diff options
Diffstat (limited to 'drivers/net/e1000e/phy.c')
-rw-r--r-- | drivers/net/e1000e/phy.c | 1773 |
1 files changed, 1773 insertions, 0 deletions
diff --git a/drivers/net/e1000e/phy.c b/drivers/net/e1000e/phy.c new file mode 100644 index 000000000000..793231810ae0 --- /dev/null +++ b/drivers/net/e1000e/phy.c | |||
@@ -0,0 +1,1773 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | #include <linux/delay.h> | ||
30 | |||
31 | #include "e1000.h" | ||
32 | |||
33 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); | ||
34 | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); | ||
35 | static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); | ||
36 | static s32 e1000_wait_autoneg(struct e1000_hw *hw); | ||
37 | |||
38 | /* Cable length tables */ | ||
39 | static const u16 e1000_m88_cable_length_table[] = | ||
40 | { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; | ||
41 | |||
42 | static const u16 e1000_igp_2_cable_length_table[] = | ||
43 | { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, | ||
44 | 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, | ||
45 | 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, | ||
46 | 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, | ||
47 | 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, | ||
48 | 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, | ||
49 | 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, | ||
50 | 124}; | ||
51 | #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ | ||
52 | (sizeof(e1000_igp_2_cable_length_table) / \ | ||
53 | sizeof(e1000_igp_2_cable_length_table[0])) | ||
54 | |||
55 | /** | ||
56 | * e1000e_check_reset_block_generic - Check if PHY reset is blocked | ||
57 | * @hw: pointer to the HW structure | ||
58 | * | ||
59 | * Read the PHY management control register and check whether a PHY reset | ||
60 | * is blocked. If a reset is not blocked return 0, otherwise | ||
61 | * return E1000_BLK_PHY_RESET (12). | ||
62 | **/ | ||
63 | s32 e1000e_check_reset_block_generic(struct e1000_hw *hw) | ||
64 | { | ||
65 | u32 manc; | ||
66 | |||
67 | manc = er32(MANC); | ||
68 | |||
69 | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? | ||
70 | E1000_BLK_PHY_RESET : 0; | ||
71 | } | ||
72 | |||
73 | /** | ||
74 | * e1000e_get_phy_id - Retrieve the PHY ID and revision | ||
75 | * @hw: pointer to the HW structure | ||
76 | * | ||
77 | * Reads the PHY registers and stores the PHY ID and possibly the PHY | ||
78 | * revision in the hardware structure. | ||
79 | **/ | ||
80 | s32 e1000e_get_phy_id(struct e1000_hw *hw) | ||
81 | { | ||
82 | struct e1000_phy_info *phy = &hw->phy; | ||
83 | s32 ret_val; | ||
84 | u16 phy_id; | ||
85 | |||
86 | ret_val = e1e_rphy(hw, PHY_ID1, &phy_id); | ||
87 | if (ret_val) | ||
88 | return ret_val; | ||
89 | |||
90 | phy->id = (u32)(phy_id << 16); | ||
91 | udelay(20); | ||
92 | ret_val = e1e_rphy(hw, PHY_ID2, &phy_id); | ||
93 | if (ret_val) | ||
94 | return ret_val; | ||
95 | |||
96 | phy->id |= (u32)(phy_id & PHY_REVISION_MASK); | ||
97 | phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); | ||
98 | |||
99 | return 0; | ||
100 | } | ||
101 | |||
102 | /** | ||
103 | * e1000e_phy_reset_dsp - Reset PHY DSP | ||
104 | * @hw: pointer to the HW structure | ||
105 | * | ||
106 | * Reset the digital signal processor. | ||
107 | **/ | ||
108 | s32 e1000e_phy_reset_dsp(struct e1000_hw *hw) | ||
109 | { | ||
110 | s32 ret_val; | ||
111 | |||
112 | ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); | ||
113 | if (ret_val) | ||
114 | return ret_val; | ||
115 | |||
116 | return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0); | ||
117 | } | ||
118 | |||
119 | /** | ||
120 | * e1000_read_phy_reg_mdic - Read MDI control register | ||
121 | * @hw: pointer to the HW structure | ||
122 | * @offset: register offset to be read | ||
123 | * @data: pointer to the read data | ||
124 | * | ||
125 | * Reads the MDI control regsiter in the PHY at offset and stores the | ||
126 | * information read to data. | ||
127 | **/ | ||
128 | static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) | ||
129 | { | ||
130 | struct e1000_phy_info *phy = &hw->phy; | ||
131 | u32 i, mdic = 0; | ||
132 | |||
133 | if (offset > MAX_PHY_REG_ADDRESS) { | ||
134 | hw_dbg(hw, "PHY Address %d is out of range\n", offset); | ||
135 | return -E1000_ERR_PARAM; | ||
136 | } | ||
137 | |||
138 | /* Set up Op-code, Phy Address, and register offset in the MDI | ||
139 | * Control register. The MAC will take care of interfacing with the | ||
140 | * PHY to retrieve the desired data. | ||
141 | */ | ||
142 | mdic = ((offset << E1000_MDIC_REG_SHIFT) | | ||
143 | (phy->addr << E1000_MDIC_PHY_SHIFT) | | ||
144 | (E1000_MDIC_OP_READ)); | ||
145 | |||
146 | ew32(MDIC, mdic); | ||
147 | |||
148 | /* Poll the ready bit to see if the MDI read completed */ | ||
149 | for (i = 0; i < 64; i++) { | ||
150 | udelay(50); | ||
151 | mdic = er32(MDIC); | ||
152 | if (mdic & E1000_MDIC_READY) | ||
153 | break; | ||
154 | } | ||
155 | if (!(mdic & E1000_MDIC_READY)) { | ||
156 | hw_dbg(hw, "MDI Read did not complete\n"); | ||
157 | return -E1000_ERR_PHY; | ||
158 | } | ||
159 | if (mdic & E1000_MDIC_ERROR) { | ||
160 | hw_dbg(hw, "MDI Error\n"); | ||
161 | return -E1000_ERR_PHY; | ||
162 | } | ||
163 | *data = (u16) mdic; | ||
164 | |||
165 | return 0; | ||
166 | } | ||
167 | |||
168 | /** | ||
169 | * e1000_write_phy_reg_mdic - Write MDI control register | ||
170 | * @hw: pointer to the HW structure | ||
171 | * @offset: register offset to write to | ||
172 | * @data: data to write to register at offset | ||
173 | * | ||
174 | * Writes data to MDI control register in the PHY at offset. | ||
175 | **/ | ||
176 | static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) | ||
177 | { | ||
178 | struct e1000_phy_info *phy = &hw->phy; | ||
179 | u32 i, mdic = 0; | ||
180 | |||
181 | if (offset > MAX_PHY_REG_ADDRESS) { | ||
182 | hw_dbg(hw, "PHY Address %d is out of range\n", offset); | ||
183 | return -E1000_ERR_PARAM; | ||
184 | } | ||
185 | |||
186 | /* Set up Op-code, Phy Address, and register offset in the MDI | ||
187 | * Control register. The MAC will take care of interfacing with the | ||
188 | * PHY to retrieve the desired data. | ||
189 | */ | ||
190 | mdic = (((u32)data) | | ||
191 | (offset << E1000_MDIC_REG_SHIFT) | | ||
192 | (phy->addr << E1000_MDIC_PHY_SHIFT) | | ||
193 | (E1000_MDIC_OP_WRITE)); | ||
194 | |||
195 | ew32(MDIC, mdic); | ||
196 | |||
197 | /* Poll the ready bit to see if the MDI read completed */ | ||
198 | for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { | ||
199 | udelay(5); | ||
200 | mdic = er32(MDIC); | ||
201 | if (mdic & E1000_MDIC_READY) | ||
202 | break; | ||
203 | } | ||
204 | if (!(mdic & E1000_MDIC_READY)) { | ||
205 | hw_dbg(hw, "MDI Write did not complete\n"); | ||
206 | return -E1000_ERR_PHY; | ||
207 | } | ||
208 | |||
209 | return 0; | ||
210 | } | ||
211 | |||
212 | /** | ||
213 | * e1000e_read_phy_reg_m88 - Read m88 PHY register | ||
214 | * @hw: pointer to the HW structure | ||
215 | * @offset: register offset to be read | ||
216 | * @data: pointer to the read data | ||
217 | * | ||
218 | * Acquires semaphore, if necessary, then reads the PHY register at offset | ||
219 | * and storing the retrieved information in data. Release any acquired | ||
220 | * semaphores before exiting. | ||
221 | **/ | ||
222 | s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) | ||
223 | { | ||
224 | s32 ret_val; | ||
225 | |||
226 | ret_val = hw->phy.ops.acquire_phy(hw); | ||
227 | if (ret_val) | ||
228 | return ret_val; | ||
229 | |||
230 | ret_val = e1000_read_phy_reg_mdic(hw, | ||
231 | MAX_PHY_REG_ADDRESS & offset, | ||
232 | data); | ||
233 | |||
234 | hw->phy.ops.release_phy(hw); | ||
235 | |||
236 | return ret_val; | ||
237 | } | ||
238 | |||
239 | /** | ||
240 | * e1000e_write_phy_reg_m88 - Write m88 PHY register | ||
241 | * @hw: pointer to the HW structure | ||
242 | * @offset: register offset to write to | ||
243 | * @data: data to write at register offset | ||
244 | * | ||
245 | * Acquires semaphore, if necessary, then writes the data to PHY register | ||
246 | * at the offset. Release any acquired semaphores before exiting. | ||
247 | **/ | ||
248 | s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) | ||
249 | { | ||
250 | s32 ret_val; | ||
251 | |||
252 | ret_val = hw->phy.ops.acquire_phy(hw); | ||
253 | if (ret_val) | ||
254 | return ret_val; | ||
255 | |||
256 | ret_val = e1000_write_phy_reg_mdic(hw, | ||
257 | MAX_PHY_REG_ADDRESS & offset, | ||
258 | data); | ||
259 | |||
260 | hw->phy.ops.release_phy(hw); | ||
261 | |||
262 | return ret_val; | ||
263 | } | ||
264 | |||
265 | /** | ||
266 | * e1000e_read_phy_reg_igp - Read igp PHY register | ||
267 | * @hw: pointer to the HW structure | ||
268 | * @offset: register offset to be read | ||
269 | * @data: pointer to the read data | ||
270 | * | ||
271 | * Acquires semaphore, if necessary, then reads the PHY register at offset | ||
272 | * and storing the retrieved information in data. Release any acquired | ||
273 | * semaphores before exiting. | ||
274 | **/ | ||
275 | s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) | ||
276 | { | ||
277 | s32 ret_val; | ||
278 | |||
279 | ret_val = hw->phy.ops.acquire_phy(hw); | ||
280 | if (ret_val) | ||
281 | return ret_val; | ||
282 | |||
283 | if (offset > MAX_PHY_MULTI_PAGE_REG) { | ||
284 | ret_val = e1000_write_phy_reg_mdic(hw, | ||
285 | IGP01E1000_PHY_PAGE_SELECT, | ||
286 | (u16)offset); | ||
287 | if (ret_val) { | ||
288 | hw->phy.ops.release_phy(hw); | ||
289 | return ret_val; | ||
290 | } | ||
291 | } | ||
292 | |||
293 | ret_val = e1000_read_phy_reg_mdic(hw, | ||
294 | MAX_PHY_REG_ADDRESS & offset, | ||
295 | data); | ||
296 | |||
297 | hw->phy.ops.release_phy(hw); | ||
298 | |||
299 | return ret_val; | ||
300 | } | ||
301 | |||
302 | /** | ||
303 | * e1000e_write_phy_reg_igp - Write igp PHY register | ||
304 | * @hw: pointer to the HW structure | ||
305 | * @offset: register offset to write to | ||
306 | * @data: data to write at register offset | ||
307 | * | ||
308 | * Acquires semaphore, if necessary, then writes the data to PHY register | ||
309 | * at the offset. Release any acquired semaphores before exiting. | ||
310 | **/ | ||
311 | s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) | ||
312 | { | ||
313 | s32 ret_val; | ||
314 | |||
315 | ret_val = hw->phy.ops.acquire_phy(hw); | ||
316 | if (ret_val) | ||
317 | return ret_val; | ||
318 | |||
319 | if (offset > MAX_PHY_MULTI_PAGE_REG) { | ||
320 | ret_val = e1000_write_phy_reg_mdic(hw, | ||
321 | IGP01E1000_PHY_PAGE_SELECT, | ||
322 | (u16)offset); | ||
323 | if (ret_val) { | ||
324 | hw->phy.ops.release_phy(hw); | ||
325 | return ret_val; | ||
326 | } | ||
327 | } | ||
328 | |||
329 | ret_val = e1000_write_phy_reg_mdic(hw, | ||
330 | MAX_PHY_REG_ADDRESS & offset, | ||
331 | data); | ||
332 | |||
333 | hw->phy.ops.release_phy(hw); | ||
334 | |||
335 | return ret_val; | ||
336 | } | ||
337 | |||
338 | /** | ||
339 | * e1000e_read_kmrn_reg - Read kumeran register | ||
340 | * @hw: pointer to the HW structure | ||
341 | * @offset: register offset to be read | ||
342 | * @data: pointer to the read data | ||
343 | * | ||
344 | * Acquires semaphore, if necessary. Then reads the PHY register at offset | ||
345 | * using the kumeran interface. The information retrieved is stored in data. | ||
346 | * Release any acquired semaphores before exiting. | ||
347 | **/ | ||
348 | s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) | ||
349 | { | ||
350 | u32 kmrnctrlsta; | ||
351 | s32 ret_val; | ||
352 | |||
353 | ret_val = hw->phy.ops.acquire_phy(hw); | ||
354 | if (ret_val) | ||
355 | return ret_val; | ||
356 | |||
357 | kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & | ||
358 | E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; | ||
359 | ew32(KMRNCTRLSTA, kmrnctrlsta); | ||
360 | |||
361 | udelay(2); | ||
362 | |||
363 | kmrnctrlsta = er32(KMRNCTRLSTA); | ||
364 | *data = (u16)kmrnctrlsta; | ||
365 | |||
366 | hw->phy.ops.release_phy(hw); | ||
367 | |||
368 | return ret_val; | ||
369 | } | ||
370 | |||
371 | /** | ||
372 | * e1000e_write_kmrn_reg - Write kumeran register | ||
373 | * @hw: pointer to the HW structure | ||
374 | * @offset: register offset to write to | ||
375 | * @data: data to write at register offset | ||
376 | * | ||
377 | * Acquires semaphore, if necessary. Then write the data to PHY register | ||
378 | * at the offset using the kumeran interface. Release any acquired semaphores | ||
379 | * before exiting. | ||
380 | **/ | ||
381 | s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) | ||
382 | { | ||
383 | u32 kmrnctrlsta; | ||
384 | s32 ret_val; | ||
385 | |||
386 | ret_val = hw->phy.ops.acquire_phy(hw); | ||
387 | if (ret_val) | ||
388 | return ret_val; | ||
389 | |||
390 | kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & | ||
391 | E1000_KMRNCTRLSTA_OFFSET) | data; | ||
392 | ew32(KMRNCTRLSTA, kmrnctrlsta); | ||
393 | |||
394 | udelay(2); | ||
395 | hw->phy.ops.release_phy(hw); | ||
396 | |||
397 | return ret_val; | ||
398 | } | ||
399 | |||
400 | /** | ||
401 | * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link | ||
402 | * @hw: pointer to the HW structure | ||
403 | * | ||
404 | * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock | ||
405 | * and downshift values are set also. | ||
406 | **/ | ||
407 | s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw) | ||
408 | { | ||
409 | struct e1000_phy_info *phy = &hw->phy; | ||
410 | s32 ret_val; | ||
411 | u16 phy_data; | ||
412 | |||
413 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | ||
414 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
415 | if (ret_val) | ||
416 | return ret_val; | ||
417 | |||
418 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
419 | |||
420 | /* Options: | ||
421 | * MDI/MDI-X = 0 (default) | ||
422 | * 0 - Auto for all speeds | ||
423 | * 1 - MDI mode | ||
424 | * 2 - MDI-X mode | ||
425 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | ||
426 | */ | ||
427 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
428 | |||
429 | switch (phy->mdix) { | ||
430 | case 1: | ||
431 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | ||
432 | break; | ||
433 | case 2: | ||
434 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | ||
435 | break; | ||
436 | case 3: | ||
437 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | ||
438 | break; | ||
439 | case 0: | ||
440 | default: | ||
441 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | ||
442 | break; | ||
443 | } | ||
444 | |||
445 | /* Options: | ||
446 | * disable_polarity_correction = 0 (default) | ||
447 | * Automatic Correction for Reversed Cable Polarity | ||
448 | * 0 - Disabled | ||
449 | * 1 - Enabled | ||
450 | */ | ||
451 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | ||
452 | if (phy->disable_polarity_correction == 1) | ||
453 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | ||
454 | |||
455 | ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
456 | if (ret_val) | ||
457 | return ret_val; | ||
458 | |||
459 | if (phy->revision < 4) { | ||
460 | /* Force TX_CLK in the Extended PHY Specific Control Register | ||
461 | * to 25MHz clock. | ||
462 | */ | ||
463 | ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | ||
464 | if (ret_val) | ||
465 | return ret_val; | ||
466 | |||
467 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
468 | |||
469 | if ((phy->revision == 2) && | ||
470 | (phy->id == M88E1111_I_PHY_ID)) { | ||
471 | /* 82573L PHY - set the downshift counter to 5x. */ | ||
472 | phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; | ||
473 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; | ||
474 | } else { | ||
475 | /* Configure Master and Slave downshift values */ | ||
476 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | ||
477 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | ||
478 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | ||
479 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | ||
480 | } | ||
481 | ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | ||
482 | if (ret_val) | ||
483 | return ret_val; | ||
484 | } | ||
485 | |||
486 | /* Commit the changes. */ | ||
487 | ret_val = e1000e_commit_phy(hw); | ||
488 | if (ret_val) | ||
489 | hw_dbg(hw, "Error committing the PHY changes\n"); | ||
490 | |||
491 | return ret_val; | ||
492 | } | ||
493 | |||
494 | /** | ||
495 | * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link | ||
496 | * @hw: pointer to the HW structure | ||
497 | * | ||
498 | * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for | ||
499 | * igp PHY's. | ||
500 | **/ | ||
501 | s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw) | ||
502 | { | ||
503 | struct e1000_phy_info *phy = &hw->phy; | ||
504 | s32 ret_val; | ||
505 | u16 data; | ||
506 | |||
507 | ret_val = e1000_phy_hw_reset(hw); | ||
508 | if (ret_val) { | ||
509 | hw_dbg(hw, "Error resetting the PHY.\n"); | ||
510 | return ret_val; | ||
511 | } | ||
512 | |||
513 | /* Wait 15ms for MAC to configure PHY from NVM settings. */ | ||
514 | msleep(15); | ||
515 | |||
516 | /* disable lplu d0 during driver init */ | ||
517 | ret_val = e1000_set_d0_lplu_state(hw, 0); | ||
518 | if (ret_val) { | ||
519 | hw_dbg(hw, "Error Disabling LPLU D0\n"); | ||
520 | return ret_val; | ||
521 | } | ||
522 | /* Configure mdi-mdix settings */ | ||
523 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data); | ||
524 | if (ret_val) | ||
525 | return ret_val; | ||
526 | |||
527 | data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
528 | |||
529 | switch (phy->mdix) { | ||
530 | case 1: | ||
531 | data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
532 | break; | ||
533 | case 2: | ||
534 | data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
535 | break; | ||
536 | case 0: | ||
537 | default: | ||
538 | data |= IGP01E1000_PSCR_AUTO_MDIX; | ||
539 | break; | ||
540 | } | ||
541 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data); | ||
542 | if (ret_val) | ||
543 | return ret_val; | ||
544 | |||
545 | /* set auto-master slave resolution settings */ | ||
546 | if (hw->mac.autoneg) { | ||
547 | /* when autonegotiation advertisement is only 1000Mbps then we | ||
548 | * should disable SmartSpeed and enable Auto MasterSlave | ||
549 | * resolution as hardware default. */ | ||
550 | if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { | ||
551 | /* Disable SmartSpeed */ | ||
552 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
553 | &data); | ||
554 | if (ret_val) | ||
555 | return ret_val; | ||
556 | |||
557 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
558 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
559 | data); | ||
560 | if (ret_val) | ||
561 | return ret_val; | ||
562 | |||
563 | /* Set auto Master/Slave resolution process */ | ||
564 | ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data); | ||
565 | if (ret_val) | ||
566 | return ret_val; | ||
567 | |||
568 | data &= ~CR_1000T_MS_ENABLE; | ||
569 | ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data); | ||
570 | if (ret_val) | ||
571 | return ret_val; | ||
572 | } | ||
573 | |||
574 | ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data); | ||
575 | if (ret_val) | ||
576 | return ret_val; | ||
577 | |||
578 | /* load defaults for future use */ | ||
579 | phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? | ||
580 | ((data & CR_1000T_MS_VALUE) ? | ||
581 | e1000_ms_force_master : | ||
582 | e1000_ms_force_slave) : | ||
583 | e1000_ms_auto; | ||
584 | |||
585 | switch (phy->ms_type) { | ||
586 | case e1000_ms_force_master: | ||
587 | data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | ||
588 | break; | ||
589 | case e1000_ms_force_slave: | ||
590 | data |= CR_1000T_MS_ENABLE; | ||
591 | data &= ~(CR_1000T_MS_VALUE); | ||
592 | break; | ||
593 | case e1000_ms_auto: | ||
594 | data &= ~CR_1000T_MS_ENABLE; | ||
595 | default: | ||
596 | break; | ||
597 | } | ||
598 | ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data); | ||
599 | } | ||
600 | |||
601 | return ret_val; | ||
602 | } | ||
603 | |||
604 | /** | ||
605 | * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation | ||
606 | * @hw: pointer to the HW structure | ||
607 | * | ||
608 | * Reads the MII auto-neg advertisement register and/or the 1000T control | ||
609 | * register and if the PHY is already setup for auto-negotiation, then | ||
610 | * return successful. Otherwise, setup advertisement and flow control to | ||
611 | * the appropriate values for the wanted auto-negotiation. | ||
612 | **/ | ||
613 | static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) | ||
614 | { | ||
615 | struct e1000_phy_info *phy = &hw->phy; | ||
616 | s32 ret_val; | ||
617 | u16 mii_autoneg_adv_reg; | ||
618 | u16 mii_1000t_ctrl_reg = 0; | ||
619 | |||
620 | phy->autoneg_advertised &= phy->autoneg_mask; | ||
621 | |||
622 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | ||
623 | ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); | ||
624 | if (ret_val) | ||
625 | return ret_val; | ||
626 | |||
627 | if (phy->autoneg_mask & ADVERTISE_1000_FULL) { | ||
628 | /* Read the MII 1000Base-T Control Register (Address 9). */ | ||
629 | ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); | ||
630 | if (ret_val) | ||
631 | return ret_val; | ||
632 | } | ||
633 | |||
634 | /* Need to parse both autoneg_advertised and fc and set up | ||
635 | * the appropriate PHY registers. First we will parse for | ||
636 | * autoneg_advertised software override. Since we can advertise | ||
637 | * a plethora of combinations, we need to check each bit | ||
638 | * individually. | ||
639 | */ | ||
640 | |||
641 | /* First we clear all the 10/100 mb speed bits in the Auto-Neg | ||
642 | * Advertisement Register (Address 4) and the 1000 mb speed bits in | ||
643 | * the 1000Base-T Control Register (Address 9). | ||
644 | */ | ||
645 | mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | | ||
646 | NWAY_AR_100TX_HD_CAPS | | ||
647 | NWAY_AR_10T_FD_CAPS | | ||
648 | NWAY_AR_10T_HD_CAPS); | ||
649 | mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); | ||
650 | |||
651 | hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised); | ||
652 | |||
653 | /* Do we want to advertise 10 Mb Half Duplex? */ | ||
654 | if (phy->autoneg_advertised & ADVERTISE_10_HALF) { | ||
655 | hw_dbg(hw, "Advertise 10mb Half duplex\n"); | ||
656 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | ||
657 | } | ||
658 | |||
659 | /* Do we want to advertise 10 Mb Full Duplex? */ | ||
660 | if (phy->autoneg_advertised & ADVERTISE_10_FULL) { | ||
661 | hw_dbg(hw, "Advertise 10mb Full duplex\n"); | ||
662 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | ||
663 | } | ||
664 | |||
665 | /* Do we want to advertise 100 Mb Half Duplex? */ | ||
666 | if (phy->autoneg_advertised & ADVERTISE_100_HALF) { | ||
667 | hw_dbg(hw, "Advertise 100mb Half duplex\n"); | ||
668 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; | ||
669 | } | ||
670 | |||
671 | /* Do we want to advertise 100 Mb Full Duplex? */ | ||
672 | if (phy->autoneg_advertised & ADVERTISE_100_FULL) { | ||
673 | hw_dbg(hw, "Advertise 100mb Full duplex\n"); | ||
674 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | ||
675 | } | ||
676 | |||
677 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | ||
678 | if (phy->autoneg_advertised & ADVERTISE_1000_HALF) | ||
679 | hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n"); | ||
680 | |||
681 | /* Do we want to advertise 1000 Mb Full Duplex? */ | ||
682 | if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { | ||
683 | hw_dbg(hw, "Advertise 1000mb Full duplex\n"); | ||
684 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | ||
685 | } | ||
686 | |||
687 | /* Check for a software override of the flow control settings, and | ||
688 | * setup the PHY advertisement registers accordingly. If | ||
689 | * auto-negotiation is enabled, then software will have to set the | ||
690 | * "PAUSE" bits to the correct value in the Auto-Negotiation | ||
691 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- | ||
692 | * negotiation. | ||
693 | * | ||
694 | * The possible values of the "fc" parameter are: | ||
695 | * 0: Flow control is completely disabled | ||
696 | * 1: Rx flow control is enabled (we can receive pause frames | ||
697 | * but not send pause frames). | ||
698 | * 2: Tx flow control is enabled (we can send pause frames | ||
699 | * but we do not support receiving pause frames). | ||
700 | * 3: Both Rx and TX flow control (symmetric) are enabled. | ||
701 | * other: No software override. The flow control configuration | ||
702 | * in the EEPROM is used. | ||
703 | */ | ||
704 | switch (hw->mac.fc) { | ||
705 | case e1000_fc_none: | ||
706 | /* Flow control (RX & TX) is completely disabled by a | ||
707 | * software over-ride. | ||
708 | */ | ||
709 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
710 | break; | ||
711 | case e1000_fc_rx_pause: | ||
712 | /* RX Flow control is enabled, and TX Flow control is | ||
713 | * disabled, by a software over-ride. | ||
714 | */ | ||
715 | /* Since there really isn't a way to advertise that we are | ||
716 | * capable of RX Pause ONLY, we will advertise that we | ||
717 | * support both symmetric and asymmetric RX PAUSE. Later | ||
718 | * (in e1000e_config_fc_after_link_up) we will disable the | ||
719 | * hw's ability to send PAUSE frames. | ||
720 | */ | ||
721 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
722 | break; | ||
723 | case e1000_fc_tx_pause: | ||
724 | /* TX Flow control is enabled, and RX Flow control is | ||
725 | * disabled, by a software over-ride. | ||
726 | */ | ||
727 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | ||
728 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | ||
729 | break; | ||
730 | case e1000_fc_full: | ||
731 | /* Flow control (both RX and TX) is enabled by a software | ||
732 | * over-ride. | ||
733 | */ | ||
734 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
735 | break; | ||
736 | default: | ||
737 | hw_dbg(hw, "Flow control param set incorrectly\n"); | ||
738 | ret_val = -E1000_ERR_CONFIG; | ||
739 | return ret_val; | ||
740 | } | ||
741 | |||
742 | ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); | ||
743 | if (ret_val) | ||
744 | return ret_val; | ||
745 | |||
746 | hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | ||
747 | |||
748 | if (phy->autoneg_mask & ADVERTISE_1000_FULL) { | ||
749 | ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); | ||
750 | } | ||
751 | |||
752 | return ret_val; | ||
753 | } | ||
754 | |||
755 | /** | ||
756 | * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link | ||
757 | * @hw: pointer to the HW structure | ||
758 | * | ||
759 | * Performs initial bounds checking on autoneg advertisement parameter, then | ||
760 | * configure to advertise the full capability. Setup the PHY to autoneg | ||
761 | * and restart the negotiation process between the link partner. If | ||
762 | * wait_for_link, then wait for autoneg to complete before exiting. | ||
763 | **/ | ||
764 | static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) | ||
765 | { | ||
766 | struct e1000_phy_info *phy = &hw->phy; | ||
767 | s32 ret_val; | ||
768 | u16 phy_ctrl; | ||
769 | |||
770 | /* Perform some bounds checking on the autoneg advertisement | ||
771 | * parameter. | ||
772 | */ | ||
773 | phy->autoneg_advertised &= phy->autoneg_mask; | ||
774 | |||
775 | /* If autoneg_advertised is zero, we assume it was not defaulted | ||
776 | * by the calling code so we set to advertise full capability. | ||
777 | */ | ||
778 | if (phy->autoneg_advertised == 0) | ||
779 | phy->autoneg_advertised = phy->autoneg_mask; | ||
780 | |||
781 | hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n"); | ||
782 | ret_val = e1000_phy_setup_autoneg(hw); | ||
783 | if (ret_val) { | ||
784 | hw_dbg(hw, "Error Setting up Auto-Negotiation\n"); | ||
785 | return ret_val; | ||
786 | } | ||
787 | hw_dbg(hw, "Restarting Auto-Neg\n"); | ||
788 | |||
789 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and | ||
790 | * the Auto Neg Restart bit in the PHY control register. | ||
791 | */ | ||
792 | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl); | ||
793 | if (ret_val) | ||
794 | return ret_val; | ||
795 | |||
796 | phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | ||
797 | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl); | ||
798 | if (ret_val) | ||
799 | return ret_val; | ||
800 | |||
801 | /* Does the user want to wait for Auto-Neg to complete here, or | ||
802 | * check at a later time (for example, callback routine). | ||
803 | */ | ||
804 | if (phy->wait_for_link) { | ||
805 | ret_val = e1000_wait_autoneg(hw); | ||
806 | if (ret_val) { | ||
807 | hw_dbg(hw, "Error while waiting for " | ||
808 | "autoneg to complete\n"); | ||
809 | return ret_val; | ||
810 | } | ||
811 | } | ||
812 | |||
813 | hw->mac.get_link_status = 1; | ||
814 | |||
815 | return ret_val; | ||
816 | } | ||
817 | |||
818 | /** | ||
819 | * e1000e_setup_copper_link - Configure copper link settings | ||
820 | * @hw: pointer to the HW structure | ||
821 | * | ||
822 | * Calls the appropriate function to configure the link for auto-neg or forced | ||
823 | * speed and duplex. Then we check for link, once link is established calls | ||
824 | * to configure collision distance and flow control are called. If link is | ||
825 | * not established, we return -E1000_ERR_PHY (-2). | ||
826 | **/ | ||
827 | s32 e1000e_setup_copper_link(struct e1000_hw *hw) | ||
828 | { | ||
829 | s32 ret_val; | ||
830 | bool link; | ||
831 | |||
832 | if (hw->mac.autoneg) { | ||
833 | /* Setup autoneg and flow control advertisement and perform | ||
834 | * autonegotiation. */ | ||
835 | ret_val = e1000_copper_link_autoneg(hw); | ||
836 | if (ret_val) | ||
837 | return ret_val; | ||
838 | } else { | ||
839 | /* PHY will be set to 10H, 10F, 100H or 100F | ||
840 | * depending on user settings. */ | ||
841 | hw_dbg(hw, "Forcing Speed and Duplex\n"); | ||
842 | ret_val = e1000_phy_force_speed_duplex(hw); | ||
843 | if (ret_val) { | ||
844 | hw_dbg(hw, "Error Forcing Speed and Duplex\n"); | ||
845 | return ret_val; | ||
846 | } | ||
847 | } | ||
848 | |||
849 | /* Check link status. Wait up to 100 microseconds for link to become | ||
850 | * valid. | ||
851 | */ | ||
852 | ret_val = e1000e_phy_has_link_generic(hw, | ||
853 | COPPER_LINK_UP_LIMIT, | ||
854 | 10, | ||
855 | &link); | ||
856 | if (ret_val) | ||
857 | return ret_val; | ||
858 | |||
859 | if (link) { | ||
860 | hw_dbg(hw, "Valid link established!!!\n"); | ||
861 | e1000e_config_collision_dist(hw); | ||
862 | ret_val = e1000e_config_fc_after_link_up(hw); | ||
863 | } else { | ||
864 | hw_dbg(hw, "Unable to establish link!!!\n"); | ||
865 | } | ||
866 | |||
867 | return ret_val; | ||
868 | } | ||
869 | |||
870 | /** | ||
871 | * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY | ||
872 | * @hw: pointer to the HW structure | ||
873 | * | ||
874 | * Calls the PHY setup function to force speed and duplex. Clears the | ||
875 | * auto-crossover to force MDI manually. Waits for link and returns | ||
876 | * successful if link up is successful, else -E1000_ERR_PHY (-2). | ||
877 | **/ | ||
878 | s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw) | ||
879 | { | ||
880 | struct e1000_phy_info *phy = &hw->phy; | ||
881 | s32 ret_val; | ||
882 | u16 phy_data; | ||
883 | bool link; | ||
884 | |||
885 | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); | ||
886 | if (ret_val) | ||
887 | return ret_val; | ||
888 | |||
889 | e1000e_phy_force_speed_duplex_setup(hw, &phy_data); | ||
890 | |||
891 | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); | ||
892 | if (ret_val) | ||
893 | return ret_val; | ||
894 | |||
895 | /* Clear Auto-Crossover to force MDI manually. IGP requires MDI | ||
896 | * forced whenever speed and duplex are forced. | ||
897 | */ | ||
898 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | ||
899 | if (ret_val) | ||
900 | return ret_val; | ||
901 | |||
902 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
903 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
904 | |||
905 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | ||
906 | if (ret_val) | ||
907 | return ret_val; | ||
908 | |||
909 | hw_dbg(hw, "IGP PSCR: %X\n", phy_data); | ||
910 | |||
911 | udelay(1); | ||
912 | |||
913 | if (phy->wait_for_link) { | ||
914 | hw_dbg(hw, "Waiting for forced speed/duplex link on IGP phy.\n"); | ||
915 | |||
916 | ret_val = e1000e_phy_has_link_generic(hw, | ||
917 | PHY_FORCE_LIMIT, | ||
918 | 100000, | ||
919 | &link); | ||
920 | if (ret_val) | ||
921 | return ret_val; | ||
922 | |||
923 | if (!link) | ||
924 | hw_dbg(hw, "Link taking longer than expected.\n"); | ||
925 | |||
926 | /* Try once more */ | ||
927 | ret_val = e1000e_phy_has_link_generic(hw, | ||
928 | PHY_FORCE_LIMIT, | ||
929 | 100000, | ||
930 | &link); | ||
931 | if (ret_val) | ||
932 | return ret_val; | ||
933 | } | ||
934 | |||
935 | return ret_val; | ||
936 | } | ||
937 | |||
938 | /** | ||
939 | * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY | ||
940 | * @hw: pointer to the HW structure | ||
941 | * | ||
942 | * Calls the PHY setup function to force speed and duplex. Clears the | ||
943 | * auto-crossover to force MDI manually. Resets the PHY to commit the | ||
944 | * changes. If time expires while waiting for link up, we reset the DSP. | ||
945 | * After reset, TX_CLK and CRS on TX must be set. Return successful upon | ||
946 | * successful completion, else return corresponding error code. | ||
947 | **/ | ||
948 | s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) | ||
949 | { | ||
950 | struct e1000_phy_info *phy = &hw->phy; | ||
951 | s32 ret_val; | ||
952 | u16 phy_data; | ||
953 | bool link; | ||
954 | |||
955 | /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI | ||
956 | * forced whenever speed and duplex are forced. | ||
957 | */ | ||
958 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
959 | if (ret_val) | ||
960 | return ret_val; | ||
961 | |||
962 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
963 | ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
964 | if (ret_val) | ||
965 | return ret_val; | ||
966 | |||
967 | hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data); | ||
968 | |||
969 | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); | ||
970 | if (ret_val) | ||
971 | return ret_val; | ||
972 | |||
973 | e1000e_phy_force_speed_duplex_setup(hw, &phy_data); | ||
974 | |||
975 | /* Reset the phy to commit changes. */ | ||
976 | phy_data |= MII_CR_RESET; | ||
977 | |||
978 | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); | ||
979 | if (ret_val) | ||
980 | return ret_val; | ||
981 | |||
982 | udelay(1); | ||
983 | |||
984 | if (phy->wait_for_link) { | ||
985 | hw_dbg(hw, "Waiting for forced speed/duplex link on M88 phy.\n"); | ||
986 | |||
987 | ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, | ||
988 | 100000, &link); | ||
989 | if (ret_val) | ||
990 | return ret_val; | ||
991 | |||
992 | if (!link) { | ||
993 | /* We didn't get link. | ||
994 | * Reset the DSP and cross our fingers. | ||
995 | */ | ||
996 | ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 0x001d); | ||
997 | if (ret_val) | ||
998 | return ret_val; | ||
999 | ret_val = e1000e_phy_reset_dsp(hw); | ||
1000 | if (ret_val) | ||
1001 | return ret_val; | ||
1002 | } | ||
1003 | |||
1004 | /* Try once more */ | ||
1005 | ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, | ||
1006 | 100000, &link); | ||
1007 | if (ret_val) | ||
1008 | return ret_val; | ||
1009 | } | ||
1010 | |||
1011 | ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | ||
1012 | if (ret_val) | ||
1013 | return ret_val; | ||
1014 | |||
1015 | /* Resetting the phy means we need to re-force TX_CLK in the | ||
1016 | * Extended PHY Specific Control Register to 25MHz clock from | ||
1017 | * the reset value of 2.5MHz. | ||
1018 | */ | ||
1019 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
1020 | ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | ||
1021 | if (ret_val) | ||
1022 | return ret_val; | ||
1023 | |||
1024 | /* In addition, we must re-enable CRS on Tx for both half and full | ||
1025 | * duplex. | ||
1026 | */ | ||
1027 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1028 | if (ret_val) | ||
1029 | return ret_val; | ||
1030 | |||
1031 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
1032 | ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1033 | |||
1034 | return ret_val; | ||
1035 | } | ||
1036 | |||
1037 | /** | ||
1038 | * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex | ||
1039 | * @hw: pointer to the HW structure | ||
1040 | * @phy_ctrl: pointer to current value of PHY_CONTROL | ||
1041 | * | ||
1042 | * Forces speed and duplex on the PHY by doing the following: disable flow | ||
1043 | * control, force speed/duplex on the MAC, disable auto speed detection, | ||
1044 | * disable auto-negotiation, configure duplex, configure speed, configure | ||
1045 | * the collision distance, write configuration to CTRL register. The | ||
1046 | * caller must write to the PHY_CONTROL register for these settings to | ||
1047 | * take affect. | ||
1048 | **/ | ||
1049 | void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) | ||
1050 | { | ||
1051 | struct e1000_mac_info *mac = &hw->mac; | ||
1052 | u32 ctrl; | ||
1053 | |||
1054 | /* Turn off flow control when forcing speed/duplex */ | ||
1055 | mac->fc = e1000_fc_none; | ||
1056 | |||
1057 | /* Force speed/duplex on the mac */ | ||
1058 | ctrl = er32(CTRL); | ||
1059 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
1060 | ctrl &= ~E1000_CTRL_SPD_SEL; | ||
1061 | |||
1062 | /* Disable Auto Speed Detection */ | ||
1063 | ctrl &= ~E1000_CTRL_ASDE; | ||
1064 | |||
1065 | /* Disable autoneg on the phy */ | ||
1066 | *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; | ||
1067 | |||
1068 | /* Forcing Full or Half Duplex? */ | ||
1069 | if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { | ||
1070 | ctrl &= ~E1000_CTRL_FD; | ||
1071 | *phy_ctrl &= ~MII_CR_FULL_DUPLEX; | ||
1072 | hw_dbg(hw, "Half Duplex\n"); | ||
1073 | } else { | ||
1074 | ctrl |= E1000_CTRL_FD; | ||
1075 | *phy_ctrl |= MII_CR_FULL_DUPLEX; | ||
1076 | hw_dbg(hw, "Full Duplex\n"); | ||
1077 | } | ||
1078 | |||
1079 | /* Forcing 10mb or 100mb? */ | ||
1080 | if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { | ||
1081 | ctrl |= E1000_CTRL_SPD_100; | ||
1082 | *phy_ctrl |= MII_CR_SPEED_100; | ||
1083 | *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); | ||
1084 | hw_dbg(hw, "Forcing 100mb\n"); | ||
1085 | } else { | ||
1086 | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | ||
1087 | *phy_ctrl |= MII_CR_SPEED_10; | ||
1088 | *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); | ||
1089 | hw_dbg(hw, "Forcing 10mb\n"); | ||
1090 | } | ||
1091 | |||
1092 | e1000e_config_collision_dist(hw); | ||
1093 | |||
1094 | ew32(CTRL, ctrl); | ||
1095 | } | ||
1096 | |||
1097 | /** | ||
1098 | * e1000e_set_d3_lplu_state - Sets low power link up state for D3 | ||
1099 | * @hw: pointer to the HW structure | ||
1100 | * @active: boolean used to enable/disable lplu | ||
1101 | * | ||
1102 | * Success returns 0, Failure returns 1 | ||
1103 | * | ||
1104 | * The low power link up (lplu) state is set to the power management level D3 | ||
1105 | * and SmartSpeed is disabled when active is true, else clear lplu for D3 | ||
1106 | * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU | ||
1107 | * is used during Dx states where the power conservation is most important. | ||
1108 | * During driver activity, SmartSpeed should be enabled so performance is | ||
1109 | * maintained. | ||
1110 | **/ | ||
1111 | s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active) | ||
1112 | { | ||
1113 | struct e1000_phy_info *phy = &hw->phy; | ||
1114 | s32 ret_val; | ||
1115 | u16 data; | ||
1116 | |||
1117 | ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); | ||
1118 | if (ret_val) | ||
1119 | return ret_val; | ||
1120 | |||
1121 | if (!active) { | ||
1122 | data &= ~IGP02E1000_PM_D3_LPLU; | ||
1123 | ret_val = e1e_wphy(hw, | ||
1124 | IGP02E1000_PHY_POWER_MGMT, | ||
1125 | data); | ||
1126 | if (ret_val) | ||
1127 | return ret_val; | ||
1128 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used | ||
1129 | * during Dx states where the power conservation is most | ||
1130 | * important. During driver activity we should enable | ||
1131 | * SmartSpeed, so performance is maintained. */ | ||
1132 | if (phy->smart_speed == e1000_smart_speed_on) { | ||
1133 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1134 | &data); | ||
1135 | if (ret_val) | ||
1136 | return ret_val; | ||
1137 | |||
1138 | data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
1139 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1140 | data); | ||
1141 | if (ret_val) | ||
1142 | return ret_val; | ||
1143 | } else if (phy->smart_speed == e1000_smart_speed_off) { | ||
1144 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1145 | &data); | ||
1146 | if (ret_val) | ||
1147 | return ret_val; | ||
1148 | |||
1149 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1150 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1151 | data); | ||
1152 | if (ret_val) | ||
1153 | return ret_val; | ||
1154 | } | ||
1155 | } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || | ||
1156 | (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || | ||
1157 | (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { | ||
1158 | data |= IGP02E1000_PM_D3_LPLU; | ||
1159 | ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); | ||
1160 | if (ret_val) | ||
1161 | return ret_val; | ||
1162 | |||
1163 | /* When LPLU is enabled, we should disable SmartSpeed */ | ||
1164 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); | ||
1165 | if (ret_val) | ||
1166 | return ret_val; | ||
1167 | |||
1168 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1169 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); | ||
1170 | } | ||
1171 | |||
1172 | return ret_val; | ||
1173 | } | ||
1174 | |||
1175 | /** | ||
1176 | * e1000e_check_downshift - Checks whether a downshift in speed occured | ||
1177 | * @hw: pointer to the HW structure | ||
1178 | * | ||
1179 | * Success returns 0, Failure returns 1 | ||
1180 | * | ||
1181 | * A downshift is detected by querying the PHY link health. | ||
1182 | **/ | ||
1183 | s32 e1000e_check_downshift(struct e1000_hw *hw) | ||
1184 | { | ||
1185 | struct e1000_phy_info *phy = &hw->phy; | ||
1186 | s32 ret_val; | ||
1187 | u16 phy_data, offset, mask; | ||
1188 | |||
1189 | switch (phy->type) { | ||
1190 | case e1000_phy_m88: | ||
1191 | case e1000_phy_gg82563: | ||
1192 | offset = M88E1000_PHY_SPEC_STATUS; | ||
1193 | mask = M88E1000_PSSR_DOWNSHIFT; | ||
1194 | break; | ||
1195 | case e1000_phy_igp_2: | ||
1196 | case e1000_phy_igp_3: | ||
1197 | offset = IGP01E1000_PHY_LINK_HEALTH; | ||
1198 | mask = IGP01E1000_PLHR_SS_DOWNGRADE; | ||
1199 | break; | ||
1200 | default: | ||
1201 | /* speed downshift not supported */ | ||
1202 | phy->speed_downgraded = 0; | ||
1203 | return 0; | ||
1204 | } | ||
1205 | |||
1206 | ret_val = e1e_rphy(hw, offset, &phy_data); | ||
1207 | |||
1208 | if (!ret_val) | ||
1209 | phy->speed_downgraded = (phy_data & mask); | ||
1210 | |||
1211 | return ret_val; | ||
1212 | } | ||
1213 | |||
1214 | /** | ||
1215 | * e1000_check_polarity_m88 - Checks the polarity. | ||
1216 | * @hw: pointer to the HW structure | ||
1217 | * | ||
1218 | * Success returns 0, Failure returns -E1000_ERR_PHY (-2) | ||
1219 | * | ||
1220 | * Polarity is determined based on the PHY specific status register. | ||
1221 | **/ | ||
1222 | static s32 e1000_check_polarity_m88(struct e1000_hw *hw) | ||
1223 | { | ||
1224 | struct e1000_phy_info *phy = &hw->phy; | ||
1225 | s32 ret_val; | ||
1226 | u16 data; | ||
1227 | |||
1228 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data); | ||
1229 | |||
1230 | if (!ret_val) | ||
1231 | phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) | ||
1232 | ? e1000_rev_polarity_reversed | ||
1233 | : e1000_rev_polarity_normal; | ||
1234 | |||
1235 | return ret_val; | ||
1236 | } | ||
1237 | |||
1238 | /** | ||
1239 | * e1000_check_polarity_igp - Checks the polarity. | ||
1240 | * @hw: pointer to the HW structure | ||
1241 | * | ||
1242 | * Success returns 0, Failure returns -E1000_ERR_PHY (-2) | ||
1243 | * | ||
1244 | * Polarity is determined based on the PHY port status register, and the | ||
1245 | * current speed (since there is no polarity at 100Mbps). | ||
1246 | **/ | ||
1247 | static s32 e1000_check_polarity_igp(struct e1000_hw *hw) | ||
1248 | { | ||
1249 | struct e1000_phy_info *phy = &hw->phy; | ||
1250 | s32 ret_val; | ||
1251 | u16 data, offset, mask; | ||
1252 | |||
1253 | /* Polarity is determined based on the speed of | ||
1254 | * our connection. */ | ||
1255 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); | ||
1256 | if (ret_val) | ||
1257 | return ret_val; | ||
1258 | |||
1259 | if ((data & IGP01E1000_PSSR_SPEED_MASK) == | ||
1260 | IGP01E1000_PSSR_SPEED_1000MBPS) { | ||
1261 | offset = IGP01E1000_PHY_PCS_INIT_REG; | ||
1262 | mask = IGP01E1000_PHY_POLARITY_MASK; | ||
1263 | } else { | ||
1264 | /* This really only applies to 10Mbps since | ||
1265 | * there is no polarity for 100Mbps (always 0). | ||
1266 | */ | ||
1267 | offset = IGP01E1000_PHY_PORT_STATUS; | ||
1268 | mask = IGP01E1000_PSSR_POLARITY_REVERSED; | ||
1269 | } | ||
1270 | |||
1271 | ret_val = e1e_rphy(hw, offset, &data); | ||
1272 | |||
1273 | if (!ret_val) | ||
1274 | phy->cable_polarity = (data & mask) | ||
1275 | ? e1000_rev_polarity_reversed | ||
1276 | : e1000_rev_polarity_normal; | ||
1277 | |||
1278 | return ret_val; | ||
1279 | } | ||
1280 | |||
1281 | /** | ||
1282 | * e1000_wait_autoneg - Wait for auto-neg compeletion | ||
1283 | * @hw: pointer to the HW structure | ||
1284 | * | ||
1285 | * Waits for auto-negotiation to complete or for the auto-negotiation time | ||
1286 | * limit to expire, which ever happens first. | ||
1287 | **/ | ||
1288 | static s32 e1000_wait_autoneg(struct e1000_hw *hw) | ||
1289 | { | ||
1290 | s32 ret_val = 0; | ||
1291 | u16 i, phy_status; | ||
1292 | |||
1293 | /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ | ||
1294 | for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { | ||
1295 | ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); | ||
1296 | if (ret_val) | ||
1297 | break; | ||
1298 | ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); | ||
1299 | if (ret_val) | ||
1300 | break; | ||
1301 | if (phy_status & MII_SR_AUTONEG_COMPLETE) | ||
1302 | break; | ||
1303 | msleep(100); | ||
1304 | } | ||
1305 | |||
1306 | /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation | ||
1307 | * has completed. | ||
1308 | */ | ||
1309 | return ret_val; | ||
1310 | } | ||
1311 | |||
1312 | /** | ||
1313 | * e1000e_phy_has_link_generic - Polls PHY for link | ||
1314 | * @hw: pointer to the HW structure | ||
1315 | * @iterations: number of times to poll for link | ||
1316 | * @usec_interval: delay between polling attempts | ||
1317 | * @success: pointer to whether polling was successful or not | ||
1318 | * | ||
1319 | * Polls the PHY status register for link, 'iterations' number of times. | ||
1320 | **/ | ||
1321 | s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, | ||
1322 | u32 usec_interval, bool *success) | ||
1323 | { | ||
1324 | s32 ret_val = 0; | ||
1325 | u16 i, phy_status; | ||
1326 | |||
1327 | for (i = 0; i < iterations; i++) { | ||
1328 | /* Some PHYs require the PHY_STATUS register to be read | ||
1329 | * twice due to the link bit being sticky. No harm doing | ||
1330 | * it across the board. | ||
1331 | */ | ||
1332 | ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); | ||
1333 | if (ret_val) | ||
1334 | break; | ||
1335 | ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); | ||
1336 | if (ret_val) | ||
1337 | break; | ||
1338 | if (phy_status & MII_SR_LINK_STATUS) | ||
1339 | break; | ||
1340 | if (usec_interval >= 1000) | ||
1341 | mdelay(usec_interval/1000); | ||
1342 | else | ||
1343 | udelay(usec_interval); | ||
1344 | } | ||
1345 | |||
1346 | *success = (i < iterations); | ||
1347 | |||
1348 | return ret_val; | ||
1349 | } | ||
1350 | |||
1351 | /** | ||
1352 | * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY | ||
1353 | * @hw: pointer to the HW structure | ||
1354 | * | ||
1355 | * Reads the PHY specific status register to retrieve the cable length | ||
1356 | * information. The cable length is determined by averaging the minimum and | ||
1357 | * maximum values to get the "average" cable length. The m88 PHY has four | ||
1358 | * possible cable length values, which are: | ||
1359 | * Register Value Cable Length | ||
1360 | * 0 < 50 meters | ||
1361 | * 1 50 - 80 meters | ||
1362 | * 2 80 - 110 meters | ||
1363 | * 3 110 - 140 meters | ||
1364 | * 4 > 140 meters | ||
1365 | **/ | ||
1366 | s32 e1000e_get_cable_length_m88(struct e1000_hw *hw) | ||
1367 | { | ||
1368 | struct e1000_phy_info *phy = &hw->phy; | ||
1369 | s32 ret_val; | ||
1370 | u16 phy_data, index; | ||
1371 | |||
1372 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | ||
1373 | if (ret_val) | ||
1374 | return ret_val; | ||
1375 | |||
1376 | index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | ||
1377 | M88E1000_PSSR_CABLE_LENGTH_SHIFT; | ||
1378 | phy->min_cable_length = e1000_m88_cable_length_table[index]; | ||
1379 | phy->max_cable_length = e1000_m88_cable_length_table[index+1]; | ||
1380 | |||
1381 | phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; | ||
1382 | |||
1383 | return ret_val; | ||
1384 | } | ||
1385 | |||
1386 | /** | ||
1387 | * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY | ||
1388 | * @hw: pointer to the HW structure | ||
1389 | * | ||
1390 | * The automatic gain control (agc) normalizes the amplitude of the | ||
1391 | * received signal, adjusting for the attenuation produced by the | ||
1392 | * cable. By reading the AGC registers, which reperesent the | ||
1393 | * cobination of course and fine gain value, the value can be put | ||
1394 | * into a lookup table to obtain the approximate cable length | ||
1395 | * for each channel. | ||
1396 | **/ | ||
1397 | s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw) | ||
1398 | { | ||
1399 | struct e1000_phy_info *phy = &hw->phy; | ||
1400 | s32 ret_val; | ||
1401 | u16 phy_data, i, agc_value = 0; | ||
1402 | u16 cur_agc_index, max_agc_index = 0; | ||
1403 | u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; | ||
1404 | u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = | ||
1405 | {IGP02E1000_PHY_AGC_A, | ||
1406 | IGP02E1000_PHY_AGC_B, | ||
1407 | IGP02E1000_PHY_AGC_C, | ||
1408 | IGP02E1000_PHY_AGC_D}; | ||
1409 | |||
1410 | /* Read the AGC registers for all channels */ | ||
1411 | for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { | ||
1412 | ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data); | ||
1413 | if (ret_val) | ||
1414 | return ret_val; | ||
1415 | |||
1416 | /* Getting bits 15:9, which represent the combination of | ||
1417 | * course and fine gain values. The result is a number | ||
1418 | * that can be put into the lookup table to obtain the | ||
1419 | * approximate cable length. */ | ||
1420 | cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & | ||
1421 | IGP02E1000_AGC_LENGTH_MASK; | ||
1422 | |||
1423 | /* Array index bound check. */ | ||
1424 | if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || | ||
1425 | (cur_agc_index == 0)) | ||
1426 | return -E1000_ERR_PHY; | ||
1427 | |||
1428 | /* Remove min & max AGC values from calculation. */ | ||
1429 | if (e1000_igp_2_cable_length_table[min_agc_index] > | ||
1430 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
1431 | min_agc_index = cur_agc_index; | ||
1432 | if (e1000_igp_2_cable_length_table[max_agc_index] < | ||
1433 | e1000_igp_2_cable_length_table[cur_agc_index]) | ||
1434 | max_agc_index = cur_agc_index; | ||
1435 | |||
1436 | agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; | ||
1437 | } | ||
1438 | |||
1439 | agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + | ||
1440 | e1000_igp_2_cable_length_table[max_agc_index]); | ||
1441 | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); | ||
1442 | |||
1443 | /* Calculate cable length with the error range of +/- 10 meters. */ | ||
1444 | phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? | ||
1445 | (agc_value - IGP02E1000_AGC_RANGE) : 0; | ||
1446 | phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; | ||
1447 | |||
1448 | phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; | ||
1449 | |||
1450 | return ret_val; | ||
1451 | } | ||
1452 | |||
1453 | /** | ||
1454 | * e1000e_get_phy_info_m88 - Retrieve PHY information | ||
1455 | * @hw: pointer to the HW structure | ||
1456 | * | ||
1457 | * Valid for only copper links. Read the PHY status register (sticky read) | ||
1458 | * to verify that link is up. Read the PHY special control register to | ||
1459 | * determine the polarity and 10base-T extended distance. Read the PHY | ||
1460 | * special status register to determine MDI/MDIx and current speed. If | ||
1461 | * speed is 1000, then determine cable length, local and remote receiver. | ||
1462 | **/ | ||
1463 | s32 e1000e_get_phy_info_m88(struct e1000_hw *hw) | ||
1464 | { | ||
1465 | struct e1000_phy_info *phy = &hw->phy; | ||
1466 | s32 ret_val; | ||
1467 | u16 phy_data; | ||
1468 | bool link; | ||
1469 | |||
1470 | if (hw->media_type != e1000_media_type_copper) { | ||
1471 | hw_dbg(hw, "Phy info is only valid for copper media\n"); | ||
1472 | return -E1000_ERR_CONFIG; | ||
1473 | } | ||
1474 | |||
1475 | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | ||
1476 | if (ret_val) | ||
1477 | return ret_val; | ||
1478 | |||
1479 | if (!link) { | ||
1480 | hw_dbg(hw, "Phy info is only valid if link is up\n"); | ||
1481 | return -E1000_ERR_CONFIG; | ||
1482 | } | ||
1483 | |||
1484 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1485 | if (ret_val) | ||
1486 | return ret_val; | ||
1487 | |||
1488 | phy->polarity_correction = (phy_data & | ||
1489 | M88E1000_PSCR_POLARITY_REVERSAL); | ||
1490 | |||
1491 | ret_val = e1000_check_polarity_m88(hw); | ||
1492 | if (ret_val) | ||
1493 | return ret_val; | ||
1494 | |||
1495 | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | ||
1496 | if (ret_val) | ||
1497 | return ret_val; | ||
1498 | |||
1499 | phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX); | ||
1500 | |||
1501 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { | ||
1502 | ret_val = e1000_get_cable_length(hw); | ||
1503 | if (ret_val) | ||
1504 | return ret_val; | ||
1505 | |||
1506 | ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); | ||
1507 | if (ret_val) | ||
1508 | return ret_val; | ||
1509 | |||
1510 | phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) | ||
1511 | ? e1000_1000t_rx_status_ok | ||
1512 | : e1000_1000t_rx_status_not_ok; | ||
1513 | |||
1514 | phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) | ||
1515 | ? e1000_1000t_rx_status_ok | ||
1516 | : e1000_1000t_rx_status_not_ok; | ||
1517 | } else { | ||
1518 | /* Set values to "undefined" */ | ||
1519 | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; | ||
1520 | phy->local_rx = e1000_1000t_rx_status_undefined; | ||
1521 | phy->remote_rx = e1000_1000t_rx_status_undefined; | ||
1522 | } | ||
1523 | |||
1524 | return ret_val; | ||
1525 | } | ||
1526 | |||
1527 | /** | ||
1528 | * e1000e_get_phy_info_igp - Retrieve igp PHY information | ||
1529 | * @hw: pointer to the HW structure | ||
1530 | * | ||
1531 | * Read PHY status to determine if link is up. If link is up, then | ||
1532 | * set/determine 10base-T extended distance and polarity correction. Read | ||
1533 | * PHY port status to determine MDI/MDIx and speed. Based on the speed, | ||
1534 | * determine on the cable length, local and remote receiver. | ||
1535 | **/ | ||
1536 | s32 e1000e_get_phy_info_igp(struct e1000_hw *hw) | ||
1537 | { | ||
1538 | struct e1000_phy_info *phy = &hw->phy; | ||
1539 | s32 ret_val; | ||
1540 | u16 data; | ||
1541 | bool link; | ||
1542 | |||
1543 | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | ||
1544 | if (ret_val) | ||
1545 | return ret_val; | ||
1546 | |||
1547 | if (!link) { | ||
1548 | hw_dbg(hw, "Phy info is only valid if link is up\n"); | ||
1549 | return -E1000_ERR_CONFIG; | ||
1550 | } | ||
1551 | |||
1552 | phy->polarity_correction = 1; | ||
1553 | |||
1554 | ret_val = e1000_check_polarity_igp(hw); | ||
1555 | if (ret_val) | ||
1556 | return ret_val; | ||
1557 | |||
1558 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); | ||
1559 | if (ret_val) | ||
1560 | return ret_val; | ||
1561 | |||
1562 | phy->is_mdix = (data & IGP01E1000_PSSR_MDIX); | ||
1563 | |||
1564 | if ((data & IGP01E1000_PSSR_SPEED_MASK) == | ||
1565 | IGP01E1000_PSSR_SPEED_1000MBPS) { | ||
1566 | ret_val = e1000_get_cable_length(hw); | ||
1567 | if (ret_val) | ||
1568 | return ret_val; | ||
1569 | |||
1570 | ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data); | ||
1571 | if (ret_val) | ||
1572 | return ret_val; | ||
1573 | |||
1574 | phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) | ||
1575 | ? e1000_1000t_rx_status_ok | ||
1576 | : e1000_1000t_rx_status_not_ok; | ||
1577 | |||
1578 | phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) | ||
1579 | ? e1000_1000t_rx_status_ok | ||
1580 | : e1000_1000t_rx_status_not_ok; | ||
1581 | } else { | ||
1582 | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; | ||
1583 | phy->local_rx = e1000_1000t_rx_status_undefined; | ||
1584 | phy->remote_rx = e1000_1000t_rx_status_undefined; | ||
1585 | } | ||
1586 | |||
1587 | return ret_val; | ||
1588 | } | ||
1589 | |||
1590 | /** | ||
1591 | * e1000e_phy_sw_reset - PHY software reset | ||
1592 | * @hw: pointer to the HW structure | ||
1593 | * | ||
1594 | * Does a software reset of the PHY by reading the PHY control register and | ||
1595 | * setting/write the control register reset bit to the PHY. | ||
1596 | **/ | ||
1597 | s32 e1000e_phy_sw_reset(struct e1000_hw *hw) | ||
1598 | { | ||
1599 | s32 ret_val; | ||
1600 | u16 phy_ctrl; | ||
1601 | |||
1602 | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl); | ||
1603 | if (ret_val) | ||
1604 | return ret_val; | ||
1605 | |||
1606 | phy_ctrl |= MII_CR_RESET; | ||
1607 | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl); | ||
1608 | if (ret_val) | ||
1609 | return ret_val; | ||
1610 | |||
1611 | udelay(1); | ||
1612 | |||
1613 | return ret_val; | ||
1614 | } | ||
1615 | |||
1616 | /** | ||
1617 | * e1000e_phy_hw_reset_generic - PHY hardware reset | ||
1618 | * @hw: pointer to the HW structure | ||
1619 | * | ||
1620 | * Verify the reset block is not blocking us from resetting. Acquire | ||
1621 | * semaphore (if necessary) and read/set/write the device control reset | ||
1622 | * bit in the PHY. Wait the appropriate delay time for the device to | ||
1623 | * reset and relase the semaphore (if necessary). | ||
1624 | **/ | ||
1625 | s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw) | ||
1626 | { | ||
1627 | struct e1000_phy_info *phy = &hw->phy; | ||
1628 | s32 ret_val; | ||
1629 | u32 ctrl; | ||
1630 | |||
1631 | ret_val = e1000_check_reset_block(hw); | ||
1632 | if (ret_val) | ||
1633 | return 0; | ||
1634 | |||
1635 | ret_val = phy->ops.acquire_phy(hw); | ||
1636 | if (ret_val) | ||
1637 | return ret_val; | ||
1638 | |||
1639 | ctrl = er32(CTRL); | ||
1640 | ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); | ||
1641 | e1e_flush(); | ||
1642 | |||
1643 | udelay(phy->reset_delay_us); | ||
1644 | |||
1645 | ew32(CTRL, ctrl); | ||
1646 | e1e_flush(); | ||
1647 | |||
1648 | udelay(150); | ||
1649 | |||
1650 | phy->ops.release_phy(hw); | ||
1651 | |||
1652 | return e1000_get_phy_cfg_done(hw); | ||
1653 | } | ||
1654 | |||
1655 | /** | ||
1656 | * e1000e_get_cfg_done - Generic configuration done | ||
1657 | * @hw: pointer to the HW structure | ||
1658 | * | ||
1659 | * Generic function to wait 10 milli-seconds for configuration to complete | ||
1660 | * and return success. | ||
1661 | **/ | ||
1662 | s32 e1000e_get_cfg_done(struct e1000_hw *hw) | ||
1663 | { | ||
1664 | mdelay(10); | ||
1665 | return 0; | ||
1666 | } | ||
1667 | |||
1668 | /* Internal function pointers */ | ||
1669 | |||
1670 | /** | ||
1671 | * e1000_get_phy_cfg_done - Generic PHY configuration done | ||
1672 | * @hw: pointer to the HW structure | ||
1673 | * | ||
1674 | * Return success if silicon family did not implement a family specific | ||
1675 | * get_cfg_done function. | ||
1676 | **/ | ||
1677 | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) | ||
1678 | { | ||
1679 | if (hw->phy.ops.get_cfg_done) | ||
1680 | return hw->phy.ops.get_cfg_done(hw); | ||
1681 | |||
1682 | return 0; | ||
1683 | } | ||
1684 | |||
1685 | /** | ||
1686 | * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex | ||
1687 | * @hw: pointer to the HW structure | ||
1688 | * | ||
1689 | * When the silicon family has not implemented a forced speed/duplex | ||
1690 | * function for the PHY, simply return 0. | ||
1691 | **/ | ||
1692 | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) | ||
1693 | { | ||
1694 | if (hw->phy.ops.force_speed_duplex) | ||
1695 | return hw->phy.ops.force_speed_duplex(hw); | ||
1696 | |||
1697 | return 0; | ||
1698 | } | ||
1699 | |||
1700 | /** | ||
1701 | * e1000e_get_phy_type_from_id - Get PHY type from id | ||
1702 | * @phy_id: phy_id read from the phy | ||
1703 | * | ||
1704 | * Returns the phy type from the id. | ||
1705 | **/ | ||
1706 | enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id) | ||
1707 | { | ||
1708 | enum e1000_phy_type phy_type = e1000_phy_unknown; | ||
1709 | |||
1710 | switch (phy_id) { | ||
1711 | case M88E1000_I_PHY_ID: | ||
1712 | case M88E1000_E_PHY_ID: | ||
1713 | case M88E1111_I_PHY_ID: | ||
1714 | case M88E1011_I_PHY_ID: | ||
1715 | phy_type = e1000_phy_m88; | ||
1716 | break; | ||
1717 | case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ | ||
1718 | phy_type = e1000_phy_igp_2; | ||
1719 | break; | ||
1720 | case GG82563_E_PHY_ID: | ||
1721 | phy_type = e1000_phy_gg82563; | ||
1722 | break; | ||
1723 | case IGP03E1000_E_PHY_ID: | ||
1724 | phy_type = e1000_phy_igp_3; | ||
1725 | break; | ||
1726 | case IFE_E_PHY_ID: | ||
1727 | case IFE_PLUS_E_PHY_ID: | ||
1728 | case IFE_C_E_PHY_ID: | ||
1729 | phy_type = e1000_phy_ife; | ||
1730 | break; | ||
1731 | default: | ||
1732 | phy_type = e1000_phy_unknown; | ||
1733 | break; | ||
1734 | } | ||
1735 | return phy_type; | ||
1736 | } | ||
1737 | |||
1738 | /** | ||
1739 | * e1000e_commit_phy - Soft PHY reset | ||
1740 | * @hw: pointer to the HW structure | ||
1741 | * | ||
1742 | * Performs a soft PHY reset on those that apply. This is a function pointer | ||
1743 | * entry point called by drivers. | ||
1744 | **/ | ||
1745 | s32 e1000e_commit_phy(struct e1000_hw *hw) | ||
1746 | { | ||
1747 | if (hw->phy.ops.commit_phy) | ||
1748 | return hw->phy.ops.commit_phy(hw); | ||
1749 | |||
1750 | return 0; | ||
1751 | } | ||
1752 | |||
1753 | /** | ||
1754 | * e1000_set_d0_lplu_state - Sets low power link up state for D0 | ||
1755 | * @hw: pointer to the HW structure | ||
1756 | * @active: boolean used to enable/disable lplu | ||
1757 | * | ||
1758 | * Success returns 0, Failure returns 1 | ||
1759 | * | ||
1760 | * The low power link up (lplu) state is set to the power management level D0 | ||
1761 | * and SmartSpeed is disabled when active is true, else clear lplu for D0 | ||
1762 | * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU | ||
1763 | * is used during Dx states where the power conservation is most important. | ||
1764 | * During driver activity, SmartSpeed should be enabled so performance is | ||
1765 | * maintained. This is a function pointer entry point called by drivers. | ||
1766 | **/ | ||
1767 | static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) | ||
1768 | { | ||
1769 | if (hw->phy.ops.set_d0_lplu_state) | ||
1770 | return hw->phy.ops.set_d0_lplu_state(hw, active); | ||
1771 | |||
1772 | return 0; | ||
1773 | } | ||