aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/igb/igb_ethtool.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/igb/igb_ethtool.c')
-rw-r--r--drivers/net/igb/igb_ethtool.c1927
1 files changed, 1927 insertions, 0 deletions
diff --git a/drivers/net/igb/igb_ethtool.c b/drivers/net/igb/igb_ethtool.c
new file mode 100644
index 000000000000..f69721e4eaa1
--- /dev/null
+++ b/drivers/net/igb/igb_ethtool.c
@@ -0,0 +1,1927 @@
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37
38#include "igb.h"
39
40struct igb_stats {
41 char stat_string[ETH_GSTRING_LEN];
42 int sizeof_stat;
43 int stat_offset;
44};
45
46#define IGB_STAT(m) sizeof(((struct igb_adapter *)0)->m), \
47 offsetof(struct igb_adapter, m)
48static const struct igb_stats igb_gstrings_stats[] = {
49 { "rx_packets", IGB_STAT(stats.gprc) },
50 { "tx_packets", IGB_STAT(stats.gptc) },
51 { "rx_bytes", IGB_STAT(stats.gorc) },
52 { "tx_bytes", IGB_STAT(stats.gotc) },
53 { "rx_broadcast", IGB_STAT(stats.bprc) },
54 { "tx_broadcast", IGB_STAT(stats.bptc) },
55 { "rx_multicast", IGB_STAT(stats.mprc) },
56 { "tx_multicast", IGB_STAT(stats.mptc) },
57 { "rx_errors", IGB_STAT(net_stats.rx_errors) },
58 { "tx_errors", IGB_STAT(net_stats.tx_errors) },
59 { "tx_dropped", IGB_STAT(net_stats.tx_dropped) },
60 { "multicast", IGB_STAT(stats.mprc) },
61 { "collisions", IGB_STAT(stats.colc) },
62 { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) },
63 { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) },
64 { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
65 { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) },
66 { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
67 { "rx_missed_errors", IGB_STAT(stats.mpc) },
68 { "tx_aborted_errors", IGB_STAT(stats.ecol) },
69 { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
70 { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) },
71 { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) },
72 { "tx_window_errors", IGB_STAT(stats.latecol) },
73 { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
74 { "tx_deferred_ok", IGB_STAT(stats.dc) },
75 { "tx_single_coll_ok", IGB_STAT(stats.scc) },
76 { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
77 { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
78 { "tx_restart_queue", IGB_STAT(restart_queue) },
79 { "rx_long_length_errors", IGB_STAT(stats.roc) },
80 { "rx_short_length_errors", IGB_STAT(stats.ruc) },
81 { "rx_align_errors", IGB_STAT(stats.algnerrc) },
82 { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
83 { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
84 { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
85 { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
86 { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
87 { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
88 { "rx_long_byte_count", IGB_STAT(stats.gorc) },
89 { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
90 { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
91 { "rx_header_split", IGB_STAT(rx_hdr_split) },
92 { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
93 { "tx_smbus", IGB_STAT(stats.mgptc) },
94 { "rx_smbus", IGB_STAT(stats.mgprc) },
95 { "dropped_smbus", IGB_STAT(stats.mgpdc) },
96};
97
98#define IGB_QUEUE_STATS_LEN \
99 ((((((struct igb_adapter *)netdev->priv)->num_rx_queues > 1) ? \
100 ((struct igb_adapter *)netdev->priv)->num_rx_queues : 0) + \
101 (((((struct igb_adapter *)netdev->priv)->num_tx_queues > 1) ? \
102 ((struct igb_adapter *)netdev->priv)->num_tx_queues : 0))) * \
103 (sizeof(struct igb_queue_stats) / sizeof(u64)))
104#define IGB_GLOBAL_STATS_LEN \
105 sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
106#define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
107static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
108 "Register test (offline)", "Eeprom test (offline)",
109 "Interrupt test (offline)", "Loopback test (offline)",
110 "Link test (on/offline)"
111};
112#define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
113
114static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
115{
116 struct igb_adapter *adapter = netdev_priv(netdev);
117 struct e1000_hw *hw = &adapter->hw;
118
119 if (hw->phy.media_type == e1000_media_type_copper) {
120
121 ecmd->supported = (SUPPORTED_10baseT_Half |
122 SUPPORTED_10baseT_Full |
123 SUPPORTED_100baseT_Half |
124 SUPPORTED_100baseT_Full |
125 SUPPORTED_1000baseT_Full|
126 SUPPORTED_Autoneg |
127 SUPPORTED_TP);
128 ecmd->advertising = ADVERTISED_TP;
129
130 if (hw->mac.autoneg == 1) {
131 ecmd->advertising |= ADVERTISED_Autoneg;
132 /* the e1000 autoneg seems to match ethtool nicely */
133 ecmd->advertising |= hw->phy.autoneg_advertised;
134 }
135
136 ecmd->port = PORT_TP;
137 ecmd->phy_address = hw->phy.addr;
138 } else {
139 ecmd->supported = (SUPPORTED_1000baseT_Full |
140 SUPPORTED_FIBRE |
141 SUPPORTED_Autoneg);
142
143 ecmd->advertising = (ADVERTISED_1000baseT_Full |
144 ADVERTISED_FIBRE |
145 ADVERTISED_Autoneg);
146
147 ecmd->port = PORT_FIBRE;
148 }
149
150 ecmd->transceiver = XCVR_INTERNAL;
151
152 if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
153
154 adapter->hw.mac.ops.get_speed_and_duplex(hw,
155 &adapter->link_speed,
156 &adapter->link_duplex);
157 ecmd->speed = adapter->link_speed;
158
159 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
160 * and HALF_DUPLEX != DUPLEX_HALF */
161
162 if (adapter->link_duplex == FULL_DUPLEX)
163 ecmd->duplex = DUPLEX_FULL;
164 else
165 ecmd->duplex = DUPLEX_HALF;
166 } else {
167 ecmd->speed = -1;
168 ecmd->duplex = -1;
169 }
170
171 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
172 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
173 return 0;
174}
175
176static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
177{
178 struct igb_adapter *adapter = netdev_priv(netdev);
179 struct e1000_hw *hw = &adapter->hw;
180
181 /* When SoL/IDER sessions are active, autoneg/speed/duplex
182 * cannot be changed */
183 if (igb_check_reset_block(hw)) {
184 dev_err(&adapter->pdev->dev, "Cannot change link "
185 "characteristics when SoL/IDER is active.\n");
186 return -EINVAL;
187 }
188
189 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
190 msleep(1);
191
192 if (ecmd->autoneg == AUTONEG_ENABLE) {
193 hw->mac.autoneg = 1;
194 if (hw->phy.media_type == e1000_media_type_fiber)
195 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
196 ADVERTISED_FIBRE |
197 ADVERTISED_Autoneg;
198 else
199 hw->phy.autoneg_advertised = ecmd->advertising |
200 ADVERTISED_TP |
201 ADVERTISED_Autoneg;
202 ecmd->advertising = hw->phy.autoneg_advertised;
203 } else
204 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
205 clear_bit(__IGB_RESETTING, &adapter->state);
206 return -EINVAL;
207 }
208
209 /* reset the link */
210
211 if (netif_running(adapter->netdev)) {
212 igb_down(adapter);
213 igb_up(adapter);
214 } else
215 igb_reset(adapter);
216
217 clear_bit(__IGB_RESETTING, &adapter->state);
218 return 0;
219}
220
221static void igb_get_pauseparam(struct net_device *netdev,
222 struct ethtool_pauseparam *pause)
223{
224 struct igb_adapter *adapter = netdev_priv(netdev);
225 struct e1000_hw *hw = &adapter->hw;
226
227 pause->autoneg =
228 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
229
230 if (hw->fc.type == e1000_fc_rx_pause)
231 pause->rx_pause = 1;
232 else if (hw->fc.type == e1000_fc_tx_pause)
233 pause->tx_pause = 1;
234 else if (hw->fc.type == e1000_fc_full) {
235 pause->rx_pause = 1;
236 pause->tx_pause = 1;
237 }
238}
239
240static int igb_set_pauseparam(struct net_device *netdev,
241 struct ethtool_pauseparam *pause)
242{
243 struct igb_adapter *adapter = netdev_priv(netdev);
244 struct e1000_hw *hw = &adapter->hw;
245 int retval = 0;
246
247 adapter->fc_autoneg = pause->autoneg;
248
249 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
250 msleep(1);
251
252 if (pause->rx_pause && pause->tx_pause)
253 hw->fc.type = e1000_fc_full;
254 else if (pause->rx_pause && !pause->tx_pause)
255 hw->fc.type = e1000_fc_rx_pause;
256 else if (!pause->rx_pause && pause->tx_pause)
257 hw->fc.type = e1000_fc_tx_pause;
258 else if (!pause->rx_pause && !pause->tx_pause)
259 hw->fc.type = e1000_fc_none;
260
261 hw->fc.original_type = hw->fc.type;
262
263 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
264 if (netif_running(adapter->netdev)) {
265 igb_down(adapter);
266 igb_up(adapter);
267 } else
268 igb_reset(adapter);
269 } else
270 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
271 igb_setup_link(hw) : igb_force_mac_fc(hw));
272
273 clear_bit(__IGB_RESETTING, &adapter->state);
274 return retval;
275}
276
277static u32 igb_get_rx_csum(struct net_device *netdev)
278{
279 struct igb_adapter *adapter = netdev_priv(netdev);
280 return adapter->rx_csum;
281}
282
283static int igb_set_rx_csum(struct net_device *netdev, u32 data)
284{
285 struct igb_adapter *adapter = netdev_priv(netdev);
286 adapter->rx_csum = data;
287
288 return 0;
289}
290
291static u32 igb_get_tx_csum(struct net_device *netdev)
292{
293 return (netdev->features & NETIF_F_HW_CSUM) != 0;
294}
295
296static int igb_set_tx_csum(struct net_device *netdev, u32 data)
297{
298 if (data)
299 netdev->features |= NETIF_F_HW_CSUM;
300 else
301 netdev->features &= ~NETIF_F_HW_CSUM;
302
303 return 0;
304}
305
306static int igb_set_tso(struct net_device *netdev, u32 data)
307{
308 struct igb_adapter *adapter = netdev_priv(netdev);
309
310 if (data)
311 netdev->features |= NETIF_F_TSO;
312 else
313 netdev->features &= ~NETIF_F_TSO;
314
315 if (data)
316 netdev->features |= NETIF_F_TSO6;
317 else
318 netdev->features &= ~NETIF_F_TSO6;
319
320 dev_info(&adapter->pdev->dev, "TSO is %s\n",
321 data ? "Enabled" : "Disabled");
322 return 0;
323}
324
325static u32 igb_get_msglevel(struct net_device *netdev)
326{
327 struct igb_adapter *adapter = netdev_priv(netdev);
328 return adapter->msg_enable;
329}
330
331static void igb_set_msglevel(struct net_device *netdev, u32 data)
332{
333 struct igb_adapter *adapter = netdev_priv(netdev);
334 adapter->msg_enable = data;
335}
336
337static int igb_get_regs_len(struct net_device *netdev)
338{
339#define IGB_REGS_LEN 551
340 return IGB_REGS_LEN * sizeof(u32);
341}
342
343static void igb_get_regs(struct net_device *netdev,
344 struct ethtool_regs *regs, void *p)
345{
346 struct igb_adapter *adapter = netdev_priv(netdev);
347 struct e1000_hw *hw = &adapter->hw;
348 u32 *regs_buff = p;
349 u8 i;
350
351 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
352
353 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
354
355 /* General Registers */
356 regs_buff[0] = rd32(E1000_CTRL);
357 regs_buff[1] = rd32(E1000_STATUS);
358 regs_buff[2] = rd32(E1000_CTRL_EXT);
359 regs_buff[3] = rd32(E1000_MDIC);
360 regs_buff[4] = rd32(E1000_SCTL);
361 regs_buff[5] = rd32(E1000_CONNSW);
362 regs_buff[6] = rd32(E1000_VET);
363 regs_buff[7] = rd32(E1000_LEDCTL);
364 regs_buff[8] = rd32(E1000_PBA);
365 regs_buff[9] = rd32(E1000_PBS);
366 regs_buff[10] = rd32(E1000_FRTIMER);
367 regs_buff[11] = rd32(E1000_TCPTIMER);
368
369 /* NVM Register */
370 regs_buff[12] = rd32(E1000_EECD);
371
372 /* Interrupt */
373 regs_buff[13] = rd32(E1000_EICR);
374 regs_buff[14] = rd32(E1000_EICS);
375 regs_buff[15] = rd32(E1000_EIMS);
376 regs_buff[16] = rd32(E1000_EIMC);
377 regs_buff[17] = rd32(E1000_EIAC);
378 regs_buff[18] = rd32(E1000_EIAM);
379 regs_buff[19] = rd32(E1000_ICR);
380 regs_buff[20] = rd32(E1000_ICS);
381 regs_buff[21] = rd32(E1000_IMS);
382 regs_buff[22] = rd32(E1000_IMC);
383 regs_buff[23] = rd32(E1000_IAC);
384 regs_buff[24] = rd32(E1000_IAM);
385 regs_buff[25] = rd32(E1000_IMIRVP);
386
387 /* Flow Control */
388 regs_buff[26] = rd32(E1000_FCAL);
389 regs_buff[27] = rd32(E1000_FCAH);
390 regs_buff[28] = rd32(E1000_FCTTV);
391 regs_buff[29] = rd32(E1000_FCRTL);
392 regs_buff[30] = rd32(E1000_FCRTH);
393 regs_buff[31] = rd32(E1000_FCRTV);
394
395 /* Receive */
396 regs_buff[32] = rd32(E1000_RCTL);
397 regs_buff[33] = rd32(E1000_RXCSUM);
398 regs_buff[34] = rd32(E1000_RLPML);
399 regs_buff[35] = rd32(E1000_RFCTL);
400 regs_buff[36] = rd32(E1000_MRQC);
401 regs_buff[37] = rd32(E1000_VMD_CTL);
402
403 /* Transmit */
404 regs_buff[38] = rd32(E1000_TCTL);
405 regs_buff[39] = rd32(E1000_TCTL_EXT);
406 regs_buff[40] = rd32(E1000_TIPG);
407 regs_buff[41] = rd32(E1000_DTXCTL);
408
409 /* Wake Up */
410 regs_buff[42] = rd32(E1000_WUC);
411 regs_buff[43] = rd32(E1000_WUFC);
412 regs_buff[44] = rd32(E1000_WUS);
413 regs_buff[45] = rd32(E1000_IPAV);
414 regs_buff[46] = rd32(E1000_WUPL);
415
416 /* MAC */
417 regs_buff[47] = rd32(E1000_PCS_CFG0);
418 regs_buff[48] = rd32(E1000_PCS_LCTL);
419 regs_buff[49] = rd32(E1000_PCS_LSTAT);
420 regs_buff[50] = rd32(E1000_PCS_ANADV);
421 regs_buff[51] = rd32(E1000_PCS_LPAB);
422 regs_buff[52] = rd32(E1000_PCS_NPTX);
423 regs_buff[53] = rd32(E1000_PCS_LPABNP);
424
425 /* Statistics */
426 regs_buff[54] = adapter->stats.crcerrs;
427 regs_buff[55] = adapter->stats.algnerrc;
428 regs_buff[56] = adapter->stats.symerrs;
429 regs_buff[57] = adapter->stats.rxerrc;
430 regs_buff[58] = adapter->stats.mpc;
431 regs_buff[59] = adapter->stats.scc;
432 regs_buff[60] = adapter->stats.ecol;
433 regs_buff[61] = adapter->stats.mcc;
434 regs_buff[62] = adapter->stats.latecol;
435 regs_buff[63] = adapter->stats.colc;
436 regs_buff[64] = adapter->stats.dc;
437 regs_buff[65] = adapter->stats.tncrs;
438 regs_buff[66] = adapter->stats.sec;
439 regs_buff[67] = adapter->stats.htdpmc;
440 regs_buff[68] = adapter->stats.rlec;
441 regs_buff[69] = adapter->stats.xonrxc;
442 regs_buff[70] = adapter->stats.xontxc;
443 regs_buff[71] = adapter->stats.xoffrxc;
444 regs_buff[72] = adapter->stats.xofftxc;
445 regs_buff[73] = adapter->stats.fcruc;
446 regs_buff[74] = adapter->stats.prc64;
447 regs_buff[75] = adapter->stats.prc127;
448 regs_buff[76] = adapter->stats.prc255;
449 regs_buff[77] = adapter->stats.prc511;
450 regs_buff[78] = adapter->stats.prc1023;
451 regs_buff[79] = adapter->stats.prc1522;
452 regs_buff[80] = adapter->stats.gprc;
453 regs_buff[81] = adapter->stats.bprc;
454 regs_buff[82] = adapter->stats.mprc;
455 regs_buff[83] = adapter->stats.gptc;
456 regs_buff[84] = adapter->stats.gorc;
457 regs_buff[86] = adapter->stats.gotc;
458 regs_buff[88] = adapter->stats.rnbc;
459 regs_buff[89] = adapter->stats.ruc;
460 regs_buff[90] = adapter->stats.rfc;
461 regs_buff[91] = adapter->stats.roc;
462 regs_buff[92] = adapter->stats.rjc;
463 regs_buff[93] = adapter->stats.mgprc;
464 regs_buff[94] = adapter->stats.mgpdc;
465 regs_buff[95] = adapter->stats.mgptc;
466 regs_buff[96] = adapter->stats.tor;
467 regs_buff[98] = adapter->stats.tot;
468 regs_buff[100] = adapter->stats.tpr;
469 regs_buff[101] = adapter->stats.tpt;
470 regs_buff[102] = adapter->stats.ptc64;
471 regs_buff[103] = adapter->stats.ptc127;
472 regs_buff[104] = adapter->stats.ptc255;
473 regs_buff[105] = adapter->stats.ptc511;
474 regs_buff[106] = adapter->stats.ptc1023;
475 regs_buff[107] = adapter->stats.ptc1522;
476 regs_buff[108] = adapter->stats.mptc;
477 regs_buff[109] = adapter->stats.bptc;
478 regs_buff[110] = adapter->stats.tsctc;
479 regs_buff[111] = adapter->stats.iac;
480 regs_buff[112] = adapter->stats.rpthc;
481 regs_buff[113] = adapter->stats.hgptc;
482 regs_buff[114] = adapter->stats.hgorc;
483 regs_buff[116] = adapter->stats.hgotc;
484 regs_buff[118] = adapter->stats.lenerrs;
485 regs_buff[119] = adapter->stats.scvpc;
486 regs_buff[120] = adapter->stats.hrmpc;
487
488 /* These should probably be added to e1000_regs.h instead */
489 #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
490 #define E1000_RAL(_i) (0x05400 + ((_i) * 8))
491 #define E1000_RAH(_i) (0x05404 + ((_i) * 8))
492 #define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
493 #define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
494 #define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
495 #define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
496 #define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
497 #define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
498
499 for (i = 0; i < 4; i++)
500 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
501 for (i = 0; i < 4; i++)
502 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
503 for (i = 0; i < 4; i++)
504 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
505 for (i = 0; i < 4; i++)
506 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
507 for (i = 0; i < 4; i++)
508 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
509 for (i = 0; i < 4; i++)
510 regs_buff[141 + i] = rd32(E1000_RDH(i));
511 for (i = 0; i < 4; i++)
512 regs_buff[145 + i] = rd32(E1000_RDT(i));
513 for (i = 0; i < 4; i++)
514 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
515
516 for (i = 0; i < 10; i++)
517 regs_buff[153 + i] = rd32(E1000_EITR(i));
518 for (i = 0; i < 8; i++)
519 regs_buff[163 + i] = rd32(E1000_IMIR(i));
520 for (i = 0; i < 8; i++)
521 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
522 for (i = 0; i < 16; i++)
523 regs_buff[179 + i] = rd32(E1000_RAL(i));
524 for (i = 0; i < 16; i++)
525 regs_buff[195 + i] = rd32(E1000_RAH(i));
526
527 for (i = 0; i < 4; i++)
528 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
529 for (i = 0; i < 4; i++)
530 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
531 for (i = 0; i < 4; i++)
532 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
533 for (i = 0; i < 4; i++)
534 regs_buff[223 + i] = rd32(E1000_TDH(i));
535 for (i = 0; i < 4; i++)
536 regs_buff[227 + i] = rd32(E1000_TDT(i));
537 for (i = 0; i < 4; i++)
538 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
539 for (i = 0; i < 4; i++)
540 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
541 for (i = 0; i < 4; i++)
542 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
543 for (i = 0; i < 4; i++)
544 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
545
546 for (i = 0; i < 4; i++)
547 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
548 for (i = 0; i < 4; i++)
549 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
550 for (i = 0; i < 32; i++)
551 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
552 for (i = 0; i < 128; i++)
553 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
554 for (i = 0; i < 128; i++)
555 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
556 for (i = 0; i < 4; i++)
557 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
558
559 regs_buff[547] = rd32(E1000_TDFH);
560 regs_buff[548] = rd32(E1000_TDFT);
561 regs_buff[549] = rd32(E1000_TDFHS);
562 regs_buff[550] = rd32(E1000_TDFPC);
563
564}
565
566static int igb_get_eeprom_len(struct net_device *netdev)
567{
568 struct igb_adapter *adapter = netdev_priv(netdev);
569 return adapter->hw.nvm.word_size * 2;
570}
571
572static int igb_get_eeprom(struct net_device *netdev,
573 struct ethtool_eeprom *eeprom, u8 *bytes)
574{
575 struct igb_adapter *adapter = netdev_priv(netdev);
576 struct e1000_hw *hw = &adapter->hw;
577 u16 *eeprom_buff;
578 int first_word, last_word;
579 int ret_val = 0;
580 u16 i;
581
582 if (eeprom->len == 0)
583 return -EINVAL;
584
585 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
586
587 first_word = eeprom->offset >> 1;
588 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
589
590 eeprom_buff = kmalloc(sizeof(u16) *
591 (last_word - first_word + 1), GFP_KERNEL);
592 if (!eeprom_buff)
593 return -ENOMEM;
594
595 if (hw->nvm.type == e1000_nvm_eeprom_spi)
596 ret_val = hw->nvm.ops.read_nvm(hw, first_word,
597 last_word - first_word + 1,
598 eeprom_buff);
599 else {
600 for (i = 0; i < last_word - first_word + 1; i++) {
601 ret_val = hw->nvm.ops.read_nvm(hw, first_word + i, 1,
602 &eeprom_buff[i]);
603 if (ret_val)
604 break;
605 }
606 }
607
608 /* Device's eeprom is always little-endian, word addressable */
609 for (i = 0; i < last_word - first_word + 1; i++)
610 le16_to_cpus(&eeprom_buff[i]);
611
612 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
613 eeprom->len);
614 kfree(eeprom_buff);
615
616 return ret_val;
617}
618
619static int igb_set_eeprom(struct net_device *netdev,
620 struct ethtool_eeprom *eeprom, u8 *bytes)
621{
622 struct igb_adapter *adapter = netdev_priv(netdev);
623 struct e1000_hw *hw = &adapter->hw;
624 u16 *eeprom_buff;
625 void *ptr;
626 int max_len, first_word, last_word, ret_val = 0;
627 u16 i;
628
629 if (eeprom->len == 0)
630 return -EOPNOTSUPP;
631
632 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
633 return -EFAULT;
634
635 max_len = hw->nvm.word_size * 2;
636
637 first_word = eeprom->offset >> 1;
638 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
639 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
640 if (!eeprom_buff)
641 return -ENOMEM;
642
643 ptr = (void *)eeprom_buff;
644
645 if (eeprom->offset & 1) {
646 /* need read/modify/write of first changed EEPROM word */
647 /* only the second byte of the word is being modified */
648 ret_val = hw->nvm.ops.read_nvm(hw, first_word, 1,
649 &eeprom_buff[0]);
650 ptr++;
651 }
652 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
653 /* need read/modify/write of last changed EEPROM word */
654 /* only the first byte of the word is being modified */
655 ret_val = hw->nvm.ops.read_nvm(hw, last_word, 1,
656 &eeprom_buff[last_word - first_word]);
657 }
658
659 /* Device's eeprom is always little-endian, word addressable */
660 for (i = 0; i < last_word - first_word + 1; i++)
661 le16_to_cpus(&eeprom_buff[i]);
662
663 memcpy(ptr, bytes, eeprom->len);
664
665 for (i = 0; i < last_word - first_word + 1; i++)
666 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
667
668 ret_val = hw->nvm.ops.write_nvm(hw, first_word,
669 last_word - first_word + 1, eeprom_buff);
670
671 /* Update the checksum over the first part of the EEPROM if needed
672 * and flush shadow RAM for 82573 controllers */
673 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
674 igb_update_nvm_checksum(hw);
675
676 kfree(eeprom_buff);
677 return ret_val;
678}
679
680static void igb_get_drvinfo(struct net_device *netdev,
681 struct ethtool_drvinfo *drvinfo)
682{
683 struct igb_adapter *adapter = netdev_priv(netdev);
684 char firmware_version[32];
685 u16 eeprom_data;
686
687 strncpy(drvinfo->driver, igb_driver_name, 32);
688 strncpy(drvinfo->version, igb_driver_version, 32);
689
690 /* EEPROM image version # is reported as firmware version # for
691 * 82575 controllers */
692 adapter->hw.nvm.ops.read_nvm(&adapter->hw, 5, 1, &eeprom_data);
693 sprintf(firmware_version, "%d.%d-%d",
694 (eeprom_data & 0xF000) >> 12,
695 (eeprom_data & 0x0FF0) >> 4,
696 eeprom_data & 0x000F);
697
698 strncpy(drvinfo->fw_version, firmware_version, 32);
699 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
700 drvinfo->n_stats = IGB_STATS_LEN;
701 drvinfo->testinfo_len = IGB_TEST_LEN;
702 drvinfo->regdump_len = igb_get_regs_len(netdev);
703 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
704}
705
706static void igb_get_ringparam(struct net_device *netdev,
707 struct ethtool_ringparam *ring)
708{
709 struct igb_adapter *adapter = netdev_priv(netdev);
710 struct igb_ring *tx_ring = adapter->tx_ring;
711 struct igb_ring *rx_ring = adapter->rx_ring;
712
713 ring->rx_max_pending = IGB_MAX_RXD;
714 ring->tx_max_pending = IGB_MAX_TXD;
715 ring->rx_mini_max_pending = 0;
716 ring->rx_jumbo_max_pending = 0;
717 ring->rx_pending = rx_ring->count;
718 ring->tx_pending = tx_ring->count;
719 ring->rx_mini_pending = 0;
720 ring->rx_jumbo_pending = 0;
721}
722
723static int igb_set_ringparam(struct net_device *netdev,
724 struct ethtool_ringparam *ring)
725{
726 struct igb_adapter *adapter = netdev_priv(netdev);
727 struct igb_buffer *old_buf;
728 struct igb_buffer *old_rx_buf;
729 void *old_desc;
730 int i, err;
731 u32 new_rx_count, new_tx_count, old_size;
732 dma_addr_t old_dma;
733
734 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
735 return -EINVAL;
736
737 new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
738 new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
739 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
740
741 new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
742 new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
743 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
744
745 if ((new_tx_count == adapter->tx_ring->count) &&
746 (new_rx_count == adapter->rx_ring->count)) {
747 /* nothing to do */
748 return 0;
749 }
750
751 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
752 msleep(1);
753
754 if (netif_running(adapter->netdev))
755 igb_down(adapter);
756
757 /*
758 * We can't just free everything and then setup again,
759 * because the ISRs in MSI-X mode get passed pointers
760 * to the tx and rx ring structs.
761 */
762 if (new_tx_count != adapter->tx_ring->count) {
763 for (i = 0; i < adapter->num_tx_queues; i++) {
764 /* Save existing descriptor ring */
765 old_buf = adapter->tx_ring[i].buffer_info;
766 old_desc = adapter->tx_ring[i].desc;
767 old_size = adapter->tx_ring[i].size;
768 old_dma = adapter->tx_ring[i].dma;
769 /* Try to allocate a new one */
770 adapter->tx_ring[i].buffer_info = NULL;
771 adapter->tx_ring[i].desc = NULL;
772 adapter->tx_ring[i].count = new_tx_count;
773 err = igb_setup_tx_resources(adapter,
774 &adapter->tx_ring[i]);
775 if (err) {
776 /* Restore the old one so at least
777 the adapter still works, even if
778 we failed the request */
779 adapter->tx_ring[i].buffer_info = old_buf;
780 adapter->tx_ring[i].desc = old_desc;
781 adapter->tx_ring[i].size = old_size;
782 adapter->tx_ring[i].dma = old_dma;
783 goto err_setup;
784 }
785 /* Free the old buffer manually */
786 vfree(old_buf);
787 pci_free_consistent(adapter->pdev, old_size,
788 old_desc, old_dma);
789 }
790 }
791
792 if (new_rx_count != adapter->rx_ring->count) {
793 for (i = 0; i < adapter->num_rx_queues; i++) {
794
795 old_rx_buf = adapter->rx_ring[i].buffer_info;
796 old_desc = adapter->rx_ring[i].desc;
797 old_size = adapter->rx_ring[i].size;
798 old_dma = adapter->rx_ring[i].dma;
799
800 adapter->rx_ring[i].buffer_info = NULL;
801 adapter->rx_ring[i].desc = NULL;
802 adapter->rx_ring[i].dma = 0;
803 adapter->rx_ring[i].count = new_rx_count;
804 err = igb_setup_rx_resources(adapter,
805 &adapter->rx_ring[i]);
806 if (err) {
807 adapter->rx_ring[i].buffer_info = old_rx_buf;
808 adapter->rx_ring[i].desc = old_desc;
809 adapter->rx_ring[i].size = old_size;
810 adapter->rx_ring[i].dma = old_dma;
811 goto err_setup;
812 }
813
814 vfree(old_rx_buf);
815 pci_free_consistent(adapter->pdev, old_size, old_desc,
816 old_dma);
817 }
818 }
819
820 err = 0;
821err_setup:
822 if (netif_running(adapter->netdev))
823 igb_up(adapter);
824
825 clear_bit(__IGB_RESETTING, &adapter->state);
826 return err;
827}
828
829/* ethtool register test data */
830struct igb_reg_test {
831 u16 reg;
832 u8 array_len;
833 u8 test_type;
834 u32 mask;
835 u32 write;
836};
837
838/* In the hardware, registers are laid out either singly, in arrays
839 * spaced 0x100 bytes apart, or in contiguous tables. We assume
840 * most tests take place on arrays or single registers (handled
841 * as a single-element array) and special-case the tables.
842 * Table tests are always pattern tests.
843 *
844 * We also make provision for some required setup steps by specifying
845 * registers to be written without any read-back testing.
846 */
847
848#define PATTERN_TEST 1
849#define SET_READ_TEST 2
850#define WRITE_NO_TEST 3
851#define TABLE32_TEST 4
852#define TABLE64_TEST_LO 5
853#define TABLE64_TEST_HI 6
854
855/* default register test */
856static struct igb_reg_test reg_test_82575[] = {
857 { E1000_FCAL, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
858 { E1000_FCAH, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
859 { E1000_FCT, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
860 { E1000_VET, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
861 { E1000_RDBAL(0), 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
862 { E1000_RDBAH(0), 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
863 { E1000_RDLEN(0), 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
864 /* Enable all four RX queues before testing. */
865 { E1000_RXDCTL(0), 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
866 /* RDH is read-only for 82575, only test RDT. */
867 { E1000_RDT(0), 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
868 { E1000_RXDCTL(0), 4, WRITE_NO_TEST, 0, 0 },
869 { E1000_FCRTH, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
870 { E1000_FCTTV, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
871 { E1000_TIPG, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
872 { E1000_TDBAL(0), 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
873 { E1000_TDBAH(0), 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
874 { E1000_TDLEN(0), 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
875 { E1000_RCTL, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
876 { E1000_RCTL, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
877 { E1000_RCTL, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
878 { E1000_TCTL, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
879 { E1000_TXCW, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
880 { E1000_RA, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
881 { E1000_RA, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
882 { E1000_MTA, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
883 { 0, 0, 0, 0 }
884};
885
886static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
887 int reg, u32 mask, u32 write)
888{
889 u32 pat, val;
890 u32 _test[] =
891 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
892 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
893 writel((_test[pat] & write), (adapter->hw.hw_addr + reg));
894 val = readl(adapter->hw.hw_addr + reg);
895 if (val != (_test[pat] & write & mask)) {
896 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
897 "failed: got 0x%08X expected 0x%08X\n",
898 reg, val, (_test[pat] & write & mask));
899 *data = reg;
900 return 1;
901 }
902 }
903 return 0;
904}
905
906static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
907 int reg, u32 mask, u32 write)
908{
909 u32 val;
910 writel((write & mask), (adapter->hw.hw_addr + reg));
911 val = readl(adapter->hw.hw_addr + reg);
912 if ((write & mask) != (val & mask)) {
913 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
914 " got 0x%08X expected 0x%08X\n", reg,
915 (val & mask), (write & mask));
916 *data = reg;
917 return 1;
918 }
919 return 0;
920}
921
922#define REG_PATTERN_TEST(reg, mask, write) \
923 do { \
924 if (reg_pattern_test(adapter, data, reg, mask, write)) \
925 return 1; \
926 } while (0)
927
928#define REG_SET_AND_CHECK(reg, mask, write) \
929 do { \
930 if (reg_set_and_check(adapter, data, reg, mask, write)) \
931 return 1; \
932 } while (0)
933
934static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
935{
936 struct e1000_hw *hw = &adapter->hw;
937 struct igb_reg_test *test;
938 u32 value, before, after;
939 u32 i, toggle;
940
941 toggle = 0x7FFFF3FF;
942 test = reg_test_82575;
943
944 /* Because the status register is such a special case,
945 * we handle it separately from the rest of the register
946 * tests. Some bits are read-only, some toggle, and some
947 * are writable on newer MACs.
948 */
949 before = rd32(E1000_STATUS);
950 value = (rd32(E1000_STATUS) & toggle);
951 wr32(E1000_STATUS, toggle);
952 after = rd32(E1000_STATUS) & toggle;
953 if (value != after) {
954 dev_err(&adapter->pdev->dev, "failed STATUS register test "
955 "got: 0x%08X expected: 0x%08X\n", after, value);
956 *data = 1;
957 return 1;
958 }
959 /* restore previous status */
960 wr32(E1000_STATUS, before);
961
962 /* Perform the remainder of the register test, looping through
963 * the test table until we either fail or reach the null entry.
964 */
965 while (test->reg) {
966 for (i = 0; i < test->array_len; i++) {
967 switch (test->test_type) {
968 case PATTERN_TEST:
969 REG_PATTERN_TEST(test->reg + (i * 0x100),
970 test->mask,
971 test->write);
972 break;
973 case SET_READ_TEST:
974 REG_SET_AND_CHECK(test->reg + (i * 0x100),
975 test->mask,
976 test->write);
977 break;
978 case WRITE_NO_TEST:
979 writel(test->write,
980 (adapter->hw.hw_addr + test->reg)
981 + (i * 0x100));
982 break;
983 case TABLE32_TEST:
984 REG_PATTERN_TEST(test->reg + (i * 4),
985 test->mask,
986 test->write);
987 break;
988 case TABLE64_TEST_LO:
989 REG_PATTERN_TEST(test->reg + (i * 8),
990 test->mask,
991 test->write);
992 break;
993 case TABLE64_TEST_HI:
994 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
995 test->mask,
996 test->write);
997 break;
998 }
999 }
1000 test++;
1001 }
1002
1003 *data = 0;
1004 return 0;
1005}
1006
1007static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1008{
1009 u16 temp;
1010 u16 checksum = 0;
1011 u16 i;
1012
1013 *data = 0;
1014 /* Read and add up the contents of the EEPROM */
1015 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1016 if ((adapter->hw.nvm.ops.read_nvm(&adapter->hw, i, 1, &temp))
1017 < 0) {
1018 *data = 1;
1019 break;
1020 }
1021 checksum += temp;
1022 }
1023
1024 /* If Checksum is not Correct return error else test passed */
1025 if ((checksum != (u16) NVM_SUM) && !(*data))
1026 *data = 2;
1027
1028 return *data;
1029}
1030
1031static irqreturn_t igb_test_intr(int irq, void *data)
1032{
1033 struct net_device *netdev = (struct net_device *) data;
1034 struct igb_adapter *adapter = netdev_priv(netdev);
1035 struct e1000_hw *hw = &adapter->hw;
1036
1037 adapter->test_icr |= rd32(E1000_ICR);
1038
1039 return IRQ_HANDLED;
1040}
1041
1042static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1043{
1044 struct e1000_hw *hw = &adapter->hw;
1045 struct net_device *netdev = adapter->netdev;
1046 u32 mask, i = 0, shared_int = true;
1047 u32 irq = adapter->pdev->irq;
1048
1049 *data = 0;
1050
1051 /* Hook up test interrupt handler just for this test */
1052 if (adapter->msix_entries) {
1053 /* NOTE: we don't test MSI-X interrupts here, yet */
1054 return 0;
1055 } else if (adapter->msi_enabled) {
1056 shared_int = false;
1057 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1058 *data = 1;
1059 return -1;
1060 }
1061 } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1062 netdev->name, netdev)) {
1063 shared_int = false;
1064 } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1065 netdev->name, netdev)) {
1066 *data = 1;
1067 return -1;
1068 }
1069 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1070 (shared_int ? "shared" : "unshared"));
1071
1072 /* Disable all the interrupts */
1073 wr32(E1000_IMC, 0xFFFFFFFF);
1074 msleep(10);
1075
1076 /* Test each interrupt */
1077 for (; i < 10; i++) {
1078 /* Interrupt to test */
1079 mask = 1 << i;
1080
1081 if (!shared_int) {
1082 /* Disable the interrupt to be reported in
1083 * the cause register and then force the same
1084 * interrupt and see if one gets posted. If
1085 * an interrupt was posted to the bus, the
1086 * test failed.
1087 */
1088 adapter->test_icr = 0;
1089 wr32(E1000_IMC, ~mask & 0x00007FFF);
1090 wr32(E1000_ICS, ~mask & 0x00007FFF);
1091 msleep(10);
1092
1093 if (adapter->test_icr & mask) {
1094 *data = 3;
1095 break;
1096 }
1097 }
1098
1099 /* Enable the interrupt to be reported in
1100 * the cause register and then force the same
1101 * interrupt and see if one gets posted. If
1102 * an interrupt was not posted to the bus, the
1103 * test failed.
1104 */
1105 adapter->test_icr = 0;
1106 wr32(E1000_IMS, mask);
1107 wr32(E1000_ICS, mask);
1108 msleep(10);
1109
1110 if (!(adapter->test_icr & mask)) {
1111 *data = 4;
1112 break;
1113 }
1114
1115 if (!shared_int) {
1116 /* Disable the other interrupts to be reported in
1117 * the cause register and then force the other
1118 * interrupts and see if any get posted. If
1119 * an interrupt was posted to the bus, the
1120 * test failed.
1121 */
1122 adapter->test_icr = 0;
1123 wr32(E1000_IMC, ~mask & 0x00007FFF);
1124 wr32(E1000_ICS, ~mask & 0x00007FFF);
1125 msleep(10);
1126
1127 if (adapter->test_icr) {
1128 *data = 5;
1129 break;
1130 }
1131 }
1132 }
1133
1134 /* Disable all the interrupts */
1135 wr32(E1000_IMC, 0xFFFFFFFF);
1136 msleep(10);
1137
1138 /* Unhook test interrupt handler */
1139 free_irq(irq, netdev);
1140
1141 return *data;
1142}
1143
1144static void igb_free_desc_rings(struct igb_adapter *adapter)
1145{
1146 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1147 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1148 struct pci_dev *pdev = adapter->pdev;
1149 int i;
1150
1151 if (tx_ring->desc && tx_ring->buffer_info) {
1152 for (i = 0; i < tx_ring->count; i++) {
1153 struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1154 if (buf->dma)
1155 pci_unmap_single(pdev, buf->dma, buf->length,
1156 PCI_DMA_TODEVICE);
1157 if (buf->skb)
1158 dev_kfree_skb(buf->skb);
1159 }
1160 }
1161
1162 if (rx_ring->desc && rx_ring->buffer_info) {
1163 for (i = 0; i < rx_ring->count; i++) {
1164 struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1165 if (buf->dma)
1166 pci_unmap_single(pdev, buf->dma,
1167 IGB_RXBUFFER_2048,
1168 PCI_DMA_FROMDEVICE);
1169 if (buf->skb)
1170 dev_kfree_skb(buf->skb);
1171 }
1172 }
1173
1174 if (tx_ring->desc) {
1175 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1176 tx_ring->dma);
1177 tx_ring->desc = NULL;
1178 }
1179 if (rx_ring->desc) {
1180 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1181 rx_ring->dma);
1182 rx_ring->desc = NULL;
1183 }
1184
1185 kfree(tx_ring->buffer_info);
1186 tx_ring->buffer_info = NULL;
1187 kfree(rx_ring->buffer_info);
1188 rx_ring->buffer_info = NULL;
1189
1190 return;
1191}
1192
1193static int igb_setup_desc_rings(struct igb_adapter *adapter)
1194{
1195 struct e1000_hw *hw = &adapter->hw;
1196 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1197 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1198 struct pci_dev *pdev = adapter->pdev;
1199 u32 rctl;
1200 int i, ret_val;
1201
1202 /* Setup Tx descriptor ring and Tx buffers */
1203
1204 if (!tx_ring->count)
1205 tx_ring->count = IGB_DEFAULT_TXD;
1206
1207 tx_ring->buffer_info = kcalloc(tx_ring->count,
1208 sizeof(struct igb_buffer),
1209 GFP_KERNEL);
1210 if (!tx_ring->buffer_info) {
1211 ret_val = 1;
1212 goto err_nomem;
1213 }
1214
1215 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1216 tx_ring->size = ALIGN(tx_ring->size, 4096);
1217 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1218 &tx_ring->dma);
1219 if (!tx_ring->desc) {
1220 ret_val = 2;
1221 goto err_nomem;
1222 }
1223 tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1224
1225 wr32(E1000_TDBAL(0),
1226 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1227 wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1228 wr32(E1000_TDLEN(0),
1229 tx_ring->count * sizeof(struct e1000_tx_desc));
1230 wr32(E1000_TDH(0), 0);
1231 wr32(E1000_TDT(0), 0);
1232 wr32(E1000_TCTL,
1233 E1000_TCTL_PSP | E1000_TCTL_EN |
1234 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1235 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1236
1237 for (i = 0; i < tx_ring->count; i++) {
1238 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1239 struct sk_buff *skb;
1240 unsigned int size = 1024;
1241
1242 skb = alloc_skb(size, GFP_KERNEL);
1243 if (!skb) {
1244 ret_val = 3;
1245 goto err_nomem;
1246 }
1247 skb_put(skb, size);
1248 tx_ring->buffer_info[i].skb = skb;
1249 tx_ring->buffer_info[i].length = skb->len;
1250 tx_ring->buffer_info[i].dma =
1251 pci_map_single(pdev, skb->data, skb->len,
1252 PCI_DMA_TODEVICE);
1253 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1254 tx_desc->lower.data = cpu_to_le32(skb->len);
1255 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1256 E1000_TXD_CMD_IFCS |
1257 E1000_TXD_CMD_RS);
1258 tx_desc->upper.data = 0;
1259 }
1260
1261 /* Setup Rx descriptor ring and Rx buffers */
1262
1263 if (!rx_ring->count)
1264 rx_ring->count = IGB_DEFAULT_RXD;
1265
1266 rx_ring->buffer_info = kcalloc(rx_ring->count,
1267 sizeof(struct igb_buffer),
1268 GFP_KERNEL);
1269 if (!rx_ring->buffer_info) {
1270 ret_val = 4;
1271 goto err_nomem;
1272 }
1273
1274 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1275 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1276 &rx_ring->dma);
1277 if (!rx_ring->desc) {
1278 ret_val = 5;
1279 goto err_nomem;
1280 }
1281 rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1282
1283 rctl = rd32(E1000_RCTL);
1284 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1285 wr32(E1000_RDBAL(0),
1286 ((u64) rx_ring->dma & 0xFFFFFFFF));
1287 wr32(E1000_RDBAH(0),
1288 ((u64) rx_ring->dma >> 32));
1289 wr32(E1000_RDLEN(0), rx_ring->size);
1290 wr32(E1000_RDH(0), 0);
1291 wr32(E1000_RDT(0), 0);
1292 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1293 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1294 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1295 wr32(E1000_RCTL, rctl);
1296 wr32(E1000_SRRCTL(0), 0);
1297
1298 for (i = 0; i < rx_ring->count; i++) {
1299 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1300 struct sk_buff *skb;
1301
1302 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1303 GFP_KERNEL);
1304 if (!skb) {
1305 ret_val = 6;
1306 goto err_nomem;
1307 }
1308 skb_reserve(skb, NET_IP_ALIGN);
1309 rx_ring->buffer_info[i].skb = skb;
1310 rx_ring->buffer_info[i].dma =
1311 pci_map_single(pdev, skb->data, IGB_RXBUFFER_2048,
1312 PCI_DMA_FROMDEVICE);
1313 rx_desc->buffer_addr = cpu_to_le64(rx_ring->buffer_info[i].dma);
1314 memset(skb->data, 0x00, skb->len);
1315 }
1316
1317 return 0;
1318
1319err_nomem:
1320 igb_free_desc_rings(adapter);
1321 return ret_val;
1322}
1323
1324static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1325{
1326 struct e1000_hw *hw = &adapter->hw;
1327
1328 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1329 hw->phy.ops.write_phy_reg(hw, 29, 0x001F);
1330 hw->phy.ops.write_phy_reg(hw, 30, 0x8FFC);
1331 hw->phy.ops.write_phy_reg(hw, 29, 0x001A);
1332 hw->phy.ops.write_phy_reg(hw, 30, 0x8FF0);
1333}
1334
1335static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1336{
1337 struct e1000_hw *hw = &adapter->hw;
1338 u32 ctrl_reg = 0;
1339 u32 stat_reg = 0;
1340
1341 hw->mac.autoneg = false;
1342
1343 if (hw->phy.type == e1000_phy_m88) {
1344 /* Auto-MDI/MDIX Off */
1345 hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1346 /* reset to update Auto-MDI/MDIX */
1347 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x9140);
1348 /* autoneg off */
1349 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x8140);
1350 }
1351
1352 ctrl_reg = rd32(E1000_CTRL);
1353
1354 /* force 1000, set loopback */
1355 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x4140);
1356
1357 /* Now set up the MAC to the same speed/duplex as the PHY. */
1358 ctrl_reg = rd32(E1000_CTRL);
1359 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1360 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1361 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1362 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1363 E1000_CTRL_FD); /* Force Duplex to FULL */
1364
1365 if (hw->phy.media_type == e1000_media_type_copper &&
1366 hw->phy.type == e1000_phy_m88)
1367 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1368 else {
1369 /* Set the ILOS bit on the fiber Nic if half duplex link is
1370 * detected. */
1371 stat_reg = rd32(E1000_STATUS);
1372 if ((stat_reg & E1000_STATUS_FD) == 0)
1373 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1374 }
1375
1376 wr32(E1000_CTRL, ctrl_reg);
1377
1378 /* Disable the receiver on the PHY so when a cable is plugged in, the
1379 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1380 */
1381 if (hw->phy.type == e1000_phy_m88)
1382 igb_phy_disable_receiver(adapter);
1383
1384 udelay(500);
1385
1386 return 0;
1387}
1388
1389static int igb_set_phy_loopback(struct igb_adapter *adapter)
1390{
1391 return igb_integrated_phy_loopback(adapter);
1392}
1393
1394static int igb_setup_loopback_test(struct igb_adapter *adapter)
1395{
1396 struct e1000_hw *hw = &adapter->hw;
1397 u32 rctl;
1398
1399 if (hw->phy.media_type == e1000_media_type_fiber ||
1400 hw->phy.media_type == e1000_media_type_internal_serdes) {
1401 rctl = rd32(E1000_RCTL);
1402 rctl |= E1000_RCTL_LBM_TCVR;
1403 wr32(E1000_RCTL, rctl);
1404 return 0;
1405 } else if (hw->phy.media_type == e1000_media_type_copper) {
1406 return igb_set_phy_loopback(adapter);
1407 }
1408
1409 return 7;
1410}
1411
1412static void igb_loopback_cleanup(struct igb_adapter *adapter)
1413{
1414 struct e1000_hw *hw = &adapter->hw;
1415 u32 rctl;
1416 u16 phy_reg;
1417
1418 rctl = rd32(E1000_RCTL);
1419 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1420 wr32(E1000_RCTL, rctl);
1421
1422 hw->mac.autoneg = true;
1423 hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1424 if (phy_reg & MII_CR_LOOPBACK) {
1425 phy_reg &= ~MII_CR_LOOPBACK;
1426 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_reg);
1427 igb_phy_sw_reset(hw);
1428 }
1429}
1430
1431static void igb_create_lbtest_frame(struct sk_buff *skb,
1432 unsigned int frame_size)
1433{
1434 memset(skb->data, 0xFF, frame_size);
1435 frame_size &= ~1;
1436 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1437 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1438 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1439}
1440
1441static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1442{
1443 frame_size &= ~1;
1444 if (*(skb->data + 3) == 0xFF)
1445 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1446 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1447 return 0;
1448 return 13;
1449}
1450
1451static int igb_run_loopback_test(struct igb_adapter *adapter)
1452{
1453 struct e1000_hw *hw = &adapter->hw;
1454 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1455 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1456 struct pci_dev *pdev = adapter->pdev;
1457 int i, j, k, l, lc, good_cnt;
1458 int ret_val = 0;
1459 unsigned long time;
1460
1461 wr32(E1000_RDT(0), rx_ring->count - 1);
1462
1463 /* Calculate the loop count based on the largest descriptor ring
1464 * The idea is to wrap the largest ring a number of times using 64
1465 * send/receive pairs during each loop
1466 */
1467
1468 if (rx_ring->count <= tx_ring->count)
1469 lc = ((tx_ring->count / 64) * 2) + 1;
1470 else
1471 lc = ((rx_ring->count / 64) * 2) + 1;
1472
1473 k = l = 0;
1474 for (j = 0; j <= lc; j++) { /* loop count loop */
1475 for (i = 0; i < 64; i++) { /* send the packets */
1476 igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1477 1024);
1478 pci_dma_sync_single_for_device(pdev,
1479 tx_ring->buffer_info[k].dma,
1480 tx_ring->buffer_info[k].length,
1481 PCI_DMA_TODEVICE);
1482 k++;
1483 if (k == tx_ring->count)
1484 k = 0;
1485 }
1486 wr32(E1000_TDT(0), k);
1487 msleep(200);
1488 time = jiffies; /* set the start time for the receive */
1489 good_cnt = 0;
1490 do { /* receive the sent packets */
1491 pci_dma_sync_single_for_cpu(pdev,
1492 rx_ring->buffer_info[l].dma,
1493 IGB_RXBUFFER_2048,
1494 PCI_DMA_FROMDEVICE);
1495
1496 ret_val = igb_check_lbtest_frame(
1497 rx_ring->buffer_info[l].skb, 1024);
1498 if (!ret_val)
1499 good_cnt++;
1500 l++;
1501 if (l == rx_ring->count)
1502 l = 0;
1503 /* time + 20 msecs (200 msecs on 2.4) is more than
1504 * enough time to complete the receives, if it's
1505 * exceeded, break and error off
1506 */
1507 } while (good_cnt < 64 && jiffies < (time + 20));
1508 if (good_cnt != 64) {
1509 ret_val = 13; /* ret_val is the same as mis-compare */
1510 break;
1511 }
1512 if (jiffies >= (time + 20)) {
1513 ret_val = 14; /* error code for time out error */
1514 break;
1515 }
1516 } /* end loop count loop */
1517 return ret_val;
1518}
1519
1520static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1521{
1522 /* PHY loopback cannot be performed if SoL/IDER
1523 * sessions are active */
1524 if (igb_check_reset_block(&adapter->hw)) {
1525 dev_err(&adapter->pdev->dev,
1526 "Cannot do PHY loopback test "
1527 "when SoL/IDER is active.\n");
1528 *data = 0;
1529 goto out;
1530 }
1531 *data = igb_setup_desc_rings(adapter);
1532 if (*data)
1533 goto out;
1534 *data = igb_setup_loopback_test(adapter);
1535 if (*data)
1536 goto err_loopback;
1537 *data = igb_run_loopback_test(adapter);
1538 igb_loopback_cleanup(adapter);
1539
1540err_loopback:
1541 igb_free_desc_rings(adapter);
1542out:
1543 return *data;
1544}
1545
1546static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1547{
1548 struct e1000_hw *hw = &adapter->hw;
1549 *data = 0;
1550 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1551 int i = 0;
1552 hw->mac.serdes_has_link = false;
1553
1554 /* On some blade server designs, link establishment
1555 * could take as long as 2-3 minutes */
1556 do {
1557 hw->mac.ops.check_for_link(&adapter->hw);
1558 if (hw->mac.serdes_has_link)
1559 return *data;
1560 msleep(20);
1561 } while (i++ < 3750);
1562
1563 *data = 1;
1564 } else {
1565 hw->mac.ops.check_for_link(&adapter->hw);
1566 if (hw->mac.autoneg)
1567 msleep(4000);
1568
1569 if (!(rd32(E1000_STATUS) &
1570 E1000_STATUS_LU))
1571 *data = 1;
1572 }
1573 return *data;
1574}
1575
1576static void igb_diag_test(struct net_device *netdev,
1577 struct ethtool_test *eth_test, u64 *data)
1578{
1579 struct igb_adapter *adapter = netdev_priv(netdev);
1580 u16 autoneg_advertised;
1581 u8 forced_speed_duplex, autoneg;
1582 bool if_running = netif_running(netdev);
1583
1584 set_bit(__IGB_TESTING, &adapter->state);
1585 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1586 /* Offline tests */
1587
1588 /* save speed, duplex, autoneg settings */
1589 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1590 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1591 autoneg = adapter->hw.mac.autoneg;
1592
1593 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1594
1595 /* Link test performed before hardware reset so autoneg doesn't
1596 * interfere with test result */
1597 if (igb_link_test(adapter, &data[4]))
1598 eth_test->flags |= ETH_TEST_FL_FAILED;
1599
1600 if (if_running)
1601 /* indicate we're in test mode */
1602 dev_close(netdev);
1603 else
1604 igb_reset(adapter);
1605
1606 if (igb_reg_test(adapter, &data[0]))
1607 eth_test->flags |= ETH_TEST_FL_FAILED;
1608
1609 igb_reset(adapter);
1610 if (igb_eeprom_test(adapter, &data[1]))
1611 eth_test->flags |= ETH_TEST_FL_FAILED;
1612
1613 igb_reset(adapter);
1614 if (igb_intr_test(adapter, &data[2]))
1615 eth_test->flags |= ETH_TEST_FL_FAILED;
1616
1617 igb_reset(adapter);
1618 if (igb_loopback_test(adapter, &data[3]))
1619 eth_test->flags |= ETH_TEST_FL_FAILED;
1620
1621 /* restore speed, duplex, autoneg settings */
1622 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1623 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1624 adapter->hw.mac.autoneg = autoneg;
1625
1626 /* force this routine to wait until autoneg complete/timeout */
1627 adapter->hw.phy.autoneg_wait_to_complete = true;
1628 igb_reset(adapter);
1629 adapter->hw.phy.autoneg_wait_to_complete = false;
1630
1631 clear_bit(__IGB_TESTING, &adapter->state);
1632 if (if_running)
1633 dev_open(netdev);
1634 } else {
1635 dev_info(&adapter->pdev->dev, "online testing starting\n");
1636 /* Online tests */
1637 if (igb_link_test(adapter, &data[4]))
1638 eth_test->flags |= ETH_TEST_FL_FAILED;
1639
1640 /* Online tests aren't run; pass by default */
1641 data[0] = 0;
1642 data[1] = 0;
1643 data[2] = 0;
1644 data[3] = 0;
1645
1646 clear_bit(__IGB_TESTING, &adapter->state);
1647 }
1648 msleep_interruptible(4 * 1000);
1649}
1650
1651static int igb_wol_exclusion(struct igb_adapter *adapter,
1652 struct ethtool_wolinfo *wol)
1653{
1654 struct e1000_hw *hw = &adapter->hw;
1655 int retval = 1; /* fail by default */
1656
1657 switch (hw->device_id) {
1658 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1659 /* WoL not supported */
1660 wol->supported = 0;
1661 break;
1662 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1663 /* Wake events not supported on port B */
1664 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1665 wol->supported = 0;
1666 break;
1667 }
1668 /* return success for non excluded adapter ports */
1669 retval = 0;
1670 break;
1671 default:
1672 /* dual port cards only support WoL on port A from now on
1673 * unless it was enabled in the eeprom for port B
1674 * so exclude FUNC_1 ports from having WoL enabled */
1675 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1676 !adapter->eeprom_wol) {
1677 wol->supported = 0;
1678 break;
1679 }
1680
1681 retval = 0;
1682 }
1683
1684 return retval;
1685}
1686
1687static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1688{
1689 struct igb_adapter *adapter = netdev_priv(netdev);
1690
1691 wol->supported = WAKE_UCAST | WAKE_MCAST |
1692 WAKE_BCAST | WAKE_MAGIC;
1693 wol->wolopts = 0;
1694
1695 /* this function will set ->supported = 0 and return 1 if wol is not
1696 * supported by this hardware */
1697 if (igb_wol_exclusion(adapter, wol))
1698 return;
1699
1700 /* apply any specific unsupported masks here */
1701 switch (adapter->hw.device_id) {
1702 default:
1703 break;
1704 }
1705
1706 if (adapter->wol & E1000_WUFC_EX)
1707 wol->wolopts |= WAKE_UCAST;
1708 if (adapter->wol & E1000_WUFC_MC)
1709 wol->wolopts |= WAKE_MCAST;
1710 if (adapter->wol & E1000_WUFC_BC)
1711 wol->wolopts |= WAKE_BCAST;
1712 if (adapter->wol & E1000_WUFC_MAG)
1713 wol->wolopts |= WAKE_MAGIC;
1714
1715 return;
1716}
1717
1718static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1719{
1720 struct igb_adapter *adapter = netdev_priv(netdev);
1721 struct e1000_hw *hw = &adapter->hw;
1722
1723 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1724 return -EOPNOTSUPP;
1725
1726 if (igb_wol_exclusion(adapter, wol))
1727 return wol->wolopts ? -EOPNOTSUPP : 0;
1728
1729 switch (hw->device_id) {
1730 default:
1731 break;
1732 }
1733
1734 /* these settings will always override what we currently have */
1735 adapter->wol = 0;
1736
1737 if (wol->wolopts & WAKE_UCAST)
1738 adapter->wol |= E1000_WUFC_EX;
1739 if (wol->wolopts & WAKE_MCAST)
1740 adapter->wol |= E1000_WUFC_MC;
1741 if (wol->wolopts & WAKE_BCAST)
1742 adapter->wol |= E1000_WUFC_BC;
1743 if (wol->wolopts & WAKE_MAGIC)
1744 adapter->wol |= E1000_WUFC_MAG;
1745
1746 return 0;
1747}
1748
1749/* toggle LED 4 times per second = 2 "blinks" per second */
1750#define IGB_ID_INTERVAL (HZ/4)
1751
1752/* bit defines for adapter->led_status */
1753#define IGB_LED_ON 0
1754
1755static int igb_phys_id(struct net_device *netdev, u32 data)
1756{
1757 struct igb_adapter *adapter = netdev_priv(netdev);
1758 struct e1000_hw *hw = &adapter->hw;
1759
1760 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1761 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1762
1763 igb_blink_led(hw);
1764 msleep_interruptible(data * 1000);
1765
1766 igb_led_off(hw);
1767 clear_bit(IGB_LED_ON, &adapter->led_status);
1768 igb_cleanup_led(hw);
1769
1770 return 0;
1771}
1772
1773static int igb_set_coalesce(struct net_device *netdev,
1774 struct ethtool_coalesce *ec)
1775{
1776 struct igb_adapter *adapter = netdev_priv(netdev);
1777
1778 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1779 ((ec->rx_coalesce_usecs > 3) &&
1780 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1781 (ec->rx_coalesce_usecs == 2))
1782 return -EINVAL;
1783
1784 /* convert to rate of irq's per second */
1785 if (ec->rx_coalesce_usecs <= 3)
1786 adapter->itr_setting = ec->rx_coalesce_usecs;
1787 else
1788 adapter->itr_setting = (1000000 / ec->rx_coalesce_usecs);
1789
1790 if (netif_running(netdev))
1791 igb_reinit_locked(adapter);
1792
1793 return 0;
1794}
1795
1796static int igb_get_coalesce(struct net_device *netdev,
1797 struct ethtool_coalesce *ec)
1798{
1799 struct igb_adapter *adapter = netdev_priv(netdev);
1800
1801 if (adapter->itr_setting <= 3)
1802 ec->rx_coalesce_usecs = adapter->itr_setting;
1803 else
1804 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1805
1806 return 0;
1807}
1808
1809
1810static int igb_nway_reset(struct net_device *netdev)
1811{
1812 struct igb_adapter *adapter = netdev_priv(netdev);
1813 if (netif_running(netdev))
1814 igb_reinit_locked(adapter);
1815 return 0;
1816}
1817
1818static int igb_get_sset_count(struct net_device *netdev, int sset)
1819{
1820 switch (sset) {
1821 case ETH_SS_STATS:
1822 return IGB_STATS_LEN;
1823 case ETH_SS_TEST:
1824 return IGB_TEST_LEN;
1825 default:
1826 return -ENOTSUPP;
1827 }
1828}
1829
1830static void igb_get_ethtool_stats(struct net_device *netdev,
1831 struct ethtool_stats *stats, u64 *data)
1832{
1833 struct igb_adapter *adapter = netdev_priv(netdev);
1834 u64 *queue_stat;
1835 int stat_count = sizeof(struct igb_queue_stats) / sizeof(u64);
1836 int j;
1837 int i;
1838
1839 igb_update_stats(adapter);
1840 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1841 char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset;
1842 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1843 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1844 }
1845 for (j = 0; j < adapter->num_rx_queues; j++) {
1846 int k;
1847 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1848 for (k = 0; k < stat_count; k++)
1849 data[i + k] = queue_stat[k];
1850 i += k;
1851 }
1852}
1853
1854static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1855{
1856 struct igb_adapter *adapter = netdev_priv(netdev);
1857 u8 *p = data;
1858 int i;
1859
1860 switch (stringset) {
1861 case ETH_SS_TEST:
1862 memcpy(data, *igb_gstrings_test,
1863 IGB_TEST_LEN*ETH_GSTRING_LEN);
1864 break;
1865 case ETH_SS_STATS:
1866 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1867 memcpy(p, igb_gstrings_stats[i].stat_string,
1868 ETH_GSTRING_LEN);
1869 p += ETH_GSTRING_LEN;
1870 }
1871 for (i = 0; i < adapter->num_tx_queues; i++) {
1872 sprintf(p, "tx_queue_%u_packets", i);
1873 p += ETH_GSTRING_LEN;
1874 sprintf(p, "tx_queue_%u_bytes", i);
1875 p += ETH_GSTRING_LEN;
1876 }
1877 for (i = 0; i < adapter->num_rx_queues; i++) {
1878 sprintf(p, "rx_queue_%u_packets", i);
1879 p += ETH_GSTRING_LEN;
1880 sprintf(p, "rx_queue_%u_bytes", i);
1881 p += ETH_GSTRING_LEN;
1882 }
1883/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
1884 break;
1885 }
1886}
1887
1888static struct ethtool_ops igb_ethtool_ops = {
1889 .get_settings = igb_get_settings,
1890 .set_settings = igb_set_settings,
1891 .get_drvinfo = igb_get_drvinfo,
1892 .get_regs_len = igb_get_regs_len,
1893 .get_regs = igb_get_regs,
1894 .get_wol = igb_get_wol,
1895 .set_wol = igb_set_wol,
1896 .get_msglevel = igb_get_msglevel,
1897 .set_msglevel = igb_set_msglevel,
1898 .nway_reset = igb_nway_reset,
1899 .get_link = ethtool_op_get_link,
1900 .get_eeprom_len = igb_get_eeprom_len,
1901 .get_eeprom = igb_get_eeprom,
1902 .set_eeprom = igb_set_eeprom,
1903 .get_ringparam = igb_get_ringparam,
1904 .set_ringparam = igb_set_ringparam,
1905 .get_pauseparam = igb_get_pauseparam,
1906 .set_pauseparam = igb_set_pauseparam,
1907 .get_rx_csum = igb_get_rx_csum,
1908 .set_rx_csum = igb_set_rx_csum,
1909 .get_tx_csum = igb_get_tx_csum,
1910 .set_tx_csum = igb_set_tx_csum,
1911 .get_sg = ethtool_op_get_sg,
1912 .set_sg = ethtool_op_set_sg,
1913 .get_tso = ethtool_op_get_tso,
1914 .set_tso = igb_set_tso,
1915 .self_test = igb_diag_test,
1916 .get_strings = igb_get_strings,
1917 .phys_id = igb_phys_id,
1918 .get_sset_count = igb_get_sset_count,
1919 .get_ethtool_stats = igb_get_ethtool_stats,
1920 .get_coalesce = igb_get_coalesce,
1921 .set_coalesce = igb_set_coalesce,
1922};
1923
1924void igb_set_ethtool_ops(struct net_device *netdev)
1925{
1926 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
1927}