diff options
Diffstat (limited to 'drivers/net/e1000e')
-rw-r--r-- | drivers/net/e1000e/82571.c | 1351 | ||||
-rw-r--r-- | drivers/net/e1000e/Makefile | 37 | ||||
-rw-r--r-- | drivers/net/e1000e/defines.h | 739 | ||||
-rw-r--r-- | drivers/net/e1000e/e1000.h | 514 | ||||
-rw-r--r-- | drivers/net/e1000e/es2lan.c | 1232 | ||||
-rw-r--r-- | drivers/net/e1000e/ethtool.c | 1774 | ||||
-rw-r--r-- | drivers/net/e1000e/hw.h | 864 | ||||
-rw-r--r-- | drivers/net/e1000e/ich8lan.c | 2225 | ||||
-rw-r--r-- | drivers/net/e1000e/lib.c | 2487 | ||||
-rw-r--r-- | drivers/net/e1000e/netdev.c | 4441 | ||||
-rw-r--r-- | drivers/net/e1000e/param.c | 382 | ||||
-rw-r--r-- | drivers/net/e1000e/phy.c | 1773 |
12 files changed, 17819 insertions, 0 deletions
diff --git a/drivers/net/e1000e/82571.c b/drivers/net/e1000e/82571.c new file mode 100644 index 000000000000..cf70522fc851 --- /dev/null +++ b/drivers/net/e1000e/82571.c | |||
@@ -0,0 +1,1351 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | /* | ||
30 | * 82571EB Gigabit Ethernet Controller | ||
31 | * 82571EB Gigabit Ethernet Controller (Fiber) | ||
32 | * 82572EI Gigabit Ethernet Controller (Copper) | ||
33 | * 82572EI Gigabit Ethernet Controller (Fiber) | ||
34 | * 82572EI Gigabit Ethernet Controller | ||
35 | * 82573V Gigabit Ethernet Controller (Copper) | ||
36 | * 82573E Gigabit Ethernet Controller (Copper) | ||
37 | * 82573L Gigabit Ethernet Controller | ||
38 | */ | ||
39 | |||
40 | #include <linux/netdevice.h> | ||
41 | #include <linux/delay.h> | ||
42 | #include <linux/pci.h> | ||
43 | |||
44 | #include "e1000.h" | ||
45 | |||
46 | #define ID_LED_RESERVED_F746 0xF746 | ||
47 | #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \ | ||
48 | (ID_LED_OFF1_ON2 << 8) | \ | ||
49 | (ID_LED_DEF1_DEF2 << 4) | \ | ||
50 | (ID_LED_DEF1_DEF2)) | ||
51 | |||
52 | #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 | ||
53 | |||
54 | static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); | ||
55 | static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); | ||
56 | static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); | ||
57 | static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, | ||
58 | u16 words, u16 *data); | ||
59 | static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); | ||
60 | static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); | ||
61 | static s32 e1000_setup_link_82571(struct e1000_hw *hw); | ||
62 | static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); | ||
63 | |||
64 | /** | ||
65 | * e1000_init_phy_params_82571 - Init PHY func ptrs. | ||
66 | * @hw: pointer to the HW structure | ||
67 | * | ||
68 | * This is a function pointer entry point called by the api module. | ||
69 | **/ | ||
70 | static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) | ||
71 | { | ||
72 | struct e1000_phy_info *phy = &hw->phy; | ||
73 | s32 ret_val; | ||
74 | |||
75 | if (hw->media_type != e1000_media_type_copper) { | ||
76 | phy->type = e1000_phy_none; | ||
77 | return 0; | ||
78 | } | ||
79 | |||
80 | phy->addr = 1; | ||
81 | phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
82 | phy->reset_delay_us = 100; | ||
83 | |||
84 | switch (hw->mac.type) { | ||
85 | case e1000_82571: | ||
86 | case e1000_82572: | ||
87 | phy->type = e1000_phy_igp_2; | ||
88 | break; | ||
89 | case e1000_82573: | ||
90 | phy->type = e1000_phy_m88; | ||
91 | break; | ||
92 | default: | ||
93 | return -E1000_ERR_PHY; | ||
94 | break; | ||
95 | } | ||
96 | |||
97 | /* This can only be done after all function pointers are setup. */ | ||
98 | ret_val = e1000_get_phy_id_82571(hw); | ||
99 | |||
100 | /* Verify phy id */ | ||
101 | switch (hw->mac.type) { | ||
102 | case e1000_82571: | ||
103 | case e1000_82572: | ||
104 | if (phy->id != IGP01E1000_I_PHY_ID) | ||
105 | return -E1000_ERR_PHY; | ||
106 | break; | ||
107 | case e1000_82573: | ||
108 | if (phy->id != M88E1111_I_PHY_ID) | ||
109 | return -E1000_ERR_PHY; | ||
110 | break; | ||
111 | default: | ||
112 | return -E1000_ERR_PHY; | ||
113 | break; | ||
114 | } | ||
115 | |||
116 | return 0; | ||
117 | } | ||
118 | |||
119 | /** | ||
120 | * e1000_init_nvm_params_82571 - Init NVM func ptrs. | ||
121 | * @hw: pointer to the HW structure | ||
122 | * | ||
123 | * This is a function pointer entry point called by the api module. | ||
124 | **/ | ||
125 | static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) | ||
126 | { | ||
127 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
128 | u32 eecd = er32(EECD); | ||
129 | u16 size; | ||
130 | |||
131 | nvm->opcode_bits = 8; | ||
132 | nvm->delay_usec = 1; | ||
133 | switch (nvm->override) { | ||
134 | case e1000_nvm_override_spi_large: | ||
135 | nvm->page_size = 32; | ||
136 | nvm->address_bits = 16; | ||
137 | break; | ||
138 | case e1000_nvm_override_spi_small: | ||
139 | nvm->page_size = 8; | ||
140 | nvm->address_bits = 8; | ||
141 | break; | ||
142 | default: | ||
143 | nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; | ||
144 | nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; | ||
145 | break; | ||
146 | } | ||
147 | |||
148 | switch (hw->mac.type) { | ||
149 | case e1000_82573: | ||
150 | if (((eecd >> 15) & 0x3) == 0x3) { | ||
151 | nvm->type = e1000_nvm_flash_hw; | ||
152 | nvm->word_size = 2048; | ||
153 | /* Autonomous Flash update bit must be cleared due | ||
154 | * to Flash update issue. | ||
155 | */ | ||
156 | eecd &= ~E1000_EECD_AUPDEN; | ||
157 | ew32(EECD, eecd); | ||
158 | break; | ||
159 | } | ||
160 | /* Fall Through */ | ||
161 | default: | ||
162 | nvm->type = e1000_nvm_eeprom_spi; | ||
163 | size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> | ||
164 | E1000_EECD_SIZE_EX_SHIFT); | ||
165 | /* Added to a constant, "size" becomes the left-shift value | ||
166 | * for setting word_size. | ||
167 | */ | ||
168 | size += NVM_WORD_SIZE_BASE_SHIFT; | ||
169 | nvm->word_size = 1 << size; | ||
170 | break; | ||
171 | } | ||
172 | |||
173 | return 0; | ||
174 | } | ||
175 | |||
176 | /** | ||
177 | * e1000_init_mac_params_82571 - Init MAC func ptrs. | ||
178 | * @hw: pointer to the HW structure | ||
179 | * | ||
180 | * This is a function pointer entry point called by the api module. | ||
181 | **/ | ||
182 | static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter) | ||
183 | { | ||
184 | struct e1000_hw *hw = &adapter->hw; | ||
185 | struct e1000_mac_info *mac = &hw->mac; | ||
186 | struct e1000_mac_operations *func = &mac->ops; | ||
187 | |||
188 | /* Set media type */ | ||
189 | switch (adapter->pdev->device) { | ||
190 | case E1000_DEV_ID_82571EB_FIBER: | ||
191 | case E1000_DEV_ID_82572EI_FIBER: | ||
192 | case E1000_DEV_ID_82571EB_QUAD_FIBER: | ||
193 | hw->media_type = e1000_media_type_fiber; | ||
194 | break; | ||
195 | case E1000_DEV_ID_82571EB_SERDES: | ||
196 | case E1000_DEV_ID_82572EI_SERDES: | ||
197 | hw->media_type = e1000_media_type_internal_serdes; | ||
198 | break; | ||
199 | default: | ||
200 | hw->media_type = e1000_media_type_copper; | ||
201 | break; | ||
202 | } | ||
203 | |||
204 | /* Set mta register count */ | ||
205 | mac->mta_reg_count = 128; | ||
206 | /* Set rar entry count */ | ||
207 | mac->rar_entry_count = E1000_RAR_ENTRIES; | ||
208 | /* Set if manageability features are enabled. */ | ||
209 | mac->arc_subsystem_valid = | ||
210 | (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0; | ||
211 | |||
212 | /* check for link */ | ||
213 | switch (hw->media_type) { | ||
214 | case e1000_media_type_copper: | ||
215 | func->setup_physical_interface = e1000_setup_copper_link_82571; | ||
216 | func->check_for_link = e1000e_check_for_copper_link; | ||
217 | func->get_link_up_info = e1000e_get_speed_and_duplex_copper; | ||
218 | break; | ||
219 | case e1000_media_type_fiber: | ||
220 | func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571; | ||
221 | func->check_for_link = e1000e_check_for_fiber_link; | ||
222 | func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes; | ||
223 | break; | ||
224 | case e1000_media_type_internal_serdes: | ||
225 | func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571; | ||
226 | func->check_for_link = e1000e_check_for_serdes_link; | ||
227 | func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes; | ||
228 | break; | ||
229 | default: | ||
230 | return -E1000_ERR_CONFIG; | ||
231 | break; | ||
232 | } | ||
233 | |||
234 | return 0; | ||
235 | } | ||
236 | |||
237 | static s32 e1000_get_invariants_82571(struct e1000_adapter *adapter) | ||
238 | { | ||
239 | struct e1000_hw *hw = &adapter->hw; | ||
240 | static int global_quad_port_a; /* global port a indication */ | ||
241 | struct pci_dev *pdev = adapter->pdev; | ||
242 | u16 eeprom_data = 0; | ||
243 | int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1; | ||
244 | s32 rc; | ||
245 | |||
246 | rc = e1000_init_mac_params_82571(adapter); | ||
247 | if (rc) | ||
248 | return rc; | ||
249 | |||
250 | rc = e1000_init_nvm_params_82571(hw); | ||
251 | if (rc) | ||
252 | return rc; | ||
253 | |||
254 | rc = e1000_init_phy_params_82571(hw); | ||
255 | if (rc) | ||
256 | return rc; | ||
257 | |||
258 | /* tag quad port adapters first, it's used below */ | ||
259 | switch (pdev->device) { | ||
260 | case E1000_DEV_ID_82571EB_QUAD_COPPER: | ||
261 | case E1000_DEV_ID_82571EB_QUAD_FIBER: | ||
262 | case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: | ||
263 | adapter->flags |= FLAG_IS_QUAD_PORT; | ||
264 | /* mark the first port */ | ||
265 | if (global_quad_port_a == 0) | ||
266 | adapter->flags |= FLAG_IS_QUAD_PORT_A; | ||
267 | /* Reset for multiple quad port adapters */ | ||
268 | global_quad_port_a++; | ||
269 | if (global_quad_port_a == 4) | ||
270 | global_quad_port_a = 0; | ||
271 | break; | ||
272 | default: | ||
273 | break; | ||
274 | } | ||
275 | |||
276 | switch (adapter->hw.mac.type) { | ||
277 | case e1000_82571: | ||
278 | /* these dual ports don't have WoL on port B at all */ | ||
279 | if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) || | ||
280 | (pdev->device == E1000_DEV_ID_82571EB_SERDES) || | ||
281 | (pdev->device == E1000_DEV_ID_82571EB_COPPER)) && | ||
282 | (is_port_b)) | ||
283 | adapter->flags &= ~FLAG_HAS_WOL; | ||
284 | /* quad ports only support WoL on port A */ | ||
285 | if (adapter->flags & FLAG_IS_QUAD_PORT && | ||
286 | (!adapter->flags & FLAG_IS_QUAD_PORT_A)) | ||
287 | adapter->flags &= ~FLAG_HAS_WOL; | ||
288 | break; | ||
289 | |||
290 | case e1000_82573: | ||
291 | if (pdev->device == E1000_DEV_ID_82573L) { | ||
292 | e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1, | ||
293 | &eeprom_data); | ||
294 | if (eeprom_data & NVM_WORD1A_ASPM_MASK) | ||
295 | adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; | ||
296 | } | ||
297 | break; | ||
298 | default: | ||
299 | break; | ||
300 | } | ||
301 | |||
302 | return 0; | ||
303 | } | ||
304 | |||
305 | /** | ||
306 | * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision | ||
307 | * @hw: pointer to the HW structure | ||
308 | * | ||
309 | * Reads the PHY registers and stores the PHY ID and possibly the PHY | ||
310 | * revision in the hardware structure. | ||
311 | **/ | ||
312 | static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) | ||
313 | { | ||
314 | struct e1000_phy_info *phy = &hw->phy; | ||
315 | |||
316 | switch (hw->mac.type) { | ||
317 | case e1000_82571: | ||
318 | case e1000_82572: | ||
319 | /* The 82571 firmware may still be configuring the PHY. | ||
320 | * In this case, we cannot access the PHY until the | ||
321 | * configuration is done. So we explicitly set the | ||
322 | * PHY ID. */ | ||
323 | phy->id = IGP01E1000_I_PHY_ID; | ||
324 | break; | ||
325 | case e1000_82573: | ||
326 | return e1000e_get_phy_id(hw); | ||
327 | break; | ||
328 | default: | ||
329 | return -E1000_ERR_PHY; | ||
330 | break; | ||
331 | } | ||
332 | |||
333 | return 0; | ||
334 | } | ||
335 | |||
336 | /** | ||
337 | * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore | ||
338 | * @hw: pointer to the HW structure | ||
339 | * | ||
340 | * Acquire the HW semaphore to access the PHY or NVM | ||
341 | **/ | ||
342 | static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) | ||
343 | { | ||
344 | u32 swsm; | ||
345 | s32 timeout = hw->nvm.word_size + 1; | ||
346 | s32 i = 0; | ||
347 | |||
348 | /* Get the FW semaphore. */ | ||
349 | for (i = 0; i < timeout; i++) { | ||
350 | swsm = er32(SWSM); | ||
351 | ew32(SWSM, swsm | E1000_SWSM_SWESMBI); | ||
352 | |||
353 | /* Semaphore acquired if bit latched */ | ||
354 | if (er32(SWSM) & E1000_SWSM_SWESMBI) | ||
355 | break; | ||
356 | |||
357 | udelay(50); | ||
358 | } | ||
359 | |||
360 | if (i == timeout) { | ||
361 | /* Release semaphores */ | ||
362 | e1000e_put_hw_semaphore(hw); | ||
363 | hw_dbg(hw, "Driver can't access the NVM\n"); | ||
364 | return -E1000_ERR_NVM; | ||
365 | } | ||
366 | |||
367 | return 0; | ||
368 | } | ||
369 | |||
370 | /** | ||
371 | * e1000_put_hw_semaphore_82571 - Release hardware semaphore | ||
372 | * @hw: pointer to the HW structure | ||
373 | * | ||
374 | * Release hardware semaphore used to access the PHY or NVM | ||
375 | **/ | ||
376 | static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) | ||
377 | { | ||
378 | u32 swsm; | ||
379 | |||
380 | swsm = er32(SWSM); | ||
381 | |||
382 | swsm &= ~E1000_SWSM_SWESMBI; | ||
383 | |||
384 | ew32(SWSM, swsm); | ||
385 | } | ||
386 | |||
387 | /** | ||
388 | * e1000_acquire_nvm_82571 - Request for access to the EEPROM | ||
389 | * @hw: pointer to the HW structure | ||
390 | * | ||
391 | * To gain access to the EEPROM, first we must obtain a hardware semaphore. | ||
392 | * Then for non-82573 hardware, set the EEPROM access request bit and wait | ||
393 | * for EEPROM access grant bit. If the access grant bit is not set, release | ||
394 | * hardware semaphore. | ||
395 | **/ | ||
396 | static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) | ||
397 | { | ||
398 | s32 ret_val; | ||
399 | |||
400 | ret_val = e1000_get_hw_semaphore_82571(hw); | ||
401 | if (ret_val) | ||
402 | return ret_val; | ||
403 | |||
404 | if (hw->mac.type != e1000_82573) | ||
405 | ret_val = e1000e_acquire_nvm(hw); | ||
406 | |||
407 | if (ret_val) | ||
408 | e1000_put_hw_semaphore_82571(hw); | ||
409 | |||
410 | return ret_val; | ||
411 | } | ||
412 | |||
413 | /** | ||
414 | * e1000_release_nvm_82571 - Release exclusive access to EEPROM | ||
415 | * @hw: pointer to the HW structure | ||
416 | * | ||
417 | * Stop any current commands to the EEPROM and clear the EEPROM request bit. | ||
418 | **/ | ||
419 | static void e1000_release_nvm_82571(struct e1000_hw *hw) | ||
420 | { | ||
421 | e1000e_release_nvm(hw); | ||
422 | e1000_put_hw_semaphore_82571(hw); | ||
423 | } | ||
424 | |||
425 | /** | ||
426 | * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface | ||
427 | * @hw: pointer to the HW structure | ||
428 | * @offset: offset within the EEPROM to be written to | ||
429 | * @words: number of words to write | ||
430 | * @data: 16 bit word(s) to be written to the EEPROM | ||
431 | * | ||
432 | * For non-82573 silicon, write data to EEPROM at offset using SPI interface. | ||
433 | * | ||
434 | * If e1000e_update_nvm_checksum is not called after this function, the | ||
435 | * EEPROM will most likley contain an invalid checksum. | ||
436 | **/ | ||
437 | static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, | ||
438 | u16 *data) | ||
439 | { | ||
440 | s32 ret_val; | ||
441 | |||
442 | switch (hw->mac.type) { | ||
443 | case e1000_82573: | ||
444 | ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); | ||
445 | break; | ||
446 | case e1000_82571: | ||
447 | case e1000_82572: | ||
448 | ret_val = e1000e_write_nvm_spi(hw, offset, words, data); | ||
449 | break; | ||
450 | default: | ||
451 | ret_val = -E1000_ERR_NVM; | ||
452 | break; | ||
453 | } | ||
454 | |||
455 | return ret_val; | ||
456 | } | ||
457 | |||
458 | /** | ||
459 | * e1000_update_nvm_checksum_82571 - Update EEPROM checksum | ||
460 | * @hw: pointer to the HW structure | ||
461 | * | ||
462 | * Updates the EEPROM checksum by reading/adding each word of the EEPROM | ||
463 | * up to the checksum. Then calculates the EEPROM checksum and writes the | ||
464 | * value to the EEPROM. | ||
465 | **/ | ||
466 | static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) | ||
467 | { | ||
468 | u32 eecd; | ||
469 | s32 ret_val; | ||
470 | u16 i; | ||
471 | |||
472 | ret_val = e1000e_update_nvm_checksum_generic(hw); | ||
473 | if (ret_val) | ||
474 | return ret_val; | ||
475 | |||
476 | /* If our nvm is an EEPROM, then we're done | ||
477 | * otherwise, commit the checksum to the flash NVM. */ | ||
478 | if (hw->nvm.type != e1000_nvm_flash_hw) | ||
479 | return ret_val; | ||
480 | |||
481 | /* Check for pending operations. */ | ||
482 | for (i = 0; i < E1000_FLASH_UPDATES; i++) { | ||
483 | msleep(1); | ||
484 | if ((er32(EECD) & E1000_EECD_FLUPD) == 0) | ||
485 | break; | ||
486 | } | ||
487 | |||
488 | if (i == E1000_FLASH_UPDATES) | ||
489 | return -E1000_ERR_NVM; | ||
490 | |||
491 | /* Reset the firmware if using STM opcode. */ | ||
492 | if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) { | ||
493 | /* The enabling of and the actual reset must be done | ||
494 | * in two write cycles. | ||
495 | */ | ||
496 | ew32(HICR, E1000_HICR_FW_RESET_ENABLE); | ||
497 | e1e_flush(); | ||
498 | ew32(HICR, E1000_HICR_FW_RESET); | ||
499 | } | ||
500 | |||
501 | /* Commit the write to flash */ | ||
502 | eecd = er32(EECD) | E1000_EECD_FLUPD; | ||
503 | ew32(EECD, eecd); | ||
504 | |||
505 | for (i = 0; i < E1000_FLASH_UPDATES; i++) { | ||
506 | msleep(1); | ||
507 | if ((er32(EECD) & E1000_EECD_FLUPD) == 0) | ||
508 | break; | ||
509 | } | ||
510 | |||
511 | if (i == E1000_FLASH_UPDATES) | ||
512 | return -E1000_ERR_NVM; | ||
513 | |||
514 | return 0; | ||
515 | } | ||
516 | |||
517 | /** | ||
518 | * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum | ||
519 | * @hw: pointer to the HW structure | ||
520 | * | ||
521 | * Calculates the EEPROM checksum by reading/adding each word of the EEPROM | ||
522 | * and then verifies that the sum of the EEPROM is equal to 0xBABA. | ||
523 | **/ | ||
524 | static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) | ||
525 | { | ||
526 | if (hw->nvm.type == e1000_nvm_flash_hw) | ||
527 | e1000_fix_nvm_checksum_82571(hw); | ||
528 | |||
529 | return e1000e_validate_nvm_checksum_generic(hw); | ||
530 | } | ||
531 | |||
532 | /** | ||
533 | * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon | ||
534 | * @hw: pointer to the HW structure | ||
535 | * @offset: offset within the EEPROM to be written to | ||
536 | * @words: number of words to write | ||
537 | * @data: 16 bit word(s) to be written to the EEPROM | ||
538 | * | ||
539 | * After checking for invalid values, poll the EEPROM to ensure the previous | ||
540 | * command has completed before trying to write the next word. After write | ||
541 | * poll for completion. | ||
542 | * | ||
543 | * If e1000e_update_nvm_checksum is not called after this function, the | ||
544 | * EEPROM will most likley contain an invalid checksum. | ||
545 | **/ | ||
546 | static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, | ||
547 | u16 words, u16 *data) | ||
548 | { | ||
549 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
550 | u32 i; | ||
551 | u32 eewr = 0; | ||
552 | s32 ret_val = 0; | ||
553 | |||
554 | /* A check for invalid values: offset too large, too many words, | ||
555 | * and not enough words. */ | ||
556 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | ||
557 | (words == 0)) { | ||
558 | hw_dbg(hw, "nvm parameter(s) out of bounds\n"); | ||
559 | return -E1000_ERR_NVM; | ||
560 | } | ||
561 | |||
562 | for (i = 0; i < words; i++) { | ||
563 | eewr = (data[i] << E1000_NVM_RW_REG_DATA) | | ||
564 | ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | | ||
565 | E1000_NVM_RW_REG_START; | ||
566 | |||
567 | ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); | ||
568 | if (ret_val) | ||
569 | break; | ||
570 | |||
571 | ew32(EEWR, eewr); | ||
572 | |||
573 | ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); | ||
574 | if (ret_val) | ||
575 | break; | ||
576 | } | ||
577 | |||
578 | return ret_val; | ||
579 | } | ||
580 | |||
581 | /** | ||
582 | * e1000_get_cfg_done_82571 - Poll for configuration done | ||
583 | * @hw: pointer to the HW structure | ||
584 | * | ||
585 | * Reads the management control register for the config done bit to be set. | ||
586 | **/ | ||
587 | static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) | ||
588 | { | ||
589 | s32 timeout = PHY_CFG_TIMEOUT; | ||
590 | |||
591 | while (timeout) { | ||
592 | if (er32(EEMNGCTL) & | ||
593 | E1000_NVM_CFG_DONE_PORT_0) | ||
594 | break; | ||
595 | msleep(1); | ||
596 | timeout--; | ||
597 | } | ||
598 | if (!timeout) { | ||
599 | hw_dbg(hw, "MNG configuration cycle has not completed.\n"); | ||
600 | return -E1000_ERR_RESET; | ||
601 | } | ||
602 | |||
603 | return 0; | ||
604 | } | ||
605 | |||
606 | /** | ||
607 | * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state | ||
608 | * @hw: pointer to the HW structure | ||
609 | * @active: TRUE to enable LPLU, FALSE to disable | ||
610 | * | ||
611 | * Sets the LPLU D0 state according to the active flag. When activating LPLU | ||
612 | * this function also disables smart speed and vice versa. LPLU will not be | ||
613 | * activated unless the device autonegotiation advertisement meets standards | ||
614 | * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function | ||
615 | * pointer entry point only called by PHY setup routines. | ||
616 | **/ | ||
617 | static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) | ||
618 | { | ||
619 | struct e1000_phy_info *phy = &hw->phy; | ||
620 | s32 ret_val; | ||
621 | u16 data; | ||
622 | |||
623 | ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); | ||
624 | if (ret_val) | ||
625 | return ret_val; | ||
626 | |||
627 | if (active) { | ||
628 | data |= IGP02E1000_PM_D0_LPLU; | ||
629 | ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); | ||
630 | if (ret_val) | ||
631 | return ret_val; | ||
632 | |||
633 | /* When LPLU is enabled, we should disable SmartSpeed */ | ||
634 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); | ||
635 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
636 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); | ||
637 | if (ret_val) | ||
638 | return ret_val; | ||
639 | } else { | ||
640 | data &= ~IGP02E1000_PM_D0_LPLU; | ||
641 | ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); | ||
642 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used | ||
643 | * during Dx states where the power conservation is most | ||
644 | * important. During driver activity we should enable | ||
645 | * SmartSpeed, so performance is maintained. */ | ||
646 | if (phy->smart_speed == e1000_smart_speed_on) { | ||
647 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
648 | &data); | ||
649 | if (ret_val) | ||
650 | return ret_val; | ||
651 | |||
652 | data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
653 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
654 | data); | ||
655 | if (ret_val) | ||
656 | return ret_val; | ||
657 | } else if (phy->smart_speed == e1000_smart_speed_off) { | ||
658 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
659 | &data); | ||
660 | if (ret_val) | ||
661 | return ret_val; | ||
662 | |||
663 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
664 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
665 | data); | ||
666 | if (ret_val) | ||
667 | return ret_val; | ||
668 | } | ||
669 | } | ||
670 | |||
671 | return 0; | ||
672 | } | ||
673 | |||
674 | /** | ||
675 | * e1000_reset_hw_82571 - Reset hardware | ||
676 | * @hw: pointer to the HW structure | ||
677 | * | ||
678 | * This resets the hardware into a known state. This is a | ||
679 | * function pointer entry point called by the api module. | ||
680 | **/ | ||
681 | static s32 e1000_reset_hw_82571(struct e1000_hw *hw) | ||
682 | { | ||
683 | u32 ctrl; | ||
684 | u32 extcnf_ctrl; | ||
685 | u32 ctrl_ext; | ||
686 | u32 icr; | ||
687 | s32 ret_val; | ||
688 | u16 i = 0; | ||
689 | |||
690 | /* Prevent the PCI-E bus from sticking if there is no TLP connection | ||
691 | * on the last TLP read/write transaction when MAC is reset. | ||
692 | */ | ||
693 | ret_val = e1000e_disable_pcie_master(hw); | ||
694 | if (ret_val) | ||
695 | hw_dbg(hw, "PCI-E Master disable polling has failed.\n"); | ||
696 | |||
697 | hw_dbg(hw, "Masking off all interrupts\n"); | ||
698 | ew32(IMC, 0xffffffff); | ||
699 | |||
700 | ew32(RCTL, 0); | ||
701 | ew32(TCTL, E1000_TCTL_PSP); | ||
702 | e1e_flush(); | ||
703 | |||
704 | msleep(10); | ||
705 | |||
706 | /* Must acquire the MDIO ownership before MAC reset. | ||
707 | * Ownership defaults to firmware after a reset. */ | ||
708 | if (hw->mac.type == e1000_82573) { | ||
709 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
710 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | ||
711 | |||
712 | do { | ||
713 | ew32(EXTCNF_CTRL, extcnf_ctrl); | ||
714 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
715 | |||
716 | if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) | ||
717 | break; | ||
718 | |||
719 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | ||
720 | |||
721 | msleep(2); | ||
722 | i++; | ||
723 | } while (i < MDIO_OWNERSHIP_TIMEOUT); | ||
724 | } | ||
725 | |||
726 | ctrl = er32(CTRL); | ||
727 | |||
728 | hw_dbg(hw, "Issuing a global reset to MAC\n"); | ||
729 | ew32(CTRL, ctrl | E1000_CTRL_RST); | ||
730 | |||
731 | if (hw->nvm.type == e1000_nvm_flash_hw) { | ||
732 | udelay(10); | ||
733 | ctrl_ext = er32(CTRL_EXT); | ||
734 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
735 | ew32(CTRL_EXT, ctrl_ext); | ||
736 | e1e_flush(); | ||
737 | } | ||
738 | |||
739 | ret_val = e1000e_get_auto_rd_done(hw); | ||
740 | if (ret_val) | ||
741 | /* We don't want to continue accessing MAC registers. */ | ||
742 | return ret_val; | ||
743 | |||
744 | /* Phy configuration from NVM just starts after EECD_AUTO_RD is set. | ||
745 | * Need to wait for Phy configuration completion before accessing | ||
746 | * NVM and Phy. | ||
747 | */ | ||
748 | if (hw->mac.type == e1000_82573) | ||
749 | msleep(25); | ||
750 | |||
751 | /* Clear any pending interrupt events. */ | ||
752 | ew32(IMC, 0xffffffff); | ||
753 | icr = er32(ICR); | ||
754 | |||
755 | return 0; | ||
756 | } | ||
757 | |||
758 | /** | ||
759 | * e1000_init_hw_82571 - Initialize hardware | ||
760 | * @hw: pointer to the HW structure | ||
761 | * | ||
762 | * This inits the hardware readying it for operation. | ||
763 | **/ | ||
764 | static s32 e1000_init_hw_82571(struct e1000_hw *hw) | ||
765 | { | ||
766 | struct e1000_mac_info *mac = &hw->mac; | ||
767 | u32 reg_data; | ||
768 | s32 ret_val; | ||
769 | u16 i; | ||
770 | u16 rar_count = mac->rar_entry_count; | ||
771 | |||
772 | e1000_initialize_hw_bits_82571(hw); | ||
773 | |||
774 | /* Initialize identification LED */ | ||
775 | ret_val = e1000e_id_led_init(hw); | ||
776 | if (ret_val) { | ||
777 | hw_dbg(hw, "Error initializing identification LED\n"); | ||
778 | return ret_val; | ||
779 | } | ||
780 | |||
781 | /* Disabling VLAN filtering */ | ||
782 | hw_dbg(hw, "Initializing the IEEE VLAN\n"); | ||
783 | e1000e_clear_vfta(hw); | ||
784 | |||
785 | /* Setup the receive address. */ | ||
786 | /* If, however, a locally administered address was assigned to the | ||
787 | * 82571, we must reserve a RAR for it to work around an issue where | ||
788 | * resetting one port will reload the MAC on the other port. | ||
789 | */ | ||
790 | if (e1000e_get_laa_state_82571(hw)) | ||
791 | rar_count--; | ||
792 | e1000e_init_rx_addrs(hw, rar_count); | ||
793 | |||
794 | /* Zero out the Multicast HASH table */ | ||
795 | hw_dbg(hw, "Zeroing the MTA\n"); | ||
796 | for (i = 0; i < mac->mta_reg_count; i++) | ||
797 | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); | ||
798 | |||
799 | /* Setup link and flow control */ | ||
800 | ret_val = e1000_setup_link_82571(hw); | ||
801 | |||
802 | /* Set the transmit descriptor write-back policy */ | ||
803 | reg_data = er32(TXDCTL); | ||
804 | reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | | ||
805 | E1000_TXDCTL_FULL_TX_DESC_WB | | ||
806 | E1000_TXDCTL_COUNT_DESC; | ||
807 | ew32(TXDCTL, reg_data); | ||
808 | |||
809 | /* ...for both queues. */ | ||
810 | if (mac->type != e1000_82573) { | ||
811 | reg_data = er32(TXDCTL1); | ||
812 | reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | | ||
813 | E1000_TXDCTL_FULL_TX_DESC_WB | | ||
814 | E1000_TXDCTL_COUNT_DESC; | ||
815 | ew32(TXDCTL1, reg_data); | ||
816 | } else { | ||
817 | e1000e_enable_tx_pkt_filtering(hw); | ||
818 | reg_data = er32(GCR); | ||
819 | reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; | ||
820 | ew32(GCR, reg_data); | ||
821 | } | ||
822 | |||
823 | /* Clear all of the statistics registers (clear on read). It is | ||
824 | * important that we do this after we have tried to establish link | ||
825 | * because the symbol error count will increment wildly if there | ||
826 | * is no link. | ||
827 | */ | ||
828 | e1000_clear_hw_cntrs_82571(hw); | ||
829 | |||
830 | return ret_val; | ||
831 | } | ||
832 | |||
833 | /** | ||
834 | * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits | ||
835 | * @hw: pointer to the HW structure | ||
836 | * | ||
837 | * Initializes required hardware-dependent bits needed for normal operation. | ||
838 | **/ | ||
839 | static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) | ||
840 | { | ||
841 | u32 reg; | ||
842 | |||
843 | /* Transmit Descriptor Control 0 */ | ||
844 | reg = er32(TXDCTL); | ||
845 | reg |= (1 << 22); | ||
846 | ew32(TXDCTL, reg); | ||
847 | |||
848 | /* Transmit Descriptor Control 1 */ | ||
849 | reg = er32(TXDCTL1); | ||
850 | reg |= (1 << 22); | ||
851 | ew32(TXDCTL1, reg); | ||
852 | |||
853 | /* Transmit Arbitration Control 0 */ | ||
854 | reg = er32(TARC0); | ||
855 | reg &= ~(0xF << 27); /* 30:27 */ | ||
856 | switch (hw->mac.type) { | ||
857 | case e1000_82571: | ||
858 | case e1000_82572: | ||
859 | reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); | ||
860 | break; | ||
861 | default: | ||
862 | break; | ||
863 | } | ||
864 | ew32(TARC0, reg); | ||
865 | |||
866 | /* Transmit Arbitration Control 1 */ | ||
867 | reg = er32(TARC1); | ||
868 | switch (hw->mac.type) { | ||
869 | case e1000_82571: | ||
870 | case e1000_82572: | ||
871 | reg &= ~((1 << 29) | (1 << 30)); | ||
872 | reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); | ||
873 | if (er32(TCTL) & E1000_TCTL_MULR) | ||
874 | reg &= ~(1 << 28); | ||
875 | else | ||
876 | reg |= (1 << 28); | ||
877 | ew32(TARC1, reg); | ||
878 | break; | ||
879 | default: | ||
880 | break; | ||
881 | } | ||
882 | |||
883 | /* Device Control */ | ||
884 | if (hw->mac.type == e1000_82573) { | ||
885 | reg = er32(CTRL); | ||
886 | reg &= ~(1 << 29); | ||
887 | ew32(CTRL, reg); | ||
888 | } | ||
889 | |||
890 | /* Extended Device Control */ | ||
891 | if (hw->mac.type == e1000_82573) { | ||
892 | reg = er32(CTRL_EXT); | ||
893 | reg &= ~(1 << 23); | ||
894 | reg |= (1 << 22); | ||
895 | ew32(CTRL_EXT, reg); | ||
896 | } | ||
897 | } | ||
898 | |||
899 | /** | ||
900 | * e1000e_clear_vfta - Clear VLAN filter table | ||
901 | * @hw: pointer to the HW structure | ||
902 | * | ||
903 | * Clears the register array which contains the VLAN filter table by | ||
904 | * setting all the values to 0. | ||
905 | **/ | ||
906 | void e1000e_clear_vfta(struct e1000_hw *hw) | ||
907 | { | ||
908 | u32 offset; | ||
909 | u32 vfta_value = 0; | ||
910 | u32 vfta_offset = 0; | ||
911 | u32 vfta_bit_in_reg = 0; | ||
912 | |||
913 | if (hw->mac.type == e1000_82573) { | ||
914 | if (hw->mng_cookie.vlan_id != 0) { | ||
915 | /* The VFTA is a 4096b bit-field, each identifying | ||
916 | * a single VLAN ID. The following operations | ||
917 | * determine which 32b entry (i.e. offset) into the | ||
918 | * array we want to set the VLAN ID (i.e. bit) of | ||
919 | * the manageability unit. | ||
920 | */ | ||
921 | vfta_offset = (hw->mng_cookie.vlan_id >> | ||
922 | E1000_VFTA_ENTRY_SHIFT) & | ||
923 | E1000_VFTA_ENTRY_MASK; | ||
924 | vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & | ||
925 | E1000_VFTA_ENTRY_BIT_SHIFT_MASK); | ||
926 | } | ||
927 | } | ||
928 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | ||
929 | /* If the offset we want to clear is the same offset of the | ||
930 | * manageability VLAN ID, then clear all bits except that of | ||
931 | * the manageability unit. | ||
932 | */ | ||
933 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; | ||
934 | E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); | ||
935 | e1e_flush(); | ||
936 | } | ||
937 | } | ||
938 | |||
939 | /** | ||
940 | * e1000_mc_addr_list_update_82571 - Update Multicast addresses | ||
941 | * @hw: pointer to the HW structure | ||
942 | * @mc_addr_list: array of multicast addresses to program | ||
943 | * @mc_addr_count: number of multicast addresses to program | ||
944 | * @rar_used_count: the first RAR register free to program | ||
945 | * @rar_count: total number of supported Receive Address Registers | ||
946 | * | ||
947 | * Updates the Receive Address Registers and Multicast Table Array. | ||
948 | * The caller must have a packed mc_addr_list of multicast addresses. | ||
949 | * The parameter rar_count will usually be hw->mac.rar_entry_count | ||
950 | * unless there are workarounds that change this. | ||
951 | **/ | ||
952 | static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw, | ||
953 | u8 *mc_addr_list, | ||
954 | u32 mc_addr_count, | ||
955 | u32 rar_used_count, | ||
956 | u32 rar_count) | ||
957 | { | ||
958 | if (e1000e_get_laa_state_82571(hw)) | ||
959 | rar_count--; | ||
960 | |||
961 | e1000e_mc_addr_list_update_generic(hw, mc_addr_list, mc_addr_count, | ||
962 | rar_used_count, rar_count); | ||
963 | } | ||
964 | |||
965 | /** | ||
966 | * e1000_setup_link_82571 - Setup flow control and link settings | ||
967 | * @hw: pointer to the HW structure | ||
968 | * | ||
969 | * Determines which flow control settings to use, then configures flow | ||
970 | * control. Calls the appropriate media-specific link configuration | ||
971 | * function. Assuming the adapter has a valid link partner, a valid link | ||
972 | * should be established. Assumes the hardware has previously been reset | ||
973 | * and the transmitter and receiver are not enabled. | ||
974 | **/ | ||
975 | static s32 e1000_setup_link_82571(struct e1000_hw *hw) | ||
976 | { | ||
977 | /* 82573 does not have a word in the NVM to determine | ||
978 | * the default flow control setting, so we explicitly | ||
979 | * set it to full. | ||
980 | */ | ||
981 | if (hw->mac.type == e1000_82573) | ||
982 | hw->mac.fc = e1000_fc_full; | ||
983 | |||
984 | return e1000e_setup_link(hw); | ||
985 | } | ||
986 | |||
987 | /** | ||
988 | * e1000_setup_copper_link_82571 - Configure copper link settings | ||
989 | * @hw: pointer to the HW structure | ||
990 | * | ||
991 | * Configures the link for auto-neg or forced speed and duplex. Then we check | ||
992 | * for link, once link is established calls to configure collision distance | ||
993 | * and flow control are called. | ||
994 | **/ | ||
995 | static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) | ||
996 | { | ||
997 | u32 ctrl; | ||
998 | u32 led_ctrl; | ||
999 | s32 ret_val; | ||
1000 | |||
1001 | ctrl = er32(CTRL); | ||
1002 | ctrl |= E1000_CTRL_SLU; | ||
1003 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
1004 | ew32(CTRL, ctrl); | ||
1005 | |||
1006 | switch (hw->phy.type) { | ||
1007 | case e1000_phy_m88: | ||
1008 | ret_val = e1000e_copper_link_setup_m88(hw); | ||
1009 | break; | ||
1010 | case e1000_phy_igp_2: | ||
1011 | ret_val = e1000e_copper_link_setup_igp(hw); | ||
1012 | /* Setup activity LED */ | ||
1013 | led_ctrl = er32(LEDCTL); | ||
1014 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | ||
1015 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | ||
1016 | ew32(LEDCTL, led_ctrl); | ||
1017 | break; | ||
1018 | default: | ||
1019 | return -E1000_ERR_PHY; | ||
1020 | break; | ||
1021 | } | ||
1022 | |||
1023 | if (ret_val) | ||
1024 | return ret_val; | ||
1025 | |||
1026 | ret_val = e1000e_setup_copper_link(hw); | ||
1027 | |||
1028 | return ret_val; | ||
1029 | } | ||
1030 | |||
1031 | /** | ||
1032 | * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes | ||
1033 | * @hw: pointer to the HW structure | ||
1034 | * | ||
1035 | * Configures collision distance and flow control for fiber and serdes links. | ||
1036 | * Upon successful setup, poll for link. | ||
1037 | **/ | ||
1038 | static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) | ||
1039 | { | ||
1040 | switch (hw->mac.type) { | ||
1041 | case e1000_82571: | ||
1042 | case e1000_82572: | ||
1043 | /* If SerDes loopback mode is entered, there is no form | ||
1044 | * of reset to take the adapter out of that mode. So we | ||
1045 | * have to explicitly take the adapter out of loopback | ||
1046 | * mode. This prevents drivers from twidling their thumbs | ||
1047 | * if another tool failed to take it out of loopback mode. | ||
1048 | */ | ||
1049 | ew32(SCTL, | ||
1050 | E1000_SCTL_DISABLE_SERDES_LOOPBACK); | ||
1051 | break; | ||
1052 | default: | ||
1053 | break; | ||
1054 | } | ||
1055 | |||
1056 | return e1000e_setup_fiber_serdes_link(hw); | ||
1057 | } | ||
1058 | |||
1059 | /** | ||
1060 | * e1000_valid_led_default_82571 - Verify a valid default LED config | ||
1061 | * @hw: pointer to the HW structure | ||
1062 | * @data: pointer to the NVM (EEPROM) | ||
1063 | * | ||
1064 | * Read the EEPROM for the current default LED configuration. If the | ||
1065 | * LED configuration is not valid, set to a valid LED configuration. | ||
1066 | **/ | ||
1067 | static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) | ||
1068 | { | ||
1069 | s32 ret_val; | ||
1070 | |||
1071 | ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); | ||
1072 | if (ret_val) { | ||
1073 | hw_dbg(hw, "NVM Read Error\n"); | ||
1074 | return ret_val; | ||
1075 | } | ||
1076 | |||
1077 | if (hw->mac.type == e1000_82573 && | ||
1078 | *data == ID_LED_RESERVED_F746) | ||
1079 | *data = ID_LED_DEFAULT_82573; | ||
1080 | else if (*data == ID_LED_RESERVED_0000 || | ||
1081 | *data == ID_LED_RESERVED_FFFF) | ||
1082 | *data = ID_LED_DEFAULT; | ||
1083 | |||
1084 | return 0; | ||
1085 | } | ||
1086 | |||
1087 | /** | ||
1088 | * e1000e_get_laa_state_82571 - Get locally administered address state | ||
1089 | * @hw: pointer to the HW structure | ||
1090 | * | ||
1091 | * Retrieve and return the current locally administed address state. | ||
1092 | **/ | ||
1093 | bool e1000e_get_laa_state_82571(struct e1000_hw *hw) | ||
1094 | { | ||
1095 | if (hw->mac.type != e1000_82571) | ||
1096 | return 0; | ||
1097 | |||
1098 | return hw->dev_spec.e82571.laa_is_present; | ||
1099 | } | ||
1100 | |||
1101 | /** | ||
1102 | * e1000e_set_laa_state_82571 - Set locally administered address state | ||
1103 | * @hw: pointer to the HW structure | ||
1104 | * @state: enable/disable locally administered address | ||
1105 | * | ||
1106 | * Enable/Disable the current locally administed address state. | ||
1107 | **/ | ||
1108 | void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state) | ||
1109 | { | ||
1110 | if (hw->mac.type != e1000_82571) | ||
1111 | return; | ||
1112 | |||
1113 | hw->dev_spec.e82571.laa_is_present = state; | ||
1114 | |||
1115 | /* If workaround is activated... */ | ||
1116 | if (state) | ||
1117 | /* Hold a copy of the LAA in RAR[14] This is done so that | ||
1118 | * between the time RAR[0] gets clobbered and the time it | ||
1119 | * gets fixed, the actual LAA is in one of the RARs and no | ||
1120 | * incoming packets directed to this port are dropped. | ||
1121 | * Eventually the LAA will be in RAR[0] and RAR[14]. | ||
1122 | */ | ||
1123 | e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1); | ||
1124 | } | ||
1125 | |||
1126 | /** | ||
1127 | * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum | ||
1128 | * @hw: pointer to the HW structure | ||
1129 | * | ||
1130 | * Verifies that the EEPROM has completed the update. After updating the | ||
1131 | * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If | ||
1132 | * the checksum fix is not implemented, we need to set the bit and update | ||
1133 | * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, | ||
1134 | * we need to return bad checksum. | ||
1135 | **/ | ||
1136 | static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) | ||
1137 | { | ||
1138 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1139 | s32 ret_val; | ||
1140 | u16 data; | ||
1141 | |||
1142 | if (nvm->type != e1000_nvm_flash_hw) | ||
1143 | return 0; | ||
1144 | |||
1145 | /* Check bit 4 of word 10h. If it is 0, firmware is done updating | ||
1146 | * 10h-12h. Checksum may need to be fixed. | ||
1147 | */ | ||
1148 | ret_val = e1000_read_nvm(hw, 0x10, 1, &data); | ||
1149 | if (ret_val) | ||
1150 | return ret_val; | ||
1151 | |||
1152 | if (!(data & 0x10)) { | ||
1153 | /* Read 0x23 and check bit 15. This bit is a 1 | ||
1154 | * when the checksum has already been fixed. If | ||
1155 | * the checksum is still wrong and this bit is a | ||
1156 | * 1, we need to return bad checksum. Otherwise, | ||
1157 | * we need to set this bit to a 1 and update the | ||
1158 | * checksum. | ||
1159 | */ | ||
1160 | ret_val = e1000_read_nvm(hw, 0x23, 1, &data); | ||
1161 | if (ret_val) | ||
1162 | return ret_val; | ||
1163 | |||
1164 | if (!(data & 0x8000)) { | ||
1165 | data |= 0x8000; | ||
1166 | ret_val = e1000_write_nvm(hw, 0x23, 1, &data); | ||
1167 | if (ret_val) | ||
1168 | return ret_val; | ||
1169 | ret_val = e1000e_update_nvm_checksum(hw); | ||
1170 | } | ||
1171 | } | ||
1172 | |||
1173 | return 0; | ||
1174 | } | ||
1175 | |||
1176 | /** | ||
1177 | * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters | ||
1178 | * @hw: pointer to the HW structure | ||
1179 | * | ||
1180 | * Clears the hardware counters by reading the counter registers. | ||
1181 | **/ | ||
1182 | static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) | ||
1183 | { | ||
1184 | u32 temp; | ||
1185 | |||
1186 | e1000e_clear_hw_cntrs_base(hw); | ||
1187 | |||
1188 | temp = er32(PRC64); | ||
1189 | temp = er32(PRC127); | ||
1190 | temp = er32(PRC255); | ||
1191 | temp = er32(PRC511); | ||
1192 | temp = er32(PRC1023); | ||
1193 | temp = er32(PRC1522); | ||
1194 | temp = er32(PTC64); | ||
1195 | temp = er32(PTC127); | ||
1196 | temp = er32(PTC255); | ||
1197 | temp = er32(PTC511); | ||
1198 | temp = er32(PTC1023); | ||
1199 | temp = er32(PTC1522); | ||
1200 | |||
1201 | temp = er32(ALGNERRC); | ||
1202 | temp = er32(RXERRC); | ||
1203 | temp = er32(TNCRS); | ||
1204 | temp = er32(CEXTERR); | ||
1205 | temp = er32(TSCTC); | ||
1206 | temp = er32(TSCTFC); | ||
1207 | |||
1208 | temp = er32(MGTPRC); | ||
1209 | temp = er32(MGTPDC); | ||
1210 | temp = er32(MGTPTC); | ||
1211 | |||
1212 | temp = er32(IAC); | ||
1213 | temp = er32(ICRXOC); | ||
1214 | |||
1215 | temp = er32(ICRXPTC); | ||
1216 | temp = er32(ICRXATC); | ||
1217 | temp = er32(ICTXPTC); | ||
1218 | temp = er32(ICTXATC); | ||
1219 | temp = er32(ICTXQEC); | ||
1220 | temp = er32(ICTXQMTC); | ||
1221 | temp = er32(ICRXDMTC); | ||
1222 | } | ||
1223 | |||
1224 | static struct e1000_mac_operations e82571_mac_ops = { | ||
1225 | .mng_mode_enab = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT, | ||
1226 | /* .check_for_link: media type dependent */ | ||
1227 | .cleanup_led = e1000e_cleanup_led_generic, | ||
1228 | .clear_hw_cntrs = e1000_clear_hw_cntrs_82571, | ||
1229 | .get_bus_info = e1000e_get_bus_info_pcie, | ||
1230 | /* .get_link_up_info: media type dependent */ | ||
1231 | .led_on = e1000e_led_on_generic, | ||
1232 | .led_off = e1000e_led_off_generic, | ||
1233 | .mc_addr_list_update = e1000_mc_addr_list_update_82571, | ||
1234 | .reset_hw = e1000_reset_hw_82571, | ||
1235 | .init_hw = e1000_init_hw_82571, | ||
1236 | .setup_link = e1000_setup_link_82571, | ||
1237 | /* .setup_physical_interface: media type dependent */ | ||
1238 | }; | ||
1239 | |||
1240 | static struct e1000_phy_operations e82_phy_ops_igp = { | ||
1241 | .acquire_phy = e1000_get_hw_semaphore_82571, | ||
1242 | .check_reset_block = e1000e_check_reset_block_generic, | ||
1243 | .commit_phy = NULL, | ||
1244 | .force_speed_duplex = e1000e_phy_force_speed_duplex_igp, | ||
1245 | .get_cfg_done = e1000_get_cfg_done_82571, | ||
1246 | .get_cable_length = e1000e_get_cable_length_igp_2, | ||
1247 | .get_phy_info = e1000e_get_phy_info_igp, | ||
1248 | .read_phy_reg = e1000e_read_phy_reg_igp, | ||
1249 | .release_phy = e1000_put_hw_semaphore_82571, | ||
1250 | .reset_phy = e1000e_phy_hw_reset_generic, | ||
1251 | .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, | ||
1252 | .set_d3_lplu_state = e1000e_set_d3_lplu_state, | ||
1253 | .write_phy_reg = e1000e_write_phy_reg_igp, | ||
1254 | }; | ||
1255 | |||
1256 | static struct e1000_phy_operations e82_phy_ops_m88 = { | ||
1257 | .acquire_phy = e1000_get_hw_semaphore_82571, | ||
1258 | .check_reset_block = e1000e_check_reset_block_generic, | ||
1259 | .commit_phy = e1000e_phy_sw_reset, | ||
1260 | .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, | ||
1261 | .get_cfg_done = e1000e_get_cfg_done, | ||
1262 | .get_cable_length = e1000e_get_cable_length_m88, | ||
1263 | .get_phy_info = e1000e_get_phy_info_m88, | ||
1264 | .read_phy_reg = e1000e_read_phy_reg_m88, | ||
1265 | .release_phy = e1000_put_hw_semaphore_82571, | ||
1266 | .reset_phy = e1000e_phy_hw_reset_generic, | ||
1267 | .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, | ||
1268 | .set_d3_lplu_state = e1000e_set_d3_lplu_state, | ||
1269 | .write_phy_reg = e1000e_write_phy_reg_m88, | ||
1270 | }; | ||
1271 | |||
1272 | static struct e1000_nvm_operations e82571_nvm_ops = { | ||
1273 | .acquire_nvm = e1000_acquire_nvm_82571, | ||
1274 | .read_nvm = e1000e_read_nvm_spi, | ||
1275 | .release_nvm = e1000_release_nvm_82571, | ||
1276 | .update_nvm = e1000_update_nvm_checksum_82571, | ||
1277 | .valid_led_default = e1000_valid_led_default_82571, | ||
1278 | .validate_nvm = e1000_validate_nvm_checksum_82571, | ||
1279 | .write_nvm = e1000_write_nvm_82571, | ||
1280 | }; | ||
1281 | |||
1282 | static struct e1000_nvm_operations e82573_nvm_ops = { | ||
1283 | .acquire_nvm = e1000_acquire_nvm_82571, | ||
1284 | .read_nvm = e1000e_read_nvm_eerd, | ||
1285 | .release_nvm = e1000_release_nvm_82571, | ||
1286 | .update_nvm = e1000_update_nvm_checksum_82571, | ||
1287 | .valid_led_default = e1000_valid_led_default_82571, | ||
1288 | .validate_nvm = e1000_validate_nvm_checksum_82571, | ||
1289 | .write_nvm = e1000_write_nvm_82571, | ||
1290 | }; | ||
1291 | |||
1292 | struct e1000_info e1000_82571_info = { | ||
1293 | .mac = e1000_82571, | ||
1294 | .flags = FLAG_HAS_HW_VLAN_FILTER | ||
1295 | | FLAG_HAS_JUMBO_FRAMES | ||
1296 | | FLAG_HAS_STATS_PTC_PRC | ||
1297 | | FLAG_HAS_WOL | ||
1298 | | FLAG_APME_IN_CTRL3 | ||
1299 | | FLAG_RX_CSUM_ENABLED | ||
1300 | | FLAG_HAS_CTRLEXT_ON_LOAD | ||
1301 | | FLAG_HAS_STATS_ICR_ICT | ||
1302 | | FLAG_HAS_SMART_POWER_DOWN | ||
1303 | | FLAG_RESET_OVERWRITES_LAA /* errata */ | ||
1304 | | FLAG_TARC_SPEED_MODE_BIT /* errata */ | ||
1305 | | FLAG_APME_CHECK_PORT_B, | ||
1306 | .pba = 38, | ||
1307 | .get_invariants = e1000_get_invariants_82571, | ||
1308 | .mac_ops = &e82571_mac_ops, | ||
1309 | .phy_ops = &e82_phy_ops_igp, | ||
1310 | .nvm_ops = &e82571_nvm_ops, | ||
1311 | }; | ||
1312 | |||
1313 | struct e1000_info e1000_82572_info = { | ||
1314 | .mac = e1000_82572, | ||
1315 | .flags = FLAG_HAS_HW_VLAN_FILTER | ||
1316 | | FLAG_HAS_JUMBO_FRAMES | ||
1317 | | FLAG_HAS_STATS_PTC_PRC | ||
1318 | | FLAG_HAS_WOL | ||
1319 | | FLAG_APME_IN_CTRL3 | ||
1320 | | FLAG_RX_CSUM_ENABLED | ||
1321 | | FLAG_HAS_CTRLEXT_ON_LOAD | ||
1322 | | FLAG_HAS_STATS_ICR_ICT | ||
1323 | | FLAG_TARC_SPEED_MODE_BIT, /* errata */ | ||
1324 | .pba = 38, | ||
1325 | .get_invariants = e1000_get_invariants_82571, | ||
1326 | .mac_ops = &e82571_mac_ops, | ||
1327 | .phy_ops = &e82_phy_ops_igp, | ||
1328 | .nvm_ops = &e82571_nvm_ops, | ||
1329 | }; | ||
1330 | |||
1331 | struct e1000_info e1000_82573_info = { | ||
1332 | .mac = e1000_82573, | ||
1333 | .flags = FLAG_HAS_HW_VLAN_FILTER | ||
1334 | | FLAG_HAS_JUMBO_FRAMES | ||
1335 | | FLAG_HAS_STATS_PTC_PRC | ||
1336 | | FLAG_HAS_WOL | ||
1337 | | FLAG_APME_IN_CTRL3 | ||
1338 | | FLAG_RX_CSUM_ENABLED | ||
1339 | | FLAG_HAS_STATS_ICR_ICT | ||
1340 | | FLAG_HAS_SMART_POWER_DOWN | ||
1341 | | FLAG_HAS_AMT | ||
1342 | | FLAG_HAS_ASPM | ||
1343 | | FLAG_HAS_ERT | ||
1344 | | FLAG_HAS_SWSM_ON_LOAD, | ||
1345 | .pba = 20, | ||
1346 | .get_invariants = e1000_get_invariants_82571, | ||
1347 | .mac_ops = &e82571_mac_ops, | ||
1348 | .phy_ops = &e82_phy_ops_m88, | ||
1349 | .nvm_ops = &e82573_nvm_ops, | ||
1350 | }; | ||
1351 | |||
diff --git a/drivers/net/e1000e/Makefile b/drivers/net/e1000e/Makefile new file mode 100644 index 000000000000..650f866e7ac2 --- /dev/null +++ b/drivers/net/e1000e/Makefile | |||
@@ -0,0 +1,37 @@ | |||
1 | ################################################################################ | ||
2 | # | ||
3 | # Intel PRO/1000 Linux driver | ||
4 | # Copyright(c) 1999 - 2007 Intel Corporation. | ||
5 | # | ||
6 | # This program is free software; you can redistribute it and/or modify it | ||
7 | # under the terms and conditions of the GNU General Public License, | ||
8 | # version 2, as published by the Free Software Foundation. | ||
9 | # | ||
10 | # This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | # more details. | ||
14 | # | ||
15 | # You should have received a copy of the GNU General Public License along with | ||
16 | # this program; if not, write to the Free Software Foundation, Inc., | ||
17 | # 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | # | ||
19 | # The full GNU General Public License is included in this distribution in | ||
20 | # the file called "COPYING". | ||
21 | # | ||
22 | # Contact Information: | ||
23 | # Linux NICS <linux.nics@intel.com> | ||
24 | # e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | # Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | # | ||
27 | ################################################################################ | ||
28 | |||
29 | # | ||
30 | # Makefile for the Intel(R) PRO/1000 ethernet driver | ||
31 | # | ||
32 | |||
33 | obj-$(CONFIG_E1000E) += e1000e.o | ||
34 | |||
35 | e1000e-objs := 82571.o ich8lan.o es2lan.o \ | ||
36 | lib.o phy.o param.o ethtool.o netdev.o | ||
37 | |||
diff --git a/drivers/net/e1000e/defines.h b/drivers/net/e1000e/defines.h new file mode 100644 index 000000000000..b32ed45b4b34 --- /dev/null +++ b/drivers/net/e1000e/defines.h | |||
@@ -0,0 +1,739 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | #ifndef _E1000_DEFINES_H_ | ||
30 | #define _E1000_DEFINES_H_ | ||
31 | |||
32 | #define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ | ||
33 | #define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ | ||
34 | #define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ | ||
35 | #define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ | ||
36 | #define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ | ||
37 | #define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ | ||
38 | #define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ | ||
39 | #define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ | ||
40 | #define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ | ||
41 | #define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ | ||
42 | #define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ | ||
43 | #define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ | ||
44 | #define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ | ||
45 | #define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ | ||
46 | #define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ | ||
47 | #define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ | ||
48 | #define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ | ||
49 | #define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ | ||
50 | |||
51 | /* Number of Transmit and Receive Descriptors must be a multiple of 8 */ | ||
52 | #define REQ_TX_DESCRIPTOR_MULTIPLE 8 | ||
53 | #define REQ_RX_DESCRIPTOR_MULTIPLE 8 | ||
54 | |||
55 | /* Definitions for power management and wakeup registers */ | ||
56 | /* Wake Up Control */ | ||
57 | #define E1000_WUC_APME 0x00000001 /* APM Enable */ | ||
58 | #define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ | ||
59 | |||
60 | /* Wake Up Filter Control */ | ||
61 | #define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ | ||
62 | #define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ | ||
63 | #define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ | ||
64 | #define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ | ||
65 | #define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ | ||
66 | |||
67 | /* Extended Device Control */ | ||
68 | #define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */ | ||
69 | #define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ | ||
70 | #define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ | ||
71 | #define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 | ||
72 | #define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000 | ||
73 | #define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */ | ||
74 | #define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */ | ||
75 | #define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */ | ||
76 | |||
77 | /* Receive Decriptor bit definitions */ | ||
78 | #define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ | ||
79 | #define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ | ||
80 | #define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ | ||
81 | #define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ | ||
82 | #define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum caculated */ | ||
83 | #define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ | ||
84 | #define E1000_RXD_ERR_CE 0x01 /* CRC Error */ | ||
85 | #define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ | ||
86 | #define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ | ||
87 | #define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ | ||
88 | #define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ | ||
89 | #define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ | ||
90 | #define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ | ||
91 | |||
92 | #define E1000_RXDEXT_STATERR_CE 0x01000000 | ||
93 | #define E1000_RXDEXT_STATERR_SE 0x02000000 | ||
94 | #define E1000_RXDEXT_STATERR_SEQ 0x04000000 | ||
95 | #define E1000_RXDEXT_STATERR_CXE 0x10000000 | ||
96 | #define E1000_RXDEXT_STATERR_RXE 0x80000000 | ||
97 | |||
98 | /* mask to determine if packets should be dropped due to frame errors */ | ||
99 | #define E1000_RXD_ERR_FRAME_ERR_MASK ( \ | ||
100 | E1000_RXD_ERR_CE | \ | ||
101 | E1000_RXD_ERR_SE | \ | ||
102 | E1000_RXD_ERR_SEQ | \ | ||
103 | E1000_RXD_ERR_CXE | \ | ||
104 | E1000_RXD_ERR_RXE) | ||
105 | |||
106 | /* Same mask, but for extended and packet split descriptors */ | ||
107 | #define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ | ||
108 | E1000_RXDEXT_STATERR_CE | \ | ||
109 | E1000_RXDEXT_STATERR_SE | \ | ||
110 | E1000_RXDEXT_STATERR_SEQ | \ | ||
111 | E1000_RXDEXT_STATERR_CXE | \ | ||
112 | E1000_RXDEXT_STATERR_RXE) | ||
113 | |||
114 | #define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000 | ||
115 | |||
116 | /* Management Control */ | ||
117 | #define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ | ||
118 | #define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ | ||
119 | #define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ | ||
120 | #define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ | ||
121 | #define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ | ||
122 | #define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address | ||
123 | * filtering */ | ||
124 | #define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host | ||
125 | * memory */ | ||
126 | |||
127 | /* Receive Control */ | ||
128 | #define E1000_RCTL_EN 0x00000002 /* enable */ | ||
129 | #define E1000_RCTL_SBP 0x00000004 /* store bad packet */ | ||
130 | #define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */ | ||
131 | #define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */ | ||
132 | #define E1000_RCTL_LPE 0x00000020 /* long packet enable */ | ||
133 | #define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ | ||
134 | #define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ | ||
135 | #define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ | ||
136 | #define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ | ||
137 | #define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ | ||
138 | #define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ | ||
139 | #define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ | ||
140 | /* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ | ||
141 | #define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */ | ||
142 | #define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */ | ||
143 | #define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ | ||
144 | #define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ | ||
145 | /* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ | ||
146 | #define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */ | ||
147 | #define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */ | ||
148 | #define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */ | ||
149 | #define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ | ||
150 | #define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ | ||
151 | #define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ | ||
152 | #define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ | ||
153 | #define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ | ||
154 | |||
155 | /* Use byte values for the following shift parameters | ||
156 | * Usage: | ||
157 | * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & | ||
158 | * E1000_PSRCTL_BSIZE0_MASK) | | ||
159 | * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & | ||
160 | * E1000_PSRCTL_BSIZE1_MASK) | | ||
161 | * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & | ||
162 | * E1000_PSRCTL_BSIZE2_MASK) | | ||
163 | * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; | ||
164 | * E1000_PSRCTL_BSIZE3_MASK)) | ||
165 | * where value0 = [128..16256], default=256 | ||
166 | * value1 = [1024..64512], default=4096 | ||
167 | * value2 = [0..64512], default=4096 | ||
168 | * value3 = [0..64512], default=0 | ||
169 | */ | ||
170 | |||
171 | #define E1000_PSRCTL_BSIZE0_MASK 0x0000007F | ||
172 | #define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 | ||
173 | #define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 | ||
174 | #define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 | ||
175 | |||
176 | #define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ | ||
177 | #define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ | ||
178 | #define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ | ||
179 | #define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ | ||
180 | |||
181 | /* SWFW_SYNC Definitions */ | ||
182 | #define E1000_SWFW_EEP_SM 0x1 | ||
183 | #define E1000_SWFW_PHY0_SM 0x2 | ||
184 | #define E1000_SWFW_PHY1_SM 0x4 | ||
185 | |||
186 | /* Device Control */ | ||
187 | #define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ | ||
188 | #define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */ | ||
189 | #define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ | ||
190 | #define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ | ||
191 | #define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ | ||
192 | #define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ | ||
193 | #define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ | ||
194 | #define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ | ||
195 | #define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ | ||
196 | #define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ | ||
197 | #define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ | ||
198 | #define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ | ||
199 | #define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ | ||
200 | #define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ | ||
201 | #define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ | ||
202 | #define E1000_CTRL_RST 0x04000000 /* Global reset */ | ||
203 | #define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ | ||
204 | #define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ | ||
205 | #define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ | ||
206 | #define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ | ||
207 | |||
208 | /* Bit definitions for the Management Data IO (MDIO) and Management Data | ||
209 | * Clock (MDC) pins in the Device Control Register. | ||
210 | */ | ||
211 | |||
212 | /* Device Status */ | ||
213 | #define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ | ||
214 | #define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ | ||
215 | #define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ | ||
216 | #define E1000_STATUS_FUNC_SHIFT 2 | ||
217 | #define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ | ||
218 | #define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ | ||
219 | #define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ | ||
220 | #define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ | ||
221 | #define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ | ||
222 | #define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion by NVM */ | ||
223 | #define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */ | ||
224 | |||
225 | /* Constants used to intrepret the masked PCI-X bus speed. */ | ||
226 | |||
227 | #define HALF_DUPLEX 1 | ||
228 | #define FULL_DUPLEX 2 | ||
229 | |||
230 | |||
231 | #define ADVERTISE_10_HALF 0x0001 | ||
232 | #define ADVERTISE_10_FULL 0x0002 | ||
233 | #define ADVERTISE_100_HALF 0x0004 | ||
234 | #define ADVERTISE_100_FULL 0x0008 | ||
235 | #define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */ | ||
236 | #define ADVERTISE_1000_FULL 0x0020 | ||
237 | |||
238 | /* 1000/H is not supported, nor spec-compliant. */ | ||
239 | #define E1000_ALL_SPEED_DUPLEX ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ | ||
240 | ADVERTISE_100_HALF | ADVERTISE_100_FULL | \ | ||
241 | ADVERTISE_1000_FULL) | ||
242 | #define E1000_ALL_NOT_GIG ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ | ||
243 | ADVERTISE_100_HALF | ADVERTISE_100_FULL) | ||
244 | #define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL) | ||
245 | #define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL) | ||
246 | #define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF) | ||
247 | |||
248 | #define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX | ||
249 | |||
250 | /* LED Control */ | ||
251 | #define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F | ||
252 | #define E1000_LEDCTL_LED0_MODE_SHIFT 0 | ||
253 | #define E1000_LEDCTL_LED0_IVRT 0x00000040 | ||
254 | #define E1000_LEDCTL_LED0_BLINK 0x00000080 | ||
255 | |||
256 | #define E1000_LEDCTL_MODE_LED_ON 0xE | ||
257 | #define E1000_LEDCTL_MODE_LED_OFF 0xF | ||
258 | |||
259 | /* Transmit Descriptor bit definitions */ | ||
260 | #define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ | ||
261 | #define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ | ||
262 | #define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ | ||
263 | #define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ | ||
264 | #define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ | ||
265 | #define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ | ||
266 | #define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ | ||
267 | #define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ | ||
268 | #define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ | ||
269 | #define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ | ||
270 | #define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ | ||
271 | #define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ | ||
272 | #define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ | ||
273 | #define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ | ||
274 | #define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ | ||
275 | #define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ | ||
276 | #define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ | ||
277 | #define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ | ||
278 | #define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ | ||
279 | |||
280 | /* Transmit Control */ | ||
281 | #define E1000_TCTL_EN 0x00000002 /* enable tx */ | ||
282 | #define E1000_TCTL_PSP 0x00000008 /* pad short packets */ | ||
283 | #define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ | ||
284 | #define E1000_TCTL_COLD 0x003ff000 /* collision distance */ | ||
285 | #define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ | ||
286 | #define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ | ||
287 | |||
288 | /* Transmit Arbitration Count */ | ||
289 | |||
290 | /* SerDes Control */ | ||
291 | #define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400 | ||
292 | |||
293 | /* Receive Checksum Control */ | ||
294 | #define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ | ||
295 | #define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ | ||
296 | |||
297 | /* Header split receive */ | ||
298 | #define E1000_RFCTL_EXTEN 0x00008000 | ||
299 | #define E1000_RFCTL_IPV6_EX_DIS 0x00010000 | ||
300 | #define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000 | ||
301 | |||
302 | /* Collision related configuration parameters */ | ||
303 | #define E1000_COLLISION_THRESHOLD 15 | ||
304 | #define E1000_CT_SHIFT 4 | ||
305 | #define E1000_COLLISION_DISTANCE 63 | ||
306 | #define E1000_COLD_SHIFT 12 | ||
307 | |||
308 | /* Default values for the transmit IPG register */ | ||
309 | #define DEFAULT_82543_TIPG_IPGT_COPPER 8 | ||
310 | |||
311 | #define E1000_TIPG_IPGT_MASK 0x000003FF | ||
312 | |||
313 | #define DEFAULT_82543_TIPG_IPGR1 8 | ||
314 | #define E1000_TIPG_IPGR1_SHIFT 10 | ||
315 | |||
316 | #define DEFAULT_82543_TIPG_IPGR2 6 | ||
317 | #define DEFAULT_80003ES2LAN_TIPG_IPGR2 7 | ||
318 | #define E1000_TIPG_IPGR2_SHIFT 20 | ||
319 | |||
320 | #define MAX_JUMBO_FRAME_SIZE 0x3F00 | ||
321 | |||
322 | /* Extended Configuration Control and Size */ | ||
323 | #define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 | ||
324 | #define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001 | ||
325 | #define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 | ||
326 | #define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000 | ||
327 | #define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16 | ||
328 | #define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000 | ||
329 | #define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16 | ||
330 | |||
331 | #define E1000_PHY_CTRL_D0A_LPLU 0x00000002 | ||
332 | #define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 | ||
333 | #define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 | ||
334 | #define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 | ||
335 | |||
336 | #define E1000_KABGTXD_BGSQLBIAS 0x00050000 | ||
337 | |||
338 | /* PBA constants */ | ||
339 | #define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */ | ||
340 | #define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ | ||
341 | |||
342 | #define E1000_PBS_16K E1000_PBA_16K | ||
343 | |||
344 | #define IFS_MAX 80 | ||
345 | #define IFS_MIN 40 | ||
346 | #define IFS_RATIO 4 | ||
347 | #define IFS_STEP 10 | ||
348 | #define MIN_NUM_XMITS 1000 | ||
349 | |||
350 | /* SW Semaphore Register */ | ||
351 | #define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ | ||
352 | #define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ | ||
353 | #define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ | ||
354 | |||
355 | /* Interrupt Cause Read */ | ||
356 | #define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ | ||
357 | #define E1000_ICR_LSC 0x00000004 /* Link Status Change */ | ||
358 | #define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ | ||
359 | #define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ | ||
360 | #define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ | ||
361 | #define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */ | ||
362 | |||
363 | /* This defines the bits that are set in the Interrupt Mask | ||
364 | * Set/Read Register. Each bit is documented below: | ||
365 | * o RXT0 = Receiver Timer Interrupt (ring 0) | ||
366 | * o TXDW = Transmit Descriptor Written Back | ||
367 | * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) | ||
368 | * o RXSEQ = Receive Sequence Error | ||
369 | * o LSC = Link Status Change | ||
370 | */ | ||
371 | #define IMS_ENABLE_MASK ( \ | ||
372 | E1000_IMS_RXT0 | \ | ||
373 | E1000_IMS_TXDW | \ | ||
374 | E1000_IMS_RXDMT0 | \ | ||
375 | E1000_IMS_RXSEQ | \ | ||
376 | E1000_IMS_LSC) | ||
377 | |||
378 | /* Interrupt Mask Set */ | ||
379 | #define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ | ||
380 | #define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ | ||
381 | #define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ | ||
382 | #define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ | ||
383 | #define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ | ||
384 | |||
385 | /* Interrupt Cause Set */ | ||
386 | #define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ | ||
387 | #define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ | ||
388 | |||
389 | /* Transmit Descriptor Control */ | ||
390 | #define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ | ||
391 | #define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ | ||
392 | #define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ | ||
393 | #define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */ | ||
394 | #define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc. | ||
395 | still to be processed. */ | ||
396 | |||
397 | /* Flow Control Constants */ | ||
398 | #define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 | ||
399 | #define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 | ||
400 | #define FLOW_CONTROL_TYPE 0x8808 | ||
401 | |||
402 | /* 802.1q VLAN Packet Size */ | ||
403 | #define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ | ||
404 | |||
405 | /* Receive Address */ | ||
406 | /* Number of high/low register pairs in the RAR. The RAR (Receive Address | ||
407 | * Registers) holds the directed and multicast addresses that we monitor. | ||
408 | * Technically, we have 16 spots. However, we reserve one of these spots | ||
409 | * (RAR[15]) for our directed address used by controllers with | ||
410 | * manageability enabled, allowing us room for 15 multicast addresses. | ||
411 | */ | ||
412 | #define E1000_RAR_ENTRIES 15 | ||
413 | #define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ | ||
414 | |||
415 | /* Error Codes */ | ||
416 | #define E1000_ERR_NVM 1 | ||
417 | #define E1000_ERR_PHY 2 | ||
418 | #define E1000_ERR_CONFIG 3 | ||
419 | #define E1000_ERR_PARAM 4 | ||
420 | #define E1000_ERR_MAC_INIT 5 | ||
421 | #define E1000_ERR_PHY_TYPE 6 | ||
422 | #define E1000_ERR_RESET 9 | ||
423 | #define E1000_ERR_MASTER_REQUESTS_PENDING 10 | ||
424 | #define E1000_ERR_HOST_INTERFACE_COMMAND 11 | ||
425 | #define E1000_BLK_PHY_RESET 12 | ||
426 | #define E1000_ERR_SWFW_SYNC 13 | ||
427 | #define E1000_NOT_IMPLEMENTED 14 | ||
428 | |||
429 | /* Loop limit on how long we wait for auto-negotiation to complete */ | ||
430 | #define FIBER_LINK_UP_LIMIT 50 | ||
431 | #define COPPER_LINK_UP_LIMIT 10 | ||
432 | #define PHY_AUTO_NEG_LIMIT 45 | ||
433 | #define PHY_FORCE_LIMIT 20 | ||
434 | /* Number of 100 microseconds we wait for PCI Express master disable */ | ||
435 | #define MASTER_DISABLE_TIMEOUT 800 | ||
436 | /* Number of milliseconds we wait for PHY configuration done after MAC reset */ | ||
437 | #define PHY_CFG_TIMEOUT 100 | ||
438 | /* Number of 2 milliseconds we wait for acquiring MDIO ownership. */ | ||
439 | #define MDIO_OWNERSHIP_TIMEOUT 10 | ||
440 | /* Number of milliseconds for NVM auto read done after MAC reset. */ | ||
441 | #define AUTO_READ_DONE_TIMEOUT 10 | ||
442 | |||
443 | /* Flow Control */ | ||
444 | #define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ | ||
445 | |||
446 | /* Transmit Configuration Word */ | ||
447 | #define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ | ||
448 | #define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ | ||
449 | #define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ | ||
450 | #define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ | ||
451 | #define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ | ||
452 | |||
453 | /* Receive Configuration Word */ | ||
454 | #define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ | ||
455 | #define E1000_RXCW_C 0x20000000 /* Receive config */ | ||
456 | #define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ | ||
457 | |||
458 | /* PCI Express Control */ | ||
459 | #define E1000_GCR_RXD_NO_SNOOP 0x00000001 | ||
460 | #define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002 | ||
461 | #define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004 | ||
462 | #define E1000_GCR_TXD_NO_SNOOP 0x00000008 | ||
463 | #define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010 | ||
464 | #define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020 | ||
465 | |||
466 | #define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \ | ||
467 | E1000_GCR_RXDSCW_NO_SNOOP | \ | ||
468 | E1000_GCR_RXDSCR_NO_SNOOP | \ | ||
469 | E1000_GCR_TXD_NO_SNOOP | \ | ||
470 | E1000_GCR_TXDSCW_NO_SNOOP | \ | ||
471 | E1000_GCR_TXDSCR_NO_SNOOP) | ||
472 | |||
473 | /* PHY Control Register */ | ||
474 | #define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ | ||
475 | #define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ | ||
476 | #define MII_CR_POWER_DOWN 0x0800 /* Power down */ | ||
477 | #define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ | ||
478 | #define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ | ||
479 | #define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ | ||
480 | #define MII_CR_SPEED_1000 0x0040 | ||
481 | #define MII_CR_SPEED_100 0x2000 | ||
482 | #define MII_CR_SPEED_10 0x0000 | ||
483 | |||
484 | /* PHY Status Register */ | ||
485 | #define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ | ||
486 | #define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ | ||
487 | |||
488 | /* Autoneg Advertisement Register */ | ||
489 | #define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ | ||
490 | #define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ | ||
491 | #define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ | ||
492 | #define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ | ||
493 | #define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ | ||
494 | #define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ | ||
495 | |||
496 | /* Link Partner Ability Register (Base Page) */ | ||
497 | #define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ | ||
498 | #define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ | ||
499 | |||
500 | /* Autoneg Expansion Register */ | ||
501 | |||
502 | /* 1000BASE-T Control Register */ | ||
503 | #define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ | ||
504 | #define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ | ||
505 | /* 0=DTE device */ | ||
506 | #define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ | ||
507 | /* 0=Configure PHY as Slave */ | ||
508 | #define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ | ||
509 | /* 0=Automatic Master/Slave config */ | ||
510 | |||
511 | /* 1000BASE-T Status Register */ | ||
512 | #define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ | ||
513 | #define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ | ||
514 | |||
515 | |||
516 | /* PHY 1000 MII Register/Bit Definitions */ | ||
517 | /* PHY Registers defined by IEEE */ | ||
518 | #define PHY_CONTROL 0x00 /* Control Register */ | ||
519 | #define PHY_STATUS 0x01 /* Status Regiser */ | ||
520 | #define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ | ||
521 | #define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ | ||
522 | #define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ | ||
523 | #define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ | ||
524 | #define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ | ||
525 | #define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ | ||
526 | |||
527 | /* NVM Control */ | ||
528 | #define E1000_EECD_SK 0x00000001 /* NVM Clock */ | ||
529 | #define E1000_EECD_CS 0x00000002 /* NVM Chip Select */ | ||
530 | #define E1000_EECD_DI 0x00000004 /* NVM Data In */ | ||
531 | #define E1000_EECD_DO 0x00000008 /* NVM Data Out */ | ||
532 | #define E1000_EECD_REQ 0x00000040 /* NVM Access Request */ | ||
533 | #define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */ | ||
534 | #define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */ | ||
535 | #define E1000_EECD_ADDR_BITS 0x00000400 /* NVM Addressing bits based on type | ||
536 | * (0-small, 1-large) */ | ||
537 | #define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */ | ||
538 | #define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */ | ||
539 | #define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */ | ||
540 | #define E1000_EECD_SIZE_EX_SHIFT 11 | ||
541 | #define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ | ||
542 | #define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */ | ||
543 | #define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ | ||
544 | |||
545 | #define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write registers */ | ||
546 | #define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ | ||
547 | #define E1000_NVM_RW_REG_START 1 /* Start operation */ | ||
548 | #define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ | ||
549 | #define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */ | ||
550 | #define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */ | ||
551 | #define E1000_FLASH_UPDATES 2000 | ||
552 | |||
553 | /* NVM Word Offsets */ | ||
554 | #define NVM_ID_LED_SETTINGS 0x0004 | ||
555 | #define NVM_INIT_CONTROL2_REG 0x000F | ||
556 | #define NVM_INIT_CONTROL3_PORT_B 0x0014 | ||
557 | #define NVM_INIT_3GIO_3 0x001A | ||
558 | #define NVM_INIT_CONTROL3_PORT_A 0x0024 | ||
559 | #define NVM_CFG 0x0012 | ||
560 | #define NVM_CHECKSUM_REG 0x003F | ||
561 | |||
562 | #define E1000_NVM_CFG_DONE_PORT_0 0x40000 /* MNG config cycle done */ | ||
563 | #define E1000_NVM_CFG_DONE_PORT_1 0x80000 /* ...for second port */ | ||
564 | |||
565 | /* Mask bits for fields in Word 0x0f of the NVM */ | ||
566 | #define NVM_WORD0F_PAUSE_MASK 0x3000 | ||
567 | #define NVM_WORD0F_PAUSE 0x1000 | ||
568 | #define NVM_WORD0F_ASM_DIR 0x2000 | ||
569 | |||
570 | /* Mask bits for fields in Word 0x1a of the NVM */ | ||
571 | #define NVM_WORD1A_ASPM_MASK 0x000C | ||
572 | |||
573 | /* For checksumming, the sum of all words in the NVM should equal 0xBABA. */ | ||
574 | #define NVM_SUM 0xBABA | ||
575 | |||
576 | /* PBA (printed board assembly) number words */ | ||
577 | #define NVM_PBA_OFFSET_0 8 | ||
578 | #define NVM_PBA_OFFSET_1 9 | ||
579 | |||
580 | #define NVM_WORD_SIZE_BASE_SHIFT 6 | ||
581 | |||
582 | /* NVM Commands - SPI */ | ||
583 | #define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ | ||
584 | #define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */ | ||
585 | #define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */ | ||
586 | #define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ | ||
587 | #define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */ | ||
588 | #define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */ | ||
589 | |||
590 | /* SPI NVM Status Register */ | ||
591 | #define NVM_STATUS_RDY_SPI 0x01 | ||
592 | |||
593 | /* Word definitions for ID LED Settings */ | ||
594 | #define ID_LED_RESERVED_0000 0x0000 | ||
595 | #define ID_LED_RESERVED_FFFF 0xFFFF | ||
596 | #define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ | ||
597 | (ID_LED_OFF1_OFF2 << 8) | \ | ||
598 | (ID_LED_DEF1_DEF2 << 4) | \ | ||
599 | (ID_LED_DEF1_DEF2)) | ||
600 | #define ID_LED_DEF1_DEF2 0x1 | ||
601 | #define ID_LED_DEF1_ON2 0x2 | ||
602 | #define ID_LED_DEF1_OFF2 0x3 | ||
603 | #define ID_LED_ON1_DEF2 0x4 | ||
604 | #define ID_LED_ON1_ON2 0x5 | ||
605 | #define ID_LED_ON1_OFF2 0x6 | ||
606 | #define ID_LED_OFF1_DEF2 0x7 | ||
607 | #define ID_LED_OFF1_ON2 0x8 | ||
608 | #define ID_LED_OFF1_OFF2 0x9 | ||
609 | |||
610 | #define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF | ||
611 | #define IGP_ACTIVITY_LED_ENABLE 0x0300 | ||
612 | #define IGP_LED3_MODE 0x07000000 | ||
613 | |||
614 | /* PCI/PCI-X/PCI-EX Config space */ | ||
615 | #define PCI_HEADER_TYPE_REGISTER 0x0E | ||
616 | #define PCIE_LINK_STATUS 0x12 | ||
617 | |||
618 | #define PCI_HEADER_TYPE_MULTIFUNC 0x80 | ||
619 | #define PCIE_LINK_WIDTH_MASK 0x3F0 | ||
620 | #define PCIE_LINK_WIDTH_SHIFT 4 | ||
621 | |||
622 | #define PHY_REVISION_MASK 0xFFFFFFF0 | ||
623 | #define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ | ||
624 | #define MAX_PHY_MULTI_PAGE_REG 0xF | ||
625 | |||
626 | /* Bit definitions for valid PHY IDs. */ | ||
627 | /* I = Integrated | ||
628 | * E = External | ||
629 | */ | ||
630 | #define M88E1000_E_PHY_ID 0x01410C50 | ||
631 | #define M88E1000_I_PHY_ID 0x01410C30 | ||
632 | #define M88E1011_I_PHY_ID 0x01410C20 | ||
633 | #define IGP01E1000_I_PHY_ID 0x02A80380 | ||
634 | #define M88E1111_I_PHY_ID 0x01410CC0 | ||
635 | #define GG82563_E_PHY_ID 0x01410CA0 | ||
636 | #define IGP03E1000_E_PHY_ID 0x02A80390 | ||
637 | #define IFE_E_PHY_ID 0x02A80330 | ||
638 | #define IFE_PLUS_E_PHY_ID 0x02A80320 | ||
639 | #define IFE_C_E_PHY_ID 0x02A80310 | ||
640 | |||
641 | /* M88E1000 Specific Registers */ | ||
642 | #define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ | ||
643 | #define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ | ||
644 | #define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ | ||
645 | |||
646 | #define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */ | ||
647 | #define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ | ||
648 | |||
649 | /* M88E1000 PHY Specific Control Register */ | ||
650 | #define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */ | ||
651 | #define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ | ||
652 | /* Manual MDI configuration */ | ||
653 | #define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ | ||
654 | #define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover, | ||
655 | * 100BASE-TX/10BASE-T: | ||
656 | * MDI Mode | ||
657 | */ | ||
658 | #define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled | ||
659 | * all speeds. | ||
660 | */ | ||
661 | /* 1=Enable Extended 10BASE-T distance | ||
662 | * (Lower 10BASE-T RX Threshold) | ||
663 | * 0=Normal 10BASE-T RX Threshold */ | ||
664 | /* 1=5-Bit interface in 100BASE-TX | ||
665 | * 0=MII interface in 100BASE-TX */ | ||
666 | #define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */ | ||
667 | |||
668 | /* M88E1000 PHY Specific Status Register */ | ||
669 | #define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ | ||
670 | #define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ | ||
671 | #define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ | ||
672 | #define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M; | ||
673 | * 3=110-140M;4=>140M */ | ||
674 | #define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ | ||
675 | #define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ | ||
676 | |||
677 | #define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 | ||
678 | |||
679 | /* Number of times we will attempt to autonegotiate before downshifting if we | ||
680 | * are the master */ | ||
681 | #define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 | ||
682 | #define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 | ||
683 | /* Number of times we will attempt to autonegotiate before downshifting if we | ||
684 | * are the slave */ | ||
685 | #define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 | ||
686 | #define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 | ||
687 | #define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ | ||
688 | |||
689 | /* M88EC018 Rev 2 specific DownShift settings */ | ||
690 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 | ||
691 | #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 | ||
692 | |||
693 | /* Bits... | ||
694 | * 15-5: page | ||
695 | * 4-0: register offset | ||
696 | */ | ||
697 | #define GG82563_PAGE_SHIFT 5 | ||
698 | #define GG82563_REG(page, reg) \ | ||
699 | (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) | ||
700 | #define GG82563_MIN_ALT_REG 30 | ||
701 | |||
702 | /* GG82563 Specific Registers */ | ||
703 | #define GG82563_PHY_SPEC_CTRL \ | ||
704 | GG82563_REG(0, 16) /* PHY Specific Control */ | ||
705 | #define GG82563_PHY_PAGE_SELECT \ | ||
706 | GG82563_REG(0, 22) /* Page Select */ | ||
707 | #define GG82563_PHY_SPEC_CTRL_2 \ | ||
708 | GG82563_REG(0, 26) /* PHY Specific Control 2 */ | ||
709 | #define GG82563_PHY_PAGE_SELECT_ALT \ | ||
710 | GG82563_REG(0, 29) /* Alternate Page Select */ | ||
711 | |||
712 | #define GG82563_PHY_MAC_SPEC_CTRL \ | ||
713 | GG82563_REG(2, 21) /* MAC Specific Control Register */ | ||
714 | |||
715 | #define GG82563_PHY_DSP_DISTANCE \ | ||
716 | GG82563_REG(5, 26) /* DSP Distance */ | ||
717 | |||
718 | /* Page 193 - Port Control Registers */ | ||
719 | #define GG82563_PHY_KMRN_MODE_CTRL \ | ||
720 | GG82563_REG(193, 16) /* Kumeran Mode Control */ | ||
721 | #define GG82563_PHY_PWR_MGMT_CTRL \ | ||
722 | GG82563_REG(193, 20) /* Power Management Control */ | ||
723 | |||
724 | /* Page 194 - KMRN Registers */ | ||
725 | #define GG82563_PHY_INBAND_CTRL \ | ||
726 | GG82563_REG(194, 18) /* Inband Control */ | ||
727 | |||
728 | /* MDI Control */ | ||
729 | #define E1000_MDIC_REG_SHIFT 16 | ||
730 | #define E1000_MDIC_PHY_SHIFT 21 | ||
731 | #define E1000_MDIC_OP_WRITE 0x04000000 | ||
732 | #define E1000_MDIC_OP_READ 0x08000000 | ||
733 | #define E1000_MDIC_READY 0x10000000 | ||
734 | #define E1000_MDIC_ERROR 0x40000000 | ||
735 | |||
736 | /* SerDes Control */ | ||
737 | #define E1000_GEN_POLL_TIMEOUT 640 | ||
738 | |||
739 | #endif /* _E1000_DEFINES_H_ */ | ||
diff --git a/drivers/net/e1000e/e1000.h b/drivers/net/e1000e/e1000.h new file mode 100644 index 000000000000..d2499bb07c13 --- /dev/null +++ b/drivers/net/e1000e/e1000.h | |||
@@ -0,0 +1,514 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | /* Linux PRO/1000 Ethernet Driver main header file */ | ||
30 | |||
31 | #ifndef _E1000_H_ | ||
32 | #define _E1000_H_ | ||
33 | |||
34 | #include <linux/types.h> | ||
35 | #include <linux/timer.h> | ||
36 | #include <linux/workqueue.h> | ||
37 | #include <linux/io.h> | ||
38 | #include <linux/netdevice.h> | ||
39 | |||
40 | #include "hw.h" | ||
41 | |||
42 | struct e1000_info; | ||
43 | |||
44 | #define ndev_printk(level, netdev, format, arg...) \ | ||
45 | printk(level "%s: %s: " format, (netdev)->dev.parent->bus_id, \ | ||
46 | (netdev)->name, ## arg) | ||
47 | |||
48 | #ifdef DEBUG | ||
49 | #define ndev_dbg(netdev, format, arg...) \ | ||
50 | ndev_printk(KERN_DEBUG , netdev, format, ## arg) | ||
51 | #else | ||
52 | #define ndev_dbg(netdev, format, arg...) do { (void)(netdev); } while (0) | ||
53 | #endif | ||
54 | |||
55 | #define ndev_err(netdev, format, arg...) \ | ||
56 | ndev_printk(KERN_ERR , netdev, format, ## arg) | ||
57 | #define ndev_info(netdev, format, arg...) \ | ||
58 | ndev_printk(KERN_INFO , netdev, format, ## arg) | ||
59 | #define ndev_warn(netdev, format, arg...) \ | ||
60 | ndev_printk(KERN_WARNING , netdev, format, ## arg) | ||
61 | #define ndev_notice(netdev, format, arg...) \ | ||
62 | ndev_printk(KERN_NOTICE , netdev, format, ## arg) | ||
63 | |||
64 | |||
65 | /* TX/RX descriptor defines */ | ||
66 | #define E1000_DEFAULT_TXD 256 | ||
67 | #define E1000_MAX_TXD 4096 | ||
68 | #define E1000_MIN_TXD 80 | ||
69 | |||
70 | #define E1000_DEFAULT_RXD 256 | ||
71 | #define E1000_MAX_RXD 4096 | ||
72 | #define E1000_MIN_RXD 80 | ||
73 | |||
74 | /* Early Receive defines */ | ||
75 | #define E1000_ERT_2048 0x100 | ||
76 | |||
77 | #define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */ | ||
78 | |||
79 | /* How many Tx Descriptors do we need to call netif_wake_queue ? */ | ||
80 | /* How many Rx Buffers do we bundle into one write to the hardware ? */ | ||
81 | #define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */ | ||
82 | |||
83 | #define AUTO_ALL_MODES 0 | ||
84 | #define E1000_EEPROM_APME 0x0400 | ||
85 | |||
86 | #define E1000_MNG_VLAN_NONE (-1) | ||
87 | |||
88 | /* Number of packet split data buffers (not including the header buffer) */ | ||
89 | #define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1) | ||
90 | |||
91 | enum e1000_boards { | ||
92 | board_82571, | ||
93 | board_82572, | ||
94 | board_82573, | ||
95 | board_80003es2lan, | ||
96 | board_ich8lan, | ||
97 | board_ich9lan, | ||
98 | }; | ||
99 | |||
100 | struct e1000_queue_stats { | ||
101 | u64 packets; | ||
102 | u64 bytes; | ||
103 | }; | ||
104 | |||
105 | struct e1000_ps_page { | ||
106 | struct page *page; | ||
107 | u64 dma; /* must be u64 - written to hw */ | ||
108 | }; | ||
109 | |||
110 | /* | ||
111 | * wrappers around a pointer to a socket buffer, | ||
112 | * so a DMA handle can be stored along with the buffer | ||
113 | */ | ||
114 | struct e1000_buffer { | ||
115 | dma_addr_t dma; | ||
116 | struct sk_buff *skb; | ||
117 | union { | ||
118 | /* TX */ | ||
119 | struct { | ||
120 | unsigned long time_stamp; | ||
121 | u16 length; | ||
122 | u16 next_to_watch; | ||
123 | }; | ||
124 | /* RX */ | ||
125 | struct page *page; | ||
126 | }; | ||
127 | |||
128 | }; | ||
129 | |||
130 | struct e1000_ring { | ||
131 | void *desc; /* pointer to ring memory */ | ||
132 | dma_addr_t dma; /* phys address of ring */ | ||
133 | unsigned int size; /* length of ring in bytes */ | ||
134 | unsigned int count; /* number of desc. in ring */ | ||
135 | |||
136 | u16 next_to_use; | ||
137 | u16 next_to_clean; | ||
138 | |||
139 | u16 head; | ||
140 | u16 tail; | ||
141 | |||
142 | /* array of buffer information structs */ | ||
143 | struct e1000_buffer *buffer_info; | ||
144 | |||
145 | /* arrays of page information for packet split */ | ||
146 | struct e1000_ps_page *ps_pages; | ||
147 | struct sk_buff *rx_skb_top; | ||
148 | |||
149 | struct e1000_queue_stats stats; | ||
150 | }; | ||
151 | |||
152 | /* board specific private data structure */ | ||
153 | struct e1000_adapter { | ||
154 | struct timer_list watchdog_timer; | ||
155 | struct timer_list phy_info_timer; | ||
156 | struct timer_list blink_timer; | ||
157 | |||
158 | struct work_struct reset_task; | ||
159 | struct work_struct watchdog_task; | ||
160 | |||
161 | const struct e1000_info *ei; | ||
162 | |||
163 | struct vlan_group *vlgrp; | ||
164 | u32 bd_number; | ||
165 | u32 rx_buffer_len; | ||
166 | u16 mng_vlan_id; | ||
167 | u16 link_speed; | ||
168 | u16 link_duplex; | ||
169 | |||
170 | spinlock_t tx_queue_lock; /* prevent concurrent tail updates */ | ||
171 | |||
172 | /* this is still needed for 82571 and above */ | ||
173 | atomic_t irq_sem; | ||
174 | |||
175 | /* track device up/down/testing state */ | ||
176 | unsigned long state; | ||
177 | |||
178 | /* Interrupt Throttle Rate */ | ||
179 | u32 itr; | ||
180 | u32 itr_setting; | ||
181 | u16 tx_itr; | ||
182 | u16 rx_itr; | ||
183 | |||
184 | /* | ||
185 | * TX | ||
186 | */ | ||
187 | struct e1000_ring *tx_ring /* One per active queue */ | ||
188 | ____cacheline_aligned_in_smp; | ||
189 | |||
190 | struct napi_struct napi; | ||
191 | |||
192 | unsigned long tx_queue_len; | ||
193 | unsigned int restart_queue; | ||
194 | u32 txd_cmd; | ||
195 | |||
196 | bool detect_tx_hung; | ||
197 | u8 tx_timeout_factor; | ||
198 | |||
199 | u32 tx_int_delay; | ||
200 | u32 tx_abs_int_delay; | ||
201 | |||
202 | unsigned int total_tx_bytes; | ||
203 | unsigned int total_tx_packets; | ||
204 | unsigned int total_rx_bytes; | ||
205 | unsigned int total_rx_packets; | ||
206 | |||
207 | /* TX stats */ | ||
208 | u64 tpt_old; | ||
209 | u64 colc_old; | ||
210 | u64 gotcl_old; | ||
211 | u32 gotcl; | ||
212 | u32 tx_timeout_count; | ||
213 | u32 tx_fifo_head; | ||
214 | u32 tx_head_addr; | ||
215 | u32 tx_fifo_size; | ||
216 | u32 tx_dma_failed; | ||
217 | |||
218 | /* | ||
219 | * RX | ||
220 | */ | ||
221 | bool (*clean_rx) (struct e1000_adapter *adapter, | ||
222 | int *work_done, int work_to_do) | ||
223 | ____cacheline_aligned_in_smp; | ||
224 | void (*alloc_rx_buf) (struct e1000_adapter *adapter, | ||
225 | int cleaned_count); | ||
226 | struct e1000_ring *rx_ring; | ||
227 | |||
228 | u32 rx_int_delay; | ||
229 | u32 rx_abs_int_delay; | ||
230 | |||
231 | /* RX stats */ | ||
232 | u64 hw_csum_err; | ||
233 | u64 hw_csum_good; | ||
234 | u64 rx_hdr_split; | ||
235 | u64 gorcl_old; | ||
236 | u32 gorcl; | ||
237 | u32 alloc_rx_buff_failed; | ||
238 | u32 rx_dma_failed; | ||
239 | |||
240 | unsigned int rx_ps_pages; | ||
241 | u16 rx_ps_bsize0; | ||
242 | |||
243 | /* OS defined structs */ | ||
244 | struct net_device *netdev; | ||
245 | struct pci_dev *pdev; | ||
246 | struct net_device_stats net_stats; | ||
247 | spinlock_t stats_lock; /* prevent concurrent stats updates */ | ||
248 | |||
249 | /* structs defined in e1000_hw.h */ | ||
250 | struct e1000_hw hw; | ||
251 | |||
252 | struct e1000_hw_stats stats; | ||
253 | struct e1000_phy_info phy_info; | ||
254 | struct e1000_phy_stats phy_stats; | ||
255 | |||
256 | struct e1000_ring test_tx_ring; | ||
257 | struct e1000_ring test_rx_ring; | ||
258 | u32 test_icr; | ||
259 | |||
260 | u32 msg_enable; | ||
261 | |||
262 | u32 eeprom_wol; | ||
263 | u32 wol; | ||
264 | u32 pba; | ||
265 | |||
266 | u8 fc_autoneg; | ||
267 | |||
268 | unsigned long led_status; | ||
269 | |||
270 | unsigned int flags; | ||
271 | }; | ||
272 | |||
273 | struct e1000_info { | ||
274 | enum e1000_mac_type mac; | ||
275 | unsigned int flags; | ||
276 | u32 pba; | ||
277 | s32 (*get_invariants)(struct e1000_adapter *); | ||
278 | struct e1000_mac_operations *mac_ops; | ||
279 | struct e1000_phy_operations *phy_ops; | ||
280 | struct e1000_nvm_operations *nvm_ops; | ||
281 | }; | ||
282 | |||
283 | /* hardware capability, feature, and workaround flags */ | ||
284 | #define FLAG_HAS_AMT (1 << 0) | ||
285 | #define FLAG_HAS_FLASH (1 << 1) | ||
286 | #define FLAG_HAS_HW_VLAN_FILTER (1 << 2) | ||
287 | #define FLAG_HAS_WOL (1 << 3) | ||
288 | #define FLAG_HAS_ERT (1 << 4) | ||
289 | #define FLAG_HAS_CTRLEXT_ON_LOAD (1 << 5) | ||
290 | #define FLAG_HAS_SWSM_ON_LOAD (1 << 6) | ||
291 | #define FLAG_HAS_JUMBO_FRAMES (1 << 7) | ||
292 | #define FLAG_HAS_ASPM (1 << 8) | ||
293 | #define FLAG_HAS_STATS_ICR_ICT (1 << 9) | ||
294 | #define FLAG_HAS_STATS_PTC_PRC (1 << 10) | ||
295 | #define FLAG_HAS_SMART_POWER_DOWN (1 << 11) | ||
296 | #define FLAG_IS_QUAD_PORT_A (1 << 12) | ||
297 | #define FLAG_IS_QUAD_PORT (1 << 13) | ||
298 | #define FLAG_TIPG_MEDIUM_FOR_80003ESLAN (1 << 14) | ||
299 | #define FLAG_APME_IN_WUC (1 << 15) | ||
300 | #define FLAG_APME_IN_CTRL3 (1 << 16) | ||
301 | #define FLAG_APME_CHECK_PORT_B (1 << 17) | ||
302 | #define FLAG_DISABLE_FC_PAUSE_TIME (1 << 18) | ||
303 | #define FLAG_NO_WAKE_UCAST (1 << 19) | ||
304 | #define FLAG_MNG_PT_ENABLED (1 << 20) | ||
305 | #define FLAG_RESET_OVERWRITES_LAA (1 << 21) | ||
306 | #define FLAG_TARC_SPEED_MODE_BIT (1 << 22) | ||
307 | #define FLAG_TARC_SET_BIT_ZERO (1 << 23) | ||
308 | #define FLAG_RX_NEEDS_RESTART (1 << 24) | ||
309 | #define FLAG_LSC_GIG_SPEED_DROP (1 << 25) | ||
310 | #define FLAG_SMART_POWER_DOWN (1 << 26) | ||
311 | #define FLAG_MSI_ENABLED (1 << 27) | ||
312 | #define FLAG_RX_CSUM_ENABLED (1 << 28) | ||
313 | #define FLAG_TSO_FORCE (1 << 29) | ||
314 | |||
315 | #define E1000_RX_DESC_PS(R, i) \ | ||
316 | (&(((union e1000_rx_desc_packet_split *)((R).desc))[i])) | ||
317 | #define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i])) | ||
318 | #define E1000_RX_DESC(R, i) E1000_GET_DESC(R, i, e1000_rx_desc) | ||
319 | #define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc) | ||
320 | #define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc) | ||
321 | |||
322 | enum e1000_state_t { | ||
323 | __E1000_TESTING, | ||
324 | __E1000_RESETTING, | ||
325 | __E1000_DOWN | ||
326 | }; | ||
327 | |||
328 | enum latency_range { | ||
329 | lowest_latency = 0, | ||
330 | low_latency = 1, | ||
331 | bulk_latency = 2, | ||
332 | latency_invalid = 255 | ||
333 | }; | ||
334 | |||
335 | extern char e1000e_driver_name[]; | ||
336 | extern const char e1000e_driver_version[]; | ||
337 | |||
338 | extern void e1000e_check_options(struct e1000_adapter *adapter); | ||
339 | extern void e1000e_set_ethtool_ops(struct net_device *netdev); | ||
340 | |||
341 | extern int e1000e_up(struct e1000_adapter *adapter); | ||
342 | extern void e1000e_down(struct e1000_adapter *adapter); | ||
343 | extern void e1000e_reinit_locked(struct e1000_adapter *adapter); | ||
344 | extern void e1000e_reset(struct e1000_adapter *adapter); | ||
345 | extern void e1000e_power_up_phy(struct e1000_adapter *adapter); | ||
346 | extern int e1000e_setup_rx_resources(struct e1000_adapter *adapter); | ||
347 | extern int e1000e_setup_tx_resources(struct e1000_adapter *adapter); | ||
348 | extern void e1000e_free_rx_resources(struct e1000_adapter *adapter); | ||
349 | extern void e1000e_free_tx_resources(struct e1000_adapter *adapter); | ||
350 | extern void e1000e_update_stats(struct e1000_adapter *adapter); | ||
351 | |||
352 | extern unsigned int copybreak; | ||
353 | |||
354 | extern char *e1000e_get_hw_dev_name(struct e1000_hw *hw); | ||
355 | |||
356 | extern struct e1000_info e1000_82571_info; | ||
357 | extern struct e1000_info e1000_82572_info; | ||
358 | extern struct e1000_info e1000_82573_info; | ||
359 | extern struct e1000_info e1000_ich8_info; | ||
360 | extern struct e1000_info e1000_ich9_info; | ||
361 | extern struct e1000_info e1000_es2_info; | ||
362 | |||
363 | extern s32 e1000e_read_part_num(struct e1000_hw *hw, u32 *part_num); | ||
364 | |||
365 | extern s32 e1000e_commit_phy(struct e1000_hw *hw); | ||
366 | |||
367 | extern bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw); | ||
368 | |||
369 | extern bool e1000e_get_laa_state_82571(struct e1000_hw *hw); | ||
370 | extern void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state); | ||
371 | |||
372 | extern void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, | ||
373 | bool state); | ||
374 | extern void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw); | ||
375 | extern void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw); | ||
376 | |||
377 | extern s32 e1000e_check_for_copper_link(struct e1000_hw *hw); | ||
378 | extern s32 e1000e_check_for_fiber_link(struct e1000_hw *hw); | ||
379 | extern s32 e1000e_check_for_serdes_link(struct e1000_hw *hw); | ||
380 | extern s32 e1000e_cleanup_led_generic(struct e1000_hw *hw); | ||
381 | extern s32 e1000e_led_on_generic(struct e1000_hw *hw); | ||
382 | extern s32 e1000e_led_off_generic(struct e1000_hw *hw); | ||
383 | extern s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw); | ||
384 | extern s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex); | ||
385 | extern s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex); | ||
386 | extern s32 e1000e_disable_pcie_master(struct e1000_hw *hw); | ||
387 | extern s32 e1000e_get_auto_rd_done(struct e1000_hw *hw); | ||
388 | extern s32 e1000e_id_led_init(struct e1000_hw *hw); | ||
389 | extern void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw); | ||
390 | extern s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw); | ||
391 | extern s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw); | ||
392 | extern s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw); | ||
393 | extern s32 e1000e_setup_link(struct e1000_hw *hw); | ||
394 | extern void e1000e_clear_vfta(struct e1000_hw *hw); | ||
395 | extern void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count); | ||
396 | extern void e1000e_mc_addr_list_update_generic(struct e1000_hw *hw, | ||
397 | u8 *mc_addr_list, u32 mc_addr_count, | ||
398 | u32 rar_used_count, u32 rar_count); | ||
399 | extern void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index); | ||
400 | extern s32 e1000e_set_fc_watermarks(struct e1000_hw *hw); | ||
401 | extern void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop); | ||
402 | extern s32 e1000e_get_hw_semaphore(struct e1000_hw *hw); | ||
403 | extern s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data); | ||
404 | extern void e1000e_config_collision_dist(struct e1000_hw *hw); | ||
405 | extern s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw); | ||
406 | extern s32 e1000e_force_mac_fc(struct e1000_hw *hw); | ||
407 | extern s32 e1000e_blink_led(struct e1000_hw *hw); | ||
408 | extern void e1000e_write_vfta(struct e1000_hw *hw, u32 offset, u32 value); | ||
409 | extern void e1000e_reset_adaptive(struct e1000_hw *hw); | ||
410 | extern void e1000e_update_adaptive(struct e1000_hw *hw); | ||
411 | |||
412 | extern s32 e1000e_setup_copper_link(struct e1000_hw *hw); | ||
413 | extern s32 e1000e_get_phy_id(struct e1000_hw *hw); | ||
414 | extern void e1000e_put_hw_semaphore(struct e1000_hw *hw); | ||
415 | extern s32 e1000e_check_reset_block_generic(struct e1000_hw *hw); | ||
416 | extern s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw); | ||
417 | extern s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw); | ||
418 | extern s32 e1000e_get_phy_info_igp(struct e1000_hw *hw); | ||
419 | extern s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data); | ||
420 | extern s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw); | ||
421 | extern s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active); | ||
422 | extern s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data); | ||
423 | extern s32 e1000e_phy_sw_reset(struct e1000_hw *hw); | ||
424 | extern s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw); | ||
425 | extern s32 e1000e_get_cfg_done(struct e1000_hw *hw); | ||
426 | extern s32 e1000e_get_cable_length_m88(struct e1000_hw *hw); | ||
427 | extern s32 e1000e_get_phy_info_m88(struct e1000_hw *hw); | ||
428 | extern s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data); | ||
429 | extern s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data); | ||
430 | extern enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id); | ||
431 | extern void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl); | ||
432 | extern s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data); | ||
433 | extern s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data); | ||
434 | extern s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, | ||
435 | u32 usec_interval, bool *success); | ||
436 | extern s32 e1000e_phy_reset_dsp(struct e1000_hw *hw); | ||
437 | extern s32 e1000e_check_downshift(struct e1000_hw *hw); | ||
438 | |||
439 | static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw) | ||
440 | { | ||
441 | return hw->phy.ops.reset_phy(hw); | ||
442 | } | ||
443 | |||
444 | static inline s32 e1000_check_reset_block(struct e1000_hw *hw) | ||
445 | { | ||
446 | return hw->phy.ops.check_reset_block(hw); | ||
447 | } | ||
448 | |||
449 | static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data) | ||
450 | { | ||
451 | return hw->phy.ops.read_phy_reg(hw, offset, data); | ||
452 | } | ||
453 | |||
454 | static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data) | ||
455 | { | ||
456 | return hw->phy.ops.write_phy_reg(hw, offset, data); | ||
457 | } | ||
458 | |||
459 | static inline s32 e1000_get_cable_length(struct e1000_hw *hw) | ||
460 | { | ||
461 | return hw->phy.ops.get_cable_length(hw); | ||
462 | } | ||
463 | |||
464 | extern s32 e1000e_acquire_nvm(struct e1000_hw *hw); | ||
465 | extern s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); | ||
466 | extern s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw); | ||
467 | extern s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg); | ||
468 | extern s32 e1000e_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); | ||
469 | extern s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); | ||
470 | extern s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw); | ||
471 | extern void e1000e_release_nvm(struct e1000_hw *hw); | ||
472 | extern void e1000e_reload_nvm(struct e1000_hw *hw); | ||
473 | extern s32 e1000e_read_mac_addr(struct e1000_hw *hw); | ||
474 | |||
475 | static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) | ||
476 | { | ||
477 | return hw->nvm.ops.validate_nvm(hw); | ||
478 | } | ||
479 | |||
480 | static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw) | ||
481 | { | ||
482 | return hw->nvm.ops.update_nvm(hw); | ||
483 | } | ||
484 | |||
485 | static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
486 | { | ||
487 | return hw->nvm.ops.read_nvm(hw, offset, words, data); | ||
488 | } | ||
489 | |||
490 | static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
491 | { | ||
492 | return hw->nvm.ops.write_nvm(hw, offset, words, data); | ||
493 | } | ||
494 | |||
495 | static inline s32 e1000_get_phy_info(struct e1000_hw *hw) | ||
496 | { | ||
497 | return hw->phy.ops.get_phy_info(hw); | ||
498 | } | ||
499 | |||
500 | extern bool e1000e_check_mng_mode(struct e1000_hw *hw); | ||
501 | extern bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw); | ||
502 | extern s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length); | ||
503 | |||
504 | static inline u32 __er32(struct e1000_hw *hw, unsigned long reg) | ||
505 | { | ||
506 | return readl(hw->hw_addr + reg); | ||
507 | } | ||
508 | |||
509 | static inline void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val) | ||
510 | { | ||
511 | writel(val, hw->hw_addr + reg); | ||
512 | } | ||
513 | |||
514 | #endif /* _E1000_H_ */ | ||
diff --git a/drivers/net/e1000e/es2lan.c b/drivers/net/e1000e/es2lan.c new file mode 100644 index 000000000000..88657adf965f --- /dev/null +++ b/drivers/net/e1000e/es2lan.c | |||
@@ -0,0 +1,1232 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | /* | ||
30 | * 80003ES2LAN Gigabit Ethernet Controller (Copper) | ||
31 | * 80003ES2LAN Gigabit Ethernet Controller (Serdes) | ||
32 | */ | ||
33 | |||
34 | #include <linux/netdevice.h> | ||
35 | #include <linux/ethtool.h> | ||
36 | #include <linux/delay.h> | ||
37 | #include <linux/pci.h> | ||
38 | |||
39 | #include "e1000.h" | ||
40 | |||
41 | #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00 | ||
42 | #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02 | ||
43 | #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10 | ||
44 | |||
45 | #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008 | ||
46 | #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800 | ||
47 | #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010 | ||
48 | |||
49 | #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004 | ||
50 | #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000 | ||
51 | |||
52 | #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */ | ||
53 | #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000 | ||
54 | |||
55 | #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8 | ||
56 | #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9 | ||
57 | |||
58 | /* GG82563 PHY Specific Status Register (Page 0, Register 16 */ | ||
59 | #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */ | ||
60 | #define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060 | ||
61 | #define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */ | ||
62 | #define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */ | ||
63 | #define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */ | ||
64 | |||
65 | /* PHY Specific Control Register 2 (Page 0, Register 26) */ | ||
66 | #define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 | ||
67 | /* 1=Reverse Auto-Negotiation */ | ||
68 | |||
69 | /* MAC Specific Control Register (Page 2, Register 21) */ | ||
70 | /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */ | ||
71 | #define GG82563_MSCR_TX_CLK_MASK 0x0007 | ||
72 | #define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004 | ||
73 | #define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005 | ||
74 | #define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007 | ||
75 | |||
76 | #define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */ | ||
77 | |||
78 | /* DSP Distance Register (Page 5, Register 26) */ | ||
79 | #define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M | ||
80 | 1 = 50-80M | ||
81 | 2 = 80-110M | ||
82 | 3 = 110-140M | ||
83 | 4 = >140M */ | ||
84 | |||
85 | /* Kumeran Mode Control Register (Page 193, Register 16) */ | ||
86 | #define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800 | ||
87 | |||
88 | /* Power Management Control Register (Page 193, Register 20) */ | ||
89 | #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 | ||
90 | /* 1=Enable SERDES Electrical Idle */ | ||
91 | |||
92 | /* In-Band Control Register (Page 194, Register 18) */ | ||
93 | #define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */ | ||
94 | |||
95 | /* A table for the GG82563 cable length where the range is defined | ||
96 | * with a lower bound at "index" and the upper bound at | ||
97 | * "index + 5". | ||
98 | */ | ||
99 | static const u16 e1000_gg82563_cable_length_table[] = | ||
100 | { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF }; | ||
101 | |||
102 | static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw); | ||
103 | static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); | ||
104 | static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); | ||
105 | static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw); | ||
106 | static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw); | ||
107 | static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw); | ||
108 | static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex); | ||
109 | |||
110 | /** | ||
111 | * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs. | ||
112 | * @hw: pointer to the HW structure | ||
113 | * | ||
114 | * This is a function pointer entry point called by the api module. | ||
115 | **/ | ||
116 | static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) | ||
117 | { | ||
118 | struct e1000_phy_info *phy = &hw->phy; | ||
119 | s32 ret_val; | ||
120 | |||
121 | if (hw->media_type != e1000_media_type_copper) { | ||
122 | phy->type = e1000_phy_none; | ||
123 | return 0; | ||
124 | } | ||
125 | |||
126 | phy->addr = 1; | ||
127 | phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
128 | phy->reset_delay_us = 100; | ||
129 | phy->type = e1000_phy_gg82563; | ||
130 | |||
131 | /* This can only be done after all function pointers are setup. */ | ||
132 | ret_val = e1000e_get_phy_id(hw); | ||
133 | |||
134 | /* Verify phy id */ | ||
135 | if (phy->id != GG82563_E_PHY_ID) | ||
136 | return -E1000_ERR_PHY; | ||
137 | |||
138 | return ret_val; | ||
139 | } | ||
140 | |||
141 | /** | ||
142 | * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs. | ||
143 | * @hw: pointer to the HW structure | ||
144 | * | ||
145 | * This is a function pointer entry point called by the api module. | ||
146 | **/ | ||
147 | static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) | ||
148 | { | ||
149 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
150 | u32 eecd = er32(EECD); | ||
151 | u16 size; | ||
152 | |||
153 | nvm->opcode_bits = 8; | ||
154 | nvm->delay_usec = 1; | ||
155 | switch (nvm->override) { | ||
156 | case e1000_nvm_override_spi_large: | ||
157 | nvm->page_size = 32; | ||
158 | nvm->address_bits = 16; | ||
159 | break; | ||
160 | case e1000_nvm_override_spi_small: | ||
161 | nvm->page_size = 8; | ||
162 | nvm->address_bits = 8; | ||
163 | break; | ||
164 | default: | ||
165 | nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; | ||
166 | nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; | ||
167 | break; | ||
168 | } | ||
169 | |||
170 | nvm->type = e1000_nvm_eeprom_spi; | ||
171 | |||
172 | size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> | ||
173 | E1000_EECD_SIZE_EX_SHIFT); | ||
174 | |||
175 | /* Added to a constant, "size" becomes the left-shift value | ||
176 | * for setting word_size. | ||
177 | */ | ||
178 | size += NVM_WORD_SIZE_BASE_SHIFT; | ||
179 | nvm->word_size = 1 << size; | ||
180 | |||
181 | return 0; | ||
182 | } | ||
183 | |||
184 | /** | ||
185 | * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs. | ||
186 | * @hw: pointer to the HW structure | ||
187 | * | ||
188 | * This is a function pointer entry point called by the api module. | ||
189 | **/ | ||
190 | static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter) | ||
191 | { | ||
192 | struct e1000_hw *hw = &adapter->hw; | ||
193 | struct e1000_mac_info *mac = &hw->mac; | ||
194 | struct e1000_mac_operations *func = &mac->ops; | ||
195 | |||
196 | /* Set media type */ | ||
197 | switch (adapter->pdev->device) { | ||
198 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: | ||
199 | hw->media_type = e1000_media_type_internal_serdes; | ||
200 | break; | ||
201 | default: | ||
202 | hw->media_type = e1000_media_type_copper; | ||
203 | break; | ||
204 | } | ||
205 | |||
206 | /* Set mta register count */ | ||
207 | mac->mta_reg_count = 128; | ||
208 | /* Set rar entry count */ | ||
209 | mac->rar_entry_count = E1000_RAR_ENTRIES; | ||
210 | /* Set if manageability features are enabled. */ | ||
211 | mac->arc_subsystem_valid = | ||
212 | (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0; | ||
213 | |||
214 | /* check for link */ | ||
215 | switch (hw->media_type) { | ||
216 | case e1000_media_type_copper: | ||
217 | func->setup_physical_interface = e1000_setup_copper_link_80003es2lan; | ||
218 | func->check_for_link = e1000e_check_for_copper_link; | ||
219 | break; | ||
220 | case e1000_media_type_fiber: | ||
221 | func->setup_physical_interface = e1000e_setup_fiber_serdes_link; | ||
222 | func->check_for_link = e1000e_check_for_fiber_link; | ||
223 | break; | ||
224 | case e1000_media_type_internal_serdes: | ||
225 | func->setup_physical_interface = e1000e_setup_fiber_serdes_link; | ||
226 | func->check_for_link = e1000e_check_for_serdes_link; | ||
227 | break; | ||
228 | default: | ||
229 | return -E1000_ERR_CONFIG; | ||
230 | break; | ||
231 | } | ||
232 | |||
233 | return 0; | ||
234 | } | ||
235 | |||
236 | static s32 e1000_get_invariants_80003es2lan(struct e1000_adapter *adapter) | ||
237 | { | ||
238 | struct e1000_hw *hw = &adapter->hw; | ||
239 | s32 rc; | ||
240 | |||
241 | rc = e1000_init_mac_params_80003es2lan(adapter); | ||
242 | if (rc) | ||
243 | return rc; | ||
244 | |||
245 | rc = e1000_init_nvm_params_80003es2lan(hw); | ||
246 | if (rc) | ||
247 | return rc; | ||
248 | |||
249 | rc = e1000_init_phy_params_80003es2lan(hw); | ||
250 | if (rc) | ||
251 | return rc; | ||
252 | |||
253 | return 0; | ||
254 | } | ||
255 | |||
256 | /** | ||
257 | * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY | ||
258 | * @hw: pointer to the HW structure | ||
259 | * | ||
260 | * A wrapper to acquire access rights to the correct PHY. This is a | ||
261 | * function pointer entry point called by the api module. | ||
262 | **/ | ||
263 | static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw) | ||
264 | { | ||
265 | u16 mask; | ||
266 | |||
267 | mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; | ||
268 | |||
269 | return e1000_acquire_swfw_sync_80003es2lan(hw, mask); | ||
270 | } | ||
271 | |||
272 | /** | ||
273 | * e1000_release_phy_80003es2lan - Release rights to access PHY | ||
274 | * @hw: pointer to the HW structure | ||
275 | * | ||
276 | * A wrapper to release access rights to the correct PHY. This is a | ||
277 | * function pointer entry point called by the api module. | ||
278 | **/ | ||
279 | static void e1000_release_phy_80003es2lan(struct e1000_hw *hw) | ||
280 | { | ||
281 | u16 mask; | ||
282 | |||
283 | mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; | ||
284 | e1000_release_swfw_sync_80003es2lan(hw, mask); | ||
285 | } | ||
286 | |||
287 | /** | ||
288 | * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM | ||
289 | * @hw: pointer to the HW structure | ||
290 | * | ||
291 | * Acquire the semaphore to access the EEPROM. This is a function | ||
292 | * pointer entry point called by the api module. | ||
293 | **/ | ||
294 | static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw) | ||
295 | { | ||
296 | s32 ret_val; | ||
297 | |||
298 | ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); | ||
299 | if (ret_val) | ||
300 | return ret_val; | ||
301 | |||
302 | ret_val = e1000e_acquire_nvm(hw); | ||
303 | |||
304 | if (ret_val) | ||
305 | e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); | ||
306 | |||
307 | return ret_val; | ||
308 | } | ||
309 | |||
310 | /** | ||
311 | * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM | ||
312 | * @hw: pointer to the HW structure | ||
313 | * | ||
314 | * Release the semaphore used to access the EEPROM. This is a | ||
315 | * function pointer entry point called by the api module. | ||
316 | **/ | ||
317 | static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw) | ||
318 | { | ||
319 | e1000e_release_nvm(hw); | ||
320 | e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); | ||
321 | } | ||
322 | |||
323 | /** | ||
324 | * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore | ||
325 | * @hw: pointer to the HW structure | ||
326 | * @mask: specifies which semaphore to acquire | ||
327 | * | ||
328 | * Acquire the SW/FW semaphore to access the PHY or NVM. The mask | ||
329 | * will also specify which port we're acquiring the lock for. | ||
330 | **/ | ||
331 | static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) | ||
332 | { | ||
333 | u32 swfw_sync; | ||
334 | u32 swmask = mask; | ||
335 | u32 fwmask = mask << 16; | ||
336 | s32 i = 0; | ||
337 | s32 timeout = 200; | ||
338 | |||
339 | while (i < timeout) { | ||
340 | if (e1000e_get_hw_semaphore(hw)) | ||
341 | return -E1000_ERR_SWFW_SYNC; | ||
342 | |||
343 | swfw_sync = er32(SW_FW_SYNC); | ||
344 | if (!(swfw_sync & (fwmask | swmask))) | ||
345 | break; | ||
346 | |||
347 | /* Firmware currently using resource (fwmask) | ||
348 | * or other software thread using resource (swmask) */ | ||
349 | e1000e_put_hw_semaphore(hw); | ||
350 | mdelay(5); | ||
351 | i++; | ||
352 | } | ||
353 | |||
354 | if (i == timeout) { | ||
355 | hw_dbg(hw, | ||
356 | "Driver can't access resource, SW_FW_SYNC timeout.\n"); | ||
357 | return -E1000_ERR_SWFW_SYNC; | ||
358 | } | ||
359 | |||
360 | swfw_sync |= swmask; | ||
361 | ew32(SW_FW_SYNC, swfw_sync); | ||
362 | |||
363 | e1000e_put_hw_semaphore(hw); | ||
364 | |||
365 | return 0; | ||
366 | } | ||
367 | |||
368 | /** | ||
369 | * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore | ||
370 | * @hw: pointer to the HW structure | ||
371 | * @mask: specifies which semaphore to acquire | ||
372 | * | ||
373 | * Release the SW/FW semaphore used to access the PHY or NVM. The mask | ||
374 | * will also specify which port we're releasing the lock for. | ||
375 | **/ | ||
376 | static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) | ||
377 | { | ||
378 | u32 swfw_sync; | ||
379 | |||
380 | while (e1000e_get_hw_semaphore(hw) != 0); | ||
381 | /* Empty */ | ||
382 | |||
383 | swfw_sync = er32(SW_FW_SYNC); | ||
384 | swfw_sync &= ~mask; | ||
385 | ew32(SW_FW_SYNC, swfw_sync); | ||
386 | |||
387 | e1000e_put_hw_semaphore(hw); | ||
388 | } | ||
389 | |||
390 | /** | ||
391 | * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register | ||
392 | * @hw: pointer to the HW structure | ||
393 | * @offset: offset of the register to read | ||
394 | * @data: pointer to the data returned from the operation | ||
395 | * | ||
396 | * Read the GG82563 PHY register. This is a function pointer entry | ||
397 | * point called by the api module. | ||
398 | **/ | ||
399 | static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, | ||
400 | u32 offset, u16 *data) | ||
401 | { | ||
402 | s32 ret_val; | ||
403 | u32 page_select; | ||
404 | u16 temp; | ||
405 | |||
406 | /* Select Configuration Page */ | ||
407 | if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) | ||
408 | page_select = GG82563_PHY_PAGE_SELECT; | ||
409 | else | ||
410 | /* Use Alternative Page Select register to access | ||
411 | * registers 30 and 31 | ||
412 | */ | ||
413 | page_select = GG82563_PHY_PAGE_SELECT_ALT; | ||
414 | |||
415 | temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); | ||
416 | ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp); | ||
417 | if (ret_val) | ||
418 | return ret_val; | ||
419 | |||
420 | /* The "ready" bit in the MDIC register may be incorrectly set | ||
421 | * before the device has completed the "Page Select" MDI | ||
422 | * transaction. So we wait 200us after each MDI command... | ||
423 | */ | ||
424 | udelay(200); | ||
425 | |||
426 | /* ...and verify the command was successful. */ | ||
427 | ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp); | ||
428 | |||
429 | if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { | ||
430 | ret_val = -E1000_ERR_PHY; | ||
431 | return ret_val; | ||
432 | } | ||
433 | |||
434 | udelay(200); | ||
435 | |||
436 | ret_val = e1000e_read_phy_reg_m88(hw, | ||
437 | MAX_PHY_REG_ADDRESS & offset, | ||
438 | data); | ||
439 | |||
440 | udelay(200); | ||
441 | |||
442 | return ret_val; | ||
443 | } | ||
444 | |||
445 | /** | ||
446 | * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register | ||
447 | * @hw: pointer to the HW structure | ||
448 | * @offset: offset of the register to read | ||
449 | * @data: value to write to the register | ||
450 | * | ||
451 | * Write to the GG82563 PHY register. This is a function pointer entry | ||
452 | * point called by the api module. | ||
453 | **/ | ||
454 | static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, | ||
455 | u32 offset, u16 data) | ||
456 | { | ||
457 | s32 ret_val; | ||
458 | u32 page_select; | ||
459 | u16 temp; | ||
460 | |||
461 | /* Select Configuration Page */ | ||
462 | if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) | ||
463 | page_select = GG82563_PHY_PAGE_SELECT; | ||
464 | else | ||
465 | /* Use Alternative Page Select register to access | ||
466 | * registers 30 and 31 | ||
467 | */ | ||
468 | page_select = GG82563_PHY_PAGE_SELECT_ALT; | ||
469 | |||
470 | temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); | ||
471 | ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp); | ||
472 | if (ret_val) | ||
473 | return ret_val; | ||
474 | |||
475 | |||
476 | /* The "ready" bit in the MDIC register may be incorrectly set | ||
477 | * before the device has completed the "Page Select" MDI | ||
478 | * transaction. So we wait 200us after each MDI command... | ||
479 | */ | ||
480 | udelay(200); | ||
481 | |||
482 | /* ...and verify the command was successful. */ | ||
483 | ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp); | ||
484 | |||
485 | if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) | ||
486 | return -E1000_ERR_PHY; | ||
487 | |||
488 | udelay(200); | ||
489 | |||
490 | ret_val = e1000e_write_phy_reg_m88(hw, | ||
491 | MAX_PHY_REG_ADDRESS & offset, | ||
492 | data); | ||
493 | |||
494 | udelay(200); | ||
495 | |||
496 | return ret_val; | ||
497 | } | ||
498 | |||
499 | /** | ||
500 | * e1000_write_nvm_80003es2lan - Write to ESB2 NVM | ||
501 | * @hw: pointer to the HW structure | ||
502 | * @offset: offset of the register to read | ||
503 | * @words: number of words to write | ||
504 | * @data: buffer of data to write to the NVM | ||
505 | * | ||
506 | * Write "words" of data to the ESB2 NVM. This is a function | ||
507 | * pointer entry point called by the api module. | ||
508 | **/ | ||
509 | static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, | ||
510 | u16 words, u16 *data) | ||
511 | { | ||
512 | return e1000e_write_nvm_spi(hw, offset, words, data); | ||
513 | } | ||
514 | |||
515 | /** | ||
516 | * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete | ||
517 | * @hw: pointer to the HW structure | ||
518 | * | ||
519 | * Wait a specific amount of time for manageability processes to complete. | ||
520 | * This is a function pointer entry point called by the phy module. | ||
521 | **/ | ||
522 | static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw) | ||
523 | { | ||
524 | s32 timeout = PHY_CFG_TIMEOUT; | ||
525 | u32 mask = E1000_NVM_CFG_DONE_PORT_0; | ||
526 | |||
527 | if (hw->bus.func == 1) | ||
528 | mask = E1000_NVM_CFG_DONE_PORT_1; | ||
529 | |||
530 | while (timeout) { | ||
531 | if (er32(EEMNGCTL) & mask) | ||
532 | break; | ||
533 | msleep(1); | ||
534 | timeout--; | ||
535 | } | ||
536 | if (!timeout) { | ||
537 | hw_dbg(hw, "MNG configuration cycle has not completed.\n"); | ||
538 | return -E1000_ERR_RESET; | ||
539 | } | ||
540 | |||
541 | return 0; | ||
542 | } | ||
543 | |||
544 | /** | ||
545 | * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex | ||
546 | * @hw: pointer to the HW structure | ||
547 | * | ||
548 | * Force the speed and duplex settings onto the PHY. This is a | ||
549 | * function pointer entry point called by the phy module. | ||
550 | **/ | ||
551 | static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) | ||
552 | { | ||
553 | s32 ret_val; | ||
554 | u16 phy_data; | ||
555 | bool link; | ||
556 | |||
557 | /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI | ||
558 | * forced whenever speed and duplex are forced. | ||
559 | */ | ||
560 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
561 | if (ret_val) | ||
562 | return ret_val; | ||
563 | |||
564 | phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO; | ||
565 | ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data); | ||
566 | if (ret_val) | ||
567 | return ret_val; | ||
568 | |||
569 | hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data); | ||
570 | |||
571 | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); | ||
572 | if (ret_val) | ||
573 | return ret_val; | ||
574 | |||
575 | e1000e_phy_force_speed_duplex_setup(hw, &phy_data); | ||
576 | |||
577 | /* Reset the phy to commit changes. */ | ||
578 | phy_data |= MII_CR_RESET; | ||
579 | |||
580 | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); | ||
581 | if (ret_val) | ||
582 | return ret_val; | ||
583 | |||
584 | udelay(1); | ||
585 | |||
586 | if (hw->phy.wait_for_link) { | ||
587 | hw_dbg(hw, "Waiting for forced speed/duplex link " | ||
588 | "on GG82563 phy.\n"); | ||
589 | |||
590 | ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, | ||
591 | 100000, &link); | ||
592 | if (ret_val) | ||
593 | return ret_val; | ||
594 | |||
595 | if (!link) { | ||
596 | /* We didn't get link. | ||
597 | * Reset the DSP and cross our fingers. | ||
598 | */ | ||
599 | ret_val = e1000e_phy_reset_dsp(hw); | ||
600 | if (ret_val) | ||
601 | return ret_val; | ||
602 | } | ||
603 | |||
604 | /* Try once more */ | ||
605 | ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, | ||
606 | 100000, &link); | ||
607 | if (ret_val) | ||
608 | return ret_val; | ||
609 | } | ||
610 | |||
611 | ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); | ||
612 | if (ret_val) | ||
613 | return ret_val; | ||
614 | |||
615 | /* Resetting the phy means we need to verify the TX_CLK corresponds | ||
616 | * to the link speed. 10Mbps -> 2.5MHz, else 25MHz. | ||
617 | */ | ||
618 | phy_data &= ~GG82563_MSCR_TX_CLK_MASK; | ||
619 | if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED) | ||
620 | phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5; | ||
621 | else | ||
622 | phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25; | ||
623 | |||
624 | /* In addition, we must re-enable CRS on Tx for both half and full | ||
625 | * duplex. | ||
626 | */ | ||
627 | phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; | ||
628 | ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); | ||
629 | |||
630 | return ret_val; | ||
631 | } | ||
632 | |||
633 | /** | ||
634 | * e1000_get_cable_length_80003es2lan - Set approximate cable length | ||
635 | * @hw: pointer to the HW structure | ||
636 | * | ||
637 | * Find the approximate cable length as measured by the GG82563 PHY. | ||
638 | * This is a function pointer entry point called by the phy module. | ||
639 | **/ | ||
640 | static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw) | ||
641 | { | ||
642 | struct e1000_phy_info *phy = &hw->phy; | ||
643 | s32 ret_val; | ||
644 | u16 phy_data; | ||
645 | u16 index; | ||
646 | |||
647 | ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data); | ||
648 | if (ret_val) | ||
649 | return ret_val; | ||
650 | |||
651 | index = phy_data & GG82563_DSPD_CABLE_LENGTH; | ||
652 | phy->min_cable_length = e1000_gg82563_cable_length_table[index]; | ||
653 | phy->max_cable_length = e1000_gg82563_cable_length_table[index+5]; | ||
654 | |||
655 | phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; | ||
656 | |||
657 | return 0; | ||
658 | } | ||
659 | |||
660 | /** | ||
661 | * e1000_get_link_up_info_80003es2lan - Report speed and duplex | ||
662 | * @hw: pointer to the HW structure | ||
663 | * @speed: pointer to speed buffer | ||
664 | * @duplex: pointer to duplex buffer | ||
665 | * | ||
666 | * Retrieve the current speed and duplex configuration. | ||
667 | * This is a function pointer entry point called by the api module. | ||
668 | **/ | ||
669 | static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, | ||
670 | u16 *duplex) | ||
671 | { | ||
672 | s32 ret_val; | ||
673 | |||
674 | if (hw->media_type == e1000_media_type_copper) { | ||
675 | ret_val = e1000e_get_speed_and_duplex_copper(hw, | ||
676 | speed, | ||
677 | duplex); | ||
678 | if (ret_val) | ||
679 | return ret_val; | ||
680 | if (*speed == SPEED_1000) | ||
681 | ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw); | ||
682 | else | ||
683 | ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, | ||
684 | *duplex); | ||
685 | } else { | ||
686 | ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw, | ||
687 | speed, | ||
688 | duplex); | ||
689 | } | ||
690 | |||
691 | return ret_val; | ||
692 | } | ||
693 | |||
694 | /** | ||
695 | * e1000_reset_hw_80003es2lan - Reset the ESB2 controller | ||
696 | * @hw: pointer to the HW structure | ||
697 | * | ||
698 | * Perform a global reset to the ESB2 controller. | ||
699 | * This is a function pointer entry point called by the api module. | ||
700 | **/ | ||
701 | static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw) | ||
702 | { | ||
703 | u32 ctrl; | ||
704 | u32 icr; | ||
705 | s32 ret_val; | ||
706 | |||
707 | /* Prevent the PCI-E bus from sticking if there is no TLP connection | ||
708 | * on the last TLP read/write transaction when MAC is reset. | ||
709 | */ | ||
710 | ret_val = e1000e_disable_pcie_master(hw); | ||
711 | if (ret_val) | ||
712 | hw_dbg(hw, "PCI-E Master disable polling has failed.\n"); | ||
713 | |||
714 | hw_dbg(hw, "Masking off all interrupts\n"); | ||
715 | ew32(IMC, 0xffffffff); | ||
716 | |||
717 | ew32(RCTL, 0); | ||
718 | ew32(TCTL, E1000_TCTL_PSP); | ||
719 | e1e_flush(); | ||
720 | |||
721 | msleep(10); | ||
722 | |||
723 | ctrl = er32(CTRL); | ||
724 | |||
725 | hw_dbg(hw, "Issuing a global reset to MAC\n"); | ||
726 | ew32(CTRL, ctrl | E1000_CTRL_RST); | ||
727 | |||
728 | ret_val = e1000e_get_auto_rd_done(hw); | ||
729 | if (ret_val) | ||
730 | /* We don't want to continue accessing MAC registers. */ | ||
731 | return ret_val; | ||
732 | |||
733 | /* Clear any pending interrupt events. */ | ||
734 | ew32(IMC, 0xffffffff); | ||
735 | icr = er32(ICR); | ||
736 | |||
737 | return 0; | ||
738 | } | ||
739 | |||
740 | /** | ||
741 | * e1000_init_hw_80003es2lan - Initialize the ESB2 controller | ||
742 | * @hw: pointer to the HW structure | ||
743 | * | ||
744 | * Initialize the hw bits, LED, VFTA, MTA, link and hw counters. | ||
745 | * This is a function pointer entry point called by the api module. | ||
746 | **/ | ||
747 | static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw) | ||
748 | { | ||
749 | struct e1000_mac_info *mac = &hw->mac; | ||
750 | u32 reg_data; | ||
751 | s32 ret_val; | ||
752 | u16 i; | ||
753 | |||
754 | e1000_initialize_hw_bits_80003es2lan(hw); | ||
755 | |||
756 | /* Initialize identification LED */ | ||
757 | ret_val = e1000e_id_led_init(hw); | ||
758 | if (ret_val) { | ||
759 | hw_dbg(hw, "Error initializing identification LED\n"); | ||
760 | return ret_val; | ||
761 | } | ||
762 | |||
763 | /* Disabling VLAN filtering */ | ||
764 | hw_dbg(hw, "Initializing the IEEE VLAN\n"); | ||
765 | e1000e_clear_vfta(hw); | ||
766 | |||
767 | /* Setup the receive address. */ | ||
768 | e1000e_init_rx_addrs(hw, mac->rar_entry_count); | ||
769 | |||
770 | /* Zero out the Multicast HASH table */ | ||
771 | hw_dbg(hw, "Zeroing the MTA\n"); | ||
772 | for (i = 0; i < mac->mta_reg_count; i++) | ||
773 | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); | ||
774 | |||
775 | /* Setup link and flow control */ | ||
776 | ret_val = e1000e_setup_link(hw); | ||
777 | |||
778 | /* Set the transmit descriptor write-back policy */ | ||
779 | reg_data = er32(TXDCTL); | ||
780 | reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | | ||
781 | E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; | ||
782 | ew32(TXDCTL, reg_data); | ||
783 | |||
784 | /* ...for both queues. */ | ||
785 | reg_data = er32(TXDCTL1); | ||
786 | reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | | ||
787 | E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; | ||
788 | ew32(TXDCTL1, reg_data); | ||
789 | |||
790 | /* Enable retransmit on late collisions */ | ||
791 | reg_data = er32(TCTL); | ||
792 | reg_data |= E1000_TCTL_RTLC; | ||
793 | ew32(TCTL, reg_data); | ||
794 | |||
795 | /* Configure Gigabit Carry Extend Padding */ | ||
796 | reg_data = er32(TCTL_EXT); | ||
797 | reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; | ||
798 | reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN; | ||
799 | ew32(TCTL_EXT, reg_data); | ||
800 | |||
801 | /* Configure Transmit Inter-Packet Gap */ | ||
802 | reg_data = er32(TIPG); | ||
803 | reg_data &= ~E1000_TIPG_IPGT_MASK; | ||
804 | reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; | ||
805 | ew32(TIPG, reg_data); | ||
806 | |||
807 | reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001); | ||
808 | reg_data &= ~0x00100000; | ||
809 | E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data); | ||
810 | |||
811 | /* Clear all of the statistics registers (clear on read). It is | ||
812 | * important that we do this after we have tried to establish link | ||
813 | * because the symbol error count will increment wildly if there | ||
814 | * is no link. | ||
815 | */ | ||
816 | e1000_clear_hw_cntrs_80003es2lan(hw); | ||
817 | |||
818 | return ret_val; | ||
819 | } | ||
820 | |||
821 | /** | ||
822 | * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2 | ||
823 | * @hw: pointer to the HW structure | ||
824 | * | ||
825 | * Initializes required hardware-dependent bits needed for normal operation. | ||
826 | **/ | ||
827 | static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) | ||
828 | { | ||
829 | u32 reg; | ||
830 | |||
831 | /* Transmit Descriptor Control 0 */ | ||
832 | reg = er32(TXDCTL); | ||
833 | reg |= (1 << 22); | ||
834 | ew32(TXDCTL, reg); | ||
835 | |||
836 | /* Transmit Descriptor Control 1 */ | ||
837 | reg = er32(TXDCTL1); | ||
838 | reg |= (1 << 22); | ||
839 | ew32(TXDCTL1, reg); | ||
840 | |||
841 | /* Transmit Arbitration Control 0 */ | ||
842 | reg = er32(TARC0); | ||
843 | reg &= ~(0xF << 27); /* 30:27 */ | ||
844 | if (hw->media_type != e1000_media_type_copper) | ||
845 | reg &= ~(1 << 20); | ||
846 | ew32(TARC0, reg); | ||
847 | |||
848 | /* Transmit Arbitration Control 1 */ | ||
849 | reg = er32(TARC1); | ||
850 | if (er32(TCTL) & E1000_TCTL_MULR) | ||
851 | reg &= ~(1 << 28); | ||
852 | else | ||
853 | reg |= (1 << 28); | ||
854 | ew32(TARC1, reg); | ||
855 | } | ||
856 | |||
857 | /** | ||
858 | * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link | ||
859 | * @hw: pointer to the HW structure | ||
860 | * | ||
861 | * Setup some GG82563 PHY registers for obtaining link | ||
862 | **/ | ||
863 | static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) | ||
864 | { | ||
865 | struct e1000_phy_info *phy = &hw->phy; | ||
866 | s32 ret_val; | ||
867 | u32 ctrl_ext; | ||
868 | u16 data; | ||
869 | |||
870 | ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, | ||
871 | &data); | ||
872 | if (ret_val) | ||
873 | return ret_val; | ||
874 | |||
875 | data |= GG82563_MSCR_ASSERT_CRS_ON_TX; | ||
876 | /* Use 25MHz for both link down and 1000Base-T for Tx clock. */ | ||
877 | data |= GG82563_MSCR_TX_CLK_1000MBPS_25; | ||
878 | |||
879 | ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, | ||
880 | data); | ||
881 | if (ret_val) | ||
882 | return ret_val; | ||
883 | |||
884 | /* Options: | ||
885 | * MDI/MDI-X = 0 (default) | ||
886 | * 0 - Auto for all speeds | ||
887 | * 1 - MDI mode | ||
888 | * 2 - MDI-X mode | ||
889 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | ||
890 | */ | ||
891 | ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data); | ||
892 | if (ret_val) | ||
893 | return ret_val; | ||
894 | |||
895 | data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; | ||
896 | |||
897 | switch (phy->mdix) { | ||
898 | case 1: | ||
899 | data |= GG82563_PSCR_CROSSOVER_MODE_MDI; | ||
900 | break; | ||
901 | case 2: | ||
902 | data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; | ||
903 | break; | ||
904 | case 0: | ||
905 | default: | ||
906 | data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; | ||
907 | break; | ||
908 | } | ||
909 | |||
910 | /* Options: | ||
911 | * disable_polarity_correction = 0 (default) | ||
912 | * Automatic Correction for Reversed Cable Polarity | ||
913 | * 0 - Disabled | ||
914 | * 1 - Enabled | ||
915 | */ | ||
916 | data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; | ||
917 | if (phy->disable_polarity_correction) | ||
918 | data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; | ||
919 | |||
920 | ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data); | ||
921 | if (ret_val) | ||
922 | return ret_val; | ||
923 | |||
924 | /* SW Reset the PHY so all changes take effect */ | ||
925 | ret_val = e1000e_commit_phy(hw); | ||
926 | if (ret_val) { | ||
927 | hw_dbg(hw, "Error Resetting the PHY\n"); | ||
928 | return ret_val; | ||
929 | } | ||
930 | |||
931 | /* Bypass RX and TX FIFO's */ | ||
932 | ret_val = e1000e_write_kmrn_reg(hw, | ||
933 | E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL, | ||
934 | E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS | | ||
935 | E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS); | ||
936 | if (ret_val) | ||
937 | return ret_val; | ||
938 | |||
939 | ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data); | ||
940 | if (ret_val) | ||
941 | return ret_val; | ||
942 | |||
943 | data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; | ||
944 | ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data); | ||
945 | if (ret_val) | ||
946 | return ret_val; | ||
947 | |||
948 | ctrl_ext = er32(CTRL_EXT); | ||
949 | ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); | ||
950 | ew32(CTRL_EXT, ctrl_ext); | ||
951 | |||
952 | ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data); | ||
953 | if (ret_val) | ||
954 | return ret_val; | ||
955 | |||
956 | /* Do not init these registers when the HW is in IAMT mode, since the | ||
957 | * firmware will have already initialized them. We only initialize | ||
958 | * them if the HW is not in IAMT mode. | ||
959 | */ | ||
960 | if (!e1000e_check_mng_mode(hw)) { | ||
961 | /* Enable Electrical Idle on the PHY */ | ||
962 | data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; | ||
963 | ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data); | ||
964 | if (ret_val) | ||
965 | return ret_val; | ||
966 | |||
967 | ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data); | ||
968 | if (ret_val) | ||
969 | return ret_val; | ||
970 | |||
971 | data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | ||
972 | ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data); | ||
973 | if (ret_val) | ||
974 | return ret_val; | ||
975 | } | ||
976 | |||
977 | /* Workaround: Disable padding in Kumeran interface in the MAC | ||
978 | * and in the PHY to avoid CRC errors. | ||
979 | */ | ||
980 | ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data); | ||
981 | if (ret_val) | ||
982 | return ret_val; | ||
983 | |||
984 | data |= GG82563_ICR_DIS_PADDING; | ||
985 | ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data); | ||
986 | if (ret_val) | ||
987 | return ret_val; | ||
988 | |||
989 | return 0; | ||
990 | } | ||
991 | |||
992 | /** | ||
993 | * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2 | ||
994 | * @hw: pointer to the HW structure | ||
995 | * | ||
996 | * Essentially a wrapper for setting up all things "copper" related. | ||
997 | * This is a function pointer entry point called by the mac module. | ||
998 | **/ | ||
999 | static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) | ||
1000 | { | ||
1001 | u32 ctrl; | ||
1002 | s32 ret_val; | ||
1003 | u16 reg_data; | ||
1004 | |||
1005 | ctrl = er32(CTRL); | ||
1006 | ctrl |= E1000_CTRL_SLU; | ||
1007 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
1008 | ew32(CTRL, ctrl); | ||
1009 | |||
1010 | /* Set the mac to wait the maximum time between each | ||
1011 | * iteration and increase the max iterations when | ||
1012 | * polling the phy; this fixes erroneous timeouts at 10Mbps. */ | ||
1013 | ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); | ||
1014 | if (ret_val) | ||
1015 | return ret_val; | ||
1016 | ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); | ||
1017 | if (ret_val) | ||
1018 | return ret_val; | ||
1019 | reg_data |= 0x3F; | ||
1020 | ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); | ||
1021 | if (ret_val) | ||
1022 | return ret_val; | ||
1023 | ret_val = e1000e_read_kmrn_reg(hw, | ||
1024 | E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, | ||
1025 | ®_data); | ||
1026 | if (ret_val) | ||
1027 | return ret_val; | ||
1028 | reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING; | ||
1029 | ret_val = e1000e_write_kmrn_reg(hw, | ||
1030 | E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, | ||
1031 | reg_data); | ||
1032 | if (ret_val) | ||
1033 | return ret_val; | ||
1034 | |||
1035 | ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw); | ||
1036 | if (ret_val) | ||
1037 | return ret_val; | ||
1038 | |||
1039 | ret_val = e1000e_setup_copper_link(hw); | ||
1040 | |||
1041 | return 0; | ||
1042 | } | ||
1043 | |||
1044 | /** | ||
1045 | * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation | ||
1046 | * @hw: pointer to the HW structure | ||
1047 | * @duplex: current duplex setting | ||
1048 | * | ||
1049 | * Configure the KMRN interface by applying last minute quirks for | ||
1050 | * 10/100 operation. | ||
1051 | **/ | ||
1052 | static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) | ||
1053 | { | ||
1054 | s32 ret_val; | ||
1055 | u32 tipg; | ||
1056 | u16 reg_data; | ||
1057 | |||
1058 | reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT; | ||
1059 | ret_val = e1000e_write_kmrn_reg(hw, | ||
1060 | E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, | ||
1061 | reg_data); | ||
1062 | if (ret_val) | ||
1063 | return ret_val; | ||
1064 | |||
1065 | /* Configure Transmit Inter-Packet Gap */ | ||
1066 | tipg = er32(TIPG); | ||
1067 | tipg &= ~E1000_TIPG_IPGT_MASK; | ||
1068 | tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN; | ||
1069 | ew32(TIPG, tipg); | ||
1070 | |||
1071 | ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); | ||
1072 | if (ret_val) | ||
1073 | return ret_val; | ||
1074 | |||
1075 | if (duplex == HALF_DUPLEX) | ||
1076 | reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; | ||
1077 | else | ||
1078 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | ||
1079 | |||
1080 | ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); | ||
1081 | |||
1082 | return 0; | ||
1083 | } | ||
1084 | |||
1085 | /** | ||
1086 | * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation | ||
1087 | * @hw: pointer to the HW structure | ||
1088 | * | ||
1089 | * Configure the KMRN interface by applying last minute quirks for | ||
1090 | * gigabit operation. | ||
1091 | **/ | ||
1092 | static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) | ||
1093 | { | ||
1094 | s32 ret_val; | ||
1095 | u16 reg_data; | ||
1096 | u32 tipg; | ||
1097 | |||
1098 | reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT; | ||
1099 | ret_val = e1000e_write_kmrn_reg(hw, | ||
1100 | E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, | ||
1101 | reg_data); | ||
1102 | if (ret_val) | ||
1103 | return ret_val; | ||
1104 | |||
1105 | /* Configure Transmit Inter-Packet Gap */ | ||
1106 | tipg = er32(TIPG); | ||
1107 | tipg &= ~E1000_TIPG_IPGT_MASK; | ||
1108 | tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; | ||
1109 | ew32(TIPG, tipg); | ||
1110 | |||
1111 | ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); | ||
1112 | if (ret_val) | ||
1113 | return ret_val; | ||
1114 | |||
1115 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | ||
1116 | ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); | ||
1117 | |||
1118 | return ret_val; | ||
1119 | } | ||
1120 | |||
1121 | /** | ||
1122 | * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters | ||
1123 | * @hw: pointer to the HW structure | ||
1124 | * | ||
1125 | * Clears the hardware counters by reading the counter registers. | ||
1126 | **/ | ||
1127 | static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw) | ||
1128 | { | ||
1129 | u32 temp; | ||
1130 | |||
1131 | e1000e_clear_hw_cntrs_base(hw); | ||
1132 | |||
1133 | temp = er32(PRC64); | ||
1134 | temp = er32(PRC127); | ||
1135 | temp = er32(PRC255); | ||
1136 | temp = er32(PRC511); | ||
1137 | temp = er32(PRC1023); | ||
1138 | temp = er32(PRC1522); | ||
1139 | temp = er32(PTC64); | ||
1140 | temp = er32(PTC127); | ||
1141 | temp = er32(PTC255); | ||
1142 | temp = er32(PTC511); | ||
1143 | temp = er32(PTC1023); | ||
1144 | temp = er32(PTC1522); | ||
1145 | |||
1146 | temp = er32(ALGNERRC); | ||
1147 | temp = er32(RXERRC); | ||
1148 | temp = er32(TNCRS); | ||
1149 | temp = er32(CEXTERR); | ||
1150 | temp = er32(TSCTC); | ||
1151 | temp = er32(TSCTFC); | ||
1152 | |||
1153 | temp = er32(MGTPRC); | ||
1154 | temp = er32(MGTPDC); | ||
1155 | temp = er32(MGTPTC); | ||
1156 | |||
1157 | temp = er32(IAC); | ||
1158 | temp = er32(ICRXOC); | ||
1159 | |||
1160 | temp = er32(ICRXPTC); | ||
1161 | temp = er32(ICRXATC); | ||
1162 | temp = er32(ICTXPTC); | ||
1163 | temp = er32(ICTXATC); | ||
1164 | temp = er32(ICTXQEC); | ||
1165 | temp = er32(ICTXQMTC); | ||
1166 | temp = er32(ICRXDMTC); | ||
1167 | } | ||
1168 | |||
1169 | static struct e1000_mac_operations es2_mac_ops = { | ||
1170 | .mng_mode_enab = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT, | ||
1171 | /* check_for_link dependent on media type */ | ||
1172 | .cleanup_led = e1000e_cleanup_led_generic, | ||
1173 | .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan, | ||
1174 | .get_bus_info = e1000e_get_bus_info_pcie, | ||
1175 | .get_link_up_info = e1000_get_link_up_info_80003es2lan, | ||
1176 | .led_on = e1000e_led_on_generic, | ||
1177 | .led_off = e1000e_led_off_generic, | ||
1178 | .mc_addr_list_update = e1000e_mc_addr_list_update_generic, | ||
1179 | .reset_hw = e1000_reset_hw_80003es2lan, | ||
1180 | .init_hw = e1000_init_hw_80003es2lan, | ||
1181 | .setup_link = e1000e_setup_link, | ||
1182 | /* setup_physical_interface dependent on media type */ | ||
1183 | }; | ||
1184 | |||
1185 | static struct e1000_phy_operations es2_phy_ops = { | ||
1186 | .acquire_phy = e1000_acquire_phy_80003es2lan, | ||
1187 | .check_reset_block = e1000e_check_reset_block_generic, | ||
1188 | .commit_phy = e1000e_phy_sw_reset, | ||
1189 | .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan, | ||
1190 | .get_cfg_done = e1000_get_cfg_done_80003es2lan, | ||
1191 | .get_cable_length = e1000_get_cable_length_80003es2lan, | ||
1192 | .get_phy_info = e1000e_get_phy_info_m88, | ||
1193 | .read_phy_reg = e1000_read_phy_reg_gg82563_80003es2lan, | ||
1194 | .release_phy = e1000_release_phy_80003es2lan, | ||
1195 | .reset_phy = e1000e_phy_hw_reset_generic, | ||
1196 | .set_d0_lplu_state = NULL, | ||
1197 | .set_d3_lplu_state = e1000e_set_d3_lplu_state, | ||
1198 | .write_phy_reg = e1000_write_phy_reg_gg82563_80003es2lan, | ||
1199 | }; | ||
1200 | |||
1201 | static struct e1000_nvm_operations es2_nvm_ops = { | ||
1202 | .acquire_nvm = e1000_acquire_nvm_80003es2lan, | ||
1203 | .read_nvm = e1000e_read_nvm_eerd, | ||
1204 | .release_nvm = e1000_release_nvm_80003es2lan, | ||
1205 | .update_nvm = e1000e_update_nvm_checksum_generic, | ||
1206 | .valid_led_default = e1000e_valid_led_default, | ||
1207 | .validate_nvm = e1000e_validate_nvm_checksum_generic, | ||
1208 | .write_nvm = e1000_write_nvm_80003es2lan, | ||
1209 | }; | ||
1210 | |||
1211 | struct e1000_info e1000_es2_info = { | ||
1212 | .mac = e1000_80003es2lan, | ||
1213 | .flags = FLAG_HAS_HW_VLAN_FILTER | ||
1214 | | FLAG_HAS_JUMBO_FRAMES | ||
1215 | | FLAG_HAS_STATS_PTC_PRC | ||
1216 | | FLAG_HAS_WOL | ||
1217 | | FLAG_APME_IN_CTRL3 | ||
1218 | | FLAG_RX_CSUM_ENABLED | ||
1219 | | FLAG_HAS_CTRLEXT_ON_LOAD | ||
1220 | | FLAG_HAS_STATS_ICR_ICT | ||
1221 | | FLAG_RX_NEEDS_RESTART /* errata */ | ||
1222 | | FLAG_TARC_SET_BIT_ZERO /* errata */ | ||
1223 | | FLAG_APME_CHECK_PORT_B | ||
1224 | | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ | ||
1225 | | FLAG_TIPG_MEDIUM_FOR_80003ESLAN, | ||
1226 | .pba = 38, | ||
1227 | .get_invariants = e1000_get_invariants_80003es2lan, | ||
1228 | .mac_ops = &es2_mac_ops, | ||
1229 | .phy_ops = &es2_phy_ops, | ||
1230 | .nvm_ops = &es2_nvm_ops, | ||
1231 | }; | ||
1232 | |||
diff --git a/drivers/net/e1000e/ethtool.c b/drivers/net/e1000e/ethtool.c new file mode 100644 index 000000000000..0e80406bfbd7 --- /dev/null +++ b/drivers/net/e1000e/ethtool.c | |||
@@ -0,0 +1,1774 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | /* ethtool support for e1000 */ | ||
30 | |||
31 | #include <linux/netdevice.h> | ||
32 | #include <linux/ethtool.h> | ||
33 | #include <linux/pci.h> | ||
34 | #include <linux/delay.h> | ||
35 | |||
36 | #include "e1000.h" | ||
37 | |||
38 | struct e1000_stats { | ||
39 | char stat_string[ETH_GSTRING_LEN]; | ||
40 | int sizeof_stat; | ||
41 | int stat_offset; | ||
42 | }; | ||
43 | |||
44 | #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \ | ||
45 | offsetof(struct e1000_adapter, m) | ||
46 | static const struct e1000_stats e1000_gstrings_stats[] = { | ||
47 | { "rx_packets", E1000_STAT(stats.gprc) }, | ||
48 | { "tx_packets", E1000_STAT(stats.gptc) }, | ||
49 | { "rx_bytes", E1000_STAT(stats.gorcl) }, | ||
50 | { "tx_bytes", E1000_STAT(stats.gotcl) }, | ||
51 | { "rx_broadcast", E1000_STAT(stats.bprc) }, | ||
52 | { "tx_broadcast", E1000_STAT(stats.bptc) }, | ||
53 | { "rx_multicast", E1000_STAT(stats.mprc) }, | ||
54 | { "tx_multicast", E1000_STAT(stats.mptc) }, | ||
55 | { "rx_errors", E1000_STAT(net_stats.rx_errors) }, | ||
56 | { "tx_errors", E1000_STAT(net_stats.tx_errors) }, | ||
57 | { "tx_dropped", E1000_STAT(net_stats.tx_dropped) }, | ||
58 | { "multicast", E1000_STAT(stats.mprc) }, | ||
59 | { "collisions", E1000_STAT(stats.colc) }, | ||
60 | { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) }, | ||
61 | { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) }, | ||
62 | { "rx_crc_errors", E1000_STAT(stats.crcerrs) }, | ||
63 | { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) }, | ||
64 | { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, | ||
65 | { "rx_missed_errors", E1000_STAT(stats.mpc) }, | ||
66 | { "tx_aborted_errors", E1000_STAT(stats.ecol) }, | ||
67 | { "tx_carrier_errors", E1000_STAT(stats.tncrs) }, | ||
68 | { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) }, | ||
69 | { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) }, | ||
70 | { "tx_window_errors", E1000_STAT(stats.latecol) }, | ||
71 | { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, | ||
72 | { "tx_deferred_ok", E1000_STAT(stats.dc) }, | ||
73 | { "tx_single_coll_ok", E1000_STAT(stats.scc) }, | ||
74 | { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, | ||
75 | { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, | ||
76 | { "tx_restart_queue", E1000_STAT(restart_queue) }, | ||
77 | { "rx_long_length_errors", E1000_STAT(stats.roc) }, | ||
78 | { "rx_short_length_errors", E1000_STAT(stats.ruc) }, | ||
79 | { "rx_align_errors", E1000_STAT(stats.algnerrc) }, | ||
80 | { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, | ||
81 | { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, | ||
82 | { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, | ||
83 | { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, | ||
84 | { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, | ||
85 | { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, | ||
86 | { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, | ||
87 | { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, | ||
88 | { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, | ||
89 | { "rx_header_split", E1000_STAT(rx_hdr_split) }, | ||
90 | { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, | ||
91 | { "tx_smbus", E1000_STAT(stats.mgptc) }, | ||
92 | { "rx_smbus", E1000_STAT(stats.mgprc) }, | ||
93 | { "dropped_smbus", E1000_STAT(stats.mgpdc) }, | ||
94 | { "rx_dma_failed", E1000_STAT(rx_dma_failed) }, | ||
95 | { "tx_dma_failed", E1000_STAT(tx_dma_failed) }, | ||
96 | }; | ||
97 | |||
98 | #define E1000_GLOBAL_STATS_LEN \ | ||
99 | sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats) | ||
100 | #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) | ||
101 | static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { | ||
102 | "Register test (offline)", "Eeprom test (offline)", | ||
103 | "Interrupt test (offline)", "Loopback test (offline)", | ||
104 | "Link test (on/offline)" | ||
105 | }; | ||
106 | #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN | ||
107 | |||
108 | static int e1000_get_settings(struct net_device *netdev, | ||
109 | struct ethtool_cmd *ecmd) | ||
110 | { | ||
111 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
112 | struct e1000_hw *hw = &adapter->hw; | ||
113 | |||
114 | if (hw->media_type == e1000_media_type_copper) { | ||
115 | |||
116 | ecmd->supported = (SUPPORTED_10baseT_Half | | ||
117 | SUPPORTED_10baseT_Full | | ||
118 | SUPPORTED_100baseT_Half | | ||
119 | SUPPORTED_100baseT_Full | | ||
120 | SUPPORTED_1000baseT_Full | | ||
121 | SUPPORTED_Autoneg | | ||
122 | SUPPORTED_TP); | ||
123 | if (hw->phy.type == e1000_phy_ife) | ||
124 | ecmd->supported &= ~SUPPORTED_1000baseT_Full; | ||
125 | ecmd->advertising = ADVERTISED_TP; | ||
126 | |||
127 | if (hw->mac.autoneg == 1) { | ||
128 | ecmd->advertising |= ADVERTISED_Autoneg; | ||
129 | /* the e1000 autoneg seems to match ethtool nicely */ | ||
130 | ecmd->advertising |= hw->phy.autoneg_advertised; | ||
131 | } | ||
132 | |||
133 | ecmd->port = PORT_TP; | ||
134 | ecmd->phy_address = hw->phy.addr; | ||
135 | ecmd->transceiver = XCVR_INTERNAL; | ||
136 | |||
137 | } else { | ||
138 | ecmd->supported = (SUPPORTED_1000baseT_Full | | ||
139 | SUPPORTED_FIBRE | | ||
140 | SUPPORTED_Autoneg); | ||
141 | |||
142 | ecmd->advertising = (ADVERTISED_1000baseT_Full | | ||
143 | ADVERTISED_FIBRE | | ||
144 | ADVERTISED_Autoneg); | ||
145 | |||
146 | ecmd->port = PORT_FIBRE; | ||
147 | ecmd->transceiver = XCVR_EXTERNAL; | ||
148 | } | ||
149 | |||
150 | if (er32(STATUS) & E1000_STATUS_LU) { | ||
151 | |||
152 | adapter->hw.mac.ops.get_link_up_info(hw, &adapter->link_speed, | ||
153 | &adapter->link_duplex); | ||
154 | ecmd->speed = adapter->link_speed; | ||
155 | |||
156 | /* unfortunately FULL_DUPLEX != DUPLEX_FULL | ||
157 | * and HALF_DUPLEX != DUPLEX_HALF */ | ||
158 | |||
159 | if (adapter->link_duplex == FULL_DUPLEX) | ||
160 | ecmd->duplex = DUPLEX_FULL; | ||
161 | else | ||
162 | ecmd->duplex = DUPLEX_HALF; | ||
163 | } else { | ||
164 | ecmd->speed = -1; | ||
165 | ecmd->duplex = -1; | ||
166 | } | ||
167 | |||
168 | ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || | ||
169 | hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; | ||
170 | return 0; | ||
171 | } | ||
172 | |||
173 | static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx) | ||
174 | { | ||
175 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
176 | |||
177 | mac->autoneg = 0; | ||
178 | |||
179 | /* Fiber NICs only allow 1000 gbps Full duplex */ | ||
180 | if ((adapter->hw.media_type == e1000_media_type_fiber) && | ||
181 | spddplx != (SPEED_1000 + DUPLEX_FULL)) { | ||
182 | ndev_err(adapter->netdev, "Unsupported Speed/Duplex " | ||
183 | "configuration\n"); | ||
184 | return -EINVAL; | ||
185 | } | ||
186 | |||
187 | switch (spddplx) { | ||
188 | case SPEED_10 + DUPLEX_HALF: | ||
189 | mac->forced_speed_duplex = ADVERTISE_10_HALF; | ||
190 | break; | ||
191 | case SPEED_10 + DUPLEX_FULL: | ||
192 | mac->forced_speed_duplex = ADVERTISE_10_FULL; | ||
193 | break; | ||
194 | case SPEED_100 + DUPLEX_HALF: | ||
195 | mac->forced_speed_duplex = ADVERTISE_100_HALF; | ||
196 | break; | ||
197 | case SPEED_100 + DUPLEX_FULL: | ||
198 | mac->forced_speed_duplex = ADVERTISE_100_FULL; | ||
199 | break; | ||
200 | case SPEED_1000 + DUPLEX_FULL: | ||
201 | mac->autoneg = 1; | ||
202 | adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; | ||
203 | break; | ||
204 | case SPEED_1000 + DUPLEX_HALF: /* not supported */ | ||
205 | default: | ||
206 | ndev_err(adapter->netdev, "Unsupported Speed/Duplex " | ||
207 | "configuration\n"); | ||
208 | return -EINVAL; | ||
209 | } | ||
210 | return 0; | ||
211 | } | ||
212 | |||
213 | static int e1000_set_settings(struct net_device *netdev, | ||
214 | struct ethtool_cmd *ecmd) | ||
215 | { | ||
216 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
217 | struct e1000_hw *hw = &adapter->hw; | ||
218 | |||
219 | /* When SoL/IDER sessions are active, autoneg/speed/duplex | ||
220 | * cannot be changed */ | ||
221 | if (e1000_check_reset_block(hw)) { | ||
222 | ndev_err(netdev, "Cannot change link " | ||
223 | "characteristics when SoL/IDER is active.\n"); | ||
224 | return -EINVAL; | ||
225 | } | ||
226 | |||
227 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | ||
228 | msleep(1); | ||
229 | |||
230 | if (ecmd->autoneg == AUTONEG_ENABLE) { | ||
231 | hw->mac.autoneg = 1; | ||
232 | if (hw->media_type == e1000_media_type_fiber) | ||
233 | hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | | ||
234 | ADVERTISED_FIBRE | | ||
235 | ADVERTISED_Autoneg; | ||
236 | else | ||
237 | hw->phy.autoneg_advertised = ecmd->advertising | | ||
238 | ADVERTISED_TP | | ||
239 | ADVERTISED_Autoneg; | ||
240 | ecmd->advertising = hw->phy.autoneg_advertised; | ||
241 | } else { | ||
242 | if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) { | ||
243 | clear_bit(__E1000_RESETTING, &adapter->state); | ||
244 | return -EINVAL; | ||
245 | } | ||
246 | } | ||
247 | |||
248 | /* reset the link */ | ||
249 | |||
250 | if (netif_running(adapter->netdev)) { | ||
251 | e1000e_down(adapter); | ||
252 | e1000e_up(adapter); | ||
253 | } else { | ||
254 | e1000e_reset(adapter); | ||
255 | } | ||
256 | |||
257 | clear_bit(__E1000_RESETTING, &adapter->state); | ||
258 | return 0; | ||
259 | } | ||
260 | |||
261 | static void e1000_get_pauseparam(struct net_device *netdev, | ||
262 | struct ethtool_pauseparam *pause) | ||
263 | { | ||
264 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
265 | struct e1000_hw *hw = &adapter->hw; | ||
266 | |||
267 | pause->autoneg = | ||
268 | (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); | ||
269 | |||
270 | if (hw->mac.fc == e1000_fc_rx_pause) { | ||
271 | pause->rx_pause = 1; | ||
272 | } else if (hw->mac.fc == e1000_fc_tx_pause) { | ||
273 | pause->tx_pause = 1; | ||
274 | } else if (hw->mac.fc == e1000_fc_full) { | ||
275 | pause->rx_pause = 1; | ||
276 | pause->tx_pause = 1; | ||
277 | } | ||
278 | } | ||
279 | |||
280 | static int e1000_set_pauseparam(struct net_device *netdev, | ||
281 | struct ethtool_pauseparam *pause) | ||
282 | { | ||
283 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
284 | struct e1000_hw *hw = &adapter->hw; | ||
285 | int retval = 0; | ||
286 | |||
287 | adapter->fc_autoneg = pause->autoneg; | ||
288 | |||
289 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | ||
290 | msleep(1); | ||
291 | |||
292 | if (pause->rx_pause && pause->tx_pause) | ||
293 | hw->mac.fc = e1000_fc_full; | ||
294 | else if (pause->rx_pause && !pause->tx_pause) | ||
295 | hw->mac.fc = e1000_fc_rx_pause; | ||
296 | else if (!pause->rx_pause && pause->tx_pause) | ||
297 | hw->mac.fc = e1000_fc_tx_pause; | ||
298 | else if (!pause->rx_pause && !pause->tx_pause) | ||
299 | hw->mac.fc = e1000_fc_none; | ||
300 | |||
301 | hw->mac.original_fc = hw->mac.fc; | ||
302 | |||
303 | if (adapter->fc_autoneg == AUTONEG_ENABLE) { | ||
304 | if (netif_running(adapter->netdev)) { | ||
305 | e1000e_down(adapter); | ||
306 | e1000e_up(adapter); | ||
307 | } else { | ||
308 | e1000e_reset(adapter); | ||
309 | } | ||
310 | } else { | ||
311 | retval = ((hw->media_type == e1000_media_type_fiber) ? | ||
312 | hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw)); | ||
313 | } | ||
314 | |||
315 | clear_bit(__E1000_RESETTING, &adapter->state); | ||
316 | return retval; | ||
317 | } | ||
318 | |||
319 | static u32 e1000_get_rx_csum(struct net_device *netdev) | ||
320 | { | ||
321 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
322 | return (adapter->flags & FLAG_RX_CSUM_ENABLED); | ||
323 | } | ||
324 | |||
325 | static int e1000_set_rx_csum(struct net_device *netdev, u32 data) | ||
326 | { | ||
327 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
328 | |||
329 | if (data) | ||
330 | adapter->flags |= FLAG_RX_CSUM_ENABLED; | ||
331 | else | ||
332 | adapter->flags &= ~FLAG_RX_CSUM_ENABLED; | ||
333 | |||
334 | if (netif_running(netdev)) | ||
335 | e1000e_reinit_locked(adapter); | ||
336 | else | ||
337 | e1000e_reset(adapter); | ||
338 | return 0; | ||
339 | } | ||
340 | |||
341 | static u32 e1000_get_tx_csum(struct net_device *netdev) | ||
342 | { | ||
343 | return ((netdev->features & NETIF_F_HW_CSUM) != 0); | ||
344 | } | ||
345 | |||
346 | static int e1000_set_tx_csum(struct net_device *netdev, u32 data) | ||
347 | { | ||
348 | if (data) | ||
349 | netdev->features |= NETIF_F_HW_CSUM; | ||
350 | else | ||
351 | netdev->features &= ~NETIF_F_HW_CSUM; | ||
352 | |||
353 | return 0; | ||
354 | } | ||
355 | |||
356 | static int e1000_set_tso(struct net_device *netdev, u32 data) | ||
357 | { | ||
358 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
359 | |||
360 | if (data) { | ||
361 | netdev->features |= NETIF_F_TSO; | ||
362 | netdev->features |= NETIF_F_TSO6; | ||
363 | } else { | ||
364 | netdev->features &= ~NETIF_F_TSO; | ||
365 | netdev->features &= ~NETIF_F_TSO6; | ||
366 | } | ||
367 | |||
368 | ndev_info(netdev, "TSO is %s\n", | ||
369 | data ? "Enabled" : "Disabled"); | ||
370 | adapter->flags |= FLAG_TSO_FORCE; | ||
371 | return 0; | ||
372 | } | ||
373 | |||
374 | static u32 e1000_get_msglevel(struct net_device *netdev) | ||
375 | { | ||
376 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
377 | return adapter->msg_enable; | ||
378 | } | ||
379 | |||
380 | static void e1000_set_msglevel(struct net_device *netdev, u32 data) | ||
381 | { | ||
382 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
383 | adapter->msg_enable = data; | ||
384 | } | ||
385 | |||
386 | static int e1000_get_regs_len(struct net_device *netdev) | ||
387 | { | ||
388 | #define E1000_REGS_LEN 32 /* overestimate */ | ||
389 | return E1000_REGS_LEN * sizeof(u32); | ||
390 | } | ||
391 | |||
392 | static void e1000_get_regs(struct net_device *netdev, | ||
393 | struct ethtool_regs *regs, void *p) | ||
394 | { | ||
395 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
396 | struct e1000_hw *hw = &adapter->hw; | ||
397 | u32 *regs_buff = p; | ||
398 | u16 phy_data; | ||
399 | u8 revision_id; | ||
400 | |||
401 | memset(p, 0, E1000_REGS_LEN * sizeof(u32)); | ||
402 | |||
403 | pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id); | ||
404 | |||
405 | regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device; | ||
406 | |||
407 | regs_buff[0] = er32(CTRL); | ||
408 | regs_buff[1] = er32(STATUS); | ||
409 | |||
410 | regs_buff[2] = er32(RCTL); | ||
411 | regs_buff[3] = er32(RDLEN); | ||
412 | regs_buff[4] = er32(RDH); | ||
413 | regs_buff[5] = er32(RDT); | ||
414 | regs_buff[6] = er32(RDTR); | ||
415 | |||
416 | regs_buff[7] = er32(TCTL); | ||
417 | regs_buff[8] = er32(TDLEN); | ||
418 | regs_buff[9] = er32(TDH); | ||
419 | regs_buff[10] = er32(TDT); | ||
420 | regs_buff[11] = er32(TIDV); | ||
421 | |||
422 | regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ | ||
423 | if (hw->phy.type == e1000_phy_m88) { | ||
424 | e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | ||
425 | regs_buff[13] = (u32)phy_data; /* cable length */ | ||
426 | regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
427 | regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
428 | regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
429 | e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
430 | regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ | ||
431 | regs_buff[18] = regs_buff[13]; /* cable polarity */ | ||
432 | regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ | ||
433 | regs_buff[20] = regs_buff[17]; /* polarity correction */ | ||
434 | /* phy receive errors */ | ||
435 | regs_buff[22] = adapter->phy_stats.receive_errors; | ||
436 | regs_buff[23] = regs_buff[13]; /* mdix mode */ | ||
437 | } | ||
438 | regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ | ||
439 | e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); | ||
440 | regs_buff[24] = (u32)phy_data; /* phy local receiver status */ | ||
441 | regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ | ||
442 | } | ||
443 | |||
444 | static int e1000_get_eeprom_len(struct net_device *netdev) | ||
445 | { | ||
446 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
447 | return adapter->hw.nvm.word_size * 2; | ||
448 | } | ||
449 | |||
450 | static int e1000_get_eeprom(struct net_device *netdev, | ||
451 | struct ethtool_eeprom *eeprom, u8 *bytes) | ||
452 | { | ||
453 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
454 | struct e1000_hw *hw = &adapter->hw; | ||
455 | u16 *eeprom_buff; | ||
456 | int first_word; | ||
457 | int last_word; | ||
458 | int ret_val = 0; | ||
459 | u16 i; | ||
460 | |||
461 | if (eeprom->len == 0) | ||
462 | return -EINVAL; | ||
463 | |||
464 | eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); | ||
465 | |||
466 | first_word = eeprom->offset >> 1; | ||
467 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | ||
468 | |||
469 | eeprom_buff = kmalloc(sizeof(u16) * | ||
470 | (last_word - first_word + 1), GFP_KERNEL); | ||
471 | if (!eeprom_buff) | ||
472 | return -ENOMEM; | ||
473 | |||
474 | if (hw->nvm.type == e1000_nvm_eeprom_spi) { | ||
475 | ret_val = e1000_read_nvm(hw, first_word, | ||
476 | last_word - first_word + 1, | ||
477 | eeprom_buff); | ||
478 | } else { | ||
479 | for (i = 0; i < last_word - first_word + 1; i++) { | ||
480 | ret_val = e1000_read_nvm(hw, first_word + i, 1, | ||
481 | &eeprom_buff[i]); | ||
482 | if (ret_val) | ||
483 | break; | ||
484 | } | ||
485 | } | ||
486 | |||
487 | /* Device's eeprom is always little-endian, word addressable */ | ||
488 | for (i = 0; i < last_word - first_word + 1; i++) | ||
489 | le16_to_cpus(&eeprom_buff[i]); | ||
490 | |||
491 | memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); | ||
492 | kfree(eeprom_buff); | ||
493 | |||
494 | return ret_val; | ||
495 | } | ||
496 | |||
497 | static int e1000_set_eeprom(struct net_device *netdev, | ||
498 | struct ethtool_eeprom *eeprom, u8 *bytes) | ||
499 | { | ||
500 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
501 | struct e1000_hw *hw = &adapter->hw; | ||
502 | u16 *eeprom_buff; | ||
503 | void *ptr; | ||
504 | int max_len; | ||
505 | int first_word; | ||
506 | int last_word; | ||
507 | int ret_val = 0; | ||
508 | u16 i; | ||
509 | |||
510 | if (eeprom->len == 0) | ||
511 | return -EOPNOTSUPP; | ||
512 | |||
513 | if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16))) | ||
514 | return -EFAULT; | ||
515 | |||
516 | max_len = hw->nvm.word_size * 2; | ||
517 | |||
518 | first_word = eeprom->offset >> 1; | ||
519 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | ||
520 | eeprom_buff = kmalloc(max_len, GFP_KERNEL); | ||
521 | if (!eeprom_buff) | ||
522 | return -ENOMEM; | ||
523 | |||
524 | ptr = (void *)eeprom_buff; | ||
525 | |||
526 | if (eeprom->offset & 1) { | ||
527 | /* need read/modify/write of first changed EEPROM word */ | ||
528 | /* only the second byte of the word is being modified */ | ||
529 | ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); | ||
530 | ptr++; | ||
531 | } | ||
532 | if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) | ||
533 | /* need read/modify/write of last changed EEPROM word */ | ||
534 | /* only the first byte of the word is being modified */ | ||
535 | ret_val = e1000_read_nvm(hw, last_word, 1, | ||
536 | &eeprom_buff[last_word - first_word]); | ||
537 | |||
538 | /* Device's eeprom is always little-endian, word addressable */ | ||
539 | for (i = 0; i < last_word - first_word + 1; i++) | ||
540 | le16_to_cpus(&eeprom_buff[i]); | ||
541 | |||
542 | memcpy(ptr, bytes, eeprom->len); | ||
543 | |||
544 | for (i = 0; i < last_word - first_word + 1; i++) | ||
545 | eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); | ||
546 | |||
547 | ret_val = e1000_write_nvm(hw, first_word, | ||
548 | last_word - first_word + 1, eeprom_buff); | ||
549 | |||
550 | /* Update the checksum over the first part of the EEPROM if needed | ||
551 | * and flush shadow RAM for 82573 controllers */ | ||
552 | if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) || | ||
553 | (hw->mac.type == e1000_82573))) | ||
554 | e1000e_update_nvm_checksum(hw); | ||
555 | |||
556 | kfree(eeprom_buff); | ||
557 | return ret_val; | ||
558 | } | ||
559 | |||
560 | static void e1000_get_drvinfo(struct net_device *netdev, | ||
561 | struct ethtool_drvinfo *drvinfo) | ||
562 | { | ||
563 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
564 | char firmware_version[32]; | ||
565 | u16 eeprom_data; | ||
566 | |||
567 | strncpy(drvinfo->driver, e1000e_driver_name, 32); | ||
568 | strncpy(drvinfo->version, e1000e_driver_version, 32); | ||
569 | |||
570 | /* EEPROM image version # is reported as firmware version # for | ||
571 | * PCI-E controllers */ | ||
572 | e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data); | ||
573 | sprintf(firmware_version, "%d.%d-%d", | ||
574 | (eeprom_data & 0xF000) >> 12, | ||
575 | (eeprom_data & 0x0FF0) >> 4, | ||
576 | eeprom_data & 0x000F); | ||
577 | |||
578 | strncpy(drvinfo->fw_version, firmware_version, 32); | ||
579 | strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); | ||
580 | drvinfo->n_stats = E1000_STATS_LEN; | ||
581 | drvinfo->testinfo_len = E1000_TEST_LEN; | ||
582 | drvinfo->regdump_len = e1000_get_regs_len(netdev); | ||
583 | drvinfo->eedump_len = e1000_get_eeprom_len(netdev); | ||
584 | } | ||
585 | |||
586 | static void e1000_get_ringparam(struct net_device *netdev, | ||
587 | struct ethtool_ringparam *ring) | ||
588 | { | ||
589 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
590 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
591 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
592 | |||
593 | ring->rx_max_pending = E1000_MAX_RXD; | ||
594 | ring->tx_max_pending = E1000_MAX_TXD; | ||
595 | ring->rx_mini_max_pending = 0; | ||
596 | ring->rx_jumbo_max_pending = 0; | ||
597 | ring->rx_pending = rx_ring->count; | ||
598 | ring->tx_pending = tx_ring->count; | ||
599 | ring->rx_mini_pending = 0; | ||
600 | ring->rx_jumbo_pending = 0; | ||
601 | } | ||
602 | |||
603 | static int e1000_set_ringparam(struct net_device *netdev, | ||
604 | struct ethtool_ringparam *ring) | ||
605 | { | ||
606 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
607 | struct e1000_ring *tx_ring, *tx_old; | ||
608 | struct e1000_ring *rx_ring, *rx_old; | ||
609 | int err; | ||
610 | |||
611 | if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) | ||
612 | return -EINVAL; | ||
613 | |||
614 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | ||
615 | msleep(1); | ||
616 | |||
617 | if (netif_running(adapter->netdev)) | ||
618 | e1000e_down(adapter); | ||
619 | |||
620 | tx_old = adapter->tx_ring; | ||
621 | rx_old = adapter->rx_ring; | ||
622 | |||
623 | err = -ENOMEM; | ||
624 | tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); | ||
625 | if (!tx_ring) | ||
626 | goto err_alloc_tx; | ||
627 | |||
628 | rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); | ||
629 | if (!rx_ring) | ||
630 | goto err_alloc_rx; | ||
631 | |||
632 | adapter->tx_ring = tx_ring; | ||
633 | adapter->rx_ring = rx_ring; | ||
634 | |||
635 | rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD); | ||
636 | rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD)); | ||
637 | rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE); | ||
638 | |||
639 | tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD); | ||
640 | tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD)); | ||
641 | tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE); | ||
642 | |||
643 | if (netif_running(adapter->netdev)) { | ||
644 | /* Try to get new resources before deleting old */ | ||
645 | err = e1000e_setup_rx_resources(adapter); | ||
646 | if (err) | ||
647 | goto err_setup_rx; | ||
648 | err = e1000e_setup_tx_resources(adapter); | ||
649 | if (err) | ||
650 | goto err_setup_tx; | ||
651 | |||
652 | /* save the new, restore the old in order to free it, | ||
653 | * then restore the new back again */ | ||
654 | adapter->rx_ring = rx_old; | ||
655 | adapter->tx_ring = tx_old; | ||
656 | e1000e_free_rx_resources(adapter); | ||
657 | e1000e_free_tx_resources(adapter); | ||
658 | kfree(tx_old); | ||
659 | kfree(rx_old); | ||
660 | adapter->rx_ring = rx_ring; | ||
661 | adapter->tx_ring = tx_ring; | ||
662 | err = e1000e_up(adapter); | ||
663 | if (err) | ||
664 | goto err_setup; | ||
665 | } | ||
666 | |||
667 | clear_bit(__E1000_RESETTING, &adapter->state); | ||
668 | return 0; | ||
669 | err_setup_tx: | ||
670 | e1000e_free_rx_resources(adapter); | ||
671 | err_setup_rx: | ||
672 | adapter->rx_ring = rx_old; | ||
673 | adapter->tx_ring = tx_old; | ||
674 | kfree(rx_ring); | ||
675 | err_alloc_rx: | ||
676 | kfree(tx_ring); | ||
677 | err_alloc_tx: | ||
678 | e1000e_up(adapter); | ||
679 | err_setup: | ||
680 | clear_bit(__E1000_RESETTING, &adapter->state); | ||
681 | return err; | ||
682 | } | ||
683 | |||
684 | #define REG_PATTERN_TEST(R, M, W) REG_PATTERN_TEST_ARRAY(R, 0, M, W) | ||
685 | #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, writeable) \ | ||
686 | { \ | ||
687 | u32 _pat; \ | ||
688 | u32 _value; \ | ||
689 | u32 _test[] = {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \ | ||
690 | for (_pat = 0; _pat < ARRAY_SIZE(_test); _pat++) { \ | ||
691 | E1000_WRITE_REG_ARRAY(hw, reg, offset, \ | ||
692 | (_test[_pat] & writeable)); \ | ||
693 | _value = E1000_READ_REG_ARRAY(hw, reg, offset); \ | ||
694 | if (_value != (_test[_pat] & writeable & mask)) { \ | ||
695 | ndev_err(netdev, "pattern test reg %04X " \ | ||
696 | "failed: got 0x%08X expected 0x%08X\n", \ | ||
697 | reg + offset, \ | ||
698 | value, (_test[_pat] & writeable & mask)); \ | ||
699 | *data = reg; \ | ||
700 | return 1; \ | ||
701 | } \ | ||
702 | } \ | ||
703 | } | ||
704 | |||
705 | #define REG_SET_AND_CHECK(R, M, W) \ | ||
706 | { \ | ||
707 | u32 _value; \ | ||
708 | __ew32(hw, R, W & M); \ | ||
709 | _value = __er32(hw, R); \ | ||
710 | if ((W & M) != (_value & M)) { \ | ||
711 | ndev_err(netdev, "set/check reg %04X test failed: " \ | ||
712 | "got 0x%08X expected 0x%08X\n", R, (_value & M), \ | ||
713 | (W & M)); \ | ||
714 | *data = R; \ | ||
715 | return 1; \ | ||
716 | } \ | ||
717 | } | ||
718 | |||
719 | static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) | ||
720 | { | ||
721 | struct e1000_hw *hw = &adapter->hw; | ||
722 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
723 | struct net_device *netdev = adapter->netdev; | ||
724 | u32 value; | ||
725 | u32 before; | ||
726 | u32 after; | ||
727 | u32 i; | ||
728 | u32 toggle; | ||
729 | |||
730 | /* The status register is Read Only, so a write should fail. | ||
731 | * Some bits that get toggled are ignored. | ||
732 | */ | ||
733 | switch (mac->type) { | ||
734 | /* there are several bits on newer hardware that are r/w */ | ||
735 | case e1000_82571: | ||
736 | case e1000_82572: | ||
737 | case e1000_80003es2lan: | ||
738 | toggle = 0x7FFFF3FF; | ||
739 | break; | ||
740 | case e1000_82573: | ||
741 | case e1000_ich8lan: | ||
742 | case e1000_ich9lan: | ||
743 | toggle = 0x7FFFF033; | ||
744 | break; | ||
745 | default: | ||
746 | toggle = 0xFFFFF833; | ||
747 | break; | ||
748 | } | ||
749 | |||
750 | before = er32(STATUS); | ||
751 | value = (er32(STATUS) & toggle); | ||
752 | ew32(STATUS, toggle); | ||
753 | after = er32(STATUS) & toggle; | ||
754 | if (value != after) { | ||
755 | ndev_err(netdev, "failed STATUS register test got: " | ||
756 | "0x%08X expected: 0x%08X\n", after, value); | ||
757 | *data = 1; | ||
758 | return 1; | ||
759 | } | ||
760 | /* restore previous status */ | ||
761 | ew32(STATUS, before); | ||
762 | |||
763 | if ((mac->type != e1000_ich8lan) && | ||
764 | (mac->type != e1000_ich9lan)) { | ||
765 | REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); | ||
766 | REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); | ||
767 | REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); | ||
768 | REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); | ||
769 | } | ||
770 | |||
771 | REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); | ||
772 | REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); | ||
773 | REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF); | ||
774 | REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF); | ||
775 | REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF); | ||
776 | REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); | ||
777 | REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); | ||
778 | REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); | ||
779 | REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); | ||
780 | REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF); | ||
781 | |||
782 | REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); | ||
783 | |||
784 | before = (((mac->type == e1000_ich8lan) || | ||
785 | (mac->type == e1000_ich9lan)) ? 0x06C3B33E : 0x06DFB3FE); | ||
786 | REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); | ||
787 | REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); | ||
788 | |||
789 | REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x01FFFFFF); | ||
790 | REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFF000, 0xFFFFFFFF); | ||
791 | REG_PATTERN_TEST(E1000_TXCW, 0x0000FFFF, 0x0000FFFF); | ||
792 | REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFF000, 0xFFFFFFFF); | ||
793 | |||
794 | for (i = 0; i < mac->mta_reg_count; i++) | ||
795 | REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); | ||
796 | |||
797 | *data = 0; | ||
798 | return 0; | ||
799 | } | ||
800 | |||
801 | static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) | ||
802 | { | ||
803 | u16 temp; | ||
804 | u16 checksum = 0; | ||
805 | u16 i; | ||
806 | |||
807 | *data = 0; | ||
808 | /* Read and add up the contents of the EEPROM */ | ||
809 | for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { | ||
810 | if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { | ||
811 | *data = 1; | ||
812 | break; | ||
813 | } | ||
814 | checksum += temp; | ||
815 | } | ||
816 | |||
817 | /* If Checksum is not Correct return error else test passed */ | ||
818 | if ((checksum != (u16) NVM_SUM) && !(*data)) | ||
819 | *data = 2; | ||
820 | |||
821 | return *data; | ||
822 | } | ||
823 | |||
824 | static irqreturn_t e1000_test_intr(int irq, void *data) | ||
825 | { | ||
826 | struct net_device *netdev = (struct net_device *) data; | ||
827 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
828 | struct e1000_hw *hw = &adapter->hw; | ||
829 | |||
830 | adapter->test_icr |= er32(ICR); | ||
831 | |||
832 | return IRQ_HANDLED; | ||
833 | } | ||
834 | |||
835 | static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) | ||
836 | { | ||
837 | struct net_device *netdev = adapter->netdev; | ||
838 | struct e1000_hw *hw = &adapter->hw; | ||
839 | u32 mask; | ||
840 | u32 shared_int = 1; | ||
841 | u32 irq = adapter->pdev->irq; | ||
842 | int i; | ||
843 | |||
844 | *data = 0; | ||
845 | |||
846 | /* NOTE: we don't test MSI interrupts here, yet */ | ||
847 | /* Hook up test interrupt handler just for this test */ | ||
848 | if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, | ||
849 | netdev)) { | ||
850 | shared_int = 0; | ||
851 | } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED, | ||
852 | netdev->name, netdev)) { | ||
853 | *data = 1; | ||
854 | return -1; | ||
855 | } | ||
856 | ndev_info(netdev, "testing %s interrupt\n", | ||
857 | (shared_int ? "shared" : "unshared")); | ||
858 | |||
859 | /* Disable all the interrupts */ | ||
860 | ew32(IMC, 0xFFFFFFFF); | ||
861 | msleep(10); | ||
862 | |||
863 | /* Test each interrupt */ | ||
864 | for (i = 0; i < 10; i++) { | ||
865 | |||
866 | if (((adapter->hw.mac.type == e1000_ich8lan) || | ||
867 | (adapter->hw.mac.type == e1000_ich9lan)) && i == 8) | ||
868 | continue; | ||
869 | |||
870 | /* Interrupt to test */ | ||
871 | mask = 1 << i; | ||
872 | |||
873 | if (!shared_int) { | ||
874 | /* Disable the interrupt to be reported in | ||
875 | * the cause register and then force the same | ||
876 | * interrupt and see if one gets posted. If | ||
877 | * an interrupt was posted to the bus, the | ||
878 | * test failed. | ||
879 | */ | ||
880 | adapter->test_icr = 0; | ||
881 | ew32(IMC, mask); | ||
882 | ew32(ICS, mask); | ||
883 | msleep(10); | ||
884 | |||
885 | if (adapter->test_icr & mask) { | ||
886 | *data = 3; | ||
887 | break; | ||
888 | } | ||
889 | } | ||
890 | |||
891 | /* Enable the interrupt to be reported in | ||
892 | * the cause register and then force the same | ||
893 | * interrupt and see if one gets posted. If | ||
894 | * an interrupt was not posted to the bus, the | ||
895 | * test failed. | ||
896 | */ | ||
897 | adapter->test_icr = 0; | ||
898 | ew32(IMS, mask); | ||
899 | ew32(ICS, mask); | ||
900 | msleep(10); | ||
901 | |||
902 | if (!(adapter->test_icr & mask)) { | ||
903 | *data = 4; | ||
904 | break; | ||
905 | } | ||
906 | |||
907 | if (!shared_int) { | ||
908 | /* Disable the other interrupts to be reported in | ||
909 | * the cause register and then force the other | ||
910 | * interrupts and see if any get posted. If | ||
911 | * an interrupt was posted to the bus, the | ||
912 | * test failed. | ||
913 | */ | ||
914 | adapter->test_icr = 0; | ||
915 | ew32(IMC, ~mask & 0x00007FFF); | ||
916 | ew32(ICS, ~mask & 0x00007FFF); | ||
917 | msleep(10); | ||
918 | |||
919 | if (adapter->test_icr) { | ||
920 | *data = 5; | ||
921 | break; | ||
922 | } | ||
923 | } | ||
924 | } | ||
925 | |||
926 | /* Disable all the interrupts */ | ||
927 | ew32(IMC, 0xFFFFFFFF); | ||
928 | msleep(10); | ||
929 | |||
930 | /* Unhook test interrupt handler */ | ||
931 | free_irq(irq, netdev); | ||
932 | |||
933 | return *data; | ||
934 | } | ||
935 | |||
936 | static void e1000_free_desc_rings(struct e1000_adapter *adapter) | ||
937 | { | ||
938 | struct e1000_ring *tx_ring = &adapter->test_tx_ring; | ||
939 | struct e1000_ring *rx_ring = &adapter->test_rx_ring; | ||
940 | struct pci_dev *pdev = adapter->pdev; | ||
941 | int i; | ||
942 | |||
943 | if (tx_ring->desc && tx_ring->buffer_info) { | ||
944 | for (i = 0; i < tx_ring->count; i++) { | ||
945 | if (tx_ring->buffer_info[i].dma) | ||
946 | pci_unmap_single(pdev, | ||
947 | tx_ring->buffer_info[i].dma, | ||
948 | tx_ring->buffer_info[i].length, | ||
949 | PCI_DMA_TODEVICE); | ||
950 | if (tx_ring->buffer_info[i].skb) | ||
951 | dev_kfree_skb(tx_ring->buffer_info[i].skb); | ||
952 | } | ||
953 | } | ||
954 | |||
955 | if (rx_ring->desc && rx_ring->buffer_info) { | ||
956 | for (i = 0; i < rx_ring->count; i++) { | ||
957 | if (rx_ring->buffer_info[i].dma) | ||
958 | pci_unmap_single(pdev, | ||
959 | rx_ring->buffer_info[i].dma, | ||
960 | 2048, PCI_DMA_FROMDEVICE); | ||
961 | if (rx_ring->buffer_info[i].skb) | ||
962 | dev_kfree_skb(rx_ring->buffer_info[i].skb); | ||
963 | } | ||
964 | } | ||
965 | |||
966 | if (tx_ring->desc) { | ||
967 | dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, | ||
968 | tx_ring->dma); | ||
969 | tx_ring->desc = NULL; | ||
970 | } | ||
971 | if (rx_ring->desc) { | ||
972 | dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, | ||
973 | rx_ring->dma); | ||
974 | rx_ring->desc = NULL; | ||
975 | } | ||
976 | |||
977 | kfree(tx_ring->buffer_info); | ||
978 | tx_ring->buffer_info = NULL; | ||
979 | kfree(rx_ring->buffer_info); | ||
980 | rx_ring->buffer_info = NULL; | ||
981 | } | ||
982 | |||
983 | static int e1000_setup_desc_rings(struct e1000_adapter *adapter) | ||
984 | { | ||
985 | struct e1000_ring *tx_ring = &adapter->test_tx_ring; | ||
986 | struct e1000_ring *rx_ring = &adapter->test_rx_ring; | ||
987 | struct pci_dev *pdev = adapter->pdev; | ||
988 | struct e1000_hw *hw = &adapter->hw; | ||
989 | u32 rctl; | ||
990 | int size; | ||
991 | int i; | ||
992 | int ret_val; | ||
993 | |||
994 | /* Setup Tx descriptor ring and Tx buffers */ | ||
995 | |||
996 | if (!tx_ring->count) | ||
997 | tx_ring->count = E1000_DEFAULT_TXD; | ||
998 | |||
999 | size = tx_ring->count * sizeof(struct e1000_buffer); | ||
1000 | tx_ring->buffer_info = kmalloc(size, GFP_KERNEL); | ||
1001 | if (!tx_ring->buffer_info) { | ||
1002 | ret_val = 1; | ||
1003 | goto err_nomem; | ||
1004 | } | ||
1005 | memset(tx_ring->buffer_info, 0, size); | ||
1006 | |||
1007 | tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); | ||
1008 | tx_ring->size = ALIGN(tx_ring->size, 4096); | ||
1009 | tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, | ||
1010 | &tx_ring->dma, GFP_KERNEL); | ||
1011 | if (!tx_ring->desc) { | ||
1012 | ret_val = 2; | ||
1013 | goto err_nomem; | ||
1014 | } | ||
1015 | memset(tx_ring->desc, 0, tx_ring->size); | ||
1016 | tx_ring->next_to_use = 0; | ||
1017 | tx_ring->next_to_clean = 0; | ||
1018 | |||
1019 | ew32(TDBAL, | ||
1020 | ((u64) tx_ring->dma & 0x00000000FFFFFFFF)); | ||
1021 | ew32(TDBAH, ((u64) tx_ring->dma >> 32)); | ||
1022 | ew32(TDLEN, | ||
1023 | tx_ring->count * sizeof(struct e1000_tx_desc)); | ||
1024 | ew32(TDH, 0); | ||
1025 | ew32(TDT, 0); | ||
1026 | ew32(TCTL, | ||
1027 | E1000_TCTL_PSP | E1000_TCTL_EN | | ||
1028 | E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | | ||
1029 | E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); | ||
1030 | |||
1031 | for (i = 0; i < tx_ring->count; i++) { | ||
1032 | struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); | ||
1033 | struct sk_buff *skb; | ||
1034 | unsigned int skb_size = 1024; | ||
1035 | |||
1036 | skb = alloc_skb(skb_size, GFP_KERNEL); | ||
1037 | if (!skb) { | ||
1038 | ret_val = 3; | ||
1039 | goto err_nomem; | ||
1040 | } | ||
1041 | skb_put(skb, skb_size); | ||
1042 | tx_ring->buffer_info[i].skb = skb; | ||
1043 | tx_ring->buffer_info[i].length = skb->len; | ||
1044 | tx_ring->buffer_info[i].dma = | ||
1045 | pci_map_single(pdev, skb->data, skb->len, | ||
1046 | PCI_DMA_TODEVICE); | ||
1047 | if (pci_dma_mapping_error(tx_ring->buffer_info[i].dma)) { | ||
1048 | ret_val = 4; | ||
1049 | goto err_nomem; | ||
1050 | } | ||
1051 | tx_desc->buffer_addr = cpu_to_le64( | ||
1052 | tx_ring->buffer_info[i].dma); | ||
1053 | tx_desc->lower.data = cpu_to_le32(skb->len); | ||
1054 | tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | | ||
1055 | E1000_TXD_CMD_IFCS | | ||
1056 | E1000_TXD_CMD_RPS); | ||
1057 | tx_desc->upper.data = 0; | ||
1058 | } | ||
1059 | |||
1060 | /* Setup Rx descriptor ring and Rx buffers */ | ||
1061 | |||
1062 | if (!rx_ring->count) | ||
1063 | rx_ring->count = E1000_DEFAULT_RXD; | ||
1064 | |||
1065 | size = rx_ring->count * sizeof(struct e1000_buffer); | ||
1066 | rx_ring->buffer_info = kmalloc(size, GFP_KERNEL); | ||
1067 | if (!rx_ring->buffer_info) { | ||
1068 | ret_val = 5; | ||
1069 | goto err_nomem; | ||
1070 | } | ||
1071 | memset(rx_ring->buffer_info, 0, size); | ||
1072 | |||
1073 | rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc); | ||
1074 | rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, | ||
1075 | &rx_ring->dma, GFP_KERNEL); | ||
1076 | if (!rx_ring->desc) { | ||
1077 | ret_val = 6; | ||
1078 | goto err_nomem; | ||
1079 | } | ||
1080 | memset(rx_ring->desc, 0, rx_ring->size); | ||
1081 | rx_ring->next_to_use = 0; | ||
1082 | rx_ring->next_to_clean = 0; | ||
1083 | |||
1084 | rctl = er32(RCTL); | ||
1085 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | ||
1086 | ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF)); | ||
1087 | ew32(RDBAH, ((u64) rx_ring->dma >> 32)); | ||
1088 | ew32(RDLEN, rx_ring->size); | ||
1089 | ew32(RDH, 0); | ||
1090 | ew32(RDT, 0); | ||
1091 | rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | | ||
1092 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | ||
1093 | (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); | ||
1094 | ew32(RCTL, rctl); | ||
1095 | |||
1096 | for (i = 0; i < rx_ring->count; i++) { | ||
1097 | struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
1098 | struct sk_buff *skb; | ||
1099 | |||
1100 | skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); | ||
1101 | if (!skb) { | ||
1102 | ret_val = 7; | ||
1103 | goto err_nomem; | ||
1104 | } | ||
1105 | skb_reserve(skb, NET_IP_ALIGN); | ||
1106 | rx_ring->buffer_info[i].skb = skb; | ||
1107 | rx_ring->buffer_info[i].dma = | ||
1108 | pci_map_single(pdev, skb->data, 2048, | ||
1109 | PCI_DMA_FROMDEVICE); | ||
1110 | if (pci_dma_mapping_error(rx_ring->buffer_info[i].dma)) { | ||
1111 | ret_val = 8; | ||
1112 | goto err_nomem; | ||
1113 | } | ||
1114 | rx_desc->buffer_addr = | ||
1115 | cpu_to_le64(rx_ring->buffer_info[i].dma); | ||
1116 | memset(skb->data, 0x00, skb->len); | ||
1117 | } | ||
1118 | |||
1119 | return 0; | ||
1120 | |||
1121 | err_nomem: | ||
1122 | e1000_free_desc_rings(adapter); | ||
1123 | return ret_val; | ||
1124 | } | ||
1125 | |||
1126 | static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) | ||
1127 | { | ||
1128 | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ | ||
1129 | e1e_wphy(&adapter->hw, 29, 0x001F); | ||
1130 | e1e_wphy(&adapter->hw, 30, 0x8FFC); | ||
1131 | e1e_wphy(&adapter->hw, 29, 0x001A); | ||
1132 | e1e_wphy(&adapter->hw, 30, 0x8FF0); | ||
1133 | } | ||
1134 | |||
1135 | static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) | ||
1136 | { | ||
1137 | struct e1000_hw *hw = &adapter->hw; | ||
1138 | u32 ctrl_reg = 0; | ||
1139 | u32 stat_reg = 0; | ||
1140 | |||
1141 | adapter->hw.mac.autoneg = 0; | ||
1142 | |||
1143 | if (adapter->hw.phy.type == e1000_phy_m88) { | ||
1144 | /* Auto-MDI/MDIX Off */ | ||
1145 | e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); | ||
1146 | /* reset to update Auto-MDI/MDIX */ | ||
1147 | e1e_wphy(hw, PHY_CONTROL, 0x9140); | ||
1148 | /* autoneg off */ | ||
1149 | e1e_wphy(hw, PHY_CONTROL, 0x8140); | ||
1150 | } else if (adapter->hw.phy.type == e1000_phy_gg82563) | ||
1151 | e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); | ||
1152 | |||
1153 | ctrl_reg = er32(CTRL); | ||
1154 | |||
1155 | if (adapter->hw.phy.type == e1000_phy_ife) { | ||
1156 | /* force 100, set loopback */ | ||
1157 | e1e_wphy(hw, PHY_CONTROL, 0x6100); | ||
1158 | |||
1159 | /* Now set up the MAC to the same speed/duplex as the PHY. */ | ||
1160 | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ | ||
1161 | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | ||
1162 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | ||
1163 | E1000_CTRL_SPD_100 |/* Force Speed to 100 */ | ||
1164 | E1000_CTRL_FD); /* Force Duplex to FULL */ | ||
1165 | } else { | ||
1166 | /* force 1000, set loopback */ | ||
1167 | e1e_wphy(hw, PHY_CONTROL, 0x4140); | ||
1168 | |||
1169 | /* Now set up the MAC to the same speed/duplex as the PHY. */ | ||
1170 | ctrl_reg = er32(CTRL); | ||
1171 | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ | ||
1172 | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | ||
1173 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | ||
1174 | E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ | ||
1175 | E1000_CTRL_FD); /* Force Duplex to FULL */ | ||
1176 | } | ||
1177 | |||
1178 | if (adapter->hw.media_type == e1000_media_type_copper && | ||
1179 | adapter->hw.phy.type == e1000_phy_m88) { | ||
1180 | ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ | ||
1181 | } else { | ||
1182 | /* Set the ILOS bit on the fiber Nic if half duplex link is | ||
1183 | * detected. */ | ||
1184 | stat_reg = er32(STATUS); | ||
1185 | if ((stat_reg & E1000_STATUS_FD) == 0) | ||
1186 | ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); | ||
1187 | } | ||
1188 | |||
1189 | ew32(CTRL, ctrl_reg); | ||
1190 | |||
1191 | /* Disable the receiver on the PHY so when a cable is plugged in, the | ||
1192 | * PHY does not begin to autoneg when a cable is reconnected to the NIC. | ||
1193 | */ | ||
1194 | if (adapter->hw.phy.type == e1000_phy_m88) | ||
1195 | e1000_phy_disable_receiver(adapter); | ||
1196 | |||
1197 | udelay(500); | ||
1198 | |||
1199 | return 0; | ||
1200 | } | ||
1201 | |||
1202 | static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) | ||
1203 | { | ||
1204 | struct e1000_hw *hw = &adapter->hw; | ||
1205 | u32 ctrl = er32(CTRL); | ||
1206 | int link = 0; | ||
1207 | |||
1208 | /* special requirements for 82571/82572 fiber adapters */ | ||
1209 | |||
1210 | /* jump through hoops to make sure link is up because serdes | ||
1211 | * link is hardwired up */ | ||
1212 | ctrl |= E1000_CTRL_SLU; | ||
1213 | ew32(CTRL, ctrl); | ||
1214 | |||
1215 | /* disable autoneg */ | ||
1216 | ctrl = er32(TXCW); | ||
1217 | ctrl &= ~(1 << 31); | ||
1218 | ew32(TXCW, ctrl); | ||
1219 | |||
1220 | link = (er32(STATUS) & E1000_STATUS_LU); | ||
1221 | |||
1222 | if (!link) { | ||
1223 | /* set invert loss of signal */ | ||
1224 | ctrl = er32(CTRL); | ||
1225 | ctrl |= E1000_CTRL_ILOS; | ||
1226 | ew32(CTRL, ctrl); | ||
1227 | } | ||
1228 | |||
1229 | /* special write to serdes control register to enable SerDes analog | ||
1230 | * loopback */ | ||
1231 | #define E1000_SERDES_LB_ON 0x410 | ||
1232 | ew32(SCTL, E1000_SERDES_LB_ON); | ||
1233 | msleep(10); | ||
1234 | |||
1235 | return 0; | ||
1236 | } | ||
1237 | |||
1238 | /* only call this for fiber/serdes connections to es2lan */ | ||
1239 | static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) | ||
1240 | { | ||
1241 | struct e1000_hw *hw = &adapter->hw; | ||
1242 | u32 ctrlext = er32(CTRL_EXT); | ||
1243 | u32 ctrl = er32(CTRL); | ||
1244 | |||
1245 | /* save CTRL_EXT to restore later, reuse an empty variable (unused | ||
1246 | on mac_type 80003es2lan) */ | ||
1247 | adapter->tx_fifo_head = ctrlext; | ||
1248 | |||
1249 | /* clear the serdes mode bits, putting the device into mac loopback */ | ||
1250 | ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; | ||
1251 | ew32(CTRL_EXT, ctrlext); | ||
1252 | |||
1253 | /* force speed to 1000/FD, link up */ | ||
1254 | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | ||
1255 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | | ||
1256 | E1000_CTRL_SPD_1000 | E1000_CTRL_FD); | ||
1257 | ew32(CTRL, ctrl); | ||
1258 | |||
1259 | /* set mac loopback */ | ||
1260 | ctrl = er32(RCTL); | ||
1261 | ctrl |= E1000_RCTL_LBM_MAC; | ||
1262 | ew32(RCTL, ctrl); | ||
1263 | |||
1264 | /* set testing mode parameters (no need to reset later) */ | ||
1265 | #define KMRNCTRLSTA_OPMODE (0x1F << 16) | ||
1266 | #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 | ||
1267 | ew32(KMRNCTRLSTA, | ||
1268 | (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); | ||
1269 | |||
1270 | return 0; | ||
1271 | } | ||
1272 | |||
1273 | static int e1000_setup_loopback_test(struct e1000_adapter *adapter) | ||
1274 | { | ||
1275 | struct e1000_hw *hw = &adapter->hw; | ||
1276 | u32 rctl; | ||
1277 | |||
1278 | if (hw->media_type == e1000_media_type_fiber || | ||
1279 | hw->media_type == e1000_media_type_internal_serdes) { | ||
1280 | switch (hw->mac.type) { | ||
1281 | case e1000_80003es2lan: | ||
1282 | return e1000_set_es2lan_mac_loopback(adapter); | ||
1283 | break; | ||
1284 | case e1000_82571: | ||
1285 | case e1000_82572: | ||
1286 | return e1000_set_82571_fiber_loopback(adapter); | ||
1287 | break; | ||
1288 | default: | ||
1289 | rctl = er32(RCTL); | ||
1290 | rctl |= E1000_RCTL_LBM_TCVR; | ||
1291 | ew32(RCTL, rctl); | ||
1292 | return 0; | ||
1293 | } | ||
1294 | } else if (hw->media_type == e1000_media_type_copper) { | ||
1295 | return e1000_integrated_phy_loopback(adapter); | ||
1296 | } | ||
1297 | |||
1298 | return 7; | ||
1299 | } | ||
1300 | |||
1301 | static void e1000_loopback_cleanup(struct e1000_adapter *adapter) | ||
1302 | { | ||
1303 | struct e1000_hw *hw = &adapter->hw; | ||
1304 | u32 rctl; | ||
1305 | u16 phy_reg; | ||
1306 | |||
1307 | rctl = er32(RCTL); | ||
1308 | rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); | ||
1309 | ew32(RCTL, rctl); | ||
1310 | |||
1311 | switch (hw->mac.type) { | ||
1312 | case e1000_80003es2lan: | ||
1313 | if (hw->media_type == e1000_media_type_fiber || | ||
1314 | hw->media_type == e1000_media_type_internal_serdes) { | ||
1315 | /* restore CTRL_EXT, stealing space from tx_fifo_head */ | ||
1316 | ew32(CTRL_EXT, | ||
1317 | adapter->tx_fifo_head); | ||
1318 | adapter->tx_fifo_head = 0; | ||
1319 | } | ||
1320 | /* fall through */ | ||
1321 | case e1000_82571: | ||
1322 | case e1000_82572: | ||
1323 | if (hw->media_type == e1000_media_type_fiber || | ||
1324 | hw->media_type == e1000_media_type_internal_serdes) { | ||
1325 | #define E1000_SERDES_LB_OFF 0x400 | ||
1326 | ew32(SCTL, E1000_SERDES_LB_OFF); | ||
1327 | msleep(10); | ||
1328 | break; | ||
1329 | } | ||
1330 | /* Fall Through */ | ||
1331 | default: | ||
1332 | hw->mac.autoneg = 1; | ||
1333 | if (hw->phy.type == e1000_phy_gg82563) | ||
1334 | e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); | ||
1335 | e1e_rphy(hw, PHY_CONTROL, &phy_reg); | ||
1336 | if (phy_reg & MII_CR_LOOPBACK) { | ||
1337 | phy_reg &= ~MII_CR_LOOPBACK; | ||
1338 | e1e_wphy(hw, PHY_CONTROL, phy_reg); | ||
1339 | e1000e_commit_phy(hw); | ||
1340 | } | ||
1341 | break; | ||
1342 | } | ||
1343 | } | ||
1344 | |||
1345 | static void e1000_create_lbtest_frame(struct sk_buff *skb, | ||
1346 | unsigned int frame_size) | ||
1347 | { | ||
1348 | memset(skb->data, 0xFF, frame_size); | ||
1349 | frame_size &= ~1; | ||
1350 | memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); | ||
1351 | memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); | ||
1352 | memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); | ||
1353 | } | ||
1354 | |||
1355 | static int e1000_check_lbtest_frame(struct sk_buff *skb, | ||
1356 | unsigned int frame_size) | ||
1357 | { | ||
1358 | frame_size &= ~1; | ||
1359 | if (*(skb->data + 3) == 0xFF) | ||
1360 | if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && | ||
1361 | (*(skb->data + frame_size / 2 + 12) == 0xAF)) | ||
1362 | return 0; | ||
1363 | return 13; | ||
1364 | } | ||
1365 | |||
1366 | static int e1000_run_loopback_test(struct e1000_adapter *adapter) | ||
1367 | { | ||
1368 | struct e1000_ring *tx_ring = &adapter->test_tx_ring; | ||
1369 | struct e1000_ring *rx_ring = &adapter->test_rx_ring; | ||
1370 | struct pci_dev *pdev = adapter->pdev; | ||
1371 | struct e1000_hw *hw = &adapter->hw; | ||
1372 | int i, j, k, l; | ||
1373 | int lc; | ||
1374 | int good_cnt; | ||
1375 | int ret_val = 0; | ||
1376 | unsigned long time; | ||
1377 | |||
1378 | ew32(RDT, rx_ring->count - 1); | ||
1379 | |||
1380 | /* Calculate the loop count based on the largest descriptor ring | ||
1381 | * The idea is to wrap the largest ring a number of times using 64 | ||
1382 | * send/receive pairs during each loop | ||
1383 | */ | ||
1384 | |||
1385 | if (rx_ring->count <= tx_ring->count) | ||
1386 | lc = ((tx_ring->count / 64) * 2) + 1; | ||
1387 | else | ||
1388 | lc = ((rx_ring->count / 64) * 2) + 1; | ||
1389 | |||
1390 | k = 0; | ||
1391 | l = 0; | ||
1392 | for (j = 0; j <= lc; j++) { /* loop count loop */ | ||
1393 | for (i = 0; i < 64; i++) { /* send the packets */ | ||
1394 | e1000_create_lbtest_frame( | ||
1395 | tx_ring->buffer_info[i].skb, 1024); | ||
1396 | pci_dma_sync_single_for_device(pdev, | ||
1397 | tx_ring->buffer_info[k].dma, | ||
1398 | tx_ring->buffer_info[k].length, | ||
1399 | PCI_DMA_TODEVICE); | ||
1400 | k++; | ||
1401 | if (k == tx_ring->count) | ||
1402 | k = 0; | ||
1403 | } | ||
1404 | ew32(TDT, k); | ||
1405 | msleep(200); | ||
1406 | time = jiffies; /* set the start time for the receive */ | ||
1407 | good_cnt = 0; | ||
1408 | do { /* receive the sent packets */ | ||
1409 | pci_dma_sync_single_for_cpu(pdev, | ||
1410 | rx_ring->buffer_info[l].dma, 2048, | ||
1411 | PCI_DMA_FROMDEVICE); | ||
1412 | |||
1413 | ret_val = e1000_check_lbtest_frame( | ||
1414 | rx_ring->buffer_info[l].skb, 1024); | ||
1415 | if (!ret_val) | ||
1416 | good_cnt++; | ||
1417 | l++; | ||
1418 | if (l == rx_ring->count) | ||
1419 | l = 0; | ||
1420 | /* time + 20 msecs (200 msecs on 2.4) is more than | ||
1421 | * enough time to complete the receives, if it's | ||
1422 | * exceeded, break and error off | ||
1423 | */ | ||
1424 | } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); | ||
1425 | if (good_cnt != 64) { | ||
1426 | ret_val = 13; /* ret_val is the same as mis-compare */ | ||
1427 | break; | ||
1428 | } | ||
1429 | if (jiffies >= (time + 2)) { | ||
1430 | ret_val = 14; /* error code for time out error */ | ||
1431 | break; | ||
1432 | } | ||
1433 | } /* end loop count loop */ | ||
1434 | return ret_val; | ||
1435 | } | ||
1436 | |||
1437 | static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) | ||
1438 | { | ||
1439 | /* PHY loopback cannot be performed if SoL/IDER | ||
1440 | * sessions are active */ | ||
1441 | if (e1000_check_reset_block(&adapter->hw)) { | ||
1442 | ndev_err(adapter->netdev, "Cannot do PHY loopback test " | ||
1443 | "when SoL/IDER is active.\n"); | ||
1444 | *data = 0; | ||
1445 | goto out; | ||
1446 | } | ||
1447 | |||
1448 | *data = e1000_setup_desc_rings(adapter); | ||
1449 | if (data) | ||
1450 | goto out; | ||
1451 | |||
1452 | *data = e1000_setup_loopback_test(adapter); | ||
1453 | if (data) | ||
1454 | goto err_loopback; | ||
1455 | |||
1456 | *data = e1000_run_loopback_test(adapter); | ||
1457 | e1000_loopback_cleanup(adapter); | ||
1458 | |||
1459 | err_loopback: | ||
1460 | e1000_free_desc_rings(adapter); | ||
1461 | out: | ||
1462 | return *data; | ||
1463 | } | ||
1464 | |||
1465 | static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) | ||
1466 | { | ||
1467 | struct e1000_hw *hw = &adapter->hw; | ||
1468 | |||
1469 | *data = 0; | ||
1470 | if (hw->media_type == e1000_media_type_internal_serdes) { | ||
1471 | int i = 0; | ||
1472 | hw->mac.serdes_has_link = 0; | ||
1473 | |||
1474 | /* On some blade server designs, link establishment | ||
1475 | * could take as long as 2-3 minutes */ | ||
1476 | do { | ||
1477 | hw->mac.ops.check_for_link(hw); | ||
1478 | if (hw->mac.serdes_has_link) | ||
1479 | return *data; | ||
1480 | msleep(20); | ||
1481 | } while (i++ < 3750); | ||
1482 | |||
1483 | *data = 1; | ||
1484 | } else { | ||
1485 | hw->mac.ops.check_for_link(hw); | ||
1486 | if (hw->mac.autoneg) | ||
1487 | msleep(4000); | ||
1488 | |||
1489 | if (!(er32(STATUS) & | ||
1490 | E1000_STATUS_LU)) | ||
1491 | *data = 1; | ||
1492 | } | ||
1493 | return *data; | ||
1494 | } | ||
1495 | |||
1496 | static int e1000_diag_test_count(struct net_device *netdev) | ||
1497 | { | ||
1498 | return E1000_TEST_LEN; | ||
1499 | } | ||
1500 | |||
1501 | static void e1000_diag_test(struct net_device *netdev, | ||
1502 | struct ethtool_test *eth_test, u64 *data) | ||
1503 | { | ||
1504 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1505 | u16 autoneg_advertised; | ||
1506 | u8 forced_speed_duplex; | ||
1507 | u8 autoneg; | ||
1508 | bool if_running = netif_running(netdev); | ||
1509 | |||
1510 | set_bit(__E1000_TESTING, &adapter->state); | ||
1511 | if (eth_test->flags == ETH_TEST_FL_OFFLINE) { | ||
1512 | /* Offline tests */ | ||
1513 | |||
1514 | /* save speed, duplex, autoneg settings */ | ||
1515 | autoneg_advertised = adapter->hw.phy.autoneg_advertised; | ||
1516 | forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; | ||
1517 | autoneg = adapter->hw.mac.autoneg; | ||
1518 | |||
1519 | ndev_info(netdev, "offline testing starting\n"); | ||
1520 | |||
1521 | /* Link test performed before hardware reset so autoneg doesn't | ||
1522 | * interfere with test result */ | ||
1523 | if (e1000_link_test(adapter, &data[4])) | ||
1524 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1525 | |||
1526 | if (if_running) | ||
1527 | /* indicate we're in test mode */ | ||
1528 | dev_close(netdev); | ||
1529 | else | ||
1530 | e1000e_reset(adapter); | ||
1531 | |||
1532 | if (e1000_reg_test(adapter, &data[0])) | ||
1533 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1534 | |||
1535 | e1000e_reset(adapter); | ||
1536 | if (e1000_eeprom_test(adapter, &data[1])) | ||
1537 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1538 | |||
1539 | e1000e_reset(adapter); | ||
1540 | if (e1000_intr_test(adapter, &data[2])) | ||
1541 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1542 | |||
1543 | e1000e_reset(adapter); | ||
1544 | /* make sure the phy is powered up */ | ||
1545 | e1000e_power_up_phy(adapter); | ||
1546 | if (e1000_loopback_test(adapter, &data[3])) | ||
1547 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1548 | |||
1549 | /* restore speed, duplex, autoneg settings */ | ||
1550 | adapter->hw.phy.autoneg_advertised = autoneg_advertised; | ||
1551 | adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; | ||
1552 | adapter->hw.mac.autoneg = autoneg; | ||
1553 | |||
1554 | /* force this routine to wait until autoneg complete/timeout */ | ||
1555 | adapter->hw.phy.wait_for_link = 1; | ||
1556 | e1000e_reset(adapter); | ||
1557 | adapter->hw.phy.wait_for_link = 0; | ||
1558 | |||
1559 | clear_bit(__E1000_TESTING, &adapter->state); | ||
1560 | if (if_running) | ||
1561 | dev_open(netdev); | ||
1562 | } else { | ||
1563 | ndev_info(netdev, "online testing starting\n"); | ||
1564 | /* Online tests */ | ||
1565 | if (e1000_link_test(adapter, &data[4])) | ||
1566 | eth_test->flags |= ETH_TEST_FL_FAILED; | ||
1567 | |||
1568 | /* Online tests aren't run; pass by default */ | ||
1569 | data[0] = 0; | ||
1570 | data[1] = 0; | ||
1571 | data[2] = 0; | ||
1572 | data[3] = 0; | ||
1573 | |||
1574 | clear_bit(__E1000_TESTING, &adapter->state); | ||
1575 | } | ||
1576 | msleep_interruptible(4 * 1000); | ||
1577 | } | ||
1578 | |||
1579 | static void e1000_get_wol(struct net_device *netdev, | ||
1580 | struct ethtool_wolinfo *wol) | ||
1581 | { | ||
1582 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1583 | |||
1584 | wol->supported = 0; | ||
1585 | wol->wolopts = 0; | ||
1586 | |||
1587 | if (!(adapter->flags & FLAG_HAS_WOL)) | ||
1588 | return; | ||
1589 | |||
1590 | wol->supported = WAKE_UCAST | WAKE_MCAST | | ||
1591 | WAKE_BCAST | WAKE_MAGIC; | ||
1592 | |||
1593 | /* apply any specific unsupported masks here */ | ||
1594 | if (adapter->flags & FLAG_NO_WAKE_UCAST) { | ||
1595 | wol->supported &= ~WAKE_UCAST; | ||
1596 | |||
1597 | if (adapter->wol & E1000_WUFC_EX) | ||
1598 | ndev_err(netdev, "Interface does not support " | ||
1599 | "directed (unicast) frame wake-up packets\n"); | ||
1600 | } | ||
1601 | |||
1602 | if (adapter->wol & E1000_WUFC_EX) | ||
1603 | wol->wolopts |= WAKE_UCAST; | ||
1604 | if (adapter->wol & E1000_WUFC_MC) | ||
1605 | wol->wolopts |= WAKE_MCAST; | ||
1606 | if (adapter->wol & E1000_WUFC_BC) | ||
1607 | wol->wolopts |= WAKE_BCAST; | ||
1608 | if (adapter->wol & E1000_WUFC_MAG) | ||
1609 | wol->wolopts |= WAKE_MAGIC; | ||
1610 | } | ||
1611 | |||
1612 | static int e1000_set_wol(struct net_device *netdev, | ||
1613 | struct ethtool_wolinfo *wol) | ||
1614 | { | ||
1615 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1616 | |||
1617 | if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) | ||
1618 | return -EOPNOTSUPP; | ||
1619 | |||
1620 | if (!(adapter->flags & FLAG_HAS_WOL)) | ||
1621 | return wol->wolopts ? -EOPNOTSUPP : 0; | ||
1622 | |||
1623 | /* these settings will always override what we currently have */ | ||
1624 | adapter->wol = 0; | ||
1625 | |||
1626 | if (wol->wolopts & WAKE_UCAST) | ||
1627 | adapter->wol |= E1000_WUFC_EX; | ||
1628 | if (wol->wolopts & WAKE_MCAST) | ||
1629 | adapter->wol |= E1000_WUFC_MC; | ||
1630 | if (wol->wolopts & WAKE_BCAST) | ||
1631 | adapter->wol |= E1000_WUFC_BC; | ||
1632 | if (wol->wolopts & WAKE_MAGIC) | ||
1633 | adapter->wol |= E1000_WUFC_MAG; | ||
1634 | |||
1635 | return 0; | ||
1636 | } | ||
1637 | |||
1638 | /* toggle LED 4 times per second = 2 "blinks" per second */ | ||
1639 | #define E1000_ID_INTERVAL (HZ/4) | ||
1640 | |||
1641 | /* bit defines for adapter->led_status */ | ||
1642 | #define E1000_LED_ON 0 | ||
1643 | |||
1644 | static void e1000_led_blink_callback(unsigned long data) | ||
1645 | { | ||
1646 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | ||
1647 | |||
1648 | if (test_and_change_bit(E1000_LED_ON, &adapter->led_status)) | ||
1649 | adapter->hw.mac.ops.led_off(&adapter->hw); | ||
1650 | else | ||
1651 | adapter->hw.mac.ops.led_on(&adapter->hw); | ||
1652 | |||
1653 | mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL); | ||
1654 | } | ||
1655 | |||
1656 | static int e1000_phys_id(struct net_device *netdev, u32 data) | ||
1657 | { | ||
1658 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1659 | |||
1660 | if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) | ||
1661 | data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); | ||
1662 | |||
1663 | if (adapter->hw.phy.type == e1000_phy_ife) { | ||
1664 | if (!adapter->blink_timer.function) { | ||
1665 | init_timer(&adapter->blink_timer); | ||
1666 | adapter->blink_timer.function = | ||
1667 | e1000_led_blink_callback; | ||
1668 | adapter->blink_timer.data = (unsigned long) adapter; | ||
1669 | } | ||
1670 | mod_timer(&adapter->blink_timer, jiffies); | ||
1671 | msleep_interruptible(data * 1000); | ||
1672 | del_timer_sync(&adapter->blink_timer); | ||
1673 | e1e_wphy(&adapter->hw, | ||
1674 | IFE_PHY_SPECIAL_CONTROL_LED, 0); | ||
1675 | } else { | ||
1676 | e1000e_blink_led(&adapter->hw); | ||
1677 | msleep_interruptible(data * 1000); | ||
1678 | } | ||
1679 | |||
1680 | adapter->hw.mac.ops.led_off(&adapter->hw); | ||
1681 | clear_bit(E1000_LED_ON, &adapter->led_status); | ||
1682 | adapter->hw.mac.ops.cleanup_led(&adapter->hw); | ||
1683 | |||
1684 | return 0; | ||
1685 | } | ||
1686 | |||
1687 | static int e1000_nway_reset(struct net_device *netdev) | ||
1688 | { | ||
1689 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1690 | if (netif_running(netdev)) | ||
1691 | e1000e_reinit_locked(adapter); | ||
1692 | return 0; | ||
1693 | } | ||
1694 | |||
1695 | static int e1000_get_stats_count(struct net_device *netdev) | ||
1696 | { | ||
1697 | return E1000_STATS_LEN; | ||
1698 | } | ||
1699 | |||
1700 | static void e1000_get_ethtool_stats(struct net_device *netdev, | ||
1701 | struct ethtool_stats *stats, | ||
1702 | u64 *data) | ||
1703 | { | ||
1704 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1705 | int i; | ||
1706 | |||
1707 | e1000e_update_stats(adapter); | ||
1708 | for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { | ||
1709 | char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset; | ||
1710 | data[i] = (e1000_gstrings_stats[i].sizeof_stat == | ||
1711 | sizeof(u64)) ? *(u64 *)p : *(u32 *)p; | ||
1712 | } | ||
1713 | } | ||
1714 | |||
1715 | static void e1000_get_strings(struct net_device *netdev, u32 stringset, | ||
1716 | u8 *data) | ||
1717 | { | ||
1718 | u8 *p = data; | ||
1719 | int i; | ||
1720 | |||
1721 | switch (stringset) { | ||
1722 | case ETH_SS_TEST: | ||
1723 | memcpy(data, *e1000_gstrings_test, | ||
1724 | E1000_TEST_LEN*ETH_GSTRING_LEN); | ||
1725 | break; | ||
1726 | case ETH_SS_STATS: | ||
1727 | for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { | ||
1728 | memcpy(p, e1000_gstrings_stats[i].stat_string, | ||
1729 | ETH_GSTRING_LEN); | ||
1730 | p += ETH_GSTRING_LEN; | ||
1731 | } | ||
1732 | break; | ||
1733 | } | ||
1734 | } | ||
1735 | |||
1736 | static const struct ethtool_ops e1000_ethtool_ops = { | ||
1737 | .get_settings = e1000_get_settings, | ||
1738 | .set_settings = e1000_set_settings, | ||
1739 | .get_drvinfo = e1000_get_drvinfo, | ||
1740 | .get_regs_len = e1000_get_regs_len, | ||
1741 | .get_regs = e1000_get_regs, | ||
1742 | .get_wol = e1000_get_wol, | ||
1743 | .set_wol = e1000_set_wol, | ||
1744 | .get_msglevel = e1000_get_msglevel, | ||
1745 | .set_msglevel = e1000_set_msglevel, | ||
1746 | .nway_reset = e1000_nway_reset, | ||
1747 | .get_link = ethtool_op_get_link, | ||
1748 | .get_eeprom_len = e1000_get_eeprom_len, | ||
1749 | .get_eeprom = e1000_get_eeprom, | ||
1750 | .set_eeprom = e1000_set_eeprom, | ||
1751 | .get_ringparam = e1000_get_ringparam, | ||
1752 | .set_ringparam = e1000_set_ringparam, | ||
1753 | .get_pauseparam = e1000_get_pauseparam, | ||
1754 | .set_pauseparam = e1000_set_pauseparam, | ||
1755 | .get_rx_csum = e1000_get_rx_csum, | ||
1756 | .set_rx_csum = e1000_set_rx_csum, | ||
1757 | .get_tx_csum = e1000_get_tx_csum, | ||
1758 | .set_tx_csum = e1000_set_tx_csum, | ||
1759 | .get_sg = ethtool_op_get_sg, | ||
1760 | .set_sg = ethtool_op_set_sg, | ||
1761 | .get_tso = ethtool_op_get_tso, | ||
1762 | .set_tso = e1000_set_tso, | ||
1763 | .self_test_count = e1000_diag_test_count, | ||
1764 | .self_test = e1000_diag_test, | ||
1765 | .get_strings = e1000_get_strings, | ||
1766 | .phys_id = e1000_phys_id, | ||
1767 | .get_stats_count = e1000_get_stats_count, | ||
1768 | .get_ethtool_stats = e1000_get_ethtool_stats, | ||
1769 | }; | ||
1770 | |||
1771 | void e1000e_set_ethtool_ops(struct net_device *netdev) | ||
1772 | { | ||
1773 | SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); | ||
1774 | } | ||
diff --git a/drivers/net/e1000e/hw.h b/drivers/net/e1000e/hw.h new file mode 100644 index 000000000000..848217a38259 --- /dev/null +++ b/drivers/net/e1000e/hw.h | |||
@@ -0,0 +1,864 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | #ifndef _E1000_HW_H_ | ||
30 | #define _E1000_HW_H_ | ||
31 | |||
32 | #include <linux/types.h> | ||
33 | |||
34 | struct e1000_hw; | ||
35 | struct e1000_adapter; | ||
36 | |||
37 | #include "defines.h" | ||
38 | |||
39 | #define er32(reg) __er32(hw, E1000_##reg) | ||
40 | #define ew32(reg,val) __ew32(hw, E1000_##reg, (val)) | ||
41 | #define e1e_flush() er32(STATUS) | ||
42 | |||
43 | #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \ | ||
44 | (writel((value), ((a)->hw_addr + reg + ((offset) << 2)))) | ||
45 | |||
46 | #define E1000_READ_REG_ARRAY(a, reg, offset) \ | ||
47 | (readl((a)->hw_addr + reg + ((offset) << 2))) | ||
48 | |||
49 | enum e1e_registers { | ||
50 | E1000_CTRL = 0x00000, /* Device Control - RW */ | ||
51 | E1000_STATUS = 0x00008, /* Device Status - RO */ | ||
52 | E1000_EECD = 0x00010, /* EEPROM/Flash Control - RW */ | ||
53 | E1000_EERD = 0x00014, /* EEPROM Read - RW */ | ||
54 | E1000_CTRL_EXT = 0x00018, /* Extended Device Control - RW */ | ||
55 | E1000_FLA = 0x0001C, /* Flash Access - RW */ | ||
56 | E1000_MDIC = 0x00020, /* MDI Control - RW */ | ||
57 | E1000_SCTL = 0x00024, /* SerDes Control - RW */ | ||
58 | E1000_FCAL = 0x00028, /* Flow Control Address Low - RW */ | ||
59 | E1000_FCAH = 0x0002C, /* Flow Control Address High -RW */ | ||
60 | E1000_FEXTNVM = 0x00028, /* Future Extended NVM - RW */ | ||
61 | E1000_FCT = 0x00030, /* Flow Control Type - RW */ | ||
62 | E1000_VET = 0x00038, /* VLAN Ether Type - RW */ | ||
63 | E1000_ICR = 0x000C0, /* Interrupt Cause Read - R/clr */ | ||
64 | E1000_ITR = 0x000C4, /* Interrupt Throttling Rate - RW */ | ||
65 | E1000_ICS = 0x000C8, /* Interrupt Cause Set - WO */ | ||
66 | E1000_IMS = 0x000D0, /* Interrupt Mask Set - RW */ | ||
67 | E1000_IMC = 0x000D8, /* Interrupt Mask Clear - WO */ | ||
68 | E1000_IAM = 0x000E0, /* Interrupt Acknowledge Auto Mask */ | ||
69 | E1000_RCTL = 0x00100, /* RX Control - RW */ | ||
70 | E1000_FCTTV = 0x00170, /* Flow Control Transmit Timer Value - RW */ | ||
71 | E1000_TXCW = 0x00178, /* TX Configuration Word - RW */ | ||
72 | E1000_RXCW = 0x00180, /* RX Configuration Word - RO */ | ||
73 | E1000_TCTL = 0x00400, /* TX Control - RW */ | ||
74 | E1000_TCTL_EXT = 0x00404, /* Extended TX Control - RW */ | ||
75 | E1000_TIPG = 0x00410, /* TX Inter-packet gap -RW */ | ||
76 | E1000_AIT = 0x00458, /* Adaptive Interframe Spacing Throttle - RW */ | ||
77 | E1000_LEDCTL = 0x00E00, /* LED Control - RW */ | ||
78 | E1000_EXTCNF_CTRL = 0x00F00, /* Extended Configuration Control */ | ||
79 | E1000_EXTCNF_SIZE = 0x00F08, /* Extended Configuration Size */ | ||
80 | E1000_PHY_CTRL = 0x00F10, /* PHY Control Register in CSR */ | ||
81 | E1000_PBA = 0x01000, /* Packet Buffer Allocation - RW */ | ||
82 | E1000_PBS = 0x01008, /* Packet Buffer Size */ | ||
83 | E1000_EEMNGCTL = 0x01010, /* MNG EEprom Control */ | ||
84 | E1000_EEWR = 0x0102C, /* EEPROM Write Register - RW */ | ||
85 | E1000_FLOP = 0x0103C, /* FLASH Opcode Register */ | ||
86 | E1000_ERT = 0x02008, /* Early Rx Threshold - RW */ | ||
87 | E1000_FCRTL = 0x02160, /* Flow Control Receive Threshold Low - RW */ | ||
88 | E1000_FCRTH = 0x02168, /* Flow Control Receive Threshold High - RW */ | ||
89 | E1000_PSRCTL = 0x02170, /* Packet Split Receive Control - RW */ | ||
90 | E1000_RDBAL = 0x02800, /* RX Descriptor Base Address Low - RW */ | ||
91 | E1000_RDBAH = 0x02804, /* RX Descriptor Base Address High - RW */ | ||
92 | E1000_RDLEN = 0x02808, /* RX Descriptor Length - RW */ | ||
93 | E1000_RDH = 0x02810, /* RX Descriptor Head - RW */ | ||
94 | E1000_RDT = 0x02818, /* RX Descriptor Tail - RW */ | ||
95 | E1000_RDTR = 0x02820, /* RX Delay Timer - RW */ | ||
96 | E1000_RADV = 0x0282C, /* RX Interrupt Absolute Delay Timer - RW */ | ||
97 | |||
98 | /* Convenience macros | ||
99 | * | ||
100 | * Note: "_n" is the queue number of the register to be written to. | ||
101 | * | ||
102 | * Example usage: | ||
103 | * E1000_RDBAL_REG(current_rx_queue) | ||
104 | * | ||
105 | */ | ||
106 | #define E1000_RDBAL_REG(_n) (E1000_RDBAL + (_n << 8)) | ||
107 | E1000_KABGTXD = 0x03004, /* AFE Band Gap Transmit Ref Data */ | ||
108 | E1000_TDBAL = 0x03800, /* TX Descriptor Base Address Low - RW */ | ||
109 | E1000_TDBAH = 0x03804, /* TX Descriptor Base Address High - RW */ | ||
110 | E1000_TDLEN = 0x03808, /* TX Descriptor Length - RW */ | ||
111 | E1000_TDH = 0x03810, /* TX Descriptor Head - RW */ | ||
112 | E1000_TDT = 0x03818, /* TX Descriptor Tail - RW */ | ||
113 | E1000_TIDV = 0x03820, /* TX Interrupt Delay Value - RW */ | ||
114 | E1000_TXDCTL = 0x03828, /* TX Descriptor Control - RW */ | ||
115 | E1000_TADV = 0x0382C, /* TX Interrupt Absolute Delay Val - RW */ | ||
116 | E1000_TARC0 = 0x03840, /* TX Arbitration Count (0) */ | ||
117 | E1000_TXDCTL1 = 0x03928, /* TX Descriptor Control (1) - RW */ | ||
118 | E1000_TARC1 = 0x03940, /* TX Arbitration Count (1) */ | ||
119 | E1000_CRCERRS = 0x04000, /* CRC Error Count - R/clr */ | ||
120 | E1000_ALGNERRC = 0x04004, /* Alignment Error Count - R/clr */ | ||
121 | E1000_SYMERRS = 0x04008, /* Symbol Error Count - R/clr */ | ||
122 | E1000_RXERRC = 0x0400C, /* Receive Error Count - R/clr */ | ||
123 | E1000_MPC = 0x04010, /* Missed Packet Count - R/clr */ | ||
124 | E1000_SCC = 0x04014, /* Single Collision Count - R/clr */ | ||
125 | E1000_ECOL = 0x04018, /* Excessive Collision Count - R/clr */ | ||
126 | E1000_MCC = 0x0401C, /* Multiple Collision Count - R/clr */ | ||
127 | E1000_LATECOL = 0x04020, /* Late Collision Count - R/clr */ | ||
128 | E1000_COLC = 0x04028, /* Collision Count - R/clr */ | ||
129 | E1000_DC = 0x04030, /* Defer Count - R/clr */ | ||
130 | E1000_TNCRS = 0x04034, /* TX-No CRS - R/clr */ | ||
131 | E1000_SEC = 0x04038, /* Sequence Error Count - R/clr */ | ||
132 | E1000_CEXTERR = 0x0403C, /* Carrier Extension Error Count - R/clr */ | ||
133 | E1000_RLEC = 0x04040, /* Receive Length Error Count - R/clr */ | ||
134 | E1000_XONRXC = 0x04048, /* XON RX Count - R/clr */ | ||
135 | E1000_XONTXC = 0x0404C, /* XON TX Count - R/clr */ | ||
136 | E1000_XOFFRXC = 0x04050, /* XOFF RX Count - R/clr */ | ||
137 | E1000_XOFFTXC = 0x04054, /* XOFF TX Count - R/clr */ | ||
138 | E1000_FCRUC = 0x04058, /* Flow Control RX Unsupported Count- R/clr */ | ||
139 | E1000_PRC64 = 0x0405C, /* Packets RX (64 bytes) - R/clr */ | ||
140 | E1000_PRC127 = 0x04060, /* Packets RX (65-127 bytes) - R/clr */ | ||
141 | E1000_PRC255 = 0x04064, /* Packets RX (128-255 bytes) - R/clr */ | ||
142 | E1000_PRC511 = 0x04068, /* Packets RX (255-511 bytes) - R/clr */ | ||
143 | E1000_PRC1023 = 0x0406C, /* Packets RX (512-1023 bytes) - R/clr */ | ||
144 | E1000_PRC1522 = 0x04070, /* Packets RX (1024-1522 bytes) - R/clr */ | ||
145 | E1000_GPRC = 0x04074, /* Good Packets RX Count - R/clr */ | ||
146 | E1000_BPRC = 0x04078, /* Broadcast Packets RX Count - R/clr */ | ||
147 | E1000_MPRC = 0x0407C, /* Multicast Packets RX Count - R/clr */ | ||
148 | E1000_GPTC = 0x04080, /* Good Packets TX Count - R/clr */ | ||
149 | E1000_GORCL = 0x04088, /* Good Octets RX Count Low - R/clr */ | ||
150 | E1000_GORCH = 0x0408C, /* Good Octets RX Count High - R/clr */ | ||
151 | E1000_GOTCL = 0x04090, /* Good Octets TX Count Low - R/clr */ | ||
152 | E1000_GOTCH = 0x04094, /* Good Octets TX Count High - R/clr */ | ||
153 | E1000_RNBC = 0x040A0, /* RX No Buffers Count - R/clr */ | ||
154 | E1000_RUC = 0x040A4, /* RX Undersize Count - R/clr */ | ||
155 | E1000_RFC = 0x040A8, /* RX Fragment Count - R/clr */ | ||
156 | E1000_ROC = 0x040AC, /* RX Oversize Count - R/clr */ | ||
157 | E1000_RJC = 0x040B0, /* RX Jabber Count - R/clr */ | ||
158 | E1000_MGTPRC = 0x040B4, /* Management Packets RX Count - R/clr */ | ||
159 | E1000_MGTPDC = 0x040B8, /* Management Packets Dropped Count - R/clr */ | ||
160 | E1000_MGTPTC = 0x040BC, /* Management Packets TX Count - R/clr */ | ||
161 | E1000_TORL = 0x040C0, /* Total Octets RX Low - R/clr */ | ||
162 | E1000_TORH = 0x040C4, /* Total Octets RX High - R/clr */ | ||
163 | E1000_TOTL = 0x040C8, /* Total Octets TX Low - R/clr */ | ||
164 | E1000_TOTH = 0x040CC, /* Total Octets TX High - R/clr */ | ||
165 | E1000_TPR = 0x040D0, /* Total Packets RX - R/clr */ | ||
166 | E1000_TPT = 0x040D4, /* Total Packets TX - R/clr */ | ||
167 | E1000_PTC64 = 0x040D8, /* Packets TX (64 bytes) - R/clr */ | ||
168 | E1000_PTC127 = 0x040DC, /* Packets TX (65-127 bytes) - R/clr */ | ||
169 | E1000_PTC255 = 0x040E0, /* Packets TX (128-255 bytes) - R/clr */ | ||
170 | E1000_PTC511 = 0x040E4, /* Packets TX (256-511 bytes) - R/clr */ | ||
171 | E1000_PTC1023 = 0x040E8, /* Packets TX (512-1023 bytes) - R/clr */ | ||
172 | E1000_PTC1522 = 0x040EC, /* Packets TX (1024-1522 Bytes) - R/clr */ | ||
173 | E1000_MPTC = 0x040F0, /* Multicast Packets TX Count - R/clr */ | ||
174 | E1000_BPTC = 0x040F4, /* Broadcast Packets TX Count - R/clr */ | ||
175 | E1000_TSCTC = 0x040F8, /* TCP Segmentation Context TX - R/clr */ | ||
176 | E1000_TSCTFC = 0x040FC, /* TCP Segmentation Context TX Fail - R/clr */ | ||
177 | E1000_IAC = 0x04100, /* Interrupt Assertion Count */ | ||
178 | E1000_ICRXPTC = 0x04104, /* Irq Cause Rx Packet Timer Expire Count */ | ||
179 | E1000_ICRXATC = 0x04108, /* Irq Cause Rx Abs Timer Expire Count */ | ||
180 | E1000_ICTXPTC = 0x0410C, /* Irq Cause Tx Packet Timer Expire Count */ | ||
181 | E1000_ICTXATC = 0x04110, /* Irq Cause Tx Abs Timer Expire Count */ | ||
182 | E1000_ICTXQEC = 0x04118, /* Irq Cause Tx Queue Empty Count */ | ||
183 | E1000_ICTXQMTC = 0x0411C, /* Irq Cause Tx Queue MinThreshold Count */ | ||
184 | E1000_ICRXDMTC = 0x04120, /* Irq Cause Rx Desc MinThreshold Count */ | ||
185 | E1000_ICRXOC = 0x04124, /* Irq Cause Receiver Overrun Count */ | ||
186 | E1000_RXCSUM = 0x05000, /* RX Checksum Control - RW */ | ||
187 | E1000_RFCTL = 0x05008, /* Receive Filter Control*/ | ||
188 | E1000_MTA = 0x05200, /* Multicast Table Array - RW Array */ | ||
189 | E1000_RA = 0x05400, /* Receive Address - RW Array */ | ||
190 | E1000_VFTA = 0x05600, /* VLAN Filter Table Array - RW Array */ | ||
191 | E1000_WUC = 0x05800, /* Wakeup Control - RW */ | ||
192 | E1000_WUFC = 0x05808, /* Wakeup Filter Control - RW */ | ||
193 | E1000_WUS = 0x05810, /* Wakeup Status - RO */ | ||
194 | E1000_MANC = 0x05820, /* Management Control - RW */ | ||
195 | E1000_FFLT = 0x05F00, /* Flexible Filter Length Table - RW Array */ | ||
196 | E1000_HOST_IF = 0x08800, /* Host Interface */ | ||
197 | |||
198 | E1000_KMRNCTRLSTA = 0x00034, /* MAC-PHY interface - RW */ | ||
199 | E1000_MANC2H = 0x05860, /* Management Control To Host - RW */ | ||
200 | E1000_SW_FW_SYNC = 0x05B5C, /* Software-Firmware Synchronization - RW */ | ||
201 | E1000_GCR = 0x05B00, /* PCI-Ex Control */ | ||
202 | E1000_FACTPS = 0x05B30, /* Function Active and Power State to MNG */ | ||
203 | E1000_SWSM = 0x05B50, /* SW Semaphore */ | ||
204 | E1000_FWSM = 0x05B54, /* FW Semaphore */ | ||
205 | E1000_HICR = 0x08F00, /* Host Inteface Control */ | ||
206 | }; | ||
207 | |||
208 | /* RSS registers */ | ||
209 | |||
210 | /* IGP01E1000 Specific Registers */ | ||
211 | #define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */ | ||
212 | #define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */ | ||
213 | #define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */ | ||
214 | #define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */ | ||
215 | #define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */ | ||
216 | #define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */ | ||
217 | |||
218 | #define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 | ||
219 | #define IGP01E1000_PHY_POLARITY_MASK 0x0078 | ||
220 | |||
221 | #define IGP01E1000_PSCR_AUTO_MDIX 0x1000 | ||
222 | #define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */ | ||
223 | |||
224 | #define IGP01E1000_PSCFR_SMART_SPEED 0x0080 | ||
225 | |||
226 | #define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ | ||
227 | #define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */ | ||
228 | #define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */ | ||
229 | |||
230 | #define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 | ||
231 | |||
232 | #define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 | ||
233 | #define IGP01E1000_PSSR_MDIX 0x0008 | ||
234 | #define IGP01E1000_PSSR_SPEED_MASK 0xC000 | ||
235 | #define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 | ||
236 | |||
237 | #define IGP02E1000_PHY_CHANNEL_NUM 4 | ||
238 | #define IGP02E1000_PHY_AGC_A 0x11B1 | ||
239 | #define IGP02E1000_PHY_AGC_B 0x12B1 | ||
240 | #define IGP02E1000_PHY_AGC_C 0x14B1 | ||
241 | #define IGP02E1000_PHY_AGC_D 0x18B1 | ||
242 | |||
243 | #define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */ | ||
244 | #define IGP02E1000_AGC_LENGTH_MASK 0x7F | ||
245 | #define IGP02E1000_AGC_RANGE 15 | ||
246 | |||
247 | /* manage.c */ | ||
248 | #define E1000_VFTA_ENTRY_SHIFT 5 | ||
249 | #define E1000_VFTA_ENTRY_MASK 0x7F | ||
250 | #define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F | ||
251 | |||
252 | #define E1000_HICR_EN 0x01 /* Enable bit - RO */ | ||
253 | #define E1000_HICR_C 0x02 /* Driver sets this bit when done | ||
254 | * to put command in RAM */ | ||
255 | #define E1000_HICR_FW_RESET_ENABLE 0x40 | ||
256 | #define E1000_HICR_FW_RESET 0x80 | ||
257 | |||
258 | #define E1000_FWSM_MODE_MASK 0xE | ||
259 | #define E1000_FWSM_MODE_SHIFT 1 | ||
260 | |||
261 | #define E1000_MNG_IAMT_MODE 0x3 | ||
262 | #define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 | ||
263 | #define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 | ||
264 | #define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 | ||
265 | #define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64 | ||
266 | #define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1 | ||
267 | #define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2 | ||
268 | |||
269 | /* nvm.c */ | ||
270 | #define E1000_STM_OPCODE 0xDB00 | ||
271 | |||
272 | #define E1000_KMRNCTRLSTA_OFFSET 0x001F0000 | ||
273 | #define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16 | ||
274 | #define E1000_KMRNCTRLSTA_REN 0x00200000 | ||
275 | #define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */ | ||
276 | #define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */ | ||
277 | |||
278 | #define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 | ||
279 | #define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */ | ||
280 | #define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */ | ||
281 | #define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */ | ||
282 | |||
283 | /* IFE PHY Extended Status Control */ | ||
284 | #define IFE_PESC_POLARITY_REVERSED 0x0100 | ||
285 | |||
286 | /* IFE PHY Special Control */ | ||
287 | #define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 | ||
288 | #define IFE_PSC_FORCE_POLARITY 0x0020 | ||
289 | |||
290 | /* IFE PHY Special Control and LED Control */ | ||
291 | #define IFE_PSCL_PROBE_MODE 0x0020 | ||
292 | #define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */ | ||
293 | #define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ | ||
294 | |||
295 | /* IFE PHY MDIX Control */ | ||
296 | #define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ | ||
297 | #define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */ | ||
298 | #define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */ | ||
299 | |||
300 | #define E1000_CABLE_LENGTH_UNDEFINED 0xFF | ||
301 | |||
302 | #define E1000_DEV_ID_82571EB_COPPER 0x105E | ||
303 | #define E1000_DEV_ID_82571EB_FIBER 0x105F | ||
304 | #define E1000_DEV_ID_82571EB_SERDES 0x1060 | ||
305 | #define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4 | ||
306 | #define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5 | ||
307 | #define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC | ||
308 | #define E1000_DEV_ID_82572EI_COPPER 0x107D | ||
309 | #define E1000_DEV_ID_82572EI_FIBER 0x107E | ||
310 | #define E1000_DEV_ID_82572EI_SERDES 0x107F | ||
311 | #define E1000_DEV_ID_82572EI 0x10B9 | ||
312 | #define E1000_DEV_ID_82573E 0x108B | ||
313 | #define E1000_DEV_ID_82573E_IAMT 0x108C | ||
314 | #define E1000_DEV_ID_82573L 0x109A | ||
315 | |||
316 | #define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 | ||
317 | #define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 | ||
318 | #define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA | ||
319 | #define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB | ||
320 | |||
321 | #define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049 | ||
322 | #define E1000_DEV_ID_ICH8_IGP_AMT 0x104A | ||
323 | #define E1000_DEV_ID_ICH8_IGP_C 0x104B | ||
324 | #define E1000_DEV_ID_ICH8_IFE 0x104C | ||
325 | #define E1000_DEV_ID_ICH8_IFE_GT 0x10C4 | ||
326 | #define E1000_DEV_ID_ICH8_IFE_G 0x10C5 | ||
327 | #define E1000_DEV_ID_ICH8_IGP_M 0x104D | ||
328 | #define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD | ||
329 | #define E1000_DEV_ID_ICH9_IGP_C 0x294C | ||
330 | #define E1000_DEV_ID_ICH9_IFE 0x10C0 | ||
331 | #define E1000_DEV_ID_ICH9_IFE_GT 0x10C3 | ||
332 | #define E1000_DEV_ID_ICH9_IFE_G 0x10C2 | ||
333 | |||
334 | #define E1000_FUNC_1 1 | ||
335 | |||
336 | enum e1000_mac_type { | ||
337 | e1000_82571, | ||
338 | e1000_82572, | ||
339 | e1000_82573, | ||
340 | e1000_80003es2lan, | ||
341 | e1000_ich8lan, | ||
342 | e1000_ich9lan, | ||
343 | }; | ||
344 | |||
345 | enum e1000_media_type { | ||
346 | e1000_media_type_unknown = 0, | ||
347 | e1000_media_type_copper = 1, | ||
348 | e1000_media_type_fiber = 2, | ||
349 | e1000_media_type_internal_serdes = 3, | ||
350 | e1000_num_media_types | ||
351 | }; | ||
352 | |||
353 | enum e1000_nvm_type { | ||
354 | e1000_nvm_unknown = 0, | ||
355 | e1000_nvm_none, | ||
356 | e1000_nvm_eeprom_spi, | ||
357 | e1000_nvm_flash_hw, | ||
358 | e1000_nvm_flash_sw | ||
359 | }; | ||
360 | |||
361 | enum e1000_nvm_override { | ||
362 | e1000_nvm_override_none = 0, | ||
363 | e1000_nvm_override_spi_small, | ||
364 | e1000_nvm_override_spi_large | ||
365 | }; | ||
366 | |||
367 | enum e1000_phy_type { | ||
368 | e1000_phy_unknown = 0, | ||
369 | e1000_phy_none, | ||
370 | e1000_phy_m88, | ||
371 | e1000_phy_igp, | ||
372 | e1000_phy_igp_2, | ||
373 | e1000_phy_gg82563, | ||
374 | e1000_phy_igp_3, | ||
375 | e1000_phy_ife, | ||
376 | }; | ||
377 | |||
378 | enum e1000_bus_width { | ||
379 | e1000_bus_width_unknown = 0, | ||
380 | e1000_bus_width_pcie_x1, | ||
381 | e1000_bus_width_pcie_x2, | ||
382 | e1000_bus_width_pcie_x4 = 4, | ||
383 | e1000_bus_width_32, | ||
384 | e1000_bus_width_64, | ||
385 | e1000_bus_width_reserved | ||
386 | }; | ||
387 | |||
388 | enum e1000_1000t_rx_status { | ||
389 | e1000_1000t_rx_status_not_ok = 0, | ||
390 | e1000_1000t_rx_status_ok, | ||
391 | e1000_1000t_rx_status_undefined = 0xFF | ||
392 | }; | ||
393 | |||
394 | enum e1000_rev_polarity{ | ||
395 | e1000_rev_polarity_normal = 0, | ||
396 | e1000_rev_polarity_reversed, | ||
397 | e1000_rev_polarity_undefined = 0xFF | ||
398 | }; | ||
399 | |||
400 | enum e1000_fc_mode { | ||
401 | e1000_fc_none = 0, | ||
402 | e1000_fc_rx_pause, | ||
403 | e1000_fc_tx_pause, | ||
404 | e1000_fc_full, | ||
405 | e1000_fc_default = 0xFF | ||
406 | }; | ||
407 | |||
408 | enum e1000_ms_type { | ||
409 | e1000_ms_hw_default = 0, | ||
410 | e1000_ms_force_master, | ||
411 | e1000_ms_force_slave, | ||
412 | e1000_ms_auto | ||
413 | }; | ||
414 | |||
415 | enum e1000_smart_speed { | ||
416 | e1000_smart_speed_default = 0, | ||
417 | e1000_smart_speed_on, | ||
418 | e1000_smart_speed_off | ||
419 | }; | ||
420 | |||
421 | /* Receive Descriptor */ | ||
422 | struct e1000_rx_desc { | ||
423 | u64 buffer_addr; /* Address of the descriptor's data buffer */ | ||
424 | u16 length; /* Length of data DMAed into data buffer */ | ||
425 | u16 csum; /* Packet checksum */ | ||
426 | u8 status; /* Descriptor status */ | ||
427 | u8 errors; /* Descriptor Errors */ | ||
428 | u16 special; | ||
429 | }; | ||
430 | |||
431 | /* Receive Descriptor - Extended */ | ||
432 | union e1000_rx_desc_extended { | ||
433 | struct { | ||
434 | u64 buffer_addr; | ||
435 | u64 reserved; | ||
436 | } read; | ||
437 | struct { | ||
438 | struct { | ||
439 | u32 mrq; /* Multiple Rx Queues */ | ||
440 | union { | ||
441 | u32 rss; /* RSS Hash */ | ||
442 | struct { | ||
443 | u16 ip_id; /* IP id */ | ||
444 | u16 csum; /* Packet Checksum */ | ||
445 | } csum_ip; | ||
446 | } hi_dword; | ||
447 | } lower; | ||
448 | struct { | ||
449 | u32 status_error; /* ext status/error */ | ||
450 | u16 length; | ||
451 | u16 vlan; /* VLAN tag */ | ||
452 | } upper; | ||
453 | } wb; /* writeback */ | ||
454 | }; | ||
455 | |||
456 | #define MAX_PS_BUFFERS 4 | ||
457 | /* Receive Descriptor - Packet Split */ | ||
458 | union e1000_rx_desc_packet_split { | ||
459 | struct { | ||
460 | /* one buffer for protocol header(s), three data buffers */ | ||
461 | u64 buffer_addr[MAX_PS_BUFFERS]; | ||
462 | } read; | ||
463 | struct { | ||
464 | struct { | ||
465 | u32 mrq; /* Multiple Rx Queues */ | ||
466 | union { | ||
467 | u32 rss; /* RSS Hash */ | ||
468 | struct { | ||
469 | u16 ip_id; /* IP id */ | ||
470 | u16 csum; /* Packet Checksum */ | ||
471 | } csum_ip; | ||
472 | } hi_dword; | ||
473 | } lower; | ||
474 | struct { | ||
475 | u32 status_error; /* ext status/error */ | ||
476 | u16 length0; /* length of buffer 0 */ | ||
477 | u16 vlan; /* VLAN tag */ | ||
478 | } middle; | ||
479 | struct { | ||
480 | u16 header_status; | ||
481 | u16 length[3]; /* length of buffers 1-3 */ | ||
482 | } upper; | ||
483 | u64 reserved; | ||
484 | } wb; /* writeback */ | ||
485 | }; | ||
486 | |||
487 | /* Transmit Descriptor */ | ||
488 | struct e1000_tx_desc { | ||
489 | u64 buffer_addr; /* Address of the descriptor's data buffer */ | ||
490 | union { | ||
491 | u32 data; | ||
492 | struct { | ||
493 | u16 length; /* Data buffer length */ | ||
494 | u8 cso; /* Checksum offset */ | ||
495 | u8 cmd; /* Descriptor control */ | ||
496 | } flags; | ||
497 | } lower; | ||
498 | union { | ||
499 | u32 data; | ||
500 | struct { | ||
501 | u8 status; /* Descriptor status */ | ||
502 | u8 css; /* Checksum start */ | ||
503 | u16 special; | ||
504 | } fields; | ||
505 | } upper; | ||
506 | }; | ||
507 | |||
508 | /* Offload Context Descriptor */ | ||
509 | struct e1000_context_desc { | ||
510 | union { | ||
511 | u32 ip_config; | ||
512 | struct { | ||
513 | u8 ipcss; /* IP checksum start */ | ||
514 | u8 ipcso; /* IP checksum offset */ | ||
515 | u16 ipcse; /* IP checksum end */ | ||
516 | } ip_fields; | ||
517 | } lower_setup; | ||
518 | union { | ||
519 | u32 tcp_config; | ||
520 | struct { | ||
521 | u8 tucss; /* TCP checksum start */ | ||
522 | u8 tucso; /* TCP checksum offset */ | ||
523 | u16 tucse; /* TCP checksum end */ | ||
524 | } tcp_fields; | ||
525 | } upper_setup; | ||
526 | u32 cmd_and_length; | ||
527 | union { | ||
528 | u32 data; | ||
529 | struct { | ||
530 | u8 status; /* Descriptor status */ | ||
531 | u8 hdr_len; /* Header length */ | ||
532 | u16 mss; /* Maximum segment size */ | ||
533 | } fields; | ||
534 | } tcp_seg_setup; | ||
535 | }; | ||
536 | |||
537 | /* Offload data descriptor */ | ||
538 | struct e1000_data_desc { | ||
539 | u64 buffer_addr; /* Address of the descriptor's buffer address */ | ||
540 | union { | ||
541 | u32 data; | ||
542 | struct { | ||
543 | u16 length; /* Data buffer length */ | ||
544 | u8 typ_len_ext; | ||
545 | u8 cmd; | ||
546 | } flags; | ||
547 | } lower; | ||
548 | union { | ||
549 | u32 data; | ||
550 | struct { | ||
551 | u8 status; /* Descriptor status */ | ||
552 | u8 popts; /* Packet Options */ | ||
553 | u16 special; /* */ | ||
554 | } fields; | ||
555 | } upper; | ||
556 | }; | ||
557 | |||
558 | /* Statistics counters collected by the MAC */ | ||
559 | struct e1000_hw_stats { | ||
560 | u64 crcerrs; | ||
561 | u64 algnerrc; | ||
562 | u64 symerrs; | ||
563 | u64 rxerrc; | ||
564 | u64 mpc; | ||
565 | u64 scc; | ||
566 | u64 ecol; | ||
567 | u64 mcc; | ||
568 | u64 latecol; | ||
569 | u64 colc; | ||
570 | u64 dc; | ||
571 | u64 tncrs; | ||
572 | u64 sec; | ||
573 | u64 cexterr; | ||
574 | u64 rlec; | ||
575 | u64 xonrxc; | ||
576 | u64 xontxc; | ||
577 | u64 xoffrxc; | ||
578 | u64 xofftxc; | ||
579 | u64 fcruc; | ||
580 | u64 prc64; | ||
581 | u64 prc127; | ||
582 | u64 prc255; | ||
583 | u64 prc511; | ||
584 | u64 prc1023; | ||
585 | u64 prc1522; | ||
586 | u64 gprc; | ||
587 | u64 bprc; | ||
588 | u64 mprc; | ||
589 | u64 gptc; | ||
590 | u64 gorcl; | ||
591 | u64 gorch; | ||
592 | u64 gotcl; | ||
593 | u64 gotch; | ||
594 | u64 rnbc; | ||
595 | u64 ruc; | ||
596 | u64 rfc; | ||
597 | u64 roc; | ||
598 | u64 rjc; | ||
599 | u64 mgprc; | ||
600 | u64 mgpdc; | ||
601 | u64 mgptc; | ||
602 | u64 torl; | ||
603 | u64 torh; | ||
604 | u64 totl; | ||
605 | u64 toth; | ||
606 | u64 tpr; | ||
607 | u64 tpt; | ||
608 | u64 ptc64; | ||
609 | u64 ptc127; | ||
610 | u64 ptc255; | ||
611 | u64 ptc511; | ||
612 | u64 ptc1023; | ||
613 | u64 ptc1522; | ||
614 | u64 mptc; | ||
615 | u64 bptc; | ||
616 | u64 tsctc; | ||
617 | u64 tsctfc; | ||
618 | u64 iac; | ||
619 | u64 icrxptc; | ||
620 | u64 icrxatc; | ||
621 | u64 ictxptc; | ||
622 | u64 ictxatc; | ||
623 | u64 ictxqec; | ||
624 | u64 ictxqmtc; | ||
625 | u64 icrxdmtc; | ||
626 | u64 icrxoc; | ||
627 | }; | ||
628 | |||
629 | struct e1000_phy_stats { | ||
630 | u32 idle_errors; | ||
631 | u32 receive_errors; | ||
632 | }; | ||
633 | |||
634 | struct e1000_host_mng_dhcp_cookie { | ||
635 | u32 signature; | ||
636 | u8 status; | ||
637 | u8 reserved0; | ||
638 | u16 vlan_id; | ||
639 | u32 reserved1; | ||
640 | u16 reserved2; | ||
641 | u8 reserved3; | ||
642 | u8 checksum; | ||
643 | }; | ||
644 | |||
645 | /* Host Interface "Rev 1" */ | ||
646 | struct e1000_host_command_header { | ||
647 | u8 command_id; | ||
648 | u8 command_length; | ||
649 | u8 command_options; | ||
650 | u8 checksum; | ||
651 | }; | ||
652 | |||
653 | #define E1000_HI_MAX_DATA_LENGTH 252 | ||
654 | struct e1000_host_command_info { | ||
655 | struct e1000_host_command_header command_header; | ||
656 | u8 command_data[E1000_HI_MAX_DATA_LENGTH]; | ||
657 | }; | ||
658 | |||
659 | /* Host Interface "Rev 2" */ | ||
660 | struct e1000_host_mng_command_header { | ||
661 | u8 command_id; | ||
662 | u8 checksum; | ||
663 | u16 reserved1; | ||
664 | u16 reserved2; | ||
665 | u16 command_length; | ||
666 | }; | ||
667 | |||
668 | #define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 | ||
669 | struct e1000_host_mng_command_info { | ||
670 | struct e1000_host_mng_command_header command_header; | ||
671 | u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; | ||
672 | }; | ||
673 | |||
674 | /* Function pointers and static data for the MAC. */ | ||
675 | struct e1000_mac_operations { | ||
676 | u32 mng_mode_enab; | ||
677 | |||
678 | s32 (*check_for_link)(struct e1000_hw *); | ||
679 | s32 (*cleanup_led)(struct e1000_hw *); | ||
680 | void (*clear_hw_cntrs)(struct e1000_hw *); | ||
681 | s32 (*get_bus_info)(struct e1000_hw *); | ||
682 | s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *); | ||
683 | s32 (*led_on)(struct e1000_hw *); | ||
684 | s32 (*led_off)(struct e1000_hw *); | ||
685 | void (*mc_addr_list_update)(struct e1000_hw *, u8 *, u32, u32, | ||
686 | u32); | ||
687 | s32 (*reset_hw)(struct e1000_hw *); | ||
688 | s32 (*init_hw)(struct e1000_hw *); | ||
689 | s32 (*setup_link)(struct e1000_hw *); | ||
690 | s32 (*setup_physical_interface)(struct e1000_hw *); | ||
691 | }; | ||
692 | |||
693 | /* Function pointers for the PHY. */ | ||
694 | struct e1000_phy_operations { | ||
695 | s32 (*acquire_phy)(struct e1000_hw *); | ||
696 | s32 (*check_reset_block)(struct e1000_hw *); | ||
697 | s32 (*commit_phy)(struct e1000_hw *); | ||
698 | s32 (*force_speed_duplex)(struct e1000_hw *); | ||
699 | s32 (*get_cfg_done)(struct e1000_hw *hw); | ||
700 | s32 (*get_cable_length)(struct e1000_hw *); | ||
701 | s32 (*get_phy_info)(struct e1000_hw *); | ||
702 | s32 (*read_phy_reg)(struct e1000_hw *, u32, u16 *); | ||
703 | void (*release_phy)(struct e1000_hw *); | ||
704 | s32 (*reset_phy)(struct e1000_hw *); | ||
705 | s32 (*set_d0_lplu_state)(struct e1000_hw *, bool); | ||
706 | s32 (*set_d3_lplu_state)(struct e1000_hw *, bool); | ||
707 | s32 (*write_phy_reg)(struct e1000_hw *, u32, u16); | ||
708 | }; | ||
709 | |||
710 | /* Function pointers for the NVM. */ | ||
711 | struct e1000_nvm_operations { | ||
712 | s32 (*acquire_nvm)(struct e1000_hw *); | ||
713 | s32 (*read_nvm)(struct e1000_hw *, u16, u16, u16 *); | ||
714 | void (*release_nvm)(struct e1000_hw *); | ||
715 | s32 (*update_nvm)(struct e1000_hw *); | ||
716 | s32 (*valid_led_default)(struct e1000_hw *, u16 *); | ||
717 | s32 (*validate_nvm)(struct e1000_hw *); | ||
718 | s32 (*write_nvm)(struct e1000_hw *, u16, u16, u16 *); | ||
719 | }; | ||
720 | |||
721 | struct e1000_mac_info { | ||
722 | struct e1000_mac_operations ops; | ||
723 | |||
724 | u8 addr[6]; | ||
725 | u8 perm_addr[6]; | ||
726 | |||
727 | enum e1000_mac_type type; | ||
728 | enum e1000_fc_mode fc; | ||
729 | enum e1000_fc_mode original_fc; | ||
730 | |||
731 | u32 collision_delta; | ||
732 | u32 ledctl_default; | ||
733 | u32 ledctl_mode1; | ||
734 | u32 ledctl_mode2; | ||
735 | u32 max_frame_size; | ||
736 | u32 mc_filter_type; | ||
737 | u32 min_frame_size; | ||
738 | u32 tx_packet_delta; | ||
739 | u32 txcw; | ||
740 | |||
741 | u16 current_ifs_val; | ||
742 | u16 ifs_max_val; | ||
743 | u16 ifs_min_val; | ||
744 | u16 ifs_ratio; | ||
745 | u16 ifs_step_size; | ||
746 | u16 mta_reg_count; | ||
747 | u16 rar_entry_count; | ||
748 | u16 fc_high_water; | ||
749 | u16 fc_low_water; | ||
750 | u16 fc_pause_time; | ||
751 | |||
752 | u8 forced_speed_duplex; | ||
753 | |||
754 | bool arc_subsystem_valid; | ||
755 | bool autoneg; | ||
756 | bool autoneg_failed; | ||
757 | bool get_link_status; | ||
758 | bool in_ifs_mode; | ||
759 | bool serdes_has_link; | ||
760 | bool tx_pkt_filtering; | ||
761 | }; | ||
762 | |||
763 | struct e1000_phy_info { | ||
764 | struct e1000_phy_operations ops; | ||
765 | |||
766 | enum e1000_phy_type type; | ||
767 | |||
768 | enum e1000_1000t_rx_status local_rx; | ||
769 | enum e1000_1000t_rx_status remote_rx; | ||
770 | enum e1000_ms_type ms_type; | ||
771 | enum e1000_ms_type original_ms_type; | ||
772 | enum e1000_rev_polarity cable_polarity; | ||
773 | enum e1000_smart_speed smart_speed; | ||
774 | |||
775 | u32 addr; | ||
776 | u32 id; | ||
777 | u32 reset_delay_us; /* in usec */ | ||
778 | u32 revision; | ||
779 | |||
780 | u16 autoneg_advertised; | ||
781 | u16 autoneg_mask; | ||
782 | u16 cable_length; | ||
783 | u16 max_cable_length; | ||
784 | u16 min_cable_length; | ||
785 | |||
786 | u8 mdix; | ||
787 | |||
788 | bool disable_polarity_correction; | ||
789 | bool is_mdix; | ||
790 | bool polarity_correction; | ||
791 | bool speed_downgraded; | ||
792 | bool wait_for_link; | ||
793 | }; | ||
794 | |||
795 | struct e1000_nvm_info { | ||
796 | struct e1000_nvm_operations ops; | ||
797 | |||
798 | enum e1000_nvm_type type; | ||
799 | enum e1000_nvm_override override; | ||
800 | |||
801 | u32 flash_bank_size; | ||
802 | u32 flash_base_addr; | ||
803 | |||
804 | u16 word_size; | ||
805 | u16 delay_usec; | ||
806 | u16 address_bits; | ||
807 | u16 opcode_bits; | ||
808 | u16 page_size; | ||
809 | }; | ||
810 | |||
811 | struct e1000_bus_info { | ||
812 | enum e1000_bus_width width; | ||
813 | |||
814 | u16 func; | ||
815 | }; | ||
816 | |||
817 | struct e1000_dev_spec_82571 { | ||
818 | bool laa_is_present; | ||
819 | }; | ||
820 | |||
821 | struct e1000_shadow_ram { | ||
822 | u16 value; | ||
823 | bool modified; | ||
824 | }; | ||
825 | |||
826 | #define E1000_ICH8_SHADOW_RAM_WORDS 2048 | ||
827 | |||
828 | struct e1000_dev_spec_ich8lan { | ||
829 | bool kmrn_lock_loss_workaround_enabled; | ||
830 | struct e1000_shadow_ram shadow_ram[E1000_ICH8_SHADOW_RAM_WORDS]; | ||
831 | }; | ||
832 | |||
833 | struct e1000_hw { | ||
834 | struct e1000_adapter *adapter; | ||
835 | |||
836 | u8 __iomem *hw_addr; | ||
837 | u8 __iomem *flash_address; | ||
838 | |||
839 | struct e1000_mac_info mac; | ||
840 | struct e1000_phy_info phy; | ||
841 | struct e1000_nvm_info nvm; | ||
842 | struct e1000_bus_info bus; | ||
843 | struct e1000_host_mng_dhcp_cookie mng_cookie; | ||
844 | |||
845 | union { | ||
846 | struct e1000_dev_spec_82571 e82571; | ||
847 | struct e1000_dev_spec_ich8lan ich8lan; | ||
848 | } dev_spec; | ||
849 | |||
850 | enum e1000_media_type media_type; | ||
851 | }; | ||
852 | |||
853 | #ifdef DEBUG | ||
854 | #define hw_dbg(hw, format, arg...) \ | ||
855 | printk(KERN_DEBUG, "%s: " format, e1000_get_hw_dev_name(hw), ##arg); | ||
856 | #else | ||
857 | static inline int __attribute__ ((format (printf, 2, 3))) | ||
858 | hw_dbg(struct e1000_hw *hw, const char *format, ...) | ||
859 | { | ||
860 | return 0; | ||
861 | } | ||
862 | #endif | ||
863 | |||
864 | #endif | ||
diff --git a/drivers/net/e1000e/ich8lan.c b/drivers/net/e1000e/ich8lan.c new file mode 100644 index 000000000000..8f8139de1f48 --- /dev/null +++ b/drivers/net/e1000e/ich8lan.c | |||
@@ -0,0 +1,2225 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | /* | ||
30 | * 82562G-2 10/100 Network Connection | ||
31 | * 82562GT 10/100 Network Connection | ||
32 | * 82562GT-2 10/100 Network Connection | ||
33 | * 82562V 10/100 Network Connection | ||
34 | * 82562V-2 10/100 Network Connection | ||
35 | * 82566DC-2 Gigabit Network Connection | ||
36 | * 82566DC Gigabit Network Connection | ||
37 | * 82566DM-2 Gigabit Network Connection | ||
38 | * 82566DM Gigabit Network Connection | ||
39 | * 82566MC Gigabit Network Connection | ||
40 | * 82566MM Gigabit Network Connection | ||
41 | */ | ||
42 | |||
43 | #include <linux/netdevice.h> | ||
44 | #include <linux/ethtool.h> | ||
45 | #include <linux/delay.h> | ||
46 | #include <linux/pci.h> | ||
47 | |||
48 | #include "e1000.h" | ||
49 | |||
50 | #define ICH_FLASH_GFPREG 0x0000 | ||
51 | #define ICH_FLASH_HSFSTS 0x0004 | ||
52 | #define ICH_FLASH_HSFCTL 0x0006 | ||
53 | #define ICH_FLASH_FADDR 0x0008 | ||
54 | #define ICH_FLASH_FDATA0 0x0010 | ||
55 | |||
56 | #define ICH_FLASH_READ_COMMAND_TIMEOUT 500 | ||
57 | #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500 | ||
58 | #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000 | ||
59 | #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF | ||
60 | #define ICH_FLASH_CYCLE_REPEAT_COUNT 10 | ||
61 | |||
62 | #define ICH_CYCLE_READ 0 | ||
63 | #define ICH_CYCLE_WRITE 2 | ||
64 | #define ICH_CYCLE_ERASE 3 | ||
65 | |||
66 | #define FLASH_GFPREG_BASE_MASK 0x1FFF | ||
67 | #define FLASH_SECTOR_ADDR_SHIFT 12 | ||
68 | |||
69 | #define ICH_FLASH_SEG_SIZE_256 256 | ||
70 | #define ICH_FLASH_SEG_SIZE_4K 4096 | ||
71 | #define ICH_FLASH_SEG_SIZE_8K 8192 | ||
72 | #define ICH_FLASH_SEG_SIZE_64K 65536 | ||
73 | |||
74 | |||
75 | #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */ | ||
76 | |||
77 | #define E1000_ICH_MNG_IAMT_MODE 0x2 | ||
78 | |||
79 | #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ | ||
80 | (ID_LED_DEF1_OFF2 << 8) | \ | ||
81 | (ID_LED_DEF1_ON2 << 4) | \ | ||
82 | (ID_LED_DEF1_DEF2)) | ||
83 | |||
84 | #define E1000_ICH_NVM_SIG_WORD 0x13 | ||
85 | #define E1000_ICH_NVM_SIG_MASK 0xC000 | ||
86 | |||
87 | #define E1000_ICH8_LAN_INIT_TIMEOUT 1500 | ||
88 | |||
89 | #define E1000_FEXTNVM_SW_CONFIG 1 | ||
90 | #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */ | ||
91 | |||
92 | #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL | ||
93 | |||
94 | #define E1000_ICH_RAR_ENTRIES 7 | ||
95 | |||
96 | #define PHY_PAGE_SHIFT 5 | ||
97 | #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \ | ||
98 | ((reg) & MAX_PHY_REG_ADDRESS)) | ||
99 | #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */ | ||
100 | #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */ | ||
101 | |||
102 | #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 | ||
103 | #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300 | ||
104 | #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200 | ||
105 | |||
106 | /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ | ||
107 | /* Offset 04h HSFSTS */ | ||
108 | union ich8_hws_flash_status { | ||
109 | struct ich8_hsfsts { | ||
110 | u16 flcdone :1; /* bit 0 Flash Cycle Done */ | ||
111 | u16 flcerr :1; /* bit 1 Flash Cycle Error */ | ||
112 | u16 dael :1; /* bit 2 Direct Access error Log */ | ||
113 | u16 berasesz :2; /* bit 4:3 Sector Erase Size */ | ||
114 | u16 flcinprog :1; /* bit 5 flash cycle in Progress */ | ||
115 | u16 reserved1 :2; /* bit 13:6 Reserved */ | ||
116 | u16 reserved2 :6; /* bit 13:6 Reserved */ | ||
117 | u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */ | ||
118 | u16 flockdn :1; /* bit 15 Flash Config Lock-Down */ | ||
119 | } hsf_status; | ||
120 | u16 regval; | ||
121 | }; | ||
122 | |||
123 | /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ | ||
124 | /* Offset 06h FLCTL */ | ||
125 | union ich8_hws_flash_ctrl { | ||
126 | struct ich8_hsflctl { | ||
127 | u16 flcgo :1; /* 0 Flash Cycle Go */ | ||
128 | u16 flcycle :2; /* 2:1 Flash Cycle */ | ||
129 | u16 reserved :5; /* 7:3 Reserved */ | ||
130 | u16 fldbcount :2; /* 9:8 Flash Data Byte Count */ | ||
131 | u16 flockdn :6; /* 15:10 Reserved */ | ||
132 | } hsf_ctrl; | ||
133 | u16 regval; | ||
134 | }; | ||
135 | |||
136 | /* ICH Flash Region Access Permissions */ | ||
137 | union ich8_hws_flash_regacc { | ||
138 | struct ich8_flracc { | ||
139 | u32 grra :8; /* 0:7 GbE region Read Access */ | ||
140 | u32 grwa :8; /* 8:15 GbE region Write Access */ | ||
141 | u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */ | ||
142 | u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */ | ||
143 | } hsf_flregacc; | ||
144 | u16 regval; | ||
145 | }; | ||
146 | |||
147 | static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); | ||
148 | static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); | ||
149 | static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); | ||
150 | static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw); | ||
151 | static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); | ||
152 | static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, | ||
153 | u32 offset, u8 byte); | ||
154 | static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, | ||
155 | u16 *data); | ||
156 | static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, | ||
157 | u8 size, u16 *data); | ||
158 | static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); | ||
159 | static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); | ||
160 | |||
161 | static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) | ||
162 | { | ||
163 | return readw(hw->flash_address + reg); | ||
164 | } | ||
165 | |||
166 | static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) | ||
167 | { | ||
168 | return readl(hw->flash_address + reg); | ||
169 | } | ||
170 | |||
171 | static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) | ||
172 | { | ||
173 | writew(val, hw->flash_address + reg); | ||
174 | } | ||
175 | |||
176 | static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) | ||
177 | { | ||
178 | writel(val, hw->flash_address + reg); | ||
179 | } | ||
180 | |||
181 | #define er16flash(reg) __er16flash(hw, (reg)) | ||
182 | #define er32flash(reg) __er32flash(hw, (reg)) | ||
183 | #define ew16flash(reg,val) __ew16flash(hw, (reg), (val)) | ||
184 | #define ew32flash(reg,val) __ew32flash(hw, (reg), (val)) | ||
185 | |||
186 | /** | ||
187 | * e1000_init_phy_params_ich8lan - Initialize PHY function pointers | ||
188 | * @hw: pointer to the HW structure | ||
189 | * | ||
190 | * Initialize family-specific PHY parameters and function pointers. | ||
191 | **/ | ||
192 | static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) | ||
193 | { | ||
194 | struct e1000_phy_info *phy = &hw->phy; | ||
195 | s32 ret_val; | ||
196 | u16 i = 0; | ||
197 | |||
198 | phy->addr = 1; | ||
199 | phy->reset_delay_us = 100; | ||
200 | |||
201 | phy->id = 0; | ||
202 | while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && | ||
203 | (i++ < 100)) { | ||
204 | msleep(1); | ||
205 | ret_val = e1000e_get_phy_id(hw); | ||
206 | if (ret_val) | ||
207 | return ret_val; | ||
208 | } | ||
209 | |||
210 | /* Verify phy id */ | ||
211 | switch (phy->id) { | ||
212 | case IGP03E1000_E_PHY_ID: | ||
213 | phy->type = e1000_phy_igp_3; | ||
214 | phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
215 | break; | ||
216 | case IFE_E_PHY_ID: | ||
217 | case IFE_PLUS_E_PHY_ID: | ||
218 | case IFE_C_E_PHY_ID: | ||
219 | phy->type = e1000_phy_ife; | ||
220 | phy->autoneg_mask = E1000_ALL_NOT_GIG; | ||
221 | break; | ||
222 | default: | ||
223 | return -E1000_ERR_PHY; | ||
224 | break; | ||
225 | } | ||
226 | |||
227 | return 0; | ||
228 | } | ||
229 | |||
230 | /** | ||
231 | * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers | ||
232 | * @hw: pointer to the HW structure | ||
233 | * | ||
234 | * Initialize family-specific NVM parameters and function | ||
235 | * pointers. | ||
236 | **/ | ||
237 | static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) | ||
238 | { | ||
239 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
240 | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | ||
241 | u32 gfpreg; | ||
242 | u32 sector_base_addr; | ||
243 | u32 sector_end_addr; | ||
244 | u16 i; | ||
245 | |||
246 | /* Can't read flash registers if the register set isn't mapped. | ||
247 | */ | ||
248 | if (!hw->flash_address) { | ||
249 | hw_dbg(hw, "ERROR: Flash registers not mapped\n"); | ||
250 | return -E1000_ERR_CONFIG; | ||
251 | } | ||
252 | |||
253 | nvm->type = e1000_nvm_flash_sw; | ||
254 | |||
255 | gfpreg = er32flash(ICH_FLASH_GFPREG); | ||
256 | |||
257 | /* sector_X_addr is a "sector"-aligned address (4096 bytes) | ||
258 | * Add 1 to sector_end_addr since this sector is included in | ||
259 | * the overall size. */ | ||
260 | sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; | ||
261 | sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; | ||
262 | |||
263 | /* flash_base_addr is byte-aligned */ | ||
264 | nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; | ||
265 | |||
266 | /* find total size of the NVM, then cut in half since the total | ||
267 | * size represents two separate NVM banks. */ | ||
268 | nvm->flash_bank_size = (sector_end_addr - sector_base_addr) | ||
269 | << FLASH_SECTOR_ADDR_SHIFT; | ||
270 | nvm->flash_bank_size /= 2; | ||
271 | /* Adjust to word count */ | ||
272 | nvm->flash_bank_size /= sizeof(u16); | ||
273 | |||
274 | nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; | ||
275 | |||
276 | /* Clear shadow ram */ | ||
277 | for (i = 0; i < nvm->word_size; i++) { | ||
278 | dev_spec->shadow_ram[i].modified = 0; | ||
279 | dev_spec->shadow_ram[i].value = 0xFFFF; | ||
280 | } | ||
281 | |||
282 | return 0; | ||
283 | } | ||
284 | |||
285 | /** | ||
286 | * e1000_init_mac_params_ich8lan - Initialize MAC function pointers | ||
287 | * @hw: pointer to the HW structure | ||
288 | * | ||
289 | * Initialize family-specific MAC parameters and function | ||
290 | * pointers. | ||
291 | **/ | ||
292 | static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter) | ||
293 | { | ||
294 | struct e1000_hw *hw = &adapter->hw; | ||
295 | struct e1000_mac_info *mac = &hw->mac; | ||
296 | |||
297 | /* Set media type function pointer */ | ||
298 | hw->media_type = e1000_media_type_copper; | ||
299 | |||
300 | /* Set mta register count */ | ||
301 | mac->mta_reg_count = 32; | ||
302 | /* Set rar entry count */ | ||
303 | mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; | ||
304 | if (mac->type == e1000_ich8lan) | ||
305 | mac->rar_entry_count--; | ||
306 | /* Set if manageability features are enabled. */ | ||
307 | mac->arc_subsystem_valid = 1; | ||
308 | |||
309 | /* Enable PCS Lock-loss workaround for ICH8 */ | ||
310 | if (mac->type == e1000_ich8lan) | ||
311 | e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1); | ||
312 | |||
313 | return 0; | ||
314 | } | ||
315 | |||
316 | static s32 e1000_get_invariants_ich8lan(struct e1000_adapter *adapter) | ||
317 | { | ||
318 | struct e1000_hw *hw = &adapter->hw; | ||
319 | s32 rc; | ||
320 | |||
321 | rc = e1000_init_mac_params_ich8lan(adapter); | ||
322 | if (rc) | ||
323 | return rc; | ||
324 | |||
325 | rc = e1000_init_nvm_params_ich8lan(hw); | ||
326 | if (rc) | ||
327 | return rc; | ||
328 | |||
329 | rc = e1000_init_phy_params_ich8lan(hw); | ||
330 | if (rc) | ||
331 | return rc; | ||
332 | |||
333 | if ((adapter->hw.mac.type == e1000_ich8lan) && | ||
334 | (adapter->hw.phy.type == e1000_phy_igp_3)) | ||
335 | adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; | ||
336 | |||
337 | return 0; | ||
338 | } | ||
339 | |||
340 | /** | ||
341 | * e1000_acquire_swflag_ich8lan - Acquire software control flag | ||
342 | * @hw: pointer to the HW structure | ||
343 | * | ||
344 | * Acquires the software control flag for performing NVM and PHY | ||
345 | * operations. This is a function pointer entry point only called by | ||
346 | * read/write routines for the PHY and NVM parts. | ||
347 | **/ | ||
348 | static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) | ||
349 | { | ||
350 | u32 extcnf_ctrl; | ||
351 | u32 timeout = PHY_CFG_TIMEOUT; | ||
352 | |||
353 | while (timeout) { | ||
354 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
355 | extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; | ||
356 | ew32(EXTCNF_CTRL, extcnf_ctrl); | ||
357 | |||
358 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
359 | if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) | ||
360 | break; | ||
361 | mdelay(1); | ||
362 | timeout--; | ||
363 | } | ||
364 | |||
365 | if (!timeout) { | ||
366 | hw_dbg(hw, "FW or HW has locked the resource for too long.\n"); | ||
367 | return -E1000_ERR_CONFIG; | ||
368 | } | ||
369 | |||
370 | return 0; | ||
371 | } | ||
372 | |||
373 | /** | ||
374 | * e1000_release_swflag_ich8lan - Release software control flag | ||
375 | * @hw: pointer to the HW structure | ||
376 | * | ||
377 | * Releases the software control flag for performing NVM and PHY operations. | ||
378 | * This is a function pointer entry point only called by read/write | ||
379 | * routines for the PHY and NVM parts. | ||
380 | **/ | ||
381 | static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) | ||
382 | { | ||
383 | u32 extcnf_ctrl; | ||
384 | |||
385 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
386 | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; | ||
387 | ew32(EXTCNF_CTRL, extcnf_ctrl); | ||
388 | } | ||
389 | |||
390 | /** | ||
391 | * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked | ||
392 | * @hw: pointer to the HW structure | ||
393 | * | ||
394 | * Checks if firmware is blocking the reset of the PHY. | ||
395 | * This is a function pointer entry point only called by | ||
396 | * reset routines. | ||
397 | **/ | ||
398 | static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) | ||
399 | { | ||
400 | u32 fwsm; | ||
401 | |||
402 | fwsm = er32(FWSM); | ||
403 | |||
404 | return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET; | ||
405 | } | ||
406 | |||
407 | /** | ||
408 | * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex | ||
409 | * @hw: pointer to the HW structure | ||
410 | * | ||
411 | * Forces the speed and duplex settings of the PHY. | ||
412 | * This is a function pointer entry point only called by | ||
413 | * PHY setup routines. | ||
414 | **/ | ||
415 | static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw) | ||
416 | { | ||
417 | struct e1000_phy_info *phy = &hw->phy; | ||
418 | s32 ret_val; | ||
419 | u16 data; | ||
420 | bool link; | ||
421 | |||
422 | if (phy->type != e1000_phy_ife) { | ||
423 | ret_val = e1000e_phy_force_speed_duplex_igp(hw); | ||
424 | return ret_val; | ||
425 | } | ||
426 | |||
427 | ret_val = e1e_rphy(hw, PHY_CONTROL, &data); | ||
428 | if (ret_val) | ||
429 | return ret_val; | ||
430 | |||
431 | e1000e_phy_force_speed_duplex_setup(hw, &data); | ||
432 | |||
433 | ret_val = e1e_wphy(hw, PHY_CONTROL, data); | ||
434 | if (ret_val) | ||
435 | return ret_val; | ||
436 | |||
437 | /* Disable MDI-X support for 10/100 */ | ||
438 | ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); | ||
439 | if (ret_val) | ||
440 | return ret_val; | ||
441 | |||
442 | data &= ~IFE_PMC_AUTO_MDIX; | ||
443 | data &= ~IFE_PMC_FORCE_MDIX; | ||
444 | |||
445 | ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data); | ||
446 | if (ret_val) | ||
447 | return ret_val; | ||
448 | |||
449 | hw_dbg(hw, "IFE PMC: %X\n", data); | ||
450 | |||
451 | udelay(1); | ||
452 | |||
453 | if (phy->wait_for_link) { | ||
454 | hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n"); | ||
455 | |||
456 | ret_val = e1000e_phy_has_link_generic(hw, | ||
457 | PHY_FORCE_LIMIT, | ||
458 | 100000, | ||
459 | &link); | ||
460 | if (ret_val) | ||
461 | return ret_val; | ||
462 | |||
463 | if (!link) | ||
464 | hw_dbg(hw, "Link taking longer than expected.\n"); | ||
465 | |||
466 | /* Try once more */ | ||
467 | ret_val = e1000e_phy_has_link_generic(hw, | ||
468 | PHY_FORCE_LIMIT, | ||
469 | 100000, | ||
470 | &link); | ||
471 | if (ret_val) | ||
472 | return ret_val; | ||
473 | } | ||
474 | |||
475 | return 0; | ||
476 | } | ||
477 | |||
478 | /** | ||
479 | * e1000_phy_hw_reset_ich8lan - Performs a PHY reset | ||
480 | * @hw: pointer to the HW structure | ||
481 | * | ||
482 | * Resets the PHY | ||
483 | * This is a function pointer entry point called by drivers | ||
484 | * or other shared routines. | ||
485 | **/ | ||
486 | static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) | ||
487 | { | ||
488 | struct e1000_phy_info *phy = &hw->phy; | ||
489 | u32 i; | ||
490 | u32 data, cnf_size, cnf_base_addr, sw_cfg_mask; | ||
491 | s32 ret_val; | ||
492 | u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT; | ||
493 | u16 word_addr, reg_data, reg_addr, phy_page = 0; | ||
494 | |||
495 | ret_val = e1000e_phy_hw_reset_generic(hw); | ||
496 | if (ret_val) | ||
497 | return ret_val; | ||
498 | |||
499 | /* Initialize the PHY from the NVM on ICH platforms. This | ||
500 | * is needed due to an issue where the NVM configuration is | ||
501 | * not properly autoloaded after power transitions. | ||
502 | * Therefore, after each PHY reset, we will load the | ||
503 | * configuration data out of the NVM manually. | ||
504 | */ | ||
505 | if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) { | ||
506 | struct e1000_adapter *adapter = hw->adapter; | ||
507 | |||
508 | /* Check if SW needs configure the PHY */ | ||
509 | if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) || | ||
510 | (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M)) | ||
511 | sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; | ||
512 | else | ||
513 | sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; | ||
514 | |||
515 | data = er32(FEXTNVM); | ||
516 | if (!(data & sw_cfg_mask)) | ||
517 | return 0; | ||
518 | |||
519 | /* Wait for basic configuration completes before proceeding*/ | ||
520 | do { | ||
521 | data = er32(STATUS); | ||
522 | data &= E1000_STATUS_LAN_INIT_DONE; | ||
523 | udelay(100); | ||
524 | } while ((!data) && --loop); | ||
525 | |||
526 | /* If basic configuration is incomplete before the above loop | ||
527 | * count reaches 0, loading the configuration from NVM will | ||
528 | * leave the PHY in a bad state possibly resulting in no link. | ||
529 | */ | ||
530 | if (loop == 0) { | ||
531 | hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n"); | ||
532 | } | ||
533 | |||
534 | /* Clear the Init Done bit for the next init event */ | ||
535 | data = er32(STATUS); | ||
536 | data &= ~E1000_STATUS_LAN_INIT_DONE; | ||
537 | ew32(STATUS, data); | ||
538 | |||
539 | /* Make sure HW does not configure LCD from PHY | ||
540 | * extended configuration before SW configuration */ | ||
541 | data = er32(EXTCNF_CTRL); | ||
542 | if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) | ||
543 | return 0; | ||
544 | |||
545 | cnf_size = er32(EXTCNF_SIZE); | ||
546 | cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; | ||
547 | cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; | ||
548 | if (!cnf_size) | ||
549 | return 0; | ||
550 | |||
551 | cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; | ||
552 | cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; | ||
553 | |||
554 | /* Configure LCD from extended configuration | ||
555 | * region. */ | ||
556 | |||
557 | /* cnf_base_addr is in DWORD */ | ||
558 | word_addr = (u16)(cnf_base_addr << 1); | ||
559 | |||
560 | for (i = 0; i < cnf_size; i++) { | ||
561 | ret_val = e1000_read_nvm(hw, | ||
562 | (word_addr + i * 2), | ||
563 | 1, | ||
564 | ®_data); | ||
565 | if (ret_val) | ||
566 | return ret_val; | ||
567 | |||
568 | ret_val = e1000_read_nvm(hw, | ||
569 | (word_addr + i * 2 + 1), | ||
570 | 1, | ||
571 | ®_addr); | ||
572 | if (ret_val) | ||
573 | return ret_val; | ||
574 | |||
575 | /* Save off the PHY page for future writes. */ | ||
576 | if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { | ||
577 | phy_page = reg_data; | ||
578 | continue; | ||
579 | } | ||
580 | |||
581 | reg_addr |= phy_page; | ||
582 | |||
583 | ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data); | ||
584 | if (ret_val) | ||
585 | return ret_val; | ||
586 | } | ||
587 | } | ||
588 | |||
589 | return 0; | ||
590 | } | ||
591 | |||
592 | /** | ||
593 | * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states | ||
594 | * @hw: pointer to the HW structure | ||
595 | * | ||
596 | * Populates "phy" structure with various feature states. | ||
597 | * This function is only called by other family-specific | ||
598 | * routines. | ||
599 | **/ | ||
600 | static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw) | ||
601 | { | ||
602 | struct e1000_phy_info *phy = &hw->phy; | ||
603 | s32 ret_val; | ||
604 | u16 data; | ||
605 | bool link; | ||
606 | |||
607 | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | ||
608 | if (ret_val) | ||
609 | return ret_val; | ||
610 | |||
611 | if (!link) { | ||
612 | hw_dbg(hw, "Phy info is only valid if link is up\n"); | ||
613 | return -E1000_ERR_CONFIG; | ||
614 | } | ||
615 | |||
616 | ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data); | ||
617 | if (ret_val) | ||
618 | return ret_val; | ||
619 | phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE)); | ||
620 | |||
621 | if (phy->polarity_correction) { | ||
622 | ret_val = e1000_check_polarity_ife_ich8lan(hw); | ||
623 | if (ret_val) | ||
624 | return ret_val; | ||
625 | } else { | ||
626 | /* Polarity is forced */ | ||
627 | phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY) | ||
628 | ? e1000_rev_polarity_reversed | ||
629 | : e1000_rev_polarity_normal; | ||
630 | } | ||
631 | |||
632 | ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); | ||
633 | if (ret_val) | ||
634 | return ret_val; | ||
635 | |||
636 | phy->is_mdix = (data & IFE_PMC_MDIX_STATUS); | ||
637 | |||
638 | /* The following parameters are undefined for 10/100 operation. */ | ||
639 | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; | ||
640 | phy->local_rx = e1000_1000t_rx_status_undefined; | ||
641 | phy->remote_rx = e1000_1000t_rx_status_undefined; | ||
642 | |||
643 | return 0; | ||
644 | } | ||
645 | |||
646 | /** | ||
647 | * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info | ||
648 | * @hw: pointer to the HW structure | ||
649 | * | ||
650 | * Wrapper for calling the get_phy_info routines for the appropriate phy type. | ||
651 | * This is a function pointer entry point called by drivers | ||
652 | * or other shared routines. | ||
653 | **/ | ||
654 | static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw) | ||
655 | { | ||
656 | switch (hw->phy.type) { | ||
657 | case e1000_phy_ife: | ||
658 | return e1000_get_phy_info_ife_ich8lan(hw); | ||
659 | break; | ||
660 | case e1000_phy_igp_3: | ||
661 | return e1000e_get_phy_info_igp(hw); | ||
662 | break; | ||
663 | default: | ||
664 | break; | ||
665 | } | ||
666 | |||
667 | return -E1000_ERR_PHY_TYPE; | ||
668 | } | ||
669 | |||
670 | /** | ||
671 | * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY | ||
672 | * @hw: pointer to the HW structure | ||
673 | * | ||
674 | * Polarity is determined on the polarity reveral feature being enabled. | ||
675 | * This function is only called by other family-specific | ||
676 | * routines. | ||
677 | **/ | ||
678 | static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw) | ||
679 | { | ||
680 | struct e1000_phy_info *phy = &hw->phy; | ||
681 | s32 ret_val; | ||
682 | u16 phy_data, offset, mask; | ||
683 | |||
684 | /* Polarity is determined based on the reversal feature | ||
685 | * being enabled. | ||
686 | */ | ||
687 | if (phy->polarity_correction) { | ||
688 | offset = IFE_PHY_EXTENDED_STATUS_CONTROL; | ||
689 | mask = IFE_PESC_POLARITY_REVERSED; | ||
690 | } else { | ||
691 | offset = IFE_PHY_SPECIAL_CONTROL; | ||
692 | mask = IFE_PSC_FORCE_POLARITY; | ||
693 | } | ||
694 | |||
695 | ret_val = e1e_rphy(hw, offset, &phy_data); | ||
696 | |||
697 | if (!ret_val) | ||
698 | phy->cable_polarity = (phy_data & mask) | ||
699 | ? e1000_rev_polarity_reversed | ||
700 | : e1000_rev_polarity_normal; | ||
701 | |||
702 | return ret_val; | ||
703 | } | ||
704 | |||
705 | /** | ||
706 | * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state | ||
707 | * @hw: pointer to the HW structure | ||
708 | * @active: TRUE to enable LPLU, FALSE to disable | ||
709 | * | ||
710 | * Sets the LPLU D0 state according to the active flag. When | ||
711 | * activating LPLU this function also disables smart speed | ||
712 | * and vice versa. LPLU will not be activated unless the | ||
713 | * device autonegotiation advertisement meets standards of | ||
714 | * either 10 or 10/100 or 10/100/1000 at all duplexes. | ||
715 | * This is a function pointer entry point only called by | ||
716 | * PHY setup routines. | ||
717 | **/ | ||
718 | static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) | ||
719 | { | ||
720 | struct e1000_phy_info *phy = &hw->phy; | ||
721 | u32 phy_ctrl; | ||
722 | s32 ret_val = 0; | ||
723 | u16 data; | ||
724 | |||
725 | if (phy->type != e1000_phy_igp_3) | ||
726 | return ret_val; | ||
727 | |||
728 | phy_ctrl = er32(PHY_CTRL); | ||
729 | |||
730 | if (active) { | ||
731 | phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; | ||
732 | ew32(PHY_CTRL, phy_ctrl); | ||
733 | |||
734 | /* Call gig speed drop workaround on LPLU before accessing | ||
735 | * any PHY registers */ | ||
736 | if ((hw->mac.type == e1000_ich8lan) && | ||
737 | (hw->phy.type == e1000_phy_igp_3)) | ||
738 | e1000e_gig_downshift_workaround_ich8lan(hw); | ||
739 | |||
740 | /* When LPLU is enabled, we should disable SmartSpeed */ | ||
741 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); | ||
742 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
743 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); | ||
744 | if (ret_val) | ||
745 | return ret_val; | ||
746 | } else { | ||
747 | phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; | ||
748 | ew32(PHY_CTRL, phy_ctrl); | ||
749 | |||
750 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used | ||
751 | * during Dx states where the power conservation is most | ||
752 | * important. During driver activity we should enable | ||
753 | * SmartSpeed, so performance is maintained. */ | ||
754 | if (phy->smart_speed == e1000_smart_speed_on) { | ||
755 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
756 | &data); | ||
757 | if (ret_val) | ||
758 | return ret_val; | ||
759 | |||
760 | data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
761 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
762 | data); | ||
763 | if (ret_val) | ||
764 | return ret_val; | ||
765 | } else if (phy->smart_speed == e1000_smart_speed_off) { | ||
766 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
767 | &data); | ||
768 | if (ret_val) | ||
769 | return ret_val; | ||
770 | |||
771 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
772 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
773 | data); | ||
774 | if (ret_val) | ||
775 | return ret_val; | ||
776 | } | ||
777 | } | ||
778 | |||
779 | return 0; | ||
780 | } | ||
781 | |||
782 | /** | ||
783 | * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state | ||
784 | * @hw: pointer to the HW structure | ||
785 | * @active: TRUE to enable LPLU, FALSE to disable | ||
786 | * | ||
787 | * Sets the LPLU D3 state according to the active flag. When | ||
788 | * activating LPLU this function also disables smart speed | ||
789 | * and vice versa. LPLU will not be activated unless the | ||
790 | * device autonegotiation advertisement meets standards of | ||
791 | * either 10 or 10/100 or 10/100/1000 at all duplexes. | ||
792 | * This is a function pointer entry point only called by | ||
793 | * PHY setup routines. | ||
794 | **/ | ||
795 | static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) | ||
796 | { | ||
797 | struct e1000_phy_info *phy = &hw->phy; | ||
798 | u32 phy_ctrl; | ||
799 | s32 ret_val; | ||
800 | u16 data; | ||
801 | |||
802 | phy_ctrl = er32(PHY_CTRL); | ||
803 | |||
804 | if (!active) { | ||
805 | phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; | ||
806 | ew32(PHY_CTRL, phy_ctrl); | ||
807 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used | ||
808 | * during Dx states where the power conservation is most | ||
809 | * important. During driver activity we should enable | ||
810 | * SmartSpeed, so performance is maintained. */ | ||
811 | if (phy->smart_speed == e1000_smart_speed_on) { | ||
812 | ret_val = e1e_rphy(hw, | ||
813 | IGP01E1000_PHY_PORT_CONFIG, | ||
814 | &data); | ||
815 | if (ret_val) | ||
816 | return ret_val; | ||
817 | |||
818 | data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
819 | ret_val = e1e_wphy(hw, | ||
820 | IGP01E1000_PHY_PORT_CONFIG, | ||
821 | data); | ||
822 | if (ret_val) | ||
823 | return ret_val; | ||
824 | } else if (phy->smart_speed == e1000_smart_speed_off) { | ||
825 | ret_val = e1e_rphy(hw, | ||
826 | IGP01E1000_PHY_PORT_CONFIG, | ||
827 | &data); | ||
828 | if (ret_val) | ||
829 | return ret_val; | ||
830 | |||
831 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
832 | ret_val = e1e_wphy(hw, | ||
833 | IGP01E1000_PHY_PORT_CONFIG, | ||
834 | data); | ||
835 | if (ret_val) | ||
836 | return ret_val; | ||
837 | } | ||
838 | } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || | ||
839 | (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || | ||
840 | (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { | ||
841 | phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; | ||
842 | ew32(PHY_CTRL, phy_ctrl); | ||
843 | |||
844 | /* Call gig speed drop workaround on LPLU before accessing | ||
845 | * any PHY registers */ | ||
846 | if ((hw->mac.type == e1000_ich8lan) && | ||
847 | (hw->phy.type == e1000_phy_igp_3)) | ||
848 | e1000e_gig_downshift_workaround_ich8lan(hw); | ||
849 | |||
850 | /* When LPLU is enabled, we should disable SmartSpeed */ | ||
851 | ret_val = e1e_rphy(hw, | ||
852 | IGP01E1000_PHY_PORT_CONFIG, | ||
853 | &data); | ||
854 | if (ret_val) | ||
855 | return ret_val; | ||
856 | |||
857 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
858 | ret_val = e1e_wphy(hw, | ||
859 | IGP01E1000_PHY_PORT_CONFIG, | ||
860 | data); | ||
861 | } | ||
862 | |||
863 | return 0; | ||
864 | } | ||
865 | |||
866 | /** | ||
867 | * e1000_read_nvm_ich8lan - Read word(s) from the NVM | ||
868 | * @hw: pointer to the HW structure | ||
869 | * @offset: The offset (in bytes) of the word(s) to read. | ||
870 | * @words: Size of data to read in words | ||
871 | * @data: Pointer to the word(s) to read at offset. | ||
872 | * | ||
873 | * Reads a word(s) from the NVM using the flash access registers. | ||
874 | **/ | ||
875 | static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, | ||
876 | u16 *data) | ||
877 | { | ||
878 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
879 | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | ||
880 | u32 act_offset; | ||
881 | s32 ret_val; | ||
882 | u16 i, word; | ||
883 | |||
884 | if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || | ||
885 | (words == 0)) { | ||
886 | hw_dbg(hw, "nvm parameter(s) out of bounds\n"); | ||
887 | return -E1000_ERR_NVM; | ||
888 | } | ||
889 | |||
890 | ret_val = e1000_acquire_swflag_ich8lan(hw); | ||
891 | if (ret_val) | ||
892 | return ret_val; | ||
893 | |||
894 | /* Start with the bank offset, then add the relative offset. */ | ||
895 | act_offset = (er32(EECD) & E1000_EECD_SEC1VAL) | ||
896 | ? nvm->flash_bank_size | ||
897 | : 0; | ||
898 | act_offset += offset; | ||
899 | |||
900 | for (i = 0; i < words; i++) { | ||
901 | if ((dev_spec->shadow_ram) && | ||
902 | (dev_spec->shadow_ram[offset+i].modified)) { | ||
903 | data[i] = dev_spec->shadow_ram[offset+i].value; | ||
904 | } else { | ||
905 | ret_val = e1000_read_flash_word_ich8lan(hw, | ||
906 | act_offset + i, | ||
907 | &word); | ||
908 | if (ret_val) | ||
909 | break; | ||
910 | data[i] = word; | ||
911 | } | ||
912 | } | ||
913 | |||
914 | e1000_release_swflag_ich8lan(hw); | ||
915 | |||
916 | return ret_val; | ||
917 | } | ||
918 | |||
919 | /** | ||
920 | * e1000_flash_cycle_init_ich8lan - Initialize flash | ||
921 | * @hw: pointer to the HW structure | ||
922 | * | ||
923 | * This function does initial flash setup so that a new read/write/erase cycle | ||
924 | * can be started. | ||
925 | **/ | ||
926 | static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) | ||
927 | { | ||
928 | union ich8_hws_flash_status hsfsts; | ||
929 | s32 ret_val = -E1000_ERR_NVM; | ||
930 | s32 i = 0; | ||
931 | |||
932 | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | ||
933 | |||
934 | /* Check if the flash descriptor is valid */ | ||
935 | if (hsfsts.hsf_status.fldesvalid == 0) { | ||
936 | hw_dbg(hw, "Flash descriptor invalid. " | ||
937 | "SW Sequencing must be used."); | ||
938 | return -E1000_ERR_NVM; | ||
939 | } | ||
940 | |||
941 | /* Clear FCERR and DAEL in hw status by writing 1 */ | ||
942 | hsfsts.hsf_status.flcerr = 1; | ||
943 | hsfsts.hsf_status.dael = 1; | ||
944 | |||
945 | ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); | ||
946 | |||
947 | /* Either we should have a hardware SPI cycle in progress | ||
948 | * bit to check against, in order to start a new cycle or | ||
949 | * FDONE bit should be changed in the hardware so that it | ||
950 | * is 1 after harware reset, which can then be used as an | ||
951 | * indication whether a cycle is in progress or has been | ||
952 | * completed. | ||
953 | */ | ||
954 | |||
955 | if (hsfsts.hsf_status.flcinprog == 0) { | ||
956 | /* There is no cycle running at present, | ||
957 | * so we can start a cycle */ | ||
958 | /* Begin by setting Flash Cycle Done. */ | ||
959 | hsfsts.hsf_status.flcdone = 1; | ||
960 | ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); | ||
961 | ret_val = 0; | ||
962 | } else { | ||
963 | /* otherwise poll for sometime so the current | ||
964 | * cycle has a chance to end before giving up. */ | ||
965 | for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { | ||
966 | hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS); | ||
967 | if (hsfsts.hsf_status.flcinprog == 0) { | ||
968 | ret_val = 0; | ||
969 | break; | ||
970 | } | ||
971 | udelay(1); | ||
972 | } | ||
973 | if (ret_val == 0) { | ||
974 | /* Successful in waiting for previous cycle to timeout, | ||
975 | * now set the Flash Cycle Done. */ | ||
976 | hsfsts.hsf_status.flcdone = 1; | ||
977 | ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); | ||
978 | } else { | ||
979 | hw_dbg(hw, "Flash controller busy, cannot get access"); | ||
980 | } | ||
981 | } | ||
982 | |||
983 | return ret_val; | ||
984 | } | ||
985 | |||
986 | /** | ||
987 | * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) | ||
988 | * @hw: pointer to the HW structure | ||
989 | * @timeout: maximum time to wait for completion | ||
990 | * | ||
991 | * This function starts a flash cycle and waits for its completion. | ||
992 | **/ | ||
993 | static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) | ||
994 | { | ||
995 | union ich8_hws_flash_ctrl hsflctl; | ||
996 | union ich8_hws_flash_status hsfsts; | ||
997 | s32 ret_val = -E1000_ERR_NVM; | ||
998 | u32 i = 0; | ||
999 | |||
1000 | /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ | ||
1001 | hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); | ||
1002 | hsflctl.hsf_ctrl.flcgo = 1; | ||
1003 | ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); | ||
1004 | |||
1005 | /* wait till FDONE bit is set to 1 */ | ||
1006 | do { | ||
1007 | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | ||
1008 | if (hsfsts.hsf_status.flcdone == 1) | ||
1009 | break; | ||
1010 | udelay(1); | ||
1011 | } while (i++ < timeout); | ||
1012 | |||
1013 | if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) | ||
1014 | return 0; | ||
1015 | |||
1016 | return ret_val; | ||
1017 | } | ||
1018 | |||
1019 | /** | ||
1020 | * e1000_read_flash_word_ich8lan - Read word from flash | ||
1021 | * @hw: pointer to the HW structure | ||
1022 | * @offset: offset to data location | ||
1023 | * @data: pointer to the location for storing the data | ||
1024 | * | ||
1025 | * Reads the flash word at offset into data. Offset is converted | ||
1026 | * to bytes before read. | ||
1027 | **/ | ||
1028 | static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, | ||
1029 | u16 *data) | ||
1030 | { | ||
1031 | /* Must convert offset into bytes. */ | ||
1032 | offset <<= 1; | ||
1033 | |||
1034 | return e1000_read_flash_data_ich8lan(hw, offset, 2, data); | ||
1035 | } | ||
1036 | |||
1037 | /** | ||
1038 | * e1000_read_flash_data_ich8lan - Read byte or word from NVM | ||
1039 | * @hw: pointer to the HW structure | ||
1040 | * @offset: The offset (in bytes) of the byte or word to read. | ||
1041 | * @size: Size of data to read, 1=byte 2=word | ||
1042 | * @data: Pointer to the word to store the value read. | ||
1043 | * | ||
1044 | * Reads a byte or word from the NVM using the flash access registers. | ||
1045 | **/ | ||
1046 | static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, | ||
1047 | u8 size, u16 *data) | ||
1048 | { | ||
1049 | union ich8_hws_flash_status hsfsts; | ||
1050 | union ich8_hws_flash_ctrl hsflctl; | ||
1051 | u32 flash_linear_addr; | ||
1052 | u32 flash_data = 0; | ||
1053 | s32 ret_val = -E1000_ERR_NVM; | ||
1054 | u8 count = 0; | ||
1055 | |||
1056 | if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) | ||
1057 | return -E1000_ERR_NVM; | ||
1058 | |||
1059 | flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + | ||
1060 | hw->nvm.flash_base_addr; | ||
1061 | |||
1062 | do { | ||
1063 | udelay(1); | ||
1064 | /* Steps */ | ||
1065 | ret_val = e1000_flash_cycle_init_ich8lan(hw); | ||
1066 | if (ret_val != 0) | ||
1067 | break; | ||
1068 | |||
1069 | hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); | ||
1070 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | ||
1071 | hsflctl.hsf_ctrl.fldbcount = size - 1; | ||
1072 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; | ||
1073 | ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); | ||
1074 | |||
1075 | ew32flash(ICH_FLASH_FADDR, flash_linear_addr); | ||
1076 | |||
1077 | ret_val = e1000_flash_cycle_ich8lan(hw, | ||
1078 | ICH_FLASH_READ_COMMAND_TIMEOUT); | ||
1079 | |||
1080 | /* Check if FCERR is set to 1, if set to 1, clear it | ||
1081 | * and try the whole sequence a few more times, else | ||
1082 | * read in (shift in) the Flash Data0, the order is | ||
1083 | * least significant byte first msb to lsb */ | ||
1084 | if (ret_val == 0) { | ||
1085 | flash_data = er32flash(ICH_FLASH_FDATA0); | ||
1086 | if (size == 1) { | ||
1087 | *data = (u8)(flash_data & 0x000000FF); | ||
1088 | } else if (size == 2) { | ||
1089 | *data = (u16)(flash_data & 0x0000FFFF); | ||
1090 | } | ||
1091 | break; | ||
1092 | } else { | ||
1093 | /* If we've gotten here, then things are probably | ||
1094 | * completely hosed, but if the error condition is | ||
1095 | * detected, it won't hurt to give it another try... | ||
1096 | * ICH_FLASH_CYCLE_REPEAT_COUNT times. | ||
1097 | */ | ||
1098 | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | ||
1099 | if (hsfsts.hsf_status.flcerr == 1) { | ||
1100 | /* Repeat for some time before giving up. */ | ||
1101 | continue; | ||
1102 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||
1103 | hw_dbg(hw, "Timeout error - flash cycle " | ||
1104 | "did not complete."); | ||
1105 | break; | ||
1106 | } | ||
1107 | } | ||
1108 | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); | ||
1109 | |||
1110 | return ret_val; | ||
1111 | } | ||
1112 | |||
1113 | /** | ||
1114 | * e1000_write_nvm_ich8lan - Write word(s) to the NVM | ||
1115 | * @hw: pointer to the HW structure | ||
1116 | * @offset: The offset (in bytes) of the word(s) to write. | ||
1117 | * @words: Size of data to write in words | ||
1118 | * @data: Pointer to the word(s) to write at offset. | ||
1119 | * | ||
1120 | * Writes a byte or word to the NVM using the flash access registers. | ||
1121 | **/ | ||
1122 | static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, | ||
1123 | u16 *data) | ||
1124 | { | ||
1125 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1126 | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | ||
1127 | s32 ret_val; | ||
1128 | u16 i; | ||
1129 | |||
1130 | if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || | ||
1131 | (words == 0)) { | ||
1132 | hw_dbg(hw, "nvm parameter(s) out of bounds\n"); | ||
1133 | return -E1000_ERR_NVM; | ||
1134 | } | ||
1135 | |||
1136 | ret_val = e1000_acquire_swflag_ich8lan(hw); | ||
1137 | if (ret_val) | ||
1138 | return ret_val; | ||
1139 | |||
1140 | for (i = 0; i < words; i++) { | ||
1141 | dev_spec->shadow_ram[offset+i].modified = 1; | ||
1142 | dev_spec->shadow_ram[offset+i].value = data[i]; | ||
1143 | } | ||
1144 | |||
1145 | e1000_release_swflag_ich8lan(hw); | ||
1146 | |||
1147 | return 0; | ||
1148 | } | ||
1149 | |||
1150 | /** | ||
1151 | * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM | ||
1152 | * @hw: pointer to the HW structure | ||
1153 | * | ||
1154 | * The NVM checksum is updated by calling the generic update_nvm_checksum, | ||
1155 | * which writes the checksum to the shadow ram. The changes in the shadow | ||
1156 | * ram are then committed to the EEPROM by processing each bank at a time | ||
1157 | * checking for the modified bit and writing only the pending changes. | ||
1158 | * After a succesful commit, the shadow ram is cleared and is ready for | ||
1159 | * future writes. | ||
1160 | **/ | ||
1161 | static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) | ||
1162 | { | ||
1163 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1164 | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | ||
1165 | u32 i, act_offset, new_bank_offset, old_bank_offset; | ||
1166 | s32 ret_val; | ||
1167 | u16 data; | ||
1168 | |||
1169 | ret_val = e1000e_update_nvm_checksum_generic(hw); | ||
1170 | if (ret_val) | ||
1171 | return ret_val;; | ||
1172 | |||
1173 | if (nvm->type != e1000_nvm_flash_sw) | ||
1174 | return ret_val;; | ||
1175 | |||
1176 | ret_val = e1000_acquire_swflag_ich8lan(hw); | ||
1177 | if (ret_val) | ||
1178 | return ret_val;; | ||
1179 | |||
1180 | /* We're writing to the opposite bank so if we're on bank 1, | ||
1181 | * write to bank 0 etc. We also need to erase the segment that | ||
1182 | * is going to be written */ | ||
1183 | if (!(er32(EECD) & E1000_EECD_SEC1VAL)) { | ||
1184 | new_bank_offset = nvm->flash_bank_size; | ||
1185 | old_bank_offset = 0; | ||
1186 | e1000_erase_flash_bank_ich8lan(hw, 1); | ||
1187 | } else { | ||
1188 | old_bank_offset = nvm->flash_bank_size; | ||
1189 | new_bank_offset = 0; | ||
1190 | e1000_erase_flash_bank_ich8lan(hw, 0); | ||
1191 | } | ||
1192 | |||
1193 | for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { | ||
1194 | /* Determine whether to write the value stored | ||
1195 | * in the other NVM bank or a modified value stored | ||
1196 | * in the shadow RAM */ | ||
1197 | if (dev_spec->shadow_ram[i].modified) { | ||
1198 | data = dev_spec->shadow_ram[i].value; | ||
1199 | } else { | ||
1200 | e1000_read_flash_word_ich8lan(hw, | ||
1201 | i + old_bank_offset, | ||
1202 | &data); | ||
1203 | } | ||
1204 | |||
1205 | /* If the word is 0x13, then make sure the signature bits | ||
1206 | * (15:14) are 11b until the commit has completed. | ||
1207 | * This will allow us to write 10b which indicates the | ||
1208 | * signature is valid. We want to do this after the write | ||
1209 | * has completed so that we don't mark the segment valid | ||
1210 | * while the write is still in progress */ | ||
1211 | if (i == E1000_ICH_NVM_SIG_WORD) | ||
1212 | data |= E1000_ICH_NVM_SIG_MASK; | ||
1213 | |||
1214 | /* Convert offset to bytes. */ | ||
1215 | act_offset = (i + new_bank_offset) << 1; | ||
1216 | |||
1217 | udelay(100); | ||
1218 | /* Write the bytes to the new bank. */ | ||
1219 | ret_val = e1000_retry_write_flash_byte_ich8lan(hw, | ||
1220 | act_offset, | ||
1221 | (u8)data); | ||
1222 | if (ret_val) | ||
1223 | break; | ||
1224 | |||
1225 | udelay(100); | ||
1226 | ret_val = e1000_retry_write_flash_byte_ich8lan(hw, | ||
1227 | act_offset + 1, | ||
1228 | (u8)(data >> 8)); | ||
1229 | if (ret_val) | ||
1230 | break; | ||
1231 | } | ||
1232 | |||
1233 | /* Don't bother writing the segment valid bits if sector | ||
1234 | * programming failed. */ | ||
1235 | if (ret_val) { | ||
1236 | hw_dbg(hw, "Flash commit failed.\n"); | ||
1237 | e1000_release_swflag_ich8lan(hw); | ||
1238 | return ret_val; | ||
1239 | } | ||
1240 | |||
1241 | /* Finally validate the new segment by setting bit 15:14 | ||
1242 | * to 10b in word 0x13 , this can be done without an | ||
1243 | * erase as well since these bits are 11 to start with | ||
1244 | * and we need to change bit 14 to 0b */ | ||
1245 | act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; | ||
1246 | e1000_read_flash_word_ich8lan(hw, act_offset, &data); | ||
1247 | data &= 0xBFFF; | ||
1248 | ret_val = e1000_retry_write_flash_byte_ich8lan(hw, | ||
1249 | act_offset * 2 + 1, | ||
1250 | (u8)(data >> 8)); | ||
1251 | if (ret_val) { | ||
1252 | e1000_release_swflag_ich8lan(hw); | ||
1253 | return ret_val; | ||
1254 | } | ||
1255 | |||
1256 | /* And invalidate the previously valid segment by setting | ||
1257 | * its signature word (0x13) high_byte to 0b. This can be | ||
1258 | * done without an erase because flash erase sets all bits | ||
1259 | * to 1's. We can write 1's to 0's without an erase */ | ||
1260 | act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; | ||
1261 | ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); | ||
1262 | if (ret_val) { | ||
1263 | e1000_release_swflag_ich8lan(hw); | ||
1264 | return ret_val; | ||
1265 | } | ||
1266 | |||
1267 | /* Great! Everything worked, we can now clear the cached entries. */ | ||
1268 | for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { | ||
1269 | dev_spec->shadow_ram[i].modified = 0; | ||
1270 | dev_spec->shadow_ram[i].value = 0xFFFF; | ||
1271 | } | ||
1272 | |||
1273 | e1000_release_swflag_ich8lan(hw); | ||
1274 | |||
1275 | /* Reload the EEPROM, or else modifications will not appear | ||
1276 | * until after the next adapter reset. | ||
1277 | */ | ||
1278 | e1000e_reload_nvm(hw); | ||
1279 | msleep(10); | ||
1280 | |||
1281 | return ret_val; | ||
1282 | } | ||
1283 | |||
1284 | /** | ||
1285 | * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum | ||
1286 | * @hw: pointer to the HW structure | ||
1287 | * | ||
1288 | * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. | ||
1289 | * If the bit is 0, that the EEPROM had been modified, but the checksum was not | ||
1290 | * calculated, in which case we need to calculate the checksum and set bit 6. | ||
1291 | **/ | ||
1292 | static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) | ||
1293 | { | ||
1294 | s32 ret_val; | ||
1295 | u16 data; | ||
1296 | |||
1297 | /* Read 0x19 and check bit 6. If this bit is 0, the checksum | ||
1298 | * needs to be fixed. This bit is an indication that the NVM | ||
1299 | * was prepared by OEM software and did not calculate the | ||
1300 | * checksum...a likely scenario. | ||
1301 | */ | ||
1302 | ret_val = e1000_read_nvm(hw, 0x19, 1, &data); | ||
1303 | if (ret_val) | ||
1304 | return ret_val; | ||
1305 | |||
1306 | if ((data & 0x40) == 0) { | ||
1307 | data |= 0x40; | ||
1308 | ret_val = e1000_write_nvm(hw, 0x19, 1, &data); | ||
1309 | if (ret_val) | ||
1310 | return ret_val; | ||
1311 | ret_val = e1000e_update_nvm_checksum(hw); | ||
1312 | if (ret_val) | ||
1313 | return ret_val; | ||
1314 | } | ||
1315 | |||
1316 | return e1000e_validate_nvm_checksum_generic(hw); | ||
1317 | } | ||
1318 | |||
1319 | /** | ||
1320 | * e1000_write_flash_data_ich8lan - Writes bytes to the NVM | ||
1321 | * @hw: pointer to the HW structure | ||
1322 | * @offset: The offset (in bytes) of the byte/word to read. | ||
1323 | * @size: Size of data to read, 1=byte 2=word | ||
1324 | * @data: The byte(s) to write to the NVM. | ||
1325 | * | ||
1326 | * Writes one/two bytes to the NVM using the flash access registers. | ||
1327 | **/ | ||
1328 | static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, | ||
1329 | u8 size, u16 data) | ||
1330 | { | ||
1331 | union ich8_hws_flash_status hsfsts; | ||
1332 | union ich8_hws_flash_ctrl hsflctl; | ||
1333 | u32 flash_linear_addr; | ||
1334 | u32 flash_data = 0; | ||
1335 | s32 ret_val; | ||
1336 | u8 count = 0; | ||
1337 | |||
1338 | if (size < 1 || size > 2 || data > size * 0xff || | ||
1339 | offset > ICH_FLASH_LINEAR_ADDR_MASK) | ||
1340 | return -E1000_ERR_NVM; | ||
1341 | |||
1342 | flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + | ||
1343 | hw->nvm.flash_base_addr; | ||
1344 | |||
1345 | do { | ||
1346 | udelay(1); | ||
1347 | /* Steps */ | ||
1348 | ret_val = e1000_flash_cycle_init_ich8lan(hw); | ||
1349 | if (ret_val) | ||
1350 | break; | ||
1351 | |||
1352 | hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); | ||
1353 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | ||
1354 | hsflctl.hsf_ctrl.fldbcount = size -1; | ||
1355 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; | ||
1356 | ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); | ||
1357 | |||
1358 | ew32flash(ICH_FLASH_FADDR, flash_linear_addr); | ||
1359 | |||
1360 | if (size == 1) | ||
1361 | flash_data = (u32)data & 0x00FF; | ||
1362 | else | ||
1363 | flash_data = (u32)data; | ||
1364 | |||
1365 | ew32flash(ICH_FLASH_FDATA0, flash_data); | ||
1366 | |||
1367 | /* check if FCERR is set to 1 , if set to 1, clear it | ||
1368 | * and try the whole sequence a few more times else done */ | ||
1369 | ret_val = e1000_flash_cycle_ich8lan(hw, | ||
1370 | ICH_FLASH_WRITE_COMMAND_TIMEOUT); | ||
1371 | if (!ret_val) | ||
1372 | break; | ||
1373 | |||
1374 | /* If we're here, then things are most likely | ||
1375 | * completely hosed, but if the error condition | ||
1376 | * is detected, it won't hurt to give it another | ||
1377 | * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. | ||
1378 | */ | ||
1379 | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | ||
1380 | if (hsfsts.hsf_status.flcerr == 1) | ||
1381 | /* Repeat for some time before giving up. */ | ||
1382 | continue; | ||
1383 | if (hsfsts.hsf_status.flcdone == 0) { | ||
1384 | hw_dbg(hw, "Timeout error - flash cycle " | ||
1385 | "did not complete."); | ||
1386 | break; | ||
1387 | } | ||
1388 | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); | ||
1389 | |||
1390 | return ret_val; | ||
1391 | } | ||
1392 | |||
1393 | /** | ||
1394 | * e1000_write_flash_byte_ich8lan - Write a single byte to NVM | ||
1395 | * @hw: pointer to the HW structure | ||
1396 | * @offset: The index of the byte to read. | ||
1397 | * @data: The byte to write to the NVM. | ||
1398 | * | ||
1399 | * Writes a single byte to the NVM using the flash access registers. | ||
1400 | **/ | ||
1401 | static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, | ||
1402 | u8 data) | ||
1403 | { | ||
1404 | u16 word = (u16)data; | ||
1405 | |||
1406 | return e1000_write_flash_data_ich8lan(hw, offset, 1, word); | ||
1407 | } | ||
1408 | |||
1409 | /** | ||
1410 | * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM | ||
1411 | * @hw: pointer to the HW structure | ||
1412 | * @offset: The offset of the byte to write. | ||
1413 | * @byte: The byte to write to the NVM. | ||
1414 | * | ||
1415 | * Writes a single byte to the NVM using the flash access registers. | ||
1416 | * Goes through a retry algorithm before giving up. | ||
1417 | **/ | ||
1418 | static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, | ||
1419 | u32 offset, u8 byte) | ||
1420 | { | ||
1421 | s32 ret_val; | ||
1422 | u16 program_retries; | ||
1423 | |||
1424 | ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); | ||
1425 | if (!ret_val) | ||
1426 | return ret_val; | ||
1427 | |||
1428 | for (program_retries = 0; program_retries < 100; program_retries++) { | ||
1429 | hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset); | ||
1430 | udelay(100); | ||
1431 | ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); | ||
1432 | if (!ret_val) | ||
1433 | break; | ||
1434 | } | ||
1435 | if (program_retries == 100) | ||
1436 | return -E1000_ERR_NVM; | ||
1437 | |||
1438 | return 0; | ||
1439 | } | ||
1440 | |||
1441 | /** | ||
1442 | * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM | ||
1443 | * @hw: pointer to the HW structure | ||
1444 | * @bank: 0 for first bank, 1 for second bank, etc. | ||
1445 | * | ||
1446 | * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. | ||
1447 | * bank N is 4096 * N + flash_reg_addr. | ||
1448 | **/ | ||
1449 | static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) | ||
1450 | { | ||
1451 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1452 | union ich8_hws_flash_status hsfsts; | ||
1453 | union ich8_hws_flash_ctrl hsflctl; | ||
1454 | u32 flash_linear_addr; | ||
1455 | /* bank size is in 16bit words - adjust to bytes */ | ||
1456 | u32 flash_bank_size = nvm->flash_bank_size * 2; | ||
1457 | s32 ret_val; | ||
1458 | s32 count = 0; | ||
1459 | s32 iteration; | ||
1460 | s32 sector_size; | ||
1461 | s32 j; | ||
1462 | |||
1463 | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | ||
1464 | |||
1465 | /* Determine HW Sector size: Read BERASE bits of hw flash status | ||
1466 | * register */ | ||
1467 | /* 00: The Hw sector is 256 bytes, hence we need to erase 16 | ||
1468 | * consecutive sectors. The start index for the nth Hw sector | ||
1469 | * can be calculated as = bank * 4096 + n * 256 | ||
1470 | * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. | ||
1471 | * The start index for the nth Hw sector can be calculated | ||
1472 | * as = bank * 4096 | ||
1473 | * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 | ||
1474 | * (ich9 only, otherwise error condition) | ||
1475 | * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 | ||
1476 | */ | ||
1477 | switch (hsfsts.hsf_status.berasesz) { | ||
1478 | case 0: | ||
1479 | /* Hw sector size 256 */ | ||
1480 | sector_size = ICH_FLASH_SEG_SIZE_256; | ||
1481 | iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; | ||
1482 | break; | ||
1483 | case 1: | ||
1484 | sector_size = ICH_FLASH_SEG_SIZE_4K; | ||
1485 | iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K; | ||
1486 | break; | ||
1487 | case 2: | ||
1488 | if (hw->mac.type == e1000_ich9lan) { | ||
1489 | sector_size = ICH_FLASH_SEG_SIZE_8K; | ||
1490 | iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K; | ||
1491 | } else { | ||
1492 | return -E1000_ERR_NVM; | ||
1493 | } | ||
1494 | break; | ||
1495 | case 3: | ||
1496 | sector_size = ICH_FLASH_SEG_SIZE_64K; | ||
1497 | iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K; | ||
1498 | break; | ||
1499 | default: | ||
1500 | return -E1000_ERR_NVM; | ||
1501 | } | ||
1502 | |||
1503 | /* Start with the base address, then add the sector offset. */ | ||
1504 | flash_linear_addr = hw->nvm.flash_base_addr; | ||
1505 | flash_linear_addr += (bank) ? (sector_size * iteration) : 0; | ||
1506 | |||
1507 | for (j = 0; j < iteration ; j++) { | ||
1508 | do { | ||
1509 | /* Steps */ | ||
1510 | ret_val = e1000_flash_cycle_init_ich8lan(hw); | ||
1511 | if (ret_val) | ||
1512 | return ret_val; | ||
1513 | |||
1514 | /* Write a value 11 (block Erase) in Flash | ||
1515 | * Cycle field in hw flash control */ | ||
1516 | hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); | ||
1517 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; | ||
1518 | ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); | ||
1519 | |||
1520 | /* Write the last 24 bits of an index within the | ||
1521 | * block into Flash Linear address field in Flash | ||
1522 | * Address. | ||
1523 | */ | ||
1524 | flash_linear_addr += (j * sector_size); | ||
1525 | ew32flash(ICH_FLASH_FADDR, flash_linear_addr); | ||
1526 | |||
1527 | ret_val = e1000_flash_cycle_ich8lan(hw, | ||
1528 | ICH_FLASH_ERASE_COMMAND_TIMEOUT); | ||
1529 | if (ret_val == 0) | ||
1530 | break; | ||
1531 | |||
1532 | /* Check if FCERR is set to 1. If 1, | ||
1533 | * clear it and try the whole sequence | ||
1534 | * a few more times else Done */ | ||
1535 | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | ||
1536 | if (hsfsts.hsf_status.flcerr == 1) | ||
1537 | /* repeat for some time before | ||
1538 | * giving up */ | ||
1539 | continue; | ||
1540 | else if (hsfsts.hsf_status.flcdone == 0) | ||
1541 | return ret_val; | ||
1542 | } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); | ||
1543 | } | ||
1544 | |||
1545 | return 0; | ||
1546 | } | ||
1547 | |||
1548 | /** | ||
1549 | * e1000_valid_led_default_ich8lan - Set the default LED settings | ||
1550 | * @hw: pointer to the HW structure | ||
1551 | * @data: Pointer to the LED settings | ||
1552 | * | ||
1553 | * Reads the LED default settings from the NVM to data. If the NVM LED | ||
1554 | * settings is all 0's or F's, set the LED default to a valid LED default | ||
1555 | * setting. | ||
1556 | **/ | ||
1557 | static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) | ||
1558 | { | ||
1559 | s32 ret_val; | ||
1560 | |||
1561 | ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); | ||
1562 | if (ret_val) { | ||
1563 | hw_dbg(hw, "NVM Read Error\n"); | ||
1564 | return ret_val; | ||
1565 | } | ||
1566 | |||
1567 | if (*data == ID_LED_RESERVED_0000 || | ||
1568 | *data == ID_LED_RESERVED_FFFF) | ||
1569 | *data = ID_LED_DEFAULT_ICH8LAN; | ||
1570 | |||
1571 | return 0; | ||
1572 | } | ||
1573 | |||
1574 | /** | ||
1575 | * e1000_get_bus_info_ich8lan - Get/Set the bus type and width | ||
1576 | * @hw: pointer to the HW structure | ||
1577 | * | ||
1578 | * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability | ||
1579 | * register, so the the bus width is hard coded. | ||
1580 | **/ | ||
1581 | static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) | ||
1582 | { | ||
1583 | struct e1000_bus_info *bus = &hw->bus; | ||
1584 | s32 ret_val; | ||
1585 | |||
1586 | ret_val = e1000e_get_bus_info_pcie(hw); | ||
1587 | |||
1588 | /* ICH devices are "PCI Express"-ish. They have | ||
1589 | * a configuration space, but do not contain | ||
1590 | * PCI Express Capability registers, so bus width | ||
1591 | * must be hardcoded. | ||
1592 | */ | ||
1593 | if (bus->width == e1000_bus_width_unknown) | ||
1594 | bus->width = e1000_bus_width_pcie_x1; | ||
1595 | |||
1596 | return ret_val; | ||
1597 | } | ||
1598 | |||
1599 | /** | ||
1600 | * e1000_reset_hw_ich8lan - Reset the hardware | ||
1601 | * @hw: pointer to the HW structure | ||
1602 | * | ||
1603 | * Does a full reset of the hardware which includes a reset of the PHY and | ||
1604 | * MAC. | ||
1605 | **/ | ||
1606 | static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) | ||
1607 | { | ||
1608 | u32 ctrl, icr, kab; | ||
1609 | s32 ret_val; | ||
1610 | |||
1611 | /* Prevent the PCI-E bus from sticking if there is no TLP connection | ||
1612 | * on the last TLP read/write transaction when MAC is reset. | ||
1613 | */ | ||
1614 | ret_val = e1000e_disable_pcie_master(hw); | ||
1615 | if (ret_val) { | ||
1616 | hw_dbg(hw, "PCI-E Master disable polling has failed.\n"); | ||
1617 | } | ||
1618 | |||
1619 | hw_dbg(hw, "Masking off all interrupts\n"); | ||
1620 | ew32(IMC, 0xffffffff); | ||
1621 | |||
1622 | /* Disable the Transmit and Receive units. Then delay to allow | ||
1623 | * any pending transactions to complete before we hit the MAC | ||
1624 | * with the global reset. | ||
1625 | */ | ||
1626 | ew32(RCTL, 0); | ||
1627 | ew32(TCTL, E1000_TCTL_PSP); | ||
1628 | e1e_flush(); | ||
1629 | |||
1630 | msleep(10); | ||
1631 | |||
1632 | /* Workaround for ICH8 bit corruption issue in FIFO memory */ | ||
1633 | if (hw->mac.type == e1000_ich8lan) { | ||
1634 | /* Set Tx and Rx buffer allocation to 8k apiece. */ | ||
1635 | ew32(PBA, E1000_PBA_8K); | ||
1636 | /* Set Packet Buffer Size to 16k. */ | ||
1637 | ew32(PBS, E1000_PBS_16K); | ||
1638 | } | ||
1639 | |||
1640 | ctrl = er32(CTRL); | ||
1641 | |||
1642 | if (!e1000_check_reset_block(hw)) { | ||
1643 | /* PHY HW reset requires MAC CORE reset at the same | ||
1644 | * time to make sure the interface between MAC and the | ||
1645 | * external PHY is reset. | ||
1646 | */ | ||
1647 | ctrl |= E1000_CTRL_PHY_RST; | ||
1648 | } | ||
1649 | ret_val = e1000_acquire_swflag_ich8lan(hw); | ||
1650 | hw_dbg(hw, "Issuing a global reset to ich8lan"); | ||
1651 | ew32(CTRL, (ctrl | E1000_CTRL_RST)); | ||
1652 | msleep(20); | ||
1653 | |||
1654 | ret_val = e1000e_get_auto_rd_done(hw); | ||
1655 | if (ret_val) { | ||
1656 | /* | ||
1657 | * When auto config read does not complete, do not | ||
1658 | * return with an error. This can happen in situations | ||
1659 | * where there is no eeprom and prevents getting link. | ||
1660 | */ | ||
1661 | hw_dbg(hw, "Auto Read Done did not complete\n"); | ||
1662 | } | ||
1663 | |||
1664 | ew32(IMC, 0xffffffff); | ||
1665 | icr = er32(ICR); | ||
1666 | |||
1667 | kab = er32(KABGTXD); | ||
1668 | kab |= E1000_KABGTXD_BGSQLBIAS; | ||
1669 | ew32(KABGTXD, kab); | ||
1670 | |||
1671 | return ret_val; | ||
1672 | } | ||
1673 | |||
1674 | /** | ||
1675 | * e1000_init_hw_ich8lan - Initialize the hardware | ||
1676 | * @hw: pointer to the HW structure | ||
1677 | * | ||
1678 | * Prepares the hardware for transmit and receive by doing the following: | ||
1679 | * - initialize hardware bits | ||
1680 | * - initialize LED identification | ||
1681 | * - setup receive address registers | ||
1682 | * - setup flow control | ||
1683 | * - setup transmit discriptors | ||
1684 | * - clear statistics | ||
1685 | **/ | ||
1686 | static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) | ||
1687 | { | ||
1688 | struct e1000_mac_info *mac = &hw->mac; | ||
1689 | u32 ctrl_ext, txdctl, snoop; | ||
1690 | s32 ret_val; | ||
1691 | u16 i; | ||
1692 | |||
1693 | e1000_initialize_hw_bits_ich8lan(hw); | ||
1694 | |||
1695 | /* Initialize identification LED */ | ||
1696 | ret_val = e1000e_id_led_init(hw); | ||
1697 | if (ret_val) { | ||
1698 | hw_dbg(hw, "Error initializing identification LED\n"); | ||
1699 | return ret_val; | ||
1700 | } | ||
1701 | |||
1702 | /* Setup the receive address. */ | ||
1703 | e1000e_init_rx_addrs(hw, mac->rar_entry_count); | ||
1704 | |||
1705 | /* Zero out the Multicast HASH table */ | ||
1706 | hw_dbg(hw, "Zeroing the MTA\n"); | ||
1707 | for (i = 0; i < mac->mta_reg_count; i++) | ||
1708 | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); | ||
1709 | |||
1710 | /* Setup link and flow control */ | ||
1711 | ret_val = e1000_setup_link_ich8lan(hw); | ||
1712 | |||
1713 | /* Set the transmit descriptor write-back policy for both queues */ | ||
1714 | txdctl = er32(TXDCTL); | ||
1715 | txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | | ||
1716 | E1000_TXDCTL_FULL_TX_DESC_WB; | ||
1717 | txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | | ||
1718 | E1000_TXDCTL_MAX_TX_DESC_PREFETCH; | ||
1719 | ew32(TXDCTL, txdctl); | ||
1720 | txdctl = er32(TXDCTL1); | ||
1721 | txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | | ||
1722 | E1000_TXDCTL_FULL_TX_DESC_WB; | ||
1723 | txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | | ||
1724 | E1000_TXDCTL_MAX_TX_DESC_PREFETCH; | ||
1725 | ew32(TXDCTL1, txdctl); | ||
1726 | |||
1727 | /* ICH8 has opposite polarity of no_snoop bits. | ||
1728 | * By default, we should use snoop behavior. */ | ||
1729 | if (mac->type == e1000_ich8lan) | ||
1730 | snoop = PCIE_ICH8_SNOOP_ALL; | ||
1731 | else | ||
1732 | snoop = (u32) ~(PCIE_NO_SNOOP_ALL); | ||
1733 | e1000e_set_pcie_no_snoop(hw, snoop); | ||
1734 | |||
1735 | ctrl_ext = er32(CTRL_EXT); | ||
1736 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; | ||
1737 | ew32(CTRL_EXT, ctrl_ext); | ||
1738 | |||
1739 | /* Clear all of the statistics registers (clear on read). It is | ||
1740 | * important that we do this after we have tried to establish link | ||
1741 | * because the symbol error count will increment wildly if there | ||
1742 | * is no link. | ||
1743 | */ | ||
1744 | e1000_clear_hw_cntrs_ich8lan(hw); | ||
1745 | |||
1746 | return 0; | ||
1747 | } | ||
1748 | /** | ||
1749 | * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits | ||
1750 | * @hw: pointer to the HW structure | ||
1751 | * | ||
1752 | * Sets/Clears required hardware bits necessary for correctly setting up the | ||
1753 | * hardware for transmit and receive. | ||
1754 | **/ | ||
1755 | static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) | ||
1756 | { | ||
1757 | u32 reg; | ||
1758 | |||
1759 | /* Extended Device Control */ | ||
1760 | reg = er32(CTRL_EXT); | ||
1761 | reg |= (1 << 22); | ||
1762 | ew32(CTRL_EXT, reg); | ||
1763 | |||
1764 | /* Transmit Descriptor Control 0 */ | ||
1765 | reg = er32(TXDCTL); | ||
1766 | reg |= (1 << 22); | ||
1767 | ew32(TXDCTL, reg); | ||
1768 | |||
1769 | /* Transmit Descriptor Control 1 */ | ||
1770 | reg = er32(TXDCTL1); | ||
1771 | reg |= (1 << 22); | ||
1772 | ew32(TXDCTL1, reg); | ||
1773 | |||
1774 | /* Transmit Arbitration Control 0 */ | ||
1775 | reg = er32(TARC0); | ||
1776 | if (hw->mac.type == e1000_ich8lan) | ||
1777 | reg |= (1 << 28) | (1 << 29); | ||
1778 | reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); | ||
1779 | ew32(TARC0, reg); | ||
1780 | |||
1781 | /* Transmit Arbitration Control 1 */ | ||
1782 | reg = er32(TARC1); | ||
1783 | if (er32(TCTL) & E1000_TCTL_MULR) | ||
1784 | reg &= ~(1 << 28); | ||
1785 | else | ||
1786 | reg |= (1 << 28); | ||
1787 | reg |= (1 << 24) | (1 << 26) | (1 << 30); | ||
1788 | ew32(TARC1, reg); | ||
1789 | |||
1790 | /* Device Status */ | ||
1791 | if (hw->mac.type == e1000_ich8lan) { | ||
1792 | reg = er32(STATUS); | ||
1793 | reg &= ~(1 << 31); | ||
1794 | ew32(STATUS, reg); | ||
1795 | } | ||
1796 | } | ||
1797 | |||
1798 | /** | ||
1799 | * e1000_setup_link_ich8lan - Setup flow control and link settings | ||
1800 | * @hw: pointer to the HW structure | ||
1801 | * | ||
1802 | * Determines which flow control settings to use, then configures flow | ||
1803 | * control. Calls the appropriate media-specific link configuration | ||
1804 | * function. Assuming the adapter has a valid link partner, a valid link | ||
1805 | * should be established. Assumes the hardware has previously been reset | ||
1806 | * and the transmitter and receiver are not enabled. | ||
1807 | **/ | ||
1808 | static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) | ||
1809 | { | ||
1810 | struct e1000_mac_info *mac = &hw->mac; | ||
1811 | s32 ret_val; | ||
1812 | |||
1813 | if (e1000_check_reset_block(hw)) | ||
1814 | return 0; | ||
1815 | |||
1816 | /* ICH parts do not have a word in the NVM to determine | ||
1817 | * the default flow control setting, so we explicitly | ||
1818 | * set it to full. | ||
1819 | */ | ||
1820 | if (mac->fc == e1000_fc_default) | ||
1821 | mac->fc = e1000_fc_full; | ||
1822 | |||
1823 | mac->original_fc = mac->fc; | ||
1824 | |||
1825 | hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", mac->fc); | ||
1826 | |||
1827 | /* Continue to configure the copper link. */ | ||
1828 | ret_val = e1000_setup_copper_link_ich8lan(hw); | ||
1829 | if (ret_val) | ||
1830 | return ret_val; | ||
1831 | |||
1832 | ew32(FCTTV, mac->fc_pause_time); | ||
1833 | |||
1834 | return e1000e_set_fc_watermarks(hw); | ||
1835 | } | ||
1836 | |||
1837 | /** | ||
1838 | * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface | ||
1839 | * @hw: pointer to the HW structure | ||
1840 | * | ||
1841 | * Configures the kumeran interface to the PHY to wait the appropriate time | ||
1842 | * when polling the PHY, then call the generic setup_copper_link to finish | ||
1843 | * configuring the copper link. | ||
1844 | **/ | ||
1845 | static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) | ||
1846 | { | ||
1847 | u32 ctrl; | ||
1848 | s32 ret_val; | ||
1849 | u16 reg_data; | ||
1850 | |||
1851 | ctrl = er32(CTRL); | ||
1852 | ctrl |= E1000_CTRL_SLU; | ||
1853 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
1854 | ew32(CTRL, ctrl); | ||
1855 | |||
1856 | /* Set the mac to wait the maximum time between each iteration | ||
1857 | * and increase the max iterations when polling the phy; | ||
1858 | * this fixes erroneous timeouts at 10Mbps. */ | ||
1859 | ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); | ||
1860 | if (ret_val) | ||
1861 | return ret_val; | ||
1862 | ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); | ||
1863 | if (ret_val) | ||
1864 | return ret_val; | ||
1865 | reg_data |= 0x3F; | ||
1866 | ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); | ||
1867 | if (ret_val) | ||
1868 | return ret_val; | ||
1869 | |||
1870 | if (hw->phy.type == e1000_phy_igp_3) { | ||
1871 | ret_val = e1000e_copper_link_setup_igp(hw); | ||
1872 | if (ret_val) | ||
1873 | return ret_val; | ||
1874 | } | ||
1875 | |||
1876 | return e1000e_setup_copper_link(hw); | ||
1877 | } | ||
1878 | |||
1879 | /** | ||
1880 | * e1000_get_link_up_info_ich8lan - Get current link speed and duplex | ||
1881 | * @hw: pointer to the HW structure | ||
1882 | * @speed: pointer to store current link speed | ||
1883 | * @duplex: pointer to store the current link duplex | ||
1884 | * | ||
1885 | * Calls the generic get_speed_and_duplex to retreive the current link | ||
1886 | * information and then calls the Kumeran lock loss workaround for links at | ||
1887 | * gigabit speeds. | ||
1888 | **/ | ||
1889 | static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, | ||
1890 | u16 *duplex) | ||
1891 | { | ||
1892 | s32 ret_val; | ||
1893 | |||
1894 | ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); | ||
1895 | if (ret_val) | ||
1896 | return ret_val; | ||
1897 | |||
1898 | if ((hw->mac.type == e1000_ich8lan) && | ||
1899 | (hw->phy.type == e1000_phy_igp_3) && | ||
1900 | (*speed == SPEED_1000)) { | ||
1901 | ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); | ||
1902 | } | ||
1903 | |||
1904 | return ret_val; | ||
1905 | } | ||
1906 | |||
1907 | /** | ||
1908 | * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround | ||
1909 | * @hw: pointer to the HW structure | ||
1910 | * | ||
1911 | * Work-around for 82566 Kumeran PCS lock loss: | ||
1912 | * On link status change (i.e. PCI reset, speed change) and link is up and | ||
1913 | * speed is gigabit- | ||
1914 | * 0) if workaround is optionally disabled do nothing | ||
1915 | * 1) wait 1ms for Kumeran link to come up | ||
1916 | * 2) check Kumeran Diagnostic register PCS lock loss bit | ||
1917 | * 3) if not set the link is locked (all is good), otherwise... | ||
1918 | * 4) reset the PHY | ||
1919 | * 5) repeat up to 10 times | ||
1920 | * Note: this is only called for IGP3 copper when speed is 1gb. | ||
1921 | **/ | ||
1922 | static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) | ||
1923 | { | ||
1924 | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | ||
1925 | u32 phy_ctrl; | ||
1926 | s32 ret_val; | ||
1927 | u16 i, data; | ||
1928 | bool link; | ||
1929 | |||
1930 | if (!dev_spec->kmrn_lock_loss_workaround_enabled) | ||
1931 | return 0; | ||
1932 | |||
1933 | /* Make sure link is up before proceeding. If not just return. | ||
1934 | * Attempting this while link is negotiating fouled up link | ||
1935 | * stability */ | ||
1936 | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | ||
1937 | if (!link) | ||
1938 | return 0; | ||
1939 | |||
1940 | for (i = 0; i < 10; i++) { | ||
1941 | /* read once to clear */ | ||
1942 | ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); | ||
1943 | if (ret_val) | ||
1944 | return ret_val; | ||
1945 | /* and again to get new status */ | ||
1946 | ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); | ||
1947 | if (ret_val) | ||
1948 | return ret_val; | ||
1949 | |||
1950 | /* check for PCS lock */ | ||
1951 | if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) | ||
1952 | return 0; | ||
1953 | |||
1954 | /* Issue PHY reset */ | ||
1955 | e1000_phy_hw_reset(hw); | ||
1956 | mdelay(5); | ||
1957 | } | ||
1958 | /* Disable GigE link negotiation */ | ||
1959 | phy_ctrl = er32(PHY_CTRL); | ||
1960 | phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | | ||
1961 | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | ||
1962 | ew32(PHY_CTRL, phy_ctrl); | ||
1963 | |||
1964 | /* Call gig speed drop workaround on Giga disable before accessing | ||
1965 | * any PHY registers */ | ||
1966 | e1000e_gig_downshift_workaround_ich8lan(hw); | ||
1967 | |||
1968 | /* unable to acquire PCS lock */ | ||
1969 | return -E1000_ERR_PHY; | ||
1970 | } | ||
1971 | |||
1972 | /** | ||
1973 | * e1000_set_kmrn_lock_loss_workaound_ich8lan - Set Kumeran workaround state | ||
1974 | * @hw: pointer to the HW structure | ||
1975 | * @state: boolean value used to set the current Kumaran workaround state | ||
1976 | * | ||
1977 | * If ICH8, set the current Kumeran workaround state (enabled - TRUE | ||
1978 | * /disabled - FALSE). | ||
1979 | **/ | ||
1980 | void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, | ||
1981 | bool state) | ||
1982 | { | ||
1983 | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | ||
1984 | |||
1985 | if (hw->mac.type != e1000_ich8lan) { | ||
1986 | hw_dbg(hw, "Workaround applies to ICH8 only.\n"); | ||
1987 | return; | ||
1988 | } | ||
1989 | |||
1990 | dev_spec->kmrn_lock_loss_workaround_enabled = state; | ||
1991 | } | ||
1992 | |||
1993 | /** | ||
1994 | * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 | ||
1995 | * @hw: pointer to the HW structure | ||
1996 | * | ||
1997 | * Workaround for 82566 power-down on D3 entry: | ||
1998 | * 1) disable gigabit link | ||
1999 | * 2) write VR power-down enable | ||
2000 | * 3) read it back | ||
2001 | * Continue if successful, else issue LCD reset and repeat | ||
2002 | **/ | ||
2003 | void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) | ||
2004 | { | ||
2005 | u32 reg; | ||
2006 | u16 data; | ||
2007 | u8 retry = 0; | ||
2008 | |||
2009 | if (hw->phy.type != e1000_phy_igp_3) | ||
2010 | return; | ||
2011 | |||
2012 | /* Try the workaround twice (if needed) */ | ||
2013 | do { | ||
2014 | /* Disable link */ | ||
2015 | reg = er32(PHY_CTRL); | ||
2016 | reg |= (E1000_PHY_CTRL_GBE_DISABLE | | ||
2017 | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | ||
2018 | ew32(PHY_CTRL, reg); | ||
2019 | |||
2020 | /* Call gig speed drop workaround on Giga disable before | ||
2021 | * accessing any PHY registers */ | ||
2022 | if (hw->mac.type == e1000_ich8lan) | ||
2023 | e1000e_gig_downshift_workaround_ich8lan(hw); | ||
2024 | |||
2025 | /* Write VR power-down enable */ | ||
2026 | e1e_rphy(hw, IGP3_VR_CTRL, &data); | ||
2027 | data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; | ||
2028 | e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); | ||
2029 | |||
2030 | /* Read it back and test */ | ||
2031 | e1e_rphy(hw, IGP3_VR_CTRL, &data); | ||
2032 | data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; | ||
2033 | if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) | ||
2034 | break; | ||
2035 | |||
2036 | /* Issue PHY reset and repeat at most one more time */ | ||
2037 | reg = er32(CTRL); | ||
2038 | ew32(CTRL, reg | E1000_CTRL_PHY_RST); | ||
2039 | retry++; | ||
2040 | } while (retry); | ||
2041 | } | ||
2042 | |||
2043 | /** | ||
2044 | * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working | ||
2045 | * @hw: pointer to the HW structure | ||
2046 | * | ||
2047 | * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), | ||
2048 | * LPLU, Giga disable, MDIC PHY reset): | ||
2049 | * 1) Set Kumeran Near-end loopback | ||
2050 | * 2) Clear Kumeran Near-end loopback | ||
2051 | * Should only be called for ICH8[m] devices with IGP_3 Phy. | ||
2052 | **/ | ||
2053 | void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) | ||
2054 | { | ||
2055 | s32 ret_val; | ||
2056 | u16 reg_data; | ||
2057 | |||
2058 | if ((hw->mac.type != e1000_ich8lan) || | ||
2059 | (hw->phy.type != e1000_phy_igp_3)) | ||
2060 | return; | ||
2061 | |||
2062 | ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, | ||
2063 | ®_data); | ||
2064 | if (ret_val) | ||
2065 | return; | ||
2066 | reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; | ||
2067 | ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, | ||
2068 | reg_data); | ||
2069 | if (ret_val) | ||
2070 | return; | ||
2071 | reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; | ||
2072 | ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, | ||
2073 | reg_data); | ||
2074 | } | ||
2075 | |||
2076 | /** | ||
2077 | * e1000_cleanup_led_ich8lan - Restore the default LED operation | ||
2078 | * @hw: pointer to the HW structure | ||
2079 | * | ||
2080 | * Return the LED back to the default configuration. | ||
2081 | **/ | ||
2082 | static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) | ||
2083 | { | ||
2084 | if (hw->phy.type == e1000_phy_ife) | ||
2085 | return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); | ||
2086 | |||
2087 | ew32(LEDCTL, hw->mac.ledctl_default); | ||
2088 | return 0; | ||
2089 | } | ||
2090 | |||
2091 | /** | ||
2092 | * e1000_led_on_ich8lan - Turn LED's on | ||
2093 | * @hw: pointer to the HW structure | ||
2094 | * | ||
2095 | * Turn on the LED's. | ||
2096 | **/ | ||
2097 | static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) | ||
2098 | { | ||
2099 | if (hw->phy.type == e1000_phy_ife) | ||
2100 | return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, | ||
2101 | (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); | ||
2102 | |||
2103 | ew32(LEDCTL, hw->mac.ledctl_mode2); | ||
2104 | return 0; | ||
2105 | } | ||
2106 | |||
2107 | /** | ||
2108 | * e1000_led_off_ich8lan - Turn LED's off | ||
2109 | * @hw: pointer to the HW structure | ||
2110 | * | ||
2111 | * Turn off the LED's. | ||
2112 | **/ | ||
2113 | static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) | ||
2114 | { | ||
2115 | if (hw->phy.type == e1000_phy_ife) | ||
2116 | return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, | ||
2117 | (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); | ||
2118 | |||
2119 | ew32(LEDCTL, hw->mac.ledctl_mode1); | ||
2120 | return 0; | ||
2121 | } | ||
2122 | |||
2123 | /** | ||
2124 | * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters | ||
2125 | * @hw: pointer to the HW structure | ||
2126 | * | ||
2127 | * Clears hardware counters specific to the silicon family and calls | ||
2128 | * clear_hw_cntrs_generic to clear all general purpose counters. | ||
2129 | **/ | ||
2130 | static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) | ||
2131 | { | ||
2132 | u32 temp; | ||
2133 | |||
2134 | e1000e_clear_hw_cntrs_base(hw); | ||
2135 | |||
2136 | temp = er32(ALGNERRC); | ||
2137 | temp = er32(RXERRC); | ||
2138 | temp = er32(TNCRS); | ||
2139 | temp = er32(CEXTERR); | ||
2140 | temp = er32(TSCTC); | ||
2141 | temp = er32(TSCTFC); | ||
2142 | |||
2143 | temp = er32(MGTPRC); | ||
2144 | temp = er32(MGTPDC); | ||
2145 | temp = er32(MGTPTC); | ||
2146 | |||
2147 | temp = er32(IAC); | ||
2148 | temp = er32(ICRXOC); | ||
2149 | |||
2150 | } | ||
2151 | |||
2152 | static struct e1000_mac_operations ich8_mac_ops = { | ||
2153 | .mng_mode_enab = E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT, | ||
2154 | .check_for_link = e1000e_check_for_copper_link, | ||
2155 | .cleanup_led = e1000_cleanup_led_ich8lan, | ||
2156 | .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, | ||
2157 | .get_bus_info = e1000_get_bus_info_ich8lan, | ||
2158 | .get_link_up_info = e1000_get_link_up_info_ich8lan, | ||
2159 | .led_on = e1000_led_on_ich8lan, | ||
2160 | .led_off = e1000_led_off_ich8lan, | ||
2161 | .mc_addr_list_update = e1000e_mc_addr_list_update_generic, | ||
2162 | .reset_hw = e1000_reset_hw_ich8lan, | ||
2163 | .init_hw = e1000_init_hw_ich8lan, | ||
2164 | .setup_link = e1000_setup_link_ich8lan, | ||
2165 | .setup_physical_interface= e1000_setup_copper_link_ich8lan, | ||
2166 | }; | ||
2167 | |||
2168 | static struct e1000_phy_operations ich8_phy_ops = { | ||
2169 | .acquire_phy = e1000_acquire_swflag_ich8lan, | ||
2170 | .check_reset_block = e1000_check_reset_block_ich8lan, | ||
2171 | .commit_phy = NULL, | ||
2172 | .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan, | ||
2173 | .get_cfg_done = e1000e_get_cfg_done, | ||
2174 | .get_cable_length = e1000e_get_cable_length_igp_2, | ||
2175 | .get_phy_info = e1000_get_phy_info_ich8lan, | ||
2176 | .read_phy_reg = e1000e_read_phy_reg_igp, | ||
2177 | .release_phy = e1000_release_swflag_ich8lan, | ||
2178 | .reset_phy = e1000_phy_hw_reset_ich8lan, | ||
2179 | .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, | ||
2180 | .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, | ||
2181 | .write_phy_reg = e1000e_write_phy_reg_igp, | ||
2182 | }; | ||
2183 | |||
2184 | static struct e1000_nvm_operations ich8_nvm_ops = { | ||
2185 | .acquire_nvm = e1000_acquire_swflag_ich8lan, | ||
2186 | .read_nvm = e1000_read_nvm_ich8lan, | ||
2187 | .release_nvm = e1000_release_swflag_ich8lan, | ||
2188 | .update_nvm = e1000_update_nvm_checksum_ich8lan, | ||
2189 | .valid_led_default = e1000_valid_led_default_ich8lan, | ||
2190 | .validate_nvm = e1000_validate_nvm_checksum_ich8lan, | ||
2191 | .write_nvm = e1000_write_nvm_ich8lan, | ||
2192 | }; | ||
2193 | |||
2194 | struct e1000_info e1000_ich8_info = { | ||
2195 | .mac = e1000_ich8lan, | ||
2196 | .flags = FLAG_HAS_WOL | ||
2197 | | FLAG_RX_CSUM_ENABLED | ||
2198 | | FLAG_HAS_CTRLEXT_ON_LOAD | ||
2199 | | FLAG_HAS_AMT | ||
2200 | | FLAG_HAS_FLASH | ||
2201 | | FLAG_APME_IN_WUC, | ||
2202 | .pba = 8, | ||
2203 | .get_invariants = e1000_get_invariants_ich8lan, | ||
2204 | .mac_ops = &ich8_mac_ops, | ||
2205 | .phy_ops = &ich8_phy_ops, | ||
2206 | .nvm_ops = &ich8_nvm_ops, | ||
2207 | }; | ||
2208 | |||
2209 | struct e1000_info e1000_ich9_info = { | ||
2210 | .mac = e1000_ich9lan, | ||
2211 | .flags = FLAG_HAS_JUMBO_FRAMES | ||
2212 | | FLAG_HAS_WOL | ||
2213 | | FLAG_RX_CSUM_ENABLED | ||
2214 | | FLAG_HAS_CTRLEXT_ON_LOAD | ||
2215 | | FLAG_HAS_AMT | ||
2216 | | FLAG_HAS_ERT | ||
2217 | | FLAG_HAS_FLASH | ||
2218 | | FLAG_APME_IN_WUC, | ||
2219 | .pba = 10, | ||
2220 | .get_invariants = e1000_get_invariants_ich8lan, | ||
2221 | .mac_ops = &ich8_mac_ops, | ||
2222 | .phy_ops = &ich8_phy_ops, | ||
2223 | .nvm_ops = &ich8_nvm_ops, | ||
2224 | }; | ||
2225 | |||
diff --git a/drivers/net/e1000e/lib.c b/drivers/net/e1000e/lib.c new file mode 100644 index 000000000000..3bbfe605e111 --- /dev/null +++ b/drivers/net/e1000e/lib.c | |||
@@ -0,0 +1,2487 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | #include <linux/netdevice.h> | ||
30 | #include <linux/ethtool.h> | ||
31 | #include <linux/delay.h> | ||
32 | #include <linux/pci.h> | ||
33 | |||
34 | #include "e1000.h" | ||
35 | |||
36 | enum e1000_mng_mode { | ||
37 | e1000_mng_mode_none = 0, | ||
38 | e1000_mng_mode_asf, | ||
39 | e1000_mng_mode_pt, | ||
40 | e1000_mng_mode_ipmi, | ||
41 | e1000_mng_mode_host_if_only | ||
42 | }; | ||
43 | |||
44 | #define E1000_FACTPS_MNGCG 0x20000000 | ||
45 | |||
46 | #define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management | ||
47 | * Technology signature */ | ||
48 | |||
49 | /** | ||
50 | * e1000e_get_bus_info_pcie - Get PCIe bus information | ||
51 | * @hw: pointer to the HW structure | ||
52 | * | ||
53 | * Determines and stores the system bus information for a particular | ||
54 | * network interface. The following bus information is determined and stored: | ||
55 | * bus speed, bus width, type (PCIe), and PCIe function. | ||
56 | **/ | ||
57 | s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) | ||
58 | { | ||
59 | struct e1000_bus_info *bus = &hw->bus; | ||
60 | struct e1000_adapter *adapter = hw->adapter; | ||
61 | u32 status; | ||
62 | u16 pcie_link_status, pci_header_type, cap_offset; | ||
63 | |||
64 | cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); | ||
65 | if (!cap_offset) { | ||
66 | bus->width = e1000_bus_width_unknown; | ||
67 | } else { | ||
68 | pci_read_config_word(adapter->pdev, | ||
69 | cap_offset + PCIE_LINK_STATUS, | ||
70 | &pcie_link_status); | ||
71 | bus->width = (enum e1000_bus_width)((pcie_link_status & | ||
72 | PCIE_LINK_WIDTH_MASK) >> | ||
73 | PCIE_LINK_WIDTH_SHIFT); | ||
74 | } | ||
75 | |||
76 | pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER, | ||
77 | &pci_header_type); | ||
78 | if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { | ||
79 | status = er32(STATUS); | ||
80 | bus->func = (status & E1000_STATUS_FUNC_MASK) | ||
81 | >> E1000_STATUS_FUNC_SHIFT; | ||
82 | } else { | ||
83 | bus->func = 0; | ||
84 | } | ||
85 | |||
86 | return 0; | ||
87 | } | ||
88 | |||
89 | /** | ||
90 | * e1000e_write_vfta - Write value to VLAN filter table | ||
91 | * @hw: pointer to the HW structure | ||
92 | * @offset: register offset in VLAN filter table | ||
93 | * @value: register value written to VLAN filter table | ||
94 | * | ||
95 | * Writes value at the given offset in the register array which stores | ||
96 | * the VLAN filter table. | ||
97 | **/ | ||
98 | void e1000e_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) | ||
99 | { | ||
100 | E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); | ||
101 | e1e_flush(); | ||
102 | } | ||
103 | |||
104 | /** | ||
105 | * e1000e_init_rx_addrs - Initialize receive address's | ||
106 | * @hw: pointer to the HW structure | ||
107 | * @rar_count: receive address registers | ||
108 | * | ||
109 | * Setups the receive address registers by setting the base receive address | ||
110 | * register to the devices MAC address and clearing all the other receive | ||
111 | * address registers to 0. | ||
112 | **/ | ||
113 | void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) | ||
114 | { | ||
115 | u32 i; | ||
116 | |||
117 | /* Setup the receive address */ | ||
118 | hw_dbg(hw, "Programming MAC Address into RAR[0]\n"); | ||
119 | |||
120 | e1000e_rar_set(hw, hw->mac.addr, 0); | ||
121 | |||
122 | /* Zero out the other (rar_entry_count - 1) receive addresses */ | ||
123 | hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1); | ||
124 | for (i = 1; i < rar_count; i++) { | ||
125 | E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0); | ||
126 | e1e_flush(); | ||
127 | E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0); | ||
128 | e1e_flush(); | ||
129 | } | ||
130 | } | ||
131 | |||
132 | /** | ||
133 | * e1000e_rar_set - Set receive address register | ||
134 | * @hw: pointer to the HW structure | ||
135 | * @addr: pointer to the receive address | ||
136 | * @index: receive address array register | ||
137 | * | ||
138 | * Sets the receive address array register at index to the address passed | ||
139 | * in by addr. | ||
140 | **/ | ||
141 | void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) | ||
142 | { | ||
143 | u32 rar_low, rar_high; | ||
144 | |||
145 | /* HW expects these in little endian so we reverse the byte order | ||
146 | * from network order (big endian) to little endian | ||
147 | */ | ||
148 | rar_low = ((u32) addr[0] | | ||
149 | ((u32) addr[1] << 8) | | ||
150 | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); | ||
151 | |||
152 | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); | ||
153 | |||
154 | rar_high |= E1000_RAH_AV; | ||
155 | |||
156 | E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low); | ||
157 | E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high); | ||
158 | } | ||
159 | |||
160 | /** | ||
161 | * e1000_mta_set - Set multicast filter table address | ||
162 | * @hw: pointer to the HW structure | ||
163 | * @hash_value: determines the MTA register and bit to set | ||
164 | * | ||
165 | * The multicast table address is a register array of 32-bit registers. | ||
166 | * The hash_value is used to determine what register the bit is in, the | ||
167 | * current value is read, the new bit is OR'd in and the new value is | ||
168 | * written back into the register. | ||
169 | **/ | ||
170 | static void e1000_mta_set(struct e1000_hw *hw, u32 hash_value) | ||
171 | { | ||
172 | u32 hash_bit, hash_reg, mta; | ||
173 | |||
174 | /* The MTA is a register array of 32-bit registers. It is | ||
175 | * treated like an array of (32*mta_reg_count) bits. We want to | ||
176 | * set bit BitArray[hash_value]. So we figure out what register | ||
177 | * the bit is in, read it, OR in the new bit, then write | ||
178 | * back the new value. The (hw->mac.mta_reg_count - 1) serves as a | ||
179 | * mask to bits 31:5 of the hash value which gives us the | ||
180 | * register we're modifying. The hash bit within that register | ||
181 | * is determined by the lower 5 bits of the hash value. | ||
182 | */ | ||
183 | hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); | ||
184 | hash_bit = hash_value & 0x1F; | ||
185 | |||
186 | mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg); | ||
187 | |||
188 | mta |= (1 << hash_bit); | ||
189 | |||
190 | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta); | ||
191 | e1e_flush(); | ||
192 | } | ||
193 | |||
194 | /** | ||
195 | * e1000_hash_mc_addr - Generate a multicast hash value | ||
196 | * @hw: pointer to the HW structure | ||
197 | * @mc_addr: pointer to a multicast address | ||
198 | * | ||
199 | * Generates a multicast address hash value which is used to determine | ||
200 | * the multicast filter table array address and new table value. See | ||
201 | * e1000_mta_set_generic() | ||
202 | **/ | ||
203 | static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | ||
204 | { | ||
205 | u32 hash_value, hash_mask; | ||
206 | u8 bit_shift = 0; | ||
207 | |||
208 | /* Register count multiplied by bits per register */ | ||
209 | hash_mask = (hw->mac.mta_reg_count * 32) - 1; | ||
210 | |||
211 | /* For a mc_filter_type of 0, bit_shift is the number of left-shifts | ||
212 | * where 0xFF would still fall within the hash mask. */ | ||
213 | while (hash_mask >> bit_shift != 0xFF) | ||
214 | bit_shift++; | ||
215 | |||
216 | /* The portion of the address that is used for the hash table | ||
217 | * is determined by the mc_filter_type setting. | ||
218 | * The algorithm is such that there is a total of 8 bits of shifting. | ||
219 | * The bit_shift for a mc_filter_type of 0 represents the number of | ||
220 | * left-shifts where the MSB of mc_addr[5] would still fall within | ||
221 | * the hash_mask. Case 0 does this exactly. Since there are a total | ||
222 | * of 8 bits of shifting, then mc_addr[4] will shift right the | ||
223 | * remaining number of bits. Thus 8 - bit_shift. The rest of the | ||
224 | * cases are a variation of this algorithm...essentially raising the | ||
225 | * number of bits to shift mc_addr[5] left, while still keeping the | ||
226 | * 8-bit shifting total. | ||
227 | */ | ||
228 | /* For example, given the following Destination MAC Address and an | ||
229 | * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), | ||
230 | * we can see that the bit_shift for case 0 is 4. These are the hash | ||
231 | * values resulting from each mc_filter_type... | ||
232 | * [0] [1] [2] [3] [4] [5] | ||
233 | * 01 AA 00 12 34 56 | ||
234 | * LSB MSB | ||
235 | * | ||
236 | * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 | ||
237 | * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 | ||
238 | * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 | ||
239 | * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 | ||
240 | */ | ||
241 | switch (hw->mac.mc_filter_type) { | ||
242 | default: | ||
243 | case 0: | ||
244 | break; | ||
245 | case 1: | ||
246 | bit_shift += 1; | ||
247 | break; | ||
248 | case 2: | ||
249 | bit_shift += 2; | ||
250 | break; | ||
251 | case 3: | ||
252 | bit_shift += 4; | ||
253 | break; | ||
254 | } | ||
255 | |||
256 | hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | | ||
257 | (((u16) mc_addr[5]) << bit_shift))); | ||
258 | |||
259 | return hash_value; | ||
260 | } | ||
261 | |||
262 | /** | ||
263 | * e1000e_mc_addr_list_update_generic - Update Multicast addresses | ||
264 | * @hw: pointer to the HW structure | ||
265 | * @mc_addr_list: array of multicast addresses to program | ||
266 | * @mc_addr_count: number of multicast addresses to program | ||
267 | * @rar_used_count: the first RAR register free to program | ||
268 | * @rar_count: total number of supported Receive Address Registers | ||
269 | * | ||
270 | * Updates the Receive Address Registers and Multicast Table Array. | ||
271 | * The caller must have a packed mc_addr_list of multicast addresses. | ||
272 | * The parameter rar_count will usually be hw->mac.rar_entry_count | ||
273 | * unless there are workarounds that change this. | ||
274 | **/ | ||
275 | void e1000e_mc_addr_list_update_generic(struct e1000_hw *hw, | ||
276 | u8 *mc_addr_list, u32 mc_addr_count, | ||
277 | u32 rar_used_count, u32 rar_count) | ||
278 | { | ||
279 | u32 hash_value; | ||
280 | u32 i; | ||
281 | |||
282 | /* Load the first set of multicast addresses into the exact | ||
283 | * filters (RAR). If there are not enough to fill the RAR | ||
284 | * array, clear the filters. | ||
285 | */ | ||
286 | for (i = rar_used_count; i < rar_count; i++) { | ||
287 | if (mc_addr_count) { | ||
288 | e1000e_rar_set(hw, mc_addr_list, i); | ||
289 | mc_addr_count--; | ||
290 | mc_addr_list += ETH_ALEN; | ||
291 | } else { | ||
292 | E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0); | ||
293 | e1e_flush(); | ||
294 | E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0); | ||
295 | e1e_flush(); | ||
296 | } | ||
297 | } | ||
298 | |||
299 | /* Clear the old settings from the MTA */ | ||
300 | hw_dbg(hw, "Clearing MTA\n"); | ||
301 | for (i = 0; i < hw->mac.mta_reg_count; i++) { | ||
302 | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); | ||
303 | e1e_flush(); | ||
304 | } | ||
305 | |||
306 | /* Load any remaining multicast addresses into the hash table. */ | ||
307 | for (; mc_addr_count > 0; mc_addr_count--) { | ||
308 | hash_value = e1000_hash_mc_addr(hw, mc_addr_list); | ||
309 | hw_dbg(hw, "Hash value = 0x%03X\n", hash_value); | ||
310 | e1000_mta_set(hw, hash_value); | ||
311 | mc_addr_list += ETH_ALEN; | ||
312 | } | ||
313 | } | ||
314 | |||
315 | /** | ||
316 | * e1000e_clear_hw_cntrs_base - Clear base hardware counters | ||
317 | * @hw: pointer to the HW structure | ||
318 | * | ||
319 | * Clears the base hardware counters by reading the counter registers. | ||
320 | **/ | ||
321 | void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) | ||
322 | { | ||
323 | u32 temp; | ||
324 | |||
325 | temp = er32(CRCERRS); | ||
326 | temp = er32(SYMERRS); | ||
327 | temp = er32(MPC); | ||
328 | temp = er32(SCC); | ||
329 | temp = er32(ECOL); | ||
330 | temp = er32(MCC); | ||
331 | temp = er32(LATECOL); | ||
332 | temp = er32(COLC); | ||
333 | temp = er32(DC); | ||
334 | temp = er32(SEC); | ||
335 | temp = er32(RLEC); | ||
336 | temp = er32(XONRXC); | ||
337 | temp = er32(XONTXC); | ||
338 | temp = er32(XOFFRXC); | ||
339 | temp = er32(XOFFTXC); | ||
340 | temp = er32(FCRUC); | ||
341 | temp = er32(GPRC); | ||
342 | temp = er32(BPRC); | ||
343 | temp = er32(MPRC); | ||
344 | temp = er32(GPTC); | ||
345 | temp = er32(GORCL); | ||
346 | temp = er32(GORCH); | ||
347 | temp = er32(GOTCL); | ||
348 | temp = er32(GOTCH); | ||
349 | temp = er32(RNBC); | ||
350 | temp = er32(RUC); | ||
351 | temp = er32(RFC); | ||
352 | temp = er32(ROC); | ||
353 | temp = er32(RJC); | ||
354 | temp = er32(TORL); | ||
355 | temp = er32(TORH); | ||
356 | temp = er32(TOTL); | ||
357 | temp = er32(TOTH); | ||
358 | temp = er32(TPR); | ||
359 | temp = er32(TPT); | ||
360 | temp = er32(MPTC); | ||
361 | temp = er32(BPTC); | ||
362 | } | ||
363 | |||
364 | /** | ||
365 | * e1000e_check_for_copper_link - Check for link (Copper) | ||
366 | * @hw: pointer to the HW structure | ||
367 | * | ||
368 | * Checks to see of the link status of the hardware has changed. If a | ||
369 | * change in link status has been detected, then we read the PHY registers | ||
370 | * to get the current speed/duplex if link exists. | ||
371 | **/ | ||
372 | s32 e1000e_check_for_copper_link(struct e1000_hw *hw) | ||
373 | { | ||
374 | struct e1000_mac_info *mac = &hw->mac; | ||
375 | s32 ret_val; | ||
376 | bool link; | ||
377 | |||
378 | /* We only want to go out to the PHY registers to see if Auto-Neg | ||
379 | * has completed and/or if our link status has changed. The | ||
380 | * get_link_status flag is set upon receiving a Link Status | ||
381 | * Change or Rx Sequence Error interrupt. | ||
382 | */ | ||
383 | if (!mac->get_link_status) | ||
384 | return 0; | ||
385 | |||
386 | /* First we want to see if the MII Status Register reports | ||
387 | * link. If so, then we want to get the current speed/duplex | ||
388 | * of the PHY. | ||
389 | */ | ||
390 | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | ||
391 | if (ret_val) | ||
392 | return ret_val; | ||
393 | |||
394 | if (!link) | ||
395 | return ret_val; /* No link detected */ | ||
396 | |||
397 | mac->get_link_status = 0; | ||
398 | |||
399 | /* Check if there was DownShift, must be checked | ||
400 | * immediately after link-up */ | ||
401 | e1000e_check_downshift(hw); | ||
402 | |||
403 | /* If we are forcing speed/duplex, then we simply return since | ||
404 | * we have already determined whether we have link or not. | ||
405 | */ | ||
406 | if (!mac->autoneg) { | ||
407 | ret_val = -E1000_ERR_CONFIG; | ||
408 | return ret_val; | ||
409 | } | ||
410 | |||
411 | /* Auto-Neg is enabled. Auto Speed Detection takes care | ||
412 | * of MAC speed/duplex configuration. So we only need to | ||
413 | * configure Collision Distance in the MAC. | ||
414 | */ | ||
415 | e1000e_config_collision_dist(hw); | ||
416 | |||
417 | /* Configure Flow Control now that Auto-Neg has completed. | ||
418 | * First, we need to restore the desired flow control | ||
419 | * settings because we may have had to re-autoneg with a | ||
420 | * different link partner. | ||
421 | */ | ||
422 | ret_val = e1000e_config_fc_after_link_up(hw); | ||
423 | if (ret_val) { | ||
424 | hw_dbg(hw, "Error configuring flow control\n"); | ||
425 | } | ||
426 | |||
427 | return ret_val; | ||
428 | } | ||
429 | |||
430 | /** | ||
431 | * e1000e_check_for_fiber_link - Check for link (Fiber) | ||
432 | * @hw: pointer to the HW structure | ||
433 | * | ||
434 | * Checks for link up on the hardware. If link is not up and we have | ||
435 | * a signal, then we need to force link up. | ||
436 | **/ | ||
437 | s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) | ||
438 | { | ||
439 | struct e1000_mac_info *mac = &hw->mac; | ||
440 | u32 rxcw; | ||
441 | u32 ctrl; | ||
442 | u32 status; | ||
443 | s32 ret_val; | ||
444 | |||
445 | ctrl = er32(CTRL); | ||
446 | status = er32(STATUS); | ||
447 | rxcw = er32(RXCW); | ||
448 | |||
449 | /* If we don't have link (auto-negotiation failed or link partner | ||
450 | * cannot auto-negotiate), the cable is plugged in (we have signal), | ||
451 | * and our link partner is not trying to auto-negotiate with us (we | ||
452 | * are receiving idles or data), we need to force link up. We also | ||
453 | * need to give auto-negotiation time to complete, in case the cable | ||
454 | * was just plugged in. The autoneg_failed flag does this. | ||
455 | */ | ||
456 | /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ | ||
457 | if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) && | ||
458 | (!(rxcw & E1000_RXCW_C))) { | ||
459 | if (mac->autoneg_failed == 0) { | ||
460 | mac->autoneg_failed = 1; | ||
461 | return 0; | ||
462 | } | ||
463 | hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n"); | ||
464 | |||
465 | /* Disable auto-negotiation in the TXCW register */ | ||
466 | ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); | ||
467 | |||
468 | /* Force link-up and also force full-duplex. */ | ||
469 | ctrl = er32(CTRL); | ||
470 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | ||
471 | ew32(CTRL, ctrl); | ||
472 | |||
473 | /* Configure Flow Control after forcing link up. */ | ||
474 | ret_val = e1000e_config_fc_after_link_up(hw); | ||
475 | if (ret_val) { | ||
476 | hw_dbg(hw, "Error configuring flow control\n"); | ||
477 | return ret_val; | ||
478 | } | ||
479 | } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | ||
480 | /* If we are forcing link and we are receiving /C/ ordered | ||
481 | * sets, re-enable auto-negotiation in the TXCW register | ||
482 | * and disable forced link in the Device Control register | ||
483 | * in an attempt to auto-negotiate with our link partner. | ||
484 | */ | ||
485 | hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n"); | ||
486 | ew32(TXCW, mac->txcw); | ||
487 | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | ||
488 | |||
489 | mac->serdes_has_link = 1; | ||
490 | } | ||
491 | |||
492 | return 0; | ||
493 | } | ||
494 | |||
495 | /** | ||
496 | * e1000e_check_for_serdes_link - Check for link (Serdes) | ||
497 | * @hw: pointer to the HW structure | ||
498 | * | ||
499 | * Checks for link up on the hardware. If link is not up and we have | ||
500 | * a signal, then we need to force link up. | ||
501 | **/ | ||
502 | s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) | ||
503 | { | ||
504 | struct e1000_mac_info *mac = &hw->mac; | ||
505 | u32 rxcw; | ||
506 | u32 ctrl; | ||
507 | u32 status; | ||
508 | s32 ret_val; | ||
509 | |||
510 | ctrl = er32(CTRL); | ||
511 | status = er32(STATUS); | ||
512 | rxcw = er32(RXCW); | ||
513 | |||
514 | /* If we don't have link (auto-negotiation failed or link partner | ||
515 | * cannot auto-negotiate), and our link partner is not trying to | ||
516 | * auto-negotiate with us (we are receiving idles or data), | ||
517 | * we need to force link up. We also need to give auto-negotiation | ||
518 | * time to complete. | ||
519 | */ | ||
520 | /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ | ||
521 | if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { | ||
522 | if (mac->autoneg_failed == 0) { | ||
523 | mac->autoneg_failed = 1; | ||
524 | return 0; | ||
525 | } | ||
526 | hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n"); | ||
527 | |||
528 | /* Disable auto-negotiation in the TXCW register */ | ||
529 | ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); | ||
530 | |||
531 | /* Force link-up and also force full-duplex. */ | ||
532 | ctrl = er32(CTRL); | ||
533 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | ||
534 | ew32(CTRL, ctrl); | ||
535 | |||
536 | /* Configure Flow Control after forcing link up. */ | ||
537 | ret_val = e1000e_config_fc_after_link_up(hw); | ||
538 | if (ret_val) { | ||
539 | hw_dbg(hw, "Error configuring flow control\n"); | ||
540 | return ret_val; | ||
541 | } | ||
542 | } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | ||
543 | /* If we are forcing link and we are receiving /C/ ordered | ||
544 | * sets, re-enable auto-negotiation in the TXCW register | ||
545 | * and disable forced link in the Device Control register | ||
546 | * in an attempt to auto-negotiate with our link partner. | ||
547 | */ | ||
548 | hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n"); | ||
549 | ew32(TXCW, mac->txcw); | ||
550 | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | ||
551 | |||
552 | mac->serdes_has_link = 1; | ||
553 | } else if (!(E1000_TXCW_ANE & er32(TXCW))) { | ||
554 | /* If we force link for non-auto-negotiation switch, check | ||
555 | * link status based on MAC synchronization for internal | ||
556 | * serdes media type. | ||
557 | */ | ||
558 | /* SYNCH bit and IV bit are sticky. */ | ||
559 | udelay(10); | ||
560 | if (E1000_RXCW_SYNCH & er32(RXCW)) { | ||
561 | if (!(rxcw & E1000_RXCW_IV)) { | ||
562 | mac->serdes_has_link = 1; | ||
563 | hw_dbg(hw, "SERDES: Link is up.\n"); | ||
564 | } | ||
565 | } else { | ||
566 | mac->serdes_has_link = 0; | ||
567 | hw_dbg(hw, "SERDES: Link is down.\n"); | ||
568 | } | ||
569 | } | ||
570 | |||
571 | if (E1000_TXCW_ANE & er32(TXCW)) { | ||
572 | status = er32(STATUS); | ||
573 | mac->serdes_has_link = (status & E1000_STATUS_LU); | ||
574 | } | ||
575 | |||
576 | return 0; | ||
577 | } | ||
578 | |||
579 | /** | ||
580 | * e1000_set_default_fc_generic - Set flow control default values | ||
581 | * @hw: pointer to the HW structure | ||
582 | * | ||
583 | * Read the EEPROM for the default values for flow control and store the | ||
584 | * values. | ||
585 | **/ | ||
586 | static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) | ||
587 | { | ||
588 | struct e1000_mac_info *mac = &hw->mac; | ||
589 | s32 ret_val; | ||
590 | u16 nvm_data; | ||
591 | |||
592 | if (mac->fc != e1000_fc_default) | ||
593 | return 0; | ||
594 | |||
595 | /* Read and store word 0x0F of the EEPROM. This word contains bits | ||
596 | * that determine the hardware's default PAUSE (flow control) mode, | ||
597 | * a bit that determines whether the HW defaults to enabling or | ||
598 | * disabling auto-negotiation, and the direction of the | ||
599 | * SW defined pins. If there is no SW over-ride of the flow | ||
600 | * control setting, then the variable hw->fc will | ||
601 | * be initialized based on a value in the EEPROM. | ||
602 | */ | ||
603 | ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); | ||
604 | |||
605 | if (ret_val) { | ||
606 | hw_dbg(hw, "NVM Read Error\n"); | ||
607 | return ret_val; | ||
608 | } | ||
609 | |||
610 | if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) | ||
611 | mac->fc = e1000_fc_none; | ||
612 | else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == | ||
613 | NVM_WORD0F_ASM_DIR) | ||
614 | mac->fc = e1000_fc_tx_pause; | ||
615 | else | ||
616 | mac->fc = e1000_fc_full; | ||
617 | |||
618 | return 0; | ||
619 | } | ||
620 | |||
621 | /** | ||
622 | * e1000e_setup_link - Setup flow control and link settings | ||
623 | * @hw: pointer to the HW structure | ||
624 | * | ||
625 | * Determines which flow control settings to use, then configures flow | ||
626 | * control. Calls the appropriate media-specific link configuration | ||
627 | * function. Assuming the adapter has a valid link partner, a valid link | ||
628 | * should be established. Assumes the hardware has previously been reset | ||
629 | * and the transmitter and receiver are not enabled. | ||
630 | **/ | ||
631 | s32 e1000e_setup_link(struct e1000_hw *hw) | ||
632 | { | ||
633 | struct e1000_mac_info *mac = &hw->mac; | ||
634 | s32 ret_val; | ||
635 | |||
636 | /* In the case of the phy reset being blocked, we already have a link. | ||
637 | * We do not need to set it up again. | ||
638 | */ | ||
639 | if (e1000_check_reset_block(hw)) | ||
640 | return 0; | ||
641 | |||
642 | ret_val = e1000_set_default_fc_generic(hw); | ||
643 | if (ret_val) | ||
644 | return ret_val; | ||
645 | |||
646 | /* We want to save off the original Flow Control configuration just | ||
647 | * in case we get disconnected and then reconnected into a different | ||
648 | * hub or switch with different Flow Control capabilities. | ||
649 | */ | ||
650 | mac->original_fc = mac->fc; | ||
651 | |||
652 | hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", mac->fc); | ||
653 | |||
654 | /* Call the necessary media_type subroutine to configure the link. */ | ||
655 | ret_val = mac->ops.setup_physical_interface(hw); | ||
656 | if (ret_val) | ||
657 | return ret_val; | ||
658 | |||
659 | /* Initialize the flow control address, type, and PAUSE timer | ||
660 | * registers to their default values. This is done even if flow | ||
661 | * control is disabled, because it does not hurt anything to | ||
662 | * initialize these registers. | ||
663 | */ | ||
664 | hw_dbg(hw, "Initializing the Flow Control address, type and timer regs\n"); | ||
665 | ew32(FCT, FLOW_CONTROL_TYPE); | ||
666 | ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); | ||
667 | ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); | ||
668 | |||
669 | ew32(FCTTV, mac->fc_pause_time); | ||
670 | |||
671 | return e1000e_set_fc_watermarks(hw); | ||
672 | } | ||
673 | |||
674 | /** | ||
675 | * e1000_commit_fc_settings_generic - Configure flow control | ||
676 | * @hw: pointer to the HW structure | ||
677 | * | ||
678 | * Write the flow control settings to the Transmit Config Word Register (TXCW) | ||
679 | * base on the flow control settings in e1000_mac_info. | ||
680 | **/ | ||
681 | static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) | ||
682 | { | ||
683 | struct e1000_mac_info *mac = &hw->mac; | ||
684 | u32 txcw; | ||
685 | |||
686 | /* Check for a software override of the flow control settings, and | ||
687 | * setup the device accordingly. If auto-negotiation is enabled, then | ||
688 | * software will have to set the "PAUSE" bits to the correct value in | ||
689 | * the Transmit Config Word Register (TXCW) and re-start auto- | ||
690 | * negotiation. However, if auto-negotiation is disabled, then | ||
691 | * software will have to manually configure the two flow control enable | ||
692 | * bits in the CTRL register. | ||
693 | * | ||
694 | * The possible values of the "fc" parameter are: | ||
695 | * 0: Flow control is completely disabled | ||
696 | * 1: Rx flow control is enabled (we can receive pause frames, | ||
697 | * but not send pause frames). | ||
698 | * 2: Tx flow control is enabled (we can send pause frames but we | ||
699 | * do not support receiving pause frames). | ||
700 | * 3: Both Rx and TX flow control (symmetric) are enabled. | ||
701 | */ | ||
702 | switch (mac->fc) { | ||
703 | case e1000_fc_none: | ||
704 | /* Flow control completely disabled by a software over-ride. */ | ||
705 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); | ||
706 | break; | ||
707 | case e1000_fc_rx_pause: | ||
708 | /* RX Flow control is enabled and TX Flow control is disabled | ||
709 | * by a software over-ride. Since there really isn't a way to | ||
710 | * advertise that we are capable of RX Pause ONLY, we will | ||
711 | * advertise that we support both symmetric and asymmetric RX | ||
712 | * PAUSE. Later, we will disable the adapter's ability to send | ||
713 | * PAUSE frames. | ||
714 | */ | ||
715 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | ||
716 | break; | ||
717 | case e1000_fc_tx_pause: | ||
718 | /* TX Flow control is enabled, and RX Flow control is disabled, | ||
719 | * by a software over-ride. | ||
720 | */ | ||
721 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); | ||
722 | break; | ||
723 | case e1000_fc_full: | ||
724 | /* Flow control (both RX and TX) is enabled by a software | ||
725 | * over-ride. | ||
726 | */ | ||
727 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | ||
728 | break; | ||
729 | default: | ||
730 | hw_dbg(hw, "Flow control param set incorrectly\n"); | ||
731 | return -E1000_ERR_CONFIG; | ||
732 | break; | ||
733 | } | ||
734 | |||
735 | ew32(TXCW, txcw); | ||
736 | mac->txcw = txcw; | ||
737 | |||
738 | return 0; | ||
739 | } | ||
740 | |||
741 | /** | ||
742 | * e1000_poll_fiber_serdes_link_generic - Poll for link up | ||
743 | * @hw: pointer to the HW structure | ||
744 | * | ||
745 | * Polls for link up by reading the status register, if link fails to come | ||
746 | * up with auto-negotiation, then the link is forced if a signal is detected. | ||
747 | **/ | ||
748 | static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) | ||
749 | { | ||
750 | struct e1000_mac_info *mac = &hw->mac; | ||
751 | u32 i, status; | ||
752 | s32 ret_val; | ||
753 | |||
754 | /* If we have a signal (the cable is plugged in, or assumed true for | ||
755 | * serdes media) then poll for a "Link-Up" indication in the Device | ||
756 | * Status Register. Time-out if a link isn't seen in 500 milliseconds | ||
757 | * seconds (Auto-negotiation should complete in less than 500 | ||
758 | * milliseconds even if the other end is doing it in SW). | ||
759 | */ | ||
760 | for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { | ||
761 | msleep(10); | ||
762 | status = er32(STATUS); | ||
763 | if (status & E1000_STATUS_LU) | ||
764 | break; | ||
765 | } | ||
766 | if (i == FIBER_LINK_UP_LIMIT) { | ||
767 | hw_dbg(hw, "Never got a valid link from auto-neg!!!\n"); | ||
768 | mac->autoneg_failed = 1; | ||
769 | /* AutoNeg failed to achieve a link, so we'll call | ||
770 | * mac->check_for_link. This routine will force the | ||
771 | * link up if we detect a signal. This will allow us to | ||
772 | * communicate with non-autonegotiating link partners. | ||
773 | */ | ||
774 | ret_val = mac->ops.check_for_link(hw); | ||
775 | if (ret_val) { | ||
776 | hw_dbg(hw, "Error while checking for link\n"); | ||
777 | return ret_val; | ||
778 | } | ||
779 | mac->autoneg_failed = 0; | ||
780 | } else { | ||
781 | mac->autoneg_failed = 0; | ||
782 | hw_dbg(hw, "Valid Link Found\n"); | ||
783 | } | ||
784 | |||
785 | return 0; | ||
786 | } | ||
787 | |||
788 | /** | ||
789 | * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes | ||
790 | * @hw: pointer to the HW structure | ||
791 | * | ||
792 | * Configures collision distance and flow control for fiber and serdes | ||
793 | * links. Upon successful setup, poll for link. | ||
794 | **/ | ||
795 | s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) | ||
796 | { | ||
797 | u32 ctrl; | ||
798 | s32 ret_val; | ||
799 | |||
800 | ctrl = er32(CTRL); | ||
801 | |||
802 | /* Take the link out of reset */ | ||
803 | ctrl &= ~E1000_CTRL_LRST; | ||
804 | |||
805 | e1000e_config_collision_dist(hw); | ||
806 | |||
807 | ret_val = e1000_commit_fc_settings_generic(hw); | ||
808 | if (ret_val) | ||
809 | return ret_val; | ||
810 | |||
811 | /* Since auto-negotiation is enabled, take the link out of reset (the | ||
812 | * link will be in reset, because we previously reset the chip). This | ||
813 | * will restart auto-negotiation. If auto-negotiation is successful | ||
814 | * then the link-up status bit will be set and the flow control enable | ||
815 | * bits (RFCE and TFCE) will be set according to their negotiated value. | ||
816 | */ | ||
817 | hw_dbg(hw, "Auto-negotiation enabled\n"); | ||
818 | |||
819 | ew32(CTRL, ctrl); | ||
820 | e1e_flush(); | ||
821 | msleep(1); | ||
822 | |||
823 | /* For these adapters, the SW defineable pin 1 is set when the optics | ||
824 | * detect a signal. If we have a signal, then poll for a "Link-Up" | ||
825 | * indication. | ||
826 | */ | ||
827 | if (hw->media_type == e1000_media_type_internal_serdes || | ||
828 | (er32(CTRL) & E1000_CTRL_SWDPIN1)) { | ||
829 | ret_val = e1000_poll_fiber_serdes_link_generic(hw); | ||
830 | } else { | ||
831 | hw_dbg(hw, "No signal detected\n"); | ||
832 | } | ||
833 | |||
834 | return 0; | ||
835 | } | ||
836 | |||
837 | /** | ||
838 | * e1000e_config_collision_dist - Configure collision distance | ||
839 | * @hw: pointer to the HW structure | ||
840 | * | ||
841 | * Configures the collision distance to the default value and is used | ||
842 | * during link setup. Currently no func pointer exists and all | ||
843 | * implementations are handled in the generic version of this function. | ||
844 | **/ | ||
845 | void e1000e_config_collision_dist(struct e1000_hw *hw) | ||
846 | { | ||
847 | u32 tctl; | ||
848 | |||
849 | tctl = er32(TCTL); | ||
850 | |||
851 | tctl &= ~E1000_TCTL_COLD; | ||
852 | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; | ||
853 | |||
854 | ew32(TCTL, tctl); | ||
855 | e1e_flush(); | ||
856 | } | ||
857 | |||
858 | /** | ||
859 | * e1000e_set_fc_watermarks - Set flow control high/low watermarks | ||
860 | * @hw: pointer to the HW structure | ||
861 | * | ||
862 | * Sets the flow control high/low threshold (watermark) registers. If | ||
863 | * flow control XON frame transmission is enabled, then set XON frame | ||
864 | * tansmission as well. | ||
865 | **/ | ||
866 | s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) | ||
867 | { | ||
868 | struct e1000_mac_info *mac = &hw->mac; | ||
869 | u32 fcrtl = 0, fcrth = 0; | ||
870 | |||
871 | /* Set the flow control receive threshold registers. Normally, | ||
872 | * these registers will be set to a default threshold that may be | ||
873 | * adjusted later by the driver's runtime code. However, if the | ||
874 | * ability to transmit pause frames is not enabled, then these | ||
875 | * registers will be set to 0. | ||
876 | */ | ||
877 | if (mac->fc & e1000_fc_tx_pause) { | ||
878 | /* We need to set up the Receive Threshold high and low water | ||
879 | * marks as well as (optionally) enabling the transmission of | ||
880 | * XON frames. | ||
881 | */ | ||
882 | fcrtl = mac->fc_low_water; | ||
883 | fcrtl |= E1000_FCRTL_XONE; | ||
884 | fcrth = mac->fc_high_water; | ||
885 | } | ||
886 | ew32(FCRTL, fcrtl); | ||
887 | ew32(FCRTH, fcrth); | ||
888 | |||
889 | return 0; | ||
890 | } | ||
891 | |||
892 | /** | ||
893 | * e1000e_force_mac_fc - Force the MAC's flow control settings | ||
894 | * @hw: pointer to the HW structure | ||
895 | * | ||
896 | * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the | ||
897 | * device control register to reflect the adapter settings. TFCE and RFCE | ||
898 | * need to be explicitly set by software when a copper PHY is used because | ||
899 | * autonegotiation is managed by the PHY rather than the MAC. Software must | ||
900 | * also configure these bits when link is forced on a fiber connection. | ||
901 | **/ | ||
902 | s32 e1000e_force_mac_fc(struct e1000_hw *hw) | ||
903 | { | ||
904 | struct e1000_mac_info *mac = &hw->mac; | ||
905 | u32 ctrl; | ||
906 | |||
907 | ctrl = er32(CTRL); | ||
908 | |||
909 | /* Because we didn't get link via the internal auto-negotiation | ||
910 | * mechanism (we either forced link or we got link via PHY | ||
911 | * auto-neg), we have to manually enable/disable transmit an | ||
912 | * receive flow control. | ||
913 | * | ||
914 | * The "Case" statement below enables/disable flow control | ||
915 | * according to the "mac->fc" parameter. | ||
916 | * | ||
917 | * The possible values of the "fc" parameter are: | ||
918 | * 0: Flow control is completely disabled | ||
919 | * 1: Rx flow control is enabled (we can receive pause | ||
920 | * frames but not send pause frames). | ||
921 | * 2: Tx flow control is enabled (we can send pause frames | ||
922 | * frames but we do not receive pause frames). | ||
923 | * 3: Both Rx and TX flow control (symmetric) is enabled. | ||
924 | * other: No other values should be possible at this point. | ||
925 | */ | ||
926 | hw_dbg(hw, "mac->fc = %u\n", mac->fc); | ||
927 | |||
928 | switch (mac->fc) { | ||
929 | case e1000_fc_none: | ||
930 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | ||
931 | break; | ||
932 | case e1000_fc_rx_pause: | ||
933 | ctrl &= (~E1000_CTRL_TFCE); | ||
934 | ctrl |= E1000_CTRL_RFCE; | ||
935 | break; | ||
936 | case e1000_fc_tx_pause: | ||
937 | ctrl &= (~E1000_CTRL_RFCE); | ||
938 | ctrl |= E1000_CTRL_TFCE; | ||
939 | break; | ||
940 | case e1000_fc_full: | ||
941 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | ||
942 | break; | ||
943 | default: | ||
944 | hw_dbg(hw, "Flow control param set incorrectly\n"); | ||
945 | return -E1000_ERR_CONFIG; | ||
946 | } | ||
947 | |||
948 | ew32(CTRL, ctrl); | ||
949 | |||
950 | return 0; | ||
951 | } | ||
952 | |||
953 | /** | ||
954 | * e1000e_config_fc_after_link_up - Configures flow control after link | ||
955 | * @hw: pointer to the HW structure | ||
956 | * | ||
957 | * Checks the status of auto-negotiation after link up to ensure that the | ||
958 | * speed and duplex were not forced. If the link needed to be forced, then | ||
959 | * flow control needs to be forced also. If auto-negotiation is enabled | ||
960 | * and did not fail, then we configure flow control based on our link | ||
961 | * partner. | ||
962 | **/ | ||
963 | s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) | ||
964 | { | ||
965 | struct e1000_mac_info *mac = &hw->mac; | ||
966 | s32 ret_val = 0; | ||
967 | u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; | ||
968 | u16 speed, duplex; | ||
969 | |||
970 | /* Check for the case where we have fiber media and auto-neg failed | ||
971 | * so we had to force link. In this case, we need to force the | ||
972 | * configuration of the MAC to match the "fc" parameter. | ||
973 | */ | ||
974 | if (mac->autoneg_failed) { | ||
975 | if (hw->media_type == e1000_media_type_fiber || | ||
976 | hw->media_type == e1000_media_type_internal_serdes) | ||
977 | ret_val = e1000e_force_mac_fc(hw); | ||
978 | } else { | ||
979 | if (hw->media_type == e1000_media_type_copper) | ||
980 | ret_val = e1000e_force_mac_fc(hw); | ||
981 | } | ||
982 | |||
983 | if (ret_val) { | ||
984 | hw_dbg(hw, "Error forcing flow control settings\n"); | ||
985 | return ret_val; | ||
986 | } | ||
987 | |||
988 | /* Check for the case where we have copper media and auto-neg is | ||
989 | * enabled. In this case, we need to check and see if Auto-Neg | ||
990 | * has completed, and if so, how the PHY and link partner has | ||
991 | * flow control configured. | ||
992 | */ | ||
993 | if ((hw->media_type == e1000_media_type_copper) && mac->autoneg) { | ||
994 | /* Read the MII Status Register and check to see if AutoNeg | ||
995 | * has completed. We read this twice because this reg has | ||
996 | * some "sticky" (latched) bits. | ||
997 | */ | ||
998 | ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); | ||
999 | if (ret_val) | ||
1000 | return ret_val; | ||
1001 | ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); | ||
1002 | if (ret_val) | ||
1003 | return ret_val; | ||
1004 | |||
1005 | if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { | ||
1006 | hw_dbg(hw, "Copper PHY and Auto Neg " | ||
1007 | "has not completed.\n"); | ||
1008 | return ret_val; | ||
1009 | } | ||
1010 | |||
1011 | /* The AutoNeg process has completed, so we now need to | ||
1012 | * read both the Auto Negotiation Advertisement | ||
1013 | * Register (Address 4) and the Auto_Negotiation Base | ||
1014 | * Page Ability Register (Address 5) to determine how | ||
1015 | * flow control was negotiated. | ||
1016 | */ | ||
1017 | ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); | ||
1018 | if (ret_val) | ||
1019 | return ret_val; | ||
1020 | ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); | ||
1021 | if (ret_val) | ||
1022 | return ret_val; | ||
1023 | |||
1024 | /* Two bits in the Auto Negotiation Advertisement Register | ||
1025 | * (Address 4) and two bits in the Auto Negotiation Base | ||
1026 | * Page Ability Register (Address 5) determine flow control | ||
1027 | * for both the PHY and the link partner. The following | ||
1028 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | ||
1029 | * 1999, describes these PAUSE resolution bits and how flow | ||
1030 | * control is determined based upon these settings. | ||
1031 | * NOTE: DC = Don't Care | ||
1032 | * | ||
1033 | * LOCAL DEVICE | LINK PARTNER | ||
1034 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | ||
1035 | *-------|---------|-------|---------|-------------------- | ||
1036 | * 0 | 0 | DC | DC | e1000_fc_none | ||
1037 | * 0 | 1 | 0 | DC | e1000_fc_none | ||
1038 | * 0 | 1 | 1 | 0 | e1000_fc_none | ||
1039 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
1040 | * 1 | 0 | 0 | DC | e1000_fc_none | ||
1041 | * 1 | DC | 1 | DC | e1000_fc_full | ||
1042 | * 1 | 1 | 0 | 0 | e1000_fc_none | ||
1043 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
1044 | * | ||
1045 | */ | ||
1046 | /* Are both PAUSE bits set to 1? If so, this implies | ||
1047 | * Symmetric Flow Control is enabled at both ends. The | ||
1048 | * ASM_DIR bits are irrelevant per the spec. | ||
1049 | * | ||
1050 | * For Symmetric Flow Control: | ||
1051 | * | ||
1052 | * LOCAL DEVICE | LINK PARTNER | ||
1053 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
1054 | *-------|---------|-------|---------|-------------------- | ||
1055 | * 1 | DC | 1 | DC | E1000_fc_full | ||
1056 | * | ||
1057 | */ | ||
1058 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
1059 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | ||
1060 | /* Now we need to check if the user selected RX ONLY | ||
1061 | * of pause frames. In this case, we had to advertise | ||
1062 | * FULL flow control because we could not advertise RX | ||
1063 | * ONLY. Hence, we must now check to see if we need to | ||
1064 | * turn OFF the TRANSMISSION of PAUSE frames. | ||
1065 | */ | ||
1066 | if (mac->original_fc == e1000_fc_full) { | ||
1067 | mac->fc = e1000_fc_full; | ||
1068 | hw_dbg(hw, "Flow Control = FULL.\r\n"); | ||
1069 | } else { | ||
1070 | mac->fc = e1000_fc_rx_pause; | ||
1071 | hw_dbg(hw, "Flow Control = " | ||
1072 | "RX PAUSE frames only.\r\n"); | ||
1073 | } | ||
1074 | } | ||
1075 | /* For receiving PAUSE frames ONLY. | ||
1076 | * | ||
1077 | * LOCAL DEVICE | LINK PARTNER | ||
1078 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
1079 | *-------|---------|-------|---------|-------------------- | ||
1080 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
1081 | * | ||
1082 | */ | ||
1083 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
1084 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
1085 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
1086 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
1087 | mac->fc = e1000_fc_tx_pause; | ||
1088 | hw_dbg(hw, "Flow Control = TX PAUSE frames only.\r\n"); | ||
1089 | } | ||
1090 | /* For transmitting PAUSE frames ONLY. | ||
1091 | * | ||
1092 | * LOCAL DEVICE | LINK PARTNER | ||
1093 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
1094 | *-------|---------|-------|---------|-------------------- | ||
1095 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
1096 | * | ||
1097 | */ | ||
1098 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
1099 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
1100 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
1101 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
1102 | mac->fc = e1000_fc_rx_pause; | ||
1103 | hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n"); | ||
1104 | } | ||
1105 | /* Per the IEEE spec, at this point flow control should be | ||
1106 | * disabled. However, we want to consider that we could | ||
1107 | * be connected to a legacy switch that doesn't advertise | ||
1108 | * desired flow control, but can be forced on the link | ||
1109 | * partner. So if we advertised no flow control, that is | ||
1110 | * what we will resolve to. If we advertised some kind of | ||
1111 | * receive capability (Rx Pause Only or Full Flow Control) | ||
1112 | * and the link partner advertised none, we will configure | ||
1113 | * ourselves to enable Rx Flow Control only. We can do | ||
1114 | * this safely for two reasons: If the link partner really | ||
1115 | * didn't want flow control enabled, and we enable Rx, no | ||
1116 | * harm done since we won't be receiving any PAUSE frames | ||
1117 | * anyway. If the intent on the link partner was to have | ||
1118 | * flow control enabled, then by us enabling RX only, we | ||
1119 | * can at least receive pause frames and process them. | ||
1120 | * This is a good idea because in most cases, since we are | ||
1121 | * predominantly a server NIC, more times than not we will | ||
1122 | * be asked to delay transmission of packets than asking | ||
1123 | * our link partner to pause transmission of frames. | ||
1124 | */ | ||
1125 | else if ((mac->original_fc == e1000_fc_none) || | ||
1126 | (mac->original_fc == e1000_fc_tx_pause)) { | ||
1127 | mac->fc = e1000_fc_none; | ||
1128 | hw_dbg(hw, "Flow Control = NONE.\r\n"); | ||
1129 | } else { | ||
1130 | mac->fc = e1000_fc_rx_pause; | ||
1131 | hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n"); | ||
1132 | } | ||
1133 | |||
1134 | /* Now we need to do one last check... If we auto- | ||
1135 | * negotiated to HALF DUPLEX, flow control should not be | ||
1136 | * enabled per IEEE 802.3 spec. | ||
1137 | */ | ||
1138 | ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); | ||
1139 | if (ret_val) { | ||
1140 | hw_dbg(hw, "Error getting link speed and duplex\n"); | ||
1141 | return ret_val; | ||
1142 | } | ||
1143 | |||
1144 | if (duplex == HALF_DUPLEX) | ||
1145 | mac->fc = e1000_fc_none; | ||
1146 | |||
1147 | /* Now we call a subroutine to actually force the MAC | ||
1148 | * controller to use the correct flow control settings. | ||
1149 | */ | ||
1150 | ret_val = e1000e_force_mac_fc(hw); | ||
1151 | if (ret_val) { | ||
1152 | hw_dbg(hw, "Error forcing flow control settings\n"); | ||
1153 | return ret_val; | ||
1154 | } | ||
1155 | } | ||
1156 | |||
1157 | return 0; | ||
1158 | } | ||
1159 | |||
1160 | /** | ||
1161 | * e1000e_get_speed_and_duplex_copper - Retreive current speed/duplex | ||
1162 | * @hw: pointer to the HW structure | ||
1163 | * @speed: stores the current speed | ||
1164 | * @duplex: stores the current duplex | ||
1165 | * | ||
1166 | * Read the status register for the current speed/duplex and store the current | ||
1167 | * speed and duplex for copper connections. | ||
1168 | **/ | ||
1169 | s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex) | ||
1170 | { | ||
1171 | u32 status; | ||
1172 | |||
1173 | status = er32(STATUS); | ||
1174 | if (status & E1000_STATUS_SPEED_1000) { | ||
1175 | *speed = SPEED_1000; | ||
1176 | hw_dbg(hw, "1000 Mbs, "); | ||
1177 | } else if (status & E1000_STATUS_SPEED_100) { | ||
1178 | *speed = SPEED_100; | ||
1179 | hw_dbg(hw, "100 Mbs, "); | ||
1180 | } else { | ||
1181 | *speed = SPEED_10; | ||
1182 | hw_dbg(hw, "10 Mbs, "); | ||
1183 | } | ||
1184 | |||
1185 | if (status & E1000_STATUS_FD) { | ||
1186 | *duplex = FULL_DUPLEX; | ||
1187 | hw_dbg(hw, "Full Duplex\n"); | ||
1188 | } else { | ||
1189 | *duplex = HALF_DUPLEX; | ||
1190 | hw_dbg(hw, "Half Duplex\n"); | ||
1191 | } | ||
1192 | |||
1193 | return 0; | ||
1194 | } | ||
1195 | |||
1196 | /** | ||
1197 | * e1000e_get_speed_and_duplex_fiber_serdes - Retreive current speed/duplex | ||
1198 | * @hw: pointer to the HW structure | ||
1199 | * @speed: stores the current speed | ||
1200 | * @duplex: stores the current duplex | ||
1201 | * | ||
1202 | * Sets the speed and duplex to gigabit full duplex (the only possible option) | ||
1203 | * for fiber/serdes links. | ||
1204 | **/ | ||
1205 | s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex) | ||
1206 | { | ||
1207 | *speed = SPEED_1000; | ||
1208 | *duplex = FULL_DUPLEX; | ||
1209 | |||
1210 | return 0; | ||
1211 | } | ||
1212 | |||
1213 | /** | ||
1214 | * e1000e_get_hw_semaphore - Acquire hardware semaphore | ||
1215 | * @hw: pointer to the HW structure | ||
1216 | * | ||
1217 | * Acquire the HW semaphore to access the PHY or NVM | ||
1218 | **/ | ||
1219 | s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) | ||
1220 | { | ||
1221 | u32 swsm; | ||
1222 | s32 timeout = hw->nvm.word_size + 1; | ||
1223 | s32 i = 0; | ||
1224 | |||
1225 | /* Get the SW semaphore */ | ||
1226 | while (i < timeout) { | ||
1227 | swsm = er32(SWSM); | ||
1228 | if (!(swsm & E1000_SWSM_SMBI)) | ||
1229 | break; | ||
1230 | |||
1231 | udelay(50); | ||
1232 | i++; | ||
1233 | } | ||
1234 | |||
1235 | if (i == timeout) { | ||
1236 | hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n"); | ||
1237 | return -E1000_ERR_NVM; | ||
1238 | } | ||
1239 | |||
1240 | /* Get the FW semaphore. */ | ||
1241 | for (i = 0; i < timeout; i++) { | ||
1242 | swsm = er32(SWSM); | ||
1243 | ew32(SWSM, swsm | E1000_SWSM_SWESMBI); | ||
1244 | |||
1245 | /* Semaphore acquired if bit latched */ | ||
1246 | if (er32(SWSM) & E1000_SWSM_SWESMBI) | ||
1247 | break; | ||
1248 | |||
1249 | udelay(50); | ||
1250 | } | ||
1251 | |||
1252 | if (i == timeout) { | ||
1253 | /* Release semaphores */ | ||
1254 | e1000e_put_hw_semaphore(hw); | ||
1255 | hw_dbg(hw, "Driver can't access the NVM\n"); | ||
1256 | return -E1000_ERR_NVM; | ||
1257 | } | ||
1258 | |||
1259 | return 0; | ||
1260 | } | ||
1261 | |||
1262 | /** | ||
1263 | * e1000e_put_hw_semaphore - Release hardware semaphore | ||
1264 | * @hw: pointer to the HW structure | ||
1265 | * | ||
1266 | * Release hardware semaphore used to access the PHY or NVM | ||
1267 | **/ | ||
1268 | void e1000e_put_hw_semaphore(struct e1000_hw *hw) | ||
1269 | { | ||
1270 | u32 swsm; | ||
1271 | |||
1272 | swsm = er32(SWSM); | ||
1273 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | ||
1274 | ew32(SWSM, swsm); | ||
1275 | } | ||
1276 | |||
1277 | /** | ||
1278 | * e1000e_get_auto_rd_done - Check for auto read completion | ||
1279 | * @hw: pointer to the HW structure | ||
1280 | * | ||
1281 | * Check EEPROM for Auto Read done bit. | ||
1282 | **/ | ||
1283 | s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) | ||
1284 | { | ||
1285 | s32 i = 0; | ||
1286 | |||
1287 | while (i < AUTO_READ_DONE_TIMEOUT) { | ||
1288 | if (er32(EECD) & E1000_EECD_AUTO_RD) | ||
1289 | break; | ||
1290 | msleep(1); | ||
1291 | i++; | ||
1292 | } | ||
1293 | |||
1294 | if (i == AUTO_READ_DONE_TIMEOUT) { | ||
1295 | hw_dbg(hw, "Auto read by HW from NVM has not completed.\n"); | ||
1296 | return -E1000_ERR_RESET; | ||
1297 | } | ||
1298 | |||
1299 | return 0; | ||
1300 | } | ||
1301 | |||
1302 | /** | ||
1303 | * e1000e_valid_led_default - Verify a valid default LED config | ||
1304 | * @hw: pointer to the HW structure | ||
1305 | * @data: pointer to the NVM (EEPROM) | ||
1306 | * | ||
1307 | * Read the EEPROM for the current default LED configuration. If the | ||
1308 | * LED configuration is not valid, set to a valid LED configuration. | ||
1309 | **/ | ||
1310 | s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) | ||
1311 | { | ||
1312 | s32 ret_val; | ||
1313 | |||
1314 | ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); | ||
1315 | if (ret_val) { | ||
1316 | hw_dbg(hw, "NVM Read Error\n"); | ||
1317 | return ret_val; | ||
1318 | } | ||
1319 | |||
1320 | if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) | ||
1321 | *data = ID_LED_DEFAULT; | ||
1322 | |||
1323 | return 0; | ||
1324 | } | ||
1325 | |||
1326 | /** | ||
1327 | * e1000e_id_led_init - | ||
1328 | * @hw: pointer to the HW structure | ||
1329 | * | ||
1330 | **/ | ||
1331 | s32 e1000e_id_led_init(struct e1000_hw *hw) | ||
1332 | { | ||
1333 | struct e1000_mac_info *mac = &hw->mac; | ||
1334 | s32 ret_val; | ||
1335 | const u32 ledctl_mask = 0x000000FF; | ||
1336 | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | ||
1337 | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | ||
1338 | u16 data, i, temp; | ||
1339 | const u16 led_mask = 0x0F; | ||
1340 | |||
1341 | ret_val = hw->nvm.ops.valid_led_default(hw, &data); | ||
1342 | if (ret_val) | ||
1343 | return ret_val; | ||
1344 | |||
1345 | mac->ledctl_default = er32(LEDCTL); | ||
1346 | mac->ledctl_mode1 = mac->ledctl_default; | ||
1347 | mac->ledctl_mode2 = mac->ledctl_default; | ||
1348 | |||
1349 | for (i = 0; i < 4; i++) { | ||
1350 | temp = (data >> (i << 2)) & led_mask; | ||
1351 | switch (temp) { | ||
1352 | case ID_LED_ON1_DEF2: | ||
1353 | case ID_LED_ON1_ON2: | ||
1354 | case ID_LED_ON1_OFF2: | ||
1355 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
1356 | mac->ledctl_mode1 |= ledctl_on << (i << 3); | ||
1357 | break; | ||
1358 | case ID_LED_OFF1_DEF2: | ||
1359 | case ID_LED_OFF1_ON2: | ||
1360 | case ID_LED_OFF1_OFF2: | ||
1361 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
1362 | mac->ledctl_mode1 |= ledctl_off << (i << 3); | ||
1363 | break; | ||
1364 | default: | ||
1365 | /* Do nothing */ | ||
1366 | break; | ||
1367 | } | ||
1368 | switch (temp) { | ||
1369 | case ID_LED_DEF1_ON2: | ||
1370 | case ID_LED_ON1_ON2: | ||
1371 | case ID_LED_OFF1_ON2: | ||
1372 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
1373 | mac->ledctl_mode2 |= ledctl_on << (i << 3); | ||
1374 | break; | ||
1375 | case ID_LED_DEF1_OFF2: | ||
1376 | case ID_LED_ON1_OFF2: | ||
1377 | case ID_LED_OFF1_OFF2: | ||
1378 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
1379 | mac->ledctl_mode2 |= ledctl_off << (i << 3); | ||
1380 | break; | ||
1381 | default: | ||
1382 | /* Do nothing */ | ||
1383 | break; | ||
1384 | } | ||
1385 | } | ||
1386 | |||
1387 | return 0; | ||
1388 | } | ||
1389 | |||
1390 | /** | ||
1391 | * e1000e_cleanup_led_generic - Set LED config to default operation | ||
1392 | * @hw: pointer to the HW structure | ||
1393 | * | ||
1394 | * Remove the current LED configuration and set the LED configuration | ||
1395 | * to the default value, saved from the EEPROM. | ||
1396 | **/ | ||
1397 | s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) | ||
1398 | { | ||
1399 | ew32(LEDCTL, hw->mac.ledctl_default); | ||
1400 | return 0; | ||
1401 | } | ||
1402 | |||
1403 | /** | ||
1404 | * e1000e_blink_led - Blink LED | ||
1405 | * @hw: pointer to the HW structure | ||
1406 | * | ||
1407 | * Blink the led's which are set to be on. | ||
1408 | **/ | ||
1409 | s32 e1000e_blink_led(struct e1000_hw *hw) | ||
1410 | { | ||
1411 | u32 ledctl_blink = 0; | ||
1412 | u32 i; | ||
1413 | |||
1414 | if (hw->media_type == e1000_media_type_fiber) { | ||
1415 | /* always blink LED0 for PCI-E fiber */ | ||
1416 | ledctl_blink = E1000_LEDCTL_LED0_BLINK | | ||
1417 | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); | ||
1418 | } else { | ||
1419 | /* set the blink bit for each LED that's "on" (0x0E) | ||
1420 | * in ledctl_mode2 */ | ||
1421 | ledctl_blink = hw->mac.ledctl_mode2; | ||
1422 | for (i = 0; i < 4; i++) | ||
1423 | if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == | ||
1424 | E1000_LEDCTL_MODE_LED_ON) | ||
1425 | ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << | ||
1426 | (i * 8)); | ||
1427 | } | ||
1428 | |||
1429 | ew32(LEDCTL, ledctl_blink); | ||
1430 | |||
1431 | return 0; | ||
1432 | } | ||
1433 | |||
1434 | /** | ||
1435 | * e1000e_led_on_generic - Turn LED on | ||
1436 | * @hw: pointer to the HW structure | ||
1437 | * | ||
1438 | * Turn LED on. | ||
1439 | **/ | ||
1440 | s32 e1000e_led_on_generic(struct e1000_hw *hw) | ||
1441 | { | ||
1442 | u32 ctrl; | ||
1443 | |||
1444 | switch (hw->media_type) { | ||
1445 | case e1000_media_type_fiber: | ||
1446 | ctrl = er32(CTRL); | ||
1447 | ctrl &= ~E1000_CTRL_SWDPIN0; | ||
1448 | ctrl |= E1000_CTRL_SWDPIO0; | ||
1449 | ew32(CTRL, ctrl); | ||
1450 | break; | ||
1451 | case e1000_media_type_copper: | ||
1452 | ew32(LEDCTL, hw->mac.ledctl_mode2); | ||
1453 | break; | ||
1454 | default: | ||
1455 | break; | ||
1456 | } | ||
1457 | |||
1458 | return 0; | ||
1459 | } | ||
1460 | |||
1461 | /** | ||
1462 | * e1000e_led_off_generic - Turn LED off | ||
1463 | * @hw: pointer to the HW structure | ||
1464 | * | ||
1465 | * Turn LED off. | ||
1466 | **/ | ||
1467 | s32 e1000e_led_off_generic(struct e1000_hw *hw) | ||
1468 | { | ||
1469 | u32 ctrl; | ||
1470 | |||
1471 | switch (hw->media_type) { | ||
1472 | case e1000_media_type_fiber: | ||
1473 | ctrl = er32(CTRL); | ||
1474 | ctrl |= E1000_CTRL_SWDPIN0; | ||
1475 | ctrl |= E1000_CTRL_SWDPIO0; | ||
1476 | ew32(CTRL, ctrl); | ||
1477 | break; | ||
1478 | case e1000_media_type_copper: | ||
1479 | ew32(LEDCTL, hw->mac.ledctl_mode1); | ||
1480 | break; | ||
1481 | default: | ||
1482 | break; | ||
1483 | } | ||
1484 | |||
1485 | return 0; | ||
1486 | } | ||
1487 | |||
1488 | /** | ||
1489 | * e1000e_set_pcie_no_snoop - Set PCI-express capabilities | ||
1490 | * @hw: pointer to the HW structure | ||
1491 | * @no_snoop: bitmap of snoop events | ||
1492 | * | ||
1493 | * Set the PCI-express register to snoop for events enabled in 'no_snoop'. | ||
1494 | **/ | ||
1495 | void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) | ||
1496 | { | ||
1497 | u32 gcr; | ||
1498 | |||
1499 | if (no_snoop) { | ||
1500 | gcr = er32(GCR); | ||
1501 | gcr &= ~(PCIE_NO_SNOOP_ALL); | ||
1502 | gcr |= no_snoop; | ||
1503 | ew32(GCR, gcr); | ||
1504 | } | ||
1505 | } | ||
1506 | |||
1507 | /** | ||
1508 | * e1000e_disable_pcie_master - Disables PCI-express master access | ||
1509 | * @hw: pointer to the HW structure | ||
1510 | * | ||
1511 | * Returns 0 if successful, else returns -10 | ||
1512 | * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued | ||
1513 | * the master requests to be disabled. | ||
1514 | * | ||
1515 | * Disables PCI-Express master access and verifies there are no pending | ||
1516 | * requests. | ||
1517 | **/ | ||
1518 | s32 e1000e_disable_pcie_master(struct e1000_hw *hw) | ||
1519 | { | ||
1520 | u32 ctrl; | ||
1521 | s32 timeout = MASTER_DISABLE_TIMEOUT; | ||
1522 | |||
1523 | ctrl = er32(CTRL); | ||
1524 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | ||
1525 | ew32(CTRL, ctrl); | ||
1526 | |||
1527 | while (timeout) { | ||
1528 | if (!(er32(STATUS) & | ||
1529 | E1000_STATUS_GIO_MASTER_ENABLE)) | ||
1530 | break; | ||
1531 | udelay(100); | ||
1532 | timeout--; | ||
1533 | } | ||
1534 | |||
1535 | if (!timeout) { | ||
1536 | hw_dbg(hw, "Master requests are pending.\n"); | ||
1537 | return -E1000_ERR_MASTER_REQUESTS_PENDING; | ||
1538 | } | ||
1539 | |||
1540 | return 0; | ||
1541 | } | ||
1542 | |||
1543 | /** | ||
1544 | * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing | ||
1545 | * @hw: pointer to the HW structure | ||
1546 | * | ||
1547 | * Reset the Adaptive Interframe Spacing throttle to default values. | ||
1548 | **/ | ||
1549 | void e1000e_reset_adaptive(struct e1000_hw *hw) | ||
1550 | { | ||
1551 | struct e1000_mac_info *mac = &hw->mac; | ||
1552 | |||
1553 | mac->current_ifs_val = 0; | ||
1554 | mac->ifs_min_val = IFS_MIN; | ||
1555 | mac->ifs_max_val = IFS_MAX; | ||
1556 | mac->ifs_step_size = IFS_STEP; | ||
1557 | mac->ifs_ratio = IFS_RATIO; | ||
1558 | |||
1559 | mac->in_ifs_mode = 0; | ||
1560 | ew32(AIT, 0); | ||
1561 | } | ||
1562 | |||
1563 | /** | ||
1564 | * e1000e_update_adaptive - Update Adaptive Interframe Spacing | ||
1565 | * @hw: pointer to the HW structure | ||
1566 | * | ||
1567 | * Update the Adaptive Interframe Spacing Throttle value based on the | ||
1568 | * time between transmitted packets and time between collisions. | ||
1569 | **/ | ||
1570 | void e1000e_update_adaptive(struct e1000_hw *hw) | ||
1571 | { | ||
1572 | struct e1000_mac_info *mac = &hw->mac; | ||
1573 | |||
1574 | if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { | ||
1575 | if (mac->tx_packet_delta > MIN_NUM_XMITS) { | ||
1576 | mac->in_ifs_mode = 1; | ||
1577 | if (mac->current_ifs_val < mac->ifs_max_val) { | ||
1578 | if (!mac->current_ifs_val) | ||
1579 | mac->current_ifs_val = mac->ifs_min_val; | ||
1580 | else | ||
1581 | mac->current_ifs_val += | ||
1582 | mac->ifs_step_size; | ||
1583 | ew32(AIT, | ||
1584 | mac->current_ifs_val); | ||
1585 | } | ||
1586 | } | ||
1587 | } else { | ||
1588 | if (mac->in_ifs_mode && | ||
1589 | (mac->tx_packet_delta <= MIN_NUM_XMITS)) { | ||
1590 | mac->current_ifs_val = 0; | ||
1591 | mac->in_ifs_mode = 0; | ||
1592 | ew32(AIT, 0); | ||
1593 | } | ||
1594 | } | ||
1595 | } | ||
1596 | |||
1597 | /** | ||
1598 | * e1000_raise_eec_clk - Raise EEPROM clock | ||
1599 | * @hw: pointer to the HW structure | ||
1600 | * @eecd: pointer to the EEPROM | ||
1601 | * | ||
1602 | * Enable/Raise the EEPROM clock bit. | ||
1603 | **/ | ||
1604 | static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) | ||
1605 | { | ||
1606 | *eecd = *eecd | E1000_EECD_SK; | ||
1607 | ew32(EECD, *eecd); | ||
1608 | e1e_flush(); | ||
1609 | udelay(hw->nvm.delay_usec); | ||
1610 | } | ||
1611 | |||
1612 | /** | ||
1613 | * e1000_lower_eec_clk - Lower EEPROM clock | ||
1614 | * @hw: pointer to the HW structure | ||
1615 | * @eecd: pointer to the EEPROM | ||
1616 | * | ||
1617 | * Clear/Lower the EEPROM clock bit. | ||
1618 | **/ | ||
1619 | static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) | ||
1620 | { | ||
1621 | *eecd = *eecd & ~E1000_EECD_SK; | ||
1622 | ew32(EECD, *eecd); | ||
1623 | e1e_flush(); | ||
1624 | udelay(hw->nvm.delay_usec); | ||
1625 | } | ||
1626 | |||
1627 | /** | ||
1628 | * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM | ||
1629 | * @hw: pointer to the HW structure | ||
1630 | * @data: data to send to the EEPROM | ||
1631 | * @count: number of bits to shift out | ||
1632 | * | ||
1633 | * We need to shift 'count' bits out to the EEPROM. So, the value in the | ||
1634 | * "data" parameter will be shifted out to the EEPROM one bit at a time. | ||
1635 | * In order to do this, "data" must be broken down into bits. | ||
1636 | **/ | ||
1637 | static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) | ||
1638 | { | ||
1639 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1640 | u32 eecd = er32(EECD); | ||
1641 | u32 mask; | ||
1642 | |||
1643 | mask = 0x01 << (count - 1); | ||
1644 | if (nvm->type == e1000_nvm_eeprom_spi) | ||
1645 | eecd |= E1000_EECD_DO; | ||
1646 | |||
1647 | do { | ||
1648 | eecd &= ~E1000_EECD_DI; | ||
1649 | |||
1650 | if (data & mask) | ||
1651 | eecd |= E1000_EECD_DI; | ||
1652 | |||
1653 | ew32(EECD, eecd); | ||
1654 | e1e_flush(); | ||
1655 | |||
1656 | udelay(nvm->delay_usec); | ||
1657 | |||
1658 | e1000_raise_eec_clk(hw, &eecd); | ||
1659 | e1000_lower_eec_clk(hw, &eecd); | ||
1660 | |||
1661 | mask >>= 1; | ||
1662 | } while (mask); | ||
1663 | |||
1664 | eecd &= ~E1000_EECD_DI; | ||
1665 | ew32(EECD, eecd); | ||
1666 | } | ||
1667 | |||
1668 | /** | ||
1669 | * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM | ||
1670 | * @hw: pointer to the HW structure | ||
1671 | * @count: number of bits to shift in | ||
1672 | * | ||
1673 | * In order to read a register from the EEPROM, we need to shift 'count' bits | ||
1674 | * in from the EEPROM. Bits are "shifted in" by raising the clock input to | ||
1675 | * the EEPROM (setting the SK bit), and then reading the value of the data out | ||
1676 | * "DO" bit. During this "shifting in" process the data in "DI" bit should | ||
1677 | * always be clear. | ||
1678 | **/ | ||
1679 | static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) | ||
1680 | { | ||
1681 | u32 eecd; | ||
1682 | u32 i; | ||
1683 | u16 data; | ||
1684 | |||
1685 | eecd = er32(EECD); | ||
1686 | |||
1687 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | ||
1688 | data = 0; | ||
1689 | |||
1690 | for (i = 0; i < count; i++) { | ||
1691 | data <<= 1; | ||
1692 | e1000_raise_eec_clk(hw, &eecd); | ||
1693 | |||
1694 | eecd = er32(EECD); | ||
1695 | |||
1696 | eecd &= ~E1000_EECD_DI; | ||
1697 | if (eecd & E1000_EECD_DO) | ||
1698 | data |= 1; | ||
1699 | |||
1700 | e1000_lower_eec_clk(hw, &eecd); | ||
1701 | } | ||
1702 | |||
1703 | return data; | ||
1704 | } | ||
1705 | |||
1706 | /** | ||
1707 | * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion | ||
1708 | * @hw: pointer to the HW structure | ||
1709 | * @ee_reg: EEPROM flag for polling | ||
1710 | * | ||
1711 | * Polls the EEPROM status bit for either read or write completion based | ||
1712 | * upon the value of 'ee_reg'. | ||
1713 | **/ | ||
1714 | s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) | ||
1715 | { | ||
1716 | u32 attempts = 100000; | ||
1717 | u32 i, reg = 0; | ||
1718 | |||
1719 | for (i = 0; i < attempts; i++) { | ||
1720 | if (ee_reg == E1000_NVM_POLL_READ) | ||
1721 | reg = er32(EERD); | ||
1722 | else | ||
1723 | reg = er32(EEWR); | ||
1724 | |||
1725 | if (reg & E1000_NVM_RW_REG_DONE) | ||
1726 | return 0; | ||
1727 | |||
1728 | udelay(5); | ||
1729 | } | ||
1730 | |||
1731 | return -E1000_ERR_NVM; | ||
1732 | } | ||
1733 | |||
1734 | /** | ||
1735 | * e1000e_acquire_nvm - Generic request for access to EEPROM | ||
1736 | * @hw: pointer to the HW structure | ||
1737 | * | ||
1738 | * Set the EEPROM access request bit and wait for EEPROM access grant bit. | ||
1739 | * Return successful if access grant bit set, else clear the request for | ||
1740 | * EEPROM access and return -E1000_ERR_NVM (-1). | ||
1741 | **/ | ||
1742 | s32 e1000e_acquire_nvm(struct e1000_hw *hw) | ||
1743 | { | ||
1744 | u32 eecd = er32(EECD); | ||
1745 | s32 timeout = E1000_NVM_GRANT_ATTEMPTS; | ||
1746 | |||
1747 | ew32(EECD, eecd | E1000_EECD_REQ); | ||
1748 | eecd = er32(EECD); | ||
1749 | |||
1750 | while (timeout) { | ||
1751 | if (eecd & E1000_EECD_GNT) | ||
1752 | break; | ||
1753 | udelay(5); | ||
1754 | eecd = er32(EECD); | ||
1755 | timeout--; | ||
1756 | } | ||
1757 | |||
1758 | if (!timeout) { | ||
1759 | eecd &= ~E1000_EECD_REQ; | ||
1760 | ew32(EECD, eecd); | ||
1761 | hw_dbg(hw, "Could not acquire NVM grant\n"); | ||
1762 | return -E1000_ERR_NVM; | ||
1763 | } | ||
1764 | |||
1765 | return 0; | ||
1766 | } | ||
1767 | |||
1768 | /** | ||
1769 | * e1000_standby_nvm - Return EEPROM to standby state | ||
1770 | * @hw: pointer to the HW structure | ||
1771 | * | ||
1772 | * Return the EEPROM to a standby state. | ||
1773 | **/ | ||
1774 | static void e1000_standby_nvm(struct e1000_hw *hw) | ||
1775 | { | ||
1776 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1777 | u32 eecd = er32(EECD); | ||
1778 | |||
1779 | if (nvm->type == e1000_nvm_eeprom_spi) { | ||
1780 | /* Toggle CS to flush commands */ | ||
1781 | eecd |= E1000_EECD_CS; | ||
1782 | ew32(EECD, eecd); | ||
1783 | e1e_flush(); | ||
1784 | udelay(nvm->delay_usec); | ||
1785 | eecd &= ~E1000_EECD_CS; | ||
1786 | ew32(EECD, eecd); | ||
1787 | e1e_flush(); | ||
1788 | udelay(nvm->delay_usec); | ||
1789 | } | ||
1790 | } | ||
1791 | |||
1792 | /** | ||
1793 | * e1000_stop_nvm - Terminate EEPROM command | ||
1794 | * @hw: pointer to the HW structure | ||
1795 | * | ||
1796 | * Terminates the current command by inverting the EEPROM's chip select pin. | ||
1797 | **/ | ||
1798 | static void e1000_stop_nvm(struct e1000_hw *hw) | ||
1799 | { | ||
1800 | u32 eecd; | ||
1801 | |||
1802 | eecd = er32(EECD); | ||
1803 | if (hw->nvm.type == e1000_nvm_eeprom_spi) { | ||
1804 | /* Pull CS high */ | ||
1805 | eecd |= E1000_EECD_CS; | ||
1806 | e1000_lower_eec_clk(hw, &eecd); | ||
1807 | } | ||
1808 | } | ||
1809 | |||
1810 | /** | ||
1811 | * e1000e_release_nvm - Release exclusive access to EEPROM | ||
1812 | * @hw: pointer to the HW structure | ||
1813 | * | ||
1814 | * Stop any current commands to the EEPROM and clear the EEPROM request bit. | ||
1815 | **/ | ||
1816 | void e1000e_release_nvm(struct e1000_hw *hw) | ||
1817 | { | ||
1818 | u32 eecd; | ||
1819 | |||
1820 | e1000_stop_nvm(hw); | ||
1821 | |||
1822 | eecd = er32(EECD); | ||
1823 | eecd &= ~E1000_EECD_REQ; | ||
1824 | ew32(EECD, eecd); | ||
1825 | } | ||
1826 | |||
1827 | /** | ||
1828 | * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write | ||
1829 | * @hw: pointer to the HW structure | ||
1830 | * | ||
1831 | * Setups the EEPROM for reading and writing. | ||
1832 | **/ | ||
1833 | static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) | ||
1834 | { | ||
1835 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1836 | u32 eecd = er32(EECD); | ||
1837 | u16 timeout = 0; | ||
1838 | u8 spi_stat_reg; | ||
1839 | |||
1840 | if (nvm->type == e1000_nvm_eeprom_spi) { | ||
1841 | /* Clear SK and CS */ | ||
1842 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | ||
1843 | ew32(EECD, eecd); | ||
1844 | udelay(1); | ||
1845 | timeout = NVM_MAX_RETRY_SPI; | ||
1846 | |||
1847 | /* Read "Status Register" repeatedly until the LSB is cleared. | ||
1848 | * The EEPROM will signal that the command has been completed | ||
1849 | * by clearing bit 0 of the internal status register. If it's | ||
1850 | * not cleared within 'timeout', then error out. */ | ||
1851 | while (timeout) { | ||
1852 | e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, | ||
1853 | hw->nvm.opcode_bits); | ||
1854 | spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); | ||
1855 | if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) | ||
1856 | break; | ||
1857 | |||
1858 | udelay(5); | ||
1859 | e1000_standby_nvm(hw); | ||
1860 | timeout--; | ||
1861 | } | ||
1862 | |||
1863 | if (!timeout) { | ||
1864 | hw_dbg(hw, "SPI NVM Status error\n"); | ||
1865 | return -E1000_ERR_NVM; | ||
1866 | } | ||
1867 | } | ||
1868 | |||
1869 | return 0; | ||
1870 | } | ||
1871 | |||
1872 | /** | ||
1873 | * e1000e_read_nvm_spi - Read EEPROM's using SPI | ||
1874 | * @hw: pointer to the HW structure | ||
1875 | * @offset: offset of word in the EEPROM to read | ||
1876 | * @words: number of words to read | ||
1877 | * @data: word read from the EEPROM | ||
1878 | * | ||
1879 | * Reads a 16 bit word from the EEPROM. | ||
1880 | **/ | ||
1881 | s32 e1000e_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
1882 | { | ||
1883 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1884 | u32 i = 0; | ||
1885 | s32 ret_val; | ||
1886 | u16 word_in; | ||
1887 | u8 read_opcode = NVM_READ_OPCODE_SPI; | ||
1888 | |||
1889 | /* A check for invalid values: offset too large, too many words, | ||
1890 | * and not enough words. */ | ||
1891 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | ||
1892 | (words == 0)) { | ||
1893 | hw_dbg(hw, "nvm parameter(s) out of bounds\n"); | ||
1894 | return -E1000_ERR_NVM; | ||
1895 | } | ||
1896 | |||
1897 | ret_val = nvm->ops.acquire_nvm(hw); | ||
1898 | if (ret_val) | ||
1899 | return ret_val; | ||
1900 | |||
1901 | ret_val = e1000_ready_nvm_eeprom(hw); | ||
1902 | if (ret_val) { | ||
1903 | nvm->ops.release_nvm(hw); | ||
1904 | return ret_val; | ||
1905 | } | ||
1906 | |||
1907 | e1000_standby_nvm(hw); | ||
1908 | |||
1909 | if ((nvm->address_bits == 8) && (offset >= 128)) | ||
1910 | read_opcode |= NVM_A8_OPCODE_SPI; | ||
1911 | |||
1912 | /* Send the READ command (opcode + addr) */ | ||
1913 | e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); | ||
1914 | e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); | ||
1915 | |||
1916 | /* Read the data. SPI NVMs increment the address with each byte | ||
1917 | * read and will roll over if reading beyond the end. This allows | ||
1918 | * us to read the whole NVM from any offset */ | ||
1919 | for (i = 0; i < words; i++) { | ||
1920 | word_in = e1000_shift_in_eec_bits(hw, 16); | ||
1921 | data[i] = (word_in >> 8) | (word_in << 8); | ||
1922 | } | ||
1923 | |||
1924 | nvm->ops.release_nvm(hw); | ||
1925 | return 0; | ||
1926 | } | ||
1927 | |||
1928 | /** | ||
1929 | * e1000e_read_nvm_eerd - Reads EEPROM using EERD register | ||
1930 | * @hw: pointer to the HW structure | ||
1931 | * @offset: offset of word in the EEPROM to read | ||
1932 | * @words: number of words to read | ||
1933 | * @data: word read from the EEPROM | ||
1934 | * | ||
1935 | * Reads a 16 bit word from the EEPROM using the EERD register. | ||
1936 | **/ | ||
1937 | s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
1938 | { | ||
1939 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1940 | u32 i, eerd = 0; | ||
1941 | s32 ret_val = 0; | ||
1942 | |||
1943 | /* A check for invalid values: offset too large, too many words, | ||
1944 | * and not enough words. */ | ||
1945 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | ||
1946 | (words == 0)) { | ||
1947 | hw_dbg(hw, "nvm parameter(s) out of bounds\n"); | ||
1948 | return -E1000_ERR_NVM; | ||
1949 | } | ||
1950 | |||
1951 | for (i = 0; i < words; i++) { | ||
1952 | eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + | ||
1953 | E1000_NVM_RW_REG_START; | ||
1954 | |||
1955 | ew32(EERD, eerd); | ||
1956 | ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); | ||
1957 | if (ret_val) | ||
1958 | break; | ||
1959 | |||
1960 | data[i] = (er32(EERD) >> | ||
1961 | E1000_NVM_RW_REG_DATA); | ||
1962 | } | ||
1963 | |||
1964 | return ret_val; | ||
1965 | } | ||
1966 | |||
1967 | /** | ||
1968 | * e1000e_write_nvm_spi - Write to EEPROM using SPI | ||
1969 | * @hw: pointer to the HW structure | ||
1970 | * @offset: offset within the EEPROM to be written to | ||
1971 | * @words: number of words to write | ||
1972 | * @data: 16 bit word(s) to be written to the EEPROM | ||
1973 | * | ||
1974 | * Writes data to EEPROM at offset using SPI interface. | ||
1975 | * | ||
1976 | * If e1000e_update_nvm_checksum is not called after this function , the | ||
1977 | * EEPROM will most likley contain an invalid checksum. | ||
1978 | **/ | ||
1979 | s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
1980 | { | ||
1981 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1982 | s32 ret_val; | ||
1983 | u16 widx = 0; | ||
1984 | |||
1985 | /* A check for invalid values: offset too large, too many words, | ||
1986 | * and not enough words. */ | ||
1987 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | ||
1988 | (words == 0)) { | ||
1989 | hw_dbg(hw, "nvm parameter(s) out of bounds\n"); | ||
1990 | return -E1000_ERR_NVM; | ||
1991 | } | ||
1992 | |||
1993 | ret_val = nvm->ops.acquire_nvm(hw); | ||
1994 | if (ret_val) | ||
1995 | return ret_val; | ||
1996 | |||
1997 | msleep(10); | ||
1998 | |||
1999 | while (widx < words) { | ||
2000 | u8 write_opcode = NVM_WRITE_OPCODE_SPI; | ||
2001 | |||
2002 | ret_val = e1000_ready_nvm_eeprom(hw); | ||
2003 | if (ret_val) { | ||
2004 | nvm->ops.release_nvm(hw); | ||
2005 | return ret_val; | ||
2006 | } | ||
2007 | |||
2008 | e1000_standby_nvm(hw); | ||
2009 | |||
2010 | /* Send the WRITE ENABLE command (8 bit opcode) */ | ||
2011 | e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, | ||
2012 | nvm->opcode_bits); | ||
2013 | |||
2014 | e1000_standby_nvm(hw); | ||
2015 | |||
2016 | /* Some SPI eeproms use the 8th address bit embedded in the | ||
2017 | * opcode */ | ||
2018 | if ((nvm->address_bits == 8) && (offset >= 128)) | ||
2019 | write_opcode |= NVM_A8_OPCODE_SPI; | ||
2020 | |||
2021 | /* Send the Write command (8-bit opcode + addr) */ | ||
2022 | e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); | ||
2023 | e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), | ||
2024 | nvm->address_bits); | ||
2025 | |||
2026 | /* Loop to allow for up to whole page write of eeprom */ | ||
2027 | while (widx < words) { | ||
2028 | u16 word_out = data[widx]; | ||
2029 | word_out = (word_out >> 8) | (word_out << 8); | ||
2030 | e1000_shift_out_eec_bits(hw, word_out, 16); | ||
2031 | widx++; | ||
2032 | |||
2033 | if ((((offset + widx) * 2) % nvm->page_size) == 0) { | ||
2034 | e1000_standby_nvm(hw); | ||
2035 | break; | ||
2036 | } | ||
2037 | } | ||
2038 | } | ||
2039 | |||
2040 | msleep(10); | ||
2041 | return 0; | ||
2042 | } | ||
2043 | |||
2044 | /** | ||
2045 | * e1000e_read_mac_addr - Read device MAC address | ||
2046 | * @hw: pointer to the HW structure | ||
2047 | * | ||
2048 | * Reads the device MAC address from the EEPROM and stores the value. | ||
2049 | * Since devices with two ports use the same EEPROM, we increment the | ||
2050 | * last bit in the MAC address for the second port. | ||
2051 | **/ | ||
2052 | s32 e1000e_read_mac_addr(struct e1000_hw *hw) | ||
2053 | { | ||
2054 | s32 ret_val; | ||
2055 | u16 offset, nvm_data, i; | ||
2056 | |||
2057 | for (i = 0; i < ETH_ALEN; i += 2) { | ||
2058 | offset = i >> 1; | ||
2059 | ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data); | ||
2060 | if (ret_val) { | ||
2061 | hw_dbg(hw, "NVM Read Error\n"); | ||
2062 | return ret_val; | ||
2063 | } | ||
2064 | hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); | ||
2065 | hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); | ||
2066 | } | ||
2067 | |||
2068 | /* Flip last bit of mac address if we're on second port */ | ||
2069 | if (hw->bus.func == E1000_FUNC_1) | ||
2070 | hw->mac.perm_addr[5] ^= 1; | ||
2071 | |||
2072 | for (i = 0; i < ETH_ALEN; i++) | ||
2073 | hw->mac.addr[i] = hw->mac.perm_addr[i]; | ||
2074 | |||
2075 | return 0; | ||
2076 | } | ||
2077 | |||
2078 | /** | ||
2079 | * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum | ||
2080 | * @hw: pointer to the HW structure | ||
2081 | * | ||
2082 | * Calculates the EEPROM checksum by reading/adding each word of the EEPROM | ||
2083 | * and then verifies that the sum of the EEPROM is equal to 0xBABA. | ||
2084 | **/ | ||
2085 | s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw) | ||
2086 | { | ||
2087 | s32 ret_val; | ||
2088 | u16 checksum = 0; | ||
2089 | u16 i, nvm_data; | ||
2090 | |||
2091 | for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { | ||
2092 | ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); | ||
2093 | if (ret_val) { | ||
2094 | hw_dbg(hw, "NVM Read Error\n"); | ||
2095 | return ret_val; | ||
2096 | } | ||
2097 | checksum += nvm_data; | ||
2098 | } | ||
2099 | |||
2100 | if (checksum != (u16) NVM_SUM) { | ||
2101 | hw_dbg(hw, "NVM Checksum Invalid\n"); | ||
2102 | return -E1000_ERR_NVM; | ||
2103 | } | ||
2104 | |||
2105 | return 0; | ||
2106 | } | ||
2107 | |||
2108 | /** | ||
2109 | * e1000e_update_nvm_checksum_generic - Update EEPROM checksum | ||
2110 | * @hw: pointer to the HW structure | ||
2111 | * | ||
2112 | * Updates the EEPROM checksum by reading/adding each word of the EEPROM | ||
2113 | * up to the checksum. Then calculates the EEPROM checksum and writes the | ||
2114 | * value to the EEPROM. | ||
2115 | **/ | ||
2116 | s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw) | ||
2117 | { | ||
2118 | s32 ret_val; | ||
2119 | u16 checksum = 0; | ||
2120 | u16 i, nvm_data; | ||
2121 | |||
2122 | for (i = 0; i < NVM_CHECKSUM_REG; i++) { | ||
2123 | ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); | ||
2124 | if (ret_val) { | ||
2125 | hw_dbg(hw, "NVM Read Error while updating checksum.\n"); | ||
2126 | return ret_val; | ||
2127 | } | ||
2128 | checksum += nvm_data; | ||
2129 | } | ||
2130 | checksum = (u16) NVM_SUM - checksum; | ||
2131 | ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); | ||
2132 | if (ret_val) | ||
2133 | hw_dbg(hw, "NVM Write Error while updating checksum.\n"); | ||
2134 | |||
2135 | return ret_val; | ||
2136 | } | ||
2137 | |||
2138 | /** | ||
2139 | * e1000e_reload_nvm - Reloads EEPROM | ||
2140 | * @hw: pointer to the HW structure | ||
2141 | * | ||
2142 | * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the | ||
2143 | * extended control register. | ||
2144 | **/ | ||
2145 | void e1000e_reload_nvm(struct e1000_hw *hw) | ||
2146 | { | ||
2147 | u32 ctrl_ext; | ||
2148 | |||
2149 | udelay(10); | ||
2150 | ctrl_ext = er32(CTRL_EXT); | ||
2151 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
2152 | ew32(CTRL_EXT, ctrl_ext); | ||
2153 | e1e_flush(); | ||
2154 | } | ||
2155 | |||
2156 | /** | ||
2157 | * e1000_calculate_checksum - Calculate checksum for buffer | ||
2158 | * @buffer: pointer to EEPROM | ||
2159 | * @length: size of EEPROM to calculate a checksum for | ||
2160 | * | ||
2161 | * Calculates the checksum for some buffer on a specified length. The | ||
2162 | * checksum calculated is returned. | ||
2163 | **/ | ||
2164 | static u8 e1000_calculate_checksum(u8 *buffer, u32 length) | ||
2165 | { | ||
2166 | u32 i; | ||
2167 | u8 sum = 0; | ||
2168 | |||
2169 | if (!buffer) | ||
2170 | return 0; | ||
2171 | |||
2172 | for (i = 0; i < length; i++) | ||
2173 | sum += buffer[i]; | ||
2174 | |||
2175 | return (u8) (0 - sum); | ||
2176 | } | ||
2177 | |||
2178 | /** | ||
2179 | * e1000_mng_enable_host_if - Checks host interface is enabled | ||
2180 | * @hw: pointer to the HW structure | ||
2181 | * | ||
2182 | * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND | ||
2183 | * | ||
2184 | * This function checks whether the HOST IF is enabled for command operaton | ||
2185 | * and also checks whether the previous command is completed. It busy waits | ||
2186 | * in case of previous command is not completed. | ||
2187 | **/ | ||
2188 | static s32 e1000_mng_enable_host_if(struct e1000_hw *hw) | ||
2189 | { | ||
2190 | u32 hicr; | ||
2191 | u8 i; | ||
2192 | |||
2193 | /* Check that the host interface is enabled. */ | ||
2194 | hicr = er32(HICR); | ||
2195 | if ((hicr & E1000_HICR_EN) == 0) { | ||
2196 | hw_dbg(hw, "E1000_HOST_EN bit disabled.\n"); | ||
2197 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
2198 | } | ||
2199 | /* check the previous command is completed */ | ||
2200 | for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { | ||
2201 | hicr = er32(HICR); | ||
2202 | if (!(hicr & E1000_HICR_C)) | ||
2203 | break; | ||
2204 | mdelay(1); | ||
2205 | } | ||
2206 | |||
2207 | if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { | ||
2208 | hw_dbg(hw, "Previous command timeout failed .\n"); | ||
2209 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
2210 | } | ||
2211 | |||
2212 | return 0; | ||
2213 | } | ||
2214 | |||
2215 | /** | ||
2216 | * e1000e_check_mng_mode - check managament mode | ||
2217 | * @hw: pointer to the HW structure | ||
2218 | * | ||
2219 | * Reads the firmware semaphore register and returns true (>0) if | ||
2220 | * manageability is enabled, else false (0). | ||
2221 | **/ | ||
2222 | bool e1000e_check_mng_mode(struct e1000_hw *hw) | ||
2223 | { | ||
2224 | u32 fwsm = er32(FWSM); | ||
2225 | |||
2226 | return (fwsm & E1000_FWSM_MODE_MASK) == hw->mac.ops.mng_mode_enab; | ||
2227 | } | ||
2228 | |||
2229 | /** | ||
2230 | * e1000e_enable_tx_pkt_filtering - Enable packet filtering on TX | ||
2231 | * @hw: pointer to the HW structure | ||
2232 | * | ||
2233 | * Enables packet filtering on transmit packets if manageability is enabled | ||
2234 | * and host interface is enabled. | ||
2235 | **/ | ||
2236 | bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw) | ||
2237 | { | ||
2238 | struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; | ||
2239 | u32 *buffer = (u32 *)&hw->mng_cookie; | ||
2240 | u32 offset; | ||
2241 | s32 ret_val, hdr_csum, csum; | ||
2242 | u8 i, len; | ||
2243 | |||
2244 | /* No manageability, no filtering */ | ||
2245 | if (!e1000e_check_mng_mode(hw)) { | ||
2246 | hw->mac.tx_pkt_filtering = 0; | ||
2247 | return 0; | ||
2248 | } | ||
2249 | |||
2250 | /* If we can't read from the host interface for whatever | ||
2251 | * reason, disable filtering. | ||
2252 | */ | ||
2253 | ret_val = e1000_mng_enable_host_if(hw); | ||
2254 | if (ret_val != 0) { | ||
2255 | hw->mac.tx_pkt_filtering = 0; | ||
2256 | return ret_val; | ||
2257 | } | ||
2258 | |||
2259 | /* Read in the header. Length and offset are in dwords. */ | ||
2260 | len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; | ||
2261 | offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; | ||
2262 | for (i = 0; i < len; i++) | ||
2263 | *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i); | ||
2264 | hdr_csum = hdr->checksum; | ||
2265 | hdr->checksum = 0; | ||
2266 | csum = e1000_calculate_checksum((u8 *)hdr, | ||
2267 | E1000_MNG_DHCP_COOKIE_LENGTH); | ||
2268 | /* If either the checksums or signature don't match, then | ||
2269 | * the cookie area isn't considered valid, in which case we | ||
2270 | * take the safe route of assuming Tx filtering is enabled. | ||
2271 | */ | ||
2272 | if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) { | ||
2273 | hw->mac.tx_pkt_filtering = 1; | ||
2274 | return 1; | ||
2275 | } | ||
2276 | |||
2277 | /* Cookie area is valid, make the final check for filtering. */ | ||
2278 | if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) { | ||
2279 | hw->mac.tx_pkt_filtering = 0; | ||
2280 | return 0; | ||
2281 | } | ||
2282 | |||
2283 | hw->mac.tx_pkt_filtering = 1; | ||
2284 | return 1; | ||
2285 | } | ||
2286 | |||
2287 | /** | ||
2288 | * e1000_mng_write_cmd_header - Writes manageability command header | ||
2289 | * @hw: pointer to the HW structure | ||
2290 | * @hdr: pointer to the host interface command header | ||
2291 | * | ||
2292 | * Writes the command header after does the checksum calculation. | ||
2293 | **/ | ||
2294 | static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, | ||
2295 | struct e1000_host_mng_command_header *hdr) | ||
2296 | { | ||
2297 | u16 i, length = sizeof(struct e1000_host_mng_command_header); | ||
2298 | |||
2299 | /* Write the whole command header structure with new checksum. */ | ||
2300 | |||
2301 | hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); | ||
2302 | |||
2303 | length >>= 2; | ||
2304 | /* Write the relevant command block into the ram area. */ | ||
2305 | for (i = 0; i < length; i++) { | ||
2306 | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i, | ||
2307 | *((u32 *) hdr + i)); | ||
2308 | e1e_flush(); | ||
2309 | } | ||
2310 | |||
2311 | return 0; | ||
2312 | } | ||
2313 | |||
2314 | /** | ||
2315 | * e1000_mng_host_if_write - Writes to the manageability host interface | ||
2316 | * @hw: pointer to the HW structure | ||
2317 | * @buffer: pointer to the host interface buffer | ||
2318 | * @length: size of the buffer | ||
2319 | * @offset: location in the buffer to write to | ||
2320 | * @sum: sum of the data (not checksum) | ||
2321 | * | ||
2322 | * This function writes the buffer content at the offset given on the host if. | ||
2323 | * It also does alignment considerations to do the writes in most efficient | ||
2324 | * way. Also fills up the sum of the buffer in *buffer parameter. | ||
2325 | **/ | ||
2326 | static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, | ||
2327 | u16 length, u16 offset, u8 *sum) | ||
2328 | { | ||
2329 | u8 *tmp; | ||
2330 | u8 *bufptr = buffer; | ||
2331 | u32 data = 0; | ||
2332 | u16 remaining, i, j, prev_bytes; | ||
2333 | |||
2334 | /* sum = only sum of the data and it is not checksum */ | ||
2335 | |||
2336 | if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) | ||
2337 | return -E1000_ERR_PARAM; | ||
2338 | |||
2339 | tmp = (u8 *)&data; | ||
2340 | prev_bytes = offset & 0x3; | ||
2341 | offset >>= 2; | ||
2342 | |||
2343 | if (prev_bytes) { | ||
2344 | data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset); | ||
2345 | for (j = prev_bytes; j < sizeof(u32); j++) { | ||
2346 | *(tmp + j) = *bufptr++; | ||
2347 | *sum += *(tmp + j); | ||
2348 | } | ||
2349 | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data); | ||
2350 | length -= j - prev_bytes; | ||
2351 | offset++; | ||
2352 | } | ||
2353 | |||
2354 | remaining = length & 0x3; | ||
2355 | length -= remaining; | ||
2356 | |||
2357 | /* Calculate length in DWORDs */ | ||
2358 | length >>= 2; | ||
2359 | |||
2360 | /* The device driver writes the relevant command block into the | ||
2361 | * ram area. */ | ||
2362 | for (i = 0; i < length; i++) { | ||
2363 | for (j = 0; j < sizeof(u32); j++) { | ||
2364 | *(tmp + j) = *bufptr++; | ||
2365 | *sum += *(tmp + j); | ||
2366 | } | ||
2367 | |||
2368 | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); | ||
2369 | } | ||
2370 | if (remaining) { | ||
2371 | for (j = 0; j < sizeof(u32); j++) { | ||
2372 | if (j < remaining) | ||
2373 | *(tmp + j) = *bufptr++; | ||
2374 | else | ||
2375 | *(tmp + j) = 0; | ||
2376 | |||
2377 | *sum += *(tmp + j); | ||
2378 | } | ||
2379 | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); | ||
2380 | } | ||
2381 | |||
2382 | return 0; | ||
2383 | } | ||
2384 | |||
2385 | /** | ||
2386 | * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface | ||
2387 | * @hw: pointer to the HW structure | ||
2388 | * @buffer: pointer to the host interface | ||
2389 | * @length: size of the buffer | ||
2390 | * | ||
2391 | * Writes the DHCP information to the host interface. | ||
2392 | **/ | ||
2393 | s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) | ||
2394 | { | ||
2395 | struct e1000_host_mng_command_header hdr; | ||
2396 | s32 ret_val; | ||
2397 | u32 hicr; | ||
2398 | |||
2399 | hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; | ||
2400 | hdr.command_length = length; | ||
2401 | hdr.reserved1 = 0; | ||
2402 | hdr.reserved2 = 0; | ||
2403 | hdr.checksum = 0; | ||
2404 | |||
2405 | /* Enable the host interface */ | ||
2406 | ret_val = e1000_mng_enable_host_if(hw); | ||
2407 | if (ret_val) | ||
2408 | return ret_val; | ||
2409 | |||
2410 | /* Populate the host interface with the contents of "buffer". */ | ||
2411 | ret_val = e1000_mng_host_if_write(hw, buffer, length, | ||
2412 | sizeof(hdr), &(hdr.checksum)); | ||
2413 | if (ret_val) | ||
2414 | return ret_val; | ||
2415 | |||
2416 | /* Write the manageability command header */ | ||
2417 | ret_val = e1000_mng_write_cmd_header(hw, &hdr); | ||
2418 | if (ret_val) | ||
2419 | return ret_val; | ||
2420 | |||
2421 | /* Tell the ARC a new command is pending. */ | ||
2422 | hicr = er32(HICR); | ||
2423 | ew32(HICR, hicr | E1000_HICR_C); | ||
2424 | |||
2425 | return 0; | ||
2426 | } | ||
2427 | |||
2428 | /** | ||
2429 | * e1000e_enable_mng_pass_thru - Enable processing of ARP's | ||
2430 | * @hw: pointer to the HW structure | ||
2431 | * | ||
2432 | * Verifies the hardware needs to allow ARPs to be processed by the host. | ||
2433 | **/ | ||
2434 | bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw) | ||
2435 | { | ||
2436 | u32 manc; | ||
2437 | u32 fwsm, factps; | ||
2438 | bool ret_val = 0; | ||
2439 | |||
2440 | manc = er32(MANC); | ||
2441 | |||
2442 | if (!(manc & E1000_MANC_RCV_TCO_EN) || | ||
2443 | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) | ||
2444 | return ret_val; | ||
2445 | |||
2446 | if (hw->mac.arc_subsystem_valid) { | ||
2447 | fwsm = er32(FWSM); | ||
2448 | factps = er32(FACTPS); | ||
2449 | |||
2450 | if (!(factps & E1000_FACTPS_MNGCG) && | ||
2451 | ((fwsm & E1000_FWSM_MODE_MASK) == | ||
2452 | (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { | ||
2453 | ret_val = 1; | ||
2454 | return ret_val; | ||
2455 | } | ||
2456 | } else { | ||
2457 | if ((manc & E1000_MANC_SMBUS_EN) && | ||
2458 | !(manc & E1000_MANC_ASF_EN)) { | ||
2459 | ret_val = 1; | ||
2460 | return ret_val; | ||
2461 | } | ||
2462 | } | ||
2463 | |||
2464 | return ret_val; | ||
2465 | } | ||
2466 | |||
2467 | s32 e1000e_read_part_num(struct e1000_hw *hw, u32 *part_num) | ||
2468 | { | ||
2469 | s32 ret_val; | ||
2470 | u16 nvm_data; | ||
2471 | |||
2472 | ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); | ||
2473 | if (ret_val) { | ||
2474 | hw_dbg(hw, "NVM Read Error\n"); | ||
2475 | return ret_val; | ||
2476 | } | ||
2477 | *part_num = (u32)(nvm_data << 16); | ||
2478 | |||
2479 | ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data); | ||
2480 | if (ret_val) { | ||
2481 | hw_dbg(hw, "NVM Read Error\n"); | ||
2482 | return ret_val; | ||
2483 | } | ||
2484 | *part_num |= nvm_data; | ||
2485 | |||
2486 | return 0; | ||
2487 | } | ||
diff --git a/drivers/net/e1000e/netdev.c b/drivers/net/e1000e/netdev.c new file mode 100644 index 000000000000..eeb40ccbcb22 --- /dev/null +++ b/drivers/net/e1000e/netdev.c | |||
@@ -0,0 +1,4441 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | #include <linux/module.h> | ||
30 | #include <linux/types.h> | ||
31 | #include <linux/init.h> | ||
32 | #include <linux/pci.h> | ||
33 | #include <linux/vmalloc.h> | ||
34 | #include <linux/pagemap.h> | ||
35 | #include <linux/delay.h> | ||
36 | #include <linux/netdevice.h> | ||
37 | #include <linux/tcp.h> | ||
38 | #include <linux/ipv6.h> | ||
39 | #include <net/checksum.h> | ||
40 | #include <net/ip6_checksum.h> | ||
41 | #include <linux/mii.h> | ||
42 | #include <linux/ethtool.h> | ||
43 | #include <linux/if_vlan.h> | ||
44 | #include <linux/cpu.h> | ||
45 | #include <linux/smp.h> | ||
46 | |||
47 | #include "e1000.h" | ||
48 | |||
49 | #define DRV_VERSION "0.2.0" | ||
50 | char e1000e_driver_name[] = "e1000e"; | ||
51 | const char e1000e_driver_version[] = DRV_VERSION; | ||
52 | |||
53 | static const struct e1000_info *e1000_info_tbl[] = { | ||
54 | [board_82571] = &e1000_82571_info, | ||
55 | [board_82572] = &e1000_82572_info, | ||
56 | [board_82573] = &e1000_82573_info, | ||
57 | [board_80003es2lan] = &e1000_es2_info, | ||
58 | [board_ich8lan] = &e1000_ich8_info, | ||
59 | [board_ich9lan] = &e1000_ich9_info, | ||
60 | }; | ||
61 | |||
62 | #ifdef DEBUG | ||
63 | /** | ||
64 | * e1000_get_hw_dev_name - return device name string | ||
65 | * used by hardware layer to print debugging information | ||
66 | **/ | ||
67 | char *e1000e_get_hw_dev_name(struct e1000_hw *hw) | ||
68 | { | ||
69 | struct e1000_adapter *adapter = hw->back; | ||
70 | struct net_device *netdev = adapter->netdev; | ||
71 | return netdev->name; | ||
72 | } | ||
73 | #endif | ||
74 | |||
75 | /** | ||
76 | * e1000_desc_unused - calculate if we have unused descriptors | ||
77 | **/ | ||
78 | static int e1000_desc_unused(struct e1000_ring *ring) | ||
79 | { | ||
80 | if (ring->next_to_clean > ring->next_to_use) | ||
81 | return ring->next_to_clean - ring->next_to_use - 1; | ||
82 | |||
83 | return ring->count + ring->next_to_clean - ring->next_to_use - 1; | ||
84 | } | ||
85 | |||
86 | /** | ||
87 | * e1000_receive_skb - helper function to handle rx indications | ||
88 | * @adapter: board private structure | ||
89 | * @status: descriptor status field as written by hardware | ||
90 | * @vlan: descriptor vlan field as written by hardware (no le/be conversion) | ||
91 | * @skb: pointer to sk_buff to be indicated to stack | ||
92 | **/ | ||
93 | static void e1000_receive_skb(struct e1000_adapter *adapter, | ||
94 | struct net_device *netdev, | ||
95 | struct sk_buff *skb, | ||
96 | u8 status, u16 vlan) | ||
97 | { | ||
98 | skb->protocol = eth_type_trans(skb, netdev); | ||
99 | |||
100 | if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) | ||
101 | vlan_hwaccel_receive_skb(skb, adapter->vlgrp, | ||
102 | le16_to_cpu(vlan) & | ||
103 | E1000_RXD_SPC_VLAN_MASK); | ||
104 | else | ||
105 | netif_receive_skb(skb); | ||
106 | |||
107 | netdev->last_rx = jiffies; | ||
108 | } | ||
109 | |||
110 | /** | ||
111 | * e1000_rx_checksum - Receive Checksum Offload for 82543 | ||
112 | * @adapter: board private structure | ||
113 | * @status_err: receive descriptor status and error fields | ||
114 | * @csum: receive descriptor csum field | ||
115 | * @sk_buff: socket buffer with received data | ||
116 | **/ | ||
117 | static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, | ||
118 | u32 csum, struct sk_buff *skb) | ||
119 | { | ||
120 | u16 status = (u16)status_err; | ||
121 | u8 errors = (u8)(status_err >> 24); | ||
122 | skb->ip_summed = CHECKSUM_NONE; | ||
123 | |||
124 | /* Ignore Checksum bit is set */ | ||
125 | if (status & E1000_RXD_STAT_IXSM) | ||
126 | return; | ||
127 | /* TCP/UDP checksum error bit is set */ | ||
128 | if (errors & E1000_RXD_ERR_TCPE) { | ||
129 | /* let the stack verify checksum errors */ | ||
130 | adapter->hw_csum_err++; | ||
131 | return; | ||
132 | } | ||
133 | |||
134 | /* TCP/UDP Checksum has not been calculated */ | ||
135 | if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) | ||
136 | return; | ||
137 | |||
138 | /* It must be a TCP or UDP packet with a valid checksum */ | ||
139 | if (status & E1000_RXD_STAT_TCPCS) { | ||
140 | /* TCP checksum is good */ | ||
141 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
142 | } else { | ||
143 | /* IP fragment with UDP payload */ | ||
144 | /* Hardware complements the payload checksum, so we undo it | ||
145 | * and then put the value in host order for further stack use. | ||
146 | */ | ||
147 | csum = ntohl(csum ^ 0xFFFF); | ||
148 | skb->csum = csum; | ||
149 | skb->ip_summed = CHECKSUM_COMPLETE; | ||
150 | } | ||
151 | adapter->hw_csum_good++; | ||
152 | } | ||
153 | |||
154 | /** | ||
155 | * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended | ||
156 | * @adapter: address of board private structure | ||
157 | **/ | ||
158 | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | ||
159 | int cleaned_count) | ||
160 | { | ||
161 | struct net_device *netdev = adapter->netdev; | ||
162 | struct pci_dev *pdev = adapter->pdev; | ||
163 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
164 | struct e1000_rx_desc *rx_desc; | ||
165 | struct e1000_buffer *buffer_info; | ||
166 | struct sk_buff *skb; | ||
167 | unsigned int i; | ||
168 | unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; | ||
169 | |||
170 | i = rx_ring->next_to_use; | ||
171 | buffer_info = &rx_ring->buffer_info[i]; | ||
172 | |||
173 | while (cleaned_count--) { | ||
174 | skb = buffer_info->skb; | ||
175 | if (skb) { | ||
176 | skb_trim(skb, 0); | ||
177 | goto map_skb; | ||
178 | } | ||
179 | |||
180 | skb = netdev_alloc_skb(netdev, bufsz); | ||
181 | if (!skb) { | ||
182 | /* Better luck next round */ | ||
183 | adapter->alloc_rx_buff_failed++; | ||
184 | break; | ||
185 | } | ||
186 | |||
187 | /* Make buffer alignment 2 beyond a 16 byte boundary | ||
188 | * this will result in a 16 byte aligned IP header after | ||
189 | * the 14 byte MAC header is removed | ||
190 | */ | ||
191 | skb_reserve(skb, NET_IP_ALIGN); | ||
192 | |||
193 | buffer_info->skb = skb; | ||
194 | map_skb: | ||
195 | buffer_info->dma = pci_map_single(pdev, skb->data, | ||
196 | adapter->rx_buffer_len, | ||
197 | PCI_DMA_FROMDEVICE); | ||
198 | if (pci_dma_mapping_error(buffer_info->dma)) { | ||
199 | dev_err(&pdev->dev, "RX DMA map failed\n"); | ||
200 | adapter->rx_dma_failed++; | ||
201 | break; | ||
202 | } | ||
203 | |||
204 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
205 | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | ||
206 | |||
207 | i++; | ||
208 | if (i == rx_ring->count) | ||
209 | i = 0; | ||
210 | buffer_info = &rx_ring->buffer_info[i]; | ||
211 | } | ||
212 | |||
213 | if (rx_ring->next_to_use != i) { | ||
214 | rx_ring->next_to_use = i; | ||
215 | if (i-- == 0) | ||
216 | i = (rx_ring->count - 1); | ||
217 | |||
218 | /* Force memory writes to complete before letting h/w | ||
219 | * know there are new descriptors to fetch. (Only | ||
220 | * applicable for weak-ordered memory model archs, | ||
221 | * such as IA-64). */ | ||
222 | wmb(); | ||
223 | writel(i, adapter->hw.hw_addr + rx_ring->tail); | ||
224 | } | ||
225 | } | ||
226 | |||
227 | /** | ||
228 | * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split | ||
229 | * @adapter: address of board private structure | ||
230 | **/ | ||
231 | static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, | ||
232 | int cleaned_count) | ||
233 | { | ||
234 | struct net_device *netdev = adapter->netdev; | ||
235 | struct pci_dev *pdev = adapter->pdev; | ||
236 | union e1000_rx_desc_packet_split *rx_desc; | ||
237 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
238 | struct e1000_buffer *buffer_info; | ||
239 | struct e1000_ps_page *ps_page; | ||
240 | struct sk_buff *skb; | ||
241 | unsigned int i, j; | ||
242 | |||
243 | i = rx_ring->next_to_use; | ||
244 | buffer_info = &rx_ring->buffer_info[i]; | ||
245 | |||
246 | while (cleaned_count--) { | ||
247 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | ||
248 | |||
249 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | ||
250 | ps_page = &rx_ring->ps_pages[(i * PS_PAGE_BUFFERS) | ||
251 | + j]; | ||
252 | if (j < adapter->rx_ps_pages) { | ||
253 | if (!ps_page->page) { | ||
254 | ps_page->page = alloc_page(GFP_ATOMIC); | ||
255 | if (!ps_page->page) { | ||
256 | adapter->alloc_rx_buff_failed++; | ||
257 | goto no_buffers; | ||
258 | } | ||
259 | ps_page->dma = pci_map_page(pdev, | ||
260 | ps_page->page, | ||
261 | 0, PAGE_SIZE, | ||
262 | PCI_DMA_FROMDEVICE); | ||
263 | if (pci_dma_mapping_error( | ||
264 | ps_page->dma)) { | ||
265 | dev_err(&adapter->pdev->dev, | ||
266 | "RX DMA page map failed\n"); | ||
267 | adapter->rx_dma_failed++; | ||
268 | goto no_buffers; | ||
269 | } | ||
270 | } | ||
271 | /* | ||
272 | * Refresh the desc even if buffer_addrs | ||
273 | * didn't change because each write-back | ||
274 | * erases this info. | ||
275 | */ | ||
276 | rx_desc->read.buffer_addr[j+1] = | ||
277 | cpu_to_le64(ps_page->dma); | ||
278 | } else { | ||
279 | rx_desc->read.buffer_addr[j+1] = ~0; | ||
280 | } | ||
281 | } | ||
282 | |||
283 | skb = netdev_alloc_skb(netdev, | ||
284 | adapter->rx_ps_bsize0 + NET_IP_ALIGN); | ||
285 | |||
286 | if (!skb) { | ||
287 | adapter->alloc_rx_buff_failed++; | ||
288 | break; | ||
289 | } | ||
290 | |||
291 | /* Make buffer alignment 2 beyond a 16 byte boundary | ||
292 | * this will result in a 16 byte aligned IP header after | ||
293 | * the 14 byte MAC header is removed | ||
294 | */ | ||
295 | skb_reserve(skb, NET_IP_ALIGN); | ||
296 | |||
297 | buffer_info->skb = skb; | ||
298 | buffer_info->dma = pci_map_single(pdev, skb->data, | ||
299 | adapter->rx_ps_bsize0, | ||
300 | PCI_DMA_FROMDEVICE); | ||
301 | if (pci_dma_mapping_error(buffer_info->dma)) { | ||
302 | dev_err(&pdev->dev, "RX DMA map failed\n"); | ||
303 | adapter->rx_dma_failed++; | ||
304 | /* cleanup skb */ | ||
305 | dev_kfree_skb_any(skb); | ||
306 | buffer_info->skb = NULL; | ||
307 | break; | ||
308 | } | ||
309 | |||
310 | rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); | ||
311 | |||
312 | i++; | ||
313 | if (i == rx_ring->count) | ||
314 | i = 0; | ||
315 | buffer_info = &rx_ring->buffer_info[i]; | ||
316 | } | ||
317 | |||
318 | no_buffers: | ||
319 | if (rx_ring->next_to_use != i) { | ||
320 | rx_ring->next_to_use = i; | ||
321 | |||
322 | if (!(i--)) | ||
323 | i = (rx_ring->count - 1); | ||
324 | |||
325 | /* Force memory writes to complete before letting h/w | ||
326 | * know there are new descriptors to fetch. (Only | ||
327 | * applicable for weak-ordered memory model archs, | ||
328 | * such as IA-64). */ | ||
329 | wmb(); | ||
330 | /* Hardware increments by 16 bytes, but packet split | ||
331 | * descriptors are 32 bytes...so we increment tail | ||
332 | * twice as much. | ||
333 | */ | ||
334 | writel(i<<1, adapter->hw.hw_addr + rx_ring->tail); | ||
335 | } | ||
336 | } | ||
337 | |||
338 | /** | ||
339 | * e1000_alloc_rx_buffers_jumbo - Replace used jumbo receive buffers | ||
340 | * | ||
341 | * @adapter: address of board private structure | ||
342 | * @cleaned_count: number of buffers to allocate this pass | ||
343 | **/ | ||
344 | static void e1000_alloc_rx_buffers_jumbo(struct e1000_adapter *adapter, | ||
345 | int cleaned_count) | ||
346 | { | ||
347 | struct net_device *netdev = adapter->netdev; | ||
348 | struct pci_dev *pdev = adapter->pdev; | ||
349 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
350 | struct e1000_rx_desc *rx_desc; | ||
351 | struct e1000_buffer *buffer_info; | ||
352 | struct sk_buff *skb; | ||
353 | unsigned int i; | ||
354 | unsigned int bufsz = 256 - | ||
355 | 16 /*for skb_reserve */ - | ||
356 | NET_IP_ALIGN; | ||
357 | |||
358 | i = rx_ring->next_to_use; | ||
359 | buffer_info = &rx_ring->buffer_info[i]; | ||
360 | |||
361 | while (cleaned_count--) { | ||
362 | skb = buffer_info->skb; | ||
363 | if (skb) { | ||
364 | skb_trim(skb, 0); | ||
365 | goto check_page; | ||
366 | } | ||
367 | |||
368 | skb = netdev_alloc_skb(netdev, bufsz); | ||
369 | if (!skb) { | ||
370 | /* Better luck next round */ | ||
371 | adapter->alloc_rx_buff_failed++; | ||
372 | break; | ||
373 | } | ||
374 | |||
375 | /* Make buffer alignment 2 beyond a 16 byte boundary | ||
376 | * this will result in a 16 byte aligned IP header after | ||
377 | * the 14 byte MAC header is removed | ||
378 | */ | ||
379 | skb_reserve(skb, NET_IP_ALIGN); | ||
380 | |||
381 | buffer_info->skb = skb; | ||
382 | check_page: | ||
383 | /* allocate a new page if necessary */ | ||
384 | if (!buffer_info->page) { | ||
385 | buffer_info->page = alloc_page(GFP_ATOMIC); | ||
386 | if (!buffer_info->page) { | ||
387 | adapter->alloc_rx_buff_failed++; | ||
388 | break; | ||
389 | } | ||
390 | } | ||
391 | |||
392 | if (!buffer_info->dma) | ||
393 | buffer_info->dma = pci_map_page(pdev, | ||
394 | buffer_info->page, 0, | ||
395 | PAGE_SIZE, | ||
396 | PCI_DMA_FROMDEVICE); | ||
397 | if (pci_dma_mapping_error(buffer_info->dma)) { | ||
398 | dev_err(&adapter->pdev->dev, "RX DMA page map failed\n"); | ||
399 | adapter->rx_dma_failed++; | ||
400 | break; | ||
401 | } | ||
402 | |||
403 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
404 | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | ||
405 | |||
406 | i++; | ||
407 | if (i == rx_ring->count) | ||
408 | i = 0; | ||
409 | buffer_info = &rx_ring->buffer_info[i]; | ||
410 | } | ||
411 | |||
412 | if (rx_ring->next_to_use != i) { | ||
413 | rx_ring->next_to_use = i; | ||
414 | if (i-- == 0) | ||
415 | i = (rx_ring->count - 1); | ||
416 | |||
417 | /* Force memory writes to complete before letting h/w | ||
418 | * know there are new descriptors to fetch. (Only | ||
419 | * applicable for weak-ordered memory model archs, | ||
420 | * such as IA-64). */ | ||
421 | wmb(); | ||
422 | writel(i, adapter->hw.hw_addr + rx_ring->tail); | ||
423 | } | ||
424 | } | ||
425 | |||
426 | /** | ||
427 | * e1000_clean_rx_irq - Send received data up the network stack; legacy | ||
428 | * @adapter: board private structure | ||
429 | * | ||
430 | * the return value indicates whether actual cleaning was done, there | ||
431 | * is no guarantee that everything was cleaned | ||
432 | **/ | ||
433 | static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, | ||
434 | int *work_done, int work_to_do) | ||
435 | { | ||
436 | struct net_device *netdev = adapter->netdev; | ||
437 | struct pci_dev *pdev = adapter->pdev; | ||
438 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
439 | struct e1000_rx_desc *rx_desc, *next_rxd; | ||
440 | struct e1000_buffer *buffer_info, *next_buffer; | ||
441 | u32 length; | ||
442 | unsigned int i; | ||
443 | int cleaned_count = 0; | ||
444 | bool cleaned = 0; | ||
445 | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | ||
446 | |||
447 | i = rx_ring->next_to_clean; | ||
448 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
449 | buffer_info = &rx_ring->buffer_info[i]; | ||
450 | |||
451 | while (rx_desc->status & E1000_RXD_STAT_DD) { | ||
452 | struct sk_buff *skb; | ||
453 | u8 status; | ||
454 | |||
455 | if (*work_done >= work_to_do) | ||
456 | break; | ||
457 | (*work_done)++; | ||
458 | |||
459 | status = rx_desc->status; | ||
460 | skb = buffer_info->skb; | ||
461 | buffer_info->skb = NULL; | ||
462 | |||
463 | prefetch(skb->data - NET_IP_ALIGN); | ||
464 | |||
465 | i++; | ||
466 | if (i == rx_ring->count) | ||
467 | i = 0; | ||
468 | next_rxd = E1000_RX_DESC(*rx_ring, i); | ||
469 | prefetch(next_rxd); | ||
470 | |||
471 | next_buffer = &rx_ring->buffer_info[i]; | ||
472 | |||
473 | cleaned = 1; | ||
474 | cleaned_count++; | ||
475 | pci_unmap_single(pdev, | ||
476 | buffer_info->dma, | ||
477 | adapter->rx_buffer_len, | ||
478 | PCI_DMA_FROMDEVICE); | ||
479 | buffer_info->dma = 0; | ||
480 | |||
481 | length = le16_to_cpu(rx_desc->length); | ||
482 | |||
483 | /* !EOP means multiple descriptors were used to store a single | ||
484 | * packet, also make sure the frame isn't just CRC only */ | ||
485 | if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) { | ||
486 | /* All receives must fit into a single buffer */ | ||
487 | ndev_dbg(netdev, "%s: Receive packet consumed " | ||
488 | "multiple buffers\n", netdev->name); | ||
489 | /* recycle */ | ||
490 | buffer_info->skb = skb; | ||
491 | goto next_desc; | ||
492 | } | ||
493 | |||
494 | if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { | ||
495 | /* recycle */ | ||
496 | buffer_info->skb = skb; | ||
497 | goto next_desc; | ||
498 | } | ||
499 | |||
500 | /* adjust length to remove Ethernet CRC */ | ||
501 | length -= 4; | ||
502 | |||
503 | /* probably a little skewed due to removing CRC */ | ||
504 | total_rx_bytes += length; | ||
505 | total_rx_packets++; | ||
506 | |||
507 | /* code added for copybreak, this should improve | ||
508 | * performance for small packets with large amounts | ||
509 | * of reassembly being done in the stack */ | ||
510 | if (length < copybreak) { | ||
511 | struct sk_buff *new_skb = | ||
512 | netdev_alloc_skb(netdev, length + NET_IP_ALIGN); | ||
513 | if (new_skb) { | ||
514 | skb_reserve(new_skb, NET_IP_ALIGN); | ||
515 | memcpy(new_skb->data - NET_IP_ALIGN, | ||
516 | skb->data - NET_IP_ALIGN, | ||
517 | length + NET_IP_ALIGN); | ||
518 | /* save the skb in buffer_info as good */ | ||
519 | buffer_info->skb = skb; | ||
520 | skb = new_skb; | ||
521 | } | ||
522 | /* else just continue with the old one */ | ||
523 | } | ||
524 | /* end copybreak code */ | ||
525 | skb_put(skb, length); | ||
526 | |||
527 | /* Receive Checksum Offload */ | ||
528 | e1000_rx_checksum(adapter, | ||
529 | (u32)(status) | | ||
530 | ((u32)(rx_desc->errors) << 24), | ||
531 | le16_to_cpu(rx_desc->csum), skb); | ||
532 | |||
533 | e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); | ||
534 | |||
535 | next_desc: | ||
536 | rx_desc->status = 0; | ||
537 | |||
538 | /* return some buffers to hardware, one at a time is too slow */ | ||
539 | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | ||
540 | adapter->alloc_rx_buf(adapter, cleaned_count); | ||
541 | cleaned_count = 0; | ||
542 | } | ||
543 | |||
544 | /* use prefetched values */ | ||
545 | rx_desc = next_rxd; | ||
546 | buffer_info = next_buffer; | ||
547 | } | ||
548 | rx_ring->next_to_clean = i; | ||
549 | |||
550 | cleaned_count = e1000_desc_unused(rx_ring); | ||
551 | if (cleaned_count) | ||
552 | adapter->alloc_rx_buf(adapter, cleaned_count); | ||
553 | |||
554 | adapter->total_rx_packets += total_rx_packets; | ||
555 | adapter->total_rx_bytes += total_rx_bytes; | ||
556 | return cleaned; | ||
557 | } | ||
558 | |||
559 | static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, | ||
560 | u16 length) | ||
561 | { | ||
562 | bi->page = NULL; | ||
563 | skb->len += length; | ||
564 | skb->data_len += length; | ||
565 | skb->truesize += length; | ||
566 | } | ||
567 | |||
568 | static void e1000_put_txbuf(struct e1000_adapter *adapter, | ||
569 | struct e1000_buffer *buffer_info) | ||
570 | { | ||
571 | if (buffer_info->dma) { | ||
572 | pci_unmap_page(adapter->pdev, buffer_info->dma, | ||
573 | buffer_info->length, PCI_DMA_TODEVICE); | ||
574 | buffer_info->dma = 0; | ||
575 | } | ||
576 | if (buffer_info->skb) { | ||
577 | dev_kfree_skb_any(buffer_info->skb); | ||
578 | buffer_info->skb = NULL; | ||
579 | } | ||
580 | } | ||
581 | |||
582 | static void e1000_print_tx_hang(struct e1000_adapter *adapter) | ||
583 | { | ||
584 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
585 | unsigned int i = tx_ring->next_to_clean; | ||
586 | unsigned int eop = tx_ring->buffer_info[i].next_to_watch; | ||
587 | struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); | ||
588 | struct net_device *netdev = adapter->netdev; | ||
589 | |||
590 | /* detected Tx unit hang */ | ||
591 | ndev_err(netdev, | ||
592 | "Detected Tx Unit Hang:\n" | ||
593 | " TDH <%x>\n" | ||
594 | " TDT <%x>\n" | ||
595 | " next_to_use <%x>\n" | ||
596 | " next_to_clean <%x>\n" | ||
597 | "buffer_info[next_to_clean]:\n" | ||
598 | " time_stamp <%lx>\n" | ||
599 | " next_to_watch <%x>\n" | ||
600 | " jiffies <%lx>\n" | ||
601 | " next_to_watch.status <%x>\n", | ||
602 | readl(adapter->hw.hw_addr + tx_ring->head), | ||
603 | readl(adapter->hw.hw_addr + tx_ring->tail), | ||
604 | tx_ring->next_to_use, | ||
605 | tx_ring->next_to_clean, | ||
606 | tx_ring->buffer_info[eop].time_stamp, | ||
607 | eop, | ||
608 | jiffies, | ||
609 | eop_desc->upper.fields.status); | ||
610 | } | ||
611 | |||
612 | /** | ||
613 | * e1000_clean_tx_irq - Reclaim resources after transmit completes | ||
614 | * @adapter: board private structure | ||
615 | * | ||
616 | * the return value indicates whether actual cleaning was done, there | ||
617 | * is no guarantee that everything was cleaned | ||
618 | **/ | ||
619 | static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) | ||
620 | { | ||
621 | struct net_device *netdev = adapter->netdev; | ||
622 | struct e1000_hw *hw = &adapter->hw; | ||
623 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
624 | struct e1000_tx_desc *tx_desc, *eop_desc; | ||
625 | struct e1000_buffer *buffer_info; | ||
626 | unsigned int i, eop; | ||
627 | unsigned int count = 0; | ||
628 | bool cleaned = 0; | ||
629 | unsigned int total_tx_bytes = 0, total_tx_packets = 0; | ||
630 | |||
631 | i = tx_ring->next_to_clean; | ||
632 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
633 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | ||
634 | |||
635 | while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { | ||
636 | for (cleaned = 0; !cleaned; ) { | ||
637 | tx_desc = E1000_TX_DESC(*tx_ring, i); | ||
638 | buffer_info = &tx_ring->buffer_info[i]; | ||
639 | cleaned = (i == eop); | ||
640 | |||
641 | if (cleaned) { | ||
642 | struct sk_buff *skb = buffer_info->skb; | ||
643 | unsigned int segs, bytecount; | ||
644 | segs = skb_shinfo(skb)->gso_segs ?: 1; | ||
645 | /* multiply data chunks by size of headers */ | ||
646 | bytecount = ((segs - 1) * skb_headlen(skb)) + | ||
647 | skb->len; | ||
648 | total_tx_packets += segs; | ||
649 | total_tx_bytes += bytecount; | ||
650 | } | ||
651 | |||
652 | e1000_put_txbuf(adapter, buffer_info); | ||
653 | tx_desc->upper.data = 0; | ||
654 | |||
655 | i++; | ||
656 | if (i == tx_ring->count) | ||
657 | i = 0; | ||
658 | } | ||
659 | |||
660 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
661 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | ||
662 | #define E1000_TX_WEIGHT 64 | ||
663 | /* weight of a sort for tx, to avoid endless transmit cleanup */ | ||
664 | if (count++ == E1000_TX_WEIGHT) | ||
665 | break; | ||
666 | } | ||
667 | |||
668 | tx_ring->next_to_clean = i; | ||
669 | |||
670 | #define TX_WAKE_THRESHOLD 32 | ||
671 | if (cleaned && netif_carrier_ok(netdev) && | ||
672 | e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { | ||
673 | /* Make sure that anybody stopping the queue after this | ||
674 | * sees the new next_to_clean. | ||
675 | */ | ||
676 | smp_mb(); | ||
677 | |||
678 | if (netif_queue_stopped(netdev) && | ||
679 | !(test_bit(__E1000_DOWN, &adapter->state))) { | ||
680 | netif_wake_queue(netdev); | ||
681 | ++adapter->restart_queue; | ||
682 | } | ||
683 | } | ||
684 | |||
685 | if (adapter->detect_tx_hung) { | ||
686 | /* Detect a transmit hang in hardware, this serializes the | ||
687 | * check with the clearing of time_stamp and movement of i */ | ||
688 | adapter->detect_tx_hung = 0; | ||
689 | if (tx_ring->buffer_info[eop].dma && | ||
690 | time_after(jiffies, tx_ring->buffer_info[eop].time_stamp | ||
691 | + (adapter->tx_timeout_factor * HZ)) | ||
692 | && !(er32(STATUS) & | ||
693 | E1000_STATUS_TXOFF)) { | ||
694 | e1000_print_tx_hang(adapter); | ||
695 | netif_stop_queue(netdev); | ||
696 | } | ||
697 | } | ||
698 | adapter->total_tx_bytes += total_tx_bytes; | ||
699 | adapter->total_tx_packets += total_tx_packets; | ||
700 | return cleaned; | ||
701 | } | ||
702 | |||
703 | /** | ||
704 | * e1000_clean_rx_irq_jumbo - Send received data up the network stack; legacy | ||
705 | * @adapter: board private structure | ||
706 | * | ||
707 | * the return value indicates whether actual cleaning was done, there | ||
708 | * is no guarantee that everything was cleaned | ||
709 | **/ | ||
710 | static bool e1000_clean_rx_irq_jumbo(struct e1000_adapter *adapter, | ||
711 | int *work_done, int work_to_do) | ||
712 | { | ||
713 | struct net_device *netdev = adapter->netdev; | ||
714 | struct pci_dev *pdev = adapter->pdev; | ||
715 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
716 | struct e1000_rx_desc *rx_desc, *next_rxd; | ||
717 | struct e1000_buffer *buffer_info, *next_buffer; | ||
718 | u32 length; | ||
719 | unsigned int i; | ||
720 | int cleaned_count = 0; | ||
721 | bool cleaned = 0; | ||
722 | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | ||
723 | |||
724 | i = rx_ring->next_to_clean; | ||
725 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
726 | buffer_info = &rx_ring->buffer_info[i]; | ||
727 | |||
728 | while (rx_desc->status & E1000_RXD_STAT_DD) { | ||
729 | struct sk_buff *skb; | ||
730 | u8 status; | ||
731 | |||
732 | if (*work_done >= work_to_do) | ||
733 | break; | ||
734 | (*work_done)++; | ||
735 | |||
736 | status = rx_desc->status; | ||
737 | skb = buffer_info->skb; | ||
738 | buffer_info->skb = NULL; | ||
739 | |||
740 | i++; | ||
741 | if (i == rx_ring->count) | ||
742 | i = 0; | ||
743 | next_rxd = E1000_RX_DESC(*rx_ring, i); | ||
744 | prefetch(next_rxd); | ||
745 | |||
746 | next_buffer = &rx_ring->buffer_info[i]; | ||
747 | |||
748 | cleaned = 1; | ||
749 | cleaned_count++; | ||
750 | pci_unmap_page(pdev, | ||
751 | buffer_info->dma, | ||
752 | PAGE_SIZE, | ||
753 | PCI_DMA_FROMDEVICE); | ||
754 | buffer_info->dma = 0; | ||
755 | |||
756 | length = le16_to_cpu(rx_desc->length); | ||
757 | |||
758 | /* errors is only valid for DD + EOP descriptors */ | ||
759 | if ((status & E1000_RXD_STAT_EOP) && | ||
760 | (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { | ||
761 | /* recycle both page and skb */ | ||
762 | buffer_info->skb = skb; | ||
763 | /* an error means any chain goes out the window too */ | ||
764 | if (rx_ring->rx_skb_top) | ||
765 | dev_kfree_skb(rx_ring->rx_skb_top); | ||
766 | rx_ring->rx_skb_top = NULL; | ||
767 | goto next_desc; | ||
768 | } | ||
769 | |||
770 | #define rxtop rx_ring->rx_skb_top | ||
771 | if (!(status & E1000_RXD_STAT_EOP)) { | ||
772 | /* this descriptor is only the beginning (or middle) */ | ||
773 | if (!rxtop) { | ||
774 | /* this is the beginning of a chain */ | ||
775 | rxtop = skb; | ||
776 | skb_fill_page_desc(rxtop, 0, buffer_info->page, | ||
777 | 0, length); | ||
778 | } else { | ||
779 | /* this is the middle of a chain */ | ||
780 | skb_fill_page_desc(rxtop, | ||
781 | skb_shinfo(rxtop)->nr_frags, | ||
782 | buffer_info->page, 0, | ||
783 | length); | ||
784 | /* re-use the skb, only consumed the page */ | ||
785 | buffer_info->skb = skb; | ||
786 | } | ||
787 | e1000_consume_page(buffer_info, rxtop, length); | ||
788 | goto next_desc; | ||
789 | } else { | ||
790 | if (rxtop) { | ||
791 | /* end of the chain */ | ||
792 | skb_fill_page_desc(rxtop, | ||
793 | skb_shinfo(rxtop)->nr_frags, | ||
794 | buffer_info->page, 0, length); | ||
795 | /* re-use the current skb, we only consumed the | ||
796 | * page */ | ||
797 | buffer_info->skb = skb; | ||
798 | skb = rxtop; | ||
799 | rxtop = NULL; | ||
800 | e1000_consume_page(buffer_info, skb, length); | ||
801 | } else { | ||
802 | /* no chain, got EOP, this buf is the packet | ||
803 | * copybreak to save the put_page/alloc_page */ | ||
804 | if (length <= copybreak && | ||
805 | skb_tailroom(skb) >= length) { | ||
806 | u8 *vaddr; | ||
807 | vaddr = kmap_atomic(buffer_info->page, | ||
808 | KM_SKB_DATA_SOFTIRQ); | ||
809 | memcpy(skb_tail_pointer(skb), | ||
810 | vaddr, length); | ||
811 | kunmap_atomic(vaddr, | ||
812 | KM_SKB_DATA_SOFTIRQ); | ||
813 | /* re-use the page, so don't erase | ||
814 | * buffer_info->page */ | ||
815 | skb_put(skb, length); | ||
816 | } else { | ||
817 | skb_fill_page_desc(skb, 0, | ||
818 | buffer_info->page, 0, | ||
819 | length); | ||
820 | e1000_consume_page(buffer_info, skb, | ||
821 | length); | ||
822 | } | ||
823 | } | ||
824 | } | ||
825 | |||
826 | /* Receive Checksum Offload XXX recompute due to CRC strip? */ | ||
827 | e1000_rx_checksum(adapter, | ||
828 | (u32)(status) | | ||
829 | ((u32)(rx_desc->errors) << 24), | ||
830 | le16_to_cpu(rx_desc->csum), skb); | ||
831 | |||
832 | pskb_trim(skb, skb->len - 4); | ||
833 | |||
834 | /* probably a little skewed due to removing CRC */ | ||
835 | total_rx_bytes += skb->len; | ||
836 | total_rx_packets++; | ||
837 | |||
838 | /* eth type trans needs skb->data to point to something */ | ||
839 | if (!pskb_may_pull(skb, ETH_HLEN)) { | ||
840 | ndev_err(netdev, "__pskb_pull_tail failed.\n"); | ||
841 | dev_kfree_skb(skb); | ||
842 | goto next_desc; | ||
843 | } | ||
844 | |||
845 | e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); | ||
846 | |||
847 | next_desc: | ||
848 | rx_desc->status = 0; | ||
849 | |||
850 | /* return some buffers to hardware, one at a time is too slow */ | ||
851 | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | ||
852 | adapter->alloc_rx_buf(adapter, cleaned_count); | ||
853 | cleaned_count = 0; | ||
854 | } | ||
855 | |||
856 | /* use prefetched values */ | ||
857 | rx_desc = next_rxd; | ||
858 | buffer_info = next_buffer; | ||
859 | } | ||
860 | rx_ring->next_to_clean = i; | ||
861 | |||
862 | cleaned_count = e1000_desc_unused(rx_ring); | ||
863 | if (cleaned_count) | ||
864 | adapter->alloc_rx_buf(adapter, cleaned_count); | ||
865 | |||
866 | adapter->total_rx_packets += total_rx_packets; | ||
867 | adapter->total_rx_bytes += total_rx_bytes; | ||
868 | return cleaned; | ||
869 | } | ||
870 | |||
871 | /** | ||
872 | * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split | ||
873 | * @adapter: board private structure | ||
874 | * | ||
875 | * the return value indicates whether actual cleaning was done, there | ||
876 | * is no guarantee that everything was cleaned | ||
877 | **/ | ||
878 | static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, | ||
879 | int *work_done, int work_to_do) | ||
880 | { | ||
881 | union e1000_rx_desc_packet_split *rx_desc, *next_rxd; | ||
882 | struct net_device *netdev = adapter->netdev; | ||
883 | struct pci_dev *pdev = adapter->pdev; | ||
884 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
885 | struct e1000_buffer *buffer_info, *next_buffer; | ||
886 | struct e1000_ps_page *ps_page; | ||
887 | struct sk_buff *skb; | ||
888 | unsigned int i, j; | ||
889 | u32 length, staterr; | ||
890 | int cleaned_count = 0; | ||
891 | bool cleaned = 0; | ||
892 | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | ||
893 | |||
894 | i = rx_ring->next_to_clean; | ||
895 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | ||
896 | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | ||
897 | buffer_info = &rx_ring->buffer_info[i]; | ||
898 | |||
899 | while (staterr & E1000_RXD_STAT_DD) { | ||
900 | if (*work_done >= work_to_do) | ||
901 | break; | ||
902 | (*work_done)++; | ||
903 | skb = buffer_info->skb; | ||
904 | |||
905 | /* in the packet split case this is header only */ | ||
906 | prefetch(skb->data - NET_IP_ALIGN); | ||
907 | |||
908 | i++; | ||
909 | if (i == rx_ring->count) | ||
910 | i = 0; | ||
911 | next_rxd = E1000_RX_DESC_PS(*rx_ring, i); | ||
912 | prefetch(next_rxd); | ||
913 | |||
914 | next_buffer = &rx_ring->buffer_info[i]; | ||
915 | |||
916 | cleaned = 1; | ||
917 | cleaned_count++; | ||
918 | pci_unmap_single(pdev, buffer_info->dma, | ||
919 | adapter->rx_ps_bsize0, | ||
920 | PCI_DMA_FROMDEVICE); | ||
921 | buffer_info->dma = 0; | ||
922 | |||
923 | if (!(staterr & E1000_RXD_STAT_EOP)) { | ||
924 | ndev_dbg(netdev, "%s: Packet Split buffers didn't pick " | ||
925 | "up the full packet\n", netdev->name); | ||
926 | dev_kfree_skb_irq(skb); | ||
927 | goto next_desc; | ||
928 | } | ||
929 | |||
930 | if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { | ||
931 | dev_kfree_skb_irq(skb); | ||
932 | goto next_desc; | ||
933 | } | ||
934 | |||
935 | length = le16_to_cpu(rx_desc->wb.middle.length0); | ||
936 | |||
937 | if (!length) { | ||
938 | ndev_dbg(netdev, "%s: Last part of the packet spanning" | ||
939 | " multiple descriptors\n", netdev->name); | ||
940 | dev_kfree_skb_irq(skb); | ||
941 | goto next_desc; | ||
942 | } | ||
943 | |||
944 | /* Good Receive */ | ||
945 | skb_put(skb, length); | ||
946 | |||
947 | { | ||
948 | /* this looks ugly, but it seems compiler issues make it | ||
949 | more efficient than reusing j */ | ||
950 | int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); | ||
951 | |||
952 | /* page alloc/put takes too long and effects small packet | ||
953 | * throughput, so unsplit small packets and save the alloc/put*/ | ||
954 | if (l1 && (l1 <= copybreak) && | ||
955 | ((length + l1) <= adapter->rx_ps_bsize0)) { | ||
956 | u8 *vaddr; | ||
957 | |||
958 | ps_page = &rx_ring->ps_pages[i * PS_PAGE_BUFFERS]; | ||
959 | |||
960 | /* there is no documentation about how to call | ||
961 | * kmap_atomic, so we can't hold the mapping | ||
962 | * very long */ | ||
963 | pci_dma_sync_single_for_cpu(pdev, ps_page->dma, | ||
964 | PAGE_SIZE, PCI_DMA_FROMDEVICE); | ||
965 | vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); | ||
966 | memcpy(skb_tail_pointer(skb), vaddr, l1); | ||
967 | kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); | ||
968 | pci_dma_sync_single_for_device(pdev, ps_page->dma, | ||
969 | PAGE_SIZE, PCI_DMA_FROMDEVICE); | ||
970 | /* remove the CRC */ | ||
971 | l1 -= 4; | ||
972 | skb_put(skb, l1); | ||
973 | goto copydone; | ||
974 | } /* if */ | ||
975 | } | ||
976 | |||
977 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | ||
978 | length = le16_to_cpu(rx_desc->wb.upper.length[j]); | ||
979 | if (!length) | ||
980 | break; | ||
981 | |||
982 | ps_page = &rx_ring->ps_pages[(i * PS_PAGE_BUFFERS) + j]; | ||
983 | pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, | ||
984 | PCI_DMA_FROMDEVICE); | ||
985 | ps_page->dma = 0; | ||
986 | skb_fill_page_desc(skb, j, ps_page->page, 0, length); | ||
987 | ps_page->page = NULL; | ||
988 | skb->len += length; | ||
989 | skb->data_len += length; | ||
990 | skb->truesize += length; | ||
991 | } | ||
992 | |||
993 | /* strip the ethernet crc, problem is we're using pages now so | ||
994 | * this whole operation can get a little cpu intensive */ | ||
995 | pskb_trim(skb, skb->len - 4); | ||
996 | |||
997 | copydone: | ||
998 | total_rx_bytes += skb->len; | ||
999 | total_rx_packets++; | ||
1000 | |||
1001 | e1000_rx_checksum(adapter, staterr, le16_to_cpu( | ||
1002 | rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); | ||
1003 | |||
1004 | if (rx_desc->wb.upper.header_status & | ||
1005 | cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) | ||
1006 | adapter->rx_hdr_split++; | ||
1007 | |||
1008 | e1000_receive_skb(adapter, netdev, skb, | ||
1009 | staterr, rx_desc->wb.middle.vlan); | ||
1010 | |||
1011 | next_desc: | ||
1012 | rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); | ||
1013 | buffer_info->skb = NULL; | ||
1014 | |||
1015 | /* return some buffers to hardware, one at a time is too slow */ | ||
1016 | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | ||
1017 | adapter->alloc_rx_buf(adapter, cleaned_count); | ||
1018 | cleaned_count = 0; | ||
1019 | } | ||
1020 | |||
1021 | /* use prefetched values */ | ||
1022 | rx_desc = next_rxd; | ||
1023 | buffer_info = next_buffer; | ||
1024 | |||
1025 | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | ||
1026 | } | ||
1027 | rx_ring->next_to_clean = i; | ||
1028 | |||
1029 | cleaned_count = e1000_desc_unused(rx_ring); | ||
1030 | if (cleaned_count) | ||
1031 | adapter->alloc_rx_buf(adapter, cleaned_count); | ||
1032 | |||
1033 | adapter->total_rx_packets += total_rx_packets; | ||
1034 | adapter->total_rx_bytes += total_rx_bytes; | ||
1035 | return cleaned; | ||
1036 | } | ||
1037 | |||
1038 | /** | ||
1039 | * e1000_clean_rx_ring - Free Rx Buffers per Queue | ||
1040 | * @adapter: board private structure | ||
1041 | **/ | ||
1042 | static void e1000_clean_rx_ring(struct e1000_adapter *adapter) | ||
1043 | { | ||
1044 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
1045 | struct e1000_buffer *buffer_info; | ||
1046 | struct e1000_ps_page *ps_page; | ||
1047 | struct pci_dev *pdev = adapter->pdev; | ||
1048 | unsigned long size; | ||
1049 | unsigned int i, j; | ||
1050 | |||
1051 | /* Free all the Rx ring sk_buffs */ | ||
1052 | for (i = 0; i < rx_ring->count; i++) { | ||
1053 | buffer_info = &rx_ring->buffer_info[i]; | ||
1054 | if (buffer_info->dma) { | ||
1055 | if (adapter->clean_rx == e1000_clean_rx_irq) | ||
1056 | pci_unmap_single(pdev, buffer_info->dma, | ||
1057 | adapter->rx_buffer_len, | ||
1058 | PCI_DMA_FROMDEVICE); | ||
1059 | else if (adapter->clean_rx == e1000_clean_rx_irq_jumbo) | ||
1060 | pci_unmap_page(pdev, buffer_info->dma, | ||
1061 | PAGE_SIZE, PCI_DMA_FROMDEVICE); | ||
1062 | else if (adapter->clean_rx == e1000_clean_rx_irq_ps) | ||
1063 | pci_unmap_single(pdev, buffer_info->dma, | ||
1064 | adapter->rx_ps_bsize0, | ||
1065 | PCI_DMA_FROMDEVICE); | ||
1066 | buffer_info->dma = 0; | ||
1067 | } | ||
1068 | |||
1069 | if (buffer_info->page) { | ||
1070 | put_page(buffer_info->page); | ||
1071 | buffer_info->page = NULL; | ||
1072 | } | ||
1073 | |||
1074 | if (buffer_info->skb) { | ||
1075 | dev_kfree_skb(buffer_info->skb); | ||
1076 | buffer_info->skb = NULL; | ||
1077 | } | ||
1078 | |||
1079 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | ||
1080 | ps_page = &rx_ring->ps_pages[(i * PS_PAGE_BUFFERS) | ||
1081 | + j]; | ||
1082 | if (!ps_page->page) | ||
1083 | break; | ||
1084 | pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, | ||
1085 | PCI_DMA_FROMDEVICE); | ||
1086 | ps_page->dma = 0; | ||
1087 | put_page(ps_page->page); | ||
1088 | ps_page->page = NULL; | ||
1089 | } | ||
1090 | } | ||
1091 | |||
1092 | /* there also may be some cached data from a chained receive */ | ||
1093 | if (rx_ring->rx_skb_top) { | ||
1094 | dev_kfree_skb(rx_ring->rx_skb_top); | ||
1095 | rx_ring->rx_skb_top = NULL; | ||
1096 | } | ||
1097 | |||
1098 | size = sizeof(struct e1000_buffer) * rx_ring->count; | ||
1099 | memset(rx_ring->buffer_info, 0, size); | ||
1100 | size = sizeof(struct e1000_ps_page) | ||
1101 | * (rx_ring->count * PS_PAGE_BUFFERS); | ||
1102 | memset(rx_ring->ps_pages, 0, size); | ||
1103 | |||
1104 | /* Zero out the descriptor ring */ | ||
1105 | memset(rx_ring->desc, 0, rx_ring->size); | ||
1106 | |||
1107 | rx_ring->next_to_clean = 0; | ||
1108 | rx_ring->next_to_use = 0; | ||
1109 | |||
1110 | writel(0, adapter->hw.hw_addr + rx_ring->head); | ||
1111 | writel(0, adapter->hw.hw_addr + rx_ring->tail); | ||
1112 | } | ||
1113 | |||
1114 | /** | ||
1115 | * e1000_intr_msi - Interrupt Handler | ||
1116 | * @irq: interrupt number | ||
1117 | * @data: pointer to a network interface device structure | ||
1118 | **/ | ||
1119 | static irqreturn_t e1000_intr_msi(int irq, void *data) | ||
1120 | { | ||
1121 | struct net_device *netdev = data; | ||
1122 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1123 | struct e1000_hw *hw = &adapter->hw; | ||
1124 | u32 icr = er32(ICR); | ||
1125 | |||
1126 | /* read ICR disables interrupts using IAM, so keep up with our | ||
1127 | * enable/disable accounting */ | ||
1128 | atomic_inc(&adapter->irq_sem); | ||
1129 | |||
1130 | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | ||
1131 | hw->mac.get_link_status = 1; | ||
1132 | /* ICH8 workaround-- Call gig speed drop workaround on cable | ||
1133 | * disconnect (LSC) before accessing any PHY registers */ | ||
1134 | if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && | ||
1135 | (!(er32(STATUS) & E1000_STATUS_LU))) | ||
1136 | e1000e_gig_downshift_workaround_ich8lan(hw); | ||
1137 | |||
1138 | /* 80003ES2LAN workaround-- For packet buffer work-around on | ||
1139 | * link down event; disable receives here in the ISR and reset | ||
1140 | * adapter in watchdog */ | ||
1141 | if (netif_carrier_ok(netdev) && | ||
1142 | adapter->flags & FLAG_RX_NEEDS_RESTART) { | ||
1143 | /* disable receives */ | ||
1144 | u32 rctl = er32(RCTL); | ||
1145 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | ||
1146 | } | ||
1147 | /* guard against interrupt when we're going down */ | ||
1148 | if (!test_bit(__E1000_DOWN, &adapter->state)) | ||
1149 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
1150 | } | ||
1151 | |||
1152 | if (netif_rx_schedule_prep(netdev, &adapter->napi)) { | ||
1153 | adapter->total_tx_bytes = 0; | ||
1154 | adapter->total_tx_packets = 0; | ||
1155 | adapter->total_rx_bytes = 0; | ||
1156 | adapter->total_rx_packets = 0; | ||
1157 | __netif_rx_schedule(netdev, &adapter->napi); | ||
1158 | } else { | ||
1159 | atomic_dec(&adapter->irq_sem); | ||
1160 | } | ||
1161 | |||
1162 | return IRQ_HANDLED; | ||
1163 | } | ||
1164 | |||
1165 | /** | ||
1166 | * e1000_intr - Interrupt Handler | ||
1167 | * @irq: interrupt number | ||
1168 | * @data: pointer to a network interface device structure | ||
1169 | **/ | ||
1170 | static irqreturn_t e1000_intr(int irq, void *data) | ||
1171 | { | ||
1172 | struct net_device *netdev = data; | ||
1173 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1174 | struct e1000_hw *hw = &adapter->hw; | ||
1175 | |||
1176 | u32 rctl, icr = er32(ICR); | ||
1177 | if (!icr) | ||
1178 | return IRQ_NONE; /* Not our interrupt */ | ||
1179 | |||
1180 | /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is | ||
1181 | * not set, then the adapter didn't send an interrupt */ | ||
1182 | if (!(icr & E1000_ICR_INT_ASSERTED)) | ||
1183 | return IRQ_NONE; | ||
1184 | |||
1185 | /* Interrupt Auto-Mask...upon reading ICR, | ||
1186 | * interrupts are masked. No need for the | ||
1187 | * IMC write, but it does mean we should | ||
1188 | * account for it ASAP. */ | ||
1189 | atomic_inc(&adapter->irq_sem); | ||
1190 | |||
1191 | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | ||
1192 | hw->mac.get_link_status = 1; | ||
1193 | /* ICH8 workaround-- Call gig speed drop workaround on cable | ||
1194 | * disconnect (LSC) before accessing any PHY registers */ | ||
1195 | if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && | ||
1196 | (!(er32(STATUS) & E1000_STATUS_LU))) | ||
1197 | e1000e_gig_downshift_workaround_ich8lan(hw); | ||
1198 | |||
1199 | /* 80003ES2LAN workaround-- | ||
1200 | * For packet buffer work-around on link down event; | ||
1201 | * disable receives here in the ISR and | ||
1202 | * reset adapter in watchdog | ||
1203 | */ | ||
1204 | if (netif_carrier_ok(netdev) && | ||
1205 | (adapter->flags & FLAG_RX_NEEDS_RESTART)) { | ||
1206 | /* disable receives */ | ||
1207 | rctl = er32(RCTL); | ||
1208 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | ||
1209 | } | ||
1210 | /* guard against interrupt when we're going down */ | ||
1211 | if (!test_bit(__E1000_DOWN, &adapter->state)) | ||
1212 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
1213 | } | ||
1214 | |||
1215 | if (netif_rx_schedule_prep(netdev, &adapter->napi)) { | ||
1216 | adapter->total_tx_bytes = 0; | ||
1217 | adapter->total_tx_packets = 0; | ||
1218 | adapter->total_rx_bytes = 0; | ||
1219 | adapter->total_rx_packets = 0; | ||
1220 | __netif_rx_schedule(netdev, &adapter->napi); | ||
1221 | } else { | ||
1222 | atomic_dec(&adapter->irq_sem); | ||
1223 | } | ||
1224 | |||
1225 | return IRQ_HANDLED; | ||
1226 | } | ||
1227 | |||
1228 | static int e1000_request_irq(struct e1000_adapter *adapter) | ||
1229 | { | ||
1230 | struct net_device *netdev = adapter->netdev; | ||
1231 | void (*handler) = &e1000_intr; | ||
1232 | int irq_flags = IRQF_SHARED; | ||
1233 | int err; | ||
1234 | |||
1235 | err = pci_enable_msi(adapter->pdev); | ||
1236 | if (err) { | ||
1237 | ndev_warn(netdev, | ||
1238 | "Unable to allocate MSI interrupt Error: %d\n", err); | ||
1239 | } else { | ||
1240 | adapter->flags |= FLAG_MSI_ENABLED; | ||
1241 | handler = &e1000_intr_msi; | ||
1242 | irq_flags = 0; | ||
1243 | } | ||
1244 | |||
1245 | err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, | ||
1246 | netdev); | ||
1247 | if (err) { | ||
1248 | if (adapter->flags & FLAG_MSI_ENABLED) | ||
1249 | pci_disable_msi(adapter->pdev); | ||
1250 | ndev_err(netdev, | ||
1251 | "Unable to allocate interrupt Error: %d\n", err); | ||
1252 | } | ||
1253 | |||
1254 | return err; | ||
1255 | } | ||
1256 | |||
1257 | static void e1000_free_irq(struct e1000_adapter *adapter) | ||
1258 | { | ||
1259 | struct net_device *netdev = adapter->netdev; | ||
1260 | |||
1261 | free_irq(adapter->pdev->irq, netdev); | ||
1262 | if (adapter->flags & FLAG_MSI_ENABLED) { | ||
1263 | pci_disable_msi(adapter->pdev); | ||
1264 | adapter->flags &= ~FLAG_MSI_ENABLED; | ||
1265 | } | ||
1266 | } | ||
1267 | |||
1268 | /** | ||
1269 | * e1000_irq_disable - Mask off interrupt generation on the NIC | ||
1270 | **/ | ||
1271 | static void e1000_irq_disable(struct e1000_adapter *adapter) | ||
1272 | { | ||
1273 | struct e1000_hw *hw = &adapter->hw; | ||
1274 | |||
1275 | atomic_inc(&adapter->irq_sem); | ||
1276 | ew32(IMC, ~0); | ||
1277 | e1e_flush(); | ||
1278 | synchronize_irq(adapter->pdev->irq); | ||
1279 | } | ||
1280 | |||
1281 | /** | ||
1282 | * e1000_irq_enable - Enable default interrupt generation settings | ||
1283 | **/ | ||
1284 | static void e1000_irq_enable(struct e1000_adapter *adapter) | ||
1285 | { | ||
1286 | struct e1000_hw *hw = &adapter->hw; | ||
1287 | |||
1288 | if (atomic_dec_and_test(&adapter->irq_sem)) { | ||
1289 | ew32(IMS, IMS_ENABLE_MASK); | ||
1290 | e1e_flush(); | ||
1291 | } | ||
1292 | } | ||
1293 | |||
1294 | /** | ||
1295 | * e1000_get_hw_control - get control of the h/w from f/w | ||
1296 | * @adapter: address of board private structure | ||
1297 | * | ||
1298 | * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit. | ||
1299 | * For ASF and Pass Through versions of f/w this means that | ||
1300 | * the driver is loaded. For AMT version (only with 82573) | ||
1301 | * of the f/w this means that the network i/f is open. | ||
1302 | **/ | ||
1303 | static void e1000_get_hw_control(struct e1000_adapter *adapter) | ||
1304 | { | ||
1305 | struct e1000_hw *hw = &adapter->hw; | ||
1306 | u32 ctrl_ext; | ||
1307 | u32 swsm; | ||
1308 | |||
1309 | /* Let firmware know the driver has taken over */ | ||
1310 | if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { | ||
1311 | swsm = er32(SWSM); | ||
1312 | ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); | ||
1313 | } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { | ||
1314 | ctrl_ext = er32(CTRL_EXT); | ||
1315 | ew32(CTRL_EXT, | ||
1316 | ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); | ||
1317 | } | ||
1318 | } | ||
1319 | |||
1320 | /** | ||
1321 | * e1000_release_hw_control - release control of the h/w to f/w | ||
1322 | * @adapter: address of board private structure | ||
1323 | * | ||
1324 | * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. | ||
1325 | * For ASF and Pass Through versions of f/w this means that the | ||
1326 | * driver is no longer loaded. For AMT version (only with 82573) i | ||
1327 | * of the f/w this means that the network i/f is closed. | ||
1328 | * | ||
1329 | **/ | ||
1330 | static void e1000_release_hw_control(struct e1000_adapter *adapter) | ||
1331 | { | ||
1332 | struct e1000_hw *hw = &adapter->hw; | ||
1333 | u32 ctrl_ext; | ||
1334 | u32 swsm; | ||
1335 | |||
1336 | /* Let firmware taken over control of h/w */ | ||
1337 | if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { | ||
1338 | swsm = er32(SWSM); | ||
1339 | ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); | ||
1340 | } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { | ||
1341 | ctrl_ext = er32(CTRL_EXT); | ||
1342 | ew32(CTRL_EXT, | ||
1343 | ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); | ||
1344 | } | ||
1345 | } | ||
1346 | |||
1347 | static void e1000_release_manageability(struct e1000_adapter *adapter) | ||
1348 | { | ||
1349 | if (adapter->flags & FLAG_MNG_PT_ENABLED) { | ||
1350 | struct e1000_hw *hw = &adapter->hw; | ||
1351 | |||
1352 | u32 manc = er32(MANC); | ||
1353 | |||
1354 | /* re-enable hardware interception of ARP */ | ||
1355 | manc |= E1000_MANC_ARP_EN; | ||
1356 | manc &= ~E1000_MANC_EN_MNG2HOST; | ||
1357 | |||
1358 | /* don't explicitly have to mess with MANC2H since | ||
1359 | * MANC has an enable disable that gates MANC2H */ | ||
1360 | ew32(MANC, manc); | ||
1361 | } | ||
1362 | } | ||
1363 | |||
1364 | /** | ||
1365 | * @e1000_alloc_ring - allocate memory for a ring structure | ||
1366 | **/ | ||
1367 | static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, | ||
1368 | struct e1000_ring *ring) | ||
1369 | { | ||
1370 | struct pci_dev *pdev = adapter->pdev; | ||
1371 | |||
1372 | ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, | ||
1373 | GFP_KERNEL); | ||
1374 | if (!ring->desc) | ||
1375 | return -ENOMEM; | ||
1376 | |||
1377 | return 0; | ||
1378 | } | ||
1379 | |||
1380 | /** | ||
1381 | * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) | ||
1382 | * @adapter: board private structure | ||
1383 | * | ||
1384 | * Return 0 on success, negative on failure | ||
1385 | **/ | ||
1386 | int e1000e_setup_tx_resources(struct e1000_adapter *adapter) | ||
1387 | { | ||
1388 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
1389 | int err = -ENOMEM, size; | ||
1390 | |||
1391 | size = sizeof(struct e1000_buffer) * tx_ring->count; | ||
1392 | tx_ring->buffer_info = vmalloc(size); | ||
1393 | if (!tx_ring->buffer_info) | ||
1394 | goto err; | ||
1395 | memset(tx_ring->buffer_info, 0, size); | ||
1396 | |||
1397 | /* round up to nearest 4K */ | ||
1398 | tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); | ||
1399 | tx_ring->size = ALIGN(tx_ring->size, 4096); | ||
1400 | |||
1401 | err = e1000_alloc_ring_dma(adapter, tx_ring); | ||
1402 | if (err) | ||
1403 | goto err; | ||
1404 | |||
1405 | tx_ring->next_to_use = 0; | ||
1406 | tx_ring->next_to_clean = 0; | ||
1407 | spin_lock_init(&adapter->tx_queue_lock); | ||
1408 | |||
1409 | return 0; | ||
1410 | err: | ||
1411 | vfree(tx_ring->buffer_info); | ||
1412 | ndev_err(adapter->netdev, | ||
1413 | "Unable to allocate memory for the transmit descriptor ring\n"); | ||
1414 | return err; | ||
1415 | } | ||
1416 | |||
1417 | /** | ||
1418 | * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) | ||
1419 | * @adapter: board private structure | ||
1420 | * | ||
1421 | * Returns 0 on success, negative on failure | ||
1422 | **/ | ||
1423 | int e1000e_setup_rx_resources(struct e1000_adapter *adapter) | ||
1424 | { | ||
1425 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
1426 | int size, desc_len, err = -ENOMEM; | ||
1427 | |||
1428 | size = sizeof(struct e1000_buffer) * rx_ring->count; | ||
1429 | rx_ring->buffer_info = vmalloc(size); | ||
1430 | if (!rx_ring->buffer_info) | ||
1431 | goto err; | ||
1432 | memset(rx_ring->buffer_info, 0, size); | ||
1433 | |||
1434 | rx_ring->ps_pages = kcalloc(rx_ring->count * PS_PAGE_BUFFERS, | ||
1435 | sizeof(struct e1000_ps_page), | ||
1436 | GFP_KERNEL); | ||
1437 | if (!rx_ring->ps_pages) | ||
1438 | goto err; | ||
1439 | |||
1440 | desc_len = sizeof(union e1000_rx_desc_packet_split); | ||
1441 | |||
1442 | /* Round up to nearest 4K */ | ||
1443 | rx_ring->size = rx_ring->count * desc_len; | ||
1444 | rx_ring->size = ALIGN(rx_ring->size, 4096); | ||
1445 | |||
1446 | err = e1000_alloc_ring_dma(adapter, rx_ring); | ||
1447 | if (err) | ||
1448 | goto err; | ||
1449 | |||
1450 | rx_ring->next_to_clean = 0; | ||
1451 | rx_ring->next_to_use = 0; | ||
1452 | rx_ring->rx_skb_top = NULL; | ||
1453 | |||
1454 | return 0; | ||
1455 | err: | ||
1456 | vfree(rx_ring->buffer_info); | ||
1457 | kfree(rx_ring->ps_pages); | ||
1458 | ndev_err(adapter->netdev, | ||
1459 | "Unable to allocate memory for the transmit descriptor ring\n"); | ||
1460 | return err; | ||
1461 | } | ||
1462 | |||
1463 | /** | ||
1464 | * e1000_clean_tx_ring - Free Tx Buffers | ||
1465 | * @adapter: board private structure | ||
1466 | **/ | ||
1467 | static void e1000_clean_tx_ring(struct e1000_adapter *adapter) | ||
1468 | { | ||
1469 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
1470 | struct e1000_buffer *buffer_info; | ||
1471 | unsigned long size; | ||
1472 | unsigned int i; | ||
1473 | |||
1474 | for (i = 0; i < tx_ring->count; i++) { | ||
1475 | buffer_info = &tx_ring->buffer_info[i]; | ||
1476 | e1000_put_txbuf(adapter, buffer_info); | ||
1477 | } | ||
1478 | |||
1479 | size = sizeof(struct e1000_buffer) * tx_ring->count; | ||
1480 | memset(tx_ring->buffer_info, 0, size); | ||
1481 | |||
1482 | memset(tx_ring->desc, 0, tx_ring->size); | ||
1483 | |||
1484 | tx_ring->next_to_use = 0; | ||
1485 | tx_ring->next_to_clean = 0; | ||
1486 | |||
1487 | writel(0, adapter->hw.hw_addr + tx_ring->head); | ||
1488 | writel(0, adapter->hw.hw_addr + tx_ring->tail); | ||
1489 | } | ||
1490 | |||
1491 | /** | ||
1492 | * e1000e_free_tx_resources - Free Tx Resources per Queue | ||
1493 | * @adapter: board private structure | ||
1494 | * | ||
1495 | * Free all transmit software resources | ||
1496 | **/ | ||
1497 | void e1000e_free_tx_resources(struct e1000_adapter *adapter) | ||
1498 | { | ||
1499 | struct pci_dev *pdev = adapter->pdev; | ||
1500 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
1501 | |||
1502 | e1000_clean_tx_ring(adapter); | ||
1503 | |||
1504 | vfree(tx_ring->buffer_info); | ||
1505 | tx_ring->buffer_info = NULL; | ||
1506 | |||
1507 | dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, | ||
1508 | tx_ring->dma); | ||
1509 | tx_ring->desc = NULL; | ||
1510 | } | ||
1511 | |||
1512 | /** | ||
1513 | * e1000e_free_rx_resources - Free Rx Resources | ||
1514 | * @adapter: board private structure | ||
1515 | * | ||
1516 | * Free all receive software resources | ||
1517 | **/ | ||
1518 | |||
1519 | void e1000e_free_rx_resources(struct e1000_adapter *adapter) | ||
1520 | { | ||
1521 | struct pci_dev *pdev = adapter->pdev; | ||
1522 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
1523 | |||
1524 | e1000_clean_rx_ring(adapter); | ||
1525 | |||
1526 | vfree(rx_ring->buffer_info); | ||
1527 | rx_ring->buffer_info = NULL; | ||
1528 | |||
1529 | kfree(rx_ring->ps_pages); | ||
1530 | rx_ring->ps_pages = NULL; | ||
1531 | |||
1532 | dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, | ||
1533 | rx_ring->dma); | ||
1534 | rx_ring->desc = NULL; | ||
1535 | } | ||
1536 | |||
1537 | /** | ||
1538 | * e1000_update_itr - update the dynamic ITR value based on statistics | ||
1539 | * Stores a new ITR value based on packets and byte | ||
1540 | * counts during the last interrupt. The advantage of per interrupt | ||
1541 | * computation is faster updates and more accurate ITR for the current | ||
1542 | * traffic pattern. Constants in this function were computed | ||
1543 | * based on theoretical maximum wire speed and thresholds were set based | ||
1544 | * on testing data as well as attempting to minimize response time | ||
1545 | * while increasing bulk throughput. | ||
1546 | * this functionality is controlled by the InterruptThrottleRate module | ||
1547 | * parameter (see e1000_param.c) | ||
1548 | * @adapter: pointer to adapter | ||
1549 | * @itr_setting: current adapter->itr | ||
1550 | * @packets: the number of packets during this measurement interval | ||
1551 | * @bytes: the number of bytes during this measurement interval | ||
1552 | **/ | ||
1553 | static unsigned int e1000_update_itr(struct e1000_adapter *adapter, | ||
1554 | u16 itr_setting, int packets, | ||
1555 | int bytes) | ||
1556 | { | ||
1557 | unsigned int retval = itr_setting; | ||
1558 | |||
1559 | if (packets == 0) | ||
1560 | goto update_itr_done; | ||
1561 | |||
1562 | switch (itr_setting) { | ||
1563 | case lowest_latency: | ||
1564 | /* handle TSO and jumbo frames */ | ||
1565 | if (bytes/packets > 8000) | ||
1566 | retval = bulk_latency; | ||
1567 | else if ((packets < 5) && (bytes > 512)) { | ||
1568 | retval = low_latency; | ||
1569 | } | ||
1570 | break; | ||
1571 | case low_latency: /* 50 usec aka 20000 ints/s */ | ||
1572 | if (bytes > 10000) { | ||
1573 | /* this if handles the TSO accounting */ | ||
1574 | if (bytes/packets > 8000) { | ||
1575 | retval = bulk_latency; | ||
1576 | } else if ((packets < 10) || ((bytes/packets) > 1200)) { | ||
1577 | retval = bulk_latency; | ||
1578 | } else if ((packets > 35)) { | ||
1579 | retval = lowest_latency; | ||
1580 | } | ||
1581 | } else if (bytes/packets > 2000) { | ||
1582 | retval = bulk_latency; | ||
1583 | } else if (packets <= 2 && bytes < 512) { | ||
1584 | retval = lowest_latency; | ||
1585 | } | ||
1586 | break; | ||
1587 | case bulk_latency: /* 250 usec aka 4000 ints/s */ | ||
1588 | if (bytes > 25000) { | ||
1589 | if (packets > 35) { | ||
1590 | retval = low_latency; | ||
1591 | } | ||
1592 | } else if (bytes < 6000) { | ||
1593 | retval = low_latency; | ||
1594 | } | ||
1595 | break; | ||
1596 | } | ||
1597 | |||
1598 | update_itr_done: | ||
1599 | return retval; | ||
1600 | } | ||
1601 | |||
1602 | static void e1000_set_itr(struct e1000_adapter *adapter) | ||
1603 | { | ||
1604 | struct e1000_hw *hw = &adapter->hw; | ||
1605 | u16 current_itr; | ||
1606 | u32 new_itr = adapter->itr; | ||
1607 | |||
1608 | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | ||
1609 | if (adapter->link_speed != SPEED_1000) { | ||
1610 | current_itr = 0; | ||
1611 | new_itr = 4000; | ||
1612 | goto set_itr_now; | ||
1613 | } | ||
1614 | |||
1615 | adapter->tx_itr = e1000_update_itr(adapter, | ||
1616 | adapter->tx_itr, | ||
1617 | adapter->total_tx_packets, | ||
1618 | adapter->total_tx_bytes); | ||
1619 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
1620 | if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) | ||
1621 | adapter->tx_itr = low_latency; | ||
1622 | |||
1623 | adapter->rx_itr = e1000_update_itr(adapter, | ||
1624 | adapter->rx_itr, | ||
1625 | adapter->total_rx_packets, | ||
1626 | adapter->total_rx_bytes); | ||
1627 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
1628 | if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) | ||
1629 | adapter->rx_itr = low_latency; | ||
1630 | |||
1631 | current_itr = max(adapter->rx_itr, adapter->tx_itr); | ||
1632 | |||
1633 | switch (current_itr) { | ||
1634 | /* counts and packets in update_itr are dependent on these numbers */ | ||
1635 | case lowest_latency: | ||
1636 | new_itr = 70000; | ||
1637 | break; | ||
1638 | case low_latency: | ||
1639 | new_itr = 20000; /* aka hwitr = ~200 */ | ||
1640 | break; | ||
1641 | case bulk_latency: | ||
1642 | new_itr = 4000; | ||
1643 | break; | ||
1644 | default: | ||
1645 | break; | ||
1646 | } | ||
1647 | |||
1648 | set_itr_now: | ||
1649 | if (new_itr != adapter->itr) { | ||
1650 | /* this attempts to bias the interrupt rate towards Bulk | ||
1651 | * by adding intermediate steps when interrupt rate is | ||
1652 | * increasing */ | ||
1653 | new_itr = new_itr > adapter->itr ? | ||
1654 | min(adapter->itr + (new_itr >> 2), new_itr) : | ||
1655 | new_itr; | ||
1656 | adapter->itr = new_itr; | ||
1657 | ew32(ITR, 1000000000 / (new_itr * 256)); | ||
1658 | } | ||
1659 | } | ||
1660 | |||
1661 | /** | ||
1662 | * e1000_clean - NAPI Rx polling callback | ||
1663 | * @adapter: board private structure | ||
1664 | **/ | ||
1665 | static int e1000_clean(struct napi_struct *napi, int budget) | ||
1666 | { | ||
1667 | struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); | ||
1668 | struct net_device *poll_dev = adapter->netdev; | ||
1669 | int tx_cleaned = 0, work_done = 0; | ||
1670 | |||
1671 | /* Must NOT use netdev_priv macro here. */ | ||
1672 | adapter = poll_dev->priv; | ||
1673 | |||
1674 | /* Keep link state information with original netdev */ | ||
1675 | if (!netif_carrier_ok(poll_dev)) | ||
1676 | goto quit_polling; | ||
1677 | |||
1678 | /* e1000_clean is called per-cpu. This lock protects | ||
1679 | * tx_ring from being cleaned by multiple cpus | ||
1680 | * simultaneously. A failure obtaining the lock means | ||
1681 | * tx_ring is currently being cleaned anyway. */ | ||
1682 | if (spin_trylock(&adapter->tx_queue_lock)) { | ||
1683 | tx_cleaned = e1000_clean_tx_irq(adapter); | ||
1684 | spin_unlock(&adapter->tx_queue_lock); | ||
1685 | } | ||
1686 | |||
1687 | adapter->clean_rx(adapter, &work_done, budget); | ||
1688 | |||
1689 | /* If no Tx and not enough Rx work done, exit the polling mode */ | ||
1690 | if ((!tx_cleaned && (work_done < budget)) || | ||
1691 | !netif_running(poll_dev)) { | ||
1692 | quit_polling: | ||
1693 | if (adapter->itr_setting & 3) | ||
1694 | e1000_set_itr(adapter); | ||
1695 | netif_rx_complete(poll_dev, napi); | ||
1696 | e1000_irq_enable(adapter); | ||
1697 | } | ||
1698 | |||
1699 | return work_done; | ||
1700 | } | ||
1701 | |||
1702 | static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | ||
1703 | { | ||
1704 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1705 | struct e1000_hw *hw = &adapter->hw; | ||
1706 | u32 vfta, index; | ||
1707 | |||
1708 | /* don't update vlan cookie if already programmed */ | ||
1709 | if ((adapter->hw.mng_cookie.status & | ||
1710 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | ||
1711 | (vid == adapter->mng_vlan_id)) | ||
1712 | return; | ||
1713 | /* add VID to filter table */ | ||
1714 | index = (vid >> 5) & 0x7F; | ||
1715 | vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); | ||
1716 | vfta |= (1 << (vid & 0x1F)); | ||
1717 | e1000e_write_vfta(hw, index, vfta); | ||
1718 | } | ||
1719 | |||
1720 | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | ||
1721 | { | ||
1722 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1723 | struct e1000_hw *hw = &adapter->hw; | ||
1724 | u32 vfta, index; | ||
1725 | |||
1726 | e1000_irq_disable(adapter); | ||
1727 | vlan_group_set_device(adapter->vlgrp, vid, NULL); | ||
1728 | e1000_irq_enable(adapter); | ||
1729 | |||
1730 | if ((adapter->hw.mng_cookie.status & | ||
1731 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | ||
1732 | (vid == adapter->mng_vlan_id)) { | ||
1733 | /* release control to f/w */ | ||
1734 | e1000_release_hw_control(adapter); | ||
1735 | return; | ||
1736 | } | ||
1737 | |||
1738 | /* remove VID from filter table */ | ||
1739 | index = (vid >> 5) & 0x7F; | ||
1740 | vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); | ||
1741 | vfta &= ~(1 << (vid & 0x1F)); | ||
1742 | e1000e_write_vfta(hw, index, vfta); | ||
1743 | } | ||
1744 | |||
1745 | static void e1000_update_mng_vlan(struct e1000_adapter *adapter) | ||
1746 | { | ||
1747 | struct net_device *netdev = adapter->netdev; | ||
1748 | u16 vid = adapter->hw.mng_cookie.vlan_id; | ||
1749 | u16 old_vid = adapter->mng_vlan_id; | ||
1750 | |||
1751 | if (!adapter->vlgrp) | ||
1752 | return; | ||
1753 | |||
1754 | if (!vlan_group_get_device(adapter->vlgrp, vid)) { | ||
1755 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | ||
1756 | if (adapter->hw.mng_cookie.status & | ||
1757 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { | ||
1758 | e1000_vlan_rx_add_vid(netdev, vid); | ||
1759 | adapter->mng_vlan_id = vid; | ||
1760 | } | ||
1761 | |||
1762 | if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && | ||
1763 | (vid != old_vid) && | ||
1764 | !vlan_group_get_device(adapter->vlgrp, old_vid)) | ||
1765 | e1000_vlan_rx_kill_vid(netdev, old_vid); | ||
1766 | } else { | ||
1767 | adapter->mng_vlan_id = vid; | ||
1768 | } | ||
1769 | } | ||
1770 | |||
1771 | |||
1772 | static void e1000_vlan_rx_register(struct net_device *netdev, | ||
1773 | struct vlan_group *grp) | ||
1774 | { | ||
1775 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1776 | struct e1000_hw *hw = &adapter->hw; | ||
1777 | u32 ctrl, rctl; | ||
1778 | |||
1779 | e1000_irq_disable(adapter); | ||
1780 | adapter->vlgrp = grp; | ||
1781 | |||
1782 | if (grp) { | ||
1783 | /* enable VLAN tag insert/strip */ | ||
1784 | ctrl = er32(CTRL); | ||
1785 | ctrl |= E1000_CTRL_VME; | ||
1786 | ew32(CTRL, ctrl); | ||
1787 | |||
1788 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | ||
1789 | /* enable VLAN receive filtering */ | ||
1790 | rctl = er32(RCTL); | ||
1791 | rctl |= E1000_RCTL_VFE; | ||
1792 | rctl &= ~E1000_RCTL_CFIEN; | ||
1793 | ew32(RCTL, rctl); | ||
1794 | e1000_update_mng_vlan(adapter); | ||
1795 | } | ||
1796 | } else { | ||
1797 | /* disable VLAN tag insert/strip */ | ||
1798 | ctrl = er32(CTRL); | ||
1799 | ctrl &= ~E1000_CTRL_VME; | ||
1800 | ew32(CTRL, ctrl); | ||
1801 | |||
1802 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | ||
1803 | /* disable VLAN filtering */ | ||
1804 | rctl = er32(RCTL); | ||
1805 | rctl &= ~E1000_RCTL_VFE; | ||
1806 | ew32(RCTL, rctl); | ||
1807 | if (adapter->mng_vlan_id != | ||
1808 | (u16)E1000_MNG_VLAN_NONE) { | ||
1809 | e1000_vlan_rx_kill_vid(netdev, | ||
1810 | adapter->mng_vlan_id); | ||
1811 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | ||
1812 | } | ||
1813 | } | ||
1814 | } | ||
1815 | |||
1816 | e1000_irq_enable(adapter); | ||
1817 | } | ||
1818 | |||
1819 | static void e1000_restore_vlan(struct e1000_adapter *adapter) | ||
1820 | { | ||
1821 | u16 vid; | ||
1822 | |||
1823 | e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); | ||
1824 | |||
1825 | if (!adapter->vlgrp) | ||
1826 | return; | ||
1827 | |||
1828 | for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { | ||
1829 | if (!vlan_group_get_device(adapter->vlgrp, vid)) | ||
1830 | continue; | ||
1831 | e1000_vlan_rx_add_vid(adapter->netdev, vid); | ||
1832 | } | ||
1833 | } | ||
1834 | |||
1835 | static void e1000_init_manageability(struct e1000_adapter *adapter) | ||
1836 | { | ||
1837 | struct e1000_hw *hw = &adapter->hw; | ||
1838 | u32 manc, manc2h; | ||
1839 | |||
1840 | if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) | ||
1841 | return; | ||
1842 | |||
1843 | manc = er32(MANC); | ||
1844 | |||
1845 | /* disable hardware interception of ARP */ | ||
1846 | manc &= ~(E1000_MANC_ARP_EN); | ||
1847 | |||
1848 | /* enable receiving management packets to the host. this will probably | ||
1849 | * generate destination unreachable messages from the host OS, but | ||
1850 | * the packets will be handled on SMBUS */ | ||
1851 | manc |= E1000_MANC_EN_MNG2HOST; | ||
1852 | manc2h = er32(MANC2H); | ||
1853 | #define E1000_MNG2HOST_PORT_623 (1 << 5) | ||
1854 | #define E1000_MNG2HOST_PORT_664 (1 << 6) | ||
1855 | manc2h |= E1000_MNG2HOST_PORT_623; | ||
1856 | manc2h |= E1000_MNG2HOST_PORT_664; | ||
1857 | ew32(MANC2H, manc2h); | ||
1858 | ew32(MANC, manc); | ||
1859 | } | ||
1860 | |||
1861 | /** | ||
1862 | * e1000_configure_tx - Configure 8254x Transmit Unit after Reset | ||
1863 | * @adapter: board private structure | ||
1864 | * | ||
1865 | * Configure the Tx unit of the MAC after a reset. | ||
1866 | **/ | ||
1867 | static void e1000_configure_tx(struct e1000_adapter *adapter) | ||
1868 | { | ||
1869 | struct e1000_hw *hw = &adapter->hw; | ||
1870 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
1871 | u64 tdba; | ||
1872 | u32 tdlen, tctl, tipg, tarc; | ||
1873 | u32 ipgr1, ipgr2; | ||
1874 | |||
1875 | /* Setup the HW Tx Head and Tail descriptor pointers */ | ||
1876 | tdba = tx_ring->dma; | ||
1877 | tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); | ||
1878 | ew32(TDBAL, (tdba & DMA_32BIT_MASK)); | ||
1879 | ew32(TDBAH, (tdba >> 32)); | ||
1880 | ew32(TDLEN, tdlen); | ||
1881 | ew32(TDH, 0); | ||
1882 | ew32(TDT, 0); | ||
1883 | tx_ring->head = E1000_TDH; | ||
1884 | tx_ring->tail = E1000_TDT; | ||
1885 | |||
1886 | /* Set the default values for the Tx Inter Packet Gap timer */ | ||
1887 | tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */ | ||
1888 | ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */ | ||
1889 | ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */ | ||
1890 | |||
1891 | if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN) | ||
1892 | ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */ | ||
1893 | |||
1894 | tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; | ||
1895 | tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; | ||
1896 | ew32(TIPG, tipg); | ||
1897 | |||
1898 | /* Set the Tx Interrupt Delay register */ | ||
1899 | ew32(TIDV, adapter->tx_int_delay); | ||
1900 | /* tx irq moderation */ | ||
1901 | ew32(TADV, adapter->tx_abs_int_delay); | ||
1902 | |||
1903 | /* Program the Transmit Control Register */ | ||
1904 | tctl = er32(TCTL); | ||
1905 | tctl &= ~E1000_TCTL_CT; | ||
1906 | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | ||
1907 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | ||
1908 | |||
1909 | if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { | ||
1910 | tarc = er32(TARC0); | ||
1911 | /* set the speed mode bit, we'll clear it if we're not at | ||
1912 | * gigabit link later */ | ||
1913 | #define SPEED_MODE_BIT (1 << 21) | ||
1914 | tarc |= SPEED_MODE_BIT; | ||
1915 | ew32(TARC0, tarc); | ||
1916 | } | ||
1917 | |||
1918 | /* errata: program both queues to unweighted RR */ | ||
1919 | if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { | ||
1920 | tarc = er32(TARC0); | ||
1921 | tarc |= 1; | ||
1922 | ew32(TARC0, tarc); | ||
1923 | tarc = er32(TARC1); | ||
1924 | tarc |= 1; | ||
1925 | ew32(TARC1, tarc); | ||
1926 | } | ||
1927 | |||
1928 | e1000e_config_collision_dist(hw); | ||
1929 | |||
1930 | /* Setup Transmit Descriptor Settings for eop descriptor */ | ||
1931 | adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; | ||
1932 | |||
1933 | /* only set IDE if we are delaying interrupts using the timers */ | ||
1934 | if (adapter->tx_int_delay) | ||
1935 | adapter->txd_cmd |= E1000_TXD_CMD_IDE; | ||
1936 | |||
1937 | /* enable Report Status bit */ | ||
1938 | adapter->txd_cmd |= E1000_TXD_CMD_RS; | ||
1939 | |||
1940 | ew32(TCTL, tctl); | ||
1941 | |||
1942 | adapter->tx_queue_len = adapter->netdev->tx_queue_len; | ||
1943 | } | ||
1944 | |||
1945 | /** | ||
1946 | * e1000_setup_rctl - configure the receive control registers | ||
1947 | * @adapter: Board private structure | ||
1948 | **/ | ||
1949 | #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ | ||
1950 | (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) | ||
1951 | static void e1000_setup_rctl(struct e1000_adapter *adapter) | ||
1952 | { | ||
1953 | struct e1000_hw *hw = &adapter->hw; | ||
1954 | u32 rctl, rfctl; | ||
1955 | u32 psrctl = 0; | ||
1956 | u32 pages = 0; | ||
1957 | |||
1958 | /* Program MC offset vector base */ | ||
1959 | rctl = er32(RCTL); | ||
1960 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | ||
1961 | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | | ||
1962 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | ||
1963 | (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); | ||
1964 | |||
1965 | /* Do not Store bad packets */ | ||
1966 | rctl &= ~E1000_RCTL_SBP; | ||
1967 | |||
1968 | /* Enable Long Packet receive */ | ||
1969 | if (adapter->netdev->mtu <= ETH_DATA_LEN) | ||
1970 | rctl &= ~E1000_RCTL_LPE; | ||
1971 | else | ||
1972 | rctl |= E1000_RCTL_LPE; | ||
1973 | |||
1974 | /* Setup buffer sizes */ | ||
1975 | rctl &= ~E1000_RCTL_SZ_4096; | ||
1976 | rctl |= E1000_RCTL_BSEX; | ||
1977 | switch (adapter->rx_buffer_len) { | ||
1978 | case 256: | ||
1979 | rctl |= E1000_RCTL_SZ_256; | ||
1980 | rctl &= ~E1000_RCTL_BSEX; | ||
1981 | break; | ||
1982 | case 512: | ||
1983 | rctl |= E1000_RCTL_SZ_512; | ||
1984 | rctl &= ~E1000_RCTL_BSEX; | ||
1985 | break; | ||
1986 | case 1024: | ||
1987 | rctl |= E1000_RCTL_SZ_1024; | ||
1988 | rctl &= ~E1000_RCTL_BSEX; | ||
1989 | break; | ||
1990 | case 2048: | ||
1991 | default: | ||
1992 | rctl |= E1000_RCTL_SZ_2048; | ||
1993 | rctl &= ~E1000_RCTL_BSEX; | ||
1994 | break; | ||
1995 | case 4096: | ||
1996 | rctl |= E1000_RCTL_SZ_4096; | ||
1997 | break; | ||
1998 | case 8192: | ||
1999 | rctl |= E1000_RCTL_SZ_8192; | ||
2000 | break; | ||
2001 | case 16384: | ||
2002 | rctl |= E1000_RCTL_SZ_16384; | ||
2003 | break; | ||
2004 | } | ||
2005 | |||
2006 | /* | ||
2007 | * 82571 and greater support packet-split where the protocol | ||
2008 | * header is placed in skb->data and the packet data is | ||
2009 | * placed in pages hanging off of skb_shinfo(skb)->nr_frags. | ||
2010 | * In the case of a non-split, skb->data is linearly filled, | ||
2011 | * followed by the page buffers. Therefore, skb->data is | ||
2012 | * sized to hold the largest protocol header. | ||
2013 | * | ||
2014 | * allocations using alloc_page take too long for regular MTU | ||
2015 | * so only enable packet split for jumbo frames | ||
2016 | * | ||
2017 | * Using pages when the page size is greater than 16k wastes | ||
2018 | * a lot of memory, since we allocate 3 pages at all times | ||
2019 | * per packet. | ||
2020 | */ | ||
2021 | adapter->rx_ps_pages = 0; | ||
2022 | pages = PAGE_USE_COUNT(adapter->netdev->mtu); | ||
2023 | if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) | ||
2024 | adapter->rx_ps_pages = pages; | ||
2025 | |||
2026 | if (adapter->rx_ps_pages) { | ||
2027 | /* Configure extra packet-split registers */ | ||
2028 | rfctl = er32(RFCTL); | ||
2029 | rfctl |= E1000_RFCTL_EXTEN; | ||
2030 | /* disable packet split support for IPv6 extension headers, | ||
2031 | * because some malformed IPv6 headers can hang the RX */ | ||
2032 | rfctl |= (E1000_RFCTL_IPV6_EX_DIS | | ||
2033 | E1000_RFCTL_NEW_IPV6_EXT_DIS); | ||
2034 | |||
2035 | ew32(RFCTL, rfctl); | ||
2036 | |||
2037 | /* disable the stripping of CRC because it breaks | ||
2038 | * BMC firmware connected over SMBUS */ | ||
2039 | rctl |= E1000_RCTL_DTYP_PS /* | E1000_RCTL_SECRC */; | ||
2040 | |||
2041 | psrctl |= adapter->rx_ps_bsize0 >> | ||
2042 | E1000_PSRCTL_BSIZE0_SHIFT; | ||
2043 | |||
2044 | switch (adapter->rx_ps_pages) { | ||
2045 | case 3: | ||
2046 | psrctl |= PAGE_SIZE << | ||
2047 | E1000_PSRCTL_BSIZE3_SHIFT; | ||
2048 | case 2: | ||
2049 | psrctl |= PAGE_SIZE << | ||
2050 | E1000_PSRCTL_BSIZE2_SHIFT; | ||
2051 | case 1: | ||
2052 | psrctl |= PAGE_SIZE >> | ||
2053 | E1000_PSRCTL_BSIZE1_SHIFT; | ||
2054 | break; | ||
2055 | } | ||
2056 | |||
2057 | ew32(PSRCTL, psrctl); | ||
2058 | } | ||
2059 | |||
2060 | ew32(RCTL, rctl); | ||
2061 | } | ||
2062 | |||
2063 | /** | ||
2064 | * e1000_configure_rx - Configure Receive Unit after Reset | ||
2065 | * @adapter: board private structure | ||
2066 | * | ||
2067 | * Configure the Rx unit of the MAC after a reset. | ||
2068 | **/ | ||
2069 | static void e1000_configure_rx(struct e1000_adapter *adapter) | ||
2070 | { | ||
2071 | struct e1000_hw *hw = &adapter->hw; | ||
2072 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
2073 | u64 rdba; | ||
2074 | u32 rdlen, rctl, rxcsum, ctrl_ext; | ||
2075 | |||
2076 | if (adapter->rx_ps_pages) { | ||
2077 | /* this is a 32 byte descriptor */ | ||
2078 | rdlen = rx_ring->count * | ||
2079 | sizeof(union e1000_rx_desc_packet_split); | ||
2080 | adapter->clean_rx = e1000_clean_rx_irq_ps; | ||
2081 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; | ||
2082 | } else if (adapter->netdev->mtu > ETH_FRAME_LEN + VLAN_HLEN + 4) { | ||
2083 | rdlen = rx_ring->count * | ||
2084 | sizeof(struct e1000_rx_desc); | ||
2085 | adapter->clean_rx = e1000_clean_rx_irq_jumbo; | ||
2086 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers_jumbo; | ||
2087 | } else { | ||
2088 | rdlen = rx_ring->count * | ||
2089 | sizeof(struct e1000_rx_desc); | ||
2090 | adapter->clean_rx = e1000_clean_rx_irq; | ||
2091 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers; | ||
2092 | } | ||
2093 | |||
2094 | /* disable receives while setting up the descriptors */ | ||
2095 | rctl = er32(RCTL); | ||
2096 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | ||
2097 | e1e_flush(); | ||
2098 | msleep(10); | ||
2099 | |||
2100 | /* set the Receive Delay Timer Register */ | ||
2101 | ew32(RDTR, adapter->rx_int_delay); | ||
2102 | |||
2103 | /* irq moderation */ | ||
2104 | ew32(RADV, adapter->rx_abs_int_delay); | ||
2105 | if (adapter->itr_setting != 0) | ||
2106 | ew32(ITR, | ||
2107 | 1000000000 / (adapter->itr * 256)); | ||
2108 | |||
2109 | ctrl_ext = er32(CTRL_EXT); | ||
2110 | /* Reset delay timers after every interrupt */ | ||
2111 | ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; | ||
2112 | /* Auto-Mask interrupts upon ICR access */ | ||
2113 | ctrl_ext |= E1000_CTRL_EXT_IAME; | ||
2114 | ew32(IAM, 0xffffffff); | ||
2115 | ew32(CTRL_EXT, ctrl_ext); | ||
2116 | e1e_flush(); | ||
2117 | |||
2118 | /* Setup the HW Rx Head and Tail Descriptor Pointers and | ||
2119 | * the Base and Length of the Rx Descriptor Ring */ | ||
2120 | rdba = rx_ring->dma; | ||
2121 | ew32(RDBAL, (rdba & DMA_32BIT_MASK)); | ||
2122 | ew32(RDBAH, (rdba >> 32)); | ||
2123 | ew32(RDLEN, rdlen); | ||
2124 | ew32(RDH, 0); | ||
2125 | ew32(RDT, 0); | ||
2126 | rx_ring->head = E1000_RDH; | ||
2127 | rx_ring->tail = E1000_RDT; | ||
2128 | |||
2129 | /* Enable Receive Checksum Offload for TCP and UDP */ | ||
2130 | rxcsum = er32(RXCSUM); | ||
2131 | if (adapter->flags & FLAG_RX_CSUM_ENABLED) { | ||
2132 | rxcsum |= E1000_RXCSUM_TUOFL; | ||
2133 | |||
2134 | /* IPv4 payload checksum for UDP fragments must be | ||
2135 | * used in conjunction with packet-split. */ | ||
2136 | if (adapter->rx_ps_pages) | ||
2137 | rxcsum |= E1000_RXCSUM_IPPCSE; | ||
2138 | } else { | ||
2139 | rxcsum &= ~E1000_RXCSUM_TUOFL; | ||
2140 | /* no need to clear IPPCSE as it defaults to 0 */ | ||
2141 | } | ||
2142 | ew32(RXCSUM, rxcsum); | ||
2143 | |||
2144 | /* Enable early receives on supported devices, only takes effect when | ||
2145 | * packet size is equal or larger than the specified value (in 8 byte | ||
2146 | * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */ | ||
2147 | if ((adapter->flags & FLAG_HAS_ERT) && | ||
2148 | (adapter->netdev->mtu > ETH_DATA_LEN)) | ||
2149 | ew32(ERT, E1000_ERT_2048); | ||
2150 | |||
2151 | /* Enable Receives */ | ||
2152 | ew32(RCTL, rctl); | ||
2153 | } | ||
2154 | |||
2155 | /** | ||
2156 | * e1000_mc_addr_list_update - Update Multicast addresses | ||
2157 | * @hw: pointer to the HW structure | ||
2158 | * @mc_addr_list: array of multicast addresses to program | ||
2159 | * @mc_addr_count: number of multicast addresses to program | ||
2160 | * @rar_used_count: the first RAR register free to program | ||
2161 | * @rar_count: total number of supported Receive Address Registers | ||
2162 | * | ||
2163 | * Updates the Receive Address Registers and Multicast Table Array. | ||
2164 | * The caller must have a packed mc_addr_list of multicast addresses. | ||
2165 | * The parameter rar_count will usually be hw->mac.rar_entry_count | ||
2166 | * unless there are workarounds that change this. Currently no func pointer | ||
2167 | * exists and all implementations are handled in the generic version of this | ||
2168 | * function. | ||
2169 | **/ | ||
2170 | static void e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list, | ||
2171 | u32 mc_addr_count, u32 rar_used_count, | ||
2172 | u32 rar_count) | ||
2173 | { | ||
2174 | hw->mac.ops.mc_addr_list_update(hw, mc_addr_list, mc_addr_count, | ||
2175 | rar_used_count, rar_count); | ||
2176 | } | ||
2177 | |||
2178 | /** | ||
2179 | * e1000_set_multi - Multicast and Promiscuous mode set | ||
2180 | * @netdev: network interface device structure | ||
2181 | * | ||
2182 | * The set_multi entry point is called whenever the multicast address | ||
2183 | * list or the network interface flags are updated. This routine is | ||
2184 | * responsible for configuring the hardware for proper multicast, | ||
2185 | * promiscuous mode, and all-multi behavior. | ||
2186 | **/ | ||
2187 | static void e1000_set_multi(struct net_device *netdev) | ||
2188 | { | ||
2189 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
2190 | struct e1000_hw *hw = &adapter->hw; | ||
2191 | struct e1000_mac_info *mac = &hw->mac; | ||
2192 | struct dev_mc_list *mc_ptr; | ||
2193 | u8 *mta_list; | ||
2194 | u32 rctl; | ||
2195 | int i; | ||
2196 | |||
2197 | /* Check for Promiscuous and All Multicast modes */ | ||
2198 | |||
2199 | rctl = er32(RCTL); | ||
2200 | |||
2201 | if (netdev->flags & IFF_PROMISC) { | ||
2202 | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | ||
2203 | } else if (netdev->flags & IFF_ALLMULTI) { | ||
2204 | rctl |= E1000_RCTL_MPE; | ||
2205 | rctl &= ~E1000_RCTL_UPE; | ||
2206 | } else { | ||
2207 | rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); | ||
2208 | } | ||
2209 | |||
2210 | ew32(RCTL, rctl); | ||
2211 | |||
2212 | if (netdev->mc_count) { | ||
2213 | mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC); | ||
2214 | if (!mta_list) | ||
2215 | return; | ||
2216 | |||
2217 | /* prepare a packed array of only addresses. */ | ||
2218 | mc_ptr = netdev->mc_list; | ||
2219 | |||
2220 | for (i = 0; i < netdev->mc_count; i++) { | ||
2221 | if (!mc_ptr) | ||
2222 | break; | ||
2223 | memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, | ||
2224 | ETH_ALEN); | ||
2225 | mc_ptr = mc_ptr->next; | ||
2226 | } | ||
2227 | |||
2228 | e1000_mc_addr_list_update(hw, mta_list, i, 1, | ||
2229 | mac->rar_entry_count); | ||
2230 | kfree(mta_list); | ||
2231 | } else { | ||
2232 | /* | ||
2233 | * if we're called from probe, we might not have | ||
2234 | * anything to do here, so clear out the list | ||
2235 | */ | ||
2236 | e1000_mc_addr_list_update(hw, NULL, 0, 1, | ||
2237 | mac->rar_entry_count); | ||
2238 | } | ||
2239 | } | ||
2240 | |||
2241 | /** | ||
2242 | * e1000_configure - configure the hardware for RX and TX | ||
2243 | * @adapter: private board structure | ||
2244 | **/ | ||
2245 | static void e1000_configure(struct e1000_adapter *adapter) | ||
2246 | { | ||
2247 | e1000_set_multi(adapter->netdev); | ||
2248 | |||
2249 | e1000_restore_vlan(adapter); | ||
2250 | e1000_init_manageability(adapter); | ||
2251 | |||
2252 | e1000_configure_tx(adapter); | ||
2253 | e1000_setup_rctl(adapter); | ||
2254 | e1000_configure_rx(adapter); | ||
2255 | adapter->alloc_rx_buf(adapter, | ||
2256 | e1000_desc_unused(adapter->rx_ring)); | ||
2257 | } | ||
2258 | |||
2259 | /** | ||
2260 | * e1000e_power_up_phy - restore link in case the phy was powered down | ||
2261 | * @adapter: address of board private structure | ||
2262 | * | ||
2263 | * The phy may be powered down to save power and turn off link when the | ||
2264 | * driver is unloaded and wake on lan is not enabled (among others) | ||
2265 | * *** this routine MUST be followed by a call to e1000e_reset *** | ||
2266 | **/ | ||
2267 | void e1000e_power_up_phy(struct e1000_adapter *adapter) | ||
2268 | { | ||
2269 | u16 mii_reg = 0; | ||
2270 | |||
2271 | /* Just clear the power down bit to wake the phy back up */ | ||
2272 | if (adapter->hw.media_type == e1000_media_type_copper) { | ||
2273 | /* according to the manual, the phy will retain its | ||
2274 | * settings across a power-down/up cycle */ | ||
2275 | e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg); | ||
2276 | mii_reg &= ~MII_CR_POWER_DOWN; | ||
2277 | e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg); | ||
2278 | } | ||
2279 | |||
2280 | adapter->hw.mac.ops.setup_link(&adapter->hw); | ||
2281 | } | ||
2282 | |||
2283 | /** | ||
2284 | * e1000_power_down_phy - Power down the PHY | ||
2285 | * | ||
2286 | * Power down the PHY so no link is implied when interface is down | ||
2287 | * The PHY cannot be powered down is management or WoL is active | ||
2288 | */ | ||
2289 | static void e1000_power_down_phy(struct e1000_adapter *adapter) | ||
2290 | { | ||
2291 | struct e1000_hw *hw = &adapter->hw; | ||
2292 | u16 mii_reg; | ||
2293 | |||
2294 | /* WoL is enabled */ | ||
2295 | if (!adapter->wol) | ||
2296 | return; | ||
2297 | |||
2298 | /* non-copper PHY? */ | ||
2299 | if (adapter->hw.media_type != e1000_media_type_copper) | ||
2300 | return; | ||
2301 | |||
2302 | /* reset is blocked because of a SoL/IDER session */ | ||
2303 | if (e1000e_check_mng_mode(hw) || | ||
2304 | e1000_check_reset_block(hw)) | ||
2305 | return; | ||
2306 | |||
2307 | /* managebility (AMT) is enabled */ | ||
2308 | if (er32(MANC) & E1000_MANC_SMBUS_EN) | ||
2309 | return; | ||
2310 | |||
2311 | /* power down the PHY */ | ||
2312 | e1e_rphy(hw, PHY_CONTROL, &mii_reg); | ||
2313 | mii_reg |= MII_CR_POWER_DOWN; | ||
2314 | e1e_wphy(hw, PHY_CONTROL, mii_reg); | ||
2315 | mdelay(1); | ||
2316 | } | ||
2317 | |||
2318 | /** | ||
2319 | * e1000e_reset - bring the hardware into a known good state | ||
2320 | * | ||
2321 | * This function boots the hardware and enables some settings that | ||
2322 | * require a configuration cycle of the hardware - those cannot be | ||
2323 | * set/changed during runtime. After reset the device needs to be | ||
2324 | * properly configured for rx, tx etc. | ||
2325 | */ | ||
2326 | void e1000e_reset(struct e1000_adapter *adapter) | ||
2327 | { | ||
2328 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
2329 | struct e1000_hw *hw = &adapter->hw; | ||
2330 | u32 tx_space, min_tx_space, min_rx_space; | ||
2331 | u16 hwm; | ||
2332 | |||
2333 | if (mac->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN ) { | ||
2334 | /* To maintain wire speed transmits, the Tx FIFO should be | ||
2335 | * large enough to accommodate two full transmit packets, | ||
2336 | * rounded up to the next 1KB and expressed in KB. Likewise, | ||
2337 | * the Rx FIFO should be large enough to accommodate at least | ||
2338 | * one full receive packet and is similarly rounded up and | ||
2339 | * expressed in KB. */ | ||
2340 | adapter->pba = er32(PBA); | ||
2341 | /* upper 16 bits has Tx packet buffer allocation size in KB */ | ||
2342 | tx_space = adapter->pba >> 16; | ||
2343 | /* lower 16 bits has Rx packet buffer allocation size in KB */ | ||
2344 | adapter->pba &= 0xffff; | ||
2345 | /* the tx fifo also stores 16 bytes of information about the tx | ||
2346 | * but don't include ethernet FCS because hardware appends it */ | ||
2347 | min_tx_space = (mac->max_frame_size + | ||
2348 | sizeof(struct e1000_tx_desc) - | ||
2349 | ETH_FCS_LEN) * 2; | ||
2350 | min_tx_space = ALIGN(min_tx_space, 1024); | ||
2351 | min_tx_space >>= 10; | ||
2352 | /* software strips receive CRC, so leave room for it */ | ||
2353 | min_rx_space = mac->max_frame_size; | ||
2354 | min_rx_space = ALIGN(min_rx_space, 1024); | ||
2355 | min_rx_space >>= 10; | ||
2356 | |||
2357 | /* If current Tx allocation is less than the min Tx FIFO size, | ||
2358 | * and the min Tx FIFO size is less than the current Rx FIFO | ||
2359 | * allocation, take space away from current Rx allocation */ | ||
2360 | if (tx_space < min_tx_space && | ||
2361 | ((min_tx_space - tx_space) < adapter->pba)) { | ||
2362 | adapter->pba -= - (min_tx_space - tx_space); | ||
2363 | |||
2364 | /* if short on rx space, rx wins and must trump tx | ||
2365 | * adjustment or use Early Receive if available */ | ||
2366 | if ((adapter->pba < min_rx_space) && | ||
2367 | (!(adapter->flags & FLAG_HAS_ERT))) | ||
2368 | /* ERT enabled in e1000_configure_rx */ | ||
2369 | adapter->pba = min_rx_space; | ||
2370 | } | ||
2371 | } | ||
2372 | |||
2373 | ew32(PBA, adapter->pba); | ||
2374 | |||
2375 | /* flow control settings */ | ||
2376 | /* The high water mark must be low enough to fit one full frame | ||
2377 | * (or the size used for early receive) above it in the Rx FIFO. | ||
2378 | * Set it to the lower of: | ||
2379 | * - 90% of the Rx FIFO size, and | ||
2380 | * - the full Rx FIFO size minus the early receive size (for parts | ||
2381 | * with ERT support assuming ERT set to E1000_ERT_2048), or | ||
2382 | * - the full Rx FIFO size minus one full frame */ | ||
2383 | if (adapter->flags & FLAG_HAS_ERT) | ||
2384 | hwm = min(((adapter->pba << 10) * 9 / 10), | ||
2385 | ((adapter->pba << 10) - (E1000_ERT_2048 << 3))); | ||
2386 | else | ||
2387 | hwm = min(((adapter->pba << 10) * 9 / 10), | ||
2388 | ((adapter->pba << 10) - mac->max_frame_size)); | ||
2389 | |||
2390 | mac->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ | ||
2391 | mac->fc_low_water = mac->fc_high_water - 8; | ||
2392 | |||
2393 | if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) | ||
2394 | mac->fc_pause_time = 0xFFFF; | ||
2395 | else | ||
2396 | mac->fc_pause_time = E1000_FC_PAUSE_TIME; | ||
2397 | mac->fc = mac->original_fc; | ||
2398 | |||
2399 | /* Allow time for pending master requests to run */ | ||
2400 | mac->ops.reset_hw(hw); | ||
2401 | ew32(WUC, 0); | ||
2402 | |||
2403 | if (mac->ops.init_hw(hw)) | ||
2404 | ndev_err(adapter->netdev, "Hardware Error\n"); | ||
2405 | |||
2406 | e1000_update_mng_vlan(adapter); | ||
2407 | |||
2408 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | ||
2409 | ew32(VET, ETH_P_8021Q); | ||
2410 | |||
2411 | e1000e_reset_adaptive(hw); | ||
2412 | e1000_get_phy_info(hw); | ||
2413 | |||
2414 | if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) { | ||
2415 | u16 phy_data = 0; | ||
2416 | /* speed up time to link by disabling smart power down, ignore | ||
2417 | * the return value of this function because there is nothing | ||
2418 | * different we would do if it failed */ | ||
2419 | e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | ||
2420 | phy_data &= ~IGP02E1000_PM_SPD; | ||
2421 | e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | ||
2422 | } | ||
2423 | |||
2424 | e1000_release_manageability(adapter); | ||
2425 | } | ||
2426 | |||
2427 | int e1000e_up(struct e1000_adapter *adapter) | ||
2428 | { | ||
2429 | struct e1000_hw *hw = &adapter->hw; | ||
2430 | |||
2431 | /* hardware has been reset, we need to reload some things */ | ||
2432 | e1000_configure(adapter); | ||
2433 | |||
2434 | clear_bit(__E1000_DOWN, &adapter->state); | ||
2435 | |||
2436 | napi_enable(&adapter->napi); | ||
2437 | e1000_irq_enable(adapter); | ||
2438 | |||
2439 | /* fire a link change interrupt to start the watchdog */ | ||
2440 | ew32(ICS, E1000_ICS_LSC); | ||
2441 | return 0; | ||
2442 | } | ||
2443 | |||
2444 | void e1000e_down(struct e1000_adapter *adapter) | ||
2445 | { | ||
2446 | struct net_device *netdev = adapter->netdev; | ||
2447 | struct e1000_hw *hw = &adapter->hw; | ||
2448 | u32 tctl, rctl; | ||
2449 | |||
2450 | /* signal that we're down so the interrupt handler does not | ||
2451 | * reschedule our watchdog timer */ | ||
2452 | set_bit(__E1000_DOWN, &adapter->state); | ||
2453 | |||
2454 | /* disable receives in the hardware */ | ||
2455 | rctl = er32(RCTL); | ||
2456 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | ||
2457 | /* flush and sleep below */ | ||
2458 | |||
2459 | netif_stop_queue(netdev); | ||
2460 | |||
2461 | /* disable transmits in the hardware */ | ||
2462 | tctl = er32(TCTL); | ||
2463 | tctl &= ~E1000_TCTL_EN; | ||
2464 | ew32(TCTL, tctl); | ||
2465 | /* flush both disables and wait for them to finish */ | ||
2466 | e1e_flush(); | ||
2467 | msleep(10); | ||
2468 | |||
2469 | napi_disable(&adapter->napi); | ||
2470 | e1000_irq_disable(adapter); | ||
2471 | |||
2472 | del_timer_sync(&adapter->watchdog_timer); | ||
2473 | del_timer_sync(&adapter->phy_info_timer); | ||
2474 | |||
2475 | netdev->tx_queue_len = adapter->tx_queue_len; | ||
2476 | netif_carrier_off(netdev); | ||
2477 | adapter->link_speed = 0; | ||
2478 | adapter->link_duplex = 0; | ||
2479 | |||
2480 | e1000e_reset(adapter); | ||
2481 | e1000_clean_tx_ring(adapter); | ||
2482 | e1000_clean_rx_ring(adapter); | ||
2483 | |||
2484 | /* | ||
2485 | * TODO: for power management, we could drop the link and | ||
2486 | * pci_disable_device here. | ||
2487 | */ | ||
2488 | } | ||
2489 | |||
2490 | void e1000e_reinit_locked(struct e1000_adapter *adapter) | ||
2491 | { | ||
2492 | might_sleep(); | ||
2493 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | ||
2494 | msleep(1); | ||
2495 | e1000e_down(adapter); | ||
2496 | e1000e_up(adapter); | ||
2497 | clear_bit(__E1000_RESETTING, &adapter->state); | ||
2498 | } | ||
2499 | |||
2500 | /** | ||
2501 | * e1000_sw_init - Initialize general software structures (struct e1000_adapter) | ||
2502 | * @adapter: board private structure to initialize | ||
2503 | * | ||
2504 | * e1000_sw_init initializes the Adapter private data structure. | ||
2505 | * Fields are initialized based on PCI device information and | ||
2506 | * OS network device settings (MTU size). | ||
2507 | **/ | ||
2508 | static int __devinit e1000_sw_init(struct e1000_adapter *adapter) | ||
2509 | { | ||
2510 | struct e1000_hw *hw = &adapter->hw; | ||
2511 | struct net_device *netdev = adapter->netdev; | ||
2512 | |||
2513 | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; | ||
2514 | adapter->rx_ps_bsize0 = 128; | ||
2515 | hw->mac.max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; | ||
2516 | hw->mac.min_frame_size = ETH_ZLEN + ETH_FCS_LEN; | ||
2517 | |||
2518 | adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); | ||
2519 | if (!adapter->tx_ring) | ||
2520 | goto err; | ||
2521 | |||
2522 | adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); | ||
2523 | if (!adapter->rx_ring) | ||
2524 | goto err; | ||
2525 | |||
2526 | spin_lock_init(&adapter->tx_queue_lock); | ||
2527 | |||
2528 | /* Explicitly disable IRQ since the NIC can be in any state. */ | ||
2529 | atomic_set(&adapter->irq_sem, 0); | ||
2530 | e1000_irq_disable(adapter); | ||
2531 | |||
2532 | spin_lock_init(&adapter->stats_lock); | ||
2533 | |||
2534 | set_bit(__E1000_DOWN, &adapter->state); | ||
2535 | return 0; | ||
2536 | |||
2537 | err: | ||
2538 | ndev_err(netdev, "Unable to allocate memory for queues\n"); | ||
2539 | kfree(adapter->rx_ring); | ||
2540 | kfree(adapter->tx_ring); | ||
2541 | return -ENOMEM; | ||
2542 | } | ||
2543 | |||
2544 | /** | ||
2545 | * e1000_open - Called when a network interface is made active | ||
2546 | * @netdev: network interface device structure | ||
2547 | * | ||
2548 | * Returns 0 on success, negative value on failure | ||
2549 | * | ||
2550 | * The open entry point is called when a network interface is made | ||
2551 | * active by the system (IFF_UP). At this point all resources needed | ||
2552 | * for transmit and receive operations are allocated, the interrupt | ||
2553 | * handler is registered with the OS, the watchdog timer is started, | ||
2554 | * and the stack is notified that the interface is ready. | ||
2555 | **/ | ||
2556 | static int e1000_open(struct net_device *netdev) | ||
2557 | { | ||
2558 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
2559 | struct e1000_hw *hw = &adapter->hw; | ||
2560 | int err; | ||
2561 | |||
2562 | /* disallow open during test */ | ||
2563 | if (test_bit(__E1000_TESTING, &adapter->state)) | ||
2564 | return -EBUSY; | ||
2565 | |||
2566 | /* allocate transmit descriptors */ | ||
2567 | err = e1000e_setup_tx_resources(adapter); | ||
2568 | if (err) | ||
2569 | goto err_setup_tx; | ||
2570 | |||
2571 | /* allocate receive descriptors */ | ||
2572 | err = e1000e_setup_rx_resources(adapter); | ||
2573 | if (err) | ||
2574 | goto err_setup_rx; | ||
2575 | |||
2576 | e1000e_power_up_phy(adapter); | ||
2577 | |||
2578 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | ||
2579 | if ((adapter->hw.mng_cookie.status & | ||
2580 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) | ||
2581 | e1000_update_mng_vlan(adapter); | ||
2582 | |||
2583 | /* If AMT is enabled, let the firmware know that the network | ||
2584 | * interface is now open */ | ||
2585 | if ((adapter->flags & FLAG_HAS_AMT) && | ||
2586 | e1000e_check_mng_mode(&adapter->hw)) | ||
2587 | e1000_get_hw_control(adapter); | ||
2588 | |||
2589 | /* before we allocate an interrupt, we must be ready to handle it. | ||
2590 | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | ||
2591 | * as soon as we call pci_request_irq, so we have to setup our | ||
2592 | * clean_rx handler before we do so. */ | ||
2593 | e1000_configure(adapter); | ||
2594 | |||
2595 | err = e1000_request_irq(adapter); | ||
2596 | if (err) | ||
2597 | goto err_req_irq; | ||
2598 | |||
2599 | /* From here on the code is the same as e1000e_up() */ | ||
2600 | clear_bit(__E1000_DOWN, &adapter->state); | ||
2601 | |||
2602 | napi_enable(&adapter->napi); | ||
2603 | |||
2604 | e1000_irq_enable(adapter); | ||
2605 | |||
2606 | /* fire a link status change interrupt to start the watchdog */ | ||
2607 | ew32(ICS, E1000_ICS_LSC); | ||
2608 | |||
2609 | return 0; | ||
2610 | |||
2611 | err_req_irq: | ||
2612 | e1000_release_hw_control(adapter); | ||
2613 | e1000_power_down_phy(adapter); | ||
2614 | e1000e_free_rx_resources(adapter); | ||
2615 | err_setup_rx: | ||
2616 | e1000e_free_tx_resources(adapter); | ||
2617 | err_setup_tx: | ||
2618 | e1000e_reset(adapter); | ||
2619 | |||
2620 | return err; | ||
2621 | } | ||
2622 | |||
2623 | /** | ||
2624 | * e1000_close - Disables a network interface | ||
2625 | * @netdev: network interface device structure | ||
2626 | * | ||
2627 | * Returns 0, this is not allowed to fail | ||
2628 | * | ||
2629 | * The close entry point is called when an interface is de-activated | ||
2630 | * by the OS. The hardware is still under the drivers control, but | ||
2631 | * needs to be disabled. A global MAC reset is issued to stop the | ||
2632 | * hardware, and all transmit and receive resources are freed. | ||
2633 | **/ | ||
2634 | static int e1000_close(struct net_device *netdev) | ||
2635 | { | ||
2636 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
2637 | |||
2638 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); | ||
2639 | e1000e_down(adapter); | ||
2640 | e1000_power_down_phy(adapter); | ||
2641 | e1000_free_irq(adapter); | ||
2642 | |||
2643 | e1000e_free_tx_resources(adapter); | ||
2644 | e1000e_free_rx_resources(adapter); | ||
2645 | |||
2646 | /* kill manageability vlan ID if supported, but not if a vlan with | ||
2647 | * the same ID is registered on the host OS (let 8021q kill it) */ | ||
2648 | if ((adapter->hw.mng_cookie.status & | ||
2649 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | ||
2650 | !(adapter->vlgrp && | ||
2651 | vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) | ||
2652 | e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | ||
2653 | |||
2654 | /* If AMT is enabled, let the firmware know that the network | ||
2655 | * interface is now closed */ | ||
2656 | if ((adapter->flags & FLAG_HAS_AMT) && | ||
2657 | e1000e_check_mng_mode(&adapter->hw)) | ||
2658 | e1000_release_hw_control(adapter); | ||
2659 | |||
2660 | return 0; | ||
2661 | } | ||
2662 | /** | ||
2663 | * e1000_set_mac - Change the Ethernet Address of the NIC | ||
2664 | * @netdev: network interface device structure | ||
2665 | * @p: pointer to an address structure | ||
2666 | * | ||
2667 | * Returns 0 on success, negative on failure | ||
2668 | **/ | ||
2669 | static int e1000_set_mac(struct net_device *netdev, void *p) | ||
2670 | { | ||
2671 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
2672 | struct sockaddr *addr = p; | ||
2673 | |||
2674 | if (!is_valid_ether_addr(addr->sa_data)) | ||
2675 | return -EADDRNOTAVAIL; | ||
2676 | |||
2677 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | ||
2678 | memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); | ||
2679 | |||
2680 | e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); | ||
2681 | |||
2682 | if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { | ||
2683 | /* activate the work around */ | ||
2684 | e1000e_set_laa_state_82571(&adapter->hw, 1); | ||
2685 | |||
2686 | /* Hold a copy of the LAA in RAR[14] This is done so that | ||
2687 | * between the time RAR[0] gets clobbered and the time it | ||
2688 | * gets fixed (in e1000_watchdog), the actual LAA is in one | ||
2689 | * of the RARs and no incoming packets directed to this port | ||
2690 | * are dropped. Eventually the LAA will be in RAR[0] and | ||
2691 | * RAR[14] */ | ||
2692 | e1000e_rar_set(&adapter->hw, | ||
2693 | adapter->hw.mac.addr, | ||
2694 | adapter->hw.mac.rar_entry_count - 1); | ||
2695 | } | ||
2696 | |||
2697 | return 0; | ||
2698 | } | ||
2699 | |||
2700 | /* Need to wait a few seconds after link up to get diagnostic information from | ||
2701 | * the phy */ | ||
2702 | static void e1000_update_phy_info(unsigned long data) | ||
2703 | { | ||
2704 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | ||
2705 | e1000_get_phy_info(&adapter->hw); | ||
2706 | } | ||
2707 | |||
2708 | /** | ||
2709 | * e1000e_update_stats - Update the board statistics counters | ||
2710 | * @adapter: board private structure | ||
2711 | **/ | ||
2712 | void e1000e_update_stats(struct e1000_adapter *adapter) | ||
2713 | { | ||
2714 | struct e1000_hw *hw = &adapter->hw; | ||
2715 | struct pci_dev *pdev = adapter->pdev; | ||
2716 | unsigned long irq_flags; | ||
2717 | u16 phy_tmp; | ||
2718 | |||
2719 | #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF | ||
2720 | |||
2721 | /* | ||
2722 | * Prevent stats update while adapter is being reset, or if the pci | ||
2723 | * connection is down. | ||
2724 | */ | ||
2725 | if (adapter->link_speed == 0) | ||
2726 | return; | ||
2727 | if (pci_channel_offline(pdev)) | ||
2728 | return; | ||
2729 | |||
2730 | spin_lock_irqsave(&adapter->stats_lock, irq_flags); | ||
2731 | |||
2732 | /* these counters are modified from e1000_adjust_tbi_stats, | ||
2733 | * called from the interrupt context, so they must only | ||
2734 | * be written while holding adapter->stats_lock | ||
2735 | */ | ||
2736 | |||
2737 | adapter->stats.crcerrs += er32(CRCERRS); | ||
2738 | adapter->stats.gprc += er32(GPRC); | ||
2739 | adapter->stats.gorcl += er32(GORCL); | ||
2740 | adapter->stats.gorch += er32(GORCH); | ||
2741 | adapter->stats.bprc += er32(BPRC); | ||
2742 | adapter->stats.mprc += er32(MPRC); | ||
2743 | adapter->stats.roc += er32(ROC); | ||
2744 | |||
2745 | if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) { | ||
2746 | adapter->stats.prc64 += er32(PRC64); | ||
2747 | adapter->stats.prc127 += er32(PRC127); | ||
2748 | adapter->stats.prc255 += er32(PRC255); | ||
2749 | adapter->stats.prc511 += er32(PRC511); | ||
2750 | adapter->stats.prc1023 += er32(PRC1023); | ||
2751 | adapter->stats.prc1522 += er32(PRC1522); | ||
2752 | adapter->stats.symerrs += er32(SYMERRS); | ||
2753 | adapter->stats.sec += er32(SEC); | ||
2754 | } | ||
2755 | |||
2756 | adapter->stats.mpc += er32(MPC); | ||
2757 | adapter->stats.scc += er32(SCC); | ||
2758 | adapter->stats.ecol += er32(ECOL); | ||
2759 | adapter->stats.mcc += er32(MCC); | ||
2760 | adapter->stats.latecol += er32(LATECOL); | ||
2761 | adapter->stats.dc += er32(DC); | ||
2762 | adapter->stats.rlec += er32(RLEC); | ||
2763 | adapter->stats.xonrxc += er32(XONRXC); | ||
2764 | adapter->stats.xontxc += er32(XONTXC); | ||
2765 | adapter->stats.xoffrxc += er32(XOFFRXC); | ||
2766 | adapter->stats.xofftxc += er32(XOFFTXC); | ||
2767 | adapter->stats.fcruc += er32(FCRUC); | ||
2768 | adapter->stats.gptc += er32(GPTC); | ||
2769 | adapter->stats.gotcl += er32(GOTCL); | ||
2770 | adapter->stats.gotch += er32(GOTCH); | ||
2771 | adapter->stats.rnbc += er32(RNBC); | ||
2772 | adapter->stats.ruc += er32(RUC); | ||
2773 | adapter->stats.rfc += er32(RFC); | ||
2774 | adapter->stats.rjc += er32(RJC); | ||
2775 | adapter->stats.torl += er32(TORL); | ||
2776 | adapter->stats.torh += er32(TORH); | ||
2777 | adapter->stats.totl += er32(TOTL); | ||
2778 | adapter->stats.toth += er32(TOTH); | ||
2779 | adapter->stats.tpr += er32(TPR); | ||
2780 | |||
2781 | if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) { | ||
2782 | adapter->stats.ptc64 += er32(PTC64); | ||
2783 | adapter->stats.ptc127 += er32(PTC127); | ||
2784 | adapter->stats.ptc255 += er32(PTC255); | ||
2785 | adapter->stats.ptc511 += er32(PTC511); | ||
2786 | adapter->stats.ptc1023 += er32(PTC1023); | ||
2787 | adapter->stats.ptc1522 += er32(PTC1522); | ||
2788 | } | ||
2789 | |||
2790 | adapter->stats.mptc += er32(MPTC); | ||
2791 | adapter->stats.bptc += er32(BPTC); | ||
2792 | |||
2793 | /* used for adaptive IFS */ | ||
2794 | |||
2795 | hw->mac.tx_packet_delta = er32(TPT); | ||
2796 | adapter->stats.tpt += hw->mac.tx_packet_delta; | ||
2797 | hw->mac.collision_delta = er32(COLC); | ||
2798 | adapter->stats.colc += hw->mac.collision_delta; | ||
2799 | |||
2800 | adapter->stats.algnerrc += er32(ALGNERRC); | ||
2801 | adapter->stats.rxerrc += er32(RXERRC); | ||
2802 | adapter->stats.tncrs += er32(TNCRS); | ||
2803 | adapter->stats.cexterr += er32(CEXTERR); | ||
2804 | adapter->stats.tsctc += er32(TSCTC); | ||
2805 | adapter->stats.tsctfc += er32(TSCTFC); | ||
2806 | |||
2807 | adapter->stats.iac += er32(IAC); | ||
2808 | |||
2809 | if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) { | ||
2810 | adapter->stats.icrxoc += er32(ICRXOC); | ||
2811 | adapter->stats.icrxptc += er32(ICRXPTC); | ||
2812 | adapter->stats.icrxatc += er32(ICRXATC); | ||
2813 | adapter->stats.ictxptc += er32(ICTXPTC); | ||
2814 | adapter->stats.ictxatc += er32(ICTXATC); | ||
2815 | adapter->stats.ictxqec += er32(ICTXQEC); | ||
2816 | adapter->stats.ictxqmtc += er32(ICTXQMTC); | ||
2817 | adapter->stats.icrxdmtc += er32(ICRXDMTC); | ||
2818 | } | ||
2819 | |||
2820 | /* Fill out the OS statistics structure */ | ||
2821 | adapter->net_stats.rx_packets = adapter->stats.gprc; | ||
2822 | adapter->net_stats.tx_packets = adapter->stats.gptc; | ||
2823 | adapter->net_stats.rx_bytes = adapter->stats.gorcl; | ||
2824 | adapter->net_stats.tx_bytes = adapter->stats.gotcl; | ||
2825 | adapter->net_stats.multicast = adapter->stats.mprc; | ||
2826 | adapter->net_stats.collisions = adapter->stats.colc; | ||
2827 | |||
2828 | /* Rx Errors */ | ||
2829 | |||
2830 | /* RLEC on some newer hardware can be incorrect so build | ||
2831 | * our own version based on RUC and ROC */ | ||
2832 | adapter->net_stats.rx_errors = adapter->stats.rxerrc + | ||
2833 | adapter->stats.crcerrs + adapter->stats.algnerrc + | ||
2834 | adapter->stats.ruc + adapter->stats.roc + | ||
2835 | adapter->stats.cexterr; | ||
2836 | adapter->net_stats.rx_length_errors = adapter->stats.ruc + | ||
2837 | adapter->stats.roc; | ||
2838 | adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; | ||
2839 | adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; | ||
2840 | adapter->net_stats.rx_missed_errors = adapter->stats.mpc; | ||
2841 | |||
2842 | /* Tx Errors */ | ||
2843 | adapter->net_stats.tx_errors = adapter->stats.ecol + | ||
2844 | adapter->stats.latecol; | ||
2845 | adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; | ||
2846 | adapter->net_stats.tx_window_errors = adapter->stats.latecol; | ||
2847 | adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; | ||
2848 | |||
2849 | /* Tx Dropped needs to be maintained elsewhere */ | ||
2850 | |||
2851 | /* Phy Stats */ | ||
2852 | if (hw->media_type == e1000_media_type_copper) { | ||
2853 | if ((adapter->link_speed == SPEED_1000) && | ||
2854 | (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) { | ||
2855 | phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; | ||
2856 | adapter->phy_stats.idle_errors += phy_tmp; | ||
2857 | } | ||
2858 | } | ||
2859 | |||
2860 | /* Management Stats */ | ||
2861 | adapter->stats.mgptc += er32(MGTPTC); | ||
2862 | adapter->stats.mgprc += er32(MGTPRC); | ||
2863 | adapter->stats.mgpdc += er32(MGTPDC); | ||
2864 | |||
2865 | spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); | ||
2866 | } | ||
2867 | |||
2868 | static void e1000_print_link_info(struct e1000_adapter *adapter) | ||
2869 | { | ||
2870 | struct net_device *netdev = adapter->netdev; | ||
2871 | struct e1000_hw *hw = &adapter->hw; | ||
2872 | u32 ctrl = er32(CTRL); | ||
2873 | |||
2874 | ndev_info(netdev, | ||
2875 | "Link is Up %d Mbps %s, Flow Control: %s\n", | ||
2876 | adapter->link_speed, | ||
2877 | (adapter->link_duplex == FULL_DUPLEX) ? | ||
2878 | "Full Duplex" : "Half Duplex", | ||
2879 | ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? | ||
2880 | "RX/TX" : | ||
2881 | ((ctrl & E1000_CTRL_RFCE) ? "RX" : | ||
2882 | ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" ))); | ||
2883 | } | ||
2884 | |||
2885 | /** | ||
2886 | * e1000_watchdog - Timer Call-back | ||
2887 | * @data: pointer to adapter cast into an unsigned long | ||
2888 | **/ | ||
2889 | static void e1000_watchdog(unsigned long data) | ||
2890 | { | ||
2891 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | ||
2892 | |||
2893 | /* Do the rest outside of interrupt context */ | ||
2894 | schedule_work(&adapter->watchdog_task); | ||
2895 | |||
2896 | /* TODO: make this use queue_delayed_work() */ | ||
2897 | } | ||
2898 | |||
2899 | static void e1000_watchdog_task(struct work_struct *work) | ||
2900 | { | ||
2901 | struct e1000_adapter *adapter = container_of(work, | ||
2902 | struct e1000_adapter, watchdog_task); | ||
2903 | |||
2904 | struct net_device *netdev = adapter->netdev; | ||
2905 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
2906 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
2907 | struct e1000_hw *hw = &adapter->hw; | ||
2908 | u32 link, tctl; | ||
2909 | s32 ret_val; | ||
2910 | int tx_pending = 0; | ||
2911 | |||
2912 | if ((netif_carrier_ok(netdev)) && | ||
2913 | (er32(STATUS) & E1000_STATUS_LU)) | ||
2914 | goto link_up; | ||
2915 | |||
2916 | ret_val = mac->ops.check_for_link(hw); | ||
2917 | if ((ret_val == E1000_ERR_PHY) && | ||
2918 | (adapter->hw.phy.type == e1000_phy_igp_3) && | ||
2919 | (er32(CTRL) & | ||
2920 | E1000_PHY_CTRL_GBE_DISABLE)) { | ||
2921 | /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ | ||
2922 | ndev_info(netdev, | ||
2923 | "Gigabit has been disabled, downgrading speed\n"); | ||
2924 | } | ||
2925 | |||
2926 | if ((e1000e_enable_tx_pkt_filtering(hw)) && | ||
2927 | (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) | ||
2928 | e1000_update_mng_vlan(adapter); | ||
2929 | |||
2930 | if ((adapter->hw.media_type == e1000_media_type_internal_serdes) && | ||
2931 | !(er32(TXCW) & E1000_TXCW_ANE)) | ||
2932 | link = adapter->hw.mac.serdes_has_link; | ||
2933 | else | ||
2934 | link = er32(STATUS) & E1000_STATUS_LU; | ||
2935 | |||
2936 | if (link) { | ||
2937 | if (!netif_carrier_ok(netdev)) { | ||
2938 | bool txb2b = 1; | ||
2939 | mac->ops.get_link_up_info(&adapter->hw, | ||
2940 | &adapter->link_speed, | ||
2941 | &adapter->link_duplex); | ||
2942 | e1000_print_link_info(adapter); | ||
2943 | /* tweak tx_queue_len according to speed/duplex | ||
2944 | * and adjust the timeout factor */ | ||
2945 | netdev->tx_queue_len = adapter->tx_queue_len; | ||
2946 | adapter->tx_timeout_factor = 1; | ||
2947 | switch (adapter->link_speed) { | ||
2948 | case SPEED_10: | ||
2949 | txb2b = 0; | ||
2950 | netdev->tx_queue_len = 10; | ||
2951 | adapter->tx_timeout_factor = 14; | ||
2952 | break; | ||
2953 | case SPEED_100: | ||
2954 | txb2b = 0; | ||
2955 | netdev->tx_queue_len = 100; | ||
2956 | /* maybe add some timeout factor ? */ | ||
2957 | break; | ||
2958 | } | ||
2959 | |||
2960 | /* workaround: re-program speed mode bit after | ||
2961 | * link-up event */ | ||
2962 | if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && | ||
2963 | !txb2b) { | ||
2964 | u32 tarc0; | ||
2965 | tarc0 = er32(TARC0); | ||
2966 | tarc0 &= ~SPEED_MODE_BIT; | ||
2967 | ew32(TARC0, tarc0); | ||
2968 | } | ||
2969 | |||
2970 | /* disable TSO for pcie and 10/100 speeds, to avoid | ||
2971 | * some hardware issues */ | ||
2972 | if (!(adapter->flags & FLAG_TSO_FORCE)) { | ||
2973 | switch (adapter->link_speed) { | ||
2974 | case SPEED_10: | ||
2975 | case SPEED_100: | ||
2976 | ndev_info(netdev, | ||
2977 | "10/100 speed: disabling TSO\n"); | ||
2978 | netdev->features &= ~NETIF_F_TSO; | ||
2979 | netdev->features &= ~NETIF_F_TSO6; | ||
2980 | break; | ||
2981 | case SPEED_1000: | ||
2982 | netdev->features |= NETIF_F_TSO; | ||
2983 | netdev->features |= NETIF_F_TSO6; | ||
2984 | break; | ||
2985 | default: | ||
2986 | /* oops */ | ||
2987 | break; | ||
2988 | } | ||
2989 | } | ||
2990 | |||
2991 | /* enable transmits in the hardware, need to do this | ||
2992 | * after setting TARC0 */ | ||
2993 | tctl = er32(TCTL); | ||
2994 | tctl |= E1000_TCTL_EN; | ||
2995 | ew32(TCTL, tctl); | ||
2996 | |||
2997 | netif_carrier_on(netdev); | ||
2998 | netif_wake_queue(netdev); | ||
2999 | |||
3000 | if (!test_bit(__E1000_DOWN, &adapter->state)) | ||
3001 | mod_timer(&adapter->phy_info_timer, | ||
3002 | round_jiffies(jiffies + 2 * HZ)); | ||
3003 | } else { | ||
3004 | /* make sure the receive unit is started */ | ||
3005 | if (adapter->flags & FLAG_RX_NEEDS_RESTART) { | ||
3006 | u32 rctl = er32(RCTL); | ||
3007 | ew32(RCTL, rctl | | ||
3008 | E1000_RCTL_EN); | ||
3009 | } | ||
3010 | } | ||
3011 | } else { | ||
3012 | if (netif_carrier_ok(netdev)) { | ||
3013 | adapter->link_speed = 0; | ||
3014 | adapter->link_duplex = 0; | ||
3015 | ndev_info(netdev, "Link is Down\n"); | ||
3016 | netif_carrier_off(netdev); | ||
3017 | netif_stop_queue(netdev); | ||
3018 | if (!test_bit(__E1000_DOWN, &adapter->state)) | ||
3019 | mod_timer(&adapter->phy_info_timer, | ||
3020 | round_jiffies(jiffies + 2 * HZ)); | ||
3021 | |||
3022 | if (adapter->flags & FLAG_RX_NEEDS_RESTART) | ||
3023 | schedule_work(&adapter->reset_task); | ||
3024 | } | ||
3025 | } | ||
3026 | |||
3027 | link_up: | ||
3028 | e1000e_update_stats(adapter); | ||
3029 | |||
3030 | mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; | ||
3031 | adapter->tpt_old = adapter->stats.tpt; | ||
3032 | mac->collision_delta = adapter->stats.colc - adapter->colc_old; | ||
3033 | adapter->colc_old = adapter->stats.colc; | ||
3034 | |||
3035 | adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; | ||
3036 | adapter->gorcl_old = adapter->stats.gorcl; | ||
3037 | adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; | ||
3038 | adapter->gotcl_old = adapter->stats.gotcl; | ||
3039 | |||
3040 | e1000e_update_adaptive(&adapter->hw); | ||
3041 | |||
3042 | if (!netif_carrier_ok(netdev)) { | ||
3043 | tx_pending = (e1000_desc_unused(tx_ring) + 1 < | ||
3044 | tx_ring->count); | ||
3045 | if (tx_pending) { | ||
3046 | /* We've lost link, so the controller stops DMA, | ||
3047 | * but we've got queued Tx work that's never going | ||
3048 | * to get done, so reset controller to flush Tx. | ||
3049 | * (Do the reset outside of interrupt context). */ | ||
3050 | adapter->tx_timeout_count++; | ||
3051 | schedule_work(&adapter->reset_task); | ||
3052 | } | ||
3053 | } | ||
3054 | |||
3055 | /* Cause software interrupt to ensure rx ring is cleaned */ | ||
3056 | ew32(ICS, E1000_ICS_RXDMT0); | ||
3057 | |||
3058 | /* Force detection of hung controller every watchdog period */ | ||
3059 | adapter->detect_tx_hung = 1; | ||
3060 | |||
3061 | /* With 82571 controllers, LAA may be overwritten due to controller | ||
3062 | * reset from the other port. Set the appropriate LAA in RAR[0] */ | ||
3063 | if (e1000e_get_laa_state_82571(hw)) | ||
3064 | e1000e_rar_set(hw, adapter->hw.mac.addr, 0); | ||
3065 | |||
3066 | /* Reset the timer */ | ||
3067 | if (!test_bit(__E1000_DOWN, &adapter->state)) | ||
3068 | mod_timer(&adapter->watchdog_timer, | ||
3069 | round_jiffies(jiffies + 2 * HZ)); | ||
3070 | } | ||
3071 | |||
3072 | #define E1000_TX_FLAGS_CSUM 0x00000001 | ||
3073 | #define E1000_TX_FLAGS_VLAN 0x00000002 | ||
3074 | #define E1000_TX_FLAGS_TSO 0x00000004 | ||
3075 | #define E1000_TX_FLAGS_IPV4 0x00000008 | ||
3076 | #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 | ||
3077 | #define E1000_TX_FLAGS_VLAN_SHIFT 16 | ||
3078 | |||
3079 | static int e1000_tso(struct e1000_adapter *adapter, | ||
3080 | struct sk_buff *skb) | ||
3081 | { | ||
3082 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
3083 | struct e1000_context_desc *context_desc; | ||
3084 | struct e1000_buffer *buffer_info; | ||
3085 | unsigned int i; | ||
3086 | u32 cmd_length = 0; | ||
3087 | u16 ipcse = 0, tucse, mss; | ||
3088 | u8 ipcss, ipcso, tucss, tucso, hdr_len; | ||
3089 | int err; | ||
3090 | |||
3091 | if (skb_is_gso(skb)) { | ||
3092 | if (skb_header_cloned(skb)) { | ||
3093 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | ||
3094 | if (err) | ||
3095 | return err; | ||
3096 | } | ||
3097 | |||
3098 | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | ||
3099 | mss = skb_shinfo(skb)->gso_size; | ||
3100 | if (skb->protocol == htons(ETH_P_IP)) { | ||
3101 | struct iphdr *iph = ip_hdr(skb); | ||
3102 | iph->tot_len = 0; | ||
3103 | iph->check = 0; | ||
3104 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, | ||
3105 | iph->daddr, 0, | ||
3106 | IPPROTO_TCP, | ||
3107 | 0); | ||
3108 | cmd_length = E1000_TXD_CMD_IP; | ||
3109 | ipcse = skb_transport_offset(skb) - 1; | ||
3110 | } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) { | ||
3111 | ipv6_hdr(skb)->payload_len = 0; | ||
3112 | tcp_hdr(skb)->check = | ||
3113 | ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | ||
3114 | &ipv6_hdr(skb)->daddr, | ||
3115 | 0, IPPROTO_TCP, 0); | ||
3116 | ipcse = 0; | ||
3117 | } | ||
3118 | ipcss = skb_network_offset(skb); | ||
3119 | ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; | ||
3120 | tucss = skb_transport_offset(skb); | ||
3121 | tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; | ||
3122 | tucse = 0; | ||
3123 | |||
3124 | cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | | ||
3125 | E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); | ||
3126 | |||
3127 | i = tx_ring->next_to_use; | ||
3128 | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | ||
3129 | buffer_info = &tx_ring->buffer_info[i]; | ||
3130 | |||
3131 | context_desc->lower_setup.ip_fields.ipcss = ipcss; | ||
3132 | context_desc->lower_setup.ip_fields.ipcso = ipcso; | ||
3133 | context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); | ||
3134 | context_desc->upper_setup.tcp_fields.tucss = tucss; | ||
3135 | context_desc->upper_setup.tcp_fields.tucso = tucso; | ||
3136 | context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); | ||
3137 | context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); | ||
3138 | context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; | ||
3139 | context_desc->cmd_and_length = cpu_to_le32(cmd_length); | ||
3140 | |||
3141 | buffer_info->time_stamp = jiffies; | ||
3142 | buffer_info->next_to_watch = i; | ||
3143 | |||
3144 | i++; | ||
3145 | if (i == tx_ring->count) | ||
3146 | i = 0; | ||
3147 | tx_ring->next_to_use = i; | ||
3148 | |||
3149 | return 1; | ||
3150 | } | ||
3151 | |||
3152 | return 0; | ||
3153 | } | ||
3154 | |||
3155 | static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) | ||
3156 | { | ||
3157 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
3158 | struct e1000_context_desc *context_desc; | ||
3159 | struct e1000_buffer *buffer_info; | ||
3160 | unsigned int i; | ||
3161 | u8 css; | ||
3162 | |||
3163 | if (skb->ip_summed == CHECKSUM_PARTIAL) { | ||
3164 | css = skb_transport_offset(skb); | ||
3165 | |||
3166 | i = tx_ring->next_to_use; | ||
3167 | buffer_info = &tx_ring->buffer_info[i]; | ||
3168 | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | ||
3169 | |||
3170 | context_desc->lower_setup.ip_config = 0; | ||
3171 | context_desc->upper_setup.tcp_fields.tucss = css; | ||
3172 | context_desc->upper_setup.tcp_fields.tucso = | ||
3173 | css + skb->csum_offset; | ||
3174 | context_desc->upper_setup.tcp_fields.tucse = 0; | ||
3175 | context_desc->tcp_seg_setup.data = 0; | ||
3176 | context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT); | ||
3177 | |||
3178 | buffer_info->time_stamp = jiffies; | ||
3179 | buffer_info->next_to_watch = i; | ||
3180 | |||
3181 | i++; | ||
3182 | if (i == tx_ring->count) | ||
3183 | i = 0; | ||
3184 | tx_ring->next_to_use = i; | ||
3185 | |||
3186 | return 1; | ||
3187 | } | ||
3188 | |||
3189 | return 0; | ||
3190 | } | ||
3191 | |||
3192 | #define E1000_MAX_PER_TXD 8192 | ||
3193 | #define E1000_MAX_TXD_PWR 12 | ||
3194 | |||
3195 | static int e1000_tx_map(struct e1000_adapter *adapter, | ||
3196 | struct sk_buff *skb, unsigned int first, | ||
3197 | unsigned int max_per_txd, unsigned int nr_frags, | ||
3198 | unsigned int mss) | ||
3199 | { | ||
3200 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
3201 | struct e1000_buffer *buffer_info; | ||
3202 | unsigned int len = skb->len - skb->data_len; | ||
3203 | unsigned int offset = 0, size, count = 0, i; | ||
3204 | unsigned int f; | ||
3205 | |||
3206 | i = tx_ring->next_to_use; | ||
3207 | |||
3208 | while (len) { | ||
3209 | buffer_info = &tx_ring->buffer_info[i]; | ||
3210 | size = min(len, max_per_txd); | ||
3211 | |||
3212 | /* Workaround for premature desc write-backs | ||
3213 | * in TSO mode. Append 4-byte sentinel desc */ | ||
3214 | if (mss && !nr_frags && size == len && size > 8) | ||
3215 | size -= 4; | ||
3216 | |||
3217 | buffer_info->length = size; | ||
3218 | /* set time_stamp *before* dma to help avoid a possible race */ | ||
3219 | buffer_info->time_stamp = jiffies; | ||
3220 | buffer_info->dma = | ||
3221 | pci_map_single(adapter->pdev, | ||
3222 | skb->data + offset, | ||
3223 | size, | ||
3224 | PCI_DMA_TODEVICE); | ||
3225 | if (pci_dma_mapping_error(buffer_info->dma)) { | ||
3226 | dev_err(&adapter->pdev->dev, "TX DMA map failed\n"); | ||
3227 | adapter->tx_dma_failed++; | ||
3228 | return -1; | ||
3229 | } | ||
3230 | buffer_info->next_to_watch = i; | ||
3231 | |||
3232 | len -= size; | ||
3233 | offset += size; | ||
3234 | count++; | ||
3235 | i++; | ||
3236 | if (i == tx_ring->count) | ||
3237 | i = 0; | ||
3238 | } | ||
3239 | |||
3240 | for (f = 0; f < nr_frags; f++) { | ||
3241 | struct skb_frag_struct *frag; | ||
3242 | |||
3243 | frag = &skb_shinfo(skb)->frags[f]; | ||
3244 | len = frag->size; | ||
3245 | offset = frag->page_offset; | ||
3246 | |||
3247 | while (len) { | ||
3248 | buffer_info = &tx_ring->buffer_info[i]; | ||
3249 | size = min(len, max_per_txd); | ||
3250 | /* Workaround for premature desc write-backs | ||
3251 | * in TSO mode. Append 4-byte sentinel desc */ | ||
3252 | if (mss && f == (nr_frags-1) && size == len && size > 8) | ||
3253 | size -= 4; | ||
3254 | |||
3255 | buffer_info->length = size; | ||
3256 | buffer_info->time_stamp = jiffies; | ||
3257 | buffer_info->dma = | ||
3258 | pci_map_page(adapter->pdev, | ||
3259 | frag->page, | ||
3260 | offset, | ||
3261 | size, | ||
3262 | PCI_DMA_TODEVICE); | ||
3263 | if (pci_dma_mapping_error(buffer_info->dma)) { | ||
3264 | dev_err(&adapter->pdev->dev, | ||
3265 | "TX DMA page map failed\n"); | ||
3266 | adapter->tx_dma_failed++; | ||
3267 | return -1; | ||
3268 | } | ||
3269 | |||
3270 | buffer_info->next_to_watch = i; | ||
3271 | |||
3272 | len -= size; | ||
3273 | offset += size; | ||
3274 | count++; | ||
3275 | |||
3276 | i++; | ||
3277 | if (i == tx_ring->count) | ||
3278 | i = 0; | ||
3279 | } | ||
3280 | } | ||
3281 | |||
3282 | if (i == 0) | ||
3283 | i = tx_ring->count - 1; | ||
3284 | else | ||
3285 | i--; | ||
3286 | |||
3287 | tx_ring->buffer_info[i].skb = skb; | ||
3288 | tx_ring->buffer_info[first].next_to_watch = i; | ||
3289 | |||
3290 | return count; | ||
3291 | } | ||
3292 | |||
3293 | static void e1000_tx_queue(struct e1000_adapter *adapter, | ||
3294 | int tx_flags, int count) | ||
3295 | { | ||
3296 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
3297 | struct e1000_tx_desc *tx_desc = NULL; | ||
3298 | struct e1000_buffer *buffer_info; | ||
3299 | u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; | ||
3300 | unsigned int i; | ||
3301 | |||
3302 | if (tx_flags & E1000_TX_FLAGS_TSO) { | ||
3303 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | | ||
3304 | E1000_TXD_CMD_TSE; | ||
3305 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | ||
3306 | |||
3307 | if (tx_flags & E1000_TX_FLAGS_IPV4) | ||
3308 | txd_upper |= E1000_TXD_POPTS_IXSM << 8; | ||
3309 | } | ||
3310 | |||
3311 | if (tx_flags & E1000_TX_FLAGS_CSUM) { | ||
3312 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; | ||
3313 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | ||
3314 | } | ||
3315 | |||
3316 | if (tx_flags & E1000_TX_FLAGS_VLAN) { | ||
3317 | txd_lower |= E1000_TXD_CMD_VLE; | ||
3318 | txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); | ||
3319 | } | ||
3320 | |||
3321 | i = tx_ring->next_to_use; | ||
3322 | |||
3323 | while (count--) { | ||
3324 | buffer_info = &tx_ring->buffer_info[i]; | ||
3325 | tx_desc = E1000_TX_DESC(*tx_ring, i); | ||
3326 | tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | ||
3327 | tx_desc->lower.data = | ||
3328 | cpu_to_le32(txd_lower | buffer_info->length); | ||
3329 | tx_desc->upper.data = cpu_to_le32(txd_upper); | ||
3330 | |||
3331 | i++; | ||
3332 | if (i == tx_ring->count) | ||
3333 | i = 0; | ||
3334 | } | ||
3335 | |||
3336 | tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); | ||
3337 | |||
3338 | /* Force memory writes to complete before letting h/w | ||
3339 | * know there are new descriptors to fetch. (Only | ||
3340 | * applicable for weak-ordered memory model archs, | ||
3341 | * such as IA-64). */ | ||
3342 | wmb(); | ||
3343 | |||
3344 | tx_ring->next_to_use = i; | ||
3345 | writel(i, adapter->hw.hw_addr + tx_ring->tail); | ||
3346 | /* we need this if more than one processor can write to our tail | ||
3347 | * at a time, it synchronizes IO on IA64/Altix systems */ | ||
3348 | mmiowb(); | ||
3349 | } | ||
3350 | |||
3351 | #define MINIMUM_DHCP_PACKET_SIZE 282 | ||
3352 | static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, | ||
3353 | struct sk_buff *skb) | ||
3354 | { | ||
3355 | struct e1000_hw *hw = &adapter->hw; | ||
3356 | u16 length, offset; | ||
3357 | |||
3358 | if (vlan_tx_tag_present(skb)) { | ||
3359 | if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) | ||
3360 | && (adapter->hw.mng_cookie.status & | ||
3361 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) | ||
3362 | return 0; | ||
3363 | } | ||
3364 | |||
3365 | if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) | ||
3366 | return 0; | ||
3367 | |||
3368 | if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) | ||
3369 | return 0; | ||
3370 | |||
3371 | { | ||
3372 | const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); | ||
3373 | struct udphdr *udp; | ||
3374 | |||
3375 | if (ip->protocol != IPPROTO_UDP) | ||
3376 | return 0; | ||
3377 | |||
3378 | udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); | ||
3379 | if (ntohs(udp->dest) != 67) | ||
3380 | return 0; | ||
3381 | |||
3382 | offset = (u8 *)udp + 8 - skb->data; | ||
3383 | length = skb->len - offset; | ||
3384 | return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); | ||
3385 | } | ||
3386 | |||
3387 | return 0; | ||
3388 | } | ||
3389 | |||
3390 | static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) | ||
3391 | { | ||
3392 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3393 | |||
3394 | netif_stop_queue(netdev); | ||
3395 | /* Herbert's original patch had: | ||
3396 | * smp_mb__after_netif_stop_queue(); | ||
3397 | * but since that doesn't exist yet, just open code it. */ | ||
3398 | smp_mb(); | ||
3399 | |||
3400 | /* We need to check again in a case another CPU has just | ||
3401 | * made room available. */ | ||
3402 | if (e1000_desc_unused(adapter->tx_ring) < size) | ||
3403 | return -EBUSY; | ||
3404 | |||
3405 | /* A reprieve! */ | ||
3406 | netif_start_queue(netdev); | ||
3407 | ++adapter->restart_queue; | ||
3408 | return 0; | ||
3409 | } | ||
3410 | |||
3411 | static int e1000_maybe_stop_tx(struct net_device *netdev, int size) | ||
3412 | { | ||
3413 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3414 | |||
3415 | if (e1000_desc_unused(adapter->tx_ring) >= size) | ||
3416 | return 0; | ||
3417 | return __e1000_maybe_stop_tx(netdev, size); | ||
3418 | } | ||
3419 | |||
3420 | #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) | ||
3421 | static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | ||
3422 | { | ||
3423 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3424 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
3425 | unsigned int first; | ||
3426 | unsigned int max_per_txd = E1000_MAX_PER_TXD; | ||
3427 | unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; | ||
3428 | unsigned int tx_flags = 0; | ||
3429 | unsigned int len = skb->len; | ||
3430 | unsigned long irq_flags; | ||
3431 | unsigned int nr_frags = 0; | ||
3432 | unsigned int mss = 0; | ||
3433 | int count = 0; | ||
3434 | int tso; | ||
3435 | unsigned int f; | ||
3436 | len -= skb->data_len; | ||
3437 | |||
3438 | if (test_bit(__E1000_DOWN, &adapter->state)) { | ||
3439 | dev_kfree_skb_any(skb); | ||
3440 | return NETDEV_TX_OK; | ||
3441 | } | ||
3442 | |||
3443 | if (skb->len <= 0) { | ||
3444 | dev_kfree_skb_any(skb); | ||
3445 | return NETDEV_TX_OK; | ||
3446 | } | ||
3447 | |||
3448 | mss = skb_shinfo(skb)->gso_size; | ||
3449 | /* The controller does a simple calculation to | ||
3450 | * make sure there is enough room in the FIFO before | ||
3451 | * initiating the DMA for each buffer. The calc is: | ||
3452 | * 4 = ceil(buffer len/mss). To make sure we don't | ||
3453 | * overrun the FIFO, adjust the max buffer len if mss | ||
3454 | * drops. */ | ||
3455 | if (mss) { | ||
3456 | u8 hdr_len; | ||
3457 | max_per_txd = min(mss << 2, max_per_txd); | ||
3458 | max_txd_pwr = fls(max_per_txd) - 1; | ||
3459 | |||
3460 | /* TSO Workaround for 82571/2/3 Controllers -- if skb->data | ||
3461 | * points to just header, pull a few bytes of payload from | ||
3462 | * frags into skb->data */ | ||
3463 | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | ||
3464 | if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) { | ||
3465 | unsigned int pull_size; | ||
3466 | |||
3467 | pull_size = min((unsigned int)4, skb->data_len); | ||
3468 | if (!__pskb_pull_tail(skb, pull_size)) { | ||
3469 | ndev_err(netdev, | ||
3470 | "__pskb_pull_tail failed.\n"); | ||
3471 | dev_kfree_skb_any(skb); | ||
3472 | return NETDEV_TX_OK; | ||
3473 | } | ||
3474 | len = skb->len - skb->data_len; | ||
3475 | } | ||
3476 | } | ||
3477 | |||
3478 | /* reserve a descriptor for the offload context */ | ||
3479 | if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) | ||
3480 | count++; | ||
3481 | count++; | ||
3482 | |||
3483 | count += TXD_USE_COUNT(len, max_txd_pwr); | ||
3484 | |||
3485 | nr_frags = skb_shinfo(skb)->nr_frags; | ||
3486 | for (f = 0; f < nr_frags; f++) | ||
3487 | count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, | ||
3488 | max_txd_pwr); | ||
3489 | |||
3490 | if (adapter->hw.mac.tx_pkt_filtering) | ||
3491 | e1000_transfer_dhcp_info(adapter, skb); | ||
3492 | |||
3493 | if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags)) | ||
3494 | /* Collision - tell upper layer to requeue */ | ||
3495 | return NETDEV_TX_LOCKED; | ||
3496 | |||
3497 | /* need: count + 2 desc gap to keep tail from touching | ||
3498 | * head, otherwise try next time */ | ||
3499 | if (e1000_maybe_stop_tx(netdev, count + 2)) { | ||
3500 | spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); | ||
3501 | return NETDEV_TX_BUSY; | ||
3502 | } | ||
3503 | |||
3504 | if (adapter->vlgrp && vlan_tx_tag_present(skb)) { | ||
3505 | tx_flags |= E1000_TX_FLAGS_VLAN; | ||
3506 | tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); | ||
3507 | } | ||
3508 | |||
3509 | first = tx_ring->next_to_use; | ||
3510 | |||
3511 | tso = e1000_tso(adapter, skb); | ||
3512 | if (tso < 0) { | ||
3513 | dev_kfree_skb_any(skb); | ||
3514 | spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); | ||
3515 | return NETDEV_TX_OK; | ||
3516 | } | ||
3517 | |||
3518 | if (tso) | ||
3519 | tx_flags |= E1000_TX_FLAGS_TSO; | ||
3520 | else if (e1000_tx_csum(adapter, skb)) | ||
3521 | tx_flags |= E1000_TX_FLAGS_CSUM; | ||
3522 | |||
3523 | /* Old method was to assume IPv4 packet by default if TSO was enabled. | ||
3524 | * 82571 hardware supports TSO capabilities for IPv6 as well... | ||
3525 | * no longer assume, we must. */ | ||
3526 | if (skb->protocol == htons(ETH_P_IP)) | ||
3527 | tx_flags |= E1000_TX_FLAGS_IPV4; | ||
3528 | |||
3529 | count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss); | ||
3530 | if (count < 0) { | ||
3531 | /* handle pci_map_single() error in e1000_tx_map */ | ||
3532 | dev_kfree_skb_any(skb); | ||
3533 | spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); | ||
3534 | return NETDEV_TX_BUSY; | ||
3535 | } | ||
3536 | |||
3537 | e1000_tx_queue(adapter, tx_flags, count); | ||
3538 | |||
3539 | netdev->trans_start = jiffies; | ||
3540 | |||
3541 | /* Make sure there is space in the ring for the next send. */ | ||
3542 | e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2); | ||
3543 | |||
3544 | spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); | ||
3545 | return NETDEV_TX_OK; | ||
3546 | } | ||
3547 | |||
3548 | /** | ||
3549 | * e1000_tx_timeout - Respond to a Tx Hang | ||
3550 | * @netdev: network interface device structure | ||
3551 | **/ | ||
3552 | static void e1000_tx_timeout(struct net_device *netdev) | ||
3553 | { | ||
3554 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3555 | |||
3556 | /* Do the reset outside of interrupt context */ | ||
3557 | adapter->tx_timeout_count++; | ||
3558 | schedule_work(&adapter->reset_task); | ||
3559 | } | ||
3560 | |||
3561 | static void e1000_reset_task(struct work_struct *work) | ||
3562 | { | ||
3563 | struct e1000_adapter *adapter; | ||
3564 | adapter = container_of(work, struct e1000_adapter, reset_task); | ||
3565 | |||
3566 | e1000e_reinit_locked(adapter); | ||
3567 | } | ||
3568 | |||
3569 | /** | ||
3570 | * e1000_get_stats - Get System Network Statistics | ||
3571 | * @netdev: network interface device structure | ||
3572 | * | ||
3573 | * Returns the address of the device statistics structure. | ||
3574 | * The statistics are actually updated from the timer callback. | ||
3575 | **/ | ||
3576 | static struct net_device_stats *e1000_get_stats(struct net_device *netdev) | ||
3577 | { | ||
3578 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3579 | |||
3580 | /* only return the current stats */ | ||
3581 | return &adapter->net_stats; | ||
3582 | } | ||
3583 | |||
3584 | /** | ||
3585 | * e1000_change_mtu - Change the Maximum Transfer Unit | ||
3586 | * @netdev: network interface device structure | ||
3587 | * @new_mtu: new value for maximum frame size | ||
3588 | * | ||
3589 | * Returns 0 on success, negative on failure | ||
3590 | **/ | ||
3591 | static int e1000_change_mtu(struct net_device *netdev, int new_mtu) | ||
3592 | { | ||
3593 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3594 | int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; | ||
3595 | |||
3596 | if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) || | ||
3597 | (max_frame > MAX_JUMBO_FRAME_SIZE)) { | ||
3598 | ndev_err(netdev, "Invalid MTU setting\n"); | ||
3599 | return -EINVAL; | ||
3600 | } | ||
3601 | |||
3602 | /* Jumbo frame size limits */ | ||
3603 | if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) { | ||
3604 | if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { | ||
3605 | ndev_err(netdev, "Jumbo Frames not supported.\n"); | ||
3606 | return -EINVAL; | ||
3607 | } | ||
3608 | if (adapter->hw.phy.type == e1000_phy_ife) { | ||
3609 | ndev_err(netdev, "Jumbo Frames not supported.\n"); | ||
3610 | return -EINVAL; | ||
3611 | } | ||
3612 | } | ||
3613 | |||
3614 | #define MAX_STD_JUMBO_FRAME_SIZE 9234 | ||
3615 | if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { | ||
3616 | ndev_err(netdev, "MTU > 9216 not supported.\n"); | ||
3617 | return -EINVAL; | ||
3618 | } | ||
3619 | |||
3620 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | ||
3621 | msleep(1); | ||
3622 | /* e1000e_down has a dependency on max_frame_size */ | ||
3623 | adapter->hw.mac.max_frame_size = max_frame; | ||
3624 | if (netif_running(netdev)) | ||
3625 | e1000e_down(adapter); | ||
3626 | |||
3627 | /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | ||
3628 | * means we reserve 2 more, this pushes us to allocate from the next | ||
3629 | * larger slab size. | ||
3630 | * i.e. RXBUFFER_2048 --> size-4096 slab | ||
3631 | * however with the new *_jumbo* routines, jumbo receives will use | ||
3632 | * fragmented skbs */ | ||
3633 | |||
3634 | if (max_frame <= 256) | ||
3635 | adapter->rx_buffer_len = 256; | ||
3636 | else if (max_frame <= 512) | ||
3637 | adapter->rx_buffer_len = 512; | ||
3638 | else if (max_frame <= 1024) | ||
3639 | adapter->rx_buffer_len = 1024; | ||
3640 | else if (max_frame <= 2048) | ||
3641 | adapter->rx_buffer_len = 2048; | ||
3642 | else | ||
3643 | adapter->rx_buffer_len = 4096; | ||
3644 | |||
3645 | /* adjust allocation if LPE protects us, and we aren't using SBP */ | ||
3646 | if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || | ||
3647 | (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) | ||
3648 | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN | ||
3649 | + ETH_FCS_LEN ; | ||
3650 | |||
3651 | ndev_info(netdev, "changing MTU from %d to %d\n", | ||
3652 | netdev->mtu, new_mtu); | ||
3653 | netdev->mtu = new_mtu; | ||
3654 | |||
3655 | if (netif_running(netdev)) | ||
3656 | e1000e_up(adapter); | ||
3657 | else | ||
3658 | e1000e_reset(adapter); | ||
3659 | |||
3660 | clear_bit(__E1000_RESETTING, &adapter->state); | ||
3661 | |||
3662 | return 0; | ||
3663 | } | ||
3664 | |||
3665 | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | ||
3666 | int cmd) | ||
3667 | { | ||
3668 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3669 | struct mii_ioctl_data *data = if_mii(ifr); | ||
3670 | unsigned long irq_flags; | ||
3671 | |||
3672 | if (adapter->hw.media_type != e1000_media_type_copper) | ||
3673 | return -EOPNOTSUPP; | ||
3674 | |||
3675 | switch (cmd) { | ||
3676 | case SIOCGMIIPHY: | ||
3677 | data->phy_id = adapter->hw.phy.addr; | ||
3678 | break; | ||
3679 | case SIOCGMIIREG: | ||
3680 | if (!capable(CAP_NET_ADMIN)) | ||
3681 | return -EPERM; | ||
3682 | spin_lock_irqsave(&adapter->stats_lock, irq_flags); | ||
3683 | if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F, | ||
3684 | &data->val_out)) { | ||
3685 | spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); | ||
3686 | return -EIO; | ||
3687 | } | ||
3688 | spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); | ||
3689 | break; | ||
3690 | case SIOCSMIIREG: | ||
3691 | default: | ||
3692 | return -EOPNOTSUPP; | ||
3693 | } | ||
3694 | return 0; | ||
3695 | } | ||
3696 | |||
3697 | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
3698 | { | ||
3699 | switch (cmd) { | ||
3700 | case SIOCGMIIPHY: | ||
3701 | case SIOCGMIIREG: | ||
3702 | case SIOCSMIIREG: | ||
3703 | return e1000_mii_ioctl(netdev, ifr, cmd); | ||
3704 | default: | ||
3705 | return -EOPNOTSUPP; | ||
3706 | } | ||
3707 | } | ||
3708 | |||
3709 | static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) | ||
3710 | { | ||
3711 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
3712 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3713 | struct e1000_hw *hw = &adapter->hw; | ||
3714 | u32 ctrl, ctrl_ext, rctl, status; | ||
3715 | u32 wufc = adapter->wol; | ||
3716 | int retval = 0; | ||
3717 | |||
3718 | netif_device_detach(netdev); | ||
3719 | |||
3720 | if (netif_running(netdev)) { | ||
3721 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); | ||
3722 | e1000e_down(adapter); | ||
3723 | e1000_free_irq(adapter); | ||
3724 | } | ||
3725 | |||
3726 | retval = pci_save_state(pdev); | ||
3727 | if (retval) | ||
3728 | return retval; | ||
3729 | |||
3730 | status = er32(STATUS); | ||
3731 | if (status & E1000_STATUS_LU) | ||
3732 | wufc &= ~E1000_WUFC_LNKC; | ||
3733 | |||
3734 | if (wufc) { | ||
3735 | e1000_setup_rctl(adapter); | ||
3736 | e1000_set_multi(netdev); | ||
3737 | |||
3738 | /* turn on all-multi mode if wake on multicast is enabled */ | ||
3739 | if (wufc & E1000_WUFC_MC) { | ||
3740 | rctl = er32(RCTL); | ||
3741 | rctl |= E1000_RCTL_MPE; | ||
3742 | ew32(RCTL, rctl); | ||
3743 | } | ||
3744 | |||
3745 | ctrl = er32(CTRL); | ||
3746 | /* advertise wake from D3Cold */ | ||
3747 | #define E1000_CTRL_ADVD3WUC 0x00100000 | ||
3748 | /* phy power management enable */ | ||
3749 | #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | ||
3750 | ctrl |= E1000_CTRL_ADVD3WUC | | ||
3751 | E1000_CTRL_EN_PHY_PWR_MGMT; | ||
3752 | ew32(CTRL, ctrl); | ||
3753 | |||
3754 | if (adapter->hw.media_type == e1000_media_type_fiber || | ||
3755 | adapter->hw.media_type == e1000_media_type_internal_serdes) { | ||
3756 | /* keep the laser running in D3 */ | ||
3757 | ctrl_ext = er32(CTRL_EXT); | ||
3758 | ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; | ||
3759 | ew32(CTRL_EXT, ctrl_ext); | ||
3760 | } | ||
3761 | |||
3762 | /* Allow time for pending master requests to run */ | ||
3763 | e1000e_disable_pcie_master(&adapter->hw); | ||
3764 | |||
3765 | ew32(WUC, E1000_WUC_PME_EN); | ||
3766 | ew32(WUFC, wufc); | ||
3767 | pci_enable_wake(pdev, PCI_D3hot, 1); | ||
3768 | pci_enable_wake(pdev, PCI_D3cold, 1); | ||
3769 | } else { | ||
3770 | ew32(WUC, 0); | ||
3771 | ew32(WUFC, 0); | ||
3772 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
3773 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
3774 | } | ||
3775 | |||
3776 | e1000_release_manageability(adapter); | ||
3777 | |||
3778 | /* make sure adapter isn't asleep if manageability is enabled */ | ||
3779 | if (adapter->flags & FLAG_MNG_PT_ENABLED) { | ||
3780 | pci_enable_wake(pdev, PCI_D3hot, 1); | ||
3781 | pci_enable_wake(pdev, PCI_D3cold, 1); | ||
3782 | } | ||
3783 | |||
3784 | if (adapter->hw.phy.type == e1000_phy_igp_3) | ||
3785 | e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); | ||
3786 | |||
3787 | /* Release control of h/w to f/w. If f/w is AMT enabled, this | ||
3788 | * would have already happened in close and is redundant. */ | ||
3789 | e1000_release_hw_control(adapter); | ||
3790 | |||
3791 | pci_disable_device(pdev); | ||
3792 | |||
3793 | pci_set_power_state(pdev, pci_choose_state(pdev, state)); | ||
3794 | |||
3795 | return 0; | ||
3796 | } | ||
3797 | |||
3798 | #ifdef CONFIG_PM | ||
3799 | static int e1000_resume(struct pci_dev *pdev) | ||
3800 | { | ||
3801 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
3802 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3803 | struct e1000_hw *hw = &adapter->hw; | ||
3804 | u32 err; | ||
3805 | |||
3806 | pci_set_power_state(pdev, PCI_D0); | ||
3807 | pci_restore_state(pdev); | ||
3808 | err = pci_enable_device(pdev); | ||
3809 | if (err) { | ||
3810 | dev_err(&pdev->dev, | ||
3811 | "Cannot enable PCI device from suspend\n"); | ||
3812 | return err; | ||
3813 | } | ||
3814 | |||
3815 | pci_set_master(pdev); | ||
3816 | |||
3817 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
3818 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
3819 | |||
3820 | if (netif_running(netdev)) { | ||
3821 | err = e1000_request_irq(adapter); | ||
3822 | if (err) | ||
3823 | return err; | ||
3824 | } | ||
3825 | |||
3826 | e1000e_power_up_phy(adapter); | ||
3827 | e1000e_reset(adapter); | ||
3828 | ew32(WUS, ~0); | ||
3829 | |||
3830 | e1000_init_manageability(adapter); | ||
3831 | |||
3832 | if (netif_running(netdev)) | ||
3833 | e1000e_up(adapter); | ||
3834 | |||
3835 | netif_device_attach(netdev); | ||
3836 | |||
3837 | /* If the controller has AMT, do not set DRV_LOAD until the interface | ||
3838 | * is up. For all other cases, let the f/w know that the h/w is now | ||
3839 | * under the control of the driver. */ | ||
3840 | if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw)) | ||
3841 | e1000_get_hw_control(adapter); | ||
3842 | |||
3843 | return 0; | ||
3844 | } | ||
3845 | #endif | ||
3846 | |||
3847 | static void e1000_shutdown(struct pci_dev *pdev) | ||
3848 | { | ||
3849 | e1000_suspend(pdev, PMSG_SUSPEND); | ||
3850 | } | ||
3851 | |||
3852 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
3853 | /* | ||
3854 | * Polling 'interrupt' - used by things like netconsole to send skbs | ||
3855 | * without having to re-enable interrupts. It's not called while | ||
3856 | * the interrupt routine is executing. | ||
3857 | */ | ||
3858 | static void e1000_netpoll(struct net_device *netdev) | ||
3859 | { | ||
3860 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3861 | |||
3862 | disable_irq(adapter->pdev->irq); | ||
3863 | e1000_intr(adapter->pdev->irq, netdev); | ||
3864 | |||
3865 | e1000_clean_tx_irq(adapter); | ||
3866 | |||
3867 | enable_irq(adapter->pdev->irq); | ||
3868 | } | ||
3869 | #endif | ||
3870 | |||
3871 | /** | ||
3872 | * e1000_io_error_detected - called when PCI error is detected | ||
3873 | * @pdev: Pointer to PCI device | ||
3874 | * @state: The current pci connection state | ||
3875 | * | ||
3876 | * This function is called after a PCI bus error affecting | ||
3877 | * this device has been detected. | ||
3878 | */ | ||
3879 | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, | ||
3880 | pci_channel_state_t state) | ||
3881 | { | ||
3882 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
3883 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3884 | |||
3885 | netif_device_detach(netdev); | ||
3886 | |||
3887 | if (netif_running(netdev)) | ||
3888 | e1000e_down(adapter); | ||
3889 | pci_disable_device(pdev); | ||
3890 | |||
3891 | /* Request a slot slot reset. */ | ||
3892 | return PCI_ERS_RESULT_NEED_RESET; | ||
3893 | } | ||
3894 | |||
3895 | /** | ||
3896 | * e1000_io_slot_reset - called after the pci bus has been reset. | ||
3897 | * @pdev: Pointer to PCI device | ||
3898 | * | ||
3899 | * Restart the card from scratch, as if from a cold-boot. Implementation | ||
3900 | * resembles the first-half of the e1000_resume routine. | ||
3901 | */ | ||
3902 | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) | ||
3903 | { | ||
3904 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
3905 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3906 | struct e1000_hw *hw = &adapter->hw; | ||
3907 | |||
3908 | if (pci_enable_device(pdev)) { | ||
3909 | dev_err(&pdev->dev, | ||
3910 | "Cannot re-enable PCI device after reset.\n"); | ||
3911 | return PCI_ERS_RESULT_DISCONNECT; | ||
3912 | } | ||
3913 | pci_set_master(pdev); | ||
3914 | |||
3915 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
3916 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
3917 | |||
3918 | e1000e_reset(adapter); | ||
3919 | ew32(WUS, ~0); | ||
3920 | |||
3921 | return PCI_ERS_RESULT_RECOVERED; | ||
3922 | } | ||
3923 | |||
3924 | /** | ||
3925 | * e1000_io_resume - called when traffic can start flowing again. | ||
3926 | * @pdev: Pointer to PCI device | ||
3927 | * | ||
3928 | * This callback is called when the error recovery driver tells us that | ||
3929 | * its OK to resume normal operation. Implementation resembles the | ||
3930 | * second-half of the e1000_resume routine. | ||
3931 | */ | ||
3932 | static void e1000_io_resume(struct pci_dev *pdev) | ||
3933 | { | ||
3934 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
3935 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3936 | |||
3937 | e1000_init_manageability(adapter); | ||
3938 | |||
3939 | if (netif_running(netdev)) { | ||
3940 | if (e1000e_up(adapter)) { | ||
3941 | dev_err(&pdev->dev, | ||
3942 | "can't bring device back up after reset\n"); | ||
3943 | return; | ||
3944 | } | ||
3945 | } | ||
3946 | |||
3947 | netif_device_attach(netdev); | ||
3948 | |||
3949 | /* If the controller has AMT, do not set DRV_LOAD until the interface | ||
3950 | * is up. For all other cases, let the f/w know that the h/w is now | ||
3951 | * under the control of the driver. */ | ||
3952 | if (!(adapter->flags & FLAG_HAS_AMT) || | ||
3953 | !e1000e_check_mng_mode(&adapter->hw)) | ||
3954 | e1000_get_hw_control(adapter); | ||
3955 | |||
3956 | } | ||
3957 | |||
3958 | static void e1000_print_device_info(struct e1000_adapter *adapter) | ||
3959 | { | ||
3960 | struct e1000_hw *hw = &adapter->hw; | ||
3961 | struct net_device *netdev = adapter->netdev; | ||
3962 | u32 part_num; | ||
3963 | |||
3964 | /* print bus type/speed/width info */ | ||
3965 | ndev_info(netdev, "(PCI Express:2.5GB/s:%s) " | ||
3966 | "%02x:%02x:%02x:%02x:%02x:%02x\n", | ||
3967 | /* bus width */ | ||
3968 | ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : | ||
3969 | "Width x1"), | ||
3970 | /* MAC address */ | ||
3971 | netdev->dev_addr[0], netdev->dev_addr[1], | ||
3972 | netdev->dev_addr[2], netdev->dev_addr[3], | ||
3973 | netdev->dev_addr[4], netdev->dev_addr[5]); | ||
3974 | ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n", | ||
3975 | (hw->phy.type == e1000_phy_ife) | ||
3976 | ? "10/100" : "1000"); | ||
3977 | e1000e_read_part_num(hw, &part_num); | ||
3978 | ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n", | ||
3979 | hw->mac.type, hw->phy.type, | ||
3980 | (part_num >> 8), (part_num & 0xff)); | ||
3981 | } | ||
3982 | |||
3983 | /** | ||
3984 | * e1000_probe - Device Initialization Routine | ||
3985 | * @pdev: PCI device information struct | ||
3986 | * @ent: entry in e1000_pci_tbl | ||
3987 | * | ||
3988 | * Returns 0 on success, negative on failure | ||
3989 | * | ||
3990 | * e1000_probe initializes an adapter identified by a pci_dev structure. | ||
3991 | * The OS initialization, configuring of the adapter private structure, | ||
3992 | * and a hardware reset occur. | ||
3993 | **/ | ||
3994 | static int __devinit e1000_probe(struct pci_dev *pdev, | ||
3995 | const struct pci_device_id *ent) | ||
3996 | { | ||
3997 | struct net_device *netdev; | ||
3998 | struct e1000_adapter *adapter; | ||
3999 | struct e1000_hw *hw; | ||
4000 | const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; | ||
4001 | unsigned long mmio_start, mmio_len; | ||
4002 | unsigned long flash_start, flash_len; | ||
4003 | |||
4004 | static int cards_found; | ||
4005 | int i, err, pci_using_dac; | ||
4006 | u16 eeprom_data = 0; | ||
4007 | u16 eeprom_apme_mask = E1000_EEPROM_APME; | ||
4008 | |||
4009 | err = pci_enable_device(pdev); | ||
4010 | if (err) | ||
4011 | return err; | ||
4012 | |||
4013 | pci_using_dac = 0; | ||
4014 | err = pci_set_dma_mask(pdev, DMA_64BIT_MASK); | ||
4015 | if (!err) { | ||
4016 | err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); | ||
4017 | if (!err) | ||
4018 | pci_using_dac = 1; | ||
4019 | } else { | ||
4020 | err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); | ||
4021 | if (err) { | ||
4022 | err = pci_set_consistent_dma_mask(pdev, | ||
4023 | DMA_32BIT_MASK); | ||
4024 | if (err) { | ||
4025 | dev_err(&pdev->dev, "No usable DMA " | ||
4026 | "configuration, aborting\n"); | ||
4027 | goto err_dma; | ||
4028 | } | ||
4029 | } | ||
4030 | } | ||
4031 | |||
4032 | err = pci_request_regions(pdev, e1000e_driver_name); | ||
4033 | if (err) | ||
4034 | goto err_pci_reg; | ||
4035 | |||
4036 | pci_set_master(pdev); | ||
4037 | |||
4038 | err = -ENOMEM; | ||
4039 | netdev = alloc_etherdev(sizeof(struct e1000_adapter)); | ||
4040 | if (!netdev) | ||
4041 | goto err_alloc_etherdev; | ||
4042 | |||
4043 | SET_MODULE_OWNER(netdev); | ||
4044 | SET_NETDEV_DEV(netdev, &pdev->dev); | ||
4045 | |||
4046 | pci_set_drvdata(pdev, netdev); | ||
4047 | adapter = netdev_priv(netdev); | ||
4048 | hw = &adapter->hw; | ||
4049 | adapter->netdev = netdev; | ||
4050 | adapter->pdev = pdev; | ||
4051 | adapter->ei = ei; | ||
4052 | adapter->pba = ei->pba; | ||
4053 | adapter->flags = ei->flags; | ||
4054 | adapter->hw.adapter = adapter; | ||
4055 | adapter->hw.mac.type = ei->mac; | ||
4056 | adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; | ||
4057 | |||
4058 | mmio_start = pci_resource_start(pdev, 0); | ||
4059 | mmio_len = pci_resource_len(pdev, 0); | ||
4060 | |||
4061 | err = -EIO; | ||
4062 | adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); | ||
4063 | if (!adapter->hw.hw_addr) | ||
4064 | goto err_ioremap; | ||
4065 | |||
4066 | if ((adapter->flags & FLAG_HAS_FLASH) && | ||
4067 | (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { | ||
4068 | flash_start = pci_resource_start(pdev, 1); | ||
4069 | flash_len = pci_resource_len(pdev, 1); | ||
4070 | adapter->hw.flash_address = ioremap(flash_start, flash_len); | ||
4071 | if (!adapter->hw.flash_address) | ||
4072 | goto err_flashmap; | ||
4073 | } | ||
4074 | |||
4075 | /* construct the net_device struct */ | ||
4076 | netdev->open = &e1000_open; | ||
4077 | netdev->stop = &e1000_close; | ||
4078 | netdev->hard_start_xmit = &e1000_xmit_frame; | ||
4079 | netdev->get_stats = &e1000_get_stats; | ||
4080 | netdev->set_multicast_list = &e1000_set_multi; | ||
4081 | netdev->set_mac_address = &e1000_set_mac; | ||
4082 | netdev->change_mtu = &e1000_change_mtu; | ||
4083 | netdev->do_ioctl = &e1000_ioctl; | ||
4084 | e1000e_set_ethtool_ops(netdev); | ||
4085 | netdev->tx_timeout = &e1000_tx_timeout; | ||
4086 | netdev->watchdog_timeo = 5 * HZ; | ||
4087 | netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); | ||
4088 | netdev->vlan_rx_register = e1000_vlan_rx_register; | ||
4089 | netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid; | ||
4090 | netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid; | ||
4091 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
4092 | netdev->poll_controller = e1000_netpoll; | ||
4093 | #endif | ||
4094 | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | ||
4095 | |||
4096 | netdev->mem_start = mmio_start; | ||
4097 | netdev->mem_end = mmio_start + mmio_len; | ||
4098 | |||
4099 | adapter->bd_number = cards_found++; | ||
4100 | |||
4101 | /* setup adapter struct */ | ||
4102 | err = e1000_sw_init(adapter); | ||
4103 | if (err) | ||
4104 | goto err_sw_init; | ||
4105 | |||
4106 | err = -EIO; | ||
4107 | |||
4108 | memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); | ||
4109 | memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); | ||
4110 | memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); | ||
4111 | |||
4112 | err = ei->get_invariants(adapter); | ||
4113 | if (err) | ||
4114 | goto err_hw_init; | ||
4115 | |||
4116 | hw->mac.ops.get_bus_info(&adapter->hw); | ||
4117 | |||
4118 | adapter->hw.phy.wait_for_link = 0; | ||
4119 | |||
4120 | /* Copper options */ | ||
4121 | if (adapter->hw.media_type == e1000_media_type_copper) { | ||
4122 | adapter->hw.phy.mdix = AUTO_ALL_MODES; | ||
4123 | adapter->hw.phy.disable_polarity_correction = 0; | ||
4124 | adapter->hw.phy.ms_type = e1000_ms_hw_default; | ||
4125 | } | ||
4126 | |||
4127 | if (e1000_check_reset_block(&adapter->hw)) | ||
4128 | ndev_info(netdev, | ||
4129 | "PHY reset is blocked due to SOL/IDER session.\n"); | ||
4130 | |||
4131 | netdev->features = NETIF_F_SG | | ||
4132 | NETIF_F_HW_CSUM | | ||
4133 | NETIF_F_HW_VLAN_TX | | ||
4134 | NETIF_F_HW_VLAN_RX; | ||
4135 | |||
4136 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) | ||
4137 | netdev->features |= NETIF_F_HW_VLAN_FILTER; | ||
4138 | |||
4139 | netdev->features |= NETIF_F_TSO; | ||
4140 | netdev->features |= NETIF_F_TSO6; | ||
4141 | |||
4142 | if (pci_using_dac) | ||
4143 | netdev->features |= NETIF_F_HIGHDMA; | ||
4144 | |||
4145 | /* We should not be using LLTX anymore, but we are still TX faster with | ||
4146 | * it. */ | ||
4147 | netdev->features |= NETIF_F_LLTX; | ||
4148 | |||
4149 | if (e1000e_enable_mng_pass_thru(&adapter->hw)) | ||
4150 | adapter->flags |= FLAG_MNG_PT_ENABLED; | ||
4151 | |||
4152 | /* before reading the NVM, reset the controller to | ||
4153 | * put the device in a known good starting state */ | ||
4154 | adapter->hw.mac.ops.reset_hw(&adapter->hw); | ||
4155 | |||
4156 | /* | ||
4157 | * systems with ASPM and others may see the checksum fail on the first | ||
4158 | * attempt. Let's give it a few tries | ||
4159 | */ | ||
4160 | for (i = 0;; i++) { | ||
4161 | if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) | ||
4162 | break; | ||
4163 | if (i == 2) { | ||
4164 | ndev_err(netdev, "The NVM Checksum Is Not Valid\n"); | ||
4165 | err = -EIO; | ||
4166 | goto err_eeprom; | ||
4167 | } | ||
4168 | } | ||
4169 | |||
4170 | /* copy the MAC address out of the NVM */ | ||
4171 | if (e1000e_read_mac_addr(&adapter->hw)) | ||
4172 | ndev_err(netdev, "NVM Read Error while reading MAC address\n"); | ||
4173 | |||
4174 | memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); | ||
4175 | memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); | ||
4176 | |||
4177 | if (!is_valid_ether_addr(netdev->perm_addr)) { | ||
4178 | ndev_err(netdev, "Invalid MAC Address: " | ||
4179 | "%02x:%02x:%02x:%02x:%02x:%02x\n", | ||
4180 | netdev->perm_addr[0], netdev->perm_addr[1], | ||
4181 | netdev->perm_addr[2], netdev->perm_addr[3], | ||
4182 | netdev->perm_addr[4], netdev->perm_addr[5]); | ||
4183 | err = -EIO; | ||
4184 | goto err_eeprom; | ||
4185 | } | ||
4186 | |||
4187 | init_timer(&adapter->watchdog_timer); | ||
4188 | adapter->watchdog_timer.function = &e1000_watchdog; | ||
4189 | adapter->watchdog_timer.data = (unsigned long) adapter; | ||
4190 | |||
4191 | init_timer(&adapter->phy_info_timer); | ||
4192 | adapter->phy_info_timer.function = &e1000_update_phy_info; | ||
4193 | adapter->phy_info_timer.data = (unsigned long) adapter; | ||
4194 | |||
4195 | INIT_WORK(&adapter->reset_task, e1000_reset_task); | ||
4196 | INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); | ||
4197 | |||
4198 | e1000e_check_options(adapter); | ||
4199 | |||
4200 | /* Initialize link parameters. User can change them with ethtool */ | ||
4201 | adapter->hw.mac.autoneg = 1; | ||
4202 | adapter->hw.mac.original_fc = e1000_fc_default; | ||
4203 | adapter->hw.mac.fc = e1000_fc_default; | ||
4204 | adapter->hw.phy.autoneg_advertised = 0x2f; | ||
4205 | |||
4206 | /* ring size defaults */ | ||
4207 | adapter->rx_ring->count = 256; | ||
4208 | adapter->tx_ring->count = 256; | ||
4209 | |||
4210 | /* | ||
4211 | * Initial Wake on LAN setting - If APM wake is enabled in | ||
4212 | * the EEPROM, enable the ACPI Magic Packet filter | ||
4213 | */ | ||
4214 | if (adapter->flags & FLAG_APME_IN_WUC) { | ||
4215 | /* APME bit in EEPROM is mapped to WUC.APME */ | ||
4216 | eeprom_data = er32(WUC); | ||
4217 | eeprom_apme_mask = E1000_WUC_APME; | ||
4218 | } else if (adapter->flags & FLAG_APME_IN_CTRL3) { | ||
4219 | if (adapter->flags & FLAG_APME_CHECK_PORT_B && | ||
4220 | (adapter->hw.bus.func == 1)) | ||
4221 | e1000_read_nvm(&adapter->hw, | ||
4222 | NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); | ||
4223 | else | ||
4224 | e1000_read_nvm(&adapter->hw, | ||
4225 | NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); | ||
4226 | } | ||
4227 | |||
4228 | /* fetch WoL from EEPROM */ | ||
4229 | if (eeprom_data & eeprom_apme_mask) | ||
4230 | adapter->eeprom_wol |= E1000_WUFC_MAG; | ||
4231 | |||
4232 | /* | ||
4233 | * now that we have the eeprom settings, apply the special cases | ||
4234 | * where the eeprom may be wrong or the board simply won't support | ||
4235 | * wake on lan on a particular port | ||
4236 | */ | ||
4237 | if (!(adapter->flags & FLAG_HAS_WOL)) | ||
4238 | adapter->eeprom_wol = 0; | ||
4239 | |||
4240 | /* initialize the wol settings based on the eeprom settings */ | ||
4241 | adapter->wol = adapter->eeprom_wol; | ||
4242 | |||
4243 | /* reset the hardware with the new settings */ | ||
4244 | e1000e_reset(adapter); | ||
4245 | |||
4246 | /* If the controller has AMT, do not set DRV_LOAD until the interface | ||
4247 | * is up. For all other cases, let the f/w know that the h/w is now | ||
4248 | * under the control of the driver. */ | ||
4249 | if (!(adapter->flags & FLAG_HAS_AMT) || | ||
4250 | !e1000e_check_mng_mode(&adapter->hw)) | ||
4251 | e1000_get_hw_control(adapter); | ||
4252 | |||
4253 | /* tell the stack to leave us alone until e1000_open() is called */ | ||
4254 | netif_carrier_off(netdev); | ||
4255 | netif_stop_queue(netdev); | ||
4256 | |||
4257 | strcpy(netdev->name, "eth%d"); | ||
4258 | err = register_netdev(netdev); | ||
4259 | if (err) | ||
4260 | goto err_register; | ||
4261 | |||
4262 | e1000_print_device_info(adapter); | ||
4263 | |||
4264 | return 0; | ||
4265 | |||
4266 | err_register: | ||
4267 | err_hw_init: | ||
4268 | e1000_release_hw_control(adapter); | ||
4269 | err_eeprom: | ||
4270 | if (!e1000_check_reset_block(&adapter->hw)) | ||
4271 | e1000_phy_hw_reset(&adapter->hw); | ||
4272 | |||
4273 | if (adapter->hw.flash_address) | ||
4274 | iounmap(adapter->hw.flash_address); | ||
4275 | |||
4276 | err_flashmap: | ||
4277 | kfree(adapter->tx_ring); | ||
4278 | kfree(adapter->rx_ring); | ||
4279 | err_sw_init: | ||
4280 | iounmap(adapter->hw.hw_addr); | ||
4281 | err_ioremap: | ||
4282 | free_netdev(netdev); | ||
4283 | err_alloc_etherdev: | ||
4284 | pci_release_regions(pdev); | ||
4285 | err_pci_reg: | ||
4286 | err_dma: | ||
4287 | pci_disable_device(pdev); | ||
4288 | return err; | ||
4289 | } | ||
4290 | |||
4291 | /** | ||
4292 | * e1000_remove - Device Removal Routine | ||
4293 | * @pdev: PCI device information struct | ||
4294 | * | ||
4295 | * e1000_remove is called by the PCI subsystem to alert the driver | ||
4296 | * that it should release a PCI device. The could be caused by a | ||
4297 | * Hot-Plug event, or because the driver is going to be removed from | ||
4298 | * memory. | ||
4299 | **/ | ||
4300 | static void __devexit e1000_remove(struct pci_dev *pdev) | ||
4301 | { | ||
4302 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
4303 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
4304 | |||
4305 | /* flush_scheduled work may reschedule our watchdog task, so | ||
4306 | * explicitly disable watchdog tasks from being rescheduled */ | ||
4307 | set_bit(__E1000_DOWN, &adapter->state); | ||
4308 | del_timer_sync(&adapter->watchdog_timer); | ||
4309 | del_timer_sync(&adapter->phy_info_timer); | ||
4310 | |||
4311 | flush_scheduled_work(); | ||
4312 | |||
4313 | e1000_release_manageability(adapter); | ||
4314 | |||
4315 | /* Release control of h/w to f/w. If f/w is AMT enabled, this | ||
4316 | * would have already happened in close and is redundant. */ | ||
4317 | e1000_release_hw_control(adapter); | ||
4318 | |||
4319 | unregister_netdev(netdev); | ||
4320 | |||
4321 | if (!e1000_check_reset_block(&adapter->hw)) | ||
4322 | e1000_phy_hw_reset(&adapter->hw); | ||
4323 | |||
4324 | kfree(adapter->tx_ring); | ||
4325 | kfree(adapter->rx_ring); | ||
4326 | |||
4327 | iounmap(adapter->hw.hw_addr); | ||
4328 | if (adapter->hw.flash_address) | ||
4329 | iounmap(adapter->hw.flash_address); | ||
4330 | pci_release_regions(pdev); | ||
4331 | |||
4332 | free_netdev(netdev); | ||
4333 | |||
4334 | pci_disable_device(pdev); | ||
4335 | } | ||
4336 | |||
4337 | /* PCI Error Recovery (ERS) */ | ||
4338 | static struct pci_error_handlers e1000_err_handler = { | ||
4339 | .error_detected = e1000_io_error_detected, | ||
4340 | .slot_reset = e1000_io_slot_reset, | ||
4341 | .resume = e1000_io_resume, | ||
4342 | }; | ||
4343 | |||
4344 | static struct pci_device_id e1000_pci_tbl[] = { | ||
4345 | /* | ||
4346 | * Support for 82571/2/3, es2lan and ich8 will be phased in | ||
4347 | * stepwise. | ||
4348 | |||
4349 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, | ||
4350 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, | ||
4351 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, | ||
4352 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, | ||
4353 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, | ||
4354 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, | ||
4355 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, | ||
4356 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, | ||
4357 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, | ||
4358 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, | ||
4359 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, | ||
4360 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, | ||
4361 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, | ||
4362 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), | ||
4363 | board_80003es2lan }, | ||
4364 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), | ||
4365 | board_80003es2lan }, | ||
4366 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), | ||
4367 | board_80003es2lan }, | ||
4368 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), | ||
4369 | board_80003es2lan }, | ||
4370 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, | ||
4371 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, | ||
4372 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, | ||
4373 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, | ||
4374 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, | ||
4375 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, | ||
4376 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, | ||
4377 | */ | ||
4378 | |||
4379 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, | ||
4380 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, | ||
4381 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, | ||
4382 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, | ||
4383 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, | ||
4384 | |||
4385 | { } /* terminate list */ | ||
4386 | }; | ||
4387 | MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); | ||
4388 | |||
4389 | /* PCI Device API Driver */ | ||
4390 | static struct pci_driver e1000_driver = { | ||
4391 | .name = e1000e_driver_name, | ||
4392 | .id_table = e1000_pci_tbl, | ||
4393 | .probe = e1000_probe, | ||
4394 | .remove = __devexit_p(e1000_remove), | ||
4395 | #ifdef CONFIG_PM | ||
4396 | /* Power Managment Hooks */ | ||
4397 | .suspend = e1000_suspend, | ||
4398 | .resume = e1000_resume, | ||
4399 | #endif | ||
4400 | .shutdown = e1000_shutdown, | ||
4401 | .err_handler = &e1000_err_handler | ||
4402 | }; | ||
4403 | |||
4404 | /** | ||
4405 | * e1000_init_module - Driver Registration Routine | ||
4406 | * | ||
4407 | * e1000_init_module is the first routine called when the driver is | ||
4408 | * loaded. All it does is register with the PCI subsystem. | ||
4409 | **/ | ||
4410 | static int __init e1000_init_module(void) | ||
4411 | { | ||
4412 | int ret; | ||
4413 | printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n", | ||
4414 | e1000e_driver_name, e1000e_driver_version); | ||
4415 | printk(KERN_INFO "%s: Copyright (c) 1999-2007 Intel Corporation.\n", | ||
4416 | e1000e_driver_name); | ||
4417 | ret = pci_register_driver(&e1000_driver); | ||
4418 | |||
4419 | return ret; | ||
4420 | } | ||
4421 | module_init(e1000_init_module); | ||
4422 | |||
4423 | /** | ||
4424 | * e1000_exit_module - Driver Exit Cleanup Routine | ||
4425 | * | ||
4426 | * e1000_exit_module is called just before the driver is removed | ||
4427 | * from memory. | ||
4428 | **/ | ||
4429 | static void __exit e1000_exit_module(void) | ||
4430 | { | ||
4431 | pci_unregister_driver(&e1000_driver); | ||
4432 | } | ||
4433 | module_exit(e1000_exit_module); | ||
4434 | |||
4435 | |||
4436 | MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); | ||
4437 | MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); | ||
4438 | MODULE_LICENSE("GPL"); | ||
4439 | MODULE_VERSION(DRV_VERSION); | ||
4440 | |||
4441 | /* e1000_main.c */ | ||
diff --git a/drivers/net/e1000e/param.c b/drivers/net/e1000e/param.c new file mode 100644 index 000000000000..e4e655efb23c --- /dev/null +++ b/drivers/net/e1000e/param.c | |||
@@ -0,0 +1,382 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | #include <linux/netdevice.h> | ||
30 | |||
31 | #include "e1000.h" | ||
32 | |||
33 | /* This is the only thing that needs to be changed to adjust the | ||
34 | * maximum number of ports that the driver can manage. | ||
35 | */ | ||
36 | |||
37 | #define E1000_MAX_NIC 32 | ||
38 | |||
39 | #define OPTION_UNSET -1 | ||
40 | #define OPTION_DISABLED 0 | ||
41 | #define OPTION_ENABLED 1 | ||
42 | |||
43 | #define COPYBREAK_DEFAULT 256 | ||
44 | unsigned int copybreak = COPYBREAK_DEFAULT; | ||
45 | module_param(copybreak, uint, 0644); | ||
46 | MODULE_PARM_DESC(copybreak, | ||
47 | "Maximum size of packet that is copied to a new buffer on receive"); | ||
48 | |||
49 | /* All parameters are treated the same, as an integer array of values. | ||
50 | * This macro just reduces the need to repeat the same declaration code | ||
51 | * over and over (plus this helps to avoid typo bugs). | ||
52 | */ | ||
53 | |||
54 | #define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET } | ||
55 | #define E1000_PARAM(X, desc) \ | ||
56 | static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \ | ||
57 | static int num_##X; \ | ||
58 | module_param_array_named(X, X, int, &num_##X, 0); \ | ||
59 | MODULE_PARM_DESC(X, desc); | ||
60 | |||
61 | |||
62 | /* Transmit Interrupt Delay in units of 1.024 microseconds | ||
63 | * Tx interrupt delay needs to typically be set to something non zero | ||
64 | * | ||
65 | * Valid Range: 0-65535 | ||
66 | */ | ||
67 | E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay"); | ||
68 | #define DEFAULT_TIDV 8 | ||
69 | #define MAX_TXDELAY 0xFFFF | ||
70 | #define MIN_TXDELAY 0 | ||
71 | |||
72 | /* Transmit Absolute Interrupt Delay in units of 1.024 microseconds | ||
73 | * | ||
74 | * Valid Range: 0-65535 | ||
75 | */ | ||
76 | E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay"); | ||
77 | #define DEFAULT_TADV 32 | ||
78 | #define MAX_TXABSDELAY 0xFFFF | ||
79 | #define MIN_TXABSDELAY 0 | ||
80 | |||
81 | /* Receive Interrupt Delay in units of 1.024 microseconds | ||
82 | * hardware will likely hang if you set this to anything but zero. | ||
83 | * | ||
84 | * Valid Range: 0-65535 | ||
85 | */ | ||
86 | E1000_PARAM(RxIntDelay, "Receive Interrupt Delay"); | ||
87 | #define DEFAULT_RDTR 0 | ||
88 | #define MAX_RXDELAY 0xFFFF | ||
89 | #define MIN_RXDELAY 0 | ||
90 | |||
91 | /* Receive Absolute Interrupt Delay in units of 1.024 microseconds | ||
92 | * | ||
93 | * Valid Range: 0-65535 | ||
94 | */ | ||
95 | E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay"); | ||
96 | #define DEFAULT_RADV 8 | ||
97 | #define MAX_RXABSDELAY 0xFFFF | ||
98 | #define MIN_RXABSDELAY 0 | ||
99 | |||
100 | /* Interrupt Throttle Rate (interrupts/sec) | ||
101 | * | ||
102 | * Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative) | ||
103 | */ | ||
104 | E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate"); | ||
105 | #define DEFAULT_ITR 3 | ||
106 | #define MAX_ITR 100000 | ||
107 | #define MIN_ITR 100 | ||
108 | |||
109 | /* Enable Smart Power Down of the PHY | ||
110 | * | ||
111 | * Valid Range: 0, 1 | ||
112 | * | ||
113 | * Default Value: 0 (disabled) | ||
114 | */ | ||
115 | E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down"); | ||
116 | |||
117 | /* Enable Kumeran Lock Loss workaround | ||
118 | * | ||
119 | * Valid Range: 0, 1 | ||
120 | * | ||
121 | * Default Value: 1 (enabled) | ||
122 | */ | ||
123 | E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround"); | ||
124 | |||
125 | struct e1000_option { | ||
126 | enum { enable_option, range_option, list_option } type; | ||
127 | char *name; | ||
128 | char *err; | ||
129 | int def; | ||
130 | union { | ||
131 | struct { /* range_option info */ | ||
132 | int min; | ||
133 | int max; | ||
134 | } r; | ||
135 | struct { /* list_option info */ | ||
136 | int nr; | ||
137 | struct e1000_opt_list { int i; char *str; } *p; | ||
138 | } l; | ||
139 | } arg; | ||
140 | }; | ||
141 | |||
142 | static int __devinit e1000_validate_option(int *value, | ||
143 | struct e1000_option *opt, | ||
144 | struct e1000_adapter *adapter) | ||
145 | { | ||
146 | if (*value == OPTION_UNSET) { | ||
147 | *value = opt->def; | ||
148 | return 0; | ||
149 | } | ||
150 | |||
151 | switch (opt->type) { | ||
152 | case enable_option: | ||
153 | switch (*value) { | ||
154 | case OPTION_ENABLED: | ||
155 | ndev_info(adapter->netdev, "%s Enabled\n", opt->name); | ||
156 | return 0; | ||
157 | case OPTION_DISABLED: | ||
158 | ndev_info(adapter->netdev, "%s Disabled\n", opt->name); | ||
159 | return 0; | ||
160 | } | ||
161 | break; | ||
162 | case range_option: | ||
163 | if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) { | ||
164 | ndev_info(adapter->netdev, | ||
165 | "%s set to %i\n", opt->name, *value); | ||
166 | return 0; | ||
167 | } | ||
168 | break; | ||
169 | case list_option: { | ||
170 | int i; | ||
171 | struct e1000_opt_list *ent; | ||
172 | |||
173 | for (i = 0; i < opt->arg.l.nr; i++) { | ||
174 | ent = &opt->arg.l.p[i]; | ||
175 | if (*value == ent->i) { | ||
176 | if (ent->str[0] != '\0') | ||
177 | ndev_info(adapter->netdev, "%s\n", | ||
178 | ent->str); | ||
179 | return 0; | ||
180 | } | ||
181 | } | ||
182 | } | ||
183 | break; | ||
184 | default: | ||
185 | BUG(); | ||
186 | } | ||
187 | |||
188 | ndev_info(adapter->netdev, "Invalid %s value specified (%i) %s\n", | ||
189 | opt->name, *value, opt->err); | ||
190 | *value = opt->def; | ||
191 | return -1; | ||
192 | } | ||
193 | |||
194 | /** | ||
195 | * e1000e_check_options - Range Checking for Command Line Parameters | ||
196 | * @adapter: board private structure | ||
197 | * | ||
198 | * This routine checks all command line parameters for valid user | ||
199 | * input. If an invalid value is given, or if no user specified | ||
200 | * value exists, a default value is used. The final value is stored | ||
201 | * in a variable in the adapter structure. | ||
202 | **/ | ||
203 | void __devinit e1000e_check_options(struct e1000_adapter *adapter) | ||
204 | { | ||
205 | struct e1000_hw *hw = &adapter->hw; | ||
206 | struct net_device *netdev = adapter->netdev; | ||
207 | int bd = adapter->bd_number; | ||
208 | |||
209 | if (bd >= E1000_MAX_NIC) { | ||
210 | ndev_notice(netdev, | ||
211 | "Warning: no configuration for board #%i\n", bd); | ||
212 | ndev_notice(netdev, "Using defaults for all values\n"); | ||
213 | } | ||
214 | |||
215 | { /* Transmit Interrupt Delay */ | ||
216 | struct e1000_option opt = { | ||
217 | .type = range_option, | ||
218 | .name = "Transmit Interrupt Delay", | ||
219 | .err = "using default of " | ||
220 | __MODULE_STRING(DEFAULT_TIDV), | ||
221 | .def = DEFAULT_TIDV, | ||
222 | .arg = { .r = { .min = MIN_TXDELAY, | ||
223 | .max = MAX_TXDELAY } } | ||
224 | }; | ||
225 | |||
226 | if (num_TxIntDelay > bd) { | ||
227 | adapter->tx_int_delay = TxIntDelay[bd]; | ||
228 | e1000_validate_option(&adapter->tx_int_delay, &opt, | ||
229 | adapter); | ||
230 | } else { | ||
231 | adapter->tx_int_delay = opt.def; | ||
232 | } | ||
233 | } | ||
234 | { /* Transmit Absolute Interrupt Delay */ | ||
235 | struct e1000_option opt = { | ||
236 | .type = range_option, | ||
237 | .name = "Transmit Absolute Interrupt Delay", | ||
238 | .err = "using default of " | ||
239 | __MODULE_STRING(DEFAULT_TADV), | ||
240 | .def = DEFAULT_TADV, | ||
241 | .arg = { .r = { .min = MIN_TXABSDELAY, | ||
242 | .max = MAX_TXABSDELAY } } | ||
243 | }; | ||
244 | |||
245 | if (num_TxAbsIntDelay > bd) { | ||
246 | adapter->tx_abs_int_delay = TxAbsIntDelay[bd]; | ||
247 | e1000_validate_option(&adapter->tx_abs_int_delay, &opt, | ||
248 | adapter); | ||
249 | } else { | ||
250 | adapter->tx_abs_int_delay = opt.def; | ||
251 | } | ||
252 | } | ||
253 | { /* Receive Interrupt Delay */ | ||
254 | struct e1000_option opt = { | ||
255 | .type = range_option, | ||
256 | .name = "Receive Interrupt Delay", | ||
257 | .err = "using default of " | ||
258 | __MODULE_STRING(DEFAULT_RDTR), | ||
259 | .def = DEFAULT_RDTR, | ||
260 | .arg = { .r = { .min = MIN_RXDELAY, | ||
261 | .max = MAX_RXDELAY } } | ||
262 | }; | ||
263 | |||
264 | /* modify min and default if 82573 for slow ping w/a, | ||
265 | * a value greater than 8 needs to be set for RDTR */ | ||
266 | if (adapter->flags & FLAG_HAS_ASPM) { | ||
267 | opt.def = 32; | ||
268 | opt.arg.r.min = 8; | ||
269 | } | ||
270 | |||
271 | if (num_RxIntDelay > bd) { | ||
272 | adapter->rx_int_delay = RxIntDelay[bd]; | ||
273 | e1000_validate_option(&adapter->rx_int_delay, &opt, | ||
274 | adapter); | ||
275 | } else { | ||
276 | adapter->rx_int_delay = opt.def; | ||
277 | } | ||
278 | } | ||
279 | { /* Receive Absolute Interrupt Delay */ | ||
280 | struct e1000_option opt = { | ||
281 | .type = range_option, | ||
282 | .name = "Receive Absolute Interrupt Delay", | ||
283 | .err = "using default of " | ||
284 | __MODULE_STRING(DEFAULT_RADV), | ||
285 | .def = DEFAULT_RADV, | ||
286 | .arg = { .r = { .min = MIN_RXABSDELAY, | ||
287 | .max = MAX_RXABSDELAY } } | ||
288 | }; | ||
289 | |||
290 | if (num_RxAbsIntDelay > bd) { | ||
291 | adapter->rx_abs_int_delay = RxAbsIntDelay[bd]; | ||
292 | e1000_validate_option(&adapter->rx_abs_int_delay, &opt, | ||
293 | adapter); | ||
294 | } else { | ||
295 | adapter->rx_abs_int_delay = opt.def; | ||
296 | } | ||
297 | } | ||
298 | { /* Interrupt Throttling Rate */ | ||
299 | struct e1000_option opt = { | ||
300 | .type = range_option, | ||
301 | .name = "Interrupt Throttling Rate (ints/sec)", | ||
302 | .err = "using default of " | ||
303 | __MODULE_STRING(DEFAULT_ITR), | ||
304 | .def = DEFAULT_ITR, | ||
305 | .arg = { .r = { .min = MIN_ITR, | ||
306 | .max = MAX_ITR } } | ||
307 | }; | ||
308 | |||
309 | if (num_InterruptThrottleRate > bd) { | ||
310 | adapter->itr = InterruptThrottleRate[bd]; | ||
311 | switch (adapter->itr) { | ||
312 | case 0: | ||
313 | ndev_info(netdev, "%s turned off\n", | ||
314 | opt.name); | ||
315 | break; | ||
316 | case 1: | ||
317 | ndev_info(netdev, | ||
318 | "%s set to dynamic mode\n", | ||
319 | opt.name); | ||
320 | adapter->itr_setting = adapter->itr; | ||
321 | adapter->itr = 20000; | ||
322 | break; | ||
323 | case 3: | ||
324 | ndev_info(netdev, | ||
325 | "%s set to dynamic conservative mode\n", | ||
326 | opt.name); | ||
327 | adapter->itr_setting = adapter->itr; | ||
328 | adapter->itr = 20000; | ||
329 | break; | ||
330 | default: | ||
331 | e1000_validate_option(&adapter->itr, &opt, | ||
332 | adapter); | ||
333 | /* | ||
334 | * save the setting, because the dynamic bits | ||
335 | * change itr. clear the lower two bits | ||
336 | * because they are used as control | ||
337 | */ | ||
338 | adapter->itr_setting = adapter->itr & ~3; | ||
339 | break; | ||
340 | } | ||
341 | } else { | ||
342 | adapter->itr_setting = opt.def; | ||
343 | adapter->itr = 20000; | ||
344 | } | ||
345 | } | ||
346 | { /* Smart Power Down */ | ||
347 | struct e1000_option opt = { | ||
348 | .type = enable_option, | ||
349 | .name = "PHY Smart Power Down", | ||
350 | .err = "defaulting to Disabled", | ||
351 | .def = OPTION_DISABLED | ||
352 | }; | ||
353 | |||
354 | if (num_SmartPowerDownEnable > bd) { | ||
355 | int spd = SmartPowerDownEnable[bd]; | ||
356 | e1000_validate_option(&spd, &opt, adapter); | ||
357 | if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) | ||
358 | && spd) | ||
359 | adapter->flags |= FLAG_SMART_POWER_DOWN; | ||
360 | } | ||
361 | } | ||
362 | { /* Kumeran Lock Loss Workaround */ | ||
363 | struct e1000_option opt = { | ||
364 | .type = enable_option, | ||
365 | .name = "Kumeran Lock Loss Workaround", | ||
366 | .err = "defaulting to Enabled", | ||
367 | .def = OPTION_ENABLED | ||
368 | }; | ||
369 | |||
370 | if (num_KumeranLockLoss > bd) { | ||
371 | int kmrn_lock_loss = KumeranLockLoss[bd]; | ||
372 | e1000_validate_option(&kmrn_lock_loss, &opt, adapter); | ||
373 | if (hw->mac.type == e1000_ich8lan) | ||
374 | e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, | ||
375 | kmrn_lock_loss); | ||
376 | } else { | ||
377 | if (hw->mac.type == e1000_ich8lan) | ||
378 | e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, | ||
379 | opt.def); | ||
380 | } | ||
381 | } | ||
382 | } | ||
diff --git a/drivers/net/e1000e/phy.c b/drivers/net/e1000e/phy.c new file mode 100644 index 000000000000..793231810ae0 --- /dev/null +++ b/drivers/net/e1000e/phy.c | |||
@@ -0,0 +1,1773 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | #include <linux/delay.h> | ||
30 | |||
31 | #include "e1000.h" | ||
32 | |||
33 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); | ||
34 | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); | ||
35 | static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); | ||
36 | static s32 e1000_wait_autoneg(struct e1000_hw *hw); | ||
37 | |||
38 | /* Cable length tables */ | ||
39 | static const u16 e1000_m88_cable_length_table[] = | ||
40 | { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; | ||
41 | |||
42 | static const u16 e1000_igp_2_cable_length_table[] = | ||
43 | { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, | ||
44 | 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, | ||
45 | 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, | ||
46 | 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, | ||
47 | 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, | ||
48 | 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, | ||
49 | 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, | ||
50 | 124}; | ||
51 | #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ | ||
52 | (sizeof(e1000_igp_2_cable_length_table) / \ | ||
53 | sizeof(e1000_igp_2_cable_length_table[0])) | ||
54 | |||
55 | /** | ||
56 | * e1000e_check_reset_block_generic - Check if PHY reset is blocked | ||
57 | * @hw: pointer to the HW structure | ||
58 | * | ||
59 | * Read the PHY management control register and check whether a PHY reset | ||
60 | * is blocked. If a reset is not blocked return 0, otherwise | ||
61 | * return E1000_BLK_PHY_RESET (12). | ||
62 | **/ | ||
63 | s32 e1000e_check_reset_block_generic(struct e1000_hw *hw) | ||
64 | { | ||
65 | u32 manc; | ||
66 | |||
67 | manc = er32(MANC); | ||
68 | |||
69 | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? | ||
70 | E1000_BLK_PHY_RESET : 0; | ||
71 | } | ||
72 | |||
73 | /** | ||
74 | * e1000e_get_phy_id - Retrieve the PHY ID and revision | ||
75 | * @hw: pointer to the HW structure | ||
76 | * | ||
77 | * Reads the PHY registers and stores the PHY ID and possibly the PHY | ||
78 | * revision in the hardware structure. | ||
79 | **/ | ||
80 | s32 e1000e_get_phy_id(struct e1000_hw *hw) | ||
81 | { | ||
82 | struct e1000_phy_info *phy = &hw->phy; | ||
83 | s32 ret_val; | ||
84 | u16 phy_id; | ||
85 | |||
86 | ret_val = e1e_rphy(hw, PHY_ID1, &phy_id); | ||
87 | if (ret_val) | ||
88 | return ret_val; | ||
89 | |||
90 | phy->id = (u32)(phy_id << 16); | ||
91 | udelay(20); | ||
92 | ret_val = e1e_rphy(hw, PHY_ID2, &phy_id); | ||
93 | if (ret_val) | ||
94 | return ret_val; | ||
95 | |||
96 | phy->id |= (u32)(phy_id & PHY_REVISION_MASK); | ||
97 | phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); | ||
98 | |||
99 | return 0; | ||
100 | } | ||
101 | |||
102 | /** | ||
103 | * e1000e_phy_reset_dsp - Reset PHY DSP | ||
104 | * @hw: pointer to the HW structure | ||
105 | * | ||
106 | * Reset the digital signal processor. | ||
107 | **/ | ||
108 | s32 e1000e_phy_reset_dsp(struct e1000_hw *hw) | ||
109 | { | ||
110 | s32 ret_val; | ||
111 | |||
112 | ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); | ||
113 | if (ret_val) | ||
114 | return ret_val; | ||
115 | |||
116 | return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0); | ||
117 | } | ||
118 | |||
119 | /** | ||
120 | * e1000_read_phy_reg_mdic - Read MDI control register | ||
121 | * @hw: pointer to the HW structure | ||
122 | * @offset: register offset to be read | ||
123 | * @data: pointer to the read data | ||
124 | * | ||
125 | * Reads the MDI control regsiter in the PHY at offset and stores the | ||
126 | * information read to data. | ||
127 | **/ | ||
128 | static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) | ||
129 | { | ||
130 | struct e1000_phy_info *phy = &hw->phy; | ||
131 | u32 i, mdic = 0; | ||
132 | |||
133 | if (offset > MAX_PHY_REG_ADDRESS) { | ||
134 | hw_dbg(hw, "PHY Address %d is out of range\n", offset); | ||
135 | return -E1000_ERR_PARAM; | ||
136 | } | ||
137 | |||
138 | /* Set up Op-code, Phy Address, and register offset in the MDI | ||
139 | * Control register. The MAC will take care of interfacing with the | ||
140 | * PHY to retrieve the desired data. | ||
141 | */ | ||
142 | mdic = ((offset << E1000_MDIC_REG_SHIFT) | | ||
143 | (phy->addr << E1000_MDIC_PHY_SHIFT) | | ||
144 | (E1000_MDIC_OP_READ)); | ||
145 | |||
146 | ew32(MDIC, mdic); | ||
147 | |||
148 | /* Poll the ready bit to see if the MDI read completed */ | ||
149 | for (i = 0; i < 64; i++) { | ||
150 | udelay(50); | ||
151 | mdic = er32(MDIC); | ||
152 | if (mdic & E1000_MDIC_READY) | ||
153 | break; | ||
154 | } | ||
155 | if (!(mdic & E1000_MDIC_READY)) { | ||
156 | hw_dbg(hw, "MDI Read did not complete\n"); | ||
157 | return -E1000_ERR_PHY; | ||
158 | } | ||
159 | if (mdic & E1000_MDIC_ERROR) { | ||
160 | hw_dbg(hw, "MDI Error\n"); | ||
161 | return -E1000_ERR_PHY; | ||
162 | } | ||
163 | *data = (u16) mdic; | ||
164 | |||
165 | return 0; | ||
166 | } | ||
167 | |||
168 | /** | ||
169 | * e1000_write_phy_reg_mdic - Write MDI control register | ||
170 | * @hw: pointer to the HW structure | ||
171 | * @offset: register offset to write to | ||
172 | * @data: data to write to register at offset | ||
173 | * | ||
174 | * Writes data to MDI control register in the PHY at offset. | ||
175 | **/ | ||
176 | static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) | ||
177 | { | ||
178 | struct e1000_phy_info *phy = &hw->phy; | ||
179 | u32 i, mdic = 0; | ||
180 | |||
181 | if (offset > MAX_PHY_REG_ADDRESS) { | ||
182 | hw_dbg(hw, "PHY Address %d is out of range\n", offset); | ||
183 | return -E1000_ERR_PARAM; | ||
184 | } | ||
185 | |||
186 | /* Set up Op-code, Phy Address, and register offset in the MDI | ||
187 | * Control register. The MAC will take care of interfacing with the | ||
188 | * PHY to retrieve the desired data. | ||
189 | */ | ||
190 | mdic = (((u32)data) | | ||
191 | (offset << E1000_MDIC_REG_SHIFT) | | ||
192 | (phy->addr << E1000_MDIC_PHY_SHIFT) | | ||
193 | (E1000_MDIC_OP_WRITE)); | ||
194 | |||
195 | ew32(MDIC, mdic); | ||
196 | |||
197 | /* Poll the ready bit to see if the MDI read completed */ | ||
198 | for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { | ||
199 | udelay(5); | ||
200 | mdic = er32(MDIC); | ||
201 | if (mdic & E1000_MDIC_READY) | ||
202 | break; | ||
203 | } | ||
204 | if (!(mdic & E1000_MDIC_READY)) { | ||
205 | hw_dbg(hw, "MDI Write did not complete\n"); | ||
206 | return -E1000_ERR_PHY; | ||
207 | } | ||
208 | |||
209 | return 0; | ||
210 | } | ||
211 | |||
212 | /** | ||
213 | * e1000e_read_phy_reg_m88 - Read m88 PHY register | ||
214 | * @hw: pointer to the HW structure | ||
215 | * @offset: register offset to be read | ||
216 | * @data: pointer to the read data | ||
217 | * | ||
218 | * Acquires semaphore, if necessary, then reads the PHY register at offset | ||
219 | * and storing the retrieved information in data. Release any acquired | ||
220 | * semaphores before exiting. | ||
221 | **/ | ||
222 | s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) | ||
223 | { | ||
224 | s32 ret_val; | ||
225 | |||
226 | ret_val = hw->phy.ops.acquire_phy(hw); | ||
227 | if (ret_val) | ||
228 | return ret_val; | ||
229 | |||
230 | ret_val = e1000_read_phy_reg_mdic(hw, | ||
231 | MAX_PHY_REG_ADDRESS & offset, | ||
232 | data); | ||
233 | |||
234 | hw->phy.ops.release_phy(hw); | ||
235 | |||
236 | return ret_val; | ||
237 | } | ||
238 | |||
239 | /** | ||
240 | * e1000e_write_phy_reg_m88 - Write m88 PHY register | ||
241 | * @hw: pointer to the HW structure | ||
242 | * @offset: register offset to write to | ||
243 | * @data: data to write at register offset | ||
244 | * | ||
245 | * Acquires semaphore, if necessary, then writes the data to PHY register | ||
246 | * at the offset. Release any acquired semaphores before exiting. | ||
247 | **/ | ||
248 | s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) | ||
249 | { | ||
250 | s32 ret_val; | ||
251 | |||
252 | ret_val = hw->phy.ops.acquire_phy(hw); | ||
253 | if (ret_val) | ||
254 | return ret_val; | ||
255 | |||
256 | ret_val = e1000_write_phy_reg_mdic(hw, | ||
257 | MAX_PHY_REG_ADDRESS & offset, | ||
258 | data); | ||
259 | |||
260 | hw->phy.ops.release_phy(hw); | ||
261 | |||
262 | return ret_val; | ||
263 | } | ||
264 | |||
265 | /** | ||
266 | * e1000e_read_phy_reg_igp - Read igp PHY register | ||
267 | * @hw: pointer to the HW structure | ||
268 | * @offset: register offset to be read | ||
269 | * @data: pointer to the read data | ||
270 | * | ||
271 | * Acquires semaphore, if necessary, then reads the PHY register at offset | ||
272 | * and storing the retrieved information in data. Release any acquired | ||
273 | * semaphores before exiting. | ||
274 | **/ | ||
275 | s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) | ||
276 | { | ||
277 | s32 ret_val; | ||
278 | |||
279 | ret_val = hw->phy.ops.acquire_phy(hw); | ||
280 | if (ret_val) | ||
281 | return ret_val; | ||
282 | |||
283 | if (offset > MAX_PHY_MULTI_PAGE_REG) { | ||
284 | ret_val = e1000_write_phy_reg_mdic(hw, | ||
285 | IGP01E1000_PHY_PAGE_SELECT, | ||
286 | (u16)offset); | ||
287 | if (ret_val) { | ||
288 | hw->phy.ops.release_phy(hw); | ||
289 | return ret_val; | ||
290 | } | ||
291 | } | ||
292 | |||
293 | ret_val = e1000_read_phy_reg_mdic(hw, | ||
294 | MAX_PHY_REG_ADDRESS & offset, | ||
295 | data); | ||
296 | |||
297 | hw->phy.ops.release_phy(hw); | ||
298 | |||
299 | return ret_val; | ||
300 | } | ||
301 | |||
302 | /** | ||
303 | * e1000e_write_phy_reg_igp - Write igp PHY register | ||
304 | * @hw: pointer to the HW structure | ||
305 | * @offset: register offset to write to | ||
306 | * @data: data to write at register offset | ||
307 | * | ||
308 | * Acquires semaphore, if necessary, then writes the data to PHY register | ||
309 | * at the offset. Release any acquired semaphores before exiting. | ||
310 | **/ | ||
311 | s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) | ||
312 | { | ||
313 | s32 ret_val; | ||
314 | |||
315 | ret_val = hw->phy.ops.acquire_phy(hw); | ||
316 | if (ret_val) | ||
317 | return ret_val; | ||
318 | |||
319 | if (offset > MAX_PHY_MULTI_PAGE_REG) { | ||
320 | ret_val = e1000_write_phy_reg_mdic(hw, | ||
321 | IGP01E1000_PHY_PAGE_SELECT, | ||
322 | (u16)offset); | ||
323 | if (ret_val) { | ||
324 | hw->phy.ops.release_phy(hw); | ||
325 | return ret_val; | ||
326 | } | ||
327 | } | ||
328 | |||
329 | ret_val = e1000_write_phy_reg_mdic(hw, | ||
330 | MAX_PHY_REG_ADDRESS & offset, | ||
331 | data); | ||
332 | |||
333 | hw->phy.ops.release_phy(hw); | ||
334 | |||
335 | return ret_val; | ||
336 | } | ||
337 | |||
338 | /** | ||
339 | * e1000e_read_kmrn_reg - Read kumeran register | ||
340 | * @hw: pointer to the HW structure | ||
341 | * @offset: register offset to be read | ||
342 | * @data: pointer to the read data | ||
343 | * | ||
344 | * Acquires semaphore, if necessary. Then reads the PHY register at offset | ||
345 | * using the kumeran interface. The information retrieved is stored in data. | ||
346 | * Release any acquired semaphores before exiting. | ||
347 | **/ | ||
348 | s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) | ||
349 | { | ||
350 | u32 kmrnctrlsta; | ||
351 | s32 ret_val; | ||
352 | |||
353 | ret_val = hw->phy.ops.acquire_phy(hw); | ||
354 | if (ret_val) | ||
355 | return ret_val; | ||
356 | |||
357 | kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & | ||
358 | E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; | ||
359 | ew32(KMRNCTRLSTA, kmrnctrlsta); | ||
360 | |||
361 | udelay(2); | ||
362 | |||
363 | kmrnctrlsta = er32(KMRNCTRLSTA); | ||
364 | *data = (u16)kmrnctrlsta; | ||
365 | |||
366 | hw->phy.ops.release_phy(hw); | ||
367 | |||
368 | return ret_val; | ||
369 | } | ||
370 | |||
371 | /** | ||
372 | * e1000e_write_kmrn_reg - Write kumeran register | ||
373 | * @hw: pointer to the HW structure | ||
374 | * @offset: register offset to write to | ||
375 | * @data: data to write at register offset | ||
376 | * | ||
377 | * Acquires semaphore, if necessary. Then write the data to PHY register | ||
378 | * at the offset using the kumeran interface. Release any acquired semaphores | ||
379 | * before exiting. | ||
380 | **/ | ||
381 | s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) | ||
382 | { | ||
383 | u32 kmrnctrlsta; | ||
384 | s32 ret_val; | ||
385 | |||
386 | ret_val = hw->phy.ops.acquire_phy(hw); | ||
387 | if (ret_val) | ||
388 | return ret_val; | ||
389 | |||
390 | kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & | ||
391 | E1000_KMRNCTRLSTA_OFFSET) | data; | ||
392 | ew32(KMRNCTRLSTA, kmrnctrlsta); | ||
393 | |||
394 | udelay(2); | ||
395 | hw->phy.ops.release_phy(hw); | ||
396 | |||
397 | return ret_val; | ||
398 | } | ||
399 | |||
400 | /** | ||
401 | * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link | ||
402 | * @hw: pointer to the HW structure | ||
403 | * | ||
404 | * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock | ||
405 | * and downshift values are set also. | ||
406 | **/ | ||
407 | s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw) | ||
408 | { | ||
409 | struct e1000_phy_info *phy = &hw->phy; | ||
410 | s32 ret_val; | ||
411 | u16 phy_data; | ||
412 | |||
413 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | ||
414 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
415 | if (ret_val) | ||
416 | return ret_val; | ||
417 | |||
418 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
419 | |||
420 | /* Options: | ||
421 | * MDI/MDI-X = 0 (default) | ||
422 | * 0 - Auto for all speeds | ||
423 | * 1 - MDI mode | ||
424 | * 2 - MDI-X mode | ||
425 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | ||
426 | */ | ||
427 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
428 | |||
429 | switch (phy->mdix) { | ||
430 | case 1: | ||
431 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | ||
432 | break; | ||
433 | case 2: | ||
434 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | ||
435 | break; | ||
436 | case 3: | ||
437 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | ||
438 | break; | ||
439 | case 0: | ||
440 | default: | ||
441 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | ||
442 | break; | ||
443 | } | ||
444 | |||
445 | /* Options: | ||
446 | * disable_polarity_correction = 0 (default) | ||
447 | * Automatic Correction for Reversed Cable Polarity | ||
448 | * 0 - Disabled | ||
449 | * 1 - Enabled | ||
450 | */ | ||
451 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | ||
452 | if (phy->disable_polarity_correction == 1) | ||
453 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | ||
454 | |||
455 | ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
456 | if (ret_val) | ||
457 | return ret_val; | ||
458 | |||
459 | if (phy->revision < 4) { | ||
460 | /* Force TX_CLK in the Extended PHY Specific Control Register | ||
461 | * to 25MHz clock. | ||
462 | */ | ||
463 | ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | ||
464 | if (ret_val) | ||
465 | return ret_val; | ||
466 | |||
467 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
468 | |||
469 | if ((phy->revision == 2) && | ||
470 | (phy->id == M88E1111_I_PHY_ID)) { | ||
471 | /* 82573L PHY - set the downshift counter to 5x. */ | ||
472 | phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; | ||
473 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; | ||
474 | } else { | ||
475 | /* Configure Master and Slave downshift values */ | ||
476 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | ||
477 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | ||
478 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | ||
479 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | ||
480 | } | ||
481 | ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | ||
482 | if (ret_val) | ||
483 | return ret_val; | ||
484 | } | ||
485 | |||
486 | /* Commit the changes. */ | ||
487 | ret_val = e1000e_commit_phy(hw); | ||
488 | if (ret_val) | ||
489 | hw_dbg(hw, "Error committing the PHY changes\n"); | ||
490 | |||
491 | return ret_val; | ||
492 | } | ||
493 | |||
494 | /** | ||
495 | * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link | ||
496 | * @hw: pointer to the HW structure | ||
497 | * | ||
498 | * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for | ||
499 | * igp PHY's. | ||
500 | **/ | ||
501 | s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw) | ||
502 | { | ||
503 | struct e1000_phy_info *phy = &hw->phy; | ||
504 | s32 ret_val; | ||
505 | u16 data; | ||
506 | |||
507 | ret_val = e1000_phy_hw_reset(hw); | ||
508 | if (ret_val) { | ||
509 | hw_dbg(hw, "Error resetting the PHY.\n"); | ||
510 | return ret_val; | ||
511 | } | ||
512 | |||
513 | /* Wait 15ms for MAC to configure PHY from NVM settings. */ | ||
514 | msleep(15); | ||
515 | |||
516 | /* disable lplu d0 during driver init */ | ||
517 | ret_val = e1000_set_d0_lplu_state(hw, 0); | ||
518 | if (ret_val) { | ||
519 | hw_dbg(hw, "Error Disabling LPLU D0\n"); | ||
520 | return ret_val; | ||
521 | } | ||
522 | /* Configure mdi-mdix settings */ | ||
523 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data); | ||
524 | if (ret_val) | ||
525 | return ret_val; | ||
526 | |||
527 | data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
528 | |||
529 | switch (phy->mdix) { | ||
530 | case 1: | ||
531 | data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
532 | break; | ||
533 | case 2: | ||
534 | data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
535 | break; | ||
536 | case 0: | ||
537 | default: | ||
538 | data |= IGP01E1000_PSCR_AUTO_MDIX; | ||
539 | break; | ||
540 | } | ||
541 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data); | ||
542 | if (ret_val) | ||
543 | return ret_val; | ||
544 | |||
545 | /* set auto-master slave resolution settings */ | ||
546 | if (hw->mac.autoneg) { | ||
547 | /* when autonegotiation advertisement is only 1000Mbps then we | ||
548 | * should disable SmartSpeed and enable Auto MasterSlave | ||
549 | * resolution as hardware default. */ | ||
550 | if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { | ||
551 | /* Disable SmartSpeed */ | ||
552 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
553 | &data); | ||
554 | if (ret_val) | ||
555 | return ret_val; | ||
556 | |||
557 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
558 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
559 | data); | ||
560 | if (ret_val) | ||
561 | return ret_val; | ||
562 | |||
563 | /* Set auto Master/Slave resolution process */ | ||
564 | ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data); | ||
565 | if (ret_val) | ||
566 | return ret_val; | ||
567 | |||
568 | data &= ~CR_1000T_MS_ENABLE; | ||
569 | ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data); | ||
570 | if (ret_val) | ||
571 | return ret_val; | ||
572 | } | ||
573 | |||
574 | ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data); | ||
575 | if (ret_val) | ||
576 | return ret_val; | ||
577 | |||
578 | /* load defaults for future use */ | ||
579 | phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? | ||
580 | ((data & CR_1000T_MS_VALUE) ? | ||
581 | e1000_ms_force_master : | ||
582 | e1000_ms_force_slave) : | ||
583 | e1000_ms_auto; | ||
584 | |||
585 | switch (phy->ms_type) { | ||
586 | case e1000_ms_force_master: | ||
587 | data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | ||
588 | break; | ||
589 | case e1000_ms_force_slave: | ||
590 | data |= CR_1000T_MS_ENABLE; | ||
591 | data &= ~(CR_1000T_MS_VALUE); | ||
592 | break; | ||
593 | case e1000_ms_auto: | ||
594 | data &= ~CR_1000T_MS_ENABLE; | ||
595 | default: | ||
596 | break; | ||
597 | } | ||
598 | ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data); | ||
599 | } | ||
600 | |||
601 | return ret_val; | ||
602 | } | ||
603 | |||
604 | /** | ||
605 | * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation | ||
606 | * @hw: pointer to the HW structure | ||
607 | * | ||
608 | * Reads the MII auto-neg advertisement register and/or the 1000T control | ||
609 | * register and if the PHY is already setup for auto-negotiation, then | ||
610 | * return successful. Otherwise, setup advertisement and flow control to | ||
611 | * the appropriate values for the wanted auto-negotiation. | ||
612 | **/ | ||
613 | static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) | ||
614 | { | ||
615 | struct e1000_phy_info *phy = &hw->phy; | ||
616 | s32 ret_val; | ||
617 | u16 mii_autoneg_adv_reg; | ||
618 | u16 mii_1000t_ctrl_reg = 0; | ||
619 | |||
620 | phy->autoneg_advertised &= phy->autoneg_mask; | ||
621 | |||
622 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | ||
623 | ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); | ||
624 | if (ret_val) | ||
625 | return ret_val; | ||
626 | |||
627 | if (phy->autoneg_mask & ADVERTISE_1000_FULL) { | ||
628 | /* Read the MII 1000Base-T Control Register (Address 9). */ | ||
629 | ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); | ||
630 | if (ret_val) | ||
631 | return ret_val; | ||
632 | } | ||
633 | |||
634 | /* Need to parse both autoneg_advertised and fc and set up | ||
635 | * the appropriate PHY registers. First we will parse for | ||
636 | * autoneg_advertised software override. Since we can advertise | ||
637 | * a plethora of combinations, we need to check each bit | ||
638 | * individually. | ||
639 | */ | ||
640 | |||
641 | /* First we clear all the 10/100 mb speed bits in the Auto-Neg | ||
642 | * Advertisement Register (Address 4) and the 1000 mb speed bits in | ||
643 | * the 1000Base-T Control Register (Address 9). | ||
644 | */ | ||
645 | mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | | ||
646 | NWAY_AR_100TX_HD_CAPS | | ||
647 | NWAY_AR_10T_FD_CAPS | | ||
648 | NWAY_AR_10T_HD_CAPS); | ||
649 | mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); | ||
650 | |||
651 | hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised); | ||
652 | |||
653 | /* Do we want to advertise 10 Mb Half Duplex? */ | ||
654 | if (phy->autoneg_advertised & ADVERTISE_10_HALF) { | ||
655 | hw_dbg(hw, "Advertise 10mb Half duplex\n"); | ||
656 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | ||
657 | } | ||
658 | |||
659 | /* Do we want to advertise 10 Mb Full Duplex? */ | ||
660 | if (phy->autoneg_advertised & ADVERTISE_10_FULL) { | ||
661 | hw_dbg(hw, "Advertise 10mb Full duplex\n"); | ||
662 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | ||
663 | } | ||
664 | |||
665 | /* Do we want to advertise 100 Mb Half Duplex? */ | ||
666 | if (phy->autoneg_advertised & ADVERTISE_100_HALF) { | ||
667 | hw_dbg(hw, "Advertise 100mb Half duplex\n"); | ||
668 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; | ||
669 | } | ||
670 | |||
671 | /* Do we want to advertise 100 Mb Full Duplex? */ | ||
672 | if (phy->autoneg_advertised & ADVERTISE_100_FULL) { | ||
673 | hw_dbg(hw, "Advertise 100mb Full duplex\n"); | ||
674 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | ||
675 | } | ||
676 | |||
677 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | ||
678 | if (phy->autoneg_advertised & ADVERTISE_1000_HALF) | ||
679 | hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n"); | ||
680 | |||
681 | /* Do we want to advertise 1000 Mb Full Duplex? */ | ||
682 | if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { | ||
683 | hw_dbg(hw, "Advertise 1000mb Full duplex\n"); | ||
684 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | ||
685 | } | ||
686 | |||
687 | /* Check for a software override of the flow control settings, and | ||
688 | * setup the PHY advertisement registers accordingly. If | ||
689 | * auto-negotiation is enabled, then software will have to set the | ||
690 | * "PAUSE" bits to the correct value in the Auto-Negotiation | ||
691 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- | ||
692 | * negotiation. | ||
693 | * | ||
694 | * The possible values of the "fc" parameter are: | ||
695 | * 0: Flow control is completely disabled | ||
696 | * 1: Rx flow control is enabled (we can receive pause frames | ||
697 | * but not send pause frames). | ||
698 | * 2: Tx flow control is enabled (we can send pause frames | ||
699 | * but we do not support receiving pause frames). | ||
700 | * 3: Both Rx and TX flow control (symmetric) are enabled. | ||
701 | * other: No software override. The flow control configuration | ||
702 | * in the EEPROM is used. | ||
703 | */ | ||
704 | switch (hw->mac.fc) { | ||
705 | case e1000_fc_none: | ||
706 | /* Flow control (RX & TX) is completely disabled by a | ||
707 | * software over-ride. | ||
708 | */ | ||
709 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
710 | break; | ||
711 | case e1000_fc_rx_pause: | ||
712 | /* RX Flow control is enabled, and TX Flow control is | ||
713 | * disabled, by a software over-ride. | ||
714 | */ | ||
715 | /* Since there really isn't a way to advertise that we are | ||
716 | * capable of RX Pause ONLY, we will advertise that we | ||
717 | * support both symmetric and asymmetric RX PAUSE. Later | ||
718 | * (in e1000e_config_fc_after_link_up) we will disable the | ||
719 | * hw's ability to send PAUSE frames. | ||
720 | */ | ||
721 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
722 | break; | ||
723 | case e1000_fc_tx_pause: | ||
724 | /* TX Flow control is enabled, and RX Flow control is | ||
725 | * disabled, by a software over-ride. | ||
726 | */ | ||
727 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | ||
728 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | ||
729 | break; | ||
730 | case e1000_fc_full: | ||
731 | /* Flow control (both RX and TX) is enabled by a software | ||
732 | * over-ride. | ||
733 | */ | ||
734 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
735 | break; | ||
736 | default: | ||
737 | hw_dbg(hw, "Flow control param set incorrectly\n"); | ||
738 | ret_val = -E1000_ERR_CONFIG; | ||
739 | return ret_val; | ||
740 | } | ||
741 | |||
742 | ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); | ||
743 | if (ret_val) | ||
744 | return ret_val; | ||
745 | |||
746 | hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | ||
747 | |||
748 | if (phy->autoneg_mask & ADVERTISE_1000_FULL) { | ||
749 | ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); | ||
750 | } | ||
751 | |||
752 | return ret_val; | ||
753 | } | ||
754 | |||
755 | /** | ||
756 | * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link | ||
757 | * @hw: pointer to the HW structure | ||
758 | * | ||
759 | * Performs initial bounds checking on autoneg advertisement parameter, then | ||
760 | * configure to advertise the full capability. Setup the PHY to autoneg | ||
761 | * and restart the negotiation process between the link partner. If | ||
762 | * wait_for_link, then wait for autoneg to complete before exiting. | ||
763 | **/ | ||
764 | static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) | ||
765 | { | ||
766 | struct e1000_phy_info *phy = &hw->phy; | ||
767 | s32 ret_val; | ||
768 | u16 phy_ctrl; | ||
769 | |||
770 | /* Perform some bounds checking on the autoneg advertisement | ||
771 | * parameter. | ||
772 | */ | ||
773 | phy->autoneg_advertised &= phy->autoneg_mask; | ||
774 | |||
775 | /* If autoneg_advertised is zero, we assume it was not defaulted | ||
776 | * by the calling code so we set to advertise full capability. | ||
777 | */ | ||
778 | if (phy->autoneg_advertised == 0) | ||
779 | phy->autoneg_advertised = phy->autoneg_mask; | ||
780 | |||
781 | hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n"); | ||
782 | ret_val = e1000_phy_setup_autoneg(hw); | ||
783 | if (ret_val) { | ||
784 | hw_dbg(hw, "Error Setting up Auto-Negotiation\n"); | ||
785 | return ret_val; | ||
786 | } | ||
787 | hw_dbg(hw, "Restarting Auto-Neg\n"); | ||
788 | |||
789 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and | ||
790 | * the Auto Neg Restart bit in the PHY control register. | ||
791 | */ | ||
792 | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl); | ||
793 | if (ret_val) | ||
794 | return ret_val; | ||
795 | |||
796 | phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | ||
797 | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl); | ||
798 | if (ret_val) | ||
799 | return ret_val; | ||
800 | |||
801 | /* Does the user want to wait for Auto-Neg to complete here, or | ||
802 | * check at a later time (for example, callback routine). | ||
803 | */ | ||
804 | if (phy->wait_for_link) { | ||
805 | ret_val = e1000_wait_autoneg(hw); | ||
806 | if (ret_val) { | ||
807 | hw_dbg(hw, "Error while waiting for " | ||
808 | "autoneg to complete\n"); | ||
809 | return ret_val; | ||
810 | } | ||
811 | } | ||
812 | |||
813 | hw->mac.get_link_status = 1; | ||
814 | |||
815 | return ret_val; | ||
816 | } | ||
817 | |||
818 | /** | ||
819 | * e1000e_setup_copper_link - Configure copper link settings | ||
820 | * @hw: pointer to the HW structure | ||
821 | * | ||
822 | * Calls the appropriate function to configure the link for auto-neg or forced | ||
823 | * speed and duplex. Then we check for link, once link is established calls | ||
824 | * to configure collision distance and flow control are called. If link is | ||
825 | * not established, we return -E1000_ERR_PHY (-2). | ||
826 | **/ | ||
827 | s32 e1000e_setup_copper_link(struct e1000_hw *hw) | ||
828 | { | ||
829 | s32 ret_val; | ||
830 | bool link; | ||
831 | |||
832 | if (hw->mac.autoneg) { | ||
833 | /* Setup autoneg and flow control advertisement and perform | ||
834 | * autonegotiation. */ | ||
835 | ret_val = e1000_copper_link_autoneg(hw); | ||
836 | if (ret_val) | ||
837 | return ret_val; | ||
838 | } else { | ||
839 | /* PHY will be set to 10H, 10F, 100H or 100F | ||
840 | * depending on user settings. */ | ||
841 | hw_dbg(hw, "Forcing Speed and Duplex\n"); | ||
842 | ret_val = e1000_phy_force_speed_duplex(hw); | ||
843 | if (ret_val) { | ||
844 | hw_dbg(hw, "Error Forcing Speed and Duplex\n"); | ||
845 | return ret_val; | ||
846 | } | ||
847 | } | ||
848 | |||
849 | /* Check link status. Wait up to 100 microseconds for link to become | ||
850 | * valid. | ||
851 | */ | ||
852 | ret_val = e1000e_phy_has_link_generic(hw, | ||
853 | COPPER_LINK_UP_LIMIT, | ||
854 | 10, | ||
855 | &link); | ||
856 | if (ret_val) | ||
857 | return ret_val; | ||
858 | |||
859 | if (link) { | ||
860 | hw_dbg(hw, "Valid link established!!!\n"); | ||
861 | e1000e_config_collision_dist(hw); | ||
862 | ret_val = e1000e_config_fc_after_link_up(hw); | ||
863 | } else { | ||
864 | hw_dbg(hw, "Unable to establish link!!!\n"); | ||
865 | } | ||
866 | |||
867 | return ret_val; | ||
868 | } | ||
869 | |||
870 | /** | ||
871 | * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY | ||
872 | * @hw: pointer to the HW structure | ||
873 | * | ||
874 | * Calls the PHY setup function to force speed and duplex. Clears the | ||
875 | * auto-crossover to force MDI manually. Waits for link and returns | ||
876 | * successful if link up is successful, else -E1000_ERR_PHY (-2). | ||
877 | **/ | ||
878 | s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw) | ||
879 | { | ||
880 | struct e1000_phy_info *phy = &hw->phy; | ||
881 | s32 ret_val; | ||
882 | u16 phy_data; | ||
883 | bool link; | ||
884 | |||
885 | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); | ||
886 | if (ret_val) | ||
887 | return ret_val; | ||
888 | |||
889 | e1000e_phy_force_speed_duplex_setup(hw, &phy_data); | ||
890 | |||
891 | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); | ||
892 | if (ret_val) | ||
893 | return ret_val; | ||
894 | |||
895 | /* Clear Auto-Crossover to force MDI manually. IGP requires MDI | ||
896 | * forced whenever speed and duplex are forced. | ||
897 | */ | ||
898 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | ||
899 | if (ret_val) | ||
900 | return ret_val; | ||
901 | |||
902 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
903 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
904 | |||
905 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | ||
906 | if (ret_val) | ||
907 | return ret_val; | ||
908 | |||
909 | hw_dbg(hw, "IGP PSCR: %X\n", phy_data); | ||
910 | |||
911 | udelay(1); | ||
912 | |||
913 | if (phy->wait_for_link) { | ||
914 | hw_dbg(hw, "Waiting for forced speed/duplex link on IGP phy.\n"); | ||
915 | |||
916 | ret_val = e1000e_phy_has_link_generic(hw, | ||
917 | PHY_FORCE_LIMIT, | ||
918 | 100000, | ||
919 | &link); | ||
920 | if (ret_val) | ||
921 | return ret_val; | ||
922 | |||
923 | if (!link) | ||
924 | hw_dbg(hw, "Link taking longer than expected.\n"); | ||
925 | |||
926 | /* Try once more */ | ||
927 | ret_val = e1000e_phy_has_link_generic(hw, | ||
928 | PHY_FORCE_LIMIT, | ||
929 | 100000, | ||
930 | &link); | ||
931 | if (ret_val) | ||
932 | return ret_val; | ||
933 | } | ||
934 | |||
935 | return ret_val; | ||
936 | } | ||
937 | |||
938 | /** | ||
939 | * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY | ||
940 | * @hw: pointer to the HW structure | ||
941 | * | ||
942 | * Calls the PHY setup function to force speed and duplex. Clears the | ||
943 | * auto-crossover to force MDI manually. Resets the PHY to commit the | ||
944 | * changes. If time expires while waiting for link up, we reset the DSP. | ||
945 | * After reset, TX_CLK and CRS on TX must be set. Return successful upon | ||
946 | * successful completion, else return corresponding error code. | ||
947 | **/ | ||
948 | s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) | ||
949 | { | ||
950 | struct e1000_phy_info *phy = &hw->phy; | ||
951 | s32 ret_val; | ||
952 | u16 phy_data; | ||
953 | bool link; | ||
954 | |||
955 | /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI | ||
956 | * forced whenever speed and duplex are forced. | ||
957 | */ | ||
958 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
959 | if (ret_val) | ||
960 | return ret_val; | ||
961 | |||
962 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
963 | ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
964 | if (ret_val) | ||
965 | return ret_val; | ||
966 | |||
967 | hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data); | ||
968 | |||
969 | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); | ||
970 | if (ret_val) | ||
971 | return ret_val; | ||
972 | |||
973 | e1000e_phy_force_speed_duplex_setup(hw, &phy_data); | ||
974 | |||
975 | /* Reset the phy to commit changes. */ | ||
976 | phy_data |= MII_CR_RESET; | ||
977 | |||
978 | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); | ||
979 | if (ret_val) | ||
980 | return ret_val; | ||
981 | |||
982 | udelay(1); | ||
983 | |||
984 | if (phy->wait_for_link) { | ||
985 | hw_dbg(hw, "Waiting for forced speed/duplex link on M88 phy.\n"); | ||
986 | |||
987 | ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, | ||
988 | 100000, &link); | ||
989 | if (ret_val) | ||
990 | return ret_val; | ||
991 | |||
992 | if (!link) { | ||
993 | /* We didn't get link. | ||
994 | * Reset the DSP and cross our fingers. | ||
995 | */ | ||
996 | ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 0x001d); | ||
997 | if (ret_val) | ||
998 | return ret_val; | ||
999 | ret_val = e1000e_phy_reset_dsp(hw); | ||
1000 | if (ret_val) | ||
1001 | return ret_val; | ||
1002 | } | ||
1003 | |||
1004 | /* Try once more */ | ||
1005 | ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, | ||
1006 | 100000, &link); | ||
1007 | if (ret_val) | ||
1008 | return ret_val; | ||
1009 | } | ||
1010 | |||
1011 | ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | ||
1012 | if (ret_val) | ||
1013 | return ret_val; | ||
1014 | |||
1015 | /* Resetting the phy means we need to re-force TX_CLK in the | ||
1016 | * Extended PHY Specific Control Register to 25MHz clock from | ||
1017 | * the reset value of 2.5MHz. | ||
1018 | */ | ||
1019 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
1020 | ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | ||
1021 | if (ret_val) | ||
1022 | return ret_val; | ||
1023 | |||
1024 | /* In addition, we must re-enable CRS on Tx for both half and full | ||
1025 | * duplex. | ||
1026 | */ | ||
1027 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1028 | if (ret_val) | ||
1029 | return ret_val; | ||
1030 | |||
1031 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
1032 | ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1033 | |||
1034 | return ret_val; | ||
1035 | } | ||
1036 | |||
1037 | /** | ||
1038 | * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex | ||
1039 | * @hw: pointer to the HW structure | ||
1040 | * @phy_ctrl: pointer to current value of PHY_CONTROL | ||
1041 | * | ||
1042 | * Forces speed and duplex on the PHY by doing the following: disable flow | ||
1043 | * control, force speed/duplex on the MAC, disable auto speed detection, | ||
1044 | * disable auto-negotiation, configure duplex, configure speed, configure | ||
1045 | * the collision distance, write configuration to CTRL register. The | ||
1046 | * caller must write to the PHY_CONTROL register for these settings to | ||
1047 | * take affect. | ||
1048 | **/ | ||
1049 | void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) | ||
1050 | { | ||
1051 | struct e1000_mac_info *mac = &hw->mac; | ||
1052 | u32 ctrl; | ||
1053 | |||
1054 | /* Turn off flow control when forcing speed/duplex */ | ||
1055 | mac->fc = e1000_fc_none; | ||
1056 | |||
1057 | /* Force speed/duplex on the mac */ | ||
1058 | ctrl = er32(CTRL); | ||
1059 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
1060 | ctrl &= ~E1000_CTRL_SPD_SEL; | ||
1061 | |||
1062 | /* Disable Auto Speed Detection */ | ||
1063 | ctrl &= ~E1000_CTRL_ASDE; | ||
1064 | |||
1065 | /* Disable autoneg on the phy */ | ||
1066 | *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; | ||
1067 | |||
1068 | /* Forcing Full or Half Duplex? */ | ||
1069 | if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { | ||
1070 | ctrl &= ~E1000_CTRL_FD; | ||
1071 | *phy_ctrl &= ~MII_CR_FULL_DUPLEX; | ||
1072 | hw_dbg(hw, "Half Duplex\n"); | ||
1073 | } else { | ||
1074 | ctrl |= E1000_CTRL_FD; | ||
1075 | *phy_ctrl |= MII_CR_FULL_DUPLEX; | ||
1076 | hw_dbg(hw, "Full Duplex\n"); | ||
1077 | } | ||
1078 | |||
1079 | /* Forcing 10mb or 100mb? */ | ||
1080 | if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { | ||
1081 | ctrl |= E1000_CTRL_SPD_100; | ||
1082 | *phy_ctrl |= MII_CR_SPEED_100; | ||
1083 | *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); | ||
1084 | hw_dbg(hw, "Forcing 100mb\n"); | ||
1085 | } else { | ||
1086 | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | ||
1087 | *phy_ctrl |= MII_CR_SPEED_10; | ||
1088 | *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); | ||
1089 | hw_dbg(hw, "Forcing 10mb\n"); | ||
1090 | } | ||
1091 | |||
1092 | e1000e_config_collision_dist(hw); | ||
1093 | |||
1094 | ew32(CTRL, ctrl); | ||
1095 | } | ||
1096 | |||
1097 | /** | ||
1098 | * e1000e_set_d3_lplu_state - Sets low power link up state for D3 | ||
1099 | * @hw: pointer to the HW structure | ||
1100 | * @active: boolean used to enable/disable lplu | ||
1101 | * | ||
1102 | * Success returns 0, Failure returns 1 | ||
1103 | * | ||
1104 | * The low power link up (lplu) state is set to the power management level D3 | ||
1105 | * and SmartSpeed is disabled when active is true, else clear lplu for D3 | ||
1106 | * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU | ||
1107 | * is used during Dx states where the power conservation is most important. | ||
1108 | * During driver activity, SmartSpeed should be enabled so performance is | ||
1109 | * maintained. | ||
1110 | **/ | ||
1111 | s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active) | ||
1112 | { | ||
1113 | struct e1000_phy_info *phy = &hw->phy; | ||
1114 | s32 ret_val; | ||
1115 | u16 data; | ||
1116 | |||
1117 | ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); | ||
1118 | if (ret_val) | ||
1119 | return ret_val; | ||
1120 | |||
1121 | if (!active) { | ||
1122 | data &= ~IGP02E1000_PM_D3_LPLU; | ||
1123 | ret_val = e1e_wphy(hw, | ||
1124 | IGP02E1000_PHY_POWER_MGMT, | ||
1125 | data); | ||
1126 | if (ret_val) | ||
1127 | return ret_val; | ||
1128 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used | ||
1129 | * during Dx states where the power conservation is most | ||
1130 | * important. During driver activity we should enable | ||
1131 | * SmartSpeed, so performance is maintained. */ | ||
1132 | if (phy->smart_speed == e1000_smart_speed_on) { | ||
1133 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1134 | &data); | ||
1135 | if (ret_val) | ||
1136 | return ret_val; | ||
1137 | |||
1138 | data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
1139 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1140 | data); | ||
1141 | if (ret_val) | ||
1142 | return ret_val; | ||
1143 | } else if (phy->smart_speed == e1000_smart_speed_off) { | ||
1144 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1145 | &data); | ||
1146 | if (ret_val) | ||
1147 | return ret_val; | ||
1148 | |||
1149 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1150 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1151 | data); | ||
1152 | if (ret_val) | ||
1153 | return ret_val; | ||
1154 | } | ||
1155 | } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || | ||
1156 | (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || | ||
1157 | (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { | ||
1158 | data |= IGP02E1000_PM_D3_LPLU; | ||
1159 | ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); | ||
1160 | if (ret_val) | ||
1161 | return ret_val; | ||
1162 | |||
1163 | /* When LPLU is enabled, we should disable SmartSpeed */ | ||
1164 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); | ||
1165 | if (ret_val) | ||
1166 | return ret_val; | ||
1167 | |||
1168 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1169 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); | ||
1170 | } | ||
1171 | |||
1172 | return ret_val; | ||
1173 | } | ||
1174 | |||
1175 | /** | ||
1176 | * e1000e_check_downshift - Checks whether a downshift in speed occured | ||
1177 | * @hw: pointer to the HW structure | ||
1178 | * | ||
1179 | * Success returns 0, Failure returns 1 | ||
1180 | * | ||
1181 | * A downshift is detected by querying the PHY link health. | ||
1182 | **/ | ||
1183 | s32 e1000e_check_downshift(struct e1000_hw *hw) | ||
1184 | { | ||
1185 | struct e1000_phy_info *phy = &hw->phy; | ||
1186 | s32 ret_val; | ||
1187 | u16 phy_data, offset, mask; | ||
1188 | |||
1189 | switch (phy->type) { | ||
1190 | case e1000_phy_m88: | ||
1191 | case e1000_phy_gg82563: | ||
1192 | offset = M88E1000_PHY_SPEC_STATUS; | ||
1193 | mask = M88E1000_PSSR_DOWNSHIFT; | ||
1194 | break; | ||
1195 | case e1000_phy_igp_2: | ||
1196 | case e1000_phy_igp_3: | ||
1197 | offset = IGP01E1000_PHY_LINK_HEALTH; | ||
1198 | mask = IGP01E1000_PLHR_SS_DOWNGRADE; | ||
1199 | break; | ||
1200 | default: | ||
1201 | /* speed downshift not supported */ | ||
1202 | phy->speed_downgraded = 0; | ||
1203 | return 0; | ||
1204 | } | ||
1205 | |||
1206 | ret_val = e1e_rphy(hw, offset, &phy_data); | ||
1207 | |||
1208 | if (!ret_val) | ||
1209 | phy->speed_downgraded = (phy_data & mask); | ||
1210 | |||
1211 | return ret_val; | ||
1212 | } | ||
1213 | |||
1214 | /** | ||
1215 | * e1000_check_polarity_m88 - Checks the polarity. | ||
1216 | * @hw: pointer to the HW structure | ||
1217 | * | ||
1218 | * Success returns 0, Failure returns -E1000_ERR_PHY (-2) | ||
1219 | * | ||
1220 | * Polarity is determined based on the PHY specific status register. | ||
1221 | **/ | ||
1222 | static s32 e1000_check_polarity_m88(struct e1000_hw *hw) | ||
1223 | { | ||
1224 | struct e1000_phy_info *phy = &hw->phy; | ||
1225 | s32 ret_val; | ||
1226 | u16 data; | ||
1227 | |||
1228 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data); | ||
1229 | |||
1230 | if (!ret_val) | ||
1231 | phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) | ||
1232 | ? e1000_rev_polarity_reversed | ||
1233 | : e1000_rev_polarity_normal; | ||
1234 | |||
1235 | return ret_val; | ||
1236 | } | ||
1237 | |||
1238 | /** | ||
1239 | * e1000_check_polarity_igp - Checks the polarity. | ||
1240 | * @hw: pointer to the HW structure | ||
1241 | * | ||
1242 | * Success returns 0, Failure returns -E1000_ERR_PHY (-2) | ||
1243 | * | ||
1244 | * Polarity is determined based on the PHY port status register, and the | ||
1245 | * current speed (since there is no polarity at 100Mbps). | ||
1246 | **/ | ||
1247 | static s32 e1000_check_polarity_igp(struct e1000_hw *hw) | ||
1248 | { | ||
1249 | struct e1000_phy_info *phy = &hw->phy; | ||
1250 | s32 ret_val; | ||
1251 | u16 data, offset, mask; | ||
1252 | |||
1253 | /* Polarity is determined based on the speed of | ||
1254 | * our connection. */ | ||
1255 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); | ||
1256 | if (ret_val) | ||
1257 | return ret_val; | ||
1258 | |||
1259 | if ((data & IGP01E1000_PSSR_SPEED_MASK) == | ||
1260 | IGP01E1000_PSSR_SPEED_1000MBPS) { | ||
1261 | offset = IGP01E1000_PHY_PCS_INIT_REG; | ||
1262 | mask = IGP01E1000_PHY_POLARITY_MASK; | ||
1263 | } else { | ||
1264 | /* This really only applies to 10Mbps since | ||
1265 | * there is no polarity for 100Mbps (always 0). | ||
1266 | */ | ||
1267 | offset = IGP01E1000_PHY_PORT_STATUS; | ||
1268 | mask = IGP01E1000_PSSR_POLARITY_REVERSED; | ||
1269 | } | ||
1270 | |||
1271 | ret_val = e1e_rphy(hw, offset, &data); | ||
1272 | |||
1273 | if (!ret_val) | ||
1274 | phy->cable_polarity = (data & mask) | ||
1275 | ? e1000_rev_polarity_reversed | ||
1276 | : e1000_rev_polarity_normal; | ||
1277 | |||
1278 | return ret_val; | ||
1279 | } | ||
1280 | |||
1281 | /** | ||
1282 | * e1000_wait_autoneg - Wait for auto-neg compeletion | ||
1283 | * @hw: pointer to the HW structure | ||
1284 | * | ||
1285 | * Waits for auto-negotiation to complete or for the auto-negotiation time | ||
1286 | * limit to expire, which ever happens first. | ||
1287 | **/ | ||
1288 | static s32 e1000_wait_autoneg(struct e1000_hw *hw) | ||
1289 | { | ||
1290 | s32 ret_val = 0; | ||
1291 | u16 i, phy_status; | ||
1292 | |||
1293 | /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ | ||
1294 | for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { | ||
1295 | ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); | ||
1296 | if (ret_val) | ||
1297 | break; | ||
1298 | ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); | ||
1299 | if (ret_val) | ||
1300 | break; | ||
1301 | if (phy_status & MII_SR_AUTONEG_COMPLETE) | ||
1302 | break; | ||
1303 | msleep(100); | ||
1304 | } | ||
1305 | |||
1306 | /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation | ||
1307 | * has completed. | ||
1308 | */ | ||
1309 | return ret_val; | ||
1310 | } | ||
1311 | |||
1312 | /** | ||
1313 | * e1000e_phy_has_link_generic - Polls PHY for link | ||
1314 | * @hw: pointer to the HW structure | ||
1315 | * @iterations: number of times to poll for link | ||
1316 | * @usec_interval: delay between polling attempts | ||
1317 | * @success: pointer to whether polling was successful or not | ||
1318 | * | ||
1319 | * Polls the PHY status register for link, 'iterations' number of times. | ||
1320 | **/ | ||
1321 | s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, | ||
1322 | u32 usec_interval, bool *success) | ||
1323 | { | ||
1324 | s32 ret_val = 0; | ||
1325 | u16 i, phy_status; | ||
1326 | |||
1327 | for (i = 0; i < iterations; i++) { | ||
1328 | /* Some PHYs require the PHY_STATUS register to be read | ||
1329 | * twice due to the link bit being sticky. No harm doing | ||
1330 | * it across the board. | ||
1331 | */ | ||
1332 | ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); | ||
1333 | if (ret_val) | ||
1334 | break; | ||
1335 | ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); | ||
1336 | if (ret_val) | ||
1337 | break; | ||
1338 | if (phy_status & MII_SR_LINK_STATUS) | ||
1339 | break; | ||
1340 | if (usec_interval >= 1000) | ||
1341 | mdelay(usec_interval/1000); | ||
1342 | else | ||
1343 | udelay(usec_interval); | ||
1344 | } | ||
1345 | |||
1346 | *success = (i < iterations); | ||
1347 | |||
1348 | return ret_val; | ||
1349 | } | ||
1350 | |||
1351 | /** | ||
1352 | * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY | ||
1353 | * @hw: pointer to the HW structure | ||
1354 | * | ||
1355 | * Reads the PHY specific status register to retrieve the cable length | ||
1356 | * information. The cable length is determined by averaging the minimum and | ||
1357 | * maximum values to get the "average" cable length. The m88 PHY has four | ||
1358 | * possible cable length values, which are: | ||
1359 | * Register Value Cable Length | ||
1360 | * 0 < 50 meters | ||
1361 | * 1 50 - 80 meters | ||
1362 | * 2 80 - 110 meters | ||
1363 | * 3 110 - 140 meters | ||
1364 | * 4 > 140 meters | ||
1365 | **/ | ||
1366 | s32 e1000e_get_cable_length_m88(struct e1000_hw *hw) | ||
1367 | { | ||
1368 | struct e1000_phy_info *phy = &hw->phy; | ||
1369 | s32 ret_val; | ||
1370 | u16 phy_data, index; | ||
1371 | |||
1372 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | ||
1373 | if (ret_val) | ||
1374 | return ret_val; | ||
1375 | |||
1376 | index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | ||
1377 | M88E1000_PSSR_CABLE_LENGTH_SHIFT; | ||
1378 | phy->min_cable_length = e1000_m88_cable_length_table[index]; | ||
1379 | phy->max_cable_length = e1000_m88_cable_length_table[index+1]; | ||
1380 | |||
1381 | phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; | ||
1382 | |||
1383 | return ret_val; | ||
1384 | } | ||
1385 | |||
1386 | /** | ||
1387 | * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY | ||
1388 | * @hw: pointer to the HW structure | ||
1389 | * | ||
1390 | * The automatic gain control (agc) normalizes the amplitude of the | ||
1391 | * received signal, adjusting for the attenuation produced by the | ||
1392 | * cable. By reading the AGC registers, which reperesent the | ||
1393 | * cobination of course and fine gain value, the value can be put | ||
1394 | * into a lookup table to obtain the approximate cable length | ||
1395 | * for each channel. | ||
1396 | **/ | ||
1397 | s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw) | ||
1398 | { | ||
1399 | struct e1000_phy_info *phy = &hw->phy; | ||
1400 | s32 ret_val; | ||
1401 | u16 phy_data, i, agc_value = 0; | ||
1402 | u16 cur_agc_index, max_agc_index = 0; | ||
1403 | u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; | ||
1404 | u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = | ||
1405 | {IGP02E1000_PHY_AGC_A, | ||
1406 | IGP02E1000_PHY_AGC_B, | ||
1407 | IGP02E1000_PHY_AGC_C, | ||
1408 | IGP02E1000_PHY_AGC_D}; | ||
1409 | |||
1410 | /* Read the AGC registers for all channels */ | ||
1411 | for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { | ||
1412 | ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data); | ||
1413 | if (ret_val) | ||
1414 | return ret_val; | ||
1415 | |||
1416 | /* Getting bits 15:9, which represent the combination of | ||
1417 | * course and fine gain values. The result is a number | ||
1418 | * that can be put into the lookup table to obtain the | ||
1419 | * approximate cable length. */ | ||
1420 | cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & | ||
1421 | IGP02E1000_AGC_LENGTH_MASK; | ||
1422 | |||
1423 | /* Array index bound check. */ | ||
1424 | if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || | ||
1425 | (cur_agc_index == 0)) | ||
1426 | return -E1000_ERR_PHY; | ||
1427 | |||
1428 | /* Remove min & max AGC values from calculation. */ | ||
1429 | if (e1000_igp_2_cable_length_table[min_agc_index] > | ||
1430 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
1431 | min_agc_index = cur_agc_index; | ||
1432 | if (e1000_igp_2_cable_length_table[max_agc_index] < | ||
1433 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
1434 | max_agc_index = cur_agc_index; | ||
1435 | |||
1436 | agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; | ||
1437 | } | ||
1438 | |||
1439 | agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + | ||
1440 | e1000_igp_2_cable_length_table[max_agc_index]); | ||
1441 | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); | ||
1442 | |||
1443 | /* Calculate cable length with the error range of +/- 10 meters. */ | ||
1444 | phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? | ||
1445 | (agc_value - IGP02E1000_AGC_RANGE) : 0; | ||
1446 | phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; | ||
1447 | |||
1448 | phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; | ||
1449 | |||
1450 | return ret_val; | ||
1451 | } | ||
1452 | |||
1453 | /** | ||
1454 | * e1000e_get_phy_info_m88 - Retrieve PHY information | ||
1455 | * @hw: pointer to the HW structure | ||
1456 | * | ||
1457 | * Valid for only copper links. Read the PHY status register (sticky read) | ||
1458 | * to verify that link is up. Read the PHY special control register to | ||
1459 | * determine the polarity and 10base-T extended distance. Read the PHY | ||
1460 | * special status register to determine MDI/MDIx and current speed. If | ||
1461 | * speed is 1000, then determine cable length, local and remote receiver. | ||
1462 | **/ | ||
1463 | s32 e1000e_get_phy_info_m88(struct e1000_hw *hw) | ||
1464 | { | ||
1465 | struct e1000_phy_info *phy = &hw->phy; | ||
1466 | s32 ret_val; | ||
1467 | u16 phy_data; | ||
1468 | bool link; | ||
1469 | |||
1470 | if (hw->media_type != e1000_media_type_copper) { | ||
1471 | hw_dbg(hw, "Phy info is only valid for copper media\n"); | ||
1472 | return -E1000_ERR_CONFIG; | ||
1473 | } | ||
1474 | |||
1475 | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | ||
1476 | if (ret_val) | ||
1477 | return ret_val; | ||
1478 | |||
1479 | if (!link) { | ||
1480 | hw_dbg(hw, "Phy info is only valid if link is up\n"); | ||
1481 | return -E1000_ERR_CONFIG; | ||
1482 | } | ||
1483 | |||
1484 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1485 | if (ret_val) | ||
1486 | return ret_val; | ||
1487 | |||
1488 | phy->polarity_correction = (phy_data & | ||
1489 | M88E1000_PSCR_POLARITY_REVERSAL); | ||
1490 | |||
1491 | ret_val = e1000_check_polarity_m88(hw); | ||
1492 | if (ret_val) | ||
1493 | return ret_val; | ||
1494 | |||
1495 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | ||
1496 | if (ret_val) | ||
1497 | return ret_val; | ||
1498 | |||
1499 | phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX); | ||
1500 | |||
1501 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { | ||
1502 | ret_val = e1000_get_cable_length(hw); | ||
1503 | if (ret_val) | ||
1504 | return ret_val; | ||
1505 | |||
1506 | ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); | ||
1507 | if (ret_val) | ||
1508 | return ret_val; | ||
1509 | |||
1510 | phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) | ||
1511 | ? e1000_1000t_rx_status_ok | ||
1512 | : e1000_1000t_rx_status_not_ok; | ||
1513 | |||
1514 | phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) | ||
1515 | ? e1000_1000t_rx_status_ok | ||
1516 | : e1000_1000t_rx_status_not_ok; | ||
1517 | } else { | ||
1518 | /* Set values to "undefined" */ | ||
1519 | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; | ||
1520 | phy->local_rx = e1000_1000t_rx_status_undefined; | ||
1521 | phy->remote_rx = e1000_1000t_rx_status_undefined; | ||
1522 | } | ||
1523 | |||
1524 | return ret_val; | ||
1525 | } | ||
1526 | |||
1527 | /** | ||
1528 | * e1000e_get_phy_info_igp - Retrieve igp PHY information | ||
1529 | * @hw: pointer to the HW structure | ||
1530 | * | ||
1531 | * Read PHY status to determine if link is up. If link is up, then | ||
1532 | * set/determine 10base-T extended distance and polarity correction. Read | ||
1533 | * PHY port status to determine MDI/MDIx and speed. Based on the speed, | ||
1534 | * determine on the cable length, local and remote receiver. | ||
1535 | **/ | ||
1536 | s32 e1000e_get_phy_info_igp(struct e1000_hw *hw) | ||
1537 | { | ||
1538 | struct e1000_phy_info *phy = &hw->phy; | ||
1539 | s32 ret_val; | ||
1540 | u16 data; | ||
1541 | bool link; | ||
1542 | |||
1543 | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | ||
1544 | if (ret_val) | ||
1545 | return ret_val; | ||
1546 | |||
1547 | if (!link) { | ||
1548 | hw_dbg(hw, "Phy info is only valid if link is up\n"); | ||
1549 | return -E1000_ERR_CONFIG; | ||
1550 | } | ||
1551 | |||
1552 | phy->polarity_correction = 1; | ||
1553 | |||
1554 | ret_val = e1000_check_polarity_igp(hw); | ||
1555 | if (ret_val) | ||
1556 | return ret_val; | ||
1557 | |||
1558 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); | ||
1559 | if (ret_val) | ||
1560 | return ret_val; | ||
1561 | |||
1562 | phy->is_mdix = (data & IGP01E1000_PSSR_MDIX); | ||
1563 | |||
1564 | if ((data & IGP01E1000_PSSR_SPEED_MASK) == | ||
1565 | IGP01E1000_PSSR_SPEED_1000MBPS) { | ||
1566 | ret_val = e1000_get_cable_length(hw); | ||
1567 | if (ret_val) | ||
1568 | return ret_val; | ||
1569 | |||
1570 | ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data); | ||
1571 | if (ret_val) | ||
1572 | return ret_val; | ||
1573 | |||
1574 | phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) | ||
1575 | ? e1000_1000t_rx_status_ok | ||
1576 | : e1000_1000t_rx_status_not_ok; | ||
1577 | |||
1578 | phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) | ||
1579 | ? e1000_1000t_rx_status_ok | ||
1580 | : e1000_1000t_rx_status_not_ok; | ||
1581 | } else { | ||
1582 | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; | ||
1583 | phy->local_rx = e1000_1000t_rx_status_undefined; | ||
1584 | phy->remote_rx = e1000_1000t_rx_status_undefined; | ||
1585 | } | ||
1586 | |||
1587 | return ret_val; | ||
1588 | } | ||
1589 | |||
1590 | /** | ||
1591 | * e1000e_phy_sw_reset - PHY software reset | ||
1592 | * @hw: pointer to the HW structure | ||
1593 | * | ||
1594 | * Does a software reset of the PHY by reading the PHY control register and | ||
1595 | * setting/write the control register reset bit to the PHY. | ||
1596 | **/ | ||
1597 | s32 e1000e_phy_sw_reset(struct e1000_hw *hw) | ||
1598 | { | ||
1599 | s32 ret_val; | ||
1600 | u16 phy_ctrl; | ||
1601 | |||
1602 | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl); | ||
1603 | if (ret_val) | ||
1604 | return ret_val; | ||
1605 | |||
1606 | phy_ctrl |= MII_CR_RESET; | ||
1607 | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl); | ||
1608 | if (ret_val) | ||
1609 | return ret_val; | ||
1610 | |||
1611 | udelay(1); | ||
1612 | |||
1613 | return ret_val; | ||
1614 | } | ||
1615 | |||
1616 | /** | ||
1617 | * e1000e_phy_hw_reset_generic - PHY hardware reset | ||
1618 | * @hw: pointer to the HW structure | ||
1619 | * | ||
1620 | * Verify the reset block is not blocking us from resetting. Acquire | ||
1621 | * semaphore (if necessary) and read/set/write the device control reset | ||
1622 | * bit in the PHY. Wait the appropriate delay time for the device to | ||
1623 | * reset and relase the semaphore (if necessary). | ||
1624 | **/ | ||
1625 | s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw) | ||
1626 | { | ||
1627 | struct e1000_phy_info *phy = &hw->phy; | ||
1628 | s32 ret_val; | ||
1629 | u32 ctrl; | ||
1630 | |||
1631 | ret_val = e1000_check_reset_block(hw); | ||
1632 | if (ret_val) | ||
1633 | return 0; | ||
1634 | |||
1635 | ret_val = phy->ops.acquire_phy(hw); | ||
1636 | if (ret_val) | ||
1637 | return ret_val; | ||
1638 | |||
1639 | ctrl = er32(CTRL); | ||
1640 | ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); | ||
1641 | e1e_flush(); | ||
1642 | |||
1643 | udelay(phy->reset_delay_us); | ||
1644 | |||
1645 | ew32(CTRL, ctrl); | ||
1646 | e1e_flush(); | ||
1647 | |||
1648 | udelay(150); | ||
1649 | |||
1650 | phy->ops.release_phy(hw); | ||
1651 | |||
1652 | return e1000_get_phy_cfg_done(hw); | ||
1653 | } | ||
1654 | |||
1655 | /** | ||
1656 | * e1000e_get_cfg_done - Generic configuration done | ||
1657 | * @hw: pointer to the HW structure | ||
1658 | * | ||
1659 | * Generic function to wait 10 milli-seconds for configuration to complete | ||
1660 | * and return success. | ||
1661 | **/ | ||
1662 | s32 e1000e_get_cfg_done(struct e1000_hw *hw) | ||
1663 | { | ||
1664 | mdelay(10); | ||
1665 | return 0; | ||
1666 | } | ||
1667 | |||
1668 | /* Internal function pointers */ | ||
1669 | |||
1670 | /** | ||
1671 | * e1000_get_phy_cfg_done - Generic PHY configuration done | ||
1672 | * @hw: pointer to the HW structure | ||
1673 | * | ||
1674 | * Return success if silicon family did not implement a family specific | ||
1675 | * get_cfg_done function. | ||
1676 | **/ | ||
1677 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) | ||
1678 | { | ||
1679 | if (hw->phy.ops.get_cfg_done) | ||
1680 | return hw->phy.ops.get_cfg_done(hw); | ||
1681 | |||
1682 | return 0; | ||
1683 | } | ||
1684 | |||
1685 | /** | ||
1686 | * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex | ||
1687 | * @hw: pointer to the HW structure | ||
1688 | * | ||
1689 | * When the silicon family has not implemented a forced speed/duplex | ||
1690 | * function for the PHY, simply return 0. | ||
1691 | **/ | ||
1692 | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) | ||
1693 | { | ||
1694 | if (hw->phy.ops.force_speed_duplex) | ||
1695 | return hw->phy.ops.force_speed_duplex(hw); | ||
1696 | |||
1697 | return 0; | ||
1698 | } | ||
1699 | |||
1700 | /** | ||
1701 | * e1000e_get_phy_type_from_id - Get PHY type from id | ||
1702 | * @phy_id: phy_id read from the phy | ||
1703 | * | ||
1704 | * Returns the phy type from the id. | ||
1705 | **/ | ||
1706 | enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id) | ||
1707 | { | ||
1708 | enum e1000_phy_type phy_type = e1000_phy_unknown; | ||
1709 | |||
1710 | switch (phy_id) { | ||
1711 | case M88E1000_I_PHY_ID: | ||
1712 | case M88E1000_E_PHY_ID: | ||
1713 | case M88E1111_I_PHY_ID: | ||
1714 | case M88E1011_I_PHY_ID: | ||
1715 | phy_type = e1000_phy_m88; | ||
1716 | break; | ||
1717 | case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ | ||
1718 | phy_type = e1000_phy_igp_2; | ||
1719 | break; | ||
1720 | case GG82563_E_PHY_ID: | ||
1721 | phy_type = e1000_phy_gg82563; | ||
1722 | break; | ||
1723 | case IGP03E1000_E_PHY_ID: | ||
1724 | phy_type = e1000_phy_igp_3; | ||
1725 | break; | ||
1726 | case IFE_E_PHY_ID: | ||
1727 | case IFE_PLUS_E_PHY_ID: | ||
1728 | case IFE_C_E_PHY_ID: | ||
1729 | phy_type = e1000_phy_ife; | ||
1730 | break; | ||
1731 | default: | ||
1732 | phy_type = e1000_phy_unknown; | ||
1733 | break; | ||
1734 | } | ||
1735 | return phy_type; | ||
1736 | } | ||
1737 | |||
1738 | /** | ||
1739 | * e1000e_commit_phy - Soft PHY reset | ||
1740 | * @hw: pointer to the HW structure | ||
1741 | * | ||
1742 | * Performs a soft PHY reset on those that apply. This is a function pointer | ||
1743 | * entry point called by drivers. | ||
1744 | **/ | ||
1745 | s32 e1000e_commit_phy(struct e1000_hw *hw) | ||
1746 | { | ||
1747 | if (hw->phy.ops.commit_phy) | ||
1748 | return hw->phy.ops.commit_phy(hw); | ||
1749 | |||
1750 | return 0; | ||
1751 | } | ||
1752 | |||
1753 | /** | ||
1754 | * e1000_set_d0_lplu_state - Sets low power link up state for D0 | ||
1755 | * @hw: pointer to the HW structure | ||
1756 | * @active: boolean used to enable/disable lplu | ||
1757 | * | ||
1758 | * Success returns 0, Failure returns 1 | ||
1759 | * | ||
1760 | * The low power link up (lplu) state is set to the power management level D0 | ||
1761 | * and SmartSpeed is disabled when active is true, else clear lplu for D0 | ||
1762 | * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU | ||
1763 | * is used during Dx states where the power conservation is most important. | ||
1764 | * During driver activity, SmartSpeed should be enabled so performance is | ||
1765 | * maintained. This is a function pointer entry point called by drivers. | ||
1766 | **/ | ||
1767 | static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) | ||
1768 | { | ||
1769 | if (hw->phy.ops.set_d0_lplu_state) | ||
1770 | return hw->phy.ops.set_d0_lplu_state(hw, active); | ||
1771 | |||
1772 | return 0; | ||
1773 | } | ||