diff options
Diffstat (limited to 'drivers/net/igb/e1000_mac.c')
-rw-r--r-- | drivers/net/igb/e1000_mac.c | 1505 |
1 files changed, 1505 insertions, 0 deletions
diff --git a/drivers/net/igb/e1000_mac.c b/drivers/net/igb/e1000_mac.c new file mode 100644 index 000000000000..3e84a3f0c1d8 --- /dev/null +++ b/drivers/net/igb/e1000_mac.c | |||
@@ -0,0 +1,1505 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel(R) Gigabit Ethernet Linux driver | ||
4 | Copyright(c) 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
24 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
25 | |||
26 | *******************************************************************************/ | ||
27 | |||
28 | #include <linux/if_ether.h> | ||
29 | #include <linux/delay.h> | ||
30 | #include <linux/pci.h> | ||
31 | #include <linux/netdevice.h> | ||
32 | |||
33 | #include "e1000_mac.h" | ||
34 | |||
35 | #include "igb.h" | ||
36 | |||
37 | static s32 igb_set_default_fc(struct e1000_hw *hw); | ||
38 | static s32 igb_set_fc_watermarks(struct e1000_hw *hw); | ||
39 | static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr); | ||
40 | |||
41 | /** | ||
42 | * e1000_remove_device - Free device specific structure | ||
43 | * @hw: pointer to the HW structure | ||
44 | * | ||
45 | * If a device specific structure was allocated, this function will | ||
46 | * free it. | ||
47 | **/ | ||
48 | void igb_remove_device(struct e1000_hw *hw) | ||
49 | { | ||
50 | /* Freeing the dev_spec member of e1000_hw structure */ | ||
51 | kfree(hw->dev_spec); | ||
52 | } | ||
53 | |||
54 | static void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) | ||
55 | { | ||
56 | struct igb_adapter *adapter = hw->back; | ||
57 | |||
58 | pci_read_config_word(adapter->pdev, reg, value); | ||
59 | } | ||
60 | |||
61 | static s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) | ||
62 | { | ||
63 | struct igb_adapter *adapter = hw->back; | ||
64 | u16 cap_offset; | ||
65 | |||
66 | cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); | ||
67 | if (!cap_offset) | ||
68 | return -E1000_ERR_CONFIG; | ||
69 | |||
70 | pci_read_config_word(adapter->pdev, cap_offset + reg, value); | ||
71 | |||
72 | return 0; | ||
73 | } | ||
74 | |||
75 | /** | ||
76 | * e1000_get_bus_info_pcie - Get PCIe bus information | ||
77 | * @hw: pointer to the HW structure | ||
78 | * | ||
79 | * Determines and stores the system bus information for a particular | ||
80 | * network interface. The following bus information is determined and stored: | ||
81 | * bus speed, bus width, type (PCIe), and PCIe function. | ||
82 | **/ | ||
83 | s32 igb_get_bus_info_pcie(struct e1000_hw *hw) | ||
84 | { | ||
85 | struct e1000_bus_info *bus = &hw->bus; | ||
86 | s32 ret_val; | ||
87 | u32 status; | ||
88 | u16 pcie_link_status, pci_header_type; | ||
89 | |||
90 | bus->type = e1000_bus_type_pci_express; | ||
91 | bus->speed = e1000_bus_speed_2500; | ||
92 | |||
93 | ret_val = igb_read_pcie_cap_reg(hw, | ||
94 | PCIE_LINK_STATUS, | ||
95 | &pcie_link_status); | ||
96 | if (ret_val) | ||
97 | bus->width = e1000_bus_width_unknown; | ||
98 | else | ||
99 | bus->width = (enum e1000_bus_width)((pcie_link_status & | ||
100 | PCIE_LINK_WIDTH_MASK) >> | ||
101 | PCIE_LINK_WIDTH_SHIFT); | ||
102 | |||
103 | igb_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type); | ||
104 | if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { | ||
105 | status = rd32(E1000_STATUS); | ||
106 | bus->func = (status & E1000_STATUS_FUNC_MASK) | ||
107 | >> E1000_STATUS_FUNC_SHIFT; | ||
108 | } else { | ||
109 | bus->func = 0; | ||
110 | } | ||
111 | |||
112 | return 0; | ||
113 | } | ||
114 | |||
115 | /** | ||
116 | * e1000_clear_vfta - Clear VLAN filter table | ||
117 | * @hw: pointer to the HW structure | ||
118 | * | ||
119 | * Clears the register array which contains the VLAN filter table by | ||
120 | * setting all the values to 0. | ||
121 | **/ | ||
122 | void igb_clear_vfta(struct e1000_hw *hw) | ||
123 | { | ||
124 | u32 offset; | ||
125 | |||
126 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | ||
127 | array_wr32(E1000_VFTA, offset, 0); | ||
128 | wrfl(); | ||
129 | } | ||
130 | } | ||
131 | |||
132 | /** | ||
133 | * e1000_write_vfta - Write value to VLAN filter table | ||
134 | * @hw: pointer to the HW structure | ||
135 | * @offset: register offset in VLAN filter table | ||
136 | * @value: register value written to VLAN filter table | ||
137 | * | ||
138 | * Writes value at the given offset in the register array which stores | ||
139 | * the VLAN filter table. | ||
140 | **/ | ||
141 | void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) | ||
142 | { | ||
143 | array_wr32(E1000_VFTA, offset, value); | ||
144 | wrfl(); | ||
145 | } | ||
146 | |||
147 | /** | ||
148 | * e1000_init_rx_addrs - Initialize receive address's | ||
149 | * @hw: pointer to the HW structure | ||
150 | * @rar_count: receive address registers | ||
151 | * | ||
152 | * Setups the receive address registers by setting the base receive address | ||
153 | * register to the devices MAC address and clearing all the other receive | ||
154 | * address registers to 0. | ||
155 | **/ | ||
156 | void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) | ||
157 | { | ||
158 | u32 i; | ||
159 | |||
160 | /* Setup the receive address */ | ||
161 | hw_dbg(hw, "Programming MAC Address into RAR[0]\n"); | ||
162 | |||
163 | hw->mac.ops.rar_set(hw, hw->mac.addr, 0); | ||
164 | |||
165 | /* Zero out the other (rar_entry_count - 1) receive addresses */ | ||
166 | hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1); | ||
167 | for (i = 1; i < rar_count; i++) { | ||
168 | array_wr32(E1000_RA, (i << 1), 0); | ||
169 | wrfl(); | ||
170 | array_wr32(E1000_RA, ((i << 1) + 1), 0); | ||
171 | wrfl(); | ||
172 | } | ||
173 | } | ||
174 | |||
175 | /** | ||
176 | * e1000_check_alt_mac_addr - Check for alternate MAC addr | ||
177 | * @hw: pointer to the HW structure | ||
178 | * | ||
179 | * Checks the nvm for an alternate MAC address. An alternate MAC address | ||
180 | * can be setup by pre-boot software and must be treated like a permanent | ||
181 | * address and must override the actual permanent MAC address. If an | ||
182 | * alternate MAC address is fopund it is saved in the hw struct and | ||
183 | * prgrammed into RAR0 and the cuntion returns success, otherwise the | ||
184 | * fucntion returns an error. | ||
185 | **/ | ||
186 | s32 igb_check_alt_mac_addr(struct e1000_hw *hw) | ||
187 | { | ||
188 | u32 i; | ||
189 | s32 ret_val = 0; | ||
190 | u16 offset, nvm_alt_mac_addr_offset, nvm_data; | ||
191 | u8 alt_mac_addr[ETH_ALEN]; | ||
192 | |||
193 | ret_val = hw->nvm.ops.read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, | ||
194 | &nvm_alt_mac_addr_offset); | ||
195 | if (ret_val) { | ||
196 | hw_dbg(hw, "NVM Read Error\n"); | ||
197 | goto out; | ||
198 | } | ||
199 | |||
200 | if (nvm_alt_mac_addr_offset == 0xFFFF) { | ||
201 | ret_val = -(E1000_NOT_IMPLEMENTED); | ||
202 | goto out; | ||
203 | } | ||
204 | |||
205 | if (hw->bus.func == E1000_FUNC_1) | ||
206 | nvm_alt_mac_addr_offset += ETH_ALEN/sizeof(u16); | ||
207 | |||
208 | for (i = 0; i < ETH_ALEN; i += 2) { | ||
209 | offset = nvm_alt_mac_addr_offset + (i >> 1); | ||
210 | ret_val = hw->nvm.ops.read_nvm(hw, offset, 1, &nvm_data); | ||
211 | if (ret_val) { | ||
212 | hw_dbg(hw, "NVM Read Error\n"); | ||
213 | goto out; | ||
214 | } | ||
215 | |||
216 | alt_mac_addr[i] = (u8)(nvm_data & 0xFF); | ||
217 | alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); | ||
218 | } | ||
219 | |||
220 | /* if multicast bit is set, the alternate address will not be used */ | ||
221 | if (alt_mac_addr[0] & 0x01) { | ||
222 | ret_val = -(E1000_NOT_IMPLEMENTED); | ||
223 | goto out; | ||
224 | } | ||
225 | |||
226 | for (i = 0; i < ETH_ALEN; i++) | ||
227 | hw->mac.addr[i] = hw->mac.perm_addr[i] = alt_mac_addr[i]; | ||
228 | |||
229 | hw->mac.ops.rar_set(hw, hw->mac.perm_addr, 0); | ||
230 | |||
231 | out: | ||
232 | return ret_val; | ||
233 | } | ||
234 | |||
235 | /** | ||
236 | * e1000_rar_set - Set receive address register | ||
237 | * @hw: pointer to the HW structure | ||
238 | * @addr: pointer to the receive address | ||
239 | * @index: receive address array register | ||
240 | * | ||
241 | * Sets the receive address array register at index to the address passed | ||
242 | * in by addr. | ||
243 | **/ | ||
244 | void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) | ||
245 | { | ||
246 | u32 rar_low, rar_high; | ||
247 | |||
248 | /* | ||
249 | * HW expects these in little endian so we reverse the byte order | ||
250 | * from network order (big endian) to little endian | ||
251 | */ | ||
252 | rar_low = ((u32) addr[0] | | ||
253 | ((u32) addr[1] << 8) | | ||
254 | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); | ||
255 | |||
256 | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); | ||
257 | |||
258 | if (!hw->mac.disable_av) | ||
259 | rar_high |= E1000_RAH_AV; | ||
260 | |||
261 | array_wr32(E1000_RA, (index << 1), rar_low); | ||
262 | array_wr32(E1000_RA, ((index << 1) + 1), rar_high); | ||
263 | } | ||
264 | |||
265 | /** | ||
266 | * e1000_mta_set - Set multicast filter table address | ||
267 | * @hw: pointer to the HW structure | ||
268 | * @hash_value: determines the MTA register and bit to set | ||
269 | * | ||
270 | * The multicast table address is a register array of 32-bit registers. | ||
271 | * The hash_value is used to determine what register the bit is in, the | ||
272 | * current value is read, the new bit is OR'd in and the new value is | ||
273 | * written back into the register. | ||
274 | **/ | ||
275 | static void igb_mta_set(struct e1000_hw *hw, u32 hash_value) | ||
276 | { | ||
277 | u32 hash_bit, hash_reg, mta; | ||
278 | |||
279 | /* | ||
280 | * The MTA is a register array of 32-bit registers. It is | ||
281 | * treated like an array of (32*mta_reg_count) bits. We want to | ||
282 | * set bit BitArray[hash_value]. So we figure out what register | ||
283 | * the bit is in, read it, OR in the new bit, then write | ||
284 | * back the new value. The (hw->mac.mta_reg_count - 1) serves as a | ||
285 | * mask to bits 31:5 of the hash value which gives us the | ||
286 | * register we're modifying. The hash bit within that register | ||
287 | * is determined by the lower 5 bits of the hash value. | ||
288 | */ | ||
289 | hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); | ||
290 | hash_bit = hash_value & 0x1F; | ||
291 | |||
292 | mta = array_rd32(E1000_MTA, hash_reg); | ||
293 | |||
294 | mta |= (1 << hash_bit); | ||
295 | |||
296 | array_wr32(E1000_MTA, hash_reg, mta); | ||
297 | wrfl(); | ||
298 | } | ||
299 | |||
300 | /** | ||
301 | * e1000_update_mc_addr_list - Update Multicast addresses | ||
302 | * @hw: pointer to the HW structure | ||
303 | * @mc_addr_list: array of multicast addresses to program | ||
304 | * @mc_addr_count: number of multicast addresses to program | ||
305 | * @rar_used_count: the first RAR register free to program | ||
306 | * @rar_count: total number of supported Receive Address Registers | ||
307 | * | ||
308 | * Updates the Receive Address Registers and Multicast Table Array. | ||
309 | * The caller must have a packed mc_addr_list of multicast addresses. | ||
310 | * The parameter rar_count will usually be hw->mac.rar_entry_count | ||
311 | * unless there are workarounds that change this. | ||
312 | **/ | ||
313 | void igb_update_mc_addr_list(struct e1000_hw *hw, | ||
314 | u8 *mc_addr_list, u32 mc_addr_count, | ||
315 | u32 rar_used_count, u32 rar_count) | ||
316 | { | ||
317 | u32 hash_value; | ||
318 | u32 i; | ||
319 | |||
320 | /* | ||
321 | * Load the first set of multicast addresses into the exact | ||
322 | * filters (RAR). If there are not enough to fill the RAR | ||
323 | * array, clear the filters. | ||
324 | */ | ||
325 | for (i = rar_used_count; i < rar_count; i++) { | ||
326 | if (mc_addr_count) { | ||
327 | hw->mac.ops.rar_set(hw, mc_addr_list, i); | ||
328 | mc_addr_count--; | ||
329 | mc_addr_list += ETH_ALEN; | ||
330 | } else { | ||
331 | array_wr32(E1000_RA, i << 1, 0); | ||
332 | wrfl(); | ||
333 | array_wr32(E1000_RA, (i << 1) + 1, 0); | ||
334 | wrfl(); | ||
335 | } | ||
336 | } | ||
337 | |||
338 | /* Clear the old settings from the MTA */ | ||
339 | hw_dbg(hw, "Clearing MTA\n"); | ||
340 | for (i = 0; i < hw->mac.mta_reg_count; i++) { | ||
341 | array_wr32(E1000_MTA, i, 0); | ||
342 | wrfl(); | ||
343 | } | ||
344 | |||
345 | /* Load any remaining multicast addresses into the hash table. */ | ||
346 | for (; mc_addr_count > 0; mc_addr_count--) { | ||
347 | hash_value = igb_hash_mc_addr(hw, mc_addr_list); | ||
348 | hw_dbg(hw, "Hash value = 0x%03X\n", hash_value); | ||
349 | igb_mta_set(hw, hash_value); | ||
350 | mc_addr_list += ETH_ALEN; | ||
351 | } | ||
352 | } | ||
353 | |||
354 | /** | ||
355 | * e1000_hash_mc_addr - Generate a multicast hash value | ||
356 | * @hw: pointer to the HW structure | ||
357 | * @mc_addr: pointer to a multicast address | ||
358 | * | ||
359 | * Generates a multicast address hash value which is used to determine | ||
360 | * the multicast filter table array address and new table value. See | ||
361 | * igb_mta_set() | ||
362 | **/ | ||
363 | static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | ||
364 | { | ||
365 | u32 hash_value, hash_mask; | ||
366 | u8 bit_shift = 0; | ||
367 | |||
368 | /* Register count multiplied by bits per register */ | ||
369 | hash_mask = (hw->mac.mta_reg_count * 32) - 1; | ||
370 | |||
371 | /* | ||
372 | * For a mc_filter_type of 0, bit_shift is the number of left-shifts | ||
373 | * where 0xFF would still fall within the hash mask. | ||
374 | */ | ||
375 | while (hash_mask >> bit_shift != 0xFF) | ||
376 | bit_shift++; | ||
377 | |||
378 | /* | ||
379 | * The portion of the address that is used for the hash table | ||
380 | * is determined by the mc_filter_type setting. | ||
381 | * The algorithm is such that there is a total of 8 bits of shifting. | ||
382 | * The bit_shift for a mc_filter_type of 0 represents the number of | ||
383 | * left-shifts where the MSB of mc_addr[5] would still fall within | ||
384 | * the hash_mask. Case 0 does this exactly. Since there are a total | ||
385 | * of 8 bits of shifting, then mc_addr[4] will shift right the | ||
386 | * remaining number of bits. Thus 8 - bit_shift. The rest of the | ||
387 | * cases are a variation of this algorithm...essentially raising the | ||
388 | * number of bits to shift mc_addr[5] left, while still keeping the | ||
389 | * 8-bit shifting total. | ||
390 | * | ||
391 | * For example, given the following Destination MAC Address and an | ||
392 | * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), | ||
393 | * we can see that the bit_shift for case 0 is 4. These are the hash | ||
394 | * values resulting from each mc_filter_type... | ||
395 | * [0] [1] [2] [3] [4] [5] | ||
396 | * 01 AA 00 12 34 56 | ||
397 | * LSB MSB | ||
398 | * | ||
399 | * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 | ||
400 | * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 | ||
401 | * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 | ||
402 | * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 | ||
403 | */ | ||
404 | switch (hw->mac.mc_filter_type) { | ||
405 | default: | ||
406 | case 0: | ||
407 | break; | ||
408 | case 1: | ||
409 | bit_shift += 1; | ||
410 | break; | ||
411 | case 2: | ||
412 | bit_shift += 2; | ||
413 | break; | ||
414 | case 3: | ||
415 | bit_shift += 4; | ||
416 | break; | ||
417 | } | ||
418 | |||
419 | hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | | ||
420 | (((u16) mc_addr[5]) << bit_shift))); | ||
421 | |||
422 | return hash_value; | ||
423 | } | ||
424 | |||
425 | /** | ||
426 | * e1000_clear_hw_cntrs_base - Clear base hardware counters | ||
427 | * @hw: pointer to the HW structure | ||
428 | * | ||
429 | * Clears the base hardware counters by reading the counter registers. | ||
430 | **/ | ||
431 | void igb_clear_hw_cntrs_base(struct e1000_hw *hw) | ||
432 | { | ||
433 | u32 temp; | ||
434 | |||
435 | temp = rd32(E1000_CRCERRS); | ||
436 | temp = rd32(E1000_SYMERRS); | ||
437 | temp = rd32(E1000_MPC); | ||
438 | temp = rd32(E1000_SCC); | ||
439 | temp = rd32(E1000_ECOL); | ||
440 | temp = rd32(E1000_MCC); | ||
441 | temp = rd32(E1000_LATECOL); | ||
442 | temp = rd32(E1000_COLC); | ||
443 | temp = rd32(E1000_DC); | ||
444 | temp = rd32(E1000_SEC); | ||
445 | temp = rd32(E1000_RLEC); | ||
446 | temp = rd32(E1000_XONRXC); | ||
447 | temp = rd32(E1000_XONTXC); | ||
448 | temp = rd32(E1000_XOFFRXC); | ||
449 | temp = rd32(E1000_XOFFTXC); | ||
450 | temp = rd32(E1000_FCRUC); | ||
451 | temp = rd32(E1000_GPRC); | ||
452 | temp = rd32(E1000_BPRC); | ||
453 | temp = rd32(E1000_MPRC); | ||
454 | temp = rd32(E1000_GPTC); | ||
455 | temp = rd32(E1000_GORCL); | ||
456 | temp = rd32(E1000_GORCH); | ||
457 | temp = rd32(E1000_GOTCL); | ||
458 | temp = rd32(E1000_GOTCH); | ||
459 | temp = rd32(E1000_RNBC); | ||
460 | temp = rd32(E1000_RUC); | ||
461 | temp = rd32(E1000_RFC); | ||
462 | temp = rd32(E1000_ROC); | ||
463 | temp = rd32(E1000_RJC); | ||
464 | temp = rd32(E1000_TORL); | ||
465 | temp = rd32(E1000_TORH); | ||
466 | temp = rd32(E1000_TOTL); | ||
467 | temp = rd32(E1000_TOTH); | ||
468 | temp = rd32(E1000_TPR); | ||
469 | temp = rd32(E1000_TPT); | ||
470 | temp = rd32(E1000_MPTC); | ||
471 | temp = rd32(E1000_BPTC); | ||
472 | } | ||
473 | |||
474 | /** | ||
475 | * e1000_check_for_copper_link - Check for link (Copper) | ||
476 | * @hw: pointer to the HW structure | ||
477 | * | ||
478 | * Checks to see of the link status of the hardware has changed. If a | ||
479 | * change in link status has been detected, then we read the PHY registers | ||
480 | * to get the current speed/duplex if link exists. | ||
481 | **/ | ||
482 | s32 igb_check_for_copper_link(struct e1000_hw *hw) | ||
483 | { | ||
484 | struct e1000_mac_info *mac = &hw->mac; | ||
485 | s32 ret_val; | ||
486 | bool link; | ||
487 | |||
488 | /* | ||
489 | * We only want to go out to the PHY registers to see if Auto-Neg | ||
490 | * has completed and/or if our link status has changed. The | ||
491 | * get_link_status flag is set upon receiving a Link Status | ||
492 | * Change or Rx Sequence Error interrupt. | ||
493 | */ | ||
494 | if (!mac->get_link_status) { | ||
495 | ret_val = 0; | ||
496 | goto out; | ||
497 | } | ||
498 | |||
499 | /* | ||
500 | * First we want to see if the MII Status Register reports | ||
501 | * link. If so, then we want to get the current speed/duplex | ||
502 | * of the PHY. | ||
503 | */ | ||
504 | ret_val = igb_phy_has_link(hw, 1, 0, &link); | ||
505 | if (ret_val) | ||
506 | goto out; | ||
507 | |||
508 | if (!link) | ||
509 | goto out; /* No link detected */ | ||
510 | |||
511 | mac->get_link_status = false; | ||
512 | |||
513 | /* | ||
514 | * Check if there was DownShift, must be checked | ||
515 | * immediately after link-up | ||
516 | */ | ||
517 | igb_check_downshift(hw); | ||
518 | |||
519 | /* | ||
520 | * If we are forcing speed/duplex, then we simply return since | ||
521 | * we have already determined whether we have link or not. | ||
522 | */ | ||
523 | if (!mac->autoneg) { | ||
524 | ret_val = -E1000_ERR_CONFIG; | ||
525 | goto out; | ||
526 | } | ||
527 | |||
528 | /* | ||
529 | * Auto-Neg is enabled. Auto Speed Detection takes care | ||
530 | * of MAC speed/duplex configuration. So we only need to | ||
531 | * configure Collision Distance in the MAC. | ||
532 | */ | ||
533 | igb_config_collision_dist(hw); | ||
534 | |||
535 | /* | ||
536 | * Configure Flow Control now that Auto-Neg has completed. | ||
537 | * First, we need to restore the desired flow control | ||
538 | * settings because we may have had to re-autoneg with a | ||
539 | * different link partner. | ||
540 | */ | ||
541 | ret_val = igb_config_fc_after_link_up(hw); | ||
542 | if (ret_val) | ||
543 | hw_dbg(hw, "Error configuring flow control\n"); | ||
544 | |||
545 | out: | ||
546 | return ret_val; | ||
547 | } | ||
548 | |||
549 | /** | ||
550 | * e1000_setup_link - Setup flow control and link settings | ||
551 | * @hw: pointer to the HW structure | ||
552 | * | ||
553 | * Determines which flow control settings to use, then configures flow | ||
554 | * control. Calls the appropriate media-specific link configuration | ||
555 | * function. Assuming the adapter has a valid link partner, a valid link | ||
556 | * should be established. Assumes the hardware has previously been reset | ||
557 | * and the transmitter and receiver are not enabled. | ||
558 | **/ | ||
559 | s32 igb_setup_link(struct e1000_hw *hw) | ||
560 | { | ||
561 | s32 ret_val = 0; | ||
562 | |||
563 | /* | ||
564 | * In the case of the phy reset being blocked, we already have a link. | ||
565 | * We do not need to set it up again. | ||
566 | */ | ||
567 | if (igb_check_reset_block(hw)) | ||
568 | goto out; | ||
569 | |||
570 | ret_val = igb_set_default_fc(hw); | ||
571 | if (ret_val) | ||
572 | goto out; | ||
573 | |||
574 | /* | ||
575 | * We want to save off the original Flow Control configuration just | ||
576 | * in case we get disconnected and then reconnected into a different | ||
577 | * hub or switch with different Flow Control capabilities. | ||
578 | */ | ||
579 | hw->fc.original_type = hw->fc.type; | ||
580 | |||
581 | hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", hw->fc.type); | ||
582 | |||
583 | /* Call the necessary media_type subroutine to configure the link. */ | ||
584 | ret_val = hw->mac.ops.setup_physical_interface(hw); | ||
585 | if (ret_val) | ||
586 | goto out; | ||
587 | |||
588 | /* | ||
589 | * Initialize the flow control address, type, and PAUSE timer | ||
590 | * registers to their default values. This is done even if flow | ||
591 | * control is disabled, because it does not hurt anything to | ||
592 | * initialize these registers. | ||
593 | */ | ||
594 | hw_dbg(hw, | ||
595 | "Initializing the Flow Control address, type and timer regs\n"); | ||
596 | wr32(E1000_FCT, FLOW_CONTROL_TYPE); | ||
597 | wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); | ||
598 | wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); | ||
599 | |||
600 | wr32(E1000_FCTTV, hw->fc.pause_time); | ||
601 | |||
602 | ret_val = igb_set_fc_watermarks(hw); | ||
603 | |||
604 | out: | ||
605 | return ret_val; | ||
606 | } | ||
607 | |||
608 | /** | ||
609 | * e1000_config_collision_dist - Configure collision distance | ||
610 | * @hw: pointer to the HW structure | ||
611 | * | ||
612 | * Configures the collision distance to the default value and is used | ||
613 | * during link setup. Currently no func pointer exists and all | ||
614 | * implementations are handled in the generic version of this function. | ||
615 | **/ | ||
616 | void igb_config_collision_dist(struct e1000_hw *hw) | ||
617 | { | ||
618 | u32 tctl; | ||
619 | |||
620 | tctl = rd32(E1000_TCTL); | ||
621 | |||
622 | tctl &= ~E1000_TCTL_COLD; | ||
623 | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; | ||
624 | |||
625 | wr32(E1000_TCTL, tctl); | ||
626 | wrfl(); | ||
627 | } | ||
628 | |||
629 | /** | ||
630 | * e1000_set_fc_watermarks - Set flow control high/low watermarks | ||
631 | * @hw: pointer to the HW structure | ||
632 | * | ||
633 | * Sets the flow control high/low threshold (watermark) registers. If | ||
634 | * flow control XON frame transmission is enabled, then set XON frame | ||
635 | * tansmission as well. | ||
636 | **/ | ||
637 | static s32 igb_set_fc_watermarks(struct e1000_hw *hw) | ||
638 | { | ||
639 | s32 ret_val = 0; | ||
640 | u32 fcrtl = 0, fcrth = 0; | ||
641 | |||
642 | /* | ||
643 | * Set the flow control receive threshold registers. Normally, | ||
644 | * these registers will be set to a default threshold that may be | ||
645 | * adjusted later by the driver's runtime code. However, if the | ||
646 | * ability to transmit pause frames is not enabled, then these | ||
647 | * registers will be set to 0. | ||
648 | */ | ||
649 | if (hw->fc.type & e1000_fc_tx_pause) { | ||
650 | /* | ||
651 | * We need to set up the Receive Threshold high and low water | ||
652 | * marks as well as (optionally) enabling the transmission of | ||
653 | * XON frames. | ||
654 | */ | ||
655 | fcrtl = hw->fc.low_water; | ||
656 | if (hw->fc.send_xon) | ||
657 | fcrtl |= E1000_FCRTL_XONE; | ||
658 | |||
659 | fcrth = hw->fc.high_water; | ||
660 | } | ||
661 | wr32(E1000_FCRTL, fcrtl); | ||
662 | wr32(E1000_FCRTH, fcrth); | ||
663 | |||
664 | return ret_val; | ||
665 | } | ||
666 | |||
667 | /** | ||
668 | * e1000_set_default_fc - Set flow control default values | ||
669 | * @hw: pointer to the HW structure | ||
670 | * | ||
671 | * Read the EEPROM for the default values for flow control and store the | ||
672 | * values. | ||
673 | **/ | ||
674 | static s32 igb_set_default_fc(struct e1000_hw *hw) | ||
675 | { | ||
676 | s32 ret_val = 0; | ||
677 | u16 nvm_data; | ||
678 | |||
679 | /* | ||
680 | * Read and store word 0x0F of the EEPROM. This word contains bits | ||
681 | * that determine the hardware's default PAUSE (flow control) mode, | ||
682 | * a bit that determines whether the HW defaults to enabling or | ||
683 | * disabling auto-negotiation, and the direction of the | ||
684 | * SW defined pins. If there is no SW over-ride of the flow | ||
685 | * control setting, then the variable hw->fc will | ||
686 | * be initialized based on a value in the EEPROM. | ||
687 | */ | ||
688 | ret_val = hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, | ||
689 | &nvm_data); | ||
690 | |||
691 | if (ret_val) { | ||
692 | hw_dbg(hw, "NVM Read Error\n"); | ||
693 | goto out; | ||
694 | } | ||
695 | |||
696 | if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) | ||
697 | hw->fc.type = e1000_fc_none; | ||
698 | else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == | ||
699 | NVM_WORD0F_ASM_DIR) | ||
700 | hw->fc.type = e1000_fc_tx_pause; | ||
701 | else | ||
702 | hw->fc.type = e1000_fc_full; | ||
703 | |||
704 | out: | ||
705 | return ret_val; | ||
706 | } | ||
707 | |||
708 | /** | ||
709 | * e1000_force_mac_fc - Force the MAC's flow control settings | ||
710 | * @hw: pointer to the HW structure | ||
711 | * | ||
712 | * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the | ||
713 | * device control register to reflect the adapter settings. TFCE and RFCE | ||
714 | * need to be explicitly set by software when a copper PHY is used because | ||
715 | * autonegotiation is managed by the PHY rather than the MAC. Software must | ||
716 | * also configure these bits when link is forced on a fiber connection. | ||
717 | **/ | ||
718 | s32 igb_force_mac_fc(struct e1000_hw *hw) | ||
719 | { | ||
720 | u32 ctrl; | ||
721 | s32 ret_val = 0; | ||
722 | |||
723 | ctrl = rd32(E1000_CTRL); | ||
724 | |||
725 | /* | ||
726 | * Because we didn't get link via the internal auto-negotiation | ||
727 | * mechanism (we either forced link or we got link via PHY | ||
728 | * auto-neg), we have to manually enable/disable transmit an | ||
729 | * receive flow control. | ||
730 | * | ||
731 | * The "Case" statement below enables/disable flow control | ||
732 | * according to the "hw->fc.type" parameter. | ||
733 | * | ||
734 | * The possible values of the "fc" parameter are: | ||
735 | * 0: Flow control is completely disabled | ||
736 | * 1: Rx flow control is enabled (we can receive pause | ||
737 | * frames but not send pause frames). | ||
738 | * 2: Tx flow control is enabled (we can send pause frames | ||
739 | * frames but we do not receive pause frames). | ||
740 | * 3: Both Rx and TX flow control (symmetric) is enabled. | ||
741 | * other: No other values should be possible at this point. | ||
742 | */ | ||
743 | hw_dbg(hw, "hw->fc.type = %u\n", hw->fc.type); | ||
744 | |||
745 | switch (hw->fc.type) { | ||
746 | case e1000_fc_none: | ||
747 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | ||
748 | break; | ||
749 | case e1000_fc_rx_pause: | ||
750 | ctrl &= (~E1000_CTRL_TFCE); | ||
751 | ctrl |= E1000_CTRL_RFCE; | ||
752 | break; | ||
753 | case e1000_fc_tx_pause: | ||
754 | ctrl &= (~E1000_CTRL_RFCE); | ||
755 | ctrl |= E1000_CTRL_TFCE; | ||
756 | break; | ||
757 | case e1000_fc_full: | ||
758 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | ||
759 | break; | ||
760 | default: | ||
761 | hw_dbg(hw, "Flow control param set incorrectly\n"); | ||
762 | ret_val = -E1000_ERR_CONFIG; | ||
763 | goto out; | ||
764 | } | ||
765 | |||
766 | wr32(E1000_CTRL, ctrl); | ||
767 | |||
768 | out: | ||
769 | return ret_val; | ||
770 | } | ||
771 | |||
772 | /** | ||
773 | * e1000_config_fc_after_link_up - Configures flow control after link | ||
774 | * @hw: pointer to the HW structure | ||
775 | * | ||
776 | * Checks the status of auto-negotiation after link up to ensure that the | ||
777 | * speed and duplex were not forced. If the link needed to be forced, then | ||
778 | * flow control needs to be forced also. If auto-negotiation is enabled | ||
779 | * and did not fail, then we configure flow control based on our link | ||
780 | * partner. | ||
781 | **/ | ||
782 | s32 igb_config_fc_after_link_up(struct e1000_hw *hw) | ||
783 | { | ||
784 | struct e1000_mac_info *mac = &hw->mac; | ||
785 | s32 ret_val = 0; | ||
786 | u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; | ||
787 | u16 speed, duplex; | ||
788 | |||
789 | /* | ||
790 | * Check for the case where we have fiber media and auto-neg failed | ||
791 | * so we had to force link. In this case, we need to force the | ||
792 | * configuration of the MAC to match the "fc" parameter. | ||
793 | */ | ||
794 | if (mac->autoneg_failed) { | ||
795 | if (hw->phy.media_type == e1000_media_type_fiber || | ||
796 | hw->phy.media_type == e1000_media_type_internal_serdes) | ||
797 | ret_val = igb_force_mac_fc(hw); | ||
798 | } else { | ||
799 | if (hw->phy.media_type == e1000_media_type_copper) | ||
800 | ret_val = igb_force_mac_fc(hw); | ||
801 | } | ||
802 | |||
803 | if (ret_val) { | ||
804 | hw_dbg(hw, "Error forcing flow control settings\n"); | ||
805 | goto out; | ||
806 | } | ||
807 | |||
808 | /* | ||
809 | * Check for the case where we have copper media and auto-neg is | ||
810 | * enabled. In this case, we need to check and see if Auto-Neg | ||
811 | * has completed, and if so, how the PHY and link partner has | ||
812 | * flow control configured. | ||
813 | */ | ||
814 | if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { | ||
815 | /* | ||
816 | * Read the MII Status Register and check to see if AutoNeg | ||
817 | * has completed. We read this twice because this reg has | ||
818 | * some "sticky" (latched) bits. | ||
819 | */ | ||
820 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, | ||
821 | &mii_status_reg); | ||
822 | if (ret_val) | ||
823 | goto out; | ||
824 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_STATUS, | ||
825 | &mii_status_reg); | ||
826 | if (ret_val) | ||
827 | goto out; | ||
828 | |||
829 | if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { | ||
830 | hw_dbg(hw, "Copper PHY and Auto Neg " | ||
831 | "has not completed.\n"); | ||
832 | goto out; | ||
833 | } | ||
834 | |||
835 | /* | ||
836 | * The AutoNeg process has completed, so we now need to | ||
837 | * read both the Auto Negotiation Advertisement | ||
838 | * Register (Address 4) and the Auto_Negotiation Base | ||
839 | * Page Ability Register (Address 5) to determine how | ||
840 | * flow control was negotiated. | ||
841 | */ | ||
842 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_AUTONEG_ADV, | ||
843 | &mii_nway_adv_reg); | ||
844 | if (ret_val) | ||
845 | goto out; | ||
846 | ret_val = hw->phy.ops.read_phy_reg(hw, PHY_LP_ABILITY, | ||
847 | &mii_nway_lp_ability_reg); | ||
848 | if (ret_val) | ||
849 | goto out; | ||
850 | |||
851 | /* | ||
852 | * Two bits in the Auto Negotiation Advertisement Register | ||
853 | * (Address 4) and two bits in the Auto Negotiation Base | ||
854 | * Page Ability Register (Address 5) determine flow control | ||
855 | * for both the PHY and the link partner. The following | ||
856 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | ||
857 | * 1999, describes these PAUSE resolution bits and how flow | ||
858 | * control is determined based upon these settings. | ||
859 | * NOTE: DC = Don't Care | ||
860 | * | ||
861 | * LOCAL DEVICE | LINK PARTNER | ||
862 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | ||
863 | *-------|---------|-------|---------|-------------------- | ||
864 | * 0 | 0 | DC | DC | e1000_fc_none | ||
865 | * 0 | 1 | 0 | DC | e1000_fc_none | ||
866 | * 0 | 1 | 1 | 0 | e1000_fc_none | ||
867 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
868 | * 1 | 0 | 0 | DC | e1000_fc_none | ||
869 | * 1 | DC | 1 | DC | e1000_fc_full | ||
870 | * 1 | 1 | 0 | 0 | e1000_fc_none | ||
871 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
872 | * | ||
873 | * Are both PAUSE bits set to 1? If so, this implies | ||
874 | * Symmetric Flow Control is enabled at both ends. The | ||
875 | * ASM_DIR bits are irrelevant per the spec. | ||
876 | * | ||
877 | * For Symmetric Flow Control: | ||
878 | * | ||
879 | * LOCAL DEVICE | LINK PARTNER | ||
880 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
881 | *-------|---------|-------|---------|-------------------- | ||
882 | * 1 | DC | 1 | DC | E1000_fc_full | ||
883 | * | ||
884 | */ | ||
885 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
886 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | ||
887 | /* | ||
888 | * Now we need to check if the user selected RX ONLY | ||
889 | * of pause frames. In this case, we had to advertise | ||
890 | * FULL flow control because we could not advertise RX | ||
891 | * ONLY. Hence, we must now check to see if we need to | ||
892 | * turn OFF the TRANSMISSION of PAUSE frames. | ||
893 | */ | ||
894 | if (hw->fc.original_type == e1000_fc_full) { | ||
895 | hw->fc.type = e1000_fc_full; | ||
896 | hw_dbg(hw, "Flow Control = FULL.\r\n"); | ||
897 | } else { | ||
898 | hw->fc.type = e1000_fc_rx_pause; | ||
899 | hw_dbg(hw, "Flow Control = " | ||
900 | "RX PAUSE frames only.\r\n"); | ||
901 | } | ||
902 | } | ||
903 | /* | ||
904 | * For receiving PAUSE frames ONLY. | ||
905 | * | ||
906 | * LOCAL DEVICE | LINK PARTNER | ||
907 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
908 | *-------|---------|-------|---------|-------------------- | ||
909 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
910 | */ | ||
911 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
912 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
913 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
914 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
915 | hw->fc.type = e1000_fc_tx_pause; | ||
916 | hw_dbg(hw, "Flow Control = TX PAUSE frames only.\r\n"); | ||
917 | } | ||
918 | /* | ||
919 | * For transmitting PAUSE frames ONLY. | ||
920 | * | ||
921 | * LOCAL DEVICE | LINK PARTNER | ||
922 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
923 | *-------|---------|-------|---------|-------------------- | ||
924 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
925 | */ | ||
926 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
927 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
928 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
929 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
930 | hw->fc.type = e1000_fc_rx_pause; | ||
931 | hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n"); | ||
932 | } | ||
933 | /* | ||
934 | * Per the IEEE spec, at this point flow control should be | ||
935 | * disabled. However, we want to consider that we could | ||
936 | * be connected to a legacy switch that doesn't advertise | ||
937 | * desired flow control, but can be forced on the link | ||
938 | * partner. So if we advertised no flow control, that is | ||
939 | * what we will resolve to. If we advertised some kind of | ||
940 | * receive capability (Rx Pause Only or Full Flow Control) | ||
941 | * and the link partner advertised none, we will configure | ||
942 | * ourselves to enable Rx Flow Control only. We can do | ||
943 | * this safely for two reasons: If the link partner really | ||
944 | * didn't want flow control enabled, and we enable Rx, no | ||
945 | * harm done since we won't be receiving any PAUSE frames | ||
946 | * anyway. If the intent on the link partner was to have | ||
947 | * flow control enabled, then by us enabling RX only, we | ||
948 | * can at least receive pause frames and process them. | ||
949 | * This is a good idea because in most cases, since we are | ||
950 | * predominantly a server NIC, more times than not we will | ||
951 | * be asked to delay transmission of packets than asking | ||
952 | * our link partner to pause transmission of frames. | ||
953 | */ | ||
954 | else if ((hw->fc.original_type == e1000_fc_none || | ||
955 | hw->fc.original_type == e1000_fc_tx_pause) || | ||
956 | hw->fc.strict_ieee) { | ||
957 | hw->fc.type = e1000_fc_none; | ||
958 | hw_dbg(hw, "Flow Control = NONE.\r\n"); | ||
959 | } else { | ||
960 | hw->fc.type = e1000_fc_rx_pause; | ||
961 | hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n"); | ||
962 | } | ||
963 | |||
964 | /* | ||
965 | * Now we need to do one last check... If we auto- | ||
966 | * negotiated to HALF DUPLEX, flow control should not be | ||
967 | * enabled per IEEE 802.3 spec. | ||
968 | */ | ||
969 | ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); | ||
970 | if (ret_val) { | ||
971 | hw_dbg(hw, "Error getting link speed and duplex\n"); | ||
972 | goto out; | ||
973 | } | ||
974 | |||
975 | if (duplex == HALF_DUPLEX) | ||
976 | hw->fc.type = e1000_fc_none; | ||
977 | |||
978 | /* | ||
979 | * Now we call a subroutine to actually force the MAC | ||
980 | * controller to use the correct flow control settings. | ||
981 | */ | ||
982 | ret_val = igb_force_mac_fc(hw); | ||
983 | if (ret_val) { | ||
984 | hw_dbg(hw, "Error forcing flow control settings\n"); | ||
985 | goto out; | ||
986 | } | ||
987 | } | ||
988 | |||
989 | out: | ||
990 | return ret_val; | ||
991 | } | ||
992 | |||
993 | /** | ||
994 | * e1000_get_speed_and_duplex_copper - Retreive current speed/duplex | ||
995 | * @hw: pointer to the HW structure | ||
996 | * @speed: stores the current speed | ||
997 | * @duplex: stores the current duplex | ||
998 | * | ||
999 | * Read the status register for the current speed/duplex and store the current | ||
1000 | * speed and duplex for copper connections. | ||
1001 | **/ | ||
1002 | s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, | ||
1003 | u16 *duplex) | ||
1004 | { | ||
1005 | u32 status; | ||
1006 | |||
1007 | status = rd32(E1000_STATUS); | ||
1008 | if (status & E1000_STATUS_SPEED_1000) { | ||
1009 | *speed = SPEED_1000; | ||
1010 | hw_dbg(hw, "1000 Mbs, "); | ||
1011 | } else if (status & E1000_STATUS_SPEED_100) { | ||
1012 | *speed = SPEED_100; | ||
1013 | hw_dbg(hw, "100 Mbs, "); | ||
1014 | } else { | ||
1015 | *speed = SPEED_10; | ||
1016 | hw_dbg(hw, "10 Mbs, "); | ||
1017 | } | ||
1018 | |||
1019 | if (status & E1000_STATUS_FD) { | ||
1020 | *duplex = FULL_DUPLEX; | ||
1021 | hw_dbg(hw, "Full Duplex\n"); | ||
1022 | } else { | ||
1023 | *duplex = HALF_DUPLEX; | ||
1024 | hw_dbg(hw, "Half Duplex\n"); | ||
1025 | } | ||
1026 | |||
1027 | return 0; | ||
1028 | } | ||
1029 | |||
1030 | /** | ||
1031 | * e1000_get_hw_semaphore - Acquire hardware semaphore | ||
1032 | * @hw: pointer to the HW structure | ||
1033 | * | ||
1034 | * Acquire the HW semaphore to access the PHY or NVM | ||
1035 | **/ | ||
1036 | s32 igb_get_hw_semaphore(struct e1000_hw *hw) | ||
1037 | { | ||
1038 | u32 swsm; | ||
1039 | s32 ret_val = 0; | ||
1040 | s32 timeout = hw->nvm.word_size + 1; | ||
1041 | s32 i = 0; | ||
1042 | |||
1043 | /* Get the SW semaphore */ | ||
1044 | while (i < timeout) { | ||
1045 | swsm = rd32(E1000_SWSM); | ||
1046 | if (!(swsm & E1000_SWSM_SMBI)) | ||
1047 | break; | ||
1048 | |||
1049 | udelay(50); | ||
1050 | i++; | ||
1051 | } | ||
1052 | |||
1053 | if (i == timeout) { | ||
1054 | hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n"); | ||
1055 | ret_val = -E1000_ERR_NVM; | ||
1056 | goto out; | ||
1057 | } | ||
1058 | |||
1059 | /* Get the FW semaphore. */ | ||
1060 | for (i = 0; i < timeout; i++) { | ||
1061 | swsm = rd32(E1000_SWSM); | ||
1062 | wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); | ||
1063 | |||
1064 | /* Semaphore acquired if bit latched */ | ||
1065 | if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) | ||
1066 | break; | ||
1067 | |||
1068 | udelay(50); | ||
1069 | } | ||
1070 | |||
1071 | if (i == timeout) { | ||
1072 | /* Release semaphores */ | ||
1073 | igb_put_hw_semaphore(hw); | ||
1074 | hw_dbg(hw, "Driver can't access the NVM\n"); | ||
1075 | ret_val = -E1000_ERR_NVM; | ||
1076 | goto out; | ||
1077 | } | ||
1078 | |||
1079 | out: | ||
1080 | return ret_val; | ||
1081 | } | ||
1082 | |||
1083 | /** | ||
1084 | * e1000_put_hw_semaphore - Release hardware semaphore | ||
1085 | * @hw: pointer to the HW structure | ||
1086 | * | ||
1087 | * Release hardware semaphore used to access the PHY or NVM | ||
1088 | **/ | ||
1089 | void igb_put_hw_semaphore(struct e1000_hw *hw) | ||
1090 | { | ||
1091 | u32 swsm; | ||
1092 | |||
1093 | swsm = rd32(E1000_SWSM); | ||
1094 | |||
1095 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | ||
1096 | |||
1097 | wr32(E1000_SWSM, swsm); | ||
1098 | } | ||
1099 | |||
1100 | /** | ||
1101 | * e1000_get_auto_rd_done - Check for auto read completion | ||
1102 | * @hw: pointer to the HW structure | ||
1103 | * | ||
1104 | * Check EEPROM for Auto Read done bit. | ||
1105 | **/ | ||
1106 | s32 igb_get_auto_rd_done(struct e1000_hw *hw) | ||
1107 | { | ||
1108 | s32 i = 0; | ||
1109 | s32 ret_val = 0; | ||
1110 | |||
1111 | |||
1112 | while (i < AUTO_READ_DONE_TIMEOUT) { | ||
1113 | if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD) | ||
1114 | break; | ||
1115 | msleep(1); | ||
1116 | i++; | ||
1117 | } | ||
1118 | |||
1119 | if (i == AUTO_READ_DONE_TIMEOUT) { | ||
1120 | hw_dbg(hw, "Auto read by HW from NVM has not completed.\n"); | ||
1121 | ret_val = -E1000_ERR_RESET; | ||
1122 | goto out; | ||
1123 | } | ||
1124 | |||
1125 | out: | ||
1126 | return ret_val; | ||
1127 | } | ||
1128 | |||
1129 | /** | ||
1130 | * e1000_valid_led_default - Verify a valid default LED config | ||
1131 | * @hw: pointer to the HW structure | ||
1132 | * @data: pointer to the NVM (EEPROM) | ||
1133 | * | ||
1134 | * Read the EEPROM for the current default LED configuration. If the | ||
1135 | * LED configuration is not valid, set to a valid LED configuration. | ||
1136 | **/ | ||
1137 | static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data) | ||
1138 | { | ||
1139 | s32 ret_val; | ||
1140 | |||
1141 | ret_val = hw->nvm.ops.read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); | ||
1142 | if (ret_val) { | ||
1143 | hw_dbg(hw, "NVM Read Error\n"); | ||
1144 | goto out; | ||
1145 | } | ||
1146 | |||
1147 | if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) | ||
1148 | *data = ID_LED_DEFAULT; | ||
1149 | |||
1150 | out: | ||
1151 | return ret_val; | ||
1152 | } | ||
1153 | |||
1154 | /** | ||
1155 | * e1000_id_led_init - | ||
1156 | * @hw: pointer to the HW structure | ||
1157 | * | ||
1158 | **/ | ||
1159 | s32 igb_id_led_init(struct e1000_hw *hw) | ||
1160 | { | ||
1161 | struct e1000_mac_info *mac = &hw->mac; | ||
1162 | s32 ret_val; | ||
1163 | const u32 ledctl_mask = 0x000000FF; | ||
1164 | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | ||
1165 | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | ||
1166 | u16 data, i, temp; | ||
1167 | const u16 led_mask = 0x0F; | ||
1168 | |||
1169 | ret_val = igb_valid_led_default(hw, &data); | ||
1170 | if (ret_val) | ||
1171 | goto out; | ||
1172 | |||
1173 | mac->ledctl_default = rd32(E1000_LEDCTL); | ||
1174 | mac->ledctl_mode1 = mac->ledctl_default; | ||
1175 | mac->ledctl_mode2 = mac->ledctl_default; | ||
1176 | |||
1177 | for (i = 0; i < 4; i++) { | ||
1178 | temp = (data >> (i << 2)) & led_mask; | ||
1179 | switch (temp) { | ||
1180 | case ID_LED_ON1_DEF2: | ||
1181 | case ID_LED_ON1_ON2: | ||
1182 | case ID_LED_ON1_OFF2: | ||
1183 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
1184 | mac->ledctl_mode1 |= ledctl_on << (i << 3); | ||
1185 | break; | ||
1186 | case ID_LED_OFF1_DEF2: | ||
1187 | case ID_LED_OFF1_ON2: | ||
1188 | case ID_LED_OFF1_OFF2: | ||
1189 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
1190 | mac->ledctl_mode1 |= ledctl_off << (i << 3); | ||
1191 | break; | ||
1192 | default: | ||
1193 | /* Do nothing */ | ||
1194 | break; | ||
1195 | } | ||
1196 | switch (temp) { | ||
1197 | case ID_LED_DEF1_ON2: | ||
1198 | case ID_LED_ON1_ON2: | ||
1199 | case ID_LED_OFF1_ON2: | ||
1200 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
1201 | mac->ledctl_mode2 |= ledctl_on << (i << 3); | ||
1202 | break; | ||
1203 | case ID_LED_DEF1_OFF2: | ||
1204 | case ID_LED_ON1_OFF2: | ||
1205 | case ID_LED_OFF1_OFF2: | ||
1206 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
1207 | mac->ledctl_mode2 |= ledctl_off << (i << 3); | ||
1208 | break; | ||
1209 | default: | ||
1210 | /* Do nothing */ | ||
1211 | break; | ||
1212 | } | ||
1213 | } | ||
1214 | |||
1215 | out: | ||
1216 | return ret_val; | ||
1217 | } | ||
1218 | |||
1219 | /** | ||
1220 | * e1000_cleanup_led - Set LED config to default operation | ||
1221 | * @hw: pointer to the HW structure | ||
1222 | * | ||
1223 | * Remove the current LED configuration and set the LED configuration | ||
1224 | * to the default value, saved from the EEPROM. | ||
1225 | **/ | ||
1226 | s32 igb_cleanup_led(struct e1000_hw *hw) | ||
1227 | { | ||
1228 | wr32(E1000_LEDCTL, hw->mac.ledctl_default); | ||
1229 | return 0; | ||
1230 | } | ||
1231 | |||
1232 | /** | ||
1233 | * e1000_blink_led - Blink LED | ||
1234 | * @hw: pointer to the HW structure | ||
1235 | * | ||
1236 | * Blink the led's which are set to be on. | ||
1237 | **/ | ||
1238 | s32 igb_blink_led(struct e1000_hw *hw) | ||
1239 | { | ||
1240 | u32 ledctl_blink = 0; | ||
1241 | u32 i; | ||
1242 | |||
1243 | if (hw->phy.media_type == e1000_media_type_fiber) { | ||
1244 | /* always blink LED0 for PCI-E fiber */ | ||
1245 | ledctl_blink = E1000_LEDCTL_LED0_BLINK | | ||
1246 | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); | ||
1247 | } else { | ||
1248 | /* | ||
1249 | * set the blink bit for each LED that's "on" (0x0E) | ||
1250 | * in ledctl_mode2 | ||
1251 | */ | ||
1252 | ledctl_blink = hw->mac.ledctl_mode2; | ||
1253 | for (i = 0; i < 4; i++) | ||
1254 | if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == | ||
1255 | E1000_LEDCTL_MODE_LED_ON) | ||
1256 | ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << | ||
1257 | (i * 8)); | ||
1258 | } | ||
1259 | |||
1260 | wr32(E1000_LEDCTL, ledctl_blink); | ||
1261 | |||
1262 | return 0; | ||
1263 | } | ||
1264 | |||
1265 | /** | ||
1266 | * e1000_led_off - Turn LED off | ||
1267 | * @hw: pointer to the HW structure | ||
1268 | * | ||
1269 | * Turn LED off. | ||
1270 | **/ | ||
1271 | s32 igb_led_off(struct e1000_hw *hw) | ||
1272 | { | ||
1273 | u32 ctrl; | ||
1274 | |||
1275 | switch (hw->phy.media_type) { | ||
1276 | case e1000_media_type_fiber: | ||
1277 | ctrl = rd32(E1000_CTRL); | ||
1278 | ctrl |= E1000_CTRL_SWDPIN0; | ||
1279 | ctrl |= E1000_CTRL_SWDPIO0; | ||
1280 | wr32(E1000_CTRL, ctrl); | ||
1281 | break; | ||
1282 | case e1000_media_type_copper: | ||
1283 | wr32(E1000_LEDCTL, hw->mac.ledctl_mode1); | ||
1284 | break; | ||
1285 | default: | ||
1286 | break; | ||
1287 | } | ||
1288 | |||
1289 | return 0; | ||
1290 | } | ||
1291 | |||
1292 | /** | ||
1293 | * e1000_disable_pcie_master - Disables PCI-express master access | ||
1294 | * @hw: pointer to the HW structure | ||
1295 | * | ||
1296 | * Returns 0 (0) if successful, else returns -10 | ||
1297 | * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued | ||
1298 | * the master requests to be disabled. | ||
1299 | * | ||
1300 | * Disables PCI-Express master access and verifies there are no pending | ||
1301 | * requests. | ||
1302 | **/ | ||
1303 | s32 igb_disable_pcie_master(struct e1000_hw *hw) | ||
1304 | { | ||
1305 | u32 ctrl; | ||
1306 | s32 timeout = MASTER_DISABLE_TIMEOUT; | ||
1307 | s32 ret_val = 0; | ||
1308 | |||
1309 | if (hw->bus.type != e1000_bus_type_pci_express) | ||
1310 | goto out; | ||
1311 | |||
1312 | ctrl = rd32(E1000_CTRL); | ||
1313 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | ||
1314 | wr32(E1000_CTRL, ctrl); | ||
1315 | |||
1316 | while (timeout) { | ||
1317 | if (!(rd32(E1000_STATUS) & | ||
1318 | E1000_STATUS_GIO_MASTER_ENABLE)) | ||
1319 | break; | ||
1320 | udelay(100); | ||
1321 | timeout--; | ||
1322 | } | ||
1323 | |||
1324 | if (!timeout) { | ||
1325 | hw_dbg(hw, "Master requests are pending.\n"); | ||
1326 | ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; | ||
1327 | goto out; | ||
1328 | } | ||
1329 | |||
1330 | out: | ||
1331 | return ret_val; | ||
1332 | } | ||
1333 | |||
1334 | /** | ||
1335 | * e1000_reset_adaptive - Reset Adaptive Interframe Spacing | ||
1336 | * @hw: pointer to the HW structure | ||
1337 | * | ||
1338 | * Reset the Adaptive Interframe Spacing throttle to default values. | ||
1339 | **/ | ||
1340 | void igb_reset_adaptive(struct e1000_hw *hw) | ||
1341 | { | ||
1342 | struct e1000_mac_info *mac = &hw->mac; | ||
1343 | |||
1344 | if (!mac->adaptive_ifs) { | ||
1345 | hw_dbg(hw, "Not in Adaptive IFS mode!\n"); | ||
1346 | goto out; | ||
1347 | } | ||
1348 | |||
1349 | if (!mac->ifs_params_forced) { | ||
1350 | mac->current_ifs_val = 0; | ||
1351 | mac->ifs_min_val = IFS_MIN; | ||
1352 | mac->ifs_max_val = IFS_MAX; | ||
1353 | mac->ifs_step_size = IFS_STEP; | ||
1354 | mac->ifs_ratio = IFS_RATIO; | ||
1355 | } | ||
1356 | |||
1357 | mac->in_ifs_mode = false; | ||
1358 | wr32(E1000_AIT, 0); | ||
1359 | out: | ||
1360 | return; | ||
1361 | } | ||
1362 | |||
1363 | /** | ||
1364 | * e1000_update_adaptive - Update Adaptive Interframe Spacing | ||
1365 | * @hw: pointer to the HW structure | ||
1366 | * | ||
1367 | * Update the Adaptive Interframe Spacing Throttle value based on the | ||
1368 | * time between transmitted packets and time between collisions. | ||
1369 | **/ | ||
1370 | void igb_update_adaptive(struct e1000_hw *hw) | ||
1371 | { | ||
1372 | struct e1000_mac_info *mac = &hw->mac; | ||
1373 | |||
1374 | if (!mac->adaptive_ifs) { | ||
1375 | hw_dbg(hw, "Not in Adaptive IFS mode!\n"); | ||
1376 | goto out; | ||
1377 | } | ||
1378 | |||
1379 | if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { | ||
1380 | if (mac->tx_packet_delta > MIN_NUM_XMITS) { | ||
1381 | mac->in_ifs_mode = true; | ||
1382 | if (mac->current_ifs_val < mac->ifs_max_val) { | ||
1383 | if (!mac->current_ifs_val) | ||
1384 | mac->current_ifs_val = mac->ifs_min_val; | ||
1385 | else | ||
1386 | mac->current_ifs_val += | ||
1387 | mac->ifs_step_size; | ||
1388 | wr32(E1000_AIT, | ||
1389 | mac->current_ifs_val); | ||
1390 | } | ||
1391 | } | ||
1392 | } else { | ||
1393 | if (mac->in_ifs_mode && | ||
1394 | (mac->tx_packet_delta <= MIN_NUM_XMITS)) { | ||
1395 | mac->current_ifs_val = 0; | ||
1396 | mac->in_ifs_mode = false; | ||
1397 | wr32(E1000_AIT, 0); | ||
1398 | } | ||
1399 | } | ||
1400 | out: | ||
1401 | return; | ||
1402 | } | ||
1403 | |||
1404 | /** | ||
1405 | * e1000_validate_mdi_setting - Verify MDI/MDIx settings | ||
1406 | * @hw: pointer to the HW structure | ||
1407 | * | ||
1408 | * Verify that when not using auto-negotitation that MDI/MDIx is correctly | ||
1409 | * set, which is forced to MDI mode only. | ||
1410 | **/ | ||
1411 | s32 igb_validate_mdi_setting(struct e1000_hw *hw) | ||
1412 | { | ||
1413 | s32 ret_val = 0; | ||
1414 | |||
1415 | if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { | ||
1416 | hw_dbg(hw, "Invalid MDI setting detected\n"); | ||
1417 | hw->phy.mdix = 1; | ||
1418 | ret_val = -E1000_ERR_CONFIG; | ||
1419 | goto out; | ||
1420 | } | ||
1421 | |||
1422 | out: | ||
1423 | return ret_val; | ||
1424 | } | ||
1425 | |||
1426 | /** | ||
1427 | * e1000_write_8bit_ctrl_reg - Write a 8bit CTRL register | ||
1428 | * @hw: pointer to the HW structure | ||
1429 | * @reg: 32bit register offset such as E1000_SCTL | ||
1430 | * @offset: register offset to write to | ||
1431 | * @data: data to write at register offset | ||
1432 | * | ||
1433 | * Writes an address/data control type register. There are several of these | ||
1434 | * and they all have the format address << 8 | data and bit 31 is polled for | ||
1435 | * completion. | ||
1436 | **/ | ||
1437 | s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, | ||
1438 | u32 offset, u8 data) | ||
1439 | { | ||
1440 | u32 i, regvalue = 0; | ||
1441 | s32 ret_val = 0; | ||
1442 | |||
1443 | /* Set up the address and data */ | ||
1444 | regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); | ||
1445 | wr32(reg, regvalue); | ||
1446 | |||
1447 | /* Poll the ready bit to see if the MDI read completed */ | ||
1448 | for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { | ||
1449 | udelay(5); | ||
1450 | regvalue = rd32(reg); | ||
1451 | if (regvalue & E1000_GEN_CTL_READY) | ||
1452 | break; | ||
1453 | } | ||
1454 | if (!(regvalue & E1000_GEN_CTL_READY)) { | ||
1455 | hw_dbg(hw, "Reg %08x did not indicate ready\n", reg); | ||
1456 | ret_val = -E1000_ERR_PHY; | ||
1457 | goto out; | ||
1458 | } | ||
1459 | |||
1460 | out: | ||
1461 | return ret_val; | ||
1462 | } | ||
1463 | |||
1464 | /** | ||
1465 | * e1000_enable_mng_pass_thru - Enable processing of ARP's | ||
1466 | * @hw: pointer to the HW structure | ||
1467 | * | ||
1468 | * Verifies the hardware needs to allow ARPs to be processed by the host. | ||
1469 | **/ | ||
1470 | bool igb_enable_mng_pass_thru(struct e1000_hw *hw) | ||
1471 | { | ||
1472 | u32 manc; | ||
1473 | u32 fwsm, factps; | ||
1474 | bool ret_val = false; | ||
1475 | |||
1476 | if (!hw->mac.asf_firmware_present) | ||
1477 | goto out; | ||
1478 | |||
1479 | manc = rd32(E1000_MANC); | ||
1480 | |||
1481 | if (!(manc & E1000_MANC_RCV_TCO_EN) || | ||
1482 | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) | ||
1483 | goto out; | ||
1484 | |||
1485 | if (hw->mac.arc_subsystem_valid) { | ||
1486 | fwsm = rd32(E1000_FWSM); | ||
1487 | factps = rd32(E1000_FACTPS); | ||
1488 | |||
1489 | if (!(factps & E1000_FACTPS_MNGCG) && | ||
1490 | ((fwsm & E1000_FWSM_MODE_MASK) == | ||
1491 | (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { | ||
1492 | ret_val = true; | ||
1493 | goto out; | ||
1494 | } | ||
1495 | } else { | ||
1496 | if ((manc & E1000_MANC_SMBUS_EN) && | ||
1497 | !(manc & E1000_MANC_ASF_EN)) { | ||
1498 | ret_val = true; | ||
1499 | goto out; | ||
1500 | } | ||
1501 | } | ||
1502 | |||
1503 | out: | ||
1504 | return ret_val; | ||
1505 | } | ||