aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/realtek/8139cp.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/ethernet/realtek/8139cp.c')
-rw-r--r--drivers/net/ethernet/realtek/8139cp.c2064
1 files changed, 2064 insertions, 0 deletions
diff --git a/drivers/net/ethernet/realtek/8139cp.c b/drivers/net/ethernet/realtek/8139cp.c
new file mode 100644
index 000000000000..cc4c210a91f8
--- /dev/null
+++ b/drivers/net/ethernet/realtek/8139cp.c
@@ -0,0 +1,2064 @@
1/* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2/*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
18
19 See the file COPYING in this distribution for more information.
20
21 Contributors:
22
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
26
27 TODO:
28 * Test Tx checksumming thoroughly
29
30 Low priority TODO:
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
38 Tx descriptor bit
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
42
43 NOTES:
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
46
47 */
48
49#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50
51#define DRV_NAME "8139cp"
52#define DRV_VERSION "1.3"
53#define DRV_RELDATE "Mar 22, 2004"
54
55
56#include <linux/module.h>
57#include <linux/moduleparam.h>
58#include <linux/kernel.h>
59#include <linux/compiler.h>
60#include <linux/netdevice.h>
61#include <linux/etherdevice.h>
62#include <linux/init.h>
63#include <linux/interrupt.h>
64#include <linux/pci.h>
65#include <linux/dma-mapping.h>
66#include <linux/delay.h>
67#include <linux/ethtool.h>
68#include <linux/gfp.h>
69#include <linux/mii.h>
70#include <linux/if_vlan.h>
71#include <linux/crc32.h>
72#include <linux/in.h>
73#include <linux/ip.h>
74#include <linux/tcp.h>
75#include <linux/udp.h>
76#include <linux/cache.h>
77#include <asm/io.h>
78#include <asm/irq.h>
79#include <asm/uaccess.h>
80
81/* These identify the driver base version and may not be removed. */
82static char version[] =
83DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84
85MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87MODULE_VERSION(DRV_VERSION);
88MODULE_LICENSE("GPL");
89
90static int debug = -1;
91module_param(debug, int, 0);
92MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93
94/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
96static int multicast_filter_limit = 32;
97module_param(multicast_filter_limit, int, 0);
98MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99
100#define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
101 NETIF_MSG_PROBE | \
102 NETIF_MSG_LINK)
103#define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
104#define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
105#define CP_REGS_SIZE (0xff + 1)
106#define CP_REGS_VER 1 /* version 1 */
107#define CP_RX_RING_SIZE 64
108#define CP_TX_RING_SIZE 64
109#define CP_RING_BYTES \
110 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
111 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
112 CP_STATS_SIZE)
113#define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
114#define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
115#define TX_BUFFS_AVAIL(CP) \
116 (((CP)->tx_tail <= (CP)->tx_head) ? \
117 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
118 (CP)->tx_tail - (CP)->tx_head - 1)
119
120#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
121#define CP_INTERNAL_PHY 32
122
123/* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
124#define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
125#define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
126#define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
127#define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
128
129/* Time in jiffies before concluding the transmitter is hung. */
130#define TX_TIMEOUT (6*HZ)
131
132/* hardware minimum and maximum for a single frame's data payload */
133#define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
134#define CP_MAX_MTU 4096
135
136enum {
137 /* NIC register offsets */
138 MAC0 = 0x00, /* Ethernet hardware address. */
139 MAR0 = 0x08, /* Multicast filter. */
140 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
141 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
142 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
143 Cmd = 0x37, /* Command register */
144 IntrMask = 0x3C, /* Interrupt mask */
145 IntrStatus = 0x3E, /* Interrupt status */
146 TxConfig = 0x40, /* Tx configuration */
147 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
148 RxConfig = 0x44, /* Rx configuration */
149 RxMissed = 0x4C, /* 24 bits valid, write clears */
150 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 Config1 = 0x52, /* Config1 */
152 Config3 = 0x59, /* Config3 */
153 Config4 = 0x5A, /* Config4 */
154 MultiIntr = 0x5C, /* Multiple interrupt select */
155 BasicModeCtrl = 0x62, /* MII BMCR */
156 BasicModeStatus = 0x64, /* MII BMSR */
157 NWayAdvert = 0x66, /* MII ADVERTISE */
158 NWayLPAR = 0x68, /* MII LPA */
159 NWayExpansion = 0x6A, /* MII Expansion */
160 Config5 = 0xD8, /* Config5 */
161 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
162 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
163 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
164 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
165 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
166 TxThresh = 0xEC, /* Early Tx threshold */
167 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
168 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
169
170 /* Tx and Rx status descriptors */
171 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
172 RingEnd = (1 << 30), /* End of descriptor ring */
173 FirstFrag = (1 << 29), /* First segment of a packet */
174 LastFrag = (1 << 28), /* Final segment of a packet */
175 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
176 MSSShift = 16, /* MSS value position */
177 MSSMask = 0xfff, /* MSS value: 11 bits */
178 TxError = (1 << 23), /* Tx error summary */
179 RxError = (1 << 20), /* Rx error summary */
180 IPCS = (1 << 18), /* Calculate IP checksum */
181 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
182 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
183 TxVlanTag = (1 << 17), /* Add VLAN tag */
184 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
185 IPFail = (1 << 15), /* IP checksum failed */
186 UDPFail = (1 << 14), /* UDP/IP checksum failed */
187 TCPFail = (1 << 13), /* TCP/IP checksum failed */
188 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
189 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
190 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
191 RxProtoTCP = 1,
192 RxProtoUDP = 2,
193 RxProtoIP = 3,
194 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
195 TxOWC = (1 << 22), /* Tx Out-of-window collision */
196 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
197 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
198 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
199 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
200 RxErrFrame = (1 << 27), /* Rx frame alignment error */
201 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
202 RxErrCRC = (1 << 18), /* Rx CRC error */
203 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
204 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
205 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
206
207 /* StatsAddr register */
208 DumpStats = (1 << 3), /* Begin stats dump */
209
210 /* RxConfig register */
211 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
212 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
213 AcceptErr = 0x20, /* Accept packets with CRC errors */
214 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
215 AcceptBroadcast = 0x08, /* Accept broadcast packets */
216 AcceptMulticast = 0x04, /* Accept multicast packets */
217 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
218 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
219
220 /* IntrMask / IntrStatus registers */
221 PciErr = (1 << 15), /* System error on the PCI bus */
222 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
223 LenChg = (1 << 13), /* Cable length change */
224 SWInt = (1 << 8), /* Software-requested interrupt */
225 TxEmpty = (1 << 7), /* No Tx descriptors available */
226 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
227 LinkChg = (1 << 5), /* Packet underrun, or link change */
228 RxEmpty = (1 << 4), /* No Rx descriptors available */
229 TxErr = (1 << 3), /* Tx error */
230 TxOK = (1 << 2), /* Tx packet sent */
231 RxErr = (1 << 1), /* Rx error */
232 RxOK = (1 << 0), /* Rx packet received */
233 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
234 but hardware likes to raise it */
235
236 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
237 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
238 RxErr | RxOK | IntrResvd,
239
240 /* C mode command register */
241 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
242 RxOn = (1 << 3), /* Rx mode enable */
243 TxOn = (1 << 2), /* Tx mode enable */
244
245 /* C+ mode command register */
246 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
247 RxChkSum = (1 << 5), /* Rx checksum offload enable */
248 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
249 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
250 CpRxOn = (1 << 1), /* Rx mode enable */
251 CpTxOn = (1 << 0), /* Tx mode enable */
252
253 /* Cfg9436 EEPROM control register */
254 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
255 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
256
257 /* TxConfig register */
258 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
259 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
260
261 /* Early Tx Threshold register */
262 TxThreshMask = 0x3f, /* Mask bits 5-0 */
263 TxThreshMax = 2048, /* Max early Tx threshold */
264
265 /* Config1 register */
266 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
267 LWACT = (1 << 4), /* LWAKE active mode */
268 PMEnable = (1 << 0), /* Enable various PM features of chip */
269
270 /* Config3 register */
271 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
272 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
273 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
274
275 /* Config4 register */
276 LWPTN = (1 << 1), /* LWAKE Pattern */
277 LWPME = (1 << 4), /* LANWAKE vs PMEB */
278
279 /* Config5 register */
280 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
281 MWF = (1 << 5), /* Accept Multicast wakeup frame */
282 UWF = (1 << 4), /* Accept Unicast wakeup frame */
283 LANWake = (1 << 1), /* Enable LANWake signal */
284 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
285
286 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
287 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
288 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
289};
290
291static const unsigned int cp_rx_config =
292 (RX_FIFO_THRESH << RxCfgFIFOShift) |
293 (RX_DMA_BURST << RxCfgDMAShift);
294
295struct cp_desc {
296 __le32 opts1;
297 __le32 opts2;
298 __le64 addr;
299};
300
301struct cp_dma_stats {
302 __le64 tx_ok;
303 __le64 rx_ok;
304 __le64 tx_err;
305 __le32 rx_err;
306 __le16 rx_fifo;
307 __le16 frame_align;
308 __le32 tx_ok_1col;
309 __le32 tx_ok_mcol;
310 __le64 rx_ok_phys;
311 __le64 rx_ok_bcast;
312 __le32 rx_ok_mcast;
313 __le16 tx_abort;
314 __le16 tx_underrun;
315} __packed;
316
317struct cp_extra_stats {
318 unsigned long rx_frags;
319};
320
321struct cp_private {
322 void __iomem *regs;
323 struct net_device *dev;
324 spinlock_t lock;
325 u32 msg_enable;
326
327 struct napi_struct napi;
328
329 struct pci_dev *pdev;
330 u32 rx_config;
331 u16 cpcmd;
332
333 struct cp_extra_stats cp_stats;
334
335 unsigned rx_head ____cacheline_aligned;
336 unsigned rx_tail;
337 struct cp_desc *rx_ring;
338 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
339
340 unsigned tx_head ____cacheline_aligned;
341 unsigned tx_tail;
342 struct cp_desc *tx_ring;
343 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
344
345 unsigned rx_buf_sz;
346 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
347
348 dma_addr_t ring_dma;
349
350 struct mii_if_info mii_if;
351};
352
353#define cpr8(reg) readb(cp->regs + (reg))
354#define cpr16(reg) readw(cp->regs + (reg))
355#define cpr32(reg) readl(cp->regs + (reg))
356#define cpw8(reg,val) writeb((val), cp->regs + (reg))
357#define cpw16(reg,val) writew((val), cp->regs + (reg))
358#define cpw32(reg,val) writel((val), cp->regs + (reg))
359#define cpw8_f(reg,val) do { \
360 writeb((val), cp->regs + (reg)); \
361 readb(cp->regs + (reg)); \
362 } while (0)
363#define cpw16_f(reg,val) do { \
364 writew((val), cp->regs + (reg)); \
365 readw(cp->regs + (reg)); \
366 } while (0)
367#define cpw32_f(reg,val) do { \
368 writel((val), cp->regs + (reg)); \
369 readl(cp->regs + (reg)); \
370 } while (0)
371
372
373static void __cp_set_rx_mode (struct net_device *dev);
374static void cp_tx (struct cp_private *cp);
375static void cp_clean_rings (struct cp_private *cp);
376#ifdef CONFIG_NET_POLL_CONTROLLER
377static void cp_poll_controller(struct net_device *dev);
378#endif
379static int cp_get_eeprom_len(struct net_device *dev);
380static int cp_get_eeprom(struct net_device *dev,
381 struct ethtool_eeprom *eeprom, u8 *data);
382static int cp_set_eeprom(struct net_device *dev,
383 struct ethtool_eeprom *eeprom, u8 *data);
384
385static DEFINE_PCI_DEVICE_TABLE(cp_pci_tbl) = {
386 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
387 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
388 { },
389};
390MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
391
392static struct {
393 const char str[ETH_GSTRING_LEN];
394} ethtool_stats_keys[] = {
395 { "tx_ok" },
396 { "rx_ok" },
397 { "tx_err" },
398 { "rx_err" },
399 { "rx_fifo" },
400 { "frame_align" },
401 { "tx_ok_1col" },
402 { "tx_ok_mcol" },
403 { "rx_ok_phys" },
404 { "rx_ok_bcast" },
405 { "rx_ok_mcast" },
406 { "tx_abort" },
407 { "tx_underrun" },
408 { "rx_frags" },
409};
410
411
412static inline void cp_set_rxbufsize (struct cp_private *cp)
413{
414 unsigned int mtu = cp->dev->mtu;
415
416 if (mtu > ETH_DATA_LEN)
417 /* MTU + ethernet header + FCS + optional VLAN tag */
418 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
419 else
420 cp->rx_buf_sz = PKT_BUF_SZ;
421}
422
423static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
424 struct cp_desc *desc)
425{
426 u32 opts2 = le32_to_cpu(desc->opts2);
427
428 skb->protocol = eth_type_trans (skb, cp->dev);
429
430 cp->dev->stats.rx_packets++;
431 cp->dev->stats.rx_bytes += skb->len;
432
433 if (opts2 & RxVlanTagged)
434 __vlan_hwaccel_put_tag(skb, swab16(opts2 & 0xffff));
435
436 napi_gro_receive(&cp->napi, skb);
437}
438
439static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
440 u32 status, u32 len)
441{
442 netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
443 rx_tail, status, len);
444 cp->dev->stats.rx_errors++;
445 if (status & RxErrFrame)
446 cp->dev->stats.rx_frame_errors++;
447 if (status & RxErrCRC)
448 cp->dev->stats.rx_crc_errors++;
449 if ((status & RxErrRunt) || (status & RxErrLong))
450 cp->dev->stats.rx_length_errors++;
451 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
452 cp->dev->stats.rx_length_errors++;
453 if (status & RxErrFIFO)
454 cp->dev->stats.rx_fifo_errors++;
455}
456
457static inline unsigned int cp_rx_csum_ok (u32 status)
458{
459 unsigned int protocol = (status >> 16) & 0x3;
460
461 if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
462 ((protocol == RxProtoUDP) && !(status & UDPFail)))
463 return 1;
464 else
465 return 0;
466}
467
468static int cp_rx_poll(struct napi_struct *napi, int budget)
469{
470 struct cp_private *cp = container_of(napi, struct cp_private, napi);
471 struct net_device *dev = cp->dev;
472 unsigned int rx_tail = cp->rx_tail;
473 int rx;
474
475rx_status_loop:
476 rx = 0;
477 cpw16(IntrStatus, cp_rx_intr_mask);
478
479 while (1) {
480 u32 status, len;
481 dma_addr_t mapping;
482 struct sk_buff *skb, *new_skb;
483 struct cp_desc *desc;
484 const unsigned buflen = cp->rx_buf_sz;
485
486 skb = cp->rx_skb[rx_tail];
487 BUG_ON(!skb);
488
489 desc = &cp->rx_ring[rx_tail];
490 status = le32_to_cpu(desc->opts1);
491 if (status & DescOwn)
492 break;
493
494 len = (status & 0x1fff) - 4;
495 mapping = le64_to_cpu(desc->addr);
496
497 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
498 /* we don't support incoming fragmented frames.
499 * instead, we attempt to ensure that the
500 * pre-allocated RX skbs are properly sized such
501 * that RX fragments are never encountered
502 */
503 cp_rx_err_acct(cp, rx_tail, status, len);
504 dev->stats.rx_dropped++;
505 cp->cp_stats.rx_frags++;
506 goto rx_next;
507 }
508
509 if (status & (RxError | RxErrFIFO)) {
510 cp_rx_err_acct(cp, rx_tail, status, len);
511 goto rx_next;
512 }
513
514 netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
515 rx_tail, status, len);
516
517 new_skb = netdev_alloc_skb_ip_align(dev, buflen);
518 if (!new_skb) {
519 dev->stats.rx_dropped++;
520 goto rx_next;
521 }
522
523 dma_unmap_single(&cp->pdev->dev, mapping,
524 buflen, PCI_DMA_FROMDEVICE);
525
526 /* Handle checksum offloading for incoming packets. */
527 if (cp_rx_csum_ok(status))
528 skb->ip_summed = CHECKSUM_UNNECESSARY;
529 else
530 skb_checksum_none_assert(skb);
531
532 skb_put(skb, len);
533
534 mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
535 PCI_DMA_FROMDEVICE);
536 cp->rx_skb[rx_tail] = new_skb;
537
538 cp_rx_skb(cp, skb, desc);
539 rx++;
540
541rx_next:
542 cp->rx_ring[rx_tail].opts2 = 0;
543 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
544 if (rx_tail == (CP_RX_RING_SIZE - 1))
545 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
546 cp->rx_buf_sz);
547 else
548 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
549 rx_tail = NEXT_RX(rx_tail);
550
551 if (rx >= budget)
552 break;
553 }
554
555 cp->rx_tail = rx_tail;
556
557 /* if we did not reach work limit, then we're done with
558 * this round of polling
559 */
560 if (rx < budget) {
561 unsigned long flags;
562
563 if (cpr16(IntrStatus) & cp_rx_intr_mask)
564 goto rx_status_loop;
565
566 spin_lock_irqsave(&cp->lock, flags);
567 __napi_complete(napi);
568 cpw16_f(IntrMask, cp_intr_mask);
569 spin_unlock_irqrestore(&cp->lock, flags);
570 }
571
572 return rx;
573}
574
575static irqreturn_t cp_interrupt (int irq, void *dev_instance)
576{
577 struct net_device *dev = dev_instance;
578 struct cp_private *cp;
579 u16 status;
580
581 if (unlikely(dev == NULL))
582 return IRQ_NONE;
583 cp = netdev_priv(dev);
584
585 status = cpr16(IntrStatus);
586 if (!status || (status == 0xFFFF))
587 return IRQ_NONE;
588
589 netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
590 status, cpr8(Cmd), cpr16(CpCmd));
591
592 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
593
594 spin_lock(&cp->lock);
595
596 /* close possible race's with dev_close */
597 if (unlikely(!netif_running(dev))) {
598 cpw16(IntrMask, 0);
599 spin_unlock(&cp->lock);
600 return IRQ_HANDLED;
601 }
602
603 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
604 if (napi_schedule_prep(&cp->napi)) {
605 cpw16_f(IntrMask, cp_norx_intr_mask);
606 __napi_schedule(&cp->napi);
607 }
608
609 if (status & (TxOK | TxErr | TxEmpty | SWInt))
610 cp_tx(cp);
611 if (status & LinkChg)
612 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
613
614 spin_unlock(&cp->lock);
615
616 if (status & PciErr) {
617 u16 pci_status;
618
619 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
620 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
621 netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
622 status, pci_status);
623
624 /* TODO: reset hardware */
625 }
626
627 return IRQ_HANDLED;
628}
629
630#ifdef CONFIG_NET_POLL_CONTROLLER
631/*
632 * Polling receive - used by netconsole and other diagnostic tools
633 * to allow network i/o with interrupts disabled.
634 */
635static void cp_poll_controller(struct net_device *dev)
636{
637 disable_irq(dev->irq);
638 cp_interrupt(dev->irq, dev);
639 enable_irq(dev->irq);
640}
641#endif
642
643static void cp_tx (struct cp_private *cp)
644{
645 unsigned tx_head = cp->tx_head;
646 unsigned tx_tail = cp->tx_tail;
647
648 while (tx_tail != tx_head) {
649 struct cp_desc *txd = cp->tx_ring + tx_tail;
650 struct sk_buff *skb;
651 u32 status;
652
653 rmb();
654 status = le32_to_cpu(txd->opts1);
655 if (status & DescOwn)
656 break;
657
658 skb = cp->tx_skb[tx_tail];
659 BUG_ON(!skb);
660
661 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
662 le32_to_cpu(txd->opts1) & 0xffff,
663 PCI_DMA_TODEVICE);
664
665 if (status & LastFrag) {
666 if (status & (TxError | TxFIFOUnder)) {
667 netif_dbg(cp, tx_err, cp->dev,
668 "tx err, status 0x%x\n", status);
669 cp->dev->stats.tx_errors++;
670 if (status & TxOWC)
671 cp->dev->stats.tx_window_errors++;
672 if (status & TxMaxCol)
673 cp->dev->stats.tx_aborted_errors++;
674 if (status & TxLinkFail)
675 cp->dev->stats.tx_carrier_errors++;
676 if (status & TxFIFOUnder)
677 cp->dev->stats.tx_fifo_errors++;
678 } else {
679 cp->dev->stats.collisions +=
680 ((status >> TxColCntShift) & TxColCntMask);
681 cp->dev->stats.tx_packets++;
682 cp->dev->stats.tx_bytes += skb->len;
683 netif_dbg(cp, tx_done, cp->dev,
684 "tx done, slot %d\n", tx_tail);
685 }
686 dev_kfree_skb_irq(skb);
687 }
688
689 cp->tx_skb[tx_tail] = NULL;
690
691 tx_tail = NEXT_TX(tx_tail);
692 }
693
694 cp->tx_tail = tx_tail;
695
696 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
697 netif_wake_queue(cp->dev);
698}
699
700static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
701{
702 return vlan_tx_tag_present(skb) ?
703 TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00;
704}
705
706static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
707 struct net_device *dev)
708{
709 struct cp_private *cp = netdev_priv(dev);
710 unsigned entry;
711 u32 eor, flags;
712 unsigned long intr_flags;
713 __le32 opts2;
714 int mss = 0;
715
716 spin_lock_irqsave(&cp->lock, intr_flags);
717
718 /* This is a hard error, log it. */
719 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
720 netif_stop_queue(dev);
721 spin_unlock_irqrestore(&cp->lock, intr_flags);
722 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
723 return NETDEV_TX_BUSY;
724 }
725
726 entry = cp->tx_head;
727 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
728 mss = skb_shinfo(skb)->gso_size;
729
730 opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
731
732 if (skb_shinfo(skb)->nr_frags == 0) {
733 struct cp_desc *txd = &cp->tx_ring[entry];
734 u32 len;
735 dma_addr_t mapping;
736
737 len = skb->len;
738 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
739 txd->opts2 = opts2;
740 txd->addr = cpu_to_le64(mapping);
741 wmb();
742
743 flags = eor | len | DescOwn | FirstFrag | LastFrag;
744
745 if (mss)
746 flags |= LargeSend | ((mss & MSSMask) << MSSShift);
747 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
748 const struct iphdr *ip = ip_hdr(skb);
749 if (ip->protocol == IPPROTO_TCP)
750 flags |= IPCS | TCPCS;
751 else if (ip->protocol == IPPROTO_UDP)
752 flags |= IPCS | UDPCS;
753 else
754 WARN_ON(1); /* we need a WARN() */
755 }
756
757 txd->opts1 = cpu_to_le32(flags);
758 wmb();
759
760 cp->tx_skb[entry] = skb;
761 entry = NEXT_TX(entry);
762 } else {
763 struct cp_desc *txd;
764 u32 first_len, first_eor;
765 dma_addr_t first_mapping;
766 int frag, first_entry = entry;
767 const struct iphdr *ip = ip_hdr(skb);
768
769 /* We must give this initial chunk to the device last.
770 * Otherwise we could race with the device.
771 */
772 first_eor = eor;
773 first_len = skb_headlen(skb);
774 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
775 first_len, PCI_DMA_TODEVICE);
776 cp->tx_skb[entry] = skb;
777 entry = NEXT_TX(entry);
778
779 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
780 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
781 u32 len;
782 u32 ctrl;
783 dma_addr_t mapping;
784
785 len = this_frag->size;
786 mapping = dma_map_single(&cp->pdev->dev,
787 ((void *) page_address(this_frag->page) +
788 this_frag->page_offset),
789 len, PCI_DMA_TODEVICE);
790 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
791
792 ctrl = eor | len | DescOwn;
793
794 if (mss)
795 ctrl |= LargeSend |
796 ((mss & MSSMask) << MSSShift);
797 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
798 if (ip->protocol == IPPROTO_TCP)
799 ctrl |= IPCS | TCPCS;
800 else if (ip->protocol == IPPROTO_UDP)
801 ctrl |= IPCS | UDPCS;
802 else
803 BUG();
804 }
805
806 if (frag == skb_shinfo(skb)->nr_frags - 1)
807 ctrl |= LastFrag;
808
809 txd = &cp->tx_ring[entry];
810 txd->opts2 = opts2;
811 txd->addr = cpu_to_le64(mapping);
812 wmb();
813
814 txd->opts1 = cpu_to_le32(ctrl);
815 wmb();
816
817 cp->tx_skb[entry] = skb;
818 entry = NEXT_TX(entry);
819 }
820
821 txd = &cp->tx_ring[first_entry];
822 txd->opts2 = opts2;
823 txd->addr = cpu_to_le64(first_mapping);
824 wmb();
825
826 if (skb->ip_summed == CHECKSUM_PARTIAL) {
827 if (ip->protocol == IPPROTO_TCP)
828 txd->opts1 = cpu_to_le32(first_eor | first_len |
829 FirstFrag | DescOwn |
830 IPCS | TCPCS);
831 else if (ip->protocol == IPPROTO_UDP)
832 txd->opts1 = cpu_to_le32(first_eor | first_len |
833 FirstFrag | DescOwn |
834 IPCS | UDPCS);
835 else
836 BUG();
837 } else
838 txd->opts1 = cpu_to_le32(first_eor | first_len |
839 FirstFrag | DescOwn);
840 wmb();
841 }
842 cp->tx_head = entry;
843 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
844 entry, skb->len);
845 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
846 netif_stop_queue(dev);
847
848 spin_unlock_irqrestore(&cp->lock, intr_flags);
849
850 cpw8(TxPoll, NormalTxPoll);
851
852 return NETDEV_TX_OK;
853}
854
855/* Set or clear the multicast filter for this adaptor.
856 This routine is not state sensitive and need not be SMP locked. */
857
858static void __cp_set_rx_mode (struct net_device *dev)
859{
860 struct cp_private *cp = netdev_priv(dev);
861 u32 mc_filter[2]; /* Multicast hash filter */
862 int rx_mode;
863 u32 tmp;
864
865 /* Note: do not reorder, GCC is clever about common statements. */
866 if (dev->flags & IFF_PROMISC) {
867 /* Unconditionally log net taps. */
868 rx_mode =
869 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
870 AcceptAllPhys;
871 mc_filter[1] = mc_filter[0] = 0xffffffff;
872 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
873 (dev->flags & IFF_ALLMULTI)) {
874 /* Too many to filter perfectly -- accept all multicasts. */
875 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
876 mc_filter[1] = mc_filter[0] = 0xffffffff;
877 } else {
878 struct netdev_hw_addr *ha;
879 rx_mode = AcceptBroadcast | AcceptMyPhys;
880 mc_filter[1] = mc_filter[0] = 0;
881 netdev_for_each_mc_addr(ha, dev) {
882 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
883
884 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
885 rx_mode |= AcceptMulticast;
886 }
887 }
888
889 /* We can safely update without stopping the chip. */
890 tmp = cp_rx_config | rx_mode;
891 if (cp->rx_config != tmp) {
892 cpw32_f (RxConfig, tmp);
893 cp->rx_config = tmp;
894 }
895 cpw32_f (MAR0 + 0, mc_filter[0]);
896 cpw32_f (MAR0 + 4, mc_filter[1]);
897}
898
899static void cp_set_rx_mode (struct net_device *dev)
900{
901 unsigned long flags;
902 struct cp_private *cp = netdev_priv(dev);
903
904 spin_lock_irqsave (&cp->lock, flags);
905 __cp_set_rx_mode(dev);
906 spin_unlock_irqrestore (&cp->lock, flags);
907}
908
909static void __cp_get_stats(struct cp_private *cp)
910{
911 /* only lower 24 bits valid; write any value to clear */
912 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
913 cpw32 (RxMissed, 0);
914}
915
916static struct net_device_stats *cp_get_stats(struct net_device *dev)
917{
918 struct cp_private *cp = netdev_priv(dev);
919 unsigned long flags;
920
921 /* The chip only need report frame silently dropped. */
922 spin_lock_irqsave(&cp->lock, flags);
923 if (netif_running(dev) && netif_device_present(dev))
924 __cp_get_stats(cp);
925 spin_unlock_irqrestore(&cp->lock, flags);
926
927 return &dev->stats;
928}
929
930static void cp_stop_hw (struct cp_private *cp)
931{
932 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
933 cpw16_f(IntrMask, 0);
934 cpw8(Cmd, 0);
935 cpw16_f(CpCmd, 0);
936 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
937
938 cp->rx_tail = 0;
939 cp->tx_head = cp->tx_tail = 0;
940}
941
942static void cp_reset_hw (struct cp_private *cp)
943{
944 unsigned work = 1000;
945
946 cpw8(Cmd, CmdReset);
947
948 while (work--) {
949 if (!(cpr8(Cmd) & CmdReset))
950 return;
951
952 schedule_timeout_uninterruptible(10);
953 }
954
955 netdev_err(cp->dev, "hardware reset timeout\n");
956}
957
958static inline void cp_start_hw (struct cp_private *cp)
959{
960 cpw16(CpCmd, cp->cpcmd);
961 cpw8(Cmd, RxOn | TxOn);
962}
963
964static void cp_init_hw (struct cp_private *cp)
965{
966 struct net_device *dev = cp->dev;
967 dma_addr_t ring_dma;
968
969 cp_reset_hw(cp);
970
971 cpw8_f (Cfg9346, Cfg9346_Unlock);
972
973 /* Restore our idea of the MAC address. */
974 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
975 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
976
977 cp_start_hw(cp);
978 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
979
980 __cp_set_rx_mode(dev);
981 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
982
983 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
984 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
985 cpw8(Config3, PARMEnable);
986 cp->wol_enabled = 0;
987
988 cpw8(Config5, cpr8(Config5) & PMEStatus);
989
990 cpw32_f(HiTxRingAddr, 0);
991 cpw32_f(HiTxRingAddr + 4, 0);
992
993 ring_dma = cp->ring_dma;
994 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
995 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
996
997 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
998 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
999 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1000
1001 cpw16(MultiIntr, 0);
1002
1003 cpw16_f(IntrMask, cp_intr_mask);
1004
1005 cpw8_f(Cfg9346, Cfg9346_Lock);
1006}
1007
1008static int cp_refill_rx(struct cp_private *cp)
1009{
1010 struct net_device *dev = cp->dev;
1011 unsigned i;
1012
1013 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1014 struct sk_buff *skb;
1015 dma_addr_t mapping;
1016
1017 skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1018 if (!skb)
1019 goto err_out;
1020
1021 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1022 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1023 cp->rx_skb[i] = skb;
1024
1025 cp->rx_ring[i].opts2 = 0;
1026 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1027 if (i == (CP_RX_RING_SIZE - 1))
1028 cp->rx_ring[i].opts1 =
1029 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1030 else
1031 cp->rx_ring[i].opts1 =
1032 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1033 }
1034
1035 return 0;
1036
1037err_out:
1038 cp_clean_rings(cp);
1039 return -ENOMEM;
1040}
1041
1042static void cp_init_rings_index (struct cp_private *cp)
1043{
1044 cp->rx_tail = 0;
1045 cp->tx_head = cp->tx_tail = 0;
1046}
1047
1048static int cp_init_rings (struct cp_private *cp)
1049{
1050 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1051 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1052
1053 cp_init_rings_index(cp);
1054
1055 return cp_refill_rx (cp);
1056}
1057
1058static int cp_alloc_rings (struct cp_private *cp)
1059{
1060 void *mem;
1061
1062 mem = dma_alloc_coherent(&cp->pdev->dev, CP_RING_BYTES,
1063 &cp->ring_dma, GFP_KERNEL);
1064 if (!mem)
1065 return -ENOMEM;
1066
1067 cp->rx_ring = mem;
1068 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1069
1070 return cp_init_rings(cp);
1071}
1072
1073static void cp_clean_rings (struct cp_private *cp)
1074{
1075 struct cp_desc *desc;
1076 unsigned i;
1077
1078 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1079 if (cp->rx_skb[i]) {
1080 desc = cp->rx_ring + i;
1081 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1082 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1083 dev_kfree_skb(cp->rx_skb[i]);
1084 }
1085 }
1086
1087 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1088 if (cp->tx_skb[i]) {
1089 struct sk_buff *skb = cp->tx_skb[i];
1090
1091 desc = cp->tx_ring + i;
1092 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1093 le32_to_cpu(desc->opts1) & 0xffff,
1094 PCI_DMA_TODEVICE);
1095 if (le32_to_cpu(desc->opts1) & LastFrag)
1096 dev_kfree_skb(skb);
1097 cp->dev->stats.tx_dropped++;
1098 }
1099 }
1100
1101 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1102 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1103
1104 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1105 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1106}
1107
1108static void cp_free_rings (struct cp_private *cp)
1109{
1110 cp_clean_rings(cp);
1111 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1112 cp->ring_dma);
1113 cp->rx_ring = NULL;
1114 cp->tx_ring = NULL;
1115}
1116
1117static int cp_open (struct net_device *dev)
1118{
1119 struct cp_private *cp = netdev_priv(dev);
1120 int rc;
1121
1122 netif_dbg(cp, ifup, dev, "enabling interface\n");
1123
1124 rc = cp_alloc_rings(cp);
1125 if (rc)
1126 return rc;
1127
1128 napi_enable(&cp->napi);
1129
1130 cp_init_hw(cp);
1131
1132 rc = request_irq(dev->irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1133 if (rc)
1134 goto err_out_hw;
1135
1136 netif_carrier_off(dev);
1137 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1138 netif_start_queue(dev);
1139
1140 return 0;
1141
1142err_out_hw:
1143 napi_disable(&cp->napi);
1144 cp_stop_hw(cp);
1145 cp_free_rings(cp);
1146 return rc;
1147}
1148
1149static int cp_close (struct net_device *dev)
1150{
1151 struct cp_private *cp = netdev_priv(dev);
1152 unsigned long flags;
1153
1154 napi_disable(&cp->napi);
1155
1156 netif_dbg(cp, ifdown, dev, "disabling interface\n");
1157
1158 spin_lock_irqsave(&cp->lock, flags);
1159
1160 netif_stop_queue(dev);
1161 netif_carrier_off(dev);
1162
1163 cp_stop_hw(cp);
1164
1165 spin_unlock_irqrestore(&cp->lock, flags);
1166
1167 free_irq(dev->irq, dev);
1168
1169 cp_free_rings(cp);
1170 return 0;
1171}
1172
1173static void cp_tx_timeout(struct net_device *dev)
1174{
1175 struct cp_private *cp = netdev_priv(dev);
1176 unsigned long flags;
1177 int rc;
1178
1179 netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1180 cpr8(Cmd), cpr16(CpCmd),
1181 cpr16(IntrStatus), cpr16(IntrMask));
1182
1183 spin_lock_irqsave(&cp->lock, flags);
1184
1185 cp_stop_hw(cp);
1186 cp_clean_rings(cp);
1187 rc = cp_init_rings(cp);
1188 cp_start_hw(cp);
1189
1190 netif_wake_queue(dev);
1191
1192 spin_unlock_irqrestore(&cp->lock, flags);
1193}
1194
1195#ifdef BROKEN
1196static int cp_change_mtu(struct net_device *dev, int new_mtu)
1197{
1198 struct cp_private *cp = netdev_priv(dev);
1199 int rc;
1200 unsigned long flags;
1201
1202 /* check for invalid MTU, according to hardware limits */
1203 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1204 return -EINVAL;
1205
1206 /* if network interface not up, no need for complexity */
1207 if (!netif_running(dev)) {
1208 dev->mtu = new_mtu;
1209 cp_set_rxbufsize(cp); /* set new rx buf size */
1210 return 0;
1211 }
1212
1213 spin_lock_irqsave(&cp->lock, flags);
1214
1215 cp_stop_hw(cp); /* stop h/w and free rings */
1216 cp_clean_rings(cp);
1217
1218 dev->mtu = new_mtu;
1219 cp_set_rxbufsize(cp); /* set new rx buf size */
1220
1221 rc = cp_init_rings(cp); /* realloc and restart h/w */
1222 cp_start_hw(cp);
1223
1224 spin_unlock_irqrestore(&cp->lock, flags);
1225
1226 return rc;
1227}
1228#endif /* BROKEN */
1229
1230static const char mii_2_8139_map[8] = {
1231 BasicModeCtrl,
1232 BasicModeStatus,
1233 0,
1234 0,
1235 NWayAdvert,
1236 NWayLPAR,
1237 NWayExpansion,
1238 0
1239};
1240
1241static int mdio_read(struct net_device *dev, int phy_id, int location)
1242{
1243 struct cp_private *cp = netdev_priv(dev);
1244
1245 return location < 8 && mii_2_8139_map[location] ?
1246 readw(cp->regs + mii_2_8139_map[location]) : 0;
1247}
1248
1249
1250static void mdio_write(struct net_device *dev, int phy_id, int location,
1251 int value)
1252{
1253 struct cp_private *cp = netdev_priv(dev);
1254
1255 if (location == 0) {
1256 cpw8(Cfg9346, Cfg9346_Unlock);
1257 cpw16(BasicModeCtrl, value);
1258 cpw8(Cfg9346, Cfg9346_Lock);
1259 } else if (location < 8 && mii_2_8139_map[location])
1260 cpw16(mii_2_8139_map[location], value);
1261}
1262
1263/* Set the ethtool Wake-on-LAN settings */
1264static int netdev_set_wol (struct cp_private *cp,
1265 const struct ethtool_wolinfo *wol)
1266{
1267 u8 options;
1268
1269 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1270 /* If WOL is being disabled, no need for complexity */
1271 if (wol->wolopts) {
1272 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1273 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1274 }
1275
1276 cpw8 (Cfg9346, Cfg9346_Unlock);
1277 cpw8 (Config3, options);
1278 cpw8 (Cfg9346, Cfg9346_Lock);
1279
1280 options = 0; /* Paranoia setting */
1281 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1282 /* If WOL is being disabled, no need for complexity */
1283 if (wol->wolopts) {
1284 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1285 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1286 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1287 }
1288
1289 cpw8 (Config5, options);
1290
1291 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1292
1293 return 0;
1294}
1295
1296/* Get the ethtool Wake-on-LAN settings */
1297static void netdev_get_wol (struct cp_private *cp,
1298 struct ethtool_wolinfo *wol)
1299{
1300 u8 options;
1301
1302 wol->wolopts = 0; /* Start from scratch */
1303 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1304 WAKE_MCAST | WAKE_UCAST;
1305 /* We don't need to go on if WOL is disabled */
1306 if (!cp->wol_enabled) return;
1307
1308 options = cpr8 (Config3);
1309 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1310 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1311
1312 options = 0; /* Paranoia setting */
1313 options = cpr8 (Config5);
1314 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1315 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1316 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1317}
1318
1319static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1320{
1321 struct cp_private *cp = netdev_priv(dev);
1322
1323 strcpy (info->driver, DRV_NAME);
1324 strcpy (info->version, DRV_VERSION);
1325 strcpy (info->bus_info, pci_name(cp->pdev));
1326}
1327
1328static int cp_get_regs_len(struct net_device *dev)
1329{
1330 return CP_REGS_SIZE;
1331}
1332
1333static int cp_get_sset_count (struct net_device *dev, int sset)
1334{
1335 switch (sset) {
1336 case ETH_SS_STATS:
1337 return CP_NUM_STATS;
1338 default:
1339 return -EOPNOTSUPP;
1340 }
1341}
1342
1343static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1344{
1345 struct cp_private *cp = netdev_priv(dev);
1346 int rc;
1347 unsigned long flags;
1348
1349 spin_lock_irqsave(&cp->lock, flags);
1350 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1351 spin_unlock_irqrestore(&cp->lock, flags);
1352
1353 return rc;
1354}
1355
1356static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1357{
1358 struct cp_private *cp = netdev_priv(dev);
1359 int rc;
1360 unsigned long flags;
1361
1362 spin_lock_irqsave(&cp->lock, flags);
1363 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1364 spin_unlock_irqrestore(&cp->lock, flags);
1365
1366 return rc;
1367}
1368
1369static int cp_nway_reset(struct net_device *dev)
1370{
1371 struct cp_private *cp = netdev_priv(dev);
1372 return mii_nway_restart(&cp->mii_if);
1373}
1374
1375static u32 cp_get_msglevel(struct net_device *dev)
1376{
1377 struct cp_private *cp = netdev_priv(dev);
1378 return cp->msg_enable;
1379}
1380
1381static void cp_set_msglevel(struct net_device *dev, u32 value)
1382{
1383 struct cp_private *cp = netdev_priv(dev);
1384 cp->msg_enable = value;
1385}
1386
1387static int cp_set_features(struct net_device *dev, u32 features)
1388{
1389 struct cp_private *cp = netdev_priv(dev);
1390 unsigned long flags;
1391
1392 if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1393 return 0;
1394
1395 spin_lock_irqsave(&cp->lock, flags);
1396
1397 if (features & NETIF_F_RXCSUM)
1398 cp->cpcmd |= RxChkSum;
1399 else
1400 cp->cpcmd &= ~RxChkSum;
1401
1402 if (features & NETIF_F_HW_VLAN_RX)
1403 cp->cpcmd |= RxVlanOn;
1404 else
1405 cp->cpcmd &= ~RxVlanOn;
1406
1407 cpw16_f(CpCmd, cp->cpcmd);
1408 spin_unlock_irqrestore(&cp->lock, flags);
1409
1410 return 0;
1411}
1412
1413static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1414 void *p)
1415{
1416 struct cp_private *cp = netdev_priv(dev);
1417 unsigned long flags;
1418
1419 if (regs->len < CP_REGS_SIZE)
1420 return /* -EINVAL */;
1421
1422 regs->version = CP_REGS_VER;
1423
1424 spin_lock_irqsave(&cp->lock, flags);
1425 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1426 spin_unlock_irqrestore(&cp->lock, flags);
1427}
1428
1429static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1430{
1431 struct cp_private *cp = netdev_priv(dev);
1432 unsigned long flags;
1433
1434 spin_lock_irqsave (&cp->lock, flags);
1435 netdev_get_wol (cp, wol);
1436 spin_unlock_irqrestore (&cp->lock, flags);
1437}
1438
1439static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1440{
1441 struct cp_private *cp = netdev_priv(dev);
1442 unsigned long flags;
1443 int rc;
1444
1445 spin_lock_irqsave (&cp->lock, flags);
1446 rc = netdev_set_wol (cp, wol);
1447 spin_unlock_irqrestore (&cp->lock, flags);
1448
1449 return rc;
1450}
1451
1452static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1453{
1454 switch (stringset) {
1455 case ETH_SS_STATS:
1456 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1457 break;
1458 default:
1459 BUG();
1460 break;
1461 }
1462}
1463
1464static void cp_get_ethtool_stats (struct net_device *dev,
1465 struct ethtool_stats *estats, u64 *tmp_stats)
1466{
1467 struct cp_private *cp = netdev_priv(dev);
1468 struct cp_dma_stats *nic_stats;
1469 dma_addr_t dma;
1470 int i;
1471
1472 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1473 &dma, GFP_KERNEL);
1474 if (!nic_stats)
1475 return;
1476
1477 /* begin NIC statistics dump */
1478 cpw32(StatsAddr + 4, (u64)dma >> 32);
1479 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1480 cpr32(StatsAddr);
1481
1482 for (i = 0; i < 1000; i++) {
1483 if ((cpr32(StatsAddr) & DumpStats) == 0)
1484 break;
1485 udelay(10);
1486 }
1487 cpw32(StatsAddr, 0);
1488 cpw32(StatsAddr + 4, 0);
1489 cpr32(StatsAddr);
1490
1491 i = 0;
1492 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1493 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1494 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1495 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1496 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1497 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1498 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1499 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1500 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1501 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1502 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1503 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1504 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1505 tmp_stats[i++] = cp->cp_stats.rx_frags;
1506 BUG_ON(i != CP_NUM_STATS);
1507
1508 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1509}
1510
1511static const struct ethtool_ops cp_ethtool_ops = {
1512 .get_drvinfo = cp_get_drvinfo,
1513 .get_regs_len = cp_get_regs_len,
1514 .get_sset_count = cp_get_sset_count,
1515 .get_settings = cp_get_settings,
1516 .set_settings = cp_set_settings,
1517 .nway_reset = cp_nway_reset,
1518 .get_link = ethtool_op_get_link,
1519 .get_msglevel = cp_get_msglevel,
1520 .set_msglevel = cp_set_msglevel,
1521 .get_regs = cp_get_regs,
1522 .get_wol = cp_get_wol,
1523 .set_wol = cp_set_wol,
1524 .get_strings = cp_get_strings,
1525 .get_ethtool_stats = cp_get_ethtool_stats,
1526 .get_eeprom_len = cp_get_eeprom_len,
1527 .get_eeprom = cp_get_eeprom,
1528 .set_eeprom = cp_set_eeprom,
1529};
1530
1531static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1532{
1533 struct cp_private *cp = netdev_priv(dev);
1534 int rc;
1535 unsigned long flags;
1536
1537 if (!netif_running(dev))
1538 return -EINVAL;
1539
1540 spin_lock_irqsave(&cp->lock, flags);
1541 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1542 spin_unlock_irqrestore(&cp->lock, flags);
1543 return rc;
1544}
1545
1546static int cp_set_mac_address(struct net_device *dev, void *p)
1547{
1548 struct cp_private *cp = netdev_priv(dev);
1549 struct sockaddr *addr = p;
1550
1551 if (!is_valid_ether_addr(addr->sa_data))
1552 return -EADDRNOTAVAIL;
1553
1554 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1555
1556 spin_lock_irq(&cp->lock);
1557
1558 cpw8_f(Cfg9346, Cfg9346_Unlock);
1559 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1560 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1561 cpw8_f(Cfg9346, Cfg9346_Lock);
1562
1563 spin_unlock_irq(&cp->lock);
1564
1565 return 0;
1566}
1567
1568/* Serial EEPROM section. */
1569
1570/* EEPROM_Ctrl bits. */
1571#define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1572#define EE_CS 0x08 /* EEPROM chip select. */
1573#define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1574#define EE_WRITE_0 0x00
1575#define EE_WRITE_1 0x02
1576#define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1577#define EE_ENB (0x80 | EE_CS)
1578
1579/* Delay between EEPROM clock transitions.
1580 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1581 */
1582
1583#define eeprom_delay() readl(ee_addr)
1584
1585/* The EEPROM commands include the alway-set leading bit. */
1586#define EE_EXTEND_CMD (4)
1587#define EE_WRITE_CMD (5)
1588#define EE_READ_CMD (6)
1589#define EE_ERASE_CMD (7)
1590
1591#define EE_EWDS_ADDR (0)
1592#define EE_WRAL_ADDR (1)
1593#define EE_ERAL_ADDR (2)
1594#define EE_EWEN_ADDR (3)
1595
1596#define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1597
1598static void eeprom_cmd_start(void __iomem *ee_addr)
1599{
1600 writeb (EE_ENB & ~EE_CS, ee_addr);
1601 writeb (EE_ENB, ee_addr);
1602 eeprom_delay ();
1603}
1604
1605static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1606{
1607 int i;
1608
1609 /* Shift the command bits out. */
1610 for (i = cmd_len - 1; i >= 0; i--) {
1611 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1612 writeb (EE_ENB | dataval, ee_addr);
1613 eeprom_delay ();
1614 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1615 eeprom_delay ();
1616 }
1617 writeb (EE_ENB, ee_addr);
1618 eeprom_delay ();
1619}
1620
1621static void eeprom_cmd_end(void __iomem *ee_addr)
1622{
1623 writeb (~EE_CS, ee_addr);
1624 eeprom_delay ();
1625}
1626
1627static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1628 int addr_len)
1629{
1630 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1631
1632 eeprom_cmd_start(ee_addr);
1633 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1634 eeprom_cmd_end(ee_addr);
1635}
1636
1637static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1638{
1639 int i;
1640 u16 retval = 0;
1641 void __iomem *ee_addr = ioaddr + Cfg9346;
1642 int read_cmd = location | (EE_READ_CMD << addr_len);
1643
1644 eeprom_cmd_start(ee_addr);
1645 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1646
1647 for (i = 16; i > 0; i--) {
1648 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1649 eeprom_delay ();
1650 retval =
1651 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1652 0);
1653 writeb (EE_ENB, ee_addr);
1654 eeprom_delay ();
1655 }
1656
1657 eeprom_cmd_end(ee_addr);
1658
1659 return retval;
1660}
1661
1662static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1663 int addr_len)
1664{
1665 int i;
1666 void __iomem *ee_addr = ioaddr + Cfg9346;
1667 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1668
1669 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1670
1671 eeprom_cmd_start(ee_addr);
1672 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1673 eeprom_cmd(ee_addr, val, 16);
1674 eeprom_cmd_end(ee_addr);
1675
1676 eeprom_cmd_start(ee_addr);
1677 for (i = 0; i < 20000; i++)
1678 if (readb(ee_addr) & EE_DATA_READ)
1679 break;
1680 eeprom_cmd_end(ee_addr);
1681
1682 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1683}
1684
1685static int cp_get_eeprom_len(struct net_device *dev)
1686{
1687 struct cp_private *cp = netdev_priv(dev);
1688 int size;
1689
1690 spin_lock_irq(&cp->lock);
1691 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1692 spin_unlock_irq(&cp->lock);
1693
1694 return size;
1695}
1696
1697static int cp_get_eeprom(struct net_device *dev,
1698 struct ethtool_eeprom *eeprom, u8 *data)
1699{
1700 struct cp_private *cp = netdev_priv(dev);
1701 unsigned int addr_len;
1702 u16 val;
1703 u32 offset = eeprom->offset >> 1;
1704 u32 len = eeprom->len;
1705 u32 i = 0;
1706
1707 eeprom->magic = CP_EEPROM_MAGIC;
1708
1709 spin_lock_irq(&cp->lock);
1710
1711 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1712
1713 if (eeprom->offset & 1) {
1714 val = read_eeprom(cp->regs, offset, addr_len);
1715 data[i++] = (u8)(val >> 8);
1716 offset++;
1717 }
1718
1719 while (i < len - 1) {
1720 val = read_eeprom(cp->regs, offset, addr_len);
1721 data[i++] = (u8)val;
1722 data[i++] = (u8)(val >> 8);
1723 offset++;
1724 }
1725
1726 if (i < len) {
1727 val = read_eeprom(cp->regs, offset, addr_len);
1728 data[i] = (u8)val;
1729 }
1730
1731 spin_unlock_irq(&cp->lock);
1732 return 0;
1733}
1734
1735static int cp_set_eeprom(struct net_device *dev,
1736 struct ethtool_eeprom *eeprom, u8 *data)
1737{
1738 struct cp_private *cp = netdev_priv(dev);
1739 unsigned int addr_len;
1740 u16 val;
1741 u32 offset = eeprom->offset >> 1;
1742 u32 len = eeprom->len;
1743 u32 i = 0;
1744
1745 if (eeprom->magic != CP_EEPROM_MAGIC)
1746 return -EINVAL;
1747
1748 spin_lock_irq(&cp->lock);
1749
1750 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1751
1752 if (eeprom->offset & 1) {
1753 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1754 val |= (u16)data[i++] << 8;
1755 write_eeprom(cp->regs, offset, val, addr_len);
1756 offset++;
1757 }
1758
1759 while (i < len - 1) {
1760 val = (u16)data[i++];
1761 val |= (u16)data[i++] << 8;
1762 write_eeprom(cp->regs, offset, val, addr_len);
1763 offset++;
1764 }
1765
1766 if (i < len) {
1767 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1768 val |= (u16)data[i];
1769 write_eeprom(cp->regs, offset, val, addr_len);
1770 }
1771
1772 spin_unlock_irq(&cp->lock);
1773 return 0;
1774}
1775
1776/* Put the board into D3cold state and wait for WakeUp signal */
1777static void cp_set_d3_state (struct cp_private *cp)
1778{
1779 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1780 pci_set_power_state (cp->pdev, PCI_D3hot);
1781}
1782
1783static const struct net_device_ops cp_netdev_ops = {
1784 .ndo_open = cp_open,
1785 .ndo_stop = cp_close,
1786 .ndo_validate_addr = eth_validate_addr,
1787 .ndo_set_mac_address = cp_set_mac_address,
1788 .ndo_set_multicast_list = cp_set_rx_mode,
1789 .ndo_get_stats = cp_get_stats,
1790 .ndo_do_ioctl = cp_ioctl,
1791 .ndo_start_xmit = cp_start_xmit,
1792 .ndo_tx_timeout = cp_tx_timeout,
1793 .ndo_set_features = cp_set_features,
1794#ifdef BROKEN
1795 .ndo_change_mtu = cp_change_mtu,
1796#endif
1797
1798#ifdef CONFIG_NET_POLL_CONTROLLER
1799 .ndo_poll_controller = cp_poll_controller,
1800#endif
1801};
1802
1803static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1804{
1805 struct net_device *dev;
1806 struct cp_private *cp;
1807 int rc;
1808 void __iomem *regs;
1809 resource_size_t pciaddr;
1810 unsigned int addr_len, i, pci_using_dac;
1811
1812#ifndef MODULE
1813 static int version_printed;
1814 if (version_printed++ == 0)
1815 pr_info("%s", version);
1816#endif
1817
1818 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1819 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1820 dev_info(&pdev->dev,
1821 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1822 pdev->vendor, pdev->device, pdev->revision);
1823 return -ENODEV;
1824 }
1825
1826 dev = alloc_etherdev(sizeof(struct cp_private));
1827 if (!dev)
1828 return -ENOMEM;
1829 SET_NETDEV_DEV(dev, &pdev->dev);
1830
1831 cp = netdev_priv(dev);
1832 cp->pdev = pdev;
1833 cp->dev = dev;
1834 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1835 spin_lock_init (&cp->lock);
1836 cp->mii_if.dev = dev;
1837 cp->mii_if.mdio_read = mdio_read;
1838 cp->mii_if.mdio_write = mdio_write;
1839 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1840 cp->mii_if.phy_id_mask = 0x1f;
1841 cp->mii_if.reg_num_mask = 0x1f;
1842 cp_set_rxbufsize(cp);
1843
1844 rc = pci_enable_device(pdev);
1845 if (rc)
1846 goto err_out_free;
1847
1848 rc = pci_set_mwi(pdev);
1849 if (rc)
1850 goto err_out_disable;
1851
1852 rc = pci_request_regions(pdev, DRV_NAME);
1853 if (rc)
1854 goto err_out_mwi;
1855
1856 pciaddr = pci_resource_start(pdev, 1);
1857 if (!pciaddr) {
1858 rc = -EIO;
1859 dev_err(&pdev->dev, "no MMIO resource\n");
1860 goto err_out_res;
1861 }
1862 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1863 rc = -EIO;
1864 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1865 (unsigned long long)pci_resource_len(pdev, 1));
1866 goto err_out_res;
1867 }
1868
1869 /* Configure DMA attributes. */
1870 if ((sizeof(dma_addr_t) > 4) &&
1871 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1872 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1873 pci_using_dac = 1;
1874 } else {
1875 pci_using_dac = 0;
1876
1877 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1878 if (rc) {
1879 dev_err(&pdev->dev,
1880 "No usable DMA configuration, aborting\n");
1881 goto err_out_res;
1882 }
1883 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1884 if (rc) {
1885 dev_err(&pdev->dev,
1886 "No usable consistent DMA configuration, aborting\n");
1887 goto err_out_res;
1888 }
1889 }
1890
1891 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1892 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1893
1894 dev->features |= NETIF_F_RXCSUM;
1895 dev->hw_features |= NETIF_F_RXCSUM;
1896
1897 regs = ioremap(pciaddr, CP_REGS_SIZE);
1898 if (!regs) {
1899 rc = -EIO;
1900 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1901 (unsigned long long)pci_resource_len(pdev, 1),
1902 (unsigned long long)pciaddr);
1903 goto err_out_res;
1904 }
1905 dev->base_addr = (unsigned long) regs;
1906 cp->regs = regs;
1907
1908 cp_stop_hw(cp);
1909
1910 /* read MAC address from EEPROM */
1911 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1912 for (i = 0; i < 3; i++)
1913 ((__le16 *) (dev->dev_addr))[i] =
1914 cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1915 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1916
1917 dev->netdev_ops = &cp_netdev_ops;
1918 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1919 dev->ethtool_ops = &cp_ethtool_ops;
1920 dev->watchdog_timeo = TX_TIMEOUT;
1921
1922 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1923
1924 if (pci_using_dac)
1925 dev->features |= NETIF_F_HIGHDMA;
1926
1927 /* disabled by default until verified */
1928 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1929 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1930 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1931 NETIF_F_HIGHDMA;
1932
1933 dev->irq = pdev->irq;
1934
1935 rc = register_netdev(dev);
1936 if (rc)
1937 goto err_out_iomap;
1938
1939 netdev_info(dev, "RTL-8139C+ at 0x%lx, %pM, IRQ %d\n",
1940 dev->base_addr, dev->dev_addr, dev->irq);
1941
1942 pci_set_drvdata(pdev, dev);
1943
1944 /* enable busmastering and memory-write-invalidate */
1945 pci_set_master(pdev);
1946
1947 if (cp->wol_enabled)
1948 cp_set_d3_state (cp);
1949
1950 return 0;
1951
1952err_out_iomap:
1953 iounmap(regs);
1954err_out_res:
1955 pci_release_regions(pdev);
1956err_out_mwi:
1957 pci_clear_mwi(pdev);
1958err_out_disable:
1959 pci_disable_device(pdev);
1960err_out_free:
1961 free_netdev(dev);
1962 return rc;
1963}
1964
1965static void cp_remove_one (struct pci_dev *pdev)
1966{
1967 struct net_device *dev = pci_get_drvdata(pdev);
1968 struct cp_private *cp = netdev_priv(dev);
1969
1970 unregister_netdev(dev);
1971 iounmap(cp->regs);
1972 if (cp->wol_enabled)
1973 pci_set_power_state (pdev, PCI_D0);
1974 pci_release_regions(pdev);
1975 pci_clear_mwi(pdev);
1976 pci_disable_device(pdev);
1977 pci_set_drvdata(pdev, NULL);
1978 free_netdev(dev);
1979}
1980
1981#ifdef CONFIG_PM
1982static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
1983{
1984 struct net_device *dev = pci_get_drvdata(pdev);
1985 struct cp_private *cp = netdev_priv(dev);
1986 unsigned long flags;
1987
1988 if (!netif_running(dev))
1989 return 0;
1990
1991 netif_device_detach (dev);
1992 netif_stop_queue (dev);
1993
1994 spin_lock_irqsave (&cp->lock, flags);
1995
1996 /* Disable Rx and Tx */
1997 cpw16 (IntrMask, 0);
1998 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
1999
2000 spin_unlock_irqrestore (&cp->lock, flags);
2001
2002 pci_save_state(pdev);
2003 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2004 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2005
2006 return 0;
2007}
2008
2009static int cp_resume (struct pci_dev *pdev)
2010{
2011 struct net_device *dev = pci_get_drvdata (pdev);
2012 struct cp_private *cp = netdev_priv(dev);
2013 unsigned long flags;
2014
2015 if (!netif_running(dev))
2016 return 0;
2017
2018 netif_device_attach (dev);
2019
2020 pci_set_power_state(pdev, PCI_D0);
2021 pci_restore_state(pdev);
2022 pci_enable_wake(pdev, PCI_D0, 0);
2023
2024 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2025 cp_init_rings_index (cp);
2026 cp_init_hw (cp);
2027 netif_start_queue (dev);
2028
2029 spin_lock_irqsave (&cp->lock, flags);
2030
2031 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2032
2033 spin_unlock_irqrestore (&cp->lock, flags);
2034
2035 return 0;
2036}
2037#endif /* CONFIG_PM */
2038
2039static struct pci_driver cp_driver = {
2040 .name = DRV_NAME,
2041 .id_table = cp_pci_tbl,
2042 .probe = cp_init_one,
2043 .remove = cp_remove_one,
2044#ifdef CONFIG_PM
2045 .resume = cp_resume,
2046 .suspend = cp_suspend,
2047#endif
2048};
2049
2050static int __init cp_init (void)
2051{
2052#ifdef MODULE
2053 pr_info("%s", version);
2054#endif
2055 return pci_register_driver(&cp_driver);
2056}
2057
2058static void __exit cp_exit (void)
2059{
2060 pci_unregister_driver (&cp_driver);
2061}
2062
2063module_init(cp_init);
2064module_exit(cp_exit);