diff options
Diffstat (limited to 'drivers/net/igb/igb_main.c')
-rw-r--r-- | drivers/net/igb/igb_main.c | 4138 |
1 files changed, 4138 insertions, 0 deletions
diff --git a/drivers/net/igb/igb_main.c b/drivers/net/igb/igb_main.c new file mode 100644 index 000000000000..f3c144d5d72f --- /dev/null +++ b/drivers/net/igb/igb_main.c | |||
@@ -0,0 +1,4138 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #include <linux/module.h> | ||
29 | #include <linux/types.h> | ||
30 | #include <linux/init.h> | ||
31 | #include <linux/vmalloc.h> | ||
32 | #include <linux/pagemap.h> | ||
33 | #include <linux/netdevice.h> | ||
34 | #include <linux/tcp.h> | ||
35 | #include <linux/ipv6.h> | ||
36 | #include <net/checksum.h> | ||
37 | #include <net/ip6_checksum.h> | ||
38 | #include <linux/mii.h> | ||
39 | #include <linux/ethtool.h> | ||
40 | #include <linux/if_vlan.h> | ||
41 | #include <linux/pci.h> | ||
42 | #include <linux/delay.h> | ||
43 | #include <linux/interrupt.h> | ||
44 | #include <linux/if_ether.h> | ||
45 | |||
46 | #include "igb.h" | ||
47 | |||
48 | #define DRV_VERSION "1.0.8-k2" | ||
49 | char igb_driver_name[] = "igb"; | ||
50 | char igb_driver_version[] = DRV_VERSION; | ||
51 | static const char igb_driver_string[] = | ||
52 | "Intel(R) Gigabit Ethernet Network Driver"; | ||
53 | static const char igb_copyright[] = "Copyright (c) 2007 Intel Corporation."; | ||
54 | |||
55 | |||
56 | static const struct e1000_info *igb_info_tbl[] = { | ||
57 | [board_82575] = &e1000_82575_info, | ||
58 | }; | ||
59 | |||
60 | static struct pci_device_id igb_pci_tbl[] = { | ||
61 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, | ||
62 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, | ||
63 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, | ||
64 | /* required last entry */ | ||
65 | {0, } | ||
66 | }; | ||
67 | |||
68 | MODULE_DEVICE_TABLE(pci, igb_pci_tbl); | ||
69 | |||
70 | void igb_reset(struct igb_adapter *); | ||
71 | static int igb_setup_all_tx_resources(struct igb_adapter *); | ||
72 | static int igb_setup_all_rx_resources(struct igb_adapter *); | ||
73 | static void igb_free_all_tx_resources(struct igb_adapter *); | ||
74 | static void igb_free_all_rx_resources(struct igb_adapter *); | ||
75 | static void igb_free_tx_resources(struct igb_adapter *, struct igb_ring *); | ||
76 | static void igb_free_rx_resources(struct igb_adapter *, struct igb_ring *); | ||
77 | void igb_update_stats(struct igb_adapter *); | ||
78 | static int igb_probe(struct pci_dev *, const struct pci_device_id *); | ||
79 | static void __devexit igb_remove(struct pci_dev *pdev); | ||
80 | static int igb_sw_init(struct igb_adapter *); | ||
81 | static int igb_open(struct net_device *); | ||
82 | static int igb_close(struct net_device *); | ||
83 | static void igb_configure_tx(struct igb_adapter *); | ||
84 | static void igb_configure_rx(struct igb_adapter *); | ||
85 | static void igb_setup_rctl(struct igb_adapter *); | ||
86 | static void igb_clean_all_tx_rings(struct igb_adapter *); | ||
87 | static void igb_clean_all_rx_rings(struct igb_adapter *); | ||
88 | static void igb_clean_tx_ring(struct igb_adapter *, struct igb_ring *); | ||
89 | static void igb_clean_rx_ring(struct igb_adapter *, struct igb_ring *); | ||
90 | static void igb_set_multi(struct net_device *); | ||
91 | static void igb_update_phy_info(unsigned long); | ||
92 | static void igb_watchdog(unsigned long); | ||
93 | static void igb_watchdog_task(struct work_struct *); | ||
94 | static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *, | ||
95 | struct igb_ring *); | ||
96 | static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *); | ||
97 | static struct net_device_stats *igb_get_stats(struct net_device *); | ||
98 | static int igb_change_mtu(struct net_device *, int); | ||
99 | static int igb_set_mac(struct net_device *, void *); | ||
100 | static irqreturn_t igb_intr(int irq, void *); | ||
101 | static irqreturn_t igb_intr_msi(int irq, void *); | ||
102 | static irqreturn_t igb_msix_other(int irq, void *); | ||
103 | static irqreturn_t igb_msix_rx(int irq, void *); | ||
104 | static irqreturn_t igb_msix_tx(int irq, void *); | ||
105 | static int igb_clean_rx_ring_msix(struct napi_struct *, int); | ||
106 | static bool igb_clean_tx_irq(struct igb_adapter *, struct igb_ring *); | ||
107 | static int igb_clean(struct napi_struct *, int); | ||
108 | static bool igb_clean_rx_irq_adv(struct igb_adapter *, | ||
109 | struct igb_ring *, int *, int); | ||
110 | static void igb_alloc_rx_buffers_adv(struct igb_adapter *, | ||
111 | struct igb_ring *, int); | ||
112 | static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); | ||
113 | static void igb_tx_timeout(struct net_device *); | ||
114 | static void igb_reset_task(struct work_struct *); | ||
115 | static void igb_vlan_rx_register(struct net_device *, struct vlan_group *); | ||
116 | static void igb_vlan_rx_add_vid(struct net_device *, u16); | ||
117 | static void igb_vlan_rx_kill_vid(struct net_device *, u16); | ||
118 | static void igb_restore_vlan(struct igb_adapter *); | ||
119 | |||
120 | static int igb_suspend(struct pci_dev *, pm_message_t); | ||
121 | #ifdef CONFIG_PM | ||
122 | static int igb_resume(struct pci_dev *); | ||
123 | #endif | ||
124 | static void igb_shutdown(struct pci_dev *); | ||
125 | |||
126 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
127 | /* for netdump / net console */ | ||
128 | static void igb_netpoll(struct net_device *); | ||
129 | #endif | ||
130 | |||
131 | static pci_ers_result_t igb_io_error_detected(struct pci_dev *, | ||
132 | pci_channel_state_t); | ||
133 | static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); | ||
134 | static void igb_io_resume(struct pci_dev *); | ||
135 | |||
136 | static struct pci_error_handlers igb_err_handler = { | ||
137 | .error_detected = igb_io_error_detected, | ||
138 | .slot_reset = igb_io_slot_reset, | ||
139 | .resume = igb_io_resume, | ||
140 | }; | ||
141 | |||
142 | |||
143 | static struct pci_driver igb_driver = { | ||
144 | .name = igb_driver_name, | ||
145 | .id_table = igb_pci_tbl, | ||
146 | .probe = igb_probe, | ||
147 | .remove = __devexit_p(igb_remove), | ||
148 | #ifdef CONFIG_PM | ||
149 | /* Power Managment Hooks */ | ||
150 | .suspend = igb_suspend, | ||
151 | .resume = igb_resume, | ||
152 | #endif | ||
153 | .shutdown = igb_shutdown, | ||
154 | .err_handler = &igb_err_handler | ||
155 | }; | ||
156 | |||
157 | MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); | ||
158 | MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); | ||
159 | MODULE_LICENSE("GPL"); | ||
160 | MODULE_VERSION(DRV_VERSION); | ||
161 | |||
162 | #ifdef DEBUG | ||
163 | /** | ||
164 | * igb_get_hw_dev_name - return device name string | ||
165 | * used by hardware layer to print debugging information | ||
166 | **/ | ||
167 | char *igb_get_hw_dev_name(struct e1000_hw *hw) | ||
168 | { | ||
169 | struct igb_adapter *adapter = hw->back; | ||
170 | return adapter->netdev->name; | ||
171 | } | ||
172 | #endif | ||
173 | |||
174 | /** | ||
175 | * igb_init_module - Driver Registration Routine | ||
176 | * | ||
177 | * igb_init_module is the first routine called when the driver is | ||
178 | * loaded. All it does is register with the PCI subsystem. | ||
179 | **/ | ||
180 | static int __init igb_init_module(void) | ||
181 | { | ||
182 | int ret; | ||
183 | printk(KERN_INFO "%s - version %s\n", | ||
184 | igb_driver_string, igb_driver_version); | ||
185 | |||
186 | printk(KERN_INFO "%s\n", igb_copyright); | ||
187 | |||
188 | ret = pci_register_driver(&igb_driver); | ||
189 | return ret; | ||
190 | } | ||
191 | |||
192 | module_init(igb_init_module); | ||
193 | |||
194 | /** | ||
195 | * igb_exit_module - Driver Exit Cleanup Routine | ||
196 | * | ||
197 | * igb_exit_module is called just before the driver is removed | ||
198 | * from memory. | ||
199 | **/ | ||
200 | static void __exit igb_exit_module(void) | ||
201 | { | ||
202 | pci_unregister_driver(&igb_driver); | ||
203 | } | ||
204 | |||
205 | module_exit(igb_exit_module); | ||
206 | |||
207 | /** | ||
208 | * igb_alloc_queues - Allocate memory for all rings | ||
209 | * @adapter: board private structure to initialize | ||
210 | * | ||
211 | * We allocate one ring per queue at run-time since we don't know the | ||
212 | * number of queues at compile-time. | ||
213 | **/ | ||
214 | static int igb_alloc_queues(struct igb_adapter *adapter) | ||
215 | { | ||
216 | int i; | ||
217 | |||
218 | adapter->tx_ring = kcalloc(adapter->num_tx_queues, | ||
219 | sizeof(struct igb_ring), GFP_KERNEL); | ||
220 | if (!adapter->tx_ring) | ||
221 | return -ENOMEM; | ||
222 | |||
223 | adapter->rx_ring = kcalloc(adapter->num_rx_queues, | ||
224 | sizeof(struct igb_ring), GFP_KERNEL); | ||
225 | if (!adapter->rx_ring) { | ||
226 | kfree(adapter->tx_ring); | ||
227 | return -ENOMEM; | ||
228 | } | ||
229 | |||
230 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
231 | struct igb_ring *ring = &(adapter->rx_ring[i]); | ||
232 | ring->adapter = adapter; | ||
233 | ring->itr_register = E1000_ITR; | ||
234 | |||
235 | if (!ring->napi.poll) | ||
236 | netif_napi_add(adapter->netdev, &ring->napi, igb_clean, | ||
237 | adapter->napi.weight / | ||
238 | adapter->num_rx_queues); | ||
239 | } | ||
240 | return 0; | ||
241 | } | ||
242 | |||
243 | #define IGB_N0_QUEUE -1 | ||
244 | static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue, | ||
245 | int tx_queue, int msix_vector) | ||
246 | { | ||
247 | u32 msixbm = 0; | ||
248 | struct e1000_hw *hw = &adapter->hw; | ||
249 | /* The 82575 assigns vectors using a bitmask, which matches the | ||
250 | bitmask for the EICR/EIMS/EIMC registers. To assign one | ||
251 | or more queues to a vector, we write the appropriate bits | ||
252 | into the MSIXBM register for that vector. */ | ||
253 | if (rx_queue > IGB_N0_QUEUE) { | ||
254 | msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; | ||
255 | adapter->rx_ring[rx_queue].eims_value = msixbm; | ||
256 | } | ||
257 | if (tx_queue > IGB_N0_QUEUE) { | ||
258 | msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; | ||
259 | adapter->tx_ring[tx_queue].eims_value = | ||
260 | E1000_EICR_TX_QUEUE0 << tx_queue; | ||
261 | } | ||
262 | array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); | ||
263 | } | ||
264 | |||
265 | /** | ||
266 | * igb_configure_msix - Configure MSI-X hardware | ||
267 | * | ||
268 | * igb_configure_msix sets up the hardware to properly | ||
269 | * generate MSI-X interrupts. | ||
270 | **/ | ||
271 | static void igb_configure_msix(struct igb_adapter *adapter) | ||
272 | { | ||
273 | u32 tmp; | ||
274 | int i, vector = 0; | ||
275 | struct e1000_hw *hw = &adapter->hw; | ||
276 | |||
277 | adapter->eims_enable_mask = 0; | ||
278 | |||
279 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
280 | struct igb_ring *tx_ring = &adapter->tx_ring[i]; | ||
281 | igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++); | ||
282 | adapter->eims_enable_mask |= tx_ring->eims_value; | ||
283 | if (tx_ring->itr_val) | ||
284 | writel(1000000000 / (tx_ring->itr_val * 256), | ||
285 | hw->hw_addr + tx_ring->itr_register); | ||
286 | else | ||
287 | writel(1, hw->hw_addr + tx_ring->itr_register); | ||
288 | } | ||
289 | |||
290 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
291 | struct igb_ring *rx_ring = &adapter->rx_ring[i]; | ||
292 | igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++); | ||
293 | adapter->eims_enable_mask |= rx_ring->eims_value; | ||
294 | if (rx_ring->itr_val) | ||
295 | writel(1000000000 / (rx_ring->itr_val * 256), | ||
296 | hw->hw_addr + rx_ring->itr_register); | ||
297 | else | ||
298 | writel(1, hw->hw_addr + rx_ring->itr_register); | ||
299 | } | ||
300 | |||
301 | |||
302 | /* set vector for other causes, i.e. link changes */ | ||
303 | array_wr32(E1000_MSIXBM(0), vector++, | ||
304 | E1000_EIMS_OTHER); | ||
305 | |||
306 | /* disable IAM for ICR interrupt bits */ | ||
307 | wr32(E1000_IAM, 0); | ||
308 | |||
309 | tmp = rd32(E1000_CTRL_EXT); | ||
310 | /* enable MSI-X PBA support*/ | ||
311 | tmp |= E1000_CTRL_EXT_PBA_CLR; | ||
312 | |||
313 | /* Auto-Mask interrupts upon ICR read. */ | ||
314 | tmp |= E1000_CTRL_EXT_EIAME; | ||
315 | tmp |= E1000_CTRL_EXT_IRCA; | ||
316 | |||
317 | wr32(E1000_CTRL_EXT, tmp); | ||
318 | adapter->eims_enable_mask |= E1000_EIMS_OTHER; | ||
319 | |||
320 | wrfl(); | ||
321 | } | ||
322 | |||
323 | /** | ||
324 | * igb_request_msix - Initialize MSI-X interrupts | ||
325 | * | ||
326 | * igb_request_msix allocates MSI-X vectors and requests interrupts from the | ||
327 | * kernel. | ||
328 | **/ | ||
329 | static int igb_request_msix(struct igb_adapter *adapter) | ||
330 | { | ||
331 | struct net_device *netdev = adapter->netdev; | ||
332 | int i, err = 0, vector = 0; | ||
333 | |||
334 | vector = 0; | ||
335 | |||
336 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
337 | struct igb_ring *ring = &(adapter->tx_ring[i]); | ||
338 | sprintf(ring->name, "%s-tx%d", netdev->name, i); | ||
339 | err = request_irq(adapter->msix_entries[vector].vector, | ||
340 | &igb_msix_tx, 0, ring->name, | ||
341 | &(adapter->tx_ring[i])); | ||
342 | if (err) | ||
343 | goto out; | ||
344 | ring->itr_register = E1000_EITR(0) + (vector << 2); | ||
345 | ring->itr_val = adapter->itr; | ||
346 | vector++; | ||
347 | } | ||
348 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
349 | struct igb_ring *ring = &(adapter->rx_ring[i]); | ||
350 | if (strlen(netdev->name) < (IFNAMSIZ - 5)) | ||
351 | sprintf(ring->name, "%s-rx%d", netdev->name, i); | ||
352 | else | ||
353 | memcpy(ring->name, netdev->name, IFNAMSIZ); | ||
354 | err = request_irq(adapter->msix_entries[vector].vector, | ||
355 | &igb_msix_rx, 0, ring->name, | ||
356 | &(adapter->rx_ring[i])); | ||
357 | if (err) | ||
358 | goto out; | ||
359 | ring->itr_register = E1000_EITR(0) + (vector << 2); | ||
360 | ring->itr_val = adapter->itr; | ||
361 | vector++; | ||
362 | } | ||
363 | |||
364 | err = request_irq(adapter->msix_entries[vector].vector, | ||
365 | &igb_msix_other, 0, netdev->name, netdev); | ||
366 | if (err) | ||
367 | goto out; | ||
368 | |||
369 | adapter->napi.poll = igb_clean_rx_ring_msix; | ||
370 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
371 | adapter->rx_ring[i].napi.poll = adapter->napi.poll; | ||
372 | igb_configure_msix(adapter); | ||
373 | return 0; | ||
374 | out: | ||
375 | return err; | ||
376 | } | ||
377 | |||
378 | static void igb_reset_interrupt_capability(struct igb_adapter *adapter) | ||
379 | { | ||
380 | if (adapter->msix_entries) { | ||
381 | pci_disable_msix(adapter->pdev); | ||
382 | kfree(adapter->msix_entries); | ||
383 | adapter->msix_entries = NULL; | ||
384 | } else if (adapter->msi_enabled) | ||
385 | pci_disable_msi(adapter->pdev); | ||
386 | return; | ||
387 | } | ||
388 | |||
389 | |||
390 | /** | ||
391 | * igb_set_interrupt_capability - set MSI or MSI-X if supported | ||
392 | * | ||
393 | * Attempt to configure interrupts using the best available | ||
394 | * capabilities of the hardware and kernel. | ||
395 | **/ | ||
396 | static void igb_set_interrupt_capability(struct igb_adapter *adapter) | ||
397 | { | ||
398 | int err; | ||
399 | int numvecs, i; | ||
400 | |||
401 | numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1; | ||
402 | adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry), | ||
403 | GFP_KERNEL); | ||
404 | if (!adapter->msix_entries) | ||
405 | goto msi_only; | ||
406 | |||
407 | for (i = 0; i < numvecs; i++) | ||
408 | adapter->msix_entries[i].entry = i; | ||
409 | |||
410 | err = pci_enable_msix(adapter->pdev, | ||
411 | adapter->msix_entries, | ||
412 | numvecs); | ||
413 | if (err == 0) | ||
414 | return; | ||
415 | |||
416 | igb_reset_interrupt_capability(adapter); | ||
417 | |||
418 | /* If we can't do MSI-X, try MSI */ | ||
419 | msi_only: | ||
420 | adapter->num_rx_queues = 1; | ||
421 | if (!pci_enable_msi(adapter->pdev)) | ||
422 | adapter->msi_enabled = 1; | ||
423 | return; | ||
424 | } | ||
425 | |||
426 | /** | ||
427 | * igb_request_irq - initialize interrupts | ||
428 | * | ||
429 | * Attempts to configure interrupts using the best available | ||
430 | * capabilities of the hardware and kernel. | ||
431 | **/ | ||
432 | static int igb_request_irq(struct igb_adapter *adapter) | ||
433 | { | ||
434 | struct net_device *netdev = adapter->netdev; | ||
435 | struct e1000_hw *hw = &adapter->hw; | ||
436 | int err = 0; | ||
437 | |||
438 | if (adapter->msix_entries) { | ||
439 | err = igb_request_msix(adapter); | ||
440 | if (!err) { | ||
441 | struct e1000_hw *hw = &adapter->hw; | ||
442 | /* enable IAM, auto-mask, | ||
443 | * DO NOT USE EIAME or IAME in legacy mode */ | ||
444 | wr32(E1000_IAM, IMS_ENABLE_MASK); | ||
445 | goto request_done; | ||
446 | } | ||
447 | /* fall back to MSI */ | ||
448 | igb_reset_interrupt_capability(adapter); | ||
449 | if (!pci_enable_msi(adapter->pdev)) | ||
450 | adapter->msi_enabled = 1; | ||
451 | igb_free_all_tx_resources(adapter); | ||
452 | igb_free_all_rx_resources(adapter); | ||
453 | adapter->num_rx_queues = 1; | ||
454 | igb_alloc_queues(adapter); | ||
455 | } | ||
456 | if (adapter->msi_enabled) { | ||
457 | err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0, | ||
458 | netdev->name, netdev); | ||
459 | if (!err) | ||
460 | goto request_done; | ||
461 | /* fall back to legacy interrupts */ | ||
462 | igb_reset_interrupt_capability(adapter); | ||
463 | adapter->msi_enabled = 0; | ||
464 | } | ||
465 | |||
466 | err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED, | ||
467 | netdev->name, netdev); | ||
468 | |||
469 | if (err) { | ||
470 | dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n", | ||
471 | err); | ||
472 | goto request_done; | ||
473 | } | ||
474 | |||
475 | /* enable IAM, auto-mask */ | ||
476 | wr32(E1000_IAM, IMS_ENABLE_MASK); | ||
477 | |||
478 | request_done: | ||
479 | return err; | ||
480 | } | ||
481 | |||
482 | static void igb_free_irq(struct igb_adapter *adapter) | ||
483 | { | ||
484 | struct net_device *netdev = adapter->netdev; | ||
485 | |||
486 | if (adapter->msix_entries) { | ||
487 | int vector = 0, i; | ||
488 | |||
489 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
490 | free_irq(adapter->msix_entries[vector++].vector, | ||
491 | &(adapter->tx_ring[i])); | ||
492 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
493 | free_irq(adapter->msix_entries[vector++].vector, | ||
494 | &(adapter->rx_ring[i])); | ||
495 | |||
496 | free_irq(adapter->msix_entries[vector++].vector, netdev); | ||
497 | return; | ||
498 | } | ||
499 | |||
500 | free_irq(adapter->pdev->irq, netdev); | ||
501 | } | ||
502 | |||
503 | /** | ||
504 | * igb_irq_disable - Mask off interrupt generation on the NIC | ||
505 | * @adapter: board private structure | ||
506 | **/ | ||
507 | static void igb_irq_disable(struct igb_adapter *adapter) | ||
508 | { | ||
509 | struct e1000_hw *hw = &adapter->hw; | ||
510 | |||
511 | if (adapter->msix_entries) { | ||
512 | wr32(E1000_EIMC, ~0); | ||
513 | wr32(E1000_EIAC, 0); | ||
514 | } | ||
515 | wr32(E1000_IMC, ~0); | ||
516 | wrfl(); | ||
517 | synchronize_irq(adapter->pdev->irq); | ||
518 | } | ||
519 | |||
520 | /** | ||
521 | * igb_irq_enable - Enable default interrupt generation settings | ||
522 | * @adapter: board private structure | ||
523 | **/ | ||
524 | static void igb_irq_enable(struct igb_adapter *adapter) | ||
525 | { | ||
526 | struct e1000_hw *hw = &adapter->hw; | ||
527 | |||
528 | if (adapter->msix_entries) { | ||
529 | wr32(E1000_EIMS, | ||
530 | adapter->eims_enable_mask); | ||
531 | wr32(E1000_EIAC, | ||
532 | adapter->eims_enable_mask); | ||
533 | wr32(E1000_IMS, E1000_IMS_LSC); | ||
534 | } else | ||
535 | wr32(E1000_IMS, IMS_ENABLE_MASK); | ||
536 | } | ||
537 | |||
538 | static void igb_update_mng_vlan(struct igb_adapter *adapter) | ||
539 | { | ||
540 | struct net_device *netdev = adapter->netdev; | ||
541 | u16 vid = adapter->hw.mng_cookie.vlan_id; | ||
542 | u16 old_vid = adapter->mng_vlan_id; | ||
543 | if (adapter->vlgrp) { | ||
544 | if (!vlan_group_get_device(adapter->vlgrp, vid)) { | ||
545 | if (adapter->hw.mng_cookie.status & | ||
546 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { | ||
547 | igb_vlan_rx_add_vid(netdev, vid); | ||
548 | adapter->mng_vlan_id = vid; | ||
549 | } else | ||
550 | adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; | ||
551 | |||
552 | if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && | ||
553 | (vid != old_vid) && | ||
554 | !vlan_group_get_device(adapter->vlgrp, old_vid)) | ||
555 | igb_vlan_rx_kill_vid(netdev, old_vid); | ||
556 | } else | ||
557 | adapter->mng_vlan_id = vid; | ||
558 | } | ||
559 | } | ||
560 | |||
561 | /** | ||
562 | * igb_release_hw_control - release control of the h/w to f/w | ||
563 | * @adapter: address of board private structure | ||
564 | * | ||
565 | * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. | ||
566 | * For ASF and Pass Through versions of f/w this means that the | ||
567 | * driver is no longer loaded. | ||
568 | * | ||
569 | **/ | ||
570 | static void igb_release_hw_control(struct igb_adapter *adapter) | ||
571 | { | ||
572 | struct e1000_hw *hw = &adapter->hw; | ||
573 | u32 ctrl_ext; | ||
574 | |||
575 | /* Let firmware take over control of h/w */ | ||
576 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
577 | wr32(E1000_CTRL_EXT, | ||
578 | ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); | ||
579 | } | ||
580 | |||
581 | |||
582 | /** | ||
583 | * igb_get_hw_control - get control of the h/w from f/w | ||
584 | * @adapter: address of board private structure | ||
585 | * | ||
586 | * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. | ||
587 | * For ASF and Pass Through versions of f/w this means that | ||
588 | * the driver is loaded. | ||
589 | * | ||
590 | **/ | ||
591 | static void igb_get_hw_control(struct igb_adapter *adapter) | ||
592 | { | ||
593 | struct e1000_hw *hw = &adapter->hw; | ||
594 | u32 ctrl_ext; | ||
595 | |||
596 | /* Let firmware know the driver has taken over */ | ||
597 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
598 | wr32(E1000_CTRL_EXT, | ||
599 | ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); | ||
600 | } | ||
601 | |||
602 | static void igb_init_manageability(struct igb_adapter *adapter) | ||
603 | { | ||
604 | struct e1000_hw *hw = &adapter->hw; | ||
605 | |||
606 | if (adapter->en_mng_pt) { | ||
607 | u32 manc2h = rd32(E1000_MANC2H); | ||
608 | u32 manc = rd32(E1000_MANC); | ||
609 | |||
610 | /* disable hardware interception of ARP */ | ||
611 | manc &= ~(E1000_MANC_ARP_EN); | ||
612 | |||
613 | /* enable receiving management packets to the host */ | ||
614 | /* this will probably generate destination unreachable messages | ||
615 | * from the host OS, but the packets will be handled on SMBUS */ | ||
616 | manc |= E1000_MANC_EN_MNG2HOST; | ||
617 | #define E1000_MNG2HOST_PORT_623 (1 << 5) | ||
618 | #define E1000_MNG2HOST_PORT_664 (1 << 6) | ||
619 | manc2h |= E1000_MNG2HOST_PORT_623; | ||
620 | manc2h |= E1000_MNG2HOST_PORT_664; | ||
621 | wr32(E1000_MANC2H, manc2h); | ||
622 | |||
623 | wr32(E1000_MANC, manc); | ||
624 | } | ||
625 | } | ||
626 | |||
627 | static void igb_release_manageability(struct igb_adapter *adapter) | ||
628 | { | ||
629 | struct e1000_hw *hw = &adapter->hw; | ||
630 | |||
631 | if (adapter->en_mng_pt) { | ||
632 | u32 manc = rd32(E1000_MANC); | ||
633 | |||
634 | /* re-enable hardware interception of ARP */ | ||
635 | manc |= E1000_MANC_ARP_EN; | ||
636 | manc &= ~E1000_MANC_EN_MNG2HOST; | ||
637 | |||
638 | /* don't explicitly have to mess with MANC2H since | ||
639 | * MANC has an enable disable that gates MANC2H */ | ||
640 | |||
641 | /* XXX stop the hardware watchdog ? */ | ||
642 | wr32(E1000_MANC, manc); | ||
643 | } | ||
644 | } | ||
645 | |||
646 | /** | ||
647 | * igb_configure - configure the hardware for RX and TX | ||
648 | * @adapter: private board structure | ||
649 | **/ | ||
650 | static void igb_configure(struct igb_adapter *adapter) | ||
651 | { | ||
652 | struct net_device *netdev = adapter->netdev; | ||
653 | int i; | ||
654 | |||
655 | igb_get_hw_control(adapter); | ||
656 | igb_set_multi(netdev); | ||
657 | |||
658 | igb_restore_vlan(adapter); | ||
659 | igb_init_manageability(adapter); | ||
660 | |||
661 | igb_configure_tx(adapter); | ||
662 | igb_setup_rctl(adapter); | ||
663 | igb_configure_rx(adapter); | ||
664 | /* call IGB_DESC_UNUSED which always leaves | ||
665 | * at least 1 descriptor unused to make sure | ||
666 | * next_to_use != next_to_clean */ | ||
667 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
668 | struct igb_ring *ring = &adapter->rx_ring[i]; | ||
669 | igb_alloc_rx_buffers_adv(adapter, ring, IGB_DESC_UNUSED(ring)); | ||
670 | } | ||
671 | |||
672 | |||
673 | adapter->tx_queue_len = netdev->tx_queue_len; | ||
674 | } | ||
675 | |||
676 | |||
677 | /** | ||
678 | * igb_up - Open the interface and prepare it to handle traffic | ||
679 | * @adapter: board private structure | ||
680 | **/ | ||
681 | |||
682 | int igb_up(struct igb_adapter *adapter) | ||
683 | { | ||
684 | struct e1000_hw *hw = &adapter->hw; | ||
685 | int i; | ||
686 | |||
687 | /* hardware has been reset, we need to reload some things */ | ||
688 | igb_configure(adapter); | ||
689 | |||
690 | clear_bit(__IGB_DOWN, &adapter->state); | ||
691 | |||
692 | napi_enable(&adapter->napi); | ||
693 | |||
694 | if (adapter->msix_entries) { | ||
695 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
696 | napi_enable(&adapter->rx_ring[i].napi); | ||
697 | igb_configure_msix(adapter); | ||
698 | } | ||
699 | |||
700 | /* Clear any pending interrupts. */ | ||
701 | rd32(E1000_ICR); | ||
702 | igb_irq_enable(adapter); | ||
703 | |||
704 | /* Fire a link change interrupt to start the watchdog. */ | ||
705 | wr32(E1000_ICS, E1000_ICS_LSC); | ||
706 | return 0; | ||
707 | } | ||
708 | |||
709 | void igb_down(struct igb_adapter *adapter) | ||
710 | { | ||
711 | struct e1000_hw *hw = &adapter->hw; | ||
712 | struct net_device *netdev = adapter->netdev; | ||
713 | u32 tctl, rctl; | ||
714 | int i; | ||
715 | |||
716 | /* signal that we're down so the interrupt handler does not | ||
717 | * reschedule our watchdog timer */ | ||
718 | set_bit(__IGB_DOWN, &adapter->state); | ||
719 | |||
720 | /* disable receives in the hardware */ | ||
721 | rctl = rd32(E1000_RCTL); | ||
722 | wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); | ||
723 | /* flush and sleep below */ | ||
724 | |||
725 | netif_stop_queue(netdev); | ||
726 | |||
727 | /* disable transmits in the hardware */ | ||
728 | tctl = rd32(E1000_TCTL); | ||
729 | tctl &= ~E1000_TCTL_EN; | ||
730 | wr32(E1000_TCTL, tctl); | ||
731 | /* flush both disables and wait for them to finish */ | ||
732 | wrfl(); | ||
733 | msleep(10); | ||
734 | |||
735 | napi_disable(&adapter->napi); | ||
736 | |||
737 | if (adapter->msix_entries) | ||
738 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
739 | napi_disable(&adapter->rx_ring[i].napi); | ||
740 | igb_irq_disable(adapter); | ||
741 | |||
742 | del_timer_sync(&adapter->watchdog_timer); | ||
743 | del_timer_sync(&adapter->phy_info_timer); | ||
744 | |||
745 | netdev->tx_queue_len = adapter->tx_queue_len; | ||
746 | netif_carrier_off(netdev); | ||
747 | adapter->link_speed = 0; | ||
748 | adapter->link_duplex = 0; | ||
749 | |||
750 | igb_reset(adapter); | ||
751 | igb_clean_all_tx_rings(adapter); | ||
752 | igb_clean_all_rx_rings(adapter); | ||
753 | } | ||
754 | |||
755 | void igb_reinit_locked(struct igb_adapter *adapter) | ||
756 | { | ||
757 | WARN_ON(in_interrupt()); | ||
758 | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) | ||
759 | msleep(1); | ||
760 | igb_down(adapter); | ||
761 | igb_up(adapter); | ||
762 | clear_bit(__IGB_RESETTING, &adapter->state); | ||
763 | } | ||
764 | |||
765 | void igb_reset(struct igb_adapter *adapter) | ||
766 | { | ||
767 | struct e1000_hw *hw = &adapter->hw; | ||
768 | struct e1000_fc_info *fc = &adapter->hw.fc; | ||
769 | u32 pba = 0, tx_space, min_tx_space, min_rx_space; | ||
770 | u16 hwm; | ||
771 | |||
772 | /* Repartition Pba for greater than 9k mtu | ||
773 | * To take effect CTRL.RST is required. | ||
774 | */ | ||
775 | pba = E1000_PBA_34K; | ||
776 | |||
777 | if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { | ||
778 | /* adjust PBA for jumbo frames */ | ||
779 | wr32(E1000_PBA, pba); | ||
780 | |||
781 | /* To maintain wire speed transmits, the Tx FIFO should be | ||
782 | * large enough to accommodate two full transmit packets, | ||
783 | * rounded up to the next 1KB and expressed in KB. Likewise, | ||
784 | * the Rx FIFO should be large enough to accommodate at least | ||
785 | * one full receive packet and is similarly rounded up and | ||
786 | * expressed in KB. */ | ||
787 | pba = rd32(E1000_PBA); | ||
788 | /* upper 16 bits has Tx packet buffer allocation size in KB */ | ||
789 | tx_space = pba >> 16; | ||
790 | /* lower 16 bits has Rx packet buffer allocation size in KB */ | ||
791 | pba &= 0xffff; | ||
792 | /* the tx fifo also stores 16 bytes of information about the tx | ||
793 | * but don't include ethernet FCS because hardware appends it */ | ||
794 | min_tx_space = (adapter->max_frame_size + | ||
795 | sizeof(struct e1000_tx_desc) - | ||
796 | ETH_FCS_LEN) * 2; | ||
797 | min_tx_space = ALIGN(min_tx_space, 1024); | ||
798 | min_tx_space >>= 10; | ||
799 | /* software strips receive CRC, so leave room for it */ | ||
800 | min_rx_space = adapter->max_frame_size; | ||
801 | min_rx_space = ALIGN(min_rx_space, 1024); | ||
802 | min_rx_space >>= 10; | ||
803 | |||
804 | /* If current Tx allocation is less than the min Tx FIFO size, | ||
805 | * and the min Tx FIFO size is less than the current Rx FIFO | ||
806 | * allocation, take space away from current Rx allocation */ | ||
807 | if (tx_space < min_tx_space && | ||
808 | ((min_tx_space - tx_space) < pba)) { | ||
809 | pba = pba - (min_tx_space - tx_space); | ||
810 | |||
811 | /* if short on rx space, rx wins and must trump tx | ||
812 | * adjustment */ | ||
813 | if (pba < min_rx_space) | ||
814 | pba = min_rx_space; | ||
815 | } | ||
816 | } | ||
817 | wr32(E1000_PBA, pba); | ||
818 | |||
819 | /* flow control settings */ | ||
820 | /* The high water mark must be low enough to fit one full frame | ||
821 | * (or the size used for early receive) above it in the Rx FIFO. | ||
822 | * Set it to the lower of: | ||
823 | * - 90% of the Rx FIFO size, or | ||
824 | * - the full Rx FIFO size minus one full frame */ | ||
825 | hwm = min(((pba << 10) * 9 / 10), | ||
826 | ((pba << 10) - adapter->max_frame_size)); | ||
827 | |||
828 | fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */ | ||
829 | fc->low_water = fc->high_water - 8; | ||
830 | fc->pause_time = 0xFFFF; | ||
831 | fc->send_xon = 1; | ||
832 | fc->type = fc->original_type; | ||
833 | |||
834 | /* Allow time for pending master requests to run */ | ||
835 | adapter->hw.mac.ops.reset_hw(&adapter->hw); | ||
836 | wr32(E1000_WUC, 0); | ||
837 | |||
838 | if (adapter->hw.mac.ops.init_hw(&adapter->hw)) | ||
839 | dev_err(&adapter->pdev->dev, "Hardware Error\n"); | ||
840 | |||
841 | igb_update_mng_vlan(adapter); | ||
842 | |||
843 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | ||
844 | wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); | ||
845 | |||
846 | igb_reset_adaptive(&adapter->hw); | ||
847 | adapter->hw.phy.ops.get_phy_info(&adapter->hw); | ||
848 | igb_release_manageability(adapter); | ||
849 | } | ||
850 | |||
851 | /** | ||
852 | * igb_probe - Device Initialization Routine | ||
853 | * @pdev: PCI device information struct | ||
854 | * @ent: entry in igb_pci_tbl | ||
855 | * | ||
856 | * Returns 0 on success, negative on failure | ||
857 | * | ||
858 | * igb_probe initializes an adapter identified by a pci_dev structure. | ||
859 | * The OS initialization, configuring of the adapter private structure, | ||
860 | * and a hardware reset occur. | ||
861 | **/ | ||
862 | static int __devinit igb_probe(struct pci_dev *pdev, | ||
863 | const struct pci_device_id *ent) | ||
864 | { | ||
865 | struct net_device *netdev; | ||
866 | struct igb_adapter *adapter; | ||
867 | struct e1000_hw *hw; | ||
868 | const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; | ||
869 | unsigned long mmio_start, mmio_len; | ||
870 | static int cards_found; | ||
871 | int i, err, pci_using_dac; | ||
872 | u16 eeprom_data = 0; | ||
873 | u16 eeprom_apme_mask = IGB_EEPROM_APME; | ||
874 | u32 part_num; | ||
875 | |||
876 | err = pci_enable_device(pdev); | ||
877 | if (err) | ||
878 | return err; | ||
879 | |||
880 | pci_using_dac = 0; | ||
881 | err = pci_set_dma_mask(pdev, DMA_64BIT_MASK); | ||
882 | if (!err) { | ||
883 | err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); | ||
884 | if (!err) | ||
885 | pci_using_dac = 1; | ||
886 | } else { | ||
887 | err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); | ||
888 | if (err) { | ||
889 | err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); | ||
890 | if (err) { | ||
891 | dev_err(&pdev->dev, "No usable DMA " | ||
892 | "configuration, aborting\n"); | ||
893 | goto err_dma; | ||
894 | } | ||
895 | } | ||
896 | } | ||
897 | |||
898 | err = pci_request_regions(pdev, igb_driver_name); | ||
899 | if (err) | ||
900 | goto err_pci_reg; | ||
901 | |||
902 | pci_set_master(pdev); | ||
903 | |||
904 | err = -ENOMEM; | ||
905 | netdev = alloc_etherdev(sizeof(struct igb_adapter)); | ||
906 | if (!netdev) | ||
907 | goto err_alloc_etherdev; | ||
908 | |||
909 | SET_NETDEV_DEV(netdev, &pdev->dev); | ||
910 | |||
911 | pci_set_drvdata(pdev, netdev); | ||
912 | adapter = netdev_priv(netdev); | ||
913 | adapter->netdev = netdev; | ||
914 | adapter->pdev = pdev; | ||
915 | hw = &adapter->hw; | ||
916 | hw->back = adapter; | ||
917 | adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE; | ||
918 | |||
919 | mmio_start = pci_resource_start(pdev, 0); | ||
920 | mmio_len = pci_resource_len(pdev, 0); | ||
921 | |||
922 | err = -EIO; | ||
923 | adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); | ||
924 | if (!adapter->hw.hw_addr) | ||
925 | goto err_ioremap; | ||
926 | |||
927 | netdev->open = &igb_open; | ||
928 | netdev->stop = &igb_close; | ||
929 | netdev->get_stats = &igb_get_stats; | ||
930 | netdev->set_multicast_list = &igb_set_multi; | ||
931 | netdev->set_mac_address = &igb_set_mac; | ||
932 | netdev->change_mtu = &igb_change_mtu; | ||
933 | netdev->do_ioctl = &igb_ioctl; | ||
934 | igb_set_ethtool_ops(netdev); | ||
935 | netdev->tx_timeout = &igb_tx_timeout; | ||
936 | netdev->watchdog_timeo = 5 * HZ; | ||
937 | netif_napi_add(netdev, &adapter->napi, igb_clean, 64); | ||
938 | netdev->vlan_rx_register = igb_vlan_rx_register; | ||
939 | netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid; | ||
940 | netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid; | ||
941 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
942 | netdev->poll_controller = igb_netpoll; | ||
943 | #endif | ||
944 | netdev->hard_start_xmit = &igb_xmit_frame_adv; | ||
945 | |||
946 | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | ||
947 | |||
948 | netdev->mem_start = mmio_start; | ||
949 | netdev->mem_end = mmio_start + mmio_len; | ||
950 | |||
951 | adapter->bd_number = cards_found; | ||
952 | |||
953 | /* PCI config space info */ | ||
954 | hw->vendor_id = pdev->vendor; | ||
955 | hw->device_id = pdev->device; | ||
956 | hw->revision_id = pdev->revision; | ||
957 | hw->subsystem_vendor_id = pdev->subsystem_vendor; | ||
958 | hw->subsystem_device_id = pdev->subsystem_device; | ||
959 | |||
960 | /* setup the private structure */ | ||
961 | hw->back = adapter; | ||
962 | /* Copy the default MAC, PHY and NVM function pointers */ | ||
963 | memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); | ||
964 | memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); | ||
965 | memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); | ||
966 | /* Initialize skew-specific constants */ | ||
967 | err = ei->get_invariants(hw); | ||
968 | if (err) | ||
969 | goto err_hw_init; | ||
970 | |||
971 | err = igb_sw_init(adapter); | ||
972 | if (err) | ||
973 | goto err_sw_init; | ||
974 | |||
975 | igb_get_bus_info_pcie(hw); | ||
976 | |||
977 | hw->phy.autoneg_wait_to_complete = false; | ||
978 | hw->mac.adaptive_ifs = true; | ||
979 | |||
980 | /* Copper options */ | ||
981 | if (hw->phy.media_type == e1000_media_type_copper) { | ||
982 | hw->phy.mdix = AUTO_ALL_MODES; | ||
983 | hw->phy.disable_polarity_correction = false; | ||
984 | hw->phy.ms_type = e1000_ms_hw_default; | ||
985 | } | ||
986 | |||
987 | if (igb_check_reset_block(hw)) | ||
988 | dev_info(&pdev->dev, | ||
989 | "PHY reset is blocked due to SOL/IDER session.\n"); | ||
990 | |||
991 | netdev->features = NETIF_F_SG | | ||
992 | NETIF_F_HW_CSUM | | ||
993 | NETIF_F_HW_VLAN_TX | | ||
994 | NETIF_F_HW_VLAN_RX | | ||
995 | NETIF_F_HW_VLAN_FILTER; | ||
996 | |||
997 | netdev->features |= NETIF_F_TSO; | ||
998 | |||
999 | netdev->features |= NETIF_F_TSO6; | ||
1000 | if (pci_using_dac) | ||
1001 | netdev->features |= NETIF_F_HIGHDMA; | ||
1002 | |||
1003 | netdev->features |= NETIF_F_LLTX; | ||
1004 | adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw); | ||
1005 | |||
1006 | /* before reading the NVM, reset the controller to put the device in a | ||
1007 | * known good starting state */ | ||
1008 | hw->mac.ops.reset_hw(hw); | ||
1009 | |||
1010 | /* make sure the NVM is good */ | ||
1011 | if (igb_validate_nvm_checksum(hw) < 0) { | ||
1012 | dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); | ||
1013 | err = -EIO; | ||
1014 | goto err_eeprom; | ||
1015 | } | ||
1016 | |||
1017 | /* copy the MAC address out of the NVM */ | ||
1018 | if (hw->mac.ops.read_mac_addr(hw)) | ||
1019 | dev_err(&pdev->dev, "NVM Read Error\n"); | ||
1020 | |||
1021 | memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); | ||
1022 | memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len); | ||
1023 | |||
1024 | if (!is_valid_ether_addr(netdev->perm_addr)) { | ||
1025 | dev_err(&pdev->dev, "Invalid MAC Address\n"); | ||
1026 | err = -EIO; | ||
1027 | goto err_eeprom; | ||
1028 | } | ||
1029 | |||
1030 | init_timer(&adapter->watchdog_timer); | ||
1031 | adapter->watchdog_timer.function = &igb_watchdog; | ||
1032 | adapter->watchdog_timer.data = (unsigned long) adapter; | ||
1033 | |||
1034 | init_timer(&adapter->phy_info_timer); | ||
1035 | adapter->phy_info_timer.function = &igb_update_phy_info; | ||
1036 | adapter->phy_info_timer.data = (unsigned long) adapter; | ||
1037 | |||
1038 | INIT_WORK(&adapter->reset_task, igb_reset_task); | ||
1039 | INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); | ||
1040 | |||
1041 | /* Initialize link & ring properties that are user-changeable */ | ||
1042 | adapter->tx_ring->count = 256; | ||
1043 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
1044 | adapter->tx_ring[i].count = adapter->tx_ring->count; | ||
1045 | adapter->rx_ring->count = 256; | ||
1046 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
1047 | adapter->rx_ring[i].count = adapter->rx_ring->count; | ||
1048 | |||
1049 | adapter->fc_autoneg = true; | ||
1050 | hw->mac.autoneg = true; | ||
1051 | hw->phy.autoneg_advertised = 0x2f; | ||
1052 | |||
1053 | hw->fc.original_type = e1000_fc_default; | ||
1054 | hw->fc.type = e1000_fc_default; | ||
1055 | |||
1056 | adapter->itr_setting = 3; | ||
1057 | adapter->itr = IGB_START_ITR; | ||
1058 | |||
1059 | igb_validate_mdi_setting(hw); | ||
1060 | |||
1061 | adapter->rx_csum = 1; | ||
1062 | |||
1063 | /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM, | ||
1064 | * enable the ACPI Magic Packet filter | ||
1065 | */ | ||
1066 | |||
1067 | if (hw->bus.func == 0 || | ||
1068 | hw->device_id == E1000_DEV_ID_82575EB_COPPER) | ||
1069 | hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1, | ||
1070 | &eeprom_data); | ||
1071 | |||
1072 | if (eeprom_data & eeprom_apme_mask) | ||
1073 | adapter->eeprom_wol |= E1000_WUFC_MAG; | ||
1074 | |||
1075 | /* now that we have the eeprom settings, apply the special cases where | ||
1076 | * the eeprom may be wrong or the board simply won't support wake on | ||
1077 | * lan on a particular port */ | ||
1078 | switch (pdev->device) { | ||
1079 | case E1000_DEV_ID_82575GB_QUAD_COPPER: | ||
1080 | adapter->eeprom_wol = 0; | ||
1081 | break; | ||
1082 | case E1000_DEV_ID_82575EB_FIBER_SERDES: | ||
1083 | /* Wake events only supported on port A for dual fiber | ||
1084 | * regardless of eeprom setting */ | ||
1085 | if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) | ||
1086 | adapter->eeprom_wol = 0; | ||
1087 | break; | ||
1088 | } | ||
1089 | |||
1090 | /* initialize the wol settings based on the eeprom settings */ | ||
1091 | adapter->wol = adapter->eeprom_wol; | ||
1092 | |||
1093 | /* reset the hardware with the new settings */ | ||
1094 | igb_reset(adapter); | ||
1095 | |||
1096 | /* let the f/w know that the h/w is now under the control of the | ||
1097 | * driver. */ | ||
1098 | igb_get_hw_control(adapter); | ||
1099 | |||
1100 | /* tell the stack to leave us alone until igb_open() is called */ | ||
1101 | netif_carrier_off(netdev); | ||
1102 | netif_stop_queue(netdev); | ||
1103 | |||
1104 | strcpy(netdev->name, "eth%d"); | ||
1105 | err = register_netdev(netdev); | ||
1106 | if (err) | ||
1107 | goto err_register; | ||
1108 | |||
1109 | dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); | ||
1110 | /* print bus type/speed/width info */ | ||
1111 | dev_info(&pdev->dev, | ||
1112 | "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n", | ||
1113 | netdev->name, | ||
1114 | ((hw->bus.speed == e1000_bus_speed_2500) | ||
1115 | ? "2.5Gb/s" : "unknown"), | ||
1116 | ((hw->bus.width == e1000_bus_width_pcie_x4) | ||
1117 | ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1) | ||
1118 | ? "Width x1" : "unknown"), | ||
1119 | netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2], | ||
1120 | netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]); | ||
1121 | |||
1122 | igb_read_part_num(hw, &part_num); | ||
1123 | dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name, | ||
1124 | (part_num >> 8), (part_num & 0xff)); | ||
1125 | |||
1126 | dev_info(&pdev->dev, | ||
1127 | "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", | ||
1128 | adapter->msix_entries ? "MSI-X" : | ||
1129 | adapter->msi_enabled ? "MSI" : "legacy", | ||
1130 | adapter->num_rx_queues, adapter->num_tx_queues); | ||
1131 | |||
1132 | cards_found++; | ||
1133 | return 0; | ||
1134 | |||
1135 | err_register: | ||
1136 | igb_release_hw_control(adapter); | ||
1137 | err_eeprom: | ||
1138 | if (!igb_check_reset_block(hw)) | ||
1139 | hw->phy.ops.reset_phy(hw); | ||
1140 | |||
1141 | if (hw->flash_address) | ||
1142 | iounmap(hw->flash_address); | ||
1143 | |||
1144 | igb_remove_device(hw); | ||
1145 | kfree(adapter->tx_ring); | ||
1146 | kfree(adapter->rx_ring); | ||
1147 | err_sw_init: | ||
1148 | err_hw_init: | ||
1149 | iounmap(hw->hw_addr); | ||
1150 | err_ioremap: | ||
1151 | free_netdev(netdev); | ||
1152 | err_alloc_etherdev: | ||
1153 | pci_release_regions(pdev); | ||
1154 | err_pci_reg: | ||
1155 | err_dma: | ||
1156 | pci_disable_device(pdev); | ||
1157 | return err; | ||
1158 | } | ||
1159 | |||
1160 | /** | ||
1161 | * igb_remove - Device Removal Routine | ||
1162 | * @pdev: PCI device information struct | ||
1163 | * | ||
1164 | * igb_remove is called by the PCI subsystem to alert the driver | ||
1165 | * that it should release a PCI device. The could be caused by a | ||
1166 | * Hot-Plug event, or because the driver is going to be removed from | ||
1167 | * memory. | ||
1168 | **/ | ||
1169 | static void __devexit igb_remove(struct pci_dev *pdev) | ||
1170 | { | ||
1171 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
1172 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1173 | |||
1174 | /* flush_scheduled work may reschedule our watchdog task, so | ||
1175 | * explicitly disable watchdog tasks from being rescheduled */ | ||
1176 | set_bit(__IGB_DOWN, &adapter->state); | ||
1177 | del_timer_sync(&adapter->watchdog_timer); | ||
1178 | del_timer_sync(&adapter->phy_info_timer); | ||
1179 | |||
1180 | flush_scheduled_work(); | ||
1181 | |||
1182 | |||
1183 | igb_release_manageability(adapter); | ||
1184 | |||
1185 | /* Release control of h/w to f/w. If f/w is AMT enabled, this | ||
1186 | * would have already happened in close and is redundant. */ | ||
1187 | igb_release_hw_control(adapter); | ||
1188 | |||
1189 | unregister_netdev(netdev); | ||
1190 | |||
1191 | if (!igb_check_reset_block(&adapter->hw)) | ||
1192 | adapter->hw.phy.ops.reset_phy(&adapter->hw); | ||
1193 | |||
1194 | igb_remove_device(&adapter->hw); | ||
1195 | igb_reset_interrupt_capability(adapter); | ||
1196 | |||
1197 | kfree(adapter->tx_ring); | ||
1198 | kfree(adapter->rx_ring); | ||
1199 | |||
1200 | iounmap(adapter->hw.hw_addr); | ||
1201 | if (adapter->hw.flash_address) | ||
1202 | iounmap(adapter->hw.flash_address); | ||
1203 | pci_release_regions(pdev); | ||
1204 | |||
1205 | free_netdev(netdev); | ||
1206 | |||
1207 | pci_disable_device(pdev); | ||
1208 | } | ||
1209 | |||
1210 | /** | ||
1211 | * igb_sw_init - Initialize general software structures (struct igb_adapter) | ||
1212 | * @adapter: board private structure to initialize | ||
1213 | * | ||
1214 | * igb_sw_init initializes the Adapter private data structure. | ||
1215 | * Fields are initialized based on PCI device information and | ||
1216 | * OS network device settings (MTU size). | ||
1217 | **/ | ||
1218 | static int __devinit igb_sw_init(struct igb_adapter *adapter) | ||
1219 | { | ||
1220 | struct e1000_hw *hw = &adapter->hw; | ||
1221 | struct net_device *netdev = adapter->netdev; | ||
1222 | struct pci_dev *pdev = adapter->pdev; | ||
1223 | |||
1224 | pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); | ||
1225 | |||
1226 | adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | ||
1227 | adapter->rx_ps_hdr_size = 0; /* disable packet split */ | ||
1228 | adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; | ||
1229 | adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; | ||
1230 | |||
1231 | /* Number of supported queues. */ | ||
1232 | /* Having more queues than CPUs doesn't make sense. */ | ||
1233 | adapter->num_tx_queues = 1; | ||
1234 | adapter->num_rx_queues = min(IGB_MAX_RX_QUEUES, num_online_cpus()); | ||
1235 | |||
1236 | igb_set_interrupt_capability(adapter); | ||
1237 | |||
1238 | if (igb_alloc_queues(adapter)) { | ||
1239 | dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); | ||
1240 | return -ENOMEM; | ||
1241 | } | ||
1242 | |||
1243 | /* Explicitly disable IRQ since the NIC can be in any state. */ | ||
1244 | igb_irq_disable(adapter); | ||
1245 | |||
1246 | set_bit(__IGB_DOWN, &adapter->state); | ||
1247 | return 0; | ||
1248 | } | ||
1249 | |||
1250 | /** | ||
1251 | * igb_open - Called when a network interface is made active | ||
1252 | * @netdev: network interface device structure | ||
1253 | * | ||
1254 | * Returns 0 on success, negative value on failure | ||
1255 | * | ||
1256 | * The open entry point is called when a network interface is made | ||
1257 | * active by the system (IFF_UP). At this point all resources needed | ||
1258 | * for transmit and receive operations are allocated, the interrupt | ||
1259 | * handler is registered with the OS, the watchdog timer is started, | ||
1260 | * and the stack is notified that the interface is ready. | ||
1261 | **/ | ||
1262 | static int igb_open(struct net_device *netdev) | ||
1263 | { | ||
1264 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1265 | struct e1000_hw *hw = &adapter->hw; | ||
1266 | int err; | ||
1267 | int i; | ||
1268 | |||
1269 | /* disallow open during test */ | ||
1270 | if (test_bit(__IGB_TESTING, &adapter->state)) | ||
1271 | return -EBUSY; | ||
1272 | |||
1273 | /* allocate transmit descriptors */ | ||
1274 | err = igb_setup_all_tx_resources(adapter); | ||
1275 | if (err) | ||
1276 | goto err_setup_tx; | ||
1277 | |||
1278 | /* allocate receive descriptors */ | ||
1279 | err = igb_setup_all_rx_resources(adapter); | ||
1280 | if (err) | ||
1281 | goto err_setup_rx; | ||
1282 | |||
1283 | /* e1000_power_up_phy(adapter); */ | ||
1284 | |||
1285 | adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; | ||
1286 | if ((adapter->hw.mng_cookie.status & | ||
1287 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) | ||
1288 | igb_update_mng_vlan(adapter); | ||
1289 | |||
1290 | /* before we allocate an interrupt, we must be ready to handle it. | ||
1291 | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | ||
1292 | * as soon as we call pci_request_irq, so we have to setup our | ||
1293 | * clean_rx handler before we do so. */ | ||
1294 | igb_configure(adapter); | ||
1295 | |||
1296 | err = igb_request_irq(adapter); | ||
1297 | if (err) | ||
1298 | goto err_req_irq; | ||
1299 | |||
1300 | /* From here on the code is the same as igb_up() */ | ||
1301 | clear_bit(__IGB_DOWN, &adapter->state); | ||
1302 | |||
1303 | napi_enable(&adapter->napi); | ||
1304 | if (adapter->msix_entries) | ||
1305 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
1306 | napi_enable(&adapter->rx_ring[i].napi); | ||
1307 | |||
1308 | igb_irq_enable(adapter); | ||
1309 | |||
1310 | /* Clear any pending interrupts. */ | ||
1311 | rd32(E1000_ICR); | ||
1312 | /* Fire a link status change interrupt to start the watchdog. */ | ||
1313 | wr32(E1000_ICS, E1000_ICS_LSC); | ||
1314 | |||
1315 | return 0; | ||
1316 | |||
1317 | err_req_irq: | ||
1318 | igb_release_hw_control(adapter); | ||
1319 | /* e1000_power_down_phy(adapter); */ | ||
1320 | igb_free_all_rx_resources(adapter); | ||
1321 | err_setup_rx: | ||
1322 | igb_free_all_tx_resources(adapter); | ||
1323 | err_setup_tx: | ||
1324 | igb_reset(adapter); | ||
1325 | |||
1326 | return err; | ||
1327 | } | ||
1328 | |||
1329 | /** | ||
1330 | * igb_close - Disables a network interface | ||
1331 | * @netdev: network interface device structure | ||
1332 | * | ||
1333 | * Returns 0, this is not allowed to fail | ||
1334 | * | ||
1335 | * The close entry point is called when an interface is de-activated | ||
1336 | * by the OS. The hardware is still under the driver's control, but | ||
1337 | * needs to be disabled. A global MAC reset is issued to stop the | ||
1338 | * hardware, and all transmit and receive resources are freed. | ||
1339 | **/ | ||
1340 | static int igb_close(struct net_device *netdev) | ||
1341 | { | ||
1342 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
1343 | |||
1344 | WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); | ||
1345 | igb_down(adapter); | ||
1346 | |||
1347 | igb_free_irq(adapter); | ||
1348 | |||
1349 | igb_free_all_tx_resources(adapter); | ||
1350 | igb_free_all_rx_resources(adapter); | ||
1351 | |||
1352 | /* kill manageability vlan ID if supported, but not if a vlan with | ||
1353 | * the same ID is registered on the host OS (let 8021q kill it) */ | ||
1354 | if ((adapter->hw.mng_cookie.status & | ||
1355 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | ||
1356 | !(adapter->vlgrp && | ||
1357 | vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) | ||
1358 | igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | ||
1359 | |||
1360 | return 0; | ||
1361 | } | ||
1362 | |||
1363 | /** | ||
1364 | * igb_setup_tx_resources - allocate Tx resources (Descriptors) | ||
1365 | * @adapter: board private structure | ||
1366 | * @tx_ring: tx descriptor ring (for a specific queue) to setup | ||
1367 | * | ||
1368 | * Return 0 on success, negative on failure | ||
1369 | **/ | ||
1370 | |||
1371 | int igb_setup_tx_resources(struct igb_adapter *adapter, | ||
1372 | struct igb_ring *tx_ring) | ||
1373 | { | ||
1374 | struct pci_dev *pdev = adapter->pdev; | ||
1375 | int size; | ||
1376 | |||
1377 | size = sizeof(struct igb_buffer) * tx_ring->count; | ||
1378 | tx_ring->buffer_info = vmalloc(size); | ||
1379 | if (!tx_ring->buffer_info) | ||
1380 | goto err; | ||
1381 | memset(tx_ring->buffer_info, 0, size); | ||
1382 | |||
1383 | /* round up to nearest 4K */ | ||
1384 | tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc) | ||
1385 | + sizeof(u32); | ||
1386 | tx_ring->size = ALIGN(tx_ring->size, 4096); | ||
1387 | |||
1388 | tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size, | ||
1389 | &tx_ring->dma); | ||
1390 | |||
1391 | if (!tx_ring->desc) | ||
1392 | goto err; | ||
1393 | |||
1394 | tx_ring->adapter = adapter; | ||
1395 | tx_ring->next_to_use = 0; | ||
1396 | tx_ring->next_to_clean = 0; | ||
1397 | spin_lock_init(&tx_ring->tx_clean_lock); | ||
1398 | spin_lock_init(&tx_ring->tx_lock); | ||
1399 | return 0; | ||
1400 | |||
1401 | err: | ||
1402 | vfree(tx_ring->buffer_info); | ||
1403 | dev_err(&adapter->pdev->dev, | ||
1404 | "Unable to allocate memory for the transmit descriptor ring\n"); | ||
1405 | return -ENOMEM; | ||
1406 | } | ||
1407 | |||
1408 | /** | ||
1409 | * igb_setup_all_tx_resources - wrapper to allocate Tx resources | ||
1410 | * (Descriptors) for all queues | ||
1411 | * @adapter: board private structure | ||
1412 | * | ||
1413 | * Return 0 on success, negative on failure | ||
1414 | **/ | ||
1415 | static int igb_setup_all_tx_resources(struct igb_adapter *adapter) | ||
1416 | { | ||
1417 | int i, err = 0; | ||
1418 | |||
1419 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
1420 | err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]); | ||
1421 | if (err) { | ||
1422 | dev_err(&adapter->pdev->dev, | ||
1423 | "Allocation for Tx Queue %u failed\n", i); | ||
1424 | for (i--; i >= 0; i--) | ||
1425 | igb_free_tx_resources(adapter, | ||
1426 | &adapter->tx_ring[i]); | ||
1427 | break; | ||
1428 | } | ||
1429 | } | ||
1430 | |||
1431 | return err; | ||
1432 | } | ||
1433 | |||
1434 | /** | ||
1435 | * igb_configure_tx - Configure transmit Unit after Reset | ||
1436 | * @adapter: board private structure | ||
1437 | * | ||
1438 | * Configure the Tx unit of the MAC after a reset. | ||
1439 | **/ | ||
1440 | static void igb_configure_tx(struct igb_adapter *adapter) | ||
1441 | { | ||
1442 | u64 tdba, tdwba; | ||
1443 | struct e1000_hw *hw = &adapter->hw; | ||
1444 | u32 tctl; | ||
1445 | u32 txdctl, txctrl; | ||
1446 | int i; | ||
1447 | |||
1448 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
1449 | struct igb_ring *ring = &(adapter->tx_ring[i]); | ||
1450 | |||
1451 | wr32(E1000_TDLEN(i), | ||
1452 | ring->count * sizeof(struct e1000_tx_desc)); | ||
1453 | tdba = ring->dma; | ||
1454 | wr32(E1000_TDBAL(i), | ||
1455 | tdba & 0x00000000ffffffffULL); | ||
1456 | wr32(E1000_TDBAH(i), tdba >> 32); | ||
1457 | |||
1458 | tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc); | ||
1459 | tdwba |= 1; /* enable head wb */ | ||
1460 | wr32(E1000_TDWBAL(i), | ||
1461 | tdwba & 0x00000000ffffffffULL); | ||
1462 | wr32(E1000_TDWBAH(i), tdwba >> 32); | ||
1463 | |||
1464 | ring->head = E1000_TDH(i); | ||
1465 | ring->tail = E1000_TDT(i); | ||
1466 | writel(0, hw->hw_addr + ring->tail); | ||
1467 | writel(0, hw->hw_addr + ring->head); | ||
1468 | txdctl = rd32(E1000_TXDCTL(i)); | ||
1469 | txdctl |= E1000_TXDCTL_QUEUE_ENABLE; | ||
1470 | wr32(E1000_TXDCTL(i), txdctl); | ||
1471 | |||
1472 | /* Turn off Relaxed Ordering on head write-backs. The | ||
1473 | * writebacks MUST be delivered in order or it will | ||
1474 | * completely screw up our bookeeping. | ||
1475 | */ | ||
1476 | txctrl = rd32(E1000_DCA_TXCTRL(i)); | ||
1477 | txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN; | ||
1478 | wr32(E1000_DCA_TXCTRL(i), txctrl); | ||
1479 | } | ||
1480 | |||
1481 | |||
1482 | |||
1483 | /* Use the default values for the Tx Inter Packet Gap (IPG) timer */ | ||
1484 | |||
1485 | /* Program the Transmit Control Register */ | ||
1486 | |||
1487 | tctl = rd32(E1000_TCTL); | ||
1488 | tctl &= ~E1000_TCTL_CT; | ||
1489 | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | ||
1490 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | ||
1491 | |||
1492 | igb_config_collision_dist(hw); | ||
1493 | |||
1494 | /* Setup Transmit Descriptor Settings for eop descriptor */ | ||
1495 | adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS; | ||
1496 | |||
1497 | /* Enable transmits */ | ||
1498 | tctl |= E1000_TCTL_EN; | ||
1499 | |||
1500 | wr32(E1000_TCTL, tctl); | ||
1501 | } | ||
1502 | |||
1503 | /** | ||
1504 | * igb_setup_rx_resources - allocate Rx resources (Descriptors) | ||
1505 | * @adapter: board private structure | ||
1506 | * @rx_ring: rx descriptor ring (for a specific queue) to setup | ||
1507 | * | ||
1508 | * Returns 0 on success, negative on failure | ||
1509 | **/ | ||
1510 | |||
1511 | int igb_setup_rx_resources(struct igb_adapter *adapter, | ||
1512 | struct igb_ring *rx_ring) | ||
1513 | { | ||
1514 | struct pci_dev *pdev = adapter->pdev; | ||
1515 | int size, desc_len; | ||
1516 | |||
1517 | size = sizeof(struct igb_buffer) * rx_ring->count; | ||
1518 | rx_ring->buffer_info = vmalloc(size); | ||
1519 | if (!rx_ring->buffer_info) | ||
1520 | goto err; | ||
1521 | memset(rx_ring->buffer_info, 0, size); | ||
1522 | |||
1523 | desc_len = sizeof(union e1000_adv_rx_desc); | ||
1524 | |||
1525 | /* Round up to nearest 4K */ | ||
1526 | rx_ring->size = rx_ring->count * desc_len; | ||
1527 | rx_ring->size = ALIGN(rx_ring->size, 4096); | ||
1528 | |||
1529 | rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size, | ||
1530 | &rx_ring->dma); | ||
1531 | |||
1532 | if (!rx_ring->desc) | ||
1533 | goto err; | ||
1534 | |||
1535 | rx_ring->next_to_clean = 0; | ||
1536 | rx_ring->next_to_use = 0; | ||
1537 | rx_ring->pending_skb = NULL; | ||
1538 | |||
1539 | rx_ring->adapter = adapter; | ||
1540 | /* FIXME: do we want to setup ring->napi->poll here? */ | ||
1541 | rx_ring->napi.poll = adapter->napi.poll; | ||
1542 | |||
1543 | return 0; | ||
1544 | |||
1545 | err: | ||
1546 | vfree(rx_ring->buffer_info); | ||
1547 | dev_err(&adapter->pdev->dev, "Unable to allocate memory for " | ||
1548 | "the receive descriptor ring\n"); | ||
1549 | return -ENOMEM; | ||
1550 | } | ||
1551 | |||
1552 | /** | ||
1553 | * igb_setup_all_rx_resources - wrapper to allocate Rx resources | ||
1554 | * (Descriptors) for all queues | ||
1555 | * @adapter: board private structure | ||
1556 | * | ||
1557 | * Return 0 on success, negative on failure | ||
1558 | **/ | ||
1559 | static int igb_setup_all_rx_resources(struct igb_adapter *adapter) | ||
1560 | { | ||
1561 | int i, err = 0; | ||
1562 | |||
1563 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
1564 | err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]); | ||
1565 | if (err) { | ||
1566 | dev_err(&adapter->pdev->dev, | ||
1567 | "Allocation for Rx Queue %u failed\n", i); | ||
1568 | for (i--; i >= 0; i--) | ||
1569 | igb_free_rx_resources(adapter, | ||
1570 | &adapter->rx_ring[i]); | ||
1571 | break; | ||
1572 | } | ||
1573 | } | ||
1574 | |||
1575 | return err; | ||
1576 | } | ||
1577 | |||
1578 | /** | ||
1579 | * igb_setup_rctl - configure the receive control registers | ||
1580 | * @adapter: Board private structure | ||
1581 | **/ | ||
1582 | static void igb_setup_rctl(struct igb_adapter *adapter) | ||
1583 | { | ||
1584 | struct e1000_hw *hw = &adapter->hw; | ||
1585 | u32 rctl; | ||
1586 | u32 srrctl = 0; | ||
1587 | int i; | ||
1588 | |||
1589 | rctl = rd32(E1000_RCTL); | ||
1590 | |||
1591 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | ||
1592 | |||
1593 | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | | ||
1594 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | ||
1595 | (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); | ||
1596 | |||
1597 | /* disable the stripping of CRC because it breaks | ||
1598 | * BMC firmware connected over SMBUS | ||
1599 | rctl |= E1000_RCTL_SECRC; | ||
1600 | */ | ||
1601 | |||
1602 | rctl &= ~E1000_RCTL_SBP; | ||
1603 | |||
1604 | if (adapter->netdev->mtu <= ETH_DATA_LEN) | ||
1605 | rctl &= ~E1000_RCTL_LPE; | ||
1606 | else | ||
1607 | rctl |= E1000_RCTL_LPE; | ||
1608 | if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) { | ||
1609 | /* Setup buffer sizes */ | ||
1610 | rctl &= ~E1000_RCTL_SZ_4096; | ||
1611 | rctl |= E1000_RCTL_BSEX; | ||
1612 | switch (adapter->rx_buffer_len) { | ||
1613 | case IGB_RXBUFFER_256: | ||
1614 | rctl |= E1000_RCTL_SZ_256; | ||
1615 | rctl &= ~E1000_RCTL_BSEX; | ||
1616 | break; | ||
1617 | case IGB_RXBUFFER_512: | ||
1618 | rctl |= E1000_RCTL_SZ_512; | ||
1619 | rctl &= ~E1000_RCTL_BSEX; | ||
1620 | break; | ||
1621 | case IGB_RXBUFFER_1024: | ||
1622 | rctl |= E1000_RCTL_SZ_1024; | ||
1623 | rctl &= ~E1000_RCTL_BSEX; | ||
1624 | break; | ||
1625 | case IGB_RXBUFFER_2048: | ||
1626 | default: | ||
1627 | rctl |= E1000_RCTL_SZ_2048; | ||
1628 | rctl &= ~E1000_RCTL_BSEX; | ||
1629 | break; | ||
1630 | case IGB_RXBUFFER_4096: | ||
1631 | rctl |= E1000_RCTL_SZ_4096; | ||
1632 | break; | ||
1633 | case IGB_RXBUFFER_8192: | ||
1634 | rctl |= E1000_RCTL_SZ_8192; | ||
1635 | break; | ||
1636 | case IGB_RXBUFFER_16384: | ||
1637 | rctl |= E1000_RCTL_SZ_16384; | ||
1638 | break; | ||
1639 | } | ||
1640 | } else { | ||
1641 | rctl &= ~E1000_RCTL_BSEX; | ||
1642 | srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT; | ||
1643 | } | ||
1644 | |||
1645 | /* 82575 and greater support packet-split where the protocol | ||
1646 | * header is placed in skb->data and the packet data is | ||
1647 | * placed in pages hanging off of skb_shinfo(skb)->nr_frags. | ||
1648 | * In the case of a non-split, skb->data is linearly filled, | ||
1649 | * followed by the page buffers. Therefore, skb->data is | ||
1650 | * sized to hold the largest protocol header. | ||
1651 | */ | ||
1652 | /* allocations using alloc_page take too long for regular MTU | ||
1653 | * so only enable packet split for jumbo frames */ | ||
1654 | if (rctl & E1000_RCTL_LPE) { | ||
1655 | adapter->rx_ps_hdr_size = IGB_RXBUFFER_128; | ||
1656 | srrctl = adapter->rx_ps_hdr_size << | ||
1657 | E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; | ||
1658 | /* buffer size is ALWAYS one page */ | ||
1659 | srrctl |= PAGE_SIZE >> E1000_SRRCTL_BSIZEPKT_SHIFT; | ||
1660 | srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS; | ||
1661 | } else { | ||
1662 | adapter->rx_ps_hdr_size = 0; | ||
1663 | srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; | ||
1664 | } | ||
1665 | |||
1666 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
1667 | wr32(E1000_SRRCTL(i), srrctl); | ||
1668 | |||
1669 | wr32(E1000_RCTL, rctl); | ||
1670 | } | ||
1671 | |||
1672 | /** | ||
1673 | * igb_configure_rx - Configure receive Unit after Reset | ||
1674 | * @adapter: board private structure | ||
1675 | * | ||
1676 | * Configure the Rx unit of the MAC after a reset. | ||
1677 | **/ | ||
1678 | static void igb_configure_rx(struct igb_adapter *adapter) | ||
1679 | { | ||
1680 | u64 rdba; | ||
1681 | struct e1000_hw *hw = &adapter->hw; | ||
1682 | u32 rctl, rxcsum; | ||
1683 | u32 rxdctl; | ||
1684 | int i; | ||
1685 | |||
1686 | /* disable receives while setting up the descriptors */ | ||
1687 | rctl = rd32(E1000_RCTL); | ||
1688 | wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); | ||
1689 | wrfl(); | ||
1690 | mdelay(10); | ||
1691 | |||
1692 | if (adapter->itr_setting > 3) | ||
1693 | wr32(E1000_ITR, | ||
1694 | 1000000000 / (adapter->itr * 256)); | ||
1695 | |||
1696 | /* Setup the HW Rx Head and Tail Descriptor Pointers and | ||
1697 | * the Base and Length of the Rx Descriptor Ring */ | ||
1698 | for (i = 0; i < adapter->num_rx_queues; i++) { | ||
1699 | struct igb_ring *ring = &(adapter->rx_ring[i]); | ||
1700 | rdba = ring->dma; | ||
1701 | wr32(E1000_RDBAL(i), | ||
1702 | rdba & 0x00000000ffffffffULL); | ||
1703 | wr32(E1000_RDBAH(i), rdba >> 32); | ||
1704 | wr32(E1000_RDLEN(i), | ||
1705 | ring->count * sizeof(union e1000_adv_rx_desc)); | ||
1706 | |||
1707 | ring->head = E1000_RDH(i); | ||
1708 | ring->tail = E1000_RDT(i); | ||
1709 | writel(0, hw->hw_addr + ring->tail); | ||
1710 | writel(0, hw->hw_addr + ring->head); | ||
1711 | |||
1712 | rxdctl = rd32(E1000_RXDCTL(i)); | ||
1713 | rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; | ||
1714 | rxdctl &= 0xFFF00000; | ||
1715 | rxdctl |= IGB_RX_PTHRESH; | ||
1716 | rxdctl |= IGB_RX_HTHRESH << 8; | ||
1717 | rxdctl |= IGB_RX_WTHRESH << 16; | ||
1718 | wr32(E1000_RXDCTL(i), rxdctl); | ||
1719 | } | ||
1720 | |||
1721 | if (adapter->num_rx_queues > 1) { | ||
1722 | u32 random[10]; | ||
1723 | u32 mrqc; | ||
1724 | u32 j, shift; | ||
1725 | union e1000_reta { | ||
1726 | u32 dword; | ||
1727 | u8 bytes[4]; | ||
1728 | } reta; | ||
1729 | |||
1730 | get_random_bytes(&random[0], 40); | ||
1731 | |||
1732 | shift = 6; | ||
1733 | for (j = 0; j < (32 * 4); j++) { | ||
1734 | reta.bytes[j & 3] = | ||
1735 | (j % adapter->num_rx_queues) << shift; | ||
1736 | if ((j & 3) == 3) | ||
1737 | writel(reta.dword, | ||
1738 | hw->hw_addr + E1000_RETA(0) + (j & ~3)); | ||
1739 | } | ||
1740 | mrqc = E1000_MRQC_ENABLE_RSS_4Q; | ||
1741 | |||
1742 | /* Fill out hash function seeds */ | ||
1743 | for (j = 0; j < 10; j++) | ||
1744 | array_wr32(E1000_RSSRK(0), j, random[j]); | ||
1745 | |||
1746 | mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | | ||
1747 | E1000_MRQC_RSS_FIELD_IPV4_TCP); | ||
1748 | mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 | | ||
1749 | E1000_MRQC_RSS_FIELD_IPV6_TCP); | ||
1750 | mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP | | ||
1751 | E1000_MRQC_RSS_FIELD_IPV6_UDP); | ||
1752 | mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | | ||
1753 | E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); | ||
1754 | |||
1755 | |||
1756 | wr32(E1000_MRQC, mrqc); | ||
1757 | |||
1758 | /* Multiqueue and raw packet checksumming are mutually | ||
1759 | * exclusive. Note that this not the same as TCP/IP | ||
1760 | * checksumming, which works fine. */ | ||
1761 | rxcsum = rd32(E1000_RXCSUM); | ||
1762 | rxcsum |= E1000_RXCSUM_PCSD; | ||
1763 | wr32(E1000_RXCSUM, rxcsum); | ||
1764 | } else { | ||
1765 | /* Enable Receive Checksum Offload for TCP and UDP */ | ||
1766 | rxcsum = rd32(E1000_RXCSUM); | ||
1767 | if (adapter->rx_csum) { | ||
1768 | rxcsum |= E1000_RXCSUM_TUOFL; | ||
1769 | |||
1770 | /* Enable IPv4 payload checksum for UDP fragments | ||
1771 | * Must be used in conjunction with packet-split. */ | ||
1772 | if (adapter->rx_ps_hdr_size) | ||
1773 | rxcsum |= E1000_RXCSUM_IPPCSE; | ||
1774 | } else { | ||
1775 | rxcsum &= ~E1000_RXCSUM_TUOFL; | ||
1776 | /* don't need to clear IPPCSE as it defaults to 0 */ | ||
1777 | } | ||
1778 | wr32(E1000_RXCSUM, rxcsum); | ||
1779 | } | ||
1780 | |||
1781 | if (adapter->vlgrp) | ||
1782 | wr32(E1000_RLPML, | ||
1783 | adapter->max_frame_size + VLAN_TAG_SIZE); | ||
1784 | else | ||
1785 | wr32(E1000_RLPML, adapter->max_frame_size); | ||
1786 | |||
1787 | /* Enable Receives */ | ||
1788 | wr32(E1000_RCTL, rctl); | ||
1789 | } | ||
1790 | |||
1791 | /** | ||
1792 | * igb_free_tx_resources - Free Tx Resources per Queue | ||
1793 | * @adapter: board private structure | ||
1794 | * @tx_ring: Tx descriptor ring for a specific queue | ||
1795 | * | ||
1796 | * Free all transmit software resources | ||
1797 | **/ | ||
1798 | static void igb_free_tx_resources(struct igb_adapter *adapter, | ||
1799 | struct igb_ring *tx_ring) | ||
1800 | { | ||
1801 | struct pci_dev *pdev = adapter->pdev; | ||
1802 | |||
1803 | igb_clean_tx_ring(adapter, tx_ring); | ||
1804 | |||
1805 | vfree(tx_ring->buffer_info); | ||
1806 | tx_ring->buffer_info = NULL; | ||
1807 | |||
1808 | pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma); | ||
1809 | |||
1810 | tx_ring->desc = NULL; | ||
1811 | } | ||
1812 | |||
1813 | /** | ||
1814 | * igb_free_all_tx_resources - Free Tx Resources for All Queues | ||
1815 | * @adapter: board private structure | ||
1816 | * | ||
1817 | * Free all transmit software resources | ||
1818 | **/ | ||
1819 | static void igb_free_all_tx_resources(struct igb_adapter *adapter) | ||
1820 | { | ||
1821 | int i; | ||
1822 | |||
1823 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
1824 | igb_free_tx_resources(adapter, &adapter->tx_ring[i]); | ||
1825 | } | ||
1826 | |||
1827 | static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter, | ||
1828 | struct igb_buffer *buffer_info) | ||
1829 | { | ||
1830 | if (buffer_info->dma) { | ||
1831 | pci_unmap_page(adapter->pdev, | ||
1832 | buffer_info->dma, | ||
1833 | buffer_info->length, | ||
1834 | PCI_DMA_TODEVICE); | ||
1835 | buffer_info->dma = 0; | ||
1836 | } | ||
1837 | if (buffer_info->skb) { | ||
1838 | dev_kfree_skb_any(buffer_info->skb); | ||
1839 | buffer_info->skb = NULL; | ||
1840 | } | ||
1841 | buffer_info->time_stamp = 0; | ||
1842 | /* buffer_info must be completely set up in the transmit path */ | ||
1843 | } | ||
1844 | |||
1845 | /** | ||
1846 | * igb_clean_tx_ring - Free Tx Buffers | ||
1847 | * @adapter: board private structure | ||
1848 | * @tx_ring: ring to be cleaned | ||
1849 | **/ | ||
1850 | static void igb_clean_tx_ring(struct igb_adapter *adapter, | ||
1851 | struct igb_ring *tx_ring) | ||
1852 | { | ||
1853 | struct igb_buffer *buffer_info; | ||
1854 | unsigned long size; | ||
1855 | unsigned int i; | ||
1856 | |||
1857 | if (!tx_ring->buffer_info) | ||
1858 | return; | ||
1859 | /* Free all the Tx ring sk_buffs */ | ||
1860 | |||
1861 | for (i = 0; i < tx_ring->count; i++) { | ||
1862 | buffer_info = &tx_ring->buffer_info[i]; | ||
1863 | igb_unmap_and_free_tx_resource(adapter, buffer_info); | ||
1864 | } | ||
1865 | |||
1866 | size = sizeof(struct igb_buffer) * tx_ring->count; | ||
1867 | memset(tx_ring->buffer_info, 0, size); | ||
1868 | |||
1869 | /* Zero out the descriptor ring */ | ||
1870 | |||
1871 | memset(tx_ring->desc, 0, tx_ring->size); | ||
1872 | |||
1873 | tx_ring->next_to_use = 0; | ||
1874 | tx_ring->next_to_clean = 0; | ||
1875 | |||
1876 | writel(0, adapter->hw.hw_addr + tx_ring->head); | ||
1877 | writel(0, adapter->hw.hw_addr + tx_ring->tail); | ||
1878 | } | ||
1879 | |||
1880 | /** | ||
1881 | * igb_clean_all_tx_rings - Free Tx Buffers for all queues | ||
1882 | * @adapter: board private structure | ||
1883 | **/ | ||
1884 | static void igb_clean_all_tx_rings(struct igb_adapter *adapter) | ||
1885 | { | ||
1886 | int i; | ||
1887 | |||
1888 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
1889 | igb_clean_tx_ring(adapter, &adapter->tx_ring[i]); | ||
1890 | } | ||
1891 | |||
1892 | /** | ||
1893 | * igb_free_rx_resources - Free Rx Resources | ||
1894 | * @adapter: board private structure | ||
1895 | * @rx_ring: ring to clean the resources from | ||
1896 | * | ||
1897 | * Free all receive software resources | ||
1898 | **/ | ||
1899 | static void igb_free_rx_resources(struct igb_adapter *adapter, | ||
1900 | struct igb_ring *rx_ring) | ||
1901 | { | ||
1902 | struct pci_dev *pdev = adapter->pdev; | ||
1903 | |||
1904 | igb_clean_rx_ring(adapter, rx_ring); | ||
1905 | |||
1906 | vfree(rx_ring->buffer_info); | ||
1907 | rx_ring->buffer_info = NULL; | ||
1908 | |||
1909 | pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); | ||
1910 | |||
1911 | rx_ring->desc = NULL; | ||
1912 | } | ||
1913 | |||
1914 | /** | ||
1915 | * igb_free_all_rx_resources - Free Rx Resources for All Queues | ||
1916 | * @adapter: board private structure | ||
1917 | * | ||
1918 | * Free all receive software resources | ||
1919 | **/ | ||
1920 | static void igb_free_all_rx_resources(struct igb_adapter *adapter) | ||
1921 | { | ||
1922 | int i; | ||
1923 | |||
1924 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
1925 | igb_free_rx_resources(adapter, &adapter->rx_ring[i]); | ||
1926 | } | ||
1927 | |||
1928 | /** | ||
1929 | * igb_clean_rx_ring - Free Rx Buffers per Queue | ||
1930 | * @adapter: board private structure | ||
1931 | * @rx_ring: ring to free buffers from | ||
1932 | **/ | ||
1933 | static void igb_clean_rx_ring(struct igb_adapter *adapter, | ||
1934 | struct igb_ring *rx_ring) | ||
1935 | { | ||
1936 | struct igb_buffer *buffer_info; | ||
1937 | struct pci_dev *pdev = adapter->pdev; | ||
1938 | unsigned long size; | ||
1939 | unsigned int i; | ||
1940 | |||
1941 | if (!rx_ring->buffer_info) | ||
1942 | return; | ||
1943 | /* Free all the Rx ring sk_buffs */ | ||
1944 | for (i = 0; i < rx_ring->count; i++) { | ||
1945 | buffer_info = &rx_ring->buffer_info[i]; | ||
1946 | if (buffer_info->dma) { | ||
1947 | if (adapter->rx_ps_hdr_size) | ||
1948 | pci_unmap_single(pdev, buffer_info->dma, | ||
1949 | adapter->rx_ps_hdr_size, | ||
1950 | PCI_DMA_FROMDEVICE); | ||
1951 | else | ||
1952 | pci_unmap_single(pdev, buffer_info->dma, | ||
1953 | adapter->rx_buffer_len, | ||
1954 | PCI_DMA_FROMDEVICE); | ||
1955 | buffer_info->dma = 0; | ||
1956 | } | ||
1957 | |||
1958 | if (buffer_info->skb) { | ||
1959 | dev_kfree_skb(buffer_info->skb); | ||
1960 | buffer_info->skb = NULL; | ||
1961 | } | ||
1962 | if (buffer_info->page) { | ||
1963 | pci_unmap_page(pdev, buffer_info->page_dma, | ||
1964 | PAGE_SIZE, PCI_DMA_FROMDEVICE); | ||
1965 | put_page(buffer_info->page); | ||
1966 | buffer_info->page = NULL; | ||
1967 | buffer_info->page_dma = 0; | ||
1968 | } | ||
1969 | } | ||
1970 | |||
1971 | /* there also may be some cached data from a chained receive */ | ||
1972 | if (rx_ring->pending_skb) { | ||
1973 | dev_kfree_skb(rx_ring->pending_skb); | ||
1974 | rx_ring->pending_skb = NULL; | ||
1975 | } | ||
1976 | |||
1977 | size = sizeof(struct igb_buffer) * rx_ring->count; | ||
1978 | memset(rx_ring->buffer_info, 0, size); | ||
1979 | |||
1980 | /* Zero out the descriptor ring */ | ||
1981 | memset(rx_ring->desc, 0, rx_ring->size); | ||
1982 | |||
1983 | rx_ring->next_to_clean = 0; | ||
1984 | rx_ring->next_to_use = 0; | ||
1985 | |||
1986 | writel(0, adapter->hw.hw_addr + rx_ring->head); | ||
1987 | writel(0, adapter->hw.hw_addr + rx_ring->tail); | ||
1988 | } | ||
1989 | |||
1990 | /** | ||
1991 | * igb_clean_all_rx_rings - Free Rx Buffers for all queues | ||
1992 | * @adapter: board private structure | ||
1993 | **/ | ||
1994 | static void igb_clean_all_rx_rings(struct igb_adapter *adapter) | ||
1995 | { | ||
1996 | int i; | ||
1997 | |||
1998 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
1999 | igb_clean_rx_ring(adapter, &adapter->rx_ring[i]); | ||
2000 | } | ||
2001 | |||
2002 | /** | ||
2003 | * igb_set_mac - Change the Ethernet Address of the NIC | ||
2004 | * @netdev: network interface device structure | ||
2005 | * @p: pointer to an address structure | ||
2006 | * | ||
2007 | * Returns 0 on success, negative on failure | ||
2008 | **/ | ||
2009 | static int igb_set_mac(struct net_device *netdev, void *p) | ||
2010 | { | ||
2011 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2012 | struct sockaddr *addr = p; | ||
2013 | |||
2014 | if (!is_valid_ether_addr(addr->sa_data)) | ||
2015 | return -EADDRNOTAVAIL; | ||
2016 | |||
2017 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | ||
2018 | memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); | ||
2019 | |||
2020 | adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0); | ||
2021 | |||
2022 | return 0; | ||
2023 | } | ||
2024 | |||
2025 | /** | ||
2026 | * igb_set_multi - Multicast and Promiscuous mode set | ||
2027 | * @netdev: network interface device structure | ||
2028 | * | ||
2029 | * The set_multi entry point is called whenever the multicast address | ||
2030 | * list or the network interface flags are updated. This routine is | ||
2031 | * responsible for configuring the hardware for proper multicast, | ||
2032 | * promiscuous mode, and all-multi behavior. | ||
2033 | **/ | ||
2034 | static void igb_set_multi(struct net_device *netdev) | ||
2035 | { | ||
2036 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2037 | struct e1000_hw *hw = &adapter->hw; | ||
2038 | struct e1000_mac_info *mac = &hw->mac; | ||
2039 | struct dev_mc_list *mc_ptr; | ||
2040 | u8 *mta_list; | ||
2041 | u32 rctl; | ||
2042 | int i; | ||
2043 | |||
2044 | /* Check for Promiscuous and All Multicast modes */ | ||
2045 | |||
2046 | rctl = rd32(E1000_RCTL); | ||
2047 | |||
2048 | if (netdev->flags & IFF_PROMISC) | ||
2049 | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | ||
2050 | else if (netdev->flags & IFF_ALLMULTI) { | ||
2051 | rctl |= E1000_RCTL_MPE; | ||
2052 | rctl &= ~E1000_RCTL_UPE; | ||
2053 | } else | ||
2054 | rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); | ||
2055 | |||
2056 | wr32(E1000_RCTL, rctl); | ||
2057 | |||
2058 | if (!netdev->mc_count) { | ||
2059 | /* nothing to program, so clear mc list */ | ||
2060 | igb_update_mc_addr_list(hw, NULL, 0, 1, | ||
2061 | mac->rar_entry_count); | ||
2062 | return; | ||
2063 | } | ||
2064 | |||
2065 | mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC); | ||
2066 | if (!mta_list) | ||
2067 | return; | ||
2068 | |||
2069 | /* The shared function expects a packed array of only addresses. */ | ||
2070 | mc_ptr = netdev->mc_list; | ||
2071 | |||
2072 | for (i = 0; i < netdev->mc_count; i++) { | ||
2073 | if (!mc_ptr) | ||
2074 | break; | ||
2075 | memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN); | ||
2076 | mc_ptr = mc_ptr->next; | ||
2077 | } | ||
2078 | igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count); | ||
2079 | kfree(mta_list); | ||
2080 | } | ||
2081 | |||
2082 | /* Need to wait a few seconds after link up to get diagnostic information from | ||
2083 | * the phy */ | ||
2084 | static void igb_update_phy_info(unsigned long data) | ||
2085 | { | ||
2086 | struct igb_adapter *adapter = (struct igb_adapter *) data; | ||
2087 | adapter->hw.phy.ops.get_phy_info(&adapter->hw); | ||
2088 | } | ||
2089 | |||
2090 | /** | ||
2091 | * igb_watchdog - Timer Call-back | ||
2092 | * @data: pointer to adapter cast into an unsigned long | ||
2093 | **/ | ||
2094 | static void igb_watchdog(unsigned long data) | ||
2095 | { | ||
2096 | struct igb_adapter *adapter = (struct igb_adapter *)data; | ||
2097 | /* Do the rest outside of interrupt context */ | ||
2098 | schedule_work(&adapter->watchdog_task); | ||
2099 | } | ||
2100 | |||
2101 | static void igb_watchdog_task(struct work_struct *work) | ||
2102 | { | ||
2103 | struct igb_adapter *adapter = container_of(work, | ||
2104 | struct igb_adapter, watchdog_task); | ||
2105 | struct e1000_hw *hw = &adapter->hw; | ||
2106 | |||
2107 | struct net_device *netdev = adapter->netdev; | ||
2108 | struct igb_ring *tx_ring = adapter->tx_ring; | ||
2109 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
2110 | u32 link; | ||
2111 | s32 ret_val; | ||
2112 | |||
2113 | if ((netif_carrier_ok(netdev)) && | ||
2114 | (rd32(E1000_STATUS) & E1000_STATUS_LU)) | ||
2115 | goto link_up; | ||
2116 | |||
2117 | ret_val = hw->mac.ops.check_for_link(&adapter->hw); | ||
2118 | if ((ret_val == E1000_ERR_PHY) && | ||
2119 | (hw->phy.type == e1000_phy_igp_3) && | ||
2120 | (rd32(E1000_CTRL) & | ||
2121 | E1000_PHY_CTRL_GBE_DISABLE)) | ||
2122 | dev_info(&adapter->pdev->dev, | ||
2123 | "Gigabit has been disabled, downgrading speed\n"); | ||
2124 | |||
2125 | if ((hw->phy.media_type == e1000_media_type_internal_serdes) && | ||
2126 | !(rd32(E1000_TXCW) & E1000_TXCW_ANE)) | ||
2127 | link = mac->serdes_has_link; | ||
2128 | else | ||
2129 | link = rd32(E1000_STATUS) & | ||
2130 | E1000_STATUS_LU; | ||
2131 | |||
2132 | if (link) { | ||
2133 | if (!netif_carrier_ok(netdev)) { | ||
2134 | u32 ctrl; | ||
2135 | hw->mac.ops.get_speed_and_duplex(&adapter->hw, | ||
2136 | &adapter->link_speed, | ||
2137 | &adapter->link_duplex); | ||
2138 | |||
2139 | ctrl = rd32(E1000_CTRL); | ||
2140 | dev_info(&adapter->pdev->dev, | ||
2141 | "NIC Link is Up %d Mbps %s, " | ||
2142 | "Flow Control: %s\n", | ||
2143 | adapter->link_speed, | ||
2144 | adapter->link_duplex == FULL_DUPLEX ? | ||
2145 | "Full Duplex" : "Half Duplex", | ||
2146 | ((ctrl & E1000_CTRL_TFCE) && (ctrl & | ||
2147 | E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & | ||
2148 | E1000_CTRL_RFCE) ? "RX" : ((ctrl & | ||
2149 | E1000_CTRL_TFCE) ? "TX" : "None"))); | ||
2150 | |||
2151 | /* tweak tx_queue_len according to speed/duplex and | ||
2152 | * adjust the timeout factor */ | ||
2153 | netdev->tx_queue_len = adapter->tx_queue_len; | ||
2154 | adapter->tx_timeout_factor = 1; | ||
2155 | switch (adapter->link_speed) { | ||
2156 | case SPEED_10: | ||
2157 | netdev->tx_queue_len = 10; | ||
2158 | adapter->tx_timeout_factor = 14; | ||
2159 | break; | ||
2160 | case SPEED_100: | ||
2161 | netdev->tx_queue_len = 100; | ||
2162 | /* maybe add some timeout factor ? */ | ||
2163 | break; | ||
2164 | } | ||
2165 | |||
2166 | netif_carrier_on(netdev); | ||
2167 | netif_wake_queue(netdev); | ||
2168 | |||
2169 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
2170 | mod_timer(&adapter->phy_info_timer, | ||
2171 | round_jiffies(jiffies + 2 * HZ)); | ||
2172 | } | ||
2173 | } else { | ||
2174 | if (netif_carrier_ok(netdev)) { | ||
2175 | adapter->link_speed = 0; | ||
2176 | adapter->link_duplex = 0; | ||
2177 | dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); | ||
2178 | netif_carrier_off(netdev); | ||
2179 | netif_stop_queue(netdev); | ||
2180 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
2181 | mod_timer(&adapter->phy_info_timer, | ||
2182 | round_jiffies(jiffies + 2 * HZ)); | ||
2183 | } | ||
2184 | } | ||
2185 | |||
2186 | link_up: | ||
2187 | igb_update_stats(adapter); | ||
2188 | |||
2189 | mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; | ||
2190 | adapter->tpt_old = adapter->stats.tpt; | ||
2191 | mac->collision_delta = adapter->stats.colc - adapter->colc_old; | ||
2192 | adapter->colc_old = adapter->stats.colc; | ||
2193 | |||
2194 | adapter->gorc = adapter->stats.gorc - adapter->gorc_old; | ||
2195 | adapter->gorc_old = adapter->stats.gorc; | ||
2196 | adapter->gotc = adapter->stats.gotc - adapter->gotc_old; | ||
2197 | adapter->gotc_old = adapter->stats.gotc; | ||
2198 | |||
2199 | igb_update_adaptive(&adapter->hw); | ||
2200 | |||
2201 | if (!netif_carrier_ok(netdev)) { | ||
2202 | if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) { | ||
2203 | /* We've lost link, so the controller stops DMA, | ||
2204 | * but we've got queued Tx work that's never going | ||
2205 | * to get done, so reset controller to flush Tx. | ||
2206 | * (Do the reset outside of interrupt context). */ | ||
2207 | adapter->tx_timeout_count++; | ||
2208 | schedule_work(&adapter->reset_task); | ||
2209 | } | ||
2210 | } | ||
2211 | |||
2212 | /* Cause software interrupt to ensure rx ring is cleaned */ | ||
2213 | wr32(E1000_ICS, E1000_ICS_RXDMT0); | ||
2214 | |||
2215 | /* Force detection of hung controller every watchdog period */ | ||
2216 | tx_ring->detect_tx_hung = true; | ||
2217 | |||
2218 | /* Reset the timer */ | ||
2219 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
2220 | mod_timer(&adapter->watchdog_timer, | ||
2221 | round_jiffies(jiffies + 2 * HZ)); | ||
2222 | } | ||
2223 | |||
2224 | enum latency_range { | ||
2225 | lowest_latency = 0, | ||
2226 | low_latency = 1, | ||
2227 | bulk_latency = 2, | ||
2228 | latency_invalid = 255 | ||
2229 | }; | ||
2230 | |||
2231 | |||
2232 | static void igb_lower_rx_eitr(struct igb_adapter *adapter, | ||
2233 | struct igb_ring *rx_ring) | ||
2234 | { | ||
2235 | struct e1000_hw *hw = &adapter->hw; | ||
2236 | int new_val; | ||
2237 | |||
2238 | new_val = rx_ring->itr_val / 2; | ||
2239 | if (new_val < IGB_MIN_DYN_ITR) | ||
2240 | new_val = IGB_MIN_DYN_ITR; | ||
2241 | |||
2242 | if (new_val != rx_ring->itr_val) { | ||
2243 | rx_ring->itr_val = new_val; | ||
2244 | wr32(rx_ring->itr_register, | ||
2245 | 1000000000 / (new_val * 256)); | ||
2246 | } | ||
2247 | } | ||
2248 | |||
2249 | static void igb_raise_rx_eitr(struct igb_adapter *adapter, | ||
2250 | struct igb_ring *rx_ring) | ||
2251 | { | ||
2252 | struct e1000_hw *hw = &adapter->hw; | ||
2253 | int new_val; | ||
2254 | |||
2255 | new_val = rx_ring->itr_val * 2; | ||
2256 | if (new_val > IGB_MAX_DYN_ITR) | ||
2257 | new_val = IGB_MAX_DYN_ITR; | ||
2258 | |||
2259 | if (new_val != rx_ring->itr_val) { | ||
2260 | rx_ring->itr_val = new_val; | ||
2261 | wr32(rx_ring->itr_register, | ||
2262 | 1000000000 / (new_val * 256)); | ||
2263 | } | ||
2264 | } | ||
2265 | |||
2266 | /** | ||
2267 | * igb_update_itr - update the dynamic ITR value based on statistics | ||
2268 | * Stores a new ITR value based on packets and byte | ||
2269 | * counts during the last interrupt. The advantage of per interrupt | ||
2270 | * computation is faster updates and more accurate ITR for the current | ||
2271 | * traffic pattern. Constants in this function were computed | ||
2272 | * based on theoretical maximum wire speed and thresholds were set based | ||
2273 | * on testing data as well as attempting to minimize response time | ||
2274 | * while increasing bulk throughput. | ||
2275 | * this functionality is controlled by the InterruptThrottleRate module | ||
2276 | * parameter (see igb_param.c) | ||
2277 | * NOTE: These calculations are only valid when operating in a single- | ||
2278 | * queue environment. | ||
2279 | * @adapter: pointer to adapter | ||
2280 | * @itr_setting: current adapter->itr | ||
2281 | * @packets: the number of packets during this measurement interval | ||
2282 | * @bytes: the number of bytes during this measurement interval | ||
2283 | **/ | ||
2284 | static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting, | ||
2285 | int packets, int bytes) | ||
2286 | { | ||
2287 | unsigned int retval = itr_setting; | ||
2288 | |||
2289 | if (packets == 0) | ||
2290 | goto update_itr_done; | ||
2291 | |||
2292 | switch (itr_setting) { | ||
2293 | case lowest_latency: | ||
2294 | /* handle TSO and jumbo frames */ | ||
2295 | if (bytes/packets > 8000) | ||
2296 | retval = bulk_latency; | ||
2297 | else if ((packets < 5) && (bytes > 512)) | ||
2298 | retval = low_latency; | ||
2299 | break; | ||
2300 | case low_latency: /* 50 usec aka 20000 ints/s */ | ||
2301 | if (bytes > 10000) { | ||
2302 | /* this if handles the TSO accounting */ | ||
2303 | if (bytes/packets > 8000) { | ||
2304 | retval = bulk_latency; | ||
2305 | } else if ((packets < 10) || ((bytes/packets) > 1200)) { | ||
2306 | retval = bulk_latency; | ||
2307 | } else if ((packets > 35)) { | ||
2308 | retval = lowest_latency; | ||
2309 | } | ||
2310 | } else if (bytes/packets > 2000) { | ||
2311 | retval = bulk_latency; | ||
2312 | } else if (packets <= 2 && bytes < 512) { | ||
2313 | retval = lowest_latency; | ||
2314 | } | ||
2315 | break; | ||
2316 | case bulk_latency: /* 250 usec aka 4000 ints/s */ | ||
2317 | if (bytes > 25000) { | ||
2318 | if (packets > 35) | ||
2319 | retval = low_latency; | ||
2320 | } else if (bytes < 6000) { | ||
2321 | retval = low_latency; | ||
2322 | } | ||
2323 | break; | ||
2324 | } | ||
2325 | |||
2326 | update_itr_done: | ||
2327 | return retval; | ||
2328 | } | ||
2329 | |||
2330 | static void igb_set_itr(struct igb_adapter *adapter, u16 itr_register, | ||
2331 | int rx_only) | ||
2332 | { | ||
2333 | u16 current_itr; | ||
2334 | u32 new_itr = adapter->itr; | ||
2335 | |||
2336 | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | ||
2337 | if (adapter->link_speed != SPEED_1000) { | ||
2338 | current_itr = 0; | ||
2339 | new_itr = 4000; | ||
2340 | goto set_itr_now; | ||
2341 | } | ||
2342 | |||
2343 | adapter->rx_itr = igb_update_itr(adapter, | ||
2344 | adapter->rx_itr, | ||
2345 | adapter->rx_ring->total_packets, | ||
2346 | adapter->rx_ring->total_bytes); | ||
2347 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
2348 | if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) | ||
2349 | adapter->rx_itr = low_latency; | ||
2350 | |||
2351 | if (!rx_only) { | ||
2352 | adapter->tx_itr = igb_update_itr(adapter, | ||
2353 | adapter->tx_itr, | ||
2354 | adapter->tx_ring->total_packets, | ||
2355 | adapter->tx_ring->total_bytes); | ||
2356 | /* conservative mode (itr 3) eliminates the | ||
2357 | * lowest_latency setting */ | ||
2358 | if (adapter->itr_setting == 3 && | ||
2359 | adapter->tx_itr == lowest_latency) | ||
2360 | adapter->tx_itr = low_latency; | ||
2361 | |||
2362 | current_itr = max(adapter->rx_itr, adapter->tx_itr); | ||
2363 | } else { | ||
2364 | current_itr = adapter->rx_itr; | ||
2365 | } | ||
2366 | |||
2367 | switch (current_itr) { | ||
2368 | /* counts and packets in update_itr are dependent on these numbers */ | ||
2369 | case lowest_latency: | ||
2370 | new_itr = 70000; | ||
2371 | break; | ||
2372 | case low_latency: | ||
2373 | new_itr = 20000; /* aka hwitr = ~200 */ | ||
2374 | break; | ||
2375 | case bulk_latency: | ||
2376 | new_itr = 4000; | ||
2377 | break; | ||
2378 | default: | ||
2379 | break; | ||
2380 | } | ||
2381 | |||
2382 | set_itr_now: | ||
2383 | if (new_itr != adapter->itr) { | ||
2384 | /* this attempts to bias the interrupt rate towards Bulk | ||
2385 | * by adding intermediate steps when interrupt rate is | ||
2386 | * increasing */ | ||
2387 | new_itr = new_itr > adapter->itr ? | ||
2388 | min(adapter->itr + (new_itr >> 2), new_itr) : | ||
2389 | new_itr; | ||
2390 | /* Don't write the value here; it resets the adapter's | ||
2391 | * internal timer, and causes us to delay far longer than | ||
2392 | * we should between interrupts. Instead, we write the ITR | ||
2393 | * value at the beginning of the next interrupt so the timing | ||
2394 | * ends up being correct. | ||
2395 | */ | ||
2396 | adapter->itr = new_itr; | ||
2397 | adapter->set_itr = 1; | ||
2398 | } | ||
2399 | |||
2400 | return; | ||
2401 | } | ||
2402 | |||
2403 | |||
2404 | #define IGB_TX_FLAGS_CSUM 0x00000001 | ||
2405 | #define IGB_TX_FLAGS_VLAN 0x00000002 | ||
2406 | #define IGB_TX_FLAGS_TSO 0x00000004 | ||
2407 | #define IGB_TX_FLAGS_IPV4 0x00000008 | ||
2408 | #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000 | ||
2409 | #define IGB_TX_FLAGS_VLAN_SHIFT 16 | ||
2410 | |||
2411 | static inline int igb_tso_adv(struct igb_adapter *adapter, | ||
2412 | struct igb_ring *tx_ring, | ||
2413 | struct sk_buff *skb, u32 tx_flags, u8 *hdr_len) | ||
2414 | { | ||
2415 | struct e1000_adv_tx_context_desc *context_desc; | ||
2416 | unsigned int i; | ||
2417 | int err; | ||
2418 | struct igb_buffer *buffer_info; | ||
2419 | u32 info = 0, tu_cmd = 0; | ||
2420 | u32 mss_l4len_idx, l4len; | ||
2421 | *hdr_len = 0; | ||
2422 | |||
2423 | if (skb_header_cloned(skb)) { | ||
2424 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | ||
2425 | if (err) | ||
2426 | return err; | ||
2427 | } | ||
2428 | |||
2429 | l4len = tcp_hdrlen(skb); | ||
2430 | *hdr_len += l4len; | ||
2431 | |||
2432 | if (skb->protocol == htons(ETH_P_IP)) { | ||
2433 | struct iphdr *iph = ip_hdr(skb); | ||
2434 | iph->tot_len = 0; | ||
2435 | iph->check = 0; | ||
2436 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, | ||
2437 | iph->daddr, 0, | ||
2438 | IPPROTO_TCP, | ||
2439 | 0); | ||
2440 | } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) { | ||
2441 | ipv6_hdr(skb)->payload_len = 0; | ||
2442 | tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | ||
2443 | &ipv6_hdr(skb)->daddr, | ||
2444 | 0, IPPROTO_TCP, 0); | ||
2445 | } | ||
2446 | |||
2447 | i = tx_ring->next_to_use; | ||
2448 | |||
2449 | buffer_info = &tx_ring->buffer_info[i]; | ||
2450 | context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i); | ||
2451 | /* VLAN MACLEN IPLEN */ | ||
2452 | if (tx_flags & IGB_TX_FLAGS_VLAN) | ||
2453 | info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK); | ||
2454 | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); | ||
2455 | *hdr_len += skb_network_offset(skb); | ||
2456 | info |= skb_network_header_len(skb); | ||
2457 | *hdr_len += skb_network_header_len(skb); | ||
2458 | context_desc->vlan_macip_lens = cpu_to_le32(info); | ||
2459 | |||
2460 | /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ | ||
2461 | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); | ||
2462 | |||
2463 | if (skb->protocol == htons(ETH_P_IP)) | ||
2464 | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; | ||
2465 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
2466 | |||
2467 | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); | ||
2468 | |||
2469 | /* MSS L4LEN IDX */ | ||
2470 | mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT); | ||
2471 | mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT); | ||
2472 | |||
2473 | /* Context index must be unique per ring. Luckily, so is the interrupt | ||
2474 | * mask value. */ | ||
2475 | mss_l4len_idx |= tx_ring->eims_value >> 4; | ||
2476 | |||
2477 | context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); | ||
2478 | context_desc->seqnum_seed = 0; | ||
2479 | |||
2480 | buffer_info->time_stamp = jiffies; | ||
2481 | buffer_info->dma = 0; | ||
2482 | i++; | ||
2483 | if (i == tx_ring->count) | ||
2484 | i = 0; | ||
2485 | |||
2486 | tx_ring->next_to_use = i; | ||
2487 | |||
2488 | return true; | ||
2489 | } | ||
2490 | |||
2491 | static inline bool igb_tx_csum_adv(struct igb_adapter *adapter, | ||
2492 | struct igb_ring *tx_ring, | ||
2493 | struct sk_buff *skb, u32 tx_flags) | ||
2494 | { | ||
2495 | struct e1000_adv_tx_context_desc *context_desc; | ||
2496 | unsigned int i; | ||
2497 | struct igb_buffer *buffer_info; | ||
2498 | u32 info = 0, tu_cmd = 0; | ||
2499 | |||
2500 | if ((skb->ip_summed == CHECKSUM_PARTIAL) || | ||
2501 | (tx_flags & IGB_TX_FLAGS_VLAN)) { | ||
2502 | i = tx_ring->next_to_use; | ||
2503 | buffer_info = &tx_ring->buffer_info[i]; | ||
2504 | context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i); | ||
2505 | |||
2506 | if (tx_flags & IGB_TX_FLAGS_VLAN) | ||
2507 | info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK); | ||
2508 | info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT); | ||
2509 | if (skb->ip_summed == CHECKSUM_PARTIAL) | ||
2510 | info |= skb_network_header_len(skb); | ||
2511 | |||
2512 | context_desc->vlan_macip_lens = cpu_to_le32(info); | ||
2513 | |||
2514 | tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT); | ||
2515 | |||
2516 | if (skb->ip_summed == CHECKSUM_PARTIAL) { | ||
2517 | if (skb->protocol == htons(ETH_P_IP)) | ||
2518 | tu_cmd |= E1000_ADVTXD_TUCMD_IPV4; | ||
2519 | if (skb->sk && (skb->sk->sk_protocol == IPPROTO_TCP)) | ||
2520 | tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP; | ||
2521 | } | ||
2522 | |||
2523 | context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd); | ||
2524 | context_desc->seqnum_seed = 0; | ||
2525 | context_desc->mss_l4len_idx = | ||
2526 | cpu_to_le32(tx_ring->eims_value >> 4); | ||
2527 | |||
2528 | buffer_info->time_stamp = jiffies; | ||
2529 | buffer_info->dma = 0; | ||
2530 | |||
2531 | i++; | ||
2532 | if (i == tx_ring->count) | ||
2533 | i = 0; | ||
2534 | tx_ring->next_to_use = i; | ||
2535 | |||
2536 | return true; | ||
2537 | } | ||
2538 | |||
2539 | |||
2540 | return false; | ||
2541 | } | ||
2542 | |||
2543 | #define IGB_MAX_TXD_PWR 16 | ||
2544 | #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR) | ||
2545 | |||
2546 | static inline int igb_tx_map_adv(struct igb_adapter *adapter, | ||
2547 | struct igb_ring *tx_ring, | ||
2548 | struct sk_buff *skb) | ||
2549 | { | ||
2550 | struct igb_buffer *buffer_info; | ||
2551 | unsigned int len = skb_headlen(skb); | ||
2552 | unsigned int count = 0, i; | ||
2553 | unsigned int f; | ||
2554 | |||
2555 | i = tx_ring->next_to_use; | ||
2556 | |||
2557 | buffer_info = &tx_ring->buffer_info[i]; | ||
2558 | BUG_ON(len >= IGB_MAX_DATA_PER_TXD); | ||
2559 | buffer_info->length = len; | ||
2560 | /* set time_stamp *before* dma to help avoid a possible race */ | ||
2561 | buffer_info->time_stamp = jiffies; | ||
2562 | buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len, | ||
2563 | PCI_DMA_TODEVICE); | ||
2564 | count++; | ||
2565 | i++; | ||
2566 | if (i == tx_ring->count) | ||
2567 | i = 0; | ||
2568 | |||
2569 | for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { | ||
2570 | struct skb_frag_struct *frag; | ||
2571 | |||
2572 | frag = &skb_shinfo(skb)->frags[f]; | ||
2573 | len = frag->size; | ||
2574 | |||
2575 | buffer_info = &tx_ring->buffer_info[i]; | ||
2576 | BUG_ON(len >= IGB_MAX_DATA_PER_TXD); | ||
2577 | buffer_info->length = len; | ||
2578 | buffer_info->time_stamp = jiffies; | ||
2579 | buffer_info->dma = pci_map_page(adapter->pdev, | ||
2580 | frag->page, | ||
2581 | frag->page_offset, | ||
2582 | len, | ||
2583 | PCI_DMA_TODEVICE); | ||
2584 | |||
2585 | count++; | ||
2586 | i++; | ||
2587 | if (i == tx_ring->count) | ||
2588 | i = 0; | ||
2589 | } | ||
2590 | |||
2591 | i = (i == 0) ? tx_ring->count - 1 : i - 1; | ||
2592 | tx_ring->buffer_info[i].skb = skb; | ||
2593 | |||
2594 | return count; | ||
2595 | } | ||
2596 | |||
2597 | static inline void igb_tx_queue_adv(struct igb_adapter *adapter, | ||
2598 | struct igb_ring *tx_ring, | ||
2599 | int tx_flags, int count, u32 paylen, | ||
2600 | u8 hdr_len) | ||
2601 | { | ||
2602 | union e1000_adv_tx_desc *tx_desc = NULL; | ||
2603 | struct igb_buffer *buffer_info; | ||
2604 | u32 olinfo_status = 0, cmd_type_len; | ||
2605 | unsigned int i; | ||
2606 | |||
2607 | cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS | | ||
2608 | E1000_ADVTXD_DCMD_DEXT); | ||
2609 | |||
2610 | if (tx_flags & IGB_TX_FLAGS_VLAN) | ||
2611 | cmd_type_len |= E1000_ADVTXD_DCMD_VLE; | ||
2612 | |||
2613 | if (tx_flags & IGB_TX_FLAGS_TSO) { | ||
2614 | cmd_type_len |= E1000_ADVTXD_DCMD_TSE; | ||
2615 | |||
2616 | /* insert tcp checksum */ | ||
2617 | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; | ||
2618 | |||
2619 | /* insert ip checksum */ | ||
2620 | if (tx_flags & IGB_TX_FLAGS_IPV4) | ||
2621 | olinfo_status |= E1000_TXD_POPTS_IXSM << 8; | ||
2622 | |||
2623 | } else if (tx_flags & IGB_TX_FLAGS_CSUM) { | ||
2624 | olinfo_status |= E1000_TXD_POPTS_TXSM << 8; | ||
2625 | } | ||
2626 | |||
2627 | if (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO | | ||
2628 | IGB_TX_FLAGS_VLAN)) | ||
2629 | olinfo_status |= tx_ring->eims_value >> 4; | ||
2630 | |||
2631 | olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT); | ||
2632 | |||
2633 | i = tx_ring->next_to_use; | ||
2634 | while (count--) { | ||
2635 | buffer_info = &tx_ring->buffer_info[i]; | ||
2636 | tx_desc = E1000_TX_DESC_ADV(*tx_ring, i); | ||
2637 | tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); | ||
2638 | tx_desc->read.cmd_type_len = | ||
2639 | cpu_to_le32(cmd_type_len | buffer_info->length); | ||
2640 | tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); | ||
2641 | i++; | ||
2642 | if (i == tx_ring->count) | ||
2643 | i = 0; | ||
2644 | } | ||
2645 | |||
2646 | tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd); | ||
2647 | /* Force memory writes to complete before letting h/w | ||
2648 | * know there are new descriptors to fetch. (Only | ||
2649 | * applicable for weak-ordered memory model archs, | ||
2650 | * such as IA-64). */ | ||
2651 | wmb(); | ||
2652 | |||
2653 | tx_ring->next_to_use = i; | ||
2654 | writel(i, adapter->hw.hw_addr + tx_ring->tail); | ||
2655 | /* we need this if more than one processor can write to our tail | ||
2656 | * at a time, it syncronizes IO on IA64/Altix systems */ | ||
2657 | mmiowb(); | ||
2658 | } | ||
2659 | |||
2660 | static int __igb_maybe_stop_tx(struct net_device *netdev, | ||
2661 | struct igb_ring *tx_ring, int size) | ||
2662 | { | ||
2663 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2664 | |||
2665 | netif_stop_queue(netdev); | ||
2666 | /* Herbert's original patch had: | ||
2667 | * smp_mb__after_netif_stop_queue(); | ||
2668 | * but since that doesn't exist yet, just open code it. */ | ||
2669 | smp_mb(); | ||
2670 | |||
2671 | /* We need to check again in a case another CPU has just | ||
2672 | * made room available. */ | ||
2673 | if (IGB_DESC_UNUSED(tx_ring) < size) | ||
2674 | return -EBUSY; | ||
2675 | |||
2676 | /* A reprieve! */ | ||
2677 | netif_start_queue(netdev); | ||
2678 | ++adapter->restart_queue; | ||
2679 | return 0; | ||
2680 | } | ||
2681 | |||
2682 | static int igb_maybe_stop_tx(struct net_device *netdev, | ||
2683 | struct igb_ring *tx_ring, int size) | ||
2684 | { | ||
2685 | if (IGB_DESC_UNUSED(tx_ring) >= size) | ||
2686 | return 0; | ||
2687 | return __igb_maybe_stop_tx(netdev, tx_ring, size); | ||
2688 | } | ||
2689 | |||
2690 | #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1) | ||
2691 | |||
2692 | static int igb_xmit_frame_ring_adv(struct sk_buff *skb, | ||
2693 | struct net_device *netdev, | ||
2694 | struct igb_ring *tx_ring) | ||
2695 | { | ||
2696 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2697 | unsigned int tx_flags = 0; | ||
2698 | unsigned int len; | ||
2699 | unsigned long irq_flags; | ||
2700 | u8 hdr_len = 0; | ||
2701 | int tso = 0; | ||
2702 | |||
2703 | len = skb_headlen(skb); | ||
2704 | |||
2705 | if (test_bit(__IGB_DOWN, &adapter->state)) { | ||
2706 | dev_kfree_skb_any(skb); | ||
2707 | return NETDEV_TX_OK; | ||
2708 | } | ||
2709 | |||
2710 | if (skb->len <= 0) { | ||
2711 | dev_kfree_skb_any(skb); | ||
2712 | return NETDEV_TX_OK; | ||
2713 | } | ||
2714 | |||
2715 | if (!spin_trylock_irqsave(&tx_ring->tx_lock, irq_flags)) | ||
2716 | /* Collision - tell upper layer to requeue */ | ||
2717 | return NETDEV_TX_LOCKED; | ||
2718 | |||
2719 | /* need: 1 descriptor per page, | ||
2720 | * + 2 desc gap to keep tail from touching head, | ||
2721 | * + 1 desc for skb->data, | ||
2722 | * + 1 desc for context descriptor, | ||
2723 | * otherwise try next time */ | ||
2724 | if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) { | ||
2725 | /* this is a hard error */ | ||
2726 | spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags); | ||
2727 | return NETDEV_TX_BUSY; | ||
2728 | } | ||
2729 | |||
2730 | if (adapter->vlgrp && vlan_tx_tag_present(skb)) { | ||
2731 | tx_flags |= IGB_TX_FLAGS_VLAN; | ||
2732 | tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); | ||
2733 | } | ||
2734 | |||
2735 | tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags, | ||
2736 | &hdr_len) : 0; | ||
2737 | |||
2738 | if (tso < 0) { | ||
2739 | dev_kfree_skb_any(skb); | ||
2740 | spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags); | ||
2741 | return NETDEV_TX_OK; | ||
2742 | } | ||
2743 | |||
2744 | if (tso) | ||
2745 | tx_flags |= IGB_TX_FLAGS_TSO; | ||
2746 | else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags)) | ||
2747 | if (skb->ip_summed == CHECKSUM_PARTIAL) | ||
2748 | tx_flags |= IGB_TX_FLAGS_CSUM; | ||
2749 | |||
2750 | if (skb->protocol == htons(ETH_P_IP)) | ||
2751 | tx_flags |= IGB_TX_FLAGS_IPV4; | ||
2752 | |||
2753 | igb_tx_queue_adv(adapter, tx_ring, tx_flags, | ||
2754 | igb_tx_map_adv(adapter, tx_ring, skb), | ||
2755 | skb->len, hdr_len); | ||
2756 | |||
2757 | netdev->trans_start = jiffies; | ||
2758 | |||
2759 | /* Make sure there is space in the ring for the next send. */ | ||
2760 | igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4); | ||
2761 | |||
2762 | spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags); | ||
2763 | return NETDEV_TX_OK; | ||
2764 | } | ||
2765 | |||
2766 | static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev) | ||
2767 | { | ||
2768 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2769 | struct igb_ring *tx_ring = &adapter->tx_ring[0]; | ||
2770 | |||
2771 | /* This goes back to the question of how to logically map a tx queue | ||
2772 | * to a flow. Right now, performance is impacted slightly negatively | ||
2773 | * if using multiple tx queues. If the stack breaks away from a | ||
2774 | * single qdisc implementation, we can look at this again. */ | ||
2775 | return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring)); | ||
2776 | } | ||
2777 | |||
2778 | /** | ||
2779 | * igb_tx_timeout - Respond to a Tx Hang | ||
2780 | * @netdev: network interface device structure | ||
2781 | **/ | ||
2782 | static void igb_tx_timeout(struct net_device *netdev) | ||
2783 | { | ||
2784 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2785 | struct e1000_hw *hw = &adapter->hw; | ||
2786 | |||
2787 | /* Do the reset outside of interrupt context */ | ||
2788 | adapter->tx_timeout_count++; | ||
2789 | schedule_work(&adapter->reset_task); | ||
2790 | wr32(E1000_EICS, adapter->eims_enable_mask & | ||
2791 | ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER)); | ||
2792 | } | ||
2793 | |||
2794 | static void igb_reset_task(struct work_struct *work) | ||
2795 | { | ||
2796 | struct igb_adapter *adapter; | ||
2797 | adapter = container_of(work, struct igb_adapter, reset_task); | ||
2798 | |||
2799 | igb_reinit_locked(adapter); | ||
2800 | } | ||
2801 | |||
2802 | /** | ||
2803 | * igb_get_stats - Get System Network Statistics | ||
2804 | * @netdev: network interface device structure | ||
2805 | * | ||
2806 | * Returns the address of the device statistics structure. | ||
2807 | * The statistics are actually updated from the timer callback. | ||
2808 | **/ | ||
2809 | static struct net_device_stats * | ||
2810 | igb_get_stats(struct net_device *netdev) | ||
2811 | { | ||
2812 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2813 | |||
2814 | /* only return the current stats */ | ||
2815 | return &adapter->net_stats; | ||
2816 | } | ||
2817 | |||
2818 | /** | ||
2819 | * igb_change_mtu - Change the Maximum Transfer Unit | ||
2820 | * @netdev: network interface device structure | ||
2821 | * @new_mtu: new value for maximum frame size | ||
2822 | * | ||
2823 | * Returns 0 on success, negative on failure | ||
2824 | **/ | ||
2825 | static int igb_change_mtu(struct net_device *netdev, int new_mtu) | ||
2826 | { | ||
2827 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
2828 | int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; | ||
2829 | |||
2830 | if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) || | ||
2831 | (max_frame > MAX_JUMBO_FRAME_SIZE)) { | ||
2832 | dev_err(&adapter->pdev->dev, "Invalid MTU setting\n"); | ||
2833 | return -EINVAL; | ||
2834 | } | ||
2835 | |||
2836 | #define MAX_STD_JUMBO_FRAME_SIZE 9234 | ||
2837 | if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { | ||
2838 | dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n"); | ||
2839 | return -EINVAL; | ||
2840 | } | ||
2841 | |||
2842 | while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) | ||
2843 | msleep(1); | ||
2844 | /* igb_down has a dependency on max_frame_size */ | ||
2845 | adapter->max_frame_size = max_frame; | ||
2846 | if (netif_running(netdev)) | ||
2847 | igb_down(adapter); | ||
2848 | |||
2849 | /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | ||
2850 | * means we reserve 2 more, this pushes us to allocate from the next | ||
2851 | * larger slab size. | ||
2852 | * i.e. RXBUFFER_2048 --> size-4096 slab | ||
2853 | */ | ||
2854 | |||
2855 | if (max_frame <= IGB_RXBUFFER_256) | ||
2856 | adapter->rx_buffer_len = IGB_RXBUFFER_256; | ||
2857 | else if (max_frame <= IGB_RXBUFFER_512) | ||
2858 | adapter->rx_buffer_len = IGB_RXBUFFER_512; | ||
2859 | else if (max_frame <= IGB_RXBUFFER_1024) | ||
2860 | adapter->rx_buffer_len = IGB_RXBUFFER_1024; | ||
2861 | else if (max_frame <= IGB_RXBUFFER_2048) | ||
2862 | adapter->rx_buffer_len = IGB_RXBUFFER_2048; | ||
2863 | else | ||
2864 | adapter->rx_buffer_len = IGB_RXBUFFER_4096; | ||
2865 | /* adjust allocation if LPE protects us, and we aren't using SBP */ | ||
2866 | if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || | ||
2867 | (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)) | ||
2868 | adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | ||
2869 | |||
2870 | dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n", | ||
2871 | netdev->mtu, new_mtu); | ||
2872 | netdev->mtu = new_mtu; | ||
2873 | |||
2874 | if (netif_running(netdev)) | ||
2875 | igb_up(adapter); | ||
2876 | else | ||
2877 | igb_reset(adapter); | ||
2878 | |||
2879 | clear_bit(__IGB_RESETTING, &adapter->state); | ||
2880 | |||
2881 | return 0; | ||
2882 | } | ||
2883 | |||
2884 | /** | ||
2885 | * igb_update_stats - Update the board statistics counters | ||
2886 | * @adapter: board private structure | ||
2887 | **/ | ||
2888 | |||
2889 | void igb_update_stats(struct igb_adapter *adapter) | ||
2890 | { | ||
2891 | struct e1000_hw *hw = &adapter->hw; | ||
2892 | struct pci_dev *pdev = adapter->pdev; | ||
2893 | u16 phy_tmp; | ||
2894 | |||
2895 | #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF | ||
2896 | |||
2897 | /* | ||
2898 | * Prevent stats update while adapter is being reset, or if the pci | ||
2899 | * connection is down. | ||
2900 | */ | ||
2901 | if (adapter->link_speed == 0) | ||
2902 | return; | ||
2903 | if (pci_channel_offline(pdev)) | ||
2904 | return; | ||
2905 | |||
2906 | adapter->stats.crcerrs += rd32(E1000_CRCERRS); | ||
2907 | adapter->stats.gprc += rd32(E1000_GPRC); | ||
2908 | adapter->stats.gorc += rd32(E1000_GORCL); | ||
2909 | rd32(E1000_GORCH); /* clear GORCL */ | ||
2910 | adapter->stats.bprc += rd32(E1000_BPRC); | ||
2911 | adapter->stats.mprc += rd32(E1000_MPRC); | ||
2912 | adapter->stats.roc += rd32(E1000_ROC); | ||
2913 | |||
2914 | adapter->stats.prc64 += rd32(E1000_PRC64); | ||
2915 | adapter->stats.prc127 += rd32(E1000_PRC127); | ||
2916 | adapter->stats.prc255 += rd32(E1000_PRC255); | ||
2917 | adapter->stats.prc511 += rd32(E1000_PRC511); | ||
2918 | adapter->stats.prc1023 += rd32(E1000_PRC1023); | ||
2919 | adapter->stats.prc1522 += rd32(E1000_PRC1522); | ||
2920 | adapter->stats.symerrs += rd32(E1000_SYMERRS); | ||
2921 | adapter->stats.sec += rd32(E1000_SEC); | ||
2922 | |||
2923 | adapter->stats.mpc += rd32(E1000_MPC); | ||
2924 | adapter->stats.scc += rd32(E1000_SCC); | ||
2925 | adapter->stats.ecol += rd32(E1000_ECOL); | ||
2926 | adapter->stats.mcc += rd32(E1000_MCC); | ||
2927 | adapter->stats.latecol += rd32(E1000_LATECOL); | ||
2928 | adapter->stats.dc += rd32(E1000_DC); | ||
2929 | adapter->stats.rlec += rd32(E1000_RLEC); | ||
2930 | adapter->stats.xonrxc += rd32(E1000_XONRXC); | ||
2931 | adapter->stats.xontxc += rd32(E1000_XONTXC); | ||
2932 | adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); | ||
2933 | adapter->stats.xofftxc += rd32(E1000_XOFFTXC); | ||
2934 | adapter->stats.fcruc += rd32(E1000_FCRUC); | ||
2935 | adapter->stats.gptc += rd32(E1000_GPTC); | ||
2936 | adapter->stats.gotc += rd32(E1000_GOTCL); | ||
2937 | rd32(E1000_GOTCH); /* clear GOTCL */ | ||
2938 | adapter->stats.rnbc += rd32(E1000_RNBC); | ||
2939 | adapter->stats.ruc += rd32(E1000_RUC); | ||
2940 | adapter->stats.rfc += rd32(E1000_RFC); | ||
2941 | adapter->stats.rjc += rd32(E1000_RJC); | ||
2942 | adapter->stats.tor += rd32(E1000_TORH); | ||
2943 | adapter->stats.tot += rd32(E1000_TOTH); | ||
2944 | adapter->stats.tpr += rd32(E1000_TPR); | ||
2945 | |||
2946 | adapter->stats.ptc64 += rd32(E1000_PTC64); | ||
2947 | adapter->stats.ptc127 += rd32(E1000_PTC127); | ||
2948 | adapter->stats.ptc255 += rd32(E1000_PTC255); | ||
2949 | adapter->stats.ptc511 += rd32(E1000_PTC511); | ||
2950 | adapter->stats.ptc1023 += rd32(E1000_PTC1023); | ||
2951 | adapter->stats.ptc1522 += rd32(E1000_PTC1522); | ||
2952 | |||
2953 | adapter->stats.mptc += rd32(E1000_MPTC); | ||
2954 | adapter->stats.bptc += rd32(E1000_BPTC); | ||
2955 | |||
2956 | /* used for adaptive IFS */ | ||
2957 | |||
2958 | hw->mac.tx_packet_delta = rd32(E1000_TPT); | ||
2959 | adapter->stats.tpt += hw->mac.tx_packet_delta; | ||
2960 | hw->mac.collision_delta = rd32(E1000_COLC); | ||
2961 | adapter->stats.colc += hw->mac.collision_delta; | ||
2962 | |||
2963 | adapter->stats.algnerrc += rd32(E1000_ALGNERRC); | ||
2964 | adapter->stats.rxerrc += rd32(E1000_RXERRC); | ||
2965 | adapter->stats.tncrs += rd32(E1000_TNCRS); | ||
2966 | adapter->stats.tsctc += rd32(E1000_TSCTC); | ||
2967 | adapter->stats.tsctfc += rd32(E1000_TSCTFC); | ||
2968 | |||
2969 | adapter->stats.iac += rd32(E1000_IAC); | ||
2970 | adapter->stats.icrxoc += rd32(E1000_ICRXOC); | ||
2971 | adapter->stats.icrxptc += rd32(E1000_ICRXPTC); | ||
2972 | adapter->stats.icrxatc += rd32(E1000_ICRXATC); | ||
2973 | adapter->stats.ictxptc += rd32(E1000_ICTXPTC); | ||
2974 | adapter->stats.ictxatc += rd32(E1000_ICTXATC); | ||
2975 | adapter->stats.ictxqec += rd32(E1000_ICTXQEC); | ||
2976 | adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); | ||
2977 | adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); | ||
2978 | |||
2979 | /* Fill out the OS statistics structure */ | ||
2980 | adapter->net_stats.multicast = adapter->stats.mprc; | ||
2981 | adapter->net_stats.collisions = adapter->stats.colc; | ||
2982 | |||
2983 | /* Rx Errors */ | ||
2984 | |||
2985 | /* RLEC on some newer hardware can be incorrect so build | ||
2986 | * our own version based on RUC and ROC */ | ||
2987 | adapter->net_stats.rx_errors = adapter->stats.rxerrc + | ||
2988 | adapter->stats.crcerrs + adapter->stats.algnerrc + | ||
2989 | adapter->stats.ruc + adapter->stats.roc + | ||
2990 | adapter->stats.cexterr; | ||
2991 | adapter->net_stats.rx_length_errors = adapter->stats.ruc + | ||
2992 | adapter->stats.roc; | ||
2993 | adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; | ||
2994 | adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; | ||
2995 | adapter->net_stats.rx_missed_errors = adapter->stats.mpc; | ||
2996 | |||
2997 | /* Tx Errors */ | ||
2998 | adapter->net_stats.tx_errors = adapter->stats.ecol + | ||
2999 | adapter->stats.latecol; | ||
3000 | adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; | ||
3001 | adapter->net_stats.tx_window_errors = adapter->stats.latecol; | ||
3002 | adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; | ||
3003 | |||
3004 | /* Tx Dropped needs to be maintained elsewhere */ | ||
3005 | |||
3006 | /* Phy Stats */ | ||
3007 | if (hw->phy.media_type == e1000_media_type_copper) { | ||
3008 | if ((adapter->link_speed == SPEED_1000) && | ||
3009 | (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS, | ||
3010 | &phy_tmp))) { | ||
3011 | phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; | ||
3012 | adapter->phy_stats.idle_errors += phy_tmp; | ||
3013 | } | ||
3014 | } | ||
3015 | |||
3016 | /* Management Stats */ | ||
3017 | adapter->stats.mgptc += rd32(E1000_MGTPTC); | ||
3018 | adapter->stats.mgprc += rd32(E1000_MGTPRC); | ||
3019 | adapter->stats.mgpdc += rd32(E1000_MGTPDC); | ||
3020 | } | ||
3021 | |||
3022 | |||
3023 | static irqreturn_t igb_msix_other(int irq, void *data) | ||
3024 | { | ||
3025 | struct net_device *netdev = data; | ||
3026 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3027 | struct e1000_hw *hw = &adapter->hw; | ||
3028 | u32 eicr; | ||
3029 | /* disable interrupts from the "other" bit, avoid re-entry */ | ||
3030 | wr32(E1000_EIMC, E1000_EIMS_OTHER); | ||
3031 | |||
3032 | eicr = rd32(E1000_EICR); | ||
3033 | |||
3034 | if (eicr & E1000_EIMS_OTHER) { | ||
3035 | u32 icr = rd32(E1000_ICR); | ||
3036 | /* reading ICR causes bit 31 of EICR to be cleared */ | ||
3037 | if (!(icr & E1000_ICR_LSC)) | ||
3038 | goto no_link_interrupt; | ||
3039 | hw->mac.get_link_status = 1; | ||
3040 | /* guard against interrupt when we're going down */ | ||
3041 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
3042 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
3043 | } | ||
3044 | |||
3045 | no_link_interrupt: | ||
3046 | wr32(E1000_IMS, E1000_IMS_LSC); | ||
3047 | wr32(E1000_EIMS, E1000_EIMS_OTHER); | ||
3048 | |||
3049 | return IRQ_HANDLED; | ||
3050 | } | ||
3051 | |||
3052 | static irqreturn_t igb_msix_tx(int irq, void *data) | ||
3053 | { | ||
3054 | struct igb_ring *tx_ring = data; | ||
3055 | struct igb_adapter *adapter = tx_ring->adapter; | ||
3056 | struct e1000_hw *hw = &adapter->hw; | ||
3057 | |||
3058 | if (!tx_ring->itr_val) | ||
3059 | wr32(E1000_EIMC, tx_ring->eims_value); | ||
3060 | |||
3061 | tx_ring->total_bytes = 0; | ||
3062 | tx_ring->total_packets = 0; | ||
3063 | if (!igb_clean_tx_irq(adapter, tx_ring)) | ||
3064 | /* Ring was not completely cleaned, so fire another interrupt */ | ||
3065 | wr32(E1000_EICS, tx_ring->eims_value); | ||
3066 | |||
3067 | if (!tx_ring->itr_val) | ||
3068 | wr32(E1000_EIMS, tx_ring->eims_value); | ||
3069 | return IRQ_HANDLED; | ||
3070 | } | ||
3071 | |||
3072 | static irqreturn_t igb_msix_rx(int irq, void *data) | ||
3073 | { | ||
3074 | struct igb_ring *rx_ring = data; | ||
3075 | struct igb_adapter *adapter = rx_ring->adapter; | ||
3076 | struct e1000_hw *hw = &adapter->hw; | ||
3077 | |||
3078 | if (!rx_ring->itr_val) | ||
3079 | wr32(E1000_EIMC, rx_ring->eims_value); | ||
3080 | |||
3081 | if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi)) { | ||
3082 | rx_ring->total_bytes = 0; | ||
3083 | rx_ring->total_packets = 0; | ||
3084 | rx_ring->no_itr_adjust = 0; | ||
3085 | __netif_rx_schedule(adapter->netdev, &rx_ring->napi); | ||
3086 | } else { | ||
3087 | if (!rx_ring->no_itr_adjust) { | ||
3088 | igb_lower_rx_eitr(adapter, rx_ring); | ||
3089 | rx_ring->no_itr_adjust = 1; | ||
3090 | } | ||
3091 | } | ||
3092 | |||
3093 | return IRQ_HANDLED; | ||
3094 | } | ||
3095 | |||
3096 | |||
3097 | /** | ||
3098 | * igb_intr_msi - Interrupt Handler | ||
3099 | * @irq: interrupt number | ||
3100 | * @data: pointer to a network interface device structure | ||
3101 | **/ | ||
3102 | static irqreturn_t igb_intr_msi(int irq, void *data) | ||
3103 | { | ||
3104 | struct net_device *netdev = data; | ||
3105 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3106 | struct napi_struct *napi = &adapter->napi; | ||
3107 | struct e1000_hw *hw = &adapter->hw; | ||
3108 | /* read ICR disables interrupts using IAM */ | ||
3109 | u32 icr = rd32(E1000_ICR); | ||
3110 | |||
3111 | /* Write the ITR value calculated at the end of the | ||
3112 | * previous interrupt. | ||
3113 | */ | ||
3114 | if (adapter->set_itr) { | ||
3115 | wr32(E1000_ITR, | ||
3116 | 1000000000 / (adapter->itr * 256)); | ||
3117 | adapter->set_itr = 0; | ||
3118 | } | ||
3119 | |||
3120 | /* read ICR disables interrupts using IAM */ | ||
3121 | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | ||
3122 | hw->mac.get_link_status = 1; | ||
3123 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
3124 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
3125 | } | ||
3126 | |||
3127 | if (netif_rx_schedule_prep(netdev, napi)) { | ||
3128 | adapter->tx_ring->total_bytes = 0; | ||
3129 | adapter->tx_ring->total_packets = 0; | ||
3130 | adapter->rx_ring->total_bytes = 0; | ||
3131 | adapter->rx_ring->total_packets = 0; | ||
3132 | __netif_rx_schedule(netdev, napi); | ||
3133 | } | ||
3134 | |||
3135 | return IRQ_HANDLED; | ||
3136 | } | ||
3137 | |||
3138 | /** | ||
3139 | * igb_intr - Interrupt Handler | ||
3140 | * @irq: interrupt number | ||
3141 | * @data: pointer to a network interface device structure | ||
3142 | **/ | ||
3143 | static irqreturn_t igb_intr(int irq, void *data) | ||
3144 | { | ||
3145 | struct net_device *netdev = data; | ||
3146 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3147 | struct napi_struct *napi = &adapter->napi; | ||
3148 | struct e1000_hw *hw = &adapter->hw; | ||
3149 | /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No | ||
3150 | * need for the IMC write */ | ||
3151 | u32 icr = rd32(E1000_ICR); | ||
3152 | u32 eicr = 0; | ||
3153 | if (!icr) | ||
3154 | return IRQ_NONE; /* Not our interrupt */ | ||
3155 | |||
3156 | /* Write the ITR value calculated at the end of the | ||
3157 | * previous interrupt. | ||
3158 | */ | ||
3159 | if (adapter->set_itr) { | ||
3160 | wr32(E1000_ITR, | ||
3161 | 1000000000 / (adapter->itr * 256)); | ||
3162 | adapter->set_itr = 0; | ||
3163 | } | ||
3164 | |||
3165 | /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is | ||
3166 | * not set, then the adapter didn't send an interrupt */ | ||
3167 | if (!(icr & E1000_ICR_INT_ASSERTED)) | ||
3168 | return IRQ_NONE; | ||
3169 | |||
3170 | eicr = rd32(E1000_EICR); | ||
3171 | |||
3172 | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | ||
3173 | hw->mac.get_link_status = 1; | ||
3174 | /* guard against interrupt when we're going down */ | ||
3175 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
3176 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
3177 | } | ||
3178 | |||
3179 | if (netif_rx_schedule_prep(netdev, napi)) { | ||
3180 | adapter->tx_ring->total_bytes = 0; | ||
3181 | adapter->rx_ring->total_bytes = 0; | ||
3182 | adapter->tx_ring->total_packets = 0; | ||
3183 | adapter->rx_ring->total_packets = 0; | ||
3184 | __netif_rx_schedule(netdev, napi); | ||
3185 | } | ||
3186 | |||
3187 | return IRQ_HANDLED; | ||
3188 | } | ||
3189 | |||
3190 | /** | ||
3191 | * igb_clean - NAPI Rx polling callback | ||
3192 | * @adapter: board private structure | ||
3193 | **/ | ||
3194 | static int igb_clean(struct napi_struct *napi, int budget) | ||
3195 | { | ||
3196 | struct igb_adapter *adapter = container_of(napi, struct igb_adapter, | ||
3197 | napi); | ||
3198 | struct net_device *netdev = adapter->netdev; | ||
3199 | int tx_clean_complete = 1, work_done = 0; | ||
3200 | int i; | ||
3201 | |||
3202 | /* Must NOT use netdev_priv macro here. */ | ||
3203 | adapter = netdev->priv; | ||
3204 | |||
3205 | /* Keep link state information with original netdev */ | ||
3206 | if (!netif_carrier_ok(netdev)) | ||
3207 | goto quit_polling; | ||
3208 | |||
3209 | /* igb_clean is called per-cpu. This lock protects tx_ring[i] from | ||
3210 | * being cleaned by multiple cpus simultaneously. A failure obtaining | ||
3211 | * the lock means tx_ring[i] is currently being cleaned anyway. */ | ||
3212 | for (i = 0; i < adapter->num_tx_queues; i++) { | ||
3213 | if (spin_trylock(&adapter->tx_ring[i].tx_clean_lock)) { | ||
3214 | tx_clean_complete &= igb_clean_tx_irq(adapter, | ||
3215 | &adapter->tx_ring[i]); | ||
3216 | spin_unlock(&adapter->tx_ring[i].tx_clean_lock); | ||
3217 | } | ||
3218 | } | ||
3219 | |||
3220 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
3221 | igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i], &work_done, | ||
3222 | adapter->rx_ring[i].napi.weight); | ||
3223 | |||
3224 | /* If no Tx and not enough Rx work done, exit the polling mode */ | ||
3225 | if ((tx_clean_complete && (work_done < budget)) || | ||
3226 | !netif_running(netdev)) { | ||
3227 | quit_polling: | ||
3228 | if (adapter->itr_setting & 3) | ||
3229 | igb_set_itr(adapter, E1000_ITR, false); | ||
3230 | netif_rx_complete(netdev, napi); | ||
3231 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
3232 | igb_irq_enable(adapter); | ||
3233 | return 0; | ||
3234 | } | ||
3235 | |||
3236 | return 1; | ||
3237 | } | ||
3238 | |||
3239 | static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget) | ||
3240 | { | ||
3241 | struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi); | ||
3242 | struct igb_adapter *adapter = rx_ring->adapter; | ||
3243 | struct e1000_hw *hw = &adapter->hw; | ||
3244 | struct net_device *netdev = adapter->netdev; | ||
3245 | int work_done = 0; | ||
3246 | |||
3247 | /* Keep link state information with original netdev */ | ||
3248 | if (!netif_carrier_ok(netdev)) | ||
3249 | goto quit_polling; | ||
3250 | |||
3251 | igb_clean_rx_irq_adv(adapter, rx_ring, &work_done, budget); | ||
3252 | |||
3253 | |||
3254 | /* If not enough Rx work done, exit the polling mode */ | ||
3255 | if ((work_done == 0) || !netif_running(netdev)) { | ||
3256 | quit_polling: | ||
3257 | netif_rx_complete(netdev, napi); | ||
3258 | |||
3259 | wr32(E1000_EIMS, rx_ring->eims_value); | ||
3260 | if ((adapter->itr_setting & 3) && !rx_ring->no_itr_adjust && | ||
3261 | (rx_ring->total_packets > IGB_DYN_ITR_PACKET_THRESHOLD)) { | ||
3262 | int mean_size = rx_ring->total_bytes / | ||
3263 | rx_ring->total_packets; | ||
3264 | if (mean_size < IGB_DYN_ITR_LENGTH_LOW) | ||
3265 | igb_raise_rx_eitr(adapter, rx_ring); | ||
3266 | else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH) | ||
3267 | igb_lower_rx_eitr(adapter, rx_ring); | ||
3268 | } | ||
3269 | return 0; | ||
3270 | } | ||
3271 | |||
3272 | return 1; | ||
3273 | } | ||
3274 | /** | ||
3275 | * igb_clean_tx_irq - Reclaim resources after transmit completes | ||
3276 | * @adapter: board private structure | ||
3277 | * returns true if ring is completely cleaned | ||
3278 | **/ | ||
3279 | static bool igb_clean_tx_irq(struct igb_adapter *adapter, | ||
3280 | struct igb_ring *tx_ring) | ||
3281 | { | ||
3282 | struct net_device *netdev = adapter->netdev; | ||
3283 | struct e1000_hw *hw = &adapter->hw; | ||
3284 | struct e1000_tx_desc *tx_desc; | ||
3285 | struct igb_buffer *buffer_info; | ||
3286 | struct sk_buff *skb; | ||
3287 | unsigned int i; | ||
3288 | u32 head, oldhead; | ||
3289 | unsigned int count = 0; | ||
3290 | bool cleaned = false; | ||
3291 | bool retval = true; | ||
3292 | unsigned int total_bytes = 0, total_packets = 0; | ||
3293 | |||
3294 | rmb(); | ||
3295 | head = *(volatile u32 *)((struct e1000_tx_desc *)tx_ring->desc | ||
3296 | + tx_ring->count); | ||
3297 | head = le32_to_cpu(head); | ||
3298 | i = tx_ring->next_to_clean; | ||
3299 | while (1) { | ||
3300 | while (i != head) { | ||
3301 | cleaned = true; | ||
3302 | tx_desc = E1000_TX_DESC(*tx_ring, i); | ||
3303 | buffer_info = &tx_ring->buffer_info[i]; | ||
3304 | skb = buffer_info->skb; | ||
3305 | |||
3306 | if (skb) { | ||
3307 | unsigned int segs, bytecount; | ||
3308 | /* gso_segs is currently only valid for tcp */ | ||
3309 | segs = skb_shinfo(skb)->gso_segs ?: 1; | ||
3310 | /* multiply data chunks by size of headers */ | ||
3311 | bytecount = ((segs - 1) * skb_headlen(skb)) + | ||
3312 | skb->len; | ||
3313 | total_packets += segs; | ||
3314 | total_bytes += bytecount; | ||
3315 | } | ||
3316 | |||
3317 | igb_unmap_and_free_tx_resource(adapter, buffer_info); | ||
3318 | tx_desc->upper.data = 0; | ||
3319 | |||
3320 | i++; | ||
3321 | if (i == tx_ring->count) | ||
3322 | i = 0; | ||
3323 | |||
3324 | count++; | ||
3325 | if (count == IGB_MAX_TX_CLEAN) { | ||
3326 | retval = false; | ||
3327 | goto done_cleaning; | ||
3328 | } | ||
3329 | } | ||
3330 | oldhead = head; | ||
3331 | rmb(); | ||
3332 | head = *(volatile u32 *)((struct e1000_tx_desc *)tx_ring->desc | ||
3333 | + tx_ring->count); | ||
3334 | head = le32_to_cpu(head); | ||
3335 | if (head == oldhead) | ||
3336 | goto done_cleaning; | ||
3337 | } /* while (1) */ | ||
3338 | |||
3339 | done_cleaning: | ||
3340 | tx_ring->next_to_clean = i; | ||
3341 | |||
3342 | if (unlikely(cleaned && | ||
3343 | netif_carrier_ok(netdev) && | ||
3344 | IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) { | ||
3345 | /* Make sure that anybody stopping the queue after this | ||
3346 | * sees the new next_to_clean. | ||
3347 | */ | ||
3348 | smp_mb(); | ||
3349 | if (netif_queue_stopped(netdev) && | ||
3350 | !(test_bit(__IGB_DOWN, &adapter->state))) { | ||
3351 | netif_wake_queue(netdev); | ||
3352 | ++adapter->restart_queue; | ||
3353 | } | ||
3354 | } | ||
3355 | |||
3356 | if (tx_ring->detect_tx_hung) { | ||
3357 | /* Detect a transmit hang in hardware, this serializes the | ||
3358 | * check with the clearing of time_stamp and movement of i */ | ||
3359 | tx_ring->detect_tx_hung = false; | ||
3360 | if (tx_ring->buffer_info[i].time_stamp && | ||
3361 | time_after(jiffies, tx_ring->buffer_info[i].time_stamp + | ||
3362 | (adapter->tx_timeout_factor * HZ)) | ||
3363 | && !(rd32(E1000_STATUS) & | ||
3364 | E1000_STATUS_TXOFF)) { | ||
3365 | |||
3366 | tx_desc = E1000_TX_DESC(*tx_ring, i); | ||
3367 | /* detected Tx unit hang */ | ||
3368 | dev_err(&adapter->pdev->dev, | ||
3369 | "Detected Tx Unit Hang\n" | ||
3370 | " Tx Queue <%lu>\n" | ||
3371 | " TDH <%x>\n" | ||
3372 | " TDT <%x>\n" | ||
3373 | " next_to_use <%x>\n" | ||
3374 | " next_to_clean <%x>\n" | ||
3375 | " head (WB) <%x>\n" | ||
3376 | "buffer_info[next_to_clean]\n" | ||
3377 | " time_stamp <%lx>\n" | ||
3378 | " jiffies <%lx>\n" | ||
3379 | " desc.status <%x>\n", | ||
3380 | (unsigned long)((tx_ring - adapter->tx_ring) / | ||
3381 | sizeof(struct igb_ring)), | ||
3382 | readl(adapter->hw.hw_addr + tx_ring->head), | ||
3383 | readl(adapter->hw.hw_addr + tx_ring->tail), | ||
3384 | tx_ring->next_to_use, | ||
3385 | tx_ring->next_to_clean, | ||
3386 | head, | ||
3387 | tx_ring->buffer_info[i].time_stamp, | ||
3388 | jiffies, | ||
3389 | tx_desc->upper.fields.status); | ||
3390 | netif_stop_queue(netdev); | ||
3391 | } | ||
3392 | } | ||
3393 | tx_ring->total_bytes += total_bytes; | ||
3394 | tx_ring->total_packets += total_packets; | ||
3395 | adapter->net_stats.tx_bytes += total_bytes; | ||
3396 | adapter->net_stats.tx_packets += total_packets; | ||
3397 | return retval; | ||
3398 | } | ||
3399 | |||
3400 | |||
3401 | /** | ||
3402 | * igb_receive_skb - helper function to handle rx indications | ||
3403 | * @adapter: board private structure | ||
3404 | * @status: descriptor status field as written by hardware | ||
3405 | * @vlan: descriptor vlan field as written by hardware (no le/be conversion) | ||
3406 | * @skb: pointer to sk_buff to be indicated to stack | ||
3407 | **/ | ||
3408 | static void igb_receive_skb(struct igb_adapter *adapter, u8 status, u16 vlan, | ||
3409 | struct sk_buff *skb) | ||
3410 | { | ||
3411 | if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) | ||
3412 | vlan_hwaccel_receive_skb(skb, adapter->vlgrp, | ||
3413 | le16_to_cpu(vlan) & | ||
3414 | E1000_RXD_SPC_VLAN_MASK); | ||
3415 | else | ||
3416 | netif_receive_skb(skb); | ||
3417 | } | ||
3418 | |||
3419 | |||
3420 | static inline void igb_rx_checksum_adv(struct igb_adapter *adapter, | ||
3421 | u32 status_err, struct sk_buff *skb) | ||
3422 | { | ||
3423 | skb->ip_summed = CHECKSUM_NONE; | ||
3424 | |||
3425 | /* Ignore Checksum bit is set or checksum is disabled through ethtool */ | ||
3426 | if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum) | ||
3427 | return; | ||
3428 | /* TCP/UDP checksum error bit is set */ | ||
3429 | if (status_err & | ||
3430 | (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) { | ||
3431 | /* let the stack verify checksum errors */ | ||
3432 | adapter->hw_csum_err++; | ||
3433 | return; | ||
3434 | } | ||
3435 | /* It must be a TCP or UDP packet with a valid checksum */ | ||
3436 | if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) | ||
3437 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
3438 | |||
3439 | adapter->hw_csum_good++; | ||
3440 | } | ||
3441 | |||
3442 | static bool igb_clean_rx_irq_adv(struct igb_adapter *adapter, | ||
3443 | struct igb_ring *rx_ring, | ||
3444 | int *work_done, int budget) | ||
3445 | { | ||
3446 | struct net_device *netdev = adapter->netdev; | ||
3447 | struct pci_dev *pdev = adapter->pdev; | ||
3448 | union e1000_adv_rx_desc *rx_desc , *next_rxd; | ||
3449 | struct igb_buffer *buffer_info , *next_buffer; | ||
3450 | struct sk_buff *skb; | ||
3451 | unsigned int i, j; | ||
3452 | u32 length, hlen, staterr; | ||
3453 | bool cleaned = false; | ||
3454 | int cleaned_count = 0; | ||
3455 | unsigned int total_bytes = 0, total_packets = 0; | ||
3456 | |||
3457 | i = rx_ring->next_to_clean; | ||
3458 | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); | ||
3459 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
3460 | |||
3461 | while (staterr & E1000_RXD_STAT_DD) { | ||
3462 | if (*work_done >= budget) | ||
3463 | break; | ||
3464 | (*work_done)++; | ||
3465 | buffer_info = &rx_ring->buffer_info[i]; | ||
3466 | |||
3467 | /* HW will not DMA in data larger than the given buffer, even | ||
3468 | * if it parses the (NFS, of course) header to be larger. In | ||
3469 | * that case, it fills the header buffer and spills the rest | ||
3470 | * into the page. | ||
3471 | */ | ||
3472 | hlen = le16_to_cpu((rx_desc->wb.lower.lo_dword.hdr_info & | ||
3473 | E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT); | ||
3474 | if (hlen > adapter->rx_ps_hdr_size) | ||
3475 | hlen = adapter->rx_ps_hdr_size; | ||
3476 | |||
3477 | length = le16_to_cpu(rx_desc->wb.upper.length); | ||
3478 | cleaned = true; | ||
3479 | cleaned_count++; | ||
3480 | |||
3481 | if (rx_ring->pending_skb != NULL) { | ||
3482 | skb = rx_ring->pending_skb; | ||
3483 | rx_ring->pending_skb = NULL; | ||
3484 | j = rx_ring->pending_skb_page; | ||
3485 | } else { | ||
3486 | skb = buffer_info->skb; | ||
3487 | prefetch(skb->data - NET_IP_ALIGN); | ||
3488 | buffer_info->skb = NULL; | ||
3489 | if (hlen) { | ||
3490 | pci_unmap_single(pdev, buffer_info->dma, | ||
3491 | adapter->rx_ps_hdr_size + | ||
3492 | NET_IP_ALIGN, | ||
3493 | PCI_DMA_FROMDEVICE); | ||
3494 | skb_put(skb, hlen); | ||
3495 | } else { | ||
3496 | pci_unmap_single(pdev, buffer_info->dma, | ||
3497 | adapter->rx_buffer_len + | ||
3498 | NET_IP_ALIGN, | ||
3499 | PCI_DMA_FROMDEVICE); | ||
3500 | skb_put(skb, length); | ||
3501 | goto send_up; | ||
3502 | } | ||
3503 | j = 0; | ||
3504 | } | ||
3505 | |||
3506 | while (length) { | ||
3507 | pci_unmap_page(pdev, buffer_info->page_dma, | ||
3508 | PAGE_SIZE, PCI_DMA_FROMDEVICE); | ||
3509 | buffer_info->page_dma = 0; | ||
3510 | skb_fill_page_desc(skb, j, buffer_info->page, | ||
3511 | 0, length); | ||
3512 | buffer_info->page = NULL; | ||
3513 | |||
3514 | skb->len += length; | ||
3515 | skb->data_len += length; | ||
3516 | skb->truesize += length; | ||
3517 | rx_desc->wb.upper.status_error = 0; | ||
3518 | if (staterr & E1000_RXD_STAT_EOP) | ||
3519 | break; | ||
3520 | |||
3521 | j++; | ||
3522 | cleaned_count++; | ||
3523 | i++; | ||
3524 | if (i == rx_ring->count) | ||
3525 | i = 0; | ||
3526 | |||
3527 | buffer_info = &rx_ring->buffer_info[i]; | ||
3528 | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); | ||
3529 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
3530 | length = le16_to_cpu(rx_desc->wb.upper.length); | ||
3531 | if (!(staterr & E1000_RXD_STAT_DD)) { | ||
3532 | rx_ring->pending_skb = skb; | ||
3533 | rx_ring->pending_skb_page = j; | ||
3534 | goto out; | ||
3535 | } | ||
3536 | } | ||
3537 | send_up: | ||
3538 | pskb_trim(skb, skb->len - 4); | ||
3539 | i++; | ||
3540 | if (i == rx_ring->count) | ||
3541 | i = 0; | ||
3542 | next_rxd = E1000_RX_DESC_ADV(*rx_ring, i); | ||
3543 | prefetch(next_rxd); | ||
3544 | next_buffer = &rx_ring->buffer_info[i]; | ||
3545 | |||
3546 | if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { | ||
3547 | dev_kfree_skb_irq(skb); | ||
3548 | goto next_desc; | ||
3549 | } | ||
3550 | rx_ring->no_itr_adjust |= (staterr & E1000_RXD_STAT_DYNINT); | ||
3551 | |||
3552 | total_bytes += skb->len; | ||
3553 | total_packets++; | ||
3554 | |||
3555 | igb_rx_checksum_adv(adapter, staterr, skb); | ||
3556 | |||
3557 | skb->protocol = eth_type_trans(skb, netdev); | ||
3558 | |||
3559 | igb_receive_skb(adapter, staterr, rx_desc->wb.upper.vlan, skb); | ||
3560 | |||
3561 | netdev->last_rx = jiffies; | ||
3562 | |||
3563 | next_desc: | ||
3564 | rx_desc->wb.upper.status_error = 0; | ||
3565 | |||
3566 | /* return some buffers to hardware, one at a time is too slow */ | ||
3567 | if (cleaned_count >= IGB_RX_BUFFER_WRITE) { | ||
3568 | igb_alloc_rx_buffers_adv(adapter, rx_ring, | ||
3569 | cleaned_count); | ||
3570 | cleaned_count = 0; | ||
3571 | } | ||
3572 | |||
3573 | /* use prefetched values */ | ||
3574 | rx_desc = next_rxd; | ||
3575 | buffer_info = next_buffer; | ||
3576 | |||
3577 | staterr = le32_to_cpu(rx_desc->wb.upper.status_error); | ||
3578 | } | ||
3579 | out: | ||
3580 | rx_ring->next_to_clean = i; | ||
3581 | cleaned_count = IGB_DESC_UNUSED(rx_ring); | ||
3582 | |||
3583 | if (cleaned_count) | ||
3584 | igb_alloc_rx_buffers_adv(adapter, rx_ring, cleaned_count); | ||
3585 | |||
3586 | rx_ring->total_packets += total_packets; | ||
3587 | rx_ring->total_bytes += total_bytes; | ||
3588 | rx_ring->rx_stats.packets += total_packets; | ||
3589 | rx_ring->rx_stats.bytes += total_bytes; | ||
3590 | adapter->net_stats.rx_bytes += total_bytes; | ||
3591 | adapter->net_stats.rx_packets += total_packets; | ||
3592 | return cleaned; | ||
3593 | } | ||
3594 | |||
3595 | |||
3596 | /** | ||
3597 | * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split | ||
3598 | * @adapter: address of board private structure | ||
3599 | **/ | ||
3600 | static void igb_alloc_rx_buffers_adv(struct igb_adapter *adapter, | ||
3601 | struct igb_ring *rx_ring, | ||
3602 | int cleaned_count) | ||
3603 | { | ||
3604 | struct net_device *netdev = adapter->netdev; | ||
3605 | struct pci_dev *pdev = adapter->pdev; | ||
3606 | union e1000_adv_rx_desc *rx_desc; | ||
3607 | struct igb_buffer *buffer_info; | ||
3608 | struct sk_buff *skb; | ||
3609 | unsigned int i; | ||
3610 | |||
3611 | i = rx_ring->next_to_use; | ||
3612 | buffer_info = &rx_ring->buffer_info[i]; | ||
3613 | |||
3614 | while (cleaned_count--) { | ||
3615 | rx_desc = E1000_RX_DESC_ADV(*rx_ring, i); | ||
3616 | |||
3617 | if (adapter->rx_ps_hdr_size && !buffer_info->page) { | ||
3618 | buffer_info->page = alloc_page(GFP_ATOMIC); | ||
3619 | if (!buffer_info->page) { | ||
3620 | adapter->alloc_rx_buff_failed++; | ||
3621 | goto no_buffers; | ||
3622 | } | ||
3623 | buffer_info->page_dma = | ||
3624 | pci_map_page(pdev, | ||
3625 | buffer_info->page, | ||
3626 | 0, PAGE_SIZE, | ||
3627 | PCI_DMA_FROMDEVICE); | ||
3628 | } | ||
3629 | |||
3630 | if (!buffer_info->skb) { | ||
3631 | int bufsz; | ||
3632 | |||
3633 | if (adapter->rx_ps_hdr_size) | ||
3634 | bufsz = adapter->rx_ps_hdr_size; | ||
3635 | else | ||
3636 | bufsz = adapter->rx_buffer_len; | ||
3637 | bufsz += NET_IP_ALIGN; | ||
3638 | skb = netdev_alloc_skb(netdev, bufsz); | ||
3639 | |||
3640 | if (!skb) { | ||
3641 | adapter->alloc_rx_buff_failed++; | ||
3642 | goto no_buffers; | ||
3643 | } | ||
3644 | |||
3645 | /* Make buffer alignment 2 beyond a 16 byte boundary | ||
3646 | * this will result in a 16 byte aligned IP header after | ||
3647 | * the 14 byte MAC header is removed | ||
3648 | */ | ||
3649 | skb_reserve(skb, NET_IP_ALIGN); | ||
3650 | |||
3651 | buffer_info->skb = skb; | ||
3652 | buffer_info->dma = pci_map_single(pdev, skb->data, | ||
3653 | bufsz, | ||
3654 | PCI_DMA_FROMDEVICE); | ||
3655 | |||
3656 | } | ||
3657 | /* Refresh the desc even if buffer_addrs didn't change because | ||
3658 | * each write-back erases this info. */ | ||
3659 | if (adapter->rx_ps_hdr_size) { | ||
3660 | rx_desc->read.pkt_addr = | ||
3661 | cpu_to_le64(buffer_info->page_dma); | ||
3662 | rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma); | ||
3663 | } else { | ||
3664 | rx_desc->read.pkt_addr = | ||
3665 | cpu_to_le64(buffer_info->dma); | ||
3666 | rx_desc->read.hdr_addr = 0; | ||
3667 | } | ||
3668 | |||
3669 | i++; | ||
3670 | if (i == rx_ring->count) | ||
3671 | i = 0; | ||
3672 | buffer_info = &rx_ring->buffer_info[i]; | ||
3673 | } | ||
3674 | |||
3675 | no_buffers: | ||
3676 | if (rx_ring->next_to_use != i) { | ||
3677 | rx_ring->next_to_use = i; | ||
3678 | if (i == 0) | ||
3679 | i = (rx_ring->count - 1); | ||
3680 | else | ||
3681 | i--; | ||
3682 | |||
3683 | /* Force memory writes to complete before letting h/w | ||
3684 | * know there are new descriptors to fetch. (Only | ||
3685 | * applicable for weak-ordered memory model archs, | ||
3686 | * such as IA-64). */ | ||
3687 | wmb(); | ||
3688 | writel(i, adapter->hw.hw_addr + rx_ring->tail); | ||
3689 | } | ||
3690 | } | ||
3691 | |||
3692 | /** | ||
3693 | * igb_mii_ioctl - | ||
3694 | * @netdev: | ||
3695 | * @ifreq: | ||
3696 | * @cmd: | ||
3697 | **/ | ||
3698 | static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
3699 | { | ||
3700 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3701 | struct mii_ioctl_data *data = if_mii(ifr); | ||
3702 | |||
3703 | if (adapter->hw.phy.media_type != e1000_media_type_copper) | ||
3704 | return -EOPNOTSUPP; | ||
3705 | |||
3706 | switch (cmd) { | ||
3707 | case SIOCGMIIPHY: | ||
3708 | data->phy_id = adapter->hw.phy.addr; | ||
3709 | break; | ||
3710 | case SIOCGMIIREG: | ||
3711 | if (!capable(CAP_NET_ADMIN)) | ||
3712 | return -EPERM; | ||
3713 | if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw, | ||
3714 | data->reg_num | ||
3715 | & 0x1F, &data->val_out)) | ||
3716 | return -EIO; | ||
3717 | break; | ||
3718 | case SIOCSMIIREG: | ||
3719 | default: | ||
3720 | return -EOPNOTSUPP; | ||
3721 | } | ||
3722 | return 0; | ||
3723 | } | ||
3724 | |||
3725 | /** | ||
3726 | * igb_ioctl - | ||
3727 | * @netdev: | ||
3728 | * @ifreq: | ||
3729 | * @cmd: | ||
3730 | **/ | ||
3731 | static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
3732 | { | ||
3733 | switch (cmd) { | ||
3734 | case SIOCGMIIPHY: | ||
3735 | case SIOCGMIIREG: | ||
3736 | case SIOCSMIIREG: | ||
3737 | return igb_mii_ioctl(netdev, ifr, cmd); | ||
3738 | default: | ||
3739 | return -EOPNOTSUPP; | ||
3740 | } | ||
3741 | } | ||
3742 | |||
3743 | static void igb_vlan_rx_register(struct net_device *netdev, | ||
3744 | struct vlan_group *grp) | ||
3745 | { | ||
3746 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3747 | struct e1000_hw *hw = &adapter->hw; | ||
3748 | u32 ctrl, rctl; | ||
3749 | |||
3750 | igb_irq_disable(adapter); | ||
3751 | adapter->vlgrp = grp; | ||
3752 | |||
3753 | if (grp) { | ||
3754 | /* enable VLAN tag insert/strip */ | ||
3755 | ctrl = rd32(E1000_CTRL); | ||
3756 | ctrl |= E1000_CTRL_VME; | ||
3757 | wr32(E1000_CTRL, ctrl); | ||
3758 | |||
3759 | /* enable VLAN receive filtering */ | ||
3760 | rctl = rd32(E1000_RCTL); | ||
3761 | rctl |= E1000_RCTL_VFE; | ||
3762 | rctl &= ~E1000_RCTL_CFIEN; | ||
3763 | wr32(E1000_RCTL, rctl); | ||
3764 | igb_update_mng_vlan(adapter); | ||
3765 | wr32(E1000_RLPML, | ||
3766 | adapter->max_frame_size + VLAN_TAG_SIZE); | ||
3767 | } else { | ||
3768 | /* disable VLAN tag insert/strip */ | ||
3769 | ctrl = rd32(E1000_CTRL); | ||
3770 | ctrl &= ~E1000_CTRL_VME; | ||
3771 | wr32(E1000_CTRL, ctrl); | ||
3772 | |||
3773 | /* disable VLAN filtering */ | ||
3774 | rctl = rd32(E1000_RCTL); | ||
3775 | rctl &= ~E1000_RCTL_VFE; | ||
3776 | wr32(E1000_RCTL, rctl); | ||
3777 | if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) { | ||
3778 | igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | ||
3779 | adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; | ||
3780 | } | ||
3781 | wr32(E1000_RLPML, | ||
3782 | adapter->max_frame_size); | ||
3783 | } | ||
3784 | |||
3785 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
3786 | igb_irq_enable(adapter); | ||
3787 | } | ||
3788 | |||
3789 | static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | ||
3790 | { | ||
3791 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3792 | struct e1000_hw *hw = &adapter->hw; | ||
3793 | u32 vfta, index; | ||
3794 | |||
3795 | if ((adapter->hw.mng_cookie.status & | ||
3796 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | ||
3797 | (vid == adapter->mng_vlan_id)) | ||
3798 | return; | ||
3799 | /* add VID to filter table */ | ||
3800 | index = (vid >> 5) & 0x7F; | ||
3801 | vfta = array_rd32(E1000_VFTA, index); | ||
3802 | vfta |= (1 << (vid & 0x1F)); | ||
3803 | igb_write_vfta(&adapter->hw, index, vfta); | ||
3804 | } | ||
3805 | |||
3806 | static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | ||
3807 | { | ||
3808 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3809 | struct e1000_hw *hw = &adapter->hw; | ||
3810 | u32 vfta, index; | ||
3811 | |||
3812 | igb_irq_disable(adapter); | ||
3813 | vlan_group_set_device(adapter->vlgrp, vid, NULL); | ||
3814 | |||
3815 | if (!test_bit(__IGB_DOWN, &adapter->state)) | ||
3816 | igb_irq_enable(adapter); | ||
3817 | |||
3818 | if ((adapter->hw.mng_cookie.status & | ||
3819 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | ||
3820 | (vid == adapter->mng_vlan_id)) { | ||
3821 | /* release control to f/w */ | ||
3822 | igb_release_hw_control(adapter); | ||
3823 | return; | ||
3824 | } | ||
3825 | |||
3826 | /* remove VID from filter table */ | ||
3827 | index = (vid >> 5) & 0x7F; | ||
3828 | vfta = array_rd32(E1000_VFTA, index); | ||
3829 | vfta &= ~(1 << (vid & 0x1F)); | ||
3830 | igb_write_vfta(&adapter->hw, index, vfta); | ||
3831 | } | ||
3832 | |||
3833 | static void igb_restore_vlan(struct igb_adapter *adapter) | ||
3834 | { | ||
3835 | igb_vlan_rx_register(adapter->netdev, adapter->vlgrp); | ||
3836 | |||
3837 | if (adapter->vlgrp) { | ||
3838 | u16 vid; | ||
3839 | for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { | ||
3840 | if (!vlan_group_get_device(adapter->vlgrp, vid)) | ||
3841 | continue; | ||
3842 | igb_vlan_rx_add_vid(adapter->netdev, vid); | ||
3843 | } | ||
3844 | } | ||
3845 | } | ||
3846 | |||
3847 | int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx) | ||
3848 | { | ||
3849 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
3850 | |||
3851 | mac->autoneg = 0; | ||
3852 | |||
3853 | /* Fiber NICs only allow 1000 gbps Full duplex */ | ||
3854 | if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && | ||
3855 | spddplx != (SPEED_1000 + DUPLEX_FULL)) { | ||
3856 | dev_err(&adapter->pdev->dev, | ||
3857 | "Unsupported Speed/Duplex configuration\n"); | ||
3858 | return -EINVAL; | ||
3859 | } | ||
3860 | |||
3861 | switch (spddplx) { | ||
3862 | case SPEED_10 + DUPLEX_HALF: | ||
3863 | mac->forced_speed_duplex = ADVERTISE_10_HALF; | ||
3864 | break; | ||
3865 | case SPEED_10 + DUPLEX_FULL: | ||
3866 | mac->forced_speed_duplex = ADVERTISE_10_FULL; | ||
3867 | break; | ||
3868 | case SPEED_100 + DUPLEX_HALF: | ||
3869 | mac->forced_speed_duplex = ADVERTISE_100_HALF; | ||
3870 | break; | ||
3871 | case SPEED_100 + DUPLEX_FULL: | ||
3872 | mac->forced_speed_duplex = ADVERTISE_100_FULL; | ||
3873 | break; | ||
3874 | case SPEED_1000 + DUPLEX_FULL: | ||
3875 | mac->autoneg = 1; | ||
3876 | adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; | ||
3877 | break; | ||
3878 | case SPEED_1000 + DUPLEX_HALF: /* not supported */ | ||
3879 | default: | ||
3880 | dev_err(&adapter->pdev->dev, | ||
3881 | "Unsupported Speed/Duplex configuration\n"); | ||
3882 | return -EINVAL; | ||
3883 | } | ||
3884 | return 0; | ||
3885 | } | ||
3886 | |||
3887 | |||
3888 | static int igb_suspend(struct pci_dev *pdev, pm_message_t state) | ||
3889 | { | ||
3890 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
3891 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3892 | struct e1000_hw *hw = &adapter->hw; | ||
3893 | u32 ctrl, ctrl_ext, rctl, status; | ||
3894 | u32 wufc = adapter->wol; | ||
3895 | #ifdef CONFIG_PM | ||
3896 | int retval = 0; | ||
3897 | #endif | ||
3898 | |||
3899 | netif_device_detach(netdev); | ||
3900 | |||
3901 | if (netif_running(netdev)) { | ||
3902 | WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); | ||
3903 | igb_down(adapter); | ||
3904 | igb_free_irq(adapter); | ||
3905 | } | ||
3906 | |||
3907 | #ifdef CONFIG_PM | ||
3908 | retval = pci_save_state(pdev); | ||
3909 | if (retval) | ||
3910 | return retval; | ||
3911 | #endif | ||
3912 | |||
3913 | status = rd32(E1000_STATUS); | ||
3914 | if (status & E1000_STATUS_LU) | ||
3915 | wufc &= ~E1000_WUFC_LNKC; | ||
3916 | |||
3917 | if (wufc) { | ||
3918 | igb_setup_rctl(adapter); | ||
3919 | igb_set_multi(netdev); | ||
3920 | |||
3921 | /* turn on all-multi mode if wake on multicast is enabled */ | ||
3922 | if (wufc & E1000_WUFC_MC) { | ||
3923 | rctl = rd32(E1000_RCTL); | ||
3924 | rctl |= E1000_RCTL_MPE; | ||
3925 | wr32(E1000_RCTL, rctl); | ||
3926 | } | ||
3927 | |||
3928 | ctrl = rd32(E1000_CTRL); | ||
3929 | /* advertise wake from D3Cold */ | ||
3930 | #define E1000_CTRL_ADVD3WUC 0x00100000 | ||
3931 | /* phy power management enable */ | ||
3932 | #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | ||
3933 | ctrl |= E1000_CTRL_ADVD3WUC; | ||
3934 | wr32(E1000_CTRL, ctrl); | ||
3935 | |||
3936 | if (adapter->hw.phy.media_type == e1000_media_type_fiber || | ||
3937 | adapter->hw.phy.media_type == | ||
3938 | e1000_media_type_internal_serdes) { | ||
3939 | /* keep the laser running in D3 */ | ||
3940 | ctrl_ext = rd32(E1000_CTRL_EXT); | ||
3941 | ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; | ||
3942 | wr32(E1000_CTRL_EXT, ctrl_ext); | ||
3943 | } | ||
3944 | |||
3945 | /* Allow time for pending master requests to run */ | ||
3946 | igb_disable_pcie_master(&adapter->hw); | ||
3947 | |||
3948 | wr32(E1000_WUC, E1000_WUC_PME_EN); | ||
3949 | wr32(E1000_WUFC, wufc); | ||
3950 | pci_enable_wake(pdev, PCI_D3hot, 1); | ||
3951 | pci_enable_wake(pdev, PCI_D3cold, 1); | ||
3952 | } else { | ||
3953 | wr32(E1000_WUC, 0); | ||
3954 | wr32(E1000_WUFC, 0); | ||
3955 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
3956 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
3957 | } | ||
3958 | |||
3959 | igb_release_manageability(adapter); | ||
3960 | |||
3961 | /* make sure adapter isn't asleep if manageability is enabled */ | ||
3962 | if (adapter->en_mng_pt) { | ||
3963 | pci_enable_wake(pdev, PCI_D3hot, 1); | ||
3964 | pci_enable_wake(pdev, PCI_D3cold, 1); | ||
3965 | } | ||
3966 | |||
3967 | /* Release control of h/w to f/w. If f/w is AMT enabled, this | ||
3968 | * would have already happened in close and is redundant. */ | ||
3969 | igb_release_hw_control(adapter); | ||
3970 | |||
3971 | pci_disable_device(pdev); | ||
3972 | |||
3973 | pci_set_power_state(pdev, pci_choose_state(pdev, state)); | ||
3974 | |||
3975 | return 0; | ||
3976 | } | ||
3977 | |||
3978 | #ifdef CONFIG_PM | ||
3979 | static int igb_resume(struct pci_dev *pdev) | ||
3980 | { | ||
3981 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
3982 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
3983 | struct e1000_hw *hw = &adapter->hw; | ||
3984 | u32 err; | ||
3985 | |||
3986 | pci_set_power_state(pdev, PCI_D0); | ||
3987 | pci_restore_state(pdev); | ||
3988 | err = pci_enable_device(pdev); | ||
3989 | if (err) { | ||
3990 | dev_err(&pdev->dev, | ||
3991 | "igb: Cannot enable PCI device from suspend\n"); | ||
3992 | return err; | ||
3993 | } | ||
3994 | pci_set_master(pdev); | ||
3995 | |||
3996 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
3997 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
3998 | |||
3999 | if (netif_running(netdev)) { | ||
4000 | err = igb_request_irq(adapter); | ||
4001 | if (err) | ||
4002 | return err; | ||
4003 | } | ||
4004 | |||
4005 | /* e1000_power_up_phy(adapter); */ | ||
4006 | |||
4007 | igb_reset(adapter); | ||
4008 | wr32(E1000_WUS, ~0); | ||
4009 | |||
4010 | igb_init_manageability(adapter); | ||
4011 | |||
4012 | if (netif_running(netdev)) | ||
4013 | igb_up(adapter); | ||
4014 | |||
4015 | netif_device_attach(netdev); | ||
4016 | |||
4017 | /* let the f/w know that the h/w is now under the control of the | ||
4018 | * driver. */ | ||
4019 | igb_get_hw_control(adapter); | ||
4020 | |||
4021 | return 0; | ||
4022 | } | ||
4023 | #endif | ||
4024 | |||
4025 | static void igb_shutdown(struct pci_dev *pdev) | ||
4026 | { | ||
4027 | igb_suspend(pdev, PMSG_SUSPEND); | ||
4028 | } | ||
4029 | |||
4030 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
4031 | /* | ||
4032 | * Polling 'interrupt' - used by things like netconsole to send skbs | ||
4033 | * without having to re-enable interrupts. It's not called while | ||
4034 | * the interrupt routine is executing. | ||
4035 | */ | ||
4036 | static void igb_netpoll(struct net_device *netdev) | ||
4037 | { | ||
4038 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
4039 | int i; | ||
4040 | int work_done = 0; | ||
4041 | |||
4042 | igb_irq_disable(adapter); | ||
4043 | for (i = 0; i < adapter->num_tx_queues; i++) | ||
4044 | igb_clean_tx_irq(adapter, &adapter->tx_ring[i]); | ||
4045 | |||
4046 | for (i = 0; i < adapter->num_rx_queues; i++) | ||
4047 | igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i], | ||
4048 | &work_done, | ||
4049 | adapter->rx_ring[i].napi.weight); | ||
4050 | |||
4051 | igb_irq_enable(adapter); | ||
4052 | } | ||
4053 | #endif /* CONFIG_NET_POLL_CONTROLLER */ | ||
4054 | |||
4055 | /** | ||
4056 | * igb_io_error_detected - called when PCI error is detected | ||
4057 | * @pdev: Pointer to PCI device | ||
4058 | * @state: The current pci connection state | ||
4059 | * | ||
4060 | * This function is called after a PCI bus error affecting | ||
4061 | * this device has been detected. | ||
4062 | */ | ||
4063 | static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, | ||
4064 | pci_channel_state_t state) | ||
4065 | { | ||
4066 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
4067 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
4068 | |||
4069 | netif_device_detach(netdev); | ||
4070 | |||
4071 | if (netif_running(netdev)) | ||
4072 | igb_down(adapter); | ||
4073 | pci_disable_device(pdev); | ||
4074 | |||
4075 | /* Request a slot slot reset. */ | ||
4076 | return PCI_ERS_RESULT_NEED_RESET; | ||
4077 | } | ||
4078 | |||
4079 | /** | ||
4080 | * igb_io_slot_reset - called after the pci bus has been reset. | ||
4081 | * @pdev: Pointer to PCI device | ||
4082 | * | ||
4083 | * Restart the card from scratch, as if from a cold-boot. Implementation | ||
4084 | * resembles the first-half of the igb_resume routine. | ||
4085 | */ | ||
4086 | static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) | ||
4087 | { | ||
4088 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
4089 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
4090 | struct e1000_hw *hw = &adapter->hw; | ||
4091 | |||
4092 | if (pci_enable_device(pdev)) { | ||
4093 | dev_err(&pdev->dev, | ||
4094 | "Cannot re-enable PCI device after reset.\n"); | ||
4095 | return PCI_ERS_RESULT_DISCONNECT; | ||
4096 | } | ||
4097 | pci_set_master(pdev); | ||
4098 | |||
4099 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
4100 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
4101 | |||
4102 | igb_reset(adapter); | ||
4103 | wr32(E1000_WUS, ~0); | ||
4104 | |||
4105 | return PCI_ERS_RESULT_RECOVERED; | ||
4106 | } | ||
4107 | |||
4108 | /** | ||
4109 | * igb_io_resume - called when traffic can start flowing again. | ||
4110 | * @pdev: Pointer to PCI device | ||
4111 | * | ||
4112 | * This callback is called when the error recovery driver tells us that | ||
4113 | * its OK to resume normal operation. Implementation resembles the | ||
4114 | * second-half of the igb_resume routine. | ||
4115 | */ | ||
4116 | static void igb_io_resume(struct pci_dev *pdev) | ||
4117 | { | ||
4118 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
4119 | struct igb_adapter *adapter = netdev_priv(netdev); | ||
4120 | |||
4121 | igb_init_manageability(adapter); | ||
4122 | |||
4123 | if (netif_running(netdev)) { | ||
4124 | if (igb_up(adapter)) { | ||
4125 | dev_err(&pdev->dev, "igb_up failed after reset\n"); | ||
4126 | return; | ||
4127 | } | ||
4128 | } | ||
4129 | |||
4130 | netif_device_attach(netdev); | ||
4131 | |||
4132 | /* let the f/w know that the h/w is now under the control of the | ||
4133 | * driver. */ | ||
4134 | igb_get_hw_control(adapter); | ||
4135 | |||
4136 | } | ||
4137 | |||
4138 | /* igb_main.c */ | ||