diff options
Diffstat (limited to 'drivers/net/ethernet/tile/tilegx.c')
-rw-r--r-- | drivers/net/ethernet/tile/tilegx.c | 1898 |
1 files changed, 1898 insertions, 0 deletions
diff --git a/drivers/net/ethernet/tile/tilegx.c b/drivers/net/ethernet/tile/tilegx.c new file mode 100644 index 000000000000..83b4b388ad49 --- /dev/null +++ b/drivers/net/ethernet/tile/tilegx.c | |||
@@ -0,0 +1,1898 @@ | |||
1 | /* | ||
2 | * Copyright 2012 Tilera Corporation. All Rights Reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public License | ||
6 | * as published by the Free Software Foundation, version 2. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, but | ||
9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | ||
11 | * NON INFRINGEMENT. See the GNU General Public License for | ||
12 | * more details. | ||
13 | */ | ||
14 | |||
15 | #include <linux/module.h> | ||
16 | #include <linux/init.h> | ||
17 | #include <linux/moduleparam.h> | ||
18 | #include <linux/sched.h> | ||
19 | #include <linux/kernel.h> /* printk() */ | ||
20 | #include <linux/slab.h> /* kmalloc() */ | ||
21 | #include <linux/errno.h> /* error codes */ | ||
22 | #include <linux/types.h> /* size_t */ | ||
23 | #include <linux/interrupt.h> | ||
24 | #include <linux/in.h> | ||
25 | #include <linux/irq.h> | ||
26 | #include <linux/netdevice.h> /* struct device, and other headers */ | ||
27 | #include <linux/etherdevice.h> /* eth_type_trans */ | ||
28 | #include <linux/skbuff.h> | ||
29 | #include <linux/ioctl.h> | ||
30 | #include <linux/cdev.h> | ||
31 | #include <linux/hugetlb.h> | ||
32 | #include <linux/in6.h> | ||
33 | #include <linux/timer.h> | ||
34 | #include <linux/hrtimer.h> | ||
35 | #include <linux/ktime.h> | ||
36 | #include <linux/io.h> | ||
37 | #include <linux/ctype.h> | ||
38 | #include <linux/ip.h> | ||
39 | #include <linux/tcp.h> | ||
40 | |||
41 | #include <asm/checksum.h> | ||
42 | #include <asm/homecache.h> | ||
43 | #include <gxio/mpipe.h> | ||
44 | #include <arch/sim.h> | ||
45 | |||
46 | /* Default transmit lockup timeout period, in jiffies. */ | ||
47 | #define TILE_NET_TIMEOUT (5 * HZ) | ||
48 | |||
49 | /* The maximum number of distinct channels (idesc.channel is 5 bits). */ | ||
50 | #define TILE_NET_CHANNELS 32 | ||
51 | |||
52 | /* Maximum number of idescs to handle per "poll". */ | ||
53 | #define TILE_NET_BATCH 128 | ||
54 | |||
55 | /* Maximum number of packets to handle per "poll". */ | ||
56 | #define TILE_NET_WEIGHT 64 | ||
57 | |||
58 | /* Number of entries in each iqueue. */ | ||
59 | #define IQUEUE_ENTRIES 512 | ||
60 | |||
61 | /* Number of entries in each equeue. */ | ||
62 | #define EQUEUE_ENTRIES 2048 | ||
63 | |||
64 | /* Total header bytes per equeue slot. Must be big enough for 2 bytes | ||
65 | * of NET_IP_ALIGN alignment, plus 14 bytes (?) of L2 header, plus up to | ||
66 | * 60 bytes of actual TCP header. We round up to align to cache lines. | ||
67 | */ | ||
68 | #define HEADER_BYTES 128 | ||
69 | |||
70 | /* Maximum completions per cpu per device (must be a power of two). | ||
71 | * ISSUE: What is the right number here? If this is too small, then | ||
72 | * egress might block waiting for free space in a completions array. | ||
73 | * ISSUE: At the least, allocate these only for initialized echannels. | ||
74 | */ | ||
75 | #define TILE_NET_MAX_COMPS 64 | ||
76 | |||
77 | #define MAX_FRAGS (MAX_SKB_FRAGS + 1) | ||
78 | |||
79 | /* Size of completions data to allocate. | ||
80 | * ISSUE: Probably more than needed since we don't use all the channels. | ||
81 | */ | ||
82 | #define COMPS_SIZE (TILE_NET_CHANNELS * sizeof(struct tile_net_comps)) | ||
83 | |||
84 | /* Size of NotifRing data to allocate. */ | ||
85 | #define NOTIF_RING_SIZE (IQUEUE_ENTRIES * sizeof(gxio_mpipe_idesc_t)) | ||
86 | |||
87 | /* Timeout to wake the per-device TX timer after we stop the queue. | ||
88 | * We don't want the timeout too short (adds overhead, and might end | ||
89 | * up causing stop/wake/stop/wake cycles) or too long (affects performance). | ||
90 | * For the 10 Gb NIC, 30 usec means roughly 30+ 1500-byte packets. | ||
91 | */ | ||
92 | #define TX_TIMER_DELAY_USEC 30 | ||
93 | |||
94 | /* Timeout to wake the per-cpu egress timer to free completions. */ | ||
95 | #define EGRESS_TIMER_DELAY_USEC 1000 | ||
96 | |||
97 | MODULE_AUTHOR("Tilera Corporation"); | ||
98 | MODULE_LICENSE("GPL"); | ||
99 | |||
100 | /* A "packet fragment" (a chunk of memory). */ | ||
101 | struct frag { | ||
102 | void *buf; | ||
103 | size_t length; | ||
104 | }; | ||
105 | |||
106 | /* A single completion. */ | ||
107 | struct tile_net_comp { | ||
108 | /* The "complete_count" when the completion will be complete. */ | ||
109 | s64 when; | ||
110 | /* The buffer to be freed when the completion is complete. */ | ||
111 | struct sk_buff *skb; | ||
112 | }; | ||
113 | |||
114 | /* The completions for a given cpu and echannel. */ | ||
115 | struct tile_net_comps { | ||
116 | /* The completions. */ | ||
117 | struct tile_net_comp comp_queue[TILE_NET_MAX_COMPS]; | ||
118 | /* The number of completions used. */ | ||
119 | unsigned long comp_next; | ||
120 | /* The number of completions freed. */ | ||
121 | unsigned long comp_last; | ||
122 | }; | ||
123 | |||
124 | /* The transmit wake timer for a given cpu and echannel. */ | ||
125 | struct tile_net_tx_wake { | ||
126 | struct hrtimer timer; | ||
127 | struct net_device *dev; | ||
128 | }; | ||
129 | |||
130 | /* Info for a specific cpu. */ | ||
131 | struct tile_net_info { | ||
132 | /* The NAPI struct. */ | ||
133 | struct napi_struct napi; | ||
134 | /* Packet queue. */ | ||
135 | gxio_mpipe_iqueue_t iqueue; | ||
136 | /* Our cpu. */ | ||
137 | int my_cpu; | ||
138 | /* True if iqueue is valid. */ | ||
139 | bool has_iqueue; | ||
140 | /* NAPI flags. */ | ||
141 | bool napi_added; | ||
142 | bool napi_enabled; | ||
143 | /* Number of small sk_buffs which must still be provided. */ | ||
144 | unsigned int num_needed_small_buffers; | ||
145 | /* Number of large sk_buffs which must still be provided. */ | ||
146 | unsigned int num_needed_large_buffers; | ||
147 | /* A timer for handling egress completions. */ | ||
148 | struct hrtimer egress_timer; | ||
149 | /* True if "egress_timer" is scheduled. */ | ||
150 | bool egress_timer_scheduled; | ||
151 | /* Comps for each egress channel. */ | ||
152 | struct tile_net_comps *comps_for_echannel[TILE_NET_CHANNELS]; | ||
153 | /* Transmit wake timer for each egress channel. */ | ||
154 | struct tile_net_tx_wake tx_wake[TILE_NET_CHANNELS]; | ||
155 | }; | ||
156 | |||
157 | /* Info for egress on a particular egress channel. */ | ||
158 | struct tile_net_egress { | ||
159 | /* The "equeue". */ | ||
160 | gxio_mpipe_equeue_t *equeue; | ||
161 | /* The headers for TSO. */ | ||
162 | unsigned char *headers; | ||
163 | }; | ||
164 | |||
165 | /* Info for a specific device. */ | ||
166 | struct tile_net_priv { | ||
167 | /* Our network device. */ | ||
168 | struct net_device *dev; | ||
169 | /* The primary link. */ | ||
170 | gxio_mpipe_link_t link; | ||
171 | /* The primary channel, if open, else -1. */ | ||
172 | int channel; | ||
173 | /* The "loopify" egress link, if needed. */ | ||
174 | gxio_mpipe_link_t loopify_link; | ||
175 | /* The "loopify" egress channel, if open, else -1. */ | ||
176 | int loopify_channel; | ||
177 | /* The egress channel (channel or loopify_channel). */ | ||
178 | int echannel; | ||
179 | /* Total stats. */ | ||
180 | struct net_device_stats stats; | ||
181 | }; | ||
182 | |||
183 | /* Egress info, indexed by "priv->echannel" (lazily created as needed). */ | ||
184 | static struct tile_net_egress egress_for_echannel[TILE_NET_CHANNELS]; | ||
185 | |||
186 | /* Devices currently associated with each channel. | ||
187 | * NOTE: The array entry can become NULL after ifconfig down, but | ||
188 | * we do not free the underlying net_device structures, so it is | ||
189 | * safe to use a pointer after reading it from this array. | ||
190 | */ | ||
191 | static struct net_device *tile_net_devs_for_channel[TILE_NET_CHANNELS]; | ||
192 | |||
193 | /* A mutex for "tile_net_devs_for_channel". */ | ||
194 | static DEFINE_MUTEX(tile_net_devs_for_channel_mutex); | ||
195 | |||
196 | /* The per-cpu info. */ | ||
197 | static DEFINE_PER_CPU(struct tile_net_info, per_cpu_info); | ||
198 | |||
199 | /* The "context" for all devices. */ | ||
200 | static gxio_mpipe_context_t context; | ||
201 | |||
202 | /* Buffer sizes and mpipe enum codes for buffer stacks. | ||
203 | * See arch/tile/include/gxio/mpipe.h for the set of possible values. | ||
204 | */ | ||
205 | #define BUFFER_SIZE_SMALL_ENUM GXIO_MPIPE_BUFFER_SIZE_128 | ||
206 | #define BUFFER_SIZE_SMALL 128 | ||
207 | #define BUFFER_SIZE_LARGE_ENUM GXIO_MPIPE_BUFFER_SIZE_1664 | ||
208 | #define BUFFER_SIZE_LARGE 1664 | ||
209 | |||
210 | /* The small/large "buffer stacks". */ | ||
211 | static int small_buffer_stack = -1; | ||
212 | static int large_buffer_stack = -1; | ||
213 | |||
214 | /* Amount of memory allocated for each buffer stack. */ | ||
215 | static size_t buffer_stack_size; | ||
216 | |||
217 | /* The actual memory allocated for the buffer stacks. */ | ||
218 | static void *small_buffer_stack_va; | ||
219 | static void *large_buffer_stack_va; | ||
220 | |||
221 | /* The buckets. */ | ||
222 | static int first_bucket = -1; | ||
223 | static int num_buckets = 1; | ||
224 | |||
225 | /* The ingress irq. */ | ||
226 | static int ingress_irq = -1; | ||
227 | |||
228 | /* Text value of tile_net.cpus if passed as a module parameter. */ | ||
229 | static char *network_cpus_string; | ||
230 | |||
231 | /* The actual cpus in "network_cpus". */ | ||
232 | static struct cpumask network_cpus_map; | ||
233 | |||
234 | /* If "loopify=LINK" was specified, this is "LINK". */ | ||
235 | static char *loopify_link_name; | ||
236 | |||
237 | /* If "tile_net.custom" was specified, this is non-NULL. */ | ||
238 | static char *custom_str; | ||
239 | |||
240 | /* The "tile_net.cpus" argument specifies the cpus that are dedicated | ||
241 | * to handle ingress packets. | ||
242 | * | ||
243 | * The parameter should be in the form "tile_net.cpus=m-n[,x-y]", where | ||
244 | * m, n, x, y are integer numbers that represent the cpus that can be | ||
245 | * neither a dedicated cpu nor a dataplane cpu. | ||
246 | */ | ||
247 | static bool network_cpus_init(void) | ||
248 | { | ||
249 | char buf[1024]; | ||
250 | int rc; | ||
251 | |||
252 | if (network_cpus_string == NULL) | ||
253 | return false; | ||
254 | |||
255 | rc = cpulist_parse_crop(network_cpus_string, &network_cpus_map); | ||
256 | if (rc != 0) { | ||
257 | pr_warn("tile_net.cpus=%s: malformed cpu list\n", | ||
258 | network_cpus_string); | ||
259 | return false; | ||
260 | } | ||
261 | |||
262 | /* Remove dedicated cpus. */ | ||
263 | cpumask_and(&network_cpus_map, &network_cpus_map, cpu_possible_mask); | ||
264 | |||
265 | if (cpumask_empty(&network_cpus_map)) { | ||
266 | pr_warn("Ignoring empty tile_net.cpus='%s'.\n", | ||
267 | network_cpus_string); | ||
268 | return false; | ||
269 | } | ||
270 | |||
271 | cpulist_scnprintf(buf, sizeof(buf), &network_cpus_map); | ||
272 | pr_info("Linux network CPUs: %s\n", buf); | ||
273 | return true; | ||
274 | } | ||
275 | |||
276 | module_param_named(cpus, network_cpus_string, charp, 0444); | ||
277 | MODULE_PARM_DESC(cpus, "cpulist of cores that handle network interrupts"); | ||
278 | |||
279 | /* The "tile_net.loopify=LINK" argument causes the named device to | ||
280 | * actually use "loop0" for ingress, and "loop1" for egress. This | ||
281 | * allows an app to sit between the actual link and linux, passing | ||
282 | * (some) packets along to linux, and forwarding (some) packets sent | ||
283 | * out by linux. | ||
284 | */ | ||
285 | module_param_named(loopify, loopify_link_name, charp, 0444); | ||
286 | MODULE_PARM_DESC(loopify, "name the device to use loop0/1 for ingress/egress"); | ||
287 | |||
288 | /* The "tile_net.custom" argument causes us to ignore the "conventional" | ||
289 | * classifier metadata, in particular, the "l2_offset". | ||
290 | */ | ||
291 | module_param_named(custom, custom_str, charp, 0444); | ||
292 | MODULE_PARM_DESC(custom, "indicates a (heavily) customized classifier"); | ||
293 | |||
294 | /* Atomically update a statistics field. | ||
295 | * Note that on TILE-Gx, this operation is fire-and-forget on the | ||
296 | * issuing core (single-cycle dispatch) and takes only a few cycles | ||
297 | * longer than a regular store when the request reaches the home cache. | ||
298 | * No expensive bus management overhead is required. | ||
299 | */ | ||
300 | static void tile_net_stats_add(unsigned long value, unsigned long *field) | ||
301 | { | ||
302 | BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(unsigned long)); | ||
303 | atomic_long_add(value, (atomic_long_t *)field); | ||
304 | } | ||
305 | |||
306 | /* Allocate and push a buffer. */ | ||
307 | static bool tile_net_provide_buffer(bool small) | ||
308 | { | ||
309 | int stack = small ? small_buffer_stack : large_buffer_stack; | ||
310 | const unsigned long buffer_alignment = 128; | ||
311 | struct sk_buff *skb; | ||
312 | int len; | ||
313 | |||
314 | len = sizeof(struct sk_buff **) + buffer_alignment; | ||
315 | len += (small ? BUFFER_SIZE_SMALL : BUFFER_SIZE_LARGE); | ||
316 | skb = dev_alloc_skb(len); | ||
317 | if (skb == NULL) | ||
318 | return false; | ||
319 | |||
320 | /* Make room for a back-pointer to 'skb' and guarantee alignment. */ | ||
321 | skb_reserve(skb, sizeof(struct sk_buff **)); | ||
322 | skb_reserve(skb, -(long)skb->data & (buffer_alignment - 1)); | ||
323 | |||
324 | /* Save a back-pointer to 'skb'. */ | ||
325 | *(struct sk_buff **)(skb->data - sizeof(struct sk_buff **)) = skb; | ||
326 | |||
327 | /* Make sure "skb" and the back-pointer have been flushed. */ | ||
328 | wmb(); | ||
329 | |||
330 | gxio_mpipe_push_buffer(&context, stack, | ||
331 | (void *)va_to_tile_io_addr(skb->data)); | ||
332 | |||
333 | return true; | ||
334 | } | ||
335 | |||
336 | /* Convert a raw mpipe buffer to its matching skb pointer. */ | ||
337 | static struct sk_buff *mpipe_buf_to_skb(void *va) | ||
338 | { | ||
339 | /* Acquire the associated "skb". */ | ||
340 | struct sk_buff **skb_ptr = va - sizeof(*skb_ptr); | ||
341 | struct sk_buff *skb = *skb_ptr; | ||
342 | |||
343 | /* Paranoia. */ | ||
344 | if (skb->data != va) { | ||
345 | /* Panic here since there's a reasonable chance | ||
346 | * that corrupt buffers means generic memory | ||
347 | * corruption, with unpredictable system effects. | ||
348 | */ | ||
349 | panic("Corrupt linux buffer! va=%p, skb=%p, skb->data=%p", | ||
350 | va, skb, skb->data); | ||
351 | } | ||
352 | |||
353 | return skb; | ||
354 | } | ||
355 | |||
356 | static void tile_net_pop_all_buffers(int stack) | ||
357 | { | ||
358 | for (;;) { | ||
359 | tile_io_addr_t addr = | ||
360 | (tile_io_addr_t)gxio_mpipe_pop_buffer(&context, stack); | ||
361 | if (addr == 0) | ||
362 | break; | ||
363 | dev_kfree_skb_irq(mpipe_buf_to_skb(tile_io_addr_to_va(addr))); | ||
364 | } | ||
365 | } | ||
366 | |||
367 | /* Provide linux buffers to mPIPE. */ | ||
368 | static void tile_net_provide_needed_buffers(void) | ||
369 | { | ||
370 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | ||
371 | |||
372 | while (info->num_needed_small_buffers != 0) { | ||
373 | if (!tile_net_provide_buffer(true)) | ||
374 | goto oops; | ||
375 | info->num_needed_small_buffers--; | ||
376 | } | ||
377 | |||
378 | while (info->num_needed_large_buffers != 0) { | ||
379 | if (!tile_net_provide_buffer(false)) | ||
380 | goto oops; | ||
381 | info->num_needed_large_buffers--; | ||
382 | } | ||
383 | |||
384 | return; | ||
385 | |||
386 | oops: | ||
387 | /* Add a description to the page allocation failure dump. */ | ||
388 | pr_notice("Tile %d still needs some buffers\n", info->my_cpu); | ||
389 | } | ||
390 | |||
391 | static inline bool filter_packet(struct net_device *dev, void *buf) | ||
392 | { | ||
393 | /* Filter packets received before we're up. */ | ||
394 | if (dev == NULL || !(dev->flags & IFF_UP)) | ||
395 | return true; | ||
396 | |||
397 | /* Filter out packets that aren't for us. */ | ||
398 | if (!(dev->flags & IFF_PROMISC) && | ||
399 | !is_multicast_ether_addr(buf) && | ||
400 | compare_ether_addr(dev->dev_addr, buf) != 0) | ||
401 | return true; | ||
402 | |||
403 | return false; | ||
404 | } | ||
405 | |||
406 | static void tile_net_receive_skb(struct net_device *dev, struct sk_buff *skb, | ||
407 | gxio_mpipe_idesc_t *idesc, unsigned long len) | ||
408 | { | ||
409 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | ||
410 | struct tile_net_priv *priv = netdev_priv(dev); | ||
411 | |||
412 | /* Encode the actual packet length. */ | ||
413 | skb_put(skb, len); | ||
414 | |||
415 | skb->protocol = eth_type_trans(skb, dev); | ||
416 | |||
417 | /* Acknowledge "good" hardware checksums. */ | ||
418 | if (idesc->cs && idesc->csum_seed_val == 0xFFFF) | ||
419 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
420 | |||
421 | netif_receive_skb(skb); | ||
422 | |||
423 | /* Update stats. */ | ||
424 | tile_net_stats_add(1, &priv->stats.rx_packets); | ||
425 | tile_net_stats_add(len, &priv->stats.rx_bytes); | ||
426 | |||
427 | /* Need a new buffer. */ | ||
428 | if (idesc->size == BUFFER_SIZE_SMALL_ENUM) | ||
429 | info->num_needed_small_buffers++; | ||
430 | else | ||
431 | info->num_needed_large_buffers++; | ||
432 | } | ||
433 | |||
434 | /* Handle a packet. Return true if "processed", false if "filtered". */ | ||
435 | static bool tile_net_handle_packet(gxio_mpipe_idesc_t *idesc) | ||
436 | { | ||
437 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | ||
438 | struct net_device *dev = tile_net_devs_for_channel[idesc->channel]; | ||
439 | uint8_t l2_offset; | ||
440 | void *va; | ||
441 | void *buf; | ||
442 | unsigned long len; | ||
443 | bool filter; | ||
444 | |||
445 | /* Drop packets for which no buffer was available. | ||
446 | * NOTE: This happens under heavy load. | ||
447 | */ | ||
448 | if (idesc->be) { | ||
449 | struct tile_net_priv *priv = netdev_priv(dev); | ||
450 | tile_net_stats_add(1, &priv->stats.rx_dropped); | ||
451 | gxio_mpipe_iqueue_consume(&info->iqueue, idesc); | ||
452 | if (net_ratelimit()) | ||
453 | pr_info("Dropping packet (insufficient buffers).\n"); | ||
454 | return false; | ||
455 | } | ||
456 | |||
457 | /* Get the "l2_offset", if allowed. */ | ||
458 | l2_offset = custom_str ? 0 : gxio_mpipe_idesc_get_l2_offset(idesc); | ||
459 | |||
460 | /* Get the raw buffer VA (includes "headroom"). */ | ||
461 | va = tile_io_addr_to_va((unsigned long)(long)idesc->va); | ||
462 | |||
463 | /* Get the actual packet start/length. */ | ||
464 | buf = va + l2_offset; | ||
465 | len = idesc->l2_size - l2_offset; | ||
466 | |||
467 | /* Point "va" at the raw buffer. */ | ||
468 | va -= NET_IP_ALIGN; | ||
469 | |||
470 | filter = filter_packet(dev, buf); | ||
471 | if (filter) { | ||
472 | gxio_mpipe_iqueue_drop(&info->iqueue, idesc); | ||
473 | } else { | ||
474 | struct sk_buff *skb = mpipe_buf_to_skb(va); | ||
475 | |||
476 | /* Skip headroom, and any custom header. */ | ||
477 | skb_reserve(skb, NET_IP_ALIGN + l2_offset); | ||
478 | |||
479 | tile_net_receive_skb(dev, skb, idesc, len); | ||
480 | } | ||
481 | |||
482 | gxio_mpipe_iqueue_consume(&info->iqueue, idesc); | ||
483 | return !filter; | ||
484 | } | ||
485 | |||
486 | /* Handle some packets for the current CPU. | ||
487 | * | ||
488 | * This function handles up to TILE_NET_BATCH idescs per call. | ||
489 | * | ||
490 | * ISSUE: Since we do not provide new buffers until this function is | ||
491 | * complete, we must initially provide enough buffers for each network | ||
492 | * cpu to fill its iqueue and also its batched idescs. | ||
493 | * | ||
494 | * ISSUE: The "rotting packet" race condition occurs if a packet | ||
495 | * arrives after the queue appears to be empty, and before the | ||
496 | * hypervisor interrupt is re-enabled. | ||
497 | */ | ||
498 | static int tile_net_poll(struct napi_struct *napi, int budget) | ||
499 | { | ||
500 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | ||
501 | unsigned int work = 0; | ||
502 | gxio_mpipe_idesc_t *idesc; | ||
503 | int i, n; | ||
504 | |||
505 | /* Process packets. */ | ||
506 | while ((n = gxio_mpipe_iqueue_try_peek(&info->iqueue, &idesc)) > 0) { | ||
507 | for (i = 0; i < n; i++) { | ||
508 | if (i == TILE_NET_BATCH) | ||
509 | goto done; | ||
510 | if (tile_net_handle_packet(idesc + i)) { | ||
511 | if (++work >= budget) | ||
512 | goto done; | ||
513 | } | ||
514 | } | ||
515 | } | ||
516 | |||
517 | /* There are no packets left. */ | ||
518 | napi_complete(&info->napi); | ||
519 | |||
520 | /* Re-enable hypervisor interrupts. */ | ||
521 | gxio_mpipe_enable_notif_ring_interrupt(&context, info->iqueue.ring); | ||
522 | |||
523 | /* HACK: Avoid the "rotting packet" problem. */ | ||
524 | if (gxio_mpipe_iqueue_try_peek(&info->iqueue, &idesc) > 0) | ||
525 | napi_schedule(&info->napi); | ||
526 | |||
527 | /* ISSUE: Handle completions? */ | ||
528 | |||
529 | done: | ||
530 | tile_net_provide_needed_buffers(); | ||
531 | |||
532 | return work; | ||
533 | } | ||
534 | |||
535 | /* Handle an ingress interrupt on the current cpu. */ | ||
536 | static irqreturn_t tile_net_handle_ingress_irq(int irq, void *unused) | ||
537 | { | ||
538 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | ||
539 | napi_schedule(&info->napi); | ||
540 | return IRQ_HANDLED; | ||
541 | } | ||
542 | |||
543 | /* Free some completions. This must be called with interrupts blocked. */ | ||
544 | static int tile_net_free_comps(gxio_mpipe_equeue_t *equeue, | ||
545 | struct tile_net_comps *comps, | ||
546 | int limit, bool force_update) | ||
547 | { | ||
548 | int n = 0; | ||
549 | while (comps->comp_last < comps->comp_next) { | ||
550 | unsigned int cid = comps->comp_last % TILE_NET_MAX_COMPS; | ||
551 | struct tile_net_comp *comp = &comps->comp_queue[cid]; | ||
552 | if (!gxio_mpipe_equeue_is_complete(equeue, comp->when, | ||
553 | force_update || n == 0)) | ||
554 | break; | ||
555 | dev_kfree_skb_irq(comp->skb); | ||
556 | comps->comp_last++; | ||
557 | if (++n == limit) | ||
558 | break; | ||
559 | } | ||
560 | return n; | ||
561 | } | ||
562 | |||
563 | /* Add a completion. This must be called with interrupts blocked. | ||
564 | * tile_net_equeue_try_reserve() will have ensured a free completion entry. | ||
565 | */ | ||
566 | static void add_comp(gxio_mpipe_equeue_t *equeue, | ||
567 | struct tile_net_comps *comps, | ||
568 | uint64_t when, struct sk_buff *skb) | ||
569 | { | ||
570 | int cid = comps->comp_next % TILE_NET_MAX_COMPS; | ||
571 | comps->comp_queue[cid].when = when; | ||
572 | comps->comp_queue[cid].skb = skb; | ||
573 | comps->comp_next++; | ||
574 | } | ||
575 | |||
576 | static void tile_net_schedule_tx_wake_timer(struct net_device *dev) | ||
577 | { | ||
578 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | ||
579 | struct tile_net_priv *priv = netdev_priv(dev); | ||
580 | |||
581 | hrtimer_start(&info->tx_wake[priv->echannel].timer, | ||
582 | ktime_set(0, TX_TIMER_DELAY_USEC * 1000UL), | ||
583 | HRTIMER_MODE_REL_PINNED); | ||
584 | } | ||
585 | |||
586 | static enum hrtimer_restart tile_net_handle_tx_wake_timer(struct hrtimer *t) | ||
587 | { | ||
588 | struct tile_net_tx_wake *tx_wake = | ||
589 | container_of(t, struct tile_net_tx_wake, timer); | ||
590 | netif_wake_subqueue(tx_wake->dev, smp_processor_id()); | ||
591 | return HRTIMER_NORESTART; | ||
592 | } | ||
593 | |||
594 | /* Make sure the egress timer is scheduled. */ | ||
595 | static void tile_net_schedule_egress_timer(void) | ||
596 | { | ||
597 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | ||
598 | |||
599 | if (!info->egress_timer_scheduled) { | ||
600 | hrtimer_start(&info->egress_timer, | ||
601 | ktime_set(0, EGRESS_TIMER_DELAY_USEC * 1000UL), | ||
602 | HRTIMER_MODE_REL_PINNED); | ||
603 | info->egress_timer_scheduled = true; | ||
604 | } | ||
605 | } | ||
606 | |||
607 | /* The "function" for "info->egress_timer". | ||
608 | * | ||
609 | * This timer will reschedule itself as long as there are any pending | ||
610 | * completions expected for this tile. | ||
611 | */ | ||
612 | static enum hrtimer_restart tile_net_handle_egress_timer(struct hrtimer *t) | ||
613 | { | ||
614 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | ||
615 | unsigned long irqflags; | ||
616 | bool pending = false; | ||
617 | int i; | ||
618 | |||
619 | local_irq_save(irqflags); | ||
620 | |||
621 | /* The timer is no longer scheduled. */ | ||
622 | info->egress_timer_scheduled = false; | ||
623 | |||
624 | /* Free all possible comps for this tile. */ | ||
625 | for (i = 0; i < TILE_NET_CHANNELS; i++) { | ||
626 | struct tile_net_egress *egress = &egress_for_echannel[i]; | ||
627 | struct tile_net_comps *comps = info->comps_for_echannel[i]; | ||
628 | if (comps->comp_last >= comps->comp_next) | ||
629 | continue; | ||
630 | tile_net_free_comps(egress->equeue, comps, -1, true); | ||
631 | pending = pending || (comps->comp_last < comps->comp_next); | ||
632 | } | ||
633 | |||
634 | /* Reschedule timer if needed. */ | ||
635 | if (pending) | ||
636 | tile_net_schedule_egress_timer(); | ||
637 | |||
638 | local_irq_restore(irqflags); | ||
639 | |||
640 | return HRTIMER_NORESTART; | ||
641 | } | ||
642 | |||
643 | /* Helper function for "tile_net_update()". | ||
644 | * "dev" (i.e. arg) is the device being brought up or down, | ||
645 | * or NULL if all devices are now down. | ||
646 | */ | ||
647 | static void tile_net_update_cpu(void *arg) | ||
648 | { | ||
649 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | ||
650 | struct net_device *dev = arg; | ||
651 | |||
652 | if (!info->has_iqueue) | ||
653 | return; | ||
654 | |||
655 | if (dev != NULL) { | ||
656 | if (!info->napi_added) { | ||
657 | netif_napi_add(dev, &info->napi, | ||
658 | tile_net_poll, TILE_NET_WEIGHT); | ||
659 | info->napi_added = true; | ||
660 | } | ||
661 | if (!info->napi_enabled) { | ||
662 | napi_enable(&info->napi); | ||
663 | info->napi_enabled = true; | ||
664 | } | ||
665 | enable_percpu_irq(ingress_irq, 0); | ||
666 | } else { | ||
667 | disable_percpu_irq(ingress_irq); | ||
668 | if (info->napi_enabled) { | ||
669 | napi_disable(&info->napi); | ||
670 | info->napi_enabled = false; | ||
671 | } | ||
672 | /* FIXME: Drain the iqueue. */ | ||
673 | } | ||
674 | } | ||
675 | |||
676 | /* Helper function for tile_net_open() and tile_net_stop(). | ||
677 | * Always called under tile_net_devs_for_channel_mutex. | ||
678 | */ | ||
679 | static int tile_net_update(struct net_device *dev) | ||
680 | { | ||
681 | static gxio_mpipe_rules_t rules; /* too big to fit on the stack */ | ||
682 | bool saw_channel = false; | ||
683 | int channel; | ||
684 | int rc; | ||
685 | int cpu; | ||
686 | |||
687 | gxio_mpipe_rules_init(&rules, &context); | ||
688 | |||
689 | for (channel = 0; channel < TILE_NET_CHANNELS; channel++) { | ||
690 | if (tile_net_devs_for_channel[channel] == NULL) | ||
691 | continue; | ||
692 | if (!saw_channel) { | ||
693 | saw_channel = true; | ||
694 | gxio_mpipe_rules_begin(&rules, first_bucket, | ||
695 | num_buckets, NULL); | ||
696 | gxio_mpipe_rules_set_headroom(&rules, NET_IP_ALIGN); | ||
697 | } | ||
698 | gxio_mpipe_rules_add_channel(&rules, channel); | ||
699 | } | ||
700 | |||
701 | /* NOTE: This can fail if there is no classifier. | ||
702 | * ISSUE: Can anything else cause it to fail? | ||
703 | */ | ||
704 | rc = gxio_mpipe_rules_commit(&rules); | ||
705 | if (rc != 0) { | ||
706 | netdev_warn(dev, "gxio_mpipe_rules_commit failed: %d\n", rc); | ||
707 | return -EIO; | ||
708 | } | ||
709 | |||
710 | /* Update all cpus, sequentially (to protect "netif_napi_add()"). */ | ||
711 | for_each_online_cpu(cpu) | ||
712 | smp_call_function_single(cpu, tile_net_update_cpu, | ||
713 | (saw_channel ? dev : NULL), 1); | ||
714 | |||
715 | /* HACK: Allow packets to flow in the simulator. */ | ||
716 | if (saw_channel) | ||
717 | sim_enable_mpipe_links(0, -1); | ||
718 | |||
719 | return 0; | ||
720 | } | ||
721 | |||
722 | /* Allocate and initialize mpipe buffer stacks, and register them in | ||
723 | * the mPIPE TLBs, for both small and large packet sizes. | ||
724 | * This routine supports tile_net_init_mpipe(), below. | ||
725 | */ | ||
726 | static int init_buffer_stacks(struct net_device *dev, int num_buffers) | ||
727 | { | ||
728 | pte_t hash_pte = pte_set_home((pte_t) { 0 }, PAGE_HOME_HASH); | ||
729 | int rc; | ||
730 | |||
731 | /* Compute stack bytes; we round up to 64KB and then use | ||
732 | * alloc_pages() so we get the required 64KB alignment as well. | ||
733 | */ | ||
734 | buffer_stack_size = | ||
735 | ALIGN(gxio_mpipe_calc_buffer_stack_bytes(num_buffers), | ||
736 | 64 * 1024); | ||
737 | |||
738 | /* Allocate two buffer stack indices. */ | ||
739 | rc = gxio_mpipe_alloc_buffer_stacks(&context, 2, 0, 0); | ||
740 | if (rc < 0) { | ||
741 | netdev_err(dev, "gxio_mpipe_alloc_buffer_stacks failed: %d\n", | ||
742 | rc); | ||
743 | return rc; | ||
744 | } | ||
745 | small_buffer_stack = rc; | ||
746 | large_buffer_stack = rc + 1; | ||
747 | |||
748 | /* Allocate the small memory stack. */ | ||
749 | small_buffer_stack_va = | ||
750 | alloc_pages_exact(buffer_stack_size, GFP_KERNEL); | ||
751 | if (small_buffer_stack_va == NULL) { | ||
752 | netdev_err(dev, | ||
753 | "Could not alloc %zd bytes for buffer stacks\n", | ||
754 | buffer_stack_size); | ||
755 | return -ENOMEM; | ||
756 | } | ||
757 | rc = gxio_mpipe_init_buffer_stack(&context, small_buffer_stack, | ||
758 | BUFFER_SIZE_SMALL_ENUM, | ||
759 | small_buffer_stack_va, | ||
760 | buffer_stack_size, 0); | ||
761 | if (rc != 0) { | ||
762 | netdev_err(dev, "gxio_mpipe_init_buffer_stack: %d\n", rc); | ||
763 | return rc; | ||
764 | } | ||
765 | rc = gxio_mpipe_register_client_memory(&context, small_buffer_stack, | ||
766 | hash_pte, 0); | ||
767 | if (rc != 0) { | ||
768 | netdev_err(dev, | ||
769 | "gxio_mpipe_register_buffer_memory failed: %d\n", | ||
770 | rc); | ||
771 | return rc; | ||
772 | } | ||
773 | |||
774 | /* Allocate the large buffer stack. */ | ||
775 | large_buffer_stack_va = | ||
776 | alloc_pages_exact(buffer_stack_size, GFP_KERNEL); | ||
777 | if (large_buffer_stack_va == NULL) { | ||
778 | netdev_err(dev, | ||
779 | "Could not alloc %zd bytes for buffer stacks\n", | ||
780 | buffer_stack_size); | ||
781 | return -ENOMEM; | ||
782 | } | ||
783 | rc = gxio_mpipe_init_buffer_stack(&context, large_buffer_stack, | ||
784 | BUFFER_SIZE_LARGE_ENUM, | ||
785 | large_buffer_stack_va, | ||
786 | buffer_stack_size, 0); | ||
787 | if (rc != 0) { | ||
788 | netdev_err(dev, "gxio_mpipe_init_buffer_stack failed: %d\n", | ||
789 | rc); | ||
790 | return rc; | ||
791 | } | ||
792 | rc = gxio_mpipe_register_client_memory(&context, large_buffer_stack, | ||
793 | hash_pte, 0); | ||
794 | if (rc != 0) { | ||
795 | netdev_err(dev, | ||
796 | "gxio_mpipe_register_buffer_memory failed: %d\n", | ||
797 | rc); | ||
798 | return rc; | ||
799 | } | ||
800 | |||
801 | return 0; | ||
802 | } | ||
803 | |||
804 | /* Allocate per-cpu resources (memory for completions and idescs). | ||
805 | * This routine supports tile_net_init_mpipe(), below. | ||
806 | */ | ||
807 | static int alloc_percpu_mpipe_resources(struct net_device *dev, | ||
808 | int cpu, int ring) | ||
809 | { | ||
810 | struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); | ||
811 | int order, i, rc; | ||
812 | struct page *page; | ||
813 | void *addr; | ||
814 | |||
815 | /* Allocate the "comps". */ | ||
816 | order = get_order(COMPS_SIZE); | ||
817 | page = homecache_alloc_pages(GFP_KERNEL, order, cpu); | ||
818 | if (page == NULL) { | ||
819 | netdev_err(dev, "Failed to alloc %zd bytes comps memory\n", | ||
820 | COMPS_SIZE); | ||
821 | return -ENOMEM; | ||
822 | } | ||
823 | addr = pfn_to_kaddr(page_to_pfn(page)); | ||
824 | memset(addr, 0, COMPS_SIZE); | ||
825 | for (i = 0; i < TILE_NET_CHANNELS; i++) | ||
826 | info->comps_for_echannel[i] = | ||
827 | addr + i * sizeof(struct tile_net_comps); | ||
828 | |||
829 | /* If this is a network cpu, create an iqueue. */ | ||
830 | if (cpu_isset(cpu, network_cpus_map)) { | ||
831 | order = get_order(NOTIF_RING_SIZE); | ||
832 | page = homecache_alloc_pages(GFP_KERNEL, order, cpu); | ||
833 | if (page == NULL) { | ||
834 | netdev_err(dev, | ||
835 | "Failed to alloc %zd bytes iqueue memory\n", | ||
836 | NOTIF_RING_SIZE); | ||
837 | return -ENOMEM; | ||
838 | } | ||
839 | addr = pfn_to_kaddr(page_to_pfn(page)); | ||
840 | rc = gxio_mpipe_iqueue_init(&info->iqueue, &context, ring++, | ||
841 | addr, NOTIF_RING_SIZE, 0); | ||
842 | if (rc < 0) { | ||
843 | netdev_err(dev, | ||
844 | "gxio_mpipe_iqueue_init failed: %d\n", rc); | ||
845 | return rc; | ||
846 | } | ||
847 | info->has_iqueue = true; | ||
848 | } | ||
849 | |||
850 | return ring; | ||
851 | } | ||
852 | |||
853 | /* Initialize NotifGroup and buckets. | ||
854 | * This routine supports tile_net_init_mpipe(), below. | ||
855 | */ | ||
856 | static int init_notif_group_and_buckets(struct net_device *dev, | ||
857 | int ring, int network_cpus_count) | ||
858 | { | ||
859 | int group, rc; | ||
860 | |||
861 | /* Allocate one NotifGroup. */ | ||
862 | rc = gxio_mpipe_alloc_notif_groups(&context, 1, 0, 0); | ||
863 | if (rc < 0) { | ||
864 | netdev_err(dev, "gxio_mpipe_alloc_notif_groups failed: %d\n", | ||
865 | rc); | ||
866 | return rc; | ||
867 | } | ||
868 | group = rc; | ||
869 | |||
870 | /* Initialize global num_buckets value. */ | ||
871 | if (network_cpus_count > 4) | ||
872 | num_buckets = 256; | ||
873 | else if (network_cpus_count > 1) | ||
874 | num_buckets = 16; | ||
875 | |||
876 | /* Allocate some buckets, and set global first_bucket value. */ | ||
877 | rc = gxio_mpipe_alloc_buckets(&context, num_buckets, 0, 0); | ||
878 | if (rc < 0) { | ||
879 | netdev_err(dev, "gxio_mpipe_alloc_buckets failed: %d\n", rc); | ||
880 | return rc; | ||
881 | } | ||
882 | first_bucket = rc; | ||
883 | |||
884 | /* Init group and buckets. */ | ||
885 | rc = gxio_mpipe_init_notif_group_and_buckets( | ||
886 | &context, group, ring, network_cpus_count, | ||
887 | first_bucket, num_buckets, | ||
888 | GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY); | ||
889 | if (rc != 0) { | ||
890 | netdev_err( | ||
891 | dev, | ||
892 | "gxio_mpipe_init_notif_group_and_buckets failed: %d\n", | ||
893 | rc); | ||
894 | return rc; | ||
895 | } | ||
896 | |||
897 | return 0; | ||
898 | } | ||
899 | |||
900 | /* Create an irq and register it, then activate the irq and request | ||
901 | * interrupts on all cores. Note that "ingress_irq" being initialized | ||
902 | * is how we know not to call tile_net_init_mpipe() again. | ||
903 | * This routine supports tile_net_init_mpipe(), below. | ||
904 | */ | ||
905 | static int tile_net_setup_interrupts(struct net_device *dev) | ||
906 | { | ||
907 | int cpu, rc; | ||
908 | |||
909 | rc = create_irq(); | ||
910 | if (rc < 0) { | ||
911 | netdev_err(dev, "create_irq failed: %d\n", rc); | ||
912 | return rc; | ||
913 | } | ||
914 | ingress_irq = rc; | ||
915 | tile_irq_activate(ingress_irq, TILE_IRQ_PERCPU); | ||
916 | rc = request_irq(ingress_irq, tile_net_handle_ingress_irq, | ||
917 | 0, NULL, NULL); | ||
918 | if (rc != 0) { | ||
919 | netdev_err(dev, "request_irq failed: %d\n", rc); | ||
920 | destroy_irq(ingress_irq); | ||
921 | ingress_irq = -1; | ||
922 | return rc; | ||
923 | } | ||
924 | |||
925 | for_each_online_cpu(cpu) { | ||
926 | struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); | ||
927 | if (info->has_iqueue) { | ||
928 | gxio_mpipe_request_notif_ring_interrupt( | ||
929 | &context, cpu_x(cpu), cpu_y(cpu), | ||
930 | 1, ingress_irq, info->iqueue.ring); | ||
931 | } | ||
932 | } | ||
933 | |||
934 | return 0; | ||
935 | } | ||
936 | |||
937 | /* Undo any state set up partially by a failed call to tile_net_init_mpipe. */ | ||
938 | static void tile_net_init_mpipe_fail(void) | ||
939 | { | ||
940 | int cpu; | ||
941 | |||
942 | /* Do cleanups that require the mpipe context first. */ | ||
943 | if (small_buffer_stack >= 0) | ||
944 | tile_net_pop_all_buffers(small_buffer_stack); | ||
945 | if (large_buffer_stack >= 0) | ||
946 | tile_net_pop_all_buffers(large_buffer_stack); | ||
947 | |||
948 | /* Destroy mpipe context so the hardware no longer owns any memory. */ | ||
949 | gxio_mpipe_destroy(&context); | ||
950 | |||
951 | for_each_online_cpu(cpu) { | ||
952 | struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); | ||
953 | free_pages((unsigned long)(info->comps_for_echannel[0]), | ||
954 | get_order(COMPS_SIZE)); | ||
955 | info->comps_for_echannel[0] = NULL; | ||
956 | free_pages((unsigned long)(info->iqueue.idescs), | ||
957 | get_order(NOTIF_RING_SIZE)); | ||
958 | info->iqueue.idescs = NULL; | ||
959 | } | ||
960 | |||
961 | if (small_buffer_stack_va) | ||
962 | free_pages_exact(small_buffer_stack_va, buffer_stack_size); | ||
963 | if (large_buffer_stack_va) | ||
964 | free_pages_exact(large_buffer_stack_va, buffer_stack_size); | ||
965 | |||
966 | small_buffer_stack_va = NULL; | ||
967 | large_buffer_stack_va = NULL; | ||
968 | large_buffer_stack = -1; | ||
969 | small_buffer_stack = -1; | ||
970 | first_bucket = -1; | ||
971 | } | ||
972 | |||
973 | /* The first time any tilegx network device is opened, we initialize | ||
974 | * the global mpipe state. If this step fails, we fail to open the | ||
975 | * device, but if it succeeds, we never need to do it again, and since | ||
976 | * tile_net can't be unloaded, we never undo it. | ||
977 | * | ||
978 | * Note that some resources in this path (buffer stack indices, | ||
979 | * bindings from init_buffer_stack, etc.) are hypervisor resources | ||
980 | * that are freed implicitly by gxio_mpipe_destroy(). | ||
981 | */ | ||
982 | static int tile_net_init_mpipe(struct net_device *dev) | ||
983 | { | ||
984 | int i, num_buffers, rc; | ||
985 | int cpu; | ||
986 | int first_ring, ring; | ||
987 | int network_cpus_count = cpus_weight(network_cpus_map); | ||
988 | |||
989 | if (!hash_default) { | ||
990 | netdev_err(dev, "Networking requires hash_default!\n"); | ||
991 | return -EIO; | ||
992 | } | ||
993 | |||
994 | rc = gxio_mpipe_init(&context, 0); | ||
995 | if (rc != 0) { | ||
996 | netdev_err(dev, "gxio_mpipe_init failed: %d\n", rc); | ||
997 | return -EIO; | ||
998 | } | ||
999 | |||
1000 | /* Set up the buffer stacks. */ | ||
1001 | num_buffers = | ||
1002 | network_cpus_count * (IQUEUE_ENTRIES + TILE_NET_BATCH); | ||
1003 | rc = init_buffer_stacks(dev, num_buffers); | ||
1004 | if (rc != 0) | ||
1005 | goto fail; | ||
1006 | |||
1007 | /* Provide initial buffers. */ | ||
1008 | rc = -ENOMEM; | ||
1009 | for (i = 0; i < num_buffers; i++) { | ||
1010 | if (!tile_net_provide_buffer(true)) { | ||
1011 | netdev_err(dev, "Cannot allocate initial sk_bufs!\n"); | ||
1012 | goto fail; | ||
1013 | } | ||
1014 | } | ||
1015 | for (i = 0; i < num_buffers; i++) { | ||
1016 | if (!tile_net_provide_buffer(false)) { | ||
1017 | netdev_err(dev, "Cannot allocate initial sk_bufs!\n"); | ||
1018 | goto fail; | ||
1019 | } | ||
1020 | } | ||
1021 | |||
1022 | /* Allocate one NotifRing for each network cpu. */ | ||
1023 | rc = gxio_mpipe_alloc_notif_rings(&context, network_cpus_count, 0, 0); | ||
1024 | if (rc < 0) { | ||
1025 | netdev_err(dev, "gxio_mpipe_alloc_notif_rings failed %d\n", | ||
1026 | rc); | ||
1027 | goto fail; | ||
1028 | } | ||
1029 | |||
1030 | /* Init NotifRings per-cpu. */ | ||
1031 | first_ring = rc; | ||
1032 | ring = first_ring; | ||
1033 | for_each_online_cpu(cpu) { | ||
1034 | rc = alloc_percpu_mpipe_resources(dev, cpu, ring); | ||
1035 | if (rc < 0) | ||
1036 | goto fail; | ||
1037 | ring = rc; | ||
1038 | } | ||
1039 | |||
1040 | /* Initialize NotifGroup and buckets. */ | ||
1041 | rc = init_notif_group_and_buckets(dev, first_ring, network_cpus_count); | ||
1042 | if (rc != 0) | ||
1043 | goto fail; | ||
1044 | |||
1045 | /* Create and enable interrupts. */ | ||
1046 | rc = tile_net_setup_interrupts(dev); | ||
1047 | if (rc != 0) | ||
1048 | goto fail; | ||
1049 | |||
1050 | return 0; | ||
1051 | |||
1052 | fail: | ||
1053 | tile_net_init_mpipe_fail(); | ||
1054 | return rc; | ||
1055 | } | ||
1056 | |||
1057 | /* Create persistent egress info for a given egress channel. | ||
1058 | * Note that this may be shared between, say, "gbe0" and "xgbe0". | ||
1059 | * ISSUE: Defer header allocation until TSO is actually needed? | ||
1060 | */ | ||
1061 | static int tile_net_init_egress(struct net_device *dev, int echannel) | ||
1062 | { | ||
1063 | struct page *headers_page, *edescs_page, *equeue_page; | ||
1064 | gxio_mpipe_edesc_t *edescs; | ||
1065 | gxio_mpipe_equeue_t *equeue; | ||
1066 | unsigned char *headers; | ||
1067 | int headers_order, edescs_order, equeue_order; | ||
1068 | size_t edescs_size; | ||
1069 | int edma; | ||
1070 | int rc = -ENOMEM; | ||
1071 | |||
1072 | /* Only initialize once. */ | ||
1073 | if (egress_for_echannel[echannel].equeue != NULL) | ||
1074 | return 0; | ||
1075 | |||
1076 | /* Allocate memory for the "headers". */ | ||
1077 | headers_order = get_order(EQUEUE_ENTRIES * HEADER_BYTES); | ||
1078 | headers_page = alloc_pages(GFP_KERNEL, headers_order); | ||
1079 | if (headers_page == NULL) { | ||
1080 | netdev_warn(dev, | ||
1081 | "Could not alloc %zd bytes for TSO headers.\n", | ||
1082 | PAGE_SIZE << headers_order); | ||
1083 | goto fail; | ||
1084 | } | ||
1085 | headers = pfn_to_kaddr(page_to_pfn(headers_page)); | ||
1086 | |||
1087 | /* Allocate memory for the "edescs". */ | ||
1088 | edescs_size = EQUEUE_ENTRIES * sizeof(*edescs); | ||
1089 | edescs_order = get_order(edescs_size); | ||
1090 | edescs_page = alloc_pages(GFP_KERNEL, edescs_order); | ||
1091 | if (edescs_page == NULL) { | ||
1092 | netdev_warn(dev, | ||
1093 | "Could not alloc %zd bytes for eDMA ring.\n", | ||
1094 | edescs_size); | ||
1095 | goto fail_headers; | ||
1096 | } | ||
1097 | edescs = pfn_to_kaddr(page_to_pfn(edescs_page)); | ||
1098 | |||
1099 | /* Allocate memory for the "equeue". */ | ||
1100 | equeue_order = get_order(sizeof(*equeue)); | ||
1101 | equeue_page = alloc_pages(GFP_KERNEL, equeue_order); | ||
1102 | if (equeue_page == NULL) { | ||
1103 | netdev_warn(dev, | ||
1104 | "Could not alloc %zd bytes for equeue info.\n", | ||
1105 | PAGE_SIZE << equeue_order); | ||
1106 | goto fail_edescs; | ||
1107 | } | ||
1108 | equeue = pfn_to_kaddr(page_to_pfn(equeue_page)); | ||
1109 | |||
1110 | /* Allocate an edma ring. Note that in practice this can't | ||
1111 | * fail, which is good, because we will leak an edma ring if so. | ||
1112 | */ | ||
1113 | rc = gxio_mpipe_alloc_edma_rings(&context, 1, 0, 0); | ||
1114 | if (rc < 0) { | ||
1115 | netdev_warn(dev, "gxio_mpipe_alloc_edma_rings failed: %d\n", | ||
1116 | rc); | ||
1117 | goto fail_equeue; | ||
1118 | } | ||
1119 | edma = rc; | ||
1120 | |||
1121 | /* Initialize the equeue. */ | ||
1122 | rc = gxio_mpipe_equeue_init(equeue, &context, edma, echannel, | ||
1123 | edescs, edescs_size, 0); | ||
1124 | if (rc != 0) { | ||
1125 | netdev_err(dev, "gxio_mpipe_equeue_init failed: %d\n", rc); | ||
1126 | goto fail_equeue; | ||
1127 | } | ||
1128 | |||
1129 | /* Done. */ | ||
1130 | egress_for_echannel[echannel].equeue = equeue; | ||
1131 | egress_for_echannel[echannel].headers = headers; | ||
1132 | return 0; | ||
1133 | |||
1134 | fail_equeue: | ||
1135 | __free_pages(equeue_page, equeue_order); | ||
1136 | |||
1137 | fail_edescs: | ||
1138 | __free_pages(edescs_page, edescs_order); | ||
1139 | |||
1140 | fail_headers: | ||
1141 | __free_pages(headers_page, headers_order); | ||
1142 | |||
1143 | fail: | ||
1144 | return rc; | ||
1145 | } | ||
1146 | |||
1147 | /* Return channel number for a newly-opened link. */ | ||
1148 | static int tile_net_link_open(struct net_device *dev, gxio_mpipe_link_t *link, | ||
1149 | const char *link_name) | ||
1150 | { | ||
1151 | int rc = gxio_mpipe_link_open(link, &context, link_name, 0); | ||
1152 | if (rc < 0) { | ||
1153 | netdev_err(dev, "Failed to open '%s'\n", link_name); | ||
1154 | return rc; | ||
1155 | } | ||
1156 | rc = gxio_mpipe_link_channel(link); | ||
1157 | if (rc < 0 || rc >= TILE_NET_CHANNELS) { | ||
1158 | netdev_err(dev, "gxio_mpipe_link_channel bad value: %d\n", rc); | ||
1159 | gxio_mpipe_link_close(link); | ||
1160 | return -EINVAL; | ||
1161 | } | ||
1162 | return rc; | ||
1163 | } | ||
1164 | |||
1165 | /* Help the kernel activate the given network interface. */ | ||
1166 | static int tile_net_open(struct net_device *dev) | ||
1167 | { | ||
1168 | struct tile_net_priv *priv = netdev_priv(dev); | ||
1169 | int cpu, rc; | ||
1170 | |||
1171 | mutex_lock(&tile_net_devs_for_channel_mutex); | ||
1172 | |||
1173 | /* Do one-time initialization the first time any device is opened. */ | ||
1174 | if (ingress_irq < 0) { | ||
1175 | rc = tile_net_init_mpipe(dev); | ||
1176 | if (rc != 0) | ||
1177 | goto fail; | ||
1178 | } | ||
1179 | |||
1180 | /* Determine if this is the "loopify" device. */ | ||
1181 | if (unlikely((loopify_link_name != NULL) && | ||
1182 | !strcmp(dev->name, loopify_link_name))) { | ||
1183 | rc = tile_net_link_open(dev, &priv->link, "loop0"); | ||
1184 | if (rc < 0) | ||
1185 | goto fail; | ||
1186 | priv->channel = rc; | ||
1187 | rc = tile_net_link_open(dev, &priv->loopify_link, "loop1"); | ||
1188 | if (rc < 0) | ||
1189 | goto fail; | ||
1190 | priv->loopify_channel = rc; | ||
1191 | priv->echannel = rc; | ||
1192 | } else { | ||
1193 | rc = tile_net_link_open(dev, &priv->link, dev->name); | ||
1194 | if (rc < 0) | ||
1195 | goto fail; | ||
1196 | priv->channel = rc; | ||
1197 | priv->echannel = rc; | ||
1198 | } | ||
1199 | |||
1200 | /* Initialize egress info (if needed). Once ever, per echannel. */ | ||
1201 | rc = tile_net_init_egress(dev, priv->echannel); | ||
1202 | if (rc != 0) | ||
1203 | goto fail; | ||
1204 | |||
1205 | tile_net_devs_for_channel[priv->channel] = dev; | ||
1206 | |||
1207 | rc = tile_net_update(dev); | ||
1208 | if (rc != 0) | ||
1209 | goto fail; | ||
1210 | |||
1211 | mutex_unlock(&tile_net_devs_for_channel_mutex); | ||
1212 | |||
1213 | /* Initialize the transmit wake timer for this device for each cpu. */ | ||
1214 | for_each_online_cpu(cpu) { | ||
1215 | struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); | ||
1216 | struct tile_net_tx_wake *tx_wake = | ||
1217 | &info->tx_wake[priv->echannel]; | ||
1218 | |||
1219 | hrtimer_init(&tx_wake->timer, CLOCK_MONOTONIC, | ||
1220 | HRTIMER_MODE_REL); | ||
1221 | tx_wake->timer.function = tile_net_handle_tx_wake_timer; | ||
1222 | tx_wake->dev = dev; | ||
1223 | } | ||
1224 | |||
1225 | for_each_online_cpu(cpu) | ||
1226 | netif_start_subqueue(dev, cpu); | ||
1227 | netif_carrier_on(dev); | ||
1228 | return 0; | ||
1229 | |||
1230 | fail: | ||
1231 | if (priv->loopify_channel >= 0) { | ||
1232 | if (gxio_mpipe_link_close(&priv->loopify_link) != 0) | ||
1233 | netdev_warn(dev, "Failed to close loopify link!\n"); | ||
1234 | priv->loopify_channel = -1; | ||
1235 | } | ||
1236 | if (priv->channel >= 0) { | ||
1237 | if (gxio_mpipe_link_close(&priv->link) != 0) | ||
1238 | netdev_warn(dev, "Failed to close link!\n"); | ||
1239 | priv->channel = -1; | ||
1240 | } | ||
1241 | priv->echannel = -1; | ||
1242 | tile_net_devs_for_channel[priv->channel] = NULL; | ||
1243 | mutex_unlock(&tile_net_devs_for_channel_mutex); | ||
1244 | |||
1245 | /* Don't return raw gxio error codes to generic Linux. */ | ||
1246 | return (rc > -512) ? rc : -EIO; | ||
1247 | } | ||
1248 | |||
1249 | /* Help the kernel deactivate the given network interface. */ | ||
1250 | static int tile_net_stop(struct net_device *dev) | ||
1251 | { | ||
1252 | struct tile_net_priv *priv = netdev_priv(dev); | ||
1253 | int cpu; | ||
1254 | |||
1255 | for_each_online_cpu(cpu) { | ||
1256 | struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); | ||
1257 | struct tile_net_tx_wake *tx_wake = | ||
1258 | &info->tx_wake[priv->echannel]; | ||
1259 | |||
1260 | hrtimer_cancel(&tx_wake->timer); | ||
1261 | netif_stop_subqueue(dev, cpu); | ||
1262 | } | ||
1263 | |||
1264 | mutex_lock(&tile_net_devs_for_channel_mutex); | ||
1265 | tile_net_devs_for_channel[priv->channel] = NULL; | ||
1266 | (void)tile_net_update(dev); | ||
1267 | if (priv->loopify_channel >= 0) { | ||
1268 | if (gxio_mpipe_link_close(&priv->loopify_link) != 0) | ||
1269 | netdev_warn(dev, "Failed to close loopify link!\n"); | ||
1270 | priv->loopify_channel = -1; | ||
1271 | } | ||
1272 | if (priv->channel >= 0) { | ||
1273 | if (gxio_mpipe_link_close(&priv->link) != 0) | ||
1274 | netdev_warn(dev, "Failed to close link!\n"); | ||
1275 | priv->channel = -1; | ||
1276 | } | ||
1277 | priv->echannel = -1; | ||
1278 | mutex_unlock(&tile_net_devs_for_channel_mutex); | ||
1279 | |||
1280 | return 0; | ||
1281 | } | ||
1282 | |||
1283 | /* Determine the VA for a fragment. */ | ||
1284 | static inline void *tile_net_frag_buf(skb_frag_t *f) | ||
1285 | { | ||
1286 | unsigned long pfn = page_to_pfn(skb_frag_page(f)); | ||
1287 | return pfn_to_kaddr(pfn) + f->page_offset; | ||
1288 | } | ||
1289 | |||
1290 | /* Acquire a completion entry and an egress slot, or if we can't, | ||
1291 | * stop the queue and schedule the tx_wake timer. | ||
1292 | */ | ||
1293 | static s64 tile_net_equeue_try_reserve(struct net_device *dev, | ||
1294 | struct tile_net_comps *comps, | ||
1295 | gxio_mpipe_equeue_t *equeue, | ||
1296 | int num_edescs) | ||
1297 | { | ||
1298 | /* Try to acquire a completion entry. */ | ||
1299 | if (comps->comp_next - comps->comp_last < TILE_NET_MAX_COMPS - 1 || | ||
1300 | tile_net_free_comps(equeue, comps, 32, false) != 0) { | ||
1301 | |||
1302 | /* Try to acquire an egress slot. */ | ||
1303 | s64 slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs); | ||
1304 | if (slot >= 0) | ||
1305 | return slot; | ||
1306 | |||
1307 | /* Freeing some completions gives the equeue time to drain. */ | ||
1308 | tile_net_free_comps(equeue, comps, TILE_NET_MAX_COMPS, false); | ||
1309 | |||
1310 | slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs); | ||
1311 | if (slot >= 0) | ||
1312 | return slot; | ||
1313 | } | ||
1314 | |||
1315 | /* Still nothing; give up and stop the queue for a short while. */ | ||
1316 | netif_stop_subqueue(dev, smp_processor_id()); | ||
1317 | tile_net_schedule_tx_wake_timer(dev); | ||
1318 | return -1; | ||
1319 | } | ||
1320 | |||
1321 | /* Determine how many edesc's are needed for TSO. | ||
1322 | * | ||
1323 | * Sometimes, if "sendfile()" requires copying, we will be called with | ||
1324 | * "data" containing the header and payload, with "frags" being empty. | ||
1325 | * Sometimes, for example when using NFS over TCP, a single segment can | ||
1326 | * span 3 fragments. This requires special care. | ||
1327 | */ | ||
1328 | static int tso_count_edescs(struct sk_buff *skb) | ||
1329 | { | ||
1330 | struct skb_shared_info *sh = skb_shinfo(skb); | ||
1331 | unsigned int data_len = skb->data_len; | ||
1332 | unsigned int p_len = sh->gso_size; | ||
1333 | long f_id = -1; /* id of the current fragment */ | ||
1334 | long f_size = -1; /* size of the current fragment */ | ||
1335 | long f_used = -1; /* bytes used from the current fragment */ | ||
1336 | long n; /* size of the current piece of payload */ | ||
1337 | int num_edescs = 0; | ||
1338 | int segment; | ||
1339 | |||
1340 | for (segment = 0; segment < sh->gso_segs; segment++) { | ||
1341 | |||
1342 | unsigned int p_used = 0; | ||
1343 | |||
1344 | /* One edesc for header and for each piece of the payload. */ | ||
1345 | for (num_edescs++; p_used < p_len; num_edescs++) { | ||
1346 | |||
1347 | /* Advance as needed. */ | ||
1348 | while (f_used >= f_size) { | ||
1349 | f_id++; | ||
1350 | f_size = sh->frags[f_id].size; | ||
1351 | f_used = 0; | ||
1352 | } | ||
1353 | |||
1354 | /* Use bytes from the current fragment. */ | ||
1355 | n = p_len - p_used; | ||
1356 | if (n > f_size - f_used) | ||
1357 | n = f_size - f_used; | ||
1358 | f_used += n; | ||
1359 | p_used += n; | ||
1360 | } | ||
1361 | |||
1362 | /* The last segment may be less than gso_size. */ | ||
1363 | data_len -= p_len; | ||
1364 | if (data_len < p_len) | ||
1365 | p_len = data_len; | ||
1366 | } | ||
1367 | |||
1368 | return num_edescs; | ||
1369 | } | ||
1370 | |||
1371 | /* Prepare modified copies of the skbuff headers. | ||
1372 | * FIXME: add support for IPv6. | ||
1373 | */ | ||
1374 | static void tso_headers_prepare(struct sk_buff *skb, unsigned char *headers, | ||
1375 | s64 slot) | ||
1376 | { | ||
1377 | struct skb_shared_info *sh = skb_shinfo(skb); | ||
1378 | struct iphdr *ih; | ||
1379 | struct tcphdr *th; | ||
1380 | unsigned int data_len = skb->data_len; | ||
1381 | unsigned char *data = skb->data; | ||
1382 | unsigned int ih_off, th_off, sh_len, p_len; | ||
1383 | unsigned int isum_seed, tsum_seed, id, seq; | ||
1384 | long f_id = -1; /* id of the current fragment */ | ||
1385 | long f_size = -1; /* size of the current fragment */ | ||
1386 | long f_used = -1; /* bytes used from the current fragment */ | ||
1387 | long n; /* size of the current piece of payload */ | ||
1388 | int segment; | ||
1389 | |||
1390 | /* Locate original headers and compute various lengths. */ | ||
1391 | ih = ip_hdr(skb); | ||
1392 | th = tcp_hdr(skb); | ||
1393 | ih_off = skb_network_offset(skb); | ||
1394 | th_off = skb_transport_offset(skb); | ||
1395 | sh_len = th_off + tcp_hdrlen(skb); | ||
1396 | p_len = sh->gso_size; | ||
1397 | |||
1398 | /* Set up seed values for IP and TCP csum and initialize id and seq. */ | ||
1399 | isum_seed = ((0xFFFF - ih->check) + | ||
1400 | (0xFFFF - ih->tot_len) + | ||
1401 | (0xFFFF - ih->id)); | ||
1402 | tsum_seed = th->check + (0xFFFF ^ htons(skb->len)); | ||
1403 | id = ntohs(ih->id); | ||
1404 | seq = ntohl(th->seq); | ||
1405 | |||
1406 | /* Prepare all the headers. */ | ||
1407 | for (segment = 0; segment < sh->gso_segs; segment++) { | ||
1408 | unsigned char *buf; | ||
1409 | unsigned int p_used = 0; | ||
1410 | |||
1411 | /* Copy to the header memory for this segment. */ | ||
1412 | buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES + | ||
1413 | NET_IP_ALIGN; | ||
1414 | memcpy(buf, data, sh_len); | ||
1415 | |||
1416 | /* Update copied ip header. */ | ||
1417 | ih = (struct iphdr *)(buf + ih_off); | ||
1418 | ih->tot_len = htons(sh_len + p_len - ih_off); | ||
1419 | ih->id = htons(id); | ||
1420 | ih->check = csum_long(isum_seed + ih->tot_len + | ||
1421 | ih->id) ^ 0xffff; | ||
1422 | |||
1423 | /* Update copied tcp header. */ | ||
1424 | th = (struct tcphdr *)(buf + th_off); | ||
1425 | th->seq = htonl(seq); | ||
1426 | th->check = csum_long(tsum_seed + htons(sh_len + p_len)); | ||
1427 | if (segment != sh->gso_segs - 1) { | ||
1428 | th->fin = 0; | ||
1429 | th->psh = 0; | ||
1430 | } | ||
1431 | |||
1432 | /* Skip past the header. */ | ||
1433 | slot++; | ||
1434 | |||
1435 | /* Skip past the payload. */ | ||
1436 | while (p_used < p_len) { | ||
1437 | |||
1438 | /* Advance as needed. */ | ||
1439 | while (f_used >= f_size) { | ||
1440 | f_id++; | ||
1441 | f_size = sh->frags[f_id].size; | ||
1442 | f_used = 0; | ||
1443 | } | ||
1444 | |||
1445 | /* Use bytes from the current fragment. */ | ||
1446 | n = p_len - p_used; | ||
1447 | if (n > f_size - f_used) | ||
1448 | n = f_size - f_used; | ||
1449 | f_used += n; | ||
1450 | p_used += n; | ||
1451 | |||
1452 | slot++; | ||
1453 | } | ||
1454 | |||
1455 | id++; | ||
1456 | seq += p_len; | ||
1457 | |||
1458 | /* The last segment may be less than gso_size. */ | ||
1459 | data_len -= p_len; | ||
1460 | if (data_len < p_len) | ||
1461 | p_len = data_len; | ||
1462 | } | ||
1463 | |||
1464 | /* Flush the headers so they are ready for hardware DMA. */ | ||
1465 | wmb(); | ||
1466 | } | ||
1467 | |||
1468 | /* Pass all the data to mpipe for egress. */ | ||
1469 | static void tso_egress(struct net_device *dev, gxio_mpipe_equeue_t *equeue, | ||
1470 | struct sk_buff *skb, unsigned char *headers, s64 slot) | ||
1471 | { | ||
1472 | struct tile_net_priv *priv = netdev_priv(dev); | ||
1473 | struct skb_shared_info *sh = skb_shinfo(skb); | ||
1474 | unsigned int data_len = skb->data_len; | ||
1475 | unsigned int p_len = sh->gso_size; | ||
1476 | gxio_mpipe_edesc_t edesc_head = { { 0 } }; | ||
1477 | gxio_mpipe_edesc_t edesc_body = { { 0 } }; | ||
1478 | long f_id = -1; /* id of the current fragment */ | ||
1479 | long f_size = -1; /* size of the current fragment */ | ||
1480 | long f_used = -1; /* bytes used from the current fragment */ | ||
1481 | long n; /* size of the current piece of payload */ | ||
1482 | unsigned long tx_packets = 0, tx_bytes = 0; | ||
1483 | unsigned int csum_start, sh_len; | ||
1484 | int segment; | ||
1485 | |||
1486 | /* Prepare to egress the headers: set up header edesc. */ | ||
1487 | csum_start = skb_checksum_start_offset(skb); | ||
1488 | sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | ||
1489 | edesc_head.csum = 1; | ||
1490 | edesc_head.csum_start = csum_start; | ||
1491 | edesc_head.csum_dest = csum_start + skb->csum_offset; | ||
1492 | edesc_head.xfer_size = sh_len; | ||
1493 | |||
1494 | /* This is only used to specify the TLB. */ | ||
1495 | edesc_head.stack_idx = large_buffer_stack; | ||
1496 | edesc_body.stack_idx = large_buffer_stack; | ||
1497 | |||
1498 | /* Egress all the edescs. */ | ||
1499 | for (segment = 0; segment < sh->gso_segs; segment++) { | ||
1500 | void *va; | ||
1501 | unsigned char *buf; | ||
1502 | unsigned int p_used = 0; | ||
1503 | |||
1504 | /* Egress the header. */ | ||
1505 | buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES + | ||
1506 | NET_IP_ALIGN; | ||
1507 | edesc_head.va = va_to_tile_io_addr(buf); | ||
1508 | gxio_mpipe_equeue_put_at(equeue, edesc_head, slot); | ||
1509 | slot++; | ||
1510 | |||
1511 | /* Egress the payload. */ | ||
1512 | while (p_used < p_len) { | ||
1513 | |||
1514 | /* Advance as needed. */ | ||
1515 | while (f_used >= f_size) { | ||
1516 | f_id++; | ||
1517 | f_size = sh->frags[f_id].size; | ||
1518 | f_used = 0; | ||
1519 | } | ||
1520 | |||
1521 | va = tile_net_frag_buf(&sh->frags[f_id]) + f_used; | ||
1522 | |||
1523 | /* Use bytes from the current fragment. */ | ||
1524 | n = p_len - p_used; | ||
1525 | if (n > f_size - f_used) | ||
1526 | n = f_size - f_used; | ||
1527 | f_used += n; | ||
1528 | p_used += n; | ||
1529 | |||
1530 | /* Egress a piece of the payload. */ | ||
1531 | edesc_body.va = va_to_tile_io_addr(va); | ||
1532 | edesc_body.xfer_size = n; | ||
1533 | edesc_body.bound = !(p_used < p_len); | ||
1534 | gxio_mpipe_equeue_put_at(equeue, edesc_body, slot); | ||
1535 | slot++; | ||
1536 | } | ||
1537 | |||
1538 | tx_packets++; | ||
1539 | tx_bytes += sh_len + p_len; | ||
1540 | |||
1541 | /* The last segment may be less than gso_size. */ | ||
1542 | data_len -= p_len; | ||
1543 | if (data_len < p_len) | ||
1544 | p_len = data_len; | ||
1545 | } | ||
1546 | |||
1547 | /* Update stats. */ | ||
1548 | tile_net_stats_add(tx_packets, &priv->stats.tx_packets); | ||
1549 | tile_net_stats_add(tx_bytes, &priv->stats.tx_bytes); | ||
1550 | } | ||
1551 | |||
1552 | /* Do "TSO" handling for egress. | ||
1553 | * | ||
1554 | * Normally drivers set NETIF_F_TSO only to support hardware TSO; | ||
1555 | * otherwise the stack uses scatter-gather to implement GSO in software. | ||
1556 | * On our testing, enabling GSO support (via NETIF_F_SG) drops network | ||
1557 | * performance down to around 7.5 Gbps on the 10G interfaces, although | ||
1558 | * also dropping cpu utilization way down, to under 8%. But | ||
1559 | * implementing "TSO" in the driver brings performance back up to line | ||
1560 | * rate, while dropping cpu usage even further, to less than 4%. In | ||
1561 | * practice, profiling of GSO shows that skb_segment() is what causes | ||
1562 | * the performance overheads; we benefit in the driver from using | ||
1563 | * preallocated memory to duplicate the TCP/IP headers. | ||
1564 | */ | ||
1565 | static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev) | ||
1566 | { | ||
1567 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | ||
1568 | struct tile_net_priv *priv = netdev_priv(dev); | ||
1569 | int channel = priv->echannel; | ||
1570 | struct tile_net_egress *egress = &egress_for_echannel[channel]; | ||
1571 | struct tile_net_comps *comps = info->comps_for_echannel[channel]; | ||
1572 | gxio_mpipe_equeue_t *equeue = egress->equeue; | ||
1573 | unsigned long irqflags; | ||
1574 | int num_edescs; | ||
1575 | s64 slot; | ||
1576 | |||
1577 | /* Determine how many mpipe edesc's are needed. */ | ||
1578 | num_edescs = tso_count_edescs(skb); | ||
1579 | |||
1580 | local_irq_save(irqflags); | ||
1581 | |||
1582 | /* Try to acquire a completion entry and an egress slot. */ | ||
1583 | slot = tile_net_equeue_try_reserve(dev, comps, equeue, num_edescs); | ||
1584 | if (slot < 0) { | ||
1585 | local_irq_restore(irqflags); | ||
1586 | return NETDEV_TX_BUSY; | ||
1587 | } | ||
1588 | |||
1589 | /* Set up copies of header data properly. */ | ||
1590 | tso_headers_prepare(skb, egress->headers, slot); | ||
1591 | |||
1592 | /* Actually pass the data to the network hardware. */ | ||
1593 | tso_egress(dev, equeue, skb, egress->headers, slot); | ||
1594 | |||
1595 | /* Add a completion record. */ | ||
1596 | add_comp(equeue, comps, slot + num_edescs - 1, skb); | ||
1597 | |||
1598 | local_irq_restore(irqflags); | ||
1599 | |||
1600 | /* Make sure the egress timer is scheduled. */ | ||
1601 | tile_net_schedule_egress_timer(); | ||
1602 | |||
1603 | return NETDEV_TX_OK; | ||
1604 | } | ||
1605 | |||
1606 | /* Analyze the body and frags for a transmit request. */ | ||
1607 | static unsigned int tile_net_tx_frags(struct frag *frags, | ||
1608 | struct sk_buff *skb, | ||
1609 | void *b_data, unsigned int b_len) | ||
1610 | { | ||
1611 | unsigned int i, n = 0; | ||
1612 | |||
1613 | struct skb_shared_info *sh = skb_shinfo(skb); | ||
1614 | |||
1615 | if (b_len != 0) { | ||
1616 | frags[n].buf = b_data; | ||
1617 | frags[n++].length = b_len; | ||
1618 | } | ||
1619 | |||
1620 | for (i = 0; i < sh->nr_frags; i++) { | ||
1621 | skb_frag_t *f = &sh->frags[i]; | ||
1622 | frags[n].buf = tile_net_frag_buf(f); | ||
1623 | frags[n++].length = skb_frag_size(f); | ||
1624 | } | ||
1625 | |||
1626 | return n; | ||
1627 | } | ||
1628 | |||
1629 | /* Help the kernel transmit a packet. */ | ||
1630 | static int tile_net_tx(struct sk_buff *skb, struct net_device *dev) | ||
1631 | { | ||
1632 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | ||
1633 | struct tile_net_priv *priv = netdev_priv(dev); | ||
1634 | struct tile_net_egress *egress = &egress_for_echannel[priv->echannel]; | ||
1635 | gxio_mpipe_equeue_t *equeue = egress->equeue; | ||
1636 | struct tile_net_comps *comps = | ||
1637 | info->comps_for_echannel[priv->echannel]; | ||
1638 | unsigned int len = skb->len; | ||
1639 | unsigned char *data = skb->data; | ||
1640 | unsigned int num_edescs; | ||
1641 | struct frag frags[MAX_FRAGS]; | ||
1642 | gxio_mpipe_edesc_t edescs[MAX_FRAGS]; | ||
1643 | unsigned long irqflags; | ||
1644 | gxio_mpipe_edesc_t edesc = { { 0 } }; | ||
1645 | unsigned int i; | ||
1646 | s64 slot; | ||
1647 | |||
1648 | if (skb_is_gso(skb)) | ||
1649 | return tile_net_tx_tso(skb, dev); | ||
1650 | |||
1651 | num_edescs = tile_net_tx_frags(frags, skb, data, skb_headlen(skb)); | ||
1652 | |||
1653 | /* This is only used to specify the TLB. */ | ||
1654 | edesc.stack_idx = large_buffer_stack; | ||
1655 | |||
1656 | /* Prepare the edescs. */ | ||
1657 | for (i = 0; i < num_edescs; i++) { | ||
1658 | edesc.xfer_size = frags[i].length; | ||
1659 | edesc.va = va_to_tile_io_addr(frags[i].buf); | ||
1660 | edescs[i] = edesc; | ||
1661 | } | ||
1662 | |||
1663 | /* Mark the final edesc. */ | ||
1664 | edescs[num_edescs - 1].bound = 1; | ||
1665 | |||
1666 | /* Add checksum info to the initial edesc, if needed. */ | ||
1667 | if (skb->ip_summed == CHECKSUM_PARTIAL) { | ||
1668 | unsigned int csum_start = skb_checksum_start_offset(skb); | ||
1669 | edescs[0].csum = 1; | ||
1670 | edescs[0].csum_start = csum_start; | ||
1671 | edescs[0].csum_dest = csum_start + skb->csum_offset; | ||
1672 | } | ||
1673 | |||
1674 | local_irq_save(irqflags); | ||
1675 | |||
1676 | /* Try to acquire a completion entry and an egress slot. */ | ||
1677 | slot = tile_net_equeue_try_reserve(dev, comps, equeue, num_edescs); | ||
1678 | if (slot < 0) { | ||
1679 | local_irq_restore(irqflags); | ||
1680 | return NETDEV_TX_BUSY; | ||
1681 | } | ||
1682 | |||
1683 | for (i = 0; i < num_edescs; i++) | ||
1684 | gxio_mpipe_equeue_put_at(equeue, edescs[i], slot++); | ||
1685 | |||
1686 | /* Add a completion record. */ | ||
1687 | add_comp(equeue, comps, slot - 1, skb); | ||
1688 | |||
1689 | /* NOTE: Use ETH_ZLEN for short packets (e.g. 42 < 60). */ | ||
1690 | tile_net_stats_add(1, &priv->stats.tx_packets); | ||
1691 | tile_net_stats_add(max_t(unsigned int, len, ETH_ZLEN), | ||
1692 | &priv->stats.tx_bytes); | ||
1693 | |||
1694 | local_irq_restore(irqflags); | ||
1695 | |||
1696 | /* Make sure the egress timer is scheduled. */ | ||
1697 | tile_net_schedule_egress_timer(); | ||
1698 | |||
1699 | return NETDEV_TX_OK; | ||
1700 | } | ||
1701 | |||
1702 | /* Return subqueue id on this core (one per core). */ | ||
1703 | static u16 tile_net_select_queue(struct net_device *dev, struct sk_buff *skb) | ||
1704 | { | ||
1705 | return smp_processor_id(); | ||
1706 | } | ||
1707 | |||
1708 | /* Deal with a transmit timeout. */ | ||
1709 | static void tile_net_tx_timeout(struct net_device *dev) | ||
1710 | { | ||
1711 | int cpu; | ||
1712 | |||
1713 | for_each_online_cpu(cpu) | ||
1714 | netif_wake_subqueue(dev, cpu); | ||
1715 | } | ||
1716 | |||
1717 | /* Ioctl commands. */ | ||
1718 | static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | ||
1719 | { | ||
1720 | return -EOPNOTSUPP; | ||
1721 | } | ||
1722 | |||
1723 | /* Get system network statistics for device. */ | ||
1724 | static struct net_device_stats *tile_net_get_stats(struct net_device *dev) | ||
1725 | { | ||
1726 | struct tile_net_priv *priv = netdev_priv(dev); | ||
1727 | return &priv->stats; | ||
1728 | } | ||
1729 | |||
1730 | /* Change the MTU. */ | ||
1731 | static int tile_net_change_mtu(struct net_device *dev, int new_mtu) | ||
1732 | { | ||
1733 | if ((new_mtu < 68) || (new_mtu > 1500)) | ||
1734 | return -EINVAL; | ||
1735 | dev->mtu = new_mtu; | ||
1736 | return 0; | ||
1737 | } | ||
1738 | |||
1739 | /* Change the Ethernet address of the NIC. | ||
1740 | * | ||
1741 | * The hypervisor driver does not support changing MAC address. However, | ||
1742 | * the hardware does not do anything with the MAC address, so the address | ||
1743 | * which gets used on outgoing packets, and which is accepted on incoming | ||
1744 | * packets, is completely up to us. | ||
1745 | * | ||
1746 | * Returns 0 on success, negative on failure. | ||
1747 | */ | ||
1748 | static int tile_net_set_mac_address(struct net_device *dev, void *p) | ||
1749 | { | ||
1750 | struct sockaddr *addr = p; | ||
1751 | |||
1752 | if (!is_valid_ether_addr(addr->sa_data)) | ||
1753 | return -EINVAL; | ||
1754 | memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); | ||
1755 | return 0; | ||
1756 | } | ||
1757 | |||
1758 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
1759 | /* Polling 'interrupt' - used by things like netconsole to send skbs | ||
1760 | * without having to re-enable interrupts. It's not called while | ||
1761 | * the interrupt routine is executing. | ||
1762 | */ | ||
1763 | static void tile_net_netpoll(struct net_device *dev) | ||
1764 | { | ||
1765 | disable_percpu_irq(ingress_irq); | ||
1766 | tile_net_handle_ingress_irq(ingress_irq, NULL); | ||
1767 | enable_percpu_irq(ingress_irq, 0); | ||
1768 | } | ||
1769 | #endif | ||
1770 | |||
1771 | static const struct net_device_ops tile_net_ops = { | ||
1772 | .ndo_open = tile_net_open, | ||
1773 | .ndo_stop = tile_net_stop, | ||
1774 | .ndo_start_xmit = tile_net_tx, | ||
1775 | .ndo_select_queue = tile_net_select_queue, | ||
1776 | .ndo_do_ioctl = tile_net_ioctl, | ||
1777 | .ndo_get_stats = tile_net_get_stats, | ||
1778 | .ndo_change_mtu = tile_net_change_mtu, | ||
1779 | .ndo_tx_timeout = tile_net_tx_timeout, | ||
1780 | .ndo_set_mac_address = tile_net_set_mac_address, | ||
1781 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
1782 | .ndo_poll_controller = tile_net_netpoll, | ||
1783 | #endif | ||
1784 | }; | ||
1785 | |||
1786 | /* The setup function. | ||
1787 | * | ||
1788 | * This uses ether_setup() to assign various fields in dev, including | ||
1789 | * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields. | ||
1790 | */ | ||
1791 | static void tile_net_setup(struct net_device *dev) | ||
1792 | { | ||
1793 | ether_setup(dev); | ||
1794 | dev->netdev_ops = &tile_net_ops; | ||
1795 | dev->watchdog_timeo = TILE_NET_TIMEOUT; | ||
1796 | dev->features |= NETIF_F_LLTX; | ||
1797 | dev->features |= NETIF_F_HW_CSUM; | ||
1798 | dev->features |= NETIF_F_SG; | ||
1799 | dev->features |= NETIF_F_TSO; | ||
1800 | dev->mtu = 1500; | ||
1801 | } | ||
1802 | |||
1803 | /* Allocate the device structure, register the device, and obtain the | ||
1804 | * MAC address from the hypervisor. | ||
1805 | */ | ||
1806 | static void tile_net_dev_init(const char *name, const uint8_t *mac) | ||
1807 | { | ||
1808 | int ret; | ||
1809 | int i; | ||
1810 | int nz_addr = 0; | ||
1811 | struct net_device *dev; | ||
1812 | struct tile_net_priv *priv; | ||
1813 | |||
1814 | /* HACK: Ignore "loop" links. */ | ||
1815 | if (strncmp(name, "loop", 4) == 0) | ||
1816 | return; | ||
1817 | |||
1818 | /* Allocate the device structure. Normally, "name" is a | ||
1819 | * template, instantiated by register_netdev(), but not for us. | ||
1820 | */ | ||
1821 | dev = alloc_netdev_mqs(sizeof(*priv), name, tile_net_setup, | ||
1822 | NR_CPUS, 1); | ||
1823 | if (!dev) { | ||
1824 | pr_err("alloc_netdev_mqs(%s) failed\n", name); | ||
1825 | return; | ||
1826 | } | ||
1827 | |||
1828 | /* Initialize "priv". */ | ||
1829 | priv = netdev_priv(dev); | ||
1830 | memset(priv, 0, sizeof(*priv)); | ||
1831 | priv->dev = dev; | ||
1832 | priv->channel = -1; | ||
1833 | priv->loopify_channel = -1; | ||
1834 | priv->echannel = -1; | ||
1835 | |||
1836 | /* Get the MAC address and set it in the device struct; this must | ||
1837 | * be done before the device is opened. If the MAC is all zeroes, | ||
1838 | * we use a random address, since we're probably on the simulator. | ||
1839 | */ | ||
1840 | for (i = 0; i < 6; i++) | ||
1841 | nz_addr |= mac[i]; | ||
1842 | |||
1843 | if (nz_addr) { | ||
1844 | memcpy(dev->dev_addr, mac, 6); | ||
1845 | dev->addr_len = 6; | ||
1846 | } else { | ||
1847 | random_ether_addr(dev->dev_addr); | ||
1848 | } | ||
1849 | |||
1850 | /* Register the network device. */ | ||
1851 | ret = register_netdev(dev); | ||
1852 | if (ret) { | ||
1853 | netdev_err(dev, "register_netdev failed %d\n", ret); | ||
1854 | free_netdev(dev); | ||
1855 | return; | ||
1856 | } | ||
1857 | } | ||
1858 | |||
1859 | /* Per-cpu module initialization. */ | ||
1860 | static void tile_net_init_module_percpu(void *unused) | ||
1861 | { | ||
1862 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); | ||
1863 | int my_cpu = smp_processor_id(); | ||
1864 | |||
1865 | info->has_iqueue = false; | ||
1866 | |||
1867 | info->my_cpu = my_cpu; | ||
1868 | |||
1869 | /* Initialize the egress timer. */ | ||
1870 | hrtimer_init(&info->egress_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
1871 | info->egress_timer.function = tile_net_handle_egress_timer; | ||
1872 | } | ||
1873 | |||
1874 | /* Module initialization. */ | ||
1875 | static int __init tile_net_init_module(void) | ||
1876 | { | ||
1877 | int i; | ||
1878 | char name[GXIO_MPIPE_LINK_NAME_LEN]; | ||
1879 | uint8_t mac[6]; | ||
1880 | |||
1881 | pr_info("Tilera Network Driver\n"); | ||
1882 | |||
1883 | mutex_init(&tile_net_devs_for_channel_mutex); | ||
1884 | |||
1885 | /* Initialize each CPU. */ | ||
1886 | on_each_cpu(tile_net_init_module_percpu, NULL, 1); | ||
1887 | |||
1888 | /* Find out what devices we have, and initialize them. */ | ||
1889 | for (i = 0; gxio_mpipe_link_enumerate_mac(i, name, mac) >= 0; i++) | ||
1890 | tile_net_dev_init(name, mac); | ||
1891 | |||
1892 | if (!network_cpus_init()) | ||
1893 | network_cpus_map = *cpu_online_mask; | ||
1894 | |||
1895 | return 0; | ||
1896 | } | ||
1897 | |||
1898 | module_init(tile_net_init_module); | ||