diff options
Diffstat (limited to 'drivers/net/ethernet/intel/e100.c')
-rw-r--r-- | drivers/net/ethernet/intel/e100.c | 3109 |
1 files changed, 3109 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/e100.c b/drivers/net/ethernet/intel/e100.c new file mode 100644 index 000000000000..c1352c60c299 --- /dev/null +++ b/drivers/net/ethernet/intel/e100.c | |||
@@ -0,0 +1,3109 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/100 Linux driver | ||
4 | Copyright(c) 1999 - 2006 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | /* | ||
30 | * e100.c: Intel(R) PRO/100 ethernet driver | ||
31 | * | ||
32 | * (Re)written 2003 by scott.feldman@intel.com. Based loosely on | ||
33 | * original e100 driver, but better described as a munging of | ||
34 | * e100, e1000, eepro100, tg3, 8139cp, and other drivers. | ||
35 | * | ||
36 | * References: | ||
37 | * Intel 8255x 10/100 Mbps Ethernet Controller Family, | ||
38 | * Open Source Software Developers Manual, | ||
39 | * http://sourceforge.net/projects/e1000 | ||
40 | * | ||
41 | * | ||
42 | * Theory of Operation | ||
43 | * | ||
44 | * I. General | ||
45 | * | ||
46 | * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet | ||
47 | * controller family, which includes the 82557, 82558, 82559, 82550, | ||
48 | * 82551, and 82562 devices. 82558 and greater controllers | ||
49 | * integrate the Intel 82555 PHY. The controllers are used in | ||
50 | * server and client network interface cards, as well as in | ||
51 | * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx | ||
52 | * configurations. 8255x supports a 32-bit linear addressing | ||
53 | * mode and operates at 33Mhz PCI clock rate. | ||
54 | * | ||
55 | * II. Driver Operation | ||
56 | * | ||
57 | * Memory-mapped mode is used exclusively to access the device's | ||
58 | * shared-memory structure, the Control/Status Registers (CSR). All | ||
59 | * setup, configuration, and control of the device, including queuing | ||
60 | * of Tx, Rx, and configuration commands is through the CSR. | ||
61 | * cmd_lock serializes accesses to the CSR command register. cb_lock | ||
62 | * protects the shared Command Block List (CBL). | ||
63 | * | ||
64 | * 8255x is highly MII-compliant and all access to the PHY go | ||
65 | * through the Management Data Interface (MDI). Consequently, the | ||
66 | * driver leverages the mii.c library shared with other MII-compliant | ||
67 | * devices. | ||
68 | * | ||
69 | * Big- and Little-Endian byte order as well as 32- and 64-bit | ||
70 | * archs are supported. Weak-ordered memory and non-cache-coherent | ||
71 | * archs are supported. | ||
72 | * | ||
73 | * III. Transmit | ||
74 | * | ||
75 | * A Tx skb is mapped and hangs off of a TCB. TCBs are linked | ||
76 | * together in a fixed-size ring (CBL) thus forming the flexible mode | ||
77 | * memory structure. A TCB marked with the suspend-bit indicates | ||
78 | * the end of the ring. The last TCB processed suspends the | ||
79 | * controller, and the controller can be restarted by issue a CU | ||
80 | * resume command to continue from the suspend point, or a CU start | ||
81 | * command to start at a given position in the ring. | ||
82 | * | ||
83 | * Non-Tx commands (config, multicast setup, etc) are linked | ||
84 | * into the CBL ring along with Tx commands. The common structure | ||
85 | * used for both Tx and non-Tx commands is the Command Block (CB). | ||
86 | * | ||
87 | * cb_to_use is the next CB to use for queuing a command; cb_to_clean | ||
88 | * is the next CB to check for completion; cb_to_send is the first | ||
89 | * CB to start on in case of a previous failure to resume. CB clean | ||
90 | * up happens in interrupt context in response to a CU interrupt. | ||
91 | * cbs_avail keeps track of number of free CB resources available. | ||
92 | * | ||
93 | * Hardware padding of short packets to minimum packet size is | ||
94 | * enabled. 82557 pads with 7Eh, while the later controllers pad | ||
95 | * with 00h. | ||
96 | * | ||
97 | * IV. Receive | ||
98 | * | ||
99 | * The Receive Frame Area (RFA) comprises a ring of Receive Frame | ||
100 | * Descriptors (RFD) + data buffer, thus forming the simplified mode | ||
101 | * memory structure. Rx skbs are allocated to contain both the RFD | ||
102 | * and the data buffer, but the RFD is pulled off before the skb is | ||
103 | * indicated. The data buffer is aligned such that encapsulated | ||
104 | * protocol headers are u32-aligned. Since the RFD is part of the | ||
105 | * mapped shared memory, and completion status is contained within | ||
106 | * the RFD, the RFD must be dma_sync'ed to maintain a consistent | ||
107 | * view from software and hardware. | ||
108 | * | ||
109 | * In order to keep updates to the RFD link field from colliding with | ||
110 | * hardware writes to mark packets complete, we use the feature that | ||
111 | * hardware will not write to a size 0 descriptor and mark the previous | ||
112 | * packet as end-of-list (EL). After updating the link, we remove EL | ||
113 | * and only then restore the size such that hardware may use the | ||
114 | * previous-to-end RFD. | ||
115 | * | ||
116 | * Under typical operation, the receive unit (RU) is start once, | ||
117 | * and the controller happily fills RFDs as frames arrive. If | ||
118 | * replacement RFDs cannot be allocated, or the RU goes non-active, | ||
119 | * the RU must be restarted. Frame arrival generates an interrupt, | ||
120 | * and Rx indication and re-allocation happen in the same context, | ||
121 | * therefore no locking is required. A software-generated interrupt | ||
122 | * is generated from the watchdog to recover from a failed allocation | ||
123 | * scenario where all Rx resources have been indicated and none re- | ||
124 | * placed. | ||
125 | * | ||
126 | * V. Miscellaneous | ||
127 | * | ||
128 | * VLAN offloading of tagging, stripping and filtering is not | ||
129 | * supported, but driver will accommodate the extra 4-byte VLAN tag | ||
130 | * for processing by upper layers. Tx/Rx Checksum offloading is not | ||
131 | * supported. Tx Scatter/Gather is not supported. Jumbo Frames is | ||
132 | * not supported (hardware limitation). | ||
133 | * | ||
134 | * MagicPacket(tm) WoL support is enabled/disabled via ethtool. | ||
135 | * | ||
136 | * Thanks to JC (jchapman@katalix.com) for helping with | ||
137 | * testing/troubleshooting the development driver. | ||
138 | * | ||
139 | * TODO: | ||
140 | * o several entry points race with dev->close | ||
141 | * o check for tx-no-resources/stop Q races with tx clean/wake Q | ||
142 | * | ||
143 | * FIXES: | ||
144 | * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com> | ||
145 | * - Stratus87247: protect MDI control register manipulations | ||
146 | * 2009/06/01 - Andreas Mohr <andi at lisas dot de> | ||
147 | * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs | ||
148 | */ | ||
149 | |||
150 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | ||
151 | |||
152 | #include <linux/hardirq.h> | ||
153 | #include <linux/interrupt.h> | ||
154 | #include <linux/module.h> | ||
155 | #include <linux/moduleparam.h> | ||
156 | #include <linux/kernel.h> | ||
157 | #include <linux/types.h> | ||
158 | #include <linux/sched.h> | ||
159 | #include <linux/slab.h> | ||
160 | #include <linux/delay.h> | ||
161 | #include <linux/init.h> | ||
162 | #include <linux/pci.h> | ||
163 | #include <linux/dma-mapping.h> | ||
164 | #include <linux/dmapool.h> | ||
165 | #include <linux/netdevice.h> | ||
166 | #include <linux/etherdevice.h> | ||
167 | #include <linux/mii.h> | ||
168 | #include <linux/if_vlan.h> | ||
169 | #include <linux/skbuff.h> | ||
170 | #include <linux/ethtool.h> | ||
171 | #include <linux/string.h> | ||
172 | #include <linux/firmware.h> | ||
173 | #include <linux/rtnetlink.h> | ||
174 | #include <asm/unaligned.h> | ||
175 | |||
176 | |||
177 | #define DRV_NAME "e100" | ||
178 | #define DRV_EXT "-NAPI" | ||
179 | #define DRV_VERSION "3.5.24-k2"DRV_EXT | ||
180 | #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" | ||
181 | #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation" | ||
182 | |||
183 | #define E100_WATCHDOG_PERIOD (2 * HZ) | ||
184 | #define E100_NAPI_WEIGHT 16 | ||
185 | |||
186 | #define FIRMWARE_D101M "e100/d101m_ucode.bin" | ||
187 | #define FIRMWARE_D101S "e100/d101s_ucode.bin" | ||
188 | #define FIRMWARE_D102E "e100/d102e_ucode.bin" | ||
189 | |||
190 | MODULE_DESCRIPTION(DRV_DESCRIPTION); | ||
191 | MODULE_AUTHOR(DRV_COPYRIGHT); | ||
192 | MODULE_LICENSE("GPL"); | ||
193 | MODULE_VERSION(DRV_VERSION); | ||
194 | MODULE_FIRMWARE(FIRMWARE_D101M); | ||
195 | MODULE_FIRMWARE(FIRMWARE_D101S); | ||
196 | MODULE_FIRMWARE(FIRMWARE_D102E); | ||
197 | |||
198 | static int debug = 3; | ||
199 | static int eeprom_bad_csum_allow = 0; | ||
200 | static int use_io = 0; | ||
201 | module_param(debug, int, 0); | ||
202 | module_param(eeprom_bad_csum_allow, int, 0); | ||
203 | module_param(use_io, int, 0); | ||
204 | MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); | ||
205 | MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); | ||
206 | MODULE_PARM_DESC(use_io, "Force use of i/o access mode"); | ||
207 | |||
208 | #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ | ||
209 | PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ | ||
210 | PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } | ||
211 | static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = { | ||
212 | INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), | ||
213 | INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), | ||
214 | INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), | ||
215 | INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), | ||
216 | INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), | ||
217 | INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), | ||
218 | INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), | ||
219 | INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), | ||
220 | INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), | ||
221 | INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), | ||
222 | INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), | ||
223 | INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), | ||
224 | INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), | ||
225 | INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), | ||
226 | INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), | ||
227 | INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), | ||
228 | INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), | ||
229 | INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), | ||
230 | INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), | ||
231 | INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), | ||
232 | INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), | ||
233 | INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), | ||
234 | INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), | ||
235 | INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), | ||
236 | INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), | ||
237 | INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), | ||
238 | INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), | ||
239 | INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), | ||
240 | INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), | ||
241 | INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), | ||
242 | INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), | ||
243 | INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), | ||
244 | INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), | ||
245 | INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), | ||
246 | INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), | ||
247 | INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7), | ||
248 | INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), | ||
249 | INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), | ||
250 | INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), | ||
251 | INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), | ||
252 | INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), | ||
253 | INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), | ||
254 | { 0, } | ||
255 | }; | ||
256 | MODULE_DEVICE_TABLE(pci, e100_id_table); | ||
257 | |||
258 | enum mac { | ||
259 | mac_82557_D100_A = 0, | ||
260 | mac_82557_D100_B = 1, | ||
261 | mac_82557_D100_C = 2, | ||
262 | mac_82558_D101_A4 = 4, | ||
263 | mac_82558_D101_B0 = 5, | ||
264 | mac_82559_D101M = 8, | ||
265 | mac_82559_D101S = 9, | ||
266 | mac_82550_D102 = 12, | ||
267 | mac_82550_D102_C = 13, | ||
268 | mac_82551_E = 14, | ||
269 | mac_82551_F = 15, | ||
270 | mac_82551_10 = 16, | ||
271 | mac_unknown = 0xFF, | ||
272 | }; | ||
273 | |||
274 | enum phy { | ||
275 | phy_100a = 0x000003E0, | ||
276 | phy_100c = 0x035002A8, | ||
277 | phy_82555_tx = 0x015002A8, | ||
278 | phy_nsc_tx = 0x5C002000, | ||
279 | phy_82562_et = 0x033002A8, | ||
280 | phy_82562_em = 0x032002A8, | ||
281 | phy_82562_ek = 0x031002A8, | ||
282 | phy_82562_eh = 0x017002A8, | ||
283 | phy_82552_v = 0xd061004d, | ||
284 | phy_unknown = 0xFFFFFFFF, | ||
285 | }; | ||
286 | |||
287 | /* CSR (Control/Status Registers) */ | ||
288 | struct csr { | ||
289 | struct { | ||
290 | u8 status; | ||
291 | u8 stat_ack; | ||
292 | u8 cmd_lo; | ||
293 | u8 cmd_hi; | ||
294 | u32 gen_ptr; | ||
295 | } scb; | ||
296 | u32 port; | ||
297 | u16 flash_ctrl; | ||
298 | u8 eeprom_ctrl_lo; | ||
299 | u8 eeprom_ctrl_hi; | ||
300 | u32 mdi_ctrl; | ||
301 | u32 rx_dma_count; | ||
302 | }; | ||
303 | |||
304 | enum scb_status { | ||
305 | rus_no_res = 0x08, | ||
306 | rus_ready = 0x10, | ||
307 | rus_mask = 0x3C, | ||
308 | }; | ||
309 | |||
310 | enum ru_state { | ||
311 | RU_SUSPENDED = 0, | ||
312 | RU_RUNNING = 1, | ||
313 | RU_UNINITIALIZED = -1, | ||
314 | }; | ||
315 | |||
316 | enum scb_stat_ack { | ||
317 | stat_ack_not_ours = 0x00, | ||
318 | stat_ack_sw_gen = 0x04, | ||
319 | stat_ack_rnr = 0x10, | ||
320 | stat_ack_cu_idle = 0x20, | ||
321 | stat_ack_frame_rx = 0x40, | ||
322 | stat_ack_cu_cmd_done = 0x80, | ||
323 | stat_ack_not_present = 0xFF, | ||
324 | stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), | ||
325 | stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), | ||
326 | }; | ||
327 | |||
328 | enum scb_cmd_hi { | ||
329 | irq_mask_none = 0x00, | ||
330 | irq_mask_all = 0x01, | ||
331 | irq_sw_gen = 0x02, | ||
332 | }; | ||
333 | |||
334 | enum scb_cmd_lo { | ||
335 | cuc_nop = 0x00, | ||
336 | ruc_start = 0x01, | ||
337 | ruc_load_base = 0x06, | ||
338 | cuc_start = 0x10, | ||
339 | cuc_resume = 0x20, | ||
340 | cuc_dump_addr = 0x40, | ||
341 | cuc_dump_stats = 0x50, | ||
342 | cuc_load_base = 0x60, | ||
343 | cuc_dump_reset = 0x70, | ||
344 | }; | ||
345 | |||
346 | enum cuc_dump { | ||
347 | cuc_dump_complete = 0x0000A005, | ||
348 | cuc_dump_reset_complete = 0x0000A007, | ||
349 | }; | ||
350 | |||
351 | enum port { | ||
352 | software_reset = 0x0000, | ||
353 | selftest = 0x0001, | ||
354 | selective_reset = 0x0002, | ||
355 | }; | ||
356 | |||
357 | enum eeprom_ctrl_lo { | ||
358 | eesk = 0x01, | ||
359 | eecs = 0x02, | ||
360 | eedi = 0x04, | ||
361 | eedo = 0x08, | ||
362 | }; | ||
363 | |||
364 | enum mdi_ctrl { | ||
365 | mdi_write = 0x04000000, | ||
366 | mdi_read = 0x08000000, | ||
367 | mdi_ready = 0x10000000, | ||
368 | }; | ||
369 | |||
370 | enum eeprom_op { | ||
371 | op_write = 0x05, | ||
372 | op_read = 0x06, | ||
373 | op_ewds = 0x10, | ||
374 | op_ewen = 0x13, | ||
375 | }; | ||
376 | |||
377 | enum eeprom_offsets { | ||
378 | eeprom_cnfg_mdix = 0x03, | ||
379 | eeprom_phy_iface = 0x06, | ||
380 | eeprom_id = 0x0A, | ||
381 | eeprom_config_asf = 0x0D, | ||
382 | eeprom_smbus_addr = 0x90, | ||
383 | }; | ||
384 | |||
385 | enum eeprom_cnfg_mdix { | ||
386 | eeprom_mdix_enabled = 0x0080, | ||
387 | }; | ||
388 | |||
389 | enum eeprom_phy_iface { | ||
390 | NoSuchPhy = 0, | ||
391 | I82553AB, | ||
392 | I82553C, | ||
393 | I82503, | ||
394 | DP83840, | ||
395 | S80C240, | ||
396 | S80C24, | ||
397 | I82555, | ||
398 | DP83840A = 10, | ||
399 | }; | ||
400 | |||
401 | enum eeprom_id { | ||
402 | eeprom_id_wol = 0x0020, | ||
403 | }; | ||
404 | |||
405 | enum eeprom_config_asf { | ||
406 | eeprom_asf = 0x8000, | ||
407 | eeprom_gcl = 0x4000, | ||
408 | }; | ||
409 | |||
410 | enum cb_status { | ||
411 | cb_complete = 0x8000, | ||
412 | cb_ok = 0x2000, | ||
413 | }; | ||
414 | |||
415 | enum cb_command { | ||
416 | cb_nop = 0x0000, | ||
417 | cb_iaaddr = 0x0001, | ||
418 | cb_config = 0x0002, | ||
419 | cb_multi = 0x0003, | ||
420 | cb_tx = 0x0004, | ||
421 | cb_ucode = 0x0005, | ||
422 | cb_dump = 0x0006, | ||
423 | cb_tx_sf = 0x0008, | ||
424 | cb_cid = 0x1f00, | ||
425 | cb_i = 0x2000, | ||
426 | cb_s = 0x4000, | ||
427 | cb_el = 0x8000, | ||
428 | }; | ||
429 | |||
430 | struct rfd { | ||
431 | __le16 status; | ||
432 | __le16 command; | ||
433 | __le32 link; | ||
434 | __le32 rbd; | ||
435 | __le16 actual_size; | ||
436 | __le16 size; | ||
437 | }; | ||
438 | |||
439 | struct rx { | ||
440 | struct rx *next, *prev; | ||
441 | struct sk_buff *skb; | ||
442 | dma_addr_t dma_addr; | ||
443 | }; | ||
444 | |||
445 | #if defined(__BIG_ENDIAN_BITFIELD) | ||
446 | #define X(a,b) b,a | ||
447 | #else | ||
448 | #define X(a,b) a,b | ||
449 | #endif | ||
450 | struct config { | ||
451 | /*0*/ u8 X(byte_count:6, pad0:2); | ||
452 | /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); | ||
453 | /*2*/ u8 adaptive_ifs; | ||
454 | /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), | ||
455 | term_write_cache_line:1), pad3:4); | ||
456 | /*4*/ u8 X(rx_dma_max_count:7, pad4:1); | ||
457 | /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); | ||
458 | /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), | ||
459 | tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), | ||
460 | rx_discard_overruns:1), rx_save_bad_frames:1); | ||
461 | /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), | ||
462 | pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), | ||
463 | tx_dynamic_tbd:1); | ||
464 | /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); | ||
465 | /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), | ||
466 | link_status_wake:1), arp_wake:1), mcmatch_wake:1); | ||
467 | /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), | ||
468 | loopback:2); | ||
469 | /*11*/ u8 X(linear_priority:3, pad11:5); | ||
470 | /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); | ||
471 | /*13*/ u8 ip_addr_lo; | ||
472 | /*14*/ u8 ip_addr_hi; | ||
473 | /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), | ||
474 | wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), | ||
475 | pad15_2:1), crs_or_cdt:1); | ||
476 | /*16*/ u8 fc_delay_lo; | ||
477 | /*17*/ u8 fc_delay_hi; | ||
478 | /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), | ||
479 | rx_long_ok:1), fc_priority_threshold:3), pad18:1); | ||
480 | /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), | ||
481 | fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), | ||
482 | full_duplex_force:1), full_duplex_pin:1); | ||
483 | /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); | ||
484 | /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); | ||
485 | /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); | ||
486 | u8 pad_d102[9]; | ||
487 | }; | ||
488 | |||
489 | #define E100_MAX_MULTICAST_ADDRS 64 | ||
490 | struct multi { | ||
491 | __le16 count; | ||
492 | u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; | ||
493 | }; | ||
494 | |||
495 | /* Important: keep total struct u32-aligned */ | ||
496 | #define UCODE_SIZE 134 | ||
497 | struct cb { | ||
498 | __le16 status; | ||
499 | __le16 command; | ||
500 | __le32 link; | ||
501 | union { | ||
502 | u8 iaaddr[ETH_ALEN]; | ||
503 | __le32 ucode[UCODE_SIZE]; | ||
504 | struct config config; | ||
505 | struct multi multi; | ||
506 | struct { | ||
507 | u32 tbd_array; | ||
508 | u16 tcb_byte_count; | ||
509 | u8 threshold; | ||
510 | u8 tbd_count; | ||
511 | struct { | ||
512 | __le32 buf_addr; | ||
513 | __le16 size; | ||
514 | u16 eol; | ||
515 | } tbd; | ||
516 | } tcb; | ||
517 | __le32 dump_buffer_addr; | ||
518 | } u; | ||
519 | struct cb *next, *prev; | ||
520 | dma_addr_t dma_addr; | ||
521 | struct sk_buff *skb; | ||
522 | }; | ||
523 | |||
524 | enum loopback { | ||
525 | lb_none = 0, lb_mac = 1, lb_phy = 3, | ||
526 | }; | ||
527 | |||
528 | struct stats { | ||
529 | __le32 tx_good_frames, tx_max_collisions, tx_late_collisions, | ||
530 | tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, | ||
531 | tx_multiple_collisions, tx_total_collisions; | ||
532 | __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors, | ||
533 | rx_resource_errors, rx_overrun_errors, rx_cdt_errors, | ||
534 | rx_short_frame_errors; | ||
535 | __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; | ||
536 | __le16 xmt_tco_frames, rcv_tco_frames; | ||
537 | __le32 complete; | ||
538 | }; | ||
539 | |||
540 | struct mem { | ||
541 | struct { | ||
542 | u32 signature; | ||
543 | u32 result; | ||
544 | } selftest; | ||
545 | struct stats stats; | ||
546 | u8 dump_buf[596]; | ||
547 | }; | ||
548 | |||
549 | struct param_range { | ||
550 | u32 min; | ||
551 | u32 max; | ||
552 | u32 count; | ||
553 | }; | ||
554 | |||
555 | struct params { | ||
556 | struct param_range rfds; | ||
557 | struct param_range cbs; | ||
558 | }; | ||
559 | |||
560 | struct nic { | ||
561 | /* Begin: frequently used values: keep adjacent for cache effect */ | ||
562 | u32 msg_enable ____cacheline_aligned; | ||
563 | struct net_device *netdev; | ||
564 | struct pci_dev *pdev; | ||
565 | u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data); | ||
566 | |||
567 | struct rx *rxs ____cacheline_aligned; | ||
568 | struct rx *rx_to_use; | ||
569 | struct rx *rx_to_clean; | ||
570 | struct rfd blank_rfd; | ||
571 | enum ru_state ru_running; | ||
572 | |||
573 | spinlock_t cb_lock ____cacheline_aligned; | ||
574 | spinlock_t cmd_lock; | ||
575 | struct csr __iomem *csr; | ||
576 | enum scb_cmd_lo cuc_cmd; | ||
577 | unsigned int cbs_avail; | ||
578 | struct napi_struct napi; | ||
579 | struct cb *cbs; | ||
580 | struct cb *cb_to_use; | ||
581 | struct cb *cb_to_send; | ||
582 | struct cb *cb_to_clean; | ||
583 | __le16 tx_command; | ||
584 | /* End: frequently used values: keep adjacent for cache effect */ | ||
585 | |||
586 | enum { | ||
587 | ich = (1 << 0), | ||
588 | promiscuous = (1 << 1), | ||
589 | multicast_all = (1 << 2), | ||
590 | wol_magic = (1 << 3), | ||
591 | ich_10h_workaround = (1 << 4), | ||
592 | } flags ____cacheline_aligned; | ||
593 | |||
594 | enum mac mac; | ||
595 | enum phy phy; | ||
596 | struct params params; | ||
597 | struct timer_list watchdog; | ||
598 | struct mii_if_info mii; | ||
599 | struct work_struct tx_timeout_task; | ||
600 | enum loopback loopback; | ||
601 | |||
602 | struct mem *mem; | ||
603 | dma_addr_t dma_addr; | ||
604 | |||
605 | struct pci_pool *cbs_pool; | ||
606 | dma_addr_t cbs_dma_addr; | ||
607 | u8 adaptive_ifs; | ||
608 | u8 tx_threshold; | ||
609 | u32 tx_frames; | ||
610 | u32 tx_collisions; | ||
611 | u32 tx_deferred; | ||
612 | u32 tx_single_collisions; | ||
613 | u32 tx_multiple_collisions; | ||
614 | u32 tx_fc_pause; | ||
615 | u32 tx_tco_frames; | ||
616 | |||
617 | u32 rx_fc_pause; | ||
618 | u32 rx_fc_unsupported; | ||
619 | u32 rx_tco_frames; | ||
620 | u32 rx_over_length_errors; | ||
621 | |||
622 | u16 eeprom_wc; | ||
623 | __le16 eeprom[256]; | ||
624 | spinlock_t mdio_lock; | ||
625 | const struct firmware *fw; | ||
626 | }; | ||
627 | |||
628 | static inline void e100_write_flush(struct nic *nic) | ||
629 | { | ||
630 | /* Flush previous PCI writes through intermediate bridges | ||
631 | * by doing a benign read */ | ||
632 | (void)ioread8(&nic->csr->scb.status); | ||
633 | } | ||
634 | |||
635 | static void e100_enable_irq(struct nic *nic) | ||
636 | { | ||
637 | unsigned long flags; | ||
638 | |||
639 | spin_lock_irqsave(&nic->cmd_lock, flags); | ||
640 | iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi); | ||
641 | e100_write_flush(nic); | ||
642 | spin_unlock_irqrestore(&nic->cmd_lock, flags); | ||
643 | } | ||
644 | |||
645 | static void e100_disable_irq(struct nic *nic) | ||
646 | { | ||
647 | unsigned long flags; | ||
648 | |||
649 | spin_lock_irqsave(&nic->cmd_lock, flags); | ||
650 | iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi); | ||
651 | e100_write_flush(nic); | ||
652 | spin_unlock_irqrestore(&nic->cmd_lock, flags); | ||
653 | } | ||
654 | |||
655 | static void e100_hw_reset(struct nic *nic) | ||
656 | { | ||
657 | /* Put CU and RU into idle with a selective reset to get | ||
658 | * device off of PCI bus */ | ||
659 | iowrite32(selective_reset, &nic->csr->port); | ||
660 | e100_write_flush(nic); udelay(20); | ||
661 | |||
662 | /* Now fully reset device */ | ||
663 | iowrite32(software_reset, &nic->csr->port); | ||
664 | e100_write_flush(nic); udelay(20); | ||
665 | |||
666 | /* Mask off our interrupt line - it's unmasked after reset */ | ||
667 | e100_disable_irq(nic); | ||
668 | } | ||
669 | |||
670 | static int e100_self_test(struct nic *nic) | ||
671 | { | ||
672 | u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); | ||
673 | |||
674 | /* Passing the self-test is a pretty good indication | ||
675 | * that the device can DMA to/from host memory */ | ||
676 | |||
677 | nic->mem->selftest.signature = 0; | ||
678 | nic->mem->selftest.result = 0xFFFFFFFF; | ||
679 | |||
680 | iowrite32(selftest | dma_addr, &nic->csr->port); | ||
681 | e100_write_flush(nic); | ||
682 | /* Wait 10 msec for self-test to complete */ | ||
683 | msleep(10); | ||
684 | |||
685 | /* Interrupts are enabled after self-test */ | ||
686 | e100_disable_irq(nic); | ||
687 | |||
688 | /* Check results of self-test */ | ||
689 | if (nic->mem->selftest.result != 0) { | ||
690 | netif_err(nic, hw, nic->netdev, | ||
691 | "Self-test failed: result=0x%08X\n", | ||
692 | nic->mem->selftest.result); | ||
693 | return -ETIMEDOUT; | ||
694 | } | ||
695 | if (nic->mem->selftest.signature == 0) { | ||
696 | netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n"); | ||
697 | return -ETIMEDOUT; | ||
698 | } | ||
699 | |||
700 | return 0; | ||
701 | } | ||
702 | |||
703 | static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data) | ||
704 | { | ||
705 | u32 cmd_addr_data[3]; | ||
706 | u8 ctrl; | ||
707 | int i, j; | ||
708 | |||
709 | /* Three cmds: write/erase enable, write data, write/erase disable */ | ||
710 | cmd_addr_data[0] = op_ewen << (addr_len - 2); | ||
711 | cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | | ||
712 | le16_to_cpu(data); | ||
713 | cmd_addr_data[2] = op_ewds << (addr_len - 2); | ||
714 | |||
715 | /* Bit-bang cmds to write word to eeprom */ | ||
716 | for (j = 0; j < 3; j++) { | ||
717 | |||
718 | /* Chip select */ | ||
719 | iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); | ||
720 | e100_write_flush(nic); udelay(4); | ||
721 | |||
722 | for (i = 31; i >= 0; i--) { | ||
723 | ctrl = (cmd_addr_data[j] & (1 << i)) ? | ||
724 | eecs | eedi : eecs; | ||
725 | iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); | ||
726 | e100_write_flush(nic); udelay(4); | ||
727 | |||
728 | iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); | ||
729 | e100_write_flush(nic); udelay(4); | ||
730 | } | ||
731 | /* Wait 10 msec for cmd to complete */ | ||
732 | msleep(10); | ||
733 | |||
734 | /* Chip deselect */ | ||
735 | iowrite8(0, &nic->csr->eeprom_ctrl_lo); | ||
736 | e100_write_flush(nic); udelay(4); | ||
737 | } | ||
738 | }; | ||
739 | |||
740 | /* General technique stolen from the eepro100 driver - very clever */ | ||
741 | static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) | ||
742 | { | ||
743 | u32 cmd_addr_data; | ||
744 | u16 data = 0; | ||
745 | u8 ctrl; | ||
746 | int i; | ||
747 | |||
748 | cmd_addr_data = ((op_read << *addr_len) | addr) << 16; | ||
749 | |||
750 | /* Chip select */ | ||
751 | iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); | ||
752 | e100_write_flush(nic); udelay(4); | ||
753 | |||
754 | /* Bit-bang to read word from eeprom */ | ||
755 | for (i = 31; i >= 0; i--) { | ||
756 | ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; | ||
757 | iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); | ||
758 | e100_write_flush(nic); udelay(4); | ||
759 | |||
760 | iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); | ||
761 | e100_write_flush(nic); udelay(4); | ||
762 | |||
763 | /* Eeprom drives a dummy zero to EEDO after receiving | ||
764 | * complete address. Use this to adjust addr_len. */ | ||
765 | ctrl = ioread8(&nic->csr->eeprom_ctrl_lo); | ||
766 | if (!(ctrl & eedo) && i > 16) { | ||
767 | *addr_len -= (i - 16); | ||
768 | i = 17; | ||
769 | } | ||
770 | |||
771 | data = (data << 1) | (ctrl & eedo ? 1 : 0); | ||
772 | } | ||
773 | |||
774 | /* Chip deselect */ | ||
775 | iowrite8(0, &nic->csr->eeprom_ctrl_lo); | ||
776 | e100_write_flush(nic); udelay(4); | ||
777 | |||
778 | return cpu_to_le16(data); | ||
779 | }; | ||
780 | |||
781 | /* Load entire EEPROM image into driver cache and validate checksum */ | ||
782 | static int e100_eeprom_load(struct nic *nic) | ||
783 | { | ||
784 | u16 addr, addr_len = 8, checksum = 0; | ||
785 | |||
786 | /* Try reading with an 8-bit addr len to discover actual addr len */ | ||
787 | e100_eeprom_read(nic, &addr_len, 0); | ||
788 | nic->eeprom_wc = 1 << addr_len; | ||
789 | |||
790 | for (addr = 0; addr < nic->eeprom_wc; addr++) { | ||
791 | nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); | ||
792 | if (addr < nic->eeprom_wc - 1) | ||
793 | checksum += le16_to_cpu(nic->eeprom[addr]); | ||
794 | } | ||
795 | |||
796 | /* The checksum, stored in the last word, is calculated such that | ||
797 | * the sum of words should be 0xBABA */ | ||
798 | if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) { | ||
799 | netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n"); | ||
800 | if (!eeprom_bad_csum_allow) | ||
801 | return -EAGAIN; | ||
802 | } | ||
803 | |||
804 | return 0; | ||
805 | } | ||
806 | |||
807 | /* Save (portion of) driver EEPROM cache to device and update checksum */ | ||
808 | static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) | ||
809 | { | ||
810 | u16 addr, addr_len = 8, checksum = 0; | ||
811 | |||
812 | /* Try reading with an 8-bit addr len to discover actual addr len */ | ||
813 | e100_eeprom_read(nic, &addr_len, 0); | ||
814 | nic->eeprom_wc = 1 << addr_len; | ||
815 | |||
816 | if (start + count >= nic->eeprom_wc) | ||
817 | return -EINVAL; | ||
818 | |||
819 | for (addr = start; addr < start + count; addr++) | ||
820 | e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); | ||
821 | |||
822 | /* The checksum, stored in the last word, is calculated such that | ||
823 | * the sum of words should be 0xBABA */ | ||
824 | for (addr = 0; addr < nic->eeprom_wc - 1; addr++) | ||
825 | checksum += le16_to_cpu(nic->eeprom[addr]); | ||
826 | nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum); | ||
827 | e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, | ||
828 | nic->eeprom[nic->eeprom_wc - 1]); | ||
829 | |||
830 | return 0; | ||
831 | } | ||
832 | |||
833 | #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ | ||
834 | #define E100_WAIT_SCB_FAST 20 /* delay like the old code */ | ||
835 | static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) | ||
836 | { | ||
837 | unsigned long flags; | ||
838 | unsigned int i; | ||
839 | int err = 0; | ||
840 | |||
841 | spin_lock_irqsave(&nic->cmd_lock, flags); | ||
842 | |||
843 | /* Previous command is accepted when SCB clears */ | ||
844 | for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { | ||
845 | if (likely(!ioread8(&nic->csr->scb.cmd_lo))) | ||
846 | break; | ||
847 | cpu_relax(); | ||
848 | if (unlikely(i > E100_WAIT_SCB_FAST)) | ||
849 | udelay(5); | ||
850 | } | ||
851 | if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) { | ||
852 | err = -EAGAIN; | ||
853 | goto err_unlock; | ||
854 | } | ||
855 | |||
856 | if (unlikely(cmd != cuc_resume)) | ||
857 | iowrite32(dma_addr, &nic->csr->scb.gen_ptr); | ||
858 | iowrite8(cmd, &nic->csr->scb.cmd_lo); | ||
859 | |||
860 | err_unlock: | ||
861 | spin_unlock_irqrestore(&nic->cmd_lock, flags); | ||
862 | |||
863 | return err; | ||
864 | } | ||
865 | |||
866 | static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, | ||
867 | void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) | ||
868 | { | ||
869 | struct cb *cb; | ||
870 | unsigned long flags; | ||
871 | int err = 0; | ||
872 | |||
873 | spin_lock_irqsave(&nic->cb_lock, flags); | ||
874 | |||
875 | if (unlikely(!nic->cbs_avail)) { | ||
876 | err = -ENOMEM; | ||
877 | goto err_unlock; | ||
878 | } | ||
879 | |||
880 | cb = nic->cb_to_use; | ||
881 | nic->cb_to_use = cb->next; | ||
882 | nic->cbs_avail--; | ||
883 | cb->skb = skb; | ||
884 | |||
885 | if (unlikely(!nic->cbs_avail)) | ||
886 | err = -ENOSPC; | ||
887 | |||
888 | cb_prepare(nic, cb, skb); | ||
889 | |||
890 | /* Order is important otherwise we'll be in a race with h/w: | ||
891 | * set S-bit in current first, then clear S-bit in previous. */ | ||
892 | cb->command |= cpu_to_le16(cb_s); | ||
893 | wmb(); | ||
894 | cb->prev->command &= cpu_to_le16(~cb_s); | ||
895 | |||
896 | while (nic->cb_to_send != nic->cb_to_use) { | ||
897 | if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd, | ||
898 | nic->cb_to_send->dma_addr))) { | ||
899 | /* Ok, here's where things get sticky. It's | ||
900 | * possible that we can't schedule the command | ||
901 | * because the controller is too busy, so | ||
902 | * let's just queue the command and try again | ||
903 | * when another command is scheduled. */ | ||
904 | if (err == -ENOSPC) { | ||
905 | //request a reset | ||
906 | schedule_work(&nic->tx_timeout_task); | ||
907 | } | ||
908 | break; | ||
909 | } else { | ||
910 | nic->cuc_cmd = cuc_resume; | ||
911 | nic->cb_to_send = nic->cb_to_send->next; | ||
912 | } | ||
913 | } | ||
914 | |||
915 | err_unlock: | ||
916 | spin_unlock_irqrestore(&nic->cb_lock, flags); | ||
917 | |||
918 | return err; | ||
919 | } | ||
920 | |||
921 | static int mdio_read(struct net_device *netdev, int addr, int reg) | ||
922 | { | ||
923 | struct nic *nic = netdev_priv(netdev); | ||
924 | return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0); | ||
925 | } | ||
926 | |||
927 | static void mdio_write(struct net_device *netdev, int addr, int reg, int data) | ||
928 | { | ||
929 | struct nic *nic = netdev_priv(netdev); | ||
930 | |||
931 | nic->mdio_ctrl(nic, addr, mdi_write, reg, data); | ||
932 | } | ||
933 | |||
934 | /* the standard mdio_ctrl() function for usual MII-compliant hardware */ | ||
935 | static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) | ||
936 | { | ||
937 | u32 data_out = 0; | ||
938 | unsigned int i; | ||
939 | unsigned long flags; | ||
940 | |||
941 | |||
942 | /* | ||
943 | * Stratus87247: we shouldn't be writing the MDI control | ||
944 | * register until the Ready bit shows True. Also, since | ||
945 | * manipulation of the MDI control registers is a multi-step | ||
946 | * procedure it should be done under lock. | ||
947 | */ | ||
948 | spin_lock_irqsave(&nic->mdio_lock, flags); | ||
949 | for (i = 100; i; --i) { | ||
950 | if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready) | ||
951 | break; | ||
952 | udelay(20); | ||
953 | } | ||
954 | if (unlikely(!i)) { | ||
955 | netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n"); | ||
956 | spin_unlock_irqrestore(&nic->mdio_lock, flags); | ||
957 | return 0; /* No way to indicate timeout error */ | ||
958 | } | ||
959 | iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); | ||
960 | |||
961 | for (i = 0; i < 100; i++) { | ||
962 | udelay(20); | ||
963 | if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready) | ||
964 | break; | ||
965 | } | ||
966 | spin_unlock_irqrestore(&nic->mdio_lock, flags); | ||
967 | netif_printk(nic, hw, KERN_DEBUG, nic->netdev, | ||
968 | "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", | ||
969 | dir == mdi_read ? "READ" : "WRITE", | ||
970 | addr, reg, data, data_out); | ||
971 | return (u16)data_out; | ||
972 | } | ||
973 | |||
974 | /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */ | ||
975 | static u16 mdio_ctrl_phy_82552_v(struct nic *nic, | ||
976 | u32 addr, | ||
977 | u32 dir, | ||
978 | u32 reg, | ||
979 | u16 data) | ||
980 | { | ||
981 | if ((reg == MII_BMCR) && (dir == mdi_write)) { | ||
982 | if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) { | ||
983 | u16 advert = mdio_read(nic->netdev, nic->mii.phy_id, | ||
984 | MII_ADVERTISE); | ||
985 | |||
986 | /* | ||
987 | * Workaround Si issue where sometimes the part will not | ||
988 | * autoneg to 100Mbps even when advertised. | ||
989 | */ | ||
990 | if (advert & ADVERTISE_100FULL) | ||
991 | data |= BMCR_SPEED100 | BMCR_FULLDPLX; | ||
992 | else if (advert & ADVERTISE_100HALF) | ||
993 | data |= BMCR_SPEED100; | ||
994 | } | ||
995 | } | ||
996 | return mdio_ctrl_hw(nic, addr, dir, reg, data); | ||
997 | } | ||
998 | |||
999 | /* Fully software-emulated mdio_ctrl() function for cards without | ||
1000 | * MII-compliant PHYs. | ||
1001 | * For now, this is mainly geared towards 80c24 support; in case of further | ||
1002 | * requirements for other types (i82503, ...?) either extend this mechanism | ||
1003 | * or split it, whichever is cleaner. | ||
1004 | */ | ||
1005 | static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic, | ||
1006 | u32 addr, | ||
1007 | u32 dir, | ||
1008 | u32 reg, | ||
1009 | u16 data) | ||
1010 | { | ||
1011 | /* might need to allocate a netdev_priv'ed register array eventually | ||
1012 | * to be able to record state changes, but for now | ||
1013 | * some fully hardcoded register handling ought to be ok I guess. */ | ||
1014 | |||
1015 | if (dir == mdi_read) { | ||
1016 | switch (reg) { | ||
1017 | case MII_BMCR: | ||
1018 | /* Auto-negotiation, right? */ | ||
1019 | return BMCR_ANENABLE | | ||
1020 | BMCR_FULLDPLX; | ||
1021 | case MII_BMSR: | ||
1022 | return BMSR_LSTATUS /* for mii_link_ok() */ | | ||
1023 | BMSR_ANEGCAPABLE | | ||
1024 | BMSR_10FULL; | ||
1025 | case MII_ADVERTISE: | ||
1026 | /* 80c24 is a "combo card" PHY, right? */ | ||
1027 | return ADVERTISE_10HALF | | ||
1028 | ADVERTISE_10FULL; | ||
1029 | default: | ||
1030 | netif_printk(nic, hw, KERN_DEBUG, nic->netdev, | ||
1031 | "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", | ||
1032 | dir == mdi_read ? "READ" : "WRITE", | ||
1033 | addr, reg, data); | ||
1034 | return 0xFFFF; | ||
1035 | } | ||
1036 | } else { | ||
1037 | switch (reg) { | ||
1038 | default: | ||
1039 | netif_printk(nic, hw, KERN_DEBUG, nic->netdev, | ||
1040 | "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", | ||
1041 | dir == mdi_read ? "READ" : "WRITE", | ||
1042 | addr, reg, data); | ||
1043 | return 0xFFFF; | ||
1044 | } | ||
1045 | } | ||
1046 | } | ||
1047 | static inline int e100_phy_supports_mii(struct nic *nic) | ||
1048 | { | ||
1049 | /* for now, just check it by comparing whether we | ||
1050 | are using MII software emulation. | ||
1051 | */ | ||
1052 | return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated); | ||
1053 | } | ||
1054 | |||
1055 | static void e100_get_defaults(struct nic *nic) | ||
1056 | { | ||
1057 | struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; | ||
1058 | struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; | ||
1059 | |||
1060 | /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ | ||
1061 | nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision; | ||
1062 | if (nic->mac == mac_unknown) | ||
1063 | nic->mac = mac_82557_D100_A; | ||
1064 | |||
1065 | nic->params.rfds = rfds; | ||
1066 | nic->params.cbs = cbs; | ||
1067 | |||
1068 | /* Quadwords to DMA into FIFO before starting frame transmit */ | ||
1069 | nic->tx_threshold = 0xE0; | ||
1070 | |||
1071 | /* no interrupt for every tx completion, delay = 256us if not 557 */ | ||
1072 | nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | | ||
1073 | ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); | ||
1074 | |||
1075 | /* Template for a freshly allocated RFD */ | ||
1076 | nic->blank_rfd.command = 0; | ||
1077 | nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF); | ||
1078 | nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN); | ||
1079 | |||
1080 | /* MII setup */ | ||
1081 | nic->mii.phy_id_mask = 0x1F; | ||
1082 | nic->mii.reg_num_mask = 0x1F; | ||
1083 | nic->mii.dev = nic->netdev; | ||
1084 | nic->mii.mdio_read = mdio_read; | ||
1085 | nic->mii.mdio_write = mdio_write; | ||
1086 | } | ||
1087 | |||
1088 | static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) | ||
1089 | { | ||
1090 | struct config *config = &cb->u.config; | ||
1091 | u8 *c = (u8 *)config; | ||
1092 | |||
1093 | cb->command = cpu_to_le16(cb_config); | ||
1094 | |||
1095 | memset(config, 0, sizeof(struct config)); | ||
1096 | |||
1097 | config->byte_count = 0x16; /* bytes in this struct */ | ||
1098 | config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ | ||
1099 | config->direct_rx_dma = 0x1; /* reserved */ | ||
1100 | config->standard_tcb = 0x1; /* 1=standard, 0=extended */ | ||
1101 | config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ | ||
1102 | config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ | ||
1103 | config->tx_underrun_retry = 0x3; /* # of underrun retries */ | ||
1104 | if (e100_phy_supports_mii(nic)) | ||
1105 | config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */ | ||
1106 | config->pad10 = 0x6; | ||
1107 | config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ | ||
1108 | config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ | ||
1109 | config->ifs = 0x6; /* x16 = inter frame spacing */ | ||
1110 | config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ | ||
1111 | config->pad15_1 = 0x1; | ||
1112 | config->pad15_2 = 0x1; | ||
1113 | config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ | ||
1114 | config->fc_delay_hi = 0x40; /* time delay for fc frame */ | ||
1115 | config->tx_padding = 0x1; /* 1=pad short frames */ | ||
1116 | config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ | ||
1117 | config->pad18 = 0x1; | ||
1118 | config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ | ||
1119 | config->pad20_1 = 0x1F; | ||
1120 | config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ | ||
1121 | config->pad21_1 = 0x5; | ||
1122 | |||
1123 | config->adaptive_ifs = nic->adaptive_ifs; | ||
1124 | config->loopback = nic->loopback; | ||
1125 | |||
1126 | if (nic->mii.force_media && nic->mii.full_duplex) | ||
1127 | config->full_duplex_force = 0x1; /* 1=force, 0=auto */ | ||
1128 | |||
1129 | if (nic->flags & promiscuous || nic->loopback) { | ||
1130 | config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ | ||
1131 | config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ | ||
1132 | config->promiscuous_mode = 0x1; /* 1=on, 0=off */ | ||
1133 | } | ||
1134 | |||
1135 | if (nic->flags & multicast_all) | ||
1136 | config->multicast_all = 0x1; /* 1=accept, 0=no */ | ||
1137 | |||
1138 | /* disable WoL when up */ | ||
1139 | if (netif_running(nic->netdev) || !(nic->flags & wol_magic)) | ||
1140 | config->magic_packet_disable = 0x1; /* 1=off, 0=on */ | ||
1141 | |||
1142 | if (nic->mac >= mac_82558_D101_A4) { | ||
1143 | config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ | ||
1144 | config->mwi_enable = 0x1; /* 1=enable, 0=disable */ | ||
1145 | config->standard_tcb = 0x0; /* 1=standard, 0=extended */ | ||
1146 | config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ | ||
1147 | if (nic->mac >= mac_82559_D101M) { | ||
1148 | config->tno_intr = 0x1; /* TCO stats enable */ | ||
1149 | /* Enable TCO in extended config */ | ||
1150 | if (nic->mac >= mac_82551_10) { | ||
1151 | config->byte_count = 0x20; /* extended bytes */ | ||
1152 | config->rx_d102_mode = 0x1; /* GMRC for TCO */ | ||
1153 | } | ||
1154 | } else { | ||
1155 | config->standard_stat_counter = 0x0; | ||
1156 | } | ||
1157 | } | ||
1158 | |||
1159 | netif_printk(nic, hw, KERN_DEBUG, nic->netdev, | ||
1160 | "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", | ||
1161 | c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]); | ||
1162 | netif_printk(nic, hw, KERN_DEBUG, nic->netdev, | ||
1163 | "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", | ||
1164 | c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]); | ||
1165 | netif_printk(nic, hw, KERN_DEBUG, nic->netdev, | ||
1166 | "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", | ||
1167 | c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]); | ||
1168 | } | ||
1169 | |||
1170 | /************************************************************************* | ||
1171 | * CPUSaver parameters | ||
1172 | * | ||
1173 | * All CPUSaver parameters are 16-bit literals that are part of a | ||
1174 | * "move immediate value" instruction. By changing the value of | ||
1175 | * the literal in the instruction before the code is loaded, the | ||
1176 | * driver can change the algorithm. | ||
1177 | * | ||
1178 | * INTDELAY - This loads the dead-man timer with its initial value. | ||
1179 | * When this timer expires the interrupt is asserted, and the | ||
1180 | * timer is reset each time a new packet is received. (see | ||
1181 | * BUNDLEMAX below to set the limit on number of chained packets) | ||
1182 | * The current default is 0x600 or 1536. Experiments show that | ||
1183 | * the value should probably stay within the 0x200 - 0x1000. | ||
1184 | * | ||
1185 | * BUNDLEMAX - | ||
1186 | * This sets the maximum number of frames that will be bundled. In | ||
1187 | * some situations, such as the TCP windowing algorithm, it may be | ||
1188 | * better to limit the growth of the bundle size than let it go as | ||
1189 | * high as it can, because that could cause too much added latency. | ||
1190 | * The default is six, because this is the number of packets in the | ||
1191 | * default TCP window size. A value of 1 would make CPUSaver indicate | ||
1192 | * an interrupt for every frame received. If you do not want to put | ||
1193 | * a limit on the bundle size, set this value to xFFFF. | ||
1194 | * | ||
1195 | * BUNDLESMALL - | ||
1196 | * This contains a bit-mask describing the minimum size frame that | ||
1197 | * will be bundled. The default masks the lower 7 bits, which means | ||
1198 | * that any frame less than 128 bytes in length will not be bundled, | ||
1199 | * but will instead immediately generate an interrupt. This does | ||
1200 | * not affect the current bundle in any way. Any frame that is 128 | ||
1201 | * bytes or large will be bundled normally. This feature is meant | ||
1202 | * to provide immediate indication of ACK frames in a TCP environment. | ||
1203 | * Customers were seeing poor performance when a machine with CPUSaver | ||
1204 | * enabled was sending but not receiving. The delay introduced when | ||
1205 | * the ACKs were received was enough to reduce total throughput, because | ||
1206 | * the sender would sit idle until the ACK was finally seen. | ||
1207 | * | ||
1208 | * The current default is 0xFF80, which masks out the lower 7 bits. | ||
1209 | * This means that any frame which is x7F (127) bytes or smaller | ||
1210 | * will cause an immediate interrupt. Because this value must be a | ||
1211 | * bit mask, there are only a few valid values that can be used. To | ||
1212 | * turn this feature off, the driver can write the value xFFFF to the | ||
1213 | * lower word of this instruction (in the same way that the other | ||
1214 | * parameters are used). Likewise, a value of 0xF800 (2047) would | ||
1215 | * cause an interrupt to be generated for every frame, because all | ||
1216 | * standard Ethernet frames are <= 2047 bytes in length. | ||
1217 | *************************************************************************/ | ||
1218 | |||
1219 | /* if you wish to disable the ucode functionality, while maintaining the | ||
1220 | * workarounds it provides, set the following defines to: | ||
1221 | * BUNDLESMALL 0 | ||
1222 | * BUNDLEMAX 1 | ||
1223 | * INTDELAY 1 | ||
1224 | */ | ||
1225 | #define BUNDLESMALL 1 | ||
1226 | #define BUNDLEMAX (u16)6 | ||
1227 | #define INTDELAY (u16)1536 /* 0x600 */ | ||
1228 | |||
1229 | /* Initialize firmware */ | ||
1230 | static const struct firmware *e100_request_firmware(struct nic *nic) | ||
1231 | { | ||
1232 | const char *fw_name; | ||
1233 | const struct firmware *fw = nic->fw; | ||
1234 | u8 timer, bundle, min_size; | ||
1235 | int err = 0; | ||
1236 | |||
1237 | /* do not load u-code for ICH devices */ | ||
1238 | if (nic->flags & ich) | ||
1239 | return NULL; | ||
1240 | |||
1241 | /* Search for ucode match against h/w revision */ | ||
1242 | if (nic->mac == mac_82559_D101M) | ||
1243 | fw_name = FIRMWARE_D101M; | ||
1244 | else if (nic->mac == mac_82559_D101S) | ||
1245 | fw_name = FIRMWARE_D101S; | ||
1246 | else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) | ||
1247 | fw_name = FIRMWARE_D102E; | ||
1248 | else /* No ucode on other devices */ | ||
1249 | return NULL; | ||
1250 | |||
1251 | /* If the firmware has not previously been loaded, request a pointer | ||
1252 | * to it. If it was previously loaded, we are reinitializing the | ||
1253 | * adapter, possibly in a resume from hibernate, in which case | ||
1254 | * request_firmware() cannot be used. | ||
1255 | */ | ||
1256 | if (!fw) | ||
1257 | err = request_firmware(&fw, fw_name, &nic->pdev->dev); | ||
1258 | |||
1259 | if (err) { | ||
1260 | netif_err(nic, probe, nic->netdev, | ||
1261 | "Failed to load firmware \"%s\": %d\n", | ||
1262 | fw_name, err); | ||
1263 | return ERR_PTR(err); | ||
1264 | } | ||
1265 | |||
1266 | /* Firmware should be precisely UCODE_SIZE (words) plus three bytes | ||
1267 | indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */ | ||
1268 | if (fw->size != UCODE_SIZE * 4 + 3) { | ||
1269 | netif_err(nic, probe, nic->netdev, | ||
1270 | "Firmware \"%s\" has wrong size %zu\n", | ||
1271 | fw_name, fw->size); | ||
1272 | release_firmware(fw); | ||
1273 | return ERR_PTR(-EINVAL); | ||
1274 | } | ||
1275 | |||
1276 | /* Read timer, bundle and min_size from end of firmware blob */ | ||
1277 | timer = fw->data[UCODE_SIZE * 4]; | ||
1278 | bundle = fw->data[UCODE_SIZE * 4 + 1]; | ||
1279 | min_size = fw->data[UCODE_SIZE * 4 + 2]; | ||
1280 | |||
1281 | if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE || | ||
1282 | min_size >= UCODE_SIZE) { | ||
1283 | netif_err(nic, probe, nic->netdev, | ||
1284 | "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n", | ||
1285 | fw_name, timer, bundle, min_size); | ||
1286 | release_firmware(fw); | ||
1287 | return ERR_PTR(-EINVAL); | ||
1288 | } | ||
1289 | |||
1290 | /* OK, firmware is validated and ready to use. Save a pointer | ||
1291 | * to it in the nic */ | ||
1292 | nic->fw = fw; | ||
1293 | return fw; | ||
1294 | } | ||
1295 | |||
1296 | static void e100_setup_ucode(struct nic *nic, struct cb *cb, | ||
1297 | struct sk_buff *skb) | ||
1298 | { | ||
1299 | const struct firmware *fw = (void *)skb; | ||
1300 | u8 timer, bundle, min_size; | ||
1301 | |||
1302 | /* It's not a real skb; we just abused the fact that e100_exec_cb | ||
1303 | will pass it through to here... */ | ||
1304 | cb->skb = NULL; | ||
1305 | |||
1306 | /* firmware is stored as little endian already */ | ||
1307 | memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4); | ||
1308 | |||
1309 | /* Read timer, bundle and min_size from end of firmware blob */ | ||
1310 | timer = fw->data[UCODE_SIZE * 4]; | ||
1311 | bundle = fw->data[UCODE_SIZE * 4 + 1]; | ||
1312 | min_size = fw->data[UCODE_SIZE * 4 + 2]; | ||
1313 | |||
1314 | /* Insert user-tunable settings in cb->u.ucode */ | ||
1315 | cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000); | ||
1316 | cb->u.ucode[timer] |= cpu_to_le32(INTDELAY); | ||
1317 | cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000); | ||
1318 | cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX); | ||
1319 | cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000); | ||
1320 | cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80); | ||
1321 | |||
1322 | cb->command = cpu_to_le16(cb_ucode | cb_el); | ||
1323 | } | ||
1324 | |||
1325 | static inline int e100_load_ucode_wait(struct nic *nic) | ||
1326 | { | ||
1327 | const struct firmware *fw; | ||
1328 | int err = 0, counter = 50; | ||
1329 | struct cb *cb = nic->cb_to_clean; | ||
1330 | |||
1331 | fw = e100_request_firmware(nic); | ||
1332 | /* If it's NULL, then no ucode is required */ | ||
1333 | if (!fw || IS_ERR(fw)) | ||
1334 | return PTR_ERR(fw); | ||
1335 | |||
1336 | if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode))) | ||
1337 | netif_err(nic, probe, nic->netdev, | ||
1338 | "ucode cmd failed with error %d\n", err); | ||
1339 | |||
1340 | /* must restart cuc */ | ||
1341 | nic->cuc_cmd = cuc_start; | ||
1342 | |||
1343 | /* wait for completion */ | ||
1344 | e100_write_flush(nic); | ||
1345 | udelay(10); | ||
1346 | |||
1347 | /* wait for possibly (ouch) 500ms */ | ||
1348 | while (!(cb->status & cpu_to_le16(cb_complete))) { | ||
1349 | msleep(10); | ||
1350 | if (!--counter) break; | ||
1351 | } | ||
1352 | |||
1353 | /* ack any interrupts, something could have been set */ | ||
1354 | iowrite8(~0, &nic->csr->scb.stat_ack); | ||
1355 | |||
1356 | /* if the command failed, or is not OK, notify and return */ | ||
1357 | if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { | ||
1358 | netif_err(nic, probe, nic->netdev, "ucode load failed\n"); | ||
1359 | err = -EPERM; | ||
1360 | } | ||
1361 | |||
1362 | return err; | ||
1363 | } | ||
1364 | |||
1365 | static void e100_setup_iaaddr(struct nic *nic, struct cb *cb, | ||
1366 | struct sk_buff *skb) | ||
1367 | { | ||
1368 | cb->command = cpu_to_le16(cb_iaaddr); | ||
1369 | memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); | ||
1370 | } | ||
1371 | |||
1372 | static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) | ||
1373 | { | ||
1374 | cb->command = cpu_to_le16(cb_dump); | ||
1375 | cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + | ||
1376 | offsetof(struct mem, dump_buf)); | ||
1377 | } | ||
1378 | |||
1379 | static int e100_phy_check_without_mii(struct nic *nic) | ||
1380 | { | ||
1381 | u8 phy_type; | ||
1382 | int without_mii; | ||
1383 | |||
1384 | phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f; | ||
1385 | |||
1386 | switch (phy_type) { | ||
1387 | case NoSuchPhy: /* Non-MII PHY; UNTESTED! */ | ||
1388 | case I82503: /* Non-MII PHY; UNTESTED! */ | ||
1389 | case S80C24: /* Non-MII PHY; tested and working */ | ||
1390 | /* paragraph from the FreeBSD driver, "FXP_PHY_80C24": | ||
1391 | * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter | ||
1392 | * doesn't have a programming interface of any sort. The | ||
1393 | * media is sensed automatically based on how the link partner | ||
1394 | * is configured. This is, in essence, manual configuration. | ||
1395 | */ | ||
1396 | netif_info(nic, probe, nic->netdev, | ||
1397 | "found MII-less i82503 or 80c24 or other PHY\n"); | ||
1398 | |||
1399 | nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated; | ||
1400 | nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */ | ||
1401 | |||
1402 | /* these might be needed for certain MII-less cards... | ||
1403 | * nic->flags |= ich; | ||
1404 | * nic->flags |= ich_10h_workaround; */ | ||
1405 | |||
1406 | without_mii = 1; | ||
1407 | break; | ||
1408 | default: | ||
1409 | without_mii = 0; | ||
1410 | break; | ||
1411 | } | ||
1412 | return without_mii; | ||
1413 | } | ||
1414 | |||
1415 | #define NCONFIG_AUTO_SWITCH 0x0080 | ||
1416 | #define MII_NSC_CONG MII_RESV1 | ||
1417 | #define NSC_CONG_ENABLE 0x0100 | ||
1418 | #define NSC_CONG_TXREADY 0x0400 | ||
1419 | #define ADVERTISE_FC_SUPPORTED 0x0400 | ||
1420 | static int e100_phy_init(struct nic *nic) | ||
1421 | { | ||
1422 | struct net_device *netdev = nic->netdev; | ||
1423 | u32 addr; | ||
1424 | u16 bmcr, stat, id_lo, id_hi, cong; | ||
1425 | |||
1426 | /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ | ||
1427 | for (addr = 0; addr < 32; addr++) { | ||
1428 | nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; | ||
1429 | bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); | ||
1430 | stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); | ||
1431 | stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); | ||
1432 | if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) | ||
1433 | break; | ||
1434 | } | ||
1435 | if (addr == 32) { | ||
1436 | /* uhoh, no PHY detected: check whether we seem to be some | ||
1437 | * weird, rare variant which is *known* to not have any MII. | ||
1438 | * But do this AFTER MII checking only, since this does | ||
1439 | * lookup of EEPROM values which may easily be unreliable. */ | ||
1440 | if (e100_phy_check_without_mii(nic)) | ||
1441 | return 0; /* simply return and hope for the best */ | ||
1442 | else { | ||
1443 | /* for unknown cases log a fatal error */ | ||
1444 | netif_err(nic, hw, nic->netdev, | ||
1445 | "Failed to locate any known PHY, aborting\n"); | ||
1446 | return -EAGAIN; | ||
1447 | } | ||
1448 | } else | ||
1449 | netif_printk(nic, hw, KERN_DEBUG, nic->netdev, | ||
1450 | "phy_addr = %d\n", nic->mii.phy_id); | ||
1451 | |||
1452 | /* Get phy ID */ | ||
1453 | id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); | ||
1454 | id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); | ||
1455 | nic->phy = (u32)id_hi << 16 | (u32)id_lo; | ||
1456 | netif_printk(nic, hw, KERN_DEBUG, nic->netdev, | ||
1457 | "phy ID = 0x%08X\n", nic->phy); | ||
1458 | |||
1459 | /* Select the phy and isolate the rest */ | ||
1460 | for (addr = 0; addr < 32; addr++) { | ||
1461 | if (addr != nic->mii.phy_id) { | ||
1462 | mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); | ||
1463 | } else if (nic->phy != phy_82552_v) { | ||
1464 | bmcr = mdio_read(netdev, addr, MII_BMCR); | ||
1465 | mdio_write(netdev, addr, MII_BMCR, | ||
1466 | bmcr & ~BMCR_ISOLATE); | ||
1467 | } | ||
1468 | } | ||
1469 | /* | ||
1470 | * Workaround for 82552: | ||
1471 | * Clear the ISOLATE bit on selected phy_id last (mirrored on all | ||
1472 | * other phy_id's) using bmcr value from addr discovery loop above. | ||
1473 | */ | ||
1474 | if (nic->phy == phy_82552_v) | ||
1475 | mdio_write(netdev, nic->mii.phy_id, MII_BMCR, | ||
1476 | bmcr & ~BMCR_ISOLATE); | ||
1477 | |||
1478 | /* Handle National tx phys */ | ||
1479 | #define NCS_PHY_MODEL_MASK 0xFFF0FFFF | ||
1480 | if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { | ||
1481 | /* Disable congestion control */ | ||
1482 | cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); | ||
1483 | cong |= NSC_CONG_TXREADY; | ||
1484 | cong &= ~NSC_CONG_ENABLE; | ||
1485 | mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); | ||
1486 | } | ||
1487 | |||
1488 | if (nic->phy == phy_82552_v) { | ||
1489 | u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE); | ||
1490 | |||
1491 | /* assign special tweaked mdio_ctrl() function */ | ||
1492 | nic->mdio_ctrl = mdio_ctrl_phy_82552_v; | ||
1493 | |||
1494 | /* Workaround Si not advertising flow-control during autoneg */ | ||
1495 | advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; | ||
1496 | mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert); | ||
1497 | |||
1498 | /* Reset for the above changes to take effect */ | ||
1499 | bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); | ||
1500 | bmcr |= BMCR_RESET; | ||
1501 | mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr); | ||
1502 | } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && | ||
1503 | (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && | ||
1504 | !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) { | ||
1505 | /* enable/disable MDI/MDI-X auto-switching. */ | ||
1506 | mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, | ||
1507 | nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); | ||
1508 | } | ||
1509 | |||
1510 | return 0; | ||
1511 | } | ||
1512 | |||
1513 | static int e100_hw_init(struct nic *nic) | ||
1514 | { | ||
1515 | int err = 0; | ||
1516 | |||
1517 | e100_hw_reset(nic); | ||
1518 | |||
1519 | netif_err(nic, hw, nic->netdev, "e100_hw_init\n"); | ||
1520 | if (!in_interrupt() && (err = e100_self_test(nic))) | ||
1521 | return err; | ||
1522 | |||
1523 | if ((err = e100_phy_init(nic))) | ||
1524 | return err; | ||
1525 | if ((err = e100_exec_cmd(nic, cuc_load_base, 0))) | ||
1526 | return err; | ||
1527 | if ((err = e100_exec_cmd(nic, ruc_load_base, 0))) | ||
1528 | return err; | ||
1529 | if ((err = e100_load_ucode_wait(nic))) | ||
1530 | return err; | ||
1531 | if ((err = e100_exec_cb(nic, NULL, e100_configure))) | ||
1532 | return err; | ||
1533 | if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) | ||
1534 | return err; | ||
1535 | if ((err = e100_exec_cmd(nic, cuc_dump_addr, | ||
1536 | nic->dma_addr + offsetof(struct mem, stats)))) | ||
1537 | return err; | ||
1538 | if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) | ||
1539 | return err; | ||
1540 | |||
1541 | e100_disable_irq(nic); | ||
1542 | |||
1543 | return 0; | ||
1544 | } | ||
1545 | |||
1546 | static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) | ||
1547 | { | ||
1548 | struct net_device *netdev = nic->netdev; | ||
1549 | struct netdev_hw_addr *ha; | ||
1550 | u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS); | ||
1551 | |||
1552 | cb->command = cpu_to_le16(cb_multi); | ||
1553 | cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); | ||
1554 | i = 0; | ||
1555 | netdev_for_each_mc_addr(ha, netdev) { | ||
1556 | if (i == count) | ||
1557 | break; | ||
1558 | memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr, | ||
1559 | ETH_ALEN); | ||
1560 | } | ||
1561 | } | ||
1562 | |||
1563 | static void e100_set_multicast_list(struct net_device *netdev) | ||
1564 | { | ||
1565 | struct nic *nic = netdev_priv(netdev); | ||
1566 | |||
1567 | netif_printk(nic, hw, KERN_DEBUG, nic->netdev, | ||
1568 | "mc_count=%d, flags=0x%04X\n", | ||
1569 | netdev_mc_count(netdev), netdev->flags); | ||
1570 | |||
1571 | if (netdev->flags & IFF_PROMISC) | ||
1572 | nic->flags |= promiscuous; | ||
1573 | else | ||
1574 | nic->flags &= ~promiscuous; | ||
1575 | |||
1576 | if (netdev->flags & IFF_ALLMULTI || | ||
1577 | netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS) | ||
1578 | nic->flags |= multicast_all; | ||
1579 | else | ||
1580 | nic->flags &= ~multicast_all; | ||
1581 | |||
1582 | e100_exec_cb(nic, NULL, e100_configure); | ||
1583 | e100_exec_cb(nic, NULL, e100_multi); | ||
1584 | } | ||
1585 | |||
1586 | static void e100_update_stats(struct nic *nic) | ||
1587 | { | ||
1588 | struct net_device *dev = nic->netdev; | ||
1589 | struct net_device_stats *ns = &dev->stats; | ||
1590 | struct stats *s = &nic->mem->stats; | ||
1591 | __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : | ||
1592 | (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames : | ||
1593 | &s->complete; | ||
1594 | |||
1595 | /* Device's stats reporting may take several microseconds to | ||
1596 | * complete, so we're always waiting for results of the | ||
1597 | * previous command. */ | ||
1598 | |||
1599 | if (*complete == cpu_to_le32(cuc_dump_reset_complete)) { | ||
1600 | *complete = 0; | ||
1601 | nic->tx_frames = le32_to_cpu(s->tx_good_frames); | ||
1602 | nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); | ||
1603 | ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); | ||
1604 | ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); | ||
1605 | ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); | ||
1606 | ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); | ||
1607 | ns->collisions += nic->tx_collisions; | ||
1608 | ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + | ||
1609 | le32_to_cpu(s->tx_lost_crs); | ||
1610 | ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) + | ||
1611 | nic->rx_over_length_errors; | ||
1612 | ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); | ||
1613 | ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); | ||
1614 | ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); | ||
1615 | ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); | ||
1616 | ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); | ||
1617 | ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + | ||
1618 | le32_to_cpu(s->rx_alignment_errors) + | ||
1619 | le32_to_cpu(s->rx_short_frame_errors) + | ||
1620 | le32_to_cpu(s->rx_cdt_errors); | ||
1621 | nic->tx_deferred += le32_to_cpu(s->tx_deferred); | ||
1622 | nic->tx_single_collisions += | ||
1623 | le32_to_cpu(s->tx_single_collisions); | ||
1624 | nic->tx_multiple_collisions += | ||
1625 | le32_to_cpu(s->tx_multiple_collisions); | ||
1626 | if (nic->mac >= mac_82558_D101_A4) { | ||
1627 | nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); | ||
1628 | nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); | ||
1629 | nic->rx_fc_unsupported += | ||
1630 | le32_to_cpu(s->fc_rcv_unsupported); | ||
1631 | if (nic->mac >= mac_82559_D101M) { | ||
1632 | nic->tx_tco_frames += | ||
1633 | le16_to_cpu(s->xmt_tco_frames); | ||
1634 | nic->rx_tco_frames += | ||
1635 | le16_to_cpu(s->rcv_tco_frames); | ||
1636 | } | ||
1637 | } | ||
1638 | } | ||
1639 | |||
1640 | |||
1641 | if (e100_exec_cmd(nic, cuc_dump_reset, 0)) | ||
1642 | netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, | ||
1643 | "exec cuc_dump_reset failed\n"); | ||
1644 | } | ||
1645 | |||
1646 | static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) | ||
1647 | { | ||
1648 | /* Adjust inter-frame-spacing (IFS) between two transmits if | ||
1649 | * we're getting collisions on a half-duplex connection. */ | ||
1650 | |||
1651 | if (duplex == DUPLEX_HALF) { | ||
1652 | u32 prev = nic->adaptive_ifs; | ||
1653 | u32 min_frames = (speed == SPEED_100) ? 1000 : 100; | ||
1654 | |||
1655 | if ((nic->tx_frames / 32 < nic->tx_collisions) && | ||
1656 | (nic->tx_frames > min_frames)) { | ||
1657 | if (nic->adaptive_ifs < 60) | ||
1658 | nic->adaptive_ifs += 5; | ||
1659 | } else if (nic->tx_frames < min_frames) { | ||
1660 | if (nic->adaptive_ifs >= 5) | ||
1661 | nic->adaptive_ifs -= 5; | ||
1662 | } | ||
1663 | if (nic->adaptive_ifs != prev) | ||
1664 | e100_exec_cb(nic, NULL, e100_configure); | ||
1665 | } | ||
1666 | } | ||
1667 | |||
1668 | static void e100_watchdog(unsigned long data) | ||
1669 | { | ||
1670 | struct nic *nic = (struct nic *)data; | ||
1671 | struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET }; | ||
1672 | u32 speed; | ||
1673 | |||
1674 | netif_printk(nic, timer, KERN_DEBUG, nic->netdev, | ||
1675 | "right now = %ld\n", jiffies); | ||
1676 | |||
1677 | /* mii library handles link maintenance tasks */ | ||
1678 | |||
1679 | mii_ethtool_gset(&nic->mii, &cmd); | ||
1680 | speed = ethtool_cmd_speed(&cmd); | ||
1681 | |||
1682 | if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { | ||
1683 | netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n", | ||
1684 | speed == SPEED_100 ? 100 : 10, | ||
1685 | cmd.duplex == DUPLEX_FULL ? "Full" : "Half"); | ||
1686 | } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { | ||
1687 | netdev_info(nic->netdev, "NIC Link is Down\n"); | ||
1688 | } | ||
1689 | |||
1690 | mii_check_link(&nic->mii); | ||
1691 | |||
1692 | /* Software generated interrupt to recover from (rare) Rx | ||
1693 | * allocation failure. | ||
1694 | * Unfortunately have to use a spinlock to not re-enable interrupts | ||
1695 | * accidentally, due to hardware that shares a register between the | ||
1696 | * interrupt mask bit and the SW Interrupt generation bit */ | ||
1697 | spin_lock_irq(&nic->cmd_lock); | ||
1698 | iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); | ||
1699 | e100_write_flush(nic); | ||
1700 | spin_unlock_irq(&nic->cmd_lock); | ||
1701 | |||
1702 | e100_update_stats(nic); | ||
1703 | e100_adjust_adaptive_ifs(nic, speed, cmd.duplex); | ||
1704 | |||
1705 | if (nic->mac <= mac_82557_D100_C) | ||
1706 | /* Issue a multicast command to workaround a 557 lock up */ | ||
1707 | e100_set_multicast_list(nic->netdev); | ||
1708 | |||
1709 | if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF) | ||
1710 | /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ | ||
1711 | nic->flags |= ich_10h_workaround; | ||
1712 | else | ||
1713 | nic->flags &= ~ich_10h_workaround; | ||
1714 | |||
1715 | mod_timer(&nic->watchdog, | ||
1716 | round_jiffies(jiffies + E100_WATCHDOG_PERIOD)); | ||
1717 | } | ||
1718 | |||
1719 | static void e100_xmit_prepare(struct nic *nic, struct cb *cb, | ||
1720 | struct sk_buff *skb) | ||
1721 | { | ||
1722 | cb->command = nic->tx_command; | ||
1723 | /* interrupt every 16 packets regardless of delay */ | ||
1724 | if ((nic->cbs_avail & ~15) == nic->cbs_avail) | ||
1725 | cb->command |= cpu_to_le16(cb_i); | ||
1726 | cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); | ||
1727 | cb->u.tcb.tcb_byte_count = 0; | ||
1728 | cb->u.tcb.threshold = nic->tx_threshold; | ||
1729 | cb->u.tcb.tbd_count = 1; | ||
1730 | cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, | ||
1731 | skb->data, skb->len, PCI_DMA_TODEVICE)); | ||
1732 | /* check for mapping failure? */ | ||
1733 | cb->u.tcb.tbd.size = cpu_to_le16(skb->len); | ||
1734 | } | ||
1735 | |||
1736 | static netdev_tx_t e100_xmit_frame(struct sk_buff *skb, | ||
1737 | struct net_device *netdev) | ||
1738 | { | ||
1739 | struct nic *nic = netdev_priv(netdev); | ||
1740 | int err; | ||
1741 | |||
1742 | if (nic->flags & ich_10h_workaround) { | ||
1743 | /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. | ||
1744 | Issue a NOP command followed by a 1us delay before | ||
1745 | issuing the Tx command. */ | ||
1746 | if (e100_exec_cmd(nic, cuc_nop, 0)) | ||
1747 | netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, | ||
1748 | "exec cuc_nop failed\n"); | ||
1749 | udelay(1); | ||
1750 | } | ||
1751 | |||
1752 | err = e100_exec_cb(nic, skb, e100_xmit_prepare); | ||
1753 | |||
1754 | switch (err) { | ||
1755 | case -ENOSPC: | ||
1756 | /* We queued the skb, but now we're out of space. */ | ||
1757 | netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, | ||
1758 | "No space for CB\n"); | ||
1759 | netif_stop_queue(netdev); | ||
1760 | break; | ||
1761 | case -ENOMEM: | ||
1762 | /* This is a hard error - log it. */ | ||
1763 | netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, | ||
1764 | "Out of Tx resources, returning skb\n"); | ||
1765 | netif_stop_queue(netdev); | ||
1766 | return NETDEV_TX_BUSY; | ||
1767 | } | ||
1768 | |||
1769 | return NETDEV_TX_OK; | ||
1770 | } | ||
1771 | |||
1772 | static int e100_tx_clean(struct nic *nic) | ||
1773 | { | ||
1774 | struct net_device *dev = nic->netdev; | ||
1775 | struct cb *cb; | ||
1776 | int tx_cleaned = 0; | ||
1777 | |||
1778 | spin_lock(&nic->cb_lock); | ||
1779 | |||
1780 | /* Clean CBs marked complete */ | ||
1781 | for (cb = nic->cb_to_clean; | ||
1782 | cb->status & cpu_to_le16(cb_complete); | ||
1783 | cb = nic->cb_to_clean = cb->next) { | ||
1784 | rmb(); /* read skb after status */ | ||
1785 | netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev, | ||
1786 | "cb[%d]->status = 0x%04X\n", | ||
1787 | (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)), | ||
1788 | cb->status); | ||
1789 | |||
1790 | if (likely(cb->skb != NULL)) { | ||
1791 | dev->stats.tx_packets++; | ||
1792 | dev->stats.tx_bytes += cb->skb->len; | ||
1793 | |||
1794 | pci_unmap_single(nic->pdev, | ||
1795 | le32_to_cpu(cb->u.tcb.tbd.buf_addr), | ||
1796 | le16_to_cpu(cb->u.tcb.tbd.size), | ||
1797 | PCI_DMA_TODEVICE); | ||
1798 | dev_kfree_skb_any(cb->skb); | ||
1799 | cb->skb = NULL; | ||
1800 | tx_cleaned = 1; | ||
1801 | } | ||
1802 | cb->status = 0; | ||
1803 | nic->cbs_avail++; | ||
1804 | } | ||
1805 | |||
1806 | spin_unlock(&nic->cb_lock); | ||
1807 | |||
1808 | /* Recover from running out of Tx resources in xmit_frame */ | ||
1809 | if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) | ||
1810 | netif_wake_queue(nic->netdev); | ||
1811 | |||
1812 | return tx_cleaned; | ||
1813 | } | ||
1814 | |||
1815 | static void e100_clean_cbs(struct nic *nic) | ||
1816 | { | ||
1817 | if (nic->cbs) { | ||
1818 | while (nic->cbs_avail != nic->params.cbs.count) { | ||
1819 | struct cb *cb = nic->cb_to_clean; | ||
1820 | if (cb->skb) { | ||
1821 | pci_unmap_single(nic->pdev, | ||
1822 | le32_to_cpu(cb->u.tcb.tbd.buf_addr), | ||
1823 | le16_to_cpu(cb->u.tcb.tbd.size), | ||
1824 | PCI_DMA_TODEVICE); | ||
1825 | dev_kfree_skb(cb->skb); | ||
1826 | } | ||
1827 | nic->cb_to_clean = nic->cb_to_clean->next; | ||
1828 | nic->cbs_avail++; | ||
1829 | } | ||
1830 | pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr); | ||
1831 | nic->cbs = NULL; | ||
1832 | nic->cbs_avail = 0; | ||
1833 | } | ||
1834 | nic->cuc_cmd = cuc_start; | ||
1835 | nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = | ||
1836 | nic->cbs; | ||
1837 | } | ||
1838 | |||
1839 | static int e100_alloc_cbs(struct nic *nic) | ||
1840 | { | ||
1841 | struct cb *cb; | ||
1842 | unsigned int i, count = nic->params.cbs.count; | ||
1843 | |||
1844 | nic->cuc_cmd = cuc_start; | ||
1845 | nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; | ||
1846 | nic->cbs_avail = 0; | ||
1847 | |||
1848 | nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL, | ||
1849 | &nic->cbs_dma_addr); | ||
1850 | if (!nic->cbs) | ||
1851 | return -ENOMEM; | ||
1852 | memset(nic->cbs, 0, count * sizeof(struct cb)); | ||
1853 | |||
1854 | for (cb = nic->cbs, i = 0; i < count; cb++, i++) { | ||
1855 | cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; | ||
1856 | cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; | ||
1857 | |||
1858 | cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); | ||
1859 | cb->link = cpu_to_le32(nic->cbs_dma_addr + | ||
1860 | ((i+1) % count) * sizeof(struct cb)); | ||
1861 | } | ||
1862 | |||
1863 | nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; | ||
1864 | nic->cbs_avail = count; | ||
1865 | |||
1866 | return 0; | ||
1867 | } | ||
1868 | |||
1869 | static inline void e100_start_receiver(struct nic *nic, struct rx *rx) | ||
1870 | { | ||
1871 | if (!nic->rxs) return; | ||
1872 | if (RU_SUSPENDED != nic->ru_running) return; | ||
1873 | |||
1874 | /* handle init time starts */ | ||
1875 | if (!rx) rx = nic->rxs; | ||
1876 | |||
1877 | /* (Re)start RU if suspended or idle and RFA is non-NULL */ | ||
1878 | if (rx->skb) { | ||
1879 | e100_exec_cmd(nic, ruc_start, rx->dma_addr); | ||
1880 | nic->ru_running = RU_RUNNING; | ||
1881 | } | ||
1882 | } | ||
1883 | |||
1884 | #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN) | ||
1885 | static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) | ||
1886 | { | ||
1887 | if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN))) | ||
1888 | return -ENOMEM; | ||
1889 | |||
1890 | /* Init, and map the RFD. */ | ||
1891 | skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd)); | ||
1892 | rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, | ||
1893 | RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); | ||
1894 | |||
1895 | if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) { | ||
1896 | dev_kfree_skb_any(rx->skb); | ||
1897 | rx->skb = NULL; | ||
1898 | rx->dma_addr = 0; | ||
1899 | return -ENOMEM; | ||
1900 | } | ||
1901 | |||
1902 | /* Link the RFD to end of RFA by linking previous RFD to | ||
1903 | * this one. We are safe to touch the previous RFD because | ||
1904 | * it is protected by the before last buffer's el bit being set */ | ||
1905 | if (rx->prev->skb) { | ||
1906 | struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; | ||
1907 | put_unaligned_le32(rx->dma_addr, &prev_rfd->link); | ||
1908 | pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, | ||
1909 | sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); | ||
1910 | } | ||
1911 | |||
1912 | return 0; | ||
1913 | } | ||
1914 | |||
1915 | static int e100_rx_indicate(struct nic *nic, struct rx *rx, | ||
1916 | unsigned int *work_done, unsigned int work_to_do) | ||
1917 | { | ||
1918 | struct net_device *dev = nic->netdev; | ||
1919 | struct sk_buff *skb = rx->skb; | ||
1920 | struct rfd *rfd = (struct rfd *)skb->data; | ||
1921 | u16 rfd_status, actual_size; | ||
1922 | |||
1923 | if (unlikely(work_done && *work_done >= work_to_do)) | ||
1924 | return -EAGAIN; | ||
1925 | |||
1926 | /* Need to sync before taking a peek at cb_complete bit */ | ||
1927 | pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, | ||
1928 | sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); | ||
1929 | rfd_status = le16_to_cpu(rfd->status); | ||
1930 | |||
1931 | netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev, | ||
1932 | "status=0x%04X\n", rfd_status); | ||
1933 | rmb(); /* read size after status bit */ | ||
1934 | |||
1935 | /* If data isn't ready, nothing to indicate */ | ||
1936 | if (unlikely(!(rfd_status & cb_complete))) { | ||
1937 | /* If the next buffer has the el bit, but we think the receiver | ||
1938 | * is still running, check to see if it really stopped while | ||
1939 | * we had interrupts off. | ||
1940 | * This allows for a fast restart without re-enabling | ||
1941 | * interrupts */ | ||
1942 | if ((le16_to_cpu(rfd->command) & cb_el) && | ||
1943 | (RU_RUNNING == nic->ru_running)) | ||
1944 | |||
1945 | if (ioread8(&nic->csr->scb.status) & rus_no_res) | ||
1946 | nic->ru_running = RU_SUSPENDED; | ||
1947 | pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, | ||
1948 | sizeof(struct rfd), | ||
1949 | PCI_DMA_FROMDEVICE); | ||
1950 | return -ENODATA; | ||
1951 | } | ||
1952 | |||
1953 | /* Get actual data size */ | ||
1954 | actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; | ||
1955 | if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) | ||
1956 | actual_size = RFD_BUF_LEN - sizeof(struct rfd); | ||
1957 | |||
1958 | /* Get data */ | ||
1959 | pci_unmap_single(nic->pdev, rx->dma_addr, | ||
1960 | RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); | ||
1961 | |||
1962 | /* If this buffer has the el bit, but we think the receiver | ||
1963 | * is still running, check to see if it really stopped while | ||
1964 | * we had interrupts off. | ||
1965 | * This allows for a fast restart without re-enabling interrupts. | ||
1966 | * This can happen when the RU sees the size change but also sees | ||
1967 | * the el bit set. */ | ||
1968 | if ((le16_to_cpu(rfd->command) & cb_el) && | ||
1969 | (RU_RUNNING == nic->ru_running)) { | ||
1970 | |||
1971 | if (ioread8(&nic->csr->scb.status) & rus_no_res) | ||
1972 | nic->ru_running = RU_SUSPENDED; | ||
1973 | } | ||
1974 | |||
1975 | /* Pull off the RFD and put the actual data (minus eth hdr) */ | ||
1976 | skb_reserve(skb, sizeof(struct rfd)); | ||
1977 | skb_put(skb, actual_size); | ||
1978 | skb->protocol = eth_type_trans(skb, nic->netdev); | ||
1979 | |||
1980 | if (unlikely(!(rfd_status & cb_ok))) { | ||
1981 | /* Don't indicate if hardware indicates errors */ | ||
1982 | dev_kfree_skb_any(skb); | ||
1983 | } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) { | ||
1984 | /* Don't indicate oversized frames */ | ||
1985 | nic->rx_over_length_errors++; | ||
1986 | dev_kfree_skb_any(skb); | ||
1987 | } else { | ||
1988 | dev->stats.rx_packets++; | ||
1989 | dev->stats.rx_bytes += actual_size; | ||
1990 | netif_receive_skb(skb); | ||
1991 | if (work_done) | ||
1992 | (*work_done)++; | ||
1993 | } | ||
1994 | |||
1995 | rx->skb = NULL; | ||
1996 | |||
1997 | return 0; | ||
1998 | } | ||
1999 | |||
2000 | static void e100_rx_clean(struct nic *nic, unsigned int *work_done, | ||
2001 | unsigned int work_to_do) | ||
2002 | { | ||
2003 | struct rx *rx; | ||
2004 | int restart_required = 0, err = 0; | ||
2005 | struct rx *old_before_last_rx, *new_before_last_rx; | ||
2006 | struct rfd *old_before_last_rfd, *new_before_last_rfd; | ||
2007 | |||
2008 | /* Indicate newly arrived packets */ | ||
2009 | for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { | ||
2010 | err = e100_rx_indicate(nic, rx, work_done, work_to_do); | ||
2011 | /* Hit quota or no more to clean */ | ||
2012 | if (-EAGAIN == err || -ENODATA == err) | ||
2013 | break; | ||
2014 | } | ||
2015 | |||
2016 | |||
2017 | /* On EAGAIN, hit quota so have more work to do, restart once | ||
2018 | * cleanup is complete. | ||
2019 | * Else, are we already rnr? then pay attention!!! this ensures that | ||
2020 | * the state machine progression never allows a start with a | ||
2021 | * partially cleaned list, avoiding a race between hardware | ||
2022 | * and rx_to_clean when in NAPI mode */ | ||
2023 | if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running) | ||
2024 | restart_required = 1; | ||
2025 | |||
2026 | old_before_last_rx = nic->rx_to_use->prev->prev; | ||
2027 | old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data; | ||
2028 | |||
2029 | /* Alloc new skbs to refill list */ | ||
2030 | for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { | ||
2031 | if (unlikely(e100_rx_alloc_skb(nic, rx))) | ||
2032 | break; /* Better luck next time (see watchdog) */ | ||
2033 | } | ||
2034 | |||
2035 | new_before_last_rx = nic->rx_to_use->prev->prev; | ||
2036 | if (new_before_last_rx != old_before_last_rx) { | ||
2037 | /* Set the el-bit on the buffer that is before the last buffer. | ||
2038 | * This lets us update the next pointer on the last buffer | ||
2039 | * without worrying about hardware touching it. | ||
2040 | * We set the size to 0 to prevent hardware from touching this | ||
2041 | * buffer. | ||
2042 | * When the hardware hits the before last buffer with el-bit | ||
2043 | * and size of 0, it will RNR interrupt, the RUS will go into | ||
2044 | * the No Resources state. It will not complete nor write to | ||
2045 | * this buffer. */ | ||
2046 | new_before_last_rfd = | ||
2047 | (struct rfd *)new_before_last_rx->skb->data; | ||
2048 | new_before_last_rfd->size = 0; | ||
2049 | new_before_last_rfd->command |= cpu_to_le16(cb_el); | ||
2050 | pci_dma_sync_single_for_device(nic->pdev, | ||
2051 | new_before_last_rx->dma_addr, sizeof(struct rfd), | ||
2052 | PCI_DMA_BIDIRECTIONAL); | ||
2053 | |||
2054 | /* Now that we have a new stopping point, we can clear the old | ||
2055 | * stopping point. We must sync twice to get the proper | ||
2056 | * ordering on the hardware side of things. */ | ||
2057 | old_before_last_rfd->command &= ~cpu_to_le16(cb_el); | ||
2058 | pci_dma_sync_single_for_device(nic->pdev, | ||
2059 | old_before_last_rx->dma_addr, sizeof(struct rfd), | ||
2060 | PCI_DMA_BIDIRECTIONAL); | ||
2061 | old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN); | ||
2062 | pci_dma_sync_single_for_device(nic->pdev, | ||
2063 | old_before_last_rx->dma_addr, sizeof(struct rfd), | ||
2064 | PCI_DMA_BIDIRECTIONAL); | ||
2065 | } | ||
2066 | |||
2067 | if (restart_required) { | ||
2068 | // ack the rnr? | ||
2069 | iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack); | ||
2070 | e100_start_receiver(nic, nic->rx_to_clean); | ||
2071 | if (work_done) | ||
2072 | (*work_done)++; | ||
2073 | } | ||
2074 | } | ||
2075 | |||
2076 | static void e100_rx_clean_list(struct nic *nic) | ||
2077 | { | ||
2078 | struct rx *rx; | ||
2079 | unsigned int i, count = nic->params.rfds.count; | ||
2080 | |||
2081 | nic->ru_running = RU_UNINITIALIZED; | ||
2082 | |||
2083 | if (nic->rxs) { | ||
2084 | for (rx = nic->rxs, i = 0; i < count; rx++, i++) { | ||
2085 | if (rx->skb) { | ||
2086 | pci_unmap_single(nic->pdev, rx->dma_addr, | ||
2087 | RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); | ||
2088 | dev_kfree_skb(rx->skb); | ||
2089 | } | ||
2090 | } | ||
2091 | kfree(nic->rxs); | ||
2092 | nic->rxs = NULL; | ||
2093 | } | ||
2094 | |||
2095 | nic->rx_to_use = nic->rx_to_clean = NULL; | ||
2096 | } | ||
2097 | |||
2098 | static int e100_rx_alloc_list(struct nic *nic) | ||
2099 | { | ||
2100 | struct rx *rx; | ||
2101 | unsigned int i, count = nic->params.rfds.count; | ||
2102 | struct rfd *before_last; | ||
2103 | |||
2104 | nic->rx_to_use = nic->rx_to_clean = NULL; | ||
2105 | nic->ru_running = RU_UNINITIALIZED; | ||
2106 | |||
2107 | if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC))) | ||
2108 | return -ENOMEM; | ||
2109 | |||
2110 | for (rx = nic->rxs, i = 0; i < count; rx++, i++) { | ||
2111 | rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; | ||
2112 | rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; | ||
2113 | if (e100_rx_alloc_skb(nic, rx)) { | ||
2114 | e100_rx_clean_list(nic); | ||
2115 | return -ENOMEM; | ||
2116 | } | ||
2117 | } | ||
2118 | /* Set the el-bit on the buffer that is before the last buffer. | ||
2119 | * This lets us update the next pointer on the last buffer without | ||
2120 | * worrying about hardware touching it. | ||
2121 | * We set the size to 0 to prevent hardware from touching this buffer. | ||
2122 | * When the hardware hits the before last buffer with el-bit and size | ||
2123 | * of 0, it will RNR interrupt, the RU will go into the No Resources | ||
2124 | * state. It will not complete nor write to this buffer. */ | ||
2125 | rx = nic->rxs->prev->prev; | ||
2126 | before_last = (struct rfd *)rx->skb->data; | ||
2127 | before_last->command |= cpu_to_le16(cb_el); | ||
2128 | before_last->size = 0; | ||
2129 | pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, | ||
2130 | sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); | ||
2131 | |||
2132 | nic->rx_to_use = nic->rx_to_clean = nic->rxs; | ||
2133 | nic->ru_running = RU_SUSPENDED; | ||
2134 | |||
2135 | return 0; | ||
2136 | } | ||
2137 | |||
2138 | static irqreturn_t e100_intr(int irq, void *dev_id) | ||
2139 | { | ||
2140 | struct net_device *netdev = dev_id; | ||
2141 | struct nic *nic = netdev_priv(netdev); | ||
2142 | u8 stat_ack = ioread8(&nic->csr->scb.stat_ack); | ||
2143 | |||
2144 | netif_printk(nic, intr, KERN_DEBUG, nic->netdev, | ||
2145 | "stat_ack = 0x%02X\n", stat_ack); | ||
2146 | |||
2147 | if (stat_ack == stat_ack_not_ours || /* Not our interrupt */ | ||
2148 | stat_ack == stat_ack_not_present) /* Hardware is ejected */ | ||
2149 | return IRQ_NONE; | ||
2150 | |||
2151 | /* Ack interrupt(s) */ | ||
2152 | iowrite8(stat_ack, &nic->csr->scb.stat_ack); | ||
2153 | |||
2154 | /* We hit Receive No Resource (RNR); restart RU after cleaning */ | ||
2155 | if (stat_ack & stat_ack_rnr) | ||
2156 | nic->ru_running = RU_SUSPENDED; | ||
2157 | |||
2158 | if (likely(napi_schedule_prep(&nic->napi))) { | ||
2159 | e100_disable_irq(nic); | ||
2160 | __napi_schedule(&nic->napi); | ||
2161 | } | ||
2162 | |||
2163 | return IRQ_HANDLED; | ||
2164 | } | ||
2165 | |||
2166 | static int e100_poll(struct napi_struct *napi, int budget) | ||
2167 | { | ||
2168 | struct nic *nic = container_of(napi, struct nic, napi); | ||
2169 | unsigned int work_done = 0; | ||
2170 | |||
2171 | e100_rx_clean(nic, &work_done, budget); | ||
2172 | e100_tx_clean(nic); | ||
2173 | |||
2174 | /* If budget not fully consumed, exit the polling mode */ | ||
2175 | if (work_done < budget) { | ||
2176 | napi_complete(napi); | ||
2177 | e100_enable_irq(nic); | ||
2178 | } | ||
2179 | |||
2180 | return work_done; | ||
2181 | } | ||
2182 | |||
2183 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
2184 | static void e100_netpoll(struct net_device *netdev) | ||
2185 | { | ||
2186 | struct nic *nic = netdev_priv(netdev); | ||
2187 | |||
2188 | e100_disable_irq(nic); | ||
2189 | e100_intr(nic->pdev->irq, netdev); | ||
2190 | e100_tx_clean(nic); | ||
2191 | e100_enable_irq(nic); | ||
2192 | } | ||
2193 | #endif | ||
2194 | |||
2195 | static int e100_set_mac_address(struct net_device *netdev, void *p) | ||
2196 | { | ||
2197 | struct nic *nic = netdev_priv(netdev); | ||
2198 | struct sockaddr *addr = p; | ||
2199 | |||
2200 | if (!is_valid_ether_addr(addr->sa_data)) | ||
2201 | return -EADDRNOTAVAIL; | ||
2202 | |||
2203 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | ||
2204 | e100_exec_cb(nic, NULL, e100_setup_iaaddr); | ||
2205 | |||
2206 | return 0; | ||
2207 | } | ||
2208 | |||
2209 | static int e100_change_mtu(struct net_device *netdev, int new_mtu) | ||
2210 | { | ||
2211 | if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) | ||
2212 | return -EINVAL; | ||
2213 | netdev->mtu = new_mtu; | ||
2214 | return 0; | ||
2215 | } | ||
2216 | |||
2217 | static int e100_asf(struct nic *nic) | ||
2218 | { | ||
2219 | /* ASF can be enabled from eeprom */ | ||
2220 | return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && | ||
2221 | (nic->eeprom[eeprom_config_asf] & eeprom_asf) && | ||
2222 | !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && | ||
2223 | ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE); | ||
2224 | } | ||
2225 | |||
2226 | static int e100_up(struct nic *nic) | ||
2227 | { | ||
2228 | int err; | ||
2229 | |||
2230 | if ((err = e100_rx_alloc_list(nic))) | ||
2231 | return err; | ||
2232 | if ((err = e100_alloc_cbs(nic))) | ||
2233 | goto err_rx_clean_list; | ||
2234 | if ((err = e100_hw_init(nic))) | ||
2235 | goto err_clean_cbs; | ||
2236 | e100_set_multicast_list(nic->netdev); | ||
2237 | e100_start_receiver(nic, NULL); | ||
2238 | mod_timer(&nic->watchdog, jiffies); | ||
2239 | if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, | ||
2240 | nic->netdev->name, nic->netdev))) | ||
2241 | goto err_no_irq; | ||
2242 | netif_wake_queue(nic->netdev); | ||
2243 | napi_enable(&nic->napi); | ||
2244 | /* enable ints _after_ enabling poll, preventing a race between | ||
2245 | * disable ints+schedule */ | ||
2246 | e100_enable_irq(nic); | ||
2247 | return 0; | ||
2248 | |||
2249 | err_no_irq: | ||
2250 | del_timer_sync(&nic->watchdog); | ||
2251 | err_clean_cbs: | ||
2252 | e100_clean_cbs(nic); | ||
2253 | err_rx_clean_list: | ||
2254 | e100_rx_clean_list(nic); | ||
2255 | return err; | ||
2256 | } | ||
2257 | |||
2258 | static void e100_down(struct nic *nic) | ||
2259 | { | ||
2260 | /* wait here for poll to complete */ | ||
2261 | napi_disable(&nic->napi); | ||
2262 | netif_stop_queue(nic->netdev); | ||
2263 | e100_hw_reset(nic); | ||
2264 | free_irq(nic->pdev->irq, nic->netdev); | ||
2265 | del_timer_sync(&nic->watchdog); | ||
2266 | netif_carrier_off(nic->netdev); | ||
2267 | e100_clean_cbs(nic); | ||
2268 | e100_rx_clean_list(nic); | ||
2269 | } | ||
2270 | |||
2271 | static void e100_tx_timeout(struct net_device *netdev) | ||
2272 | { | ||
2273 | struct nic *nic = netdev_priv(netdev); | ||
2274 | |||
2275 | /* Reset outside of interrupt context, to avoid request_irq | ||
2276 | * in interrupt context */ | ||
2277 | schedule_work(&nic->tx_timeout_task); | ||
2278 | } | ||
2279 | |||
2280 | static void e100_tx_timeout_task(struct work_struct *work) | ||
2281 | { | ||
2282 | struct nic *nic = container_of(work, struct nic, tx_timeout_task); | ||
2283 | struct net_device *netdev = nic->netdev; | ||
2284 | |||
2285 | netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, | ||
2286 | "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status)); | ||
2287 | |||
2288 | rtnl_lock(); | ||
2289 | if (netif_running(netdev)) { | ||
2290 | e100_down(netdev_priv(netdev)); | ||
2291 | e100_up(netdev_priv(netdev)); | ||
2292 | } | ||
2293 | rtnl_unlock(); | ||
2294 | } | ||
2295 | |||
2296 | static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) | ||
2297 | { | ||
2298 | int err; | ||
2299 | struct sk_buff *skb; | ||
2300 | |||
2301 | /* Use driver resources to perform internal MAC or PHY | ||
2302 | * loopback test. A single packet is prepared and transmitted | ||
2303 | * in loopback mode, and the test passes if the received | ||
2304 | * packet compares byte-for-byte to the transmitted packet. */ | ||
2305 | |||
2306 | if ((err = e100_rx_alloc_list(nic))) | ||
2307 | return err; | ||
2308 | if ((err = e100_alloc_cbs(nic))) | ||
2309 | goto err_clean_rx; | ||
2310 | |||
2311 | /* ICH PHY loopback is broken so do MAC loopback instead */ | ||
2312 | if (nic->flags & ich && loopback_mode == lb_phy) | ||
2313 | loopback_mode = lb_mac; | ||
2314 | |||
2315 | nic->loopback = loopback_mode; | ||
2316 | if ((err = e100_hw_init(nic))) | ||
2317 | goto err_loopback_none; | ||
2318 | |||
2319 | if (loopback_mode == lb_phy) | ||
2320 | mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, | ||
2321 | BMCR_LOOPBACK); | ||
2322 | |||
2323 | e100_start_receiver(nic, NULL); | ||
2324 | |||
2325 | if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) { | ||
2326 | err = -ENOMEM; | ||
2327 | goto err_loopback_none; | ||
2328 | } | ||
2329 | skb_put(skb, ETH_DATA_LEN); | ||
2330 | memset(skb->data, 0xFF, ETH_DATA_LEN); | ||
2331 | e100_xmit_frame(skb, nic->netdev); | ||
2332 | |||
2333 | msleep(10); | ||
2334 | |||
2335 | pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr, | ||
2336 | RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); | ||
2337 | |||
2338 | if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), | ||
2339 | skb->data, ETH_DATA_LEN)) | ||
2340 | err = -EAGAIN; | ||
2341 | |||
2342 | err_loopback_none: | ||
2343 | mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); | ||
2344 | nic->loopback = lb_none; | ||
2345 | e100_clean_cbs(nic); | ||
2346 | e100_hw_reset(nic); | ||
2347 | err_clean_rx: | ||
2348 | e100_rx_clean_list(nic); | ||
2349 | return err; | ||
2350 | } | ||
2351 | |||
2352 | #define MII_LED_CONTROL 0x1B | ||
2353 | #define E100_82552_LED_OVERRIDE 0x19 | ||
2354 | #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */ | ||
2355 | #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */ | ||
2356 | |||
2357 | static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) | ||
2358 | { | ||
2359 | struct nic *nic = netdev_priv(netdev); | ||
2360 | return mii_ethtool_gset(&nic->mii, cmd); | ||
2361 | } | ||
2362 | |||
2363 | static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) | ||
2364 | { | ||
2365 | struct nic *nic = netdev_priv(netdev); | ||
2366 | int err; | ||
2367 | |||
2368 | mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); | ||
2369 | err = mii_ethtool_sset(&nic->mii, cmd); | ||
2370 | e100_exec_cb(nic, NULL, e100_configure); | ||
2371 | |||
2372 | return err; | ||
2373 | } | ||
2374 | |||
2375 | static void e100_get_drvinfo(struct net_device *netdev, | ||
2376 | struct ethtool_drvinfo *info) | ||
2377 | { | ||
2378 | struct nic *nic = netdev_priv(netdev); | ||
2379 | strcpy(info->driver, DRV_NAME); | ||
2380 | strcpy(info->version, DRV_VERSION); | ||
2381 | strcpy(info->fw_version, "N/A"); | ||
2382 | strcpy(info->bus_info, pci_name(nic->pdev)); | ||
2383 | } | ||
2384 | |||
2385 | #define E100_PHY_REGS 0x1C | ||
2386 | static int e100_get_regs_len(struct net_device *netdev) | ||
2387 | { | ||
2388 | struct nic *nic = netdev_priv(netdev); | ||
2389 | return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf); | ||
2390 | } | ||
2391 | |||
2392 | static void e100_get_regs(struct net_device *netdev, | ||
2393 | struct ethtool_regs *regs, void *p) | ||
2394 | { | ||
2395 | struct nic *nic = netdev_priv(netdev); | ||
2396 | u32 *buff = p; | ||
2397 | int i; | ||
2398 | |||
2399 | regs->version = (1 << 24) | nic->pdev->revision; | ||
2400 | buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 | | ||
2401 | ioread8(&nic->csr->scb.cmd_lo) << 16 | | ||
2402 | ioread16(&nic->csr->scb.status); | ||
2403 | for (i = E100_PHY_REGS; i >= 0; i--) | ||
2404 | buff[1 + E100_PHY_REGS - i] = | ||
2405 | mdio_read(netdev, nic->mii.phy_id, i); | ||
2406 | memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); | ||
2407 | e100_exec_cb(nic, NULL, e100_dump); | ||
2408 | msleep(10); | ||
2409 | memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, | ||
2410 | sizeof(nic->mem->dump_buf)); | ||
2411 | } | ||
2412 | |||
2413 | static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | ||
2414 | { | ||
2415 | struct nic *nic = netdev_priv(netdev); | ||
2416 | wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; | ||
2417 | wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; | ||
2418 | } | ||
2419 | |||
2420 | static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | ||
2421 | { | ||
2422 | struct nic *nic = netdev_priv(netdev); | ||
2423 | |||
2424 | if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) || | ||
2425 | !device_can_wakeup(&nic->pdev->dev)) | ||
2426 | return -EOPNOTSUPP; | ||
2427 | |||
2428 | if (wol->wolopts) | ||
2429 | nic->flags |= wol_magic; | ||
2430 | else | ||
2431 | nic->flags &= ~wol_magic; | ||
2432 | |||
2433 | device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts); | ||
2434 | |||
2435 | e100_exec_cb(nic, NULL, e100_configure); | ||
2436 | |||
2437 | return 0; | ||
2438 | } | ||
2439 | |||
2440 | static u32 e100_get_msglevel(struct net_device *netdev) | ||
2441 | { | ||
2442 | struct nic *nic = netdev_priv(netdev); | ||
2443 | return nic->msg_enable; | ||
2444 | } | ||
2445 | |||
2446 | static void e100_set_msglevel(struct net_device *netdev, u32 value) | ||
2447 | { | ||
2448 | struct nic *nic = netdev_priv(netdev); | ||
2449 | nic->msg_enable = value; | ||
2450 | } | ||
2451 | |||
2452 | static int e100_nway_reset(struct net_device *netdev) | ||
2453 | { | ||
2454 | struct nic *nic = netdev_priv(netdev); | ||
2455 | return mii_nway_restart(&nic->mii); | ||
2456 | } | ||
2457 | |||
2458 | static u32 e100_get_link(struct net_device *netdev) | ||
2459 | { | ||
2460 | struct nic *nic = netdev_priv(netdev); | ||
2461 | return mii_link_ok(&nic->mii); | ||
2462 | } | ||
2463 | |||
2464 | static int e100_get_eeprom_len(struct net_device *netdev) | ||
2465 | { | ||
2466 | struct nic *nic = netdev_priv(netdev); | ||
2467 | return nic->eeprom_wc << 1; | ||
2468 | } | ||
2469 | |||
2470 | #define E100_EEPROM_MAGIC 0x1234 | ||
2471 | static int e100_get_eeprom(struct net_device *netdev, | ||
2472 | struct ethtool_eeprom *eeprom, u8 *bytes) | ||
2473 | { | ||
2474 | struct nic *nic = netdev_priv(netdev); | ||
2475 | |||
2476 | eeprom->magic = E100_EEPROM_MAGIC; | ||
2477 | memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); | ||
2478 | |||
2479 | return 0; | ||
2480 | } | ||
2481 | |||
2482 | static int e100_set_eeprom(struct net_device *netdev, | ||
2483 | struct ethtool_eeprom *eeprom, u8 *bytes) | ||
2484 | { | ||
2485 | struct nic *nic = netdev_priv(netdev); | ||
2486 | |||
2487 | if (eeprom->magic != E100_EEPROM_MAGIC) | ||
2488 | return -EINVAL; | ||
2489 | |||
2490 | memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); | ||
2491 | |||
2492 | return e100_eeprom_save(nic, eeprom->offset >> 1, | ||
2493 | (eeprom->len >> 1) + 1); | ||
2494 | } | ||
2495 | |||
2496 | static void e100_get_ringparam(struct net_device *netdev, | ||
2497 | struct ethtool_ringparam *ring) | ||
2498 | { | ||
2499 | struct nic *nic = netdev_priv(netdev); | ||
2500 | struct param_range *rfds = &nic->params.rfds; | ||
2501 | struct param_range *cbs = &nic->params.cbs; | ||
2502 | |||
2503 | ring->rx_max_pending = rfds->max; | ||
2504 | ring->tx_max_pending = cbs->max; | ||
2505 | ring->rx_mini_max_pending = 0; | ||
2506 | ring->rx_jumbo_max_pending = 0; | ||
2507 | ring->rx_pending = rfds->count; | ||
2508 | ring->tx_pending = cbs->count; | ||
2509 | ring->rx_mini_pending = 0; | ||
2510 | ring->rx_jumbo_pending = 0; | ||
2511 | } | ||
2512 | |||
2513 | static int e100_set_ringparam(struct net_device *netdev, | ||
2514 | struct ethtool_ringparam *ring) | ||
2515 | { | ||
2516 | struct nic *nic = netdev_priv(netdev); | ||
2517 | struct param_range *rfds = &nic->params.rfds; | ||
2518 | struct param_range *cbs = &nic->params.cbs; | ||
2519 | |||
2520 | if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) | ||
2521 | return -EINVAL; | ||
2522 | |||
2523 | if (netif_running(netdev)) | ||
2524 | e100_down(nic); | ||
2525 | rfds->count = max(ring->rx_pending, rfds->min); | ||
2526 | rfds->count = min(rfds->count, rfds->max); | ||
2527 | cbs->count = max(ring->tx_pending, cbs->min); | ||
2528 | cbs->count = min(cbs->count, cbs->max); | ||
2529 | netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n", | ||
2530 | rfds->count, cbs->count); | ||
2531 | if (netif_running(netdev)) | ||
2532 | e100_up(nic); | ||
2533 | |||
2534 | return 0; | ||
2535 | } | ||
2536 | |||
2537 | static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { | ||
2538 | "Link test (on/offline)", | ||
2539 | "Eeprom test (on/offline)", | ||
2540 | "Self test (offline)", | ||
2541 | "Mac loopback (offline)", | ||
2542 | "Phy loopback (offline)", | ||
2543 | }; | ||
2544 | #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test) | ||
2545 | |||
2546 | static void e100_diag_test(struct net_device *netdev, | ||
2547 | struct ethtool_test *test, u64 *data) | ||
2548 | { | ||
2549 | struct ethtool_cmd cmd; | ||
2550 | struct nic *nic = netdev_priv(netdev); | ||
2551 | int i, err; | ||
2552 | |||
2553 | memset(data, 0, E100_TEST_LEN * sizeof(u64)); | ||
2554 | data[0] = !mii_link_ok(&nic->mii); | ||
2555 | data[1] = e100_eeprom_load(nic); | ||
2556 | if (test->flags & ETH_TEST_FL_OFFLINE) { | ||
2557 | |||
2558 | /* save speed, duplex & autoneg settings */ | ||
2559 | err = mii_ethtool_gset(&nic->mii, &cmd); | ||
2560 | |||
2561 | if (netif_running(netdev)) | ||
2562 | e100_down(nic); | ||
2563 | data[2] = e100_self_test(nic); | ||
2564 | data[3] = e100_loopback_test(nic, lb_mac); | ||
2565 | data[4] = e100_loopback_test(nic, lb_phy); | ||
2566 | |||
2567 | /* restore speed, duplex & autoneg settings */ | ||
2568 | err = mii_ethtool_sset(&nic->mii, &cmd); | ||
2569 | |||
2570 | if (netif_running(netdev)) | ||
2571 | e100_up(nic); | ||
2572 | } | ||
2573 | for (i = 0; i < E100_TEST_LEN; i++) | ||
2574 | test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; | ||
2575 | |||
2576 | msleep_interruptible(4 * 1000); | ||
2577 | } | ||
2578 | |||
2579 | static int e100_set_phys_id(struct net_device *netdev, | ||
2580 | enum ethtool_phys_id_state state) | ||
2581 | { | ||
2582 | struct nic *nic = netdev_priv(netdev); | ||
2583 | enum led_state { | ||
2584 | led_on = 0x01, | ||
2585 | led_off = 0x04, | ||
2586 | led_on_559 = 0x05, | ||
2587 | led_on_557 = 0x07, | ||
2588 | }; | ||
2589 | u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE : | ||
2590 | MII_LED_CONTROL; | ||
2591 | u16 leds = 0; | ||
2592 | |||
2593 | switch (state) { | ||
2594 | case ETHTOOL_ID_ACTIVE: | ||
2595 | return 2; | ||
2596 | |||
2597 | case ETHTOOL_ID_ON: | ||
2598 | leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON : | ||
2599 | (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; | ||
2600 | break; | ||
2601 | |||
2602 | case ETHTOOL_ID_OFF: | ||
2603 | leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off; | ||
2604 | break; | ||
2605 | |||
2606 | case ETHTOOL_ID_INACTIVE: | ||
2607 | break; | ||
2608 | } | ||
2609 | |||
2610 | mdio_write(netdev, nic->mii.phy_id, led_reg, leds); | ||
2611 | return 0; | ||
2612 | } | ||
2613 | |||
2614 | static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { | ||
2615 | "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", | ||
2616 | "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", | ||
2617 | "rx_length_errors", "rx_over_errors", "rx_crc_errors", | ||
2618 | "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", | ||
2619 | "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", | ||
2620 | "tx_heartbeat_errors", "tx_window_errors", | ||
2621 | /* device-specific stats */ | ||
2622 | "tx_deferred", "tx_single_collisions", "tx_multi_collisions", | ||
2623 | "tx_flow_control_pause", "rx_flow_control_pause", | ||
2624 | "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", | ||
2625 | }; | ||
2626 | #define E100_NET_STATS_LEN 21 | ||
2627 | #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats) | ||
2628 | |||
2629 | static int e100_get_sset_count(struct net_device *netdev, int sset) | ||
2630 | { | ||
2631 | switch (sset) { | ||
2632 | case ETH_SS_TEST: | ||
2633 | return E100_TEST_LEN; | ||
2634 | case ETH_SS_STATS: | ||
2635 | return E100_STATS_LEN; | ||
2636 | default: | ||
2637 | return -EOPNOTSUPP; | ||
2638 | } | ||
2639 | } | ||
2640 | |||
2641 | static void e100_get_ethtool_stats(struct net_device *netdev, | ||
2642 | struct ethtool_stats *stats, u64 *data) | ||
2643 | { | ||
2644 | struct nic *nic = netdev_priv(netdev); | ||
2645 | int i; | ||
2646 | |||
2647 | for (i = 0; i < E100_NET_STATS_LEN; i++) | ||
2648 | data[i] = ((unsigned long *)&netdev->stats)[i]; | ||
2649 | |||
2650 | data[i++] = nic->tx_deferred; | ||
2651 | data[i++] = nic->tx_single_collisions; | ||
2652 | data[i++] = nic->tx_multiple_collisions; | ||
2653 | data[i++] = nic->tx_fc_pause; | ||
2654 | data[i++] = nic->rx_fc_pause; | ||
2655 | data[i++] = nic->rx_fc_unsupported; | ||
2656 | data[i++] = nic->tx_tco_frames; | ||
2657 | data[i++] = nic->rx_tco_frames; | ||
2658 | } | ||
2659 | |||
2660 | static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) | ||
2661 | { | ||
2662 | switch (stringset) { | ||
2663 | case ETH_SS_TEST: | ||
2664 | memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); | ||
2665 | break; | ||
2666 | case ETH_SS_STATS: | ||
2667 | memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); | ||
2668 | break; | ||
2669 | } | ||
2670 | } | ||
2671 | |||
2672 | static const struct ethtool_ops e100_ethtool_ops = { | ||
2673 | .get_settings = e100_get_settings, | ||
2674 | .set_settings = e100_set_settings, | ||
2675 | .get_drvinfo = e100_get_drvinfo, | ||
2676 | .get_regs_len = e100_get_regs_len, | ||
2677 | .get_regs = e100_get_regs, | ||
2678 | .get_wol = e100_get_wol, | ||
2679 | .set_wol = e100_set_wol, | ||
2680 | .get_msglevel = e100_get_msglevel, | ||
2681 | .set_msglevel = e100_set_msglevel, | ||
2682 | .nway_reset = e100_nway_reset, | ||
2683 | .get_link = e100_get_link, | ||
2684 | .get_eeprom_len = e100_get_eeprom_len, | ||
2685 | .get_eeprom = e100_get_eeprom, | ||
2686 | .set_eeprom = e100_set_eeprom, | ||
2687 | .get_ringparam = e100_get_ringparam, | ||
2688 | .set_ringparam = e100_set_ringparam, | ||
2689 | .self_test = e100_diag_test, | ||
2690 | .get_strings = e100_get_strings, | ||
2691 | .set_phys_id = e100_set_phys_id, | ||
2692 | .get_ethtool_stats = e100_get_ethtool_stats, | ||
2693 | .get_sset_count = e100_get_sset_count, | ||
2694 | }; | ||
2695 | |||
2696 | static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
2697 | { | ||
2698 | struct nic *nic = netdev_priv(netdev); | ||
2699 | |||
2700 | return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); | ||
2701 | } | ||
2702 | |||
2703 | static int e100_alloc(struct nic *nic) | ||
2704 | { | ||
2705 | nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), | ||
2706 | &nic->dma_addr); | ||
2707 | return nic->mem ? 0 : -ENOMEM; | ||
2708 | } | ||
2709 | |||
2710 | static void e100_free(struct nic *nic) | ||
2711 | { | ||
2712 | if (nic->mem) { | ||
2713 | pci_free_consistent(nic->pdev, sizeof(struct mem), | ||
2714 | nic->mem, nic->dma_addr); | ||
2715 | nic->mem = NULL; | ||
2716 | } | ||
2717 | } | ||
2718 | |||
2719 | static int e100_open(struct net_device *netdev) | ||
2720 | { | ||
2721 | struct nic *nic = netdev_priv(netdev); | ||
2722 | int err = 0; | ||
2723 | |||
2724 | netif_carrier_off(netdev); | ||
2725 | if ((err = e100_up(nic))) | ||
2726 | netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n"); | ||
2727 | return err; | ||
2728 | } | ||
2729 | |||
2730 | static int e100_close(struct net_device *netdev) | ||
2731 | { | ||
2732 | e100_down(netdev_priv(netdev)); | ||
2733 | return 0; | ||
2734 | } | ||
2735 | |||
2736 | static const struct net_device_ops e100_netdev_ops = { | ||
2737 | .ndo_open = e100_open, | ||
2738 | .ndo_stop = e100_close, | ||
2739 | .ndo_start_xmit = e100_xmit_frame, | ||
2740 | .ndo_validate_addr = eth_validate_addr, | ||
2741 | .ndo_set_multicast_list = e100_set_multicast_list, | ||
2742 | .ndo_set_mac_address = e100_set_mac_address, | ||
2743 | .ndo_change_mtu = e100_change_mtu, | ||
2744 | .ndo_do_ioctl = e100_do_ioctl, | ||
2745 | .ndo_tx_timeout = e100_tx_timeout, | ||
2746 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
2747 | .ndo_poll_controller = e100_netpoll, | ||
2748 | #endif | ||
2749 | }; | ||
2750 | |||
2751 | static int __devinit e100_probe(struct pci_dev *pdev, | ||
2752 | const struct pci_device_id *ent) | ||
2753 | { | ||
2754 | struct net_device *netdev; | ||
2755 | struct nic *nic; | ||
2756 | int err; | ||
2757 | |||
2758 | if (!(netdev = alloc_etherdev(sizeof(struct nic)))) { | ||
2759 | if (((1 << debug) - 1) & NETIF_MSG_PROBE) | ||
2760 | pr_err("Etherdev alloc failed, aborting\n"); | ||
2761 | return -ENOMEM; | ||
2762 | } | ||
2763 | |||
2764 | netdev->netdev_ops = &e100_netdev_ops; | ||
2765 | SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops); | ||
2766 | netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; | ||
2767 | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | ||
2768 | |||
2769 | nic = netdev_priv(netdev); | ||
2770 | netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT); | ||
2771 | nic->netdev = netdev; | ||
2772 | nic->pdev = pdev; | ||
2773 | nic->msg_enable = (1 << debug) - 1; | ||
2774 | nic->mdio_ctrl = mdio_ctrl_hw; | ||
2775 | pci_set_drvdata(pdev, netdev); | ||
2776 | |||
2777 | if ((err = pci_enable_device(pdev))) { | ||
2778 | netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n"); | ||
2779 | goto err_out_free_dev; | ||
2780 | } | ||
2781 | |||
2782 | if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { | ||
2783 | netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n"); | ||
2784 | err = -ENODEV; | ||
2785 | goto err_out_disable_pdev; | ||
2786 | } | ||
2787 | |||
2788 | if ((err = pci_request_regions(pdev, DRV_NAME))) { | ||
2789 | netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n"); | ||
2790 | goto err_out_disable_pdev; | ||
2791 | } | ||
2792 | |||
2793 | if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) { | ||
2794 | netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n"); | ||
2795 | goto err_out_free_res; | ||
2796 | } | ||
2797 | |||
2798 | SET_NETDEV_DEV(netdev, &pdev->dev); | ||
2799 | |||
2800 | if (use_io) | ||
2801 | netif_info(nic, probe, nic->netdev, "using i/o access mode\n"); | ||
2802 | |||
2803 | nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr)); | ||
2804 | if (!nic->csr) { | ||
2805 | netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n"); | ||
2806 | err = -ENOMEM; | ||
2807 | goto err_out_free_res; | ||
2808 | } | ||
2809 | |||
2810 | if (ent->driver_data) | ||
2811 | nic->flags |= ich; | ||
2812 | else | ||
2813 | nic->flags &= ~ich; | ||
2814 | |||
2815 | e100_get_defaults(nic); | ||
2816 | |||
2817 | /* locks must be initialized before calling hw_reset */ | ||
2818 | spin_lock_init(&nic->cb_lock); | ||
2819 | spin_lock_init(&nic->cmd_lock); | ||
2820 | spin_lock_init(&nic->mdio_lock); | ||
2821 | |||
2822 | /* Reset the device before pci_set_master() in case device is in some | ||
2823 | * funky state and has an interrupt pending - hint: we don't have the | ||
2824 | * interrupt handler registered yet. */ | ||
2825 | e100_hw_reset(nic); | ||
2826 | |||
2827 | pci_set_master(pdev); | ||
2828 | |||
2829 | init_timer(&nic->watchdog); | ||
2830 | nic->watchdog.function = e100_watchdog; | ||
2831 | nic->watchdog.data = (unsigned long)nic; | ||
2832 | |||
2833 | INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task); | ||
2834 | |||
2835 | if ((err = e100_alloc(nic))) { | ||
2836 | netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n"); | ||
2837 | goto err_out_iounmap; | ||
2838 | } | ||
2839 | |||
2840 | if ((err = e100_eeprom_load(nic))) | ||
2841 | goto err_out_free; | ||
2842 | |||
2843 | e100_phy_init(nic); | ||
2844 | |||
2845 | memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); | ||
2846 | memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN); | ||
2847 | if (!is_valid_ether_addr(netdev->perm_addr)) { | ||
2848 | if (!eeprom_bad_csum_allow) { | ||
2849 | netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n"); | ||
2850 | err = -EAGAIN; | ||
2851 | goto err_out_free; | ||
2852 | } else { | ||
2853 | netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n"); | ||
2854 | } | ||
2855 | } | ||
2856 | |||
2857 | /* Wol magic packet can be enabled from eeprom */ | ||
2858 | if ((nic->mac >= mac_82558_D101_A4) && | ||
2859 | (nic->eeprom[eeprom_id] & eeprom_id_wol)) { | ||
2860 | nic->flags |= wol_magic; | ||
2861 | device_set_wakeup_enable(&pdev->dev, true); | ||
2862 | } | ||
2863 | |||
2864 | /* ack any pending wake events, disable PME */ | ||
2865 | pci_pme_active(pdev, false); | ||
2866 | |||
2867 | strcpy(netdev->name, "eth%d"); | ||
2868 | if ((err = register_netdev(netdev))) { | ||
2869 | netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n"); | ||
2870 | goto err_out_free; | ||
2871 | } | ||
2872 | nic->cbs_pool = pci_pool_create(netdev->name, | ||
2873 | nic->pdev, | ||
2874 | nic->params.cbs.max * sizeof(struct cb), | ||
2875 | sizeof(u32), | ||
2876 | 0); | ||
2877 | netif_info(nic, probe, nic->netdev, | ||
2878 | "addr 0x%llx, irq %d, MAC addr %pM\n", | ||
2879 | (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), | ||
2880 | pdev->irq, netdev->dev_addr); | ||
2881 | |||
2882 | return 0; | ||
2883 | |||
2884 | err_out_free: | ||
2885 | e100_free(nic); | ||
2886 | err_out_iounmap: | ||
2887 | pci_iounmap(pdev, nic->csr); | ||
2888 | err_out_free_res: | ||
2889 | pci_release_regions(pdev); | ||
2890 | err_out_disable_pdev: | ||
2891 | pci_disable_device(pdev); | ||
2892 | err_out_free_dev: | ||
2893 | pci_set_drvdata(pdev, NULL); | ||
2894 | free_netdev(netdev); | ||
2895 | return err; | ||
2896 | } | ||
2897 | |||
2898 | static void __devexit e100_remove(struct pci_dev *pdev) | ||
2899 | { | ||
2900 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2901 | |||
2902 | if (netdev) { | ||
2903 | struct nic *nic = netdev_priv(netdev); | ||
2904 | unregister_netdev(netdev); | ||
2905 | e100_free(nic); | ||
2906 | pci_iounmap(pdev, nic->csr); | ||
2907 | pci_pool_destroy(nic->cbs_pool); | ||
2908 | free_netdev(netdev); | ||
2909 | pci_release_regions(pdev); | ||
2910 | pci_disable_device(pdev); | ||
2911 | pci_set_drvdata(pdev, NULL); | ||
2912 | } | ||
2913 | } | ||
2914 | |||
2915 | #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */ | ||
2916 | #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */ | ||
2917 | #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */ | ||
2918 | static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake) | ||
2919 | { | ||
2920 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2921 | struct nic *nic = netdev_priv(netdev); | ||
2922 | |||
2923 | if (netif_running(netdev)) | ||
2924 | e100_down(nic); | ||
2925 | netif_device_detach(netdev); | ||
2926 | |||
2927 | pci_save_state(pdev); | ||
2928 | |||
2929 | if ((nic->flags & wol_magic) | e100_asf(nic)) { | ||
2930 | /* enable reverse auto-negotiation */ | ||
2931 | if (nic->phy == phy_82552_v) { | ||
2932 | u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, | ||
2933 | E100_82552_SMARTSPEED); | ||
2934 | |||
2935 | mdio_write(netdev, nic->mii.phy_id, | ||
2936 | E100_82552_SMARTSPEED, smartspeed | | ||
2937 | E100_82552_REV_ANEG | E100_82552_ANEG_NOW); | ||
2938 | } | ||
2939 | *enable_wake = true; | ||
2940 | } else { | ||
2941 | *enable_wake = false; | ||
2942 | } | ||
2943 | |||
2944 | pci_disable_device(pdev); | ||
2945 | } | ||
2946 | |||
2947 | static int __e100_power_off(struct pci_dev *pdev, bool wake) | ||
2948 | { | ||
2949 | if (wake) | ||
2950 | return pci_prepare_to_sleep(pdev); | ||
2951 | |||
2952 | pci_wake_from_d3(pdev, false); | ||
2953 | pci_set_power_state(pdev, PCI_D3hot); | ||
2954 | |||
2955 | return 0; | ||
2956 | } | ||
2957 | |||
2958 | #ifdef CONFIG_PM | ||
2959 | static int e100_suspend(struct pci_dev *pdev, pm_message_t state) | ||
2960 | { | ||
2961 | bool wake; | ||
2962 | __e100_shutdown(pdev, &wake); | ||
2963 | return __e100_power_off(pdev, wake); | ||
2964 | } | ||
2965 | |||
2966 | static int e100_resume(struct pci_dev *pdev) | ||
2967 | { | ||
2968 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
2969 | struct nic *nic = netdev_priv(netdev); | ||
2970 | |||
2971 | pci_set_power_state(pdev, PCI_D0); | ||
2972 | pci_restore_state(pdev); | ||
2973 | /* ack any pending wake events, disable PME */ | ||
2974 | pci_enable_wake(pdev, 0, 0); | ||
2975 | |||
2976 | /* disable reverse auto-negotiation */ | ||
2977 | if (nic->phy == phy_82552_v) { | ||
2978 | u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, | ||
2979 | E100_82552_SMARTSPEED); | ||
2980 | |||
2981 | mdio_write(netdev, nic->mii.phy_id, | ||
2982 | E100_82552_SMARTSPEED, | ||
2983 | smartspeed & ~(E100_82552_REV_ANEG)); | ||
2984 | } | ||
2985 | |||
2986 | netif_device_attach(netdev); | ||
2987 | if (netif_running(netdev)) | ||
2988 | e100_up(nic); | ||
2989 | |||
2990 | return 0; | ||
2991 | } | ||
2992 | #endif /* CONFIG_PM */ | ||
2993 | |||
2994 | static void e100_shutdown(struct pci_dev *pdev) | ||
2995 | { | ||
2996 | bool wake; | ||
2997 | __e100_shutdown(pdev, &wake); | ||
2998 | if (system_state == SYSTEM_POWER_OFF) | ||
2999 | __e100_power_off(pdev, wake); | ||
3000 | } | ||
3001 | |||
3002 | /* ------------------ PCI Error Recovery infrastructure -------------- */ | ||
3003 | /** | ||
3004 | * e100_io_error_detected - called when PCI error is detected. | ||
3005 | * @pdev: Pointer to PCI device | ||
3006 | * @state: The current pci connection state | ||
3007 | */ | ||
3008 | static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) | ||
3009 | { | ||
3010 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
3011 | struct nic *nic = netdev_priv(netdev); | ||
3012 | |||
3013 | netif_device_detach(netdev); | ||
3014 | |||
3015 | if (state == pci_channel_io_perm_failure) | ||
3016 | return PCI_ERS_RESULT_DISCONNECT; | ||
3017 | |||
3018 | if (netif_running(netdev)) | ||
3019 | e100_down(nic); | ||
3020 | pci_disable_device(pdev); | ||
3021 | |||
3022 | /* Request a slot reset. */ | ||
3023 | return PCI_ERS_RESULT_NEED_RESET; | ||
3024 | } | ||
3025 | |||
3026 | /** | ||
3027 | * e100_io_slot_reset - called after the pci bus has been reset. | ||
3028 | * @pdev: Pointer to PCI device | ||
3029 | * | ||
3030 | * Restart the card from scratch. | ||
3031 | */ | ||
3032 | static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) | ||
3033 | { | ||
3034 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
3035 | struct nic *nic = netdev_priv(netdev); | ||
3036 | |||
3037 | if (pci_enable_device(pdev)) { | ||
3038 | pr_err("Cannot re-enable PCI device after reset\n"); | ||
3039 | return PCI_ERS_RESULT_DISCONNECT; | ||
3040 | } | ||
3041 | pci_set_master(pdev); | ||
3042 | |||
3043 | /* Only one device per card can do a reset */ | ||
3044 | if (0 != PCI_FUNC(pdev->devfn)) | ||
3045 | return PCI_ERS_RESULT_RECOVERED; | ||
3046 | e100_hw_reset(nic); | ||
3047 | e100_phy_init(nic); | ||
3048 | |||
3049 | return PCI_ERS_RESULT_RECOVERED; | ||
3050 | } | ||
3051 | |||
3052 | /** | ||
3053 | * e100_io_resume - resume normal operations | ||
3054 | * @pdev: Pointer to PCI device | ||
3055 | * | ||
3056 | * Resume normal operations after an error recovery | ||
3057 | * sequence has been completed. | ||
3058 | */ | ||
3059 | static void e100_io_resume(struct pci_dev *pdev) | ||
3060 | { | ||
3061 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
3062 | struct nic *nic = netdev_priv(netdev); | ||
3063 | |||
3064 | /* ack any pending wake events, disable PME */ | ||
3065 | pci_enable_wake(pdev, 0, 0); | ||
3066 | |||
3067 | netif_device_attach(netdev); | ||
3068 | if (netif_running(netdev)) { | ||
3069 | e100_open(netdev); | ||
3070 | mod_timer(&nic->watchdog, jiffies); | ||
3071 | } | ||
3072 | } | ||
3073 | |||
3074 | static struct pci_error_handlers e100_err_handler = { | ||
3075 | .error_detected = e100_io_error_detected, | ||
3076 | .slot_reset = e100_io_slot_reset, | ||
3077 | .resume = e100_io_resume, | ||
3078 | }; | ||
3079 | |||
3080 | static struct pci_driver e100_driver = { | ||
3081 | .name = DRV_NAME, | ||
3082 | .id_table = e100_id_table, | ||
3083 | .probe = e100_probe, | ||
3084 | .remove = __devexit_p(e100_remove), | ||
3085 | #ifdef CONFIG_PM | ||
3086 | /* Power Management hooks */ | ||
3087 | .suspend = e100_suspend, | ||
3088 | .resume = e100_resume, | ||
3089 | #endif | ||
3090 | .shutdown = e100_shutdown, | ||
3091 | .err_handler = &e100_err_handler, | ||
3092 | }; | ||
3093 | |||
3094 | static int __init e100_init_module(void) | ||
3095 | { | ||
3096 | if (((1 << debug) - 1) & NETIF_MSG_DRV) { | ||
3097 | pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); | ||
3098 | pr_info("%s\n", DRV_COPYRIGHT); | ||
3099 | } | ||
3100 | return pci_register_driver(&e100_driver); | ||
3101 | } | ||
3102 | |||
3103 | static void __exit e100_cleanup_module(void) | ||
3104 | { | ||
3105 | pci_unregister_driver(&e100_driver); | ||
3106 | } | ||
3107 | |||
3108 | module_init(e100_init_module); | ||
3109 | module_exit(e100_cleanup_module); | ||