type type;
543 enum e1000_bus_speed speed;
544 enum e1000_bus_width width;
545
546 u32 snoop;
547
548 u16 func;
549 u16 pci_cmd_word;
550};
551
552struct e1000_fc_info {
553 u32 high_water; /* Flow control high-water mark */
554 u32 low_water; /* Flow control low-water mark */
555 u16 pause_time; /* Flow control pause timer */
556 bool send_xon; /* Flow control send XON */
557 bool strict_ieee; /* Strict IEEE mode */
558 enum e1000_fc_type type; /* Type of flow control */
559 enum e1000_fc_type original_type;
560};
561
562struct e1000_hw {
563 void *back;
564 void *dev_spec;
565
566 u8 __iomem *hw_addr;
567 u8 __iomem *flash_address;
568 unsigned long io_base;
569
570 struct e1000_mac_info mac;
571 struct e1000_fc_info fc;
572 struct e1000_phy_info phy;
573 struct e1000_nvm_info nvm;
574 struct e1000_bus_info bus;
575 struct e1000_host_mng_dhcp_cookie mng_cookie;
576
577 u32 dev_spec_size;
578
579 u16 device_id;
580 u16 subsystem_vendor_id;
581 u16 subsystem_device_id;
582 u16 vendor_id;
583
584 u8 revision_id;
585};
586
587#ifdef DEBUG
588extern char *igb_get_hw_dev_name(struct e1000_hw *hw);
589#define hw_dbg(hw, format, arg...) \
590 printk(KERN_DEBUG "%s: " format, igb_get_hw_dev_name(hw), ##arg)
591#else
592static inline int __attribute__ ((format (printf, 2, 3)))
593hw_dbg(struct e1000_hw *hw, const char *format, ...)
594{
595 return 0;
596}
597#endif
598
599#endif
diff --git a/drivers/net/igb/e1000_mac.c b/drivers/net/igb/e1000_mac.c
new file mode 100644
index 000000000000..3e84a3f0c1d8
--- /dev/null
+++ b/drivers/net/igb/e1000_mac.c
@@ -0,0 +1,1505 @@
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30#include <linux/pci.h>
31#include <linux/netdevice.h>
32
33#include "e1000_mac.h"
34
35#include "igb.h"
36
37static s32 igb_set_default_fc(struct e1000_hw *hw);
38static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
39static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr);
40
41/**
42 * e1000_remove_device - Free device specific structure
43 * @hw: pointer to the HW structure
44 *
45 * If a device specific structure was allocated, this function will
46 * free it.
47 **/
48void igb_remove_device(struct e1000_hw *hw)
49{
50 /* Freeing the dev_spec member of e1000_hw structure */
51 kfree(hw->dev_spec);
52}
53
54static void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
55{
56 struct igb_adapter *adapter = hw->back;
57
58 pci_read_config_word(adapter->pdev, reg, value);
59}
60
61static s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
62{
63 struct igb_adapter *adapter = hw->back;
64 u16 cap_offset;
65
66 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
67 if (!cap_offset)
68 return -E1000_ERR_CONFIG;
69
70 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
71
72 return 0;
73}
74
75/**
76 * e1000_get_bus_info_pcie - Get PCIe bus information
77 * @hw: pointer to the HW structure
78 *
79 * Determines and stores the system bus information for a particular
80 * network interface. The following bus information is determined and stored:
81 * bus speed, bus width, type (PCIe), and PCIe function.
82 **/
83s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
84{
85 struct e1000_bus_info *bus = &hw->bus;
86 s32 ret_val;
87 u32 status;
88 u16 pcie_link_status, pci_header_type;
89
90 bus->type = e1000_bus_type_pci_express;
91 bus->speed = e1000_bus_speed_2500;
92
93 ret_val = igb_read_pcie_cap_reg(hw,
94 PCIE_LINK_STATUS,
95 &pcie_link_status);
96 if (ret_val)
97 bus->width = e1000_bus_width_unknown;
98 else
99 bus->width = (enum e1000_bus_width)((pcie_link_status &
100 PCIE_LINK_WIDTH_MASK) >>
101 PCIE_LINK_WIDTH_SHIFT);
102
103 igb_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
104 if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
105 status = rd32(E1000_STATUS);
106 bus->func = (status & E1000_STATUS_FUNC_MASK)
107 >> E1000_STATUS_FUNC_SHIFT;
108 } else {
109 bus->func = 0;
110 }
111
112 return 0;
113}
114
115/**
116 * e1000_clear_vfta - Clear VLAN filter table
117 * @hw: pointer to the HW structure
118 *
119 * Clears the register array which contains the VLAN filter table by
120 * setting all the values to 0.
121 **/
122void igb_clear_vfta(struct e1000_hw *hw)
123{
124 u32 offset;
125
126 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
127 array_wr32(E1000_VFTA, offset, 0);
128 wrfl();
129 }
130}
131
132/**
133 * e1000_write_vfta - Write value to VLAN filter table
134 * @hw: pointer to the HW structure
135 * @offset: register offset in VLAN filter table
136 * @value: register value written to VLAN filter table
137 *
138 * Writes value at the given offset in the register array which stores
139 * the VLAN filter table.
140 **/
141void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
142{
143 array_wr32(E1000_VFTA, offset, value);
144 wrfl();
145}
146
147/**
148 * e1000_init_rx_addrs - Initialize receive address's
149 * @hw: pointer to the HW structure
150 * @rar_count: receive address registers
151 *
152 * Setups the receive address registers by setting the base receive address
153 * register to the devices MAC address and clearing all the other receive
154 * address registers to 0.
155 **/
156void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
157{
158 u32 i;
159
160 /* Setup the receive address */
161 hw_dbg(hw, "Programming MAC Address into RAR[0]\n");
162
163 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
164
165 /* Zero out the other (rar_entry_count - 1) receive addresses */
166 hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1);
167 for (i = 1; i < rar_count; i++) {
168 array_wr32(E1000_RA, (i << 1), 0);
169 wrfl();
170 array_wr32(E1000_RA, ((i << 1) + 1), 0);
171 wrfl();
172 }
173}
174
175/**
176 * e1000_check_alt_mac_addr - Check for alternate MAC addr
177 * @hw: pointer to the HW structure
178 *
179 * Checks the nvm for an alternate MAC address. An alternate MAC address
180 * can be setup by pre-boot software and must be treated like a permanent
181 * address and must override the actual permanent MAC address. If an
182 * alternate MAC address is fopund it is saved in the hw struct and
183 * prgrammed into RAR0 and the cuntion returns success, otherwise the
184 * fucntion returns an error.
185 **/
186s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
187{
188 u32 i;
189 s32 ret_val = 0;
190 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
191 u8 alt_mac_addr[ETH_ALEN];
192
193 ret_val = hw->nvm.ops.read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
194 &nvm_alt_mac_addr_offset);
195 if (ret_val) {
196 hw_dbg(hw, "NVM Read Error\n");
197 goto out;
198 }
199
200 if (nvm_alt_mac_addr_offset == 0xFFFF) {
201 ret_val = -(E1000_NOT_IMPLEMENTED);
202 goto out;
203 }
204
205 if (hw->bus.func == E1000_FUNC_1)
206 nvm_alt_mac_addr_offset += ETH_ALEN/sizeof(u16);
207
208 for (i = 0; i < ETH_ALEN; i += 2) {
209 offset = nvm_alt_mac_addr_offset + (i >> 1);
210 ret_val = hw->nvm.ops.read_nvm(hw, offset, 1, &nvm_data);
211 if (ret_val) {
212 hw_dbg(hw, "NVM Read Error\n");
213 goto out;
214 }
215
216 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
217 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
218 }
219
220 /* if multicast bit is set, the alternate address will not be used */
221 if (alt_mac_addr[0] & 0x01) {
222 ret_val = -(E1000_NOT_IMPLEMENTED);
223 goto out;
224 }
225
226 for (i = 0; i < ETH_ALEN; i++)
227 hw->mac.addr[i] = hw->mac.perm_addr[i] = alt_mac_addr[i];
228
229 hw->mac.ops.rar_set(hw, hw->mac.perm_addr, 0);
230
231out:
232 return ret_val;
233}
234
235/**
236 * e1000_rar_set - Set receive address register
237 * @hw: pointer to the HW structure
238 * @addr: pointer to the receive address
239 * @index: receive address array register
240 *
241 * Sets the receive address array register at index to the address passed
242 * in by addr.
243 **/
244void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
245{
246 u32 rar_low, rar_high;
247
248 /*
249 * HW expects these in little endian so we reverse the byte order
250 * from network order (big endian) to little endian
251 */
252 rar_low = ((u32) addr[0] |
253 ((u32) addr[1] << 8) |
254 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
255
256 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
257
258 if (!hw->mac.disable_av)
259 rar_high |= E1000_RAH_AV;
260
261 array_wr32(E1000_RA, (index << 1), rar_low);
262 array_wr32(E1000_RA, ((index << 1) + 1), rar_high);
263}
264
265/**
266 * e1000_mta_set - Set multicast filter table address
267 * @hw: pointer to the HW structure
268 * @hash_value: determines the MTA register and bit to set
269 *
270 * The multicast table address is a register array of 32-bit registers.
271 * The hash_value is used to determine what register the bit is in, the
272 * current value is read, the new bit is OR'd in and the new value is
273 * written back into the register.
274 **/
275static void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
276{
277 u32 hash_bit, hash_reg, mta;
278
279 /*
280 * The MTA is a register array of 32-bit registers. It is
281 * treated like an array of (32*mta_reg_count) bits. We want to
282 * set bit BitArray[hash_value]. So we figure out what register
283 * the bit is in, read it, OR in the new bit, then write
284 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
285 * mask to bits 31:5 of the hash value which gives us the
286 * register we're modifying. The hash bit within that register
287 * is determined by the lower 5 bits of the hash value.
288 */
289 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
290 hash_bit = hash_value & 0x1F;
291
292 mta = array_rd32(E1000_MTA, hash_reg);
293
294 mta |= (1 << hash_bit);
295
296 array_wr32(E1000_MTA, hash_reg, mta);
297 wrfl();
298}
299
300/**
301 * e1000_update_mc_addr_list - Update Multicast addresses
302 * @hw: pointer to the HW structure
303 * @mc_addr_list: array of multicast addresses to program
304 * @mc_addr_count: number of multicast addresses to program
305 * @rar_used_count: the first RAR register free to program
306 * @rar_count: total number of supported Receive Address Registers
307 *
308 * Updates the Receive Address Registers and Multicast Table Array.
309 * The caller must have a packed mc_addr_list of multicast addresses.
310 * The parameter rar_count will usually be hw->mac.rar_entry_count
311 * unless there are workarounds that change this.
312 **/
313void igb_update_mc_addr_list(struct e1000_hw *hw,
314 u8 *mc_addr_list, u32 mc_addr_count,
315 u32 rar_used_count, u32 rar_count)
316{
317 u32 hash_value;
318 u32 i;
319
320 /*
321 * Load the first set of multicast addresses into the exact
322 * filters (RAR). If there are not enough to fill the RAR
323 * array, clear the filters.
324 */
325 for (i = rar_used_count; i < rar_count; i++) {
326 if (mc_addr_count) {
327 hw->mac.ops.rar_set(hw, mc_addr_list, i);
328 mc_addr_count--;
329 mc_addr_list += ETH_ALEN;
330 } else {
331 array_wr32(E1000_RA, i << 1, 0);
332 wrfl();
333 array_wr32(E1000_RA, (i << 1) + 1, 0);
334 wrfl();
335 }
336 }
337
338 /* Clear the old settings from the MTA */
339 hw_dbg(hw, "Clearing MTA\n");
340 for (i = 0; i < hw->mac.mta_reg_count; i++) {
341 array_wr32(E1000_MTA, i, 0);
342 wrfl();
343 }
344
345 /* Load any remaining multicast addresses into the hash table. */
346 for (; mc_addr_count > 0; mc_addr_count--) {
347 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
348 hw_dbg(hw, "Hash value = 0x%03X\n", hash_value);
349 igb_mta_set(hw, hash_value);
350 mc_addr_list += ETH_ALEN;
351 }
352}
353
354/**
355 * e1000_hash_mc_addr - Generate a multicast hash value
356 * @hw: pointer to the HW structure
357 * @mc_addr: pointer to a multicast address
358 *
359 * Generates a multicast address hash value which is used to determine
360 * the multicast filter table array address and new table value. See
361 * igb_mta_set()
362 **/
363static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
364{
365 u32 hash_value, hash_mask;
366 u8 bit_shift = 0;
367
368 /* Register count multiplied by bits per register */
369 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
370
371 /*
372 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
373 * where 0xFF would still fall within the hash mask.
374 */
375 while (hash_mask >> bit_shift != 0xFF)
376 bit_shift++;
377
378 /*
379 * The portion of the address that is used for the hash table
380 * is determined by the mc_filter_type setting.
381 * The algorithm is such that there is a total of 8 bits of shifting.
382 * The bit_shift for a mc_filter_type of 0 represents the number of
383 * left-shifts where the MSB of mc_addr[5] would still fall within
384 * the hash_mask. Case 0 does this exactly. Since there are a total
385 * of 8 bits of shifting, then mc_addr[4] will shift right the
386 * remaining number of bits. Thus 8 - bit_shift. The rest of the
387 * cases are a variation of this algorithm...essentially raising the
388 * number of bits to shift mc_addr[5] left, while still keeping the
389 * 8-bit shifting total.
390 *
391 * For example, given the following Destination MAC Address and an
392 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
393 * we can see that the bit_shift for case 0 is 4. These are the hash
394 * values resulting from each mc_filter_type...
395 * [0] [1] [2] [3] [4] [5]
396 * 01 AA 00 12 34 56
397 * LSB MSB
398 *
399 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
400 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
401 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
402 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
403 */
404 switch (hw->mac.mc_filter_type) {
405 default:
406 case 0:
407 break;
408 case 1:
409 bit_shift += 1;
410 break;
411 case 2:
412 bit_shift += 2;
413 break;
414 case 3:
415 bit_shift += 4;
416 break;
417 }
418
419 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
420 (((u16) mc_addr[5]) << bit_shift)));
421
422 return hash_value;
423}
424
425/**
426 * e1000_clear_hw_cntrs_base - Clear base hardware counters
427 * @hw: pointer to the HW structure
428 *
429 * Clears the base hardware counters by reading the counter registers.
430 **/
431void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
432{
433 u32 temp;
434
435 temp = rd32(E1000_CRCERRS);
436 temp = rd32(E1000_SYMERRS);
437 temp = rd32(E1000_MPC);
438 temp = rd32(E1000_SCC);
439 temp = rd32(E1000_ECOL);
440 temp = rd32(E1000_MCC);
441 temp = rd32(E1000_LATECOL);
442 temp = rd32(E1000_COLC);
443 temp = rd32(E1000_DC);
444 temp = rd32(E1000_SEC);
445 temp = rd32(E1000_RLEC);
446 temp = rd32(E1000_XONRXC);
447 temp = rd32(E1000_XONTXC);
448 temp = rd32(E1000_XOFFRXC);
449 temp = rd32(E1000_XOFFTXC);
450 temp = rd32(E1000_FCRUC);
451 temp = rd32(E1000_GPRC);
452 temp = rd32(E1000_BPRC);
453 temp = rd32(E1000_MPRC);
454 temp = rd32(E1000_GPTC);
455 temp = rd32(E1000_GORCL);
456 temp = rd32(E1000_GORCH);
457 temp = rd32(E1000_GOTCL);
458 temp = rd32(E1000_GOTCH);
459 temp = rd32(E1000_RNBC);
460 temp = rd32(E1000_RUC);
461 temp = rd32(E1000_RFC);
462 temp = rd32(E1000_ROC);
463 temp = rd32(E1000_RJC);
464 temp = rd32(E1000_TORL);
465 temp = rd32(E1000_TORH);
466 temp = rd32(E1000_TOTL);
467 temp = rd32(E1000_TOTH);
468 temp = rd32(E1000_TPR);
469 temp = rd32(E1000_TPT);
470 temp = rd32(E1000_MPTC);
471 temp = rd32(E1000_BPTC);
472}
473
474/**
475 * e1000_check_for_copper_link - Check for link (Copper)
476 * @hw: pointer to the HW structure
477 *
478 * Checks to see of the link status of the hardware has changed. If a
479 * change in link status has been detected, then we read the PHY registers
480 * to get the current speed/duplex if link exists.
481 **/
482s32 igb_check_for_copper_link(struct e1000_hw *hw)
483{
484 struct e1000_mac_info *mac = &hw->mac;
485 s32 ret_val;
486 bool link;
487
488 /*
489 * We only want to go out to the PHY registers to see if Auto-Neg
490 * has completed and/or if our link status has changed. The
491 * get_link_status flag is set upon receiving a Link Status
492 * Change or Rx Sequence Error interrupt.
493 */
494 if (!mac->get_link_status) {
495 ret_val = 0;
496 goto out;
497 }
498
499 /*
500 * First we want to see if the MII Status Register reports
501 * link. If so, then we want to get the current speed/duplex
502 * of the PHY.
503 */
504 ret_val = igb_phy_has_link(hw, 1, 0, &link);
505 if (ret_val)
506 goto out;
507
508 if (!link)
509 goto out; /* No link detected */
510
511 mac->get_link_status = false;
512
513 /*
514 * Check if there was DownShift, must be checked
515 * immediately after link-up
516 */
517 igb_check_downshift(hw);
518
519 /*
520 * If we are forcing speed/duplex, then we simply return since
521 * we have already determined whether we have link or not.
522 */
523 if (!mac->autoneg) {
524 ret_val = -E1000_ERR_CONFIG;
525 goto out;
526 }
527
528 /*
529 * Auto-Neg is enabled. Auto Speed Detection takes care
530 * of MAC speed/duplex configuration. So we only need to
531 * configure Collision Distance in the MAC.
532 */
533 igb_config_collision_dist(hw);
534
535 /*
536 * Configure Flow Control now that Auto-Neg has completed.
537 * First, we need to restore the desired flow control
538 * settings because we may have had to re-autoneg with a
539 * different link partner.
540 */
541 ret_val = igb_config_fc_after_link_up(hw);
542 if (ret_val)
543 hw_dbg(hw, "Error configuring flow control\n");
544
545out:
546 return ret_val;
547}
548
549/**
550 * e1000_setup_link - Setup flow control and link settings
551 * @hw: pointer to the HW structure
552 *
553 * Determines which flow control settings to use, then configures flow
554 * control. Calls the appropriate media-specific link configuration
555 * function. Assuming the adapter has a valid link partner, a valid link
556 * should be established. Assumes the hardware has previously been reset
557 * and the transmitter and receiver are not enabled.
558 **/
559s32 igb_setup_link(struct e1000_hw *hw)
560{
561 s32 ret_val = 0;
562
563 /*
564 * In the case of the phy reset being blocked, we already have a link.
565 * We do not need to set it up again.
566 */
567 if (igb_check_reset_block(hw))
568 goto out;
569
570 ret_val = igb_set_default_fc(hw);
571 if (ret_val)
572 goto out;
573
574 /*
575 * We want to save off the original Flow Control configuration just
576 * in case we get disconnected and then reconnected into a different
577 * hub or switch with different Flow Control capabilities.
578 */
579 hw->fc.original_type = hw->fc.type;
580
581 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", hw->fc.type);
582
583 /* Call the necessary media_type subroutine to configure the link. */
584 ret_val = hw->mac.ops.setup_physical_interface(hw);
585 if (ret_val)
586 goto out;
587
588 /*
589 * Initialize the flow control address, type, and PAUSE timer
590 * registers to their default values. This is done even if flow
591 * control is disabled, because it does not hurt anything to
592 * initialize these registers.
593 */
594 hw_dbg(hw,
595 "Initializing the Flow Control address, type and timer regs\n");
596 wr32(E1000_FCT, FLOW_CONTROL_TYPE);
597 wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
598 wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
599
600 wr32(E1000_FCTTV, hw->fc.pause_time);
601
602 ret_val = igb_set_fc_watermarks(hw);
603
604out:
605 return ret_val;
606}
607
608/**
609 * e1000_config_collision_dist - Configure collision distance
610 * @hw: pointer to the HW structure
611 *
612 * Configures the collision distance to the default value and is used
613 * during link setup. Currently no func pointer exists and all
614 * implementations are handled in the generic version of this function.
615 **/
616void igb_config_collision_dist(struct e1000_hw *hw)
617{
618 u32 tctl;
619
620 tctl = rd32(E1000_TCTL);
621
622 tctl &= ~E1000_TCTL_COLD;
623 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
624
625 wr32(E1000_TCTL, tctl);
626 wrfl();
627}
628
629/**
630 * e1000_set_fc_watermarks - Set flow control high/low watermarks
631 * @hw: pointer to the HW structure
632 *
633 * Sets the flow control high/low threshold (watermark) registers. If
634 * flow control XON frame transmission is enabled, then set XON frame
635 * tansmission as well.
636 **/
637static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
638{
639 s32 ret_val = 0;
640 u32 fcrtl = 0, fcrth = 0;
641
642 /*
643 * Set the flow control receive threshold registers. Normally,
644 * these registers will be set to a default threshold that may be
645 * adjusted later by the driver's runtime code. However, if the
646 * ability to transmit pause frames is not enabled, then these
647 * registers will be set to 0.
648 */
649 if (hw->fc.type & e1000_fc_tx_pause) {
650 /*
651 * We need to set up the Receive Threshold high and low water
652 * marks as well as (optionally) enabling the transmission of
653 * XON frames.
654 */
655 fcrtl = hw->fc.low_water;
656 if (hw->fc.send_xon)
657 fcrtl |= E1000_FCRTL_XONE;
658
659 fcrth = hw->fc.high_water;
660 }
661 wr32(E1000_FCRTL, fcrtl);
662 wr32(E1000_FCRTH, fcrth);
663
664 return ret_val;
665}
666
667/**
668 * e1000_set_default_fc - Set flow control default values
669 * @hw: pointer to the HW structure
670 *
671 * Read the EEPROM for the default values for flow control and store the
672 * values.
673 **/
674static s32 igb_set_default_fc(struct e1000_hw *hw)
675{
676 s32 ret_val = 0;
677 u16 nvm_data;
678
679 /*
680 * Read and store word 0x0F of the EEPROM. This word contains bits
681 * that determine the hardware's default PAUSE (flow control) mode,
682 * a bit that determines whether the HW defaults to enabling or
683 * disabling auto-negotiation, and the direction of the
684 * SW defined pins. If there is no SW over-ride of the flow
685 * control setting, then the variable hw->fc will
686 * be initialized based on a value in the EEPROM.
687 */
688 ret_val = hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL2_REG, 1,
689 &nvm_data);
690
691 if (ret_val) {
692 hw_dbg(hw, "NVM Read Error\n");
693 goto out;
694 }
695
696 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
697 hw->fc.type = e1000_fc_none;
698 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
699 NVM_WORD0F_ASM_DIR)
700 hw->fc.type = e1000_fc_tx_pause;
701 else
702 hw->fc.type = e1000_fc_full;
703
704out:
705 return ret_val;
706}
707
708/**
709 * e1000_force_mac_fc - Force the MAC's flow control settings
710 * @hw: pointer to the HW structure
711 *
712 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
713 * device control register to reflect the adapter settings. TFCE and RFCE
714 * need to be explicitly set by software when a copper PHY is used because
715 * autonegotiation is managed by the PHY rather than the MAC. Software must
716 * also configure these bits when link is forced on a fiber connection.
717 **/
718s32 igb_force_mac_fc(struct e1000_hw *hw)
719{
720 u32 ctrl;
721 s32 ret_val = 0;
722
723 ctrl = rd32(E1000_CTRL);
724
725 /*
726 * Because we didn't get link via the internal auto-negotiation
727 * mechanism (we either forced link or we got link via PHY
728 * auto-neg), we have to manually enable/disable transmit an
729 * receive flow control.
730 *
731 * The "Case" statement below enables/disable flow control
732 * according to the "hw->fc.type" parameter.
733 *
734 * The possible values of the "fc" parameter are:
735 * 0: Flow control is completely disabled
736 * 1: Rx flow control is enabled (we can receive pause
737 * frames but not send pause frames).
738 * 2: Tx flow control is enabled (we can send pause frames
739 * frames but we do not receive pause frames).
740 * 3: Both Rx and TX flow control (symmetric) is enabled.
741 * other: No other values should be possible at this point.
742 */
743 hw_dbg(hw, "hw->fc.type = %u\n", hw->fc.type);
744
745 switch (hw->fc.type) {
746 case e1000_fc_none:
747 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
748 break;
749 case e1000_fc_rx_pause:
750 ctrl &= (~E1000_CTRL_TFCE);
751 ctrl |= E1000_CTRL_RFCE;
752 break;
753 case e1000_fc_tx_pause:
754 ctrl &= (~E1000_CTRL_RFCE);
755 ctrl |= E1000_CTRL_TFCE;
756 break;
757 case e1000_fc_full:
758 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
759 break;
760 default:
761 hw_dbg(hw, "Flow control param set incorrectly\n");
762 ret_val = -E1000_ERR_CONFIG;
763 goto out;
764 }
765
766 wr32(E1000_CTRL, ctrl);
767
768out:
769 return ret_val;
770}
771
772/**
773 * e1000_config_fc_after_link_up - Configures flow control after link
774 * @hw: pointer to the HW structure
775 *
776 * Checks the status of auto-negotiation after link up to ensure that the
777 * speed and duplex were not forced. If the link needed to be forced, then
778 * flow control needs to be forced also. If auto-negotiation is enabled
779 * and did not fail, then we configure flow control based on our link
780 * partner.
781 **/
782s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
783{
784 struct e1000_mac_info *mac = &hw->mac;
785 s32 ret_val = 0;
786 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
787 u16 speed, duplex;
788
789 /*
790 * Check for the case where we have fiber media and auto-neg failed
791 * so we had to force link. In this case, we need to force the
792 * configuration of the MAC to match the "fc" parameter.
793 */
794 if (mac->autoneg_failed) {
795 if (hw->phy.media_type == e1000_media_type_fiber ||
796 hw->phy.media_type == e1000_media_type_internal_serdes)
797 ret_val = igb_force_mac_fc(hw);
798 } else {
799 if (hw->phy.media_type == e1000_media_type_copper)
800 ret_val = igb_force_mac_fc(hw);
801 }
802
803 if (ret_val) {
804 hw_dbg(hw, "Error forcing flow control settings\n");
805 goto out;
806 }
807
808 /*
809 * Check for the case where we have copper media and auto-neg is
810 * enabled. In this case, we need to check and see if Auto-Neg
811 * has completed, and if so, how the PHY and link partner has
812 * flow control configured.
813 */
814 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
815 /*
816 * Read the MII Status Register and check to see if AutoNeg
817 * has completed. We read this twice because this reg has
818 * some "sticky" (latched) bits.
819 */
820 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS,
821 &mii_status_reg);
822 if (ret_val)
823 goto out;
824 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS,
825 &mii_status_reg);
826 if (ret_val)
827 goto out;
828
829 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
830 hw_dbg(hw, "Copper PHY and Auto Neg "
831 "has not completed.\n");
832 goto out;
833 }
834
835 /*
836 * The AutoNeg process has completed, so we now need to
837 * read both the Auto Negotiation Advertisement
838 * Register (Address 4) and the Auto_Negotiation Base
839 * Page Ability Register (Address 5) to determine how
840 * flow control was negotiated.
841 */
842 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_AUTONEG_ADV,
843 &mii_nway_adv_reg);
844 if (ret_val)
845 goto out;
846 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_LP_ABILITY,
847 &mii_nway_lp_ability_reg);
848 if (ret_val)
849 goto out;
850
851 /*
852 * Two bits in the Auto Negotiation Advertisement Register
853 * (Address 4) and two bits in the Auto Negotiation Base
854 * Page Ability Register (Address 5) determine flow control
855 * for both the PHY and the link partner. The following
856 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
857 * 1999, describes these PAUSE resolution bits and how flow
858 * control is determined based upon these settings.
859 * NOTE: DC = Don't Care
860 *
861 * LOCAL DEVICE | LINK PARTNER
862 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
863 *-------|---------|-------|---------|--------------------
864 * 0 | 0 | DC | DC | e1000_fc_none
865 * 0 | 1 | 0 | DC | e1000_fc_none
866 * 0 | 1 | 1 | 0 | e1000_fc_none
867 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
868 * 1 | 0 | 0 | DC | e1000_fc_none
869 * 1 | DC | 1 | DC | e1000_fc_full
870 * 1 | 1 | 0 | 0 | e1000_fc_none
871 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
872 *
873 * Are both PAUSE bits set to 1? If so, this implies
874 * Symmetric Flow Control is enabled at both ends. The
875 * ASM_DIR bits are irrelevant per the spec.
876 *
877 * For Symmetric Flow Control:
878 *
879 * LOCAL DEVICE | LINK PARTNER
880 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
881 *-------|---------|-------|---------|--------------------
882 * 1 | DC | 1 | DC | E1000_fc_full
883 *
884 */
885 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
886 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
887 /*
888 * Now we need to check if the user selected RX ONLY
889 * of pause frames. In this case, we had to advertise
890 * FULL flow control because we could not advertise RX
891 * ONLY. Hence, we must now check to see if we need to
892 * turn OFF the TRANSMISSION of PAUSE frames.
893 */
894 if (hw->fc.original_type == e1000_fc_full) {
895 hw->fc.type = e1000_fc_full;
896 hw_dbg(hw, "Flow Control = FULL.\r\n");
897 } else {
898 hw->fc.type = e1000_fc_rx_pause;
899 hw_dbg(hw, "Flow Control = "
900 "RX PAUSE frames only.\r\n");
901 }
902 }
903 /*
904 * For receiving PAUSE frames ONLY.
905 *
906 * LOCAL DEVICE | LINK PARTNER
907 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
908 *-------|---------|-------|---------|--------------------
909 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
910 */
911 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
912 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
913 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
914 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
915 hw->fc.type = e1000_fc_tx_pause;
916 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\r\n");
917 }
918 /*
919 * For transmitting PAUSE frames ONLY.
920 *
921 * LOCAL DEVICE | LINK PARTNER
922 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
923 *-------|---------|-------|---------|--------------------
924 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
925 */
926 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
927 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
928 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
929 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
930 hw->fc.type = e1000_fc_rx_pause;
931 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n");
932 }
933 /*
934 * Per the IEEE spec, at this point flow control should be
935 * disabled. However, we want to consider that we could
936 * be connected to a legacy switch that doesn't advertise
937 * desired flow control, but can be forced on the link
938 * partner. So if we advertised no flow control, that is
939 * what we will resolve to. If we advertised some kind of
940 * receive capability (Rx Pause Only or Full Flow Control)
941 * and the link partner advertised none, we will configure
942 * ourselves to enable Rx Flow Control only. We can do
943 * this safely for two reasons: If the link partner really
944 * didn't want flow control enabled, and we enable Rx, no
945 * harm done since we won't be receiving any PAUSE frames
946 * anyway. If the intent on the link partner was to have
947 * flow control enabled, then by us enabling RX only, we
948 * can at least receive pause frames and process them.
949 * This is a good idea because in most cases, since we are
950 * predominantly a server NIC, more times than not we will
951 * be asked to delay transmission of packets than asking
952 * our link partner to pause transmission of frames.
953 */
954 else if ((hw->fc.original_type == e1000_fc_none ||
955 hw->fc.original_type == e1000_fc_tx_pause) ||
956 hw->fc.strict_ieee) {
957 hw->fc.type = e1000_fc_none;
958 hw_dbg(hw, "Flow Control = NONE.\r\n");
959 } else {
960 hw->fc.type = e1000_fc_rx_pause;
961 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n");
962 }
963
964 /*
965 * Now we need to do one last check... If we auto-
966 * negotiated to HALF DUPLEX, flow control should not be
967 * enabled per IEEE 802.3 spec.
968 */
969 ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
970 if (ret_val) {
971 hw_dbg(hw, "Error getting link speed and duplex\n");
972 goto out;
973 }
974
975 if (duplex == HALF_DUPLEX)
976 hw->fc.type = e1000_fc_none;
977
978 /*
979 * Now we call a subroutine to actually force the MAC
980 * controller to use the correct flow control settings.
981 */
982 ret_val = igb_force_mac_fc(hw);
983 if (ret_val) {
984 hw_dbg(hw, "Error forcing flow control settings\n");
985 goto out;
986 }
987 }
988
989out:
990 return ret_val;
991}
992
993/**
994 * e1000_get_speed_and_duplex_copper - Retreive current speed/duplex
995 * @hw: pointer to the HW structure
996 * @speed: stores the current speed
997 * @duplex: stores the current duplex
998 *
999 * Read the status register for the current speed/duplex and store the current
1000 * speed and duplex for copper connections.
1001 **/
1002s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1003 u16 *duplex)
1004{
1005 u32 status;
1006
1007 status = rd32(E1000_STATUS);
1008 if (status & E1000_STATUS_SPEED_1000) {
1009 *speed = SPEED_1000;
1010 hw_dbg(hw, "1000 Mbs, ");
1011 } else if (status & E1000_STATUS_SPEED_100) {
1012 *speed = SPEED_100;
1013 hw_dbg(hw, "100 Mbs, ");
1014 } else {
1015 *speed = SPEED_10;
1016 hw_dbg(hw, "10 Mbs, ");
1017 }
1018
1019 if (status & E1000_STATUS_FD) {
1020 *duplex = FULL_DUPLEX;
1021 hw_dbg(hw, "Full Duplex\n");
1022 } else {
1023 *duplex = HALF_DUPLEX;
1024 hw_dbg(hw, "Half Duplex\n");
1025 }
1026
1027 return 0;
1028}
1029
1030/**
1031 * e1000_get_hw_semaphore - Acquire hardware semaphore
1032 * @hw: pointer to the HW structure
1033 *
1034 * Acquire the HW semaphore to access the PHY or NVM
1035 **/
1036s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1037{
1038 u32 swsm;
1039 s32 ret_val = 0;
1040 s32 timeout = hw->nvm.word_size + 1;
1041 s32 i = 0;
1042
1043 /* Get the SW semaphore */
1044 while (i < timeout) {
1045 swsm = rd32(E1000_SWSM);
1046 if (!(swsm & E1000_SWSM_SMBI))
1047 break;
1048
1049 udelay(50);
1050 i++;
1051 }
1052
1053 if (i == timeout) {
1054 hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n");
1055 ret_val = -E1000_ERR_NVM;
1056 goto out;
1057 }
1058
1059 /* Get the FW semaphore. */
1060 for (i = 0; i < timeout; i++) {
1061 swsm = rd32(E1000_SWSM);
1062 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1063
1064 /* Semaphore acquired if bit latched */
1065 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1066 break;
1067
1068 udelay(50);
1069 }
1070
1071 if (i == timeout) {
1072 /* Release semaphores */
1073 igb_put_hw_semaphore(hw);
1074 hw_dbg(hw, "Driver can't access the NVM\n");
1075 ret_val = -E1000_ERR_NVM;
1076 goto out;
1077 }
1078
1079out:
1080 return ret_val;
1081}
1082
1083/**
1084 * e1000_put_hw_semaphore - Release hardware semaphore
1085 * @hw: pointer to the HW structure
1086 *
1087 * Release hardware semaphore used to access the PHY or NVM
1088 **/
1089void igb_put_hw_semaphore(struct e1000_hw *hw)
1090{
1091 u32 swsm;
1092
1093 swsm = rd32(E1000_SWSM);
1094
1095 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1096
1097 wr32(E1000_SWSM, swsm);
1098}
1099
1100/**
1101 * e1000_get_auto_rd_done - Check for auto read completion
1102 * @hw: pointer to the HW structure
1103 *
1104 * Check EEPROM for Auto Read done bit.
1105 **/
1106s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1107{
1108 s32 i = 0;
1109 s32 ret_val = 0;
1110
1111
1112 while (i < AUTO_READ_DONE_TIMEOUT) {
1113 if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1114 break;
1115 msleep(1);
1116 i++;
1117 }
1118
1119 if (i == AUTO_READ_DONE_TIMEOUT) {
1120 hw_dbg(hw, "Auto read by HW from NVM has not completed.\n");
1121 ret_val = -E1000_ERR_RESET;
1122 goto out;
1123 }
1124
1125out:
1126 return ret_val;
1127}
1128
1129/**
1130 * e1000_valid_led_default - Verify a valid default LED config
1131 * @hw: pointer to the HW structure
1132 * @data: pointer to the NVM (EEPROM)
1133 *
1134 * Read the EEPROM for the current default LED configuration. If the
1135 * LED configuration is not valid, set to a valid LED configuration.
1136 **/
1137static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1138{
1139 s32 ret_val;
1140
1141 ret_val = hw->nvm.ops.read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1142 if (ret_val) {
1143 hw_dbg(hw, "NVM Read Error\n");
1144 goto out;
1145 }
1146
1147 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1148 *data = ID_LED_DEFAULT;
1149
1150out:
1151 return ret_val;
1152}
1153
1154/**
1155 * e1000_id_led_init -
1156 * @hw: pointer to the HW structure
1157 *
1158 **/
1159s32 igb_id_led_init(struct e1000_hw *hw)
1160{
1161 struct e1000_mac_info *mac = &hw->mac;
1162 s32 ret_val;
1163 const u32 ledctl_mask = 0x000000FF;
1164 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1165 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1166 u16 data, i, temp;
1167 const u16 led_mask = 0x0F;
1168
1169 ret_val = igb_valid_led_default(hw, &data);
1170 if (ret_val)
1171 goto out;
1172
1173 mac->ledctl_default = rd32(E1000_LEDCTL);
1174 mac->ledctl_mode1 = mac->ledctl_default;
1175 mac->ledctl_mode2 = mac->ledctl_default;
1176
1177 for (i = 0; i < 4; i++) {
1178 temp = (data >> (i << 2)) & led_mask;
1179 switch (temp) {
1180 case ID_LED_ON1_DEF2:
1181 case ID_LED_ON1_ON2:
1182 case ID_LED_ON1_OFF2:
1183 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1184 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1185 break;
1186 case ID_LED_OFF1_DEF2:
1187 case ID_LED_OFF1_ON2:
1188 case ID_LED_OFF1_OFF2:
1189 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1190 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1191 break;
1192 default:
1193 /* Do nothing */
1194 break;
1195 }
1196 switch (temp) {
1197 case ID_LED_DEF1_ON2:
1198 case ID_LED_ON1_ON2:
1199 case ID_LED_OFF1_ON2:
1200 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1201 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1202 break;
1203 case ID_LED_DEF1_OFF2:
1204 case ID_LED_ON1_OFF2:
1205 case ID_LED_OFF1_OFF2:
1206 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1207 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1208 break;
1209 default:
1210 /* Do nothing */
1211 break;
1212 }
1213 }
1214
1215out:
1216 return ret_val;
1217}
1218
1219/**
1220 * e1000_cleanup_led - Set LED config to default operation
1221 * @hw: pointer to the HW structure
1222 *
1223 * Remove the current LED configuration and set the LED configuration
1224 * to the default value, saved from the EEPROM.
1225 **/
1226s32 igb_cleanup_led(struct e1000_hw *hw)
1227{
1228 wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1229 return 0;
1230}
1231
1232/**
1233 * e1000_blink_led - Blink LED
1234 * @hw: pointer to the HW structure
1235 *
1236 * Blink the led's which are set to be on.
1237 **/
1238s32 igb_blink_led(struct e1000_hw *hw)
1239{
1240 u32 ledctl_blink = 0;
1241 u32 i;
1242
1243 if (hw->phy.media_type == e1000_media_type_fiber) {
1244 /* always blink LED0 for PCI-E fiber */
1245 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1246 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1247 } else {
1248 /*
1249 * set the blink bit for each LED that's "on" (0x0E)
1250 * in ledctl_mode2
1251 */
1252 ledctl_blink = hw->mac.ledctl_mode2;
1253 for (i = 0; i < 4; i++)
1254 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1255 E1000_LEDCTL_MODE_LED_ON)
1256 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1257 (i * 8));
1258 }
1259
1260 wr32(E1000_LEDCTL, ledctl_blink);
1261
1262 return 0;
1263}
1264
1265/**
1266 * e1000_led_off - Turn LED off
1267 * @hw: pointer to the HW structure
1268 *
1269 * Turn LED off.
1270 **/
1271s32 igb_led_off(struct e1000_hw *hw)
1272{
1273 u32 ctrl;
1274
1275 switch (hw->phy.media_type) {
1276 case e1000_media_type_fiber:
1277 ctrl = rd32(E1000_CTRL);
1278 ctrl |= E1000_CTRL_SWDPIN0;
1279 ctrl |= E1000_CTRL_SWDPIO0;
1280 wr32(E1000_CTRL, ctrl);
1281 break;
1282 case e1000_media_type_copper:
1283 wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1284 break;
1285 default:
1286 break;
1287 }
1288
1289 return 0;
1290}
1291
1292/**
1293 * e1000_disable_pcie_master - Disables PCI-express master access
1294 * @hw: pointer to the HW structure
1295 *
1296 * Returns 0 (0) if successful, else returns -10
1297 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1298 * the master requests to be disabled.
1299 *
1300 * Disables PCI-Express master access and verifies there are no pending
1301 * requests.
1302 **/
1303s32 igb_disable_pcie_master(struct e1000_hw *hw)
1304{
1305 u32 ctrl;
1306 s32 timeout = MASTER_DISABLE_TIMEOUT;
1307 s32 ret_val = 0;
1308
1309 if (hw->bus.type != e1000_bus_type_pci_express)
1310 goto out;
1311
1312 ctrl = rd32(E1000_CTRL);
1313 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1314 wr32(E1000_CTRL, ctrl);
1315
1316 while (timeout) {
1317 if (!(rd32(E1000_STATUS) &
1318 E1000_STATUS_GIO_MASTER_ENABLE))
1319 break;
1320 udelay(100);
1321 timeout--;
1322 }
1323
1324 if (!timeout) {
1325 hw_dbg(hw, "Master requests are pending.\n");
1326 ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1327 goto out;
1328 }
1329
1330out:
1331 return ret_val;
1332}
1333
1334/**
1335 * e1000_reset_adaptive - Reset Adaptive Interframe Spacing
1336 * @hw: pointer to the HW structure
1337 *
1338 * Reset the Adaptive Interframe Spacing throttle to default values.
1339 **/
1340void igb_reset_adaptive(struct e1000_hw *hw)
1341{
1342 struct e1000_mac_info *mac = &hw->mac;
1343
1344 if (!mac->adaptive_ifs) {
1345 hw_dbg(hw, "Not in Adaptive IFS mode!\n");
1346 goto out;
1347 }
1348
1349 if (!mac->ifs_params_forced) {
1350 mac->current_ifs_val = 0;
1351 mac->ifs_min_val = IFS_MIN;
1352 mac->ifs_max_val = IFS_MAX;
1353 mac->ifs_step_size = IFS_STEP;
1354 mac->ifs_ratio = IFS_RATIO;
1355 }
1356
1357 mac->in_ifs_mode = false;
1358 wr32(E1000_AIT, 0);
1359out:
1360 return;
1361}
1362
1363/**
1364 * e1000_update_adaptive - Update Adaptive Interframe Spacing
1365 * @hw: pointer to the HW structure
1366 *
1367 * Update the Adaptive Interframe Spacing Throttle value based on the
1368 * time between transmitted packets and time between collisions.
1369 **/
1370void igb_update_adaptive(struct e1000_hw *hw)
1371{
1372 struct e1000_mac_info *mac = &hw->mac;
1373
1374 if (!mac->adaptive_ifs) {
1375 hw_dbg(hw, "Not in Adaptive IFS mode!\n");
1376 goto out;
1377 }
1378
1379 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1380 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1381 mac->in_ifs_mode = true;
1382 if (mac->current_ifs_val < mac->ifs_max_val) {
1383 if (!mac->current_ifs_val)
1384 mac->current_ifs_val = mac->ifs_min_val;
1385 else
1386 mac->current_ifs_val +=
1387 mac->ifs_step_size;
1388 wr32(E1000_AIT,
1389 mac->current_ifs_val);
1390 }
1391 }
1392 } else {
1393 if (mac->in_ifs_mode &&
1394 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1395 mac->current_ifs_val = 0;
1396 mac->in_ifs_mode = false;
1397 wr32(E1000_AIT, 0);
1398 }
1399 }
1400out:
1401 return;
1402}
1403
1404/**
1405 * e1000_validate_mdi_setting - Verify MDI/MDIx settings
1406 * @hw: pointer to the HW structure
1407 *
1408 * Verify that when not using auto-negotitation that MDI/MDIx is correctly
1409 * set, which is forced to MDI mode only.
1410 **/
1411s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1412{
1413 s32 ret_val = 0;
1414
1415 if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1416 hw_dbg(hw, "Invalid MDI setting detected\n");
1417 hw->phy.mdix = 1;
1418 ret_val = -E1000_ERR_CONFIG;
1419 goto out;
1420 }
1421
1422out:
1423 return ret_val;
1424}
1425
1426/**
1427 * e1000_write_8bit_ctrl_reg - Write a 8bit CTRL register
1428 * @hw: pointer to the HW structure
1429 * @reg: 32bit register offset such as E1000_SCTL
1430 * @offset: register offset to write to
1431 * @data: data to write at register offset
1432 *
1433 * Writes an address/data control type register. There are several of these
1434 * and they all have the format address << 8 | data and bit 31 is polled for
1435 * completion.
1436 **/
1437s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1438 u32 offset, u8 data)
1439{
1440 u32 i, regvalue = 0;
1441 s32 ret_val = 0;
1442
1443 /* Set up the address and data */
1444 regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1445 wr32(reg, regvalue);
1446
1447 /* Poll the ready bit to see if the MDI read completed */
1448 for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1449 udelay(5);
1450 regvalue = rd32(reg);
1451 if (regvalue & E1000_GEN_CTL_READY)
1452 break;
1453 }
1454 if (!(regvalue & E1000_GEN_CTL_READY)) {
1455 hw_dbg(hw, "Reg %08x did not indicate ready\n", reg);
1456 ret_val = -E1000_ERR_PHY;
1457 goto out;
1458 }
1459
1460out:
1461 return ret_val;
1462}
1463
1464/**
1465 * e1000_enable_mng_pass_thru - Enable processing of ARP's
1466 * @hw: pointer to the HW structure
1467 *
1468 * Verifies the hardware needs to allow ARPs to be processed by the host.
1469 **/
1470bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1471{
1472 u32 manc;
1473 u32 fwsm, factps;
1474 bool ret_val = false;
1475
1476 if (!hw->mac.asf_firmware_present)
1477 goto out;
1478
1479 manc = rd32(E1000_MANC);
1480
1481 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
1482 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
1483 goto out;
1484
1485 if (hw->mac.arc_subsystem_valid) {
1486 fwsm = rd32(E1000_FWSM);
1487 factps = rd32(E1000_FACTPS);
1488
1489 if (!(factps & E1000_FACTPS_MNGCG) &&
1490 ((fwsm & E1000_FWSM_MODE_MASK) ==
1491 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1492 ret_val = true;
1493 goto out;
1494 }
1495 } else {
1496 if ((manc & E1000_MANC_SMBUS_EN) &&
1497 !(manc & E1000_MANC_ASF_EN)) {
1498 ret_val = true;
1499 goto out;
1500 }
1501 }
1502
1503out:
1504 return ret_val;
1505}
diff --git a/drivers/net/igb/e1000_mac.h b/drivers/net/igb/e1000_mac.h
new file mode 100644
index 000000000000..326b6592307b
--- /dev/null
+++ b/drivers/net/igb/e1000_mac.h
@@ -0,0 +1,98 @@
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#ifndef _E1000_MAC_H_
29#define _E1000_MAC_H_
30
31#include "e1000_hw.h"
32
33#include "e1000_phy.h"
34#include "e1000_nvm.h"
35#include "e1000_defines.h"
36
37/*
38 * Functions that should not be called directly from drivers but can be used
39 * by other files in this 'shared code'
40 */
41s32 igb_blink_led(struct e1000_hw *hw);
42s32 igb_check_for_copper_link(struct e1000_hw *hw);
43s32 igb_cleanup_led(struct e1000_hw *hw);
44s32 igb_config_fc_after_link_up(struct e1000_hw *hw);
45s32 igb_disable_pcie_master(struct e1000_hw *hw);
46s32 igb_force_mac_fc(struct e1000_hw *hw);
47s32 igb_get_auto_rd_done(struct e1000_hw *hw);
48s32 igb_get_bus_info_pcie(struct e1000_hw *hw);
49s32 igb_get_hw_semaphore(struct e1000_hw *hw);
50s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
51 u16 *duplex);
52s32 igb_id_led_init(struct e1000_hw *hw);
53s32 igb_led_off(struct e1000_hw *hw);
54void igb_update_mc_addr_list(struct e1000_hw *hw,
55 u8 *mc_addr_list, u32 mc_addr_count,
56 u32 rar_used_count, u32 rar_count);
57s32 igb_setup_link(struct e1000_hw *hw);
58s32 igb_validate_mdi_setting(struct e1000_hw *hw);
59s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
60 u32 offset, u8 data);
61
62void igb_clear_hw_cntrs_base(struct e1000_hw *hw);
63void igb_clear_vfta(struct e1000_hw *hw);
64void igb_config_collision_dist(struct e1000_hw *hw);
65void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count);
66void igb_put_hw_semaphore(struct e1000_hw *hw);
67void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
68s32 igb_check_alt_mac_addr(struct e1000_hw *hw);
69void igb_remove_device(struct e1000_hw *hw);
70void igb_reset_adaptive(struct e1000_hw *hw);
71void igb_update_adaptive(struct e1000_hw *hw);
72void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
73
74bool igb_enable_mng_pass_thru(struct e1000_hw *hw);
75
76enum e1000_mng_mode {
77 e1000_mng_mode_none = 0,
78 e1000_mng_mode_asf,
79 e1000_mng_mode_pt,
80 e1000_mng_mode_ipmi,
81 e1000_mng_mode_host_if_only
82};
83
84#define E1000_FACTPS_MNGCG 0x20000000
85
86#define E1000_FWSM_MODE_MASK 0xE
87#define E1000_FWSM_MODE_SHIFT 1
88
89#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10
90#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2
91
92#define E1000_HICR_EN 0x01 /* Enable bit - RO */
93/* Driver sets this bit when done to put command in RAM */
94#define E1000_HICR_C 0x02
95
96extern void e1000_init_function_pointers_82575(struct e1000_hw *hw);
97
98#endif
diff --git a/drivers/net/igb/e1000_nvm.c b/drivers/net/igb/e1000_nvm.c
new file mode 100644
index 000000000000..2897106fee92
--- /dev/null
+++ b/drivers/net/igb/e1000_nvm.c
@@ -0,0 +1,605 @@
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30
31#include "e1000_mac.h"
32#include "e1000_nvm.h"
33
34/**
35 * e1000_raise_eec_clk - Raise EEPROM clock
36 * @hw: pointer to the HW structure
37 * @eecd: pointer to the EEPROM
38 *
39 * Enable/Raise the EEPROM clock bit.
40 **/
41static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
42{
43 *eecd = *eecd | E1000_EECD_SK;
44 wr32(E1000_EECD, *eecd);
45 wrfl();
46 udelay(hw->nvm.delay_usec);
47}
48
49/**
50 * e1000_lower_eec_clk - Lower EEPROM clock
51 * @hw: pointer to the HW structure
52 * @eecd: pointer to the EEPROM
53 *
54 * Clear/Lower the EEPROM clock bit.
55 **/
56static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
57{
58 *eecd = *eecd & ~E1000_EECD_SK;
59 wr32(E1000_EECD, *eecd);
60 wrfl();
61 udelay(hw->nvm.delay_usec);
62}
63
64/**
65 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
66 * @hw: pointer to the HW structure
67 * @data: data to send to the EEPROM
68 * @count: number of bits to shift out
69 *
70 * We need to shift 'count' bits out to the EEPROM. So, the value in the
71 * "data" parameter will be shifted out to the EEPROM one bit at a time.
72 * In order to do this, "data" must be broken down into bits.
73 **/
74static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
75{
76 struct e1000_nvm_info *nvm = &hw->nvm;
77 u32 eecd = rd32(E1000_EECD);
78 u32 mask;
79
80 mask = 0x01 << (count - 1);
81 if (nvm->type == e1000_nvm_eeprom_microwire)
82 eecd &= ~E1000_EECD_DO;
83 else if (nvm->type == e1000_nvm_eeprom_spi)
84 eecd |= E1000_EECD_DO;
85
86 do {
87 eecd &= ~E1000_EECD_DI;
88
89 if (data & mask)
90 eecd |= E1000_EECD_DI;
91
92 wr32(E1000_EECD, eecd);
93 wrfl();
94
95 udelay(nvm->delay_usec);
96
97 igb_raise_eec_clk(hw, &eecd);
98 igb_lower_eec_clk(hw, &eecd);
99
100 mask >>= 1;
101 } while (mask);
102
103 eecd &= ~E1000_EECD_DI;
104 wr32(E1000_EECD, eecd);
105}
106
107/**
108 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
109 * @hw: pointer to the HW structure
110 * @count: number of bits to shift in
111 *
112 * In order to read a register from the EEPROM, we need to shift 'count' bits
113 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
114 * the EEPROM (setting the SK bit), and then reading the value of the data out
115 * "DO" bit. During this "shifting in" process the data in "DI" bit should
116 * always be clear.
117 **/
118static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
119{
120 u32 eecd;
121 u32 i;
122 u16 data;
123
124 eecd = rd32(E1000_EECD);
125
126 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
127 data = 0;
128
129 for (i = 0; i < count; i++) {
130 data <<= 1;
131 igb_raise_eec_clk(hw, &eecd);
132
133 eecd = rd32(E1000_EECD);
134
135 eecd &= ~E1000_EECD_DI;
136 if (eecd & E1000_EECD_DO)
137 data |= 1;
138
139 igb_lower_eec_clk(hw, &eecd);
140 }
141
142 return data;
143}
144
145/**
146 * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
147 * @hw: pointer to the HW structure
148 * @ee_reg: EEPROM flag for polling
149 *
150 * Polls the EEPROM status bit for either read or write completion based
151 * upon the value of 'ee_reg'.
152 **/
153static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
154{
155 u32 attempts = 100000;
156 u32 i, reg = 0;
157 s32 ret_val = -E1000_ERR_NVM;
158
159 for (i = 0; i < attempts; i++) {
160 if (ee_reg == E1000_NVM_POLL_READ)
161 reg = rd32(E1000_EERD);
162 else
163 reg = rd32(E1000_EEWR);
164
165 if (reg & E1000_NVM_RW_REG_DONE) {
166 ret_val = 0;
167 break;
168 }
169
170 udelay(5);
171 }
172
173 return ret_val;
174}
175
176/**
177 * e1000_acquire_nvm - Generic request for access to EEPROM
178 * @hw: pointer to the HW structure
179 *
180 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
181 * Return successful if access grant bit set, else clear the request for
182 * EEPROM access and return -E1000_ERR_NVM (-1).
183 **/
184s32 igb_acquire_nvm(struct e1000_hw *hw)
185{
186 u32 eecd = rd32(E1000_EECD);
187 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
188 s32 ret_val = 0;
189
190
191 wr32(E1000_EECD, eecd | E1000_EECD_REQ);
192 eecd = rd32(E1000_EECD);
193
194 while (timeout) {
195 if (eecd & E1000_EECD_GNT)
196 break;
197 udelay(5);
198 eecd = rd32(E1000_EECD);
199 timeout--;
200 }
201
202 if (!timeout) {
203 eecd &= ~E1000_EECD_REQ;
204 wr32(E1000_EECD, eecd);
205 hw_dbg(hw, "Could not acquire NVM grant\n");
206 ret_val = -E1000_ERR_NVM;
207 }
208
209 return ret_val;
210}
211
212/**
213 * e1000_standby_nvm - Return EEPROM to standby state
214 * @hw: pointer to the HW structure
215 *
216 * Return the EEPROM to a standby state.
217 **/
218static void igb_standby_nvm(struct e1000_hw *hw)
219{
220 struct e1000_nvm_info *nvm = &hw->nvm;
221 u32 eecd = rd32(E1000_EECD);
222
223 if (nvm->type == e1000_nvm_eeprom_microwire) {
224 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
225 wr32(E1000_EECD, eecd);
226 wrfl();
227 udelay(nvm->delay_usec);
228
229 igb_raise_eec_clk(hw, &eecd);
230
231 /* Select EEPROM */
232 eecd |= E1000_EECD_CS;
233 wr32(E1000_EECD, eecd);
234 wrfl();
235 udelay(nvm->delay_usec);
236
237 igb_lower_eec_clk(hw, &eecd);
238 } else if (nvm->type == e1000_nvm_eeprom_spi) {
239 /* Toggle CS to flush commands */
240 eecd |= E1000_EECD_CS;
241 wr32(E1000_EECD, eecd);
242 wrfl();
243 udelay(nvm->delay_usec);
244 eecd &= ~E1000_EECD_CS;
245 wr32(E1000_EECD, eecd);
246 wrfl();
247 udelay(nvm->delay_usec);
248 }
249}
250
251/**
252 * e1000_stop_nvm - Terminate EEPROM command
253 * @hw: pointer to the HW structure
254 *
255 * Terminates the current command by inverting the EEPROM's chip select pin.
256 **/
257static void e1000_stop_nvm(struct e1000_hw *hw)
258{
259 u32 eecd;
260
261 eecd = rd32(E1000_EECD);
262 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
263 /* Pull CS high */
264 eecd |= E1000_EECD_CS;
265 igb_lower_eec_clk(hw, &eecd);
266 } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
267 /* CS on Microcwire is active-high */
268 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
269 wr32(E1000_EECD, eecd);
270 igb_raise_eec_clk(hw, &eecd);
271 igb_lower_eec_clk(hw, &eecd);
272 }
273}
274
275/**
276 * e1000_release_nvm - Release exclusive access to EEPROM
277 * @hw: pointer to the HW structure
278 *
279 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
280 **/
281void igb_release_nvm(struct e1000_hw *hw)
282{
283 u32 eecd;
284
285 e1000_stop_nvm(hw);
286
287 eecd = rd32(E1000_EECD);
288 eecd &= ~E1000_EECD_REQ;
289 wr32(E1000_EECD, eecd);
290}
291
292/**
293 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
294 * @hw: pointer to the HW structure
295 *
296 * Setups the EEPROM for reading and writing.
297 **/
298static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
299{
300 struct e1000_nvm_info *nvm = &hw->nvm;
301 u32 eecd = rd32(E1000_EECD);
302 s32 ret_val = 0;
303 u16 timeout = 0;
304 u8 spi_stat_reg;
305
306
307 if (nvm->type == e1000_nvm_eeprom_microwire) {
308 /* Clear SK and DI */
309 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
310 wr32(E1000_EECD, eecd);
311 /* Set CS */
312 eecd |= E1000_EECD_CS;
313 wr32(E1000_EECD, eecd);
314 } else if (nvm->type == e1000_nvm_eeprom_spi) {
315 /* Clear SK and CS */
316 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
317 wr32(E1000_EECD, eecd);
318 udelay(1);
319 timeout = NVM_MAX_RETRY_SPI;
320
321 /*
322 * Read "Status Register" repeatedly until the LSB is cleared.
323 * The EEPROM will signal that the command has been completed
324 * by clearing bit 0 of the internal status register. If it's
325 * not cleared within 'timeout', then error out.
326 */
327 while (timeout) {
328 igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
329 hw->nvm.opcode_bits);
330 spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
331 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
332 break;
333
334 udelay(5);
335 igb_standby_nvm(hw);
336 timeout--;
337 }
338
339 if (!timeout) {
340 hw_dbg(hw, "SPI NVM Status error\n");
341 ret_val = -E1000_ERR_NVM;
342 goto out;
343 }
344 }
345
346out:
347 return ret_val;
348}
349
350/**
351 * e1000_read_nvm_eerd - Reads EEPROM using EERD register
352 * @hw: pointer to the HW structure
353 * @offset: offset of word in the EEPROM to read
354 * @words: number of words to read
355 * @data: word read from the EEPROM
356 *
357 * Reads a 16 bit word from the EEPROM using the EERD register.
358 **/
359s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
360{
361 struct e1000_nvm_info *nvm = &hw->nvm;
362 u32 i, eerd = 0;
363 s32 ret_val = 0;
364
365 /*
366 * A check for invalid values: offset too large, too many words,
367 * and not enough words.
368 */
369 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
370 (words == 0)) {
371 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
372 ret_val = -E1000_ERR_NVM;
373 goto out;
374 }
375
376 for (i = 0; i < words; i++) {
377 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
378 E1000_NVM_RW_REG_START;
379
380 wr32(E1000_EERD, eerd);
381 ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
382 if (ret_val)
383 break;
384
385 data[i] = (rd32(E1000_EERD) >>
386 E1000_NVM_RW_REG_DATA);
387 }
388
389out:
390 return ret_val;
391}
392
393/**
394 * e1000_write_nvm_spi - Write to EEPROM using SPI
395 * @hw: pointer to the HW structure
396 * @offset: offset within the EEPROM to be written to
397 * @words: number of words to write
398 * @data: 16 bit word(s) to be written to the EEPROM
399 *
400 * Writes data to EEPROM at offset using SPI interface.
401 *
402 * If e1000_update_nvm_checksum is not called after this function , the
403 * EEPROM will most likley contain an invalid checksum.
404 **/
405s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
406{
407 struct e1000_nvm_info *nvm = &hw->nvm;
408 s32 ret_val;
409 u16 widx = 0;
410
411 /*
412 * A check for invalid values: offset too large, too many words,
413 * and not enough words.
414 */
415 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
416 (words == 0)) {
417 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
418 ret_val = -E1000_ERR_NVM;
419 goto out;
420 }
421
422 ret_val = hw->nvm.ops.acquire_nvm(hw);
423 if (ret_val)
424 goto out;
425
426 msleep(10);
427
428 while (widx < words) {
429 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
430
431 ret_val = igb_ready_nvm_eeprom(hw);
432 if (ret_val)
433 goto release;
434
435 igb_standby_nvm(hw);
436
437 /* Send the WRITE ENABLE command (8 bit opcode) */
438 igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
439 nvm->opcode_bits);
440
441 igb_standby_nvm(hw);
442
443 /*
444 * Some SPI eeproms use the 8th address bit embedded in the
445 * opcode
446 */
447 if ((nvm->address_bits == 8) && (offset >= 128))
448 write_opcode |= NVM_A8_OPCODE_SPI;
449
450 /* Send the Write command (8-bit opcode + addr) */
451 igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
452 igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
453 nvm->address_bits);
454
455 /* Loop to allow for up to whole page write of eeprom */
456 while (widx < words) {
457 u16 word_out = data[widx];
458 word_out = (word_out >> 8) | (word_out << 8);
459 igb_shift_out_eec_bits(hw, word_out, 16);
460 widx++;
461
462 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
463 igb_standby_nvm(hw);
464 break;
465 }
466 }
467 }
468
469 msleep(10);
470release:
471 hw->nvm.ops.release_nvm(hw);
472
473out:
474 return ret_val;
475}
476
477/**
478 * e1000_read_part_num - Read device part number
479 * @hw: pointer to the HW structure
480 * @part_num: pointer to device part number
481 *
482 * Reads the product board assembly (PBA) number from the EEPROM and stores
483 * the value in part_num.
484 **/
485s32 igb_read_part_num(struct e1000_hw *hw, u32 *part_num)
486{
487 s32 ret_val;
488 u16 nvm_data;
489
490 ret_val = hw->nvm.ops.read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
491 if (ret_val) {
492 hw_dbg(hw, "NVM Read Error\n");
493 goto out;
494 }
495 *part_num = (u32)(nvm_data << 16);
496
497 ret_val = hw->nvm.ops.read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
498 if (ret_val) {
499 hw_dbg(hw, "NVM Read Error\n");
500 goto out;
501 }
502 *part_num |= nvm_data;
503
504out:
505 return ret_val;
506}
507
508/**
509 * e1000_read_mac_addr - Read device MAC address
510 * @hw: pointer to the HW structure
511 *
512 * Reads the device MAC address from the EEPROM and stores the value.
513 * Since devices with two ports use the same EEPROM, we increment the
514 * last bit in the MAC address for the second port.
515 **/
516s32 igb_read_mac_addr(struct e1000_hw *hw)
517{
518 s32 ret_val = 0;
519 u16 offset, nvm_data, i;
520
521 for (i = 0; i < ETH_ALEN; i += 2) {
522 offset = i >> 1;
523 ret_val = hw->nvm.ops.read_nvm(hw, offset, 1, &nvm_data);
524 if (ret_val) {
525 hw_dbg(hw, "NVM Read Error\n");
526 goto out;
527 }
528 hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
529 hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
530 }
531
532 /* Flip last bit of mac address if we're on second port */
533 if (hw->bus.func == E1000_FUNC_1)
534 hw->mac.perm_addr[5] ^= 1;
535
536 for (i = 0; i < ETH_ALEN; i++)
537 hw->mac.addr[i] = hw->mac.perm_addr[i];
538
539out:
540 return ret_val;
541}
542
543/**
544 * e1000_validate_nvm_checksum - Validate EEPROM checksum
545 * @hw: pointer to the HW structure
546 *
547 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
548 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
549 **/
550s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
551{
552 s32 ret_val = 0;
553 u16 checksum = 0;
554 u16 i, nvm_data;
555
556 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
557 ret_val = hw->nvm.ops.read_nvm(hw, i, 1, &nvm_data);
558 if (ret_val) {
559 hw_dbg(hw, "NVM Read Error\n");
560 goto out;
561 }
562 checksum += nvm_data;
563 }
564
565 if (checksum != (u16) NVM_SUM) {
566 hw_dbg(hw, "NVM Checksum Invalid\n");
567 ret_val = -E1000_ERR_NVM;
568 goto out;
569 }
570
571out:
572 return ret_val;
573}
574
575/**
576 * e1000_update_nvm_checksum - Update EEPROM checksum
577 * @hw: pointer to the HW structure
578 *
579 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
580 * up to the checksum. Then calculates the EEPROM checksum and writes the
581 * value to the EEPROM.
582 **/
583s32 igb_update_nvm_checksum(struct e1000_hw *hw)
584{
585 s32 ret_val;
586 u16 checksum = 0;
587 u16 i, nvm_data;
588
589 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
590 ret_val = hw->nvm.ops.read_nvm(hw, i, 1, &nvm_data);
591 if (ret_val) {
592 hw_dbg(hw, "NVM Read Error while updating checksum.\n");
593 goto out;
594 }
595 checksum += nvm_data;
596 }
597 checksum = (u16) NVM_SUM - checksum;
598 ret_val = hw->nvm.ops.write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
599 if (ret_val)
600 hw_dbg(hw, "NVM Write Error while updating checksum.\n");
601
602out:
603 return ret_val;
604}
605
diff --git a/drivers/net/igb/e1000_nvm.h b/drivers/net/igb/e1000_nvm.h
new file mode 100644
index 000000000000..1041c34dcbe1
--- /dev/null
+++ b/drivers/net/igb/e1000_nvm.h
@@ -0,0 +1,40 @@
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#ifndef _E1000_NVM_H_
29#define _E1000_NVM_H_
30
31s32 igb_acquire_nvm(struct e1000_hw *hw);
32void igb_release_nvm(struct e1000_hw *hw);
33s32 igb_read_mac_addr(struct e1000_hw *hw);
34s32 igb_read_part_num(struct e1000_hw *hw, u32 *part_num);
35s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
36s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
37s32 igb_validate_nvm_checksum(struct e1000_hw *hw);
38s32 igb_update_nvm_checksum(struct e1000_hw *hw);
39
40#endif
diff --git a/drivers/net/igb/e1000_phy.c b/drivers/net/igb/e1000_phy.c
new file mode 100644
index 000000000000..08a86b107229
--- /dev/null
+++ b/drivers/net/igb/e1000_phy.c
@@ -0,0 +1,1807 @@
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30
31#include "e1000_mac.h"
32#include "e1000_phy.h"
33
34static s32 igb_get_phy_cfg_done(struct e1000_hw *hw);
35static void igb_release_phy(struct e1000_hw *hw);
36static s32 igb_acquire_phy(struct e1000_hw *hw);
37static s32 igb_phy_reset_dsp(struct e1000_hw *hw);
38static s32 igb_phy_setup_autoneg(struct e1000_hw *hw);
39static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
40 u16 *phy_ctrl);
41static s32 igb_wait_autoneg(struct e1000_hw *hw);
42
43/* Cable length tables */
44static const u16 e1000_m88_cable_length_table[] =
45 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
46#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
47 (sizeof(e1000_m88_cable_length_table) / \
48 sizeof(e1000_m88_cable_length_table[0]))
49
50static const u16 e1000_igp_2_cable_length_table[] =
51 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
52 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
53 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
54 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
55 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
56 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
57 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
58 104, 109, 114, 118, 121, 124};
59#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
60 (sizeof(e1000_igp_2_cable_length_table) / \
61 sizeof(e1000_igp_2_cable_length_table[0]))
62
63/**
64 * e1000_check_reset_block - Check if PHY reset is blocked
65 * @hw: pointer to the HW structure
66 *
67 * Read the PHY management control register and check whether a PHY reset
68 * is blocked. If a reset is not blocked return 0, otherwise
69 * return E1000_BLK_PHY_RESET (12).
70 **/
71s32 igb_check_reset_block(struct e1000_hw *hw)
72{
73 u32 manc;
74
75 manc = rd32(E1000_MANC);
76
77 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
78 E1000_BLK_PHY_RESET : 0;
79}
80
81/**
82 * e1000_get_phy_id - Retrieve the PHY ID and revision
83 * @hw: pointer to the HW structure
84 *
85 * Reads the PHY registers and stores the PHY ID and possibly the PHY
86 * revision in the hardware structure.
87 **/
88s32 igb_get_phy_id(struct e1000_hw *hw)
89{
90 struct e1000_phy_info *phy = &hw->phy;
91 s32 ret_val = 0;
92 u16 phy_id;
93
94 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_ID1, &phy_id);
95 if (ret_val)
96 goto out;
97
98 phy->id = (u32)(phy_id << 16);
99 udelay(20);
100 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_ID2, &phy_id);
101 if (ret_val)
102 goto out;
103
104 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
105 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
106
107out:
108 return ret_val;
109}
110
111/**
112 * e1000_phy_reset_dsp - Reset PHY DSP
113 * @hw: pointer to the HW structure
114 *
115 * Reset the digital signal processor.
116 **/
117static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
118{
119 s32 ret_val;
120
121 ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
122 if (ret_val)
123 goto out;
124
125 ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
126
127out:
128 return ret_val;
129}
130
131/**
132 * e1000_read_phy_reg_mdic - Read MDI control register
133 * @hw: pointer to the HW structure
134 * @offset: register offset to be read
135 * @data: pointer to the read data
136 *
137 * Reads the MDI control regsiter in the PHY at offset and stores the
138 * information read to data.
139 **/
140static s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
141{
142 struct e1000_phy_info *phy = &hw->phy;
143 u32 i, mdic = 0;
144 s32 ret_val = 0;
145
146 if (offset > MAX_PHY_REG_ADDRESS) {
147 hw_dbg(hw, "PHY Address %d is out of range\n", offset);
148 ret_val = -E1000_ERR_PARAM;
149 goto out;
150 }
151
152 /*
153 * Set up Op-code, Phy Address, and register offset in the MDI
154 * Control register. The MAC will take care of interfacing with the
155 * PHY to retrieve the desired data.
156 */
157 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
158 (phy->addr << E1000_MDIC_PHY_SHIFT) |
159 (E1000_MDIC_OP_READ));
160
161 wr32(E1000_MDIC, mdic);
162
163 /*
164 * Poll the ready bit to see if the MDI read completed
165 * Increasing the time out as testing showed failures with
166 * the lower time out
167 */
168 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
169 udelay(50);
170 mdic = rd32(E1000_MDIC);
171 if (mdic & E1000_MDIC_READY)
172 break;
173 }
174 if (!(mdic & E1000_MDIC_READY)) {
175 hw_dbg(hw, "MDI Read did not complete\n");
176 ret_val = -E1000_ERR_PHY;
177 goto out;
178 }
179 if (mdic & E1000_MDIC_ERROR) {
180 hw_dbg(hw, "MDI Error\n");
181 ret_val = -E1000_ERR_PHY;
182 goto out;
183 }
184 *data = (u16) mdic;
185
186out:
187 return ret_val;
188}
189
190/**
191 * e1000_write_phy_reg_mdic - Write MDI control register
192 * @hw: pointer to the HW structure
193 * @offset: register offset to write to
194 * @data: data to write to register at offset
195 *
196 * Writes data to MDI control register in the PHY at offset.
197 **/
198static s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
199{
200 struct e1000_phy_info *phy = &hw->phy;
201 u32 i, mdic = 0;
202 s32 ret_val = 0;
203
204 if (offset > MAX_PHY_REG_ADDRESS) {
205 hw_dbg(hw, "PHY Address %d is out of range\n", offset);
206 ret_val = -E1000_ERR_PARAM;
207 goto out;
208 }
209
210 /*
211 * Set up Op-code, Phy Address, and register offset in the MDI
212 * Control register. The MAC will take care of interfacing with the
213 * PHY to retrieve the desired data.
214 */
215 mdic = (((u32)data) |
216 (offset << E1000_MDIC_REG_SHIFT) |
217 (phy->addr << E1000_MDIC_PHY_SHIFT) |
218 (E1000_MDIC_OP_WRITE));
219
220 wr32(E1000_MDIC, mdic);
221
222 /*
223 * Poll the ready bit to see if the MDI read completed
224 * Increasing the time out as testing showed failures with
225 * the lower time out
226 */
227 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
228 udelay(50);
229 mdic = rd32(E1000_MDIC);
230 if (mdic & E1000_MDIC_READY)
231 break;
232 }
233 if (!(mdic & E1000_MDIC_READY)) {
234 hw_dbg(hw, "MDI Write did not complete\n");
235 ret_val = -E1000_ERR_PHY;
236 goto out;
237 }
238 if (mdic & E1000_MDIC_ERROR) {
239 hw_dbg(hw, "MDI Error\n");
240 ret_val = -E1000_ERR_PHY;
241 goto out;
242 }
243
244out:
245 return ret_val;
246}
247
248/**
249 * e1000_read_phy_reg_igp - Read igp PHY register
250 * @hw: pointer to the HW structure
251 * @offset: register offset to be read
252 * @data: pointer to the read data
253 *
254 * Acquires semaphore, if necessary, then reads the PHY register at offset
255 * and storing the retrieved information in data. Release any acquired
256 * semaphores before exiting.
257 **/
258s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
259{
260 s32 ret_val;
261
262 ret_val = igb_acquire_phy(hw);
263 if (ret_val)
264 goto out;
265
266 if (offset > MAX_PHY_MULTI_PAGE_REG) {
267 ret_val = igb_write_phy_reg_mdic(hw,
268 IGP01E1000_PHY_PAGE_SELECT,
269 (u16)offset);
270 if (ret_val) {
271 igb_release_phy(hw);
272 goto out;
273 }
274 }
275
276 ret_val = igb_read_phy_reg_mdic(hw,
277 MAX_PHY_REG_ADDRESS & offset,
278 data);
279
280 igb_release_phy(hw);
281
282out:
283 return ret_val;
284}
285
286/**
287 * e1000_write_phy_reg_igp - Write igp PHY register
288 * @hw: pointer to the HW structure
289 * @offset: register offset to write to
290 * @data: data to write at register offset
291 *
292 * Acquires semaphore, if necessary, then writes the data to PHY register
293 * at the offset. Release any acquired semaphores before exiting.
294 **/
295s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
296{
297 s32 ret_val;
298
299 ret_val = igb_acquire_phy(hw);
300 if (ret_val)
301 goto out;
302
303 if (offset > MAX_PHY_MULTI_PAGE_REG) {
304 ret_val = igb_write_phy_reg_mdic(hw,
305 IGP01E1000_PHY_PAGE_SELECT,
306 (u16)offset);
307 if (ret_val) {
308 igb_release_phy(hw);
309 goto out;
310 }
311 }
312
313 ret_val = igb_write_phy_reg_mdic(hw,
314 MAX_PHY_REG_ADDRESS & offset,
315 data);
316
317 igb_release_phy(hw);
318
319out:
320 return ret_val;
321}
322
323/**
324 * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
325 * @hw: pointer to the HW structure
326 *
327 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
328 * and downshift values are set also.
329 **/
330s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
331{
332 struct e1000_phy_info *phy = &hw->phy;
333 s32 ret_val;
334 u16 phy_data;
335
336 if (phy->reset_disable) {
337 ret_val = 0;
338 goto out;
339 }
340
341 /* Enable CRS on TX. This must be set for half-duplex operation. */
342 ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
343 &phy_data);
344 if (ret_val)
345 goto out;
346
347 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
348
349 /*
350 * Options:
351 * MDI/MDI-X = 0 (default)
352 * 0 - Auto for all speeds
353 * 1 - MDI mode
354 * 2 - MDI-X mode
355 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
356 */
357 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
358
359 switch (phy->mdix) {
360 case 1:
361 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
362 break;
363 case 2:
364 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
365 break;
366 case 3:
367 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
368 break;
369 case 0:
370 default:
371 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
372 break;
373 }
374
375 /*
376 * Options:
377 * disable_polarity_correction = 0 (default)
378 * Automatic Correction for Reversed Cable Polarity
379 * 0 - Disabled
380 * 1 - Enabled
381 */
382 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
383 if (phy->disable_polarity_correction == 1)
384 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
385
386 ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
387 phy_data);
388 if (ret_val)
389 goto out;
390
391 if (phy->revision < E1000_REVISION_4) {
392 /*
393 * Force TX_CLK in the Extended PHY Specific Control Register
394 * to 25MHz clock.
395 */
396 ret_val = hw->phy.ops.read_phy_reg(hw,
397 M88E1000_EXT_PHY_SPEC_CTRL,
398 &phy_data);
399 if (ret_val)
400 goto out;
401
402 phy_data |= M88E1000_EPSCR_TX_CLK_25;
403
404 if ((phy->revision == E1000_REVISION_2) &&
405 (phy->id == M88E1111_I_PHY_ID)) {
406 /* 82573L PHY - set the downshift counter to 5x. */
407 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
408 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
409 } else {
410 /* Configure Master and Slave downshift values */
411 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
412 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
413 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
414 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
415 }
416 ret_val = hw->phy.ops.write_phy_reg(hw,
417 M88E1000_EXT_PHY_SPEC_CTRL,
418 phy_data);
419 if (ret_val)
420 goto out;
421 }
422
423 /* Commit the changes. */
424 ret_val = igb_phy_sw_reset(hw);
425 if (ret_val) {
426 hw_dbg(hw, "Error committing the PHY changes\n");
427 goto out;
428 }
429
430out:
431 return ret_val;
432}
433
434/**
435 * e1000_copper_link_setup_igp - Setup igp PHY's for copper link
436 * @hw: pointer to the HW structure
437 *
438 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
439 * igp PHY's.
440 **/
441s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
442{
443 struct e1000_phy_info *phy = &hw->phy;
444 s32 ret_val;
445 u16 data;
446
447 if (phy->reset_disable) {
448 ret_val = 0;
449 goto out;
450 }
451
452 ret_val = hw->phy.ops.reset_phy(hw);
453 if (ret_val) {
454 hw_dbg(hw, "Error resetting the PHY.\n");
455 goto out;
456 }
457
458 /* Wait 15ms for MAC to configure PHY from NVM settings. */
459 msleep(15);
460
461 /*
462 * The NVM settings will configure LPLU in D3 for
463 * non-IGP1 PHYs.
464 */
465 if (phy->type == e1000_phy_igp) {
466 /* disable lplu d3 during driver init */
467 if (hw->phy.ops.set_d3_lplu_state)
468 ret_val = hw->phy.ops.set_d3_lplu_state(hw, false);
469 if (ret_val) {
470 hw_dbg(hw, "Error Disabling LPLU D3\n");
471 goto out;
472 }
473 }
474
475 /* disable lplu d0 during driver init */
476 ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
477 if (ret_val) {
478 hw_dbg(hw, "Error Disabling LPLU D0\n");
479 goto out;
480 }
481 /* Configure mdi-mdix settings */
482 ret_val = hw->phy.ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
483 if (ret_val)
484 goto out;
485
486 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
487
488 switch (phy->mdix) {
489 case 1:
490 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
491 break;
492 case 2:
493 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
494 break;
495 case 0:
496 default:
497 data |= IGP01E1000_PSCR_AUTO_MDIX;
498 break;
499 }
500 ret_val = hw->phy.ops.write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
501 if (ret_val)
502 goto out;
503
504 /* set auto-master slave resolution settings */
505 if (hw->mac.autoneg) {
506 /*
507 * when autonegotiation advertisement is only 1000Mbps then we
508 * should disable SmartSpeed and enable Auto MasterSlave
509 * resolution as hardware default.
510 */
511 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
512 /* Disable SmartSpeed */
513 ret_val = hw->phy.ops.read_phy_reg(hw,
514 IGP01E1000_PHY_PORT_CONFIG,
515 &data);
516 if (ret_val)
517 goto out;
518
519 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
520 ret_val = hw->phy.ops.write_phy_reg(hw,
521 IGP01E1000_PHY_PORT_CONFIG,
522 data);
523 if (ret_val)
524 goto out;
525
526 /* Set auto Master/Slave resolution process */
527 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_1000T_CTRL,
528 &data);
529 if (ret_val)
530 goto out;
531
532 data &= ~CR_1000T_MS_ENABLE;
533 ret_val = hw->phy.ops.write_phy_reg(hw, PHY_1000T_CTRL,
534 data);
535 if (ret_val)
536 goto out;
537 }
538
539 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_1000T_CTRL, &data);
540 if (ret_val)
541 goto out;
542
543 /* load defaults for future use */
544 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
545 ((data & CR_1000T_MS_VALUE) ?
546 e1000_ms_force_master :
547 e1000_ms_force_slave) :
548 e1000_ms_auto;
549
550 switch (phy->ms_type) {
551 case e1000_ms_force_master:
552 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
553 break;
554 case e1000_ms_force_slave:
555 data |= CR_1000T_MS_ENABLE;
556 data &= ~(CR_1000T_MS_VALUE);
557 break;
558 case e1000_ms_auto:
559 data &= ~CR_1000T_MS_ENABLE;
560 default:
561 break;
562 }
563 ret_val = hw->phy.ops.write_phy_reg(hw, PHY_1000T_CTRL, data);
564 if (ret_val)
565 goto out;
566 }
567
568out:
569 return ret_val;
570}
571
572/**
573 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
574 * @hw: pointer to the HW structure
575 *
576 * Performs initial bounds checking on autoneg advertisement parameter, then
577 * configure to advertise the full capability. Setup the PHY to autoneg
578 * and restart the negotiation process between the link partner. If
579 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
580 **/
581s32 igb_copper_link_autoneg(struct e1000_hw *hw)
582{
583 struct e1000_phy_info *phy = &hw->phy;
584 s32 ret_val;
585 u16 phy_ctrl;
586
587 /*
588 * Perform some bounds checking on the autoneg advertisement
589 * parameter.
590 */
591 phy->autoneg_advertised &= phy->autoneg_mask;
592
593 /*
594 * If autoneg_advertised is zero, we assume it was not defaulted
595 * by the calling code so we set to advertise full capability.
596 */
597 if (phy->autoneg_advertised == 0)
598 phy->autoneg_advertised = phy->autoneg_mask;
599
600 hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n");
601 ret_val = igb_phy_setup_autoneg(hw);
602 if (ret_val) {
603 hw_dbg(hw, "Error Setting up Auto-Negotiation\n");
604 goto out;
605 }
606 hw_dbg(hw, "Restarting Auto-Neg\n");
607
608 /*
609 * Restart auto-negotiation by setting the Auto Neg Enable bit and
610 * the Auto Neg Restart bit in the PHY control register.
611 */
612 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
613 if (ret_val)
614 goto out;
615
616 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
617 ret_val = hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
618 if (ret_val)
619 goto out;
620
621 /*
622 * Does the user want to wait for Auto-Neg to complete here, or
623 * check at a later time (for example, callback routine).
624 */
625 if (phy->autoneg_wait_to_complete) {
626 ret_val = igb_wait_autoneg(hw);
627 if (ret_val) {
628 hw_dbg(hw, "Error while waiting for "
629 "autoneg to complete\n");
630 goto out;
631 }
632 }
633
634 hw->mac.get_link_status = true;
635
636out:
637 return ret_val;
638}
639
640/**
641 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
642 * @hw: pointer to the HW structure
643 *
644 * Reads the MII auto-neg advertisement register and/or the 1000T control
645 * register and if the PHY is already setup for auto-negotiation, then
646 * return successful. Otherwise, setup advertisement and flow control to
647 * the appropriate values for the wanted auto-negotiation.
648 **/
649static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
650{
651 struct e1000_phy_info *phy = &hw->phy;
652 s32 ret_val;
653 u16 mii_autoneg_adv_reg;
654 u16 mii_1000t_ctrl_reg = 0;
655
656 phy->autoneg_advertised &= phy->autoneg_mask;
657
658 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
659 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_AUTONEG_ADV,
660 &mii_autoneg_adv_reg);
661 if (ret_val)
662 goto out;
663
664 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
665 /* Read the MII 1000Base-T Control Register (Address 9). */
666 ret_val = hw->phy.ops.read_phy_reg(hw,
667 PHY_1000T_CTRL,
668 &mii_1000t_ctrl_reg);
669 if (ret_val)
670 goto out;
671 }
672
673 /*
674 * Need to parse both autoneg_advertised and fc and set up
675 * the appropriate PHY registers. First we will parse for
676 * autoneg_advertised software override. Since we can advertise
677 * a plethora of combinations, we need to check each bit
678 * individually.
679 */
680
681 /*
682 * First we clear all the 10/100 mb speed bits in the Auto-Neg
683 * Advertisement Register (Address 4) and the 1000 mb speed bits in
684 * the 1000Base-T Control Register (Address 9).
685 */
686 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
687 NWAY_AR_100TX_HD_CAPS |
688 NWAY_AR_10T_FD_CAPS |
689 NWAY_AR_10T_HD_CAPS);
690 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
691
692 hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised);
693
694 /* Do we want to advertise 10 Mb Half Duplex? */
695 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
696 hw_dbg(hw, "Advertise 10mb Half duplex\n");
697 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
698 }
699
700 /* Do we want to advertise 10 Mb Full Duplex? */
701 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
702 hw_dbg(hw, "Advertise 10mb Full duplex\n");
703 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
704 }
705
706 /* Do we want to advertise 100 Mb Half Duplex? */
707 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
708 hw_dbg(hw, "Advertise 100mb Half duplex\n");
709 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
710 }
711
712 /* Do we want to advertise 100 Mb Full Duplex? */
713 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
714 hw_dbg(hw, "Advertise 100mb Full duplex\n");
715 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
716 }
717
718 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
719 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
720 hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n");
721
722 /* Do we want to advertise 1000 Mb Full Duplex? */
723 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
724 hw_dbg(hw, "Advertise 1000mb Full duplex\n");
725 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
726 }
727
728 /*
729 * Check for a software override of the flow control settings, and
730 * setup the PHY advertisement registers accordingly. If
731 * auto-negotiation is enabled, then software will have to set the
732 * "PAUSE" bits to the correct value in the Auto-Negotiation
733 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
734 * negotiation.
735 *
736 * The possible values of the "fc" parameter are:
737 * 0: Flow control is completely disabled
738 * 1: Rx flow control is enabled (we can receive pause frames
739 * but not send pause frames).
740 * 2: Tx flow control is enabled (we can send pause frames
741 * but we do not support receiving pause frames).
742 * 3: Both Rx and TX flow control (symmetric) are enabled.
743 * other: No software override. The flow control configuration
744 * in the EEPROM is used.
745 */
746 switch (hw->fc.type) {
747 case e1000_fc_none:
748 /*
749 * Flow control (RX & TX) is completely disabled by a
750 * software over-ride.
751 */
752 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
753 break;
754 case e1000_fc_rx_pause:
755 /*
756 * RX Flow control is enabled, and TX Flow control is
757 * disabled, by a software over-ride.
758 *
759 * Since there really isn't a way to advertise that we are
760 * capable of RX Pause ONLY, we will advertise that we
761 * support both symmetric and asymmetric RX PAUSE. Later
762 * (in e1000_config_fc_after_link_up) we will disable the
763 * hw's ability to send PAUSE frames.
764 */
765 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
766 break;
767 case e1000_fc_tx_pause:
768 /*
769 * TX Flow control is enabled, and RX Flow control is
770 * disabled, by a software over-ride.
771 */
772 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
773 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
774 break;
775 case e1000_fc_full:
776 /*
777 * Flow control (both RX and TX) is enabled by a software
778 * over-ride.
779 */
780 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
781 break;
782 default:
783 hw_dbg(hw, "Flow control param set incorrectly\n");
784 ret_val = -E1000_ERR_CONFIG;
785 goto out;
786 }
787
788 ret_val = hw->phy.ops.write_phy_reg(hw, PHY_AUTONEG_ADV,
789 mii_autoneg_adv_reg);
790 if (ret_val)
791 goto out;
792
793 hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
794
795 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
796 ret_val = hw->phy.ops.write_phy_reg(hw,
797 PHY_1000T_CTRL,
798 mii_1000t_ctrl_reg);
799 if (ret_val)
800 goto out;
801 }
802
803out:
804 return ret_val;
805}
806
807/**
808 * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
809 * @hw: pointer to the HW structure
810 *
811 * Calls the PHY setup function to force speed and duplex. Clears the
812 * auto-crossover to force MDI manually. Waits for link and returns
813 * successful if link up is successful, else -E1000_ERR_PHY (-2).
814 **/
815s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
816{
817 struct e1000_phy_info *phy = &hw->phy;
818 s32 ret_val;
819 u16 phy_data;
820 bool link;
821
822 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_data);
823 if (ret_val)
824 goto out;
825
826 igb_phy_force_speed_duplex_setup(hw, &phy_data);
827
828 ret_val = hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_data);
829 if (ret_val)
830 goto out;
831
832 /*
833 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
834 * forced whenever speed and duplex are forced.
835 */
836 ret_val = hw->phy.ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
837 &phy_data);
838 if (ret_val)
839 goto out;
840
841 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
842 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
843
844 ret_val = hw->phy.ops.write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
845 phy_data);
846 if (ret_val)
847 goto out;
848
849 hw_dbg(hw, "IGP PSCR: %X\n", phy_data);
850
851 udelay(1);
852
853 if (phy->autoneg_wait_to_complete) {
854 hw_dbg(hw,
855 "Waiting for forced speed/duplex link on IGP phy.\n");
856
857 ret_val = igb_phy_has_link(hw,
858 PHY_FORCE_LIMIT,
859 100000,
860 &link);
861 if (ret_val)
862 goto out;
863
864 if (!link)
865 hw_dbg(hw, "Link taking longer than expected.\n");
866
867 /* Try once more */
868 ret_val = igb_phy_has_link(hw,
869 PHY_FORCE_LIMIT,
870 100000,
871 &link);
872 if (ret_val)
873 goto out;
874 }
875
876out:
877 return ret_val;
878}
879
880/**
881 * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
882 * @hw: pointer to the HW structure
883 *
884 * Calls the PHY setup function to force speed and duplex. Clears the
885 * auto-crossover to force MDI manually. Resets the PHY to commit the
886 * changes. If time expires while waiting for link up, we reset the DSP.
887 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
888 * successful completion, else return corresponding error code.
889 **/
890s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
891{
892 struct e1000_phy_info *phy = &hw->phy;
893 s32 ret_val;
894 u16 phy_data;
895 bool link;
896
897 /*
898 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
899 * forced whenever speed and duplex are forced.
900 */
901 ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
902 &phy_data);
903 if (ret_val)
904 goto out;
905
906 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
907 ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
908 phy_data);
909 if (ret_val)
910 goto out;
911
912 hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data);
913
914 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_data);
915 if (ret_val)
916 goto out;
917
918 igb_phy_force_speed_duplex_setup(hw, &phy_data);
919
920 /* Reset the phy to commit changes. */
921 phy_data |= MII_CR_RESET;
922
923 ret_val = hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_data);
924 if (ret_val)
925 goto out;
926
927 udelay(1);
928
929 if (phy->autoneg_wait_to_complete) {
930 hw_dbg(hw,
931 "Waiting for forced speed/duplex link on M88 phy.\n");
932
933 ret_val = igb_phy_has_link(hw,
934 PHY_FORCE_LIMIT,
935 100000,
936 &link);
937 if (ret_val)
938 goto out;
939
940 if (!link) {
941 /*
942 * We didn't get link.
943 * Reset the DSP and cross our fingers.
944 */
945 ret_val = hw->phy.ops.write_phy_reg(hw,
946 M88E1000_PHY_PAGE_SELECT,
947 0x001d);
948 if (ret_val)
949 goto out;
950 ret_val = igb_phy_reset_dsp(hw);
951 if (ret_val)
952 goto out;
953 }
954
955 /* Try once more */
956 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
957 100000, &link);
958 if (ret_val)
959 goto out;
960 }
961
962 ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
963 &phy_data);
964 if (ret_val)
965 goto out;
966
967 /*
968 * Resetting the phy means we need to re-force TX_CLK in the
969 * Extended PHY Specific Control Register to 25MHz clock from
970 * the reset value of 2.5MHz.
971 */
972 phy_data |= M88E1000_EPSCR_TX_CLK_25;
973 ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
974 phy_data);
975 if (ret_val)
976 goto out;
977
978 /*
979 * In addition, we must re-enable CRS on Tx for both half and full
980 * duplex.
981 */
982 ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
983 &phy_data);
984 if (ret_val)
985 goto out;
986
987 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
988 ret_val = hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
989 phy_data);
990
991out:
992 return ret_val;
993}
994
995/**
996 * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
997 * @hw: pointer to the HW structure
998 * @phy_ctrl: pointer to current value of PHY_CONTROL
999 *
1000 * Forces speed and duplex on the PHY by doing the following: disable flow
1001 * control, force speed/duplex on the MAC, disable auto speed detection,
1002 * disable auto-negotiation, configure duplex, configure speed, configure
1003 * the collision distance, write configuration to CTRL register. The
1004 * caller must write to the PHY_CONTROL register for these settings to
1005 * take affect.
1006 **/
1007static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1008 u16 *phy_ctrl)
1009{
1010 struct e1000_mac_info *mac = &hw->mac;
1011 u32 ctrl;
1012
1013 /* Turn off flow control when forcing speed/duplex */
1014 hw->fc.type = e1000_fc_none;
1015
1016 /* Force speed/duplex on the mac */
1017 ctrl = rd32(E1000_CTRL);
1018 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1019 ctrl &= ~E1000_CTRL_SPD_SEL;
1020
1021 /* Disable Auto Speed Detection */
1022 ctrl &= ~E1000_CTRL_ASDE;
1023
1024 /* Disable autoneg on the phy */
1025 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1026
1027 /* Forcing Full or Half Duplex? */
1028 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1029 ctrl &= ~E1000_CTRL_FD;
1030 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1031 hw_dbg(hw, "Half Duplex\n");
1032 } else {
1033 ctrl |= E1000_CTRL_FD;
1034 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1035 hw_dbg(hw, "Full Duplex\n");
1036 }
1037
1038 /* Forcing 10mb or 100mb? */
1039 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1040 ctrl |= E1000_CTRL_SPD_100;
1041 *phy_ctrl |= MII_CR_SPEED_100;
1042 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1043 hw_dbg(hw, "Forcing 100mb\n");
1044 } else {
1045 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1046 *phy_ctrl |= MII_CR_SPEED_10;
1047 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1048 hw_dbg(hw, "Forcing 10mb\n");
1049 }
1050
1051 igb_config_collision_dist(hw);
1052
1053 wr32(E1000_CTRL, ctrl);
1054}
1055
1056/**
1057 * e1000_set_d3_lplu_state - Sets low power link up state for D3
1058 * @hw: pointer to the HW structure
1059 * @active: boolean used to enable/disable lplu
1060 *
1061 * Success returns 0, Failure returns 1
1062 *
1063 * The low power link up (lplu) state is set to the power management level D3
1064 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1065 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1066 * is used during Dx states where the power conservation is most important.
1067 * During driver activity, SmartSpeed should be enabled so performance is
1068 * maintained.
1069 **/
1070s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1071{
1072 struct e1000_phy_info *phy = &hw->phy;
1073 s32 ret_val;
1074 u16 data;
1075
1076 ret_val = hw->phy.ops.read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1077 &data);
1078 if (ret_val)
1079 goto out;
1080
1081 if (!active) {
1082 data &= ~IGP02E1000_PM_D3_LPLU;
1083 ret_val = hw->phy.ops.write_phy_reg(hw,
1084 IGP02E1000_PHY_POWER_MGMT,
1085 data);
1086 if (ret_val)
1087 goto out;
1088 /*
1089 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1090 * during Dx states where the power conservation is most
1091 * important. During driver activity we should enable
1092 * SmartSpeed, so performance is maintained.
1093 */
1094 if (phy->smart_speed == e1000_smart_speed_on) {
1095 ret_val = hw->phy.ops.read_phy_reg(hw,
1096 IGP01E1000_PHY_PORT_CONFIG,
1097 &data);
1098 if (ret_val)
1099 goto out;
1100
1101 data |= IGP01E1000_PSCFR_SMART_SPEED;
1102 ret_val = hw->phy.ops.write_phy_reg(hw,
1103 IGP01E1000_PHY_PORT_CONFIG,
1104 data);
1105 if (ret_val)
1106 goto out;
1107 } else if (phy->smart_speed == e1000_smart_speed_off) {
1108 ret_val = hw->phy.ops.read_phy_reg(hw,
1109 IGP01E1000_PHY_PORT_CONFIG,
1110 &data);
1111 if (ret_val)
1112 goto out;
1113
1114 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1115 ret_val = hw->phy.ops.write_phy_reg(hw,
1116 IGP01E1000_PHY_PORT_CONFIG,
1117 data);
1118 if (ret_val)
1119 goto out;
1120 }
1121 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1122 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1123 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1124 data |= IGP02E1000_PM_D3_LPLU;
1125 ret_val = hw->phy.ops.write_phy_reg(hw,
1126 IGP02E1000_PHY_POWER_MGMT,
1127 data);
1128 if (ret_val)
1129 goto out;
1130
1131 /* When LPLU is enabled, we should disable SmartSpeed */
1132 ret_val = hw->phy.ops.read_phy_reg(hw,
1133 IGP01E1000_PHY_PORT_CONFIG,
1134 &data);
1135 if (ret_val)
1136 goto out;
1137
1138 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1139 ret_val = hw->phy.ops.write_phy_reg(hw,
1140 IGP01E1000_PHY_PORT_CONFIG,
1141 data);
1142 }
1143
1144out:
1145 return ret_val;
1146}
1147
1148/**
1149 * e1000_check_downshift - Checks whether a downshift in speed occured
1150 * @hw: pointer to the HW structure
1151 *
1152 * Success returns 0, Failure returns 1
1153 *
1154 * A downshift is detected by querying the PHY link health.
1155 **/
1156s32 igb_check_downshift(struct e1000_hw *hw)
1157{
1158 struct e1000_phy_info *phy = &hw->phy;
1159 s32 ret_val;
1160 u16 phy_data, offset, mask;
1161
1162 switch (phy->type) {
1163 case e1000_phy_m88:
1164 case e1000_phy_gg82563:
1165 offset = M88E1000_PHY_SPEC_STATUS;
1166 mask = M88E1000_PSSR_DOWNSHIFT;
1167 break;
1168 case e1000_phy_igp_2:
1169 case e1000_phy_igp:
1170 case e1000_phy_igp_3:
1171 offset = IGP01E1000_PHY_LINK_HEALTH;
1172 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1173 break;
1174 default:
1175 /* speed downshift not supported */
1176 phy->speed_downgraded = false;
1177 ret_val = 0;
1178 goto out;
1179 }
1180
1181 ret_val = hw->phy.ops.read_phy_reg(hw, offset, &phy_data);
1182
1183 if (!ret_val)
1184 phy->speed_downgraded = (phy_data & mask) ? true : false;
1185
1186out:
1187 return ret_val;
1188}
1189
1190/**
1191 * e1000_check_polarity_m88 - Checks the polarity.
1192 * @hw: pointer to the HW structure
1193 *
1194 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1195 *
1196 * Polarity is determined based on the PHY specific status register.
1197 **/
1198static s32 igb_check_polarity_m88(struct e1000_hw *hw)
1199{
1200 struct e1000_phy_info *phy = &hw->phy;
1201 s32 ret_val;
1202 u16 data;
1203
1204 ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1205
1206 if (!ret_val)
1207 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1208 ? e1000_rev_polarity_reversed
1209 : e1000_rev_polarity_normal;
1210
1211 return ret_val;
1212}
1213
1214/**
1215 * e1000_check_polarity_igp - Checks the polarity.
1216 * @hw: pointer to the HW structure
1217 *
1218 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1219 *
1220 * Polarity is determined based on the PHY port status register, and the
1221 * current speed (since there is no polarity at 100Mbps).
1222 **/
1223static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1224{
1225 struct e1000_phy_info *phy = &hw->phy;
1226 s32 ret_val;
1227 u16 data, offset, mask;
1228
1229 /*
1230 * Polarity is determined based on the speed of
1231 * our connection.
1232 */
1233 ret_val = hw->phy.ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
1234 &data);
1235 if (ret_val)
1236 goto out;
1237
1238 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1239 IGP01E1000_PSSR_SPEED_1000MBPS) {
1240 offset = IGP01E1000_PHY_PCS_INIT_REG;
1241 mask = IGP01E1000_PHY_POLARITY_MASK;
1242 } else {
1243 /*
1244 * This really only applies to 10Mbps since
1245 * there is no polarity for 100Mbps (always 0).
1246 */
1247 offset = IGP01E1000_PHY_PORT_STATUS;
1248 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1249 }
1250
1251 ret_val = hw->phy.ops.read_phy_reg(hw, offset, &data);
1252
1253 if (!ret_val)
1254 phy->cable_polarity = (data & mask)
1255 ? e1000_rev_polarity_reversed
1256 : e1000_rev_polarity_normal;
1257
1258out:
1259 return ret_val;
1260}
1261
1262/**
1263 * e1000_wait_autoneg - Wait for auto-neg compeletion
1264 * @hw: pointer to the HW structure
1265 *
1266 * Waits for auto-negotiation to complete or for the auto-negotiation time
1267 * limit to expire, which ever happens first.
1268 **/
1269static s32 igb_wait_autoneg(struct e1000_hw *hw)
1270{
1271 s32 ret_val = 0;
1272 u16 i, phy_status;
1273
1274 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1275 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1276 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, &phy_status);
1277 if (ret_val)
1278 break;
1279 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, &phy_status);
1280 if (ret_val)
1281 break;
1282 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1283 break;
1284 msleep(100);
1285 }
1286
1287 /*
1288 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1289 * has completed.
1290 */
1291 return ret_val;
1292}
1293
1294/**
1295 * e1000_phy_has_link - Polls PHY for link
1296 * @hw: pointer to the HW structure
1297 * @iterations: number of times to poll for link
1298 * @usec_interval: delay between polling attempts
1299 * @success: pointer to whether polling was successful or not
1300 *
1301 * Polls the PHY status register for link, 'iterations' number of times.
1302 **/
1303s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1304 u32 usec_interval, bool *success)
1305{
1306 s32 ret_val = 0;
1307 u16 i, phy_status;
1308
1309 for (i = 0; i < iterations; i++) {
1310 /*
1311 * Some PHYs require the PHY_STATUS register to be read
1312 * twice due to the link bit being sticky. No harm doing
1313 * it across the board.
1314 */
1315 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, &phy_status);
1316 if (ret_val)
1317 break;
1318 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, &phy_status);
1319 if (ret_val)
1320 break;
1321 if (phy_status & MII_SR_LINK_STATUS)
1322 break;
1323 if (usec_interval >= 1000)
1324 mdelay(usec_interval/1000);
1325 else
1326 udelay(usec_interval);
1327 }
1328
1329 *success = (i < iterations) ? true : false;
1330
1331 return ret_val;
1332}
1333
1334/**
1335 * e1000_get_cable_length_m88 - Determine cable length for m88 PHY
1336 * @hw: pointer to the HW structure
1337 *
1338 * Reads the PHY specific status register to retrieve the cable length
1339 * information. The cable length is determined by averaging the minimum and
1340 * maximum values to get the "average" cable length. The m88 PHY has four
1341 * possible cable length values, which are:
1342 * Register Value Cable Length
1343 * 0 < 50 meters
1344 * 1 50 - 80 meters
1345 * 2 80 - 110 meters
1346 * 3 110 - 140 meters
1347 * 4 > 140 meters
1348 **/
1349s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1350{
1351 struct e1000_phy_info *phy = &hw->phy;
1352 s32 ret_val;
1353 u16 phy_data, index;
1354
1355 ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1356 &phy_data);
1357 if (ret_val)
1358 goto out;
1359
1360 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1361 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1362 phy->min_cable_length = e1000_m88_cable_length_table[index];
1363 phy->max_cable_length = e1000_m88_cable_length_table[index+1];
1364
1365 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1366
1367out:
1368 return ret_val;
1369}
1370
1371/**
1372 * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1373 * @hw: pointer to the HW structure
1374 *
1375 * The automatic gain control (agc) normalizes the amplitude of the
1376 * received signal, adjusting for the attenuation produced by the
1377 * cable. By reading the AGC registers, which reperesent the
1378 * cobination of course and fine gain value, the value can be put
1379 * into a lookup table to obtain the approximate cable length
1380 * for each channel.
1381 **/
1382s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1383{
1384 struct e1000_phy_info *phy = &hw->phy;
1385 s32 ret_val = 0;
1386 u16 phy_data, i, agc_value = 0;
1387 u16 cur_agc_index, max_agc_index = 0;
1388 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1389 u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
1390 {IGP02E1000_PHY_AGC_A,
1391 IGP02E1000_PHY_AGC_B,
1392 IGP02E1000_PHY_AGC_C,
1393 IGP02E1000_PHY_AGC_D};
1394
1395 /* Read the AGC registers for all channels */
1396 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1397 ret_val = hw->phy.ops.read_phy_reg(hw, agc_reg_array[i],
1398 &phy_data);
1399 if (ret_val)
1400 goto out;
1401
1402 /*
1403 * Getting bits 15:9, which represent the combination of
1404 * course and fine gain values. The result is a number
1405 * that can be put into the lookup table to obtain the
1406 * approximate cable length.
1407 */
1408 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1409 IGP02E1000_AGC_LENGTH_MASK;
1410
1411 /* Array index bound check. */
1412 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1413 (cur_agc_index == 0)) {
1414 ret_val = -E1000_ERR_PHY;
1415 goto out;
1416 }
1417
1418 /* Remove min & max AGC values from calculation. */
1419 if (e1000_igp_2_cable_length_table[min_agc_index] >
1420 e1000_igp_2_cable_length_table[cur_agc_index])
1421 min_agc_index = cur_agc_index;
1422 if (e1000_igp_2_cable_length_table[max_agc_index] <
1423 e1000_igp_2_cable_length_table[cur_agc_index])
1424 max_agc_index = cur_agc_index;
1425
1426 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1427 }
1428
1429 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1430 e1000_igp_2_cable_length_table[max_agc_index]);
1431 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1432
1433 /* Calculate cable length with the error range of +/- 10 meters. */
1434 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1435 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1436 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1437
1438 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1439
1440out:
1441 return ret_val;
1442}
1443
1444/**
1445 * e1000_get_phy_info_m88 - Retrieve PHY information
1446 * @hw: pointer to the HW structure
1447 *
1448 * Valid for only copper links. Read the PHY status register (sticky read)
1449 * to verify that link is up. Read the PHY special control register to
1450 * determine the polarity and 10base-T extended distance. Read the PHY
1451 * special status register to determine MDI/MDIx and current speed. If
1452 * speed is 1000, then determine cable length, local and remote receiver.
1453 **/
1454s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1455{
1456 struct e1000_phy_info *phy = &hw->phy;
1457 s32 ret_val;
1458 u16 phy_data;
1459 bool link;
1460
1461 if (hw->phy.media_type != e1000_media_type_copper) {
1462 hw_dbg(hw, "Phy info is only valid for copper media\n");
1463 ret_val = -E1000_ERR_CONFIG;
1464 goto out;
1465 }
1466
1467 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1468 if (ret_val)
1469 goto out;
1470
1471 if (!link) {
1472 hw_dbg(hw, "Phy info is only valid if link is up\n");
1473 ret_val = -E1000_ERR_CONFIG;
1474 goto out;
1475 }
1476
1477 ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
1478 &phy_data);
1479 if (ret_val)
1480 goto out;
1481
1482 phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1483 ? true
1484 : false;
1485
1486 ret_val = igb_check_polarity_m88(hw);
1487 if (ret_val)
1488 goto out;
1489
1490 ret_val = hw->phy.ops.read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1491 &phy_data);
1492 if (ret_val)
1493 goto out;
1494
1495 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1496
1497 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1498 ret_val = hw->phy.ops.get_cable_length(hw);
1499 if (ret_val)
1500 goto out;
1501
1502 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
1503 &phy_data);
1504 if (ret_val)
1505 goto out;
1506
1507 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1508 ? e1000_1000t_rx_status_ok
1509 : e1000_1000t_rx_status_not_ok;
1510
1511 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1512 ? e1000_1000t_rx_status_ok
1513 : e1000_1000t_rx_status_not_ok;
1514 } else {
1515 /* Set values to "undefined" */
1516 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1517 phy->local_rx = e1000_1000t_rx_status_undefined;
1518 phy->remote_rx = e1000_1000t_rx_status_undefined;
1519 }
1520
1521out:
1522 return ret_val;
1523}
1524
1525/**
1526 * e1000_get_phy_info_igp - Retrieve igp PHY information
1527 * @hw: pointer to the HW structure
1528 *
1529 * Read PHY status to determine if link is up. If link is up, then
1530 * set/determine 10base-T extended distance and polarity correction. Read
1531 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1532 * determine on the cable length, local and remote receiver.
1533 **/
1534s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1535{
1536 struct e1000_phy_info *phy = &hw->phy;
1537 s32 ret_val;
1538 u16 data;
1539 bool link;
1540
1541 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1542 if (ret_val)
1543 goto out;
1544
1545 if (!link) {
1546 hw_dbg(hw, "Phy info is only valid if link is up\n");
1547 ret_val = -E1000_ERR_CONFIG;
1548 goto out;
1549 }
1550
1551 phy->polarity_correction = true;
1552
1553 ret_val = igb_check_polarity_igp(hw);
1554 if (ret_val)
1555 goto out;
1556
1557 ret_val = hw->phy.ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
1558 &data);
1559 if (ret_val)
1560 goto out;
1561
1562 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
1563
1564 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1565 IGP01E1000_PSSR_SPEED_1000MBPS) {
1566 ret_val = hw->phy.ops.get_cable_length(hw);
1567 if (ret_val)
1568 goto out;
1569
1570 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
1571 &data);
1572 if (ret_val)
1573 goto out;
1574
1575 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1576 ? e1000_1000t_rx_status_ok
1577 : e1000_1000t_rx_status_not_ok;
1578
1579 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1580 ? e1000_1000t_rx_status_ok
1581 : e1000_1000t_rx_status_not_ok;
1582 } else {
1583 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1584 phy->local_rx = e1000_1000t_rx_status_undefined;
1585 phy->remote_rx = e1000_1000t_rx_status_undefined;
1586 }
1587
1588out:
1589 return ret_val;
1590}
1591
1592/**
1593 * e1000_phy_sw_reset - PHY software reset
1594 * @hw: pointer to the HW structure
1595 *
1596 * Does a software reset of the PHY by reading the PHY control register and
1597 * setting/write the control register reset bit to the PHY.
1598 **/
1599s32 igb_phy_sw_reset(struct e1000_hw *hw)
1600{
1601 s32 ret_val;
1602 u16 phy_ctrl;
1603
1604 ret_val = hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
1605 if (ret_val)
1606 goto out;
1607
1608 phy_ctrl |= MII_CR_RESET;
1609 ret_val = hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
1610 if (ret_val)
1611 goto out;
1612
1613 udelay(1);
1614
1615out:
1616 return ret_val;
1617}
1618
1619/**
1620 * e1000_phy_hw_reset - PHY hardware reset
1621 * @hw: pointer to the HW structure
1622 *
1623 * Verify the reset block is not blocking us from resetting. Acquire
1624 * semaphore (if necessary) and read/set/write the device control reset
1625 * bit in the PHY. Wait the appropriate delay time for the device to
1626 * reset and relase the semaphore (if necessary).
1627 **/
1628s32 igb_phy_hw_reset(struct e1000_hw *hw)
1629{
1630 struct e1000_phy_info *phy = &hw->phy;
1631 s32 ret_val;
1632 u32 ctrl;
1633
1634 ret_val = igb_check_reset_block(hw);
1635 if (ret_val) {
1636 ret_val = 0;
1637 goto out;
1638 }
1639
1640 ret_val = igb_acquire_phy(hw);
1641 if (ret_val)
1642 goto out;
1643
1644 ctrl = rd32(E1000_CTRL);
1645 wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
1646 wrfl();
1647
1648 udelay(phy->reset_delay_us);
1649
1650 wr32(E1000_CTRL, ctrl);
1651 wrfl();
1652
1653 udelay(150);
1654
1655 igb_release_phy(hw);
1656
1657 ret_val = igb_get_phy_cfg_done(hw);
1658
1659out:
1660 return ret_val;
1661}
1662
1663/* Internal function pointers */
1664
1665/**
1666 * e1000_get_phy_cfg_done - Generic PHY configuration done
1667 * @hw: pointer to the HW structure
1668 *
1669 * Return success if silicon family did not implement a family specific
1670 * get_cfg_done function.
1671 **/
1672static s32 igb_get_phy_cfg_done(struct e1000_hw *hw)
1673{
1674 if (hw->phy.ops.get_cfg_done)
1675 return hw->phy.ops.get_cfg_done(hw);
1676
1677 return 0;
1678}
1679
1680/**
1681 * e1000_release_phy - Generic release PHY
1682 * @hw: pointer to the HW structure
1683 *
1684 * Return if silicon family does not require a semaphore when accessing the
1685 * PHY.
1686 **/
1687static void igb_release_phy(struct e1000_hw *hw)
1688{
1689 if (hw->phy.ops.release_phy)
1690 hw->phy.ops.release_phy(hw);
1691}
1692
1693/**
1694 * e1000_acquire_phy - Generic acquire PHY
1695 * @hw: pointer to the HW structure
1696 *
1697 * Return success if silicon family does not require a semaphore when
1698 * accessing the PHY.
1699 **/
1700static s32 igb_acquire_phy(struct e1000_hw *hw)
1701{
1702 if (hw->phy.ops.acquire_phy)
1703 return hw->phy.ops.acquire_phy(hw);
1704
1705 return 0;
1706}
1707
1708/**
1709 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
1710 * @hw: pointer to the HW structure
1711 *
1712 * When the silicon family has not implemented a forced speed/duplex
1713 * function for the PHY, simply return 0.
1714 **/
1715s32 igb_phy_force_speed_duplex(struct e1000_hw *hw)
1716{
1717 if (hw->phy.ops.force_speed_duplex)
1718 return hw->phy.ops.force_speed_duplex(hw);
1719
1720 return 0;
1721}
1722
1723/**
1724 * e1000_phy_init_script_igp3 - Inits the IGP3 PHY
1725 * @hw: pointer to the HW structure
1726 *
1727 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
1728 **/
1729s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
1730{
1731 hw_dbg(hw, "Running IGP 3 PHY init script\n");
1732
1733 /* PHY init IGP 3 */
1734 /* Enable rise/fall, 10-mode work in class-A */
1735 hw->phy.ops.write_phy_reg(hw, 0x2F5B, 0x9018);
1736 /* Remove all caps from Replica path filter */
1737 hw->phy.ops.write_phy_reg(hw, 0x2F52, 0x0000);
1738 /* Bias trimming for ADC, AFE and Driver (Default) */
1739 hw->phy.ops.write_phy_reg(hw, 0x2FB1, 0x8B24);
1740 /* Increase Hybrid poly bias */
1741 hw->phy.ops.write_phy_reg(hw, 0x2FB2, 0xF8F0);
1742 /* Add 4% to TX amplitude in Giga mode */
1743 hw->phy.ops.write_phy_reg(hw, 0x2010, 0x10B0);
1744 /* Disable trimming (TTT) */
1745 hw->phy.ops.write_phy_reg(hw, 0x2011, 0x0000);
1746 /* Poly DC correction to 94.6% + 2% for all channels */
1747 hw->phy.ops.write_phy_reg(hw, 0x20DD, 0x249A);
1748 /* ABS DC correction to 95.9% */
1749 hw->phy.ops.write_phy_reg(hw, 0x20DE, 0x00D3);
1750 /* BG temp curve trim */
1751 hw->phy.ops.write_phy_reg(hw, 0x28B4, 0x04CE);
1752 /* Increasing ADC OPAMP stage 1 currents to max */
1753 hw->phy.ops.write_phy_reg(hw, 0x2F70, 0x29E4);
1754 /* Force 1000 ( required for enabling PHY regs configuration) */
1755 hw->phy.ops.write_phy_reg(hw, 0x0000, 0x0140);
1756 /* Set upd_freq to 6 */
1757 hw->phy.ops.write_phy_reg(hw, 0x1F30, 0x1606);
1758 /* Disable NPDFE */
1759 hw->phy.ops.write_phy_reg(hw, 0x1F31, 0xB814);
1760 /* Disable adaptive fixed FFE (Default) */
1761 hw->phy.ops.write_phy_reg(hw, 0x1F35, 0x002A);
1762 /* Enable FFE hysteresis */
1763 hw->phy.ops.write_phy_reg(hw, 0x1F3E, 0x0067);
1764 /* Fixed FFE for short cable lengths */
1765 hw->phy.ops.write_phy_reg(hw, 0x1F54, 0x0065);
1766 /* Fixed FFE for medium cable lengths */
1767 hw->phy.ops.write_phy_reg(hw, 0x1F55, 0x002A);
1768 /* Fixed FFE for long cable lengths */
1769 hw->phy.ops.write_phy_reg(hw, 0x1F56, 0x002A);
1770 /* Enable Adaptive Clip Threshold */
1771 hw->phy.ops.write_phy_reg(hw, 0x1F72, 0x3FB0);
1772 /* AHT reset limit to 1 */
1773 hw->phy.ops.write_phy_reg(hw, 0x1F76, 0xC0FF);
1774 /* Set AHT master delay to 127 msec */
1775 hw->phy.ops.write_phy_reg(hw, 0x1F77, 0x1DEC);
1776 /* Set scan bits for AHT */
1777 hw->phy.ops.write_phy_reg(hw, 0x1F78, 0xF9EF);
1778 /* Set AHT Preset bits */
1779 hw->phy.ops.write_phy_reg(hw, 0x1F79, 0x0210);
1780 /* Change integ_factor of channel A to 3 */
1781 hw->phy.ops.write_phy_reg(hw, 0x1895, 0x0003);
1782 /* Change prop_factor of channels BCD to 8 */
1783 hw->phy.ops.write_phy_reg(hw, 0x1796, 0x0008);
1784 /* Change cg_icount + enable integbp for channels BCD */
1785 hw->phy.ops.write_phy_reg(hw, 0x1798, 0xD008);
1786 /*
1787 * Change cg_icount + enable integbp + change prop_factor_master
1788 * to 8 for channel A
1789 */
1790 hw->phy.ops.write_phy_reg(hw, 0x1898, 0xD918);
1791 /* Disable AHT in Slave mode on channel A */
1792 hw->phy.ops.write_phy_reg(hw, 0x187A, 0x0800);
1793 /*
1794 * Enable LPLU and disable AN to 1000 in non-D0a states,
1795 * Enable SPD+B2B
1796 */
1797 hw->phy.ops.write_phy_reg(hw, 0x0019, 0x008D);
1798 /* Enable restart AN on an1000_dis change */
1799 hw->phy.ops.write_phy_reg(hw, 0x001B, 0x2080);
1800 /* Enable wh_fifo read clock in 10/100 modes */
1801 hw->phy.ops.write_phy_reg(hw, 0x0014, 0x0045);
1802 /* Restart AN, Speed selection is 1000 */
1803 hw->phy.ops.write_phy_reg(hw, 0x0000, 0x1340);
1804
1805 return 0;
1806}
1807
diff --git a/drivers/net/igb/e1000_phy.h b/drivers/net/igb/e1000_phy.h
new file mode 100644
index 000000000000..8f8fe0a780d1
--- /dev/null
+++ b/drivers/net/igb/e1000_phy.h
@@ -0,0 +1,98 @@
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#ifndef _E1000_PHY_H_
29#define _E1000_PHY_H_
30
31enum e1000_ms_type {
32 e1000_ms_hw_default = 0,
33 e1000_ms_force_master,
34 e1000_ms_force_slave,
35 e1000_ms_auto
36};
37
38enum e1000_smart_speed {
39 e1000_smart_speed_default = 0,
40 e1000_smart_speed_on,
41 e1000_smart_speed_off
42};
43
44s32 igb_check_downshift(struct e1000_hw *hw);
45s32 igb_check_reset_block(struct e1000_hw *hw);
46s32 igb_copper_link_autoneg(struct e1000_hw *hw);
47s32 igb_phy_force_speed_duplex(struct e1000_hw *hw);
48s32 igb_copper_link_setup_igp(struct e1000_hw *hw);
49s32 igb_copper_link_setup_m88(struct e1000_hw *hw);
50s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw);
51s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw);
52s32 igb_get_cable_length_m88(struct e1000_hw *hw);
53s32 igb_get_cable_length_igp_2(struct e1000_hw *hw);
54s32 igb_get_phy_id(struct e1000_hw *hw);
55s32 igb_get_phy_info_igp(struct e1000_hw *hw);
56s32 igb_get_phy_info_m88(struct e1000_hw *hw);
57s32 igb_phy_sw_reset(struct e1000_hw *hw);
58s32 igb_phy_hw_reset(struct e1000_hw *hw);
59s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
60s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active);
61s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
62s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
63 u32 usec_interval, bool *success);
64s32 igb_phy_init_script_igp3(struct e1000_hw *hw);
65
66/* IGP01E1000 Specific Registers */
67#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */
68#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */
69#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */
70#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */
71#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */
72#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */
73#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
74#define IGP01E1000_PHY_POLARITY_MASK 0x0078
75#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
76#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */
77#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
78
79/* Enable flexible speed on link-up */
80#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */
81#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */
82#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
83#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
84#define IGP01E1000_PSSR_MDIX 0x0008
85#define IGP01E1000_PSSR_SPEED_MASK 0xC000
86#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
87#define IGP02E1000_PHY_CHANNEL_NUM 4
88#define IGP02E1000_PHY_AGC_A 0x11B1
89#define IGP02E1000_PHY_AGC_B 0x12B1
90#define IGP02E1000_PHY_AGC_C 0x14B1
91#define IGP02E1000_PHY_AGC_D 0x18B1
92#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */
93#define IGP02E1000_AGC_LENGTH_MASK 0x7F
94#define IGP02E1000_AGC_RANGE 15
95
96#define E1000_CABLE_LENGTH_UNDEFINED 0xFF
97
98#endif
diff --git a/drivers/net/igb/e1000_regs.h b/drivers/net/igb/e1000_regs.h
new file mode 100644
index 000000000000..ff187b73c69e
--- /dev/null
+++ b/drivers/net/igb/e1000_regs.h
@@ -0,0 +1,270 @@
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#ifndef _E1000_REGS_H_
29#define _E1000_REGS_H_
30
31#define E1000_CTRL 0x00000 /* Device Control - RW */
32#define E1000_STATUS 0x00008 /* Device Status - RO */
33#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
34#define E1000_EERD 0x00014 /* EEPROM Read - RW */
35#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
36#define E1000_MDIC 0x00020 /* MDI Control - RW */
37#define E1000_SCTL 0x00024 /* SerDes Control - RW */
38#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
39#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
40#define E1000_FCT 0x00030 /* Flow Control Type - RW */
41#define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */
42#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
43#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
44#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
45#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
46#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
47#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
48#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */
49#define E1000_RCTL 0x00100 /* RX Control - RW */
50#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
51#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */
52#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */
53#define E1000_EITR(_n) (0x01680 + (0x4 * (_n)))
54#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */
55#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */
56#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */
57#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */
58#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */
59#define E1000_TCTL 0x00400 /* TX Control - RW */
60#define E1000_TCTL_EXT 0x00404 /* Extended TX Control - RW */
61#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */
62#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
63#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
64#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
65#define E1000_PBS 0x01008 /* Packet Buffer Size */
66#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
67#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */
68#define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */
69#define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */
70#define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */
71#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
72#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
73#define E1000_RDFPCQ(_n) (0x02430 + (0x4 * (_n)))
74#define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */
75/* Split and Replication RX Control - RW */
76/*
77 * Convenience macros
78 *
79 * Note: "_n" is the queue number of the register to be written to.
80 *
81 * Example usage:
82 * E1000_RDBAL_REG(current_rx_queue)
83 */
84#define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) \
85 : (0x0C000 + ((_n) * 0x40)))
86#define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) \
87 : (0x0C004 + ((_n) * 0x40)))
88#define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) \
89 : (0x0C008 + ((_n) * 0x40)))
90#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) \
91 : (0x0C00C + ((_n) * 0x40)))
92#define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) \
93 : (0x0C010 + ((_n) * 0x40)))
94#define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) \
95 : (0x0C018 + ((_n) * 0x40)))
96#define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) \
97 : (0x0C028 + ((_n) * 0x40)))
98#define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) \
99 : (0x0E000 + ((_n) * 0x40)))
100#define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) \
101 : (0x0E004 + ((_n) * 0x40)))
102#define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) \
103 : (0x0E008 + ((_n) * 0x40)))
104#define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) \
105 : (0x0E010 + ((_n) * 0x40)))
106#define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) \
107 : (0x0E018 + ((_n) * 0x40)))
108#define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) \
109 : (0x0E028 + ((_n) * 0x40)))
110#define E1000_TARC(_n) (0x03840 + (_n << 8))
111#define E1000_DCA_TXCTRL(_n) (0x03814 + (_n << 8))
112#define E1000_DCA_RXCTRL(_n) (0x02814 + (_n << 8))
113#define E1000_TDWBAL(_n) ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) \
114 : (0x0E038 + ((_n) * 0x40)))
115#define E1000_TDWBAH(_n) ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) \
116 : (0x0E03C + ((_n) * 0x40)))
117#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */
118#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */
119#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */
120#define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */
121#define E1000_DTXCTL 0x03590 /* DMA TX Control - RW */
122#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
123#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
124#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
125#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
126#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
127#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
128#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
129#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
130#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
131#define E1000_COLC 0x04028 /* Collision Count - R/clr */
132#define E1000_DC 0x04030 /* Defer Count - R/clr */
133#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */
134#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
135#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
136#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
137#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */
138#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */
139#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */
140#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */
141#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */
142#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */
143#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */
144#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */
145#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */
146#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */
147#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */
148#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */
149#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */
150#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */
151#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */
152#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */
153#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */
154#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */
155#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */
156#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */
157#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */
158#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */
159#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */
160#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */
161#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */
162#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
163#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */
164#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */
165#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */
166#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */
167#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */
168#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */
169#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */
170#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */
171#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */
172#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */
173#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */
174#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */
175#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */
176#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */
177#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */
178#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */
179#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */
180#define E1000_IAC 0x04100 /* Interrupt Assertion Count */
181/* Interrupt Cause Rx Packet Timer Expire Count */
182#define E1000_ICRXPTC 0x04104
183/* Interrupt Cause Rx Absolute Timer Expire Count */
184#define E1000_ICRXATC 0x04108
185/* Interrupt Cause Tx Packet Timer Expire Count */
186#define E1000_ICTXPTC 0x0410C
187/* Interrupt Cause Tx Absolute Timer Expire Count */
188#define E1000_ICTXATC 0x04110
189/* Interrupt Cause Tx Queue Empty Count */
190#define E1000_ICTXQEC 0x04118
191/* Interrupt Cause Tx Queue Minimum Threshold Count */
192#define E1000_ICTXQMTC 0x0411C
193/* Interrupt Cause Rx Descriptor Minimum Threshold Count */
194#define E1000_ICRXDMTC 0x04120
195#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */
196#define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */
197#define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */
198#define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */
199#define E1000_CBTMPC 0x0402C /* Circuit Breaker TX Packet Count */
200#define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */
201#define E1000_CBRMPC 0x040FC /* Circuit Breaker RX Packet Count */
202#define E1000_RPTHC 0x04104 /* Rx Packets To Host */
203#define E1000_HGPTC 0x04118 /* Host Good Packets TX Count */
204#define E1000_HTCBDPC 0x04124 /* Host TX Circuit Breaker Dropped Count */
205#define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */
206#define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */
207#define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */
208#define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */
209#define E1000_LENERRS 0x04138 /* Length Errors Count */
210#define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */
211#define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */
212#define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */
213#define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */
214#define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Page - RW */
215#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */
216#define E1000_RLPML 0x05004 /* RX Long Packet Max Length */
217#define E1000_RFCTL 0x05008 /* Receive Filter Control*/
218#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
219#define E1000_RA 0x05400 /* Receive Address - RW Array */
220#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
221#define E1000_VMD_CTL 0x0581C /* VMDq Control - RW */
222#define E1000_WUC 0x05800 /* Wakeup Control - RW */
223#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
224#define E1000_WUS 0x05810 /* Wakeup Status - RO */
225#define E1000_MANC 0x05820 /* Management Control - RW */
226#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
227#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
228#define E1000_HOST_IF 0x08800 /* Host Interface */
229
230#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */
231#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */
232#define E1000_CCMCTL 0x05B48 /* CCM Control Register */
233#define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */
234#define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */
235#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */
236#define E1000_SWSM 0x05B50 /* SW Semaphore */
237#define E1000_FWSM 0x05B54 /* FW Semaphore */
238#define E1000_HICR 0x08F00 /* Host Inteface Control */
239
240/* RSS registers */
241#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */
242#define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */
243#define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate Interrupt Ext*/
244#define E1000_IMIRVP 0x05AC0 /* Immediate Interrupt RX VLAN Priority - RW */
245/* MSI-X Allocation Register (_i) - RW */
246#define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4))
247/* MSI-X Table entry addr low reg 0 - RW */
248#define E1000_MSIXTADD(_i) (0x0C000 + ((_i) * 0x10))
249/* MSI-X Table entry addr upper reg 0 - RW */
250#define E1000_MSIXTUADD(_i) (0x0C004 + ((_i) * 0x10))
251/* MSI-X Table entry message reg 0 - RW */
252#define E1000_MSIXTMSG(_i) (0x0C008 + ((_i) * 0x10))
253/* MSI-X Table entry vector ctrl reg 0 - RW */
254#define E1000_MSIXVCTRL(_i) (0x0C00C + ((_i) * 0x10))
255/* Redirection Table - RW Array */
256#define E1000_RETA(_i) (0x05C00 + ((_i) * 4))
257#define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW Array */
258
259#define E1000_REGISTER(a, reg) reg
260
261#define wr32(reg, value) (writel(value, hw->hw_addr + reg))
262#define rd32(reg) (readl(hw->hw_addr + reg))
263#define wrfl() ((void)rd32(E1000_STATUS))
264
265#define array_wr32(reg, offset, value) \
266 (writel(value, hw->hw_addr + reg + ((offset) << 2)))
267#define array_rd32(reg, offset) \
268 (readl(hw->hw_addr + reg + ((offset) << 2)))
269
270#endif
diff --git a/drivers/net/igb/igb.h b/drivers/net/igb/igb.h
new file mode 100644
index 000000000000..6b2e7d351d65
--- /dev/null
+++ b/drivers/net/igb/igb.h
@@ -0,0 +1,300 @@
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28
29/* Linux PRO/1000 Ethernet Driver main header file */
30
31#ifndef _IGB_H_
32#define _IGB_H_
33
34#include "e1000_mac.h"
35#include "e1000_82575.h"
36
37struct igb_adapter;
38
39/* Interrupt defines */
40#define IGB_MAX_TX_CLEAN 72
41
42#define IGB_MIN_DYN_ITR 3000
43#define IGB_MAX_DYN_ITR 96000
44#define IGB_START_ITR 6000
45
46#define IGB_DYN_ITR_PACKET_THRESHOLD 2
47#define IGB_DYN_ITR_LENGTH_LOW 200
48#define IGB_DYN_ITR_LENGTH_HIGH 1000
49
50/* TX/RX descriptor defines */
51#define IGB_DEFAULT_TXD 256
52#define IGB_MIN_TXD 80
53#define IGB_MAX_TXD 4096
54
55#define IGB_DEFAULT_RXD 256
56#define IGB_MIN_RXD 80
57#define IGB_MAX_RXD 4096
58
59#define IGB_DEFAULT_ITR 3 /* dynamic */
60#define IGB_MAX_ITR_USECS 10000
61#define IGB_MIN_ITR_USECS 10
62
63/* Transmit and receive queues */
64#define IGB_MAX_RX_QUEUES 4
65
66/* RX descriptor control thresholds.
67 * PTHRESH - MAC will consider prefetch if it has fewer than this number of
68 * descriptors available in its onboard memory.
69 * Setting this to 0 disables RX descriptor prefetch.
70 * HTHRESH - MAC will only prefetch if there are at least this many descriptors
71 * available in host memory.
72 * If PTHRESH is 0, this should also be 0.
73 * WTHRESH - RX descriptor writeback threshold - MAC will delay writing back
74 * descriptors until either it has this many to write back, or the
75 * ITR timer expires.
76 */
77#define IGB_RX_PTHRESH 16
78#define IGB_RX_HTHRESH 8
79#define IGB_RX_WTHRESH 1
80
81/* this is the size past which hardware will drop packets when setting LPE=0 */
82#define MAXIMUM_ETHERNET_VLAN_SIZE 1522
83
84/* Supported Rx Buffer Sizes */
85#define IGB_RXBUFFER_128 128 /* Used for packet split */
86#define IGB_RXBUFFER_256 256 /* Used for packet split */
87#define IGB_RXBUFFER_512 512
88#define IGB_RXBUFFER_1024 1024
89#define IGB_RXBUFFER_2048 2048
90#define IGB_RXBUFFER_4096 4096
91#define IGB_RXBUFFER_8192 8192
92#define IGB_RXBUFFER_16384 16384
93
94/* Packet Buffer allocations */
95
96
97/* How many Tx Descriptors do we need to call netif_wake_queue ? */
98#define IGB_TX_QUEUE_WAKE 16
99/* How many Rx Buffers do we bundle into one write to the hardware ? */
100#define IGB_RX_BUFFER_WRITE 16 /* Must be power of 2 */
101
102#define AUTO_ALL_MODES 0
103#define IGB_EEPROM_APME 0x0400
104
105#ifndef IGB_MASTER_SLAVE
106/* Switch to override PHY master/slave setting */
107#define IGB_MASTER_SLAVE e1000_ms_hw_default
108#endif
109
110#define IGB_MNG_VLAN_NONE -1
111
112/* wrapper around a pointer to a socket buffer,
113 * so a DMA handle can be stored along with the buffer */
114struct igb_buffer {
115 struct sk_buff *skb;
116 dma_addr_t dma;
117 union {
118 /* TX */
119 struct {
120 unsigned long time_stamp;
121 u32 length;
122 };
123 /* RX */
124 struct {
125 struct page *page;
126 u64 page_dma;
127 };
128 };
129};
130
131struct igb_queue_stats {
132 u64 packets;
133 u64 bytes;
134};
135
136struct igb_ring {
137 struct igb_adapter *adapter; /* backlink */
138 void *desc; /* descriptor ring memory */
139 dma_addr_t dma; /* phys address of the ring */
140 unsigned int size; /* length of desc. ring in bytes */
141 unsigned int count; /* number of desc. in the ring */
142 u16 next_to_use;
143 u16 next_to_clean;
144 u16 head;
145 u16 tail;
146 struct igb_buffer *buffer_info; /* array of buffer info structs */
147
148 u32 eims_value;
149 u32 itr_val;
150 u16 itr_register;
151 u16 cpu;
152
153 unsigned int total_bytes;
154 unsigned int total_packets;
155
156 union {
157 /* TX */
158 struct {
159 spinlock_t tx_clean_lock;
160 spinlock_t tx_lock;
161 bool detect_tx_hung;
162 };
163 /* RX */
164 struct {
165 /* arrays of page information for packet split */
166 struct sk_buff *pending_skb;
167 int pending_skb_page;
168 int no_itr_adjust;
169 struct igb_queue_stats rx_stats;
170 struct napi_struct napi;
171 };
172 };
173
174 char name[IFNAMSIZ + 5];
175};
176
177#define IGB_DESC_UNUSED(R) \
178 ((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \
179 (R)->next_to_clean - (R)->next_to_use - 1)
180
181#define E1000_RX_DESC_ADV(R, i) \
182 (&(((union e1000_adv_rx_desc *)((R).desc))[i]))
183#define E1000_TX_DESC_ADV(R, i) \
184 (&(((union e1000_adv_tx_desc *)((R).desc))[i]))
185#define E1000_TX_CTXTDESC_ADV(R, i) \
186 (&(((struct e1000_adv_tx_context_desc *)((R).desc))[i]))
187#define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i]))
188#define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc)
189#define E1000_RX_DESC(R, i) E1000_GET_DESC(R, i, e1000_rx_desc)
190
191/* board specific private data structure */
192
193struct igb_adapter {
194 struct timer_list watchdog_timer;
195 struct timer_list phy_info_timer;
196 struct vlan_group *vlgrp;
197 u16 mng_vlan_id;
198 u32 bd_number;
199 u32 rx_buffer_len;
200 u32 wol;
201 u32 en_mng_pt;
202 u16 link_speed;
203 u16 link_duplex;
204 unsigned int total_tx_bytes;
205 unsigned int total_tx_packets;
206 unsigned int total_rx_bytes;
207 unsigned int total_rx_packets;
208 /* Interrupt Throttle Rate */
209 u32 itr;
210 u32 itr_setting;
211 u16 tx_itr;
212 u16 rx_itr;
213 int set_itr;
214
215 struct work_struct reset_task;
216 struct work_struct watchdog_task;
217 bool fc_autoneg;
218 u8 tx_timeout_factor;
219 struct timer_list blink_timer;
220 unsigned long led_status;
221
222 /* TX */
223 struct igb_ring *tx_ring; /* One per active queue */
224 unsigned int restart_queue;
225 unsigned long tx_queue_len;
226 u32 txd_cmd;
227 u32 gotc;
228 u64 gotc_old;
229 u64 tpt_old;
230 u64 colc_old;
231 u32 tx_timeout_count;
232
233 /* RX */
234 struct igb_ring *rx_ring; /* One per active queue */
235 int num_tx_queues;
236 int num_rx_queues;
237
238 u64 hw_csum_err;
239 u64 hw_csum_good;
240 u64 rx_hdr_split;
241 u32 alloc_rx_buff_failed;
242 bool rx_csum;
243 u32 gorc;
244 u64 gorc_old;
245 u16 rx_ps_hdr_size;
246 u32 max_frame_size;
247 u32 min_frame_size;
248
249 /* OS defined structs */
250 struct net_device *netdev;
251 struct napi_struct napi;
252 struct pci_dev *pdev;
253 struct net_device_stats net_stats;
254
255 /* structs defined in e1000_hw.h */
256 struct e1000_hw hw;
257 struct e1000_hw_stats stats;
258 struct e1000_phy_info phy_info;
259 struct e1000_phy_stats phy_stats;
260
261 u32 test_icr;
262 struct igb_ring test_tx_ring;
263 struct igb_ring test_rx_ring;
264
265 int msg_enable;
266 struct msix_entry *msix_entries;
267 u32 eims_enable_mask;
268
269 /* to not mess up cache alignment, always add to the bottom */
270 unsigned long state;
271 unsigned int msi_enabled;
272
273 u32 eeprom_wol;
274};
275
276enum e1000_state_t {
277 __IGB_TESTING,
278 __IGB_RESETTING,
279 __IGB_DOWN
280};
281
282enum igb_boards {
283 board_82575,
284};
285
286extern char igb_driver_name[];
287extern char igb_driver_version[];
288
289extern char *igb_get_hw_dev_name(struct e1000_hw *hw);
290extern int igb_up(struct igb_adapter *);
291extern void igb_down(struct igb_adapter *);
292extern void igb_reinit_locked(struct igb_adapter *);
293extern void igb_reset(struct igb_adapter *);
294extern int igb_set_spd_dplx(struct igb_adapter *, u16);
295extern int igb_setup_tx_resources(struct igb_adapter *, struct igb_ring *);
296extern int igb_setup_rx_resources(struct igb_adapter *, struct igb_ring *);
297extern void igb_update_stats(struct igb_adapter *);
298extern void igb_set_ethtool_ops(struct net_device *);
299
300#endif /* _IGB_H_ */
diff --git a/drivers/net/igb/igb_ethtool.c b/drivers/net/igb/igb_ethtool.c
new file mode 100644
index 000000000000..f69721e4eaa1
--- /dev/null
+++ b/drivers/net/igb/igb_ethtool.c
@@ -0,0 +1,1927 @@
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37
38#include "igb.h"
39
40struct igb_stats {
41 char stat_string[ETH_GSTRING_LEN];
42 int sizeof_stat;
43 int stat_offset;
44};
45
46#define IGB_STAT(m) sizeof(((struct igb_adapter *)0)->m), \
47 offsetof(struct igb_adapter, m)
48static const struct igb_stats igb_gstrings_stats[] = {
49 { "rx_packets", IGB_STAT(stats.gprc) },
50 { "tx_packets", IGB_STAT(stats.gptc) },
51 { "rx_bytes", IGB_STAT(stats.gorc) },
52 { "tx_bytes", IGB_STAT(stats.gotc) },
53 { "rx_broadcast", IGB_STAT(stats.bprc) },
54 { "tx_broadcast", IGB_STAT(stats.bptc) },
55 { "rx_multicast", IGB_STAT(stats.mprc) },
56 { "tx_multicast", IGB_STAT(stats.mptc) },
57 { "rx_errors", IGB_STAT(net_stats.rx_errors) },
58 { "tx_errors", IGB_STAT(net_stats.tx_errors) },
59 { "tx_dropped", IGB_STAT(net_stats.tx_dropped) },
60 { "multicast", IGB_STAT(stats.mprc) },
61 { "collisions", IGB_STAT(stats.colc) },
62 { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) },
63 { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) },
64 { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
65 { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) },
66 { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
67 { "rx_missed_errors", IGB_STAT(stats.mpc) },
68 { "tx_aborted_errors", IGB_STAT(stats.ecol) },
69 { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
70 { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) },
71 { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) },
72 { "tx_window_errors", IGB_STAT(stats.latecol) },
73 { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
74 { "tx_deferred_ok", IGB_STAT(stats.dc) },
75 { "tx_single_coll_ok", IGB_STAT(stats.scc) },
76 { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
77 { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
78 { "tx_restart_queue", IGB_STAT(restart_queue) },
79 { "rx_long_length_errors", IGB_STAT(stats.roc) },
80 { "rx_short_length_errors", IGB_STAT(stats.ruc) },
81 { "rx_align_errors", IGB_STAT(stats.algnerrc) },
82 { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
83 { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
84 { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
85 { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
86 { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
87 { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
88 { "rx_long_byte_count", IGB_STAT(stats.gorc) },
89 { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
90 { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
91 { "rx_header_split", IGB_STAT(rx_hdr_split) },
92 { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
93 { "tx_smbus", IGB_STAT(stats.mgptc) },
94 { "rx_smbus", IGB_STAT(stats.mgprc) },
95 { "dropped_smbus", IGB_STAT(stats.mgpdc) },
96};
97
98#define IGB_QUEUE_STATS_LEN \
99 ((((((struct igb_adapter *)netdev->priv)->num_rx_queues > 1) ? \
100 ((struct igb_adapter *)netdev->priv)->num_rx_queues : 0) + \
101 (((((struct igb_adapter *)netdev->priv)->num_tx_queues > 1) ? \
102 ((struct igb_adapter *)netdev->priv)->num_tx_queues : 0))) * \
103 (sizeof(struct igb_queue_stats) / sizeof(u64)))
104#define IGB_GLOBAL_STATS_LEN \
105 sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
106#define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
107static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
108 "Register test (offline)", "Eeprom test (offline)",
109 "Interrupt test (offline)", "Loopback test (offline)",
110 "Link test (on/offline)"
111};
112#define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
113
114static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
115{
116 struct igb_adapter *adapter = netdev_priv(netdev);
117 struct e1000_hw *hw = &adapter->hw;
118
119 if (hw->phy.media_type == e1000_media_type_copper) {
120
121 ecmd->supported = (SUPPORTED_10baseT_Half |
122 SUPPORTED_10baseT_Full |
123 SUPPORTED_100baseT_Half |
124 SUPPORTED_100baseT_Full |
125 SUPPORTED_1000baseT_Full|
126 SUPPORTED_Autoneg |
127 SUPPORTED_TP);
128 ecmd->advertising = ADVERTISED_TP;
129
130 if (hw->mac.autoneg == 1) {
131 ecmd->advertising |= ADVERTISED_Autoneg;
132 /* the e1000 autoneg seems to match ethtool nicely */
133 ecmd->advertising |= hw->phy.autoneg_advertised;
134 }
135
136 ecmd->port = PORT_TP;
137 ecmd->phy_address = hw->phy.addr;
138 } else {
139 ecmd->supported = (SUPPORTED_1000baseT_Full |
140 SUPPORTED_FIBRE |
141 SUPPORTED_Autoneg);
142
143 ecmd->advertising = (ADVERTISED_1000baseT_Full |
144 ADVERTISED_FIBRE |
145 ADVERTISED_Autoneg);
146
147 ecmd->port = PORT_FIBRE;
148 }
149
150 ecmd->transceiver = XCVR_INTERNAL;
151
152 if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
153
154 adapter->hw.mac.ops.get_speed_and_duplex(hw,
155 &adapter->link_speed,
156 &adapter->link_duplex);
157 ecmd->speed = adapter->link_speed;
158
159 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
160 * and HALF_DUPLEX != DUPLEX_HALF */
161
162 if (adapter->link_duplex == FULL_DUPLEX)
163 ecmd->duplex = DUPLEX_FULL;
164 else
165 ecmd->duplex = DUPLEX_HALF;
166 } else {
167 ecmd->speed = -1;
168 ecmd->duplex = -1;
169 }
170
171 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
172 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
173 return 0;
174}
175
176static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
177{
178 struct igb_adapter *adapter = netdev_priv(netdev);
179 struct e1000_hw *hw = &adapter->hw;
180
181 /* When SoL/IDER sessions are active, autoneg/speed/duplex
182 * cannot be changed */
183 if (igb_check_reset_block(hw)) {
184 dev_err(&adapter->pdev->dev, "Cannot change link "
185 "characteristics when SoL/IDER is active.\n");
186 return -EINVAL;
187 }
188
189 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
190 msleep(1);
191
192 if (ecmd->autoneg == AUTONEG_ENABLE) {
193 hw->mac.autoneg = 1;
194 if (hw->phy.media_type == e1000_media_type_fiber)
195 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
196 ADVERTISED_FIBRE |
197 ADVERTISED_Autoneg;
198 else
199 hw->phy.autoneg_advertised = ecmd->advertising |
200 ADVERTISED_TP |
201 ADVERTISED_Autoneg;
202 ecmd->advertising = hw->phy.autoneg_advertised;
203 } else
204 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
205 clear_bit(__IGB_RESETTING, &adapter->state);
206 return -EINVAL;
207 }
208
209 /* reset the link */
210
211 if (netif_running(adapter->netdev)) {
212 igb_down(adapter);
213 igb_up(adapter);
214 } else
215 igb_reset(adapter);
216
217 clear_bit(__IGB_RESETTING, &adapter->state);
218 return 0;
219}
220
221static void igb_get_pauseparam(struct net_device *netdev,
222 struct ethtool_pauseparam *pause)
223{
224 struct igb_adapter *adapter = netdev_priv(netdev);
225 struct e1000_hw *hw = &adapter->hw;
226
227 pause->autoneg =
228 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
229
230 if (hw->fc.type == e1000_fc_rx_pause)
231 pause->rx_pause = 1;
232 else if (hw->fc.type == e1000_fc_tx_pause)
233 pause->tx_pause = 1;
234 else if (hw->fc.type == e1000_fc_full) {
235 pause->rx_pause = 1;
236 pause->tx_pause = 1;
237 }
238}
239
240static int igb_set_pauseparam(struct net_device *netdev,
241 struct ethtool_pauseparam *pause)
242{
243 struct igb_adapter *adapter = netdev_priv(netdev);
244 struct e1000_hw *hw = &adapter->hw;
245 int retval = 0;
246
247 adapter->fc_autoneg = pause->autoneg;
248
249 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
250 msleep(1);
251
252 if (pause->rx_pause && pause->tx_pause)
253 hw->fc.type = e1000_fc_full;
254 else if (pause->rx_pause && !pause->tx_pause)
255 hw->fc.type = e1000_fc_rx_pause;
256 else if (!pause->rx_pause && pause->tx_pause)
257 hw->fc.type = e1000_fc_tx_pause;
258 else if (!pause->rx_pause && !pause->tx_pause)
259 hw->fc.type = e1000_fc_none;
260
261 hw->fc.original_type = hw->fc.type;
262
263 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
264 if (netif_running(adapter->netdev)) {
265 igb_down(adapter);
266 igb_up(adapter);
267 } else
268 igb_reset(adapter);
269 } else
270 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
271 igb_setup_link(hw) : igb_force_mac_fc(hw));
272
273 clear_bit(__IGB_RESETTING, &adapter->state);
274 return retval;
275}
276
277static u32 igb_get_rx_csum(struct net_device *netdev)
278{
279 struct igb_adapter *adapter = netdev_priv(netdev);
280 return adapter->rx_csum;
281}
282
283static int igb_set_rx_csum(struct net_device *netdev, u32 data)
284{
285 struct igb_adapter *adapter = netdev_priv(netdev);
286 adapter->rx_csum = data;
287
288 return 0;
289}
290
291static u32 igb_get_tx_csum(struct net_device *netdev)
292{
293 return (netdev->features & NETIF_F_HW_CSUM) != 0;
294}
295
296static int igb_set_tx_csum(struct net_device *netdev, u32 data)
297{
298 if (data)
299 netdev->features |= NETIF_F_HW_CSUM;
300 else
301 netdev->features &= ~NETIF_F_HW_CSUM;
302
303 return 0;
304}
305
306static int igb_set_tso(struct net_device *netdev, u32 data)
307{
308 struct igb_adapter *adapter = netdev_priv(netdev);
309
310 if (data)
311 netdev->features |= NETIF_F_TSO;
312 else
313 netdev->features &= ~NETIF_F_TSO;
314
315 if (data)
316 netdev->features |= NETIF_F_TSO6;
317 else
318 netdev->features &= ~NETIF_F_TSO6;
319
320 dev_info(&adapter->pdev->dev, "TSO is %s\n",
321 data ? "Enabled" : "Disabled");
322 return 0;
323}
324
325static u32 igb_get_msglevel(struct net_device *netdev)
326{
327 struct igb_adapter *adapter = netdev_priv(netdev);
328 return adapter->msg_enable;
329}
330
331static void igb_set_msglevel(struct net_device *netdev, u32 data)
332{
333 struct igb_adapter *adapter = netdev_priv(netdev);
334 adapter->msg_enable = data;
335}
336
337static int igb_get_regs_len(struct net_device *netdev)
338{
339#define IGB_REGS_LEN 551
340 return IGB_REGS_LEN * sizeof(u32);
341}
342
343static void igb_get_regs(struct net_device *netdev,
344 struct ethtool_regs *regs, void *p)
345{
346 struct igb_adapter *adapter = netdev_priv(netdev);
347 struct e1000_hw *hw = &adapter->hw;
348 u32 *regs_buff = p;
349 u8 i;
350
351 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
352
353 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
354
355 /* General Registers */
356 regs_buff[0] = rd32(E1000_CTRL);
357 regs_buff[1] = rd32(E1000_STATUS);
358 regs_buff[2] = rd32(E1000_CTRL_EXT);
359 regs_buff[3] = rd32(E1000_MDIC);
360 regs_buff[4] = rd32(E1000_SCTL);
361 regs_buff[5] = rd32(E1000_CONNSW);
362 regs_buff[6] = rd32(E1000_VET);
363 regs_buff[7] = rd32(E1000_LEDCTL);
364 regs_buff[8] = rd32(E1000_PBA);
365 regs_buff[9] = rd32(E1000_PBS);
366 regs_buff[10] = rd32(E1000_FRTIMER);
367 regs_buff[11] = rd32(E1000_TCPTIMER);
368
369 /* NVM Register */
370 regs_buff[12] = rd32(E1000_EECD);
371
372 /* Interrupt */
373 regs_buff[13] = rd32(E1000_EICR);
374 regs_buff[14] = rd32(E1000_EICS);
375 regs_buff[15] = rd32(E1000_EIMS);
376 regs_buff[16] = rd32(E1000_EIMC);
377 regs_buff[17] = rd32(E1000_EIAC);
378 regs_buff[18] = rd32(E1000_EIAM);
379 regs_buff[19] = rd32(E1000_ICR);
380 regs_buff[20] = rd32(E1000_ICS);
381 regs_buff[21] = rd32(E1000_IMS);
382 regs_buff[22] = rd32(E1000_IMC);
383 regs_buff[23] = rd32(E1000_IAC);
384 regs_buff[24] = rd32(E1000_IAM);
385 regs_buff[25] = rd32(E1000_IMIRVP);
386
387 /* Flow Control */
388 regs_buff[26] = rd32(E1000_FCAL);
389 regs_buff[27] = rd32(E1000_FCAH);
390 regs_buff[28] = rd32(E1000_FCTTV);
391 regs_buff[29] = rd32(E1000_FCRTL);
392 regs_buff[30] = rd32(E1000_FCRTH);
393 regs_buff[31] = rd32(E1000_FCRTV);
394
395 /* Receive */
396 regs_buff[32] = rd32(E1000_RCTL);
397 regs_buff[33] = rd32(E1000_RXCSUM);
398 regs_buff[34] = rd32(E1000_RLPML);
399 regs_buff[35] = rd32(E1000_RFCTL);
400 regs_buff[36] = rd32(E1000_MRQC);
401 regs_buff[37] = rd32(E1000_VMD_CTL);
402
403 /* Transmit */
404 regs_buff[38] = rd32(E1000_TCTL);
405 regs_buff[39] = rd32(E1000_TCTL_EXT);
406 regs_buff[40] = rd32(E1000_TIPG);
407 regs_buff[41] = rd32(E1000_DTXCTL);
408
409 /* Wake Up */
410 regs_buff[42] = rd32(E1000_WUC);
411 regs_buff[43] = rd32(E1000_WUFC);
412 regs_buff[44] = rd32(E1000_WUS);
413 regs_buff[45] = rd32(E1000_IPAV);
414 regs_buff[46] = rd32(E1000_WUPL);
415
416 /* MAC */
417 regs_buff[47] = rd32(E1000_PCS_CFG0);
418 regs_buff[48] = rd32(E1000_PCS_LCTL);
419 regs_buff[49] = rd32(E1000_PCS_LSTAT);
420 regs_buff[50] = rd32(E1000_PCS_ANADV);
421 regs_buff[51] = rd32(E1000_PCS_LPAB);
422 regs_buff[52] = rd32(E1000_PCS_NPTX);
423 regs_buff[53] = rd32(E1000_PCS_LPABNP);
424
425 /* Statistics */
426 regs_buff[54] = adapter->stats.crcerrs;
427 regs_buff[55] = adapter->stats.algnerrc;
428 regs_buff[56] = adapter->stats.symerrs;
429 regs_buff[57] = adapter->stats.rxerrc;
430 regs_buff[58] = adapter->stats.mpc;
431 regs_buff[59] = adapter->stats.scc;
432 regs_buff[60] = adapter->stats.ecol;
433 regs_buff[61] = adapter->stats.mcc;
434 regs_buff[62] = adapter->stats.latecol;
435 regs_buff[63] = adapter->stats.colc;
436 regs_buff[64] = adapter->stats.dc;
437 regs_buff[65] = adapter->stats.tncrs;
438 regs_buff[66] = adapter->stats.sec;
439 regs_buff[67] = adapter->stats.htdpmc;
440 regs_buff[68] = adapter->stats.rlec;
441 regs_buff[69] = adapter->stats.xonrxc;
442 regs_buff[70] = adapter->stats.xontxc;
443 regs_buff[71] = adapter->stats.xoffrxc;
444 regs_buff[72] = adapter->stats.xofftxc;
445 regs_buff[73] = adapter->stats.fcruc;
446 regs_buff[74] = adapter->stats.prc64;
447 regs_buff[75] = adapter->stats.prc127;
448 regs_buff[76] = adapter->stats.prc255;
449 regs_buff[77] = adapter->stats.prc511;
450 regs_buff[78] = adapter->stats.prc1023;
451 regs_buff[79] = adapter->stats.prc1522;
452 regs_buff[80] = adapter->stats.gprc;
453 regs_buff[81] = adapter->stats.bprc;
454 regs_buff[82] = adapter->stats.mprc;
455 regs_buff[83] = adapter->stats.gptc;
456 regs_buff[84] = adapter->stats.gorc;
457 regs_buff[86] = adapter->stats.gotc;
458 regs_buff[88] = adapter->stats.rnbc;
459 regs_buff[89] = adapter->stats.ruc;
460 regs_buff[90] = adapter->stats.rfc;
461 regs_buff[91] = adapter->stats.roc;
462 regs_buff[92] = adapter->stats.rjc;
463 regs_buff[93] = adapter->stats.mgprc;
464 regs_buff[94] = adapter->stats.mgpdc;
465 regs_buff[95] = adapter->stats.mgptc;
466 regs_buff[96] = adapter->stats.tor;
467 regs_buff[98] = adapter->stats.tot;
468 regs_buff[100] = adapter->stats.tpr;
469 regs_buff[101] = adapter->stats.tpt;
470 regs_buff[102] = adapter->stats.ptc64;
471 regs_buff[103] = adapter->stats.ptc127;
472 regs_buff[104] = adapter->stats.ptc255;
473 regs_buff[105] = adapter->stats.ptc511;
474 regs_buff[106] = adapter->stats.ptc1023;
475 regs_buff[107] = adapter->stats.ptc1522;
476 regs_buff[108] = adapter->stats.mptc;
477 regs_buff[109] = adapter->stats.bptc;
478 regs_buff[110] = adapter->stats.tsctc;
479 regs_buff[111] = adapter->stats.iac;
480 regs_buff[112] = adapter->stats.rpthc;
481 regs_buff[113] = adapter->stats.hgptc;
482 regs_buff[114] = adapter->stats.hgorc;
483 regs_buff[116] = adapter->stats.hgotc;
484 regs_buff[118] = adapter->stats.lenerrs;
485 regs_buff[119] = adapter->stats.scvpc;
486 regs_buff[120] = adapter->stats.hrmpc;
487
488 /* These should probably be added to e1000_regs.h instead */
489 #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
490 #define E1000_RAL(_i) (0x05400 + ((_i) * 8))
491 #define E1000_RAH(_i) (0x05404 + ((_i) * 8))
492 #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
493 #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
494 #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
495 #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
496 #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
497 #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
498
499 for (i = 0; i < 4; i++)
500 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
501 for (i = 0; i < 4; i++)
502 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
503 for (i = 0; i < 4; i++)
504 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
505 for (i = 0; i < 4; i++)
506 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
507 for (i = 0; i < 4; i++)
508 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
509 for (i = 0; i < 4; i++)
510 regs_buff[141 + i] = rd32(E1000_RDH(i));
511 for (i = 0; i < 4; i++)
512 regs_buff[145 + i] = rd32(E1000_RDT(i));
513 for (i = 0; i < 4; i++)
514 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
515
516 for (i = 0; i < 10; i++)
517 regs_buff[153 + i] = rd32(E1000_EITR(i));
518 for (i = 0; i < 8; i++)
519 regs_buff[163 + i] = rd32(E1000_IMIR(i));
520 for (i = 0; i < 8; i++)
521 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
522 for (i = 0; i < 16; i++)
523 regs_buff[179 + i] = rd32(E1000_RAL(i));
524 for (i = 0; i < 16; i++)
525 regs_buff[195 + i] = rd32(E1000_RAH(i));
526
527 for (i = 0; i < 4; i++)
528 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
529 for (i = 0; i < 4; i++)
530 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
531 for (i = 0; i < 4; i++)
532 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
533 for (i = 0; i < 4; i++)
534 regs_buff[223 + i] = rd32(E1000_TDH(i));
535 for (i = 0; i < 4; i++)
536 regs_buff[227 + i] = rd32(E1000_TDT(i));
537 for (i = 0; i < 4; i++)
538 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
539 for (i = 0; i < 4; i++)
540 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
541 for (i = 0; i < 4; i++)
542 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
543 for (i = 0; i < 4; i++)
544 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
545
546 for (i = 0; i < 4; i++)
547 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
548 for (i = 0; i < 4; i++)
549 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
550 for (i = 0; i < 32; i++)
551 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
552 for (i = 0; i < 128; i++)
553 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
554 for (i = 0; i < 128; i++)
555 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
556 for (i = 0; i < 4; i++)
557 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
558
559 regs_buff[547] = rd32(E1000_TDFH);
560 regs_buff[548] = rd32(E1000_TDFT);
561 regs_buff[549] = rd32(E1000_TDFHS);
562 regs_buff[550] = rd32(E1000_TDFPC);
563
564}
565
566static int igb_get_eeprom_len(struct net_device *netdev)
567{
568 struct igb_adapter *adapter = netdev_priv(netdev);
569 return adapter->hw.nvm.word_size * 2;
570}
571
572static int igb_get_eeprom(struct net_device *netdev,
573 struct ethtool_eeprom *eeprom, u8 *bytes)
574{
575 struct igb_adapter *adapter = netdev_priv(netdev);
576 struct e1000_hw *hw = &adapter->hw;
577 u16 *eeprom_buff;
578 int first_word, last_word;
579 int ret_val = 0;
580 u16 i;
581
582 if (eeprom->len == 0)
583 return -EINVAL;
584
585 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
586
587 first_word = eeprom->offset >> 1;
588 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
589
590 eeprom_buff = kmalloc(sizeof(u16) *
591 (last_word - first_word + 1), GFP_KERNEL);
592 if (!eeprom_buff)
593 return -ENOMEM;
594
595 if (hw->nvm.type == e1000_nvm_eeprom_spi)
596 ret_val = hw->nvm.ops.read_nvm(hw, first_word,
597 last_word - first_word + 1,
598 eeprom_buff);
599 else {
600 for (i = 0; i < last_word - first_word + 1; i++) {
601 ret_val = hw->nvm.ops.read_nvm(hw, first_word + i, 1,
602 &eeprom_buff[i]);
603 if (ret_val)
604 break;
605 }
606 }
607
608 /* Device's eeprom is always little-endian, word addressable */
609 for (i = 0; i < last_word - first_word + 1; i++)
610 le16_to_cpus(&eeprom_buff[i]);
611
612 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
613 eeprom->len);
614 kfree(eeprom_buff);
615
616 return ret_val;
617}
618
619static int igb_set_eeprom(struct net_device *netdev,
620 struct ethtool_eeprom *eeprom, u8 *bytes)
621{
622 struct igb_adapter *adapter = netdev_priv(netdev);
623 struct e1000_hw *hw = &adapter->hw;
624 u16 *eeprom_buff;
625 void *ptr;
626 int max_len, first_word, last_word, ret_val = 0;
627 u16 i;
628
629 if (eeprom->len == 0)
630 return -EOPNOTSUPP;
631
632 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
633 return -EFAULT;
634
635 max_len = hw->nvm.word_size * 2;
636
637 first_word = eeprom->offset >> 1;
638 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
639 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
640 if (!eeprom_buff)
641 return -ENOMEM;
642
643 ptr = (void *)eeprom_buff;
644
645 if (eeprom->offset & 1) {
646 /* need read/modify/write of first changed EEPROM word */
647 /* only the second byte of the word is being modified */
648 ret_val = hw->nvm.ops.read_nvm(hw, first_word, 1,
649 &eeprom_buff[0]);
650 ptr++;
651 }
652 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
653 /* need read/modify/write of last changed EEPROM word */
654 /* only the first byte of the word is being modified */
655 ret_val = hw->nvm.ops.read_nvm(hw, last_word, 1,
656 &eeprom_buff[last_word - first_word]);
657 }
658
659 /* Device's eeprom is always little-endian, word addressable */
660 for (i = 0; i < last_word - first_word + 1; i++)
661 le16_to_cpus(&eeprom_buff[i]);
662
663 memcpy(ptr, bytes, eeprom->len);
664
665 for (i = 0; i < last_word - first_word + 1; i++)
666 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
667
668 ret_val = hw->nvm.ops.write_nvm(hw, first_word,
669 last_word - first_word + 1, eeprom_buff);
670
671 /* Update the checksum over the first part of the EEPROM if needed
672 * and flush shadow RAM for 82573 controllers */
673 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
674 igb_update_nvm_checksum(hw);
675
676 kfree(eeprom_buff);
677 return ret_val;
678}
679
680static void igb_get_drvinfo(struct net_device *netdev,
681 struct ethtool_drvinfo *drvinfo)
682{
683 struct igb_adapter *adapter = netdev_priv(netdev);
684 char firmware_version[32];
685 u16 eeprom_data;
686
687 strncpy(drvinfo->driver, igb_driver_name, 32);
688 strncpy(drvinfo->version, igb_driver_version, 32);
689
690 /* EEPROM image version # is reported as firmware version # for
691 * 82575 controllers */
692 adapter->hw.nvm.ops.read_nvm(&adapter->hw, 5, 1, &eeprom_data);
693 sprintf(firmware_version, "%d.%d-%d",
694 (eeprom_data & 0xF000) >> 12,
695 (eeprom_data & 0x0FF0) >> 4,
696 eeprom_data & 0x000F);
697
698 strncpy(drvinfo->fw_version, firmware_version, 32);
699 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
700 drvinfo->n_stats = IGB_STATS_LEN;
701 drvinfo->testinfo_len = IGB_TEST_LEN;
702 drvinfo->regdump_len = igb_get_regs_len(netdev);
703 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
704}
705
706static void igb_get_ringparam(struct net_device *netdev,
707 struct ethtool_ringparam *ring)
708{
709 struct igb_adapter *adapter = netdev_priv(netdev);
710 struct igb_ring *tx_ring = adapter->tx_ring;
711 struct igb_ring *rx_ring = adapter->rx_ring;
712
713 ring->rx_max_pending = IGB_MAX_RXD;
714 ring->tx_max_pending = IGB_MAX_TXD;
715 ring->rx_mini_max_pending = 0;
716 ring->rx_jumbo_max_pending = 0;
717 ring->rx_pending = rx_ring->count;
718 ring->tx_pending = tx_ring->count;
719 ring->rx_mini_pending = 0;
720 ring->rx_jumbo_pending = 0;
721}
722
723static int igb_set_ringparam(struct net_device *netdev,
724 struct ethtool_ringparam *ring)
725{
726 struct igb_adapter *adapter = netdev_priv(netdev);
727 struct igb_buffer *old_buf;
728 struct igb_buffer *old_rx_buf;
729 void *old_desc;
730 int i, err;
731 u32 new_rx_count, new_tx_count, old_size;
732 dma_addr_t old_dma;
733
734 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
735 return -EINVAL;
736
737 new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
738 new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
739 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
740
741 new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
742 new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
743 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
744
745 if ((new_tx_count == adapter->tx_ring->count) &&
746 (new_rx_count == adapter->rx_ring->count)) {
747 /* nothing to do */
748 return 0;
749 }
750
751 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
752 msleep(1);
753
754 if (netif_running(adapter->netdev))
755 igb_down(adapter);
756
757 /*
758 * We can't just free everything and then setup again,
759 * because the ISRs in MSI-X mode get passed pointers
760 * to the tx and rx ring structs.
761 */
762 if (new_tx_count != adapter->tx_ring->count) {
763 for (i = 0; i < adapter->num_tx_queues; i++) {
764 /* Save existing descriptor ring */
765 old_buf = adapter->tx_ring[i].buffer_info;
766 old_desc = adapter->tx_ring[i].desc;
767 old_size = adapter->tx_ring[i].size;
768 old_dma = adapter->tx_ring[i].dma;
769 /* Try to allocate a new one */
770 adapter->tx_ring[i].buffer_info = NULL;
771 adapter->tx_ring[i].desc = NULL;
772 adapter->tx_ring[i].count = new_tx_count;
773 err = igb_setup_tx_resources(adapter,
774 &adapter->tx_ring[i]);
775 if (err) {
776 /* Restore the old one so at least
777 the adapter still works, even if
778 we failed the request */
779 adapter->tx_ring[i].buffer_info = old_buf;
780 adapter->tx_ring[i].desc = old_desc;
781 adapter->tx_ring[i].size = old_size;
782 adapter->tx_ring[i].dma = old_dma;
783 goto err_setup;
784 }
785 /* Free the old buffer manually */
786 vfree(old_buf);
787 pci_free_consistent(adapter->pdev, old_size,
788 old_desc, old_dma);
789 }
790 }
791
792 if (new_rx_count != adapter->rx_ring->count) {
793 for (i = 0; i < adapter->num_rx_queues; i++) {
794
795 old_rx_buf = adapter->rx_ring[i].buffer_info;
796 old_desc = adapter->rx_ring[i].desc;
797 old_size = adapter->rx_ring[i].size;
798 old_dma = adapter->rx_ring[i].dma;
799
800 adapter->rx_ring[i].buffer_info = NULL;
801 adapter->rx_ring[i].desc = NULL;
802 adapter->rx_ring[i].dma = 0;
803 adapter->rx_ring[i].count = new_rx_count;
804 err = igb_setup_rx_resources(adapter,
805 &adapter->rx_ring[i]);
806 if (err) {
807 adapter->rx_ring[i].buffer_info = old_rx_buf;
808 adapter->rx_ring[i].desc = old_desc;
809 adapter->rx_ring[i].size = old_size;
810 adapter->rx_ring[i].dma = old_dma;
811 goto err_setup;
812 }
813
814 vfree(old_rx_buf);
815 pci_free_consistent(adapter->pdev, old_size, old_desc,
816 old_dma);
817 }
818 }
819
820 err = 0;
821err_setup:
822 if (netif_running(adapter->netdev))
823 igb_up(adapter);
824
825 clear_bit(__IGB_RESETTING, &adapter->state);
826 return err;
827}
828
829/* ethtool register test data */
830struct igb_reg_test {
831 u16 reg;
832 u8 array_len;
833 u8 test_type;
834 u32 mask;
835 u32 write;
836};
837
838/* In the hardware, registers are laid out either singly, in arrays
839 * spaced 0x100 bytes apart, or in contiguous tables. We assume
840 * most tests take place on arrays or single registers (handled
841 * as a single-element array) and special-case the tables.
842 * Table tests are always pattern tests.
843 *
844 * We also make provision for some required setup steps by specifying
845 * registers to be written without any read-back testing.
846 */
847
848#define PATTERN_TEST 1
849#define SET_READ_TEST 2
850#define WRITE_NO_TEST 3
851#define TABLE32_TEST 4
852#define TABLE64_TEST_LO 5
853#define TABLE64_TEST_HI 6
854
855/* default register test */
856static struct igb_reg_test reg_test_82575[] = {
857 { E1000_FCAL, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
858 { E1000_FCAH, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
859 { E1000_FCT, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
860 { E1000_VET, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
861 { E1000_RDBAL(0), 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
862 { E1000_RDBAH(0), 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
863 { E1000_RDLEN(0), 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
864 /* Enable all four RX queues before testing. */
865 { E1000_RXDCTL(0), 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
866 /* RDH is read-only for 82575, only test RDT. */
867 { E1000_RDT(0), 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
868 { E1000_RXDCTL(0), 4, WRITE_NO_TEST, 0, 0 },
869 { E1000_FCRTH, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
870 { E1000_FCTTV, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
871 { E1000_TIPG, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
872 { E1000_TDBAL(0), 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
873 { E1000_TDBAH(0), 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
874 { E1000_TDLEN(0), 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
875 { E1000_RCTL, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
876 { E1000_RCTL, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
877 { E1000_RCTL, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
878 { E1000_TCTL, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
879 { E1000_TXCW, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
880 { E1000_RA, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
881 { E1000_RA, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
882 { E1000_MTA, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
883 { 0, 0, 0, 0 }
884};
885
886static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
887 int reg, u32 mask, u32 write)
888{
889 u32 pat, val;
890 u32 _test[] =
891 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
892 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
893 writel((_test[pat] & write), (adapter->hw.hw_addr + reg));
894 val = readl(adapter->hw.hw_addr + reg);
895 if (val != (_test[pat] & write & mask)) {
896 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
897 "failed: got 0x%08X expected 0x%08X\n",
898 reg, val, (_test[pat] & write & mask));
899 *data = reg;
900 return 1;
901 }
902 }
903 return 0;
904}
905
906static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
907 int reg, u32 mask, u32 write)
908{
909 u32 val;
910 writel((write & mask), (adapter->hw.hw_addr + reg));
911 val = readl(adapter->hw.hw_addr + reg);
912 if ((write & mask) != (val & mask)) {
913 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
914 " got 0x%08X expected 0x%08X\n", reg,
915 (val & mask), (write & mask));
916 *data = reg;
917 return 1;
918 }
919 return 0;
920}
921
922#define REG_PATTERN_TEST(reg, mask, write) \
923 do { \
924 if (reg_pattern_test(adapter, data, reg, mask, write)) \
925 return 1; \
926 } while (0)
927
928#define REG_SET_AND_CHECK(reg, mask, write) \
929 do { \
930 if (reg_set_and_check(adapter, data, reg, mask, write)) \
931 return 1; \
932 } while (0)
933
934static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
935{
936 struct e1000_hw *hw = &adapter->hw;
937 struct igb_reg_test *test;
938 u32 value, before, after;
939 u32 i, toggle;
940
941 toggle = 0x7FFFF3FF;
942 test = reg_test_82575;
943
944 /* Because the status register is such a special case,
945 * we handle it separately from the rest of the register
946 * tests. Some bits are read-only, some toggle, and some
947 * are writable on newer MACs.
948 */
949 before = rd32(E1000_STATUS);
950 value = (rd32(E1000_STATUS) & toggle);
951 wr32(E1000_STATUS, toggle);
952 after = rd32(E1000_STATUS) & toggle;
953 if (value != after) {
954 dev_err(&adapter->pdev->dev, "failed STATUS register test "
955 "got: 0x%08X expected: 0x%08X\n", after, value);
956 *data = 1;
957 return 1;
958 }
959 /* restore previous status */
960 wr32(E1000_STATUS, before);
961
962 /* Perform the remainder of the register test, looping through
963 * the test table until we either fail or reach the null entry.
964 */
965 while (test->reg) {
966 for (i = 0; i < test->array_len; i++) {
967 switch (test->test_type) {
968 case PATTERN_TEST:
969 REG_PATTERN_TEST(test->reg + (i * 0x100),
970 test->mask,
971 test->write);
972 break;
973 case SET_READ_TEST:
974 REG_SET_AND_CHECK(test->reg + (i * 0x100),
975 test->mask,
976 test->write);
977 break;
978 case WRITE_NO_TEST:
979 writel(test->write,
980 (adapter->hw.hw_addr + test->reg)
981 + (i * 0x100));
982 break;
983 case TABLE32_TEST:
984 REG_PATTERN_TEST(test->reg + (i * 4),
985 test->mask,
986 test->write);
987 break;
988 case TABLE64_TEST_LO:
989 REG_PATTERN_TEST(test->reg + (i * 8),
990 test->mask,
991 test->write);
992 break;
993 case TABLE64_TEST_HI:
994 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
995 test->mask,
996 test->write);
997 break;
998 }
999 }
1000 test++;
1001 }
1002
1003 *data = 0;
1004 return 0;
1005}
1006
1007static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1008{
1009 u16 temp;
1010 u16 checksum = 0;
1011 u16 i;
1012
1013 *data = 0;
1014 /* Read and add up the contents of the EEPROM */
1015 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1016 if ((adapter->hw.nvm.ops.read_nvm(&adapter->hw, i, 1, &temp))
1017 < 0) {
1018 *data = 1;
1019 break;
1020 }
1021 checksum += temp;
1022 }
1023
1024 /* If Checksum is not Correct return error else test passed */
1025 if ((checksum != (u16) NVM_SUM) && !(*data))
1026 *data = 2;
1027
1028 return *data;
1029}
1030
1031static irqreturn_t igb_test_intr(int irq, void *data)
1032{
1033 struct net_device *netdev = (struct net_device *) data;
1034 struct igb_adapter *adapter = netdev_priv(netdev);
1035 struct e1000_hw *hw = &adapter->hw;
1036
1037 adapter->test_icr |= rd32(E1000_ICR);
1038
1039 return IRQ_HANDLED;
1040}
1041
1042static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1043{
1044 struct e1000_hw *hw = &adapter->hw;
1045 struct net_device *netdev = adapter->netdev;
1046 u32 mask, i = 0, shared_int = true;
1047 u32 irq = adapter->pdev->irq;
1048
1049 *data = 0;
1050
1051 /* Hook up test interrupt handler just for this test */
1052 if (adapter->msix_entries) {
1053 /* NOTE: we don't test MSI-X interrupts here, yet */
1054 return 0;
1055 } else if (adapter->msi_enabled) {
1056 shared_int = false;
1057 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1058 *data = 1;
1059 return -1;
1060 }
1061 } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1062 netdev->name, netdev)) {
1063 shared_int = false;
1064 } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1065 netdev->name, netdev)) {
1066 *data = 1;
1067 return -1;
1068 }
1069 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1070 (shared_int ? "shared" : "unshared"));
1071
1072 /* Disable all the interrupts */
1073 wr32(E1000_IMC, 0xFFFFFFFF);
1074 msleep(10);
1075
1076 /* Test each interrupt */
1077 for (; i < 10; i++) {
1078 /* Interrupt to test */
1079 mask = 1 << i;
1080
1081 if (!shared_int) {
1082 /* Disable the interrupt to be reported in
1083 * the cause register and then force the same
1084 * interrupt and see if one gets posted. If
1085 * an interrupt was posted to the bus, the
1086 * test failed.
1087 */
1088 adapter->test_icr = 0;
1089 wr32(E1000_IMC, ~mask & 0x00007FFF);
1090 wr32(E1000_ICS, ~mask & 0x00007FFF);
1091 msleep(10);
1092
1093 if (adapter->test_icr & mask) {
1094 *data = 3;
1095 break;
1096 }
1097 }
1098
1099 /* Enable the interrupt to be reported in
1100 * the cause register and then force the same
1101 * interrupt and see if one gets posted. If
1102 * an interrupt was not posted to the bus, the
1103 * test failed.
1104 */
1105 adapter->test_icr = 0;
1106 wr32(E1000_IMS, mask);
1107 wr32(E1000_ICS, mask);
1108 msleep(10);
1109
1110 if (!(adapter->test_icr & mask)) {
1111 *data = 4;
1112 break;
1113 }
1114
1115 if (!shared_int) {
1116 /* Disable the other interrupts to be reported in
1117 * the cause register and then force the other
1118 * interrupts and see if any get posted. If
1119 * an interrupt was posted to the bus, the
1120 * test failed.
1121 */
1122 adapter->test_icr = 0;
1123 wr32(E1000_IMC, ~mask & 0x00007FFF);
1124 wr32(E1000_ICS, ~mask & 0x00007FFF);
1125 msleep(10);
1126
1127 if (adapter->test_icr) {
1128 *data = 5;
1129 break;
1130 }
1131 }
1132 }
1133
1134 /* Disable all the interrupts */
1135 wr32(E1000_IMC, 0xFFFFFFFF);
1136 msleep(10);
1137
1138 /* Unhook test interrupt handler */
1139 free_irq(irq, netdev);
1140
1141 return *data;
1142}
1143
1144static void igb_free_desc_rings(struct igb_adapter *adapter)
1145{
1146 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1147 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1148 struct pci_dev *pdev = adapter->pdev;
1149 int i;
1150
1151 if (tx_ring->desc && tx_ring->buffer_info) {
1152 for (i = 0; i < tx_ring->count; i++) {
1153 struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1154 if (buf->dma)
1155 pci_unmap_single(pdev, buf->dma, buf->length,
1156 PCI_DMA_TODEVICE);
1157 if (buf->skb)
1158 dev_kfree_skb(buf->skb);
1159 }
1160 }
1161
1162 if (rx_ring->desc && rx_ring->buffer_info) {
1163 for (i = 0; i < rx_ring->count; i++) {
1164 struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1165 if (buf->dma)
1166 pci_unmap_single(pdev, buf->dma,
1167 IGB_RXBUFFER_2048,
1168 PCI_DMA_FROMDEVICE);
1169 if (buf->skb)
1170 dev_kfree_skb(buf->skb);
1171 }
1172 }
1173
1174 if (tx_ring->desc) {
1175 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1176 tx_ring->dma);
1177 tx_ring->desc = NULL;
1178 }
1179 if (rx_ring->desc) {
1180 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1181 rx_ring->dma);
1182 rx_ring->desc = NULL;
1183 }
1184
1185 kfree(tx_ring->buffer_info);
1186 tx_ring->buffer_info = NULL;
1187 kfree(rx_ring->buffer_info);
1188 rx_ring->buffer_info = NULL;
1189
1190 return;
1191}
1192
1193static int igb_setup_desc_rings(struct igb_adapter *adapter)
1194{
1195 struct e1000_hw *hw = &adapter->hw;
1196 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1197 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1198 struct pci_dev *pdev = adapter->pdev;
1199 u32 rctl;
1200 int i, ret_val;
1201
1202 /* Setup Tx descriptor ring and Tx buffers */
1203
1204 if (!tx_ring->count)
1205 tx_ring->count = IGB_DEFAULT_TXD;
1206
1207 tx_ring->buffer_info = kcalloc(tx_ring->count,
1208 sizeof(struct igb_buffer),
1209 GFP_KERNEL);
1210 if (!tx_ring->buffer_info) {
1211 ret_val = 1;
1212 goto err_nomem;
1213 }
1214
1215 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1216 tx_ring->size = ALIGN(tx_ring->size, 4096);
1217 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1218 &tx_ring->dma);
1219 if (!tx_ring->desc) {
1220 ret_val = 2;
1221 goto err_nomem;
1222 }
1223 tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1224
1225 wr32(E1000_TDBAL(0),
1226 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1227 wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1228 wr32(E1000_TDLEN(0),
1229 tx_ring->count * sizeof(struct e1000_tx_desc));
1230 wr32(E1000_TDH(0), 0);
1231 wr32(E1000_TDT(0), 0);
1232 wr32(E1000_TCTL,
1233 E1000_TCTL_PSP | E1000_TCTL_EN |
1234 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1235 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1236
1237 for (i = 0; i < tx_ring->count; i++) {
1238 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1239 struct sk_buff *skb;
1240 unsigned int size = 1024;
1241
1242 skb = alloc_skb(size, GFP_KERNEL);
1243 if (!skb) {
1244 ret_val = 3;
1245 goto err_nomem;
1246 }
1247 skb_put(skb, size);
1248 tx_ring->buffer_info[i].skb = skb;
1249 tx_ring->buffer_info[i].length = skb->len;
1250 tx_ring->buffer_info[i].dma =
1251 pci_map_single(pdev, skb->data, skb->len,
1252 PCI_DMA_TODEVICE);
1253 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1254 tx_desc->lower.data = cpu_to_le32(skb->len);
1255 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1256 E1000_TXD_CMD_IFCS |
1257 E1000_TXD_CMD_RS);
1258 tx_desc->upper.data = 0;
1259 }
1260
1261 /* Setup Rx descriptor ring and Rx buffers */
1262
1263 if (!rx_ring->count)
1264 rx_ring->count = IGB_DEFAULT_RXD;
1265
1266 rx_ring->buffer_info = kcalloc(rx_ring->count,
1267 sizeof(struct igb_buffer),
1268 GFP_KERNEL);
1269 if (!rx_ring->buffer_info) {
1270 ret_val = 4;
1271 goto err_nomem;
1272 }
1273
1274 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1275 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1276 &rx_ring->dma);
1277 if (!rx_ring->desc) {
1278 ret_val = 5;
1279 goto err_nomem;
1280 }
1281 rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1282
1283 rctl = rd32(E1000_RCTL);
1284 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1285 wr32(E1000_RDBAL(0),
1286 ((u64) rx_ring->dma & 0xFFFFFFFF));
1287 wr32(E1000_RDBAH(0),
1288 ((u64) rx_ring->dma >> 32));
1289 wr32(E1000_RDLEN(0), rx_ring->size);
1290 wr32(E1000_RDH(0), 0);
1291 wr32(E1000_RDT(0), 0);
1292 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1293 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1294 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1295 wr32(E1000_RCTL, rctl);
1296 wr32(E1000_SRRCTL(0), 0);
1297
1298 for (i = 0; i < rx_ring->count; i++) {
1299 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1300 struct sk_buff *skb;
1301
1302 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1303 GFP_KERNEL);
1304 if (!skb) {
1305 ret_val = 6;
1306 goto err_nomem;
1307 }
1308 skb_reserve(skb, NET_IP_ALIGN);
1309 rx_ring->buffer_info[i].skb = skb;
1310 rx_ring->buffer_info[i].dma =
1311 pci_map_single(pdev, skb->data, IGB_RXBUFFER_2048,
1312 PCI_DMA_FROMDEVICE);
1313 rx_desc->buffer_addr = cpu_to_le64(rx_ring->buffer_info[i].dma);
1314 memset(skb->data, 0x00, skb->len);
1315 }
1316
1317 return 0;
1318
1319err_nomem:
1320 igb_free_desc_rings(adapter);
1321 return ret_val;
1322}
1323
1324static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1325{
1326 struct e1000_hw *hw = &adapter->hw;
1327
1328 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1329 hw->phy.ops.write_phy_reg(hw, 29, 0x001F);
1330 hw->phy.ops.write_phy_reg(hw, 30, 0x8FFC);
1331 hw->phy.ops.write_phy_reg(hw, 29, 0x001A);
1332 hw->phy.ops.write_phy_reg(hw, 30, 0x8FF0);
1333}
1334
1335static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1336{
1337 struct e1000_hw *hw = &adapter->hw;
1338 u32 ctrl_reg = 0;
1339 u32 stat_reg = 0;
1340
1341 hw->mac.autoneg = false;
1342
1343 if (hw->phy.type == e1000_phy_m88) {
1344 /* Auto-MDI/MDIX Off */
1345 hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1346 /* reset to update Auto-MDI/MDIX */
1347 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x9140);
1348 /* autoneg off */
1349 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x8140);
1350 }
1351
1352 ctrl_reg = rd32(E1000_CTRL);
1353
1354 /* force 1000, set loopback */
1355 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x4140);
1356
1357 /* Now set up the MAC to the same speed/duplex as the PHY. */
1358 ctrl_reg = rd32(E1000_CTRL);
1359 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1360 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1361 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1362 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1363 E1000_CTRL_FD); /* Force Duplex to FULL */
1364
1365 if (hw->phy.media_type == e1000_media_type_copper &&
1366 hw->phy.type == e1000_phy_m88)
1367 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1368 else {
1369 /* Set the ILOS bit on the fiber Nic if half duplex link is
1370 * detected. */
1371 stat_reg = rd32(E1000_STATUS);
1372 if ((stat_reg & E1000_STATUS_FD) == 0)
1373 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1374 }
1375
1376 wr32(E1000_CTRL, ctrl_reg);
1377
1378 /* Disable the receiver on the PHY so when a cable is plugged in, the
1379 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1380 */
1381 if (hw->phy.type == e1000_phy_m88)
1382 igb_phy_disable_receiver(adapter);
1383
1384 udelay(500);
1385
1386 return 0;
1387}
1388
1389static int igb_set_phy_loopback(struct igb_adapter *adapter)
1390{
1391 return igb_integrated_phy_loopback(adapter);
1392}
1393
1394static int igb_setup_loopback_test(struct igb_adapter *adapter)
1395{
1396 struct e1000_hw *hw = &adapter->hw;
1397 u32 rctl;
1398
1399 if (hw->phy.media_type == e1000_media_type_fiber ||
1400 hw->phy.media_type == e1000_media_type_internal_serdes) {
1401 rctl = rd32(E1000_RCTL);
1402 rctl |= E1000_RCTL_LBM_TCVR;
1403 wr32(E1000_RCTL, rctl);
1404 return 0;
1405 } else if (hw->phy.media_type == e1000_media_type_copper) {
1406 return igb_set_phy_loopback(adapter);
1407 }
1408
1409 return 7;
1410}
1411
1412static void igb_loopback_cleanup(struct igb_adapter *adapter)
1413{
1414 struct e1000_hw *hw = &adapter->hw;
1415 u32 rctl;
1416 u16 phy_reg;
1417
1418 rctl = rd32(E1000_RCTL);
1419 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1420 wr32(E1000_RCTL, rctl);
1421
1422 hw->mac.autoneg = true;
1423 hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1424 if (phy_reg & MII_CR_LOOPBACK) {
1425 phy_reg &= ~MII_CR_LOOPBACK;
1426 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_reg);
1427 igb_phy_sw_reset(hw);
1428 }
1429}
1430
1431static void igb_create_lbtest_frame(struct sk_buff *skb,
1432 unsigned int frame_size)
1433{
1434 memset(skb->data, 0xFF, frame_size);
1435 frame_size &= ~1;
1436 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1437 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1438 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1439}
1440
1441static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1442{
1443 frame_size &= ~1;
1444 if (*(skb->data + 3) == 0xFF)
1445 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1446 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1447 return 0;
1448 return 13;
1449}
1450
1451static int igb_run_loopback_test(struct igb_adapter *adapter)
1452{
1453 struct e1000_hw *hw = &adapter->hw;
1454 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1455 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1456 struct pci_dev *pdev = adapter->pdev;
1457 int i, j, k, l, lc, good_cnt;
1458 int ret_val = 0;
1459 unsigned long time;
1460
1461 wr32(E1000_RDT(0), rx_ring->count - 1);
1462
1463 /* Calculate the loop count based on the largest descriptor ring
1464 * The idea is to wrap the largest ring a number of times using 64
1465 * send/receive pairs during each loop
1466 */
1467
1468 if (rx_ring->count <= tx_ring->count)
1469 lc = ((tx_ring->count / 64) * 2) + 1;
1470 else
1471 lc = ((rx_ring->count / 64) * 2) + 1;
1472
1473 k = l = 0;
1474 for (j = 0; j <= lc; j++) { /* loop count loop */
1475 for (i = 0; i < 64; i++) { /* send the packets */
1476 igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1477 1024);
1478 pci_dma_sync_single_for_device(pdev,
1479 tx_ring->buffer_info[k].dma,
1480 tx_ring->buffer_info[k].length,
1481 PCI_DMA_TODEVICE);
1482 k++;
1483 if (k == tx_ring->count)
1484 k = 0;
1485 }
1486 wr32(E1000_TDT(0), k);
1487 msleep(200);
1488 time = jiffies; /* set the start time for the receive */
1489 good_cnt = 0;
1490 do { /* receive the sent packets */
1491 pci_dma_sync_single_for_cpu(pdev,
1492 rx_ring->buffer_info[l].dma,
1493 IGB_RXBUFFER_2048,
1494 PCI_DMA_FROMDEVICE);
1495
1496 ret_val = igb_check_lbtest_frame(
1497 rx_ring->buffer_info[l].skb, 1024);
1498 if (!ret_val)
1499 good_cnt++;
1500 l++;
1501 if (l == rx_ring->count)
1502 l = 0;
1503 /* time + 20 msecs (200 msecs on 2.4) is more than
1504 * enough time to complete the receives, if it's
1505 * exceeded, break and error off
1506 */
1507 } while (good_cnt < 64 && jiffies < (time + 20));
1508 if (good_cnt != 64) {
1509 ret_val = 13; /* ret_val is the same as mis-compare */
1510 break;
1511 }
1512 if (jiffies >= (time + 20)) {
1513 ret_val = 14; /* error code for time out error */
1514 break;
1515 }
1516 } /* end loop count loop */
1517 return ret_val;
1518}
1519
1520static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1521{
1522 /* PHY loopback cannot be performed if SoL/IDER
1523 * sessions are active */
1524 if (igb_check_reset_block(&adapter->hw)) {
1525 dev_err(&adapter->pdev->dev,
1526 "Cannot do PHY loopback test "
1527 "when SoL/IDER is active.\n");
1528 *data = 0;
1529 goto out;
1530 }
1531 *data = igb_setup_desc_rings(adapter);
1532 if (*data)
1533 goto out;
1534 *data = igb_setup_loopback_test(adapter);
1535 if (*data)
1536 goto err_loopback;
1537 *data = igb_run_loopback_test(adapter);
1538 igb_loopback_cleanup(adapter);
1539
1540err_loopback:
1541 igb_free_desc_rings(adapter);
1542out:
1543 return *data;
1544}
1545
1546static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1547{
1548 struct e1000_hw *hw = &adapter->hw;
1549 *data = 0;
1550 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1551 int i = 0;
1552 hw->mac.serdes_has_link = false;
1553
1554 /* On some blade server designs, link establishment
1555 * could take as long as 2-3 minutes */
1556 do {
1557 hw->mac.ops.check_for_link(&adapter->hw);
1558 if (hw->mac.serdes_has_link)
1559 return *data;
1560 msleep(20);
1561 } while (i++ < 3750);
1562
1563 *data = 1;
1564 } else {
1565 hw->mac.ops.check_for_link(&adapter->hw);
1566 if (hw->mac.autoneg)
1567 msleep(4000);
1568
1569 if (!(rd32(E1000_STATUS) &
1570 E1000_STATUS_LU))
1571 *data = 1;
1572 }
1573 return *data;
1574}
1575
1576static void igb_diag_test(struct net_device *netdev,
1577 struct ethtool_test *eth_test, u64 *data)
1578{
1579 struct igb_adapter *adapter = netdev_priv(netdev);
1580 u16 autoneg_advertised;
1581 u8 forced_speed_duplex, autoneg;
1582 bool if_running = netif_running(netdev);
1583
1584 set_bit(__IGB_TESTING, &adapter->state);
1585 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1586 /* Offline tests */
1587
1588 /* save speed, duplex, autoneg settings */
1589 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1590 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1591 autoneg = adapter->hw.mac.autoneg;
1592
1593 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1594
1595 /* Link test performed before hardware reset so autoneg doesn't
1596 * interfere with test result */
1597 if (igb_link_test(adapter, &data[4]))
1598 eth_test->flags |= ETH_TEST_FL_FAILED;
1599
1600 if (if_running)
1601 /* indicate we're in test mode */
1602 dev_close(netdev);
1603 else
1604 igb_reset(adapter);
1605
1606 if (igb_reg_test(adapter, &data[0]))
1607 eth_test->flags |= ETH_TEST_FL_FAILED;
1608
1609 igb_reset(adapter);
1610 if (igb_eeprom_test(adapter, &data[1]))
1611 eth_test->flags |= ETH_TEST_FL_FAILED;
1612
1613 igb_reset(adapter);
1614 if (igb_intr_test(adapter, &data[2]))
1615 eth_test->flags |= ETH_TEST_FL_FAILED;
1616
1617 igb_reset(adapter);
1618 if (igb_loopback_test(adapter, &data[3]))
1619 eth_test->flags |= ETH_TEST_FL_FAILED;
1620
1621 /* restore speed, duplex, autoneg settings */
1622 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1623 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1624 adapter->hw.mac.autoneg = autoneg;
1625
1626 /* force this routine to wait until autoneg complete/timeout */
1627 adapter->hw.phy.autoneg_wait_to_complete = true;
1628 igb_reset(adapter);
1629 adapter->hw.phy.autoneg_wait_to_complete = false;
1630
1631 clear_bit(__IGB_TESTING, &adapter->state);
1632 if (if_running)
1633 dev_open(netdev);
1634 } else {
1635 dev_info(&adapter->pdev->dev, "online testing starting\n");
1636 /* Online tests */
1637 if (igb_link_test(adapter, &data[4]))
1638 eth_test->flags |= ETH_TEST_FL_FAILED;
1639
1640 /* Online tests aren't run; pass by default */
1641 data[0] = 0;
1642 data[1] = 0;
1643 data[2] = 0;
1644 data[3] = 0;
1645
1646 clear_bit(__IGB_TESTING, &adapter->state);
1647 }
1648 msleep_interruptible(4 * 1000);
1649}
1650
1651static int igb_wol_exclusion(struct igb_adapter *adapter,
1652 struct ethtool_wolinfo *wol)
1653{
1654 struct e1000_hw *hw = &adapter->hw;
1655 int retval = 1; /* fail by default */
1656
1657 switch (hw->device_id) {
1658 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1659 /* WoL not supported */
1660 wol->supported = 0;
1661 break;
1662 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1663 /* Wake events not supported on port B */
1664 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1665 wol->supported = 0;
1666 break;
1667 }
1668 /* return success for non excluded adapter ports */
1669 retval = 0;
1670 break;
1671 default:
1672 /* dual port cards only support WoL on port A from now on
1673 * unless it was enabled in the eeprom for port B
1674 * so exclude FUNC_1 ports from having WoL enabled */
1675 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1676 !adapter->eeprom_wol) {
1677 wol->supported = 0;
1678 break;
1679 }
1680
1681 retval = 0;
1682 }
1683
1684 return retval;
1685}
1686
1687static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1688{
1689 struct igb_adapter *adapter = netdev_priv(netdev);
1690
1691 wol->supported = WAKE_UCAST | WAKE_MCAST |
1692 WAKE_BCAST | WAKE_MAGIC;
1693 wol->wolopts = 0;
1694
1695 /* this function will set ->supported = 0 and return 1 if wol is not
1696 * supported by this hardware */
1697 if (igb_wol_exclusion(adapter, wol))
1698 return;
1699
1700 /* apply any specific unsupported masks here */
1701 switch (adapter->hw.device_id) {
1702 default:
1703 break;
1704 }
1705
1706 if (adapter->wol & E1000_WUFC_EX)
1707 wol->wolopts |= WAKE_UCAST;
1708 if (adapter->wol & E1000_WUFC_MC)
1709 wol->wolopts |= WAKE_MCAST;
1710 if (adapter->wol & E1000_WUFC_BC)
1711 wol->wolopts |= WAKE_BCAST;
1712 if (adapter->wol & E1000_WUFC_MAG)
1713 wol->wolopts |= WAKE_MAGIC;
1714
1715 return;
1716}
1717
1718static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1719{
1720 struct igb_adapter *adapter = netdev_priv(netdev);
1721 struct e1000_hw *hw = &adapter->hw;
1722
1723 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1724 return -EOPNOTSUPP;
1725
1726 if (igb_wol_exclusion(adapter, wol))
1727 return wol->wolopts ? -EOPNOTSUPP : 0;
1728
1729 switch (hw->device_id) {
1730 default:
1731 break;
1732 }
1733
1734 /* these settings will always override what we currently have */
1735 adapter->wol = 0;
1736
1737 if (wol->wolopts & WAKE_UCAST)
1738 adapter->wol |= E1000_WUFC_EX;
1739 if (wol->wolopts & WAKE_MCAST)
1740 adapter->wol |= E1000_WUFC_MC;
1741 if (wol->wolopts & WAKE_BCAST)
1742 adapter->wol |= E1000_WUFC_BC;
1743 if (wol->wolopts & WAKE_MAGIC)
1744 adapter->wol |= E1000_WUFC_MAG;
1745
1746 return 0;
1747}
1748
1749/* toggle LED 4 times per second = 2 "blinks" per second */
1750#define IGB_ID_INTERVAL (HZ/4)
1751
1752/* bit defines for adapter->led_status */
1753#define IGB_LED_ON 0
1754
1755static int igb_phys_id(struct net_device *netdev, u32 data)
1756{
1757 struct igb_adapter *adapter = netdev_priv(netdev);
1758 struct e1000_hw *hw = &adapter->hw;
1759
1760 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1761 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1762
1763 igb_blink_led(hw);
1764 msleep_interruptible(data * 1000);
1765
1766 igb_led_off(hw);
1767 clear_bit(IGB_LED_ON, &adapter->led_status);
1768 igb_cleanup_led(hw);
1769
1770 return 0;
1771}
1772
1773static int igb_set_coalesce(struct net_device *netdev,
1774 struct ethtool_coalesce *ec)
1775{
1776 struct igb_adapter *adapter = netdev_priv(netdev);
1777
1778 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1779 ((ec->rx_coalesce_usecs > 3) &&
1780 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1781 (ec->rx_coalesce_usecs == 2))
1782 return -EINVAL;
1783
1784 /* convert to rate of irq's per second */
1785 if (ec->rx_coalesce_usecs <= 3)
1786 adapter->itr_setting = ec->rx_coalesce_usecs;
1787 else
1788 adapter->itr_setting = (1000000 / ec->rx_coalesce_usecs);
1789
1790 if (netif_running(netdev))
1791 igb_reinit_locked(adapter);
1792
1793 return 0;
1794}
1795
1796static int igb_get_coalesce(struct net_device *netdev,
1797 struct ethtool_coalesce *ec)
1798{
1799 struct igb_adapter *adapter = netdev_priv(netdev);
1800
1801 if (adapter->itr_setting <= 3)
1802 ec->rx_coalesce_usecs = adapter->itr_setting;
1803 else
1804 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1805
1806 return 0;
1807}
1808
1809
1810static int igb_nway_reset(struct net_device *netdev)
1811{
1812 struct igb_adapter *adapter = netdev_priv(netdev);
1813 if (netif_running(netdev))
1814 igb_reinit_locked(adapter);
1815 return 0;
1816}
1817
1818static int igb_get_sset_count(struct net_device *netdev, int sset)
1819{
1820 switch (sset) {
1821 case ETH_SS_STATS:
1822 return IGB_STATS_LEN;
1823 case ETH_SS_TEST:
1824 return IGB_TEST_LEN;
1825 default:
1826 return -ENOTSUPP;
1827 }
1828}
1829
1830static void igb_get_ethtool_stats(struct net_device *netdev,
1831 struct ethtool_stats *stats, u64 *data)
1832{
1833 struct igb_adapter *adapter = netdev_priv(netdev);
1834 u64 *queue_stat;
1835 int stat_count = sizeof(struct igb_queue_stats) / sizeof(u64);
1836 int j;
1837 int i;
1838
1839 igb_update_stats(adapter);
1840 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1841 char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset;
1842 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1843 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1844 }
1845 for (j = 0; j < adapter->num_rx_queues; j++) {
1846 int k;
1847 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1848 for (k = 0; k < stat_count; k++)
1849 data[i + k] = queue_stat[k];
1850 i += k;
1851 }
1852}
1853
1854static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1855{
1856 struct igb_adapter *adapter = netdev_priv(netdev);
1857 u8 *p = data;
1858 int i;
1859
1860 switch (stringset) {
1861 case ETH_SS_TEST:
1862 memcpy(data, *igb_gstrings_test,
1863 IGB_TEST_LEN*ETH_GSTRING_LEN);
1864 break;
1865 case ETH_SS_STATS:
1866 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1867 memcpy(p, igb_gstrings_stats[i].stat_string,
1868 ETH_GSTRING_LEN);
1869 p += ETH_GSTRING_LEN;
1870 }
1871 for (i = 0; i < adapter->num_tx_queues; i++) {
1872 sprintf(p, "tx_queue_%u_packets", i);
1873 p += ETH_GSTRING_LEN;
1874 sprintf(p, "tx_queue_%u_bytes", i);
1875 p += ETH_GSTRING_LEN;
1876 }
1877 for (i = 0; i < adapter->num_rx_queues; i++) {
1878 sprintf(p, "rx_queue_%u_packets", i);
1879 p += ETH_GSTRING_LEN;
1880 sprintf(p, "rx_queue_%u_bytes", i);
1881 p += ETH_GSTRING_LEN;
1882 }
1883/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
1884 break;
1885 }
1886}
1887
1888static struct ethtool_ops igb_ethtool_ops = {
1889 .get_settings = igb_get_settings,
1890 .set_settings = igb_set_settings,
1891 .get_drvinfo = igb_get_drvinfo,
1892 .get_regs_len = igb_get_regs_len,
1893 .get_regs = igb_get_regs,
1894 .get_wol = igb_get_wol,
1895 .set_wol = igb_set_wol,
1896 .get_msglevel = igb_get_msglevel,
1897 .set_msglevel = igb_set_msglevel,
1898 .nway_reset = igb_nway_reset,
1899 .get_link = ethtool_op_get_link,
1900 .get_eeprom_len = igb_get_eeprom_len,
1901 .get_eeprom = igb_get_eeprom,
1902 .set_eeprom = igb_set_eeprom,
1903 .get_ringparam = igb_get_ringparam,
1904 .set_ringparam = igb_set_ringparam,
1905 .get_pauseparam = igb_get_pauseparam,
1906 .set_pauseparam = igb_set_pauseparam,
1907 .get_rx_csum = igb_get_rx_csum,
1908 .set_rx_csum = igb_set_rx_csum,
1909 .get_tx_csum = igb_get_tx_csum,
1910 .set_tx_csum = igb_set_tx_csum,
1911 .get_sg = ethtool_op_get_sg,
1912 .set_sg = ethtool_op_set_sg,
1913 .get_tso = ethtool_op_get_tso,
1914 .set_tso = igb_set_tso,
1915 .self_test = igb_diag_test,
1916 .get_strings = igb_get_strings,
1917 .phys_id = igb_phys_id,
1918 .get_sset_count = igb_get_sset_count,
1919 .get_ethtool_stats = igb_get_ethtool_stats,
1920 .get_coalesce = igb_get_coalesce,
1921 .set_coalesce = igb_set_coalesce,
1922};
1923
1924void igb_set_ethtool_ops(struct net_device *netdev)
1925{
1926 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
1927}
diff --git a/drivers/net/igb/igb_main.c b/drivers/net/igb/igb_main.c
new file mode 100644
index 000000000000..f3c144d5d72f
--- /dev/null
+++ b/drivers/net/igb/igb_main.c
@@ -0,0 +1,4138 @@
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
34#include <linux/tcp.h>
35#include <linux/ipv6.h>
36#include <net/checksum.h>
37#include <net/ip6_checksum.h>
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40#include <linux/if_vlan.h>
41#include <linux/pci.h>
42#include <linux/delay.h>
43#include <linux/interrupt.h>
44#include <linux/if_ether.h>
45
46#include "igb.h"
47
48#define DRV_VERSION "1.0.8-k2"
49char igb_driver_name[] = "igb";
50char igb_driver_version[] = DRV_VERSION;
51static const char igb_driver_string[] =
52 "Intel(R) Gigabit Ethernet Network Driver";
53static const char igb_copyright[] = "Copyright (c) 2007 Intel Corporation.";
54
55
56static const struct e1000_info *igb_info_tbl[] = {
57 [board_82575] = &e1000_82575_info,
58};
59
60static struct pci_device_id igb_pci_tbl[] = {
61 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
62 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
64 /* required last entry */
65 {0, }
66};
67
68MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
69
70void igb_reset(struct igb_adapter *);
71static int igb_setup_all_tx_resources(struct igb_adapter *);
72static int igb_setup_all_rx_resources(struct igb_adapter *);
73static void igb_free_all_tx_resources(struct igb_adapter *);
74static void igb_free_all_rx_resources(struct igb_adapter *);
75static void igb_free_tx_resources(struct igb_adapter *, struct igb_ring *);
76static void igb_free_rx_resources(struct igb_adapter *, struct igb_ring *);
77void igb_update_stats(struct igb_adapter *);
78static int igb_probe(struct pci_dev *, const struct pci_device_id *);
79static void __devexit igb_remove(struct pci_dev *pdev);
80static int igb_sw_init(struct igb_adapter *);
81static int igb_open(struct net_device *);
82static int igb_close(struct net_device *);
83static void igb_configure_tx(struct igb_adapter *);
84static void igb_configure_rx(struct igb_adapter *);
85static void igb_setup_rctl(struct igb_adapter *);
86static void igb_clean_all_tx_rings(struct igb_adapter *);
87static void igb_clean_all_rx_rings(struct igb_adapter *);
88static void igb_clean_tx_ring(struct igb_adapter *, struct igb_ring *);
89static void igb_clean_rx_ring(struct igb_adapter *, struct igb_ring *);
90static void igb_set_multi(struct net_device *);
91static void igb_update_phy_info(unsigned long);
92static void igb_watchdog(unsigned long);
93static void igb_watchdog_task(struct work_struct *);
94static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
95 struct igb_ring *);
96static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
97static struct net_device_stats *igb_get_stats(struct net_device *);
98static int igb_change_mtu(struct net_device *, int);
99static int igb_set_mac(struct net_device *, void *);
100static irqreturn_t igb_intr(int irq, void *);
101static irqreturn_t igb_intr_msi(int irq, void *);
102static irqreturn_t igb_msix_other(int irq, void *);
103static irqreturn_t igb_msix_rx(int irq, void *);
104static irqreturn_t igb_msix_tx(int irq, void *);
105static int igb_clean_rx_ring_msix(struct napi_struct *, int);
106static bool igb_clean_tx_irq(struct igb_adapter *, struct igb_ring *);
107static int igb_clean(struct napi_struct *, int);
108static bool igb_clean_rx_irq_adv(struct igb_adapter *,
109 struct igb_ring *, int *, int);
110static void igb_alloc_rx_buffers_adv(struct igb_adapter *,
111 struct igb_ring *, int);
112static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
113static void igb_tx_timeout(struct net_device *);
114static void igb_reset_task(struct work_struct *);
115static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
116static void igb_vlan_rx_add_vid(struct net_device *, u16);
117static void igb_vlan_rx_kill_vid(struct net_device *, u16);
118static void igb_restore_vlan(struct igb_adapter *);
119
120static int igb_suspend(struct pci_dev *, pm_message_t);
121#ifdef CONFIG_PM
122static int igb_resume(struct pci_dev *);
123#endif
124static void igb_shutdown(struct pci_dev *);
125
126#ifdef CONFIG_NET_POLL_CONTROLLER
127/* for netdump / net console */
128static void igb_netpoll(struct net_device *);
129#endif
130
131static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
132 pci_channel_state_t);
133static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
134static void igb_io_resume(struct pci_dev *);
135
136static struct pci_error_handlers igb_err_handler = {
137 .error_detected = igb_io_error_detected,
138 .slot_reset = igb_io_slot_reset,
139 .resume = igb_io_resume,
140};
141
142
143static struct pci_driver igb_driver = {
144 .name = igb_driver_name,
145 .id_table = igb_pci_tbl,
146 .probe = igb_probe,
147 .remove = __devexit_p(igb_remove),
148#ifdef CONFIG_PM
149 /* Power Managment Hooks */
150 .suspend = igb_suspend,
151 .resume = igb_resume,
152#endif
153 .shutdown = igb_shutdown,
154 .err_handler = &igb_err_handler
155};
156
157MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
158MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
159MODULE_LICENSE("GPL");
160MODULE_VERSION(DRV_VERSION);
161
162#ifdef DEBUG
163/**
164 * igb_get_hw_dev_name - return device name string
165 * used by hardware layer to print debugging information
166 **/
167char *igb_get_hw_dev_name(struct e1000_hw *hw)
168{
169 struct igb_adapter *adapter = hw->back;
170 return adapter->netdev->name;
171}
172#endif
173
174/**
175 * igb_init_module - Driver Registration Routine
176 *
177 * igb_init_module is the first routine called when the driver is
178 * loaded. All it does is register with the PCI subsystem.
179 **/
180static int __init igb_init_module(void)
181{
182 int ret;
183 printk(KERN_INFO "%s - version %s\n",
184 igb_driver_string, igb_driver_version);
185
186 printk(KERN_INFO "%s\n", igb_copyright);
187
188 ret = pci_register_driver(&igb_driver);
189 return ret;
190}
191
192module_init(igb_init_module);
193
194/**
195 * igb_exit_module - Driver Exit Cleanup Routine
196 *
197 * igb_exit_module is called just before the driver is removed
198 * from memory.
199 **/
200static void __exit igb_exit_module(void)
201{
202 pci_unregister_driver(&igb_driver);
203}
204
205module_exit(igb_exit_module);
206
207/**
208 * igb_alloc_queues - Allocate memory for all rings
209 * @adapter: board private structure to initialize
210 *
211 * We allocate one ring per queue at run-time since we don't know the
212 * number of queues at compile-time.
213 **/
214static int igb_alloc_queues(struct igb_adapter *adapter)
215{
216 int i;
217
218 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
219 sizeof(struct igb_ring), GFP_KERNEL);
220 if (!adapter->tx_ring)
221 return -ENOMEM;
222
223 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
224 sizeof(struct igb_ring), GFP_KERNEL);
225 if (!adapter->rx_ring) {
226 kfree(adapter->tx_ring);
227 return -ENOMEM;
228 }
229
230 for (i = 0; i < adapter->num_rx_queues; i++) {
231 struct igb_ring *ring = &(adapter->rx_ring[i]);
232 ring->adapter = adapter;
233 ring->itr_register = E1000_ITR;
234
235 if (!ring->napi.poll)
236 netif_napi_add(adapter->netdev, &ring->napi, igb_clean,
237 adapter->napi.weight /
238 adapter->num_rx_queues);
239 }
240 return 0;
241}
242
243#define IGB_N0_QUEUE -1
244static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
245 int tx_queue, int msix_vector)
246{
247 u32 msixbm = 0;
248 struct e1000_hw *hw = &adapter->hw;
249 /* The 82575 assigns vectors using a bitmask, which matches the
250 bitmask for the EICR/EIMS/EIMC registers. To assign one
251 or more queues to a vector, we write the appropriate bits
252 into the MSIXBM register for that vector. */
253 if (rx_queue > IGB_N0_QUEUE) {
254 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
255 adapter->rx_ring[rx_queue].eims_value = msixbm;
256 }
257 if (tx_queue > IGB_N0_QUEUE) {
258 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
259 adapter->tx_ring[tx_queue].eims_value =
260 E1000_EICR_TX_QUEUE0 << tx_queue;
261 }
262 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
263}
264
265/**
266 * igb_configure_msix - Configure MSI-X hardware
267 *
268 * igb_configure_msix sets up the hardware to properly
269 * generate MSI-X interrupts.
270 **/
271static void igb_configure_msix(struct igb_adapter *adapter)
272{
273 u32 tmp;
274 int i, vector = 0;
275 struct e1000_hw *hw = &adapter->hw;
276
277 adapter->eims_enable_mask = 0;
278
279 for (i = 0; i < adapter->num_tx_queues; i++) {
280 struct igb_ring *tx_ring = &adapter->tx_ring[i];
281 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
282 adapter->eims_enable_mask |= tx_ring->eims_value;
283 if (tx_ring->itr_val)
284 writel(1000000000 / (tx_ring->itr_val * 256),
285 hw->hw_addr + tx_ring->itr_register);
286 else
287 writel(1, hw->hw_addr + tx_ring->itr_register);
288 }
289
290 for (i = 0; i < adapter->num_rx_queues; i++) {
291 struct igb_ring *rx_ring = &adapter->rx_ring[i];
292 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
293 adapter->eims_enable_mask |= rx_ring->eims_value;
294 if (rx_ring->itr_val)
295 writel(1000000000 / (rx_ring->itr_val * 256),
296 hw->hw_addr + rx_ring->itr_register);
297 else
298 writel(1, hw->hw_addr + rx_ring->itr_register);
299 }
300
301
302 /* set vector for other causes, i.e. link changes */
303 array_wr32(E1000_MSIXBM(0), vector++,
304 E1000_EIMS_OTHER);
305
306 /* disable IAM for ICR interrupt bits */
307 wr32(E1000_IAM, 0);
308
309 tmp = rd32(E1000_CTRL_EXT);
310 /* enable MSI-X PBA support*/
311 tmp |= E1000_CTRL_EXT_PBA_CLR;
312
313 /* Auto-Mask interrupts upon ICR read. */
314 tmp |= E1000_CTRL_EXT_EIAME;
315 tmp |= E1000_CTRL_EXT_IRCA;
316
317 wr32(E1000_CTRL_EXT, tmp);
318 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
319
320 wrfl();
321}
322
323/**
324 * igb_request_msix - Initialize MSI-X interrupts
325 *
326 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
327 * kernel.
328 **/
329static int igb_request_msix(struct igb_adapter *adapter)
330{
331 struct net_device *netdev = adapter->netdev;
332 int i, err = 0, vector = 0;
333
334 vector = 0;
335
336 for (i = 0; i < adapter->num_tx_queues; i++) {
337 struct igb_ring *ring = &(adapter->tx_ring[i]);
338 sprintf(ring->name, "%s-tx%d", netdev->name, i);
339 err = request_irq(adapter->msix_entries[vector].vector,
340 &igb_msix_tx, 0, ring->name,
341 &(adapter->tx_ring[i]));
342 if (err)
343 goto out;
344 ring->itr_register = E1000_EITR(0) + (vector << 2);
345 ring->itr_val = adapter->itr;
346 vector++;
347 }
348 for (i = 0; i < adapter->num_rx_queues; i++) {
349 struct igb_ring *ring = &(adapter->rx_ring[i]);
350 if (strlen(netdev->name) < (IFNAMSIZ - 5))
351 sprintf(ring->name, "%s-rx%d", netdev->name, i);
352 else
353 memcpy(ring->name, netdev->name, IFNAMSIZ);
354 err = request_irq(adapter->msix_entries[vector].vector,
355 &igb_msix_rx, 0, ring->name,
356 &(adapter->rx_ring[i]));
357 if (err)
358 goto out;
359 ring->itr_register = E1000_EITR(0) + (vector << 2);
360 ring->itr_val = adapter->itr;
361 vector++;
362 }
363
364 err = request_irq(adapter->msix_entries[vector].vector,
365 &igb_msix_other, 0, netdev->name, netdev);
366 if (err)
367 goto out;
368
369 adapter->napi.poll = igb_clean_rx_ring_msix;
370 for (i = 0; i < adapter->num_rx_queues; i++)
371 adapter->rx_ring[i].napi.poll = adapter->napi.poll;
372 igb_configure_msix(adapter);
373 return 0;
374out:
375 return err;
376}
377
378static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
379{
380 if (adapter->msix_entries) {
381 pci_disable_msix(adapter->pdev);
382 kfree(adapter->msix_entries);
383 adapter->msix_entries = NULL;
384 } else if (adapter->msi_enabled)
385 pci_disable_msi(adapter->pdev);
386 return;
387}
388
389
390/**
391 * igb_set_interrupt_capability - set MSI or MSI-X if supported
392 *
393 * Attempt to configure interrupts using the best available
394 * capabilities of the hardware and kernel.
395 **/
396static void igb_set_interrupt_capability(struct igb_adapter *adapter)
397{
398 int err;
399 int numvecs, i;
400
401 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
402 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
403 GFP_KERNEL);
404 if (!adapter->msix_entries)
405 goto msi_only;
406
407 for (i = 0; i < numvecs; i++)
408 adapter->msix_entries[i].entry = i;
409
410 err = pci_enable_msix(adapter->pdev,
411 adapter->msix_entries,
412 numvecs);
413 if (err == 0)
414 return;
415
416 igb_reset_interrupt_capability(adapter);
417
418 /* If we can't do MSI-X, try MSI */
419msi_only:
420 adapter->num_rx_queues = 1;
421 if (!pci_enable_msi(adapter->pdev))
422 adapter->msi_enabled = 1;
423 return;
424}
425
426/**
427 * igb_request_irq - initialize interrupts
428 *
429 * Attempts to configure interrupts using the best available
430 * capabilities of the hardware and kernel.
431 **/
432static int igb_request_irq(struct igb_adapter *adapter)
433{
434 struct net_device *netdev = adapter->netdev;
435 struct e1000_hw *hw = &adapter->hw;
436 int err = 0;
437
438 if (adapter->msix_entries) {
439 err = igb_request_msix(adapter);
440 if (!err) {
441 struct e1000_hw *hw = &adapter->hw;
442 /* enable IAM, auto-mask,
443 * DO NOT USE EIAME or IAME in legacy mode */
444 wr32(E1000_IAM, IMS_ENABLE_MASK);
445 goto request_done;
446 }
447 /* fall back to MSI */
448 igb_reset_interrupt_capability(adapter);
449 if (!pci_enable_msi(adapter->pdev))
450 adapter->msi_enabled = 1;
451 igb_free_all_tx_resources(adapter);
452 igb_free_all_rx_resources(adapter);
453 adapter->num_rx_queues = 1;
454 igb_alloc_queues(adapter);
455 }
456 if (adapter->msi_enabled) {
457 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
458 netdev->name, netdev);
459 if (!err)
460 goto request_done;
461 /* fall back to legacy interrupts */
462 igb_reset_interrupt_capability(adapter);
463 adapter->msi_enabled = 0;
464 }
465
466 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
467 netdev->name, netdev);
468
469 if (err) {
470 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
471 err);
472 goto request_done;
473 }
474
475 /* enable IAM, auto-mask */
476 wr32(E1000_IAM, IMS_ENABLE_MASK);
477
478request_done:
479 return err;
480}
481
482static void igb_free_irq(struct igb_adapter *adapter)
483{
484 struct net_device *netdev = adapter->netdev;
485
486 if (adapter->msix_entries) {
487 int vector = 0, i;
488
489 for (i = 0; i < adapter->num_tx_queues; i++)
490 free_irq(adapter->msix_entries[vector++].vector,
491 &(adapter->tx_ring[i]));
492 for (i = 0; i < adapter->num_rx_queues; i++)
493 free_irq(adapter->msix_entries[vector++].vector,
494 &(adapter->rx_ring[i]));
495
496 free_irq(adapter->msix_entries[vector++].vector, netdev);
497 return;
498 }
499
500 free_irq(adapter->pdev->irq, netdev);
501}
502
503/**
504 * igb_irq_disable - Mask off interrupt generation on the NIC
505 * @adapter: board private structure
506 **/
507static void igb_irq_disable(struct igb_adapter *adapter)
508{
509 struct e1000_hw *hw = &adapter->hw;
510
511 if (adapter->msix_entries) {
512 wr32(E1000_EIMC, ~0);
513 wr32(E1000_EIAC, 0);
514 }
515 wr32(E1000_IMC, ~0);
516 wrfl();
517 synchronize_irq(adapter->pdev->irq);
518}
519
520/**
521 * igb_irq_enable - Enable default interrupt generation settings
522 * @adapter: board private structure
523 **/
524static void igb_irq_enable(struct igb_adapter *adapter)
525{
526 struct e1000_hw *hw = &adapter->hw;
527
528 if (adapter->msix_entries) {
529 wr32(E1000_EIMS,
530 adapter->eims_enable_mask);
531 wr32(E1000_EIAC,
532 adapter->eims_enable_mask);
533 wr32(E1000_IMS, E1000_IMS_LSC);
534 } else
535 wr32(E1000_IMS, IMS_ENABLE_MASK);
536}
537
538static void igb_update_mng_vlan(struct igb_adapter *adapter)
539{
540 struct net_device *netdev = adapter->netdev;
541 u16 vid = adapter->hw.mng_cookie.vlan_id;
542 u16 old_vid = adapter->mng_vlan_id;
543 if (adapter->vlgrp) {
544 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
545 if (adapter->hw.mng_cookie.status &
546 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
547 igb_vlan_rx_add_vid(netdev, vid);
548 adapter->mng_vlan_id = vid;
549 } else
550 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
551
552 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
553 (vid != old_vid) &&
554 !vlan_group_get_device(adapter->vlgrp, old_vid))
555 igb_vlan_rx_kill_vid(netdev, old_vid);
556 } else
557 adapter->mng_vlan_id = vid;
558 }
559}
560
561/**
562 * igb_release_hw_control - release control of the h/w to f/w
563 * @adapter: address of board private structure
564 *
565 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
566 * For ASF and Pass Through versions of f/w this means that the
567 * driver is no longer loaded.
568 *
569 **/
570static void igb_release_hw_control(struct igb_adapter *adapter)
571{
572 struct e1000_hw *hw = &adapter->hw;
573 u32 ctrl_ext;
574
575 /* Let firmware take over control of h/w */
576 ctrl_ext = rd32(E1000_CTRL_EXT);
577 wr32(E1000_CTRL_EXT,
578 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
579}
580
581
582/**
583 * igb_get_hw_control - get control of the h/w from f/w
584 * @adapter: address of board private structure
585 *
586 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
587 * For ASF and Pass Through versions of f/w this means that
588 * the driver is loaded.
589 *
590 **/
591static void igb_get_hw_control(struct igb_adapter *adapter)
592{
593 struct e1000_hw *hw = &adapter->hw;
594 u32 ctrl_ext;
595
596 /* Let firmware know the driver has taken over */
597 ctrl_ext = rd32(E1000_CTRL_EXT);
598 wr32(E1000_CTRL_EXT,
599 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
600}
601
602static void igb_init_manageability(struct igb_adapter *adapter)
603{
604 struct e1000_hw *hw = &adapter->hw;
605
606 if (adapter->en_mng_pt) {
607 u32 manc2h = rd32(E1000_MANC2H);
608 u32 manc = rd32(E1000_MANC);
609
610 /* disable hardware interception of ARP */
611 manc &= ~(E1000_MANC_ARP_EN);
612
613 /* enable receiving management packets to the host */
614 /* this will probably generate destination unreachable messages
615 * from the host OS, but the packets will be handled on SMBUS */
616 manc |= E1000_MANC_EN_MNG2HOST;
617#define E1000_MNG2HOST_PORT_623 (1 << 5)
618#define E1000_MNG2HOST_PORT_664 (1 << 6)
619 manc2h |= E1000_MNG2HOST_PORT_623;
620 manc2h |= E1000_MNG2HOST_PORT_664;
621 wr32(E1000_MANC2H, manc2h);
622
623 wr32(E1000_MANC, manc);
624 }
625}
626
627static void igb_release_manageability(struct igb_adapter *adapter)
628{
629 struct e1000_hw *hw = &adapter->hw;
630
631 if (adapter->en_mng_pt) {
632 u32 manc = rd32(E1000_MANC);
633
634 /* re-enable hardware interception of ARP */
635 manc |= E1000_MANC_ARP_EN;
636 manc &= ~E1000_MANC_EN_MNG2HOST;
637
638 /* don't explicitly have to mess with MANC2H since
639 * MANC has an enable disable that gates MANC2H */
640
641 /* XXX stop the hardware watchdog ? */
642 wr32(E1000_MANC, manc);
643 }
644}
645
646/**
647 * igb_configure - configure the hardware for RX and TX
648 * @adapter: private board structure
649 **/
650static void igb_configure(struct igb_adapter *adapter)
651{
652 struct net_device *netdev = adapter->netdev;
653 int i;
654
655 igb_get_hw_control(adapter);
656 igb_set_multi(netdev);
657
658 igb_restore_vlan(adapter);
659 igb_init_manageability(adapter);
660
661 igb_configure_tx(adapter);
662 igb_setup_rctl(adapter);
663 igb_configure_rx(adapter);
664 /* call IGB_DESC_UNUSED which always leaves
665 * at least 1 descriptor unused to make sure
666 * next_to_use != next_to_clean */
667 for (i = 0; i < adapter->num_rx_queues; i++) {
668 struct igb_ring *ring = &adapter->rx_ring[i];
669 igb_alloc_rx_buffers_adv(adapter, ring, IGB_DESC_UNUSED(ring));
670 }
671
672
673 adapter->tx_queue_len = netdev->tx_queue_len;
674}
675
676
677/**
678 * igb_up - Open the interface and prepare it to handle traffic
679 * @adapter: board private structure
680 **/
681
682int igb_up(struct igb_adapter *adapter)
683{
684 struct e1000_hw *hw = &adapter->hw;
685 int i;
686
687 /* hardware has been reset, we need to reload some things */
688 igb_configure(adapter);
689
690 clear_bit(__IGB_DOWN, &adapter->state);
691
692 napi_enable(&adapter->napi);
693
694 if (adapter->msix_entries) {
695 for (i = 0; i < adapter->num_rx_queues; i++)
696 napi_enable(&adapter->rx_ring[i].napi);
697 igb_configure_msix(adapter);
698 }
699
700 /* Clear any pending interrupts. */
701 rd32(E1000_ICR);
702 igb_irq_enable(adapter);
703
704 /* Fire a link change interrupt to start the watchdog. */
705 wr32(E1000_ICS, E1000_ICS_LSC);
706 return 0;
707}
708
709void igb_down(struct igb_adapter *adapter)
710{
711 struct e1000_hw *hw = &adapter->hw;
712 struct net_device *netdev = adapter->netdev;
713 u32 tctl, rctl;
714 int i;
715
716 /* signal that we're down so the interrupt handler does not
717 * reschedule our watchdog timer */
718 set_bit(__IGB_DOWN, &adapter->state);
719
720 /* disable receives in the hardware */
721 rctl = rd32(E1000_RCTL);
722 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
723 /* flush and sleep below */
724
725 netif_stop_queue(netdev);
726
727 /* disable transmits in the hardware */
728 tctl = rd32(E1000_TCTL);
729 tctl &= ~E1000_TCTL_EN;
730 wr32(E1000_TCTL, tctl);
731 /* flush both disables and wait for them to finish */
732 wrfl();
733 msleep(10);
734
735 napi_disable(&adapter->napi);
736
737 if (adapter->msix_entries)
738 for (i = 0; i < adapter->num_rx_queues; i++)
739 napi_disable(&adapter->rx_ring[i].napi);
740 igb_irq_disable(adapter);
741
742 del_timer_sync(&adapter->watchdog_timer);
743 del_timer_sync(&adapter->phy_info_timer);
744
745 netdev->tx_queue_len = adapter->tx_queue_len;
746 netif_carrier_off(netdev);
747 adapter->link_speed = 0;
748 adapter->link_duplex = 0;
749
750 igb_reset(adapter);
751 igb_clean_all_tx_rings(adapter);
752 igb_clean_all_rx_rings(adapter);
753}
754
755void igb_reinit_locked(struct igb_adapter *adapter)
756{
757 WARN_ON(in_interrupt());
758 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
759 msleep(1);
760 igb_down(adapter);
761 igb_up(adapter);
762 clear_bit(__IGB_RESETTING, &adapter->state);
763}
764
765void igb_reset(struct igb_adapter *adapter)
766{
767 struct e1000_hw *hw = &adapter->hw;
768 struct e1000_fc_info *fc = &adapter->hw.fc;
769 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
770 u16 hwm;
771
772 /* Repartition Pba for greater than 9k mtu
773 * To take effect CTRL.RST is required.
774 */
775 pba = E1000_PBA_34K;
776
777 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
778 /* adjust PBA for jumbo frames */
779 wr32(E1000_PBA, pba);
780
781 /* To maintain wire speed transmits, the Tx FIFO should be
782 * large enough to accommodate two full transmit packets,
783 * rounded up to the next 1KB and expressed in KB. Likewise,
784 * the Rx FIFO should be large enough to accommodate at least
785 * one full receive packet and is similarly rounded up and
786 * expressed in KB. */
787 pba = rd32(E1000_PBA);
788 /* upper 16 bits has Tx packet buffer allocation size in KB */
789 tx_space = pba >> 16;
790 /* lower 16 bits has Rx packet buffer allocation size in KB */
791 pba &= 0xffff;
792 /* the tx fifo also stores 16 bytes of information about the tx
793 * but don't include ethernet FCS because hardware appends it */
794 min_tx_space = (adapter->max_frame_size +
795 sizeof(struct e1000_tx_desc) -
796 ETH_FCS_LEN) * 2;
797 min_tx_space = ALIGN(min_tx_space, 1024);
798 min_tx_space >>= 10;
799 /* software strips receive CRC, so leave room for it */
800 min_rx_space = adapter->max_frame_size;
801 min_rx_space = ALIGN(min_rx_space, 1024);
802 min_rx_space >>= 10;
803
804 /* If current Tx allocation is less than the min Tx FIFO size,
805 * and the min Tx FIFO size is less than the current Rx FIFO
806 * allocation, take space away from current Rx allocation */
807 if (tx_space < min_tx_space &&
808 ((min_tx_space - tx_space) < pba)) {
809 pba = pba - (min_tx_space - tx_space);
810
811 /* if short on rx space, rx wins and must trump tx
812 * adjustment */
813 if (pba < min_rx_space)
814 pba = min_rx_space;
815 }
816 }
817 wr32(E1000_PBA, pba);
818
819 /* flow control settings */
820 /* The high water mark must be low enough to fit one full frame
821 * (or the size used for early receive) above it in the Rx FIFO.
822 * Set it to the lower of:
823 * - 90% of the Rx FIFO size, or
824 * - the full Rx FIFO size minus one full frame */
825 hwm = min(((pba << 10) * 9 / 10),
826 ((pba << 10) - adapter->max_frame_size));
827
828 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
829 fc->low_water = fc->high_water - 8;
830 fc->pause_time = 0xFFFF;
831 fc->send_xon = 1;
832 fc->type = fc->original_type;
833
834 /* Allow time for pending master requests to run */
835 adapter->hw.mac.ops.reset_hw(&adapter->hw);
836 wr32(E1000_WUC, 0);
837
838 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
839 dev_err(&adapter->pdev->dev, "Hardware Error\n");
840
841 igb_update_mng_vlan(adapter);
842
843 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
844 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
845
846 igb_reset_adaptive(&adapter->hw);
847 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
848 igb_release_manageability(adapter);
849}
850
851/**
852 * igb_probe - Device Initialization Routine
853 * @pdev: PCI device information struct
854 * @ent: entry in igb_pci_tbl
855 *
856 * Returns 0 on success, negative on failure
857 *
858 * igb_probe initializes an adapter identified by a pci_dev structure.
859 * The OS initialization, configuring of the adapter private structure,
860 * and a hardware reset occur.
861 **/
862static int __devinit igb_probe(struct pci_dev *pdev,
863 const struct pci_device_id *ent)
864{
865 struct net_device *netdev;
866 struct igb_adapter *adapter;
867 struct e1000_hw *hw;
868 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
869 unsigned long mmio_start, mmio_len;
870 static int cards_found;
871 int i, err, pci_using_dac;
872 u16 eeprom_data = 0;
873 u16 eeprom_apme_mask = IGB_EEPROM_APME;
874 u32 part_num;
875
876 err = pci_enable_device(pdev);
877 if (err)
878 return err;
879
880 pci_using_dac = 0;
881 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
882 if (!err) {
883 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
884 if (!err)
885 pci_using_dac = 1;
886 } else {
887 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
888 if (err) {
889 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
890 if (err) {
891 dev_err(&pdev->dev, "No usable DMA "
892 "configuration, aborting\n");
893 goto err_dma;
894 }
895 }
896 }
897
898 err = pci_request_regions(pdev, igb_driver_name);
899 if (err)
900 goto err_pci_reg;
901
902 pci_set_master(pdev);
903
904 err = -ENOMEM;
905 netdev = alloc_etherdev(sizeof(struct igb_adapter));
906 if (!netdev)
907 goto err_alloc_etherdev;
908
909 SET_NETDEV_DEV(netdev, &pdev->dev);
910
911 pci_set_drvdata(pdev, netdev);
912 adapter = netdev_priv(netdev);
913 adapter->netdev = netdev;
914 adapter->pdev = pdev;
915 hw = &adapter->hw;
916 hw->back = adapter;
917 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
918
919 mmio_start = pci_resource_start(pdev, 0);
920 mmio_len = pci_resource_len(pdev, 0);
921
922 err = -EIO;
923 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
924 if (!adapter->hw.hw_addr)
925 goto err_ioremap;
926
927 netdev->open = &igb_open;
928 netdev->stop = &igb_close;
929 netdev->get_stats = &igb_get_stats;
930 netdev->set_multicast_list = &igb_set_multi;
931 netdev->set_mac_address = &igb_set_mac;
932 netdev->change_mtu = &igb_change_mtu;
933 netdev->do_ioctl = &igb_ioctl;
934 igb_set_ethtool_ops(netdev);
935 netdev->tx_timeout = &igb_tx_timeout;
936 netdev->watchdog_timeo = 5 * HZ;
937 netif_napi_add(netdev, &adapter->napi, igb_clean, 64);
938 netdev->vlan_rx_register = igb_vlan_rx_register;
939 netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
940 netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
941#ifdef CONFIG_NET_POLL_CONTROLLER
942 netdev->poll_controller = igb_netpoll;
943#endif
944 netdev->hard_start_xmit = &igb_xmit_frame_adv;
945
946 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
947
948 netdev->mem_start = mmio_start;
949 netdev->mem_end = mmio_start + mmio_len;
950
951 adapter->bd_number = cards_found;
952
953 /* PCI config space info */
954 hw->vendor_id = pdev->vendor;
955 hw->device_id = pdev->device;
956 hw->revision_id = pdev->revision;
957 hw->subsystem_vendor_id = pdev->subsystem_vendor;
958 hw->subsystem_device_id = pdev->subsystem_device;
959
960 /* setup the private structure */
961 hw->back = adapter;
962 /* Copy the default MAC, PHY and NVM function pointers */
963 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
964 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
965 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
966 /* Initialize skew-specific constants */
967 err = ei->get_invariants(hw);
968 if (err)
969 goto err_hw_init;
970
971 err = igb_sw_init(adapter);
972 if (err)
973 goto err_sw_init;
974
975 igb_get_bus_info_pcie(hw);
976
977 hw->phy.autoneg_wait_to_complete = false;
978 hw->mac.adaptive_ifs = true;
979
980 /* Copper options */
981 if (hw->phy.media_type == e1000_media_type_copper) {
982 hw->phy.mdix = AUTO_ALL_MODES;
983 hw->phy.disable_polarity_correction = false;
984 hw->phy.ms_type = e1000_ms_hw_default;
985 }
986
987 if (igb_check_reset_block(hw))
988 dev_info(&pdev->dev,
989 "PHY reset is blocked due to SOL/IDER session.\n");
990
991 netdev->features = NETIF_F_SG |
992 NETIF_F_HW_CSUM |
993 NETIF_F_HW_VLAN_TX |
994 NETIF_F_HW_VLAN_RX |
995 NETIF_F_HW_VLAN_FILTER;
996
997 netdev->features |= NETIF_F_TSO;
998
999 netdev->features |= NETIF_F_TSO6;
1000 if (pci_using_dac)
1001 netdev->features |= NETIF_F_HIGHDMA;
1002
1003 netdev->features |= NETIF_F_LLTX;
1004 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1005
1006 /* before reading the NVM, reset the controller to put the device in a
1007 * known good starting state */
1008 hw->mac.ops.reset_hw(hw);
1009
1010 /* make sure the NVM is good */
1011 if (igb_validate_nvm_checksum(hw) < 0) {
1012 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1013 err = -EIO;
1014 goto err_eeprom;
1015 }
1016
1017 /* copy the MAC address out of the NVM */
1018 if (hw->mac.ops.read_mac_addr(hw))
1019 dev_err(&pdev->dev, "NVM Read Error\n");
1020
1021 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1022 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1023
1024 if (!is_valid_ether_addr(netdev->perm_addr)) {
1025 dev_err(&pdev->dev, "Invalid MAC Address\n");
1026 err = -EIO;
1027 goto err_eeprom;
1028 }
1029
1030 init_timer(&adapter->watchdog_timer);
1031 adapter->watchdog_timer.function = &igb_watchdog;
1032 adapter->watchdog_timer.data = (unsigned long) adapter;
1033
1034 init_timer(&adapter->phy_info_timer);
1035 adapter->phy_info_timer.function = &igb_update_phy_info;
1036 adapter->phy_info_timer.data = (unsigned long) adapter;
1037
1038 INIT_WORK(&adapter->reset_task, igb_reset_task);
1039 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1040
1041 /* Initialize link & ring properties that are user-changeable */
1042 adapter->tx_ring->count = 256;
1043 for (i = 0; i < adapter->num_tx_queues; i++)
1044 adapter->tx_ring[i].count = adapter->tx_ring->count;
1045 adapter->rx_ring->count = 256;
1046 for (i = 0; i < adapter->num_rx_queues; i++)
1047 adapter->rx_ring[i].count = adapter->rx_ring->count;
1048
1049 adapter->fc_autoneg = true;
1050 hw->mac.autoneg = true;
1051 hw->phy.autoneg_advertised = 0x2f;
1052
1053 hw->fc.original_type = e1000_fc_default;
1054 hw->fc.type = e1000_fc_default;
1055
1056 adapter->itr_setting = 3;
1057 adapter->itr = IGB_START_ITR;
1058
1059 igb_validate_mdi_setting(hw);
1060
1061 adapter->rx_csum = 1;
1062
1063 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1064 * enable the ACPI Magic Packet filter
1065 */
1066
1067 if (hw->bus.func == 0 ||
1068 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1069 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1070 &eeprom_data);
1071
1072 if (eeprom_data & eeprom_apme_mask)
1073 adapter->eeprom_wol |= E1000_WUFC_MAG;
1074
1075 /* now that we have the eeprom settings, apply the special cases where
1076 * the eeprom may be wrong or the board simply won't support wake on
1077 * lan on a particular port */
1078 switch (pdev->device) {
1079 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1080 adapter->eeprom_wol = 0;
1081 break;
1082 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1083 /* Wake events only supported on port A for dual fiber
1084 * regardless of eeprom setting */
1085 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1086 adapter->eeprom_wol = 0;
1087 break;
1088 }
1089
1090 /* initialize the wol settings based on the eeprom settings */
1091 adapter->wol = adapter->eeprom_wol;
1092
1093 /* reset the hardware with the new settings */
1094 igb_reset(adapter);
1095
1096 /* let the f/w know that the h/w is now under the control of the
1097 * driver. */
1098 igb_get_hw_control(adapter);
1099
1100 /* tell the stack to leave us alone until igb_open() is called */
1101 netif_carrier_off(netdev);
1102 netif_stop_queue(netdev);
1103
1104 strcpy(netdev->name, "eth%d");
1105 err = register_netdev(netdev);
1106 if (err)
1107 goto err_register;
1108
1109 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1110 /* print bus type/speed/width info */
1111 dev_info(&pdev->dev,
1112 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1113 netdev->name,
1114 ((hw->bus.speed == e1000_bus_speed_2500)
1115 ? "2.5Gb/s" : "unknown"),
1116 ((hw->bus.width == e1000_bus_width_pcie_x4)
1117 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1118 ? "Width x1" : "unknown"),
1119 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1120 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1121
1122 igb_read_part_num(hw, &part_num);
1123 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1124 (part_num >> 8), (part_num & 0xff));
1125
1126 dev_info(&pdev->dev,
1127 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1128 adapter->msix_entries ? "MSI-X" :
1129 adapter->msi_enabled ? "MSI" : "legacy",
1130 adapter->num_rx_queues, adapter->num_tx_queues);
1131
1132 cards_found++;
1133 return 0;
1134
1135err_register:
1136 igb_release_hw_control(adapter);
1137err_eeprom:
1138 if (!igb_check_reset_block(hw))
1139 hw->phy.ops.reset_phy(hw);
1140
1141 if (hw->flash_address)
1142 iounmap(hw->flash_address);
1143
1144 igb_remove_device(hw);
1145 kfree(adapter->tx_ring);
1146 kfree(adapter->rx_ring);
1147err_sw_init:
1148err_hw_init:
1149 iounmap(hw->hw_addr);
1150err_ioremap:
1151 free_netdev(netdev);
1152err_alloc_etherdev:
1153 pci_release_regions(pdev);
1154err_pci_reg:
1155err_dma:
1156 pci_disable_device(pdev);
1157 return err;
1158}
1159
1160/**
1161 * igb_remove - Device Removal Routine
1162 * @pdev: PCI device information struct
1163 *
1164 * igb_remove is called by the PCI subsystem to alert the driver
1165 * that it should release a PCI device. The could be caused by a
1166 * Hot-Plug event, or because the driver is going to be removed from
1167 * memory.
1168 **/
1169static void __devexit igb_remove(struct pci_dev *pdev)
1170{
1171 struct net_device *netdev = pci_get_drvdata(pdev);
1172 struct igb_adapter *adapter = netdev_priv(netdev);
1173
1174 /* flush_scheduled work may reschedule our watchdog task, so
1175 * explicitly disable watchdog tasks from being rescheduled */
1176 set_bit(__IGB_DOWN, &adapter->state);
1177 del_timer_sync(&adapter->watchdog_timer);
1178 del_timer_sync(&adapter->phy_info_timer);
1179
1180 flush_scheduled_work();
1181
1182
1183 igb_release_manageability(adapter);
1184
1185 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1186 * would have already happened in close and is redundant. */
1187 igb_release_hw_control(adapter);
1188
1189 unregister_netdev(netdev);
1190
1191 if (!igb_check_reset_block(&adapter->hw))
1192 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1193
1194 igb_remove_device(&adapter->hw);
1195 igb_reset_interrupt_capability(adapter);
1196
1197 kfree(adapter->tx_ring);
1198 kfree(adapter->rx_ring);
1199
1200 iounmap(adapter->hw.hw_addr);
1201 if (adapter->hw.flash_address)
1202 iounmap(adapter->hw.flash_address);
1203 pci_release_regions(pdev);
1204
1205 free_netdev(netdev);
1206
1207 pci_disable_device(pdev);
1208}
1209
1210/**
1211 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1212 * @adapter: board private structure to initialize
1213 *
1214 * igb_sw_init initializes the Adapter private data structure.
1215 * Fields are initialized based on PCI device information and
1216 * OS network device settings (MTU size).
1217 **/
1218static int __devinit igb_sw_init(struct igb_adapter *adapter)
1219{
1220 struct e1000_hw *hw = &adapter->hw;
1221 struct net_device *netdev = adapter->netdev;
1222 struct pci_dev *pdev = adapter->pdev;
1223
1224 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1225
1226 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1227 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1228 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1229 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1230
1231 /* Number of supported queues. */
1232 /* Having more queues than CPUs doesn't make sense. */
1233 adapter->num_tx_queues = 1;
1234 adapter->num_rx_queues = min(IGB_MAX_RX_QUEUES, num_online_cpus());
1235
1236 igb_set_interrupt_capability(adapter);
1237
1238 if (igb_alloc_queues(adapter)) {
1239 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1240 return -ENOMEM;
1241 }
1242
1243 /* Explicitly disable IRQ since the NIC can be in any state. */
1244 igb_irq_disable(adapter);
1245
1246 set_bit(__IGB_DOWN, &adapter->state);
1247 return 0;
1248}
1249
1250/**
1251 * igb_open - Called when a network interface is made active
1252 * @netdev: network interface device structure
1253 *
1254 * Returns 0 on success, negative value on failure
1255 *
1256 * The open entry point is called when a network interface is made
1257 * active by the system (IFF_UP). At this point all resources needed
1258 * for transmit and receive operations are allocated, the interrupt
1259 * handler is registered with the OS, the watchdog timer is started,
1260 * and the stack is notified that the interface is ready.
1261 **/
1262static int igb_open(struct net_device *netdev)
1263{
1264 struct igb_adapter *adapter = netdev_priv(netdev);
1265 struct e1000_hw *hw = &adapter->hw;
1266 int err;
1267 int i;
1268
1269 /* disallow open during test */
1270 if (test_bit(__IGB_TESTING, &adapter->state))
1271 return -EBUSY;
1272
1273 /* allocate transmit descriptors */
1274 err = igb_setup_all_tx_resources(adapter);
1275 if (err)
1276 goto err_setup_tx;
1277
1278 /* allocate receive descriptors */
1279 err = igb_setup_all_rx_resources(adapter);
1280 if (err)
1281 goto err_setup_rx;
1282
1283 /* e1000_power_up_phy(adapter); */
1284
1285 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1286 if ((adapter->hw.mng_cookie.status &
1287 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1288 igb_update_mng_vlan(adapter);
1289
1290 /* before we allocate an interrupt, we must be ready to handle it.
1291 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1292 * as soon as we call pci_request_irq, so we have to setup our
1293 * clean_rx handler before we do so. */
1294 igb_configure(adapter);
1295
1296 err = igb_request_irq(adapter);
1297 if (err)
1298 goto err_req_irq;
1299
1300 /* From here on the code is the same as igb_up() */
1301 clear_bit(__IGB_DOWN, &adapter->state);
1302
1303 napi_enable(&adapter->napi);
1304 if (adapter->msix_entries)
1305 for (i = 0; i < adapter->num_rx_queues; i++)
1306 napi_enable(&adapter->rx_ring[i].napi);
1307
1308 igb_irq_enable(adapter);
1309
1310 /* Clear any pending interrupts. */
1311 rd32(E1000_ICR);
1312 /* Fire a link status change interrupt to start the watchdog. */
1313 wr32(E1000_ICS, E1000_ICS_LSC);
1314
1315 return 0;
1316
1317err_req_irq:
1318 igb_release_hw_control(adapter);
1319 /* e1000_power_down_phy(adapter); */
1320 igb_free_all_rx_resources(adapter);
1321err_setup_rx:
1322 igb_free_all_tx_resources(adapter);
1323err_setup_tx:
1324 igb_reset(adapter);
1325
1326 return err;
1327}
1328
1329/**
1330 * igb_close - Disables a network interface
1331 * @netdev: network interface device structure
1332 *
1333 * Returns 0, this is not allowed to fail
1334 *
1335 * The close entry point is called when an interface is de-activated
1336 * by the OS. The hardware is still under the driver's control, but
1337 * needs to be disabled. A global MAC reset is issued to stop the
1338 * hardware, and all transmit and receive resources are freed.
1339 **/
1340static int igb_close(struct net_device *netdev)
1341{
1342 struct igb_adapter *adapter = netdev_priv(netdev);
1343
1344 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1345 igb_down(adapter);
1346
1347 igb_free_irq(adapter);
1348
1349 igb_free_all_tx_resources(adapter);
1350 igb_free_all_rx_resources(adapter);
1351
1352 /* kill manageability vlan ID if supported, but not if a vlan with
1353 * the same ID is registered on the host OS (let 8021q kill it) */
1354 if ((adapter->hw.mng_cookie.status &
1355 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1356 !(adapter->vlgrp &&
1357 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1358 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1359
1360 return 0;
1361}
1362
1363/**
1364 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1365 * @adapter: board private structure
1366 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1367 *
1368 * Return 0 on success, negative on failure
1369 **/
1370
1371int igb_setup_tx_resources(struct igb_adapter *adapter,
1372 struct igb_ring *tx_ring)
1373{
1374 struct pci_dev *pdev = adapter->pdev;
1375 int size;
1376
1377 size = sizeof(struct igb_buffer) * tx_ring->count;
1378 tx_ring->buffer_info = vmalloc(size);
1379 if (!tx_ring->buffer_info)
1380 goto err;
1381 memset(tx_ring->buffer_info, 0, size);
1382
1383 /* round up to nearest 4K */
1384 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1385 + sizeof(u32);
1386 tx_ring->size = ALIGN(tx_ring->size, 4096);
1387
1388 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1389 &tx_ring->dma);
1390
1391 if (!tx_ring->desc)
1392 goto err;
1393
1394 tx_ring->adapter = adapter;
1395 tx_ring->next_to_use = 0;
1396 tx_ring->next_to_clean = 0;
1397 spin_lock_init(&tx_ring->tx_clean_lock);
1398 spin_lock_init(&tx_ring->tx_lock);
1399 return 0;
1400
1401err:
1402 vfree(tx_ring->buffer_info);
1403 dev_err(&adapter->pdev->dev,
1404 "Unable to allocate memory for the transmit descriptor ring\n");
1405 return -ENOMEM;
1406}
1407
1408/**
1409 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1410 * (Descriptors) for all queues
1411 * @adapter: board private structure
1412 *
1413 * Return 0 on success, negative on failure
1414 **/
1415static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1416{
1417 int i, err = 0;
1418
1419 for (i = 0; i < adapter->num_tx_queues; i++) {
1420 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1421 if (err) {
1422 dev_err(&adapter->pdev->dev,
1423 "Allocation for Tx Queue %u failed\n", i);
1424 for (i--; i >= 0; i--)
1425 igb_free_tx_resources(adapter,
1426 &adapter->tx_ring[i]);
1427 break;
1428 }
1429 }
1430
1431 return err;
1432}
1433
1434/**
1435 * igb_configure_tx - Configure transmit Unit after Reset
1436 * @adapter: board private structure
1437 *
1438 * Configure the Tx unit of the MAC after a reset.
1439 **/
1440static void igb_configure_tx(struct igb_adapter *adapter)
1441{
1442 u64 tdba, tdwba;
1443 struct e1000_hw *hw = &adapter->hw;
1444 u32 tctl;
1445 u32 txdctl, txctrl;
1446 int i;
1447
1448 for (i = 0; i < adapter->num_tx_queues; i++) {
1449 struct igb_ring *ring = &(adapter->tx_ring[i]);
1450
1451 wr32(E1000_TDLEN(i),
1452 ring->count * sizeof(struct e1000_tx_desc));
1453 tdba = ring->dma;
1454 wr32(E1000_TDBAL(i),
1455 tdba & 0x00000000ffffffffULL);
1456 wr32(E1000_TDBAH(i), tdba >> 32);
1457
1458 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1459 tdwba |= 1; /* enable head wb */
1460 wr32(E1000_TDWBAL(i),
1461 tdwba & 0x00000000ffffffffULL);
1462 wr32(E1000_TDWBAH(i), tdwba >> 32);
1463
1464 ring->head = E1000_TDH(i);
1465 ring->tail = E1000_TDT(i);
1466 writel(0, hw->hw_addr + ring->tail);
1467 writel(0, hw->hw_addr + ring->head);
1468 txdctl = rd32(E1000_TXDCTL(i));
1469 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1470 wr32(E1000_TXDCTL(i), txdctl);
1471
1472 /* Turn off Relaxed Ordering on head write-backs. The
1473 * writebacks MUST be delivered in order or it will
1474 * completely screw up our bookeeping.
1475 */
1476 txctrl = rd32(E1000_DCA_TXCTRL(i));
1477 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1478 wr32(E1000_DCA_TXCTRL(i), txctrl);
1479 }
1480
1481
1482
1483 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1484
1485 /* Program the Transmit Control Register */
1486
1487 tctl = rd32(E1000_TCTL);
1488 tctl &= ~E1000_TCTL_CT;
1489 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1490 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1491
1492 igb_config_collision_dist(hw);
1493
1494 /* Setup Transmit Descriptor Settings for eop descriptor */
1495 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1496
1497 /* Enable transmits */
1498 tctl |= E1000_TCTL_EN;
1499
1500 wr32(E1000_TCTL, tctl);
1501}
1502
1503/**
1504 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1505 * @adapter: board private structure
1506 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1507 *
1508 * Returns 0 on success, negative on failure
1509 **/
1510
1511int igb_setup_rx_resources(struct igb_adapter *adapter,
1512 struct igb_ring *rx_ring)
1513{
1514 struct pci_dev *pdev = adapter->pdev;
1515 int size, desc_len;
1516
1517 size = sizeof(struct igb_buffer) * rx_ring->count;
1518 rx_ring->buffer_info = vmalloc(size);
1519 if (!rx_ring->buffer_info)
1520 goto err;
1521 memset(rx_ring->buffer_info, 0, size);
1522
1523 desc_len = sizeof(union e1000_adv_rx_desc);
1524
1525 /* Round up to nearest 4K */
1526 rx_ring->size = rx_ring->count * desc_len;
1527 rx_ring->size = ALIGN(rx_ring->size, 4096);
1528
1529 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1530 &rx_ring->dma);
1531
1532 if (!rx_ring->desc)
1533 goto err;
1534
1535 rx_ring->next_to_clean = 0;
1536 rx_ring->next_to_use = 0;
1537 rx_ring->pending_skb = NULL;
1538
1539 rx_ring->adapter = adapter;
1540 /* FIXME: do we want to setup ring->napi->poll here? */
1541 rx_ring->napi.poll = adapter->napi.poll;
1542
1543 return 0;
1544
1545err:
1546 vfree(rx_ring->buffer_info);
1547 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1548 "the receive descriptor ring\n");
1549 return -ENOMEM;
1550}
1551
1552/**
1553 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1554 * (Descriptors) for all queues
1555 * @adapter: board private structure
1556 *
1557 * Return 0 on success, negative on failure
1558 **/
1559static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1560{
1561 int i, err = 0;
1562
1563 for (i = 0; i < adapter->num_rx_queues; i++) {
1564 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1565 if (err) {
1566 dev_err(&adapter->pdev->dev,
1567 "Allocation for Rx Queue %u failed\n", i);
1568 for (i--; i >= 0; i--)
1569 igb_free_rx_resources(adapter,
1570 &adapter->rx_ring[i]);
1571 break;
1572 }
1573 }
1574
1575 return err;
1576}
1577
1578/**
1579 * igb_setup_rctl - configure the receive control registers
1580 * @adapter: Board private structure
1581 **/
1582static void igb_setup_rctl(struct igb_adapter *adapter)
1583{
1584 struct e1000_hw *hw = &adapter->hw;
1585 u32 rctl;
1586 u32 srrctl = 0;
1587 int i;
1588
1589 rctl = rd32(E1000_RCTL);
1590
1591 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1592
1593 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1594 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1595 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1596
1597 /* disable the stripping of CRC because it breaks
1598 * BMC firmware connected over SMBUS
1599 rctl |= E1000_RCTL_SECRC;
1600 */
1601
1602 rctl &= ~E1000_RCTL_SBP;
1603
1604 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1605 rctl &= ~E1000_RCTL_LPE;
1606 else
1607 rctl |= E1000_RCTL_LPE;
1608 if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1609 /* Setup buffer sizes */
1610 rctl &= ~E1000_RCTL_SZ_4096;
1611 rctl |= E1000_RCTL_BSEX;
1612 switch (adapter->rx_buffer_len) {
1613 case IGB_RXBUFFER_256:
1614 rctl |= E1000_RCTL_SZ_256;
1615 rctl &= ~E1000_RCTL_BSEX;
1616 break;
1617 case IGB_RXBUFFER_512:
1618 rctl |= E1000_RCTL_SZ_512;
1619 rctl &= ~E1000_RCTL_BSEX;
1620 break;
1621 case IGB_RXBUFFER_1024:
1622 rctl |= E1000_RCTL_SZ_1024;
1623 rctl &= ~E1000_RCTL_BSEX;
1624 break;
1625 case IGB_RXBUFFER_2048:
1626 default:
1627 rctl |= E1000_RCTL_SZ_2048;
1628 rctl &= ~E1000_RCTL_BSEX;
1629 break;
1630 case IGB_RXBUFFER_4096:
1631 rctl |= E1000_RCTL_SZ_4096;
1632 break;
1633 case IGB_RXBUFFER_8192:
1634 rctl |= E1000_RCTL_SZ_8192;
1635 break;
1636 case IGB_RXBUFFER_16384:
1637 rctl |= E1000_RCTL_SZ_16384;
1638 break;
1639 }
1640 } else {
1641 rctl &= ~E1000_RCTL_BSEX;
1642 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1643 }
1644
1645 /* 82575 and greater support packet-split where the protocol
1646 * header is placed in skb->data and the packet data is
1647 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1648 * In the case of a non-split, skb->data is linearly filled,
1649 * followed by the page buffers. Therefore, skb->data is
1650 * sized to hold the largest protocol header.
1651 */
1652 /* allocations using alloc_page take too long for regular MTU
1653 * so only enable packet split for jumbo frames */
1654 if (rctl & E1000_RCTL_LPE) {
1655 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1656 srrctl = adapter->rx_ps_hdr_size <<
1657 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1658 /* buffer size is ALWAYS one page */
1659 srrctl |= PAGE_SIZE >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1660 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1661 } else {
1662 adapter->rx_ps_hdr_size = 0;
1663 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1664 }
1665
1666 for (i = 0; i < adapter->num_rx_queues; i++)
1667 wr32(E1000_SRRCTL(i), srrctl);
1668
1669 wr32(E1000_RCTL, rctl);
1670}
1671
1672/**
1673 * igb_configure_rx - Configure receive Unit after Reset
1674 * @adapter: board private structure
1675 *
1676 * Configure the Rx unit of the MAC after a reset.
1677 **/
1678static void igb_configure_rx(struct igb_adapter *adapter)
1679{
1680 u64 rdba;
1681 struct e1000_hw *hw = &adapter->hw;
1682 u32 rctl, rxcsum;
1683 u32 rxdctl;
1684 int i;
1685
1686 /* disable receives while setting up the descriptors */
1687 rctl = rd32(E1000_RCTL);
1688 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1689 wrfl();
1690 mdelay(10);
1691
1692 if (adapter->itr_setting > 3)
1693 wr32(E1000_ITR,
1694 1000000000 / (adapter->itr * 256));
1695
1696 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1697 * the Base and Length of the Rx Descriptor Ring */
1698 for (i = 0; i < adapter->num_rx_queues; i++) {
1699 struct igb_ring *ring = &(adapter->rx_ring[i]);
1700 rdba = ring->dma;
1701 wr32(E1000_RDBAL(i),
1702 rdba & 0x00000000ffffffffULL);
1703 wr32(E1000_RDBAH(i), rdba >> 32);
1704 wr32(E1000_RDLEN(i),
1705 ring->count * sizeof(union e1000_adv_rx_desc));
1706
1707 ring->head = E1000_RDH(i);
1708 ring->tail = E1000_RDT(i);
1709 writel(0, hw->hw_addr + ring->tail);
1710 writel(0, hw->hw_addr + ring->head);
1711
1712 rxdctl = rd32(E1000_RXDCTL(i));
1713 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1714 rxdctl &= 0xFFF00000;
1715 rxdctl |= IGB_RX_PTHRESH;
1716 rxdctl |= IGB_RX_HTHRESH << 8;
1717 rxdctl |= IGB_RX_WTHRESH << 16;
1718 wr32(E1000_RXDCTL(i), rxdctl);
1719 }
1720
1721 if (adapter->num_rx_queues > 1) {
1722 u32 random[10];
1723 u32 mrqc;
1724 u32 j, shift;
1725 union e1000_reta {
1726 u32 dword;
1727 u8 bytes[4];
1728 } reta;
1729
1730 get_random_bytes(&random[0], 40);
1731
1732 shift = 6;
1733 for (j = 0; j < (32 * 4); j++) {
1734 reta.bytes[j & 3] =
1735 (j % adapter->num_rx_queues) << shift;
1736 if ((j & 3) == 3)
1737 writel(reta.dword,
1738 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1739 }
1740 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1741
1742 /* Fill out hash function seeds */
1743 for (j = 0; j < 10; j++)
1744 array_wr32(E1000_RSSRK(0), j, random[j]);
1745
1746 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1747 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1748 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1749 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1750 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1751 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1752 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1753 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1754
1755
1756 wr32(E1000_MRQC, mrqc);
1757
1758 /* Multiqueue and raw packet checksumming are mutually
1759 * exclusive. Note that this not the same as TCP/IP
1760 * checksumming, which works fine. */
1761 rxcsum = rd32(E1000_RXCSUM);
1762 rxcsum |= E1000_RXCSUM_PCSD;
1763 wr32(E1000_RXCSUM, rxcsum);
1764 } else {
1765 /* Enable Receive Checksum Offload for TCP and UDP */
1766 rxcsum = rd32(E1000_RXCSUM);
1767 if (adapter->rx_csum) {
1768 rxcsum |= E1000_RXCSUM_TUOFL;
1769
1770 /* Enable IPv4 payload checksum for UDP fragments
1771 * Must be used in conjunction with packet-split. */
1772 if (adapter->rx_ps_hdr_size)
1773 rxcsum |= E1000_RXCSUM_IPPCSE;
1774 } else {
1775 rxcsum &= ~E1000_RXCSUM_TUOFL;
1776 /* don't need to clear IPPCSE as it defaults to 0 */
1777 }
1778 wr32(E1000_RXCSUM, rxcsum);
1779 }
1780
1781 if (adapter->vlgrp)
1782 wr32(E1000_RLPML,
1783 adapter->max_frame_size + VLAN_TAG_SIZE);
1784 else
1785 wr32(E1000_RLPML, adapter->max_frame_size);
1786
1787 /* Enable Receives */
1788 wr32(E1000_RCTL, rctl);
1789}
1790
1791/**
1792 * igb_free_tx_resources - Free Tx Resources per Queue
1793 * @adapter: board private structure
1794 * @tx_ring: Tx descriptor ring for a specific queue
1795 *
1796 * Free all transmit software resources
1797 **/
1798static void igb_free_tx_resources(struct igb_adapter *adapter,
1799 struct igb_ring *tx_ring)
1800{
1801 struct pci_dev *pdev = adapter->pdev;
1802
1803 igb_clean_tx_ring(adapter, tx_ring);
1804
1805 vfree(tx_ring->buffer_info);
1806 tx_ring->buffer_info = NULL;
1807
1808 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1809
1810 tx_ring->desc = NULL;
1811}
1812
1813/**
1814 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1815 * @adapter: board private structure
1816 *
1817 * Free all transmit software resources
1818 **/
1819static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1820{
1821 int i;
1822
1823 for (i = 0; i < adapter->num_tx_queues; i++)
1824 igb_free_tx_resources(adapter, &adapter->tx_ring[i]);
1825}
1826
1827static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
1828 struct igb_buffer *buffer_info)
1829{
1830 if (buffer_info->dma) {
1831 pci_unmap_page(adapter->pdev,
1832 buffer_info->dma,
1833 buffer_info->length,
1834 PCI_DMA_TODEVICE);
1835 buffer_info->dma = 0;
1836 }
1837 if (buffer_info->skb) {
1838 dev_kfree_skb_any(buffer_info->skb);
1839 buffer_info->skb = NULL;
1840 }
1841 buffer_info->time_stamp = 0;
1842 /* buffer_info must be completely set up in the transmit path */
1843}
1844
1845/**
1846 * igb_clean_tx_ring - Free Tx Buffers
1847 * @adapter: board private structure
1848 * @tx_ring: ring to be cleaned
1849 **/
1850static void igb_clean_tx_ring(struct igb_adapter *adapter,
1851 struct igb_ring *tx_ring)
1852{
1853 struct igb_buffer *buffer_info;
1854 unsigned long size;
1855 unsigned int i;
1856
1857 if (!tx_ring->buffer_info)
1858 return;
1859 /* Free all the Tx ring sk_buffs */
1860
1861 for (i = 0; i < tx_ring->count; i++) {
1862 buffer_info = &tx_ring->buffer_info[i];
1863 igb_unmap_and_free_tx_resource(adapter, buffer_info);
1864 }
1865
1866 size = sizeof(struct igb_buffer) * tx_ring->count;
1867 memset(tx_ring->buffer_info, 0, size);
1868
1869 /* Zero out the descriptor ring */
1870
1871 memset(tx_ring->desc, 0, tx_ring->size);
1872
1873 tx_ring->next_to_use = 0;
1874 tx_ring->next_to_clean = 0;
1875
1876 writel(0, adapter->hw.hw_addr + tx_ring->head);
1877 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1878}
1879
1880/**
1881 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
1882 * @adapter: board private structure
1883 **/
1884static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
1885{
1886 int i;
1887
1888 for (i = 0; i < adapter->num_tx_queues; i++)
1889 igb_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1890}
1891
1892/**
1893 * igb_free_rx_resources - Free Rx Resources
1894 * @adapter: board private structure
1895 * @rx_ring: ring to clean the resources from
1896 *
1897 * Free all receive software resources
1898 **/
1899static void igb_free_rx_resources(struct igb_adapter *adapter,
1900 struct igb_ring *rx_ring)
1901{
1902 struct pci_dev *pdev = adapter->pdev;
1903
1904 igb_clean_rx_ring(adapter, rx_ring);
1905
1906 vfree(rx_ring->buffer_info);
1907 rx_ring->buffer_info = NULL;
1908
1909 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1910
1911 rx_ring->desc = NULL;
1912}
1913
1914/**
1915 * igb_free_all_rx_resources - Free Rx Resources for All Queues
1916 * @adapter: board private structure
1917 *
1918 * Free all receive software resources
1919 **/
1920static void igb_free_all_rx_resources(struct igb_adapter *adapter)
1921{
1922 int i;
1923
1924 for (i = 0; i < adapter->num_rx_queues; i++)
1925 igb_free_rx_resources(adapter, &adapter->rx_ring[i]);
1926}
1927
1928/**
1929 * igb_clean_rx_ring - Free Rx Buffers per Queue
1930 * @adapter: board private structure
1931 * @rx_ring: ring to free buffers from
1932 **/
1933static void igb_clean_rx_ring(struct igb_adapter *adapter,
1934 struct igb_ring *rx_ring)
1935{
1936 struct igb_buffer *buffer_info;
1937 struct pci_dev *pdev = adapter->pdev;
1938 unsigned long size;
1939 unsigned int i;
1940
1941 if (!rx_ring->buffer_info)
1942 return;
1943 /* Free all the Rx ring sk_buffs */
1944 for (i = 0; i < rx_ring->count; i++) {
1945 buffer_info = &rx_ring->buffer_info[i];
1946 if (buffer_info->dma) {
1947 if (adapter->rx_ps_hdr_size)
1948 pci_unmap_single(pdev, buffer_info->dma,
1949 adapter->rx_ps_hdr_size,
1950 PCI_DMA_FROMDEVICE);
1951 else
1952 pci_unmap_single(pdev, buffer_info->dma,
1953 adapter->rx_buffer_len,
1954 PCI_DMA_FROMDEVICE);
1955 buffer_info->dma = 0;
1956 }
1957
1958 if (buffer_info->skb) {
1959 dev_kfree_skb(buffer_info->skb);
1960 buffer_info->skb = NULL;
1961 }
1962 if (buffer_info->page) {
1963 pci_unmap_page(pdev, buffer_info->page_dma,
1964 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1965 put_page(buffer_info->page);
1966 buffer_info->page = NULL;
1967 buffer_info->page_dma = 0;
1968 }
1969 }
1970
1971 /* there also may be some cached data from a chained receive */
1972 if (rx_ring->pending_skb) {
1973 dev_kfree_skb(rx_ring->pending_skb);
1974 rx_ring->pending_skb = NULL;
1975 }
1976
1977 size = sizeof(struct igb_buffer) * rx_ring->count;
1978 memset(rx_ring->buffer_info, 0, size);
1979
1980 /* Zero out the descriptor ring */
1981 memset(rx_ring->desc, 0, rx_ring->size);
1982
1983 rx_ring->next_to_clean = 0;
1984 rx_ring->next_to_use = 0;
1985
1986 writel(0, adapter->hw.hw_addr + rx_ring->head);
1987 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1988}
1989
1990/**
1991 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
1992 * @adapter: board private structure
1993 **/
1994static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
1995{
1996 int i;
1997
1998 for (i = 0; i < adapter->num_rx_queues; i++)
1999 igb_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2000}
2001
2002/**
2003 * igb_set_mac - Change the Ethernet Address of the NIC
2004 * @netdev: network interface device structure
2005 * @p: pointer to an address structure
2006 *
2007 * Returns 0 on success, negative on failure
2008 **/
2009static int igb_set_mac(struct net_device *netdev, void *p)
2010{
2011 struct igb_adapter *adapter = netdev_priv(netdev);
2012 struct sockaddr *addr = p;
2013
2014 if (!is_valid_ether_addr(addr->sa_data))
2015 return -EADDRNOTAVAIL;
2016
2017 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2018 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2019
2020 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2021
2022 return 0;
2023}
2024
2025/**
2026 * igb_set_multi - Multicast and Promiscuous mode set
2027 * @netdev: network interface device structure
2028 *
2029 * The set_multi entry point is called whenever the multicast address
2030 * list or the network interface flags are updated. This routine is
2031 * responsible for configuring the hardware for proper multicast,
2032 * promiscuous mode, and all-multi behavior.
2033 **/
2034static void igb_set_multi(struct net_device *netdev)
2035{
2036 struct igb_adapter *adapter = netdev_priv(netdev);
2037 struct e1000_hw *hw = &adapter->hw;
2038 struct e1000_mac_info *mac = &hw->mac;
2039 struct dev_mc_list *mc_ptr;
2040 u8 *mta_list;
2041 u32 rctl;
2042 int i;
2043
2044 /* Check for Promiscuous and All Multicast modes */
2045
2046 rctl = rd32(E1000_RCTL);
2047
2048 if (netdev->flags & IFF_PROMISC)
2049 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2050 else if (netdev->flags & IFF_ALLMULTI) {
2051 rctl |= E1000_RCTL_MPE;
2052 rctl &= ~E1000_RCTL_UPE;
2053 } else
2054 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2055
2056 wr32(E1000_RCTL, rctl);
2057
2058 if (!netdev->mc_count) {
2059 /* nothing to program, so clear mc list */
2060 igb_update_mc_addr_list(hw, NULL, 0, 1,
2061 mac->rar_entry_count);
2062 return;
2063 }
2064
2065 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2066 if (!mta_list)
2067 return;
2068
2069 /* The shared function expects a packed array of only addresses. */
2070 mc_ptr = netdev->mc_list;
2071
2072 for (i = 0; i < netdev->mc_count; i++) {
2073 if (!mc_ptr)
2074 break;
2075 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2076 mc_ptr = mc_ptr->next;
2077 }
2078 igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2079 kfree(mta_list);
2080}
2081
2082/* Need to wait a few seconds after link up to get diagnostic information from
2083 * the phy */
2084static void igb_update_phy_info(unsigned long data)
2085{
2086 struct igb_adapter *adapter = (struct igb_adapter *) data;
2087 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
2088}
2089
2090/**
2091 * igb_watchdog - Timer Call-back
2092 * @data: pointer to adapter cast into an unsigned long
2093 **/
2094static void igb_watchdog(unsigned long data)
2095{
2096 struct igb_adapter *adapter = (struct igb_adapter *)data;
2097 /* Do the rest outside of interrupt context */
2098 schedule_work(&adapter->watchdog_task);
2099}
2100
2101static void igb_watchdog_task(struct work_struct *work)
2102{
2103 struct igb_adapter *adapter = container_of(work,
2104 struct igb_adapter, watchdog_task);
2105 struct e1000_hw *hw = &adapter->hw;
2106
2107 struct net_device *netdev = adapter->netdev;
2108 struct igb_ring *tx_ring = adapter->tx_ring;
2109 struct e1000_mac_info *mac = &adapter->hw.mac;
2110 u32 link;
2111 s32 ret_val;
2112
2113 if ((netif_carrier_ok(netdev)) &&
2114 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2115 goto link_up;
2116
2117 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2118 if ((ret_val == E1000_ERR_PHY) &&
2119 (hw->phy.type == e1000_phy_igp_3) &&
2120 (rd32(E1000_CTRL) &
2121 E1000_PHY_CTRL_GBE_DISABLE))
2122 dev_info(&adapter->pdev->dev,
2123 "Gigabit has been disabled, downgrading speed\n");
2124
2125 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2126 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2127 link = mac->serdes_has_link;
2128 else
2129 link = rd32(E1000_STATUS) &
2130 E1000_STATUS_LU;
2131
2132 if (link) {
2133 if (!netif_carrier_ok(netdev)) {
2134 u32 ctrl;
2135 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2136 &adapter->link_speed,
2137 &adapter->link_duplex);
2138
2139 ctrl = rd32(E1000_CTRL);
2140 dev_info(&adapter->pdev->dev,
2141 "NIC Link is Up %d Mbps %s, "
2142 "Flow Control: %s\n",
2143 adapter->link_speed,
2144 adapter->link_duplex == FULL_DUPLEX ?
2145 "Full Duplex" : "Half Duplex",
2146 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2147 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2148 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2149 E1000_CTRL_TFCE) ? "TX" : "None")));
2150
2151 /* tweak tx_queue_len according to speed/duplex and
2152 * adjust the timeout factor */
2153 netdev->tx_queue_len = adapter->tx_queue_len;
2154 adapter->tx_timeout_factor = 1;
2155 switch (adapter->link_speed) {
2156 case SPEED_10:
2157 netdev->tx_queue_len = 10;
2158 adapter->tx_timeout_factor = 14;
2159 break;
2160 case SPEED_100:
2161 netdev->tx_queue_len = 100;
2162 /* maybe add some timeout factor ? */
2163 break;
2164 }
2165
2166 netif_carrier_on(netdev);
2167 netif_wake_queue(netdev);
2168
2169 if (!test_bit(__IGB_DOWN, &adapter->state))
2170 mod_timer(&adapter->phy_info_timer,
2171 round_jiffies(jiffies + 2 * HZ));
2172 }
2173 } else {
2174 if (netif_carrier_ok(netdev)) {
2175 adapter->link_speed = 0;
2176 adapter->link_duplex = 0;
2177 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2178 netif_carrier_off(netdev);
2179 netif_stop_queue(netdev);
2180 if (!test_bit(__IGB_DOWN, &adapter->state))
2181 mod_timer(&adapter->phy_info_timer,
2182 round_jiffies(jiffies + 2 * HZ));
2183 }
2184 }
2185
2186link_up:
2187 igb_update_stats(adapter);
2188
2189 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2190 adapter->tpt_old = adapter->stats.tpt;
2191 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2192 adapter->colc_old = adapter->stats.colc;
2193
2194 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2195 adapter->gorc_old = adapter->stats.gorc;
2196 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2197 adapter->gotc_old = adapter->stats.gotc;
2198
2199 igb_update_adaptive(&adapter->hw);
2200
2201 if (!netif_carrier_ok(netdev)) {
2202 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2203 /* We've lost link, so the controller stops DMA,
2204 * but we've got queued Tx work that's never going
2205 * to get done, so reset controller to flush Tx.
2206 * (Do the reset outside of interrupt context). */
2207 adapter->tx_timeout_count++;
2208 schedule_work(&adapter->reset_task);
2209 }
2210 }
2211
2212 /* Cause software interrupt to ensure rx ring is cleaned */
2213 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2214
2215 /* Force detection of hung controller every watchdog period */
2216 tx_ring->detect_tx_hung = true;
2217
2218 /* Reset the timer */
2219 if (!test_bit(__IGB_DOWN, &adapter->state))
2220 mod_timer(&adapter->watchdog_timer,
2221 round_jiffies(jiffies + 2 * HZ));
2222}
2223
2224enum latency_range {
2225 lowest_latency = 0,
2226 low_latency = 1,
2227 bulk_latency = 2,
2228 latency_invalid = 255
2229};
2230
2231
2232static void igb_lower_rx_eitr(struct igb_adapter *adapter,
2233 struct igb_ring *rx_ring)
2234{
2235 struct e1000_hw *hw = &adapter->hw;
2236 int new_val;
2237
2238 new_val = rx_ring->itr_val / 2;
2239 if (new_val < IGB_MIN_DYN_ITR)
2240 new_val = IGB_MIN_DYN_ITR;
2241
2242 if (new_val != rx_ring->itr_val) {
2243 rx_ring->itr_val = new_val;
2244 wr32(rx_ring->itr_register,
2245 1000000000 / (new_val * 256));
2246 }
2247}
2248
2249static void igb_raise_rx_eitr(struct igb_adapter *adapter,
2250 struct igb_ring *rx_ring)
2251{
2252 struct e1000_hw *hw = &adapter->hw;
2253 int new_val;
2254
2255 new_val = rx_ring->itr_val * 2;
2256 if (new_val > IGB_MAX_DYN_ITR)
2257 new_val = IGB_MAX_DYN_ITR;
2258
2259 if (new_val != rx_ring->itr_val) {
2260 rx_ring->itr_val = new_val;
2261 wr32(rx_ring->itr_register,
2262 1000000000 / (new_val * 256));
2263 }
2264}
2265
2266/**
2267 * igb_update_itr - update the dynamic ITR value based on statistics
2268 * Stores a new ITR value based on packets and byte
2269 * counts during the last interrupt. The advantage of per interrupt
2270 * computation is faster updates and more accurate ITR for the current
2271 * traffic pattern. Constants in this function were computed
2272 * based on theoretical maximum wire speed and thresholds were set based
2273 * on testing data as well as attempting to minimize response time
2274 * while increasing bulk throughput.
2275 * this functionality is controlled by the InterruptThrottleRate module
2276 * parameter (see igb_param.c)
2277 * NOTE: These calculations are only valid when operating in a single-
2278 * queue environment.
2279 * @adapter: pointer to adapter
2280 * @itr_setting: current adapter->itr
2281 * @packets: the number of packets during this measurement interval
2282 * @bytes: the number of bytes during this measurement interval
2283 **/
2284static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2285 int packets, int bytes)
2286{
2287 unsigned int retval = itr_setting;
2288
2289 if (packets == 0)
2290 goto update_itr_done;
2291
2292 switch (itr_setting) {
2293 case lowest_latency:
2294 /* handle TSO and jumbo frames */
2295 if (bytes/packets > 8000)
2296 retval = bulk_latency;
2297 else if ((packets < 5) && (bytes > 512))
2298 retval = low_latency;
2299 break;
2300 case low_latency: /* 50 usec aka 20000 ints/s */
2301 if (bytes > 10000) {
2302 /* this if handles the TSO accounting */
2303 if (bytes/packets > 8000) {
2304 retval = bulk_latency;
2305 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2306 retval = bulk_latency;
2307 } else if ((packets > 35)) {
2308 retval = lowest_latency;
2309 }
2310 } else if (bytes/packets > 2000) {
2311 retval = bulk_latency;
2312 } else if (packets <= 2 && bytes < 512) {
2313 retval = lowest_latency;
2314 }
2315 break;
2316 case bulk_latency: /* 250 usec aka 4000 ints/s */
2317 if (bytes > 25000) {
2318 if (packets > 35)
2319 retval = low_latency;
2320 } else if (bytes < 6000) {
2321 retval = low_latency;
2322 }
2323 break;
2324 }
2325
2326update_itr_done:
2327 return retval;
2328}
2329
2330static void igb_set_itr(struct igb_adapter *adapter, u16 itr_register,
2331 int rx_only)
2332{
2333 u16 current_itr;
2334 u32 new_itr = adapter->itr;
2335
2336 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2337 if (adapter->link_speed != SPEED_1000) {
2338 current_itr = 0;
2339 new_itr = 4000;
2340 goto set_itr_now;
2341 }
2342
2343 adapter->rx_itr = igb_update_itr(adapter,
2344 adapter->rx_itr,
2345 adapter->rx_ring->total_packets,
2346 adapter->rx_ring->total_bytes);
2347 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2348 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2349 adapter->rx_itr = low_latency;
2350
2351 if (!rx_only) {
2352 adapter->tx_itr = igb_update_itr(adapter,
2353 adapter->tx_itr,
2354 adapter->tx_ring->total_packets,
2355 adapter->tx_ring->total_bytes);
2356 /* conservative mode (itr 3) eliminates the
2357 * lowest_latency setting */
2358 if (adapter->itr_setting == 3 &&
2359 adapter->tx_itr == lowest_latency)
2360 adapter->tx_itr = low_latency;
2361
2362 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2363 } else {
2364 current_itr = adapter->rx_itr;
2365 }
2366
2367 switch (current_itr) {
2368 /* counts and packets in update_itr are dependent on these numbers */
2369 case lowest_latency:
2370 new_itr = 70000;
2371 break;
2372 case low_latency:
2373 new_itr = 20000; /* aka hwitr = ~200 */
2374 break;
2375 case bulk_latency:
2376 new_itr = 4000;
2377 break;
2378 default:
2379 break;
2380 }
2381
2382set_itr_now:
2383 if (new_itr != adapter->itr) {
2384 /* this attempts to bias the interrupt rate towards Bulk
2385 * by adding intermediate steps when interrupt rate is
2386 * increasing */
2387 new_itr = new_itr > adapter->itr ?
2388 min(adapter->itr + (new_itr >> 2), new_itr) :
2389 new_itr;
2390 /* Don't write the value here; it resets the adapter's
2391 * internal timer, and causes us to delay far longer than
2392 * we should between interrupts. Instead, we write the ITR
2393 * value at the beginning of the next interrupt so the timing
2394 * ends up being correct.
2395 */
2396 adapter->itr = new_itr;
2397 adapter->set_itr = 1;
2398 }
2399
2400 return;
2401}
2402
2403
2404#define IGB_TX_FLAGS_CSUM 0x00000001
2405#define IGB_TX_FLAGS_VLAN 0x00000002
2406#define IGB_TX_FLAGS_TSO 0x00000004
2407#define IGB_TX_FLAGS_IPV4 0x00000008
2408#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2409#define IGB_TX_FLAGS_VLAN_SHIFT 16
2410
2411static inline int igb_tso_adv(struct igb_adapter *adapter,
2412 struct igb_ring *tx_ring,
2413 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2414{
2415 struct e1000_adv_tx_context_desc *context_desc;
2416 unsigned int i;
2417 int err;
2418 struct igb_buffer *buffer_info;
2419 u32 info = 0, tu_cmd = 0;
2420 u32 mss_l4len_idx, l4len;
2421 *hdr_len = 0;
2422
2423 if (skb_header_cloned(skb)) {
2424 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2425 if (err)
2426 return err;
2427 }
2428
2429 l4len = tcp_hdrlen(skb);
2430 *hdr_len += l4len;
2431
2432 if (skb->protocol == htons(ETH_P_IP)) {
2433 struct iphdr *iph = ip_hdr(skb);
2434 iph->tot_len = 0;
2435 iph->check = 0;
2436 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2437 iph->daddr, 0,
2438 IPPROTO_TCP,
2439 0);
2440 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2441 ipv6_hdr(skb)->payload_len = 0;
2442 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2443 &ipv6_hdr(skb)->daddr,
2444 0, IPPROTO_TCP, 0);
2445 }
2446
2447 i = tx_ring->next_to_use;
2448
2449 buffer_info = &tx_ring->buffer_info[i];
2450 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2451 /* VLAN MACLEN IPLEN */
2452 if (tx_flags & IGB_TX_FLAGS_VLAN)
2453 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2454 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2455 *hdr_len += skb_network_offset(skb);
2456 info |= skb_network_header_len(skb);
2457 *hdr_len += skb_network_header_len(skb);
2458 context_desc->vlan_macip_lens = cpu_to_le32(info);
2459
2460 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2461 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2462
2463 if (skb->protocol == htons(ETH_P_IP))
2464 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2465 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2466
2467 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2468
2469 /* MSS L4LEN IDX */
2470 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2471 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2472
2473 /* Context index must be unique per ring. Luckily, so is the interrupt
2474 * mask value. */
2475 mss_l4len_idx |= tx_ring->eims_value >> 4;
2476
2477 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2478 context_desc->seqnum_seed = 0;
2479
2480 buffer_info->time_stamp = jiffies;
2481 buffer_info->dma = 0;
2482 i++;
2483 if (i == tx_ring->count)
2484 i = 0;
2485
2486 tx_ring->next_to_use = i;
2487
2488 return true;
2489}
2490
2491static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2492 struct igb_ring *tx_ring,
2493 struct sk_buff *skb, u32 tx_flags)
2494{
2495 struct e1000_adv_tx_context_desc *context_desc;
2496 unsigned int i;
2497 struct igb_buffer *buffer_info;
2498 u32 info = 0, tu_cmd = 0;
2499
2500 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2501 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2502 i = tx_ring->next_to_use;
2503 buffer_info = &tx_ring->buffer_info[i];
2504 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2505
2506 if (tx_flags & IGB_TX_FLAGS_VLAN)
2507 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2508 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2509 if (skb->ip_summed == CHECKSUM_PARTIAL)
2510 info |= skb_network_header_len(skb);
2511
2512 context_desc->vlan_macip_lens = cpu_to_le32(info);
2513
2514 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2515
2516 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2517 if (skb->protocol == htons(ETH_P_IP))
2518 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2519 if (skb->sk && (skb->sk->sk_protocol == IPPROTO_TCP))
2520 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2521 }
2522
2523 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2524 context_desc->seqnum_seed = 0;
2525 context_desc->mss_l4len_idx =
2526 cpu_to_le32(tx_ring->eims_value >> 4);
2527
2528 buffer_info->time_stamp = jiffies;
2529 buffer_info->dma = 0;
2530
2531 i++;
2532 if (i == tx_ring->count)
2533 i = 0;
2534 tx_ring->next_to_use = i;
2535
2536 return true;
2537 }
2538
2539
2540 return false;
2541}
2542
2543#define IGB_MAX_TXD_PWR 16
2544#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2545
2546static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2547 struct igb_ring *tx_ring,
2548 struct sk_buff *skb)
2549{
2550 struct igb_buffer *buffer_info;
2551 unsigned int len = skb_headlen(skb);
2552 unsigned int count = 0, i;
2553 unsigned int f;
2554
2555 i = tx_ring->next_to_use;
2556
2557 buffer_info = &tx_ring->buffer_info[i];
2558 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2559 buffer_info->length = len;
2560 /* set time_stamp *before* dma to help avoid a possible race */
2561 buffer_info->time_stamp = jiffies;
2562 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2563 PCI_DMA_TODEVICE);
2564 count++;
2565 i++;
2566 if (i == tx_ring->count)
2567 i = 0;
2568
2569 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2570 struct skb_frag_struct *frag;
2571
2572 frag = &skb_shinfo(skb)->frags[f];
2573 len = frag->size;
2574
2575 buffer_info = &tx_ring->buffer_info[i];
2576 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2577 buffer_info->length = len;
2578 buffer_info->time_stamp = jiffies;
2579 buffer_info->dma = pci_map_page(adapter->pdev,
2580 frag->page,
2581 frag->page_offset,
2582 len,
2583 PCI_DMA_TODEVICE);
2584
2585 count++;
2586 i++;
2587 if (i == tx_ring->count)
2588 i = 0;
2589 }
2590
2591 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2592 tx_ring->buffer_info[i].skb = skb;
2593
2594 return count;
2595}
2596
2597static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2598 struct igb_ring *tx_ring,
2599 int tx_flags, int count, u32 paylen,
2600 u8 hdr_len)
2601{
2602 union e1000_adv_tx_desc *tx_desc = NULL;
2603 struct igb_buffer *buffer_info;
2604 u32 olinfo_status = 0, cmd_type_len;
2605 unsigned int i;
2606
2607 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2608 E1000_ADVTXD_DCMD_DEXT);
2609
2610 if (tx_flags & IGB_TX_FLAGS_VLAN)
2611 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2612
2613 if (tx_flags & IGB_TX_FLAGS_TSO) {
2614 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2615
2616 /* insert tcp checksum */
2617 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2618
2619 /* insert ip checksum */
2620 if (tx_flags & IGB_TX_FLAGS_IPV4)
2621 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2622
2623 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2624 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2625 }
2626
2627 if (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2628 IGB_TX_FLAGS_VLAN))
2629 olinfo_status |= tx_ring->eims_value >> 4;
2630
2631 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2632
2633 i = tx_ring->next_to_use;
2634 while (count--) {
2635 buffer_info = &tx_ring->buffer_info[i];
2636 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2637 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2638 tx_desc->read.cmd_type_len =
2639 cpu_to_le32(cmd_type_len | buffer_info->length);
2640 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2641 i++;
2642 if (i == tx_ring->count)
2643 i = 0;
2644 }
2645
2646 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2647 /* Force memory writes to complete before letting h/w
2648 * know there are new descriptors to fetch. (Only
2649 * applicable for weak-ordered memory model archs,
2650 * such as IA-64). */
2651 wmb();
2652
2653 tx_ring->next_to_use = i;
2654 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2655 /* we need this if more than one processor can write to our tail
2656 * at a time, it syncronizes IO on IA64/Altix systems */
2657 mmiowb();
2658}
2659
2660static int __igb_maybe_stop_tx(struct net_device *netdev,
2661 struct igb_ring *tx_ring, int size)
2662{
2663 struct igb_adapter *adapter = netdev_priv(netdev);
2664
2665 netif_stop_queue(netdev);
2666 /* Herbert's original patch had:
2667 * smp_mb__after_netif_stop_queue();
2668 * but since that doesn't exist yet, just open code it. */
2669 smp_mb();
2670
2671 /* We need to check again in a case another CPU has just
2672 * made room available. */
2673 if (IGB_DESC_UNUSED(tx_ring) < size)
2674 return -EBUSY;
2675
2676 /* A reprieve! */
2677 netif_start_queue(netdev);
2678 ++adapter->restart_queue;
2679 return 0;
2680}
2681
2682static int igb_maybe_stop_tx(struct net_device *netdev,
2683 struct igb_ring *tx_ring, int size)
2684{
2685 if (IGB_DESC_UNUSED(tx_ring) >= size)
2686 return 0;
2687 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2688}
2689
2690#define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2691
2692static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2693 struct net_device *netdev,
2694 struct igb_ring *tx_ring)
2695{
2696 struct igb_adapter *adapter = netdev_priv(netdev);
2697 unsigned int tx_flags = 0;
2698 unsigned int len;
2699 unsigned long irq_flags;
2700 u8 hdr_len = 0;
2701 int tso = 0;
2702
2703 len = skb_headlen(skb);
2704
2705 if (test_bit(__IGB_DOWN, &adapter->state)) {
2706 dev_kfree_skb_any(skb);
2707 return NETDEV_TX_OK;
2708 }
2709
2710 if (skb->len <= 0) {
2711 dev_kfree_skb_any(skb);
2712 return NETDEV_TX_OK;
2713 }
2714
2715 if (!spin_trylock_irqsave(&tx_ring->tx_lock, irq_flags))
2716 /* Collision - tell upper layer to requeue */
2717 return NETDEV_TX_LOCKED;
2718
2719 /* need: 1 descriptor per page,
2720 * + 2 desc gap to keep tail from touching head,
2721 * + 1 desc for skb->data,
2722 * + 1 desc for context descriptor,
2723 * otherwise try next time */
2724 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2725 /* this is a hard error */
2726 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2727 return NETDEV_TX_BUSY;
2728 }
2729
2730 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2731 tx_flags |= IGB_TX_FLAGS_VLAN;
2732 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2733 }
2734
2735 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2736 &hdr_len) : 0;
2737
2738 if (tso < 0) {
2739 dev_kfree_skb_any(skb);
2740 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2741 return NETDEV_TX_OK;
2742 }
2743
2744 if (tso)
2745 tx_flags |= IGB_TX_FLAGS_TSO;
2746 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2747 if (skb->ip_summed == CHECKSUM_PARTIAL)
2748 tx_flags |= IGB_TX_FLAGS_CSUM;
2749
2750 if (skb->protocol == htons(ETH_P_IP))
2751 tx_flags |= IGB_TX_FLAGS_IPV4;
2752
2753 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2754 igb_tx_map_adv(adapter, tx_ring, skb),
2755 skb->len, hdr_len);
2756
2757 netdev->trans_start = jiffies;
2758
2759 /* Make sure there is space in the ring for the next send. */
2760 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2761
2762 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2763 return NETDEV_TX_OK;
2764}
2765
2766static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
2767{
2768 struct igb_adapter *adapter = netdev_priv(netdev);
2769 struct igb_ring *tx_ring = &adapter->tx_ring[0];
2770
2771 /* This goes back to the question of how to logically map a tx queue
2772 * to a flow. Right now, performance is impacted slightly negatively
2773 * if using multiple tx queues. If the stack breaks away from a
2774 * single qdisc implementation, we can look at this again. */
2775 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
2776}
2777
2778/**
2779 * igb_tx_timeout - Respond to a Tx Hang
2780 * @netdev: network interface device structure
2781 **/
2782static void igb_tx_timeout(struct net_device *netdev)
2783{
2784 struct igb_adapter *adapter = netdev_priv(netdev);
2785 struct e1000_hw *hw = &adapter->hw;
2786
2787 /* Do the reset outside of interrupt context */
2788 adapter->tx_timeout_count++;
2789 schedule_work(&adapter->reset_task);
2790 wr32(E1000_EICS, adapter->eims_enable_mask &
2791 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
2792}
2793
2794static void igb_reset_task(struct work_struct *work)
2795{
2796 struct igb_adapter *adapter;
2797 adapter = container_of(work, struct igb_adapter, reset_task);
2798
2799 igb_reinit_locked(adapter);
2800}
2801
2802/**
2803 * igb_get_stats - Get System Network Statistics
2804 * @netdev: network interface device structure
2805 *
2806 * Returns the address of the device statistics structure.
2807 * The statistics are actually updated from the timer callback.
2808 **/
2809static struct net_device_stats *
2810igb_get_stats(struct net_device *netdev)
2811{
2812 struct igb_adapter *adapter = netdev_priv(netdev);
2813
2814 /* only return the current stats */
2815 return &adapter->net_stats;
2816}
2817
2818/**
2819 * igb_change_mtu - Change the Maximum Transfer Unit
2820 * @netdev: network interface device structure
2821 * @new_mtu: new value for maximum frame size
2822 *
2823 * Returns 0 on success, negative on failure
2824 **/
2825static int igb_change_mtu(struct net_device *netdev, int new_mtu)
2826{
2827 struct igb_adapter *adapter = netdev_priv(netdev);
2828 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2829
2830 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2831 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2832 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2833 return -EINVAL;
2834 }
2835
2836#define MAX_STD_JUMBO_FRAME_SIZE 9234
2837 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2838 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2839 return -EINVAL;
2840 }
2841
2842 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2843 msleep(1);
2844 /* igb_down has a dependency on max_frame_size */
2845 adapter->max_frame_size = max_frame;
2846 if (netif_running(netdev))
2847 igb_down(adapter);
2848
2849 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2850 * means we reserve 2 more, this pushes us to allocate from the next
2851 * larger slab size.
2852 * i.e. RXBUFFER_2048 --> size-4096 slab
2853 */
2854
2855 if (max_frame <= IGB_RXBUFFER_256)
2856 adapter->rx_buffer_len = IGB_RXBUFFER_256;
2857 else if (max_frame <= IGB_RXBUFFER_512)
2858 adapter->rx_buffer_len = IGB_RXBUFFER_512;
2859 else if (max_frame <= IGB_RXBUFFER_1024)
2860 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
2861 else if (max_frame <= IGB_RXBUFFER_2048)
2862 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
2863 else
2864 adapter->rx_buffer_len = IGB_RXBUFFER_4096;
2865 /* adjust allocation if LPE protects us, and we aren't using SBP */
2866 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2867 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
2868 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
2869
2870 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2871 netdev->mtu, new_mtu);
2872 netdev->mtu = new_mtu;
2873
2874 if (netif_running(netdev))
2875 igb_up(adapter);
2876 else
2877 igb_reset(adapter);
2878
2879 clear_bit(__IGB_RESETTING, &adapter->state);
2880
2881 return 0;
2882}
2883
2884/**
2885 * igb_update_stats - Update the board statistics counters
2886 * @adapter: board private structure
2887 **/
2888
2889void igb_update_stats(struct igb_adapter *adapter)
2890{
2891 struct e1000_hw *hw = &adapter->hw;
2892 struct pci_dev *pdev = adapter->pdev;
2893 u16 phy_tmp;
2894
2895#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2896
2897 /*
2898 * Prevent stats update while adapter is being reset, or if the pci
2899 * connection is down.
2900 */
2901 if (adapter->link_speed == 0)
2902 return;
2903 if (pci_channel_offline(pdev))
2904 return;
2905
2906 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
2907 adapter->stats.gprc += rd32(E1000_GPRC);
2908 adapter->stats.gorc += rd32(E1000_GORCL);
2909 rd32(E1000_GORCH); /* clear GORCL */
2910 adapter->stats.bprc += rd32(E1000_BPRC);
2911 adapter->stats.mprc += rd32(E1000_MPRC);
2912 adapter->stats.roc += rd32(E1000_ROC);
2913
2914 adapter->stats.prc64 += rd32(E1000_PRC64);
2915 adapter->stats.prc127 += rd32(E1000_PRC127);
2916 adapter->stats.prc255 += rd32(E1000_PRC255);
2917 adapter->stats.prc511 += rd32(E1000_PRC511);
2918 adapter->stats.prc1023 += rd32(E1000_PRC1023);
2919 adapter->stats.prc1522 += rd32(E1000_PRC1522);
2920 adapter->stats.symerrs += rd32(E1000_SYMERRS);
2921 adapter->stats.sec += rd32(E1000_SEC);
2922
2923 adapter->stats.mpc += rd32(E1000_MPC);
2924 adapter->stats.scc += rd32(E1000_SCC);
2925 adapter->stats.ecol += rd32(E1000_ECOL);
2926 adapter->stats.mcc += rd32(E1000_MCC);
2927 adapter->stats.latecol += rd32(E1000_LATECOL);
2928 adapter->stats.dc += rd32(E1000_DC);
2929 adapter->stats.rlec += rd32(E1000_RLEC);
2930 adapter->stats.xonrxc += rd32(E1000_XONRXC);
2931 adapter->stats.xontxc += rd32(E1000_XONTXC);
2932 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
2933 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
2934 adapter->stats.fcruc += rd32(E1000_FCRUC);
2935 adapter->stats.gptc += rd32(E1000_GPTC);
2936 adapter->stats.gotc += rd32(E1000_GOTCL);
2937 rd32(E1000_GOTCH); /* clear GOTCL */
2938 adapter->stats.rnbc += rd32(E1000_RNBC);
2939 adapter->stats.ruc += rd32(E1000_RUC);
2940 adapter->stats.rfc += rd32(E1000_RFC);
2941 adapter->stats.rjc += rd32(E1000_RJC);
2942 adapter->stats.tor += rd32(E1000_TORH);
2943 adapter->stats.tot += rd32(E1000_TOTH);
2944 adapter->stats.tpr += rd32(E1000_TPR);
2945
2946 adapter->stats.ptc64 += rd32(E1000_PTC64);
2947 adapter->stats.ptc127 += rd32(E1000_PTC127);
2948 adapter->stats.ptc255 += rd32(E1000_PTC255);
2949 adapter->stats.ptc511 += rd32(E1000_PTC511);
2950 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
2951 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
2952
2953 adapter->stats.mptc += rd32(E1000_MPTC);
2954 adapter->stats.bptc += rd32(E1000_BPTC);
2955
2956 /* used for adaptive IFS */
2957
2958 hw->mac.tx_packet_delta = rd32(E1000_TPT);
2959 adapter->stats.tpt += hw->mac.tx_packet_delta;
2960 hw->mac.collision_delta = rd32(E1000_COLC);
2961 adapter->stats.colc += hw->mac.collision_delta;
2962
2963 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
2964 adapter->stats.rxerrc += rd32(E1000_RXERRC);
2965 adapter->stats.tncrs += rd32(E1000_TNCRS);
2966 adapter->stats.tsctc += rd32(E1000_TSCTC);
2967 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
2968
2969 adapter->stats.iac += rd32(E1000_IAC);
2970 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
2971 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
2972 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
2973 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
2974 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
2975 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
2976 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
2977 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
2978
2979 /* Fill out the OS statistics structure */
2980 adapter->net_stats.multicast = adapter->stats.mprc;
2981 adapter->net_stats.collisions = adapter->stats.colc;
2982
2983 /* Rx Errors */
2984
2985 /* RLEC on some newer hardware can be incorrect so build
2986 * our own version based on RUC and ROC */
2987 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2988 adapter->stats.crcerrs + adapter->stats.algnerrc +
2989 adapter->stats.ruc + adapter->stats.roc +
2990 adapter->stats.cexterr;
2991 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2992 adapter->stats.roc;
2993 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2994 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2995 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2996
2997 /* Tx Errors */
2998 adapter->net_stats.tx_errors = adapter->stats.ecol +
2999 adapter->stats.latecol;
3000 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3001 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3002 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3003
3004 /* Tx Dropped needs to be maintained elsewhere */
3005
3006 /* Phy Stats */
3007 if (hw->phy.media_type == e1000_media_type_copper) {
3008 if ((adapter->link_speed == SPEED_1000) &&
3009 (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
3010 &phy_tmp))) {
3011 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3012 adapter->phy_stats.idle_errors += phy_tmp;
3013 }
3014 }
3015
3016 /* Management Stats */
3017 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3018 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3019 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3020}
3021
3022
3023static irqreturn_t igb_msix_other(int irq, void *data)
3024{
3025 struct net_device *netdev = data;
3026 struct igb_adapter *adapter = netdev_priv(netdev);
3027 struct e1000_hw *hw = &adapter->hw;
3028 u32 eicr;
3029 /* disable interrupts from the "other" bit, avoid re-entry */
3030 wr32(E1000_EIMC, E1000_EIMS_OTHER);
3031
3032 eicr = rd32(E1000_EICR);
3033
3034 if (eicr & E1000_EIMS_OTHER) {
3035 u32 icr = rd32(E1000_ICR);
3036 /* reading ICR causes bit 31 of EICR to be cleared */
3037 if (!(icr & E1000_ICR_LSC))
3038 goto no_link_interrupt;
3039 hw->mac.get_link_status = 1;
3040 /* guard against interrupt when we're going down */
3041 if (!test_bit(__IGB_DOWN, &adapter->state))
3042 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3043 }
3044
3045no_link_interrupt:
3046 wr32(E1000_IMS, E1000_IMS_LSC);
3047 wr32(E1000_EIMS, E1000_EIMS_OTHER);
3048
3049 return IRQ_HANDLED;
3050}
3051
3052static irqreturn_t igb_msix_tx(int irq, void *data)
3053{
3054 struct igb_ring *tx_ring = data;
3055 struct igb_adapter *adapter = tx_ring->adapter;
3056 struct e1000_hw *hw = &adapter->hw;
3057
3058 if (!tx_ring->itr_val)
3059 wr32(E1000_EIMC, tx_ring->eims_value);
3060
3061 tx_ring->total_bytes = 0;
3062 tx_ring->total_packets = 0;
3063 if (!igb_clean_tx_irq(adapter, tx_ring))
3064 /* Ring was not completely cleaned, so fire another interrupt */
3065 wr32(E1000_EICS, tx_ring->eims_value);
3066
3067 if (!tx_ring->itr_val)
3068 wr32(E1000_EIMS, tx_ring->eims_value);
3069 return IRQ_HANDLED;
3070}
3071
3072static irqreturn_t igb_msix_rx(int irq, void *data)
3073{
3074 struct igb_ring *rx_ring = data;
3075 struct igb_adapter *adapter = rx_ring->adapter;
3076 struct e1000_hw *hw = &adapter->hw;
3077
3078 if (!rx_ring->itr_val)
3079 wr32(E1000_EIMC, rx_ring->eims_value);
3080
3081 if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi)) {
3082 rx_ring->total_bytes = 0;
3083 rx_ring->total_packets = 0;
3084 rx_ring->no_itr_adjust = 0;
3085 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3086 } else {
3087 if (!rx_ring->no_itr_adjust) {
3088 igb_lower_rx_eitr(adapter, rx_ring);
3089 rx_ring->no_itr_adjust = 1;
3090 }
3091 }
3092
3093 return IRQ_HANDLED;
3094}
3095
3096
3097/**
3098 * igb_intr_msi - Interrupt Handler
3099 * @irq: interrupt number
3100 * @data: pointer to a network interface device structure
3101 **/
3102static irqreturn_t igb_intr_msi(int irq, void *data)
3103{
3104 struct net_device *netdev = data;
3105 struct igb_adapter *adapter = netdev_priv(netdev);
3106 struct napi_struct *napi = &adapter->napi;
3107 struct e1000_hw *hw = &adapter->hw;
3108 /* read ICR disables interrupts using IAM */
3109 u32 icr = rd32(E1000_ICR);
3110
3111 /* Write the ITR value calculated at the end of the
3112 * previous interrupt.
3113 */
3114 if (adapter->set_itr) {
3115 wr32(E1000_ITR,
3116 1000000000 / (adapter->itr * 256));
3117 adapter->set_itr = 0;
3118 }
3119
3120 /* read ICR disables interrupts using IAM */
3121 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3122 hw->mac.get_link_status = 1;
3123 if (!test_bit(__IGB_DOWN, &adapter->state))
3124 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3125 }
3126
3127 if (netif_rx_schedule_prep(netdev, napi)) {
3128 adapter->tx_ring->total_bytes = 0;
3129 adapter->tx_ring->total_packets = 0;
3130 adapter->rx_ring->total_bytes = 0;
3131 adapter->rx_ring->total_packets = 0;
3132 __netif_rx_schedule(netdev, napi);
3133 }
3134
3135 return IRQ_HANDLED;
3136}
3137
3138/**
3139 * igb_intr - Interrupt Handler
3140 * @irq: interrupt number
3141 * @data: pointer to a network interface device structure
3142 **/
3143static irqreturn_t igb_intr(int irq, void *data)
3144{
3145 struct net_device *netdev = data;
3146 struct igb_adapter *adapter = netdev_priv(netdev);
3147 struct napi_struct *napi = &adapter->napi;
3148 struct e1000_hw *hw = &adapter->hw;
3149 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3150 * need for the IMC write */
3151 u32 icr = rd32(E1000_ICR);
3152 u32 eicr = 0;
3153 if (!icr)
3154 return IRQ_NONE; /* Not our interrupt */
3155
3156 /* Write the ITR value calculated at the end of the
3157 * previous interrupt.
3158 */
3159 if (adapter->set_itr) {
3160 wr32(E1000_ITR,
3161 1000000000 / (adapter->itr * 256));
3162 adapter->set_itr = 0;
3163 }
3164
3165 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3166 * not set, then the adapter didn't send an interrupt */
3167 if (!(icr & E1000_ICR_INT_ASSERTED))
3168 return IRQ_NONE;
3169
3170 eicr = rd32(E1000_EICR);
3171
3172 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3173 hw->mac.get_link_status = 1;
3174 /* guard against interrupt when we're going down */
3175 if (!test_bit(__IGB_DOWN, &adapter->state))
3176 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3177 }
3178
3179 if (netif_rx_schedule_prep(netdev, napi)) {
3180 adapter->tx_ring->total_bytes = 0;
3181 adapter->rx_ring->total_bytes = 0;
3182 adapter->tx_ring->total_packets = 0;
3183 adapter->rx_ring->total_packets = 0;
3184 __netif_rx_schedule(netdev, napi);
3185 }
3186
3187 return IRQ_HANDLED;
3188}
3189
3190/**
3191 * igb_clean - NAPI Rx polling callback
3192 * @adapter: board private structure
3193 **/
3194static int igb_clean(struct napi_struct *napi, int budget)
3195{
3196 struct igb_adapter *adapter = container_of(napi, struct igb_adapter,
3197 napi);
3198 struct net_device *netdev = adapter->netdev;
3199 int tx_clean_complete = 1, work_done = 0;
3200 int i;
3201
3202 /* Must NOT use netdev_priv macro here. */
3203 adapter = netdev->priv;
3204
3205 /* Keep link state information with original netdev */
3206 if (!netif_carrier_ok(netdev))
3207 goto quit_polling;
3208
3209 /* igb_clean is called per-cpu. This lock protects tx_ring[i] from
3210 * being cleaned by multiple cpus simultaneously. A failure obtaining
3211 * the lock means tx_ring[i] is currently being cleaned anyway. */
3212 for (i = 0; i < adapter->num_tx_queues; i++) {
3213 if (spin_trylock(&adapter->tx_ring[i].tx_clean_lock)) {
3214 tx_clean_complete &= igb_clean_tx_irq(adapter,
3215 &adapter->tx_ring[i]);
3216 spin_unlock(&adapter->tx_ring[i].tx_clean_lock);
3217 }
3218 }
3219
3220 for (i = 0; i < adapter->num_rx_queues; i++)
3221 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i], &work_done,
3222 adapter->rx_ring[i].napi.weight);
3223
3224 /* If no Tx and not enough Rx work done, exit the polling mode */
3225 if ((tx_clean_complete && (work_done < budget)) ||
3226 !netif_running(netdev)) {
3227quit_polling:
3228 if (adapter->itr_setting & 3)
3229 igb_set_itr(adapter, E1000_ITR, false);
3230 netif_rx_complete(netdev, napi);
3231 if (!test_bit(__IGB_DOWN, &adapter->state))
3232 igb_irq_enable(adapter);
3233 return 0;
3234 }
3235
3236 return 1;
3237}
3238
3239static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3240{
3241 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3242 struct igb_adapter *adapter = rx_ring->adapter;
3243 struct e1000_hw *hw = &adapter->hw;
3244 struct net_device *netdev = adapter->netdev;
3245 int work_done = 0;
3246
3247 /* Keep link state information with original netdev */
3248 if (!netif_carrier_ok(netdev))
3249 goto quit_polling;
3250
3251 igb_clean_rx_irq_adv(adapter, rx_ring, &work_done, budget);
3252
3253
3254 /* If not enough Rx work done, exit the polling mode */
3255 if ((work_done == 0) || !netif_running(netdev)) {
3256quit_polling:
3257 netif_rx_complete(netdev, napi);
3258
3259 wr32(E1000_EIMS, rx_ring->eims_value);
3260 if ((adapter->itr_setting & 3) && !rx_ring->no_itr_adjust &&
3261 (rx_ring->total_packets > IGB_DYN_ITR_PACKET_THRESHOLD)) {
3262 int mean_size = rx_ring->total_bytes /
3263 rx_ring->total_packets;
3264 if (mean_size < IGB_DYN_ITR_LENGTH_LOW)
3265 igb_raise_rx_eitr(adapter, rx_ring);
3266 else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH)
3267 igb_lower_rx_eitr(adapter, rx_ring);
3268 }
3269 return 0;
3270 }
3271
3272 return 1;
3273}
3274/**
3275 * igb_clean_tx_irq - Reclaim resources after transmit completes
3276 * @adapter: board private structure
3277 * returns true if ring is completely cleaned
3278 **/
3279static bool igb_clean_tx_irq(struct igb_adapter *adapter,
3280 struct igb_ring *tx_ring)
3281{
3282 struct net_device *netdev = adapter->netdev;
3283 struct e1000_hw *hw = &adapter->hw;
3284 struct e1000_tx_desc *tx_desc;
3285 struct igb_buffer *buffer_info;
3286 struct sk_buff *skb;
3287 unsigned int i;
3288 u32 head, oldhead;
3289 unsigned int count = 0;
3290 bool cleaned = false;
3291 bool retval = true;
3292 unsigned int total_bytes = 0, total_packets = 0;
3293
3294 rmb();
3295 head = *(volatile u32 *)((struct e1000_tx_desc *)tx_ring->desc
3296 + tx_ring->count);
3297 head = le32_to_cpu(head);
3298 i = tx_ring->next_to_clean;
3299 while (1) {
3300 while (i != head) {
3301 cleaned = true;
3302 tx_desc = E1000_TX_DESC(*tx_ring, i);
3303 buffer_info = &tx_ring->buffer_info[i];
3304 skb = buffer_info->skb;
3305
3306 if (skb) {
3307 unsigned int segs, bytecount;
3308 /* gso_segs is currently only valid for tcp */
3309 segs = skb_shinfo(skb)->gso_segs ?: 1;
3310 /* multiply data chunks by size of headers */
3311 bytecount = ((segs - 1) * skb_headlen(skb)) +
3312 skb->len;
3313 total_packets += segs;
3314 total_bytes += bytecount;
3315 }
3316
3317 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3318 tx_desc->upper.data = 0;
3319
3320 i++;
3321 if (i == tx_ring->count)
3322 i = 0;
3323
3324 count++;
3325 if (count == IGB_MAX_TX_CLEAN) {
3326 retval = false;
3327 goto done_cleaning;
3328 }
3329 }
3330 oldhead = head;
3331 rmb();
3332 head = *(volatile u32 *)((struct e1000_tx_desc *)tx_ring->desc
3333 + tx_ring->count);
3334 head = le32_to_cpu(head);
3335 if (head == oldhead)
3336 goto done_cleaning;
3337 } /* while (1) */
3338
3339done_cleaning:
3340 tx_ring->next_to_clean = i;
3341
3342 if (unlikely(cleaned &&
3343 netif_carrier_ok(netdev) &&
3344 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3345 /* Make sure that anybody stopping the queue after this
3346 * sees the new next_to_clean.
3347 */
3348 smp_mb();
3349 if (netif_queue_stopped(netdev) &&
3350 !(test_bit(__IGB_DOWN, &adapter->state))) {
3351 netif_wake_queue(netdev);
3352 ++adapter->restart_queue;
3353 }
3354 }
3355
3356 if (tx_ring->detect_tx_hung) {
3357 /* Detect a transmit hang in hardware, this serializes the
3358 * check with the clearing of time_stamp and movement of i */
3359 tx_ring->detect_tx_hung = false;
3360 if (tx_ring->buffer_info[i].time_stamp &&
3361 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3362 (adapter->tx_timeout_factor * HZ))
3363 && !(rd32(E1000_STATUS) &
3364 E1000_STATUS_TXOFF)) {
3365
3366 tx_desc = E1000_TX_DESC(*tx_ring, i);
3367 /* detected Tx unit hang */
3368 dev_err(&adapter->pdev->dev,
3369 "Detected Tx Unit Hang\n"
3370 " Tx Queue <%lu>\n"
3371 " TDH <%x>\n"
3372 " TDT <%x>\n"
3373 " next_to_use <%x>\n"
3374 " next_to_clean <%x>\n"
3375 " head (WB) <%x>\n"
3376 "buffer_info[next_to_clean]\n"
3377 " time_stamp <%lx>\n"
3378 " jiffies <%lx>\n"
3379 " desc.status <%x>\n",
3380 (unsigned long)((tx_ring - adapter->tx_ring) /
3381 sizeof(struct igb_ring)),
3382 readl(adapter->hw.hw_addr + tx_ring->head),
3383 readl(adapter->hw.hw_addr + tx_ring->tail),
3384 tx_ring->next_to_use,
3385 tx_ring->next_to_clean,
3386 head,
3387 tx_ring->buffer_info[i].time_stamp,
3388 jiffies,
3389 tx_desc->upper.fields.status);
3390 netif_stop_queue(netdev);
3391 }
3392 }
3393 tx_ring->total_bytes += total_bytes;
3394 tx_ring->total_packets += total_packets;
3395 adapter->net_stats.tx_bytes += total_bytes;
3396 adapter->net_stats.tx_packets += total_packets;
3397 return retval;
3398}
3399
3400
3401/**
3402 * igb_receive_skb - helper function to handle rx indications
3403 * @adapter: board private structure
3404 * @status: descriptor status field as written by hardware
3405 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3406 * @skb: pointer to sk_buff to be indicated to stack
3407 **/
3408static void igb_receive_skb(struct igb_adapter *adapter, u8 status, u16 vlan,
3409 struct sk_buff *skb)
3410{
3411 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
3412 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3413 le16_to_cpu(vlan) &
3414 E1000_RXD_SPC_VLAN_MASK);
3415 else
3416 netif_receive_skb(skb);
3417}
3418
3419
3420static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3421 u32 status_err, struct sk_buff *skb)
3422{
3423 skb->ip_summed = CHECKSUM_NONE;
3424
3425 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3426 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3427 return;
3428 /* TCP/UDP checksum error bit is set */
3429 if (status_err &
3430 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3431 /* let the stack verify checksum errors */
3432 adapter->hw_csum_err++;
3433 return;
3434 }
3435 /* It must be a TCP or UDP packet with a valid checksum */
3436 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3437 skb->ip_summed = CHECKSUM_UNNECESSARY;
3438
3439 adapter->hw_csum_good++;
3440}
3441
3442static bool igb_clean_rx_irq_adv(struct igb_adapter *adapter,
3443 struct igb_ring *rx_ring,
3444 int *work_done, int budget)
3445{
3446 struct net_device *netdev = adapter->netdev;
3447 struct pci_dev *pdev = adapter->pdev;
3448 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3449 struct igb_buffer *buffer_info , *next_buffer;
3450 struct sk_buff *skb;
3451 unsigned int i, j;
3452 u32 length, hlen, staterr;
3453 bool cleaned = false;
3454 int cleaned_count = 0;
3455 unsigned int total_bytes = 0, total_packets = 0;
3456
3457 i = rx_ring->next_to_clean;
3458 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3459 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3460
3461 while (staterr & E1000_RXD_STAT_DD) {
3462 if (*work_done >= budget)
3463 break;
3464 (*work_done)++;
3465 buffer_info = &rx_ring->buffer_info[i];
3466
3467 /* HW will not DMA in data larger than the given buffer, even
3468 * if it parses the (NFS, of course) header to be larger. In
3469 * that case, it fills the header buffer and spills the rest
3470 * into the page.
3471 */
3472 hlen = le16_to_cpu((rx_desc->wb.lower.lo_dword.hdr_info &
3473 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT);
3474 if (hlen > adapter->rx_ps_hdr_size)
3475 hlen = adapter->rx_ps_hdr_size;
3476
3477 length = le16_to_cpu(rx_desc->wb.upper.length);
3478 cleaned = true;
3479 cleaned_count++;
3480
3481 if (rx_ring->pending_skb != NULL) {
3482 skb = rx_ring->pending_skb;
3483 rx_ring->pending_skb = NULL;
3484 j = rx_ring->pending_skb_page;
3485 } else {
3486 skb = buffer_info->skb;
3487 prefetch(skb->data - NET_IP_ALIGN);
3488 buffer_info->skb = NULL;
3489 if (hlen) {
3490 pci_unmap_single(pdev, buffer_info->dma,
3491 adapter->rx_ps_hdr_size +
3492 NET_IP_ALIGN,
3493 PCI_DMA_FROMDEVICE);
3494 skb_put(skb, hlen);
3495 } else {
3496 pci_unmap_single(pdev, buffer_info->dma,
3497 adapter->rx_buffer_len +
3498 NET_IP_ALIGN,
3499 PCI_DMA_FROMDEVICE);
3500 skb_put(skb, length);
3501 goto send_up;
3502 }
3503 j = 0;
3504 }
3505
3506 while (length) {
3507 pci_unmap_page(pdev, buffer_info->page_dma,
3508 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3509 buffer_info->page_dma = 0;
3510 skb_fill_page_desc(skb, j, buffer_info->page,
3511 0, length);
3512 buffer_info->page = NULL;
3513
3514 skb->len += length;
3515 skb->data_len += length;
3516 skb->truesize += length;
3517 rx_desc->wb.upper.status_error = 0;
3518 if (staterr & E1000_RXD_STAT_EOP)
3519 break;
3520
3521 j++;
3522 cleaned_count++;
3523 i++;
3524 if (i == rx_ring->count)
3525 i = 0;
3526
3527 buffer_info = &rx_ring->buffer_info[i];
3528 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3529 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3530 length = le16_to_cpu(rx_desc->wb.upper.length);
3531 if (!(staterr & E1000_RXD_STAT_DD)) {
3532 rx_ring->pending_skb = skb;
3533 rx_ring->pending_skb_page = j;
3534 goto out;
3535 }
3536 }
3537send_up:
3538 pskb_trim(skb, skb->len - 4);
3539 i++;
3540 if (i == rx_ring->count)
3541 i = 0;
3542 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3543 prefetch(next_rxd);
3544 next_buffer = &rx_ring->buffer_info[i];
3545
3546 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3547 dev_kfree_skb_irq(skb);
3548 goto next_desc;
3549 }
3550 rx_ring->no_itr_adjust |= (staterr & E1000_RXD_STAT_DYNINT);
3551
3552 total_bytes += skb->len;
3553 total_packets++;
3554
3555 igb_rx_checksum_adv(adapter, staterr, skb);
3556
3557 skb->protocol = eth_type_trans(skb, netdev);
3558
3559 igb_receive_skb(adapter, staterr, rx_desc->wb.upper.vlan, skb);
3560
3561 netdev->last_rx = jiffies;
3562
3563next_desc:
3564 rx_desc->wb.upper.status_error = 0;
3565
3566 /* return some buffers to hardware, one at a time is too slow */
3567 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3568 igb_alloc_rx_buffers_adv(adapter, rx_ring,
3569 cleaned_count);
3570 cleaned_count = 0;
3571 }
3572
3573 /* use prefetched values */
3574 rx_desc = next_rxd;
3575 buffer_info = next_buffer;
3576
3577 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3578 }
3579out:
3580 rx_ring->next_to_clean = i;
3581 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3582
3583 if (cleaned_count)
3584 igb_alloc_rx_buffers_adv(adapter, rx_ring, cleaned_count);
3585
3586 rx_ring->total_packets += total_packets;
3587 rx_ring->total_bytes += total_bytes;
3588 rx_ring->rx_stats.packets += total_packets;
3589 rx_ring->rx_stats.bytes += total_bytes;
3590 adapter->net_stats.rx_bytes += total_bytes;
3591 adapter->net_stats.rx_packets += total_packets;
3592 return cleaned;
3593}
3594
3595
3596/**
3597 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3598 * @adapter: address of board private structure
3599 **/
3600static void igb_alloc_rx_buffers_adv(struct igb_adapter *adapter,
3601 struct igb_ring *rx_ring,
3602 int cleaned_count)
3603{
3604 struct net_device *netdev = adapter->netdev;
3605 struct pci_dev *pdev = adapter->pdev;
3606 union e1000_adv_rx_desc *rx_desc;
3607 struct igb_buffer *buffer_info;
3608 struct sk_buff *skb;
3609 unsigned int i;
3610
3611 i = rx_ring->next_to_use;
3612 buffer_info = &rx_ring->buffer_info[i];
3613
3614 while (cleaned_count--) {
3615 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3616
3617 if (adapter->rx_ps_hdr_size && !buffer_info->page) {
3618 buffer_info->page = alloc_page(GFP_ATOMIC);
3619 if (!buffer_info->page) {
3620 adapter->alloc_rx_buff_failed++;
3621 goto no_buffers;
3622 }
3623 buffer_info->page_dma =
3624 pci_map_page(pdev,
3625 buffer_info->page,
3626 0, PAGE_SIZE,
3627 PCI_DMA_FROMDEVICE);
3628 }
3629
3630 if (!buffer_info->skb) {
3631 int bufsz;
3632
3633 if (adapter->rx_ps_hdr_size)
3634 bufsz = adapter->rx_ps_hdr_size;
3635 else
3636 bufsz = adapter->rx_buffer_len;
3637 bufsz += NET_IP_ALIGN;
3638 skb = netdev_alloc_skb(netdev, bufsz);
3639
3640 if (!skb) {
3641 adapter->alloc_rx_buff_failed++;
3642 goto no_buffers;
3643 }
3644
3645 /* Make buffer alignment 2 beyond a 16 byte boundary
3646 * this will result in a 16 byte aligned IP header after
3647 * the 14 byte MAC header is removed
3648 */
3649 skb_reserve(skb, NET_IP_ALIGN);
3650
3651 buffer_info->skb = skb;
3652 buffer_info->dma = pci_map_single(pdev, skb->data,
3653 bufsz,
3654 PCI_DMA_FROMDEVICE);
3655
3656 }
3657 /* Refresh the desc even if buffer_addrs didn't change because
3658 * each write-back erases this info. */
3659 if (adapter->rx_ps_hdr_size) {
3660 rx_desc->read.pkt_addr =
3661 cpu_to_le64(buffer_info->page_dma);
3662 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
3663 } else {
3664 rx_desc->read.pkt_addr =
3665 cpu_to_le64(buffer_info->dma);
3666 rx_desc->read.hdr_addr = 0;
3667 }
3668
3669 i++;
3670 if (i == rx_ring->count)
3671 i = 0;
3672 buffer_info = &rx_ring->buffer_info[i];
3673 }
3674
3675no_buffers:
3676 if (rx_ring->next_to_use != i) {
3677 rx_ring->next_to_use = i;
3678 if (i == 0)
3679 i = (rx_ring->count - 1);
3680 else
3681 i--;
3682
3683 /* Force memory writes to complete before letting h/w
3684 * know there are new descriptors to fetch. (Only
3685 * applicable for weak-ordered memory model archs,
3686 * such as IA-64). */
3687 wmb();
3688 writel(i, adapter->hw.hw_addr + rx_ring->tail);
3689 }
3690}
3691
3692/**
3693 * igb_mii_ioctl -
3694 * @netdev:
3695 * @ifreq:
3696 * @cmd:
3697 **/
3698static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3699{
3700 struct igb_adapter *adapter = netdev_priv(netdev);
3701 struct mii_ioctl_data *data = if_mii(ifr);
3702
3703 if (adapter->hw.phy.media_type != e1000_media_type_copper)
3704 return -EOPNOTSUPP;
3705
3706 switch (cmd) {
3707 case SIOCGMIIPHY:
3708 data->phy_id = adapter->hw.phy.addr;
3709 break;
3710 case SIOCGMIIREG:
3711 if (!capable(CAP_NET_ADMIN))
3712 return -EPERM;
3713 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
3714 data->reg_num
3715 & 0x1F, &data->val_out))
3716 return -EIO;
3717 break;
3718 case SIOCSMIIREG:
3719 default:
3720 return -EOPNOTSUPP;
3721 }
3722 return 0;
3723}
3724
3725/**
3726 * igb_ioctl -
3727 * @netdev:
3728 * @ifreq:
3729 * @cmd:
3730 **/
3731static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3732{
3733 switch (cmd) {
3734 case SIOCGMIIPHY:
3735 case SIOCGMIIREG:
3736 case SIOCSMIIREG:
3737 return igb_mii_ioctl(netdev, ifr, cmd);
3738 default:
3739 return -EOPNOTSUPP;
3740 }
3741}
3742
3743static void igb_vlan_rx_register(struct net_device *netdev,
3744 struct vlan_group *grp)
3745{
3746 struct igb_adapter *adapter = netdev_priv(netdev);
3747 struct e1000_hw *hw = &adapter->hw;
3748 u32 ctrl, rctl;
3749
3750 igb_irq_disable(adapter);
3751 adapter->vlgrp = grp;
3752
3753 if (grp) {
3754 /* enable VLAN tag insert/strip */
3755 ctrl = rd32(E1000_CTRL);
3756 ctrl |= E1000_CTRL_VME;
3757 wr32(E1000_CTRL, ctrl);
3758
3759 /* enable VLAN receive filtering */
3760 rctl = rd32(E1000_RCTL);
3761 rctl |= E1000_RCTL_VFE;
3762 rctl &= ~E1000_RCTL_CFIEN;
3763 wr32(E1000_RCTL, rctl);
3764 igb_update_mng_vlan(adapter);
3765 wr32(E1000_RLPML,
3766 adapter->max_frame_size + VLAN_TAG_SIZE);
3767 } else {
3768 /* disable VLAN tag insert/strip */
3769 ctrl = rd32(E1000_CTRL);
3770 ctrl &= ~E1000_CTRL_VME;
3771 wr32(E1000_CTRL, ctrl);
3772
3773 /* disable VLAN filtering */
3774 rctl = rd32(E1000_RCTL);
3775 rctl &= ~E1000_RCTL_VFE;
3776 wr32(E1000_RCTL, rctl);
3777 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
3778 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3779 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
3780 }
3781 wr32(E1000_RLPML,
3782 adapter->max_frame_size);
3783 }
3784
3785 if (!test_bit(__IGB_DOWN, &adapter->state))
3786 igb_irq_enable(adapter);
3787}
3788
3789static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
3790{
3791 struct igb_adapter *adapter = netdev_priv(netdev);
3792 struct e1000_hw *hw = &adapter->hw;
3793 u32 vfta, index;
3794
3795 if ((adapter->hw.mng_cookie.status &
3796 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3797 (vid == adapter->mng_vlan_id))
3798 return;
3799 /* add VID to filter table */
3800 index = (vid >> 5) & 0x7F;
3801 vfta = array_rd32(E1000_VFTA, index);
3802 vfta |= (1 << (vid & 0x1F));
3803 igb_write_vfta(&adapter->hw, index, vfta);
3804}
3805
3806static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
3807{
3808 struct igb_adapter *adapter = netdev_priv(netdev);
3809 struct e1000_hw *hw = &adapter->hw;
3810 u32 vfta, index;
3811
3812 igb_irq_disable(adapter);
3813 vlan_group_set_device(adapter->vlgrp, vid, NULL);
3814
3815 if (!test_bit(__IGB_DOWN, &adapter->state))
3816 igb_irq_enable(adapter);
3817
3818 if ((adapter->hw.mng_cookie.status &
3819 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3820 (vid == adapter->mng_vlan_id)) {
3821 /* release control to f/w */
3822 igb_release_hw_control(adapter);
3823 return;
3824 }
3825
3826 /* remove VID from filter table */
3827 index = (vid >> 5) & 0x7F;
3828 vfta = array_rd32(E1000_VFTA, index);
3829 vfta &= ~(1 << (vid & 0x1F));
3830 igb_write_vfta(&adapter->hw, index, vfta);
3831}
3832
3833static void igb_restore_vlan(struct igb_adapter *adapter)
3834{
3835 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
3836
3837 if (adapter->vlgrp) {
3838 u16 vid;
3839 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
3840 if (!vlan_group_get_device(adapter->vlgrp, vid))
3841 continue;
3842 igb_vlan_rx_add_vid(adapter->netdev, vid);
3843 }
3844 }
3845}
3846
3847int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
3848{
3849 struct e1000_mac_info *mac = &adapter->hw.mac;
3850
3851 mac->autoneg = 0;
3852
3853 /* Fiber NICs only allow 1000 gbps Full duplex */
3854 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
3855 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
3856 dev_err(&adapter->pdev->dev,
3857 "Unsupported Speed/Duplex configuration\n");
3858 return -EINVAL;
3859 }
3860
3861 switch (spddplx) {
3862 case SPEED_10 + DUPLEX_HALF:
3863 mac->forced_speed_duplex = ADVERTISE_10_HALF;
3864 break;
3865 case SPEED_10 + DUPLEX_FULL:
3866 mac->forced_speed_duplex = ADVERTISE_10_FULL;
3867 break;
3868 case SPEED_100 + DUPLEX_HALF:
3869 mac->forced_speed_duplex = ADVERTISE_100_HALF;
3870 break;
3871 case SPEED_100 + DUPLEX_FULL:
3872 mac->forced_speed_duplex = ADVERTISE_100_FULL;
3873 break;
3874 case SPEED_1000 + DUPLEX_FULL:
3875 mac->autoneg = 1;
3876 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
3877 break;
3878 case SPEED_1000 + DUPLEX_HALF: /* not supported */
3879 default:
3880 dev_err(&adapter->pdev->dev,
3881 "Unsupported Speed/Duplex configuration\n");
3882 return -EINVAL;
3883 }
3884 return 0;
3885}
3886
3887
3888static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
3889{
3890 struct net_device *netdev = pci_get_drvdata(pdev);
3891 struct igb_adapter *adapter = netdev_priv(netdev);
3892 struct e1000_hw *hw = &adapter->hw;
3893 u32 ctrl, ctrl_ext, rctl, status;
3894 u32 wufc = adapter->wol;
3895#ifdef CONFIG_PM
3896 int retval = 0;
3897#endif
3898
3899 netif_device_detach(netdev);
3900
3901 if (netif_running(netdev)) {
3902 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3903 igb_down(adapter);
3904 igb_free_irq(adapter);
3905 }
3906
3907#ifdef CONFIG_PM
3908 retval = pci_save_state(pdev);
3909 if (retval)
3910 return retval;
3911#endif
3912
3913 status = rd32(E1000_STATUS);
3914 if (status & E1000_STATUS_LU)
3915 wufc &= ~E1000_WUFC_LNKC;
3916
3917 if (wufc) {
3918 igb_setup_rctl(adapter);
3919 igb_set_multi(netdev);
3920
3921 /* turn on all-multi mode if wake on multicast is enabled */
3922 if (wufc & E1000_WUFC_MC) {
3923 rctl = rd32(E1000_RCTL);
3924 rctl |= E1000_RCTL_MPE;
3925 wr32(E1000_RCTL, rctl);
3926 }
3927
3928 ctrl = rd32(E1000_CTRL);
3929 /* advertise wake from D3Cold */
3930 #define E1000_CTRL_ADVD3WUC 0x00100000
3931 /* phy power management enable */
3932 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3933 ctrl |= E1000_CTRL_ADVD3WUC;
3934 wr32(E1000_CTRL, ctrl);
3935
3936 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3937 adapter->hw.phy.media_type ==
3938 e1000_media_type_internal_serdes) {
3939 /* keep the laser running in D3 */
3940 ctrl_ext = rd32(E1000_CTRL_EXT);
3941 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3942 wr32(E1000_CTRL_EXT, ctrl_ext);
3943 }
3944
3945 /* Allow time for pending master requests to run */
3946 igb_disable_pcie_master(&adapter->hw);
3947
3948 wr32(E1000_WUC, E1000_WUC_PME_EN);
3949 wr32(E1000_WUFC, wufc);
3950 pci_enable_wake(pdev, PCI_D3hot, 1);
3951 pci_enable_wake(pdev, PCI_D3cold, 1);
3952 } else {
3953 wr32(E1000_WUC, 0);
3954 wr32(E1000_WUFC, 0);
3955 pci_enable_wake(pdev, PCI_D3hot, 0);
3956 pci_enable_wake(pdev, PCI_D3cold, 0);
3957 }
3958
3959 igb_release_manageability(adapter);
3960
3961 /* make sure adapter isn't asleep if manageability is enabled */
3962 if (adapter->en_mng_pt) {
3963 pci_enable_wake(pdev, PCI_D3hot, 1);
3964 pci_enable_wake(pdev, PCI_D3cold, 1);
3965 }
3966
3967 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3968 * would have already happened in close and is redundant. */
3969 igb_release_hw_control(adapter);
3970
3971 pci_disable_device(pdev);
3972
3973 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3974
3975 return 0;
3976}
3977
3978#ifdef CONFIG_PM
3979static int igb_resume(struct pci_dev *pdev)
3980{
3981 struct net_device *netdev = pci_get_drvdata(pdev);
3982 struct igb_adapter *adapter = netdev_priv(netdev);
3983 struct e1000_hw *hw = &adapter->hw;
3984 u32 err;
3985
3986 pci_set_power_state(pdev, PCI_D0);
3987 pci_restore_state(pdev);
3988 err = pci_enable_device(pdev);
3989 if (err) {
3990 dev_err(&pdev->dev,
3991 "igb: Cannot enable PCI device from suspend\n");
3992 return err;
3993 }
3994 pci_set_master(pdev);
3995
3996 pci_enable_wake(pdev, PCI_D3hot, 0);
3997 pci_enable_wake(pdev, PCI_D3cold, 0);
3998
3999 if (netif_running(netdev)) {
4000 err = igb_request_irq(adapter);
4001 if (err)
4002 return err;
4003 }
4004
4005 /* e1000_power_up_phy(adapter); */
4006
4007 igb_reset(adapter);
4008 wr32(E1000_WUS, ~0);
4009
4010 igb_init_manageability(adapter);
4011
4012 if (netif_running(netdev))
4013 igb_up(adapter);
4014
4015 netif_device_attach(netdev);
4016
4017 /* let the f/w know that the h/w is now under the control of the
4018 * driver. */
4019 igb_get_hw_control(adapter);
4020
4021 return 0;
4022}
4023#endif
4024
4025static void igb_shutdown(struct pci_dev *pdev)
4026{
4027 igb_suspend(pdev, PMSG_SUSPEND);
4028}
4029
4030#ifdef CONFIG_NET_POLL_CONTROLLER
4031/*
4032 * Polling 'interrupt' - used by things like netconsole to send skbs
4033 * without having to re-enable interrupts. It's not called while
4034 * the interrupt routine is executing.
4035 */
4036static void igb_netpoll(struct net_device *netdev)
4037{
4038 struct igb_adapter *adapter = netdev_priv(netdev);
4039 int i;
4040 int work_done = 0;
4041
4042 igb_irq_disable(adapter);
4043 for (i = 0; i < adapter->num_tx_queues; i++)
4044 igb_clean_tx_irq(adapter, &adapter->tx_ring[i]);
4045
4046 for (i = 0; i < adapter->num_rx_queues; i++)
4047 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i],
4048 &work_done,
4049 adapter->rx_ring[i].napi.weight);
4050
4051 igb_irq_enable(adapter);
4052}
4053#endif /* CONFIG_NET_POLL_CONTROLLER */
4054
4055/**
4056 * igb_io_error_detected - called when PCI error is detected
4057 * @pdev: Pointer to PCI device
4058 * @state: The current pci connection state
4059 *
4060 * This function is called after a PCI bus error affecting
4061 * this device has been detected.
4062 */
4063static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4064 pci_channel_state_t state)
4065{
4066 struct net_device *netdev = pci_get_drvdata(pdev);
4067 struct igb_adapter *adapter = netdev_priv(netdev);
4068
4069 netif_device_detach(netdev);
4070
4071 if (netif_running(netdev))
4072 igb_down(adapter);
4073 pci_disable_device(pdev);
4074
4075 /* Request a slot slot reset. */
4076 return PCI_ERS_RESULT_NEED_RESET;
4077}
4078
4079/**
4080 * igb_io_slot_reset - called after the pci bus has been reset.
4081 * @pdev: Pointer to PCI device
4082 *
4083 * Restart the card from scratch, as if from a cold-boot. Implementation
4084 * resembles the first-half of the igb_resume routine.
4085 */
4086static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4087{
4088 struct net_device *netdev = pci_get_drvdata(pdev);
4089 struct igb_adapter *adapter = netdev_priv(netdev);
4090 struct e1000_hw *hw = &adapter->hw;
4091
4092 if (pci_enable_device(pdev)) {
4093 dev_err(&pdev->dev,
4094 "Cannot re-enable PCI device after reset.\n");
4095 return PCI_ERS_RESULT_DISCONNECT;
4096 }
4097 pci_set_master(pdev);
4098
4099 pci_enable_wake(pdev, PCI_D3hot, 0);
4100 pci_enable_wake(pdev, PCI_D3cold, 0);
4101
4102 igb_reset(adapter);
4103 wr32(E1000_WUS, ~0);
4104
4105 return PCI_ERS_RESULT_RECOVERED;
4106}
4107
4108/**
4109 * igb_io_resume - called when traffic can start flowing again.
4110 * @pdev: Pointer to PCI device
4111 *
4112 * This callback is called when the error recovery driver tells us that
4113 * its OK to resume normal operation. Implementation resembles the
4114 * second-half of the igb_resume routine.
4115 */
4116static void igb_io_resume(struct pci_dev *pdev)
4117{
4118 struct net_device *netdev = pci_get_drvdata(pdev);
4119 struct igb_adapter *adapter = netdev_priv(netdev);
4120
4121 igb_init_manageability(adapter);
4122
4123 if (netif_running(netdev)) {
4124 if (igb_up(adapter)) {
4125 dev_err(&pdev->dev, "igb_up failed after reset\n");
4126 return;
4127 }
4128 }
4129
4130 netif_device_attach(netdev);
4131
4132 /* let the f/w know that the h/w is now under the control of the
4133 * driver. */
4134 igb_get_hw_control(adapter);
4135
4136}
4137
4138/* igb_main.c */