aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/igb/igb_main.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/igb/igb_main.c')
-rw-r--r--drivers/net/igb/igb_main.c4138
1 files changed, 4138 insertions, 0 deletions
diff --git a/drivers/net/igb/igb_main.c b/drivers/net/igb/igb_main.c
new file mode 100644
index 000000000000..f3c144d5d72f
--- /dev/null
+++ b/drivers/net/igb/igb_main.c
@@ -0,0 +1,4138 @@
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
34#include <linux/tcp.h>
35#include <linux/ipv6.h>
36#include <net/checksum.h>
37#include <net/ip6_checksum.h>
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40#include <linux/if_vlan.h>
41#include <linux/pci.h>
42#include <linux/delay.h>
43#include <linux/interrupt.h>
44#include <linux/if_ether.h>
45
46#include "igb.h"
47
48#define DRV_VERSION "1.0.8-k2"
49char igb_driver_name[] = "igb";
50char igb_driver_version[] = DRV_VERSION;
51static const char igb_driver_string[] =
52 "Intel(R) Gigabit Ethernet Network Driver";
53static const char igb_copyright[] = "Copyright (c) 2007 Intel Corporation.";
54
55
56static const struct e1000_info *igb_info_tbl[] = {
57 [board_82575] = &e1000_82575_info,
58};
59
60static struct pci_device_id igb_pci_tbl[] = {
61 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
62 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
64 /* required last entry */
65 {0, }
66};
67
68MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
69
70void igb_reset(struct igb_adapter *);
71static int igb_setup_all_tx_resources(struct igb_adapter *);
72static int igb_setup_all_rx_resources(struct igb_adapter *);
73static void igb_free_all_tx_resources(struct igb_adapter *);
74static void igb_free_all_rx_resources(struct igb_adapter *);
75static void igb_free_tx_resources(struct igb_adapter *, struct igb_ring *);
76static void igb_free_rx_resources(struct igb_adapter *, struct igb_ring *);
77void igb_update_stats(struct igb_adapter *);
78static int igb_probe(struct pci_dev *, const struct pci_device_id *);
79static void __devexit igb_remove(struct pci_dev *pdev);
80static int igb_sw_init(struct igb_adapter *);
81static int igb_open(struct net_device *);
82static int igb_close(struct net_device *);
83static void igb_configure_tx(struct igb_adapter *);
84static void igb_configure_rx(struct igb_adapter *);
85static void igb_setup_rctl(struct igb_adapter *);
86static void igb_clean_all_tx_rings(struct igb_adapter *);
87static void igb_clean_all_rx_rings(struct igb_adapter *);
88static void igb_clean_tx_ring(struct igb_adapter *, struct igb_ring *);
89static void igb_clean_rx_ring(struct igb_adapter *, struct igb_ring *);
90static void igb_set_multi(struct net_device *);
91static void igb_update_phy_info(unsigned long);
92static void igb_watchdog(unsigned long);
93static void igb_watchdog_task(struct work_struct *);
94static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
95 struct igb_ring *);
96static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
97static struct net_device_stats *igb_get_stats(struct net_device *);
98static int igb_change_mtu(struct net_device *, int);
99static int igb_set_mac(struct net_device *, void *);
100static irqreturn_t igb_intr(int irq, void *);
101static irqreturn_t igb_intr_msi(int irq, void *);
102static irqreturn_t igb_msix_other(int irq, void *);
103static irqreturn_t igb_msix_rx(int irq, void *);
104static irqreturn_t igb_msix_tx(int irq, void *);
105static int igb_clean_rx_ring_msix(struct napi_struct *, int);
106static bool igb_clean_tx_irq(struct igb_adapter *, struct igb_ring *);
107static int igb_clean(struct napi_struct *, int);
108static bool igb_clean_rx_irq_adv(struct igb_adapter *,
109 struct igb_ring *, int *, int);
110static void igb_alloc_rx_buffers_adv(struct igb_adapter *,
111 struct igb_ring *, int);
112static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
113static void igb_tx_timeout(struct net_device *);
114static void igb_reset_task(struct work_struct *);
115static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
116static void igb_vlan_rx_add_vid(struct net_device *, u16);
117static void igb_vlan_rx_kill_vid(struct net_device *, u16);
118static void igb_restore_vlan(struct igb_adapter *);
119
120static int igb_suspend(struct pci_dev *, pm_message_t);
121#ifdef CONFIG_PM
122static int igb_resume(struct pci_dev *);
123#endif
124static void igb_shutdown(struct pci_dev *);
125
126#ifdef CONFIG_NET_POLL_CONTROLLER
127/* for netdump / net console */
128static void igb_netpoll(struct net_device *);
129#endif
130
131static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
132 pci_channel_state_t);
133static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
134static void igb_io_resume(struct pci_dev *);
135
136static struct pci_error_handlers igb_err_handler = {
137 .error_detected = igb_io_error_detected,
138 .slot_reset = igb_io_slot_reset,
139 .resume = igb_io_resume,
140};
141
142
143static struct pci_driver igb_driver = {
144 .name = igb_driver_name,
145 .id_table = igb_pci_tbl,
146 .probe = igb_probe,
147 .remove = __devexit_p(igb_remove),
148#ifdef CONFIG_PM
149 /* Power Managment Hooks */
150 .suspend = igb_suspend,
151 .resume = igb_resume,
152#endif
153 .shutdown = igb_shutdown,
154 .err_handler = &igb_err_handler
155};
156
157MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
158MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
159MODULE_LICENSE("GPL");
160MODULE_VERSION(DRV_VERSION);
161
162#ifdef DEBUG
163/**
164 * igb_get_hw_dev_name - return device name string
165 * used by hardware layer to print debugging information
166 **/
167char *igb_get_hw_dev_name(struct e1000_hw *hw)
168{
169 struct igb_adapter *adapter = hw->back;
170 return adapter->netdev->name;
171}
172#endif
173
174/**
175 * igb_init_module - Driver Registration Routine
176 *
177 * igb_init_module is the first routine called when the driver is
178 * loaded. All it does is register with the PCI subsystem.
179 **/
180static int __init igb_init_module(void)
181{
182 int ret;
183 printk(KERN_INFO "%s - version %s\n",
184 igb_driver_string, igb_driver_version);
185
186 printk(KERN_INFO "%s\n", igb_copyright);
187
188 ret = pci_register_driver(&igb_driver);
189 return ret;
190}
191
192module_init(igb_init_module);
193
194/**
195 * igb_exit_module - Driver Exit Cleanup Routine
196 *
197 * igb_exit_module is called just before the driver is removed
198 * from memory.
199 **/
200static void __exit igb_exit_module(void)
201{
202 pci_unregister_driver(&igb_driver);
203}
204
205module_exit(igb_exit_module);
206
207/**
208 * igb_alloc_queues - Allocate memory for all rings
209 * @adapter: board private structure to initialize
210 *
211 * We allocate one ring per queue at run-time since we don't know the
212 * number of queues at compile-time.
213 **/
214static int igb_alloc_queues(struct igb_adapter *adapter)
215{
216 int i;
217
218 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
219 sizeof(struct igb_ring), GFP_KERNEL);
220 if (!adapter->tx_ring)
221 return -ENOMEM;
222
223 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
224 sizeof(struct igb_ring), GFP_KERNEL);
225 if (!adapter->rx_ring) {
226 kfree(adapter->tx_ring);
227 return -ENOMEM;
228 }
229
230 for (i = 0; i < adapter->num_rx_queues; i++) {
231 struct igb_ring *ring = &(adapter->rx_ring[i]);
232 ring->adapter = adapter;
233 ring->itr_register = E1000_ITR;
234
235 if (!ring->napi.poll)
236 netif_napi_add(adapter->netdev, &ring->napi, igb_clean,
237 adapter->napi.weight /
238 adapter->num_rx_queues);
239 }
240 return 0;
241}
242
243#define IGB_N0_QUEUE -1
244static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
245 int tx_queue, int msix_vector)
246{
247 u32 msixbm = 0;
248 struct e1000_hw *hw = &adapter->hw;
249 /* The 82575 assigns vectors using a bitmask, which matches the
250 bitmask for the EICR/EIMS/EIMC registers. To assign one
251 or more queues to a vector, we write the appropriate bits
252 into the MSIXBM register for that vector. */
253 if (rx_queue > IGB_N0_QUEUE) {
254 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
255 adapter->rx_ring[rx_queue].eims_value = msixbm;
256 }
257 if (tx_queue > IGB_N0_QUEUE) {
258 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
259 adapter->tx_ring[tx_queue].eims_value =
260 E1000_EICR_TX_QUEUE0 << tx_queue;
261 }
262 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
263}
264
265/**
266 * igb_configure_msix - Configure MSI-X hardware
267 *
268 * igb_configure_msix sets up the hardware to properly
269 * generate MSI-X interrupts.
270 **/
271static void igb_configure_msix(struct igb_adapter *adapter)
272{
273 u32 tmp;
274 int i, vector = 0;
275 struct e1000_hw *hw = &adapter->hw;
276
277 adapter->eims_enable_mask = 0;
278
279 for (i = 0; i < adapter->num_tx_queues; i++) {
280 struct igb_ring *tx_ring = &adapter->tx_ring[i];
281 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
282 adapter->eims_enable_mask |= tx_ring->eims_value;
283 if (tx_ring->itr_val)
284 writel(1000000000 / (tx_ring->itr_val * 256),
285 hw->hw_addr + tx_ring->itr_register);
286 else
287 writel(1, hw->hw_addr + tx_ring->itr_register);
288 }
289
290 for (i = 0; i < adapter->num_rx_queues; i++) {
291 struct igb_ring *rx_ring = &adapter->rx_ring[i];
292 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
293 adapter->eims_enable_mask |= rx_ring->eims_value;
294 if (rx_ring->itr_val)
295 writel(1000000000 / (rx_ring->itr_val * 256),
296 hw->hw_addr + rx_ring->itr_register);
297 else
298 writel(1, hw->hw_addr + rx_ring->itr_register);
299 }
300
301
302 /* set vector for other causes, i.e. link changes */
303 array_wr32(E1000_MSIXBM(0), vector++,
304 E1000_EIMS_OTHER);
305
306 /* disable IAM for ICR interrupt bits */
307 wr32(E1000_IAM, 0);
308
309 tmp = rd32(E1000_CTRL_EXT);
310 /* enable MSI-X PBA support*/
311 tmp |= E1000_CTRL_EXT_PBA_CLR;
312
313 /* Auto-Mask interrupts upon ICR read. */
314 tmp |= E1000_CTRL_EXT_EIAME;
315 tmp |= E1000_CTRL_EXT_IRCA;
316
317 wr32(E1000_CTRL_EXT, tmp);
318 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
319
320 wrfl();
321}
322
323/**
324 * igb_request_msix - Initialize MSI-X interrupts
325 *
326 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
327 * kernel.
328 **/
329static int igb_request_msix(struct igb_adapter *adapter)
330{
331 struct net_device *netdev = adapter->netdev;
332 int i, err = 0, vector = 0;
333
334 vector = 0;
335
336 for (i = 0; i < adapter->num_tx_queues; i++) {
337 struct igb_ring *ring = &(adapter->tx_ring[i]);
338 sprintf(ring->name, "%s-tx%d", netdev->name, i);
339 err = request_irq(adapter->msix_entries[vector].vector,
340 &igb_msix_tx, 0, ring->name,
341 &(adapter->tx_ring[i]));
342 if (err)
343 goto out;
344 ring->itr_register = E1000_EITR(0) + (vector << 2);
345 ring->itr_val = adapter->itr;
346 vector++;
347 }
348 for (i = 0; i < adapter->num_rx_queues; i++) {
349 struct igb_ring *ring = &(adapter->rx_ring[i]);
350 if (strlen(netdev->name) < (IFNAMSIZ - 5))
351 sprintf(ring->name, "%s-rx%d", netdev->name, i);
352 else
353 memcpy(ring->name, netdev->name, IFNAMSIZ);
354 err = request_irq(adapter->msix_entries[vector].vector,
355 &igb_msix_rx, 0, ring->name,
356 &(adapter->rx_ring[i]));
357 if (err)
358 goto out;
359 ring->itr_register = E1000_EITR(0) + (vector << 2);
360 ring->itr_val = adapter->itr;
361 vector++;
362 }
363
364 err = request_irq(adapter->msix_entries[vector].vector,
365 &igb_msix_other, 0, netdev->name, netdev);
366 if (err)
367 goto out;
368
369 adapter->napi.poll = igb_clean_rx_ring_msix;
370 for (i = 0; i < adapter->num_rx_queues; i++)
371 adapter->rx_ring[i].napi.poll = adapter->napi.poll;
372 igb_configure_msix(adapter);
373 return 0;
374out:
375 return err;
376}
377
378static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
379{
380 if (adapter->msix_entries) {
381 pci_disable_msix(adapter->pdev);
382 kfree(adapter->msix_entries);
383 adapter->msix_entries = NULL;
384 } else if (adapter->msi_enabled)
385 pci_disable_msi(adapter->pdev);
386 return;
387}
388
389
390/**
391 * igb_set_interrupt_capability - set MSI or MSI-X if supported
392 *
393 * Attempt to configure interrupts using the best available
394 * capabilities of the hardware and kernel.
395 **/
396static void igb_set_interrupt_capability(struct igb_adapter *adapter)
397{
398 int err;
399 int numvecs, i;
400
401 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
402 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
403 GFP_KERNEL);
404 if (!adapter->msix_entries)
405 goto msi_only;
406
407 for (i = 0; i < numvecs; i++)
408 adapter->msix_entries[i].entry = i;
409
410 err = pci_enable_msix(adapter->pdev,
411 adapter->msix_entries,
412 numvecs);
413 if (err == 0)
414 return;
415
416 igb_reset_interrupt_capability(adapter);
417
418 /* If we can't do MSI-X, try MSI */
419msi_only:
420 adapter->num_rx_queues = 1;
421 if (!pci_enable_msi(adapter->pdev))
422 adapter->msi_enabled = 1;
423 return;
424}
425
426/**
427 * igb_request_irq - initialize interrupts
428 *
429 * Attempts to configure interrupts using the best available
430 * capabilities of the hardware and kernel.
431 **/
432static int igb_request_irq(struct igb_adapter *adapter)
433{
434 struct net_device *netdev = adapter->netdev;
435 struct e1000_hw *hw = &adapter->hw;
436 int err = 0;
437
438 if (adapter->msix_entries) {
439 err = igb_request_msix(adapter);
440 if (!err) {
441 struct e1000_hw *hw = &adapter->hw;
442 /* enable IAM, auto-mask,
443 * DO NOT USE EIAME or IAME in legacy mode */
444 wr32(E1000_IAM, IMS_ENABLE_MASK);
445 goto request_done;
446 }
447 /* fall back to MSI */
448 igb_reset_interrupt_capability(adapter);
449 if (!pci_enable_msi(adapter->pdev))
450 adapter->msi_enabled = 1;
451 igb_free_all_tx_resources(adapter);
452 igb_free_all_rx_resources(adapter);
453 adapter->num_rx_queues = 1;
454 igb_alloc_queues(adapter);
455 }
456 if (adapter->msi_enabled) {
457 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
458 netdev->name, netdev);
459 if (!err)
460 goto request_done;
461 /* fall back to legacy interrupts */
462 igb_reset_interrupt_capability(adapter);
463 adapter->msi_enabled = 0;
464 }
465
466 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
467 netdev->name, netdev);
468
469 if (err) {
470 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
471 err);
472 goto request_done;
473 }
474
475 /* enable IAM, auto-mask */
476 wr32(E1000_IAM, IMS_ENABLE_MASK);
477
478request_done:
479 return err;
480}
481
482static void igb_free_irq(struct igb_adapter *adapter)
483{
484 struct net_device *netdev = adapter->netdev;
485
486 if (adapter->msix_entries) {
487 int vector = 0, i;
488
489 for (i = 0; i < adapter->num_tx_queues; i++)
490 free_irq(adapter->msix_entries[vector++].vector,
491 &(adapter->tx_ring[i]));
492 for (i = 0; i < adapter->num_rx_queues; i++)
493 free_irq(adapter->msix_entries[vector++].vector,
494 &(adapter->rx_ring[i]));
495
496 free_irq(adapter->msix_entries[vector++].vector, netdev);
497 return;
498 }
499
500 free_irq(adapter->pdev->irq, netdev);
501}
502
503/**
504 * igb_irq_disable - Mask off interrupt generation on the NIC
505 * @adapter: board private structure
506 **/
507static void igb_irq_disable(struct igb_adapter *adapter)
508{
509 struct e1000_hw *hw = &adapter->hw;
510
511 if (adapter->msix_entries) {
512 wr32(E1000_EIMC, ~0);
513 wr32(E1000_EIAC, 0);
514 }
515 wr32(E1000_IMC, ~0);
516 wrfl();
517 synchronize_irq(adapter->pdev->irq);
518}
519
520/**
521 * igb_irq_enable - Enable default interrupt generation settings
522 * @adapter: board private structure
523 **/
524static void igb_irq_enable(struct igb_adapter *adapter)
525{
526 struct e1000_hw *hw = &adapter->hw;
527
528 if (adapter->msix_entries) {
529 wr32(E1000_EIMS,
530 adapter->eims_enable_mask);
531 wr32(E1000_EIAC,
532 adapter->eims_enable_mask);
533 wr32(E1000_IMS, E1000_IMS_LSC);
534 } else
535 wr32(E1000_IMS, IMS_ENABLE_MASK);
536}
537
538static void igb_update_mng_vlan(struct igb_adapter *adapter)
539{
540 struct net_device *netdev = adapter->netdev;
541 u16 vid = adapter->hw.mng_cookie.vlan_id;
542 u16 old_vid = adapter->mng_vlan_id;
543 if (adapter->vlgrp) {
544 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
545 if (adapter->hw.mng_cookie.status &
546 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
547 igb_vlan_rx_add_vid(netdev, vid);
548 adapter->mng_vlan_id = vid;
549 } else
550 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
551
552 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
553 (vid != old_vid) &&
554 !vlan_group_get_device(adapter->vlgrp, old_vid))
555 igb_vlan_rx_kill_vid(netdev, old_vid);
556 } else
557 adapter->mng_vlan_id = vid;
558 }
559}
560
561/**
562 * igb_release_hw_control - release control of the h/w to f/w
563 * @adapter: address of board private structure
564 *
565 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
566 * For ASF and Pass Through versions of f/w this means that the
567 * driver is no longer loaded.
568 *
569 **/
570static void igb_release_hw_control(struct igb_adapter *adapter)
571{
572 struct e1000_hw *hw = &adapter->hw;
573 u32 ctrl_ext;
574
575 /* Let firmware take over control of h/w */
576 ctrl_ext = rd32(E1000_CTRL_EXT);
577 wr32(E1000_CTRL_EXT,
578 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
579}
580
581
582/**
583 * igb_get_hw_control - get control of the h/w from f/w
584 * @adapter: address of board private structure
585 *
586 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
587 * For ASF and Pass Through versions of f/w this means that
588 * the driver is loaded.
589 *
590 **/
591static void igb_get_hw_control(struct igb_adapter *adapter)
592{
593 struct e1000_hw *hw = &adapter->hw;
594 u32 ctrl_ext;
595
596 /* Let firmware know the driver has taken over */
597 ctrl_ext = rd32(E1000_CTRL_EXT);
598 wr32(E1000_CTRL_EXT,
599 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
600}
601
602static void igb_init_manageability(struct igb_adapter *adapter)
603{
604 struct e1000_hw *hw = &adapter->hw;
605
606 if (adapter->en_mng_pt) {
607 u32 manc2h = rd32(E1000_MANC2H);
608 u32 manc = rd32(E1000_MANC);
609
610 /* disable hardware interception of ARP */
611 manc &= ~(E1000_MANC_ARP_EN);
612
613 /* enable receiving management packets to the host */
614 /* this will probably generate destination unreachable messages
615 * from the host OS, but the packets will be handled on SMBUS */
616 manc |= E1000_MANC_EN_MNG2HOST;
617#define E1000_MNG2HOST_PORT_623 (1 << 5)
618#define E1000_MNG2HOST_PORT_664 (1 << 6)
619 manc2h |= E1000_MNG2HOST_PORT_623;
620 manc2h |= E1000_MNG2HOST_PORT_664;
621 wr32(E1000_MANC2H, manc2h);
622
623 wr32(E1000_MANC, manc);
624 }
625}
626
627static void igb_release_manageability(struct igb_adapter *adapter)
628{
629 struct e1000_hw *hw = &adapter->hw;
630
631 if (adapter->en_mng_pt) {
632 u32 manc = rd32(E1000_MANC);
633
634 /* re-enable hardware interception of ARP */
635 manc |= E1000_MANC_ARP_EN;
636 manc &= ~E1000_MANC_EN_MNG2HOST;
637
638 /* don't explicitly have to mess with MANC2H since
639 * MANC has an enable disable that gates MANC2H */
640
641 /* XXX stop the hardware watchdog ? */
642 wr32(E1000_MANC, manc);
643 }
644}
645
646/**
647 * igb_configure - configure the hardware for RX and TX
648 * @adapter: private board structure
649 **/
650static void igb_configure(struct igb_adapter *adapter)
651{
652 struct net_device *netdev = adapter->netdev;
653 int i;
654
655 igb_get_hw_control(adapter);
656 igb_set_multi(netdev);
657
658 igb_restore_vlan(adapter);
659 igb_init_manageability(adapter);
660
661 igb_configure_tx(adapter);
662 igb_setup_rctl(adapter);
663 igb_configure_rx(adapter);
664 /* call IGB_DESC_UNUSED which always leaves
665 * at least 1 descriptor unused to make sure
666 * next_to_use != next_to_clean */
667 for (i = 0; i < adapter->num_rx_queues; i++) {
668 struct igb_ring *ring = &adapter->rx_ring[i];
669 igb_alloc_rx_buffers_adv(adapter, ring, IGB_DESC_UNUSED(ring));
670 }
671
672
673 adapter->tx_queue_len = netdev->tx_queue_len;
674}
675
676
677/**
678 * igb_up - Open the interface and prepare it to handle traffic
679 * @adapter: board private structure
680 **/
681
682int igb_up(struct igb_adapter *adapter)
683{
684 struct e1000_hw *hw = &adapter->hw;
685 int i;
686
687 /* hardware has been reset, we need to reload some things */
688 igb_configure(adapter);
689
690 clear_bit(__IGB_DOWN, &adapter->state);
691
692 napi_enable(&adapter->napi);
693
694 if (adapter->msix_entries) {
695 for (i = 0; i < adapter->num_rx_queues; i++)
696 napi_enable(&adapter->rx_ring[i].napi);
697 igb_configure_msix(adapter);
698 }
699
700 /* Clear any pending interrupts. */
701 rd32(E1000_ICR);
702 igb_irq_enable(adapter);
703
704 /* Fire a link change interrupt to start the watchdog. */
705 wr32(E1000_ICS, E1000_ICS_LSC);
706 return 0;
707}
708
709void igb_down(struct igb_adapter *adapter)
710{
711 struct e1000_hw *hw = &adapter->hw;
712 struct net_device *netdev = adapter->netdev;
713 u32 tctl, rctl;
714 int i;
715
716 /* signal that we're down so the interrupt handler does not
717 * reschedule our watchdog timer */
718 set_bit(__IGB_DOWN, &adapter->state);
719
720 /* disable receives in the hardware */
721 rctl = rd32(E1000_RCTL);
722 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
723 /* flush and sleep below */
724
725 netif_stop_queue(netdev);
726
727 /* disable transmits in the hardware */
728 tctl = rd32(E1000_TCTL);
729 tctl &= ~E1000_TCTL_EN;
730 wr32(E1000_TCTL, tctl);
731 /* flush both disables and wait for them to finish */
732 wrfl();
733 msleep(10);
734
735 napi_disable(&adapter->napi);
736
737 if (adapter->msix_entries)
738 for (i = 0; i < adapter->num_rx_queues; i++)
739 napi_disable(&adapter->rx_ring[i].napi);
740 igb_irq_disable(adapter);
741
742 del_timer_sync(&adapter->watchdog_timer);
743 del_timer_sync(&adapter->phy_info_timer);
744
745 netdev->tx_queue_len = adapter->tx_queue_len;
746 netif_carrier_off(netdev);
747 adapter->link_speed = 0;
748 adapter->link_duplex = 0;
749
750 igb_reset(adapter);
751 igb_clean_all_tx_rings(adapter);
752 igb_clean_all_rx_rings(adapter);
753}
754
755void igb_reinit_locked(struct igb_adapter *adapter)
756{
757 WARN_ON(in_interrupt());
758 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
759 msleep(1);
760 igb_down(adapter);
761 igb_up(adapter);
762 clear_bit(__IGB_RESETTING, &adapter->state);
763}
764
765void igb_reset(struct igb_adapter *adapter)
766{
767 struct e1000_hw *hw = &adapter->hw;
768 struct e1000_fc_info *fc = &adapter->hw.fc;
769 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
770 u16 hwm;
771
772 /* Repartition Pba for greater than 9k mtu
773 * To take effect CTRL.RST is required.
774 */
775 pba = E1000_PBA_34K;
776
777 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
778 /* adjust PBA for jumbo frames */
779 wr32(E1000_PBA, pba);
780
781 /* To maintain wire speed transmits, the Tx FIFO should be
782 * large enough to accommodate two full transmit packets,
783 * rounded up to the next 1KB and expressed in KB. Likewise,
784 * the Rx FIFO should be large enough to accommodate at least
785 * one full receive packet and is similarly rounded up and
786 * expressed in KB. */
787 pba = rd32(E1000_PBA);
788 /* upper 16 bits has Tx packet buffer allocation size in KB */
789 tx_space = pba >> 16;
790 /* lower 16 bits has Rx packet buffer allocation size in KB */
791 pba &= 0xffff;
792 /* the tx fifo also stores 16 bytes of information about the tx
793 * but don't include ethernet FCS because hardware appends it */
794 min_tx_space = (adapter->max_frame_size +
795 sizeof(struct e1000_tx_desc) -
796 ETH_FCS_LEN) * 2;
797 min_tx_space = ALIGN(min_tx_space, 1024);
798 min_tx_space >>= 10;
799 /* software strips receive CRC, so leave room for it */
800 min_rx_space = adapter->max_frame_size;
801 min_rx_space = ALIGN(min_rx_space, 1024);
802 min_rx_space >>= 10;
803
804 /* If current Tx allocation is less than the min Tx FIFO size,
805 * and the min Tx FIFO size is less than the current Rx FIFO
806 * allocation, take space away from current Rx allocation */
807 if (tx_space < min_tx_space &&
808 ((min_tx_space - tx_space) < pba)) {
809 pba = pba - (min_tx_space - tx_space);
810
811 /* if short on rx space, rx wins and must trump tx
812 * adjustment */
813 if (pba < min_rx_space)
814 pba = min_rx_space;
815 }
816 }
817 wr32(E1000_PBA, pba);
818
819 /* flow control settings */
820 /* The high water mark must be low enough to fit one full frame
821 * (or the size used for early receive) above it in the Rx FIFO.
822 * Set it to the lower of:
823 * - 90% of the Rx FIFO size, or
824 * - the full Rx FIFO size minus one full frame */
825 hwm = min(((pba << 10) * 9 / 10),
826 ((pba << 10) - adapter->max_frame_size));
827
828 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
829 fc->low_water = fc->high_water - 8;
830 fc->pause_time = 0xFFFF;
831 fc->send_xon = 1;
832 fc->type = fc->original_type;
833
834 /* Allow time for pending master requests to run */
835 adapter->hw.mac.ops.reset_hw(&adapter->hw);
836 wr32(E1000_WUC, 0);
837
838 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
839 dev_err(&adapter->pdev->dev, "Hardware Error\n");
840
841 igb_update_mng_vlan(adapter);
842
843 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
844 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
845
846 igb_reset_adaptive(&adapter->hw);
847 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
848 igb_release_manageability(adapter);
849}
850
851/**
852 * igb_probe - Device Initialization Routine
853 * @pdev: PCI device information struct
854 * @ent: entry in igb_pci_tbl
855 *
856 * Returns 0 on success, negative on failure
857 *
858 * igb_probe initializes an adapter identified by a pci_dev structure.
859 * The OS initialization, configuring of the adapter private structure,
860 * and a hardware reset occur.
861 **/
862static int __devinit igb_probe(struct pci_dev *pdev,
863 const struct pci_device_id *ent)
864{
865 struct net_device *netdev;
866 struct igb_adapter *adapter;
867 struct e1000_hw *hw;
868 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
869 unsigned long mmio_start, mmio_len;
870 static int cards_found;
871 int i, err, pci_using_dac;
872 u16 eeprom_data = 0;
873 u16 eeprom_apme_mask = IGB_EEPROM_APME;
874 u32 part_num;
875
876 err = pci_enable_device(pdev);
877 if (err)
878 return err;
879
880 pci_using_dac = 0;
881 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
882 if (!err) {
883 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
884 if (!err)
885 pci_using_dac = 1;
886 } else {
887 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
888 if (err) {
889 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
890 if (err) {
891 dev_err(&pdev->dev, "No usable DMA "
892 "configuration, aborting\n");
893 goto err_dma;
894 }
895 }
896 }
897
898 err = pci_request_regions(pdev, igb_driver_name);
899 if (err)
900 goto err_pci_reg;
901
902 pci_set_master(pdev);
903
904 err = -ENOMEM;
905 netdev = alloc_etherdev(sizeof(struct igb_adapter));
906 if (!netdev)
907 goto err_alloc_etherdev;
908
909 SET_NETDEV_DEV(netdev, &pdev->dev);
910
911 pci_set_drvdata(pdev, netdev);
912 adapter = netdev_priv(netdev);
913 adapter->netdev = netdev;
914 adapter->pdev = pdev;
915 hw = &adapter->hw;
916 hw->back = adapter;
917 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
918
919 mmio_start = pci_resource_start(pdev, 0);
920 mmio_len = pci_resource_len(pdev, 0);
921
922 err = -EIO;
923 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
924 if (!adapter->hw.hw_addr)
925 goto err_ioremap;
926
927 netdev->open = &igb_open;
928 netdev->stop = &igb_close;
929 netdev->get_stats = &igb_get_stats;
930 netdev->set_multicast_list = &igb_set_multi;
931 netdev->set_mac_address = &igb_set_mac;
932 netdev->change_mtu = &igb_change_mtu;
933 netdev->do_ioctl = &igb_ioctl;
934 igb_set_ethtool_ops(netdev);
935 netdev->tx_timeout = &igb_tx_timeout;
936 netdev->watchdog_timeo = 5 * HZ;
937 netif_napi_add(netdev, &adapter->napi, igb_clean, 64);
938 netdev->vlan_rx_register = igb_vlan_rx_register;
939 netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
940 netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
941#ifdef CONFIG_NET_POLL_CONTROLLER
942 netdev->poll_controller = igb_netpoll;
943#endif
944 netdev->hard_start_xmit = &igb_xmit_frame_adv;
945
946 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
947
948 netdev->mem_start = mmio_start;
949 netdev->mem_end = mmio_start + mmio_len;
950
951 adapter->bd_number = cards_found;
952
953 /* PCI config space info */
954 hw->vendor_id = pdev->vendor;
955 hw->device_id = pdev->device;
956 hw->revision_id = pdev->revision;
957 hw->subsystem_vendor_id = pdev->subsystem_vendor;
958 hw->subsystem_device_id = pdev->subsystem_device;
959
960 /* setup the private structure */
961 hw->back = adapter;
962 /* Copy the default MAC, PHY and NVM function pointers */
963 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
964 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
965 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
966 /* Initialize skew-specific constants */
967 err = ei->get_invariants(hw);
968 if (err)
969 goto err_hw_init;
970
971 err = igb_sw_init(adapter);
972 if (err)
973 goto err_sw_init;
974
975 igb_get_bus_info_pcie(hw);
976
977 hw->phy.autoneg_wait_to_complete = false;
978 hw->mac.adaptive_ifs = true;
979
980 /* Copper options */
981 if (hw->phy.media_type == e1000_media_type_copper) {
982 hw->phy.mdix = AUTO_ALL_MODES;
983 hw->phy.disable_polarity_correction = false;
984 hw->phy.ms_type = e1000_ms_hw_default;
985 }
986
987 if (igb_check_reset_block(hw))
988 dev_info(&pdev->dev,
989 "PHY reset is blocked due to SOL/IDER session.\n");
990
991 netdev->features = NETIF_F_SG |
992 NETIF_F_HW_CSUM |
993 NETIF_F_HW_VLAN_TX |
994 NETIF_F_HW_VLAN_RX |
995 NETIF_F_HW_VLAN_FILTER;
996
997 netdev->features |= NETIF_F_TSO;
998
999 netdev->features |= NETIF_F_TSO6;
1000 if (pci_using_dac)
1001 netdev->features |= NETIF_F_HIGHDMA;
1002
1003 netdev->features |= NETIF_F_LLTX;
1004 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1005
1006 /* before reading the NVM, reset the controller to put the device in a
1007 * known good starting state */
1008 hw->mac.ops.reset_hw(hw);
1009
1010 /* make sure the NVM is good */
1011 if (igb_validate_nvm_checksum(hw) < 0) {
1012 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1013 err = -EIO;
1014 goto err_eeprom;
1015 }
1016
1017 /* copy the MAC address out of the NVM */
1018 if (hw->mac.ops.read_mac_addr(hw))
1019 dev_err(&pdev->dev, "NVM Read Error\n");
1020
1021 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1022 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1023
1024 if (!is_valid_ether_addr(netdev->perm_addr)) {
1025 dev_err(&pdev->dev, "Invalid MAC Address\n");
1026 err = -EIO;
1027 goto err_eeprom;
1028 }
1029
1030 init_timer(&adapter->watchdog_timer);
1031 adapter->watchdog_timer.function = &igb_watchdog;
1032 adapter->watchdog_timer.data = (unsigned long) adapter;
1033
1034 init_timer(&adapter->phy_info_timer);
1035 adapter->phy_info_timer.function = &igb_update_phy_info;
1036 adapter->phy_info_timer.data = (unsigned long) adapter;
1037
1038 INIT_WORK(&adapter->reset_task, igb_reset_task);
1039 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1040
1041 /* Initialize link & ring properties that are user-changeable */
1042 adapter->tx_ring->count = 256;
1043 for (i = 0; i < adapter->num_tx_queues; i++)
1044 adapter->tx_ring[i].count = adapter->tx_ring->count;
1045 adapter->rx_ring->count = 256;
1046 for (i = 0; i < adapter->num_rx_queues; i++)
1047 adapter->rx_ring[i].count = adapter->rx_ring->count;
1048
1049 adapter->fc_autoneg = true;
1050 hw->mac.autoneg = true;
1051 hw->phy.autoneg_advertised = 0x2f;
1052
1053 hw->fc.original_type = e1000_fc_default;
1054 hw->fc.type = e1000_fc_default;
1055
1056 adapter->itr_setting = 3;
1057 adapter->itr = IGB_START_ITR;
1058
1059 igb_validate_mdi_setting(hw);
1060
1061 adapter->rx_csum = 1;
1062
1063 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1064 * enable the ACPI Magic Packet filter
1065 */
1066
1067 if (hw->bus.func == 0 ||
1068 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1069 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1070 &eeprom_data);
1071
1072 if (eeprom_data & eeprom_apme_mask)
1073 adapter->eeprom_wol |= E1000_WUFC_MAG;
1074
1075 /* now that we have the eeprom settings, apply the special cases where
1076 * the eeprom may be wrong or the board simply won't support wake on
1077 * lan on a particular port */
1078 switch (pdev->device) {
1079 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1080 adapter->eeprom_wol = 0;
1081 break;
1082 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1083 /* Wake events only supported on port A for dual fiber
1084 * regardless of eeprom setting */
1085 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1086 adapter->eeprom_wol = 0;
1087 break;
1088 }
1089
1090 /* initialize the wol settings based on the eeprom settings */
1091 adapter->wol = adapter->eeprom_wol;
1092
1093 /* reset the hardware with the new settings */
1094 igb_reset(adapter);
1095
1096 /* let the f/w know that the h/w is now under the control of the
1097 * driver. */
1098 igb_get_hw_control(adapter);
1099
1100 /* tell the stack to leave us alone until igb_open() is called */
1101 netif_carrier_off(netdev);
1102 netif_stop_queue(netdev);
1103
1104 strcpy(netdev->name, "eth%d");
1105 err = register_netdev(netdev);
1106 if (err)
1107 goto err_register;
1108
1109 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1110 /* print bus type/speed/width info */
1111 dev_info(&pdev->dev,
1112 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1113 netdev->name,
1114 ((hw->bus.speed == e1000_bus_speed_2500)
1115 ? "2.5Gb/s" : "unknown"),
1116 ((hw->bus.width == e1000_bus_width_pcie_x4)
1117 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1118 ? "Width x1" : "unknown"),
1119 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1120 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1121
1122 igb_read_part_num(hw, &part_num);
1123 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1124 (part_num >> 8), (part_num & 0xff));
1125
1126 dev_info(&pdev->dev,
1127 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1128 adapter->msix_entries ? "MSI-X" :
1129 adapter->msi_enabled ? "MSI" : "legacy",
1130 adapter->num_rx_queues, adapter->num_tx_queues);
1131
1132 cards_found++;
1133 return 0;
1134
1135err_register:
1136 igb_release_hw_control(adapter);
1137err_eeprom:
1138 if (!igb_check_reset_block(hw))
1139 hw->phy.ops.reset_phy(hw);
1140
1141 if (hw->flash_address)
1142 iounmap(hw->flash_address);
1143
1144 igb_remove_device(hw);
1145 kfree(adapter->tx_ring);
1146 kfree(adapter->rx_ring);
1147err_sw_init:
1148err_hw_init:
1149 iounmap(hw->hw_addr);
1150err_ioremap:
1151 free_netdev(netdev);
1152err_alloc_etherdev:
1153 pci_release_regions(pdev);
1154err_pci_reg:
1155err_dma:
1156 pci_disable_device(pdev);
1157 return err;
1158}
1159
1160/**
1161 * igb_remove - Device Removal Routine
1162 * @pdev: PCI device information struct
1163 *
1164 * igb_remove is called by the PCI subsystem to alert the driver
1165 * that it should release a PCI device. The could be caused by a
1166 * Hot-Plug event, or because the driver is going to be removed from
1167 * memory.
1168 **/
1169static void __devexit igb_remove(struct pci_dev *pdev)
1170{
1171 struct net_device *netdev = pci_get_drvdata(pdev);
1172 struct igb_adapter *adapter = netdev_priv(netdev);
1173
1174 /* flush_scheduled work may reschedule our watchdog task, so
1175 * explicitly disable watchdog tasks from being rescheduled */
1176 set_bit(__IGB_DOWN, &adapter->state);
1177 del_timer_sync(&adapter->watchdog_timer);
1178 del_timer_sync(&adapter->phy_info_timer);
1179
1180 flush_scheduled_work();
1181
1182
1183 igb_release_manageability(adapter);
1184
1185 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1186 * would have already happened in close and is redundant. */
1187 igb_release_hw_control(adapter);
1188
1189 unregister_netdev(netdev);
1190
1191 if (!igb_check_reset_block(&adapter->hw))
1192 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1193
1194 igb_remove_device(&adapter->hw);
1195 igb_reset_interrupt_capability(adapter);
1196
1197 kfree(adapter->tx_ring);
1198 kfree(adapter->rx_ring);
1199
1200 iounmap(adapter->hw.hw_addr);
1201 if (adapter->hw.flash_address)
1202 iounmap(adapter->hw.flash_address);
1203 pci_release_regions(pdev);
1204
1205 free_netdev(netdev);
1206
1207 pci_disable_device(pdev);
1208}
1209
1210/**
1211 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1212 * @adapter: board private structure to initialize
1213 *
1214 * igb_sw_init initializes the Adapter private data structure.
1215 * Fields are initialized based on PCI device information and
1216 * OS network device settings (MTU size).
1217 **/
1218static int __devinit igb_sw_init(struct igb_adapter *adapter)
1219{
1220 struct e1000_hw *hw = &adapter->hw;
1221 struct net_device *netdev = adapter->netdev;
1222 struct pci_dev *pdev = adapter->pdev;
1223
1224 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1225
1226 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1227 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1228 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1229 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1230
1231 /* Number of supported queues. */
1232 /* Having more queues than CPUs doesn't make sense. */
1233 adapter->num_tx_queues = 1;
1234 adapter->num_rx_queues = min(IGB_MAX_RX_QUEUES, num_online_cpus());
1235
1236 igb_set_interrupt_capability(adapter);
1237
1238 if (igb_alloc_queues(adapter)) {
1239 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1240 return -ENOMEM;
1241 }
1242
1243 /* Explicitly disable IRQ since the NIC can be in any state. */
1244 igb_irq_disable(adapter);
1245
1246 set_bit(__IGB_DOWN, &adapter->state);
1247 return 0;
1248}
1249
1250/**
1251 * igb_open - Called when a network interface is made active
1252 * @netdev: network interface device structure
1253 *
1254 * Returns 0 on success, negative value on failure
1255 *
1256 * The open entry point is called when a network interface is made
1257 * active by the system (IFF_UP). At this point all resources needed
1258 * for transmit and receive operations are allocated, the interrupt
1259 * handler is registered with the OS, the watchdog timer is started,
1260 * and the stack is notified that the interface is ready.
1261 **/
1262static int igb_open(struct net_device *netdev)
1263{
1264 struct igb_adapter *adapter = netdev_priv(netdev);
1265 struct e1000_hw *hw = &adapter->hw;
1266 int err;
1267 int i;
1268
1269 /* disallow open during test */
1270 if (test_bit(__IGB_TESTING, &adapter->state))
1271 return -EBUSY;
1272
1273 /* allocate transmit descriptors */
1274 err = igb_setup_all_tx_resources(adapter);
1275 if (err)
1276 goto err_setup_tx;
1277
1278 /* allocate receive descriptors */
1279 err = igb_setup_all_rx_resources(adapter);
1280 if (err)
1281 goto err_setup_rx;
1282
1283 /* e1000_power_up_phy(adapter); */
1284
1285 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1286 if ((adapter->hw.mng_cookie.status &
1287 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1288 igb_update_mng_vlan(adapter);
1289
1290 /* before we allocate an interrupt, we must be ready to handle it.
1291 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1292 * as soon as we call pci_request_irq, so we have to setup our
1293 * clean_rx handler before we do so. */
1294 igb_configure(adapter);
1295
1296 err = igb_request_irq(adapter);
1297 if (err)
1298 goto err_req_irq;
1299
1300 /* From here on the code is the same as igb_up() */
1301 clear_bit(__IGB_DOWN, &adapter->state);
1302
1303 napi_enable(&adapter->napi);
1304 if (adapter->msix_entries)
1305 for (i = 0; i < adapter->num_rx_queues; i++)
1306 napi_enable(&adapter->rx_ring[i].napi);
1307
1308 igb_irq_enable(adapter);
1309
1310 /* Clear any pending interrupts. */
1311 rd32(E1000_ICR);
1312 /* Fire a link status change interrupt to start the watchdog. */
1313 wr32(E1000_ICS, E1000_ICS_LSC);
1314
1315 return 0;
1316
1317err_req_irq:
1318 igb_release_hw_control(adapter);
1319 /* e1000_power_down_phy(adapter); */
1320 igb_free_all_rx_resources(adapter);
1321err_setup_rx:
1322 igb_free_all_tx_resources(adapter);
1323err_setup_tx:
1324 igb_reset(adapter);
1325
1326 return err;
1327}
1328
1329/**
1330 * igb_close - Disables a network interface
1331 * @netdev: network interface device structure
1332 *
1333 * Returns 0, this is not allowed to fail
1334 *
1335 * The close entry point is called when an interface is de-activated
1336 * by the OS. The hardware is still under the driver's control, but
1337 * needs to be disabled. A global MAC reset is issued to stop the
1338 * hardware, and all transmit and receive resources are freed.
1339 **/
1340static int igb_close(struct net_device *netdev)
1341{
1342 struct igb_adapter *adapter = netdev_priv(netdev);
1343
1344 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1345 igb_down(adapter);
1346
1347 igb_free_irq(adapter);
1348
1349 igb_free_all_tx_resources(adapter);
1350 igb_free_all_rx_resources(adapter);
1351
1352 /* kill manageability vlan ID if supported, but not if a vlan with
1353 * the same ID is registered on the host OS (let 8021q kill it) */
1354 if ((adapter->hw.mng_cookie.status &
1355 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1356 !(adapter->vlgrp &&
1357 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1358 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1359
1360 return 0;
1361}
1362
1363/**
1364 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1365 * @adapter: board private structure
1366 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1367 *
1368 * Return 0 on success, negative on failure
1369 **/
1370
1371int igb_setup_tx_resources(struct igb_adapter *adapter,
1372 struct igb_ring *tx_ring)
1373{
1374 struct pci_dev *pdev = adapter->pdev;
1375 int size;
1376
1377 size = sizeof(struct igb_buffer) * tx_ring->count;
1378 tx_ring->buffer_info = vmalloc(size);
1379 if (!tx_ring->buffer_info)
1380 goto err;
1381 memset(tx_ring->buffer_info, 0, size);
1382
1383 /* round up to nearest 4K */
1384 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1385 + sizeof(u32);
1386 tx_ring->size = ALIGN(tx_ring->size, 4096);
1387
1388 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1389 &tx_ring->dma);
1390
1391 if (!tx_ring->desc)
1392 goto err;
1393
1394 tx_ring->adapter = adapter;
1395 tx_ring->next_to_use = 0;
1396 tx_ring->next_to_clean = 0;
1397 spin_lock_init(&tx_ring->tx_clean_lock);
1398 spin_lock_init(&tx_ring->tx_lock);
1399 return 0;
1400
1401err:
1402 vfree(tx_ring->buffer_info);
1403 dev_err(&adapter->pdev->dev,
1404 "Unable to allocate memory for the transmit descriptor ring\n");
1405 return -ENOMEM;
1406}
1407
1408/**
1409 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1410 * (Descriptors) for all queues
1411 * @adapter: board private structure
1412 *
1413 * Return 0 on success, negative on failure
1414 **/
1415static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1416{
1417 int i, err = 0;
1418
1419 for (i = 0; i < adapter->num_tx_queues; i++) {
1420 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1421 if (err) {
1422 dev_err(&adapter->pdev->dev,
1423 "Allocation for Tx Queue %u failed\n", i);
1424 for (i--; i >= 0; i--)
1425 igb_free_tx_resources(adapter,
1426 &adapter->tx_ring[i]);
1427 break;
1428 }
1429 }
1430
1431 return err;
1432}
1433
1434/**
1435 * igb_configure_tx - Configure transmit Unit after Reset
1436 * @adapter: board private structure
1437 *
1438 * Configure the Tx unit of the MAC after a reset.
1439 **/
1440static void igb_configure_tx(struct igb_adapter *adapter)
1441{
1442 u64 tdba, tdwba;
1443 struct e1000_hw *hw = &adapter->hw;
1444 u32 tctl;
1445 u32 txdctl, txctrl;
1446 int i;
1447
1448 for (i = 0; i < adapter->num_tx_queues; i++) {
1449 struct igb_ring *ring = &(adapter->tx_ring[i]);
1450
1451 wr32(E1000_TDLEN(i),
1452 ring->count * sizeof(struct e1000_tx_desc));
1453 tdba = ring->dma;
1454 wr32(E1000_TDBAL(i),
1455 tdba & 0x00000000ffffffffULL);
1456 wr32(E1000_TDBAH(i), tdba >> 32);
1457
1458 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1459 tdwba |= 1; /* enable head wb */
1460 wr32(E1000_TDWBAL(i),
1461 tdwba & 0x00000000ffffffffULL);
1462 wr32(E1000_TDWBAH(i), tdwba >> 32);
1463
1464 ring->head = E1000_TDH(i);
1465 ring->tail = E1000_TDT(i);
1466 writel(0, hw->hw_addr + ring->tail);
1467 writel(0, hw->hw_addr + ring->head);
1468 txdctl = rd32(E1000_TXDCTL(i));
1469 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1470 wr32(E1000_TXDCTL(i), txdctl);
1471
1472 /* Turn off Relaxed Ordering on head write-backs. The
1473 * writebacks MUST be delivered in order or it will
1474 * completely screw up our bookeeping.
1475 */
1476 txctrl = rd32(E1000_DCA_TXCTRL(i));
1477 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1478 wr32(E1000_DCA_TXCTRL(i), txctrl);
1479 }
1480
1481
1482
1483 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1484
1485 /* Program the Transmit Control Register */
1486
1487 tctl = rd32(E1000_TCTL);
1488 tctl &= ~E1000_TCTL_CT;
1489 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1490 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1491
1492 igb_config_collision_dist(hw);
1493
1494 /* Setup Transmit Descriptor Settings for eop descriptor */
1495 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1496
1497 /* Enable transmits */
1498 tctl |= E1000_TCTL_EN;
1499
1500 wr32(E1000_TCTL, tctl);
1501}
1502
1503/**
1504 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1505 * @adapter: board private structure
1506 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1507 *
1508 * Returns 0 on success, negative on failure
1509 **/
1510
1511int igb_setup_rx_resources(struct igb_adapter *adapter,
1512 struct igb_ring *rx_ring)
1513{
1514 struct pci_dev *pdev = adapter->pdev;
1515 int size, desc_len;
1516
1517 size = sizeof(struct igb_buffer) * rx_ring->count;
1518 rx_ring->buffer_info = vmalloc(size);
1519 if (!rx_ring->buffer_info)
1520 goto err;
1521 memset(rx_ring->buffer_info, 0, size);
1522
1523 desc_len = sizeof(union e1000_adv_rx_desc);
1524
1525 /* Round up to nearest 4K */
1526 rx_ring->size = rx_ring->count * desc_len;
1527 rx_ring->size = ALIGN(rx_ring->size, 4096);
1528
1529 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1530 &rx_ring->dma);
1531
1532 if (!rx_ring->desc)
1533 goto err;
1534
1535 rx_ring->next_to_clean = 0;
1536 rx_ring->next_to_use = 0;
1537 rx_ring->pending_skb = NULL;
1538
1539 rx_ring->adapter = adapter;
1540 /* FIXME: do we want to setup ring->napi->poll here? */
1541 rx_ring->napi.poll = adapter->napi.poll;
1542
1543 return 0;
1544
1545err:
1546 vfree(rx_ring->buffer_info);
1547 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1548 "the receive descriptor ring\n");
1549 return -ENOMEM;
1550}
1551
1552/**
1553 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1554 * (Descriptors) for all queues
1555 * @adapter: board private structure
1556 *
1557 * Return 0 on success, negative on failure
1558 **/
1559static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1560{
1561 int i, err = 0;
1562
1563 for (i = 0; i < adapter->num_rx_queues; i++) {
1564 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1565 if (err) {
1566 dev_err(&adapter->pdev->dev,
1567 "Allocation for Rx Queue %u failed\n", i);
1568 for (i--; i >= 0; i--)
1569 igb_free_rx_resources(adapter,
1570 &adapter->rx_ring[i]);
1571 break;
1572 }
1573 }
1574
1575 return err;
1576}
1577
1578/**
1579 * igb_setup_rctl - configure the receive control registers
1580 * @adapter: Board private structure
1581 **/
1582static void igb_setup_rctl(struct igb_adapter *adapter)
1583{
1584 struct e1000_hw *hw = &adapter->hw;
1585 u32 rctl;
1586 u32 srrctl = 0;
1587 int i;
1588
1589 rctl = rd32(E1000_RCTL);
1590
1591 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1592
1593 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1594 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1595 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1596
1597 /* disable the stripping of CRC because it breaks
1598 * BMC firmware connected over SMBUS
1599 rctl |= E1000_RCTL_SECRC;
1600 */
1601
1602 rctl &= ~E1000_RCTL_SBP;
1603
1604 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1605 rctl &= ~E1000_RCTL_LPE;
1606 else
1607 rctl |= E1000_RCTL_LPE;
1608 if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1609 /* Setup buffer sizes */
1610 rctl &= ~E1000_RCTL_SZ_4096;
1611 rctl |= E1000_RCTL_BSEX;
1612 switch (adapter->rx_buffer_len) {
1613 case IGB_RXBUFFER_256:
1614 rctl |= E1000_RCTL_SZ_256;
1615 rctl &= ~E1000_RCTL_BSEX;
1616 break;
1617 case IGB_RXBUFFER_512:
1618 rctl |= E1000_RCTL_SZ_512;
1619 rctl &= ~E1000_RCTL_BSEX;
1620 break;
1621 case IGB_RXBUFFER_1024:
1622 rctl |= E1000_RCTL_SZ_1024;
1623 rctl &= ~E1000_RCTL_BSEX;
1624 break;
1625 case IGB_RXBUFFER_2048:
1626 default:
1627 rctl |= E1000_RCTL_SZ_2048;
1628 rctl &= ~E1000_RCTL_BSEX;
1629 break;
1630 case IGB_RXBUFFER_4096:
1631 rctl |= E1000_RCTL_SZ_4096;
1632 break;
1633 case IGB_RXBUFFER_8192:
1634 rctl |= E1000_RCTL_SZ_8192;
1635 break;
1636 case IGB_RXBUFFER_16384:
1637 rctl |= E1000_RCTL_SZ_16384;
1638 break;
1639 }
1640 } else {
1641 rctl &= ~E1000_RCTL_BSEX;
1642 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1643 }
1644
1645 /* 82575 and greater support packet-split where the protocol
1646 * header is placed in skb->data and the packet data is
1647 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1648 * In the case of a non-split, skb->data is linearly filled,
1649 * followed by the page buffers. Therefore, skb->data is
1650 * sized to hold the largest protocol header.
1651 */
1652 /* allocations using alloc_page take too long for regular MTU
1653 * so only enable packet split for jumbo frames */
1654 if (rctl & E1000_RCTL_LPE) {
1655 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1656 srrctl = adapter->rx_ps_hdr_size <<
1657 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1658 /* buffer size is ALWAYS one page */
1659 srrctl |= PAGE_SIZE >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1660 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1661 } else {
1662 adapter->rx_ps_hdr_size = 0;
1663 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1664 }
1665
1666 for (i = 0; i < adapter->num_rx_queues; i++)
1667 wr32(E1000_SRRCTL(i), srrctl);
1668
1669 wr32(E1000_RCTL, rctl);
1670}
1671
1672/**
1673 * igb_configure_rx - Configure receive Unit after Reset
1674 * @adapter: board private structure
1675 *
1676 * Configure the Rx unit of the MAC after a reset.
1677 **/
1678static void igb_configure_rx(struct igb_adapter *adapter)
1679{
1680 u64 rdba;
1681 struct e1000_hw *hw = &adapter->hw;
1682 u32 rctl, rxcsum;
1683 u32 rxdctl;
1684 int i;
1685
1686 /* disable receives while setting up the descriptors */
1687 rctl = rd32(E1000_RCTL);
1688 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1689 wrfl();
1690 mdelay(10);
1691
1692 if (adapter->itr_setting > 3)
1693 wr32(E1000_ITR,
1694 1000000000 / (adapter->itr * 256));
1695
1696 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1697 * the Base and Length of the Rx Descriptor Ring */
1698 for (i = 0; i < adapter->num_rx_queues; i++) {
1699 struct igb_ring *ring = &(adapter->rx_ring[i]);
1700 rdba = ring->dma;
1701 wr32(E1000_RDBAL(i),
1702 rdba & 0x00000000ffffffffULL);
1703 wr32(E1000_RDBAH(i), rdba >> 32);
1704 wr32(E1000_RDLEN(i),
1705 ring->count * sizeof(union e1000_adv_rx_desc));
1706
1707 ring->head = E1000_RDH(i);
1708 ring->tail = E1000_RDT(i);
1709 writel(0, hw->hw_addr + ring->tail);
1710 writel(0, hw->hw_addr + ring->head);
1711
1712 rxdctl = rd32(E1000_RXDCTL(i));
1713 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1714 rxdctl &= 0xFFF00000;
1715 rxdctl |= IGB_RX_PTHRESH;
1716 rxdctl |= IGB_RX_HTHRESH << 8;
1717 rxdctl |= IGB_RX_WTHRESH << 16;
1718 wr32(E1000_RXDCTL(i), rxdctl);
1719 }
1720
1721 if (adapter->num_rx_queues > 1) {
1722 u32 random[10];
1723 u32 mrqc;
1724 u32 j, shift;
1725 union e1000_reta {
1726 u32 dword;
1727 u8 bytes[4];
1728 } reta;
1729
1730 get_random_bytes(&random[0], 40);
1731
1732 shift = 6;
1733 for (j = 0; j < (32 * 4); j++) {
1734 reta.bytes[j & 3] =
1735 (j % adapter->num_rx_queues) << shift;
1736 if ((j & 3) == 3)
1737 writel(reta.dword,
1738 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1739 }
1740 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1741
1742 /* Fill out hash function seeds */
1743 for (j = 0; j < 10; j++)
1744 array_wr32(E1000_RSSRK(0), j, random[j]);
1745
1746 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1747 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1748 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1749 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1750 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1751 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1752 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1753 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1754
1755
1756 wr32(E1000_MRQC, mrqc);
1757
1758 /* Multiqueue and raw packet checksumming are mutually
1759 * exclusive. Note that this not the same as TCP/IP
1760 * checksumming, which works fine. */
1761 rxcsum = rd32(E1000_RXCSUM);
1762 rxcsum |= E1000_RXCSUM_PCSD;
1763 wr32(E1000_RXCSUM, rxcsum);
1764 } else {
1765 /* Enable Receive Checksum Offload for TCP and UDP */
1766 rxcsum = rd32(E1000_RXCSUM);
1767 if (adapter->rx_csum) {
1768 rxcsum |= E1000_RXCSUM_TUOFL;
1769
1770 /* Enable IPv4 payload checksum for UDP fragments
1771 * Must be used in conjunction with packet-split. */
1772 if (adapter->rx_ps_hdr_size)
1773 rxcsum |= E1000_RXCSUM_IPPCSE;
1774 } else {
1775 rxcsum &= ~E1000_RXCSUM_TUOFL;
1776 /* don't need to clear IPPCSE as it defaults to 0 */
1777 }
1778 wr32(E1000_RXCSUM, rxcsum);
1779 }
1780
1781 if (adapter->vlgrp)
1782 wr32(E1000_RLPML,
1783 adapter->max_frame_size + VLAN_TAG_SIZE);
1784 else
1785 wr32(E1000_RLPML, adapter->max_frame_size);
1786
1787 /* Enable Receives */
1788 wr32(E1000_RCTL, rctl);
1789}
1790
1791/**
1792 * igb_free_tx_resources - Free Tx Resources per Queue
1793 * @adapter: board private structure
1794 * @tx_ring: Tx descriptor ring for a specific queue
1795 *
1796 * Free all transmit software resources
1797 **/
1798static void igb_free_tx_resources(struct igb_adapter *adapter,
1799 struct igb_ring *tx_ring)
1800{
1801 struct pci_dev *pdev = adapter->pdev;
1802
1803 igb_clean_tx_ring(adapter, tx_ring);
1804
1805 vfree(tx_ring->buffer_info);
1806 tx_ring->buffer_info = NULL;
1807
1808 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1809
1810 tx_ring->desc = NULL;
1811}
1812
1813/**
1814 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1815 * @adapter: board private structure
1816 *
1817 * Free all transmit software resources
1818 **/
1819static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1820{
1821 int i;
1822
1823 for (i = 0; i < adapter->num_tx_queues; i++)
1824 igb_free_tx_resources(adapter, &adapter->tx_ring[i]);
1825}
1826
1827static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
1828 struct igb_buffer *buffer_info)
1829{
1830 if (buffer_info->dma) {
1831 pci_unmap_page(adapter->pdev,
1832 buffer_info->dma,
1833 buffer_info->length,
1834 PCI_DMA_TODEVICE);
1835 buffer_info->dma = 0;
1836 }
1837 if (buffer_info->skb) {
1838 dev_kfree_skb_any(buffer_info->skb);
1839 buffer_info->skb = NULL;
1840 }
1841 buffer_info->time_stamp = 0;
1842 /* buffer_info must be completely set up in the transmit path */
1843}
1844
1845/**
1846 * igb_clean_tx_ring - Free Tx Buffers
1847 * @adapter: board private structure
1848 * @tx_ring: ring to be cleaned
1849 **/
1850static void igb_clean_tx_ring(struct igb_adapter *adapter,
1851 struct igb_ring *tx_ring)
1852{
1853 struct igb_buffer *buffer_info;
1854 unsigned long size;
1855 unsigned int i;
1856
1857 if (!tx_ring->buffer_info)
1858 return;
1859 /* Free all the Tx ring sk_buffs */
1860
1861 for (i = 0; i < tx_ring->count; i++) {
1862 buffer_info = &tx_ring->buffer_info[i];
1863 igb_unmap_and_free_tx_resource(adapter, buffer_info);
1864 }
1865
1866 size = sizeof(struct igb_buffer) * tx_ring->count;
1867 memset(tx_ring->buffer_info, 0, size);
1868
1869 /* Zero out the descriptor ring */
1870
1871 memset(tx_ring->desc, 0, tx_ring->size);
1872
1873 tx_ring->next_to_use = 0;
1874 tx_ring->next_to_clean = 0;
1875
1876 writel(0, adapter->hw.hw_addr + tx_ring->head);
1877 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1878}
1879
1880/**
1881 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
1882 * @adapter: board private structure
1883 **/
1884static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
1885{
1886 int i;
1887
1888 for (i = 0; i < adapter->num_tx_queues; i++)
1889 igb_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1890}
1891
1892/**
1893 * igb_free_rx_resources - Free Rx Resources
1894 * @adapter: board private structure
1895 * @rx_ring: ring to clean the resources from
1896 *
1897 * Free all receive software resources
1898 **/
1899static void igb_free_rx_resources(struct igb_adapter *adapter,
1900 struct igb_ring *rx_ring)
1901{
1902 struct pci_dev *pdev = adapter->pdev;
1903
1904 igb_clean_rx_ring(adapter, rx_ring);
1905
1906 vfree(rx_ring->buffer_info);
1907 rx_ring->buffer_info = NULL;
1908
1909 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1910
1911 rx_ring->desc = NULL;
1912}
1913
1914/**
1915 * igb_free_all_rx_resources - Free Rx Resources for All Queues
1916 * @adapter: board private structure
1917 *
1918 * Free all receive software resources
1919 **/
1920static void igb_free_all_rx_resources(struct igb_adapter *adapter)
1921{
1922 int i;
1923
1924 for (i = 0; i < adapter->num_rx_queues; i++)
1925 igb_free_rx_resources(adapter, &adapter->rx_ring[i]);
1926}
1927
1928/**
1929 * igb_clean_rx_ring - Free Rx Buffers per Queue
1930 * @adapter: board private structure
1931 * @rx_ring: ring to free buffers from
1932 **/
1933static void igb_clean_rx_ring(struct igb_adapter *adapter,
1934 struct igb_ring *rx_ring)
1935{
1936 struct igb_buffer *buffer_info;
1937 struct pci_dev *pdev = adapter->pdev;
1938 unsigned long size;
1939 unsigned int i;
1940
1941 if (!rx_ring->buffer_info)
1942 return;
1943 /* Free all the Rx ring sk_buffs */
1944 for (i = 0; i < rx_ring->count; i++) {
1945 buffer_info = &rx_ring->buffer_info[i];
1946 if (buffer_info->dma) {
1947 if (adapter->rx_ps_hdr_size)
1948 pci_unmap_single(pdev, buffer_info->dma,
1949 adapter->rx_ps_hdr_size,
1950 PCI_DMA_FROMDEVICE);
1951 else
1952 pci_unmap_single(pdev, buffer_info->dma,
1953 adapter->rx_buffer_len,
1954 PCI_DMA_FROMDEVICE);
1955 buffer_info->dma = 0;
1956 }
1957
1958 if (buffer_info->skb) {
1959 dev_kfree_skb(buffer_info->skb);
1960 buffer_info->skb = NULL;
1961 }
1962 if (buffer_info->page) {
1963 pci_unmap_page(pdev, buffer_info->page_dma,
1964 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1965 put_page(buffer_info->page);
1966 buffer_info->page = NULL;
1967 buffer_info->page_dma = 0;
1968 }
1969 }
1970
1971 /* there also may be some cached data from a chained receive */
1972 if (rx_ring->pending_skb) {
1973 dev_kfree_skb(rx_ring->pending_skb);
1974 rx_ring->pending_skb = NULL;
1975 }
1976
1977 size = sizeof(struct igb_buffer) * rx_ring->count;
1978 memset(rx_ring->buffer_info, 0, size);
1979
1980 /* Zero out the descriptor ring */
1981 memset(rx_ring->desc, 0, rx_ring->size);
1982
1983 rx_ring->next_to_clean = 0;
1984 rx_ring->next_to_use = 0;
1985
1986 writel(0, adapter->hw.hw_addr + rx_ring->head);
1987 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1988}
1989
1990/**
1991 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
1992 * @adapter: board private structure
1993 **/
1994static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
1995{
1996 int i;
1997
1998 for (i = 0; i < adapter->num_rx_queues; i++)
1999 igb_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2000}
2001
2002/**
2003 * igb_set_mac - Change the Ethernet Address of the NIC
2004 * @netdev: network interface device structure
2005 * @p: pointer to an address structure
2006 *
2007 * Returns 0 on success, negative on failure
2008 **/
2009static int igb_set_mac(struct net_device *netdev, void *p)
2010{
2011 struct igb_adapter *adapter = netdev_priv(netdev);
2012 struct sockaddr *addr = p;
2013
2014 if (!is_valid_ether_addr(addr->sa_data))
2015 return -EADDRNOTAVAIL;
2016
2017 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2018 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2019
2020 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2021
2022 return 0;
2023}
2024
2025/**
2026 * igb_set_multi - Multicast and Promiscuous mode set
2027 * @netdev: network interface device structure
2028 *
2029 * The set_multi entry point is called whenever the multicast address
2030 * list or the network interface flags are updated. This routine is
2031 * responsible for configuring the hardware for proper multicast,
2032 * promiscuous mode, and all-multi behavior.
2033 **/
2034static void igb_set_multi(struct net_device *netdev)
2035{
2036 struct igb_adapter *adapter = netdev_priv(netdev);
2037 struct e1000_hw *hw = &adapter->hw;
2038 struct e1000_mac_info *mac = &hw->mac;
2039 struct dev_mc_list *mc_ptr;
2040 u8 *mta_list;
2041 u32 rctl;
2042 int i;
2043
2044 /* Check for Promiscuous and All Multicast modes */
2045
2046 rctl = rd32(E1000_RCTL);
2047
2048 if (netdev->flags & IFF_PROMISC)
2049 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2050 else if (netdev->flags & IFF_ALLMULTI) {
2051 rctl |= E1000_RCTL_MPE;
2052 rctl &= ~E1000_RCTL_UPE;
2053 } else
2054 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2055
2056 wr32(E1000_RCTL, rctl);
2057
2058 if (!netdev->mc_count) {
2059 /* nothing to program, so clear mc list */
2060 igb_update_mc_addr_list(hw, NULL, 0, 1,
2061 mac->rar_entry_count);
2062 return;
2063 }
2064
2065 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2066 if (!mta_list)
2067 return;
2068
2069 /* The shared function expects a packed array of only addresses. */
2070 mc_ptr = netdev->mc_list;
2071
2072 for (i = 0; i < netdev->mc_count; i++) {
2073 if (!mc_ptr)
2074 break;
2075 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2076 mc_ptr = mc_ptr->next;
2077 }
2078 igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2079 kfree(mta_list);
2080}
2081
2082/* Need to wait a few seconds after link up to get diagnostic information from
2083 * the phy */
2084static void igb_update_phy_info(unsigned long data)
2085{
2086 struct igb_adapter *adapter = (struct igb_adapter *) data;
2087 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
2088}
2089
2090/**
2091 * igb_watchdog - Timer Call-back
2092 * @data: pointer to adapter cast into an unsigned long
2093 **/
2094static void igb_watchdog(unsigned long data)
2095{
2096 struct igb_adapter *adapter = (struct igb_adapter *)data;
2097 /* Do the rest outside of interrupt context */
2098 schedule_work(&adapter->watchdog_task);
2099}
2100
2101static void igb_watchdog_task(struct work_struct *work)
2102{
2103 struct igb_adapter *adapter = container_of(work,
2104 struct igb_adapter, watchdog_task);
2105 struct e1000_hw *hw = &adapter->hw;
2106
2107 struct net_device *netdev = adapter->netdev;
2108 struct igb_ring *tx_ring = adapter->tx_ring;
2109 struct e1000_mac_info *mac = &adapter->hw.mac;
2110 u32 link;
2111 s32 ret_val;
2112
2113 if ((netif_carrier_ok(netdev)) &&
2114 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2115 goto link_up;
2116
2117 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2118 if ((ret_val == E1000_ERR_PHY) &&
2119 (hw->phy.type == e1000_phy_igp_3) &&
2120 (rd32(E1000_CTRL) &
2121 E1000_PHY_CTRL_GBE_DISABLE))
2122 dev_info(&adapter->pdev->dev,
2123 "Gigabit has been disabled, downgrading speed\n");
2124
2125 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2126 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2127 link = mac->serdes_has_link;
2128 else
2129 link = rd32(E1000_STATUS) &
2130 E1000_STATUS_LU;
2131
2132 if (link) {
2133 if (!netif_carrier_ok(netdev)) {
2134 u32 ctrl;
2135 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2136 &adapter->link_speed,
2137 &adapter->link_duplex);
2138
2139 ctrl = rd32(E1000_CTRL);
2140 dev_info(&adapter->pdev->dev,
2141 "NIC Link is Up %d Mbps %s, "
2142 "Flow Control: %s\n",
2143 adapter->link_speed,
2144 adapter->link_duplex == FULL_DUPLEX ?
2145 "Full Duplex" : "Half Duplex",
2146 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2147 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2148 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2149 E1000_CTRL_TFCE) ? "TX" : "None")));
2150
2151 /* tweak tx_queue_len according to speed/duplex and
2152 * adjust the timeout factor */
2153 netdev->tx_queue_len = adapter->tx_queue_len;
2154 adapter->tx_timeout_factor = 1;
2155 switch (adapter->link_speed) {
2156 case SPEED_10:
2157 netdev->tx_queue_len = 10;
2158 adapter->tx_timeout_factor = 14;
2159 break;
2160 case SPEED_100:
2161 netdev->tx_queue_len = 100;
2162 /* maybe add some timeout factor ? */
2163 break;
2164 }
2165
2166 netif_carrier_on(netdev);
2167 netif_wake_queue(netdev);
2168
2169 if (!test_bit(__IGB_DOWN, &adapter->state))
2170 mod_timer(&adapter->phy_info_timer,
2171 round_jiffies(jiffies + 2 * HZ));
2172 }
2173 } else {
2174 if (netif_carrier_ok(netdev)) {
2175 adapter->link_speed = 0;
2176 adapter->link_duplex = 0;
2177 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2178 netif_carrier_off(netdev);
2179 netif_stop_queue(netdev);
2180 if (!test_bit(__IGB_DOWN, &adapter->state))
2181 mod_timer(&adapter->phy_info_timer,
2182 round_jiffies(jiffies + 2 * HZ));
2183 }
2184 }
2185
2186link_up:
2187 igb_update_stats(adapter);
2188
2189 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2190 adapter->tpt_old = adapter->stats.tpt;
2191 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2192 adapter->colc_old = adapter->stats.colc;
2193
2194 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2195 adapter->gorc_old = adapter->stats.gorc;
2196 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2197 adapter->gotc_old = adapter->stats.gotc;
2198
2199 igb_update_adaptive(&adapter->hw);
2200
2201 if (!netif_carrier_ok(netdev)) {
2202 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2203 /* We've lost link, so the controller stops DMA,
2204 * but we've got queued Tx work that's never going
2205 * to get done, so reset controller to flush Tx.
2206 * (Do the reset outside of interrupt context). */
2207 adapter->tx_timeout_count++;
2208 schedule_work(&adapter->reset_task);
2209 }
2210 }
2211
2212 /* Cause software interrupt to ensure rx ring is cleaned */
2213 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2214
2215 /* Force detection of hung controller every watchdog period */
2216 tx_ring->detect_tx_hung = true;
2217
2218 /* Reset the timer */
2219 if (!test_bit(__IGB_DOWN, &adapter->state))
2220 mod_timer(&adapter->watchdog_timer,
2221 round_jiffies(jiffies + 2 * HZ));
2222}
2223
2224enum latency_range {
2225 lowest_latency = 0,
2226 low_latency = 1,
2227 bulk_latency = 2,
2228 latency_invalid = 255
2229};
2230
2231
2232static void igb_lower_rx_eitr(struct igb_adapter *adapter,
2233 struct igb_ring *rx_ring)
2234{
2235 struct e1000_hw *hw = &adapter->hw;
2236 int new_val;
2237
2238 new_val = rx_ring->itr_val / 2;
2239 if (new_val < IGB_MIN_DYN_ITR)
2240 new_val = IGB_MIN_DYN_ITR;
2241
2242 if (new_val != rx_ring->itr_val) {
2243 rx_ring->itr_val = new_val;
2244 wr32(rx_ring->itr_register,
2245 1000000000 / (new_val * 256));
2246 }
2247}
2248
2249static void igb_raise_rx_eitr(struct igb_adapter *adapter,
2250 struct igb_ring *rx_ring)
2251{
2252 struct e1000_hw *hw = &adapter->hw;
2253 int new_val;
2254
2255 new_val = rx_ring->itr_val * 2;
2256 if (new_val > IGB_MAX_DYN_ITR)
2257 new_val = IGB_MAX_DYN_ITR;
2258
2259 if (new_val != rx_ring->itr_val) {
2260 rx_ring->itr_val = new_val;
2261 wr32(rx_ring->itr_register,
2262 1000000000 / (new_val * 256));
2263 }
2264}
2265
2266/**
2267 * igb_update_itr - update the dynamic ITR value based on statistics
2268 * Stores a new ITR value based on packets and byte
2269 * counts during the last interrupt. The advantage of per interrupt
2270 * computation is faster updates and more accurate ITR for the current
2271 * traffic pattern. Constants in this function were computed
2272 * based on theoretical maximum wire speed and thresholds were set based
2273 * on testing data as well as attempting to minimize response time
2274 * while increasing bulk throughput.
2275 * this functionality is controlled by the InterruptThrottleRate module
2276 * parameter (see igb_param.c)
2277 * NOTE: These calculations are only valid when operating in a single-
2278 * queue environment.
2279 * @adapter: pointer to adapter
2280 * @itr_setting: current adapter->itr
2281 * @packets: the number of packets during this measurement interval
2282 * @bytes: the number of bytes during this measurement interval
2283 **/
2284static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2285 int packets, int bytes)
2286{
2287 unsigned int retval = itr_setting;
2288
2289 if (packets == 0)
2290 goto update_itr_done;
2291
2292 switch (itr_setting) {
2293 case lowest_latency:
2294 /* handle TSO and jumbo frames */
2295 if (bytes/packets > 8000)
2296 retval = bulk_latency;
2297 else if ((packets < 5) && (bytes > 512))
2298 retval = low_latency;
2299 break;
2300 case low_latency: /* 50 usec aka 20000 ints/s */
2301 if (bytes > 10000) {
2302 /* this if handles the TSO accounting */
2303 if (bytes/packets > 8000) {
2304 retval = bulk_latency;
2305 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2306 retval = bulk_latency;
2307 } else if ((packets > 35)) {
2308 retval = lowest_latency;
2309 }
2310 } else if (bytes/packets > 2000) {
2311 retval = bulk_latency;
2312 } else if (packets <= 2 && bytes < 512) {
2313 retval = lowest_latency;
2314 }
2315 break;
2316 case bulk_latency: /* 250 usec aka 4000 ints/s */
2317 if (bytes > 25000) {
2318 if (packets > 35)
2319 retval = low_latency;
2320 } else if (bytes < 6000) {
2321 retval = low_latency;
2322 }
2323 break;
2324 }
2325
2326update_itr_done:
2327 return retval;
2328}
2329
2330static void igb_set_itr(struct igb_adapter *adapter, u16 itr_register,
2331 int rx_only)
2332{
2333 u16 current_itr;
2334 u32 new_itr = adapter->itr;
2335
2336 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2337 if (adapter->link_speed != SPEED_1000) {
2338 current_itr = 0;
2339 new_itr = 4000;
2340 goto set_itr_now;
2341 }
2342
2343 adapter->rx_itr = igb_update_itr(adapter,
2344 adapter->rx_itr,
2345 adapter->rx_ring->total_packets,
2346 adapter->rx_ring->total_bytes);
2347 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2348 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2349 adapter->rx_itr = low_latency;
2350
2351 if (!rx_only) {
2352 adapter->tx_itr = igb_update_itr(adapter,
2353 adapter->tx_itr,
2354 adapter->tx_ring->total_packets,
2355 adapter->tx_ring->total_bytes);
2356 /* conservative mode (itr 3) eliminates the
2357 * lowest_latency setting */
2358 if (adapter->itr_setting == 3 &&
2359 adapter->tx_itr == lowest_latency)
2360 adapter->tx_itr = low_latency;
2361
2362 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2363 } else {
2364 current_itr = adapter->rx_itr;
2365 }
2366
2367 switch (current_itr) {
2368 /* counts and packets in update_itr are dependent on these numbers */
2369 case lowest_latency:
2370 new_itr = 70000;
2371 break;
2372 case low_latency:
2373 new_itr = 20000; /* aka hwitr = ~200 */
2374 break;
2375 case bulk_latency:
2376 new_itr = 4000;
2377 break;
2378 default:
2379 break;
2380 }
2381
2382set_itr_now:
2383 if (new_itr != adapter->itr) {
2384 /* this attempts to bias the interrupt rate towards Bulk
2385 * by adding intermediate steps when interrupt rate is
2386 * increasing */
2387 new_itr = new_itr > adapter->itr ?
2388 min(adapter->itr + (new_itr >> 2), new_itr) :
2389 new_itr;
2390 /* Don't write the value here; it resets the adapter's
2391 * internal timer, and causes us to delay far longer than
2392 * we should between interrupts. Instead, we write the ITR
2393 * value at the beginning of the next interrupt so the timing
2394 * ends up being correct.
2395 */
2396 adapter->itr = new_itr;
2397 adapter->set_itr = 1;
2398 }
2399
2400 return;
2401}
2402
2403
2404#define IGB_TX_FLAGS_CSUM 0x00000001
2405#define IGB_TX_FLAGS_VLAN 0x00000002
2406#define IGB_TX_FLAGS_TSO 0x00000004
2407#define IGB_TX_FLAGS_IPV4 0x00000008
2408#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2409#define IGB_TX_FLAGS_VLAN_SHIFT 16
2410
2411static inline int igb_tso_adv(struct igb_adapter *adapter,
2412 struct igb_ring *tx_ring,
2413 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2414{
2415 struct e1000_adv_tx_context_desc *context_desc;
2416 unsigned int i;
2417 int err;
2418 struct igb_buffer *buffer_info;
2419 u32 info = 0, tu_cmd = 0;
2420 u32 mss_l4len_idx, l4len;
2421 *hdr_len = 0;
2422
2423 if (skb_header_cloned(skb)) {
2424 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2425 if (err)
2426 return err;
2427 }
2428
2429 l4len = tcp_hdrlen(skb);
2430 *hdr_len += l4len;
2431
2432 if (skb->protocol == htons(ETH_P_IP)) {
2433 struct iphdr *iph = ip_hdr(skb);
2434 iph->tot_len = 0;
2435 iph->check = 0;
2436 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2437 iph->daddr, 0,
2438 IPPROTO_TCP,
2439 0);
2440 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2441 ipv6_hdr(skb)->payload_len = 0;
2442 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2443 &ipv6_hdr(skb)->daddr,
2444 0, IPPROTO_TCP, 0);
2445 }
2446
2447 i = tx_ring->next_to_use;
2448
2449 buffer_info = &tx_ring->buffer_info[i];
2450 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2451 /* VLAN MACLEN IPLEN */
2452 if (tx_flags & IGB_TX_FLAGS_VLAN)
2453 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2454 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2455 *hdr_len += skb_network_offset(skb);
2456 info |= skb_network_header_len(skb);
2457 *hdr_len += skb_network_header_len(skb);
2458 context_desc->vlan_macip_lens = cpu_to_le32(info);
2459
2460 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2461 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2462
2463 if (skb->protocol == htons(ETH_P_IP))
2464 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2465 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2466
2467 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2468
2469 /* MSS L4LEN IDX */
2470 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2471 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2472
2473 /* Context index must be unique per ring. Luckily, so is the interrupt
2474 * mask value. */
2475 mss_l4len_idx |= tx_ring->eims_value >> 4;
2476
2477 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2478 context_desc->seqnum_seed = 0;
2479
2480 buffer_info->time_stamp = jiffies;
2481 buffer_info->dma = 0;
2482 i++;
2483 if (i == tx_ring->count)
2484 i = 0;
2485
2486 tx_ring->next_to_use = i;
2487
2488 return true;
2489}
2490
2491static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2492 struct igb_ring *tx_ring,
2493 struct sk_buff *skb, u32 tx_flags)
2494{
2495 struct e1000_adv_tx_context_desc *context_desc;
2496 unsigned int i;
2497 struct igb_buffer *buffer_info;
2498 u32 info = 0, tu_cmd = 0;
2499
2500 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2501 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2502 i = tx_ring->next_to_use;
2503 buffer_info = &tx_ring->buffer_info[i];
2504 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2505
2506 if (tx_flags & IGB_TX_FLAGS_VLAN)
2507 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2508 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2509 if (skb->ip_summed == CHECKSUM_PARTIAL)
2510 info |= skb_network_header_len(skb);
2511
2512 context_desc->vlan_macip_lens = cpu_to_le32(info);
2513
2514 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2515
2516 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2517 if (skb->protocol == htons(ETH_P_IP))
2518 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2519 if (skb->sk && (skb->sk->sk_protocol == IPPROTO_TCP))
2520 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2521 }
2522
2523 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2524 context_desc->seqnum_seed = 0;
2525 context_desc->mss_l4len_idx =
2526 cpu_to_le32(tx_ring->eims_value >> 4);
2527
2528 buffer_info->time_stamp = jiffies;
2529 buffer_info->dma = 0;
2530
2531 i++;
2532 if (i == tx_ring->count)
2533 i = 0;
2534 tx_ring->next_to_use = i;
2535
2536 return true;
2537 }
2538
2539
2540 return false;
2541}
2542
2543#define IGB_MAX_TXD_PWR 16
2544#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2545
2546static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2547 struct igb_ring *tx_ring,
2548 struct sk_buff *skb)
2549{
2550 struct igb_buffer *buffer_info;
2551 unsigned int len = skb_headlen(skb);
2552 unsigned int count = 0, i;
2553 unsigned int f;
2554
2555 i = tx_ring->next_to_use;
2556
2557 buffer_info = &tx_ring->buffer_info[i];
2558 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2559 buffer_info->length = len;
2560 /* set time_stamp *before* dma to help avoid a possible race */
2561 buffer_info->time_stamp = jiffies;
2562 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2563 PCI_DMA_TODEVICE);
2564 count++;
2565 i++;
2566 if (i == tx_ring->count)
2567 i = 0;
2568
2569 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2570 struct skb_frag_struct *frag;
2571
2572 frag = &skb_shinfo(skb)->frags[f];
2573 len = frag->size;
2574
2575 buffer_info = &tx_ring->buffer_info[i];
2576 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2577 buffer_info->length = len;
2578 buffer_info->time_stamp = jiffies;
2579 buffer_info->dma = pci_map_page(adapter->pdev,
2580 frag->page,
2581 frag->page_offset,
2582 len,
2583 PCI_DMA_TODEVICE);
2584
2585 count++;
2586 i++;
2587 if (i == tx_ring->count)
2588 i = 0;
2589 }
2590
2591 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2592 tx_ring->buffer_info[i].skb = skb;
2593
2594 return count;
2595}
2596
2597static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2598 struct igb_ring *tx_ring,
2599 int tx_flags, int count, u32 paylen,
2600 u8 hdr_len)
2601{
2602 union e1000_adv_tx_desc *tx_desc = NULL;
2603 struct igb_buffer *buffer_info;
2604 u32 olinfo_status = 0, cmd_type_len;
2605 unsigned int i;
2606
2607 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2608 E1000_ADVTXD_DCMD_DEXT);
2609
2610 if (tx_flags & IGB_TX_FLAGS_VLAN)
2611 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2612
2613 if (tx_flags & IGB_TX_FLAGS_TSO) {
2614 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2615
2616 /* insert tcp checksum */
2617 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2618
2619 /* insert ip checksum */
2620 if (tx_flags & IGB_TX_FLAGS_IPV4)
2621 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2622
2623 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2624 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2625 }
2626
2627 if (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2628 IGB_TX_FLAGS_VLAN))
2629 olinfo_status |= tx_ring->eims_value >> 4;
2630
2631 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2632
2633 i = tx_ring->next_to_use;
2634 while (count--) {
2635 buffer_info = &tx_ring->buffer_info[i];
2636 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2637 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2638 tx_desc->read.cmd_type_len =
2639 cpu_to_le32(cmd_type_len | buffer_info->length);
2640 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2641 i++;
2642 if (i == tx_ring->count)
2643 i = 0;
2644 }
2645
2646 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2647 /* Force memory writes to complete before letting h/w
2648 * know there are new descriptors to fetch. (Only
2649 * applicable for weak-ordered memory model archs,
2650 * such as IA-64). */
2651 wmb();
2652
2653 tx_ring->next_to_use = i;
2654 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2655 /* we need this if more than one processor can write to our tail
2656 * at a time, it syncronizes IO on IA64/Altix systems */
2657 mmiowb();
2658}
2659
2660static int __igb_maybe_stop_tx(struct net_device *netdev,
2661 struct igb_ring *tx_ring, int size)
2662{
2663 struct igb_adapter *adapter = netdev_priv(netdev);
2664
2665 netif_stop_queue(netdev);
2666 /* Herbert's original patch had:
2667 * smp_mb__after_netif_stop_queue();
2668 * but since that doesn't exist yet, just open code it. */
2669 smp_mb();
2670
2671 /* We need to check again in a case another CPU has just
2672 * made room available. */
2673 if (IGB_DESC_UNUSED(tx_ring) < size)
2674 return -EBUSY;
2675
2676 /* A reprieve! */
2677 netif_start_queue(netdev);
2678 ++adapter->restart_queue;
2679 return 0;
2680}
2681
2682static int igb_maybe_stop_tx(struct net_device *netdev,
2683 struct igb_ring *tx_ring, int size)
2684{
2685 if (IGB_DESC_UNUSED(tx_ring) >= size)
2686 return 0;
2687 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2688}
2689
2690#define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2691
2692static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2693 struct net_device *netdev,
2694 struct igb_ring *tx_ring)
2695{
2696 struct igb_adapter *adapter = netdev_priv(netdev);
2697 unsigned int tx_flags = 0;
2698 unsigned int len;
2699 unsigned long irq_flags;
2700 u8 hdr_len = 0;
2701 int tso = 0;
2702
2703 len = skb_headlen(skb);
2704
2705 if (test_bit(__IGB_DOWN, &adapter->state)) {
2706 dev_kfree_skb_any(skb);
2707 return NETDEV_TX_OK;
2708 }
2709
2710 if (skb->len <= 0) {
2711 dev_kfree_skb_any(skb);
2712 return NETDEV_TX_OK;
2713 }
2714
2715 if (!spin_trylock_irqsave(&tx_ring->tx_lock, irq_flags))
2716 /* Collision - tell upper layer to requeue */
2717 return NETDEV_TX_LOCKED;
2718
2719 /* need: 1 descriptor per page,
2720 * + 2 desc gap to keep tail from touching head,
2721 * + 1 desc for skb->data,
2722 * + 1 desc for context descriptor,
2723 * otherwise try next time */
2724 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2725 /* this is a hard error */
2726 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2727 return NETDEV_TX_BUSY;
2728 }
2729
2730 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2731 tx_flags |= IGB_TX_FLAGS_VLAN;
2732 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2733 }
2734
2735 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2736 &hdr_len) : 0;
2737
2738 if (tso < 0) {
2739 dev_kfree_skb_any(skb);
2740 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2741 return NETDEV_TX_OK;
2742 }
2743
2744 if (tso)
2745 tx_flags |= IGB_TX_FLAGS_TSO;
2746 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2747 if (skb->ip_summed == CHECKSUM_PARTIAL)
2748 tx_flags |= IGB_TX_FLAGS_CSUM;
2749
2750 if (skb->protocol == htons(ETH_P_IP))
2751 tx_flags |= IGB_TX_FLAGS_IPV4;
2752
2753 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2754 igb_tx_map_adv(adapter, tx_ring, skb),
2755 skb->len, hdr_len);
2756
2757 netdev->trans_start = jiffies;
2758
2759 /* Make sure there is space in the ring for the next send. */
2760 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2761
2762 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2763 return NETDEV_TX_OK;
2764}
2765
2766static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
2767{
2768 struct igb_adapter *adapter = netdev_priv(netdev);
2769 struct igb_ring *tx_ring = &adapter->tx_ring[0];
2770
2771 /* This goes back to the question of how to logically map a tx queue
2772 * to a flow. Right now, performance is impacted slightly negatively
2773 * if using multiple tx queues. If the stack breaks away from a
2774 * single qdisc implementation, we can look at this again. */
2775 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
2776}
2777
2778/**
2779 * igb_tx_timeout - Respond to a Tx Hang
2780 * @netdev: network interface device structure
2781 **/
2782static void igb_tx_timeout(struct net_device *netdev)
2783{
2784 struct igb_adapter *adapter = netdev_priv(netdev);
2785 struct e1000_hw *hw = &adapter->hw;
2786
2787 /* Do the reset outside of interrupt context */
2788 adapter->tx_timeout_count++;
2789 schedule_work(&adapter->reset_task);
2790 wr32(E1000_EICS, adapter->eims_enable_mask &
2791 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
2792}
2793
2794static void igb_reset_task(struct work_struct *work)
2795{
2796 struct igb_adapter *adapter;
2797 adapter = container_of(work, struct igb_adapter, reset_task);
2798
2799 igb_reinit_locked(adapter);
2800}
2801
2802/**
2803 * igb_get_stats - Get System Network Statistics
2804 * @netdev: network interface device structure
2805 *
2806 * Returns the address of the device statistics structure.
2807 * The statistics are actually updated from the timer callback.
2808 **/
2809static struct net_device_stats *
2810igb_get_stats(struct net_device *netdev)
2811{
2812 struct igb_adapter *adapter = netdev_priv(netdev);
2813
2814 /* only return the current stats */
2815 return &adapter->net_stats;
2816}
2817
2818/**
2819 * igb_change_mtu - Change the Maximum Transfer Unit
2820 * @netdev: network interface device structure
2821 * @new_mtu: new value for maximum frame size
2822 *
2823 * Returns 0 on success, negative on failure
2824 **/
2825static int igb_change_mtu(struct net_device *netdev, int new_mtu)
2826{
2827 struct igb_adapter *adapter = netdev_priv(netdev);
2828 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2829
2830 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2831 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2832 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2833 return -EINVAL;
2834 }
2835
2836#define MAX_STD_JUMBO_FRAME_SIZE 9234
2837 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2838 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2839 return -EINVAL;
2840 }
2841
2842 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2843 msleep(1);
2844 /* igb_down has a dependency on max_frame_size */
2845 adapter->max_frame_size = max_frame;
2846 if (netif_running(netdev))
2847 igb_down(adapter);
2848
2849 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2850 * means we reserve 2 more, this pushes us to allocate from the next
2851 * larger slab size.
2852 * i.e. RXBUFFER_2048 --> size-4096 slab
2853 */
2854
2855 if (max_frame <= IGB_RXBUFFER_256)
2856 adapter->rx_buffer_len = IGB_RXBUFFER_256;
2857 else if (max_frame <= IGB_RXBUFFER_512)
2858 adapter->rx_buffer_len = IGB_RXBUFFER_512;
2859 else if (max_frame <= IGB_RXBUFFER_1024)
2860 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
2861 else if (max_frame <= IGB_RXBUFFER_2048)
2862 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
2863 else
2864 adapter->rx_buffer_len = IGB_RXBUFFER_4096;
2865 /* adjust allocation if LPE protects us, and we aren't using SBP */
2866 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2867 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
2868 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
2869
2870 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2871 netdev->mtu, new_mtu);
2872 netdev->mtu = new_mtu;
2873
2874 if (netif_running(netdev))
2875 igb_up(adapter);
2876 else
2877 igb_reset(adapter);
2878
2879 clear_bit(__IGB_RESETTING, &adapter->state);
2880
2881 return 0;
2882}
2883
2884/**
2885 * igb_update_stats - Update the board statistics counters
2886 * @adapter: board private structure
2887 **/
2888
2889void igb_update_stats(struct igb_adapter *adapter)
2890{
2891 struct e1000_hw *hw = &adapter->hw;
2892 struct pci_dev *pdev = adapter->pdev;
2893 u16 phy_tmp;
2894
2895#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2896
2897 /*
2898 * Prevent stats update while adapter is being reset, or if the pci
2899 * connection is down.
2900 */
2901 if (adapter->link_speed == 0)
2902 return;
2903 if (pci_channel_offline(pdev))
2904 return;
2905
2906 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
2907 adapter->stats.gprc += rd32(E1000_GPRC);
2908 adapter->stats.gorc += rd32(E1000_GORCL);
2909 rd32(E1000_GORCH); /* clear GORCL */
2910 adapter->stats.bprc += rd32(E1000_BPRC);
2911 adapter->stats.mprc += rd32(E1000_MPRC);
2912 adapter->stats.roc += rd32(E1000_ROC);
2913
2914 adapter->stats.prc64 += rd32(E1000_PRC64);
2915 adapter->stats.prc127 += rd32(E1000_PRC127);
2916 adapter->stats.prc255 += rd32(E1000_PRC255);
2917 adapter->stats.prc511 += rd32(E1000_PRC511);
2918 adapter->stats.prc1023 += rd32(E1000_PRC1023);
2919 adapter->stats.prc1522 += rd32(E1000_PRC1522);
2920 adapter->stats.symerrs += rd32(E1000_SYMERRS);
2921 adapter->stats.sec += rd32(E1000_SEC);
2922
2923 adapter->stats.mpc += rd32(E1000_MPC);
2924 adapter->stats.scc += rd32(E1000_SCC);
2925 adapter->stats.ecol += rd32(E1000_ECOL);
2926 adapter->stats.mcc += rd32(E1000_MCC);
2927 adapter->stats.latecol += rd32(E1000_LATECOL);
2928 adapter->stats.dc += rd32(E1000_DC);
2929 adapter->stats.rlec += rd32(E1000_RLEC);
2930 adapter->stats.xonrxc += rd32(E1000_XONRXC);
2931 adapter->stats.xontxc += rd32(E1000_XONTXC);
2932 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
2933 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
2934 adapter->stats.fcruc += rd32(E1000_FCRUC);
2935 adapter->stats.gptc += rd32(E1000_GPTC);
2936 adapter->stats.gotc += rd32(E1000_GOTCL);
2937 rd32(E1000_GOTCH); /* clear GOTCL */
2938 adapter->stats.rnbc += rd32(E1000_RNBC);
2939 adapter->stats.ruc += rd32(E1000_RUC);
2940 adapter->stats.rfc += rd32(E1000_RFC);
2941 adapter->stats.rjc += rd32(E1000_RJC);
2942 adapter->stats.tor += rd32(E1000_TORH);
2943 adapter->stats.tot += rd32(E1000_TOTH);
2944 adapter->stats.tpr += rd32(E1000_TPR);
2945
2946 adapter->stats.ptc64 += rd32(E1000_PTC64);
2947 adapter->stats.ptc127 += rd32(E1000_PTC127);
2948 adapter->stats.ptc255 += rd32(E1000_PTC255);
2949 adapter->stats.ptc511 += rd32(E1000_PTC511);
2950 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
2951 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
2952
2953 adapter->stats.mptc += rd32(E1000_MPTC);
2954 adapter->stats.bptc += rd32(E1000_BPTC);
2955
2956 /* used for adaptive IFS */
2957
2958 hw->mac.tx_packet_delta = rd32(E1000_TPT);
2959 adapter->stats.tpt += hw->mac.tx_packet_delta;
2960 hw->mac.collision_delta = rd32(E1000_COLC);
2961 adapter->stats.colc += hw->mac.collision_delta;
2962
2963 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
2964 adapter->stats.rxerrc += rd32(E1000_RXERRC);
2965 adapter->stats.tncrs += rd32(E1000_TNCRS);
2966 adapter->stats.tsctc += rd32(E1000_TSCTC);
2967 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
2968
2969 adapter->stats.iac += rd32(E1000_IAC);
2970 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
2971 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
2972 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
2973 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
2974 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
2975 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
2976 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
2977 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
2978
2979 /* Fill out the OS statistics structure */
2980 adapter->net_stats.multicast = adapter->stats.mprc;
2981 adapter->net_stats.collisions = adapter->stats.colc;
2982
2983 /* Rx Errors */
2984
2985 /* RLEC on some newer hardware can be incorrect so build
2986 * our own version based on RUC and ROC */
2987 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2988 adapter->stats.crcerrs + adapter->stats.algnerrc +
2989 adapter->stats.ruc + adapter->stats.roc +
2990 adapter->stats.cexterr;
2991 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2992 adapter->stats.roc;
2993 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2994 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2995 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2996
2997 /* Tx Errors */
2998 adapter->net_stats.tx_errors = adapter->stats.ecol +
2999 adapter->stats.latecol;
3000 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3001 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3002 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3003
3004 /* Tx Dropped needs to be maintained elsewhere */
3005
3006 /* Phy Stats */
3007 if (hw->phy.media_type == e1000_media_type_copper) {
3008 if ((adapter->link_speed == SPEED_1000) &&
3009 (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
3010 &phy_tmp))) {
3011 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3012 adapter->phy_stats.idle_errors += phy_tmp;
3013 }
3014 }
3015
3016 /* Management Stats */
3017 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3018 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3019 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3020}
3021
3022
3023static irqreturn_t igb_msix_other(int irq, void *data)
3024{
3025 struct net_device *netdev = data;
3026 struct igb_adapter *adapter = netdev_priv(netdev);
3027 struct e1000_hw *hw = &adapter->hw;
3028 u32 eicr;
3029 /* disable interrupts from the "other" bit, avoid re-entry */
3030 wr32(E1000_EIMC, E1000_EIMS_OTHER);
3031
3032 eicr = rd32(E1000_EICR);
3033
3034 if (eicr & E1000_EIMS_OTHER) {
3035 u32 icr = rd32(E1000_ICR);
3036 /* reading ICR causes bit 31 of EICR to be cleared */
3037 if (!(icr & E1000_ICR_LSC))
3038 goto no_link_interrupt;
3039 hw->mac.get_link_status = 1;
3040 /* guard against interrupt when we're going down */
3041 if (!test_bit(__IGB_DOWN, &adapter->state))
3042 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3043 }
3044
3045no_link_interrupt:
3046 wr32(E1000_IMS, E1000_IMS_LSC);
3047 wr32(E1000_EIMS, E1000_EIMS_OTHER);
3048
3049 return IRQ_HANDLED;
3050}
3051
3052static irqreturn_t igb_msix_tx(int irq, void *data)
3053{
3054 struct igb_ring *tx_ring = data;
3055 struct igb_adapter *adapter = tx_ring->adapter;
3056 struct e1000_hw *hw = &adapter->hw;
3057
3058 if (!tx_ring->itr_val)
3059 wr32(E1000_EIMC, tx_ring->eims_value);
3060
3061 tx_ring->total_bytes = 0;
3062 tx_ring->total_packets = 0;
3063 if (!igb_clean_tx_irq(adapter, tx_ring))
3064 /* Ring was not completely cleaned, so fire another interrupt */
3065 wr32(E1000_EICS, tx_ring->eims_value);
3066
3067 if (!tx_ring->itr_val)
3068 wr32(E1000_EIMS, tx_ring->eims_value);
3069 return IRQ_HANDLED;
3070}
3071
3072static irqreturn_t igb_msix_rx(int irq, void *data)
3073{
3074 struct igb_ring *rx_ring = data;
3075 struct igb_adapter *adapter = rx_ring->adapter;
3076 struct e1000_hw *hw = &adapter->hw;
3077
3078 if (!rx_ring->itr_val)
3079 wr32(E1000_EIMC, rx_ring->eims_value);
3080
3081 if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi)) {
3082 rx_ring->total_bytes = 0;
3083 rx_ring->total_packets = 0;
3084 rx_ring->no_itr_adjust = 0;
3085 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3086 } else {
3087 if (!rx_ring->no_itr_adjust) {
3088 igb_lower_rx_eitr(adapter, rx_ring);
3089 rx_ring->no_itr_adjust = 1;
3090 }
3091 }
3092
3093 return IRQ_HANDLED;
3094}
3095
3096
3097/**
3098 * igb_intr_msi - Interrupt Handler
3099 * @irq: interrupt number
3100 * @data: pointer to a network interface device structure
3101 **/
3102static irqreturn_t igb_intr_msi(int irq, void *data)
3103{
3104 struct net_device *netdev = data;
3105 struct igb_adapter *adapter = netdev_priv(netdev);
3106 struct napi_struct *napi = &adapter->napi;
3107 struct e1000_hw *hw = &adapter->hw;
3108 /* read ICR disables interrupts using IAM */
3109 u32 icr = rd32(E1000_ICR);
3110
3111 /* Write the ITR value calculated at the end of the
3112 * previous interrupt.
3113 */
3114 if (adapter->set_itr) {
3115 wr32(E1000_ITR,
3116 1000000000 / (adapter->itr * 256));
3117 adapter->set_itr = 0;
3118 }
3119
3120 /* read ICR disables interrupts using IAM */
3121 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3122 hw->mac.get_link_status = 1;
3123 if (!test_bit(__IGB_DOWN, &adapter->state))
3124 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3125 }
3126
3127 if (netif_rx_schedule_prep(netdev, napi)) {
3128 adapter->tx_ring->total_bytes = 0;
3129 adapter->tx_ring->total_packets = 0;
3130 adapter->rx_ring->total_bytes = 0;
3131 adapter->rx_ring->total_packets = 0;
3132 __netif_rx_schedule(netdev, napi);
3133 }
3134
3135 return IRQ_HANDLED;
3136}
3137
3138/**
3139 * igb_intr - Interrupt Handler
3140 * @irq: interrupt number
3141 * @data: pointer to a network interface device structure
3142 **/
3143static irqreturn_t igb_intr(int irq, void *data)
3144{
3145 struct net_device *netdev = data;
3146 struct igb_adapter *adapter = netdev_priv(netdev);
3147 struct napi_struct *napi = &adapter->napi;
3148 struct e1000_hw *hw = &adapter->hw;
3149 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3150 * need for the IMC write */
3151 u32 icr = rd32(E1000_ICR);
3152 u32 eicr = 0;
3153 if (!icr)
3154 return IRQ_NONE; /* Not our interrupt */
3155
3156 /* Write the ITR value calculated at the end of the
3157 * previous interrupt.
3158 */
3159 if (adapter->set_itr) {
3160 wr32(E1000_ITR,
3161 1000000000 / (adapter->itr * 256));
3162 adapter->set_itr = 0;
3163 }
3164
3165 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3166 * not set, then the adapter didn't send an interrupt */
3167 if (!(icr & E1000_ICR_INT_ASSERTED))
3168 return IRQ_NONE;
3169
3170 eicr = rd32(E1000_EICR);
3171
3172 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3173 hw->mac.get_link_status = 1;
3174 /* guard against interrupt when we're going down */
3175 if (!test_bit(__IGB_DOWN, &adapter->state))
3176 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3177 }
3178
3179 if (netif_rx_schedule_prep(netdev, napi)) {
3180 adapter->tx_ring->total_bytes = 0;
3181 adapter->rx_ring->total_bytes = 0;
3182 adapter->tx_ring->total_packets = 0;
3183 adapter->rx_ring->total_packets = 0;
3184 __netif_rx_schedule(netdev, napi);
3185 }
3186
3187 return IRQ_HANDLED;
3188}
3189
3190/**
3191 * igb_clean - NAPI Rx polling callback
3192 * @adapter: board private structure
3193 **/
3194static int igb_clean(struct napi_struct *napi, int budget)
3195{
3196 struct igb_adapter *adapter = container_of(napi, struct igb_adapter,
3197 napi);
3198 struct net_device *netdev = adapter->netdev;
3199 int tx_clean_complete = 1, work_done = 0;
3200 int i;
3201
3202 /* Must NOT use netdev_priv macro here. */
3203 adapter = netdev->priv;
3204
3205 /* Keep link state information with original netdev */
3206 if (!netif_carrier_ok(netdev))
3207 goto quit_polling;
3208
3209 /* igb_clean is called per-cpu. This lock protects tx_ring[i] from
3210 * being cleaned by multiple cpus simultaneously. A failure obtaining
3211 * the lock means tx_ring[i] is currently being cleaned anyway. */
3212 for (i = 0; i < adapter->num_tx_queues; i++) {
3213 if (spin_trylock(&adapter->tx_ring[i].tx_clean_lock)) {
3214 tx_clean_complete &= igb_clean_tx_irq(adapter,
3215 &adapter->tx_ring[i]);
3216 spin_unlock(&adapter->tx_ring[i].tx_clean_lock);
3217 }
3218 }
3219
3220 for (i = 0; i < adapter->num_rx_queues; i++)
3221 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i], &work_done,
3222 adapter->rx_ring[i].napi.weight);
3223
3224 /* If no Tx and not enough Rx work done, exit the polling mode */
3225 if ((tx_clean_complete && (work_done < budget)) ||
3226 !netif_running(netdev)) {
3227quit_polling:
3228 if (adapter->itr_setting & 3)
3229 igb_set_itr(adapter, E1000_ITR, false);
3230 netif_rx_complete(netdev, napi);
3231 if (!test_bit(__IGB_DOWN, &adapter->state))
3232 igb_irq_enable(adapter);
3233 return 0;
3234 }
3235
3236 return 1;
3237}
3238
3239static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3240{
3241 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3242 struct igb_adapter *adapter = rx_ring->adapter;
3243 struct e1000_hw *hw = &adapter->hw;
3244 struct net_device *netdev = adapter->netdev;
3245 int work_done = 0;
3246
3247 /* Keep link state information with original netdev */
3248 if (!netif_carrier_ok(netdev))
3249 goto quit_polling;
3250
3251 igb_clean_rx_irq_adv(adapter, rx_ring, &work_done, budget);
3252
3253
3254 /* If not enough Rx work done, exit the polling mode */
3255 if ((work_done == 0) || !netif_running(netdev)) {
3256quit_polling:
3257 netif_rx_complete(netdev, napi);
3258
3259 wr32(E1000_EIMS, rx_ring->eims_value);
3260 if ((adapter->itr_setting & 3) && !rx_ring->no_itr_adjust &&
3261 (rx_ring->total_packets > IGB_DYN_ITR_PACKET_THRESHOLD)) {
3262 int mean_size = rx_ring->total_bytes /
3263 rx_ring->total_packets;
3264 if (mean_size < IGB_DYN_ITR_LENGTH_LOW)
3265 igb_raise_rx_eitr(adapter, rx_ring);
3266 else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH)
3267 igb_lower_rx_eitr(adapter, rx_ring);
3268 }
3269 return 0;
3270 }
3271
3272 return 1;
3273}
3274/**
3275 * igb_clean_tx_irq - Reclaim resources after transmit completes
3276 * @adapter: board private structure
3277 * returns true if ring is completely cleaned
3278 **/
3279static bool igb_clean_tx_irq(struct igb_adapter *adapter,
3280 struct igb_ring *tx_ring)
3281{
3282 struct net_device *netdev = adapter->netdev;
3283 struct e1000_hw *hw = &adapter->hw;
3284 struct e1000_tx_desc *tx_desc;
3285 struct igb_buffer *buffer_info;
3286 struct sk_buff *skb;
3287 unsigned int i;
3288 u32 head, oldhead;
3289 unsigned int count = 0;
3290 bool cleaned = false;
3291 bool retval = true;
3292 unsigned int total_bytes = 0, total_packets = 0;
3293
3294 rmb();
3295 head = *(volatile u32 *)((struct e1000_tx_desc *)tx_ring->desc
3296 + tx_ring->count);
3297 head = le32_to_cpu(head);
3298 i = tx_ring->next_to_clean;
3299 while (1) {
3300 while (i != head) {
3301 cleaned = true;
3302 tx_desc = E1000_TX_DESC(*tx_ring, i);
3303 buffer_info = &tx_ring->buffer_info[i];
3304 skb = buffer_info->skb;
3305
3306 if (skb) {
3307 unsigned int segs, bytecount;
3308 /* gso_segs is currently only valid for tcp */
3309 segs = skb_shinfo(skb)->gso_segs ?: 1;
3310 /* multiply data chunks by size of headers */
3311 bytecount = ((segs - 1) * skb_headlen(skb)) +
3312 skb->len;
3313 total_packets += segs;
3314 total_bytes += bytecount;
3315 }
3316
3317 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3318 tx_desc->upper.data = 0;
3319
3320 i++;
3321 if (i == tx_ring->count)
3322 i = 0;
3323
3324 count++;
3325 if (count == IGB_MAX_TX_CLEAN) {
3326 retval = false;
3327 goto done_cleaning;
3328 }
3329 }
3330 oldhead = head;
3331 rmb();
3332 head = *(volatile u32 *)((struct e1000_tx_desc *)tx_ring->desc
3333 + tx_ring->count);
3334 head = le32_to_cpu(head);
3335 if (head == oldhead)
3336 goto done_cleaning;
3337 } /* while (1) */
3338
3339done_cleaning:
3340 tx_ring->next_to_clean = i;
3341
3342 if (unlikely(cleaned &&
3343 netif_carrier_ok(netdev) &&
3344 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3345 /* Make sure that anybody stopping the queue after this
3346 * sees the new next_to_clean.
3347 */
3348 smp_mb();
3349 if (netif_queue_stopped(netdev) &&
3350 !(test_bit(__IGB_DOWN, &adapter->state))) {
3351 netif_wake_queue(netdev);
3352 ++adapter->restart_queue;
3353 }
3354 }
3355
3356 if (tx_ring->detect_tx_hung) {
3357 /* Detect a transmit hang in hardware, this serializes the
3358 * check with the clearing of time_stamp and movement of i */
3359 tx_ring->detect_tx_hung = false;
3360 if (tx_ring->buffer_info[i].time_stamp &&
3361 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3362 (adapter->tx_timeout_factor * HZ))
3363 && !(rd32(E1000_STATUS) &
3364 E1000_STATUS_TXOFF)) {
3365
3366 tx_desc = E1000_TX_DESC(*tx_ring, i);
3367 /* detected Tx unit hang */
3368 dev_err(&adapter->pdev->dev,
3369 "Detected Tx Unit Hang\n"
3370 " Tx Queue <%lu>\n"
3371 " TDH <%x>\n"
3372 " TDT <%x>\n"
3373 " next_to_use <%x>\n"
3374 " next_to_clean <%x>\n"
3375 " head (WB) <%x>\n"
3376 "buffer_info[next_to_clean]\n"
3377 " time_stamp <%lx>\n"
3378 " jiffies <%lx>\n"
3379 " desc.status <%x>\n",
3380 (unsigned long)((tx_ring - adapter->tx_ring) /
3381 sizeof(struct igb_ring)),
3382 readl(adapter->hw.hw_addr + tx_ring->head),
3383 readl(adapter->hw.hw_addr + tx_ring->tail),
3384 tx_ring->next_to_use,
3385 tx_ring->next_to_clean,
3386 head,
3387 tx_ring->buffer_info[i].time_stamp,
3388 jiffies,
3389 tx_desc->upper.fields.status);
3390 netif_stop_queue(netdev);
3391 }
3392 }
3393 tx_ring->total_bytes += total_bytes;
3394 tx_ring->total_packets += total_packets;
3395 adapter->net_stats.tx_bytes += total_bytes;
3396 adapter->net_stats.tx_packets += total_packets;
3397 return retval;
3398}
3399
3400
3401/**
3402 * igb_receive_skb - helper function to handle rx indications
3403 * @adapter: board private structure
3404 * @status: descriptor status field as written by hardware
3405 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3406 * @skb: pointer to sk_buff to be indicated to stack
3407 **/
3408static void igb_receive_skb(struct igb_adapter *adapter, u8 status, u16 vlan,
3409 struct sk_buff *skb)
3410{
3411 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
3412 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3413 le16_to_cpu(vlan) &
3414 E1000_RXD_SPC_VLAN_MASK);
3415 else
3416 netif_receive_skb(skb);
3417}
3418
3419
3420static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3421 u32 status_err, struct sk_buff *skb)
3422{
3423 skb->ip_summed = CHECKSUM_NONE;
3424
3425 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3426 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3427 return;
3428 /* TCP/UDP checksum error bit is set */
3429 if (status_err &
3430 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3431 /* let the stack verify checksum errors */
3432 adapter->hw_csum_err++;
3433 return;
3434 }
3435 /* It must be a TCP or UDP packet with a valid checksum */
3436 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3437 skb->ip_summed = CHECKSUM_UNNECESSARY;
3438
3439 adapter->hw_csum_good++;
3440}
3441
3442static bool igb_clean_rx_irq_adv(struct igb_adapter *adapter,
3443 struct igb_ring *rx_ring,
3444 int *work_done, int budget)
3445{
3446 struct net_device *netdev = adapter->netdev;
3447 struct pci_dev *pdev = adapter->pdev;
3448 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3449 struct igb_buffer *buffer_info , *next_buffer;
3450 struct sk_buff *skb;
3451 unsigned int i, j;
3452 u32 length, hlen, staterr;
3453 bool cleaned = false;
3454 int cleaned_count = 0;
3455 unsigned int total_bytes = 0, total_packets = 0;
3456
3457 i = rx_ring->next_to_clean;
3458 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3459 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3460
3461 while (staterr & E1000_RXD_STAT_DD) {
3462 if (*work_done >= budget)
3463 break;
3464 (*work_done)++;
3465 buffer_info = &rx_ring->buffer_info[i];
3466
3467 /* HW will not DMA in data larger than the given buffer, even
3468 * if it parses the (NFS, of course) header to be larger. In
3469 * that case, it fills the header buffer and spills the rest
3470 * into the page.
3471 */
3472 hlen = le16_to_cpu((rx_desc->wb.lower.lo_dword.hdr_info &
3473 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT);
3474 if (hlen > adapter->rx_ps_hdr_size)
3475 hlen = adapter->rx_ps_hdr_size;
3476
3477 length = le16_to_cpu(rx_desc->wb.upper.length);
3478 cleaned = true;
3479 cleaned_count++;
3480
3481 if (rx_ring->pending_skb != NULL) {
3482 skb = rx_ring->pending_skb;
3483 rx_ring->pending_skb = NULL;
3484 j = rx_ring->pending_skb_page;
3485 } else {
3486 skb = buffer_info->skb;
3487 prefetch(skb->data - NET_IP_ALIGN);
3488 buffer_info->skb = NULL;
3489 if (hlen) {
3490 pci_unmap_single(pdev, buffer_info->dma,
3491 adapter->rx_ps_hdr_size +
3492 NET_IP_ALIGN,
3493 PCI_DMA_FROMDEVICE);
3494 skb_put(skb, hlen);
3495 } else {
3496 pci_unmap_single(pdev, buffer_info->dma,
3497 adapter->rx_buffer_len +
3498 NET_IP_ALIGN,
3499 PCI_DMA_FROMDEVICE);
3500 skb_put(skb, length);
3501 goto send_up;
3502 }
3503 j = 0;
3504 }
3505
3506 while (length) {
3507 pci_unmap_page(pdev, buffer_info->page_dma,
3508 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3509 buffer_info->page_dma = 0;
3510 skb_fill_page_desc(skb, j, buffer_info->page,
3511 0, length);
3512 buffer_info->page = NULL;
3513
3514 skb->len += length;
3515 skb->data_len += length;
3516 skb->truesize += length;
3517 rx_desc->wb.upper.status_error = 0;
3518 if (staterr & E1000_RXD_STAT_EOP)
3519 break;
3520
3521 j++;
3522 cleaned_count++;
3523 i++;
3524 if (i == rx_ring->count)
3525 i = 0;
3526
3527 buffer_info = &rx_ring->buffer_info[i];
3528 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3529 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3530 length = le16_to_cpu(rx_desc->wb.upper.length);
3531 if (!(staterr & E1000_RXD_STAT_DD)) {
3532 rx_ring->pending_skb = skb;
3533 rx_ring->pending_skb_page = j;
3534 goto out;
3535 }
3536 }
3537send_up:
3538 pskb_trim(skb, skb->len - 4);
3539 i++;
3540 if (i == rx_ring->count)
3541 i = 0;
3542 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3543 prefetch(next_rxd);
3544 next_buffer = &rx_ring->buffer_info[i];
3545
3546 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3547 dev_kfree_skb_irq(skb);
3548 goto next_desc;
3549 }
3550 rx_ring->no_itr_adjust |= (staterr & E1000_RXD_STAT_DYNINT);
3551
3552 total_bytes += skb->len;
3553 total_packets++;
3554
3555 igb_rx_checksum_adv(adapter, staterr, skb);
3556
3557 skb->protocol = eth_type_trans(skb, netdev);
3558
3559 igb_receive_skb(adapter, staterr, rx_desc->wb.upper.vlan, skb);
3560
3561 netdev->last_rx = jiffies;
3562
3563next_desc:
3564 rx_desc->wb.upper.status_error = 0;
3565
3566 /* return some buffers to hardware, one at a time is too slow */
3567 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3568 igb_alloc_rx_buffers_adv(adapter, rx_ring,
3569 cleaned_count);
3570 cleaned_count = 0;
3571 }
3572
3573 /* use prefetched values */
3574 rx_desc = next_rxd;
3575 buffer_info = next_buffer;
3576
3577 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3578 }
3579out:
3580 rx_ring->next_to_clean = i;
3581 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3582
3583 if (cleaned_count)
3584 igb_alloc_rx_buffers_adv(adapter, rx_ring, cleaned_count);
3585
3586 rx_ring->total_packets += total_packets;
3587 rx_ring->total_bytes += total_bytes;
3588 rx_ring->rx_stats.packets += total_packets;
3589 rx_ring->rx_stats.bytes += total_bytes;
3590 adapter->net_stats.rx_bytes += total_bytes;
3591 adapter->net_stats.rx_packets += total_packets;
3592 return cleaned;
3593}
3594
3595
3596/**
3597 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3598 * @adapter: address of board private structure
3599 **/
3600static void igb_alloc_rx_buffers_adv(struct igb_adapter *adapter,
3601 struct igb_ring *rx_ring,
3602 int cleaned_count)
3603{
3604 struct net_device *netdev = adapter->netdev;
3605 struct pci_dev *pdev = adapter->pdev;
3606 union e1000_adv_rx_desc *rx_desc;
3607 struct igb_buffer *buffer_info;
3608 struct sk_buff *skb;
3609 unsigned int i;
3610
3611 i = rx_ring->next_to_use;
3612 buffer_info = &rx_ring->buffer_info[i];
3613
3614 while (cleaned_count--) {
3615 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3616
3617 if (adapter->rx_ps_hdr_size && !buffer_info->page) {
3618 buffer_info->page = alloc_page(GFP_ATOMIC);
3619 if (!buffer_info->page) {
3620 adapter->alloc_rx_buff_failed++;
3621 goto no_buffers;
3622 }
3623 buffer_info->page_dma =
3624 pci_map_page(pdev,
3625 buffer_info->page,
3626 0, PAGE_SIZE,
3627 PCI_DMA_FROMDEVICE);
3628 }
3629
3630 if (!buffer_info->skb) {
3631 int bufsz;
3632
3633 if (adapter->rx_ps_hdr_size)
3634 bufsz = adapter->rx_ps_hdr_size;
3635 else
3636 bufsz = adapter->rx_buffer_len;
3637 bufsz += NET_IP_ALIGN;
3638 skb = netdev_alloc_skb(netdev, bufsz);
3639
3640 if (!skb) {
3641 adapter->alloc_rx_buff_failed++;
3642 goto no_buffers;
3643 }
3644
3645 /* Make buffer alignment 2 beyond a 16 byte boundary
3646 * this will result in a 16 byte aligned IP header after
3647 * the 14 byte MAC header is removed
3648 */
3649 skb_reserve(skb, NET_IP_ALIGN);
3650
3651 buffer_info->skb = skb;
3652 buffer_info->dma = pci_map_single(pdev, skb->data,
3653 bufsz,
3654 PCI_DMA_FROMDEVICE);
3655
3656 }
3657 /* Refresh the desc even if buffer_addrs didn't change because
3658 * each write-back erases this info. */
3659 if (adapter->rx_ps_hdr_size) {
3660 rx_desc->read.pkt_addr =
3661 cpu_to_le64(buffer_info->page_dma);
3662 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
3663 } else {
3664 rx_desc->read.pkt_addr =
3665 cpu_to_le64(buffer_info->dma);
3666 rx_desc->read.hdr_addr = 0;
3667 }
3668
3669 i++;
3670 if (i == rx_ring->count)
3671 i = 0;
3672 buffer_info = &rx_ring->buffer_info[i];
3673 }
3674
3675no_buffers:
3676 if (rx_ring->next_to_use != i) {
3677 rx_ring->next_to_use = i;
3678 if (i == 0)
3679 i = (rx_ring->count - 1);
3680 else
3681 i--;
3682
3683 /* Force memory writes to complete before letting h/w
3684 * know there are new descriptors to fetch. (Only
3685 * applicable for weak-ordered memory model archs,
3686 * such as IA-64). */
3687 wmb();
3688 writel(i, adapter->hw.hw_addr + rx_ring->tail);
3689 }
3690}
3691
3692/**
3693 * igb_mii_ioctl -
3694 * @netdev:
3695 * @ifreq:
3696 * @cmd:
3697 **/
3698static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3699{
3700 struct igb_adapter *adapter = netdev_priv(netdev);
3701 struct mii_ioctl_data *data = if_mii(ifr);
3702
3703 if (adapter->hw.phy.media_type != e1000_media_type_copper)
3704 return -EOPNOTSUPP;
3705
3706 switch (cmd) {
3707 case SIOCGMIIPHY:
3708 data->phy_id = adapter->hw.phy.addr;
3709 break;
3710 case SIOCGMIIREG:
3711 if (!capable(CAP_NET_ADMIN))
3712 return -EPERM;
3713 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
3714 data->reg_num
3715 & 0x1F, &data->val_out))
3716 return -EIO;
3717 break;
3718 case SIOCSMIIREG:
3719 default:
3720 return -EOPNOTSUPP;
3721 }
3722 return 0;
3723}
3724
3725/**
3726 * igb_ioctl -
3727 * @netdev:
3728 * @ifreq:
3729 * @cmd:
3730 **/
3731static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3732{
3733 switch (cmd) {
3734 case SIOCGMIIPHY:
3735 case SIOCGMIIREG:
3736 case SIOCSMIIREG:
3737 return igb_mii_ioctl(netdev, ifr, cmd);
3738 default:
3739 return -EOPNOTSUPP;
3740 }
3741}
3742
3743static void igb_vlan_rx_register(struct net_device *netdev,
3744 struct vlan_group *grp)
3745{
3746 struct igb_adapter *adapter = netdev_priv(netdev);
3747 struct e1000_hw *hw = &adapter->hw;
3748 u32 ctrl, rctl;
3749
3750 igb_irq_disable(adapter);
3751 adapter->vlgrp = grp;
3752
3753 if (grp) {
3754 /* enable VLAN tag insert/strip */
3755 ctrl = rd32(E1000_CTRL);
3756 ctrl |= E1000_CTRL_VME;
3757 wr32(E1000_CTRL, ctrl);
3758
3759 /* enable VLAN receive filtering */
3760 rctl = rd32(E1000_RCTL);
3761 rctl |= E1000_RCTL_VFE;
3762 rctl &= ~E1000_RCTL_CFIEN;
3763 wr32(E1000_RCTL, rctl);
3764 igb_update_mng_vlan(adapter);
3765 wr32(E1000_RLPML,
3766 adapter->max_frame_size + VLAN_TAG_SIZE);
3767 } else {
3768 /* disable VLAN tag insert/strip */
3769 ctrl = rd32(E1000_CTRL);
3770 ctrl &= ~E1000_CTRL_VME;
3771 wr32(E1000_CTRL, ctrl);
3772
3773 /* disable VLAN filtering */
3774 rctl = rd32(E1000_RCTL);
3775 rctl &= ~E1000_RCTL_VFE;
3776 wr32(E1000_RCTL, rctl);
3777 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
3778 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3779 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
3780 }
3781 wr32(E1000_RLPML,
3782 adapter->max_frame_size);
3783 }
3784
3785 if (!test_bit(__IGB_DOWN, &adapter->state))
3786 igb_irq_enable(adapter);
3787}
3788
3789static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
3790{
3791 struct igb_adapter *adapter = netdev_priv(netdev);
3792 struct e1000_hw *hw = &adapter->hw;
3793 u32 vfta, index;
3794
3795 if ((adapter->hw.mng_cookie.status &
3796 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3797 (vid == adapter->mng_vlan_id))
3798 return;
3799 /* add VID to filter table */
3800 index = (vid >> 5) & 0x7F;
3801 vfta = array_rd32(E1000_VFTA, index);
3802 vfta |= (1 << (vid & 0x1F));
3803 igb_write_vfta(&adapter->hw, index, vfta);
3804}
3805
3806static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
3807{
3808 struct igb_adapter *adapter = netdev_priv(netdev);
3809 struct e1000_hw *hw = &adapter->hw;
3810 u32 vfta, index;
3811
3812 igb_irq_disable(adapter);
3813 vlan_group_set_device(adapter->vlgrp, vid, NULL);
3814
3815 if (!test_bit(__IGB_DOWN, &adapter->state))
3816 igb_irq_enable(adapter);
3817
3818 if ((adapter->hw.mng_cookie.status &
3819 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3820 (vid == adapter->mng_vlan_id)) {
3821 /* release control to f/w */
3822 igb_release_hw_control(adapter);
3823 return;
3824 }
3825
3826 /* remove VID from filter table */
3827 index = (vid >> 5) & 0x7F;
3828 vfta = array_rd32(E1000_VFTA, index);
3829 vfta &= ~(1 << (vid & 0x1F));
3830 igb_write_vfta(&adapter->hw, index, vfta);
3831}
3832
3833static void igb_restore_vlan(struct igb_adapter *adapter)
3834{
3835 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
3836
3837 if (adapter->vlgrp) {
3838 u16 vid;
3839 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
3840 if (!vlan_group_get_device(adapter->vlgrp, vid))
3841 continue;
3842 igb_vlan_rx_add_vid(adapter->netdev, vid);
3843 }
3844 }
3845}
3846
3847int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
3848{
3849 struct e1000_mac_info *mac = &adapter->hw.mac;
3850
3851 mac->autoneg = 0;
3852
3853 /* Fiber NICs only allow 1000 gbps Full duplex */
3854 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
3855 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
3856 dev_err(&adapter->pdev->dev,
3857 "Unsupported Speed/Duplex configuration\n");
3858 return -EINVAL;
3859 }
3860
3861 switch (spddplx) {
3862 case SPEED_10 + DUPLEX_HALF:
3863 mac->forced_speed_duplex = ADVERTISE_10_HALF;
3864 break;
3865 case SPEED_10 + DUPLEX_FULL:
3866 mac->forced_speed_duplex = ADVERTISE_10_FULL;
3867 break;
3868 case SPEED_100 + DUPLEX_HALF:
3869 mac->forced_speed_duplex = ADVERTISE_100_HALF;
3870 break;
3871 case SPEED_100 + DUPLEX_FULL:
3872 mac->forced_speed_duplex = ADVERTISE_100_FULL;
3873 break;
3874 case SPEED_1000 + DUPLEX_FULL:
3875 mac->autoneg = 1;
3876 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
3877 break;
3878 case SPEED_1000 + DUPLEX_HALF: /* not supported */
3879 default:
3880 dev_err(&adapter->pdev->dev,
3881 "Unsupported Speed/Duplex configuration\n");
3882 return -EINVAL;
3883 }
3884 return 0;
3885}
3886
3887
3888static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
3889{
3890 struct net_device *netdev = pci_get_drvdata(pdev);
3891 struct igb_adapter *adapter = netdev_priv(netdev);
3892 struct e1000_hw *hw = &adapter->hw;
3893 u32 ctrl, ctrl_ext, rctl, status;
3894 u32 wufc = adapter->wol;
3895#ifdef CONFIG_PM
3896 int retval = 0;
3897#endif
3898
3899 netif_device_detach(netdev);
3900
3901 if (netif_running(netdev)) {
3902 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3903 igb_down(adapter);
3904 igb_free_irq(adapter);
3905 }
3906
3907#ifdef CONFIG_PM
3908 retval = pci_save_state(pdev);
3909 if (retval)
3910 return retval;
3911#endif
3912
3913 status = rd32(E1000_STATUS);
3914 if (status & E1000_STATUS_LU)
3915 wufc &= ~E1000_WUFC_LNKC;
3916
3917 if (wufc) {
3918 igb_setup_rctl(adapter);
3919 igb_set_multi(netdev);
3920
3921 /* turn on all-multi mode if wake on multicast is enabled */
3922 if (wufc & E1000_WUFC_MC) {
3923 rctl = rd32(E1000_RCTL);
3924 rctl |= E1000_RCTL_MPE;
3925 wr32(E1000_RCTL, rctl);
3926 }
3927
3928 ctrl = rd32(E1000_CTRL);
3929 /* advertise wake from D3Cold */
3930 #define E1000_CTRL_ADVD3WUC 0x00100000
3931 /* phy power management enable */
3932 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3933 ctrl |= E1000_CTRL_ADVD3WUC;
3934 wr32(E1000_CTRL, ctrl);
3935
3936 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3937 adapter->hw.phy.media_type ==
3938 e1000_media_type_internal_serdes) {
3939 /* keep the laser running in D3 */
3940 ctrl_ext = rd32(E1000_CTRL_EXT);
3941 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3942 wr32(E1000_CTRL_EXT, ctrl_ext);
3943 }
3944
3945 /* Allow time for pending master requests to run */
3946 igb_disable_pcie_master(&adapter->hw);
3947
3948 wr32(E1000_WUC, E1000_WUC_PME_EN);
3949 wr32(E1000_WUFC, wufc);
3950 pci_enable_wake(pdev, PCI_D3hot, 1);
3951 pci_enable_wake(pdev, PCI_D3cold, 1);
3952 } else {
3953 wr32(E1000_WUC, 0);
3954 wr32(E1000_WUFC, 0);
3955 pci_enable_wake(pdev, PCI_D3hot, 0);
3956 pci_enable_wake(pdev, PCI_D3cold, 0);
3957 }
3958
3959 igb_release_manageability(adapter);
3960
3961 /* make sure adapter isn't asleep if manageability is enabled */
3962 if (adapter->en_mng_pt) {
3963 pci_enable_wake(pdev, PCI_D3hot, 1);
3964 pci_enable_wake(pdev, PCI_D3cold, 1);
3965 }
3966
3967 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3968 * would have already happened in close and is redundant. */
3969 igb_release_hw_control(adapter);
3970
3971 pci_disable_device(pdev);
3972
3973 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3974
3975 return 0;
3976}
3977
3978#ifdef CONFIG_PM
3979static int igb_resume(struct pci_dev *pdev)
3980{
3981 struct net_device *netdev = pci_get_drvdata(pdev);
3982 struct igb_adapter *adapter = netdev_priv(netdev);
3983 struct e1000_hw *hw = &adapter->hw;
3984 u32 err;
3985
3986 pci_set_power_state(pdev, PCI_D0);
3987 pci_restore_state(pdev);
3988 err = pci_enable_device(pdev);
3989 if (err) {
3990 dev_err(&pdev->dev,
3991 "igb: Cannot enable PCI device from suspend\n");
3992 return err;
3993 }
3994 pci_set_master(pdev);
3995
3996 pci_enable_wake(pdev, PCI_D3hot, 0);
3997 pci_enable_wake(pdev, PCI_D3cold, 0);
3998
3999 if (netif_running(netdev)) {
4000 err = igb_request_irq(adapter);
4001 if (err)
4002 return err;
4003 }
4004
4005 /* e1000_power_up_phy(adapter); */
4006
4007 igb_reset(adapter);
4008 wr32(E1000_WUS, ~0);
4009
4010 igb_init_manageability(adapter);
4011
4012 if (netif_running(netdev))
4013 igb_up(adapter);
4014
4015 netif_device_attach(netdev);
4016
4017 /* let the f/w know that the h/w is now under the control of the
4018 * driver. */
4019 igb_get_hw_control(adapter);
4020
4021 return 0;
4022}
4023#endif
4024
4025static void igb_shutdown(struct pci_dev *pdev)
4026{
4027 igb_suspend(pdev, PMSG_SUSPEND);
4028}
4029
4030#ifdef CONFIG_NET_POLL_CONTROLLER
4031/*
4032 * Polling 'interrupt' - used by things like netconsole to send skbs
4033 * without having to re-enable interrupts. It's not called while
4034 * the interrupt routine is executing.
4035 */
4036static void igb_netpoll(struct net_device *netdev)
4037{
4038 struct igb_adapter *adapter = netdev_priv(netdev);
4039 int i;
4040 int work_done = 0;
4041
4042 igb_irq_disable(adapter);
4043 for (i = 0; i < adapter->num_tx_queues; i++)
4044 igb_clean_tx_irq(adapter, &adapter->tx_ring[i]);
4045
4046 for (i = 0; i < adapter->num_rx_queues; i++)
4047 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i],
4048 &work_done,
4049 adapter->rx_ring[i].napi.weight);
4050
4051 igb_irq_enable(adapter);
4052}
4053#endif /* CONFIG_NET_POLL_CONTROLLER */
4054
4055/**
4056 * igb_io_error_detected - called when PCI error is detected
4057 * @pdev: Pointer to PCI device
4058 * @state: The current pci connection state
4059 *
4060 * This function is called after a PCI bus error affecting
4061 * this device has been detected.
4062 */
4063static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4064 pci_channel_state_t state)
4065{
4066 struct net_device *netdev = pci_get_drvdata(pdev);
4067 struct igb_adapter *adapter = netdev_priv(netdev);
4068
4069 netif_device_detach(netdev);
4070
4071 if (netif_running(netdev))
4072 igb_down(adapter);
4073 pci_disable_device(pdev);
4074
4075 /* Request a slot slot reset. */
4076 return PCI_ERS_RESULT_NEED_RESET;
4077}
4078
4079/**
4080 * igb_io_slot_reset - called after the pci bus has been reset.
4081 * @pdev: Pointer to PCI device
4082 *
4083 * Restart the card from scratch, as if from a cold-boot. Implementation
4084 * resembles the first-half of the igb_resume routine.
4085 */
4086static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4087{
4088 struct net_device *netdev = pci_get_drvdata(pdev);
4089 struct igb_adapter *adapter = netdev_priv(netdev);
4090 struct e1000_hw *hw = &adapter->hw;
4091
4092 if (pci_enable_device(pdev)) {
4093 dev_err(&pdev->dev,
4094 "Cannot re-enable PCI device after reset.\n");
4095 return PCI_ERS_RESULT_DISCONNECT;
4096 }
4097 pci_set_master(pdev);
4098
4099 pci_enable_wake(pdev, PCI_D3hot, 0);
4100 pci_enable_wake(pdev, PCI_D3cold, 0);
4101
4102 igb_reset(adapter);
4103 wr32(E1000_WUS, ~0);
4104
4105 return PCI_ERS_RESULT_RECOVERED;
4106}
4107
4108/**
4109 * igb_io_resume - called when traffic can start flowing again.
4110 * @pdev: Pointer to PCI device
4111 *
4112 * This callback is called when the error recovery driver tells us that
4113 * its OK to resume normal operation. Implementation resembles the
4114 * second-half of the igb_resume routine.
4115 */
4116static void igb_io_resume(struct pci_dev *pdev)
4117{
4118 struct net_device *netdev = pci_get_drvdata(pdev);
4119 struct igb_adapter *adapter = netdev_priv(netdev);
4120
4121 igb_init_manageability(adapter);
4122
4123 if (netif_running(netdev)) {
4124 if (igb_up(adapter)) {
4125 dev_err(&pdev->dev, "igb_up failed after reset\n");
4126 return;
4127 }
4128 }
4129
4130 netif_device_attach(netdev);
4131
4132 /* let the f/w know that the h/w is now under the control of the
4133 * driver. */
4134 igb_get_hw_control(adapter);
4135
4136}
4137
4138/* igb_main.c */