aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/fec_8xx/fec_main.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/fec_8xx/fec_main.c')
-rw-r--r--drivers/net/fec_8xx/fec_main.c1264
1 files changed, 0 insertions, 1264 deletions
diff --git a/drivers/net/fec_8xx/fec_main.c b/drivers/net/fec_8xx/fec_main.c
deleted file mode 100644
index ca8d2e83ab03..000000000000
--- a/drivers/net/fec_8xx/fec_main.c
+++ /dev/null
@@ -1,1264 +0,0 @@
1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
8 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
9 *
10 * Released under the GPL
11 */
12
13#include <linux/module.h>
14#include <linux/kernel.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/ptrace.h>
18#include <linux/errno.h>
19#include <linux/ioport.h>
20#include <linux/slab.h>
21#include <linux/interrupt.h>
22#include <linux/init.h>
23#include <linux/delay.h>
24#include <linux/netdevice.h>
25#include <linux/etherdevice.h>
26#include <linux/skbuff.h>
27#include <linux/spinlock.h>
28#include <linux/mii.h>
29#include <linux/ethtool.h>
30#include <linux/bitops.h>
31#include <linux/dma-mapping.h>
32
33#include <asm/8xx_immap.h>
34#include <asm/pgtable.h>
35#include <asm/mpc8xx.h>
36#include <asm/irq.h>
37#include <asm/uaccess.h>
38#include <asm/cpm1.h>
39
40#include "fec_8xx.h"
41
42/*************************************************/
43
44#define FEC_MAX_MULTICAST_ADDRS 64
45
46/*************************************************/
47
48static char version[] __devinitdata =
49 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
50
51MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
52MODULE_DESCRIPTION("Motorola 8xx FEC ethernet driver");
53MODULE_LICENSE("GPL");
54
55int fec_8xx_debug = -1; /* -1 == use FEC_8XX_DEF_MSG_ENABLE as value */
56module_param(fec_8xx_debug, int, 0);
57MODULE_PARM_DESC(fec_8xx_debug,
58 "FEC 8xx bitmapped debugging message enable value");
59
60
61/*************************************************/
62
63/*
64 * Delay to wait for FEC reset command to complete (in us)
65 */
66#define FEC_RESET_DELAY 50
67
68/*****************************************************************************************/
69
70static void fec_whack_reset(fec_t * fecp)
71{
72 int i;
73
74 /*
75 * Whack a reset. We should wait for this.
76 */
77 FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET);
78 for (i = 0;
79 (FR(fecp, ecntrl) & FEC_ECNTRL_RESET) != 0 && i < FEC_RESET_DELAY;
80 i++)
81 udelay(1);
82
83 if (i == FEC_RESET_DELAY)
84 printk(KERN_WARNING "FEC Reset timeout!\n");
85
86}
87
88/****************************************************************************/
89
90/*
91 * Transmitter timeout.
92 */
93#define TX_TIMEOUT (2*HZ)
94
95/****************************************************************************/
96
97/*
98 * Returns the CRC needed when filling in the hash table for
99 * multicast group filtering
100 * pAddr must point to a MAC address (6 bytes)
101 */
102static __u32 fec_mulicast_calc_crc(char *pAddr)
103{
104 u8 byte;
105 int byte_count;
106 int bit_count;
107 __u32 crc = 0xffffffff;
108 u8 msb;
109
110 for (byte_count = 0; byte_count < 6; byte_count++) {
111 byte = pAddr[byte_count];
112 for (bit_count = 0; bit_count < 8; bit_count++) {
113 msb = crc >> 31;
114 crc <<= 1;
115 if (msb ^ (byte & 0x1)) {
116 crc ^= FEC_CRC_POLY;
117 }
118 byte >>= 1;
119 }
120 }
121 return (crc);
122}
123
124/*
125 * Set or clear the multicast filter for this adaptor.
126 * Skeleton taken from sunlance driver.
127 * The CPM Ethernet implementation allows Multicast as well as individual
128 * MAC address filtering. Some of the drivers check to make sure it is
129 * a group multicast address, and discard those that are not. I guess I
130 * will do the same for now, but just remove the test if you want
131 * individual filtering as well (do the upper net layers want or support
132 * this kind of feature?).
133 */
134static void fec_set_multicast_list(struct net_device *dev)
135{
136 struct fec_enet_private *fep = netdev_priv(dev);
137 fec_t *fecp = fep->fecp;
138 struct dev_mc_list *pmc;
139 __u32 crc;
140 int temp;
141 __u32 csrVal;
142 int hash_index;
143 __u32 hthi, htlo;
144 unsigned long flags;
145
146
147 if ((dev->flags & IFF_PROMISC) != 0) {
148
149 spin_lock_irqsave(&fep->lock, flags);
150 FS(fecp, r_cntrl, FEC_RCNTRL_PROM);
151 spin_unlock_irqrestore(&fep->lock, flags);
152
153 /*
154 * Log any net taps.
155 */
156 printk(KERN_WARNING DRV_MODULE_NAME
157 ": %s: Promiscuous mode enabled.\n", dev->name);
158 return;
159
160 }
161
162 if ((dev->flags & IFF_ALLMULTI) != 0 ||
163 dev->mc_count > FEC_MAX_MULTICAST_ADDRS) {
164 /*
165 * Catch all multicast addresses, set the filter to all 1's.
166 */
167 hthi = 0xffffffffU;
168 htlo = 0xffffffffU;
169 } else {
170 hthi = 0;
171 htlo = 0;
172
173 /*
174 * Now populate the hash table
175 */
176 for (pmc = dev->mc_list; pmc != NULL; pmc = pmc->next) {
177 crc = fec_mulicast_calc_crc(pmc->dmi_addr);
178 temp = (crc & 0x3f) >> 1;
179 hash_index = ((temp & 0x01) << 4) |
180 ((temp & 0x02) << 2) |
181 ((temp & 0x04)) |
182 ((temp & 0x08) >> 2) |
183 ((temp & 0x10) >> 4);
184 csrVal = (1 << hash_index);
185 if (crc & 1)
186 hthi |= csrVal;
187 else
188 htlo |= csrVal;
189 }
190 }
191
192 spin_lock_irqsave(&fep->lock, flags);
193 FC(fecp, r_cntrl, FEC_RCNTRL_PROM);
194 FW(fecp, hash_table_high, hthi);
195 FW(fecp, hash_table_low, htlo);
196 spin_unlock_irqrestore(&fep->lock, flags);
197}
198
199static int fec_set_mac_address(struct net_device *dev, void *addr)
200{
201 struct sockaddr *mac = addr;
202 struct fec_enet_private *fep = netdev_priv(dev);
203 struct fec *fecp = fep->fecp;
204 int i;
205 __u32 addrhi, addrlo;
206 unsigned long flags;
207
208 /* Get pointer to SCC area in parameter RAM. */
209 for (i = 0; i < 6; i++)
210 dev->dev_addr[i] = mac->sa_data[i];
211
212 /*
213 * Set station address.
214 */
215 addrhi = ((__u32) dev->dev_addr[0] << 24) |
216 ((__u32) dev->dev_addr[1] << 16) |
217 ((__u32) dev->dev_addr[2] << 8) |
218 (__u32) dev->dev_addr[3];
219 addrlo = ((__u32) dev->dev_addr[4] << 24) |
220 ((__u32) dev->dev_addr[5] << 16);
221
222 spin_lock_irqsave(&fep->lock, flags);
223 FW(fecp, addr_low, addrhi);
224 FW(fecp, addr_high, addrlo);
225 spin_unlock_irqrestore(&fep->lock, flags);
226
227 return 0;
228}
229
230/*
231 * This function is called to start or restart the FEC during a link
232 * change. This only happens when switching between half and full
233 * duplex.
234 */
235void fec_restart(struct net_device *dev, int duplex, int speed)
236{
237#ifdef CONFIG_DUET
238 immap_t *immap = (immap_t *) IMAP_ADDR;
239 __u32 cptr;
240#endif
241 struct fec_enet_private *fep = netdev_priv(dev);
242 struct fec *fecp = fep->fecp;
243 const struct fec_platform_info *fpi = fep->fpi;
244 cbd_t *bdp;
245 struct sk_buff *skb;
246 int i;
247 __u32 addrhi, addrlo;
248
249 fec_whack_reset(fep->fecp);
250
251 /*
252 * Set station address.
253 */
254 addrhi = ((__u32) dev->dev_addr[0] << 24) |
255 ((__u32) dev->dev_addr[1] << 16) |
256 ((__u32) dev->dev_addr[2] << 8) |
257 (__u32) dev->dev_addr[3];
258 addrlo = ((__u32) dev->dev_addr[4] << 24) |
259 ((__u32) dev->dev_addr[5] << 16);
260 FW(fecp, addr_low, addrhi);
261 FW(fecp, addr_high, addrlo);
262
263 /*
264 * Reset all multicast.
265 */
266 FW(fecp, hash_table_high, 0);
267 FW(fecp, hash_table_low, 0);
268
269 /*
270 * Set maximum receive buffer size.
271 */
272 FW(fecp, r_buff_size, PKT_MAXBLR_SIZE);
273 FW(fecp, r_hash, PKT_MAXBUF_SIZE);
274
275 /*
276 * Set receive and transmit descriptor base.
277 */
278 FW(fecp, r_des_start, iopa((__u32) (fep->rx_bd_base)));
279 FW(fecp, x_des_start, iopa((__u32) (fep->tx_bd_base)));
280
281 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
282 fep->tx_free = fep->tx_ring;
283 fep->cur_rx = fep->rx_bd_base;
284
285 /*
286 * Reset SKB receive buffers
287 */
288 for (i = 0; i < fep->rx_ring; i++) {
289 if ((skb = fep->rx_skbuff[i]) == NULL)
290 continue;
291 fep->rx_skbuff[i] = NULL;
292 dev_kfree_skb(skb);
293 }
294
295 /*
296 * Initialize the receive buffer descriptors.
297 */
298 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
299 skb = dev_alloc_skb(ENET_RX_FRSIZE);
300 if (skb == NULL) {
301 printk(KERN_WARNING DRV_MODULE_NAME
302 ": %s Memory squeeze, unable to allocate skb\n",
303 dev->name);
304 fep->stats.rx_dropped++;
305 break;
306 }
307 fep->rx_skbuff[i] = skb;
308 skb->dev = dev;
309 CBDW_BUFADDR(bdp, dma_map_single(NULL, skb->data,
310 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
311 DMA_FROM_DEVICE));
312 CBDW_DATLEN(bdp, 0); /* zero */
313 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
314 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
315 }
316 /*
317 * if we failed, fillup remainder
318 */
319 for (; i < fep->rx_ring; i++, bdp++) {
320 fep->rx_skbuff[i] = NULL;
321 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
322 }
323
324 /*
325 * Reset SKB transmit buffers.
326 */
327 for (i = 0; i < fep->tx_ring; i++) {
328 if ((skb = fep->tx_skbuff[i]) == NULL)
329 continue;
330 fep->tx_skbuff[i] = NULL;
331 dev_kfree_skb(skb);
332 }
333
334 /*
335 * ...and the same for transmit.
336 */
337 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
338 fep->tx_skbuff[i] = NULL;
339 CBDW_BUFADDR(bdp, virt_to_bus(NULL));
340 CBDW_DATLEN(bdp, 0);
341 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
342 }
343
344 /*
345 * Enable big endian and don't care about SDMA FC.
346 */
347 FW(fecp, fun_code, 0x78000000);
348
349 /*
350 * Set MII speed.
351 */
352 FW(fecp, mii_speed, fep->fec_phy_speed);
353
354 /*
355 * Clear any outstanding interrupt.
356 */
357 FW(fecp, ievent, 0xffc0);
358 FW(fecp, ivec, (fpi->fec_irq / 2) << 29);
359
360 /*
361 * adjust to speed (only for DUET & RMII)
362 */
363#ifdef CONFIG_DUET
364 cptr = in_be32(&immap->im_cpm.cp_cptr);
365 switch (fpi->fec_no) {
366 case 0:
367 /*
368 * check if in RMII mode
369 */
370 if ((cptr & 0x100) == 0)
371 break;
372
373 if (speed == 10)
374 cptr |= 0x0000010;
375 else if (speed == 100)
376 cptr &= ~0x0000010;
377 break;
378 case 1:
379 /*
380 * check if in RMII mode
381 */
382 if ((cptr & 0x80) == 0)
383 break;
384
385 if (speed == 10)
386 cptr |= 0x0000008;
387 else if (speed == 100)
388 cptr &= ~0x0000008;
389 break;
390 default:
391 break;
392 }
393 out_be32(&immap->im_cpm.cp_cptr, cptr);
394#endif
395
396 FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
397 /*
398 * adjust to duplex mode
399 */
400 if (duplex) {
401 FC(fecp, r_cntrl, FEC_RCNTRL_DRT);
402 FS(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD enable */
403 } else {
404 FS(fecp, r_cntrl, FEC_RCNTRL_DRT);
405 FC(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD disable */
406 }
407
408 /*
409 * Enable interrupts we wish to service.
410 */
411 FW(fecp, imask, FEC_ENET_TXF | FEC_ENET_TXB |
412 FEC_ENET_RXF | FEC_ENET_RXB);
413
414 /*
415 * And last, enable the transmit and receive processing.
416 */
417 FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
418 FW(fecp, r_des_active, 0x01000000);
419}
420
421void fec_stop(struct net_device *dev)
422{
423 struct fec_enet_private *fep = netdev_priv(dev);
424 fec_t *fecp = fep->fecp;
425 struct sk_buff *skb;
426 int i;
427
428 if ((FR(fecp, ecntrl) & FEC_ECNTRL_ETHER_EN) == 0)
429 return; /* already down */
430
431 FW(fecp, x_cntrl, 0x01); /* Graceful transmit stop */
432 for (i = 0; ((FR(fecp, ievent) & 0x10000000) == 0) &&
433 i < FEC_RESET_DELAY; i++)
434 udelay(1);
435
436 if (i == FEC_RESET_DELAY)
437 printk(KERN_WARNING DRV_MODULE_NAME
438 ": %s FEC timeout on graceful transmit stop\n",
439 dev->name);
440 /*
441 * Disable FEC. Let only MII interrupts.
442 */
443 FW(fecp, imask, 0);
444 FW(fecp, ecntrl, ~FEC_ECNTRL_ETHER_EN);
445
446 /*
447 * Reset SKB transmit buffers.
448 */
449 for (i = 0; i < fep->tx_ring; i++) {
450 if ((skb = fep->tx_skbuff[i]) == NULL)
451 continue;
452 fep->tx_skbuff[i] = NULL;
453 dev_kfree_skb(skb);
454 }
455
456 /*
457 * Reset SKB receive buffers
458 */
459 for (i = 0; i < fep->rx_ring; i++) {
460 if ((skb = fep->rx_skbuff[i]) == NULL)
461 continue;
462 fep->rx_skbuff[i] = NULL;
463 dev_kfree_skb(skb);
464 }
465}
466
467/* common receive function */
468static int fec_enet_rx_common(struct fec_enet_private *ep,
469 struct net_device *dev, int budget)
470{
471 fec_t *fecp = fep->fecp;
472 const struct fec_platform_info *fpi = fep->fpi;
473 cbd_t *bdp;
474 struct sk_buff *skb, *skbn, *skbt;
475 int received = 0;
476 __u16 pkt_len, sc;
477 int curidx;
478
479 /*
480 * First, grab all of the stats for the incoming packet.
481 * These get messed up if we get called due to a busy condition.
482 */
483 bdp = fep->cur_rx;
484
485 /* clear RX status bits for napi*/
486 if (fpi->use_napi)
487 FW(fecp, ievent, FEC_ENET_RXF | FEC_ENET_RXB);
488
489 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
490
491 curidx = bdp - fep->rx_bd_base;
492
493 /*
494 * Since we have allocated space to hold a complete frame,
495 * the last indicator should be set.
496 */
497 if ((sc & BD_ENET_RX_LAST) == 0)
498 printk(KERN_WARNING DRV_MODULE_NAME
499 ": %s rcv is not +last\n",
500 dev->name);
501
502 /*
503 * Check for errors.
504 */
505 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
506 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
507 fep->stats.rx_errors++;
508 /* Frame too long or too short. */
509 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
510 fep->stats.rx_length_errors++;
511 /* Frame alignment */
512 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
513 fep->stats.rx_frame_errors++;
514 /* CRC Error */
515 if (sc & BD_ENET_RX_CR)
516 fep->stats.rx_crc_errors++;
517 /* FIFO overrun */
518 if (sc & BD_ENET_RX_OV)
519 fep->stats.rx_crc_errors++;
520
521 skbn = fep->rx_skbuff[curidx];
522 BUG_ON(skbn == NULL);
523
524 } else {
525 skb = fep->rx_skbuff[curidx];
526 BUG_ON(skb == NULL);
527
528 /*
529 * Process the incoming frame.
530 */
531 fep->stats.rx_packets++;
532 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
533 fep->stats.rx_bytes += pkt_len + 4;
534
535 if (pkt_len <= fpi->rx_copybreak) {
536 /* +2 to make IP header L1 cache aligned */
537 skbn = dev_alloc_skb(pkt_len + 2);
538 if (skbn != NULL) {
539 skb_reserve(skbn, 2); /* align IP header */
540 skb_copy_from_linear_data(skb,
541 skbn->data,
542 pkt_len);
543 /* swap */
544 skbt = skb;
545 skb = skbn;
546 skbn = skbt;
547 }
548 } else
549 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
550
551 if (skbn != NULL) {
552 skb_put(skb, pkt_len); /* Make room */
553 skb->protocol = eth_type_trans(skb, dev);
554 received++;
555 if (!fpi->use_napi)
556 netif_rx(skb);
557 else
558 netif_receive_skb(skb);
559 } else {
560 printk(KERN_WARNING DRV_MODULE_NAME
561 ": %s Memory squeeze, dropping packet.\n",
562 dev->name);
563 fep->stats.rx_dropped++;
564 skbn = skb;
565 }
566 }
567
568 fep->rx_skbuff[curidx] = skbn;
569 CBDW_BUFADDR(bdp, dma_map_single(NULL, skbn->data,
570 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
571 DMA_FROM_DEVICE));
572 CBDW_DATLEN(bdp, 0);
573 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
574
575 /*
576 * Update BD pointer to next entry.
577 */
578 if ((sc & BD_ENET_RX_WRAP) == 0)
579 bdp++;
580 else
581 bdp = fep->rx_bd_base;
582
583 /*
584 * Doing this here will keep the FEC running while we process
585 * incoming frames. On a heavily loaded network, we should be
586 * able to keep up at the expense of system resources.
587 */
588 FW(fecp, r_des_active, 0x01000000);
589
590 if (received >= budget)
591 break;
592
593 }
594
595 fep->cur_rx = bdp;
596
597 if (fpi->use_napi) {
598 if (received < budget) {
599 netif_rx_complete(dev, &fep->napi);
600
601 /* enable RX interrupt bits */
602 FS(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB);
603 }
604 }
605
606 return received;
607}
608
609static void fec_enet_tx(struct net_device *dev)
610{
611 struct fec_enet_private *fep = netdev_priv(dev);
612 cbd_t *bdp;
613 struct sk_buff *skb;
614 int dirtyidx, do_wake;
615 __u16 sc;
616
617 spin_lock(&fep->lock);
618 bdp = fep->dirty_tx;
619
620 do_wake = 0;
621 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
622
623 dirtyidx = bdp - fep->tx_bd_base;
624
625 if (fep->tx_free == fep->tx_ring)
626 break;
627
628 skb = fep->tx_skbuff[dirtyidx];
629
630 /*
631 * Check for errors.
632 */
633 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
634 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
635 fep->stats.tx_errors++;
636 if (sc & BD_ENET_TX_HB) /* No heartbeat */
637 fep->stats.tx_heartbeat_errors++;
638 if (sc & BD_ENET_TX_LC) /* Late collision */
639 fep->stats.tx_window_errors++;
640 if (sc & BD_ENET_TX_RL) /* Retrans limit */
641 fep->stats.tx_aborted_errors++;
642 if (sc & BD_ENET_TX_UN) /* Underrun */
643 fep->stats.tx_fifo_errors++;
644 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
645 fep->stats.tx_carrier_errors++;
646 } else
647 fep->stats.tx_packets++;
648
649 if (sc & BD_ENET_TX_READY)
650 printk(KERN_WARNING DRV_MODULE_NAME
651 ": %s HEY! Enet xmit interrupt and TX_READY.\n",
652 dev->name);
653
654 /*
655 * Deferred means some collisions occurred during transmit,
656 * but we eventually sent the packet OK.
657 */
658 if (sc & BD_ENET_TX_DEF)
659 fep->stats.collisions++;
660
661 /*
662 * Free the sk buffer associated with this last transmit.
663 */
664 dev_kfree_skb_irq(skb);
665 fep->tx_skbuff[dirtyidx] = NULL;
666
667 /*
668 * Update pointer to next buffer descriptor to be transmitted.
669 */
670 if ((sc & BD_ENET_TX_WRAP) == 0)
671 bdp++;
672 else
673 bdp = fep->tx_bd_base;
674
675 /*
676 * Since we have freed up a buffer, the ring is no longer
677 * full.
678 */
679 if (!fep->tx_free++)
680 do_wake = 1;
681 }
682
683 fep->dirty_tx = bdp;
684
685 spin_unlock(&fep->lock);
686
687 if (do_wake && netif_queue_stopped(dev))
688 netif_wake_queue(dev);
689}
690
691/*
692 * The interrupt handler.
693 * This is called from the MPC core interrupt.
694 */
695static irqreturn_t
696fec_enet_interrupt(int irq, void *dev_id)
697{
698 struct net_device *dev = dev_id;
699 struct fec_enet_private *fep;
700 const struct fec_platform_info *fpi;
701 fec_t *fecp;
702 __u32 int_events;
703 __u32 int_events_napi;
704
705 if (unlikely(dev == NULL))
706 return IRQ_NONE;
707
708 fep = netdev_priv(dev);
709 fecp = fep->fecp;
710 fpi = fep->fpi;
711
712 /*
713 * Get the interrupt events that caused us to be here.
714 */
715 while ((int_events = FR(fecp, ievent) & FR(fecp, imask)) != 0) {
716
717 if (!fpi->use_napi)
718 FW(fecp, ievent, int_events);
719 else {
720 int_events_napi = int_events & ~(FEC_ENET_RXF | FEC_ENET_RXB);
721 FW(fecp, ievent, int_events_napi);
722 }
723
724 if ((int_events & (FEC_ENET_HBERR | FEC_ENET_BABR |
725 FEC_ENET_BABT | FEC_ENET_EBERR)) != 0)
726 printk(KERN_WARNING DRV_MODULE_NAME
727 ": %s FEC ERROR(s) 0x%x\n",
728 dev->name, int_events);
729
730 if ((int_events & FEC_ENET_RXF) != 0) {
731 if (!fpi->use_napi)
732 fec_enet_rx_common(fep, dev, ~0);
733 else {
734 if (netif_rx_schedule_prep(dev, &fep->napi)) {
735 /* disable rx interrupts */
736 FC(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB);
737 __netif_rx_schedule(dev, &fep->napi);
738 } else {
739 printk(KERN_ERR DRV_MODULE_NAME
740 ": %s driver bug! interrupt while in poll!\n",
741 dev->name);
742 FC(fecp, imask, FEC_ENET_RXF | FEC_ENET_RXB);
743 }
744 }
745 }
746
747 if ((int_events & FEC_ENET_TXF) != 0)
748 fec_enet_tx(dev);
749 }
750
751 return IRQ_HANDLED;
752}
753
754/* This interrupt occurs when the PHY detects a link change. */
755static irqreturn_t
756fec_mii_link_interrupt(int irq, void *dev_id)
757{
758 struct net_device *dev = dev_id;
759 struct fec_enet_private *fep;
760 const struct fec_platform_info *fpi;
761
762 if (unlikely(dev == NULL))
763 return IRQ_NONE;
764
765 fep = netdev_priv(dev);
766 fpi = fep->fpi;
767
768 if (!fpi->use_mdio)
769 return IRQ_NONE;
770
771 /*
772 * Acknowledge the interrupt if possible. If we have not
773 * found the PHY yet we can't process or acknowledge the
774 * interrupt now. Instead we ignore this interrupt for now,
775 * which we can do since it is edge triggered. It will be
776 * acknowledged later by fec_enet_open().
777 */
778 if (!fep->phy)
779 return IRQ_NONE;
780
781 fec_mii_ack_int(dev);
782 fec_mii_link_status_change_check(dev, 0);
783
784 return IRQ_HANDLED;
785}
786
787
788/**********************************************************************************/
789
790static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
791{
792 struct fec_enet_private *fep = netdev_priv(dev);
793 fec_t *fecp = fep->fecp;
794 cbd_t *bdp;
795 int curidx;
796 unsigned long flags;
797
798 spin_lock_irqsave(&fep->tx_lock, flags);
799
800 /*
801 * Fill in a Tx ring entry
802 */
803 bdp = fep->cur_tx;
804
805 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
806 netif_stop_queue(dev);
807 spin_unlock_irqrestore(&fep->tx_lock, flags);
808
809 /*
810 * Ooops. All transmit buffers are full. Bail out.
811 * This should not happen, since the tx queue should be stopped.
812 */
813 printk(KERN_WARNING DRV_MODULE_NAME
814 ": %s tx queue full!.\n", dev->name);
815 return 1;
816 }
817
818 curidx = bdp - fep->tx_bd_base;
819 /*
820 * Clear all of the status flags.
821 */
822 CBDC_SC(bdp, BD_ENET_TX_STATS);
823
824 /*
825 * Save skb pointer.
826 */
827 fep->tx_skbuff[curidx] = skb;
828
829 fep->stats.tx_bytes += skb->len;
830
831 /*
832 * Push the data cache so the CPM does not get stale memory data.
833 */
834 CBDW_BUFADDR(bdp, dma_map_single(NULL, skb->data,
835 skb->len, DMA_TO_DEVICE));
836 CBDW_DATLEN(bdp, skb->len);
837
838 dev->trans_start = jiffies;
839
840 /*
841 * If this was the last BD in the ring, start at the beginning again.
842 */
843 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
844 fep->cur_tx++;
845 else
846 fep->cur_tx = fep->tx_bd_base;
847
848 if (!--fep->tx_free)
849 netif_stop_queue(dev);
850
851 /*
852 * Trigger transmission start
853 */
854 CBDS_SC(bdp, BD_ENET_TX_READY | BD_ENET_TX_INTR |
855 BD_ENET_TX_LAST | BD_ENET_TX_TC);
856 FW(fecp, x_des_active, 0x01000000);
857
858 spin_unlock_irqrestore(&fep->tx_lock, flags);
859
860 return 0;
861}
862
863static void fec_timeout(struct net_device *dev)
864{
865 struct fec_enet_private *fep = netdev_priv(dev);
866
867 fep->stats.tx_errors++;
868
869 if (fep->tx_free)
870 netif_wake_queue(dev);
871
872 /* check link status again */
873 fec_mii_link_status_change_check(dev, 0);
874}
875
876static int fec_enet_open(struct net_device *dev)
877{
878 struct fec_enet_private *fep = netdev_priv(dev);
879 const struct fec_platform_info *fpi = fep->fpi;
880 unsigned long flags;
881
882 napi_enable(&fep->napi);
883
884 /* Install our interrupt handler. */
885 if (request_irq(fpi->fec_irq, fec_enet_interrupt, 0, "fec", dev) != 0) {
886 printk(KERN_ERR DRV_MODULE_NAME
887 ": %s Could not allocate FEC IRQ!", dev->name);
888 napi_disable(&fep->napi);
889 return -EINVAL;
890 }
891
892 /* Install our phy interrupt handler */
893 if (fpi->phy_irq != -1 &&
894 request_irq(fpi->phy_irq, fec_mii_link_interrupt, 0, "fec-phy",
895 dev) != 0) {
896 printk(KERN_ERR DRV_MODULE_NAME
897 ": %s Could not allocate PHY IRQ!", dev->name);
898 free_irq(fpi->fec_irq, dev);
899 napi_disable(&fep->napi);
900 return -EINVAL;
901 }
902
903 if (fpi->use_mdio) {
904 fec_mii_startup(dev);
905 netif_carrier_off(dev);
906 fec_mii_link_status_change_check(dev, 1);
907 } else {
908 spin_lock_irqsave(&fep->lock, flags);
909 fec_restart(dev, 1, 100); /* XXX this sucks */
910 spin_unlock_irqrestore(&fep->lock, flags);
911
912 netif_carrier_on(dev);
913 netif_start_queue(dev);
914 }
915 return 0;
916}
917
918static int fec_enet_close(struct net_device *dev)
919{
920 struct fec_enet_private *fep = netdev_priv(dev);
921 const struct fec_platform_info *fpi = fep->fpi;
922 unsigned long flags;
923
924 netif_stop_queue(dev);
925 napi_disable(&fep->napi);
926 netif_carrier_off(dev);
927
928 if (fpi->use_mdio)
929 fec_mii_shutdown(dev);
930
931 spin_lock_irqsave(&fep->lock, flags);
932 fec_stop(dev);
933 spin_unlock_irqrestore(&fep->lock, flags);
934
935 /* release any irqs */
936 if (fpi->phy_irq != -1)
937 free_irq(fpi->phy_irq, dev);
938 free_irq(fpi->fec_irq, dev);
939
940 return 0;
941}
942
943static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
944{
945 struct fec_enet_private *fep = netdev_priv(dev);
946 return &fep->stats;
947}
948
949static int fec_enet_poll(struct napi_struct *napi, int budget)
950{
951 struct fec_enet_private *fep = container_of(napi, struct fec_enet_private, napi);
952 struct net_device *dev = fep->dev;
953
954 return fec_enet_rx_common(fep, dev, budget);
955}
956
957/*************************************************************************/
958
959static void fec_get_drvinfo(struct net_device *dev,
960 struct ethtool_drvinfo *info)
961{
962 strcpy(info->driver, DRV_MODULE_NAME);
963 strcpy(info->version, DRV_MODULE_VERSION);
964}
965
966static int fec_get_regs_len(struct net_device *dev)
967{
968 return sizeof(fec_t);
969}
970
971static void fec_get_regs(struct net_device *dev, struct ethtool_regs *regs,
972 void *p)
973{
974 struct fec_enet_private *fep = netdev_priv(dev);
975 unsigned long flags;
976
977 if (regs->len < sizeof(fec_t))
978 return;
979
980 regs->version = 0;
981 spin_lock_irqsave(&fep->lock, flags);
982 memcpy_fromio(p, fep->fecp, sizeof(fec_t));
983 spin_unlock_irqrestore(&fep->lock, flags);
984}
985
986static int fec_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
987{
988 struct fec_enet_private *fep = netdev_priv(dev);
989 unsigned long flags;
990 int rc;
991
992 spin_lock_irqsave(&fep->lock, flags);
993 rc = mii_ethtool_gset(&fep->mii_if, cmd);
994 spin_unlock_irqrestore(&fep->lock, flags);
995
996 return rc;
997}
998
999static int fec_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1000{
1001 struct fec_enet_private *fep = netdev_priv(dev);
1002 unsigned long flags;
1003 int rc;
1004
1005 spin_lock_irqsave(&fep->lock, flags);
1006 rc = mii_ethtool_sset(&fep->mii_if, cmd);
1007 spin_unlock_irqrestore(&fep->lock, flags);
1008
1009 return rc;
1010}
1011
1012static int fec_nway_reset(struct net_device *dev)
1013{
1014 struct fec_enet_private *fep = netdev_priv(dev);
1015 return mii_nway_restart(&fep->mii_if);
1016}
1017
1018static __u32 fec_get_msglevel(struct net_device *dev)
1019{
1020 struct fec_enet_private *fep = netdev_priv(dev);
1021 return fep->msg_enable;
1022}
1023
1024static void fec_set_msglevel(struct net_device *dev, __u32 value)
1025{
1026 struct fec_enet_private *fep = netdev_priv(dev);
1027 fep->msg_enable = value;
1028}
1029
1030static const struct ethtool_ops fec_ethtool_ops = {
1031 .get_drvinfo = fec_get_drvinfo,
1032 .get_regs_len = fec_get_regs_len,
1033 .get_settings = fec_get_settings,
1034 .set_settings = fec_set_settings,
1035 .nway_reset = fec_nway_reset,
1036 .get_link = ethtool_op_get_link,
1037 .get_msglevel = fec_get_msglevel,
1038 .set_msglevel = fec_set_msglevel,
1039 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
1040 .set_sg = ethtool_op_set_sg,
1041 .get_regs = fec_get_regs,
1042};
1043
1044static int fec_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1045{
1046 struct fec_enet_private *fep = netdev_priv(dev);
1047 struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
1048 unsigned long flags;
1049 int rc;
1050
1051 if (!netif_running(dev))
1052 return -EINVAL;
1053
1054 spin_lock_irqsave(&fep->lock, flags);
1055 rc = generic_mii_ioctl(&fep->mii_if, mii, cmd, NULL);
1056 spin_unlock_irqrestore(&fep->lock, flags);
1057 return rc;
1058}
1059
1060int fec_8xx_init_one(const struct fec_platform_info *fpi,
1061 struct net_device **devp)
1062{
1063 immap_t *immap = (immap_t *) IMAP_ADDR;
1064 static int fec_8xx_version_printed = 0;
1065 struct net_device *dev = NULL;
1066 struct fec_enet_private *fep = NULL;
1067 fec_t *fecp = NULL;
1068 int i;
1069 int err = 0;
1070 int registered = 0;
1071 __u32 siel;
1072
1073 *devp = NULL;
1074
1075 switch (fpi->fec_no) {
1076 case 0:
1077 fecp = &((immap_t *) IMAP_ADDR)->im_cpm.cp_fec;
1078 break;
1079#ifdef CONFIG_DUET
1080 case 1:
1081 fecp = &((immap_t *) IMAP_ADDR)->im_cpm.cp_fec2;
1082 break;
1083#endif
1084 default:
1085 return -EINVAL;
1086 }
1087
1088 if (fec_8xx_version_printed++ == 0)
1089 printk(KERN_INFO "%s", version);
1090
1091 i = sizeof(*fep) + (sizeof(struct sk_buff **) *
1092 (fpi->rx_ring + fpi->tx_ring));
1093
1094 dev = alloc_etherdev(i);
1095 if (!dev) {
1096 err = -ENOMEM;
1097 goto err;
1098 }
1099
1100 fep = netdev_priv(dev);
1101 fep->dev = dev;
1102
1103 /* partial reset of FEC */
1104 fec_whack_reset(fecp);
1105
1106 /* point rx_skbuff, tx_skbuff */
1107 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1108 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1109
1110 fep->fecp = fecp;
1111 fep->fpi = fpi;
1112
1113 /* init locks */
1114 spin_lock_init(&fep->lock);
1115 spin_lock_init(&fep->tx_lock);
1116
1117 /*
1118 * Set the Ethernet address.
1119 */
1120 for (i = 0; i < 6; i++)
1121 dev->dev_addr[i] = fpi->macaddr[i];
1122
1123 fep->ring_base = dma_alloc_coherent(NULL,
1124 (fpi->tx_ring + fpi->rx_ring) *
1125 sizeof(cbd_t), &fep->ring_mem_addr,
1126 GFP_KERNEL);
1127 if (fep->ring_base == NULL) {
1128 printk(KERN_ERR DRV_MODULE_NAME
1129 ": %s dma alloc failed.\n", dev->name);
1130 err = -ENOMEM;
1131 goto err;
1132 }
1133
1134 /*
1135 * Set receive and transmit descriptor base.
1136 */
1137 fep->rx_bd_base = fep->ring_base;
1138 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1139
1140 /* initialize ring size variables */
1141 fep->tx_ring = fpi->tx_ring;
1142 fep->rx_ring = fpi->rx_ring;
1143
1144 /* SIU interrupt */
1145 if (fpi->phy_irq != -1 &&
1146 (fpi->phy_irq >= SIU_IRQ0 && fpi->phy_irq < SIU_LEVEL7)) {
1147
1148 siel = in_be32(&immap->im_siu_conf.sc_siel);
1149 if ((fpi->phy_irq & 1) == 0)
1150 siel |= (0x80000000 >> fpi->phy_irq);
1151 else
1152 siel &= ~(0x80000000 >> (fpi->phy_irq & ~1));
1153 out_be32(&immap->im_siu_conf.sc_siel, siel);
1154 }
1155
1156 /*
1157 * The FEC Ethernet specific entries in the device structure.
1158 */
1159 dev->open = fec_enet_open;
1160 dev->hard_start_xmit = fec_enet_start_xmit;
1161 dev->tx_timeout = fec_timeout;
1162 dev->watchdog_timeo = TX_TIMEOUT;
1163 dev->stop = fec_enet_close;
1164 dev->get_stats = fec_enet_get_stats;
1165 dev->set_multicast_list = fec_set_multicast_list;
1166 dev->set_mac_address = fec_set_mac_address;
1167 netif_napi_add(dev, &fec->napi,
1168 fec_enet_poll, fpi->napi_weight);
1169
1170 dev->ethtool_ops = &fec_ethtool_ops;
1171 dev->do_ioctl = fec_ioctl;
1172
1173 fep->fec_phy_speed =
1174 ((((fpi->sys_clk + 4999999) / 2500000) / 2) & 0x3F) << 1;
1175
1176 init_timer(&fep->phy_timer_list);
1177
1178 /* partial reset of FEC so that only MII works */
1179 FW(fecp, mii_speed, fep->fec_phy_speed);
1180 FW(fecp, ievent, 0xffc0);
1181 FW(fecp, ivec, (fpi->fec_irq / 2) << 29);
1182 FW(fecp, imask, 0);
1183 FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
1184 FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
1185
1186 netif_carrier_off(dev);
1187
1188 err = register_netdev(dev);
1189 if (err != 0)
1190 goto err;
1191 registered = 1;
1192
1193 if (fpi->use_mdio) {
1194 fep->mii_if.dev = dev;
1195 fep->mii_if.mdio_read = fec_mii_read;
1196 fep->mii_if.mdio_write = fec_mii_write;
1197 fep->mii_if.phy_id_mask = 0x1f;
1198 fep->mii_if.reg_num_mask = 0x1f;
1199 fep->mii_if.phy_id = fec_mii_phy_id_detect(dev);
1200 }
1201
1202 *devp = dev;
1203
1204 return 0;
1205
1206 err:
1207 if (dev != NULL) {
1208 if (fecp != NULL)
1209 fec_whack_reset(fecp);
1210
1211 if (registered)
1212 unregister_netdev(dev);
1213
1214 if (fep != NULL) {
1215 if (fep->ring_base)
1216 dma_free_coherent(NULL,
1217 (fpi->tx_ring +
1218 fpi->rx_ring) *
1219 sizeof(cbd_t), fep->ring_base,
1220 fep->ring_mem_addr);
1221 }
1222 free_netdev(dev);
1223 }
1224 return err;
1225}
1226
1227int fec_8xx_cleanup_one(struct net_device *dev)
1228{
1229 struct fec_enet_private *fep = netdev_priv(dev);
1230 fec_t *fecp = fep->fecp;
1231 const struct fec_platform_info *fpi = fep->fpi;
1232
1233 fec_whack_reset(fecp);
1234
1235 unregister_netdev(dev);
1236
1237 dma_free_coherent(NULL, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
1238 fep->ring_base, fep->ring_mem_addr);
1239
1240 free_netdev(dev);
1241
1242 return 0;
1243}
1244
1245/**************************************************************************************/
1246/**************************************************************************************/
1247/**************************************************************************************/
1248
1249static int __init fec_8xx_init(void)
1250{
1251 return fec_8xx_platform_init();
1252}
1253
1254static void __exit fec_8xx_cleanup(void)
1255{
1256 fec_8xx_platform_cleanup();
1257}
1258
1259/**************************************************************************************/
1260/**************************************************************************************/
1261/**************************************************************************************/
1262
1263module_init(fec_8xx_init);
1264module_exit(fec_8xx_cleanup);