aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/via/via-velocity.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/ethernet/via/via-velocity.c')
-rw-r--r--drivers/net/ethernet/via/via-velocity.c3592
1 files changed, 3592 insertions, 0 deletions
diff --git a/drivers/net/ethernet/via/via-velocity.c b/drivers/net/ethernet/via/via-velocity.c
new file mode 100644
index 000000000000..490ec5b2775a
--- /dev/null
+++ b/drivers/net/ethernet/via/via-velocity.c
@@ -0,0 +1,3592 @@
1/*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
5 *
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
9 *
10 * TODO
11 * rx_copybreak/alignment
12 * More testing
13 *
14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15 * Additional fixes and clean up: Francois Romieu
16 *
17 * This source has not been verified for use in safety critical systems.
18 *
19 * Please direct queries about the revamped driver to the linux-kernel
20 * list not VIA.
21 *
22 * Original code:
23 *
24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25 * All rights reserved.
26 *
27 * This software may be redistributed and/or modified under
28 * the terms of the GNU General Public License as published by the Free
29 * Software Foundation; either version 2 of the License, or
30 * any later version.
31 *
32 * This program is distributed in the hope that it will be useful, but
33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35 * for more details.
36 *
37 * Author: Chuang Liang-Shing, AJ Jiang
38 *
39 * Date: Jan 24, 2003
40 *
41 * MODULE_LICENSE("GPL");
42 *
43 */
44
45#include <linux/module.h>
46#include <linux/types.h>
47#include <linux/bitops.h>
48#include <linux/init.h>
49#include <linux/mm.h>
50#include <linux/errno.h>
51#include <linux/ioport.h>
52#include <linux/pci.h>
53#include <linux/kernel.h>
54#include <linux/netdevice.h>
55#include <linux/etherdevice.h>
56#include <linux/skbuff.h>
57#include <linux/delay.h>
58#include <linux/timer.h>
59#include <linux/slab.h>
60#include <linux/interrupt.h>
61#include <linux/string.h>
62#include <linux/wait.h>
63#include <linux/io.h>
64#include <linux/if.h>
65#include <linux/uaccess.h>
66#include <linux/proc_fs.h>
67#include <linux/inetdevice.h>
68#include <linux/reboot.h>
69#include <linux/ethtool.h>
70#include <linux/mii.h>
71#include <linux/in.h>
72#include <linux/if_arp.h>
73#include <linux/if_vlan.h>
74#include <linux/ip.h>
75#include <linux/tcp.h>
76#include <linux/udp.h>
77#include <linux/crc-ccitt.h>
78#include <linux/crc32.h>
79
80#include "via-velocity.h"
81
82
83static int velocity_nics;
84static int msglevel = MSG_LEVEL_INFO;
85
86/**
87 * mac_get_cam_mask - Read a CAM mask
88 * @regs: register block for this velocity
89 * @mask: buffer to store mask
90 *
91 * Fetch the mask bits of the selected CAM and store them into the
92 * provided mask buffer.
93 */
94static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
95{
96 int i;
97
98 /* Select CAM mask */
99 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
100
101 writeb(0, &regs->CAMADDR);
102
103 /* read mask */
104 for (i = 0; i < 8; i++)
105 *mask++ = readb(&(regs->MARCAM[i]));
106
107 /* disable CAMEN */
108 writeb(0, &regs->CAMADDR);
109
110 /* Select mar */
111 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
112}
113
114/**
115 * mac_set_cam_mask - Set a CAM mask
116 * @regs: register block for this velocity
117 * @mask: CAM mask to load
118 *
119 * Store a new mask into a CAM
120 */
121static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
122{
123 int i;
124 /* Select CAM mask */
125 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
126
127 writeb(CAMADDR_CAMEN, &regs->CAMADDR);
128
129 for (i = 0; i < 8; i++)
130 writeb(*mask++, &(regs->MARCAM[i]));
131
132 /* disable CAMEN */
133 writeb(0, &regs->CAMADDR);
134
135 /* Select mar */
136 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
137}
138
139static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
140{
141 int i;
142 /* Select CAM mask */
143 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
144
145 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
146
147 for (i = 0; i < 8; i++)
148 writeb(*mask++, &(regs->MARCAM[i]));
149
150 /* disable CAMEN */
151 writeb(0, &regs->CAMADDR);
152
153 /* Select mar */
154 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
155}
156
157/**
158 * mac_set_cam - set CAM data
159 * @regs: register block of this velocity
160 * @idx: Cam index
161 * @addr: 2 or 6 bytes of CAM data
162 *
163 * Load an address or vlan tag into a CAM
164 */
165static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
166{
167 int i;
168
169 /* Select CAM mask */
170 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
171
172 idx &= (64 - 1);
173
174 writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
175
176 for (i = 0; i < 6; i++)
177 writeb(*addr++, &(regs->MARCAM[i]));
178
179 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
180
181 udelay(10);
182
183 writeb(0, &regs->CAMADDR);
184
185 /* Select mar */
186 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
187}
188
189static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
190 const u8 *addr)
191{
192
193 /* Select CAM mask */
194 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
195
196 idx &= (64 - 1);
197
198 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
199 writew(*((u16 *) addr), &regs->MARCAM[0]);
200
201 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
202
203 udelay(10);
204
205 writeb(0, &regs->CAMADDR);
206
207 /* Select mar */
208 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
209}
210
211
212/**
213 * mac_wol_reset - reset WOL after exiting low power
214 * @regs: register block of this velocity
215 *
216 * Called after we drop out of wake on lan mode in order to
217 * reset the Wake on lan features. This function doesn't restore
218 * the rest of the logic from the result of sleep/wakeup
219 */
220static void mac_wol_reset(struct mac_regs __iomem *regs)
221{
222
223 /* Turn off SWPTAG right after leaving power mode */
224 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
225 /* clear sticky bits */
226 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
227
228 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
229 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
230 /* disable force PME-enable */
231 writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
232 /* disable power-event config bit */
233 writew(0xFFFF, &regs->WOLCRClr);
234 /* clear power status */
235 writew(0xFFFF, &regs->WOLSRClr);
236}
237
238static const struct ethtool_ops velocity_ethtool_ops;
239
240/*
241 Define module options
242*/
243
244MODULE_AUTHOR("VIA Networking Technologies, Inc.");
245MODULE_LICENSE("GPL");
246MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
247
248#define VELOCITY_PARAM(N, D) \
249 static int N[MAX_UNITS] = OPTION_DEFAULT;\
250 module_param_array(N, int, NULL, 0); \
251 MODULE_PARM_DESC(N, D);
252
253#define RX_DESC_MIN 64
254#define RX_DESC_MAX 255
255#define RX_DESC_DEF 64
256VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
257
258#define TX_DESC_MIN 16
259#define TX_DESC_MAX 256
260#define TX_DESC_DEF 64
261VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
262
263#define RX_THRESH_MIN 0
264#define RX_THRESH_MAX 3
265#define RX_THRESH_DEF 0
266/* rx_thresh[] is used for controlling the receive fifo threshold.
267 0: indicate the rxfifo threshold is 128 bytes.
268 1: indicate the rxfifo threshold is 512 bytes.
269 2: indicate the rxfifo threshold is 1024 bytes.
270 3: indicate the rxfifo threshold is store & forward.
271*/
272VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
273
274#define DMA_LENGTH_MIN 0
275#define DMA_LENGTH_MAX 7
276#define DMA_LENGTH_DEF 6
277
278/* DMA_length[] is used for controlling the DMA length
279 0: 8 DWORDs
280 1: 16 DWORDs
281 2: 32 DWORDs
282 3: 64 DWORDs
283 4: 128 DWORDs
284 5: 256 DWORDs
285 6: SF(flush till emply)
286 7: SF(flush till emply)
287*/
288VELOCITY_PARAM(DMA_length, "DMA length");
289
290#define IP_ALIG_DEF 0
291/* IP_byte_align[] is used for IP header DWORD byte aligned
292 0: indicate the IP header won't be DWORD byte aligned.(Default) .
293 1: indicate the IP header will be DWORD byte aligned.
294 In some environment, the IP header should be DWORD byte aligned,
295 or the packet will be droped when we receive it. (eg: IPVS)
296*/
297VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
298
299#define FLOW_CNTL_DEF 1
300#define FLOW_CNTL_MIN 1
301#define FLOW_CNTL_MAX 5
302
303/* flow_control[] is used for setting the flow control ability of NIC.
304 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
305 2: enable TX flow control.
306 3: enable RX flow control.
307 4: enable RX/TX flow control.
308 5: disable
309*/
310VELOCITY_PARAM(flow_control, "Enable flow control ability");
311
312#define MED_LNK_DEF 0
313#define MED_LNK_MIN 0
314#define MED_LNK_MAX 5
315/* speed_duplex[] is used for setting the speed and duplex mode of NIC.
316 0: indicate autonegotiation for both speed and duplex mode
317 1: indicate 100Mbps half duplex mode
318 2: indicate 100Mbps full duplex mode
319 3: indicate 10Mbps half duplex mode
320 4: indicate 10Mbps full duplex mode
321 5: indicate 1000Mbps full duplex mode
322
323 Note:
324 if EEPROM have been set to the force mode, this option is ignored
325 by driver.
326*/
327VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
328
329#define VAL_PKT_LEN_DEF 0
330/* ValPktLen[] is used for setting the checksum offload ability of NIC.
331 0: Receive frame with invalid layer 2 length (Default)
332 1: Drop frame with invalid layer 2 length
333*/
334VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
335
336#define WOL_OPT_DEF 0
337#define WOL_OPT_MIN 0
338#define WOL_OPT_MAX 7
339/* wol_opts[] is used for controlling wake on lan behavior.
340 0: Wake up if recevied a magic packet. (Default)
341 1: Wake up if link status is on/off.
342 2: Wake up if recevied an arp packet.
343 4: Wake up if recevied any unicast packet.
344 Those value can be sumed up to support more than one option.
345*/
346VELOCITY_PARAM(wol_opts, "Wake On Lan options");
347
348static int rx_copybreak = 200;
349module_param(rx_copybreak, int, 0644);
350MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
351
352/*
353 * Internal board variants. At the moment we have only one
354 */
355static struct velocity_info_tbl chip_info_table[] = {
356 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
357 { }
358};
359
360/*
361 * Describe the PCI device identifiers that we support in this
362 * device driver. Used for hotplug autoloading.
363 */
364static DEFINE_PCI_DEVICE_TABLE(velocity_id_table) = {
365 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
366 { }
367};
368
369MODULE_DEVICE_TABLE(pci, velocity_id_table);
370
371/**
372 * get_chip_name - identifier to name
373 * @id: chip identifier
374 *
375 * Given a chip identifier return a suitable description. Returns
376 * a pointer a static string valid while the driver is loaded.
377 */
378static const char __devinit *get_chip_name(enum chip_type chip_id)
379{
380 int i;
381 for (i = 0; chip_info_table[i].name != NULL; i++)
382 if (chip_info_table[i].chip_id == chip_id)
383 break;
384 return chip_info_table[i].name;
385}
386
387/**
388 * velocity_remove1 - device unplug
389 * @pdev: PCI device being removed
390 *
391 * Device unload callback. Called on an unplug or on module
392 * unload for each active device that is present. Disconnects
393 * the device from the network layer and frees all the resources
394 */
395static void __devexit velocity_remove1(struct pci_dev *pdev)
396{
397 struct net_device *dev = pci_get_drvdata(pdev);
398 struct velocity_info *vptr = netdev_priv(dev);
399
400 unregister_netdev(dev);
401 iounmap(vptr->mac_regs);
402 pci_release_regions(pdev);
403 pci_disable_device(pdev);
404 pci_set_drvdata(pdev, NULL);
405 free_netdev(dev);
406
407 velocity_nics--;
408}
409
410/**
411 * velocity_set_int_opt - parser for integer options
412 * @opt: pointer to option value
413 * @val: value the user requested (or -1 for default)
414 * @min: lowest value allowed
415 * @max: highest value allowed
416 * @def: default value
417 * @name: property name
418 * @dev: device name
419 *
420 * Set an integer property in the module options. This function does
421 * all the verification and checking as well as reporting so that
422 * we don't duplicate code for each option.
423 */
424static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, const char *devname)
425{
426 if (val == -1)
427 *opt = def;
428 else if (val < min || val > max) {
429 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
430 devname, name, min, max);
431 *opt = def;
432 } else {
433 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
434 devname, name, val);
435 *opt = val;
436 }
437}
438
439/**
440 * velocity_set_bool_opt - parser for boolean options
441 * @opt: pointer to option value
442 * @val: value the user requested (or -1 for default)
443 * @def: default value (yes/no)
444 * @flag: numeric value to set for true.
445 * @name: property name
446 * @dev: device name
447 *
448 * Set a boolean property in the module options. This function does
449 * all the verification and checking as well as reporting so that
450 * we don't duplicate code for each option.
451 */
452static void __devinit velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, char *name, const char *devname)
453{
454 (*opt) &= (~flag);
455 if (val == -1)
456 *opt |= (def ? flag : 0);
457 else if (val < 0 || val > 1) {
458 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
459 devname, name);
460 *opt |= (def ? flag : 0);
461 } else {
462 printk(KERN_INFO "%s: set parameter %s to %s\n",
463 devname, name, val ? "TRUE" : "FALSE");
464 *opt |= (val ? flag : 0);
465 }
466}
467
468/**
469 * velocity_get_options - set options on device
470 * @opts: option structure for the device
471 * @index: index of option to use in module options array
472 * @devname: device name
473 *
474 * Turn the module and command options into a single structure
475 * for the current device
476 */
477static void __devinit velocity_get_options(struct velocity_opt *opts, int index, const char *devname)
478{
479
480 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
481 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
482 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
483 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
484
485 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
486 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
487 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
488 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
489 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
490 opts->numrx = (opts->numrx & ~3);
491}
492
493/**
494 * velocity_init_cam_filter - initialise CAM
495 * @vptr: velocity to program
496 *
497 * Initialize the content addressable memory used for filters. Load
498 * appropriately according to the presence of VLAN
499 */
500static void velocity_init_cam_filter(struct velocity_info *vptr)
501{
502 struct mac_regs __iomem *regs = vptr->mac_regs;
503 unsigned int vid, i = 0;
504
505 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
506 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
507 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
508
509 /* Disable all CAMs */
510 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
511 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
512 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
513 mac_set_cam_mask(regs, vptr->mCAMmask);
514
515 /* Enable VCAMs */
516
517 if (test_bit(0, vptr->active_vlans))
518 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
519
520 for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
521 mac_set_vlan_cam(regs, i, (u8 *) &vid);
522 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
523 if (++i >= VCAM_SIZE)
524 break;
525 }
526 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
527}
528
529static void velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
530{
531 struct velocity_info *vptr = netdev_priv(dev);
532
533 spin_lock_irq(&vptr->lock);
534 set_bit(vid, vptr->active_vlans);
535 velocity_init_cam_filter(vptr);
536 spin_unlock_irq(&vptr->lock);
537}
538
539static void velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
540{
541 struct velocity_info *vptr = netdev_priv(dev);
542
543 spin_lock_irq(&vptr->lock);
544 clear_bit(vid, vptr->active_vlans);
545 velocity_init_cam_filter(vptr);
546 spin_unlock_irq(&vptr->lock);
547}
548
549static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
550{
551 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
552}
553
554/**
555 * velocity_rx_reset - handle a receive reset
556 * @vptr: velocity we are resetting
557 *
558 * Reset the ownership and status for the receive ring side.
559 * Hand all the receive queue to the NIC.
560 */
561static void velocity_rx_reset(struct velocity_info *vptr)
562{
563
564 struct mac_regs __iomem *regs = vptr->mac_regs;
565 int i;
566
567 velocity_init_rx_ring_indexes(vptr);
568
569 /*
570 * Init state, all RD entries belong to the NIC
571 */
572 for (i = 0; i < vptr->options.numrx; ++i)
573 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
574
575 writew(vptr->options.numrx, &regs->RBRDU);
576 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
577 writew(0, &regs->RDIdx);
578 writew(vptr->options.numrx - 1, &regs->RDCSize);
579}
580
581/**
582 * velocity_get_opt_media_mode - get media selection
583 * @vptr: velocity adapter
584 *
585 * Get the media mode stored in EEPROM or module options and load
586 * mii_status accordingly. The requested link state information
587 * is also returned.
588 */
589static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
590{
591 u32 status = 0;
592
593 switch (vptr->options.spd_dpx) {
594 case SPD_DPX_AUTO:
595 status = VELOCITY_AUTONEG_ENABLE;
596 break;
597 case SPD_DPX_100_FULL:
598 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
599 break;
600 case SPD_DPX_10_FULL:
601 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
602 break;
603 case SPD_DPX_100_HALF:
604 status = VELOCITY_SPEED_100;
605 break;
606 case SPD_DPX_10_HALF:
607 status = VELOCITY_SPEED_10;
608 break;
609 case SPD_DPX_1000_FULL:
610 status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
611 break;
612 }
613 vptr->mii_status = status;
614 return status;
615}
616
617/**
618 * safe_disable_mii_autopoll - autopoll off
619 * @regs: velocity registers
620 *
621 * Turn off the autopoll and wait for it to disable on the chip
622 */
623static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
624{
625 u16 ww;
626
627 /* turn off MAUTO */
628 writeb(0, &regs->MIICR);
629 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
630 udelay(1);
631 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
632 break;
633 }
634}
635
636/**
637 * enable_mii_autopoll - turn on autopolling
638 * @regs: velocity registers
639 *
640 * Enable the MII link status autopoll feature on the Velocity
641 * hardware. Wait for it to enable.
642 */
643static void enable_mii_autopoll(struct mac_regs __iomem *regs)
644{
645 int ii;
646
647 writeb(0, &(regs->MIICR));
648 writeb(MIIADR_SWMPL, &regs->MIIADR);
649
650 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
651 udelay(1);
652 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
653 break;
654 }
655
656 writeb(MIICR_MAUTO, &regs->MIICR);
657
658 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
659 udelay(1);
660 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
661 break;
662 }
663
664}
665
666/**
667 * velocity_mii_read - read MII data
668 * @regs: velocity registers
669 * @index: MII register index
670 * @data: buffer for received data
671 *
672 * Perform a single read of an MII 16bit register. Returns zero
673 * on success or -ETIMEDOUT if the PHY did not respond.
674 */
675static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
676{
677 u16 ww;
678
679 /*
680 * Disable MIICR_MAUTO, so that mii addr can be set normally
681 */
682 safe_disable_mii_autopoll(regs);
683
684 writeb(index, &regs->MIIADR);
685
686 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
687
688 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
689 if (!(readb(&regs->MIICR) & MIICR_RCMD))
690 break;
691 }
692
693 *data = readw(&regs->MIIDATA);
694
695 enable_mii_autopoll(regs);
696 if (ww == W_MAX_TIMEOUT)
697 return -ETIMEDOUT;
698 return 0;
699}
700
701/**
702 * mii_check_media_mode - check media state
703 * @regs: velocity registers
704 *
705 * Check the current MII status and determine the link status
706 * accordingly
707 */
708static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
709{
710 u32 status = 0;
711 u16 ANAR;
712
713 if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
714 status |= VELOCITY_LINK_FAIL;
715
716 if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
717 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
718 else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
719 status |= (VELOCITY_SPEED_1000);
720 else {
721 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
722 if (ANAR & ADVERTISE_100FULL)
723 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
724 else if (ANAR & ADVERTISE_100HALF)
725 status |= VELOCITY_SPEED_100;
726 else if (ANAR & ADVERTISE_10FULL)
727 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
728 else
729 status |= (VELOCITY_SPEED_10);
730 }
731
732 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
733 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
734 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
735 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
736 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
737 status |= VELOCITY_AUTONEG_ENABLE;
738 }
739 }
740
741 return status;
742}
743
744/**
745 * velocity_mii_write - write MII data
746 * @regs: velocity registers
747 * @index: MII register index
748 * @data: 16bit data for the MII register
749 *
750 * Perform a single write to an MII 16bit register. Returns zero
751 * on success or -ETIMEDOUT if the PHY did not respond.
752 */
753static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
754{
755 u16 ww;
756
757 /*
758 * Disable MIICR_MAUTO, so that mii addr can be set normally
759 */
760 safe_disable_mii_autopoll(regs);
761
762 /* MII reg offset */
763 writeb(mii_addr, &regs->MIIADR);
764 /* set MII data */
765 writew(data, &regs->MIIDATA);
766
767 /* turn on MIICR_WCMD */
768 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
769
770 /* W_MAX_TIMEOUT is the timeout period */
771 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
772 udelay(5);
773 if (!(readb(&regs->MIICR) & MIICR_WCMD))
774 break;
775 }
776 enable_mii_autopoll(regs);
777
778 if (ww == W_MAX_TIMEOUT)
779 return -ETIMEDOUT;
780 return 0;
781}
782
783/**
784 * set_mii_flow_control - flow control setup
785 * @vptr: velocity interface
786 *
787 * Set up the flow control on this interface according to
788 * the supplied user/eeprom options.
789 */
790static void set_mii_flow_control(struct velocity_info *vptr)
791{
792 /*Enable or Disable PAUSE in ANAR */
793 switch (vptr->options.flow_cntl) {
794 case FLOW_CNTL_TX:
795 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
796 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
797 break;
798
799 case FLOW_CNTL_RX:
800 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
801 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
802 break;
803
804 case FLOW_CNTL_TX_RX:
805 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
806 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
807 break;
808
809 case FLOW_CNTL_DISABLE:
810 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
811 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
812 break;
813 default:
814 break;
815 }
816}
817
818/**
819 * mii_set_auto_on - autonegotiate on
820 * @vptr: velocity
821 *
822 * Enable autonegotation on this interface
823 */
824static void mii_set_auto_on(struct velocity_info *vptr)
825{
826 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
827 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
828 else
829 MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
830}
831
832static u32 check_connection_type(struct mac_regs __iomem *regs)
833{
834 u32 status = 0;
835 u8 PHYSR0;
836 u16 ANAR;
837 PHYSR0 = readb(&regs->PHYSR0);
838
839 /*
840 if (!(PHYSR0 & PHYSR0_LINKGD))
841 status|=VELOCITY_LINK_FAIL;
842 */
843
844 if (PHYSR0 & PHYSR0_FDPX)
845 status |= VELOCITY_DUPLEX_FULL;
846
847 if (PHYSR0 & PHYSR0_SPDG)
848 status |= VELOCITY_SPEED_1000;
849 else if (PHYSR0 & PHYSR0_SPD10)
850 status |= VELOCITY_SPEED_10;
851 else
852 status |= VELOCITY_SPEED_100;
853
854 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
855 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
856 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
857 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
858 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
859 status |= VELOCITY_AUTONEG_ENABLE;
860 }
861 }
862
863 return status;
864}
865
866/**
867 * velocity_set_media_mode - set media mode
868 * @mii_status: old MII link state
869 *
870 * Check the media link state and configure the flow control
871 * PHY and also velocity hardware setup accordingly. In particular
872 * we need to set up CD polling and frame bursting.
873 */
874static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
875{
876 u32 curr_status;
877 struct mac_regs __iomem *regs = vptr->mac_regs;
878
879 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
880 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
881
882 /* Set mii link status */
883 set_mii_flow_control(vptr);
884
885 /*
886 Check if new status is consistent with current status
887 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
888 (mii_status==curr_status)) {
889 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
890 vptr->mii_status=check_connection_type(vptr->mac_regs);
891 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
892 return 0;
893 }
894 */
895
896 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
897 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
898
899 /*
900 * If connection type is AUTO
901 */
902 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
903 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
904 /* clear force MAC mode bit */
905 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
906 /* set duplex mode of MAC according to duplex mode of MII */
907 MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
908 MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
909 MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
910
911 /* enable AUTO-NEGO mode */
912 mii_set_auto_on(vptr);
913 } else {
914 u16 CTRL1000;
915 u16 ANAR;
916 u8 CHIPGCR;
917
918 /*
919 * 1. if it's 3119, disable frame bursting in halfduplex mode
920 * and enable it in fullduplex mode
921 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
922 * 3. only enable CD heart beat counter in 10HD mode
923 */
924
925 /* set force MAC mode bit */
926 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
927
928 CHIPGCR = readb(&regs->CHIPGCR);
929
930 if (mii_status & VELOCITY_SPEED_1000)
931 CHIPGCR |= CHIPGCR_FCGMII;
932 else
933 CHIPGCR &= ~CHIPGCR_FCGMII;
934
935 if (mii_status & VELOCITY_DUPLEX_FULL) {
936 CHIPGCR |= CHIPGCR_FCFDX;
937 writeb(CHIPGCR, &regs->CHIPGCR);
938 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
939 if (vptr->rev_id < REV_ID_VT3216_A0)
940 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
941 } else {
942 CHIPGCR &= ~CHIPGCR_FCFDX;
943 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
944 writeb(CHIPGCR, &regs->CHIPGCR);
945 if (vptr->rev_id < REV_ID_VT3216_A0)
946 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
947 }
948
949 velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
950 CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
951 if ((mii_status & VELOCITY_SPEED_1000) &&
952 (mii_status & VELOCITY_DUPLEX_FULL)) {
953 CTRL1000 |= ADVERTISE_1000FULL;
954 }
955 velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
956
957 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
958 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
959 else
960 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
961
962 /* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
963 velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
964 ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
965 if (mii_status & VELOCITY_SPEED_100) {
966 if (mii_status & VELOCITY_DUPLEX_FULL)
967 ANAR |= ADVERTISE_100FULL;
968 else
969 ANAR |= ADVERTISE_100HALF;
970 } else if (mii_status & VELOCITY_SPEED_10) {
971 if (mii_status & VELOCITY_DUPLEX_FULL)
972 ANAR |= ADVERTISE_10FULL;
973 else
974 ANAR |= ADVERTISE_10HALF;
975 }
976 velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
977 /* enable AUTO-NEGO mode */
978 mii_set_auto_on(vptr);
979 /* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
980 }
981 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
982 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
983 return VELOCITY_LINK_CHANGE;
984}
985
986/**
987 * velocity_print_link_status - link status reporting
988 * @vptr: velocity to report on
989 *
990 * Turn the link status of the velocity card into a kernel log
991 * description of the new link state, detailing speed and duplex
992 * status
993 */
994static void velocity_print_link_status(struct velocity_info *vptr)
995{
996
997 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
998 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
999 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1000 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
1001
1002 if (vptr->mii_status & VELOCITY_SPEED_1000)
1003 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1004 else if (vptr->mii_status & VELOCITY_SPEED_100)
1005 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1006 else
1007 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1008
1009 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1010 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1011 else
1012 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1013 } else {
1014 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1015 switch (vptr->options.spd_dpx) {
1016 case SPD_DPX_1000_FULL:
1017 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1018 break;
1019 case SPD_DPX_100_HALF:
1020 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1021 break;
1022 case SPD_DPX_100_FULL:
1023 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1024 break;
1025 case SPD_DPX_10_HALF:
1026 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1027 break;
1028 case SPD_DPX_10_FULL:
1029 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1030 break;
1031 default:
1032 break;
1033 }
1034 }
1035}
1036
1037/**
1038 * enable_flow_control_ability - flow control
1039 * @vptr: veloity to configure
1040 *
1041 * Set up flow control according to the flow control options
1042 * determined by the eeprom/configuration.
1043 */
1044static void enable_flow_control_ability(struct velocity_info *vptr)
1045{
1046
1047 struct mac_regs __iomem *regs = vptr->mac_regs;
1048
1049 switch (vptr->options.flow_cntl) {
1050
1051 case FLOW_CNTL_DEFAULT:
1052 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1053 writel(CR0_FDXRFCEN, &regs->CR0Set);
1054 else
1055 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1056
1057 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1058 writel(CR0_FDXTFCEN, &regs->CR0Set);
1059 else
1060 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1061 break;
1062
1063 case FLOW_CNTL_TX:
1064 writel(CR0_FDXTFCEN, &regs->CR0Set);
1065 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1066 break;
1067
1068 case FLOW_CNTL_RX:
1069 writel(CR0_FDXRFCEN, &regs->CR0Set);
1070 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1071 break;
1072
1073 case FLOW_CNTL_TX_RX:
1074 writel(CR0_FDXTFCEN, &regs->CR0Set);
1075 writel(CR0_FDXRFCEN, &regs->CR0Set);
1076 break;
1077
1078 case FLOW_CNTL_DISABLE:
1079 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1080 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1081 break;
1082
1083 default:
1084 break;
1085 }
1086
1087}
1088
1089/**
1090 * velocity_soft_reset - soft reset
1091 * @vptr: velocity to reset
1092 *
1093 * Kick off a soft reset of the velocity adapter and then poll
1094 * until the reset sequence has completed before returning.
1095 */
1096static int velocity_soft_reset(struct velocity_info *vptr)
1097{
1098 struct mac_regs __iomem *regs = vptr->mac_regs;
1099 int i = 0;
1100
1101 writel(CR0_SFRST, &regs->CR0Set);
1102
1103 for (i = 0; i < W_MAX_TIMEOUT; i++) {
1104 udelay(5);
1105 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1106 break;
1107 }
1108
1109 if (i == W_MAX_TIMEOUT) {
1110 writel(CR0_FORSRST, &regs->CR0Set);
1111 /* FIXME: PCI POSTING */
1112 /* delay 2ms */
1113 mdelay(2);
1114 }
1115 return 0;
1116}
1117
1118/**
1119 * velocity_set_multi - filter list change callback
1120 * @dev: network device
1121 *
1122 * Called by the network layer when the filter lists need to change
1123 * for a velocity adapter. Reload the CAMs with the new address
1124 * filter ruleset.
1125 */
1126static void velocity_set_multi(struct net_device *dev)
1127{
1128 struct velocity_info *vptr = netdev_priv(dev);
1129 struct mac_regs __iomem *regs = vptr->mac_regs;
1130 u8 rx_mode;
1131 int i;
1132 struct netdev_hw_addr *ha;
1133
1134 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1135 writel(0xffffffff, &regs->MARCAM[0]);
1136 writel(0xffffffff, &regs->MARCAM[4]);
1137 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1138 } else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1139 (dev->flags & IFF_ALLMULTI)) {
1140 writel(0xffffffff, &regs->MARCAM[0]);
1141 writel(0xffffffff, &regs->MARCAM[4]);
1142 rx_mode = (RCR_AM | RCR_AB);
1143 } else {
1144 int offset = MCAM_SIZE - vptr->multicast_limit;
1145 mac_get_cam_mask(regs, vptr->mCAMmask);
1146
1147 i = 0;
1148 netdev_for_each_mc_addr(ha, dev) {
1149 mac_set_cam(regs, i + offset, ha->addr);
1150 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1151 i++;
1152 }
1153
1154 mac_set_cam_mask(regs, vptr->mCAMmask);
1155 rx_mode = RCR_AM | RCR_AB | RCR_AP;
1156 }
1157 if (dev->mtu > 1500)
1158 rx_mode |= RCR_AL;
1159
1160 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1161
1162}
1163
1164/*
1165 * MII access , media link mode setting functions
1166 */
1167
1168/**
1169 * mii_init - set up MII
1170 * @vptr: velocity adapter
1171 * @mii_status: links tatus
1172 *
1173 * Set up the PHY for the current link state.
1174 */
1175static void mii_init(struct velocity_info *vptr, u32 mii_status)
1176{
1177 u16 BMCR;
1178
1179 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1180 case PHYID_CICADA_CS8201:
1181 /*
1182 * Reset to hardware default
1183 */
1184 MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1185 /*
1186 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1187 * off it in NWay-forced half mode for NWay-forced v.s.
1188 * legacy-forced issue.
1189 */
1190 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1191 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1192 else
1193 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1194 /*
1195 * Turn on Link/Activity LED enable bit for CIS8201
1196 */
1197 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1198 break;
1199 case PHYID_VT3216_32BIT:
1200 case PHYID_VT3216_64BIT:
1201 /*
1202 * Reset to hardware default
1203 */
1204 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1205 /*
1206 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1207 * off it in NWay-forced half mode for NWay-forced v.s.
1208 * legacy-forced issue
1209 */
1210 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1211 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1212 else
1213 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1214 break;
1215
1216 case PHYID_MARVELL_1000:
1217 case PHYID_MARVELL_1000S:
1218 /*
1219 * Assert CRS on Transmit
1220 */
1221 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1222 /*
1223 * Reset to hardware default
1224 */
1225 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1226 break;
1227 default:
1228 ;
1229 }
1230 velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1231 if (BMCR & BMCR_ISOLATE) {
1232 BMCR &= ~BMCR_ISOLATE;
1233 velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1234 }
1235}
1236
1237/**
1238 * setup_queue_timers - Setup interrupt timers
1239 *
1240 * Setup interrupt frequency during suppression (timeout if the frame
1241 * count isn't filled).
1242 */
1243static void setup_queue_timers(struct velocity_info *vptr)
1244{
1245 /* Only for newer revisions */
1246 if (vptr->rev_id >= REV_ID_VT3216_A0) {
1247 u8 txqueue_timer = 0;
1248 u8 rxqueue_timer = 0;
1249
1250 if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1251 VELOCITY_SPEED_100)) {
1252 txqueue_timer = vptr->options.txqueue_timer;
1253 rxqueue_timer = vptr->options.rxqueue_timer;
1254 }
1255
1256 writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1257 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1258 }
1259}
1260
1261/**
1262 * setup_adaptive_interrupts - Setup interrupt suppression
1263 *
1264 * @vptr velocity adapter
1265 *
1266 * The velocity is able to suppress interrupt during high interrupt load.
1267 * This function turns on that feature.
1268 */
1269static void setup_adaptive_interrupts(struct velocity_info *vptr)
1270{
1271 struct mac_regs __iomem *regs = vptr->mac_regs;
1272 u16 tx_intsup = vptr->options.tx_intsup;
1273 u16 rx_intsup = vptr->options.rx_intsup;
1274
1275 /* Setup default interrupt mask (will be changed below) */
1276 vptr->int_mask = INT_MASK_DEF;
1277
1278 /* Set Tx Interrupt Suppression Threshold */
1279 writeb(CAMCR_PS0, &regs->CAMCR);
1280 if (tx_intsup != 0) {
1281 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1282 ISR_PTX2I | ISR_PTX3I);
1283 writew(tx_intsup, &regs->ISRCTL);
1284 } else
1285 writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1286
1287 /* Set Rx Interrupt Suppression Threshold */
1288 writeb(CAMCR_PS1, &regs->CAMCR);
1289 if (rx_intsup != 0) {
1290 vptr->int_mask &= ~ISR_PRXI;
1291 writew(rx_intsup, &regs->ISRCTL);
1292 } else
1293 writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1294
1295 /* Select page to interrupt hold timer */
1296 writeb(0, &regs->CAMCR);
1297}
1298
1299/**
1300 * velocity_init_registers - initialise MAC registers
1301 * @vptr: velocity to init
1302 * @type: type of initialisation (hot or cold)
1303 *
1304 * Initialise the MAC on a reset or on first set up on the
1305 * hardware.
1306 */
1307static void velocity_init_registers(struct velocity_info *vptr,
1308 enum velocity_init_type type)
1309{
1310 struct mac_regs __iomem *regs = vptr->mac_regs;
1311 int i, mii_status;
1312
1313 mac_wol_reset(regs);
1314
1315 switch (type) {
1316 case VELOCITY_INIT_RESET:
1317 case VELOCITY_INIT_WOL:
1318
1319 netif_stop_queue(vptr->dev);
1320
1321 /*
1322 * Reset RX to prevent RX pointer not on the 4X location
1323 */
1324 velocity_rx_reset(vptr);
1325 mac_rx_queue_run(regs);
1326 mac_rx_queue_wake(regs);
1327
1328 mii_status = velocity_get_opt_media_mode(vptr);
1329 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1330 velocity_print_link_status(vptr);
1331 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1332 netif_wake_queue(vptr->dev);
1333 }
1334
1335 enable_flow_control_ability(vptr);
1336
1337 mac_clear_isr(regs);
1338 writel(CR0_STOP, &regs->CR0Clr);
1339 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1340 &regs->CR0Set);
1341
1342 break;
1343
1344 case VELOCITY_INIT_COLD:
1345 default:
1346 /*
1347 * Do reset
1348 */
1349 velocity_soft_reset(vptr);
1350 mdelay(5);
1351
1352 mac_eeprom_reload(regs);
1353 for (i = 0; i < 6; i++)
1354 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
1355
1356 /*
1357 * clear Pre_ACPI bit.
1358 */
1359 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1360 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1361 mac_set_dma_length(regs, vptr->options.DMA_length);
1362
1363 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1364 /*
1365 * Back off algorithm use original IEEE standard
1366 */
1367 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1368
1369 /*
1370 * Init CAM filter
1371 */
1372 velocity_init_cam_filter(vptr);
1373
1374 /*
1375 * Set packet filter: Receive directed and broadcast address
1376 */
1377 velocity_set_multi(vptr->dev);
1378
1379 /*
1380 * Enable MII auto-polling
1381 */
1382 enable_mii_autopoll(regs);
1383
1384 setup_adaptive_interrupts(vptr);
1385
1386 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1387 writew(vptr->options.numrx - 1, &regs->RDCSize);
1388 mac_rx_queue_run(regs);
1389 mac_rx_queue_wake(regs);
1390
1391 writew(vptr->options.numtx - 1, &regs->TDCSize);
1392
1393 for (i = 0; i < vptr->tx.numq; i++) {
1394 writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1395 mac_tx_queue_run(regs, i);
1396 }
1397
1398 init_flow_control_register(vptr);
1399
1400 writel(CR0_STOP, &regs->CR0Clr);
1401 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1402
1403 mii_status = velocity_get_opt_media_mode(vptr);
1404 netif_stop_queue(vptr->dev);
1405
1406 mii_init(vptr, mii_status);
1407
1408 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1409 velocity_print_link_status(vptr);
1410 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1411 netif_wake_queue(vptr->dev);
1412 }
1413
1414 enable_flow_control_ability(vptr);
1415 mac_hw_mibs_init(regs);
1416 mac_write_int_mask(vptr->int_mask, regs);
1417 mac_clear_isr(regs);
1418
1419 }
1420}
1421
1422static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1423{
1424 struct mac_regs __iomem *regs = vptr->mac_regs;
1425 int avail, dirty, unusable;
1426
1427 /*
1428 * RD number must be equal to 4X per hardware spec
1429 * (programming guide rev 1.20, p.13)
1430 */
1431 if (vptr->rx.filled < 4)
1432 return;
1433
1434 wmb();
1435
1436 unusable = vptr->rx.filled & 0x0003;
1437 dirty = vptr->rx.dirty - unusable;
1438 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1439 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1440 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1441 }
1442
1443 writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1444 vptr->rx.filled = unusable;
1445}
1446
1447/**
1448 * velocity_init_dma_rings - set up DMA rings
1449 * @vptr: Velocity to set up
1450 *
1451 * Allocate PCI mapped DMA rings for the receive and transmit layer
1452 * to use.
1453 */
1454static int velocity_init_dma_rings(struct velocity_info *vptr)
1455{
1456 struct velocity_opt *opt = &vptr->options;
1457 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1458 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1459 struct pci_dev *pdev = vptr->pdev;
1460 dma_addr_t pool_dma;
1461 void *pool;
1462 unsigned int i;
1463
1464 /*
1465 * Allocate all RD/TD rings a single pool.
1466 *
1467 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1468 * alignment
1469 */
1470 pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq +
1471 rx_ring_size, &pool_dma);
1472 if (!pool) {
1473 dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1474 vptr->dev->name);
1475 return -ENOMEM;
1476 }
1477
1478 vptr->rx.ring = pool;
1479 vptr->rx.pool_dma = pool_dma;
1480
1481 pool += rx_ring_size;
1482 pool_dma += rx_ring_size;
1483
1484 for (i = 0; i < vptr->tx.numq; i++) {
1485 vptr->tx.rings[i] = pool;
1486 vptr->tx.pool_dma[i] = pool_dma;
1487 pool += tx_ring_size;
1488 pool_dma += tx_ring_size;
1489 }
1490
1491 return 0;
1492}
1493
1494static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1495{
1496 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1497}
1498
1499/**
1500 * velocity_alloc_rx_buf - allocate aligned receive buffer
1501 * @vptr: velocity
1502 * @idx: ring index
1503 *
1504 * Allocate a new full sized buffer for the reception of a frame and
1505 * map it into PCI space for the hardware to use. The hardware
1506 * requires *64* byte alignment of the buffer which makes life
1507 * less fun than would be ideal.
1508 */
1509static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1510{
1511 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1512 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1513
1514 rd_info->skb = dev_alloc_skb(vptr->rx.buf_sz + 64);
1515 if (rd_info->skb == NULL)
1516 return -ENOMEM;
1517
1518 /*
1519 * Do the gymnastics to get the buffer head for data at
1520 * 64byte alignment.
1521 */
1522 skb_reserve(rd_info->skb,
1523 64 - ((unsigned long) rd_info->skb->data & 63));
1524 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data,
1525 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1526
1527 /*
1528 * Fill in the descriptor to match
1529 */
1530
1531 *((u32 *) & (rd->rdesc0)) = 0;
1532 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1533 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1534 rd->pa_high = 0;
1535 return 0;
1536}
1537
1538
1539static int velocity_rx_refill(struct velocity_info *vptr)
1540{
1541 int dirty = vptr->rx.dirty, done = 0;
1542
1543 do {
1544 struct rx_desc *rd = vptr->rx.ring + dirty;
1545
1546 /* Fine for an all zero Rx desc at init time as well */
1547 if (rd->rdesc0.len & OWNED_BY_NIC)
1548 break;
1549
1550 if (!vptr->rx.info[dirty].skb) {
1551 if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1552 break;
1553 }
1554 done++;
1555 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1556 } while (dirty != vptr->rx.curr);
1557
1558 if (done) {
1559 vptr->rx.dirty = dirty;
1560 vptr->rx.filled += done;
1561 }
1562
1563 return done;
1564}
1565
1566/**
1567 * velocity_free_rd_ring - free receive ring
1568 * @vptr: velocity to clean up
1569 *
1570 * Free the receive buffers for each ring slot and any
1571 * attached socket buffers that need to go away.
1572 */
1573static void velocity_free_rd_ring(struct velocity_info *vptr)
1574{
1575 int i;
1576
1577 if (vptr->rx.info == NULL)
1578 return;
1579
1580 for (i = 0; i < vptr->options.numrx; i++) {
1581 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1582 struct rx_desc *rd = vptr->rx.ring + i;
1583
1584 memset(rd, 0, sizeof(*rd));
1585
1586 if (!rd_info->skb)
1587 continue;
1588 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1589 PCI_DMA_FROMDEVICE);
1590 rd_info->skb_dma = 0;
1591
1592 dev_kfree_skb(rd_info->skb);
1593 rd_info->skb = NULL;
1594 }
1595
1596 kfree(vptr->rx.info);
1597 vptr->rx.info = NULL;
1598}
1599
1600/**
1601 * velocity_init_rd_ring - set up receive ring
1602 * @vptr: velocity to configure
1603 *
1604 * Allocate and set up the receive buffers for each ring slot and
1605 * assign them to the network adapter.
1606 */
1607static int velocity_init_rd_ring(struct velocity_info *vptr)
1608{
1609 int ret = -ENOMEM;
1610
1611 vptr->rx.info = kcalloc(vptr->options.numrx,
1612 sizeof(struct velocity_rd_info), GFP_KERNEL);
1613 if (!vptr->rx.info)
1614 goto out;
1615
1616 velocity_init_rx_ring_indexes(vptr);
1617
1618 if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1619 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1620 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1621 velocity_free_rd_ring(vptr);
1622 goto out;
1623 }
1624
1625 ret = 0;
1626out:
1627 return ret;
1628}
1629
1630/**
1631 * velocity_init_td_ring - set up transmit ring
1632 * @vptr: velocity
1633 *
1634 * Set up the transmit ring and chain the ring pointers together.
1635 * Returns zero on success or a negative posix errno code for
1636 * failure.
1637 */
1638static int velocity_init_td_ring(struct velocity_info *vptr)
1639{
1640 int j;
1641
1642 /* Init the TD ring entries */
1643 for (j = 0; j < vptr->tx.numq; j++) {
1644
1645 vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1646 sizeof(struct velocity_td_info),
1647 GFP_KERNEL);
1648 if (!vptr->tx.infos[j]) {
1649 while (--j >= 0)
1650 kfree(vptr->tx.infos[j]);
1651 return -ENOMEM;
1652 }
1653
1654 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1655 }
1656 return 0;
1657}
1658
1659/**
1660 * velocity_free_dma_rings - free PCI ring pointers
1661 * @vptr: Velocity to free from
1662 *
1663 * Clean up the PCI ring buffers allocated to this velocity.
1664 */
1665static void velocity_free_dma_rings(struct velocity_info *vptr)
1666{
1667 const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1668 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1669
1670 pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma);
1671}
1672
1673static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1674{
1675 int ret;
1676
1677 velocity_set_rxbufsize(vptr, mtu);
1678
1679 ret = velocity_init_dma_rings(vptr);
1680 if (ret < 0)
1681 goto out;
1682
1683 ret = velocity_init_rd_ring(vptr);
1684 if (ret < 0)
1685 goto err_free_dma_rings_0;
1686
1687 ret = velocity_init_td_ring(vptr);
1688 if (ret < 0)
1689 goto err_free_rd_ring_1;
1690out:
1691 return ret;
1692
1693err_free_rd_ring_1:
1694 velocity_free_rd_ring(vptr);
1695err_free_dma_rings_0:
1696 velocity_free_dma_rings(vptr);
1697 goto out;
1698}
1699
1700/**
1701 * velocity_free_tx_buf - free transmit buffer
1702 * @vptr: velocity
1703 * @tdinfo: buffer
1704 *
1705 * Release an transmit buffer. If the buffer was preallocated then
1706 * recycle it, if not then unmap the buffer.
1707 */
1708static void velocity_free_tx_buf(struct velocity_info *vptr,
1709 struct velocity_td_info *tdinfo, struct tx_desc *td)
1710{
1711 struct sk_buff *skb = tdinfo->skb;
1712
1713 /*
1714 * Don't unmap the pre-allocated tx_bufs
1715 */
1716 if (tdinfo->skb_dma) {
1717 int i;
1718
1719 for (i = 0; i < tdinfo->nskb_dma; i++) {
1720 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1721
1722 /* For scatter-gather */
1723 if (skb_shinfo(skb)->nr_frags > 0)
1724 pktlen = max_t(size_t, pktlen,
1725 td->td_buf[i].size & ~TD_QUEUE);
1726
1727 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i],
1728 le16_to_cpu(pktlen), PCI_DMA_TODEVICE);
1729 }
1730 }
1731 dev_kfree_skb_irq(skb);
1732 tdinfo->skb = NULL;
1733}
1734
1735/*
1736 * FIXME: could we merge this with velocity_free_tx_buf ?
1737 */
1738static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1739 int q, int n)
1740{
1741 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1742 int i;
1743
1744 if (td_info == NULL)
1745 return;
1746
1747 if (td_info->skb) {
1748 for (i = 0; i < td_info->nskb_dma; i++) {
1749 if (td_info->skb_dma[i]) {
1750 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1751 td_info->skb->len, PCI_DMA_TODEVICE);
1752 td_info->skb_dma[i] = 0;
1753 }
1754 }
1755 dev_kfree_skb(td_info->skb);
1756 td_info->skb = NULL;
1757 }
1758}
1759
1760/**
1761 * velocity_free_td_ring - free td ring
1762 * @vptr: velocity
1763 *
1764 * Free up the transmit ring for this particular velocity adapter.
1765 * We free the ring contents but not the ring itself.
1766 */
1767static void velocity_free_td_ring(struct velocity_info *vptr)
1768{
1769 int i, j;
1770
1771 for (j = 0; j < vptr->tx.numq; j++) {
1772 if (vptr->tx.infos[j] == NULL)
1773 continue;
1774 for (i = 0; i < vptr->options.numtx; i++)
1775 velocity_free_td_ring_entry(vptr, j, i);
1776
1777 kfree(vptr->tx.infos[j]);
1778 vptr->tx.infos[j] = NULL;
1779 }
1780}
1781
1782static void velocity_free_rings(struct velocity_info *vptr)
1783{
1784 velocity_free_td_ring(vptr);
1785 velocity_free_rd_ring(vptr);
1786 velocity_free_dma_rings(vptr);
1787}
1788
1789/**
1790 * velocity_error - handle error from controller
1791 * @vptr: velocity
1792 * @status: card status
1793 *
1794 * Process an error report from the hardware and attempt to recover
1795 * the card itself. At the moment we cannot recover from some
1796 * theoretically impossible errors but this could be fixed using
1797 * the pci_device_failed logic to bounce the hardware
1798 *
1799 */
1800static void velocity_error(struct velocity_info *vptr, int status)
1801{
1802
1803 if (status & ISR_TXSTLI) {
1804 struct mac_regs __iomem *regs = vptr->mac_regs;
1805
1806 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1807 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1808 writew(TRDCSR_RUN, &regs->TDCSRClr);
1809 netif_stop_queue(vptr->dev);
1810
1811 /* FIXME: port over the pci_device_failed code and use it
1812 here */
1813 }
1814
1815 if (status & ISR_SRCI) {
1816 struct mac_regs __iomem *regs = vptr->mac_regs;
1817 int linked;
1818
1819 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1820 vptr->mii_status = check_connection_type(regs);
1821
1822 /*
1823 * If it is a 3119, disable frame bursting in
1824 * halfduplex mode and enable it in fullduplex
1825 * mode
1826 */
1827 if (vptr->rev_id < REV_ID_VT3216_A0) {
1828 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1829 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1830 else
1831 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1832 }
1833 /*
1834 * Only enable CD heart beat counter in 10HD mode
1835 */
1836 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1837 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1838 else
1839 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1840
1841 setup_queue_timers(vptr);
1842 }
1843 /*
1844 * Get link status from PHYSR0
1845 */
1846 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1847
1848 if (linked) {
1849 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1850 netif_carrier_on(vptr->dev);
1851 } else {
1852 vptr->mii_status |= VELOCITY_LINK_FAIL;
1853 netif_carrier_off(vptr->dev);
1854 }
1855
1856 velocity_print_link_status(vptr);
1857 enable_flow_control_ability(vptr);
1858
1859 /*
1860 * Re-enable auto-polling because SRCI will disable
1861 * auto-polling
1862 */
1863
1864 enable_mii_autopoll(regs);
1865
1866 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1867 netif_stop_queue(vptr->dev);
1868 else
1869 netif_wake_queue(vptr->dev);
1870
1871 }
1872 if (status & ISR_MIBFI)
1873 velocity_update_hw_mibs(vptr);
1874 if (status & ISR_LSTEI)
1875 mac_rx_queue_wake(vptr->mac_regs);
1876}
1877
1878/**
1879 * tx_srv - transmit interrupt service
1880 * @vptr; Velocity
1881 *
1882 * Scan the queues looking for transmitted packets that
1883 * we can complete and clean up. Update any statistics as
1884 * necessary/
1885 */
1886static int velocity_tx_srv(struct velocity_info *vptr)
1887{
1888 struct tx_desc *td;
1889 int qnum;
1890 int full = 0;
1891 int idx;
1892 int works = 0;
1893 struct velocity_td_info *tdinfo;
1894 struct net_device_stats *stats = &vptr->dev->stats;
1895
1896 for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1897 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1898 idx = (idx + 1) % vptr->options.numtx) {
1899
1900 /*
1901 * Get Tx Descriptor
1902 */
1903 td = &(vptr->tx.rings[qnum][idx]);
1904 tdinfo = &(vptr->tx.infos[qnum][idx]);
1905
1906 if (td->tdesc0.len & OWNED_BY_NIC)
1907 break;
1908
1909 if ((works++ > 15))
1910 break;
1911
1912 if (td->tdesc0.TSR & TSR0_TERR) {
1913 stats->tx_errors++;
1914 stats->tx_dropped++;
1915 if (td->tdesc0.TSR & TSR0_CDH)
1916 stats->tx_heartbeat_errors++;
1917 if (td->tdesc0.TSR & TSR0_CRS)
1918 stats->tx_carrier_errors++;
1919 if (td->tdesc0.TSR & TSR0_ABT)
1920 stats->tx_aborted_errors++;
1921 if (td->tdesc0.TSR & TSR0_OWC)
1922 stats->tx_window_errors++;
1923 } else {
1924 stats->tx_packets++;
1925 stats->tx_bytes += tdinfo->skb->len;
1926 }
1927 velocity_free_tx_buf(vptr, tdinfo, td);
1928 vptr->tx.used[qnum]--;
1929 }
1930 vptr->tx.tail[qnum] = idx;
1931
1932 if (AVAIL_TD(vptr, qnum) < 1)
1933 full = 1;
1934 }
1935 /*
1936 * Look to see if we should kick the transmit network
1937 * layer for more work.
1938 */
1939 if (netif_queue_stopped(vptr->dev) && (full == 0) &&
1940 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1941 netif_wake_queue(vptr->dev);
1942 }
1943 return works;
1944}
1945
1946/**
1947 * velocity_rx_csum - checksum process
1948 * @rd: receive packet descriptor
1949 * @skb: network layer packet buffer
1950 *
1951 * Process the status bits for the received packet and determine
1952 * if the checksum was computed and verified by the hardware
1953 */
1954static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1955{
1956 skb_checksum_none_assert(skb);
1957
1958 if (rd->rdesc1.CSM & CSM_IPKT) {
1959 if (rd->rdesc1.CSM & CSM_IPOK) {
1960 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1961 (rd->rdesc1.CSM & CSM_UDPKT)) {
1962 if (!(rd->rdesc1.CSM & CSM_TUPOK))
1963 return;
1964 }
1965 skb->ip_summed = CHECKSUM_UNNECESSARY;
1966 }
1967 }
1968}
1969
1970/**
1971 * velocity_rx_copy - in place Rx copy for small packets
1972 * @rx_skb: network layer packet buffer candidate
1973 * @pkt_size: received data size
1974 * @rd: receive packet descriptor
1975 * @dev: network device
1976 *
1977 * Replace the current skb that is scheduled for Rx processing by a
1978 * shorter, immediately allocated skb, if the received packet is small
1979 * enough. This function returns a negative value if the received
1980 * packet is too big or if memory is exhausted.
1981 */
1982static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1983 struct velocity_info *vptr)
1984{
1985 int ret = -1;
1986 if (pkt_size < rx_copybreak) {
1987 struct sk_buff *new_skb;
1988
1989 new_skb = netdev_alloc_skb_ip_align(vptr->dev, pkt_size);
1990 if (new_skb) {
1991 new_skb->ip_summed = rx_skb[0]->ip_summed;
1992 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
1993 *rx_skb = new_skb;
1994 ret = 0;
1995 }
1996
1997 }
1998 return ret;
1999}
2000
2001/**
2002 * velocity_iph_realign - IP header alignment
2003 * @vptr: velocity we are handling
2004 * @skb: network layer packet buffer
2005 * @pkt_size: received data size
2006 *
2007 * Align IP header on a 2 bytes boundary. This behavior can be
2008 * configured by the user.
2009 */
2010static inline void velocity_iph_realign(struct velocity_info *vptr,
2011 struct sk_buff *skb, int pkt_size)
2012{
2013 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2014 memmove(skb->data + 2, skb->data, pkt_size);
2015 skb_reserve(skb, 2);
2016 }
2017}
2018
2019/**
2020 * velocity_receive_frame - received packet processor
2021 * @vptr: velocity we are handling
2022 * @idx: ring index
2023 *
2024 * A packet has arrived. We process the packet and if appropriate
2025 * pass the frame up the network stack
2026 */
2027static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2028{
2029 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
2030 struct net_device_stats *stats = &vptr->dev->stats;
2031 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2032 struct rx_desc *rd = &(vptr->rx.ring[idx]);
2033 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2034 struct sk_buff *skb;
2035
2036 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
2037 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
2038 stats->rx_length_errors++;
2039 return -EINVAL;
2040 }
2041
2042 if (rd->rdesc0.RSR & RSR_MAR)
2043 stats->multicast++;
2044
2045 skb = rd_info->skb;
2046
2047 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
2048 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
2049
2050 /*
2051 * Drop frame not meeting IEEE 802.3
2052 */
2053
2054 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
2055 if (rd->rdesc0.RSR & RSR_RL) {
2056 stats->rx_length_errors++;
2057 return -EINVAL;
2058 }
2059 }
2060
2061 pci_action = pci_dma_sync_single_for_device;
2062
2063 velocity_rx_csum(rd, skb);
2064
2065 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2066 velocity_iph_realign(vptr, skb, pkt_len);
2067 pci_action = pci_unmap_single;
2068 rd_info->skb = NULL;
2069 }
2070
2071 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
2072 PCI_DMA_FROMDEVICE);
2073
2074 skb_put(skb, pkt_len - 4);
2075 skb->protocol = eth_type_trans(skb, vptr->dev);
2076
2077 if (rd->rdesc0.RSR & RSR_DETAG) {
2078 u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2079
2080 __vlan_hwaccel_put_tag(skb, vid);
2081 }
2082 netif_rx(skb);
2083
2084 stats->rx_bytes += pkt_len;
2085 stats->rx_packets++;
2086
2087 return 0;
2088}
2089
2090/**
2091 * velocity_rx_srv - service RX interrupt
2092 * @vptr: velocity
2093 *
2094 * Walk the receive ring of the velocity adapter and remove
2095 * any received packets from the receive queue. Hand the ring
2096 * slots back to the adapter for reuse.
2097 */
2098static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2099{
2100 struct net_device_stats *stats = &vptr->dev->stats;
2101 int rd_curr = vptr->rx.curr;
2102 int works = 0;
2103
2104 while (works < budget_left) {
2105 struct rx_desc *rd = vptr->rx.ring + rd_curr;
2106
2107 if (!vptr->rx.info[rd_curr].skb)
2108 break;
2109
2110 if (rd->rdesc0.len & OWNED_BY_NIC)
2111 break;
2112
2113 rmb();
2114
2115 /*
2116 * Don't drop CE or RL error frame although RXOK is off
2117 */
2118 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2119 if (velocity_receive_frame(vptr, rd_curr) < 0)
2120 stats->rx_dropped++;
2121 } else {
2122 if (rd->rdesc0.RSR & RSR_CRC)
2123 stats->rx_crc_errors++;
2124 if (rd->rdesc0.RSR & RSR_FAE)
2125 stats->rx_frame_errors++;
2126
2127 stats->rx_dropped++;
2128 }
2129
2130 rd->size |= RX_INTEN;
2131
2132 rd_curr++;
2133 if (rd_curr >= vptr->options.numrx)
2134 rd_curr = 0;
2135 works++;
2136 }
2137
2138 vptr->rx.curr = rd_curr;
2139
2140 if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2141 velocity_give_many_rx_descs(vptr);
2142
2143 VAR_USED(stats);
2144 return works;
2145}
2146
2147static int velocity_poll(struct napi_struct *napi, int budget)
2148{
2149 struct velocity_info *vptr = container_of(napi,
2150 struct velocity_info, napi);
2151 unsigned int rx_done;
2152 unsigned long flags;
2153
2154 spin_lock_irqsave(&vptr->lock, flags);
2155 /*
2156 * Do rx and tx twice for performance (taken from the VIA
2157 * out-of-tree driver).
2158 */
2159 rx_done = velocity_rx_srv(vptr, budget / 2);
2160 velocity_tx_srv(vptr);
2161 rx_done += velocity_rx_srv(vptr, budget - rx_done);
2162 velocity_tx_srv(vptr);
2163
2164 /* If budget not fully consumed, exit the polling mode */
2165 if (rx_done < budget) {
2166 napi_complete(napi);
2167 mac_enable_int(vptr->mac_regs);
2168 }
2169 spin_unlock_irqrestore(&vptr->lock, flags);
2170
2171 return rx_done;
2172}
2173
2174/**
2175 * velocity_intr - interrupt callback
2176 * @irq: interrupt number
2177 * @dev_instance: interrupting device
2178 *
2179 * Called whenever an interrupt is generated by the velocity
2180 * adapter IRQ line. We may not be the source of the interrupt
2181 * and need to identify initially if we are, and if not exit as
2182 * efficiently as possible.
2183 */
2184static irqreturn_t velocity_intr(int irq, void *dev_instance)
2185{
2186 struct net_device *dev = dev_instance;
2187 struct velocity_info *vptr = netdev_priv(dev);
2188 u32 isr_status;
2189
2190 spin_lock(&vptr->lock);
2191 isr_status = mac_read_isr(vptr->mac_regs);
2192
2193 /* Not us ? */
2194 if (isr_status == 0) {
2195 spin_unlock(&vptr->lock);
2196 return IRQ_NONE;
2197 }
2198
2199 /* Ack the interrupt */
2200 mac_write_isr(vptr->mac_regs, isr_status);
2201
2202 if (likely(napi_schedule_prep(&vptr->napi))) {
2203 mac_disable_int(vptr->mac_regs);
2204 __napi_schedule(&vptr->napi);
2205 }
2206
2207 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2208 velocity_error(vptr, isr_status);
2209
2210 spin_unlock(&vptr->lock);
2211
2212 return IRQ_HANDLED;
2213}
2214
2215/**
2216 * velocity_open - interface activation callback
2217 * @dev: network layer device to open
2218 *
2219 * Called when the network layer brings the interface up. Returns
2220 * a negative posix error code on failure, or zero on success.
2221 *
2222 * All the ring allocation and set up is done on open for this
2223 * adapter to minimise memory usage when inactive
2224 */
2225static int velocity_open(struct net_device *dev)
2226{
2227 struct velocity_info *vptr = netdev_priv(dev);
2228 int ret;
2229
2230 ret = velocity_init_rings(vptr, dev->mtu);
2231 if (ret < 0)
2232 goto out;
2233
2234 /* Ensure chip is running */
2235 pci_set_power_state(vptr->pdev, PCI_D0);
2236
2237 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2238
2239 ret = request_irq(vptr->pdev->irq, velocity_intr, IRQF_SHARED,
2240 dev->name, dev);
2241 if (ret < 0) {
2242 /* Power down the chip */
2243 pci_set_power_state(vptr->pdev, PCI_D3hot);
2244 velocity_free_rings(vptr);
2245 goto out;
2246 }
2247
2248 velocity_give_many_rx_descs(vptr);
2249
2250 mac_enable_int(vptr->mac_regs);
2251 netif_start_queue(dev);
2252 napi_enable(&vptr->napi);
2253 vptr->flags |= VELOCITY_FLAGS_OPENED;
2254out:
2255 return ret;
2256}
2257
2258/**
2259 * velocity_shutdown - shut down the chip
2260 * @vptr: velocity to deactivate
2261 *
2262 * Shuts down the internal operations of the velocity and
2263 * disables interrupts, autopolling, transmit and receive
2264 */
2265static void velocity_shutdown(struct velocity_info *vptr)
2266{
2267 struct mac_regs __iomem *regs = vptr->mac_regs;
2268 mac_disable_int(regs);
2269 writel(CR0_STOP, &regs->CR0Set);
2270 writew(0xFFFF, &regs->TDCSRClr);
2271 writeb(0xFF, &regs->RDCSRClr);
2272 safe_disable_mii_autopoll(regs);
2273 mac_clear_isr(regs);
2274}
2275
2276/**
2277 * velocity_change_mtu - MTU change callback
2278 * @dev: network device
2279 * @new_mtu: desired MTU
2280 *
2281 * Handle requests from the networking layer for MTU change on
2282 * this interface. It gets called on a change by the network layer.
2283 * Return zero for success or negative posix error code.
2284 */
2285static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2286{
2287 struct velocity_info *vptr = netdev_priv(dev);
2288 int ret = 0;
2289
2290 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2291 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2292 vptr->dev->name);
2293 ret = -EINVAL;
2294 goto out_0;
2295 }
2296
2297 if (!netif_running(dev)) {
2298 dev->mtu = new_mtu;
2299 goto out_0;
2300 }
2301
2302 if (dev->mtu != new_mtu) {
2303 struct velocity_info *tmp_vptr;
2304 unsigned long flags;
2305 struct rx_info rx;
2306 struct tx_info tx;
2307
2308 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2309 if (!tmp_vptr) {
2310 ret = -ENOMEM;
2311 goto out_0;
2312 }
2313
2314 tmp_vptr->dev = dev;
2315 tmp_vptr->pdev = vptr->pdev;
2316 tmp_vptr->options = vptr->options;
2317 tmp_vptr->tx.numq = vptr->tx.numq;
2318
2319 ret = velocity_init_rings(tmp_vptr, new_mtu);
2320 if (ret < 0)
2321 goto out_free_tmp_vptr_1;
2322
2323 spin_lock_irqsave(&vptr->lock, flags);
2324
2325 netif_stop_queue(dev);
2326 velocity_shutdown(vptr);
2327
2328 rx = vptr->rx;
2329 tx = vptr->tx;
2330
2331 vptr->rx = tmp_vptr->rx;
2332 vptr->tx = tmp_vptr->tx;
2333
2334 tmp_vptr->rx = rx;
2335 tmp_vptr->tx = tx;
2336
2337 dev->mtu = new_mtu;
2338
2339 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2340
2341 velocity_give_many_rx_descs(vptr);
2342
2343 mac_enable_int(vptr->mac_regs);
2344 netif_start_queue(dev);
2345
2346 spin_unlock_irqrestore(&vptr->lock, flags);
2347
2348 velocity_free_rings(tmp_vptr);
2349
2350out_free_tmp_vptr_1:
2351 kfree(tmp_vptr);
2352 }
2353out_0:
2354 return ret;
2355}
2356
2357/**
2358 * velocity_mii_ioctl - MII ioctl handler
2359 * @dev: network device
2360 * @ifr: the ifreq block for the ioctl
2361 * @cmd: the command
2362 *
2363 * Process MII requests made via ioctl from the network layer. These
2364 * are used by tools like kudzu to interrogate the link state of the
2365 * hardware
2366 */
2367static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2368{
2369 struct velocity_info *vptr = netdev_priv(dev);
2370 struct mac_regs __iomem *regs = vptr->mac_regs;
2371 unsigned long flags;
2372 struct mii_ioctl_data *miidata = if_mii(ifr);
2373 int err;
2374
2375 switch (cmd) {
2376 case SIOCGMIIPHY:
2377 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2378 break;
2379 case SIOCGMIIREG:
2380 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2381 return -ETIMEDOUT;
2382 break;
2383 case SIOCSMIIREG:
2384 spin_lock_irqsave(&vptr->lock, flags);
2385 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2386 spin_unlock_irqrestore(&vptr->lock, flags);
2387 check_connection_type(vptr->mac_regs);
2388 if (err)
2389 return err;
2390 break;
2391 default:
2392 return -EOPNOTSUPP;
2393 }
2394 return 0;
2395}
2396
2397/**
2398 * velocity_ioctl - ioctl entry point
2399 * @dev: network device
2400 * @rq: interface request ioctl
2401 * @cmd: command code
2402 *
2403 * Called when the user issues an ioctl request to the network
2404 * device in question. The velocity interface supports MII.
2405 */
2406static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2407{
2408 struct velocity_info *vptr = netdev_priv(dev);
2409 int ret;
2410
2411 /* If we are asked for information and the device is power
2412 saving then we need to bring the device back up to talk to it */
2413
2414 if (!netif_running(dev))
2415 pci_set_power_state(vptr->pdev, PCI_D0);
2416
2417 switch (cmd) {
2418 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2419 case SIOCGMIIREG: /* Read MII PHY register. */
2420 case SIOCSMIIREG: /* Write to MII PHY register. */
2421 ret = velocity_mii_ioctl(dev, rq, cmd);
2422 break;
2423
2424 default:
2425 ret = -EOPNOTSUPP;
2426 }
2427 if (!netif_running(dev))
2428 pci_set_power_state(vptr->pdev, PCI_D3hot);
2429
2430
2431 return ret;
2432}
2433
2434/**
2435 * velocity_get_status - statistics callback
2436 * @dev: network device
2437 *
2438 * Callback from the network layer to allow driver statistics
2439 * to be resynchronized with hardware collected state. In the
2440 * case of the velocity we need to pull the MIB counters from
2441 * the hardware into the counters before letting the network
2442 * layer display them.
2443 */
2444static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2445{
2446 struct velocity_info *vptr = netdev_priv(dev);
2447
2448 /* If the hardware is down, don't touch MII */
2449 if (!netif_running(dev))
2450 return &dev->stats;
2451
2452 spin_lock_irq(&vptr->lock);
2453 velocity_update_hw_mibs(vptr);
2454 spin_unlock_irq(&vptr->lock);
2455
2456 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2457 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2458 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2459
2460// unsigned long rx_dropped; /* no space in linux buffers */
2461 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2462 /* detailed rx_errors: */
2463// unsigned long rx_length_errors;
2464// unsigned long rx_over_errors; /* receiver ring buff overflow */
2465 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2466// unsigned long rx_frame_errors; /* recv'd frame alignment error */
2467// unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2468// unsigned long rx_missed_errors; /* receiver missed packet */
2469
2470 /* detailed tx_errors */
2471// unsigned long tx_fifo_errors;
2472
2473 return &dev->stats;
2474}
2475
2476/**
2477 * velocity_close - close adapter callback
2478 * @dev: network device
2479 *
2480 * Callback from the network layer when the velocity is being
2481 * deactivated by the network layer
2482 */
2483static int velocity_close(struct net_device *dev)
2484{
2485 struct velocity_info *vptr = netdev_priv(dev);
2486
2487 napi_disable(&vptr->napi);
2488 netif_stop_queue(dev);
2489 velocity_shutdown(vptr);
2490
2491 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2492 velocity_get_ip(vptr);
2493 if (dev->irq != 0)
2494 free_irq(dev->irq, dev);
2495
2496 /* Power down the chip */
2497 pci_set_power_state(vptr->pdev, PCI_D3hot);
2498
2499 velocity_free_rings(vptr);
2500
2501 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2502 return 0;
2503}
2504
2505/**
2506 * velocity_xmit - transmit packet callback
2507 * @skb: buffer to transmit
2508 * @dev: network device
2509 *
2510 * Called by the networ layer to request a packet is queued to
2511 * the velocity. Returns zero on success.
2512 */
2513static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2514 struct net_device *dev)
2515{
2516 struct velocity_info *vptr = netdev_priv(dev);
2517 int qnum = 0;
2518 struct tx_desc *td_ptr;
2519 struct velocity_td_info *tdinfo;
2520 unsigned long flags;
2521 int pktlen;
2522 int index, prev;
2523 int i = 0;
2524
2525 if (skb_padto(skb, ETH_ZLEN))
2526 goto out;
2527
2528 /* The hardware can handle at most 7 memory segments, so merge
2529 * the skb if there are more */
2530 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2531 kfree_skb(skb);
2532 return NETDEV_TX_OK;
2533 }
2534
2535 pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2536 max_t(unsigned int, skb->len, ETH_ZLEN) :
2537 skb_headlen(skb);
2538
2539 spin_lock_irqsave(&vptr->lock, flags);
2540
2541 index = vptr->tx.curr[qnum];
2542 td_ptr = &(vptr->tx.rings[qnum][index]);
2543 tdinfo = &(vptr->tx.infos[qnum][index]);
2544
2545 td_ptr->tdesc1.TCR = TCR0_TIC;
2546 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2547
2548 /*
2549 * Map the linear network buffer into PCI space and
2550 * add it to the transmit ring.
2551 */
2552 tdinfo->skb = skb;
2553 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2554 td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2555 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2556 td_ptr->td_buf[0].pa_high = 0;
2557 td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2558
2559 /* Handle fragments */
2560 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2561 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2562
2563 tdinfo->skb_dma[i + 1] = pci_map_page(vptr->pdev, frag->page,
2564 frag->page_offset, frag->size,
2565 PCI_DMA_TODEVICE);
2566
2567 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2568 td_ptr->td_buf[i + 1].pa_high = 0;
2569 td_ptr->td_buf[i + 1].size = cpu_to_le16(frag->size);
2570 }
2571 tdinfo->nskb_dma = i + 1;
2572
2573 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2574
2575 if (vlan_tx_tag_present(skb)) {
2576 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2577 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2578 }
2579
2580 /*
2581 * Handle hardware checksum
2582 */
2583 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2584 const struct iphdr *ip = ip_hdr(skb);
2585 if (ip->protocol == IPPROTO_TCP)
2586 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2587 else if (ip->protocol == IPPROTO_UDP)
2588 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2589 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2590 }
2591
2592 prev = index - 1;
2593 if (prev < 0)
2594 prev = vptr->options.numtx - 1;
2595 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2596 vptr->tx.used[qnum]++;
2597 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2598
2599 if (AVAIL_TD(vptr, qnum) < 1)
2600 netif_stop_queue(dev);
2601
2602 td_ptr = &(vptr->tx.rings[qnum][prev]);
2603 td_ptr->td_buf[0].size |= TD_QUEUE;
2604 mac_tx_queue_wake(vptr->mac_regs, qnum);
2605
2606 spin_unlock_irqrestore(&vptr->lock, flags);
2607out:
2608 return NETDEV_TX_OK;
2609}
2610
2611static const struct net_device_ops velocity_netdev_ops = {
2612 .ndo_open = velocity_open,
2613 .ndo_stop = velocity_close,
2614 .ndo_start_xmit = velocity_xmit,
2615 .ndo_get_stats = velocity_get_stats,
2616 .ndo_validate_addr = eth_validate_addr,
2617 .ndo_set_mac_address = eth_mac_addr,
2618 .ndo_set_multicast_list = velocity_set_multi,
2619 .ndo_change_mtu = velocity_change_mtu,
2620 .ndo_do_ioctl = velocity_ioctl,
2621 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid,
2622 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid,
2623};
2624
2625/**
2626 * velocity_init_info - init private data
2627 * @pdev: PCI device
2628 * @vptr: Velocity info
2629 * @info: Board type
2630 *
2631 * Set up the initial velocity_info struct for the device that has been
2632 * discovered.
2633 */
2634static void __devinit velocity_init_info(struct pci_dev *pdev,
2635 struct velocity_info *vptr,
2636 const struct velocity_info_tbl *info)
2637{
2638 memset(vptr, 0, sizeof(struct velocity_info));
2639
2640 vptr->pdev = pdev;
2641 vptr->chip_id = info->chip_id;
2642 vptr->tx.numq = info->txqueue;
2643 vptr->multicast_limit = MCAM_SIZE;
2644 spin_lock_init(&vptr->lock);
2645}
2646
2647/**
2648 * velocity_get_pci_info - retrieve PCI info for device
2649 * @vptr: velocity device
2650 * @pdev: PCI device it matches
2651 *
2652 * Retrieve the PCI configuration space data that interests us from
2653 * the kernel PCI layer
2654 */
2655static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
2656{
2657 vptr->rev_id = pdev->revision;
2658
2659 pci_set_master(pdev);
2660
2661 vptr->ioaddr = pci_resource_start(pdev, 0);
2662 vptr->memaddr = pci_resource_start(pdev, 1);
2663
2664 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2665 dev_err(&pdev->dev,
2666 "region #0 is not an I/O resource, aborting.\n");
2667 return -EINVAL;
2668 }
2669
2670 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2671 dev_err(&pdev->dev,
2672 "region #1 is an I/O resource, aborting.\n");
2673 return -EINVAL;
2674 }
2675
2676 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2677 dev_err(&pdev->dev, "region #1 is too small.\n");
2678 return -EINVAL;
2679 }
2680 vptr->pdev = pdev;
2681
2682 return 0;
2683}
2684
2685/**
2686 * velocity_print_info - per driver data
2687 * @vptr: velocity
2688 *
2689 * Print per driver data as the kernel driver finds Velocity
2690 * hardware
2691 */
2692static void __devinit velocity_print_info(struct velocity_info *vptr)
2693{
2694 struct net_device *dev = vptr->dev;
2695
2696 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2697 printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2698 dev->name, dev->dev_addr);
2699}
2700
2701static u32 velocity_get_link(struct net_device *dev)
2702{
2703 struct velocity_info *vptr = netdev_priv(dev);
2704 struct mac_regs __iomem *regs = vptr->mac_regs;
2705 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2706}
2707
2708/**
2709 * velocity_found1 - set up discovered velocity card
2710 * @pdev: PCI device
2711 * @ent: PCI device table entry that matched
2712 *
2713 * Configure a discovered adapter from scratch. Return a negative
2714 * errno error code on failure paths.
2715 */
2716static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
2717{
2718 static int first = 1;
2719 struct net_device *dev;
2720 int i;
2721 const char *drv_string;
2722 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
2723 struct velocity_info *vptr;
2724 struct mac_regs __iomem *regs;
2725 int ret = -ENOMEM;
2726
2727 /* FIXME: this driver, like almost all other ethernet drivers,
2728 * can support more than MAX_UNITS.
2729 */
2730 if (velocity_nics >= MAX_UNITS) {
2731 dev_notice(&pdev->dev, "already found %d NICs.\n",
2732 velocity_nics);
2733 return -ENODEV;
2734 }
2735
2736 dev = alloc_etherdev(sizeof(struct velocity_info));
2737 if (!dev) {
2738 dev_err(&pdev->dev, "allocate net device failed.\n");
2739 goto out;
2740 }
2741
2742 /* Chain it all together */
2743
2744 SET_NETDEV_DEV(dev, &pdev->dev);
2745 vptr = netdev_priv(dev);
2746
2747
2748 if (first) {
2749 printk(KERN_INFO "%s Ver. %s\n",
2750 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2751 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2752 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2753 first = 0;
2754 }
2755
2756 velocity_init_info(pdev, vptr, info);
2757
2758 vptr->dev = dev;
2759
2760 ret = pci_enable_device(pdev);
2761 if (ret < 0)
2762 goto err_free_dev;
2763
2764 dev->irq = pdev->irq;
2765
2766 ret = velocity_get_pci_info(vptr, pdev);
2767 if (ret < 0) {
2768 /* error message already printed */
2769 goto err_disable;
2770 }
2771
2772 ret = pci_request_regions(pdev, VELOCITY_NAME);
2773 if (ret < 0) {
2774 dev_err(&pdev->dev, "No PCI resources.\n");
2775 goto err_disable;
2776 }
2777
2778 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2779 if (regs == NULL) {
2780 ret = -EIO;
2781 goto err_release_res;
2782 }
2783
2784 vptr->mac_regs = regs;
2785
2786 mac_wol_reset(regs);
2787
2788 dev->base_addr = vptr->ioaddr;
2789
2790 for (i = 0; i < 6; i++)
2791 dev->dev_addr[i] = readb(&regs->PAR[i]);
2792
2793
2794 drv_string = dev_driver_string(&pdev->dev);
2795
2796 velocity_get_options(&vptr->options, velocity_nics, drv_string);
2797
2798 /*
2799 * Mask out the options cannot be set to the chip
2800 */
2801
2802 vptr->options.flags &= info->flags;
2803
2804 /*
2805 * Enable the chip specified capbilities
2806 */
2807
2808 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2809
2810 vptr->wol_opts = vptr->options.wol_opts;
2811 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2812
2813 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2814
2815 dev->irq = pdev->irq;
2816 dev->netdev_ops = &velocity_netdev_ops;
2817 dev->ethtool_ops = &velocity_ethtool_ops;
2818 netif_napi_add(dev, &vptr->napi, velocity_poll, VELOCITY_NAPI_WEIGHT);
2819
2820 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HW_VLAN_TX;
2821 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER |
2822 NETIF_F_HW_VLAN_RX | NETIF_F_IP_CSUM;
2823
2824 ret = register_netdev(dev);
2825 if (ret < 0)
2826 goto err_iounmap;
2827
2828 if (!velocity_get_link(dev)) {
2829 netif_carrier_off(dev);
2830 vptr->mii_status |= VELOCITY_LINK_FAIL;
2831 }
2832
2833 velocity_print_info(vptr);
2834 pci_set_drvdata(pdev, dev);
2835
2836 /* and leave the chip powered down */
2837
2838 pci_set_power_state(pdev, PCI_D3hot);
2839 velocity_nics++;
2840out:
2841 return ret;
2842
2843err_iounmap:
2844 iounmap(regs);
2845err_release_res:
2846 pci_release_regions(pdev);
2847err_disable:
2848 pci_disable_device(pdev);
2849err_free_dev:
2850 free_netdev(dev);
2851 goto out;
2852}
2853
2854#ifdef CONFIG_PM
2855/**
2856 * wol_calc_crc - WOL CRC
2857 * @pattern: data pattern
2858 * @mask_pattern: mask
2859 *
2860 * Compute the wake on lan crc hashes for the packet header
2861 * we are interested in.
2862 */
2863static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2864{
2865 u16 crc = 0xFFFF;
2866 u8 mask;
2867 int i, j;
2868
2869 for (i = 0; i < size; i++) {
2870 mask = mask_pattern[i];
2871
2872 /* Skip this loop if the mask equals to zero */
2873 if (mask == 0x00)
2874 continue;
2875
2876 for (j = 0; j < 8; j++) {
2877 if ((mask & 0x01) == 0) {
2878 mask >>= 1;
2879 continue;
2880 }
2881 mask >>= 1;
2882 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
2883 }
2884 }
2885 /* Finally, invert the result once to get the correct data */
2886 crc = ~crc;
2887 return bitrev32(crc) >> 16;
2888}
2889
2890/**
2891 * velocity_set_wol - set up for wake on lan
2892 * @vptr: velocity to set WOL status on
2893 *
2894 * Set a card up for wake on lan either by unicast or by
2895 * ARP packet.
2896 *
2897 * FIXME: check static buffer is safe here
2898 */
2899static int velocity_set_wol(struct velocity_info *vptr)
2900{
2901 struct mac_regs __iomem *regs = vptr->mac_regs;
2902 enum speed_opt spd_dpx = vptr->options.spd_dpx;
2903 static u8 buf[256];
2904 int i;
2905
2906 static u32 mask_pattern[2][4] = {
2907 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
2908 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
2909 };
2910
2911 writew(0xFFFF, &regs->WOLCRClr);
2912 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
2913 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
2914
2915 /*
2916 if (vptr->wol_opts & VELOCITY_WOL_PHY)
2917 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
2918 */
2919
2920 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2921 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
2922
2923 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
2924 struct arp_packet *arp = (struct arp_packet *) buf;
2925 u16 crc;
2926 memset(buf, 0, sizeof(struct arp_packet) + 7);
2927
2928 for (i = 0; i < 4; i++)
2929 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
2930
2931 arp->type = htons(ETH_P_ARP);
2932 arp->ar_op = htons(1);
2933
2934 memcpy(arp->ar_tip, vptr->ip_addr, 4);
2935
2936 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
2937 (u8 *) & mask_pattern[0][0]);
2938
2939 writew(crc, &regs->PatternCRC[0]);
2940 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
2941 }
2942
2943 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
2944 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
2945
2946 writew(0x0FFF, &regs->WOLSRClr);
2947
2948 if (spd_dpx == SPD_DPX_1000_FULL)
2949 goto mac_done;
2950
2951 if (spd_dpx != SPD_DPX_AUTO)
2952 goto advertise_done;
2953
2954 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
2955 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
2956 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
2957
2958 MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
2959 }
2960
2961 if (vptr->mii_status & VELOCITY_SPEED_1000)
2962 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
2963
2964advertise_done:
2965 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2966
2967 {
2968 u8 GCR;
2969 GCR = readb(&regs->CHIPGCR);
2970 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
2971 writeb(GCR, &regs->CHIPGCR);
2972 }
2973
2974mac_done:
2975 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
2976 /* Turn on SWPTAG just before entering power mode */
2977 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
2978 /* Go to bed ..... */
2979 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
2980
2981 return 0;
2982}
2983
2984/**
2985 * velocity_save_context - save registers
2986 * @vptr: velocity
2987 * @context: buffer for stored context
2988 *
2989 * Retrieve the current configuration from the velocity hardware
2990 * and stash it in the context structure, for use by the context
2991 * restore functions. This allows us to save things we need across
2992 * power down states
2993 */
2994static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
2995{
2996 struct mac_regs __iomem *regs = vptr->mac_regs;
2997 u16 i;
2998 u8 __iomem *ptr = (u8 __iomem *)regs;
2999
3000 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3001 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3002
3003 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3004 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3005
3006 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3007 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3008
3009}
3010
3011static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3012{
3013 struct net_device *dev = pci_get_drvdata(pdev);
3014 struct velocity_info *vptr = netdev_priv(dev);
3015 unsigned long flags;
3016
3017 if (!netif_running(vptr->dev))
3018 return 0;
3019
3020 netif_device_detach(vptr->dev);
3021
3022 spin_lock_irqsave(&vptr->lock, flags);
3023 pci_save_state(pdev);
3024
3025 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3026 velocity_get_ip(vptr);
3027 velocity_save_context(vptr, &vptr->context);
3028 velocity_shutdown(vptr);
3029 velocity_set_wol(vptr);
3030 pci_enable_wake(pdev, PCI_D3hot, 1);
3031 pci_set_power_state(pdev, PCI_D3hot);
3032 } else {
3033 velocity_save_context(vptr, &vptr->context);
3034 velocity_shutdown(vptr);
3035 pci_disable_device(pdev);
3036 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3037 }
3038
3039 spin_unlock_irqrestore(&vptr->lock, flags);
3040 return 0;
3041}
3042
3043/**
3044 * velocity_restore_context - restore registers
3045 * @vptr: velocity
3046 * @context: buffer for stored context
3047 *
3048 * Reload the register configuration from the velocity context
3049 * created by velocity_save_context.
3050 */
3051static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3052{
3053 struct mac_regs __iomem *regs = vptr->mac_regs;
3054 int i;
3055 u8 __iomem *ptr = (u8 __iomem *)regs;
3056
3057 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3058 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3059
3060 /* Just skip cr0 */
3061 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3062 /* Clear */
3063 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3064 /* Set */
3065 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3066 }
3067
3068 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3069 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3070
3071 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3072 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3073
3074 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3075 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3076}
3077
3078static int velocity_resume(struct pci_dev *pdev)
3079{
3080 struct net_device *dev = pci_get_drvdata(pdev);
3081 struct velocity_info *vptr = netdev_priv(dev);
3082 unsigned long flags;
3083 int i;
3084
3085 if (!netif_running(vptr->dev))
3086 return 0;
3087
3088 pci_set_power_state(pdev, PCI_D0);
3089 pci_enable_wake(pdev, 0, 0);
3090 pci_restore_state(pdev);
3091
3092 mac_wol_reset(vptr->mac_regs);
3093
3094 spin_lock_irqsave(&vptr->lock, flags);
3095 velocity_restore_context(vptr, &vptr->context);
3096 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3097 mac_disable_int(vptr->mac_regs);
3098
3099 velocity_tx_srv(vptr);
3100
3101 for (i = 0; i < vptr->tx.numq; i++) {
3102 if (vptr->tx.used[i])
3103 mac_tx_queue_wake(vptr->mac_regs, i);
3104 }
3105
3106 mac_enable_int(vptr->mac_regs);
3107 spin_unlock_irqrestore(&vptr->lock, flags);
3108 netif_device_attach(vptr->dev);
3109
3110 return 0;
3111}
3112#endif
3113
3114/*
3115 * Definition for our device driver. The PCI layer interface
3116 * uses this to handle all our card discover and plugging
3117 */
3118static struct pci_driver velocity_driver = {
3119 .name = VELOCITY_NAME,
3120 .id_table = velocity_id_table,
3121 .probe = velocity_found1,
3122 .remove = __devexit_p(velocity_remove1),
3123#ifdef CONFIG_PM
3124 .suspend = velocity_suspend,
3125 .resume = velocity_resume,
3126#endif
3127};
3128
3129
3130/**
3131 * velocity_ethtool_up - pre hook for ethtool
3132 * @dev: network device
3133 *
3134 * Called before an ethtool operation. We need to make sure the
3135 * chip is out of D3 state before we poke at it.
3136 */
3137static int velocity_ethtool_up(struct net_device *dev)
3138{
3139 struct velocity_info *vptr = netdev_priv(dev);
3140 if (!netif_running(dev))
3141 pci_set_power_state(vptr->pdev, PCI_D0);
3142 return 0;
3143}
3144
3145/**
3146 * velocity_ethtool_down - post hook for ethtool
3147 * @dev: network device
3148 *
3149 * Called after an ethtool operation. Restore the chip back to D3
3150 * state if it isn't running.
3151 */
3152static void velocity_ethtool_down(struct net_device *dev)
3153{
3154 struct velocity_info *vptr = netdev_priv(dev);
3155 if (!netif_running(dev))
3156 pci_set_power_state(vptr->pdev, PCI_D3hot);
3157}
3158
3159static int velocity_get_settings(struct net_device *dev,
3160 struct ethtool_cmd *cmd)
3161{
3162 struct velocity_info *vptr = netdev_priv(dev);
3163 struct mac_regs __iomem *regs = vptr->mac_regs;
3164 u32 status;
3165 status = check_connection_type(vptr->mac_regs);
3166
3167 cmd->supported = SUPPORTED_TP |
3168 SUPPORTED_Autoneg |
3169 SUPPORTED_10baseT_Half |
3170 SUPPORTED_10baseT_Full |
3171 SUPPORTED_100baseT_Half |
3172 SUPPORTED_100baseT_Full |
3173 SUPPORTED_1000baseT_Half |
3174 SUPPORTED_1000baseT_Full;
3175
3176 cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3177 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3178 cmd->advertising |=
3179 ADVERTISED_10baseT_Half |
3180 ADVERTISED_10baseT_Full |
3181 ADVERTISED_100baseT_Half |
3182 ADVERTISED_100baseT_Full |
3183 ADVERTISED_1000baseT_Half |
3184 ADVERTISED_1000baseT_Full;
3185 } else {
3186 switch (vptr->options.spd_dpx) {
3187 case SPD_DPX_1000_FULL:
3188 cmd->advertising |= ADVERTISED_1000baseT_Full;
3189 break;
3190 case SPD_DPX_100_HALF:
3191 cmd->advertising |= ADVERTISED_100baseT_Half;
3192 break;
3193 case SPD_DPX_100_FULL:
3194 cmd->advertising |= ADVERTISED_100baseT_Full;
3195 break;
3196 case SPD_DPX_10_HALF:
3197 cmd->advertising |= ADVERTISED_10baseT_Half;
3198 break;
3199 case SPD_DPX_10_FULL:
3200 cmd->advertising |= ADVERTISED_10baseT_Full;
3201 break;
3202 default:
3203 break;
3204 }
3205 }
3206
3207 if (status & VELOCITY_SPEED_1000)
3208 ethtool_cmd_speed_set(cmd, SPEED_1000);
3209 else if (status & VELOCITY_SPEED_100)
3210 ethtool_cmd_speed_set(cmd, SPEED_100);
3211 else
3212 ethtool_cmd_speed_set(cmd, SPEED_10);
3213
3214 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3215 cmd->port = PORT_TP;
3216 cmd->transceiver = XCVR_INTERNAL;
3217 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3218
3219 if (status & VELOCITY_DUPLEX_FULL)
3220 cmd->duplex = DUPLEX_FULL;
3221 else
3222 cmd->duplex = DUPLEX_HALF;
3223
3224 return 0;
3225}
3226
3227static int velocity_set_settings(struct net_device *dev,
3228 struct ethtool_cmd *cmd)
3229{
3230 struct velocity_info *vptr = netdev_priv(dev);
3231 u32 speed = ethtool_cmd_speed(cmd);
3232 u32 curr_status;
3233 u32 new_status = 0;
3234 int ret = 0;
3235
3236 curr_status = check_connection_type(vptr->mac_regs);
3237 curr_status &= (~VELOCITY_LINK_FAIL);
3238
3239 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3240 new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3241 new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3242 new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3243 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3244
3245 if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3246 (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3247 ret = -EINVAL;
3248 } else {
3249 enum speed_opt spd_dpx;
3250
3251 if (new_status & VELOCITY_AUTONEG_ENABLE)
3252 spd_dpx = SPD_DPX_AUTO;
3253 else if ((new_status & VELOCITY_SPEED_1000) &&
3254 (new_status & VELOCITY_DUPLEX_FULL)) {
3255 spd_dpx = SPD_DPX_1000_FULL;
3256 } else if (new_status & VELOCITY_SPEED_100)
3257 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3258 SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3259 else if (new_status & VELOCITY_SPEED_10)
3260 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3261 SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3262 else
3263 return -EOPNOTSUPP;
3264
3265 vptr->options.spd_dpx = spd_dpx;
3266
3267 velocity_set_media_mode(vptr, new_status);
3268 }
3269
3270 return ret;
3271}
3272
3273static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3274{
3275 struct velocity_info *vptr = netdev_priv(dev);
3276 strcpy(info->driver, VELOCITY_NAME);
3277 strcpy(info->version, VELOCITY_VERSION);
3278 strcpy(info->bus_info, pci_name(vptr->pdev));
3279}
3280
3281static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3282{
3283 struct velocity_info *vptr = netdev_priv(dev);
3284 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3285 wol->wolopts |= WAKE_MAGIC;
3286 /*
3287 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3288 wol.wolopts|=WAKE_PHY;
3289 */
3290 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3291 wol->wolopts |= WAKE_UCAST;
3292 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3293 wol->wolopts |= WAKE_ARP;
3294 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3295}
3296
3297static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3298{
3299 struct velocity_info *vptr = netdev_priv(dev);
3300
3301 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3302 return -EFAULT;
3303 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3304
3305 /*
3306 if (wol.wolopts & WAKE_PHY) {
3307 vptr->wol_opts|=VELOCITY_WOL_PHY;
3308 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3309 }
3310 */
3311
3312 if (wol->wolopts & WAKE_MAGIC) {
3313 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3314 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3315 }
3316 if (wol->wolopts & WAKE_UCAST) {
3317 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3318 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3319 }
3320 if (wol->wolopts & WAKE_ARP) {
3321 vptr->wol_opts |= VELOCITY_WOL_ARP;
3322 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3323 }
3324 memcpy(vptr->wol_passwd, wol->sopass, 6);
3325 return 0;
3326}
3327
3328static u32 velocity_get_msglevel(struct net_device *dev)
3329{
3330 return msglevel;
3331}
3332
3333static void velocity_set_msglevel(struct net_device *dev, u32 value)
3334{
3335 msglevel = value;
3336}
3337
3338static int get_pending_timer_val(int val)
3339{
3340 int mult_bits = val >> 6;
3341 int mult = 1;
3342
3343 switch (mult_bits)
3344 {
3345 case 1:
3346 mult = 4; break;
3347 case 2:
3348 mult = 16; break;
3349 case 3:
3350 mult = 64; break;
3351 case 0:
3352 default:
3353 break;
3354 }
3355
3356 return (val & 0x3f) * mult;
3357}
3358
3359static void set_pending_timer_val(int *val, u32 us)
3360{
3361 u8 mult = 0;
3362 u8 shift = 0;
3363
3364 if (us >= 0x3f) {
3365 mult = 1; /* mult with 4 */
3366 shift = 2;
3367 }
3368 if (us >= 0x3f * 4) {
3369 mult = 2; /* mult with 16 */
3370 shift = 4;
3371 }
3372 if (us >= 0x3f * 16) {
3373 mult = 3; /* mult with 64 */
3374 shift = 6;
3375 }
3376
3377 *val = (mult << 6) | ((us >> shift) & 0x3f);
3378}
3379
3380
3381static int velocity_get_coalesce(struct net_device *dev,
3382 struct ethtool_coalesce *ecmd)
3383{
3384 struct velocity_info *vptr = netdev_priv(dev);
3385
3386 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3387 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3388
3389 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3390 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3391
3392 return 0;
3393}
3394
3395static int velocity_set_coalesce(struct net_device *dev,
3396 struct ethtool_coalesce *ecmd)
3397{
3398 struct velocity_info *vptr = netdev_priv(dev);
3399 int max_us = 0x3f * 64;
3400 unsigned long flags;
3401
3402 /* 6 bits of */
3403 if (ecmd->tx_coalesce_usecs > max_us)
3404 return -EINVAL;
3405 if (ecmd->rx_coalesce_usecs > max_us)
3406 return -EINVAL;
3407
3408 if (ecmd->tx_max_coalesced_frames > 0xff)
3409 return -EINVAL;
3410 if (ecmd->rx_max_coalesced_frames > 0xff)
3411 return -EINVAL;
3412
3413 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3414 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3415
3416 set_pending_timer_val(&vptr->options.rxqueue_timer,
3417 ecmd->rx_coalesce_usecs);
3418 set_pending_timer_val(&vptr->options.txqueue_timer,
3419 ecmd->tx_coalesce_usecs);
3420
3421 /* Setup the interrupt suppression and queue timers */
3422 spin_lock_irqsave(&vptr->lock, flags);
3423 mac_disable_int(vptr->mac_regs);
3424 setup_adaptive_interrupts(vptr);
3425 setup_queue_timers(vptr);
3426
3427 mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3428 mac_clear_isr(vptr->mac_regs);
3429 mac_enable_int(vptr->mac_regs);
3430 spin_unlock_irqrestore(&vptr->lock, flags);
3431
3432 return 0;
3433}
3434
3435static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3436 "rx_all",
3437 "rx_ok",
3438 "tx_ok",
3439 "rx_error",
3440 "rx_runt_ok",
3441 "rx_runt_err",
3442 "rx_64",
3443 "tx_64",
3444 "rx_65_to_127",
3445 "tx_65_to_127",
3446 "rx_128_to_255",
3447 "tx_128_to_255",
3448 "rx_256_to_511",
3449 "tx_256_to_511",
3450 "rx_512_to_1023",
3451 "tx_512_to_1023",
3452 "rx_1024_to_1518",
3453 "tx_1024_to_1518",
3454 "tx_ether_collisions",
3455 "rx_crc_errors",
3456 "rx_jumbo",
3457 "tx_jumbo",
3458 "rx_mac_control_frames",
3459 "tx_mac_control_frames",
3460 "rx_frame_alignement_errors",
3461 "rx_long_ok",
3462 "rx_long_err",
3463 "tx_sqe_errors",
3464 "rx_no_buf",
3465 "rx_symbol_errors",
3466 "in_range_length_errors",
3467 "late_collisions"
3468};
3469
3470static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3471{
3472 switch (sset) {
3473 case ETH_SS_STATS:
3474 memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3475 break;
3476 }
3477}
3478
3479static int velocity_get_sset_count(struct net_device *dev, int sset)
3480{
3481 switch (sset) {
3482 case ETH_SS_STATS:
3483 return ARRAY_SIZE(velocity_gstrings);
3484 default:
3485 return -EOPNOTSUPP;
3486 }
3487}
3488
3489static void velocity_get_ethtool_stats(struct net_device *dev,
3490 struct ethtool_stats *stats, u64 *data)
3491{
3492 if (netif_running(dev)) {
3493 struct velocity_info *vptr = netdev_priv(dev);
3494 u32 *p = vptr->mib_counter;
3495 int i;
3496
3497 spin_lock_irq(&vptr->lock);
3498 velocity_update_hw_mibs(vptr);
3499 spin_unlock_irq(&vptr->lock);
3500
3501 for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3502 *data++ = *p++;
3503 }
3504}
3505
3506static const struct ethtool_ops velocity_ethtool_ops = {
3507 .get_settings = velocity_get_settings,
3508 .set_settings = velocity_set_settings,
3509 .get_drvinfo = velocity_get_drvinfo,
3510 .get_wol = velocity_ethtool_get_wol,
3511 .set_wol = velocity_ethtool_set_wol,
3512 .get_msglevel = velocity_get_msglevel,
3513 .set_msglevel = velocity_set_msglevel,
3514 .get_link = velocity_get_link,
3515 .get_strings = velocity_get_strings,
3516 .get_sset_count = velocity_get_sset_count,
3517 .get_ethtool_stats = velocity_get_ethtool_stats,
3518 .get_coalesce = velocity_get_coalesce,
3519 .set_coalesce = velocity_set_coalesce,
3520 .begin = velocity_ethtool_up,
3521 .complete = velocity_ethtool_down
3522};
3523
3524#if defined(CONFIG_PM) && defined(CONFIG_INET)
3525static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3526{
3527 struct in_ifaddr *ifa = ptr;
3528 struct net_device *dev = ifa->ifa_dev->dev;
3529
3530 if (dev_net(dev) == &init_net &&
3531 dev->netdev_ops == &velocity_netdev_ops)
3532 velocity_get_ip(netdev_priv(dev));
3533
3534 return NOTIFY_DONE;
3535}
3536
3537static struct notifier_block velocity_inetaddr_notifier = {
3538 .notifier_call = velocity_netdev_event,
3539};
3540
3541static void velocity_register_notifier(void)
3542{
3543 register_inetaddr_notifier(&velocity_inetaddr_notifier);
3544}
3545
3546static void velocity_unregister_notifier(void)
3547{
3548 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3549}
3550
3551#else
3552
3553#define velocity_register_notifier() do {} while (0)
3554#define velocity_unregister_notifier() do {} while (0)
3555
3556#endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */
3557
3558/**
3559 * velocity_init_module - load time function
3560 *
3561 * Called when the velocity module is loaded. The PCI driver
3562 * is registered with the PCI layer, and in turn will call
3563 * the probe functions for each velocity adapter installed
3564 * in the system.
3565 */
3566static int __init velocity_init_module(void)
3567{
3568 int ret;
3569
3570 velocity_register_notifier();
3571 ret = pci_register_driver(&velocity_driver);
3572 if (ret < 0)
3573 velocity_unregister_notifier();
3574 return ret;
3575}
3576
3577/**
3578 * velocity_cleanup - module unload
3579 *
3580 * When the velocity hardware is unloaded this function is called.
3581 * It will clean up the notifiers and the unregister the PCI
3582 * driver interface for this hardware. This in turn cleans up
3583 * all discovered interfaces before returning from the function
3584 */
3585static void __exit velocity_cleanup_module(void)
3586{
3587 velocity_unregister_notifier();
3588 pci_unregister_driver(&velocity_driver);
3589}
3590
3591module_init(velocity_init_module);
3592module_exit(velocity_cleanup_module);