diff options
Diffstat (limited to 'drivers/net/ethernet/3com/acenic.c')
-rw-r--r-- | drivers/net/ethernet/3com/acenic.c | 3206 |
1 files changed, 3206 insertions, 0 deletions
diff --git a/drivers/net/ethernet/3com/acenic.c b/drivers/net/ethernet/3com/acenic.c new file mode 100644 index 000000000000..31798f5f5d06 --- /dev/null +++ b/drivers/net/ethernet/3com/acenic.c | |||
@@ -0,0 +1,3206 @@ | |||
1 | /* | ||
2 | * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card | ||
3 | * and other Tigon based cards. | ||
4 | * | ||
5 | * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>. | ||
6 | * | ||
7 | * Thanks to Alteon and 3Com for providing hardware and documentation | ||
8 | * enabling me to write this driver. | ||
9 | * | ||
10 | * A mailing list for discussing the use of this driver has been | ||
11 | * setup, please subscribe to the lists if you have any questions | ||
12 | * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to | ||
13 | * see how to subscribe. | ||
14 | * | ||
15 | * This program is free software; you can redistribute it and/or modify | ||
16 | * it under the terms of the GNU General Public License as published by | ||
17 | * the Free Software Foundation; either version 2 of the License, or | ||
18 | * (at your option) any later version. | ||
19 | * | ||
20 | * Additional credits: | ||
21 | * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace | ||
22 | * dump support. The trace dump support has not been | ||
23 | * integrated yet however. | ||
24 | * Troy Benjegerdes: Big Endian (PPC) patches. | ||
25 | * Nate Stahl: Better out of memory handling and stats support. | ||
26 | * Aman Singla: Nasty race between interrupt handler and tx code dealing | ||
27 | * with 'testing the tx_ret_csm and setting tx_full' | ||
28 | * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping | ||
29 | * infrastructure and Sparc support | ||
30 | * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the | ||
31 | * driver under Linux/Sparc64 | ||
32 | * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards | ||
33 | * ETHTOOL_GDRVINFO support | ||
34 | * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx | ||
35 | * handler and close() cleanup. | ||
36 | * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether | ||
37 | * memory mapped IO is enabled to | ||
38 | * make the driver work on RS/6000. | ||
39 | * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem | ||
40 | * where the driver would disable | ||
41 | * bus master mode if it had to disable | ||
42 | * write and invalidate. | ||
43 | * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little | ||
44 | * endian systems. | ||
45 | * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and | ||
46 | * rx producer index when | ||
47 | * flushing the Jumbo ring. | ||
48 | * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the | ||
49 | * driver init path. | ||
50 | * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes. | ||
51 | */ | ||
52 | |||
53 | #include <linux/module.h> | ||
54 | #include <linux/moduleparam.h> | ||
55 | #include <linux/types.h> | ||
56 | #include <linux/errno.h> | ||
57 | #include <linux/ioport.h> | ||
58 | #include <linux/pci.h> | ||
59 | #include <linux/dma-mapping.h> | ||
60 | #include <linux/kernel.h> | ||
61 | #include <linux/netdevice.h> | ||
62 | #include <linux/etherdevice.h> | ||
63 | #include <linux/skbuff.h> | ||
64 | #include <linux/init.h> | ||
65 | #include <linux/delay.h> | ||
66 | #include <linux/mm.h> | ||
67 | #include <linux/highmem.h> | ||
68 | #include <linux/sockios.h> | ||
69 | #include <linux/firmware.h> | ||
70 | #include <linux/slab.h> | ||
71 | #include <linux/prefetch.h> | ||
72 | #include <linux/if_vlan.h> | ||
73 | |||
74 | #ifdef SIOCETHTOOL | ||
75 | #include <linux/ethtool.h> | ||
76 | #endif | ||
77 | |||
78 | #include <net/sock.h> | ||
79 | #include <net/ip.h> | ||
80 | |||
81 | #include <asm/system.h> | ||
82 | #include <asm/io.h> | ||
83 | #include <asm/irq.h> | ||
84 | #include <asm/byteorder.h> | ||
85 | #include <asm/uaccess.h> | ||
86 | |||
87 | |||
88 | #define DRV_NAME "acenic" | ||
89 | |||
90 | #undef INDEX_DEBUG | ||
91 | |||
92 | #ifdef CONFIG_ACENIC_OMIT_TIGON_I | ||
93 | #define ACE_IS_TIGON_I(ap) 0 | ||
94 | #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES | ||
95 | #else | ||
96 | #define ACE_IS_TIGON_I(ap) (ap->version == 1) | ||
97 | #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries | ||
98 | #endif | ||
99 | |||
100 | #ifndef PCI_VENDOR_ID_ALTEON | ||
101 | #define PCI_VENDOR_ID_ALTEON 0x12ae | ||
102 | #endif | ||
103 | #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE | ||
104 | #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001 | ||
105 | #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002 | ||
106 | #endif | ||
107 | #ifndef PCI_DEVICE_ID_3COM_3C985 | ||
108 | #define PCI_DEVICE_ID_3COM_3C985 0x0001 | ||
109 | #endif | ||
110 | #ifndef PCI_VENDOR_ID_NETGEAR | ||
111 | #define PCI_VENDOR_ID_NETGEAR 0x1385 | ||
112 | #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a | ||
113 | #endif | ||
114 | #ifndef PCI_DEVICE_ID_NETGEAR_GA620T | ||
115 | #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a | ||
116 | #endif | ||
117 | |||
118 | |||
119 | /* | ||
120 | * Farallon used the DEC vendor ID by mistake and they seem not | ||
121 | * to care - stinky! | ||
122 | */ | ||
123 | #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX | ||
124 | #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a | ||
125 | #endif | ||
126 | #ifndef PCI_DEVICE_ID_FARALLON_PN9100T | ||
127 | #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa | ||
128 | #endif | ||
129 | #ifndef PCI_VENDOR_ID_SGI | ||
130 | #define PCI_VENDOR_ID_SGI 0x10a9 | ||
131 | #endif | ||
132 | #ifndef PCI_DEVICE_ID_SGI_ACENIC | ||
133 | #define PCI_DEVICE_ID_SGI_ACENIC 0x0009 | ||
134 | #endif | ||
135 | |||
136 | static DEFINE_PCI_DEVICE_TABLE(acenic_pci_tbl) = { | ||
137 | { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE, | ||
138 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | ||
139 | { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER, | ||
140 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | ||
141 | { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985, | ||
142 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | ||
143 | { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620, | ||
144 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | ||
145 | { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T, | ||
146 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | ||
147 | /* | ||
148 | * Farallon used the DEC vendor ID on their cards incorrectly, | ||
149 | * then later Alteon's ID. | ||
150 | */ | ||
151 | { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX, | ||
152 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | ||
153 | { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T, | ||
154 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | ||
155 | { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC, | ||
156 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | ||
157 | { } | ||
158 | }; | ||
159 | MODULE_DEVICE_TABLE(pci, acenic_pci_tbl); | ||
160 | |||
161 | #define ace_sync_irq(irq) synchronize_irq(irq) | ||
162 | |||
163 | #ifndef offset_in_page | ||
164 | #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK) | ||
165 | #endif | ||
166 | |||
167 | #define ACE_MAX_MOD_PARMS 8 | ||
168 | #define BOARD_IDX_STATIC 0 | ||
169 | #define BOARD_IDX_OVERFLOW -1 | ||
170 | |||
171 | #include "acenic.h" | ||
172 | |||
173 | /* | ||
174 | * These must be defined before the firmware is included. | ||
175 | */ | ||
176 | #define MAX_TEXT_LEN 96*1024 | ||
177 | #define MAX_RODATA_LEN 8*1024 | ||
178 | #define MAX_DATA_LEN 2*1024 | ||
179 | |||
180 | #ifndef tigon2FwReleaseLocal | ||
181 | #define tigon2FwReleaseLocal 0 | ||
182 | #endif | ||
183 | |||
184 | /* | ||
185 | * This driver currently supports Tigon I and Tigon II based cards | ||
186 | * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear | ||
187 | * GA620. The driver should also work on the SGI, DEC and Farallon | ||
188 | * versions of the card, however I have not been able to test that | ||
189 | * myself. | ||
190 | * | ||
191 | * This card is really neat, it supports receive hardware checksumming | ||
192 | * and jumbo frames (up to 9000 bytes) and does a lot of work in the | ||
193 | * firmware. Also the programming interface is quite neat, except for | ||
194 | * the parts dealing with the i2c eeprom on the card ;-) | ||
195 | * | ||
196 | * Using jumbo frames: | ||
197 | * | ||
198 | * To enable jumbo frames, simply specify an mtu between 1500 and 9000 | ||
199 | * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time | ||
200 | * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet | ||
201 | * interface number and <MTU> being the MTU value. | ||
202 | * | ||
203 | * Module parameters: | ||
204 | * | ||
205 | * When compiled as a loadable module, the driver allows for a number | ||
206 | * of module parameters to be specified. The driver supports the | ||
207 | * following module parameters: | ||
208 | * | ||
209 | * trace=<val> - Firmware trace level. This requires special traced | ||
210 | * firmware to replace the firmware supplied with | ||
211 | * the driver - for debugging purposes only. | ||
212 | * | ||
213 | * link=<val> - Link state. Normally you want to use the default link | ||
214 | * parameters set by the driver. This can be used to | ||
215 | * override these in case your switch doesn't negotiate | ||
216 | * the link properly. Valid values are: | ||
217 | * 0x0001 - Force half duplex link. | ||
218 | * 0x0002 - Do not negotiate line speed with the other end. | ||
219 | * 0x0010 - 10Mbit/sec link. | ||
220 | * 0x0020 - 100Mbit/sec link. | ||
221 | * 0x0040 - 1000Mbit/sec link. | ||
222 | * 0x0100 - Do not negotiate flow control. | ||
223 | * 0x0200 - Enable RX flow control Y | ||
224 | * 0x0400 - Enable TX flow control Y (Tigon II NICs only). | ||
225 | * Default value is 0x0270, ie. enable link+flow | ||
226 | * control negotiation. Negotiating the highest | ||
227 | * possible link speed with RX flow control enabled. | ||
228 | * | ||
229 | * When disabling link speed negotiation, only one link | ||
230 | * speed is allowed to be specified! | ||
231 | * | ||
232 | * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed | ||
233 | * to wait for more packets to arive before | ||
234 | * interrupting the host, from the time the first | ||
235 | * packet arrives. | ||
236 | * | ||
237 | * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed | ||
238 | * to wait for more packets to arive in the transmit ring, | ||
239 | * before interrupting the host, after transmitting the | ||
240 | * first packet in the ring. | ||
241 | * | ||
242 | * max_tx_desc=<val> - maximum number of transmit descriptors | ||
243 | * (packets) transmitted before interrupting the host. | ||
244 | * | ||
245 | * max_rx_desc=<val> - maximum number of receive descriptors | ||
246 | * (packets) received before interrupting the host. | ||
247 | * | ||
248 | * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th | ||
249 | * increments of the NIC's on board memory to be used for | ||
250 | * transmit and receive buffers. For the 1MB NIC app. 800KB | ||
251 | * is available, on the 1/2MB NIC app. 300KB is available. | ||
252 | * 68KB will always be available as a minimum for both | ||
253 | * directions. The default value is a 50/50 split. | ||
254 | * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate | ||
255 | * operations, default (1) is to always disable this as | ||
256 | * that is what Alteon does on NT. I have not been able | ||
257 | * to measure any real performance differences with | ||
258 | * this on my systems. Set <val>=0 if you want to | ||
259 | * enable these operations. | ||
260 | * | ||
261 | * If you use more than one NIC, specify the parameters for the | ||
262 | * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to | ||
263 | * run tracing on NIC #2 but not on NIC #1 and #3. | ||
264 | * | ||
265 | * TODO: | ||
266 | * | ||
267 | * - Proper multicast support. | ||
268 | * - NIC dump support. | ||
269 | * - More tuning parameters. | ||
270 | * | ||
271 | * The mini ring is not used under Linux and I am not sure it makes sense | ||
272 | * to actually use it. | ||
273 | * | ||
274 | * New interrupt handler strategy: | ||
275 | * | ||
276 | * The old interrupt handler worked using the traditional method of | ||
277 | * replacing an skbuff with a new one when a packet arrives. However | ||
278 | * the rx rings do not need to contain a static number of buffer | ||
279 | * descriptors, thus it makes sense to move the memory allocation out | ||
280 | * of the main interrupt handler and do it in a bottom half handler | ||
281 | * and only allocate new buffers when the number of buffers in the | ||
282 | * ring is below a certain threshold. In order to avoid starving the | ||
283 | * NIC under heavy load it is however necessary to force allocation | ||
284 | * when hitting a minimum threshold. The strategy for alloction is as | ||
285 | * follows: | ||
286 | * | ||
287 | * RX_LOW_BUF_THRES - allocate buffers in the bottom half | ||
288 | * RX_PANIC_LOW_THRES - we are very low on buffers, allocate | ||
289 | * the buffers in the interrupt handler | ||
290 | * RX_RING_THRES - maximum number of buffers in the rx ring | ||
291 | * RX_MINI_THRES - maximum number of buffers in the mini ring | ||
292 | * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring | ||
293 | * | ||
294 | * One advantagous side effect of this allocation approach is that the | ||
295 | * entire rx processing can be done without holding any spin lock | ||
296 | * since the rx rings and registers are totally independent of the tx | ||
297 | * ring and its registers. This of course includes the kmalloc's of | ||
298 | * new skb's. Thus start_xmit can run in parallel with rx processing | ||
299 | * and the memory allocation on SMP systems. | ||
300 | * | ||
301 | * Note that running the skb reallocation in a bottom half opens up | ||
302 | * another can of races which needs to be handled properly. In | ||
303 | * particular it can happen that the interrupt handler tries to run | ||
304 | * the reallocation while the bottom half is either running on another | ||
305 | * CPU or was interrupted on the same CPU. To get around this the | ||
306 | * driver uses bitops to prevent the reallocation routines from being | ||
307 | * reentered. | ||
308 | * | ||
309 | * TX handling can also be done without holding any spin lock, wheee | ||
310 | * this is fun! since tx_ret_csm is only written to by the interrupt | ||
311 | * handler. The case to be aware of is when shutting down the device | ||
312 | * and cleaning up where it is necessary to make sure that | ||
313 | * start_xmit() is not running while this is happening. Well DaveM | ||
314 | * informs me that this case is already protected against ... bye bye | ||
315 | * Mr. Spin Lock, it was nice to know you. | ||
316 | * | ||
317 | * TX interrupts are now partly disabled so the NIC will only generate | ||
318 | * TX interrupts for the number of coal ticks, not for the number of | ||
319 | * TX packets in the queue. This should reduce the number of TX only, | ||
320 | * ie. when no RX processing is done, interrupts seen. | ||
321 | */ | ||
322 | |||
323 | /* | ||
324 | * Threshold values for RX buffer allocation - the low water marks for | ||
325 | * when to start refilling the rings are set to 75% of the ring | ||
326 | * sizes. It seems to make sense to refill the rings entirely from the | ||
327 | * intrrupt handler once it gets below the panic threshold, that way | ||
328 | * we don't risk that the refilling is moved to another CPU when the | ||
329 | * one running the interrupt handler just got the slab code hot in its | ||
330 | * cache. | ||
331 | */ | ||
332 | #define RX_RING_SIZE 72 | ||
333 | #define RX_MINI_SIZE 64 | ||
334 | #define RX_JUMBO_SIZE 48 | ||
335 | |||
336 | #define RX_PANIC_STD_THRES 16 | ||
337 | #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2 | ||
338 | #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4 | ||
339 | #define RX_PANIC_MINI_THRES 12 | ||
340 | #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2 | ||
341 | #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4 | ||
342 | #define RX_PANIC_JUMBO_THRES 6 | ||
343 | #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2 | ||
344 | #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4 | ||
345 | |||
346 | |||
347 | /* | ||
348 | * Size of the mini ring entries, basically these just should be big | ||
349 | * enough to take TCP ACKs | ||
350 | */ | ||
351 | #define ACE_MINI_SIZE 100 | ||
352 | |||
353 | #define ACE_MINI_BUFSIZE ACE_MINI_SIZE | ||
354 | #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4) | ||
355 | #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4) | ||
356 | |||
357 | /* | ||
358 | * There seems to be a magic difference in the effect between 995 and 996 | ||
359 | * but little difference between 900 and 995 ... no idea why. | ||
360 | * | ||
361 | * There is now a default set of tuning parameters which is set, depending | ||
362 | * on whether or not the user enables Jumbo frames. It's assumed that if | ||
363 | * Jumbo frames are enabled, the user wants optimal tuning for that case. | ||
364 | */ | ||
365 | #define DEF_TX_COAL 400 /* 996 */ | ||
366 | #define DEF_TX_MAX_DESC 60 /* was 40 */ | ||
367 | #define DEF_RX_COAL 120 /* 1000 */ | ||
368 | #define DEF_RX_MAX_DESC 25 | ||
369 | #define DEF_TX_RATIO 21 /* 24 */ | ||
370 | |||
371 | #define DEF_JUMBO_TX_COAL 20 | ||
372 | #define DEF_JUMBO_TX_MAX_DESC 60 | ||
373 | #define DEF_JUMBO_RX_COAL 30 | ||
374 | #define DEF_JUMBO_RX_MAX_DESC 6 | ||
375 | #define DEF_JUMBO_TX_RATIO 21 | ||
376 | |||
377 | #if tigon2FwReleaseLocal < 20001118 | ||
378 | /* | ||
379 | * Standard firmware and early modifications duplicate | ||
380 | * IRQ load without this flag (coal timer is never reset). | ||
381 | * Note that with this flag tx_coal should be less than | ||
382 | * time to xmit full tx ring. | ||
383 | * 400usec is not so bad for tx ring size of 128. | ||
384 | */ | ||
385 | #define TX_COAL_INTS_ONLY 1 /* worth it */ | ||
386 | #else | ||
387 | /* | ||
388 | * With modified firmware, this is not necessary, but still useful. | ||
389 | */ | ||
390 | #define TX_COAL_INTS_ONLY 1 | ||
391 | #endif | ||
392 | |||
393 | #define DEF_TRACE 0 | ||
394 | #define DEF_STAT (2 * TICKS_PER_SEC) | ||
395 | |||
396 | |||
397 | static int link_state[ACE_MAX_MOD_PARMS]; | ||
398 | static int trace[ACE_MAX_MOD_PARMS]; | ||
399 | static int tx_coal_tick[ACE_MAX_MOD_PARMS]; | ||
400 | static int rx_coal_tick[ACE_MAX_MOD_PARMS]; | ||
401 | static int max_tx_desc[ACE_MAX_MOD_PARMS]; | ||
402 | static int max_rx_desc[ACE_MAX_MOD_PARMS]; | ||
403 | static int tx_ratio[ACE_MAX_MOD_PARMS]; | ||
404 | static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1}; | ||
405 | |||
406 | MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>"); | ||
407 | MODULE_LICENSE("GPL"); | ||
408 | MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver"); | ||
409 | #ifndef CONFIG_ACENIC_OMIT_TIGON_I | ||
410 | MODULE_FIRMWARE("acenic/tg1.bin"); | ||
411 | #endif | ||
412 | MODULE_FIRMWARE("acenic/tg2.bin"); | ||
413 | |||
414 | module_param_array_named(link, link_state, int, NULL, 0); | ||
415 | module_param_array(trace, int, NULL, 0); | ||
416 | module_param_array(tx_coal_tick, int, NULL, 0); | ||
417 | module_param_array(max_tx_desc, int, NULL, 0); | ||
418 | module_param_array(rx_coal_tick, int, NULL, 0); | ||
419 | module_param_array(max_rx_desc, int, NULL, 0); | ||
420 | module_param_array(tx_ratio, int, NULL, 0); | ||
421 | MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state"); | ||
422 | MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level"); | ||
423 | MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives"); | ||
424 | MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait"); | ||
425 | MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives"); | ||
426 | MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait"); | ||
427 | MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)"); | ||
428 | |||
429 | |||
430 | static const char version[] __devinitconst = | ||
431 | "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n" | ||
432 | " http://home.cern.ch/~jes/gige/acenic.html\n"; | ||
433 | |||
434 | static int ace_get_settings(struct net_device *, struct ethtool_cmd *); | ||
435 | static int ace_set_settings(struct net_device *, struct ethtool_cmd *); | ||
436 | static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *); | ||
437 | |||
438 | static const struct ethtool_ops ace_ethtool_ops = { | ||
439 | .get_settings = ace_get_settings, | ||
440 | .set_settings = ace_set_settings, | ||
441 | .get_drvinfo = ace_get_drvinfo, | ||
442 | }; | ||
443 | |||
444 | static void ace_watchdog(struct net_device *dev); | ||
445 | |||
446 | static const struct net_device_ops ace_netdev_ops = { | ||
447 | .ndo_open = ace_open, | ||
448 | .ndo_stop = ace_close, | ||
449 | .ndo_tx_timeout = ace_watchdog, | ||
450 | .ndo_get_stats = ace_get_stats, | ||
451 | .ndo_start_xmit = ace_start_xmit, | ||
452 | .ndo_set_multicast_list = ace_set_multicast_list, | ||
453 | .ndo_validate_addr = eth_validate_addr, | ||
454 | .ndo_set_mac_address = ace_set_mac_addr, | ||
455 | .ndo_change_mtu = ace_change_mtu, | ||
456 | }; | ||
457 | |||
458 | static int __devinit acenic_probe_one(struct pci_dev *pdev, | ||
459 | const struct pci_device_id *id) | ||
460 | { | ||
461 | struct net_device *dev; | ||
462 | struct ace_private *ap; | ||
463 | static int boards_found; | ||
464 | |||
465 | dev = alloc_etherdev(sizeof(struct ace_private)); | ||
466 | if (dev == NULL) { | ||
467 | printk(KERN_ERR "acenic: Unable to allocate " | ||
468 | "net_device structure!\n"); | ||
469 | return -ENOMEM; | ||
470 | } | ||
471 | |||
472 | SET_NETDEV_DEV(dev, &pdev->dev); | ||
473 | |||
474 | ap = netdev_priv(dev); | ||
475 | ap->pdev = pdev; | ||
476 | ap->name = pci_name(pdev); | ||
477 | |||
478 | dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; | ||
479 | dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; | ||
480 | |||
481 | dev->watchdog_timeo = 5*HZ; | ||
482 | |||
483 | dev->netdev_ops = &ace_netdev_ops; | ||
484 | SET_ETHTOOL_OPS(dev, &ace_ethtool_ops); | ||
485 | |||
486 | /* we only display this string ONCE */ | ||
487 | if (!boards_found) | ||
488 | printk(version); | ||
489 | |||
490 | if (pci_enable_device(pdev)) | ||
491 | goto fail_free_netdev; | ||
492 | |||
493 | /* | ||
494 | * Enable master mode before we start playing with the | ||
495 | * pci_command word since pci_set_master() will modify | ||
496 | * it. | ||
497 | */ | ||
498 | pci_set_master(pdev); | ||
499 | |||
500 | pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command); | ||
501 | |||
502 | /* OpenFirmware on Mac's does not set this - DOH.. */ | ||
503 | if (!(ap->pci_command & PCI_COMMAND_MEMORY)) { | ||
504 | printk(KERN_INFO "%s: Enabling PCI Memory Mapped " | ||
505 | "access - was not enabled by BIOS/Firmware\n", | ||
506 | ap->name); | ||
507 | ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY; | ||
508 | pci_write_config_word(ap->pdev, PCI_COMMAND, | ||
509 | ap->pci_command); | ||
510 | wmb(); | ||
511 | } | ||
512 | |||
513 | pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency); | ||
514 | if (ap->pci_latency <= 0x40) { | ||
515 | ap->pci_latency = 0x40; | ||
516 | pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency); | ||
517 | } | ||
518 | |||
519 | /* | ||
520 | * Remap the regs into kernel space - this is abuse of | ||
521 | * dev->base_addr since it was means for I/O port | ||
522 | * addresses but who gives a damn. | ||
523 | */ | ||
524 | dev->base_addr = pci_resource_start(pdev, 0); | ||
525 | ap->regs = ioremap(dev->base_addr, 0x4000); | ||
526 | if (!ap->regs) { | ||
527 | printk(KERN_ERR "%s: Unable to map I/O register, " | ||
528 | "AceNIC %i will be disabled.\n", | ||
529 | ap->name, boards_found); | ||
530 | goto fail_free_netdev; | ||
531 | } | ||
532 | |||
533 | switch(pdev->vendor) { | ||
534 | case PCI_VENDOR_ID_ALTEON: | ||
535 | if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) { | ||
536 | printk(KERN_INFO "%s: Farallon PN9100-T ", | ||
537 | ap->name); | ||
538 | } else { | ||
539 | printk(KERN_INFO "%s: Alteon AceNIC ", | ||
540 | ap->name); | ||
541 | } | ||
542 | break; | ||
543 | case PCI_VENDOR_ID_3COM: | ||
544 | printk(KERN_INFO "%s: 3Com 3C985 ", ap->name); | ||
545 | break; | ||
546 | case PCI_VENDOR_ID_NETGEAR: | ||
547 | printk(KERN_INFO "%s: NetGear GA620 ", ap->name); | ||
548 | break; | ||
549 | case PCI_VENDOR_ID_DEC: | ||
550 | if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) { | ||
551 | printk(KERN_INFO "%s: Farallon PN9000-SX ", | ||
552 | ap->name); | ||
553 | break; | ||
554 | } | ||
555 | case PCI_VENDOR_ID_SGI: | ||
556 | printk(KERN_INFO "%s: SGI AceNIC ", ap->name); | ||
557 | break; | ||
558 | default: | ||
559 | printk(KERN_INFO "%s: Unknown AceNIC ", ap->name); | ||
560 | break; | ||
561 | } | ||
562 | |||
563 | printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr); | ||
564 | printk("irq %d\n", pdev->irq); | ||
565 | |||
566 | #ifdef CONFIG_ACENIC_OMIT_TIGON_I | ||
567 | if ((readl(&ap->regs->HostCtrl) >> 28) == 4) { | ||
568 | printk(KERN_ERR "%s: Driver compiled without Tigon I" | ||
569 | " support - NIC disabled\n", dev->name); | ||
570 | goto fail_uninit; | ||
571 | } | ||
572 | #endif | ||
573 | |||
574 | if (ace_allocate_descriptors(dev)) | ||
575 | goto fail_free_netdev; | ||
576 | |||
577 | #ifdef MODULE | ||
578 | if (boards_found >= ACE_MAX_MOD_PARMS) | ||
579 | ap->board_idx = BOARD_IDX_OVERFLOW; | ||
580 | else | ||
581 | ap->board_idx = boards_found; | ||
582 | #else | ||
583 | ap->board_idx = BOARD_IDX_STATIC; | ||
584 | #endif | ||
585 | |||
586 | if (ace_init(dev)) | ||
587 | goto fail_free_netdev; | ||
588 | |||
589 | if (register_netdev(dev)) { | ||
590 | printk(KERN_ERR "acenic: device registration failed\n"); | ||
591 | goto fail_uninit; | ||
592 | } | ||
593 | ap->name = dev->name; | ||
594 | |||
595 | if (ap->pci_using_dac) | ||
596 | dev->features |= NETIF_F_HIGHDMA; | ||
597 | |||
598 | pci_set_drvdata(pdev, dev); | ||
599 | |||
600 | boards_found++; | ||
601 | return 0; | ||
602 | |||
603 | fail_uninit: | ||
604 | ace_init_cleanup(dev); | ||
605 | fail_free_netdev: | ||
606 | free_netdev(dev); | ||
607 | return -ENODEV; | ||
608 | } | ||
609 | |||
610 | static void __devexit acenic_remove_one(struct pci_dev *pdev) | ||
611 | { | ||
612 | struct net_device *dev = pci_get_drvdata(pdev); | ||
613 | struct ace_private *ap = netdev_priv(dev); | ||
614 | struct ace_regs __iomem *regs = ap->regs; | ||
615 | short i; | ||
616 | |||
617 | unregister_netdev(dev); | ||
618 | |||
619 | writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); | ||
620 | if (ap->version >= 2) | ||
621 | writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); | ||
622 | |||
623 | /* | ||
624 | * This clears any pending interrupts | ||
625 | */ | ||
626 | writel(1, ®s->Mb0Lo); | ||
627 | readl(®s->CpuCtrl); /* flush */ | ||
628 | |||
629 | /* | ||
630 | * Make sure no other CPUs are processing interrupts | ||
631 | * on the card before the buffers are being released. | ||
632 | * Otherwise one might experience some `interesting' | ||
633 | * effects. | ||
634 | * | ||
635 | * Then release the RX buffers - jumbo buffers were | ||
636 | * already released in ace_close(). | ||
637 | */ | ||
638 | ace_sync_irq(dev->irq); | ||
639 | |||
640 | for (i = 0; i < RX_STD_RING_ENTRIES; i++) { | ||
641 | struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb; | ||
642 | |||
643 | if (skb) { | ||
644 | struct ring_info *ringp; | ||
645 | dma_addr_t mapping; | ||
646 | |||
647 | ringp = &ap->skb->rx_std_skbuff[i]; | ||
648 | mapping = dma_unmap_addr(ringp, mapping); | ||
649 | pci_unmap_page(ap->pdev, mapping, | ||
650 | ACE_STD_BUFSIZE, | ||
651 | PCI_DMA_FROMDEVICE); | ||
652 | |||
653 | ap->rx_std_ring[i].size = 0; | ||
654 | ap->skb->rx_std_skbuff[i].skb = NULL; | ||
655 | dev_kfree_skb(skb); | ||
656 | } | ||
657 | } | ||
658 | |||
659 | if (ap->version >= 2) { | ||
660 | for (i = 0; i < RX_MINI_RING_ENTRIES; i++) { | ||
661 | struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb; | ||
662 | |||
663 | if (skb) { | ||
664 | struct ring_info *ringp; | ||
665 | dma_addr_t mapping; | ||
666 | |||
667 | ringp = &ap->skb->rx_mini_skbuff[i]; | ||
668 | mapping = dma_unmap_addr(ringp,mapping); | ||
669 | pci_unmap_page(ap->pdev, mapping, | ||
670 | ACE_MINI_BUFSIZE, | ||
671 | PCI_DMA_FROMDEVICE); | ||
672 | |||
673 | ap->rx_mini_ring[i].size = 0; | ||
674 | ap->skb->rx_mini_skbuff[i].skb = NULL; | ||
675 | dev_kfree_skb(skb); | ||
676 | } | ||
677 | } | ||
678 | } | ||
679 | |||
680 | for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { | ||
681 | struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb; | ||
682 | if (skb) { | ||
683 | struct ring_info *ringp; | ||
684 | dma_addr_t mapping; | ||
685 | |||
686 | ringp = &ap->skb->rx_jumbo_skbuff[i]; | ||
687 | mapping = dma_unmap_addr(ringp, mapping); | ||
688 | pci_unmap_page(ap->pdev, mapping, | ||
689 | ACE_JUMBO_BUFSIZE, | ||
690 | PCI_DMA_FROMDEVICE); | ||
691 | |||
692 | ap->rx_jumbo_ring[i].size = 0; | ||
693 | ap->skb->rx_jumbo_skbuff[i].skb = NULL; | ||
694 | dev_kfree_skb(skb); | ||
695 | } | ||
696 | } | ||
697 | |||
698 | ace_init_cleanup(dev); | ||
699 | free_netdev(dev); | ||
700 | } | ||
701 | |||
702 | static struct pci_driver acenic_pci_driver = { | ||
703 | .name = "acenic", | ||
704 | .id_table = acenic_pci_tbl, | ||
705 | .probe = acenic_probe_one, | ||
706 | .remove = __devexit_p(acenic_remove_one), | ||
707 | }; | ||
708 | |||
709 | static int __init acenic_init(void) | ||
710 | { | ||
711 | return pci_register_driver(&acenic_pci_driver); | ||
712 | } | ||
713 | |||
714 | static void __exit acenic_exit(void) | ||
715 | { | ||
716 | pci_unregister_driver(&acenic_pci_driver); | ||
717 | } | ||
718 | |||
719 | module_init(acenic_init); | ||
720 | module_exit(acenic_exit); | ||
721 | |||
722 | static void ace_free_descriptors(struct net_device *dev) | ||
723 | { | ||
724 | struct ace_private *ap = netdev_priv(dev); | ||
725 | int size; | ||
726 | |||
727 | if (ap->rx_std_ring != NULL) { | ||
728 | size = (sizeof(struct rx_desc) * | ||
729 | (RX_STD_RING_ENTRIES + | ||
730 | RX_JUMBO_RING_ENTRIES + | ||
731 | RX_MINI_RING_ENTRIES + | ||
732 | RX_RETURN_RING_ENTRIES)); | ||
733 | pci_free_consistent(ap->pdev, size, ap->rx_std_ring, | ||
734 | ap->rx_ring_base_dma); | ||
735 | ap->rx_std_ring = NULL; | ||
736 | ap->rx_jumbo_ring = NULL; | ||
737 | ap->rx_mini_ring = NULL; | ||
738 | ap->rx_return_ring = NULL; | ||
739 | } | ||
740 | if (ap->evt_ring != NULL) { | ||
741 | size = (sizeof(struct event) * EVT_RING_ENTRIES); | ||
742 | pci_free_consistent(ap->pdev, size, ap->evt_ring, | ||
743 | ap->evt_ring_dma); | ||
744 | ap->evt_ring = NULL; | ||
745 | } | ||
746 | if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) { | ||
747 | size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); | ||
748 | pci_free_consistent(ap->pdev, size, ap->tx_ring, | ||
749 | ap->tx_ring_dma); | ||
750 | } | ||
751 | ap->tx_ring = NULL; | ||
752 | |||
753 | if (ap->evt_prd != NULL) { | ||
754 | pci_free_consistent(ap->pdev, sizeof(u32), | ||
755 | (void *)ap->evt_prd, ap->evt_prd_dma); | ||
756 | ap->evt_prd = NULL; | ||
757 | } | ||
758 | if (ap->rx_ret_prd != NULL) { | ||
759 | pci_free_consistent(ap->pdev, sizeof(u32), | ||
760 | (void *)ap->rx_ret_prd, | ||
761 | ap->rx_ret_prd_dma); | ||
762 | ap->rx_ret_prd = NULL; | ||
763 | } | ||
764 | if (ap->tx_csm != NULL) { | ||
765 | pci_free_consistent(ap->pdev, sizeof(u32), | ||
766 | (void *)ap->tx_csm, ap->tx_csm_dma); | ||
767 | ap->tx_csm = NULL; | ||
768 | } | ||
769 | } | ||
770 | |||
771 | |||
772 | static int ace_allocate_descriptors(struct net_device *dev) | ||
773 | { | ||
774 | struct ace_private *ap = netdev_priv(dev); | ||
775 | int size; | ||
776 | |||
777 | size = (sizeof(struct rx_desc) * | ||
778 | (RX_STD_RING_ENTRIES + | ||
779 | RX_JUMBO_RING_ENTRIES + | ||
780 | RX_MINI_RING_ENTRIES + | ||
781 | RX_RETURN_RING_ENTRIES)); | ||
782 | |||
783 | ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size, | ||
784 | &ap->rx_ring_base_dma); | ||
785 | if (ap->rx_std_ring == NULL) | ||
786 | goto fail; | ||
787 | |||
788 | ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES; | ||
789 | ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES; | ||
790 | ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES; | ||
791 | |||
792 | size = (sizeof(struct event) * EVT_RING_ENTRIES); | ||
793 | |||
794 | ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma); | ||
795 | |||
796 | if (ap->evt_ring == NULL) | ||
797 | goto fail; | ||
798 | |||
799 | /* | ||
800 | * Only allocate a host TX ring for the Tigon II, the Tigon I | ||
801 | * has to use PCI registers for this ;-( | ||
802 | */ | ||
803 | if (!ACE_IS_TIGON_I(ap)) { | ||
804 | size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); | ||
805 | |||
806 | ap->tx_ring = pci_alloc_consistent(ap->pdev, size, | ||
807 | &ap->tx_ring_dma); | ||
808 | |||
809 | if (ap->tx_ring == NULL) | ||
810 | goto fail; | ||
811 | } | ||
812 | |||
813 | ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), | ||
814 | &ap->evt_prd_dma); | ||
815 | if (ap->evt_prd == NULL) | ||
816 | goto fail; | ||
817 | |||
818 | ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), | ||
819 | &ap->rx_ret_prd_dma); | ||
820 | if (ap->rx_ret_prd == NULL) | ||
821 | goto fail; | ||
822 | |||
823 | ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32), | ||
824 | &ap->tx_csm_dma); | ||
825 | if (ap->tx_csm == NULL) | ||
826 | goto fail; | ||
827 | |||
828 | return 0; | ||
829 | |||
830 | fail: | ||
831 | /* Clean up. */ | ||
832 | ace_init_cleanup(dev); | ||
833 | return 1; | ||
834 | } | ||
835 | |||
836 | |||
837 | /* | ||
838 | * Generic cleanup handling data allocated during init. Used when the | ||
839 | * module is unloaded or if an error occurs during initialization | ||
840 | */ | ||
841 | static void ace_init_cleanup(struct net_device *dev) | ||
842 | { | ||
843 | struct ace_private *ap; | ||
844 | |||
845 | ap = netdev_priv(dev); | ||
846 | |||
847 | ace_free_descriptors(dev); | ||
848 | |||
849 | if (ap->info) | ||
850 | pci_free_consistent(ap->pdev, sizeof(struct ace_info), | ||
851 | ap->info, ap->info_dma); | ||
852 | kfree(ap->skb); | ||
853 | kfree(ap->trace_buf); | ||
854 | |||
855 | if (dev->irq) | ||
856 | free_irq(dev->irq, dev); | ||
857 | |||
858 | iounmap(ap->regs); | ||
859 | } | ||
860 | |||
861 | |||
862 | /* | ||
863 | * Commands are considered to be slow. | ||
864 | */ | ||
865 | static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd) | ||
866 | { | ||
867 | u32 idx; | ||
868 | |||
869 | idx = readl(®s->CmdPrd); | ||
870 | |||
871 | writel(*(u32 *)(cmd), ®s->CmdRng[idx]); | ||
872 | idx = (idx + 1) % CMD_RING_ENTRIES; | ||
873 | |||
874 | writel(idx, ®s->CmdPrd); | ||
875 | } | ||
876 | |||
877 | |||
878 | static int __devinit ace_init(struct net_device *dev) | ||
879 | { | ||
880 | struct ace_private *ap; | ||
881 | struct ace_regs __iomem *regs; | ||
882 | struct ace_info *info = NULL; | ||
883 | struct pci_dev *pdev; | ||
884 | unsigned long myjif; | ||
885 | u64 tmp_ptr; | ||
886 | u32 tig_ver, mac1, mac2, tmp, pci_state; | ||
887 | int board_idx, ecode = 0; | ||
888 | short i; | ||
889 | unsigned char cache_size; | ||
890 | |||
891 | ap = netdev_priv(dev); | ||
892 | regs = ap->regs; | ||
893 | |||
894 | board_idx = ap->board_idx; | ||
895 | |||
896 | /* | ||
897 | * aman@sgi.com - its useful to do a NIC reset here to | ||
898 | * address the `Firmware not running' problem subsequent | ||
899 | * to any crashes involving the NIC | ||
900 | */ | ||
901 | writel(HW_RESET | (HW_RESET << 24), ®s->HostCtrl); | ||
902 | readl(®s->HostCtrl); /* PCI write posting */ | ||
903 | udelay(5); | ||
904 | |||
905 | /* | ||
906 | * Don't access any other registers before this point! | ||
907 | */ | ||
908 | #ifdef __BIG_ENDIAN | ||
909 | /* | ||
910 | * This will most likely need BYTE_SWAP once we switch | ||
911 | * to using __raw_writel() | ||
912 | */ | ||
913 | writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)), | ||
914 | ®s->HostCtrl); | ||
915 | #else | ||
916 | writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)), | ||
917 | ®s->HostCtrl); | ||
918 | #endif | ||
919 | readl(®s->HostCtrl); /* PCI write posting */ | ||
920 | |||
921 | /* | ||
922 | * Stop the NIC CPU and clear pending interrupts | ||
923 | */ | ||
924 | writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); | ||
925 | readl(®s->CpuCtrl); /* PCI write posting */ | ||
926 | writel(0, ®s->Mb0Lo); | ||
927 | |||
928 | tig_ver = readl(®s->HostCtrl) >> 28; | ||
929 | |||
930 | switch(tig_ver){ | ||
931 | #ifndef CONFIG_ACENIC_OMIT_TIGON_I | ||
932 | case 4: | ||
933 | case 5: | ||
934 | printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ", | ||
935 | tig_ver, ap->firmware_major, ap->firmware_minor, | ||
936 | ap->firmware_fix); | ||
937 | writel(0, ®s->LocalCtrl); | ||
938 | ap->version = 1; | ||
939 | ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES; | ||
940 | break; | ||
941 | #endif | ||
942 | case 6: | ||
943 | printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ", | ||
944 | tig_ver, ap->firmware_major, ap->firmware_minor, | ||
945 | ap->firmware_fix); | ||
946 | writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); | ||
947 | readl(®s->CpuBCtrl); /* PCI write posting */ | ||
948 | /* | ||
949 | * The SRAM bank size does _not_ indicate the amount | ||
950 | * of memory on the card, it controls the _bank_ size! | ||
951 | * Ie. a 1MB AceNIC will have two banks of 512KB. | ||
952 | */ | ||
953 | writel(SRAM_BANK_512K, ®s->LocalCtrl); | ||
954 | writel(SYNC_SRAM_TIMING, ®s->MiscCfg); | ||
955 | ap->version = 2; | ||
956 | ap->tx_ring_entries = MAX_TX_RING_ENTRIES; | ||
957 | break; | ||
958 | default: | ||
959 | printk(KERN_WARNING " Unsupported Tigon version detected " | ||
960 | "(%i)\n", tig_ver); | ||
961 | ecode = -ENODEV; | ||
962 | goto init_error; | ||
963 | } | ||
964 | |||
965 | /* | ||
966 | * ModeStat _must_ be set after the SRAM settings as this change | ||
967 | * seems to corrupt the ModeStat and possible other registers. | ||
968 | * The SRAM settings survive resets and setting it to the same | ||
969 | * value a second time works as well. This is what caused the | ||
970 | * `Firmware not running' problem on the Tigon II. | ||
971 | */ | ||
972 | #ifdef __BIG_ENDIAN | ||
973 | writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD | | ||
974 | ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); | ||
975 | #else | ||
976 | writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | | ||
977 | ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); | ||
978 | #endif | ||
979 | readl(®s->ModeStat); /* PCI write posting */ | ||
980 | |||
981 | mac1 = 0; | ||
982 | for(i = 0; i < 4; i++) { | ||
983 | int t; | ||
984 | |||
985 | mac1 = mac1 << 8; | ||
986 | t = read_eeprom_byte(dev, 0x8c+i); | ||
987 | if (t < 0) { | ||
988 | ecode = -EIO; | ||
989 | goto init_error; | ||
990 | } else | ||
991 | mac1 |= (t & 0xff); | ||
992 | } | ||
993 | mac2 = 0; | ||
994 | for(i = 4; i < 8; i++) { | ||
995 | int t; | ||
996 | |||
997 | mac2 = mac2 << 8; | ||
998 | t = read_eeprom_byte(dev, 0x8c+i); | ||
999 | if (t < 0) { | ||
1000 | ecode = -EIO; | ||
1001 | goto init_error; | ||
1002 | } else | ||
1003 | mac2 |= (t & 0xff); | ||
1004 | } | ||
1005 | |||
1006 | writel(mac1, ®s->MacAddrHi); | ||
1007 | writel(mac2, ®s->MacAddrLo); | ||
1008 | |||
1009 | dev->dev_addr[0] = (mac1 >> 8) & 0xff; | ||
1010 | dev->dev_addr[1] = mac1 & 0xff; | ||
1011 | dev->dev_addr[2] = (mac2 >> 24) & 0xff; | ||
1012 | dev->dev_addr[3] = (mac2 >> 16) & 0xff; | ||
1013 | dev->dev_addr[4] = (mac2 >> 8) & 0xff; | ||
1014 | dev->dev_addr[5] = mac2 & 0xff; | ||
1015 | |||
1016 | printk("MAC: %pM\n", dev->dev_addr); | ||
1017 | |||
1018 | /* | ||
1019 | * Looks like this is necessary to deal with on all architectures, | ||
1020 | * even this %$#%$# N440BX Intel based thing doesn't get it right. | ||
1021 | * Ie. having two NICs in the machine, one will have the cache | ||
1022 | * line set at boot time, the other will not. | ||
1023 | */ | ||
1024 | pdev = ap->pdev; | ||
1025 | pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size); | ||
1026 | cache_size <<= 2; | ||
1027 | if (cache_size != SMP_CACHE_BYTES) { | ||
1028 | printk(KERN_INFO " PCI cache line size set incorrectly " | ||
1029 | "(%i bytes) by BIOS/FW, ", cache_size); | ||
1030 | if (cache_size > SMP_CACHE_BYTES) | ||
1031 | printk("expecting %i\n", SMP_CACHE_BYTES); | ||
1032 | else { | ||
1033 | printk("correcting to %i\n", SMP_CACHE_BYTES); | ||
1034 | pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, | ||
1035 | SMP_CACHE_BYTES >> 2); | ||
1036 | } | ||
1037 | } | ||
1038 | |||
1039 | pci_state = readl(®s->PciState); | ||
1040 | printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, " | ||
1041 | "latency: %i clks\n", | ||
1042 | (pci_state & PCI_32BIT) ? 32 : 64, | ||
1043 | (pci_state & PCI_66MHZ) ? 66 : 33, | ||
1044 | ap->pci_latency); | ||
1045 | |||
1046 | /* | ||
1047 | * Set the max DMA transfer size. Seems that for most systems | ||
1048 | * the performance is better when no MAX parameter is | ||
1049 | * set. However for systems enabling PCI write and invalidate, | ||
1050 | * DMA writes must be set to the L1 cache line size to get | ||
1051 | * optimal performance. | ||
1052 | * | ||
1053 | * The default is now to turn the PCI write and invalidate off | ||
1054 | * - that is what Alteon does for NT. | ||
1055 | */ | ||
1056 | tmp = READ_CMD_MEM | WRITE_CMD_MEM; | ||
1057 | if (ap->version >= 2) { | ||
1058 | tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ)); | ||
1059 | /* | ||
1060 | * Tuning parameters only supported for 8 cards | ||
1061 | */ | ||
1062 | if (board_idx == BOARD_IDX_OVERFLOW || | ||
1063 | dis_pci_mem_inval[board_idx]) { | ||
1064 | if (ap->pci_command & PCI_COMMAND_INVALIDATE) { | ||
1065 | ap->pci_command &= ~PCI_COMMAND_INVALIDATE; | ||
1066 | pci_write_config_word(pdev, PCI_COMMAND, | ||
1067 | ap->pci_command); | ||
1068 | printk(KERN_INFO " Disabling PCI memory " | ||
1069 | "write and invalidate\n"); | ||
1070 | } | ||
1071 | } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) { | ||
1072 | printk(KERN_INFO " PCI memory write & invalidate " | ||
1073 | "enabled by BIOS, enabling counter measures\n"); | ||
1074 | |||
1075 | switch(SMP_CACHE_BYTES) { | ||
1076 | case 16: | ||
1077 | tmp |= DMA_WRITE_MAX_16; | ||
1078 | break; | ||
1079 | case 32: | ||
1080 | tmp |= DMA_WRITE_MAX_32; | ||
1081 | break; | ||
1082 | case 64: | ||
1083 | tmp |= DMA_WRITE_MAX_64; | ||
1084 | break; | ||
1085 | case 128: | ||
1086 | tmp |= DMA_WRITE_MAX_128; | ||
1087 | break; | ||
1088 | default: | ||
1089 | printk(KERN_INFO " Cache line size %i not " | ||
1090 | "supported, PCI write and invalidate " | ||
1091 | "disabled\n", SMP_CACHE_BYTES); | ||
1092 | ap->pci_command &= ~PCI_COMMAND_INVALIDATE; | ||
1093 | pci_write_config_word(pdev, PCI_COMMAND, | ||
1094 | ap->pci_command); | ||
1095 | } | ||
1096 | } | ||
1097 | } | ||
1098 | |||
1099 | #ifdef __sparc__ | ||
1100 | /* | ||
1101 | * On this platform, we know what the best dma settings | ||
1102 | * are. We use 64-byte maximum bursts, because if we | ||
1103 | * burst larger than the cache line size (or even cross | ||
1104 | * a 64byte boundary in a single burst) the UltraSparc | ||
1105 | * PCI controller will disconnect at 64-byte multiples. | ||
1106 | * | ||
1107 | * Read-multiple will be properly enabled above, and when | ||
1108 | * set will give the PCI controller proper hints about | ||
1109 | * prefetching. | ||
1110 | */ | ||
1111 | tmp &= ~DMA_READ_WRITE_MASK; | ||
1112 | tmp |= DMA_READ_MAX_64; | ||
1113 | tmp |= DMA_WRITE_MAX_64; | ||
1114 | #endif | ||
1115 | #ifdef __alpha__ | ||
1116 | tmp &= ~DMA_READ_WRITE_MASK; | ||
1117 | tmp |= DMA_READ_MAX_128; | ||
1118 | /* | ||
1119 | * All the docs say MUST NOT. Well, I did. | ||
1120 | * Nothing terrible happens, if we load wrong size. | ||
1121 | * Bit w&i still works better! | ||
1122 | */ | ||
1123 | tmp |= DMA_WRITE_MAX_128; | ||
1124 | #endif | ||
1125 | writel(tmp, ®s->PciState); | ||
1126 | |||
1127 | #if 0 | ||
1128 | /* | ||
1129 | * The Host PCI bus controller driver has to set FBB. | ||
1130 | * If all devices on that PCI bus support FBB, then the controller | ||
1131 | * can enable FBB support in the Host PCI Bus controller (or on | ||
1132 | * the PCI-PCI bridge if that applies). | ||
1133 | * -ggg | ||
1134 | */ | ||
1135 | /* | ||
1136 | * I have received reports from people having problems when this | ||
1137 | * bit is enabled. | ||
1138 | */ | ||
1139 | if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) { | ||
1140 | printk(KERN_INFO " Enabling PCI Fast Back to Back\n"); | ||
1141 | ap->pci_command |= PCI_COMMAND_FAST_BACK; | ||
1142 | pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command); | ||
1143 | } | ||
1144 | #endif | ||
1145 | |||
1146 | /* | ||
1147 | * Configure DMA attributes. | ||
1148 | */ | ||
1149 | if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { | ||
1150 | ap->pci_using_dac = 1; | ||
1151 | } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { | ||
1152 | ap->pci_using_dac = 0; | ||
1153 | } else { | ||
1154 | ecode = -ENODEV; | ||
1155 | goto init_error; | ||
1156 | } | ||
1157 | |||
1158 | /* | ||
1159 | * Initialize the generic info block and the command+event rings | ||
1160 | * and the control blocks for the transmit and receive rings | ||
1161 | * as they need to be setup once and for all. | ||
1162 | */ | ||
1163 | if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info), | ||
1164 | &ap->info_dma))) { | ||
1165 | ecode = -EAGAIN; | ||
1166 | goto init_error; | ||
1167 | } | ||
1168 | ap->info = info; | ||
1169 | |||
1170 | /* | ||
1171 | * Get the memory for the skb rings. | ||
1172 | */ | ||
1173 | if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) { | ||
1174 | ecode = -EAGAIN; | ||
1175 | goto init_error; | ||
1176 | } | ||
1177 | |||
1178 | ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED, | ||
1179 | DRV_NAME, dev); | ||
1180 | if (ecode) { | ||
1181 | printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", | ||
1182 | DRV_NAME, pdev->irq); | ||
1183 | goto init_error; | ||
1184 | } else | ||
1185 | dev->irq = pdev->irq; | ||
1186 | |||
1187 | #ifdef INDEX_DEBUG | ||
1188 | spin_lock_init(&ap->debug_lock); | ||
1189 | ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1; | ||
1190 | ap->last_std_rx = 0; | ||
1191 | ap->last_mini_rx = 0; | ||
1192 | #endif | ||
1193 | |||
1194 | memset(ap->info, 0, sizeof(struct ace_info)); | ||
1195 | memset(ap->skb, 0, sizeof(struct ace_skb)); | ||
1196 | |||
1197 | ecode = ace_load_firmware(dev); | ||
1198 | if (ecode) | ||
1199 | goto init_error; | ||
1200 | |||
1201 | ap->fw_running = 0; | ||
1202 | |||
1203 | tmp_ptr = ap->info_dma; | ||
1204 | writel(tmp_ptr >> 32, ®s->InfoPtrHi); | ||
1205 | writel(tmp_ptr & 0xffffffff, ®s->InfoPtrLo); | ||
1206 | |||
1207 | memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event)); | ||
1208 | |||
1209 | set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma); | ||
1210 | info->evt_ctrl.flags = 0; | ||
1211 | |||
1212 | *(ap->evt_prd) = 0; | ||
1213 | wmb(); | ||
1214 | set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma); | ||
1215 | writel(0, ®s->EvtCsm); | ||
1216 | |||
1217 | set_aceaddr(&info->cmd_ctrl.rngptr, 0x100); | ||
1218 | info->cmd_ctrl.flags = 0; | ||
1219 | info->cmd_ctrl.max_len = 0; | ||
1220 | |||
1221 | for (i = 0; i < CMD_RING_ENTRIES; i++) | ||
1222 | writel(0, ®s->CmdRng[i]); | ||
1223 | |||
1224 | writel(0, ®s->CmdPrd); | ||
1225 | writel(0, ®s->CmdCsm); | ||
1226 | |||
1227 | tmp_ptr = ap->info_dma; | ||
1228 | tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats); | ||
1229 | set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr); | ||
1230 | |||
1231 | set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma); | ||
1232 | info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE; | ||
1233 | info->rx_std_ctrl.flags = | ||
1234 | RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST; | ||
1235 | |||
1236 | memset(ap->rx_std_ring, 0, | ||
1237 | RX_STD_RING_ENTRIES * sizeof(struct rx_desc)); | ||
1238 | |||
1239 | for (i = 0; i < RX_STD_RING_ENTRIES; i++) | ||
1240 | ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM; | ||
1241 | |||
1242 | ap->rx_std_skbprd = 0; | ||
1243 | atomic_set(&ap->cur_rx_bufs, 0); | ||
1244 | |||
1245 | set_aceaddr(&info->rx_jumbo_ctrl.rngptr, | ||
1246 | (ap->rx_ring_base_dma + | ||
1247 | (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES))); | ||
1248 | info->rx_jumbo_ctrl.max_len = 0; | ||
1249 | info->rx_jumbo_ctrl.flags = | ||
1250 | RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST; | ||
1251 | |||
1252 | memset(ap->rx_jumbo_ring, 0, | ||
1253 | RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc)); | ||
1254 | |||
1255 | for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) | ||
1256 | ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO; | ||
1257 | |||
1258 | ap->rx_jumbo_skbprd = 0; | ||
1259 | atomic_set(&ap->cur_jumbo_bufs, 0); | ||
1260 | |||
1261 | memset(ap->rx_mini_ring, 0, | ||
1262 | RX_MINI_RING_ENTRIES * sizeof(struct rx_desc)); | ||
1263 | |||
1264 | if (ap->version >= 2) { | ||
1265 | set_aceaddr(&info->rx_mini_ctrl.rngptr, | ||
1266 | (ap->rx_ring_base_dma + | ||
1267 | (sizeof(struct rx_desc) * | ||
1268 | (RX_STD_RING_ENTRIES + | ||
1269 | RX_JUMBO_RING_ENTRIES)))); | ||
1270 | info->rx_mini_ctrl.max_len = ACE_MINI_SIZE; | ||
1271 | info->rx_mini_ctrl.flags = | ||
1272 | RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST; | ||
1273 | |||
1274 | for (i = 0; i < RX_MINI_RING_ENTRIES; i++) | ||
1275 | ap->rx_mini_ring[i].flags = | ||
1276 | BD_FLG_TCP_UDP_SUM | BD_FLG_MINI; | ||
1277 | } else { | ||
1278 | set_aceaddr(&info->rx_mini_ctrl.rngptr, 0); | ||
1279 | info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE; | ||
1280 | info->rx_mini_ctrl.max_len = 0; | ||
1281 | } | ||
1282 | |||
1283 | ap->rx_mini_skbprd = 0; | ||
1284 | atomic_set(&ap->cur_mini_bufs, 0); | ||
1285 | |||
1286 | set_aceaddr(&info->rx_return_ctrl.rngptr, | ||
1287 | (ap->rx_ring_base_dma + | ||
1288 | (sizeof(struct rx_desc) * | ||
1289 | (RX_STD_RING_ENTRIES + | ||
1290 | RX_JUMBO_RING_ENTRIES + | ||
1291 | RX_MINI_RING_ENTRIES)))); | ||
1292 | info->rx_return_ctrl.flags = 0; | ||
1293 | info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES; | ||
1294 | |||
1295 | memset(ap->rx_return_ring, 0, | ||
1296 | RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc)); | ||
1297 | |||
1298 | set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma); | ||
1299 | *(ap->rx_ret_prd) = 0; | ||
1300 | |||
1301 | writel(TX_RING_BASE, ®s->WinBase); | ||
1302 | |||
1303 | if (ACE_IS_TIGON_I(ap)) { | ||
1304 | ap->tx_ring = (__force struct tx_desc *) regs->Window; | ||
1305 | for (i = 0; i < (TIGON_I_TX_RING_ENTRIES | ||
1306 | * sizeof(struct tx_desc)) / sizeof(u32); i++) | ||
1307 | writel(0, (__force void __iomem *)ap->tx_ring + i * 4); | ||
1308 | |||
1309 | set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE); | ||
1310 | } else { | ||
1311 | memset(ap->tx_ring, 0, | ||
1312 | MAX_TX_RING_ENTRIES * sizeof(struct tx_desc)); | ||
1313 | |||
1314 | set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma); | ||
1315 | } | ||
1316 | |||
1317 | info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap); | ||
1318 | tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST; | ||
1319 | |||
1320 | /* | ||
1321 | * The Tigon I does not like having the TX ring in host memory ;-( | ||
1322 | */ | ||
1323 | if (!ACE_IS_TIGON_I(ap)) | ||
1324 | tmp |= RCB_FLG_TX_HOST_RING; | ||
1325 | #if TX_COAL_INTS_ONLY | ||
1326 | tmp |= RCB_FLG_COAL_INT_ONLY; | ||
1327 | #endif | ||
1328 | info->tx_ctrl.flags = tmp; | ||
1329 | |||
1330 | set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma); | ||
1331 | |||
1332 | /* | ||
1333 | * Potential item for tuning parameter | ||
1334 | */ | ||
1335 | #if 0 /* NO */ | ||
1336 | writel(DMA_THRESH_16W, ®s->DmaReadCfg); | ||
1337 | writel(DMA_THRESH_16W, ®s->DmaWriteCfg); | ||
1338 | #else | ||
1339 | writel(DMA_THRESH_8W, ®s->DmaReadCfg); | ||
1340 | writel(DMA_THRESH_8W, ®s->DmaWriteCfg); | ||
1341 | #endif | ||
1342 | |||
1343 | writel(0, ®s->MaskInt); | ||
1344 | writel(1, ®s->IfIdx); | ||
1345 | #if 0 | ||
1346 | /* | ||
1347 | * McKinley boxes do not like us fiddling with AssistState | ||
1348 | * this early | ||
1349 | */ | ||
1350 | writel(1, ®s->AssistState); | ||
1351 | #endif | ||
1352 | |||
1353 | writel(DEF_STAT, ®s->TuneStatTicks); | ||
1354 | writel(DEF_TRACE, ®s->TuneTrace); | ||
1355 | |||
1356 | ace_set_rxtx_parms(dev, 0); | ||
1357 | |||
1358 | if (board_idx == BOARD_IDX_OVERFLOW) { | ||
1359 | printk(KERN_WARNING "%s: more than %i NICs detected, " | ||
1360 | "ignoring module parameters!\n", | ||
1361 | ap->name, ACE_MAX_MOD_PARMS); | ||
1362 | } else if (board_idx >= 0) { | ||
1363 | if (tx_coal_tick[board_idx]) | ||
1364 | writel(tx_coal_tick[board_idx], | ||
1365 | ®s->TuneTxCoalTicks); | ||
1366 | if (max_tx_desc[board_idx]) | ||
1367 | writel(max_tx_desc[board_idx], ®s->TuneMaxTxDesc); | ||
1368 | |||
1369 | if (rx_coal_tick[board_idx]) | ||
1370 | writel(rx_coal_tick[board_idx], | ||
1371 | ®s->TuneRxCoalTicks); | ||
1372 | if (max_rx_desc[board_idx]) | ||
1373 | writel(max_rx_desc[board_idx], ®s->TuneMaxRxDesc); | ||
1374 | |||
1375 | if (trace[board_idx]) | ||
1376 | writel(trace[board_idx], ®s->TuneTrace); | ||
1377 | |||
1378 | if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64)) | ||
1379 | writel(tx_ratio[board_idx], ®s->TxBufRat); | ||
1380 | } | ||
1381 | |||
1382 | /* | ||
1383 | * Default link parameters | ||
1384 | */ | ||
1385 | tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB | | ||
1386 | LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE; | ||
1387 | if(ap->version >= 2) | ||
1388 | tmp |= LNK_TX_FLOW_CTL_Y; | ||
1389 | |||
1390 | /* | ||
1391 | * Override link default parameters | ||
1392 | */ | ||
1393 | if ((board_idx >= 0) && link_state[board_idx]) { | ||
1394 | int option = link_state[board_idx]; | ||
1395 | |||
1396 | tmp = LNK_ENABLE; | ||
1397 | |||
1398 | if (option & 0x01) { | ||
1399 | printk(KERN_INFO "%s: Setting half duplex link\n", | ||
1400 | ap->name); | ||
1401 | tmp &= ~LNK_FULL_DUPLEX; | ||
1402 | } | ||
1403 | if (option & 0x02) | ||
1404 | tmp &= ~LNK_NEGOTIATE; | ||
1405 | if (option & 0x10) | ||
1406 | tmp |= LNK_10MB; | ||
1407 | if (option & 0x20) | ||
1408 | tmp |= LNK_100MB; | ||
1409 | if (option & 0x40) | ||
1410 | tmp |= LNK_1000MB; | ||
1411 | if ((option & 0x70) == 0) { | ||
1412 | printk(KERN_WARNING "%s: No media speed specified, " | ||
1413 | "forcing auto negotiation\n", ap->name); | ||
1414 | tmp |= LNK_NEGOTIATE | LNK_1000MB | | ||
1415 | LNK_100MB | LNK_10MB; | ||
1416 | } | ||
1417 | if ((option & 0x100) == 0) | ||
1418 | tmp |= LNK_NEG_FCTL; | ||
1419 | else | ||
1420 | printk(KERN_INFO "%s: Disabling flow control " | ||
1421 | "negotiation\n", ap->name); | ||
1422 | if (option & 0x200) | ||
1423 | tmp |= LNK_RX_FLOW_CTL_Y; | ||
1424 | if ((option & 0x400) && (ap->version >= 2)) { | ||
1425 | printk(KERN_INFO "%s: Enabling TX flow control\n", | ||
1426 | ap->name); | ||
1427 | tmp |= LNK_TX_FLOW_CTL_Y; | ||
1428 | } | ||
1429 | } | ||
1430 | |||
1431 | ap->link = tmp; | ||
1432 | writel(tmp, ®s->TuneLink); | ||
1433 | if (ap->version >= 2) | ||
1434 | writel(tmp, ®s->TuneFastLink); | ||
1435 | |||
1436 | writel(ap->firmware_start, ®s->Pc); | ||
1437 | |||
1438 | writel(0, ®s->Mb0Lo); | ||
1439 | |||
1440 | /* | ||
1441 | * Set tx_csm before we start receiving interrupts, otherwise | ||
1442 | * the interrupt handler might think it is supposed to process | ||
1443 | * tx ints before we are up and running, which may cause a null | ||
1444 | * pointer access in the int handler. | ||
1445 | */ | ||
1446 | ap->cur_rx = 0; | ||
1447 | ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0; | ||
1448 | |||
1449 | wmb(); | ||
1450 | ace_set_txprd(regs, ap, 0); | ||
1451 | writel(0, ®s->RxRetCsm); | ||
1452 | |||
1453 | /* | ||
1454 | * Enable DMA engine now. | ||
1455 | * If we do this sooner, Mckinley box pukes. | ||
1456 | * I assume it's because Tigon II DMA engine wants to check | ||
1457 | * *something* even before the CPU is started. | ||
1458 | */ | ||
1459 | writel(1, ®s->AssistState); /* enable DMA */ | ||
1460 | |||
1461 | /* | ||
1462 | * Start the NIC CPU | ||
1463 | */ | ||
1464 | writel(readl(®s->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), ®s->CpuCtrl); | ||
1465 | readl(®s->CpuCtrl); | ||
1466 | |||
1467 | /* | ||
1468 | * Wait for the firmware to spin up - max 3 seconds. | ||
1469 | */ | ||
1470 | myjif = jiffies + 3 * HZ; | ||
1471 | while (time_before(jiffies, myjif) && !ap->fw_running) | ||
1472 | cpu_relax(); | ||
1473 | |||
1474 | if (!ap->fw_running) { | ||
1475 | printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name); | ||
1476 | |||
1477 | ace_dump_trace(ap); | ||
1478 | writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); | ||
1479 | readl(®s->CpuCtrl); | ||
1480 | |||
1481 | /* aman@sgi.com - account for badly behaving firmware/NIC: | ||
1482 | * - have observed that the NIC may continue to generate | ||
1483 | * interrupts for some reason; attempt to stop it - halt | ||
1484 | * second CPU for Tigon II cards, and also clear Mb0 | ||
1485 | * - if we're a module, we'll fail to load if this was | ||
1486 | * the only GbE card in the system => if the kernel does | ||
1487 | * see an interrupt from the NIC, code to handle it is | ||
1488 | * gone and OOps! - so free_irq also | ||
1489 | */ | ||
1490 | if (ap->version >= 2) | ||
1491 | writel(readl(®s->CpuBCtrl) | CPU_HALT, | ||
1492 | ®s->CpuBCtrl); | ||
1493 | writel(0, ®s->Mb0Lo); | ||
1494 | readl(®s->Mb0Lo); | ||
1495 | |||
1496 | ecode = -EBUSY; | ||
1497 | goto init_error; | ||
1498 | } | ||
1499 | |||
1500 | /* | ||
1501 | * We load the ring here as there seem to be no way to tell the | ||
1502 | * firmware to wipe the ring without re-initializing it. | ||
1503 | */ | ||
1504 | if (!test_and_set_bit(0, &ap->std_refill_busy)) | ||
1505 | ace_load_std_rx_ring(dev, RX_RING_SIZE); | ||
1506 | else | ||
1507 | printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n", | ||
1508 | ap->name); | ||
1509 | if (ap->version >= 2) { | ||
1510 | if (!test_and_set_bit(0, &ap->mini_refill_busy)) | ||
1511 | ace_load_mini_rx_ring(dev, RX_MINI_SIZE); | ||
1512 | else | ||
1513 | printk(KERN_ERR "%s: Someone is busy refilling " | ||
1514 | "the RX mini ring\n", ap->name); | ||
1515 | } | ||
1516 | return 0; | ||
1517 | |||
1518 | init_error: | ||
1519 | ace_init_cleanup(dev); | ||
1520 | return ecode; | ||
1521 | } | ||
1522 | |||
1523 | |||
1524 | static void ace_set_rxtx_parms(struct net_device *dev, int jumbo) | ||
1525 | { | ||
1526 | struct ace_private *ap = netdev_priv(dev); | ||
1527 | struct ace_regs __iomem *regs = ap->regs; | ||
1528 | int board_idx = ap->board_idx; | ||
1529 | |||
1530 | if (board_idx >= 0) { | ||
1531 | if (!jumbo) { | ||
1532 | if (!tx_coal_tick[board_idx]) | ||
1533 | writel(DEF_TX_COAL, ®s->TuneTxCoalTicks); | ||
1534 | if (!max_tx_desc[board_idx]) | ||
1535 | writel(DEF_TX_MAX_DESC, ®s->TuneMaxTxDesc); | ||
1536 | if (!rx_coal_tick[board_idx]) | ||
1537 | writel(DEF_RX_COAL, ®s->TuneRxCoalTicks); | ||
1538 | if (!max_rx_desc[board_idx]) | ||
1539 | writel(DEF_RX_MAX_DESC, ®s->TuneMaxRxDesc); | ||
1540 | if (!tx_ratio[board_idx]) | ||
1541 | writel(DEF_TX_RATIO, ®s->TxBufRat); | ||
1542 | } else { | ||
1543 | if (!tx_coal_tick[board_idx]) | ||
1544 | writel(DEF_JUMBO_TX_COAL, | ||
1545 | ®s->TuneTxCoalTicks); | ||
1546 | if (!max_tx_desc[board_idx]) | ||
1547 | writel(DEF_JUMBO_TX_MAX_DESC, | ||
1548 | ®s->TuneMaxTxDesc); | ||
1549 | if (!rx_coal_tick[board_idx]) | ||
1550 | writel(DEF_JUMBO_RX_COAL, | ||
1551 | ®s->TuneRxCoalTicks); | ||
1552 | if (!max_rx_desc[board_idx]) | ||
1553 | writel(DEF_JUMBO_RX_MAX_DESC, | ||
1554 | ®s->TuneMaxRxDesc); | ||
1555 | if (!tx_ratio[board_idx]) | ||
1556 | writel(DEF_JUMBO_TX_RATIO, ®s->TxBufRat); | ||
1557 | } | ||
1558 | } | ||
1559 | } | ||
1560 | |||
1561 | |||
1562 | static void ace_watchdog(struct net_device *data) | ||
1563 | { | ||
1564 | struct net_device *dev = data; | ||
1565 | struct ace_private *ap = netdev_priv(dev); | ||
1566 | struct ace_regs __iomem *regs = ap->regs; | ||
1567 | |||
1568 | /* | ||
1569 | * We haven't received a stats update event for more than 2.5 | ||
1570 | * seconds and there is data in the transmit queue, thus we | ||
1571 | * assume the card is stuck. | ||
1572 | */ | ||
1573 | if (*ap->tx_csm != ap->tx_ret_csm) { | ||
1574 | printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n", | ||
1575 | dev->name, (unsigned int)readl(®s->HostCtrl)); | ||
1576 | /* This can happen due to ieee flow control. */ | ||
1577 | } else { | ||
1578 | printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n", | ||
1579 | dev->name); | ||
1580 | #if 0 | ||
1581 | netif_wake_queue(dev); | ||
1582 | #endif | ||
1583 | } | ||
1584 | } | ||
1585 | |||
1586 | |||
1587 | static void ace_tasklet(unsigned long arg) | ||
1588 | { | ||
1589 | struct net_device *dev = (struct net_device *) arg; | ||
1590 | struct ace_private *ap = netdev_priv(dev); | ||
1591 | int cur_size; | ||
1592 | |||
1593 | cur_size = atomic_read(&ap->cur_rx_bufs); | ||
1594 | if ((cur_size < RX_LOW_STD_THRES) && | ||
1595 | !test_and_set_bit(0, &ap->std_refill_busy)) { | ||
1596 | #ifdef DEBUG | ||
1597 | printk("refilling buffers (current %i)\n", cur_size); | ||
1598 | #endif | ||
1599 | ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size); | ||
1600 | } | ||
1601 | |||
1602 | if (ap->version >= 2) { | ||
1603 | cur_size = atomic_read(&ap->cur_mini_bufs); | ||
1604 | if ((cur_size < RX_LOW_MINI_THRES) && | ||
1605 | !test_and_set_bit(0, &ap->mini_refill_busy)) { | ||
1606 | #ifdef DEBUG | ||
1607 | printk("refilling mini buffers (current %i)\n", | ||
1608 | cur_size); | ||
1609 | #endif | ||
1610 | ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size); | ||
1611 | } | ||
1612 | } | ||
1613 | |||
1614 | cur_size = atomic_read(&ap->cur_jumbo_bufs); | ||
1615 | if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) && | ||
1616 | !test_and_set_bit(0, &ap->jumbo_refill_busy)) { | ||
1617 | #ifdef DEBUG | ||
1618 | printk("refilling jumbo buffers (current %i)\n", cur_size); | ||
1619 | #endif | ||
1620 | ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size); | ||
1621 | } | ||
1622 | ap->tasklet_pending = 0; | ||
1623 | } | ||
1624 | |||
1625 | |||
1626 | /* | ||
1627 | * Copy the contents of the NIC's trace buffer to kernel memory. | ||
1628 | */ | ||
1629 | static void ace_dump_trace(struct ace_private *ap) | ||
1630 | { | ||
1631 | #if 0 | ||
1632 | if (!ap->trace_buf) | ||
1633 | if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL))) | ||
1634 | return; | ||
1635 | #endif | ||
1636 | } | ||
1637 | |||
1638 | |||
1639 | /* | ||
1640 | * Load the standard rx ring. | ||
1641 | * | ||
1642 | * Loading rings is safe without holding the spin lock since this is | ||
1643 | * done only before the device is enabled, thus no interrupts are | ||
1644 | * generated and by the interrupt handler/tasklet handler. | ||
1645 | */ | ||
1646 | static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs) | ||
1647 | { | ||
1648 | struct ace_private *ap = netdev_priv(dev); | ||
1649 | struct ace_regs __iomem *regs = ap->regs; | ||
1650 | short i, idx; | ||
1651 | |||
1652 | |||
1653 | prefetchw(&ap->cur_rx_bufs); | ||
1654 | |||
1655 | idx = ap->rx_std_skbprd; | ||
1656 | |||
1657 | for (i = 0; i < nr_bufs; i++) { | ||
1658 | struct sk_buff *skb; | ||
1659 | struct rx_desc *rd; | ||
1660 | dma_addr_t mapping; | ||
1661 | |||
1662 | skb = netdev_alloc_skb_ip_align(dev, ACE_STD_BUFSIZE); | ||
1663 | if (!skb) | ||
1664 | break; | ||
1665 | |||
1666 | mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | ||
1667 | offset_in_page(skb->data), | ||
1668 | ACE_STD_BUFSIZE, | ||
1669 | PCI_DMA_FROMDEVICE); | ||
1670 | ap->skb->rx_std_skbuff[idx].skb = skb; | ||
1671 | dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx], | ||
1672 | mapping, mapping); | ||
1673 | |||
1674 | rd = &ap->rx_std_ring[idx]; | ||
1675 | set_aceaddr(&rd->addr, mapping); | ||
1676 | rd->size = ACE_STD_BUFSIZE; | ||
1677 | rd->idx = idx; | ||
1678 | idx = (idx + 1) % RX_STD_RING_ENTRIES; | ||
1679 | } | ||
1680 | |||
1681 | if (!i) | ||
1682 | goto error_out; | ||
1683 | |||
1684 | atomic_add(i, &ap->cur_rx_bufs); | ||
1685 | ap->rx_std_skbprd = idx; | ||
1686 | |||
1687 | if (ACE_IS_TIGON_I(ap)) { | ||
1688 | struct cmd cmd; | ||
1689 | cmd.evt = C_SET_RX_PRD_IDX; | ||
1690 | cmd.code = 0; | ||
1691 | cmd.idx = ap->rx_std_skbprd; | ||
1692 | ace_issue_cmd(regs, &cmd); | ||
1693 | } else { | ||
1694 | writel(idx, ®s->RxStdPrd); | ||
1695 | wmb(); | ||
1696 | } | ||
1697 | |||
1698 | out: | ||
1699 | clear_bit(0, &ap->std_refill_busy); | ||
1700 | return; | ||
1701 | |||
1702 | error_out: | ||
1703 | printk(KERN_INFO "Out of memory when allocating " | ||
1704 | "standard receive buffers\n"); | ||
1705 | goto out; | ||
1706 | } | ||
1707 | |||
1708 | |||
1709 | static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs) | ||
1710 | { | ||
1711 | struct ace_private *ap = netdev_priv(dev); | ||
1712 | struct ace_regs __iomem *regs = ap->regs; | ||
1713 | short i, idx; | ||
1714 | |||
1715 | prefetchw(&ap->cur_mini_bufs); | ||
1716 | |||
1717 | idx = ap->rx_mini_skbprd; | ||
1718 | for (i = 0; i < nr_bufs; i++) { | ||
1719 | struct sk_buff *skb; | ||
1720 | struct rx_desc *rd; | ||
1721 | dma_addr_t mapping; | ||
1722 | |||
1723 | skb = netdev_alloc_skb_ip_align(dev, ACE_MINI_BUFSIZE); | ||
1724 | if (!skb) | ||
1725 | break; | ||
1726 | |||
1727 | mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | ||
1728 | offset_in_page(skb->data), | ||
1729 | ACE_MINI_BUFSIZE, | ||
1730 | PCI_DMA_FROMDEVICE); | ||
1731 | ap->skb->rx_mini_skbuff[idx].skb = skb; | ||
1732 | dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx], | ||
1733 | mapping, mapping); | ||
1734 | |||
1735 | rd = &ap->rx_mini_ring[idx]; | ||
1736 | set_aceaddr(&rd->addr, mapping); | ||
1737 | rd->size = ACE_MINI_BUFSIZE; | ||
1738 | rd->idx = idx; | ||
1739 | idx = (idx + 1) % RX_MINI_RING_ENTRIES; | ||
1740 | } | ||
1741 | |||
1742 | if (!i) | ||
1743 | goto error_out; | ||
1744 | |||
1745 | atomic_add(i, &ap->cur_mini_bufs); | ||
1746 | |||
1747 | ap->rx_mini_skbprd = idx; | ||
1748 | |||
1749 | writel(idx, ®s->RxMiniPrd); | ||
1750 | wmb(); | ||
1751 | |||
1752 | out: | ||
1753 | clear_bit(0, &ap->mini_refill_busy); | ||
1754 | return; | ||
1755 | error_out: | ||
1756 | printk(KERN_INFO "Out of memory when allocating " | ||
1757 | "mini receive buffers\n"); | ||
1758 | goto out; | ||
1759 | } | ||
1760 | |||
1761 | |||
1762 | /* | ||
1763 | * Load the jumbo rx ring, this may happen at any time if the MTU | ||
1764 | * is changed to a value > 1500. | ||
1765 | */ | ||
1766 | static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs) | ||
1767 | { | ||
1768 | struct ace_private *ap = netdev_priv(dev); | ||
1769 | struct ace_regs __iomem *regs = ap->regs; | ||
1770 | short i, idx; | ||
1771 | |||
1772 | idx = ap->rx_jumbo_skbprd; | ||
1773 | |||
1774 | for (i = 0; i < nr_bufs; i++) { | ||
1775 | struct sk_buff *skb; | ||
1776 | struct rx_desc *rd; | ||
1777 | dma_addr_t mapping; | ||
1778 | |||
1779 | skb = netdev_alloc_skb_ip_align(dev, ACE_JUMBO_BUFSIZE); | ||
1780 | if (!skb) | ||
1781 | break; | ||
1782 | |||
1783 | mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | ||
1784 | offset_in_page(skb->data), | ||
1785 | ACE_JUMBO_BUFSIZE, | ||
1786 | PCI_DMA_FROMDEVICE); | ||
1787 | ap->skb->rx_jumbo_skbuff[idx].skb = skb; | ||
1788 | dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx], | ||
1789 | mapping, mapping); | ||
1790 | |||
1791 | rd = &ap->rx_jumbo_ring[idx]; | ||
1792 | set_aceaddr(&rd->addr, mapping); | ||
1793 | rd->size = ACE_JUMBO_BUFSIZE; | ||
1794 | rd->idx = idx; | ||
1795 | idx = (idx + 1) % RX_JUMBO_RING_ENTRIES; | ||
1796 | } | ||
1797 | |||
1798 | if (!i) | ||
1799 | goto error_out; | ||
1800 | |||
1801 | atomic_add(i, &ap->cur_jumbo_bufs); | ||
1802 | ap->rx_jumbo_skbprd = idx; | ||
1803 | |||
1804 | if (ACE_IS_TIGON_I(ap)) { | ||
1805 | struct cmd cmd; | ||
1806 | cmd.evt = C_SET_RX_JUMBO_PRD_IDX; | ||
1807 | cmd.code = 0; | ||
1808 | cmd.idx = ap->rx_jumbo_skbprd; | ||
1809 | ace_issue_cmd(regs, &cmd); | ||
1810 | } else { | ||
1811 | writel(idx, ®s->RxJumboPrd); | ||
1812 | wmb(); | ||
1813 | } | ||
1814 | |||
1815 | out: | ||
1816 | clear_bit(0, &ap->jumbo_refill_busy); | ||
1817 | return; | ||
1818 | error_out: | ||
1819 | if (net_ratelimit()) | ||
1820 | printk(KERN_INFO "Out of memory when allocating " | ||
1821 | "jumbo receive buffers\n"); | ||
1822 | goto out; | ||
1823 | } | ||
1824 | |||
1825 | |||
1826 | /* | ||
1827 | * All events are considered to be slow (RX/TX ints do not generate | ||
1828 | * events) and are handled here, outside the main interrupt handler, | ||
1829 | * to reduce the size of the handler. | ||
1830 | */ | ||
1831 | static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd) | ||
1832 | { | ||
1833 | struct ace_private *ap; | ||
1834 | |||
1835 | ap = netdev_priv(dev); | ||
1836 | |||
1837 | while (evtcsm != evtprd) { | ||
1838 | switch (ap->evt_ring[evtcsm].evt) { | ||
1839 | case E_FW_RUNNING: | ||
1840 | printk(KERN_INFO "%s: Firmware up and running\n", | ||
1841 | ap->name); | ||
1842 | ap->fw_running = 1; | ||
1843 | wmb(); | ||
1844 | break; | ||
1845 | case E_STATS_UPDATED: | ||
1846 | break; | ||
1847 | case E_LNK_STATE: | ||
1848 | { | ||
1849 | u16 code = ap->evt_ring[evtcsm].code; | ||
1850 | switch (code) { | ||
1851 | case E_C_LINK_UP: | ||
1852 | { | ||
1853 | u32 state = readl(&ap->regs->GigLnkState); | ||
1854 | printk(KERN_WARNING "%s: Optical link UP " | ||
1855 | "(%s Duplex, Flow Control: %s%s)\n", | ||
1856 | ap->name, | ||
1857 | state & LNK_FULL_DUPLEX ? "Full":"Half", | ||
1858 | state & LNK_TX_FLOW_CTL_Y ? "TX " : "", | ||
1859 | state & LNK_RX_FLOW_CTL_Y ? "RX" : ""); | ||
1860 | break; | ||
1861 | } | ||
1862 | case E_C_LINK_DOWN: | ||
1863 | printk(KERN_WARNING "%s: Optical link DOWN\n", | ||
1864 | ap->name); | ||
1865 | break; | ||
1866 | case E_C_LINK_10_100: | ||
1867 | printk(KERN_WARNING "%s: 10/100BaseT link " | ||
1868 | "UP\n", ap->name); | ||
1869 | break; | ||
1870 | default: | ||
1871 | printk(KERN_ERR "%s: Unknown optical link " | ||
1872 | "state %02x\n", ap->name, code); | ||
1873 | } | ||
1874 | break; | ||
1875 | } | ||
1876 | case E_ERROR: | ||
1877 | switch(ap->evt_ring[evtcsm].code) { | ||
1878 | case E_C_ERR_INVAL_CMD: | ||
1879 | printk(KERN_ERR "%s: invalid command error\n", | ||
1880 | ap->name); | ||
1881 | break; | ||
1882 | case E_C_ERR_UNIMP_CMD: | ||
1883 | printk(KERN_ERR "%s: unimplemented command " | ||
1884 | "error\n", ap->name); | ||
1885 | break; | ||
1886 | case E_C_ERR_BAD_CFG: | ||
1887 | printk(KERN_ERR "%s: bad config error\n", | ||
1888 | ap->name); | ||
1889 | break; | ||
1890 | default: | ||
1891 | printk(KERN_ERR "%s: unknown error %02x\n", | ||
1892 | ap->name, ap->evt_ring[evtcsm].code); | ||
1893 | } | ||
1894 | break; | ||
1895 | case E_RESET_JUMBO_RNG: | ||
1896 | { | ||
1897 | int i; | ||
1898 | for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { | ||
1899 | if (ap->skb->rx_jumbo_skbuff[i].skb) { | ||
1900 | ap->rx_jumbo_ring[i].size = 0; | ||
1901 | set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0); | ||
1902 | dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb); | ||
1903 | ap->skb->rx_jumbo_skbuff[i].skb = NULL; | ||
1904 | } | ||
1905 | } | ||
1906 | |||
1907 | if (ACE_IS_TIGON_I(ap)) { | ||
1908 | struct cmd cmd; | ||
1909 | cmd.evt = C_SET_RX_JUMBO_PRD_IDX; | ||
1910 | cmd.code = 0; | ||
1911 | cmd.idx = 0; | ||
1912 | ace_issue_cmd(ap->regs, &cmd); | ||
1913 | } else { | ||
1914 | writel(0, &((ap->regs)->RxJumboPrd)); | ||
1915 | wmb(); | ||
1916 | } | ||
1917 | |||
1918 | ap->jumbo = 0; | ||
1919 | ap->rx_jumbo_skbprd = 0; | ||
1920 | printk(KERN_INFO "%s: Jumbo ring flushed\n", | ||
1921 | ap->name); | ||
1922 | clear_bit(0, &ap->jumbo_refill_busy); | ||
1923 | break; | ||
1924 | } | ||
1925 | default: | ||
1926 | printk(KERN_ERR "%s: Unhandled event 0x%02x\n", | ||
1927 | ap->name, ap->evt_ring[evtcsm].evt); | ||
1928 | } | ||
1929 | evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES; | ||
1930 | } | ||
1931 | |||
1932 | return evtcsm; | ||
1933 | } | ||
1934 | |||
1935 | |||
1936 | static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm) | ||
1937 | { | ||
1938 | struct ace_private *ap = netdev_priv(dev); | ||
1939 | u32 idx; | ||
1940 | int mini_count = 0, std_count = 0; | ||
1941 | |||
1942 | idx = rxretcsm; | ||
1943 | |||
1944 | prefetchw(&ap->cur_rx_bufs); | ||
1945 | prefetchw(&ap->cur_mini_bufs); | ||
1946 | |||
1947 | while (idx != rxretprd) { | ||
1948 | struct ring_info *rip; | ||
1949 | struct sk_buff *skb; | ||
1950 | struct rx_desc *rxdesc, *retdesc; | ||
1951 | u32 skbidx; | ||
1952 | int bd_flags, desc_type, mapsize; | ||
1953 | u16 csum; | ||
1954 | |||
1955 | |||
1956 | /* make sure the rx descriptor isn't read before rxretprd */ | ||
1957 | if (idx == rxretcsm) | ||
1958 | rmb(); | ||
1959 | |||
1960 | retdesc = &ap->rx_return_ring[idx]; | ||
1961 | skbidx = retdesc->idx; | ||
1962 | bd_flags = retdesc->flags; | ||
1963 | desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI); | ||
1964 | |||
1965 | switch(desc_type) { | ||
1966 | /* | ||
1967 | * Normal frames do not have any flags set | ||
1968 | * | ||
1969 | * Mini and normal frames arrive frequently, | ||
1970 | * so use a local counter to avoid doing | ||
1971 | * atomic operations for each packet arriving. | ||
1972 | */ | ||
1973 | case 0: | ||
1974 | rip = &ap->skb->rx_std_skbuff[skbidx]; | ||
1975 | mapsize = ACE_STD_BUFSIZE; | ||
1976 | rxdesc = &ap->rx_std_ring[skbidx]; | ||
1977 | std_count++; | ||
1978 | break; | ||
1979 | case BD_FLG_JUMBO: | ||
1980 | rip = &ap->skb->rx_jumbo_skbuff[skbidx]; | ||
1981 | mapsize = ACE_JUMBO_BUFSIZE; | ||
1982 | rxdesc = &ap->rx_jumbo_ring[skbidx]; | ||
1983 | atomic_dec(&ap->cur_jumbo_bufs); | ||
1984 | break; | ||
1985 | case BD_FLG_MINI: | ||
1986 | rip = &ap->skb->rx_mini_skbuff[skbidx]; | ||
1987 | mapsize = ACE_MINI_BUFSIZE; | ||
1988 | rxdesc = &ap->rx_mini_ring[skbidx]; | ||
1989 | mini_count++; | ||
1990 | break; | ||
1991 | default: | ||
1992 | printk(KERN_INFO "%s: unknown frame type (0x%02x) " | ||
1993 | "returned by NIC\n", dev->name, | ||
1994 | retdesc->flags); | ||
1995 | goto error; | ||
1996 | } | ||
1997 | |||
1998 | skb = rip->skb; | ||
1999 | rip->skb = NULL; | ||
2000 | pci_unmap_page(ap->pdev, | ||
2001 | dma_unmap_addr(rip, mapping), | ||
2002 | mapsize, | ||
2003 | PCI_DMA_FROMDEVICE); | ||
2004 | skb_put(skb, retdesc->size); | ||
2005 | |||
2006 | /* | ||
2007 | * Fly baby, fly! | ||
2008 | */ | ||
2009 | csum = retdesc->tcp_udp_csum; | ||
2010 | |||
2011 | skb->protocol = eth_type_trans(skb, dev); | ||
2012 | |||
2013 | /* | ||
2014 | * Instead of forcing the poor tigon mips cpu to calculate | ||
2015 | * pseudo hdr checksum, we do this ourselves. | ||
2016 | */ | ||
2017 | if (bd_flags & BD_FLG_TCP_UDP_SUM) { | ||
2018 | skb->csum = htons(csum); | ||
2019 | skb->ip_summed = CHECKSUM_COMPLETE; | ||
2020 | } else { | ||
2021 | skb_checksum_none_assert(skb); | ||
2022 | } | ||
2023 | |||
2024 | /* send it up */ | ||
2025 | if ((bd_flags & BD_FLG_VLAN_TAG)) | ||
2026 | __vlan_hwaccel_put_tag(skb, retdesc->vlan); | ||
2027 | netif_rx(skb); | ||
2028 | |||
2029 | dev->stats.rx_packets++; | ||
2030 | dev->stats.rx_bytes += retdesc->size; | ||
2031 | |||
2032 | idx = (idx + 1) % RX_RETURN_RING_ENTRIES; | ||
2033 | } | ||
2034 | |||
2035 | atomic_sub(std_count, &ap->cur_rx_bufs); | ||
2036 | if (!ACE_IS_TIGON_I(ap)) | ||
2037 | atomic_sub(mini_count, &ap->cur_mini_bufs); | ||
2038 | |||
2039 | out: | ||
2040 | /* | ||
2041 | * According to the documentation RxRetCsm is obsolete with | ||
2042 | * the 12.3.x Firmware - my Tigon I NICs seem to disagree! | ||
2043 | */ | ||
2044 | if (ACE_IS_TIGON_I(ap)) { | ||
2045 | writel(idx, &ap->regs->RxRetCsm); | ||
2046 | } | ||
2047 | ap->cur_rx = idx; | ||
2048 | |||
2049 | return; | ||
2050 | error: | ||
2051 | idx = rxretprd; | ||
2052 | goto out; | ||
2053 | } | ||
2054 | |||
2055 | |||
2056 | static inline void ace_tx_int(struct net_device *dev, | ||
2057 | u32 txcsm, u32 idx) | ||
2058 | { | ||
2059 | struct ace_private *ap = netdev_priv(dev); | ||
2060 | |||
2061 | do { | ||
2062 | struct sk_buff *skb; | ||
2063 | struct tx_ring_info *info; | ||
2064 | |||
2065 | info = ap->skb->tx_skbuff + idx; | ||
2066 | skb = info->skb; | ||
2067 | |||
2068 | if (dma_unmap_len(info, maplen)) { | ||
2069 | pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping), | ||
2070 | dma_unmap_len(info, maplen), | ||
2071 | PCI_DMA_TODEVICE); | ||
2072 | dma_unmap_len_set(info, maplen, 0); | ||
2073 | } | ||
2074 | |||
2075 | if (skb) { | ||
2076 | dev->stats.tx_packets++; | ||
2077 | dev->stats.tx_bytes += skb->len; | ||
2078 | dev_kfree_skb_irq(skb); | ||
2079 | info->skb = NULL; | ||
2080 | } | ||
2081 | |||
2082 | idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | ||
2083 | } while (idx != txcsm); | ||
2084 | |||
2085 | if (netif_queue_stopped(dev)) | ||
2086 | netif_wake_queue(dev); | ||
2087 | |||
2088 | wmb(); | ||
2089 | ap->tx_ret_csm = txcsm; | ||
2090 | |||
2091 | /* So... tx_ret_csm is advanced _after_ check for device wakeup. | ||
2092 | * | ||
2093 | * We could try to make it before. In this case we would get | ||
2094 | * the following race condition: hard_start_xmit on other cpu | ||
2095 | * enters after we advanced tx_ret_csm and fills space, | ||
2096 | * which we have just freed, so that we make illegal device wakeup. | ||
2097 | * There is no good way to workaround this (at entry | ||
2098 | * to ace_start_xmit detects this condition and prevents | ||
2099 | * ring corruption, but it is not a good workaround.) | ||
2100 | * | ||
2101 | * When tx_ret_csm is advanced after, we wake up device _only_ | ||
2102 | * if we really have some space in ring (though the core doing | ||
2103 | * hard_start_xmit can see full ring for some period and has to | ||
2104 | * synchronize.) Superb. | ||
2105 | * BUT! We get another subtle race condition. hard_start_xmit | ||
2106 | * may think that ring is full between wakeup and advancing | ||
2107 | * tx_ret_csm and will stop device instantly! It is not so bad. | ||
2108 | * We are guaranteed that there is something in ring, so that | ||
2109 | * the next irq will resume transmission. To speedup this we could | ||
2110 | * mark descriptor, which closes ring with BD_FLG_COAL_NOW | ||
2111 | * (see ace_start_xmit). | ||
2112 | * | ||
2113 | * Well, this dilemma exists in all lock-free devices. | ||
2114 | * We, following scheme used in drivers by Donald Becker, | ||
2115 | * select the least dangerous. | ||
2116 | * --ANK | ||
2117 | */ | ||
2118 | } | ||
2119 | |||
2120 | |||
2121 | static irqreturn_t ace_interrupt(int irq, void *dev_id) | ||
2122 | { | ||
2123 | struct net_device *dev = (struct net_device *)dev_id; | ||
2124 | struct ace_private *ap = netdev_priv(dev); | ||
2125 | struct ace_regs __iomem *regs = ap->regs; | ||
2126 | u32 idx; | ||
2127 | u32 txcsm, rxretcsm, rxretprd; | ||
2128 | u32 evtcsm, evtprd; | ||
2129 | |||
2130 | /* | ||
2131 | * In case of PCI shared interrupts or spurious interrupts, | ||
2132 | * we want to make sure it is actually our interrupt before | ||
2133 | * spending any time in here. | ||
2134 | */ | ||
2135 | if (!(readl(®s->HostCtrl) & IN_INT)) | ||
2136 | return IRQ_NONE; | ||
2137 | |||
2138 | /* | ||
2139 | * ACK intr now. Otherwise we will lose updates to rx_ret_prd, | ||
2140 | * which happened _after_ rxretprd = *ap->rx_ret_prd; but before | ||
2141 | * writel(0, ®s->Mb0Lo). | ||
2142 | * | ||
2143 | * "IRQ avoidance" recommended in docs applies to IRQs served | ||
2144 | * threads and it is wrong even for that case. | ||
2145 | */ | ||
2146 | writel(0, ®s->Mb0Lo); | ||
2147 | readl(®s->Mb0Lo); | ||
2148 | |||
2149 | /* | ||
2150 | * There is no conflict between transmit handling in | ||
2151 | * start_xmit and receive processing, thus there is no reason | ||
2152 | * to take a spin lock for RX handling. Wait until we start | ||
2153 | * working on the other stuff - hey we don't need a spin lock | ||
2154 | * anymore. | ||
2155 | */ | ||
2156 | rxretprd = *ap->rx_ret_prd; | ||
2157 | rxretcsm = ap->cur_rx; | ||
2158 | |||
2159 | if (rxretprd != rxretcsm) | ||
2160 | ace_rx_int(dev, rxretprd, rxretcsm); | ||
2161 | |||
2162 | txcsm = *ap->tx_csm; | ||
2163 | idx = ap->tx_ret_csm; | ||
2164 | |||
2165 | if (txcsm != idx) { | ||
2166 | /* | ||
2167 | * If each skb takes only one descriptor this check degenerates | ||
2168 | * to identity, because new space has just been opened. | ||
2169 | * But if skbs are fragmented we must check that this index | ||
2170 | * update releases enough of space, otherwise we just | ||
2171 | * wait for device to make more work. | ||
2172 | */ | ||
2173 | if (!tx_ring_full(ap, txcsm, ap->tx_prd)) | ||
2174 | ace_tx_int(dev, txcsm, idx); | ||
2175 | } | ||
2176 | |||
2177 | evtcsm = readl(®s->EvtCsm); | ||
2178 | evtprd = *ap->evt_prd; | ||
2179 | |||
2180 | if (evtcsm != evtprd) { | ||
2181 | evtcsm = ace_handle_event(dev, evtcsm, evtprd); | ||
2182 | writel(evtcsm, ®s->EvtCsm); | ||
2183 | } | ||
2184 | |||
2185 | /* | ||
2186 | * This has to go last in the interrupt handler and run with | ||
2187 | * the spin lock released ... what lock? | ||
2188 | */ | ||
2189 | if (netif_running(dev)) { | ||
2190 | int cur_size; | ||
2191 | int run_tasklet = 0; | ||
2192 | |||
2193 | cur_size = atomic_read(&ap->cur_rx_bufs); | ||
2194 | if (cur_size < RX_LOW_STD_THRES) { | ||
2195 | if ((cur_size < RX_PANIC_STD_THRES) && | ||
2196 | !test_and_set_bit(0, &ap->std_refill_busy)) { | ||
2197 | #ifdef DEBUG | ||
2198 | printk("low on std buffers %i\n", cur_size); | ||
2199 | #endif | ||
2200 | ace_load_std_rx_ring(dev, | ||
2201 | RX_RING_SIZE - cur_size); | ||
2202 | } else | ||
2203 | run_tasklet = 1; | ||
2204 | } | ||
2205 | |||
2206 | if (!ACE_IS_TIGON_I(ap)) { | ||
2207 | cur_size = atomic_read(&ap->cur_mini_bufs); | ||
2208 | if (cur_size < RX_LOW_MINI_THRES) { | ||
2209 | if ((cur_size < RX_PANIC_MINI_THRES) && | ||
2210 | !test_and_set_bit(0, | ||
2211 | &ap->mini_refill_busy)) { | ||
2212 | #ifdef DEBUG | ||
2213 | printk("low on mini buffers %i\n", | ||
2214 | cur_size); | ||
2215 | #endif | ||
2216 | ace_load_mini_rx_ring(dev, | ||
2217 | RX_MINI_SIZE - cur_size); | ||
2218 | } else | ||
2219 | run_tasklet = 1; | ||
2220 | } | ||
2221 | } | ||
2222 | |||
2223 | if (ap->jumbo) { | ||
2224 | cur_size = atomic_read(&ap->cur_jumbo_bufs); | ||
2225 | if (cur_size < RX_LOW_JUMBO_THRES) { | ||
2226 | if ((cur_size < RX_PANIC_JUMBO_THRES) && | ||
2227 | !test_and_set_bit(0, | ||
2228 | &ap->jumbo_refill_busy)){ | ||
2229 | #ifdef DEBUG | ||
2230 | printk("low on jumbo buffers %i\n", | ||
2231 | cur_size); | ||
2232 | #endif | ||
2233 | ace_load_jumbo_rx_ring(dev, | ||
2234 | RX_JUMBO_SIZE - cur_size); | ||
2235 | } else | ||
2236 | run_tasklet = 1; | ||
2237 | } | ||
2238 | } | ||
2239 | if (run_tasklet && !ap->tasklet_pending) { | ||
2240 | ap->tasklet_pending = 1; | ||
2241 | tasklet_schedule(&ap->ace_tasklet); | ||
2242 | } | ||
2243 | } | ||
2244 | |||
2245 | return IRQ_HANDLED; | ||
2246 | } | ||
2247 | |||
2248 | static int ace_open(struct net_device *dev) | ||
2249 | { | ||
2250 | struct ace_private *ap = netdev_priv(dev); | ||
2251 | struct ace_regs __iomem *regs = ap->regs; | ||
2252 | struct cmd cmd; | ||
2253 | |||
2254 | if (!(ap->fw_running)) { | ||
2255 | printk(KERN_WARNING "%s: Firmware not running!\n", dev->name); | ||
2256 | return -EBUSY; | ||
2257 | } | ||
2258 | |||
2259 | writel(dev->mtu + ETH_HLEN + 4, ®s->IfMtu); | ||
2260 | |||
2261 | cmd.evt = C_CLEAR_STATS; | ||
2262 | cmd.code = 0; | ||
2263 | cmd.idx = 0; | ||
2264 | ace_issue_cmd(regs, &cmd); | ||
2265 | |||
2266 | cmd.evt = C_HOST_STATE; | ||
2267 | cmd.code = C_C_STACK_UP; | ||
2268 | cmd.idx = 0; | ||
2269 | ace_issue_cmd(regs, &cmd); | ||
2270 | |||
2271 | if (ap->jumbo && | ||
2272 | !test_and_set_bit(0, &ap->jumbo_refill_busy)) | ||
2273 | ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE); | ||
2274 | |||
2275 | if (dev->flags & IFF_PROMISC) { | ||
2276 | cmd.evt = C_SET_PROMISC_MODE; | ||
2277 | cmd.code = C_C_PROMISC_ENABLE; | ||
2278 | cmd.idx = 0; | ||
2279 | ace_issue_cmd(regs, &cmd); | ||
2280 | |||
2281 | ap->promisc = 1; | ||
2282 | }else | ||
2283 | ap->promisc = 0; | ||
2284 | ap->mcast_all = 0; | ||
2285 | |||
2286 | #if 0 | ||
2287 | cmd.evt = C_LNK_NEGOTIATION; | ||
2288 | cmd.code = 0; | ||
2289 | cmd.idx = 0; | ||
2290 | ace_issue_cmd(regs, &cmd); | ||
2291 | #endif | ||
2292 | |||
2293 | netif_start_queue(dev); | ||
2294 | |||
2295 | /* | ||
2296 | * Setup the bottom half rx ring refill handler | ||
2297 | */ | ||
2298 | tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev); | ||
2299 | return 0; | ||
2300 | } | ||
2301 | |||
2302 | |||
2303 | static int ace_close(struct net_device *dev) | ||
2304 | { | ||
2305 | struct ace_private *ap = netdev_priv(dev); | ||
2306 | struct ace_regs __iomem *regs = ap->regs; | ||
2307 | struct cmd cmd; | ||
2308 | unsigned long flags; | ||
2309 | short i; | ||
2310 | |||
2311 | /* | ||
2312 | * Without (or before) releasing irq and stopping hardware, this | ||
2313 | * is an absolute non-sense, by the way. It will be reset instantly | ||
2314 | * by the first irq. | ||
2315 | */ | ||
2316 | netif_stop_queue(dev); | ||
2317 | |||
2318 | |||
2319 | if (ap->promisc) { | ||
2320 | cmd.evt = C_SET_PROMISC_MODE; | ||
2321 | cmd.code = C_C_PROMISC_DISABLE; | ||
2322 | cmd.idx = 0; | ||
2323 | ace_issue_cmd(regs, &cmd); | ||
2324 | ap->promisc = 0; | ||
2325 | } | ||
2326 | |||
2327 | cmd.evt = C_HOST_STATE; | ||
2328 | cmd.code = C_C_STACK_DOWN; | ||
2329 | cmd.idx = 0; | ||
2330 | ace_issue_cmd(regs, &cmd); | ||
2331 | |||
2332 | tasklet_kill(&ap->ace_tasklet); | ||
2333 | |||
2334 | /* | ||
2335 | * Make sure one CPU is not processing packets while | ||
2336 | * buffers are being released by another. | ||
2337 | */ | ||
2338 | |||
2339 | local_irq_save(flags); | ||
2340 | ace_mask_irq(dev); | ||
2341 | |||
2342 | for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) { | ||
2343 | struct sk_buff *skb; | ||
2344 | struct tx_ring_info *info; | ||
2345 | |||
2346 | info = ap->skb->tx_skbuff + i; | ||
2347 | skb = info->skb; | ||
2348 | |||
2349 | if (dma_unmap_len(info, maplen)) { | ||
2350 | if (ACE_IS_TIGON_I(ap)) { | ||
2351 | /* NB: TIGON_1 is special, tx_ring is in io space */ | ||
2352 | struct tx_desc __iomem *tx; | ||
2353 | tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i]; | ||
2354 | writel(0, &tx->addr.addrhi); | ||
2355 | writel(0, &tx->addr.addrlo); | ||
2356 | writel(0, &tx->flagsize); | ||
2357 | } else | ||
2358 | memset(ap->tx_ring + i, 0, | ||
2359 | sizeof(struct tx_desc)); | ||
2360 | pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping), | ||
2361 | dma_unmap_len(info, maplen), | ||
2362 | PCI_DMA_TODEVICE); | ||
2363 | dma_unmap_len_set(info, maplen, 0); | ||
2364 | } | ||
2365 | if (skb) { | ||
2366 | dev_kfree_skb(skb); | ||
2367 | info->skb = NULL; | ||
2368 | } | ||
2369 | } | ||
2370 | |||
2371 | if (ap->jumbo) { | ||
2372 | cmd.evt = C_RESET_JUMBO_RNG; | ||
2373 | cmd.code = 0; | ||
2374 | cmd.idx = 0; | ||
2375 | ace_issue_cmd(regs, &cmd); | ||
2376 | } | ||
2377 | |||
2378 | ace_unmask_irq(dev); | ||
2379 | local_irq_restore(flags); | ||
2380 | |||
2381 | return 0; | ||
2382 | } | ||
2383 | |||
2384 | |||
2385 | static inline dma_addr_t | ||
2386 | ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb, | ||
2387 | struct sk_buff *tail, u32 idx) | ||
2388 | { | ||
2389 | dma_addr_t mapping; | ||
2390 | struct tx_ring_info *info; | ||
2391 | |||
2392 | mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | ||
2393 | offset_in_page(skb->data), | ||
2394 | skb->len, PCI_DMA_TODEVICE); | ||
2395 | |||
2396 | info = ap->skb->tx_skbuff + idx; | ||
2397 | info->skb = tail; | ||
2398 | dma_unmap_addr_set(info, mapping, mapping); | ||
2399 | dma_unmap_len_set(info, maplen, skb->len); | ||
2400 | return mapping; | ||
2401 | } | ||
2402 | |||
2403 | |||
2404 | static inline void | ||
2405 | ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr, | ||
2406 | u32 flagsize, u32 vlan_tag) | ||
2407 | { | ||
2408 | #if !USE_TX_COAL_NOW | ||
2409 | flagsize &= ~BD_FLG_COAL_NOW; | ||
2410 | #endif | ||
2411 | |||
2412 | if (ACE_IS_TIGON_I(ap)) { | ||
2413 | struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc; | ||
2414 | writel(addr >> 32, &io->addr.addrhi); | ||
2415 | writel(addr & 0xffffffff, &io->addr.addrlo); | ||
2416 | writel(flagsize, &io->flagsize); | ||
2417 | writel(vlan_tag, &io->vlanres); | ||
2418 | } else { | ||
2419 | desc->addr.addrhi = addr >> 32; | ||
2420 | desc->addr.addrlo = addr; | ||
2421 | desc->flagsize = flagsize; | ||
2422 | desc->vlanres = vlan_tag; | ||
2423 | } | ||
2424 | } | ||
2425 | |||
2426 | |||
2427 | static netdev_tx_t ace_start_xmit(struct sk_buff *skb, | ||
2428 | struct net_device *dev) | ||
2429 | { | ||
2430 | struct ace_private *ap = netdev_priv(dev); | ||
2431 | struct ace_regs __iomem *regs = ap->regs; | ||
2432 | struct tx_desc *desc; | ||
2433 | u32 idx, flagsize; | ||
2434 | unsigned long maxjiff = jiffies + 3*HZ; | ||
2435 | |||
2436 | restart: | ||
2437 | idx = ap->tx_prd; | ||
2438 | |||
2439 | if (tx_ring_full(ap, ap->tx_ret_csm, idx)) | ||
2440 | goto overflow; | ||
2441 | |||
2442 | if (!skb_shinfo(skb)->nr_frags) { | ||
2443 | dma_addr_t mapping; | ||
2444 | u32 vlan_tag = 0; | ||
2445 | |||
2446 | mapping = ace_map_tx_skb(ap, skb, skb, idx); | ||
2447 | flagsize = (skb->len << 16) | (BD_FLG_END); | ||
2448 | if (skb->ip_summed == CHECKSUM_PARTIAL) | ||
2449 | flagsize |= BD_FLG_TCP_UDP_SUM; | ||
2450 | if (vlan_tx_tag_present(skb)) { | ||
2451 | flagsize |= BD_FLG_VLAN_TAG; | ||
2452 | vlan_tag = vlan_tx_tag_get(skb); | ||
2453 | } | ||
2454 | desc = ap->tx_ring + idx; | ||
2455 | idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | ||
2456 | |||
2457 | /* Look at ace_tx_int for explanations. */ | ||
2458 | if (tx_ring_full(ap, ap->tx_ret_csm, idx)) | ||
2459 | flagsize |= BD_FLG_COAL_NOW; | ||
2460 | |||
2461 | ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); | ||
2462 | } else { | ||
2463 | dma_addr_t mapping; | ||
2464 | u32 vlan_tag = 0; | ||
2465 | int i, len = 0; | ||
2466 | |||
2467 | mapping = ace_map_tx_skb(ap, skb, NULL, idx); | ||
2468 | flagsize = (skb_headlen(skb) << 16); | ||
2469 | if (skb->ip_summed == CHECKSUM_PARTIAL) | ||
2470 | flagsize |= BD_FLG_TCP_UDP_SUM; | ||
2471 | if (vlan_tx_tag_present(skb)) { | ||
2472 | flagsize |= BD_FLG_VLAN_TAG; | ||
2473 | vlan_tag = vlan_tx_tag_get(skb); | ||
2474 | } | ||
2475 | |||
2476 | ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag); | ||
2477 | |||
2478 | idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | ||
2479 | |||
2480 | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | ||
2481 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | ||
2482 | struct tx_ring_info *info; | ||
2483 | |||
2484 | len += frag->size; | ||
2485 | info = ap->skb->tx_skbuff + idx; | ||
2486 | desc = ap->tx_ring + idx; | ||
2487 | |||
2488 | mapping = pci_map_page(ap->pdev, frag->page, | ||
2489 | frag->page_offset, frag->size, | ||
2490 | PCI_DMA_TODEVICE); | ||
2491 | |||
2492 | flagsize = (frag->size << 16); | ||
2493 | if (skb->ip_summed == CHECKSUM_PARTIAL) | ||
2494 | flagsize |= BD_FLG_TCP_UDP_SUM; | ||
2495 | idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | ||
2496 | |||
2497 | if (i == skb_shinfo(skb)->nr_frags - 1) { | ||
2498 | flagsize |= BD_FLG_END; | ||
2499 | if (tx_ring_full(ap, ap->tx_ret_csm, idx)) | ||
2500 | flagsize |= BD_FLG_COAL_NOW; | ||
2501 | |||
2502 | /* | ||
2503 | * Only the last fragment frees | ||
2504 | * the skb! | ||
2505 | */ | ||
2506 | info->skb = skb; | ||
2507 | } else { | ||
2508 | info->skb = NULL; | ||
2509 | } | ||
2510 | dma_unmap_addr_set(info, mapping, mapping); | ||
2511 | dma_unmap_len_set(info, maplen, frag->size); | ||
2512 | ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); | ||
2513 | } | ||
2514 | } | ||
2515 | |||
2516 | wmb(); | ||
2517 | ap->tx_prd = idx; | ||
2518 | ace_set_txprd(regs, ap, idx); | ||
2519 | |||
2520 | if (flagsize & BD_FLG_COAL_NOW) { | ||
2521 | netif_stop_queue(dev); | ||
2522 | |||
2523 | /* | ||
2524 | * A TX-descriptor producer (an IRQ) might have gotten | ||
2525 | * between, making the ring free again. Since xmit is | ||
2526 | * serialized, this is the only situation we have to | ||
2527 | * re-test. | ||
2528 | */ | ||
2529 | if (!tx_ring_full(ap, ap->tx_ret_csm, idx)) | ||
2530 | netif_wake_queue(dev); | ||
2531 | } | ||
2532 | |||
2533 | return NETDEV_TX_OK; | ||
2534 | |||
2535 | overflow: | ||
2536 | /* | ||
2537 | * This race condition is unavoidable with lock-free drivers. | ||
2538 | * We wake up the queue _before_ tx_prd is advanced, so that we can | ||
2539 | * enter hard_start_xmit too early, while tx ring still looks closed. | ||
2540 | * This happens ~1-4 times per 100000 packets, so that we can allow | ||
2541 | * to loop syncing to other CPU. Probably, we need an additional | ||
2542 | * wmb() in ace_tx_intr as well. | ||
2543 | * | ||
2544 | * Note that this race is relieved by reserving one more entry | ||
2545 | * in tx ring than it is necessary (see original non-SG driver). | ||
2546 | * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which | ||
2547 | * is already overkill. | ||
2548 | * | ||
2549 | * Alternative is to return with 1 not throttling queue. In this | ||
2550 | * case loop becomes longer, no more useful effects. | ||
2551 | */ | ||
2552 | if (time_before(jiffies, maxjiff)) { | ||
2553 | barrier(); | ||
2554 | cpu_relax(); | ||
2555 | goto restart; | ||
2556 | } | ||
2557 | |||
2558 | /* The ring is stuck full. */ | ||
2559 | printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name); | ||
2560 | return NETDEV_TX_BUSY; | ||
2561 | } | ||
2562 | |||
2563 | |||
2564 | static int ace_change_mtu(struct net_device *dev, int new_mtu) | ||
2565 | { | ||
2566 | struct ace_private *ap = netdev_priv(dev); | ||
2567 | struct ace_regs __iomem *regs = ap->regs; | ||
2568 | |||
2569 | if (new_mtu > ACE_JUMBO_MTU) | ||
2570 | return -EINVAL; | ||
2571 | |||
2572 | writel(new_mtu + ETH_HLEN + 4, ®s->IfMtu); | ||
2573 | dev->mtu = new_mtu; | ||
2574 | |||
2575 | if (new_mtu > ACE_STD_MTU) { | ||
2576 | if (!(ap->jumbo)) { | ||
2577 | printk(KERN_INFO "%s: Enabling Jumbo frame " | ||
2578 | "support\n", dev->name); | ||
2579 | ap->jumbo = 1; | ||
2580 | if (!test_and_set_bit(0, &ap->jumbo_refill_busy)) | ||
2581 | ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE); | ||
2582 | ace_set_rxtx_parms(dev, 1); | ||
2583 | } | ||
2584 | } else { | ||
2585 | while (test_and_set_bit(0, &ap->jumbo_refill_busy)); | ||
2586 | ace_sync_irq(dev->irq); | ||
2587 | ace_set_rxtx_parms(dev, 0); | ||
2588 | if (ap->jumbo) { | ||
2589 | struct cmd cmd; | ||
2590 | |||
2591 | cmd.evt = C_RESET_JUMBO_RNG; | ||
2592 | cmd.code = 0; | ||
2593 | cmd.idx = 0; | ||
2594 | ace_issue_cmd(regs, &cmd); | ||
2595 | } | ||
2596 | } | ||
2597 | |||
2598 | return 0; | ||
2599 | } | ||
2600 | |||
2601 | static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | ||
2602 | { | ||
2603 | struct ace_private *ap = netdev_priv(dev); | ||
2604 | struct ace_regs __iomem *regs = ap->regs; | ||
2605 | u32 link; | ||
2606 | |||
2607 | memset(ecmd, 0, sizeof(struct ethtool_cmd)); | ||
2608 | ecmd->supported = | ||
2609 | (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | | ||
2610 | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | | ||
2611 | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | | ||
2612 | SUPPORTED_Autoneg | SUPPORTED_FIBRE); | ||
2613 | |||
2614 | ecmd->port = PORT_FIBRE; | ||
2615 | ecmd->transceiver = XCVR_INTERNAL; | ||
2616 | |||
2617 | link = readl(®s->GigLnkState); | ||
2618 | if (link & LNK_1000MB) | ||
2619 | ethtool_cmd_speed_set(ecmd, SPEED_1000); | ||
2620 | else { | ||
2621 | link = readl(®s->FastLnkState); | ||
2622 | if (link & LNK_100MB) | ||
2623 | ethtool_cmd_speed_set(ecmd, SPEED_100); | ||
2624 | else if (link & LNK_10MB) | ||
2625 | ethtool_cmd_speed_set(ecmd, SPEED_10); | ||
2626 | else | ||
2627 | ethtool_cmd_speed_set(ecmd, 0); | ||
2628 | } | ||
2629 | if (link & LNK_FULL_DUPLEX) | ||
2630 | ecmd->duplex = DUPLEX_FULL; | ||
2631 | else | ||
2632 | ecmd->duplex = DUPLEX_HALF; | ||
2633 | |||
2634 | if (link & LNK_NEGOTIATE) | ||
2635 | ecmd->autoneg = AUTONEG_ENABLE; | ||
2636 | else | ||
2637 | ecmd->autoneg = AUTONEG_DISABLE; | ||
2638 | |||
2639 | #if 0 | ||
2640 | /* | ||
2641 | * Current struct ethtool_cmd is insufficient | ||
2642 | */ | ||
2643 | ecmd->trace = readl(®s->TuneTrace); | ||
2644 | |||
2645 | ecmd->txcoal = readl(®s->TuneTxCoalTicks); | ||
2646 | ecmd->rxcoal = readl(®s->TuneRxCoalTicks); | ||
2647 | #endif | ||
2648 | ecmd->maxtxpkt = readl(®s->TuneMaxTxDesc); | ||
2649 | ecmd->maxrxpkt = readl(®s->TuneMaxRxDesc); | ||
2650 | |||
2651 | return 0; | ||
2652 | } | ||
2653 | |||
2654 | static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | ||
2655 | { | ||
2656 | struct ace_private *ap = netdev_priv(dev); | ||
2657 | struct ace_regs __iomem *regs = ap->regs; | ||
2658 | u32 link, speed; | ||
2659 | |||
2660 | link = readl(®s->GigLnkState); | ||
2661 | if (link & LNK_1000MB) | ||
2662 | speed = SPEED_1000; | ||
2663 | else { | ||
2664 | link = readl(®s->FastLnkState); | ||
2665 | if (link & LNK_100MB) | ||
2666 | speed = SPEED_100; | ||
2667 | else if (link & LNK_10MB) | ||
2668 | speed = SPEED_10; | ||
2669 | else | ||
2670 | speed = SPEED_100; | ||
2671 | } | ||
2672 | |||
2673 | link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB | | ||
2674 | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL; | ||
2675 | if (!ACE_IS_TIGON_I(ap)) | ||
2676 | link |= LNK_TX_FLOW_CTL_Y; | ||
2677 | if (ecmd->autoneg == AUTONEG_ENABLE) | ||
2678 | link |= LNK_NEGOTIATE; | ||
2679 | if (ethtool_cmd_speed(ecmd) != speed) { | ||
2680 | link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB); | ||
2681 | switch (ethtool_cmd_speed(ecmd)) { | ||
2682 | case SPEED_1000: | ||
2683 | link |= LNK_1000MB; | ||
2684 | break; | ||
2685 | case SPEED_100: | ||
2686 | link |= LNK_100MB; | ||
2687 | break; | ||
2688 | case SPEED_10: | ||
2689 | link |= LNK_10MB; | ||
2690 | break; | ||
2691 | } | ||
2692 | } | ||
2693 | |||
2694 | if (ecmd->duplex == DUPLEX_FULL) | ||
2695 | link |= LNK_FULL_DUPLEX; | ||
2696 | |||
2697 | if (link != ap->link) { | ||
2698 | struct cmd cmd; | ||
2699 | printk(KERN_INFO "%s: Renegotiating link state\n", | ||
2700 | dev->name); | ||
2701 | |||
2702 | ap->link = link; | ||
2703 | writel(link, ®s->TuneLink); | ||
2704 | if (!ACE_IS_TIGON_I(ap)) | ||
2705 | writel(link, ®s->TuneFastLink); | ||
2706 | wmb(); | ||
2707 | |||
2708 | cmd.evt = C_LNK_NEGOTIATION; | ||
2709 | cmd.code = 0; | ||
2710 | cmd.idx = 0; | ||
2711 | ace_issue_cmd(regs, &cmd); | ||
2712 | } | ||
2713 | return 0; | ||
2714 | } | ||
2715 | |||
2716 | static void ace_get_drvinfo(struct net_device *dev, | ||
2717 | struct ethtool_drvinfo *info) | ||
2718 | { | ||
2719 | struct ace_private *ap = netdev_priv(dev); | ||
2720 | |||
2721 | strlcpy(info->driver, "acenic", sizeof(info->driver)); | ||
2722 | snprintf(info->version, sizeof(info->version), "%i.%i.%i", | ||
2723 | ap->firmware_major, ap->firmware_minor, | ||
2724 | ap->firmware_fix); | ||
2725 | |||
2726 | if (ap->pdev) | ||
2727 | strlcpy(info->bus_info, pci_name(ap->pdev), | ||
2728 | sizeof(info->bus_info)); | ||
2729 | |||
2730 | } | ||
2731 | |||
2732 | /* | ||
2733 | * Set the hardware MAC address. | ||
2734 | */ | ||
2735 | static int ace_set_mac_addr(struct net_device *dev, void *p) | ||
2736 | { | ||
2737 | struct ace_private *ap = netdev_priv(dev); | ||
2738 | struct ace_regs __iomem *regs = ap->regs; | ||
2739 | struct sockaddr *addr=p; | ||
2740 | u8 *da; | ||
2741 | struct cmd cmd; | ||
2742 | |||
2743 | if(netif_running(dev)) | ||
2744 | return -EBUSY; | ||
2745 | |||
2746 | memcpy(dev->dev_addr, addr->sa_data,dev->addr_len); | ||
2747 | |||
2748 | da = (u8 *)dev->dev_addr; | ||
2749 | |||
2750 | writel(da[0] << 8 | da[1], ®s->MacAddrHi); | ||
2751 | writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5], | ||
2752 | ®s->MacAddrLo); | ||
2753 | |||
2754 | cmd.evt = C_SET_MAC_ADDR; | ||
2755 | cmd.code = 0; | ||
2756 | cmd.idx = 0; | ||
2757 | ace_issue_cmd(regs, &cmd); | ||
2758 | |||
2759 | return 0; | ||
2760 | } | ||
2761 | |||
2762 | |||
2763 | static void ace_set_multicast_list(struct net_device *dev) | ||
2764 | { | ||
2765 | struct ace_private *ap = netdev_priv(dev); | ||
2766 | struct ace_regs __iomem *regs = ap->regs; | ||
2767 | struct cmd cmd; | ||
2768 | |||
2769 | if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) { | ||
2770 | cmd.evt = C_SET_MULTICAST_MODE; | ||
2771 | cmd.code = C_C_MCAST_ENABLE; | ||
2772 | cmd.idx = 0; | ||
2773 | ace_issue_cmd(regs, &cmd); | ||
2774 | ap->mcast_all = 1; | ||
2775 | } else if (ap->mcast_all) { | ||
2776 | cmd.evt = C_SET_MULTICAST_MODE; | ||
2777 | cmd.code = C_C_MCAST_DISABLE; | ||
2778 | cmd.idx = 0; | ||
2779 | ace_issue_cmd(regs, &cmd); | ||
2780 | ap->mcast_all = 0; | ||
2781 | } | ||
2782 | |||
2783 | if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) { | ||
2784 | cmd.evt = C_SET_PROMISC_MODE; | ||
2785 | cmd.code = C_C_PROMISC_ENABLE; | ||
2786 | cmd.idx = 0; | ||
2787 | ace_issue_cmd(regs, &cmd); | ||
2788 | ap->promisc = 1; | ||
2789 | }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) { | ||
2790 | cmd.evt = C_SET_PROMISC_MODE; | ||
2791 | cmd.code = C_C_PROMISC_DISABLE; | ||
2792 | cmd.idx = 0; | ||
2793 | ace_issue_cmd(regs, &cmd); | ||
2794 | ap->promisc = 0; | ||
2795 | } | ||
2796 | |||
2797 | /* | ||
2798 | * For the time being multicast relies on the upper layers | ||
2799 | * filtering it properly. The Firmware does not allow one to | ||
2800 | * set the entire multicast list at a time and keeping track of | ||
2801 | * it here is going to be messy. | ||
2802 | */ | ||
2803 | if (!netdev_mc_empty(dev) && !ap->mcast_all) { | ||
2804 | cmd.evt = C_SET_MULTICAST_MODE; | ||
2805 | cmd.code = C_C_MCAST_ENABLE; | ||
2806 | cmd.idx = 0; | ||
2807 | ace_issue_cmd(regs, &cmd); | ||
2808 | }else if (!ap->mcast_all) { | ||
2809 | cmd.evt = C_SET_MULTICAST_MODE; | ||
2810 | cmd.code = C_C_MCAST_DISABLE; | ||
2811 | cmd.idx = 0; | ||
2812 | ace_issue_cmd(regs, &cmd); | ||
2813 | } | ||
2814 | } | ||
2815 | |||
2816 | |||
2817 | static struct net_device_stats *ace_get_stats(struct net_device *dev) | ||
2818 | { | ||
2819 | struct ace_private *ap = netdev_priv(dev); | ||
2820 | struct ace_mac_stats __iomem *mac_stats = | ||
2821 | (struct ace_mac_stats __iomem *)ap->regs->Stats; | ||
2822 | |||
2823 | dev->stats.rx_missed_errors = readl(&mac_stats->drop_space); | ||
2824 | dev->stats.multicast = readl(&mac_stats->kept_mc); | ||
2825 | dev->stats.collisions = readl(&mac_stats->coll); | ||
2826 | |||
2827 | return &dev->stats; | ||
2828 | } | ||
2829 | |||
2830 | |||
2831 | static void __devinit ace_copy(struct ace_regs __iomem *regs, const __be32 *src, | ||
2832 | u32 dest, int size) | ||
2833 | { | ||
2834 | void __iomem *tdest; | ||
2835 | short tsize, i; | ||
2836 | |||
2837 | if (size <= 0) | ||
2838 | return; | ||
2839 | |||
2840 | while (size > 0) { | ||
2841 | tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), | ||
2842 | min_t(u32, size, ACE_WINDOW_SIZE)); | ||
2843 | tdest = (void __iomem *) ®s->Window + | ||
2844 | (dest & (ACE_WINDOW_SIZE - 1)); | ||
2845 | writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); | ||
2846 | for (i = 0; i < (tsize / 4); i++) { | ||
2847 | /* Firmware is big-endian */ | ||
2848 | writel(be32_to_cpup(src), tdest); | ||
2849 | src++; | ||
2850 | tdest += 4; | ||
2851 | dest += 4; | ||
2852 | size -= 4; | ||
2853 | } | ||
2854 | } | ||
2855 | } | ||
2856 | |||
2857 | |||
2858 | static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size) | ||
2859 | { | ||
2860 | void __iomem *tdest; | ||
2861 | short tsize = 0, i; | ||
2862 | |||
2863 | if (size <= 0) | ||
2864 | return; | ||
2865 | |||
2866 | while (size > 0) { | ||
2867 | tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), | ||
2868 | min_t(u32, size, ACE_WINDOW_SIZE)); | ||
2869 | tdest = (void __iomem *) ®s->Window + | ||
2870 | (dest & (ACE_WINDOW_SIZE - 1)); | ||
2871 | writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); | ||
2872 | |||
2873 | for (i = 0; i < (tsize / 4); i++) { | ||
2874 | writel(0, tdest + i*4); | ||
2875 | } | ||
2876 | |||
2877 | dest += tsize; | ||
2878 | size -= tsize; | ||
2879 | } | ||
2880 | } | ||
2881 | |||
2882 | |||
2883 | /* | ||
2884 | * Download the firmware into the SRAM on the NIC | ||
2885 | * | ||
2886 | * This operation requires the NIC to be halted and is performed with | ||
2887 | * interrupts disabled and with the spinlock hold. | ||
2888 | */ | ||
2889 | static int __devinit ace_load_firmware(struct net_device *dev) | ||
2890 | { | ||
2891 | const struct firmware *fw; | ||
2892 | const char *fw_name = "acenic/tg2.bin"; | ||
2893 | struct ace_private *ap = netdev_priv(dev); | ||
2894 | struct ace_regs __iomem *regs = ap->regs; | ||
2895 | const __be32 *fw_data; | ||
2896 | u32 load_addr; | ||
2897 | int ret; | ||
2898 | |||
2899 | if (!(readl(®s->CpuCtrl) & CPU_HALTED)) { | ||
2900 | printk(KERN_ERR "%s: trying to download firmware while the " | ||
2901 | "CPU is running!\n", ap->name); | ||
2902 | return -EFAULT; | ||
2903 | } | ||
2904 | |||
2905 | if (ACE_IS_TIGON_I(ap)) | ||
2906 | fw_name = "acenic/tg1.bin"; | ||
2907 | |||
2908 | ret = request_firmware(&fw, fw_name, &ap->pdev->dev); | ||
2909 | if (ret) { | ||
2910 | printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n", | ||
2911 | ap->name, fw_name); | ||
2912 | return ret; | ||
2913 | } | ||
2914 | |||
2915 | fw_data = (void *)fw->data; | ||
2916 | |||
2917 | /* Firmware blob starts with version numbers, followed by | ||
2918 | load and start address. Remainder is the blob to be loaded | ||
2919 | contiguously from load address. We don't bother to represent | ||
2920 | the BSS/SBSS sections any more, since we were clearing the | ||
2921 | whole thing anyway. */ | ||
2922 | ap->firmware_major = fw->data[0]; | ||
2923 | ap->firmware_minor = fw->data[1]; | ||
2924 | ap->firmware_fix = fw->data[2]; | ||
2925 | |||
2926 | ap->firmware_start = be32_to_cpu(fw_data[1]); | ||
2927 | if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) { | ||
2928 | printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n", | ||
2929 | ap->name, ap->firmware_start, fw_name); | ||
2930 | ret = -EINVAL; | ||
2931 | goto out; | ||
2932 | } | ||
2933 | |||
2934 | load_addr = be32_to_cpu(fw_data[2]); | ||
2935 | if (load_addr < 0x4000 || load_addr >= 0x80000) { | ||
2936 | printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n", | ||
2937 | ap->name, load_addr, fw_name); | ||
2938 | ret = -EINVAL; | ||
2939 | goto out; | ||
2940 | } | ||
2941 | |||
2942 | /* | ||
2943 | * Do not try to clear more than 512KiB or we end up seeing | ||
2944 | * funny things on NICs with only 512KiB SRAM | ||
2945 | */ | ||
2946 | ace_clear(regs, 0x2000, 0x80000-0x2000); | ||
2947 | ace_copy(regs, &fw_data[3], load_addr, fw->size-12); | ||
2948 | out: | ||
2949 | release_firmware(fw); | ||
2950 | return ret; | ||
2951 | } | ||
2952 | |||
2953 | |||
2954 | /* | ||
2955 | * The eeprom on the AceNIC is an Atmel i2c EEPROM. | ||
2956 | * | ||
2957 | * Accessing the EEPROM is `interesting' to say the least - don't read | ||
2958 | * this code right after dinner. | ||
2959 | * | ||
2960 | * This is all about black magic and bit-banging the device .... I | ||
2961 | * wonder in what hospital they have put the guy who designed the i2c | ||
2962 | * specs. | ||
2963 | * | ||
2964 | * Oh yes, this is only the beginning! | ||
2965 | * | ||
2966 | * Thanks to Stevarino Webinski for helping tracking down the bugs in the | ||
2967 | * code i2c readout code by beta testing all my hacks. | ||
2968 | */ | ||
2969 | static void __devinit eeprom_start(struct ace_regs __iomem *regs) | ||
2970 | { | ||
2971 | u32 local; | ||
2972 | |||
2973 | readl(®s->LocalCtrl); | ||
2974 | udelay(ACE_SHORT_DELAY); | ||
2975 | local = readl(®s->LocalCtrl); | ||
2976 | local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE; | ||
2977 | writel(local, ®s->LocalCtrl); | ||
2978 | readl(®s->LocalCtrl); | ||
2979 | mb(); | ||
2980 | udelay(ACE_SHORT_DELAY); | ||
2981 | local |= EEPROM_CLK_OUT; | ||
2982 | writel(local, ®s->LocalCtrl); | ||
2983 | readl(®s->LocalCtrl); | ||
2984 | mb(); | ||
2985 | udelay(ACE_SHORT_DELAY); | ||
2986 | local &= ~EEPROM_DATA_OUT; | ||
2987 | writel(local, ®s->LocalCtrl); | ||
2988 | readl(®s->LocalCtrl); | ||
2989 | mb(); | ||
2990 | udelay(ACE_SHORT_DELAY); | ||
2991 | local &= ~EEPROM_CLK_OUT; | ||
2992 | writel(local, ®s->LocalCtrl); | ||
2993 | readl(®s->LocalCtrl); | ||
2994 | mb(); | ||
2995 | } | ||
2996 | |||
2997 | |||
2998 | static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic) | ||
2999 | { | ||
3000 | short i; | ||
3001 | u32 local; | ||
3002 | |||
3003 | udelay(ACE_SHORT_DELAY); | ||
3004 | local = readl(®s->LocalCtrl); | ||
3005 | local &= ~EEPROM_DATA_OUT; | ||
3006 | local |= EEPROM_WRITE_ENABLE; | ||
3007 | writel(local, ®s->LocalCtrl); | ||
3008 | readl(®s->LocalCtrl); | ||
3009 | mb(); | ||
3010 | |||
3011 | for (i = 0; i < 8; i++, magic <<= 1) { | ||
3012 | udelay(ACE_SHORT_DELAY); | ||
3013 | if (magic & 0x80) | ||
3014 | local |= EEPROM_DATA_OUT; | ||
3015 | else | ||
3016 | local &= ~EEPROM_DATA_OUT; | ||
3017 | writel(local, ®s->LocalCtrl); | ||
3018 | readl(®s->LocalCtrl); | ||
3019 | mb(); | ||
3020 | |||
3021 | udelay(ACE_SHORT_DELAY); | ||
3022 | local |= EEPROM_CLK_OUT; | ||
3023 | writel(local, ®s->LocalCtrl); | ||
3024 | readl(®s->LocalCtrl); | ||
3025 | mb(); | ||
3026 | udelay(ACE_SHORT_DELAY); | ||
3027 | local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT); | ||
3028 | writel(local, ®s->LocalCtrl); | ||
3029 | readl(®s->LocalCtrl); | ||
3030 | mb(); | ||
3031 | } | ||
3032 | } | ||
3033 | |||
3034 | |||
3035 | static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs) | ||
3036 | { | ||
3037 | int state; | ||
3038 | u32 local; | ||
3039 | |||
3040 | local = readl(®s->LocalCtrl); | ||
3041 | local &= ~EEPROM_WRITE_ENABLE; | ||
3042 | writel(local, ®s->LocalCtrl); | ||
3043 | readl(®s->LocalCtrl); | ||
3044 | mb(); | ||
3045 | udelay(ACE_LONG_DELAY); | ||
3046 | local |= EEPROM_CLK_OUT; | ||
3047 | writel(local, ®s->LocalCtrl); | ||
3048 | readl(®s->LocalCtrl); | ||
3049 | mb(); | ||
3050 | udelay(ACE_SHORT_DELAY); | ||
3051 | /* sample data in middle of high clk */ | ||
3052 | state = (readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0; | ||
3053 | udelay(ACE_SHORT_DELAY); | ||
3054 | mb(); | ||
3055 | writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); | ||
3056 | readl(®s->LocalCtrl); | ||
3057 | mb(); | ||
3058 | |||
3059 | return state; | ||
3060 | } | ||
3061 | |||
3062 | |||
3063 | static void __devinit eeprom_stop(struct ace_regs __iomem *regs) | ||
3064 | { | ||
3065 | u32 local; | ||
3066 | |||
3067 | udelay(ACE_SHORT_DELAY); | ||
3068 | local = readl(®s->LocalCtrl); | ||
3069 | local |= EEPROM_WRITE_ENABLE; | ||
3070 | writel(local, ®s->LocalCtrl); | ||
3071 | readl(®s->LocalCtrl); | ||
3072 | mb(); | ||
3073 | udelay(ACE_SHORT_DELAY); | ||
3074 | local &= ~EEPROM_DATA_OUT; | ||
3075 | writel(local, ®s->LocalCtrl); | ||
3076 | readl(®s->LocalCtrl); | ||
3077 | mb(); | ||
3078 | udelay(ACE_SHORT_DELAY); | ||
3079 | local |= EEPROM_CLK_OUT; | ||
3080 | writel(local, ®s->LocalCtrl); | ||
3081 | readl(®s->LocalCtrl); | ||
3082 | mb(); | ||
3083 | udelay(ACE_SHORT_DELAY); | ||
3084 | local |= EEPROM_DATA_OUT; | ||
3085 | writel(local, ®s->LocalCtrl); | ||
3086 | readl(®s->LocalCtrl); | ||
3087 | mb(); | ||
3088 | udelay(ACE_LONG_DELAY); | ||
3089 | local &= ~EEPROM_CLK_OUT; | ||
3090 | writel(local, ®s->LocalCtrl); | ||
3091 | mb(); | ||
3092 | } | ||
3093 | |||
3094 | |||
3095 | /* | ||
3096 | * Read a whole byte from the EEPROM. | ||
3097 | */ | ||
3098 | static int __devinit read_eeprom_byte(struct net_device *dev, | ||
3099 | unsigned long offset) | ||
3100 | { | ||
3101 | struct ace_private *ap = netdev_priv(dev); | ||
3102 | struct ace_regs __iomem *regs = ap->regs; | ||
3103 | unsigned long flags; | ||
3104 | u32 local; | ||
3105 | int result = 0; | ||
3106 | short i; | ||
3107 | |||
3108 | /* | ||
3109 | * Don't take interrupts on this CPU will bit banging | ||
3110 | * the %#%#@$ I2C device | ||
3111 | */ | ||
3112 | local_irq_save(flags); | ||
3113 | |||
3114 | eeprom_start(regs); | ||
3115 | |||
3116 | eeprom_prep(regs, EEPROM_WRITE_SELECT); | ||
3117 | if (eeprom_check_ack(regs)) { | ||
3118 | local_irq_restore(flags); | ||
3119 | printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name); | ||
3120 | result = -EIO; | ||
3121 | goto eeprom_read_error; | ||
3122 | } | ||
3123 | |||
3124 | eeprom_prep(regs, (offset >> 8) & 0xff); | ||
3125 | if (eeprom_check_ack(regs)) { | ||
3126 | local_irq_restore(flags); | ||
3127 | printk(KERN_ERR "%s: Unable to set address byte 0\n", | ||
3128 | ap->name); | ||
3129 | result = -EIO; | ||
3130 | goto eeprom_read_error; | ||
3131 | } | ||
3132 | |||
3133 | eeprom_prep(regs, offset & 0xff); | ||
3134 | if (eeprom_check_ack(regs)) { | ||
3135 | local_irq_restore(flags); | ||
3136 | printk(KERN_ERR "%s: Unable to set address byte 1\n", | ||
3137 | ap->name); | ||
3138 | result = -EIO; | ||
3139 | goto eeprom_read_error; | ||
3140 | } | ||
3141 | |||
3142 | eeprom_start(regs); | ||
3143 | eeprom_prep(regs, EEPROM_READ_SELECT); | ||
3144 | if (eeprom_check_ack(regs)) { | ||
3145 | local_irq_restore(flags); | ||
3146 | printk(KERN_ERR "%s: Unable to set READ_SELECT\n", | ||
3147 | ap->name); | ||
3148 | result = -EIO; | ||
3149 | goto eeprom_read_error; | ||
3150 | } | ||
3151 | |||
3152 | for (i = 0; i < 8; i++) { | ||
3153 | local = readl(®s->LocalCtrl); | ||
3154 | local &= ~EEPROM_WRITE_ENABLE; | ||
3155 | writel(local, ®s->LocalCtrl); | ||
3156 | readl(®s->LocalCtrl); | ||
3157 | udelay(ACE_LONG_DELAY); | ||
3158 | mb(); | ||
3159 | local |= EEPROM_CLK_OUT; | ||
3160 | writel(local, ®s->LocalCtrl); | ||
3161 | readl(®s->LocalCtrl); | ||
3162 | mb(); | ||
3163 | udelay(ACE_SHORT_DELAY); | ||
3164 | /* sample data mid high clk */ | ||
3165 | result = (result << 1) | | ||
3166 | ((readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0); | ||
3167 | udelay(ACE_SHORT_DELAY); | ||
3168 | mb(); | ||
3169 | local = readl(®s->LocalCtrl); | ||
3170 | local &= ~EEPROM_CLK_OUT; | ||
3171 | writel(local, ®s->LocalCtrl); | ||
3172 | readl(®s->LocalCtrl); | ||
3173 | udelay(ACE_SHORT_DELAY); | ||
3174 | mb(); | ||
3175 | if (i == 7) { | ||
3176 | local |= EEPROM_WRITE_ENABLE; | ||
3177 | writel(local, ®s->LocalCtrl); | ||
3178 | readl(®s->LocalCtrl); | ||
3179 | mb(); | ||
3180 | udelay(ACE_SHORT_DELAY); | ||
3181 | } | ||
3182 | } | ||
3183 | |||
3184 | local |= EEPROM_DATA_OUT; | ||
3185 | writel(local, ®s->LocalCtrl); | ||
3186 | readl(®s->LocalCtrl); | ||
3187 | mb(); | ||
3188 | udelay(ACE_SHORT_DELAY); | ||
3189 | writel(readl(®s->LocalCtrl) | EEPROM_CLK_OUT, ®s->LocalCtrl); | ||
3190 | readl(®s->LocalCtrl); | ||
3191 | udelay(ACE_LONG_DELAY); | ||
3192 | writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); | ||
3193 | readl(®s->LocalCtrl); | ||
3194 | mb(); | ||
3195 | udelay(ACE_SHORT_DELAY); | ||
3196 | eeprom_stop(regs); | ||
3197 | |||
3198 | local_irq_restore(flags); | ||
3199 | out: | ||
3200 | return result; | ||
3201 | |||
3202 | eeprom_read_error: | ||
3203 | printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n", | ||
3204 | ap->name, offset); | ||
3205 | goto out; | ||
3206 | } | ||