diff options
Diffstat (limited to 'drivers/net/e1000e/netdev.c')
-rw-r--r-- | drivers/net/e1000e/netdev.c | 4441 |
1 files changed, 4441 insertions, 0 deletions
diff --git a/drivers/net/e1000e/netdev.c b/drivers/net/e1000e/netdev.c new file mode 100644 index 000000000000..eeb40ccbcb22 --- /dev/null +++ b/drivers/net/e1000e/netdev.c | |||
@@ -0,0 +1,4441 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | #include <linux/module.h> | ||
30 | #include <linux/types.h> | ||
31 | #include <linux/init.h> | ||
32 | #include <linux/pci.h> | ||
33 | #include <linux/vmalloc.h> | ||
34 | #include <linux/pagemap.h> | ||
35 | #include <linux/delay.h> | ||
36 | #include <linux/netdevice.h> | ||
37 | #include <linux/tcp.h> | ||
38 | #include <linux/ipv6.h> | ||
39 | #include <net/checksum.h> | ||
40 | #include <net/ip6_checksum.h> | ||
41 | #include <linux/mii.h> | ||
42 | #include <linux/ethtool.h> | ||
43 | #include <linux/if_vlan.h> | ||
44 | #include <linux/cpu.h> | ||
45 | #include <linux/smp.h> | ||
46 | |||
47 | #include "e1000.h" | ||
48 | |||
49 | #define DRV_VERSION "0.2.0" | ||
50 | char e1000e_driver_name[] = "e1000e"; | ||
51 | const char e1000e_driver_version[] = DRV_VERSION; | ||
52 | |||
53 | static const struct e1000_info *e1000_info_tbl[] = { | ||
54 | [board_82571] = &e1000_82571_info, | ||
55 | [board_82572] = &e1000_82572_info, | ||
56 | [board_82573] = &e1000_82573_info, | ||
57 | [board_80003es2lan] = &e1000_es2_info, | ||
58 | [board_ich8lan] = &e1000_ich8_info, | ||
59 | [board_ich9lan] = &e1000_ich9_info, | ||
60 | }; | ||
61 | |||
62 | #ifdef DEBUG | ||
63 | /** | ||
64 | * e1000_get_hw_dev_name - return device name string | ||
65 | * used by hardware layer to print debugging information | ||
66 | **/ | ||
67 | char *e1000e_get_hw_dev_name(struct e1000_hw *hw) | ||
68 | { | ||
69 | struct e1000_adapter *adapter = hw->back; | ||
70 | struct net_device *netdev = adapter->netdev; | ||
71 | return netdev->name; | ||
72 | } | ||
73 | #endif | ||
74 | |||
75 | /** | ||
76 | * e1000_desc_unused - calculate if we have unused descriptors | ||
77 | **/ | ||
78 | static int e1000_desc_unused(struct e1000_ring *ring) | ||
79 | { | ||
80 | if (ring->next_to_clean > ring->next_to_use) | ||
81 | return ring->next_to_clean - ring->next_to_use - 1; | ||
82 | |||
83 | return ring->count + ring->next_to_clean - ring->next_to_use - 1; | ||
84 | } | ||
85 | |||
86 | /** | ||
87 | * e1000_receive_skb - helper function to handle rx indications | ||
88 | * @adapter: board private structure | ||
89 | * @status: descriptor status field as written by hardware | ||
90 | * @vlan: descriptor vlan field as written by hardware (no le/be conversion) | ||
91 | * @skb: pointer to sk_buff to be indicated to stack | ||
92 | **/ | ||
93 | static void e1000_receive_skb(struct e1000_adapter *adapter, | ||
94 | struct net_device *netdev, | ||
95 | struct sk_buff *skb, | ||
96 | u8 status, u16 vlan) | ||
97 | { | ||
98 | skb->protocol = eth_type_trans(skb, netdev); | ||
99 | |||
100 | if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) | ||
101 | vlan_hwaccel_receive_skb(skb, adapter->vlgrp, | ||
102 | le16_to_cpu(vlan) & | ||
103 | E1000_RXD_SPC_VLAN_MASK); | ||
104 | else | ||
105 | netif_receive_skb(skb); | ||
106 | |||
107 | netdev->last_rx = jiffies; | ||
108 | } | ||
109 | |||
110 | /** | ||
111 | * e1000_rx_checksum - Receive Checksum Offload for 82543 | ||
112 | * @adapter: board private structure | ||
113 | * @status_err: receive descriptor status and error fields | ||
114 | * @csum: receive descriptor csum field | ||
115 | * @sk_buff: socket buffer with received data | ||
116 | **/ | ||
117 | static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, | ||
118 | u32 csum, struct sk_buff *skb) | ||
119 | { | ||
120 | u16 status = (u16)status_err; | ||
121 | u8 errors = (u8)(status_err >> 24); | ||
122 | skb->ip_summed = CHECKSUM_NONE; | ||
123 | |||
124 | /* Ignore Checksum bit is set */ | ||
125 | if (status & E1000_RXD_STAT_IXSM) | ||
126 | return; | ||
127 | /* TCP/UDP checksum error bit is set */ | ||
128 | if (errors & E1000_RXD_ERR_TCPE) { | ||
129 | /* let the stack verify checksum errors */ | ||
130 | adapter->hw_csum_err++; | ||
131 | return; | ||
132 | } | ||
133 | |||
134 | /* TCP/UDP Checksum has not been calculated */ | ||
135 | if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) | ||
136 | return; | ||
137 | |||
138 | /* It must be a TCP or UDP packet with a valid checksum */ | ||
139 | if (status & E1000_RXD_STAT_TCPCS) { | ||
140 | /* TCP checksum is good */ | ||
141 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
142 | } else { | ||
143 | /* IP fragment with UDP payload */ | ||
144 | /* Hardware complements the payload checksum, so we undo it | ||
145 | * and then put the value in host order for further stack use. | ||
146 | */ | ||
147 | csum = ntohl(csum ^ 0xFFFF); | ||
148 | skb->csum = csum; | ||
149 | skb->ip_summed = CHECKSUM_COMPLETE; | ||
150 | } | ||
151 | adapter->hw_csum_good++; | ||
152 | } | ||
153 | |||
154 | /** | ||
155 | * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended | ||
156 | * @adapter: address of board private structure | ||
157 | **/ | ||
158 | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | ||
159 | int cleaned_count) | ||
160 | { | ||
161 | struct net_device *netdev = adapter->netdev; | ||
162 | struct pci_dev *pdev = adapter->pdev; | ||
163 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
164 | struct e1000_rx_desc *rx_desc; | ||
165 | struct e1000_buffer *buffer_info; | ||
166 | struct sk_buff *skb; | ||
167 | unsigned int i; | ||
168 | unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; | ||
169 | |||
170 | i = rx_ring->next_to_use; | ||
171 | buffer_info = &rx_ring->buffer_info[i]; | ||
172 | |||
173 | while (cleaned_count--) { | ||
174 | skb = buffer_info->skb; | ||
175 | if (skb) { | ||
176 | skb_trim(skb, 0); | ||
177 | goto map_skb; | ||
178 | } | ||
179 | |||
180 | skb = netdev_alloc_skb(netdev, bufsz); | ||
181 | if (!skb) { | ||
182 | /* Better luck next round */ | ||
183 | adapter->alloc_rx_buff_failed++; | ||
184 | break; | ||
185 | } | ||
186 | |||
187 | /* Make buffer alignment 2 beyond a 16 byte boundary | ||
188 | * this will result in a 16 byte aligned IP header after | ||
189 | * the 14 byte MAC header is removed | ||
190 | */ | ||
191 | skb_reserve(skb, NET_IP_ALIGN); | ||
192 | |||
193 | buffer_info->skb = skb; | ||
194 | map_skb: | ||
195 | buffer_info->dma = pci_map_single(pdev, skb->data, | ||
196 | adapter->rx_buffer_len, | ||
197 | PCI_DMA_FROMDEVICE); | ||
198 | if (pci_dma_mapping_error(buffer_info->dma)) { | ||
199 | dev_err(&pdev->dev, "RX DMA map failed\n"); | ||
200 | adapter->rx_dma_failed++; | ||
201 | break; | ||
202 | } | ||
203 | |||
204 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
205 | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | ||
206 | |||
207 | i++; | ||
208 | if (i == rx_ring->count) | ||
209 | i = 0; | ||
210 | buffer_info = &rx_ring->buffer_info[i]; | ||
211 | } | ||
212 | |||
213 | if (rx_ring->next_to_use != i) { | ||
214 | rx_ring->next_to_use = i; | ||
215 | if (i-- == 0) | ||
216 | i = (rx_ring->count - 1); | ||
217 | |||
218 | /* Force memory writes to complete before letting h/w | ||
219 | * know there are new descriptors to fetch. (Only | ||
220 | * applicable for weak-ordered memory model archs, | ||
221 | * such as IA-64). */ | ||
222 | wmb(); | ||
223 | writel(i, adapter->hw.hw_addr + rx_ring->tail); | ||
224 | } | ||
225 | } | ||
226 | |||
227 | /** | ||
228 | * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split | ||
229 | * @adapter: address of board private structure | ||
230 | **/ | ||
231 | static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, | ||
232 | int cleaned_count) | ||
233 | { | ||
234 | struct net_device *netdev = adapter->netdev; | ||
235 | struct pci_dev *pdev = adapter->pdev; | ||
236 | union e1000_rx_desc_packet_split *rx_desc; | ||
237 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
238 | struct e1000_buffer *buffer_info; | ||
239 | struct e1000_ps_page *ps_page; | ||
240 | struct sk_buff *skb; | ||
241 | unsigned int i, j; | ||
242 | |||
243 | i = rx_ring->next_to_use; | ||
244 | buffer_info = &rx_ring->buffer_info[i]; | ||
245 | |||
246 | while (cleaned_count--) { | ||
247 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | ||
248 | |||
249 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | ||
250 | ps_page = &rx_ring->ps_pages[(i * PS_PAGE_BUFFERS) | ||
251 | + j]; | ||
252 | if (j < adapter->rx_ps_pages) { | ||
253 | if (!ps_page->page) { | ||
254 | ps_page->page = alloc_page(GFP_ATOMIC); | ||
255 | if (!ps_page->page) { | ||
256 | adapter->alloc_rx_buff_failed++; | ||
257 | goto no_buffers; | ||
258 | } | ||
259 | ps_page->dma = pci_map_page(pdev, | ||
260 | ps_page->page, | ||
261 | 0, PAGE_SIZE, | ||
262 | PCI_DMA_FROMDEVICE); | ||
263 | if (pci_dma_mapping_error( | ||
264 | ps_page->dma)) { | ||
265 | dev_err(&adapter->pdev->dev, | ||
266 | "RX DMA page map failed\n"); | ||
267 | adapter->rx_dma_failed++; | ||
268 | goto no_buffers; | ||
269 | } | ||
270 | } | ||
271 | /* | ||
272 | * Refresh the desc even if buffer_addrs | ||
273 | * didn't change because each write-back | ||
274 | * erases this info. | ||
275 | */ | ||
276 | rx_desc->read.buffer_addr[j+1] = | ||
277 | cpu_to_le64(ps_page->dma); | ||
278 | } else { | ||
279 | rx_desc->read.buffer_addr[j+1] = ~0; | ||
280 | } | ||
281 | } | ||
282 | |||
283 | skb = netdev_alloc_skb(netdev, | ||
284 | adapter->rx_ps_bsize0 + NET_IP_ALIGN); | ||
285 | |||
286 | if (!skb) { | ||
287 | adapter->alloc_rx_buff_failed++; | ||
288 | break; | ||
289 | } | ||
290 | |||
291 | /* Make buffer alignment 2 beyond a 16 byte boundary | ||
292 | * this will result in a 16 byte aligned IP header after | ||
293 | * the 14 byte MAC header is removed | ||
294 | */ | ||
295 | skb_reserve(skb, NET_IP_ALIGN); | ||
296 | |||
297 | buffer_info->skb = skb; | ||
298 | buffer_info->dma = pci_map_single(pdev, skb->data, | ||
299 | adapter->rx_ps_bsize0, | ||
300 | PCI_DMA_FROMDEVICE); | ||
301 | if (pci_dma_mapping_error(buffer_info->dma)) { | ||
302 | dev_err(&pdev->dev, "RX DMA map failed\n"); | ||
303 | adapter->rx_dma_failed++; | ||
304 | /* cleanup skb */ | ||
305 | dev_kfree_skb_any(skb); | ||
306 | buffer_info->skb = NULL; | ||
307 | break; | ||
308 | } | ||
309 | |||
310 | rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); | ||
311 | |||
312 | i++; | ||
313 | if (i == rx_ring->count) | ||
314 | i = 0; | ||
315 | buffer_info = &rx_ring->buffer_info[i]; | ||
316 | } | ||
317 | |||
318 | no_buffers: | ||
319 | if (rx_ring->next_to_use != i) { | ||
320 | rx_ring->next_to_use = i; | ||
321 | |||
322 | if (!(i--)) | ||
323 | i = (rx_ring->count - 1); | ||
324 | |||
325 | /* Force memory writes to complete before letting h/w | ||
326 | * know there are new descriptors to fetch. (Only | ||
327 | * applicable for weak-ordered memory model archs, | ||
328 | * such as IA-64). */ | ||
329 | wmb(); | ||
330 | /* Hardware increments by 16 bytes, but packet split | ||
331 | * descriptors are 32 bytes...so we increment tail | ||
332 | * twice as much. | ||
333 | */ | ||
334 | writel(i<<1, adapter->hw.hw_addr + rx_ring->tail); | ||
335 | } | ||
336 | } | ||
337 | |||
338 | /** | ||
339 | * e1000_alloc_rx_buffers_jumbo - Replace used jumbo receive buffers | ||
340 | * | ||
341 | * @adapter: address of board private structure | ||
342 | * @cleaned_count: number of buffers to allocate this pass | ||
343 | **/ | ||
344 | static void e1000_alloc_rx_buffers_jumbo(struct e1000_adapter *adapter, | ||
345 | int cleaned_count) | ||
346 | { | ||
347 | struct net_device *netdev = adapter->netdev; | ||
348 | struct pci_dev *pdev = adapter->pdev; | ||
349 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
350 | struct e1000_rx_desc *rx_desc; | ||
351 | struct e1000_buffer *buffer_info; | ||
352 | struct sk_buff *skb; | ||
353 | unsigned int i; | ||
354 | unsigned int bufsz = 256 - | ||
355 | 16 /*for skb_reserve */ - | ||
356 | NET_IP_ALIGN; | ||
357 | |||
358 | i = rx_ring->next_to_use; | ||
359 | buffer_info = &rx_ring->buffer_info[i]; | ||
360 | |||
361 | while (cleaned_count--) { | ||
362 | skb = buffer_info->skb; | ||
363 | if (skb) { | ||
364 | skb_trim(skb, 0); | ||
365 | goto check_page; | ||
366 | } | ||
367 | |||
368 | skb = netdev_alloc_skb(netdev, bufsz); | ||
369 | if (!skb) { | ||
370 | /* Better luck next round */ | ||
371 | adapter->alloc_rx_buff_failed++; | ||
372 | break; | ||
373 | } | ||
374 | |||
375 | /* Make buffer alignment 2 beyond a 16 byte boundary | ||
376 | * this will result in a 16 byte aligned IP header after | ||
377 | * the 14 byte MAC header is removed | ||
378 | */ | ||
379 | skb_reserve(skb, NET_IP_ALIGN); | ||
380 | |||
381 | buffer_info->skb = skb; | ||
382 | check_page: | ||
383 | /* allocate a new page if necessary */ | ||
384 | if (!buffer_info->page) { | ||
385 | buffer_info->page = alloc_page(GFP_ATOMIC); | ||
386 | if (!buffer_info->page) { | ||
387 | adapter->alloc_rx_buff_failed++; | ||
388 | break; | ||
389 | } | ||
390 | } | ||
391 | |||
392 | if (!buffer_info->dma) | ||
393 | buffer_info->dma = pci_map_page(pdev, | ||
394 | buffer_info->page, 0, | ||
395 | PAGE_SIZE, | ||
396 | PCI_DMA_FROMDEVICE); | ||
397 | if (pci_dma_mapping_error(buffer_info->dma)) { | ||
398 | dev_err(&adapter->pdev->dev, "RX DMA page map failed\n"); | ||
399 | adapter->rx_dma_failed++; | ||
400 | break; | ||
401 | } | ||
402 | |||
403 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
404 | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | ||
405 | |||
406 | i++; | ||
407 | if (i == rx_ring->count) | ||
408 | i = 0; | ||
409 | buffer_info = &rx_ring->buffer_info[i]; | ||
410 | } | ||
411 | |||
412 | if (rx_ring->next_to_use != i) { | ||
413 | rx_ring->next_to_use = i; | ||
414 | if (i-- == 0) | ||
415 | i = (rx_ring->count - 1); | ||
416 | |||
417 | /* Force memory writes to complete before letting h/w | ||
418 | * know there are new descriptors to fetch. (Only | ||
419 | * applicable for weak-ordered memory model archs, | ||
420 | * such as IA-64). */ | ||
421 | wmb(); | ||
422 | writel(i, adapter->hw.hw_addr + rx_ring->tail); | ||
423 | } | ||
424 | } | ||
425 | |||
426 | /** | ||
427 | * e1000_clean_rx_irq - Send received data up the network stack; legacy | ||
428 | * @adapter: board private structure | ||
429 | * | ||
430 | * the return value indicates whether actual cleaning was done, there | ||
431 | * is no guarantee that everything was cleaned | ||
432 | **/ | ||
433 | static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, | ||
434 | int *work_done, int work_to_do) | ||
435 | { | ||
436 | struct net_device *netdev = adapter->netdev; | ||
437 | struct pci_dev *pdev = adapter->pdev; | ||
438 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
439 | struct e1000_rx_desc *rx_desc, *next_rxd; | ||
440 | struct e1000_buffer *buffer_info, *next_buffer; | ||
441 | u32 length; | ||
442 | unsigned int i; | ||
443 | int cleaned_count = 0; | ||
444 | bool cleaned = 0; | ||
445 | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | ||
446 | |||
447 | i = rx_ring->next_to_clean; | ||
448 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
449 | buffer_info = &rx_ring->buffer_info[i]; | ||
450 | |||
451 | while (rx_desc->status & E1000_RXD_STAT_DD) { | ||
452 | struct sk_buff *skb; | ||
453 | u8 status; | ||
454 | |||
455 | if (*work_done >= work_to_do) | ||
456 | break; | ||
457 | (*work_done)++; | ||
458 | |||
459 | status = rx_desc->status; | ||
460 | skb = buffer_info->skb; | ||
461 | buffer_info->skb = NULL; | ||
462 | |||
463 | prefetch(skb->data - NET_IP_ALIGN); | ||
464 | |||
465 | i++; | ||
466 | if (i == rx_ring->count) | ||
467 | i = 0; | ||
468 | next_rxd = E1000_RX_DESC(*rx_ring, i); | ||
469 | prefetch(next_rxd); | ||
470 | |||
471 | next_buffer = &rx_ring->buffer_info[i]; | ||
472 | |||
473 | cleaned = 1; | ||
474 | cleaned_count++; | ||
475 | pci_unmap_single(pdev, | ||
476 | buffer_info->dma, | ||
477 | adapter->rx_buffer_len, | ||
478 | PCI_DMA_FROMDEVICE); | ||
479 | buffer_info->dma = 0; | ||
480 | |||
481 | length = le16_to_cpu(rx_desc->length); | ||
482 | |||
483 | /* !EOP means multiple descriptors were used to store a single | ||
484 | * packet, also make sure the frame isn't just CRC only */ | ||
485 | if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) { | ||
486 | /* All receives must fit into a single buffer */ | ||
487 | ndev_dbg(netdev, "%s: Receive packet consumed " | ||
488 | "multiple buffers\n", netdev->name); | ||
489 | /* recycle */ | ||
490 | buffer_info->skb = skb; | ||
491 | goto next_desc; | ||
492 | } | ||
493 | |||
494 | if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { | ||
495 | /* recycle */ | ||
496 | buffer_info->skb = skb; | ||
497 | goto next_desc; | ||
498 | } | ||
499 | |||
500 | /* adjust length to remove Ethernet CRC */ | ||
501 | length -= 4; | ||
502 | |||
503 | /* probably a little skewed due to removing CRC */ | ||
504 | total_rx_bytes += length; | ||
505 | total_rx_packets++; | ||
506 | |||
507 | /* code added for copybreak, this should improve | ||
508 | * performance for small packets with large amounts | ||
509 | * of reassembly being done in the stack */ | ||
510 | if (length < copybreak) { | ||
511 | struct sk_buff *new_skb = | ||
512 | netdev_alloc_skb(netdev, length + NET_IP_ALIGN); | ||
513 | if (new_skb) { | ||
514 | skb_reserve(new_skb, NET_IP_ALIGN); | ||
515 | memcpy(new_skb->data - NET_IP_ALIGN, | ||
516 | skb->data - NET_IP_ALIGN, | ||
517 | length + NET_IP_ALIGN); | ||
518 | /* save the skb in buffer_info as good */ | ||
519 | buffer_info->skb = skb; | ||
520 | skb = new_skb; | ||
521 | } | ||
522 | /* else just continue with the old one */ | ||
523 | } | ||
524 | /* end copybreak code */ | ||
525 | skb_put(skb, length); | ||
526 | |||
527 | /* Receive Checksum Offload */ | ||
528 | e1000_rx_checksum(adapter, | ||
529 | (u32)(status) | | ||
530 | ((u32)(rx_desc->errors) << 24), | ||
531 | le16_to_cpu(rx_desc->csum), skb); | ||
532 | |||
533 | e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); | ||
534 | |||
535 | next_desc: | ||
536 | rx_desc->status = 0; | ||
537 | |||
538 | /* return some buffers to hardware, one at a time is too slow */ | ||
539 | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | ||
540 | adapter->alloc_rx_buf(adapter, cleaned_count); | ||
541 | cleaned_count = 0; | ||
542 | } | ||
543 | |||
544 | /* use prefetched values */ | ||
545 | rx_desc = next_rxd; | ||
546 | buffer_info = next_buffer; | ||
547 | } | ||
548 | rx_ring->next_to_clean = i; | ||
549 | |||
550 | cleaned_count = e1000_desc_unused(rx_ring); | ||
551 | if (cleaned_count) | ||
552 | adapter->alloc_rx_buf(adapter, cleaned_count); | ||
553 | |||
554 | adapter->total_rx_packets += total_rx_packets; | ||
555 | adapter->total_rx_bytes += total_rx_bytes; | ||
556 | return cleaned; | ||
557 | } | ||
558 | |||
559 | static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, | ||
560 | u16 length) | ||
561 | { | ||
562 | bi->page = NULL; | ||
563 | skb->len += length; | ||
564 | skb->data_len += length; | ||
565 | skb->truesize += length; | ||
566 | } | ||
567 | |||
568 | static void e1000_put_txbuf(struct e1000_adapter *adapter, | ||
569 | struct e1000_buffer *buffer_info) | ||
570 | { | ||
571 | if (buffer_info->dma) { | ||
572 | pci_unmap_page(adapter->pdev, buffer_info->dma, | ||
573 | buffer_info->length, PCI_DMA_TODEVICE); | ||
574 | buffer_info->dma = 0; | ||
575 | } | ||
576 | if (buffer_info->skb) { | ||
577 | dev_kfree_skb_any(buffer_info->skb); | ||
578 | buffer_info->skb = NULL; | ||
579 | } | ||
580 | } | ||
581 | |||
582 | static void e1000_print_tx_hang(struct e1000_adapter *adapter) | ||
583 | { | ||
584 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
585 | unsigned int i = tx_ring->next_to_clean; | ||
586 | unsigned int eop = tx_ring->buffer_info[i].next_to_watch; | ||
587 | struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); | ||
588 | struct net_device *netdev = adapter->netdev; | ||
589 | |||
590 | /* detected Tx unit hang */ | ||
591 | ndev_err(netdev, | ||
592 | "Detected Tx Unit Hang:\n" | ||
593 | " TDH <%x>\n" | ||
594 | " TDT <%x>\n" | ||
595 | " next_to_use <%x>\n" | ||
596 | " next_to_clean <%x>\n" | ||
597 | "buffer_info[next_to_clean]:\n" | ||
598 | " time_stamp <%lx>\n" | ||
599 | " next_to_watch <%x>\n" | ||
600 | " jiffies <%lx>\n" | ||
601 | " next_to_watch.status <%x>\n", | ||
602 | readl(adapter->hw.hw_addr + tx_ring->head), | ||
603 | readl(adapter->hw.hw_addr + tx_ring->tail), | ||
604 | tx_ring->next_to_use, | ||
605 | tx_ring->next_to_clean, | ||
606 | tx_ring->buffer_info[eop].time_stamp, | ||
607 | eop, | ||
608 | jiffies, | ||
609 | eop_desc->upper.fields.status); | ||
610 | } | ||
611 | |||
612 | /** | ||
613 | * e1000_clean_tx_irq - Reclaim resources after transmit completes | ||
614 | * @adapter: board private structure | ||
615 | * | ||
616 | * the return value indicates whether actual cleaning was done, there | ||
617 | * is no guarantee that everything was cleaned | ||
618 | **/ | ||
619 | static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) | ||
620 | { | ||
621 | struct net_device *netdev = adapter->netdev; | ||
622 | struct e1000_hw *hw = &adapter->hw; | ||
623 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
624 | struct e1000_tx_desc *tx_desc, *eop_desc; | ||
625 | struct e1000_buffer *buffer_info; | ||
626 | unsigned int i, eop; | ||
627 | unsigned int count = 0; | ||
628 | bool cleaned = 0; | ||
629 | unsigned int total_tx_bytes = 0, total_tx_packets = 0; | ||
630 | |||
631 | i = tx_ring->next_to_clean; | ||
632 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
633 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | ||
634 | |||
635 | while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { | ||
636 | for (cleaned = 0; !cleaned; ) { | ||
637 | tx_desc = E1000_TX_DESC(*tx_ring, i); | ||
638 | buffer_info = &tx_ring->buffer_info[i]; | ||
639 | cleaned = (i == eop); | ||
640 | |||
641 | if (cleaned) { | ||
642 | struct sk_buff *skb = buffer_info->skb; | ||
643 | unsigned int segs, bytecount; | ||
644 | segs = skb_shinfo(skb)->gso_segs ?: 1; | ||
645 | /* multiply data chunks by size of headers */ | ||
646 | bytecount = ((segs - 1) * skb_headlen(skb)) + | ||
647 | skb->len; | ||
648 | total_tx_packets += segs; | ||
649 | total_tx_bytes += bytecount; | ||
650 | } | ||
651 | |||
652 | e1000_put_txbuf(adapter, buffer_info); | ||
653 | tx_desc->upper.data = 0; | ||
654 | |||
655 | i++; | ||
656 | if (i == tx_ring->count) | ||
657 | i = 0; | ||
658 | } | ||
659 | |||
660 | eop = tx_ring->buffer_info[i].next_to_watch; | ||
661 | eop_desc = E1000_TX_DESC(*tx_ring, eop); | ||
662 | #define E1000_TX_WEIGHT 64 | ||
663 | /* weight of a sort for tx, to avoid endless transmit cleanup */ | ||
664 | if (count++ == E1000_TX_WEIGHT) | ||
665 | break; | ||
666 | } | ||
667 | |||
668 | tx_ring->next_to_clean = i; | ||
669 | |||
670 | #define TX_WAKE_THRESHOLD 32 | ||
671 | if (cleaned && netif_carrier_ok(netdev) && | ||
672 | e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { | ||
673 | /* Make sure that anybody stopping the queue after this | ||
674 | * sees the new next_to_clean. | ||
675 | */ | ||
676 | smp_mb(); | ||
677 | |||
678 | if (netif_queue_stopped(netdev) && | ||
679 | !(test_bit(__E1000_DOWN, &adapter->state))) { | ||
680 | netif_wake_queue(netdev); | ||
681 | ++adapter->restart_queue; | ||
682 | } | ||
683 | } | ||
684 | |||
685 | if (adapter->detect_tx_hung) { | ||
686 | /* Detect a transmit hang in hardware, this serializes the | ||
687 | * check with the clearing of time_stamp and movement of i */ | ||
688 | adapter->detect_tx_hung = 0; | ||
689 | if (tx_ring->buffer_info[eop].dma && | ||
690 | time_after(jiffies, tx_ring->buffer_info[eop].time_stamp | ||
691 | + (adapter->tx_timeout_factor * HZ)) | ||
692 | && !(er32(STATUS) & | ||
693 | E1000_STATUS_TXOFF)) { | ||
694 | e1000_print_tx_hang(adapter); | ||
695 | netif_stop_queue(netdev); | ||
696 | } | ||
697 | } | ||
698 | adapter->total_tx_bytes += total_tx_bytes; | ||
699 | adapter->total_tx_packets += total_tx_packets; | ||
700 | return cleaned; | ||
701 | } | ||
702 | |||
703 | /** | ||
704 | * e1000_clean_rx_irq_jumbo - Send received data up the network stack; legacy | ||
705 | * @adapter: board private structure | ||
706 | * | ||
707 | * the return value indicates whether actual cleaning was done, there | ||
708 | * is no guarantee that everything was cleaned | ||
709 | **/ | ||
710 | static bool e1000_clean_rx_irq_jumbo(struct e1000_adapter *adapter, | ||
711 | int *work_done, int work_to_do) | ||
712 | { | ||
713 | struct net_device *netdev = adapter->netdev; | ||
714 | struct pci_dev *pdev = adapter->pdev; | ||
715 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
716 | struct e1000_rx_desc *rx_desc, *next_rxd; | ||
717 | struct e1000_buffer *buffer_info, *next_buffer; | ||
718 | u32 length; | ||
719 | unsigned int i; | ||
720 | int cleaned_count = 0; | ||
721 | bool cleaned = 0; | ||
722 | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | ||
723 | |||
724 | i = rx_ring->next_to_clean; | ||
725 | rx_desc = E1000_RX_DESC(*rx_ring, i); | ||
726 | buffer_info = &rx_ring->buffer_info[i]; | ||
727 | |||
728 | while (rx_desc->status & E1000_RXD_STAT_DD) { | ||
729 | struct sk_buff *skb; | ||
730 | u8 status; | ||
731 | |||
732 | if (*work_done >= work_to_do) | ||
733 | break; | ||
734 | (*work_done)++; | ||
735 | |||
736 | status = rx_desc->status; | ||
737 | skb = buffer_info->skb; | ||
738 | buffer_info->skb = NULL; | ||
739 | |||
740 | i++; | ||
741 | if (i == rx_ring->count) | ||
742 | i = 0; | ||
743 | next_rxd = E1000_RX_DESC(*rx_ring, i); | ||
744 | prefetch(next_rxd); | ||
745 | |||
746 | next_buffer = &rx_ring->buffer_info[i]; | ||
747 | |||
748 | cleaned = 1; | ||
749 | cleaned_count++; | ||
750 | pci_unmap_page(pdev, | ||
751 | buffer_info->dma, | ||
752 | PAGE_SIZE, | ||
753 | PCI_DMA_FROMDEVICE); | ||
754 | buffer_info->dma = 0; | ||
755 | |||
756 | length = le16_to_cpu(rx_desc->length); | ||
757 | |||
758 | /* errors is only valid for DD + EOP descriptors */ | ||
759 | if ((status & E1000_RXD_STAT_EOP) && | ||
760 | (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { | ||
761 | /* recycle both page and skb */ | ||
762 | buffer_info->skb = skb; | ||
763 | /* an error means any chain goes out the window too */ | ||
764 | if (rx_ring->rx_skb_top) | ||
765 | dev_kfree_skb(rx_ring->rx_skb_top); | ||
766 | rx_ring->rx_skb_top = NULL; | ||
767 | goto next_desc; | ||
768 | } | ||
769 | |||
770 | #define rxtop rx_ring->rx_skb_top | ||
771 | if (!(status & E1000_RXD_STAT_EOP)) { | ||
772 | /* this descriptor is only the beginning (or middle) */ | ||
773 | if (!rxtop) { | ||
774 | /* this is the beginning of a chain */ | ||
775 | rxtop = skb; | ||
776 | skb_fill_page_desc(rxtop, 0, buffer_info->page, | ||
777 | 0, length); | ||
778 | } else { | ||
779 | /* this is the middle of a chain */ | ||
780 | skb_fill_page_desc(rxtop, | ||
781 | skb_shinfo(rxtop)->nr_frags, | ||
782 | buffer_info->page, 0, | ||
783 | length); | ||
784 | /* re-use the skb, only consumed the page */ | ||
785 | buffer_info->skb = skb; | ||
786 | } | ||
787 | e1000_consume_page(buffer_info, rxtop, length); | ||
788 | goto next_desc; | ||
789 | } else { | ||
790 | if (rxtop) { | ||
791 | /* end of the chain */ | ||
792 | skb_fill_page_desc(rxtop, | ||
793 | skb_shinfo(rxtop)->nr_frags, | ||
794 | buffer_info->page, 0, length); | ||
795 | /* re-use the current skb, we only consumed the | ||
796 | * page */ | ||
797 | buffer_info->skb = skb; | ||
798 | skb = rxtop; | ||
799 | rxtop = NULL; | ||
800 | e1000_consume_page(buffer_info, skb, length); | ||
801 | } else { | ||
802 | /* no chain, got EOP, this buf is the packet | ||
803 | * copybreak to save the put_page/alloc_page */ | ||
804 | if (length <= copybreak && | ||
805 | skb_tailroom(skb) >= length) { | ||
806 | u8 *vaddr; | ||
807 | vaddr = kmap_atomic(buffer_info->page, | ||
808 | KM_SKB_DATA_SOFTIRQ); | ||
809 | memcpy(skb_tail_pointer(skb), | ||
810 | vaddr, length); | ||
811 | kunmap_atomic(vaddr, | ||
812 | KM_SKB_DATA_SOFTIRQ); | ||
813 | /* re-use the page, so don't erase | ||
814 | * buffer_info->page */ | ||
815 | skb_put(skb, length); | ||
816 | } else { | ||
817 | skb_fill_page_desc(skb, 0, | ||
818 | buffer_info->page, 0, | ||
819 | length); | ||
820 | e1000_consume_page(buffer_info, skb, | ||
821 | length); | ||
822 | } | ||
823 | } | ||
824 | } | ||
825 | |||
826 | /* Receive Checksum Offload XXX recompute due to CRC strip? */ | ||
827 | e1000_rx_checksum(adapter, | ||
828 | (u32)(status) | | ||
829 | ((u32)(rx_desc->errors) << 24), | ||
830 | le16_to_cpu(rx_desc->csum), skb); | ||
831 | |||
832 | pskb_trim(skb, skb->len - 4); | ||
833 | |||
834 | /* probably a little skewed due to removing CRC */ | ||
835 | total_rx_bytes += skb->len; | ||
836 | total_rx_packets++; | ||
837 | |||
838 | /* eth type trans needs skb->data to point to something */ | ||
839 | if (!pskb_may_pull(skb, ETH_HLEN)) { | ||
840 | ndev_err(netdev, "__pskb_pull_tail failed.\n"); | ||
841 | dev_kfree_skb(skb); | ||
842 | goto next_desc; | ||
843 | } | ||
844 | |||
845 | e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); | ||
846 | |||
847 | next_desc: | ||
848 | rx_desc->status = 0; | ||
849 | |||
850 | /* return some buffers to hardware, one at a time is too slow */ | ||
851 | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | ||
852 | adapter->alloc_rx_buf(adapter, cleaned_count); | ||
853 | cleaned_count = 0; | ||
854 | } | ||
855 | |||
856 | /* use prefetched values */ | ||
857 | rx_desc = next_rxd; | ||
858 | buffer_info = next_buffer; | ||
859 | } | ||
860 | rx_ring->next_to_clean = i; | ||
861 | |||
862 | cleaned_count = e1000_desc_unused(rx_ring); | ||
863 | if (cleaned_count) | ||
864 | adapter->alloc_rx_buf(adapter, cleaned_count); | ||
865 | |||
866 | adapter->total_rx_packets += total_rx_packets; | ||
867 | adapter->total_rx_bytes += total_rx_bytes; | ||
868 | return cleaned; | ||
869 | } | ||
870 | |||
871 | /** | ||
872 | * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split | ||
873 | * @adapter: board private structure | ||
874 | * | ||
875 | * the return value indicates whether actual cleaning was done, there | ||
876 | * is no guarantee that everything was cleaned | ||
877 | **/ | ||
878 | static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, | ||
879 | int *work_done, int work_to_do) | ||
880 | { | ||
881 | union e1000_rx_desc_packet_split *rx_desc, *next_rxd; | ||
882 | struct net_device *netdev = adapter->netdev; | ||
883 | struct pci_dev *pdev = adapter->pdev; | ||
884 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
885 | struct e1000_buffer *buffer_info, *next_buffer; | ||
886 | struct e1000_ps_page *ps_page; | ||
887 | struct sk_buff *skb; | ||
888 | unsigned int i, j; | ||
889 | u32 length, staterr; | ||
890 | int cleaned_count = 0; | ||
891 | bool cleaned = 0; | ||
892 | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | ||
893 | |||
894 | i = rx_ring->next_to_clean; | ||
895 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | ||
896 | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | ||
897 | buffer_info = &rx_ring->buffer_info[i]; | ||
898 | |||
899 | while (staterr & E1000_RXD_STAT_DD) { | ||
900 | if (*work_done >= work_to_do) | ||
901 | break; | ||
902 | (*work_done)++; | ||
903 | skb = buffer_info->skb; | ||
904 | |||
905 | /* in the packet split case this is header only */ | ||
906 | prefetch(skb->data - NET_IP_ALIGN); | ||
907 | |||
908 | i++; | ||
909 | if (i == rx_ring->count) | ||
910 | i = 0; | ||
911 | next_rxd = E1000_RX_DESC_PS(*rx_ring, i); | ||
912 | prefetch(next_rxd); | ||
913 | |||
914 | next_buffer = &rx_ring->buffer_info[i]; | ||
915 | |||
916 | cleaned = 1; | ||
917 | cleaned_count++; | ||
918 | pci_unmap_single(pdev, buffer_info->dma, | ||
919 | adapter->rx_ps_bsize0, | ||
920 | PCI_DMA_FROMDEVICE); | ||
921 | buffer_info->dma = 0; | ||
922 | |||
923 | if (!(staterr & E1000_RXD_STAT_EOP)) { | ||
924 | ndev_dbg(netdev, "%s: Packet Split buffers didn't pick " | ||
925 | "up the full packet\n", netdev->name); | ||
926 | dev_kfree_skb_irq(skb); | ||
927 | goto next_desc; | ||
928 | } | ||
929 | |||
930 | if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { | ||
931 | dev_kfree_skb_irq(skb); | ||
932 | goto next_desc; | ||
933 | } | ||
934 | |||
935 | length = le16_to_cpu(rx_desc->wb.middle.length0); | ||
936 | |||
937 | if (!length) { | ||
938 | ndev_dbg(netdev, "%s: Last part of the packet spanning" | ||
939 | " multiple descriptors\n", netdev->name); | ||
940 | dev_kfree_skb_irq(skb); | ||
941 | goto next_desc; | ||
942 | } | ||
943 | |||
944 | /* Good Receive */ | ||
945 | skb_put(skb, length); | ||
946 | |||
947 | { | ||
948 | /* this looks ugly, but it seems compiler issues make it | ||
949 | more efficient than reusing j */ | ||
950 | int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); | ||
951 | |||
952 | /* page alloc/put takes too long and effects small packet | ||
953 | * throughput, so unsplit small packets and save the alloc/put*/ | ||
954 | if (l1 && (l1 <= copybreak) && | ||
955 | ((length + l1) <= adapter->rx_ps_bsize0)) { | ||
956 | u8 *vaddr; | ||
957 | |||
958 | ps_page = &rx_ring->ps_pages[i * PS_PAGE_BUFFERS]; | ||
959 | |||
960 | /* there is no documentation about how to call | ||
961 | * kmap_atomic, so we can't hold the mapping | ||
962 | * very long */ | ||
963 | pci_dma_sync_single_for_cpu(pdev, ps_page->dma, | ||
964 | PAGE_SIZE, PCI_DMA_FROMDEVICE); | ||
965 | vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); | ||
966 | memcpy(skb_tail_pointer(skb), vaddr, l1); | ||
967 | kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); | ||
968 | pci_dma_sync_single_for_device(pdev, ps_page->dma, | ||
969 | PAGE_SIZE, PCI_DMA_FROMDEVICE); | ||
970 | /* remove the CRC */ | ||
971 | l1 -= 4; | ||
972 | skb_put(skb, l1); | ||
973 | goto copydone; | ||
974 | } /* if */ | ||
975 | } | ||
976 | |||
977 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | ||
978 | length = le16_to_cpu(rx_desc->wb.upper.length[j]); | ||
979 | if (!length) | ||
980 | break; | ||
981 | |||
982 | ps_page = &rx_ring->ps_pages[(i * PS_PAGE_BUFFERS) + j]; | ||
983 | pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, | ||
984 | PCI_DMA_FROMDEVICE); | ||
985 | ps_page->dma = 0; | ||
986 | skb_fill_page_desc(skb, j, ps_page->page, 0, length); | ||
987 | ps_page->page = NULL; | ||
988 | skb->len += length; | ||
989 | skb->data_len += length; | ||
990 | skb->truesize += length; | ||
991 | } | ||
992 | |||
993 | /* strip the ethernet crc, problem is we're using pages now so | ||
994 | * this whole operation can get a little cpu intensive */ | ||
995 | pskb_trim(skb, skb->len - 4); | ||
996 | |||
997 | copydone: | ||
998 | total_rx_bytes += skb->len; | ||
999 | total_rx_packets++; | ||
1000 | |||
1001 | e1000_rx_checksum(adapter, staterr, le16_to_cpu( | ||
1002 | rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); | ||
1003 | |||
1004 | if (rx_desc->wb.upper.header_status & | ||
1005 | cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) | ||
1006 | adapter->rx_hdr_split++; | ||
1007 | |||
1008 | e1000_receive_skb(adapter, netdev, skb, | ||
1009 | staterr, rx_desc->wb.middle.vlan); | ||
1010 | |||
1011 | next_desc: | ||
1012 | rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); | ||
1013 | buffer_info->skb = NULL; | ||
1014 | |||
1015 | /* return some buffers to hardware, one at a time is too slow */ | ||
1016 | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | ||
1017 | adapter->alloc_rx_buf(adapter, cleaned_count); | ||
1018 | cleaned_count = 0; | ||
1019 | } | ||
1020 | |||
1021 | /* use prefetched values */ | ||
1022 | rx_desc = next_rxd; | ||
1023 | buffer_info = next_buffer; | ||
1024 | |||
1025 | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | ||
1026 | } | ||
1027 | rx_ring->next_to_clean = i; | ||
1028 | |||
1029 | cleaned_count = e1000_desc_unused(rx_ring); | ||
1030 | if (cleaned_count) | ||
1031 | adapter->alloc_rx_buf(adapter, cleaned_count); | ||
1032 | |||
1033 | adapter->total_rx_packets += total_rx_packets; | ||
1034 | adapter->total_rx_bytes += total_rx_bytes; | ||
1035 | return cleaned; | ||
1036 | } | ||
1037 | |||
1038 | /** | ||
1039 | * e1000_clean_rx_ring - Free Rx Buffers per Queue | ||
1040 | * @adapter: board private structure | ||
1041 | **/ | ||
1042 | static void e1000_clean_rx_ring(struct e1000_adapter *adapter) | ||
1043 | { | ||
1044 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
1045 | struct e1000_buffer *buffer_info; | ||
1046 | struct e1000_ps_page *ps_page; | ||
1047 | struct pci_dev *pdev = adapter->pdev; | ||
1048 | unsigned long size; | ||
1049 | unsigned int i, j; | ||
1050 | |||
1051 | /* Free all the Rx ring sk_buffs */ | ||
1052 | for (i = 0; i < rx_ring->count; i++) { | ||
1053 | buffer_info = &rx_ring->buffer_info[i]; | ||
1054 | if (buffer_info->dma) { | ||
1055 | if (adapter->clean_rx == e1000_clean_rx_irq) | ||
1056 | pci_unmap_single(pdev, buffer_info->dma, | ||
1057 | adapter->rx_buffer_len, | ||
1058 | PCI_DMA_FROMDEVICE); | ||
1059 | else if (adapter->clean_rx == e1000_clean_rx_irq_jumbo) | ||
1060 | pci_unmap_page(pdev, buffer_info->dma, | ||
1061 | PAGE_SIZE, PCI_DMA_FROMDEVICE); | ||
1062 | else if (adapter->clean_rx == e1000_clean_rx_irq_ps) | ||
1063 | pci_unmap_single(pdev, buffer_info->dma, | ||
1064 | adapter->rx_ps_bsize0, | ||
1065 | PCI_DMA_FROMDEVICE); | ||
1066 | buffer_info->dma = 0; | ||
1067 | } | ||
1068 | |||
1069 | if (buffer_info->page) { | ||
1070 | put_page(buffer_info->page); | ||
1071 | buffer_info->page = NULL; | ||
1072 | } | ||
1073 | |||
1074 | if (buffer_info->skb) { | ||
1075 | dev_kfree_skb(buffer_info->skb); | ||
1076 | buffer_info->skb = NULL; | ||
1077 | } | ||
1078 | |||
1079 | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | ||
1080 | ps_page = &rx_ring->ps_pages[(i * PS_PAGE_BUFFERS) | ||
1081 | + j]; | ||
1082 | if (!ps_page->page) | ||
1083 | break; | ||
1084 | pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, | ||
1085 | PCI_DMA_FROMDEVICE); | ||
1086 | ps_page->dma = 0; | ||
1087 | put_page(ps_page->page); | ||
1088 | ps_page->page = NULL; | ||
1089 | } | ||
1090 | } | ||
1091 | |||
1092 | /* there also may be some cached data from a chained receive */ | ||
1093 | if (rx_ring->rx_skb_top) { | ||
1094 | dev_kfree_skb(rx_ring->rx_skb_top); | ||
1095 | rx_ring->rx_skb_top = NULL; | ||
1096 | } | ||
1097 | |||
1098 | size = sizeof(struct e1000_buffer) * rx_ring->count; | ||
1099 | memset(rx_ring->buffer_info, 0, size); | ||
1100 | size = sizeof(struct e1000_ps_page) | ||
1101 | * (rx_ring->count * PS_PAGE_BUFFERS); | ||
1102 | memset(rx_ring->ps_pages, 0, size); | ||
1103 | |||
1104 | /* Zero out the descriptor ring */ | ||
1105 | memset(rx_ring->desc, 0, rx_ring->size); | ||
1106 | |||
1107 | rx_ring->next_to_clean = 0; | ||
1108 | rx_ring->next_to_use = 0; | ||
1109 | |||
1110 | writel(0, adapter->hw.hw_addr + rx_ring->head); | ||
1111 | writel(0, adapter->hw.hw_addr + rx_ring->tail); | ||
1112 | } | ||
1113 | |||
1114 | /** | ||
1115 | * e1000_intr_msi - Interrupt Handler | ||
1116 | * @irq: interrupt number | ||
1117 | * @data: pointer to a network interface device structure | ||
1118 | **/ | ||
1119 | static irqreturn_t e1000_intr_msi(int irq, void *data) | ||
1120 | { | ||
1121 | struct net_device *netdev = data; | ||
1122 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1123 | struct e1000_hw *hw = &adapter->hw; | ||
1124 | u32 icr = er32(ICR); | ||
1125 | |||
1126 | /* read ICR disables interrupts using IAM, so keep up with our | ||
1127 | * enable/disable accounting */ | ||
1128 | atomic_inc(&adapter->irq_sem); | ||
1129 | |||
1130 | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | ||
1131 | hw->mac.get_link_status = 1; | ||
1132 | /* ICH8 workaround-- Call gig speed drop workaround on cable | ||
1133 | * disconnect (LSC) before accessing any PHY registers */ | ||
1134 | if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && | ||
1135 | (!(er32(STATUS) & E1000_STATUS_LU))) | ||
1136 | e1000e_gig_downshift_workaround_ich8lan(hw); | ||
1137 | |||
1138 | /* 80003ES2LAN workaround-- For packet buffer work-around on | ||
1139 | * link down event; disable receives here in the ISR and reset | ||
1140 | * adapter in watchdog */ | ||
1141 | if (netif_carrier_ok(netdev) && | ||
1142 | adapter->flags & FLAG_RX_NEEDS_RESTART) { | ||
1143 | /* disable receives */ | ||
1144 | u32 rctl = er32(RCTL); | ||
1145 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | ||
1146 | } | ||
1147 | /* guard against interrupt when we're going down */ | ||
1148 | if (!test_bit(__E1000_DOWN, &adapter->state)) | ||
1149 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
1150 | } | ||
1151 | |||
1152 | if (netif_rx_schedule_prep(netdev, &adapter->napi)) { | ||
1153 | adapter->total_tx_bytes = 0; | ||
1154 | adapter->total_tx_packets = 0; | ||
1155 | adapter->total_rx_bytes = 0; | ||
1156 | adapter->total_rx_packets = 0; | ||
1157 | __netif_rx_schedule(netdev, &adapter->napi); | ||
1158 | } else { | ||
1159 | atomic_dec(&adapter->irq_sem); | ||
1160 | } | ||
1161 | |||
1162 | return IRQ_HANDLED; | ||
1163 | } | ||
1164 | |||
1165 | /** | ||
1166 | * e1000_intr - Interrupt Handler | ||
1167 | * @irq: interrupt number | ||
1168 | * @data: pointer to a network interface device structure | ||
1169 | **/ | ||
1170 | static irqreturn_t e1000_intr(int irq, void *data) | ||
1171 | { | ||
1172 | struct net_device *netdev = data; | ||
1173 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1174 | struct e1000_hw *hw = &adapter->hw; | ||
1175 | |||
1176 | u32 rctl, icr = er32(ICR); | ||
1177 | if (!icr) | ||
1178 | return IRQ_NONE; /* Not our interrupt */ | ||
1179 | |||
1180 | /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is | ||
1181 | * not set, then the adapter didn't send an interrupt */ | ||
1182 | if (!(icr & E1000_ICR_INT_ASSERTED)) | ||
1183 | return IRQ_NONE; | ||
1184 | |||
1185 | /* Interrupt Auto-Mask...upon reading ICR, | ||
1186 | * interrupts are masked. No need for the | ||
1187 | * IMC write, but it does mean we should | ||
1188 | * account for it ASAP. */ | ||
1189 | atomic_inc(&adapter->irq_sem); | ||
1190 | |||
1191 | if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | ||
1192 | hw->mac.get_link_status = 1; | ||
1193 | /* ICH8 workaround-- Call gig speed drop workaround on cable | ||
1194 | * disconnect (LSC) before accessing any PHY registers */ | ||
1195 | if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && | ||
1196 | (!(er32(STATUS) & E1000_STATUS_LU))) | ||
1197 | e1000e_gig_downshift_workaround_ich8lan(hw); | ||
1198 | |||
1199 | /* 80003ES2LAN workaround-- | ||
1200 | * For packet buffer work-around on link down event; | ||
1201 | * disable receives here in the ISR and | ||
1202 | * reset adapter in watchdog | ||
1203 | */ | ||
1204 | if (netif_carrier_ok(netdev) && | ||
1205 | (adapter->flags & FLAG_RX_NEEDS_RESTART)) { | ||
1206 | /* disable receives */ | ||
1207 | rctl = er32(RCTL); | ||
1208 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | ||
1209 | } | ||
1210 | /* guard against interrupt when we're going down */ | ||
1211 | if (!test_bit(__E1000_DOWN, &adapter->state)) | ||
1212 | mod_timer(&adapter->watchdog_timer, jiffies + 1); | ||
1213 | } | ||
1214 | |||
1215 | if (netif_rx_schedule_prep(netdev, &adapter->napi)) { | ||
1216 | adapter->total_tx_bytes = 0; | ||
1217 | adapter->total_tx_packets = 0; | ||
1218 | adapter->total_rx_bytes = 0; | ||
1219 | adapter->total_rx_packets = 0; | ||
1220 | __netif_rx_schedule(netdev, &adapter->napi); | ||
1221 | } else { | ||
1222 | atomic_dec(&adapter->irq_sem); | ||
1223 | } | ||
1224 | |||
1225 | return IRQ_HANDLED; | ||
1226 | } | ||
1227 | |||
1228 | static int e1000_request_irq(struct e1000_adapter *adapter) | ||
1229 | { | ||
1230 | struct net_device *netdev = adapter->netdev; | ||
1231 | void (*handler) = &e1000_intr; | ||
1232 | int irq_flags = IRQF_SHARED; | ||
1233 | int err; | ||
1234 | |||
1235 | err = pci_enable_msi(adapter->pdev); | ||
1236 | if (err) { | ||
1237 | ndev_warn(netdev, | ||
1238 | "Unable to allocate MSI interrupt Error: %d\n", err); | ||
1239 | } else { | ||
1240 | adapter->flags |= FLAG_MSI_ENABLED; | ||
1241 | handler = &e1000_intr_msi; | ||
1242 | irq_flags = 0; | ||
1243 | } | ||
1244 | |||
1245 | err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, | ||
1246 | netdev); | ||
1247 | if (err) { | ||
1248 | if (adapter->flags & FLAG_MSI_ENABLED) | ||
1249 | pci_disable_msi(adapter->pdev); | ||
1250 | ndev_err(netdev, | ||
1251 | "Unable to allocate interrupt Error: %d\n", err); | ||
1252 | } | ||
1253 | |||
1254 | return err; | ||
1255 | } | ||
1256 | |||
1257 | static void e1000_free_irq(struct e1000_adapter *adapter) | ||
1258 | { | ||
1259 | struct net_device *netdev = adapter->netdev; | ||
1260 | |||
1261 | free_irq(adapter->pdev->irq, netdev); | ||
1262 | if (adapter->flags & FLAG_MSI_ENABLED) { | ||
1263 | pci_disable_msi(adapter->pdev); | ||
1264 | adapter->flags &= ~FLAG_MSI_ENABLED; | ||
1265 | } | ||
1266 | } | ||
1267 | |||
1268 | /** | ||
1269 | * e1000_irq_disable - Mask off interrupt generation on the NIC | ||
1270 | **/ | ||
1271 | static void e1000_irq_disable(struct e1000_adapter *adapter) | ||
1272 | { | ||
1273 | struct e1000_hw *hw = &adapter->hw; | ||
1274 | |||
1275 | atomic_inc(&adapter->irq_sem); | ||
1276 | ew32(IMC, ~0); | ||
1277 | e1e_flush(); | ||
1278 | synchronize_irq(adapter->pdev->irq); | ||
1279 | } | ||
1280 | |||
1281 | /** | ||
1282 | * e1000_irq_enable - Enable default interrupt generation settings | ||
1283 | **/ | ||
1284 | static void e1000_irq_enable(struct e1000_adapter *adapter) | ||
1285 | { | ||
1286 | struct e1000_hw *hw = &adapter->hw; | ||
1287 | |||
1288 | if (atomic_dec_and_test(&adapter->irq_sem)) { | ||
1289 | ew32(IMS, IMS_ENABLE_MASK); | ||
1290 | e1e_flush(); | ||
1291 | } | ||
1292 | } | ||
1293 | |||
1294 | /** | ||
1295 | * e1000_get_hw_control - get control of the h/w from f/w | ||
1296 | * @adapter: address of board private structure | ||
1297 | * | ||
1298 | * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit. | ||
1299 | * For ASF and Pass Through versions of f/w this means that | ||
1300 | * the driver is loaded. For AMT version (only with 82573) | ||
1301 | * of the f/w this means that the network i/f is open. | ||
1302 | **/ | ||
1303 | static void e1000_get_hw_control(struct e1000_adapter *adapter) | ||
1304 | { | ||
1305 | struct e1000_hw *hw = &adapter->hw; | ||
1306 | u32 ctrl_ext; | ||
1307 | u32 swsm; | ||
1308 | |||
1309 | /* Let firmware know the driver has taken over */ | ||
1310 | if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { | ||
1311 | swsm = er32(SWSM); | ||
1312 | ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); | ||
1313 | } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { | ||
1314 | ctrl_ext = er32(CTRL_EXT); | ||
1315 | ew32(CTRL_EXT, | ||
1316 | ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); | ||
1317 | } | ||
1318 | } | ||
1319 | |||
1320 | /** | ||
1321 | * e1000_release_hw_control - release control of the h/w to f/w | ||
1322 | * @adapter: address of board private structure | ||
1323 | * | ||
1324 | * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. | ||
1325 | * For ASF and Pass Through versions of f/w this means that the | ||
1326 | * driver is no longer loaded. For AMT version (only with 82573) i | ||
1327 | * of the f/w this means that the network i/f is closed. | ||
1328 | * | ||
1329 | **/ | ||
1330 | static void e1000_release_hw_control(struct e1000_adapter *adapter) | ||
1331 | { | ||
1332 | struct e1000_hw *hw = &adapter->hw; | ||
1333 | u32 ctrl_ext; | ||
1334 | u32 swsm; | ||
1335 | |||
1336 | /* Let firmware taken over control of h/w */ | ||
1337 | if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { | ||
1338 | swsm = er32(SWSM); | ||
1339 | ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); | ||
1340 | } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { | ||
1341 | ctrl_ext = er32(CTRL_EXT); | ||
1342 | ew32(CTRL_EXT, | ||
1343 | ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); | ||
1344 | } | ||
1345 | } | ||
1346 | |||
1347 | static void e1000_release_manageability(struct e1000_adapter *adapter) | ||
1348 | { | ||
1349 | if (adapter->flags & FLAG_MNG_PT_ENABLED) { | ||
1350 | struct e1000_hw *hw = &adapter->hw; | ||
1351 | |||
1352 | u32 manc = er32(MANC); | ||
1353 | |||
1354 | /* re-enable hardware interception of ARP */ | ||
1355 | manc |= E1000_MANC_ARP_EN; | ||
1356 | manc &= ~E1000_MANC_EN_MNG2HOST; | ||
1357 | |||
1358 | /* don't explicitly have to mess with MANC2H since | ||
1359 | * MANC has an enable disable that gates MANC2H */ | ||
1360 | ew32(MANC, manc); | ||
1361 | } | ||
1362 | } | ||
1363 | |||
1364 | /** | ||
1365 | * @e1000_alloc_ring - allocate memory for a ring structure | ||
1366 | **/ | ||
1367 | static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, | ||
1368 | struct e1000_ring *ring) | ||
1369 | { | ||
1370 | struct pci_dev *pdev = adapter->pdev; | ||
1371 | |||
1372 | ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, | ||
1373 | GFP_KERNEL); | ||
1374 | if (!ring->desc) | ||
1375 | return -ENOMEM; | ||
1376 | |||
1377 | return 0; | ||
1378 | } | ||
1379 | |||
1380 | /** | ||
1381 | * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) | ||
1382 | * @adapter: board private structure | ||
1383 | * | ||
1384 | * Return 0 on success, negative on failure | ||
1385 | **/ | ||
1386 | int e1000e_setup_tx_resources(struct e1000_adapter *adapter) | ||
1387 | { | ||
1388 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
1389 | int err = -ENOMEM, size; | ||
1390 | |||
1391 | size = sizeof(struct e1000_buffer) * tx_ring->count; | ||
1392 | tx_ring->buffer_info = vmalloc(size); | ||
1393 | if (!tx_ring->buffer_info) | ||
1394 | goto err; | ||
1395 | memset(tx_ring->buffer_info, 0, size); | ||
1396 | |||
1397 | /* round up to nearest 4K */ | ||
1398 | tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); | ||
1399 | tx_ring->size = ALIGN(tx_ring->size, 4096); | ||
1400 | |||
1401 | err = e1000_alloc_ring_dma(adapter, tx_ring); | ||
1402 | if (err) | ||
1403 | goto err; | ||
1404 | |||
1405 | tx_ring->next_to_use = 0; | ||
1406 | tx_ring->next_to_clean = 0; | ||
1407 | spin_lock_init(&adapter->tx_queue_lock); | ||
1408 | |||
1409 | return 0; | ||
1410 | err: | ||
1411 | vfree(tx_ring->buffer_info); | ||
1412 | ndev_err(adapter->netdev, | ||
1413 | "Unable to allocate memory for the transmit descriptor ring\n"); | ||
1414 | return err; | ||
1415 | } | ||
1416 | |||
1417 | /** | ||
1418 | * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) | ||
1419 | * @adapter: board private structure | ||
1420 | * | ||
1421 | * Returns 0 on success, negative on failure | ||
1422 | **/ | ||
1423 | int e1000e_setup_rx_resources(struct e1000_adapter *adapter) | ||
1424 | { | ||
1425 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
1426 | int size, desc_len, err = -ENOMEM; | ||
1427 | |||
1428 | size = sizeof(struct e1000_buffer) * rx_ring->count; | ||
1429 | rx_ring->buffer_info = vmalloc(size); | ||
1430 | if (!rx_ring->buffer_info) | ||
1431 | goto err; | ||
1432 | memset(rx_ring->buffer_info, 0, size); | ||
1433 | |||
1434 | rx_ring->ps_pages = kcalloc(rx_ring->count * PS_PAGE_BUFFERS, | ||
1435 | sizeof(struct e1000_ps_page), | ||
1436 | GFP_KERNEL); | ||
1437 | if (!rx_ring->ps_pages) | ||
1438 | goto err; | ||
1439 | |||
1440 | desc_len = sizeof(union e1000_rx_desc_packet_split); | ||
1441 | |||
1442 | /* Round up to nearest 4K */ | ||
1443 | rx_ring->size = rx_ring->count * desc_len; | ||
1444 | rx_ring->size = ALIGN(rx_ring->size, 4096); | ||
1445 | |||
1446 | err = e1000_alloc_ring_dma(adapter, rx_ring); | ||
1447 | if (err) | ||
1448 | goto err; | ||
1449 | |||
1450 | rx_ring->next_to_clean = 0; | ||
1451 | rx_ring->next_to_use = 0; | ||
1452 | rx_ring->rx_skb_top = NULL; | ||
1453 | |||
1454 | return 0; | ||
1455 | err: | ||
1456 | vfree(rx_ring->buffer_info); | ||
1457 | kfree(rx_ring->ps_pages); | ||
1458 | ndev_err(adapter->netdev, | ||
1459 | "Unable to allocate memory for the transmit descriptor ring\n"); | ||
1460 | return err; | ||
1461 | } | ||
1462 | |||
1463 | /** | ||
1464 | * e1000_clean_tx_ring - Free Tx Buffers | ||
1465 | * @adapter: board private structure | ||
1466 | **/ | ||
1467 | static void e1000_clean_tx_ring(struct e1000_adapter *adapter) | ||
1468 | { | ||
1469 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
1470 | struct e1000_buffer *buffer_info; | ||
1471 | unsigned long size; | ||
1472 | unsigned int i; | ||
1473 | |||
1474 | for (i = 0; i < tx_ring->count; i++) { | ||
1475 | buffer_info = &tx_ring->buffer_info[i]; | ||
1476 | e1000_put_txbuf(adapter, buffer_info); | ||
1477 | } | ||
1478 | |||
1479 | size = sizeof(struct e1000_buffer) * tx_ring->count; | ||
1480 | memset(tx_ring->buffer_info, 0, size); | ||
1481 | |||
1482 | memset(tx_ring->desc, 0, tx_ring->size); | ||
1483 | |||
1484 | tx_ring->next_to_use = 0; | ||
1485 | tx_ring->next_to_clean = 0; | ||
1486 | |||
1487 | writel(0, adapter->hw.hw_addr + tx_ring->head); | ||
1488 | writel(0, adapter->hw.hw_addr + tx_ring->tail); | ||
1489 | } | ||
1490 | |||
1491 | /** | ||
1492 | * e1000e_free_tx_resources - Free Tx Resources per Queue | ||
1493 | * @adapter: board private structure | ||
1494 | * | ||
1495 | * Free all transmit software resources | ||
1496 | **/ | ||
1497 | void e1000e_free_tx_resources(struct e1000_adapter *adapter) | ||
1498 | { | ||
1499 | struct pci_dev *pdev = adapter->pdev; | ||
1500 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
1501 | |||
1502 | e1000_clean_tx_ring(adapter); | ||
1503 | |||
1504 | vfree(tx_ring->buffer_info); | ||
1505 | tx_ring->buffer_info = NULL; | ||
1506 | |||
1507 | dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, | ||
1508 | tx_ring->dma); | ||
1509 | tx_ring->desc = NULL; | ||
1510 | } | ||
1511 | |||
1512 | /** | ||
1513 | * e1000e_free_rx_resources - Free Rx Resources | ||
1514 | * @adapter: board private structure | ||
1515 | * | ||
1516 | * Free all receive software resources | ||
1517 | **/ | ||
1518 | |||
1519 | void e1000e_free_rx_resources(struct e1000_adapter *adapter) | ||
1520 | { | ||
1521 | struct pci_dev *pdev = adapter->pdev; | ||
1522 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
1523 | |||
1524 | e1000_clean_rx_ring(adapter); | ||
1525 | |||
1526 | vfree(rx_ring->buffer_info); | ||
1527 | rx_ring->buffer_info = NULL; | ||
1528 | |||
1529 | kfree(rx_ring->ps_pages); | ||
1530 | rx_ring->ps_pages = NULL; | ||
1531 | |||
1532 | dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, | ||
1533 | rx_ring->dma); | ||
1534 | rx_ring->desc = NULL; | ||
1535 | } | ||
1536 | |||
1537 | /** | ||
1538 | * e1000_update_itr - update the dynamic ITR value based on statistics | ||
1539 | * Stores a new ITR value based on packets and byte | ||
1540 | * counts during the last interrupt. The advantage of per interrupt | ||
1541 | * computation is faster updates and more accurate ITR for the current | ||
1542 | * traffic pattern. Constants in this function were computed | ||
1543 | * based on theoretical maximum wire speed and thresholds were set based | ||
1544 | * on testing data as well as attempting to minimize response time | ||
1545 | * while increasing bulk throughput. | ||
1546 | * this functionality is controlled by the InterruptThrottleRate module | ||
1547 | * parameter (see e1000_param.c) | ||
1548 | * @adapter: pointer to adapter | ||
1549 | * @itr_setting: current adapter->itr | ||
1550 | * @packets: the number of packets during this measurement interval | ||
1551 | * @bytes: the number of bytes during this measurement interval | ||
1552 | **/ | ||
1553 | static unsigned int e1000_update_itr(struct e1000_adapter *adapter, | ||
1554 | u16 itr_setting, int packets, | ||
1555 | int bytes) | ||
1556 | { | ||
1557 | unsigned int retval = itr_setting; | ||
1558 | |||
1559 | if (packets == 0) | ||
1560 | goto update_itr_done; | ||
1561 | |||
1562 | switch (itr_setting) { | ||
1563 | case lowest_latency: | ||
1564 | /* handle TSO and jumbo frames */ | ||
1565 | if (bytes/packets > 8000) | ||
1566 | retval = bulk_latency; | ||
1567 | else if ((packets < 5) && (bytes > 512)) { | ||
1568 | retval = low_latency; | ||
1569 | } | ||
1570 | break; | ||
1571 | case low_latency: /* 50 usec aka 20000 ints/s */ | ||
1572 | if (bytes > 10000) { | ||
1573 | /* this if handles the TSO accounting */ | ||
1574 | if (bytes/packets > 8000) { | ||
1575 | retval = bulk_latency; | ||
1576 | } else if ((packets < 10) || ((bytes/packets) > 1200)) { | ||
1577 | retval = bulk_latency; | ||
1578 | } else if ((packets > 35)) { | ||
1579 | retval = lowest_latency; | ||
1580 | } | ||
1581 | } else if (bytes/packets > 2000) { | ||
1582 | retval = bulk_latency; | ||
1583 | } else if (packets <= 2 && bytes < 512) { | ||
1584 | retval = lowest_latency; | ||
1585 | } | ||
1586 | break; | ||
1587 | case bulk_latency: /* 250 usec aka 4000 ints/s */ | ||
1588 | if (bytes > 25000) { | ||
1589 | if (packets > 35) { | ||
1590 | retval = low_latency; | ||
1591 | } | ||
1592 | } else if (bytes < 6000) { | ||
1593 | retval = low_latency; | ||
1594 | } | ||
1595 | break; | ||
1596 | } | ||
1597 | |||
1598 | update_itr_done: | ||
1599 | return retval; | ||
1600 | } | ||
1601 | |||
1602 | static void e1000_set_itr(struct e1000_adapter *adapter) | ||
1603 | { | ||
1604 | struct e1000_hw *hw = &adapter->hw; | ||
1605 | u16 current_itr; | ||
1606 | u32 new_itr = adapter->itr; | ||
1607 | |||
1608 | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | ||
1609 | if (adapter->link_speed != SPEED_1000) { | ||
1610 | current_itr = 0; | ||
1611 | new_itr = 4000; | ||
1612 | goto set_itr_now; | ||
1613 | } | ||
1614 | |||
1615 | adapter->tx_itr = e1000_update_itr(adapter, | ||
1616 | adapter->tx_itr, | ||
1617 | adapter->total_tx_packets, | ||
1618 | adapter->total_tx_bytes); | ||
1619 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
1620 | if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) | ||
1621 | adapter->tx_itr = low_latency; | ||
1622 | |||
1623 | adapter->rx_itr = e1000_update_itr(adapter, | ||
1624 | adapter->rx_itr, | ||
1625 | adapter->total_rx_packets, | ||
1626 | adapter->total_rx_bytes); | ||
1627 | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | ||
1628 | if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) | ||
1629 | adapter->rx_itr = low_latency; | ||
1630 | |||
1631 | current_itr = max(adapter->rx_itr, adapter->tx_itr); | ||
1632 | |||
1633 | switch (current_itr) { | ||
1634 | /* counts and packets in update_itr are dependent on these numbers */ | ||
1635 | case lowest_latency: | ||
1636 | new_itr = 70000; | ||
1637 | break; | ||
1638 | case low_latency: | ||
1639 | new_itr = 20000; /* aka hwitr = ~200 */ | ||
1640 | break; | ||
1641 | case bulk_latency: | ||
1642 | new_itr = 4000; | ||
1643 | break; | ||
1644 | default: | ||
1645 | break; | ||
1646 | } | ||
1647 | |||
1648 | set_itr_now: | ||
1649 | if (new_itr != adapter->itr) { | ||
1650 | /* this attempts to bias the interrupt rate towards Bulk | ||
1651 | * by adding intermediate steps when interrupt rate is | ||
1652 | * increasing */ | ||
1653 | new_itr = new_itr > adapter->itr ? | ||
1654 | min(adapter->itr + (new_itr >> 2), new_itr) : | ||
1655 | new_itr; | ||
1656 | adapter->itr = new_itr; | ||
1657 | ew32(ITR, 1000000000 / (new_itr * 256)); | ||
1658 | } | ||
1659 | } | ||
1660 | |||
1661 | /** | ||
1662 | * e1000_clean - NAPI Rx polling callback | ||
1663 | * @adapter: board private structure | ||
1664 | **/ | ||
1665 | static int e1000_clean(struct napi_struct *napi, int budget) | ||
1666 | { | ||
1667 | struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); | ||
1668 | struct net_device *poll_dev = adapter->netdev; | ||
1669 | int tx_cleaned = 0, work_done = 0; | ||
1670 | |||
1671 | /* Must NOT use netdev_priv macro here. */ | ||
1672 | adapter = poll_dev->priv; | ||
1673 | |||
1674 | /* Keep link state information with original netdev */ | ||
1675 | if (!netif_carrier_ok(poll_dev)) | ||
1676 | goto quit_polling; | ||
1677 | |||
1678 | /* e1000_clean is called per-cpu. This lock protects | ||
1679 | * tx_ring from being cleaned by multiple cpus | ||
1680 | * simultaneously. A failure obtaining the lock means | ||
1681 | * tx_ring is currently being cleaned anyway. */ | ||
1682 | if (spin_trylock(&adapter->tx_queue_lock)) { | ||
1683 | tx_cleaned = e1000_clean_tx_irq(adapter); | ||
1684 | spin_unlock(&adapter->tx_queue_lock); | ||
1685 | } | ||
1686 | |||
1687 | adapter->clean_rx(adapter, &work_done, budget); | ||
1688 | |||
1689 | /* If no Tx and not enough Rx work done, exit the polling mode */ | ||
1690 | if ((!tx_cleaned && (work_done < budget)) || | ||
1691 | !netif_running(poll_dev)) { | ||
1692 | quit_polling: | ||
1693 | if (adapter->itr_setting & 3) | ||
1694 | e1000_set_itr(adapter); | ||
1695 | netif_rx_complete(poll_dev, napi); | ||
1696 | e1000_irq_enable(adapter); | ||
1697 | } | ||
1698 | |||
1699 | return work_done; | ||
1700 | } | ||
1701 | |||
1702 | static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | ||
1703 | { | ||
1704 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1705 | struct e1000_hw *hw = &adapter->hw; | ||
1706 | u32 vfta, index; | ||
1707 | |||
1708 | /* don't update vlan cookie if already programmed */ | ||
1709 | if ((adapter->hw.mng_cookie.status & | ||
1710 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | ||
1711 | (vid == adapter->mng_vlan_id)) | ||
1712 | return; | ||
1713 | /* add VID to filter table */ | ||
1714 | index = (vid >> 5) & 0x7F; | ||
1715 | vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); | ||
1716 | vfta |= (1 << (vid & 0x1F)); | ||
1717 | e1000e_write_vfta(hw, index, vfta); | ||
1718 | } | ||
1719 | |||
1720 | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | ||
1721 | { | ||
1722 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1723 | struct e1000_hw *hw = &adapter->hw; | ||
1724 | u32 vfta, index; | ||
1725 | |||
1726 | e1000_irq_disable(adapter); | ||
1727 | vlan_group_set_device(adapter->vlgrp, vid, NULL); | ||
1728 | e1000_irq_enable(adapter); | ||
1729 | |||
1730 | if ((adapter->hw.mng_cookie.status & | ||
1731 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | ||
1732 | (vid == adapter->mng_vlan_id)) { | ||
1733 | /* release control to f/w */ | ||
1734 | e1000_release_hw_control(adapter); | ||
1735 | return; | ||
1736 | } | ||
1737 | |||
1738 | /* remove VID from filter table */ | ||
1739 | index = (vid >> 5) & 0x7F; | ||
1740 | vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); | ||
1741 | vfta &= ~(1 << (vid & 0x1F)); | ||
1742 | e1000e_write_vfta(hw, index, vfta); | ||
1743 | } | ||
1744 | |||
1745 | static void e1000_update_mng_vlan(struct e1000_adapter *adapter) | ||
1746 | { | ||
1747 | struct net_device *netdev = adapter->netdev; | ||
1748 | u16 vid = adapter->hw.mng_cookie.vlan_id; | ||
1749 | u16 old_vid = adapter->mng_vlan_id; | ||
1750 | |||
1751 | if (!adapter->vlgrp) | ||
1752 | return; | ||
1753 | |||
1754 | if (!vlan_group_get_device(adapter->vlgrp, vid)) { | ||
1755 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | ||
1756 | if (adapter->hw.mng_cookie.status & | ||
1757 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { | ||
1758 | e1000_vlan_rx_add_vid(netdev, vid); | ||
1759 | adapter->mng_vlan_id = vid; | ||
1760 | } | ||
1761 | |||
1762 | if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && | ||
1763 | (vid != old_vid) && | ||
1764 | !vlan_group_get_device(adapter->vlgrp, old_vid)) | ||
1765 | e1000_vlan_rx_kill_vid(netdev, old_vid); | ||
1766 | } else { | ||
1767 | adapter->mng_vlan_id = vid; | ||
1768 | } | ||
1769 | } | ||
1770 | |||
1771 | |||
1772 | static void e1000_vlan_rx_register(struct net_device *netdev, | ||
1773 | struct vlan_group *grp) | ||
1774 | { | ||
1775 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
1776 | struct e1000_hw *hw = &adapter->hw; | ||
1777 | u32 ctrl, rctl; | ||
1778 | |||
1779 | e1000_irq_disable(adapter); | ||
1780 | adapter->vlgrp = grp; | ||
1781 | |||
1782 | if (grp) { | ||
1783 | /* enable VLAN tag insert/strip */ | ||
1784 | ctrl = er32(CTRL); | ||
1785 | ctrl |= E1000_CTRL_VME; | ||
1786 | ew32(CTRL, ctrl); | ||
1787 | |||
1788 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | ||
1789 | /* enable VLAN receive filtering */ | ||
1790 | rctl = er32(RCTL); | ||
1791 | rctl |= E1000_RCTL_VFE; | ||
1792 | rctl &= ~E1000_RCTL_CFIEN; | ||
1793 | ew32(RCTL, rctl); | ||
1794 | e1000_update_mng_vlan(adapter); | ||
1795 | } | ||
1796 | } else { | ||
1797 | /* disable VLAN tag insert/strip */ | ||
1798 | ctrl = er32(CTRL); | ||
1799 | ctrl &= ~E1000_CTRL_VME; | ||
1800 | ew32(CTRL, ctrl); | ||
1801 | |||
1802 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | ||
1803 | /* disable VLAN filtering */ | ||
1804 | rctl = er32(RCTL); | ||
1805 | rctl &= ~E1000_RCTL_VFE; | ||
1806 | ew32(RCTL, rctl); | ||
1807 | if (adapter->mng_vlan_id != | ||
1808 | (u16)E1000_MNG_VLAN_NONE) { | ||
1809 | e1000_vlan_rx_kill_vid(netdev, | ||
1810 | adapter->mng_vlan_id); | ||
1811 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | ||
1812 | } | ||
1813 | } | ||
1814 | } | ||
1815 | |||
1816 | e1000_irq_enable(adapter); | ||
1817 | } | ||
1818 | |||
1819 | static void e1000_restore_vlan(struct e1000_adapter *adapter) | ||
1820 | { | ||
1821 | u16 vid; | ||
1822 | |||
1823 | e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); | ||
1824 | |||
1825 | if (!adapter->vlgrp) | ||
1826 | return; | ||
1827 | |||
1828 | for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { | ||
1829 | if (!vlan_group_get_device(adapter->vlgrp, vid)) | ||
1830 | continue; | ||
1831 | e1000_vlan_rx_add_vid(adapter->netdev, vid); | ||
1832 | } | ||
1833 | } | ||
1834 | |||
1835 | static void e1000_init_manageability(struct e1000_adapter *adapter) | ||
1836 | { | ||
1837 | struct e1000_hw *hw = &adapter->hw; | ||
1838 | u32 manc, manc2h; | ||
1839 | |||
1840 | if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) | ||
1841 | return; | ||
1842 | |||
1843 | manc = er32(MANC); | ||
1844 | |||
1845 | /* disable hardware interception of ARP */ | ||
1846 | manc &= ~(E1000_MANC_ARP_EN); | ||
1847 | |||
1848 | /* enable receiving management packets to the host. this will probably | ||
1849 | * generate destination unreachable messages from the host OS, but | ||
1850 | * the packets will be handled on SMBUS */ | ||
1851 | manc |= E1000_MANC_EN_MNG2HOST; | ||
1852 | manc2h = er32(MANC2H); | ||
1853 | #define E1000_MNG2HOST_PORT_623 (1 << 5) | ||
1854 | #define E1000_MNG2HOST_PORT_664 (1 << 6) | ||
1855 | manc2h |= E1000_MNG2HOST_PORT_623; | ||
1856 | manc2h |= E1000_MNG2HOST_PORT_664; | ||
1857 | ew32(MANC2H, manc2h); | ||
1858 | ew32(MANC, manc); | ||
1859 | } | ||
1860 | |||
1861 | /** | ||
1862 | * e1000_configure_tx - Configure 8254x Transmit Unit after Reset | ||
1863 | * @adapter: board private structure | ||
1864 | * | ||
1865 | * Configure the Tx unit of the MAC after a reset. | ||
1866 | **/ | ||
1867 | static void e1000_configure_tx(struct e1000_adapter *adapter) | ||
1868 | { | ||
1869 | struct e1000_hw *hw = &adapter->hw; | ||
1870 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
1871 | u64 tdba; | ||
1872 | u32 tdlen, tctl, tipg, tarc; | ||
1873 | u32 ipgr1, ipgr2; | ||
1874 | |||
1875 | /* Setup the HW Tx Head and Tail descriptor pointers */ | ||
1876 | tdba = tx_ring->dma; | ||
1877 | tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); | ||
1878 | ew32(TDBAL, (tdba & DMA_32BIT_MASK)); | ||
1879 | ew32(TDBAH, (tdba >> 32)); | ||
1880 | ew32(TDLEN, tdlen); | ||
1881 | ew32(TDH, 0); | ||
1882 | ew32(TDT, 0); | ||
1883 | tx_ring->head = E1000_TDH; | ||
1884 | tx_ring->tail = E1000_TDT; | ||
1885 | |||
1886 | /* Set the default values for the Tx Inter Packet Gap timer */ | ||
1887 | tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */ | ||
1888 | ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */ | ||
1889 | ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */ | ||
1890 | |||
1891 | if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN) | ||
1892 | ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */ | ||
1893 | |||
1894 | tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; | ||
1895 | tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; | ||
1896 | ew32(TIPG, tipg); | ||
1897 | |||
1898 | /* Set the Tx Interrupt Delay register */ | ||
1899 | ew32(TIDV, adapter->tx_int_delay); | ||
1900 | /* tx irq moderation */ | ||
1901 | ew32(TADV, adapter->tx_abs_int_delay); | ||
1902 | |||
1903 | /* Program the Transmit Control Register */ | ||
1904 | tctl = er32(TCTL); | ||
1905 | tctl &= ~E1000_TCTL_CT; | ||
1906 | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | ||
1907 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | ||
1908 | |||
1909 | if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { | ||
1910 | tarc = er32(TARC0); | ||
1911 | /* set the speed mode bit, we'll clear it if we're not at | ||
1912 | * gigabit link later */ | ||
1913 | #define SPEED_MODE_BIT (1 << 21) | ||
1914 | tarc |= SPEED_MODE_BIT; | ||
1915 | ew32(TARC0, tarc); | ||
1916 | } | ||
1917 | |||
1918 | /* errata: program both queues to unweighted RR */ | ||
1919 | if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { | ||
1920 | tarc = er32(TARC0); | ||
1921 | tarc |= 1; | ||
1922 | ew32(TARC0, tarc); | ||
1923 | tarc = er32(TARC1); | ||
1924 | tarc |= 1; | ||
1925 | ew32(TARC1, tarc); | ||
1926 | } | ||
1927 | |||
1928 | e1000e_config_collision_dist(hw); | ||
1929 | |||
1930 | /* Setup Transmit Descriptor Settings for eop descriptor */ | ||
1931 | adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; | ||
1932 | |||
1933 | /* only set IDE if we are delaying interrupts using the timers */ | ||
1934 | if (adapter->tx_int_delay) | ||
1935 | adapter->txd_cmd |= E1000_TXD_CMD_IDE; | ||
1936 | |||
1937 | /* enable Report Status bit */ | ||
1938 | adapter->txd_cmd |= E1000_TXD_CMD_RS; | ||
1939 | |||
1940 | ew32(TCTL, tctl); | ||
1941 | |||
1942 | adapter->tx_queue_len = adapter->netdev->tx_queue_len; | ||
1943 | } | ||
1944 | |||
1945 | /** | ||
1946 | * e1000_setup_rctl - configure the receive control registers | ||
1947 | * @adapter: Board private structure | ||
1948 | **/ | ||
1949 | #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ | ||
1950 | (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) | ||
1951 | static void e1000_setup_rctl(struct e1000_adapter *adapter) | ||
1952 | { | ||
1953 | struct e1000_hw *hw = &adapter->hw; | ||
1954 | u32 rctl, rfctl; | ||
1955 | u32 psrctl = 0; | ||
1956 | u32 pages = 0; | ||
1957 | |||
1958 | /* Program MC offset vector base */ | ||
1959 | rctl = er32(RCTL); | ||
1960 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | ||
1961 | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | | ||
1962 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | ||
1963 | (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); | ||
1964 | |||
1965 | /* Do not Store bad packets */ | ||
1966 | rctl &= ~E1000_RCTL_SBP; | ||
1967 | |||
1968 | /* Enable Long Packet receive */ | ||
1969 | if (adapter->netdev->mtu <= ETH_DATA_LEN) | ||
1970 | rctl &= ~E1000_RCTL_LPE; | ||
1971 | else | ||
1972 | rctl |= E1000_RCTL_LPE; | ||
1973 | |||
1974 | /* Setup buffer sizes */ | ||
1975 | rctl &= ~E1000_RCTL_SZ_4096; | ||
1976 | rctl |= E1000_RCTL_BSEX; | ||
1977 | switch (adapter->rx_buffer_len) { | ||
1978 | case 256: | ||
1979 | rctl |= E1000_RCTL_SZ_256; | ||
1980 | rctl &= ~E1000_RCTL_BSEX; | ||
1981 | break; | ||
1982 | case 512: | ||
1983 | rctl |= E1000_RCTL_SZ_512; | ||
1984 | rctl &= ~E1000_RCTL_BSEX; | ||
1985 | break; | ||
1986 | case 1024: | ||
1987 | rctl |= E1000_RCTL_SZ_1024; | ||
1988 | rctl &= ~E1000_RCTL_BSEX; | ||
1989 | break; | ||
1990 | case 2048: | ||
1991 | default: | ||
1992 | rctl |= E1000_RCTL_SZ_2048; | ||
1993 | rctl &= ~E1000_RCTL_BSEX; | ||
1994 | break; | ||
1995 | case 4096: | ||
1996 | rctl |= E1000_RCTL_SZ_4096; | ||
1997 | break; | ||
1998 | case 8192: | ||
1999 | rctl |= E1000_RCTL_SZ_8192; | ||
2000 | break; | ||
2001 | case 16384: | ||
2002 | rctl |= E1000_RCTL_SZ_16384; | ||
2003 | break; | ||
2004 | } | ||
2005 | |||
2006 | /* | ||
2007 | * 82571 and greater support packet-split where the protocol | ||
2008 | * header is placed in skb->data and the packet data is | ||
2009 | * placed in pages hanging off of skb_shinfo(skb)->nr_frags. | ||
2010 | * In the case of a non-split, skb->data is linearly filled, | ||
2011 | * followed by the page buffers. Therefore, skb->data is | ||
2012 | * sized to hold the largest protocol header. | ||
2013 | * | ||
2014 | * allocations using alloc_page take too long for regular MTU | ||
2015 | * so only enable packet split for jumbo frames | ||
2016 | * | ||
2017 | * Using pages when the page size is greater than 16k wastes | ||
2018 | * a lot of memory, since we allocate 3 pages at all times | ||
2019 | * per packet. | ||
2020 | */ | ||
2021 | adapter->rx_ps_pages = 0; | ||
2022 | pages = PAGE_USE_COUNT(adapter->netdev->mtu); | ||
2023 | if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) | ||
2024 | adapter->rx_ps_pages = pages; | ||
2025 | |||
2026 | if (adapter->rx_ps_pages) { | ||
2027 | /* Configure extra packet-split registers */ | ||
2028 | rfctl = er32(RFCTL); | ||
2029 | rfctl |= E1000_RFCTL_EXTEN; | ||
2030 | /* disable packet split support for IPv6 extension headers, | ||
2031 | * because some malformed IPv6 headers can hang the RX */ | ||
2032 | rfctl |= (E1000_RFCTL_IPV6_EX_DIS | | ||
2033 | E1000_RFCTL_NEW_IPV6_EXT_DIS); | ||
2034 | |||
2035 | ew32(RFCTL, rfctl); | ||
2036 | |||
2037 | /* disable the stripping of CRC because it breaks | ||
2038 | * BMC firmware connected over SMBUS */ | ||
2039 | rctl |= E1000_RCTL_DTYP_PS /* | E1000_RCTL_SECRC */; | ||
2040 | |||
2041 | psrctl |= adapter->rx_ps_bsize0 >> | ||
2042 | E1000_PSRCTL_BSIZE0_SHIFT; | ||
2043 | |||
2044 | switch (adapter->rx_ps_pages) { | ||
2045 | case 3: | ||
2046 | psrctl |= PAGE_SIZE << | ||
2047 | E1000_PSRCTL_BSIZE3_SHIFT; | ||
2048 | case 2: | ||
2049 | psrctl |= PAGE_SIZE << | ||
2050 | E1000_PSRCTL_BSIZE2_SHIFT; | ||
2051 | case 1: | ||
2052 | psrctl |= PAGE_SIZE >> | ||
2053 | E1000_PSRCTL_BSIZE1_SHIFT; | ||
2054 | break; | ||
2055 | } | ||
2056 | |||
2057 | ew32(PSRCTL, psrctl); | ||
2058 | } | ||
2059 | |||
2060 | ew32(RCTL, rctl); | ||
2061 | } | ||
2062 | |||
2063 | /** | ||
2064 | * e1000_configure_rx - Configure Receive Unit after Reset | ||
2065 | * @adapter: board private structure | ||
2066 | * | ||
2067 | * Configure the Rx unit of the MAC after a reset. | ||
2068 | **/ | ||
2069 | static void e1000_configure_rx(struct e1000_adapter *adapter) | ||
2070 | { | ||
2071 | struct e1000_hw *hw = &adapter->hw; | ||
2072 | struct e1000_ring *rx_ring = adapter->rx_ring; | ||
2073 | u64 rdba; | ||
2074 | u32 rdlen, rctl, rxcsum, ctrl_ext; | ||
2075 | |||
2076 | if (adapter->rx_ps_pages) { | ||
2077 | /* this is a 32 byte descriptor */ | ||
2078 | rdlen = rx_ring->count * | ||
2079 | sizeof(union e1000_rx_desc_packet_split); | ||
2080 | adapter->clean_rx = e1000_clean_rx_irq_ps; | ||
2081 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; | ||
2082 | } else if (adapter->netdev->mtu > ETH_FRAME_LEN + VLAN_HLEN + 4) { | ||
2083 | rdlen = rx_ring->count * | ||
2084 | sizeof(struct e1000_rx_desc); | ||
2085 | adapter->clean_rx = e1000_clean_rx_irq_jumbo; | ||
2086 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers_jumbo; | ||
2087 | } else { | ||
2088 | rdlen = rx_ring->count * | ||
2089 | sizeof(struct e1000_rx_desc); | ||
2090 | adapter->clean_rx = e1000_clean_rx_irq; | ||
2091 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers; | ||
2092 | } | ||
2093 | |||
2094 | /* disable receives while setting up the descriptors */ | ||
2095 | rctl = er32(RCTL); | ||
2096 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | ||
2097 | e1e_flush(); | ||
2098 | msleep(10); | ||
2099 | |||
2100 | /* set the Receive Delay Timer Register */ | ||
2101 | ew32(RDTR, adapter->rx_int_delay); | ||
2102 | |||
2103 | /* irq moderation */ | ||
2104 | ew32(RADV, adapter->rx_abs_int_delay); | ||
2105 | if (adapter->itr_setting != 0) | ||
2106 | ew32(ITR, | ||
2107 | 1000000000 / (adapter->itr * 256)); | ||
2108 | |||
2109 | ctrl_ext = er32(CTRL_EXT); | ||
2110 | /* Reset delay timers after every interrupt */ | ||
2111 | ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; | ||
2112 | /* Auto-Mask interrupts upon ICR access */ | ||
2113 | ctrl_ext |= E1000_CTRL_EXT_IAME; | ||
2114 | ew32(IAM, 0xffffffff); | ||
2115 | ew32(CTRL_EXT, ctrl_ext); | ||
2116 | e1e_flush(); | ||
2117 | |||
2118 | /* Setup the HW Rx Head and Tail Descriptor Pointers and | ||
2119 | * the Base and Length of the Rx Descriptor Ring */ | ||
2120 | rdba = rx_ring->dma; | ||
2121 | ew32(RDBAL, (rdba & DMA_32BIT_MASK)); | ||
2122 | ew32(RDBAH, (rdba >> 32)); | ||
2123 | ew32(RDLEN, rdlen); | ||
2124 | ew32(RDH, 0); | ||
2125 | ew32(RDT, 0); | ||
2126 | rx_ring->head = E1000_RDH; | ||
2127 | rx_ring->tail = E1000_RDT; | ||
2128 | |||
2129 | /* Enable Receive Checksum Offload for TCP and UDP */ | ||
2130 | rxcsum = er32(RXCSUM); | ||
2131 | if (adapter->flags & FLAG_RX_CSUM_ENABLED) { | ||
2132 | rxcsum |= E1000_RXCSUM_TUOFL; | ||
2133 | |||
2134 | /* IPv4 payload checksum for UDP fragments must be | ||
2135 | * used in conjunction with packet-split. */ | ||
2136 | if (adapter->rx_ps_pages) | ||
2137 | rxcsum |= E1000_RXCSUM_IPPCSE; | ||
2138 | } else { | ||
2139 | rxcsum &= ~E1000_RXCSUM_TUOFL; | ||
2140 | /* no need to clear IPPCSE as it defaults to 0 */ | ||
2141 | } | ||
2142 | ew32(RXCSUM, rxcsum); | ||
2143 | |||
2144 | /* Enable early receives on supported devices, only takes effect when | ||
2145 | * packet size is equal or larger than the specified value (in 8 byte | ||
2146 | * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */ | ||
2147 | if ((adapter->flags & FLAG_HAS_ERT) && | ||
2148 | (adapter->netdev->mtu > ETH_DATA_LEN)) | ||
2149 | ew32(ERT, E1000_ERT_2048); | ||
2150 | |||
2151 | /* Enable Receives */ | ||
2152 | ew32(RCTL, rctl); | ||
2153 | } | ||
2154 | |||
2155 | /** | ||
2156 | * e1000_mc_addr_list_update - Update Multicast addresses | ||
2157 | * @hw: pointer to the HW structure | ||
2158 | * @mc_addr_list: array of multicast addresses to program | ||
2159 | * @mc_addr_count: number of multicast addresses to program | ||
2160 | * @rar_used_count: the first RAR register free to program | ||
2161 | * @rar_count: total number of supported Receive Address Registers | ||
2162 | * | ||
2163 | * Updates the Receive Address Registers and Multicast Table Array. | ||
2164 | * The caller must have a packed mc_addr_list of multicast addresses. | ||
2165 | * The parameter rar_count will usually be hw->mac.rar_entry_count | ||
2166 | * unless there are workarounds that change this. Currently no func pointer | ||
2167 | * exists and all implementations are handled in the generic version of this | ||
2168 | * function. | ||
2169 | **/ | ||
2170 | static void e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list, | ||
2171 | u32 mc_addr_count, u32 rar_used_count, | ||
2172 | u32 rar_count) | ||
2173 | { | ||
2174 | hw->mac.ops.mc_addr_list_update(hw, mc_addr_list, mc_addr_count, | ||
2175 | rar_used_count, rar_count); | ||
2176 | } | ||
2177 | |||
2178 | /** | ||
2179 | * e1000_set_multi - Multicast and Promiscuous mode set | ||
2180 | * @netdev: network interface device structure | ||
2181 | * | ||
2182 | * The set_multi entry point is called whenever the multicast address | ||
2183 | * list or the network interface flags are updated. This routine is | ||
2184 | * responsible for configuring the hardware for proper multicast, | ||
2185 | * promiscuous mode, and all-multi behavior. | ||
2186 | **/ | ||
2187 | static void e1000_set_multi(struct net_device *netdev) | ||
2188 | { | ||
2189 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
2190 | struct e1000_hw *hw = &adapter->hw; | ||
2191 | struct e1000_mac_info *mac = &hw->mac; | ||
2192 | struct dev_mc_list *mc_ptr; | ||
2193 | u8 *mta_list; | ||
2194 | u32 rctl; | ||
2195 | int i; | ||
2196 | |||
2197 | /* Check for Promiscuous and All Multicast modes */ | ||
2198 | |||
2199 | rctl = er32(RCTL); | ||
2200 | |||
2201 | if (netdev->flags & IFF_PROMISC) { | ||
2202 | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | ||
2203 | } else if (netdev->flags & IFF_ALLMULTI) { | ||
2204 | rctl |= E1000_RCTL_MPE; | ||
2205 | rctl &= ~E1000_RCTL_UPE; | ||
2206 | } else { | ||
2207 | rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); | ||
2208 | } | ||
2209 | |||
2210 | ew32(RCTL, rctl); | ||
2211 | |||
2212 | if (netdev->mc_count) { | ||
2213 | mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC); | ||
2214 | if (!mta_list) | ||
2215 | return; | ||
2216 | |||
2217 | /* prepare a packed array of only addresses. */ | ||
2218 | mc_ptr = netdev->mc_list; | ||
2219 | |||
2220 | for (i = 0; i < netdev->mc_count; i++) { | ||
2221 | if (!mc_ptr) | ||
2222 | break; | ||
2223 | memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, | ||
2224 | ETH_ALEN); | ||
2225 | mc_ptr = mc_ptr->next; | ||
2226 | } | ||
2227 | |||
2228 | e1000_mc_addr_list_update(hw, mta_list, i, 1, | ||
2229 | mac->rar_entry_count); | ||
2230 | kfree(mta_list); | ||
2231 | } else { | ||
2232 | /* | ||
2233 | * if we're called from probe, we might not have | ||
2234 | * anything to do here, so clear out the list | ||
2235 | */ | ||
2236 | e1000_mc_addr_list_update(hw, NULL, 0, 1, | ||
2237 | mac->rar_entry_count); | ||
2238 | } | ||
2239 | } | ||
2240 | |||
2241 | /** | ||
2242 | * e1000_configure - configure the hardware for RX and TX | ||
2243 | * @adapter: private board structure | ||
2244 | **/ | ||
2245 | static void e1000_configure(struct e1000_adapter *adapter) | ||
2246 | { | ||
2247 | e1000_set_multi(adapter->netdev); | ||
2248 | |||
2249 | e1000_restore_vlan(adapter); | ||
2250 | e1000_init_manageability(adapter); | ||
2251 | |||
2252 | e1000_configure_tx(adapter); | ||
2253 | e1000_setup_rctl(adapter); | ||
2254 | e1000_configure_rx(adapter); | ||
2255 | adapter->alloc_rx_buf(adapter, | ||
2256 | e1000_desc_unused(adapter->rx_ring)); | ||
2257 | } | ||
2258 | |||
2259 | /** | ||
2260 | * e1000e_power_up_phy - restore link in case the phy was powered down | ||
2261 | * @adapter: address of board private structure | ||
2262 | * | ||
2263 | * The phy may be powered down to save power and turn off link when the | ||
2264 | * driver is unloaded and wake on lan is not enabled (among others) | ||
2265 | * *** this routine MUST be followed by a call to e1000e_reset *** | ||
2266 | **/ | ||
2267 | void e1000e_power_up_phy(struct e1000_adapter *adapter) | ||
2268 | { | ||
2269 | u16 mii_reg = 0; | ||
2270 | |||
2271 | /* Just clear the power down bit to wake the phy back up */ | ||
2272 | if (adapter->hw.media_type == e1000_media_type_copper) { | ||
2273 | /* according to the manual, the phy will retain its | ||
2274 | * settings across a power-down/up cycle */ | ||
2275 | e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg); | ||
2276 | mii_reg &= ~MII_CR_POWER_DOWN; | ||
2277 | e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg); | ||
2278 | } | ||
2279 | |||
2280 | adapter->hw.mac.ops.setup_link(&adapter->hw); | ||
2281 | } | ||
2282 | |||
2283 | /** | ||
2284 | * e1000_power_down_phy - Power down the PHY | ||
2285 | * | ||
2286 | * Power down the PHY so no link is implied when interface is down | ||
2287 | * The PHY cannot be powered down is management or WoL is active | ||
2288 | */ | ||
2289 | static void e1000_power_down_phy(struct e1000_adapter *adapter) | ||
2290 | { | ||
2291 | struct e1000_hw *hw = &adapter->hw; | ||
2292 | u16 mii_reg; | ||
2293 | |||
2294 | /* WoL is enabled */ | ||
2295 | if (!adapter->wol) | ||
2296 | return; | ||
2297 | |||
2298 | /* non-copper PHY? */ | ||
2299 | if (adapter->hw.media_type != e1000_media_type_copper) | ||
2300 | return; | ||
2301 | |||
2302 | /* reset is blocked because of a SoL/IDER session */ | ||
2303 | if (e1000e_check_mng_mode(hw) || | ||
2304 | e1000_check_reset_block(hw)) | ||
2305 | return; | ||
2306 | |||
2307 | /* managebility (AMT) is enabled */ | ||
2308 | if (er32(MANC) & E1000_MANC_SMBUS_EN) | ||
2309 | return; | ||
2310 | |||
2311 | /* power down the PHY */ | ||
2312 | e1e_rphy(hw, PHY_CONTROL, &mii_reg); | ||
2313 | mii_reg |= MII_CR_POWER_DOWN; | ||
2314 | e1e_wphy(hw, PHY_CONTROL, mii_reg); | ||
2315 | mdelay(1); | ||
2316 | } | ||
2317 | |||
2318 | /** | ||
2319 | * e1000e_reset - bring the hardware into a known good state | ||
2320 | * | ||
2321 | * This function boots the hardware and enables some settings that | ||
2322 | * require a configuration cycle of the hardware - those cannot be | ||
2323 | * set/changed during runtime. After reset the device needs to be | ||
2324 | * properly configured for rx, tx etc. | ||
2325 | */ | ||
2326 | void e1000e_reset(struct e1000_adapter *adapter) | ||
2327 | { | ||
2328 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
2329 | struct e1000_hw *hw = &adapter->hw; | ||
2330 | u32 tx_space, min_tx_space, min_rx_space; | ||
2331 | u16 hwm; | ||
2332 | |||
2333 | if (mac->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN ) { | ||
2334 | /* To maintain wire speed transmits, the Tx FIFO should be | ||
2335 | * large enough to accommodate two full transmit packets, | ||
2336 | * rounded up to the next 1KB and expressed in KB. Likewise, | ||
2337 | * the Rx FIFO should be large enough to accommodate at least | ||
2338 | * one full receive packet and is similarly rounded up and | ||
2339 | * expressed in KB. */ | ||
2340 | adapter->pba = er32(PBA); | ||
2341 | /* upper 16 bits has Tx packet buffer allocation size in KB */ | ||
2342 | tx_space = adapter->pba >> 16; | ||
2343 | /* lower 16 bits has Rx packet buffer allocation size in KB */ | ||
2344 | adapter->pba &= 0xffff; | ||
2345 | /* the tx fifo also stores 16 bytes of information about the tx | ||
2346 | * but don't include ethernet FCS because hardware appends it */ | ||
2347 | min_tx_space = (mac->max_frame_size + | ||
2348 | sizeof(struct e1000_tx_desc) - | ||
2349 | ETH_FCS_LEN) * 2; | ||
2350 | min_tx_space = ALIGN(min_tx_space, 1024); | ||
2351 | min_tx_space >>= 10; | ||
2352 | /* software strips receive CRC, so leave room for it */ | ||
2353 | min_rx_space = mac->max_frame_size; | ||
2354 | min_rx_space = ALIGN(min_rx_space, 1024); | ||
2355 | min_rx_space >>= 10; | ||
2356 | |||
2357 | /* If current Tx allocation is less than the min Tx FIFO size, | ||
2358 | * and the min Tx FIFO size is less than the current Rx FIFO | ||
2359 | * allocation, take space away from current Rx allocation */ | ||
2360 | if (tx_space < min_tx_space && | ||
2361 | ((min_tx_space - tx_space) < adapter->pba)) { | ||
2362 | adapter->pba -= - (min_tx_space - tx_space); | ||
2363 | |||
2364 | /* if short on rx space, rx wins and must trump tx | ||
2365 | * adjustment or use Early Receive if available */ | ||
2366 | if ((adapter->pba < min_rx_space) && | ||
2367 | (!(adapter->flags & FLAG_HAS_ERT))) | ||
2368 | /* ERT enabled in e1000_configure_rx */ | ||
2369 | adapter->pba = min_rx_space; | ||
2370 | } | ||
2371 | } | ||
2372 | |||
2373 | ew32(PBA, adapter->pba); | ||
2374 | |||
2375 | /* flow control settings */ | ||
2376 | /* The high water mark must be low enough to fit one full frame | ||
2377 | * (or the size used for early receive) above it in the Rx FIFO. | ||
2378 | * Set it to the lower of: | ||
2379 | * - 90% of the Rx FIFO size, and | ||
2380 | * - the full Rx FIFO size minus the early receive size (for parts | ||
2381 | * with ERT support assuming ERT set to E1000_ERT_2048), or | ||
2382 | * - the full Rx FIFO size minus one full frame */ | ||
2383 | if (adapter->flags & FLAG_HAS_ERT) | ||
2384 | hwm = min(((adapter->pba << 10) * 9 / 10), | ||
2385 | ((adapter->pba << 10) - (E1000_ERT_2048 << 3))); | ||
2386 | else | ||
2387 | hwm = min(((adapter->pba << 10) * 9 / 10), | ||
2388 | ((adapter->pba << 10) - mac->max_frame_size)); | ||
2389 | |||
2390 | mac->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ | ||
2391 | mac->fc_low_water = mac->fc_high_water - 8; | ||
2392 | |||
2393 | if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) | ||
2394 | mac->fc_pause_time = 0xFFFF; | ||
2395 | else | ||
2396 | mac->fc_pause_time = E1000_FC_PAUSE_TIME; | ||
2397 | mac->fc = mac->original_fc; | ||
2398 | |||
2399 | /* Allow time for pending master requests to run */ | ||
2400 | mac->ops.reset_hw(hw); | ||
2401 | ew32(WUC, 0); | ||
2402 | |||
2403 | if (mac->ops.init_hw(hw)) | ||
2404 | ndev_err(adapter->netdev, "Hardware Error\n"); | ||
2405 | |||
2406 | e1000_update_mng_vlan(adapter); | ||
2407 | |||
2408 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | ||
2409 | ew32(VET, ETH_P_8021Q); | ||
2410 | |||
2411 | e1000e_reset_adaptive(hw); | ||
2412 | e1000_get_phy_info(hw); | ||
2413 | |||
2414 | if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) { | ||
2415 | u16 phy_data = 0; | ||
2416 | /* speed up time to link by disabling smart power down, ignore | ||
2417 | * the return value of this function because there is nothing | ||
2418 | * different we would do if it failed */ | ||
2419 | e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | ||
2420 | phy_data &= ~IGP02E1000_PM_SPD; | ||
2421 | e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | ||
2422 | } | ||
2423 | |||
2424 | e1000_release_manageability(adapter); | ||
2425 | } | ||
2426 | |||
2427 | int e1000e_up(struct e1000_adapter *adapter) | ||
2428 | { | ||
2429 | struct e1000_hw *hw = &adapter->hw; | ||
2430 | |||
2431 | /* hardware has been reset, we need to reload some things */ | ||
2432 | e1000_configure(adapter); | ||
2433 | |||
2434 | clear_bit(__E1000_DOWN, &adapter->state); | ||
2435 | |||
2436 | napi_enable(&adapter->napi); | ||
2437 | e1000_irq_enable(adapter); | ||
2438 | |||
2439 | /* fire a link change interrupt to start the watchdog */ | ||
2440 | ew32(ICS, E1000_ICS_LSC); | ||
2441 | return 0; | ||
2442 | } | ||
2443 | |||
2444 | void e1000e_down(struct e1000_adapter *adapter) | ||
2445 | { | ||
2446 | struct net_device *netdev = adapter->netdev; | ||
2447 | struct e1000_hw *hw = &adapter->hw; | ||
2448 | u32 tctl, rctl; | ||
2449 | |||
2450 | /* signal that we're down so the interrupt handler does not | ||
2451 | * reschedule our watchdog timer */ | ||
2452 | set_bit(__E1000_DOWN, &adapter->state); | ||
2453 | |||
2454 | /* disable receives in the hardware */ | ||
2455 | rctl = er32(RCTL); | ||
2456 | ew32(RCTL, rctl & ~E1000_RCTL_EN); | ||
2457 | /* flush and sleep below */ | ||
2458 | |||
2459 | netif_stop_queue(netdev); | ||
2460 | |||
2461 | /* disable transmits in the hardware */ | ||
2462 | tctl = er32(TCTL); | ||
2463 | tctl &= ~E1000_TCTL_EN; | ||
2464 | ew32(TCTL, tctl); | ||
2465 | /* flush both disables and wait for them to finish */ | ||
2466 | e1e_flush(); | ||
2467 | msleep(10); | ||
2468 | |||
2469 | napi_disable(&adapter->napi); | ||
2470 | e1000_irq_disable(adapter); | ||
2471 | |||
2472 | del_timer_sync(&adapter->watchdog_timer); | ||
2473 | del_timer_sync(&adapter->phy_info_timer); | ||
2474 | |||
2475 | netdev->tx_queue_len = adapter->tx_queue_len; | ||
2476 | netif_carrier_off(netdev); | ||
2477 | adapter->link_speed = 0; | ||
2478 | adapter->link_duplex = 0; | ||
2479 | |||
2480 | e1000e_reset(adapter); | ||
2481 | e1000_clean_tx_ring(adapter); | ||
2482 | e1000_clean_rx_ring(adapter); | ||
2483 | |||
2484 | /* | ||
2485 | * TODO: for power management, we could drop the link and | ||
2486 | * pci_disable_device here. | ||
2487 | */ | ||
2488 | } | ||
2489 | |||
2490 | void e1000e_reinit_locked(struct e1000_adapter *adapter) | ||
2491 | { | ||
2492 | might_sleep(); | ||
2493 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | ||
2494 | msleep(1); | ||
2495 | e1000e_down(adapter); | ||
2496 | e1000e_up(adapter); | ||
2497 | clear_bit(__E1000_RESETTING, &adapter->state); | ||
2498 | } | ||
2499 | |||
2500 | /** | ||
2501 | * e1000_sw_init - Initialize general software structures (struct e1000_adapter) | ||
2502 | * @adapter: board private structure to initialize | ||
2503 | * | ||
2504 | * e1000_sw_init initializes the Adapter private data structure. | ||
2505 | * Fields are initialized based on PCI device information and | ||
2506 | * OS network device settings (MTU size). | ||
2507 | **/ | ||
2508 | static int __devinit e1000_sw_init(struct e1000_adapter *adapter) | ||
2509 | { | ||
2510 | struct e1000_hw *hw = &adapter->hw; | ||
2511 | struct net_device *netdev = adapter->netdev; | ||
2512 | |||
2513 | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; | ||
2514 | adapter->rx_ps_bsize0 = 128; | ||
2515 | hw->mac.max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; | ||
2516 | hw->mac.min_frame_size = ETH_ZLEN + ETH_FCS_LEN; | ||
2517 | |||
2518 | adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); | ||
2519 | if (!adapter->tx_ring) | ||
2520 | goto err; | ||
2521 | |||
2522 | adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); | ||
2523 | if (!adapter->rx_ring) | ||
2524 | goto err; | ||
2525 | |||
2526 | spin_lock_init(&adapter->tx_queue_lock); | ||
2527 | |||
2528 | /* Explicitly disable IRQ since the NIC can be in any state. */ | ||
2529 | atomic_set(&adapter->irq_sem, 0); | ||
2530 | e1000_irq_disable(adapter); | ||
2531 | |||
2532 | spin_lock_init(&adapter->stats_lock); | ||
2533 | |||
2534 | set_bit(__E1000_DOWN, &adapter->state); | ||
2535 | return 0; | ||
2536 | |||
2537 | err: | ||
2538 | ndev_err(netdev, "Unable to allocate memory for queues\n"); | ||
2539 | kfree(adapter->rx_ring); | ||
2540 | kfree(adapter->tx_ring); | ||
2541 | return -ENOMEM; | ||
2542 | } | ||
2543 | |||
2544 | /** | ||
2545 | * e1000_open - Called when a network interface is made active | ||
2546 | * @netdev: network interface device structure | ||
2547 | * | ||
2548 | * Returns 0 on success, negative value on failure | ||
2549 | * | ||
2550 | * The open entry point is called when a network interface is made | ||
2551 | * active by the system (IFF_UP). At this point all resources needed | ||
2552 | * for transmit and receive operations are allocated, the interrupt | ||
2553 | * handler is registered with the OS, the watchdog timer is started, | ||
2554 | * and the stack is notified that the interface is ready. | ||
2555 | **/ | ||
2556 | static int e1000_open(struct net_device *netdev) | ||
2557 | { | ||
2558 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
2559 | struct e1000_hw *hw = &adapter->hw; | ||
2560 | int err; | ||
2561 | |||
2562 | /* disallow open during test */ | ||
2563 | if (test_bit(__E1000_TESTING, &adapter->state)) | ||
2564 | return -EBUSY; | ||
2565 | |||
2566 | /* allocate transmit descriptors */ | ||
2567 | err = e1000e_setup_tx_resources(adapter); | ||
2568 | if (err) | ||
2569 | goto err_setup_tx; | ||
2570 | |||
2571 | /* allocate receive descriptors */ | ||
2572 | err = e1000e_setup_rx_resources(adapter); | ||
2573 | if (err) | ||
2574 | goto err_setup_rx; | ||
2575 | |||
2576 | e1000e_power_up_phy(adapter); | ||
2577 | |||
2578 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | ||
2579 | if ((adapter->hw.mng_cookie.status & | ||
2580 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) | ||
2581 | e1000_update_mng_vlan(adapter); | ||
2582 | |||
2583 | /* If AMT is enabled, let the firmware know that the network | ||
2584 | * interface is now open */ | ||
2585 | if ((adapter->flags & FLAG_HAS_AMT) && | ||
2586 | e1000e_check_mng_mode(&adapter->hw)) | ||
2587 | e1000_get_hw_control(adapter); | ||
2588 | |||
2589 | /* before we allocate an interrupt, we must be ready to handle it. | ||
2590 | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | ||
2591 | * as soon as we call pci_request_irq, so we have to setup our | ||
2592 | * clean_rx handler before we do so. */ | ||
2593 | e1000_configure(adapter); | ||
2594 | |||
2595 | err = e1000_request_irq(adapter); | ||
2596 | if (err) | ||
2597 | goto err_req_irq; | ||
2598 | |||
2599 | /* From here on the code is the same as e1000e_up() */ | ||
2600 | clear_bit(__E1000_DOWN, &adapter->state); | ||
2601 | |||
2602 | napi_enable(&adapter->napi); | ||
2603 | |||
2604 | e1000_irq_enable(adapter); | ||
2605 | |||
2606 | /* fire a link status change interrupt to start the watchdog */ | ||
2607 | ew32(ICS, E1000_ICS_LSC); | ||
2608 | |||
2609 | return 0; | ||
2610 | |||
2611 | err_req_irq: | ||
2612 | e1000_release_hw_control(adapter); | ||
2613 | e1000_power_down_phy(adapter); | ||
2614 | e1000e_free_rx_resources(adapter); | ||
2615 | err_setup_rx: | ||
2616 | e1000e_free_tx_resources(adapter); | ||
2617 | err_setup_tx: | ||
2618 | e1000e_reset(adapter); | ||
2619 | |||
2620 | return err; | ||
2621 | } | ||
2622 | |||
2623 | /** | ||
2624 | * e1000_close - Disables a network interface | ||
2625 | * @netdev: network interface device structure | ||
2626 | * | ||
2627 | * Returns 0, this is not allowed to fail | ||
2628 | * | ||
2629 | * The close entry point is called when an interface is de-activated | ||
2630 | * by the OS. The hardware is still under the drivers control, but | ||
2631 | * needs to be disabled. A global MAC reset is issued to stop the | ||
2632 | * hardware, and all transmit and receive resources are freed. | ||
2633 | **/ | ||
2634 | static int e1000_close(struct net_device *netdev) | ||
2635 | { | ||
2636 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
2637 | |||
2638 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); | ||
2639 | e1000e_down(adapter); | ||
2640 | e1000_power_down_phy(adapter); | ||
2641 | e1000_free_irq(adapter); | ||
2642 | |||
2643 | e1000e_free_tx_resources(adapter); | ||
2644 | e1000e_free_rx_resources(adapter); | ||
2645 | |||
2646 | /* kill manageability vlan ID if supported, but not if a vlan with | ||
2647 | * the same ID is registered on the host OS (let 8021q kill it) */ | ||
2648 | if ((adapter->hw.mng_cookie.status & | ||
2649 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | ||
2650 | !(adapter->vlgrp && | ||
2651 | vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) | ||
2652 | e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | ||
2653 | |||
2654 | /* If AMT is enabled, let the firmware know that the network | ||
2655 | * interface is now closed */ | ||
2656 | if ((adapter->flags & FLAG_HAS_AMT) && | ||
2657 | e1000e_check_mng_mode(&adapter->hw)) | ||
2658 | e1000_release_hw_control(adapter); | ||
2659 | |||
2660 | return 0; | ||
2661 | } | ||
2662 | /** | ||
2663 | * e1000_set_mac - Change the Ethernet Address of the NIC | ||
2664 | * @netdev: network interface device structure | ||
2665 | * @p: pointer to an address structure | ||
2666 | * | ||
2667 | * Returns 0 on success, negative on failure | ||
2668 | **/ | ||
2669 | static int e1000_set_mac(struct net_device *netdev, void *p) | ||
2670 | { | ||
2671 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
2672 | struct sockaddr *addr = p; | ||
2673 | |||
2674 | if (!is_valid_ether_addr(addr->sa_data)) | ||
2675 | return -EADDRNOTAVAIL; | ||
2676 | |||
2677 | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | ||
2678 | memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); | ||
2679 | |||
2680 | e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); | ||
2681 | |||
2682 | if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { | ||
2683 | /* activate the work around */ | ||
2684 | e1000e_set_laa_state_82571(&adapter->hw, 1); | ||
2685 | |||
2686 | /* Hold a copy of the LAA in RAR[14] This is done so that | ||
2687 | * between the time RAR[0] gets clobbered and the time it | ||
2688 | * gets fixed (in e1000_watchdog), the actual LAA is in one | ||
2689 | * of the RARs and no incoming packets directed to this port | ||
2690 | * are dropped. Eventually the LAA will be in RAR[0] and | ||
2691 | * RAR[14] */ | ||
2692 | e1000e_rar_set(&adapter->hw, | ||
2693 | adapter->hw.mac.addr, | ||
2694 | adapter->hw.mac.rar_entry_count - 1); | ||
2695 | } | ||
2696 | |||
2697 | return 0; | ||
2698 | } | ||
2699 | |||
2700 | /* Need to wait a few seconds after link up to get diagnostic information from | ||
2701 | * the phy */ | ||
2702 | static void e1000_update_phy_info(unsigned long data) | ||
2703 | { | ||
2704 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | ||
2705 | e1000_get_phy_info(&adapter->hw); | ||
2706 | } | ||
2707 | |||
2708 | /** | ||
2709 | * e1000e_update_stats - Update the board statistics counters | ||
2710 | * @adapter: board private structure | ||
2711 | **/ | ||
2712 | void e1000e_update_stats(struct e1000_adapter *adapter) | ||
2713 | { | ||
2714 | struct e1000_hw *hw = &adapter->hw; | ||
2715 | struct pci_dev *pdev = adapter->pdev; | ||
2716 | unsigned long irq_flags; | ||
2717 | u16 phy_tmp; | ||
2718 | |||
2719 | #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF | ||
2720 | |||
2721 | /* | ||
2722 | * Prevent stats update while adapter is being reset, or if the pci | ||
2723 | * connection is down. | ||
2724 | */ | ||
2725 | if (adapter->link_speed == 0) | ||
2726 | return; | ||
2727 | if (pci_channel_offline(pdev)) | ||
2728 | return; | ||
2729 | |||
2730 | spin_lock_irqsave(&adapter->stats_lock, irq_flags); | ||
2731 | |||
2732 | /* these counters are modified from e1000_adjust_tbi_stats, | ||
2733 | * called from the interrupt context, so they must only | ||
2734 | * be written while holding adapter->stats_lock | ||
2735 | */ | ||
2736 | |||
2737 | adapter->stats.crcerrs += er32(CRCERRS); | ||
2738 | adapter->stats.gprc += er32(GPRC); | ||
2739 | adapter->stats.gorcl += er32(GORCL); | ||
2740 | adapter->stats.gorch += er32(GORCH); | ||
2741 | adapter->stats.bprc += er32(BPRC); | ||
2742 | adapter->stats.mprc += er32(MPRC); | ||
2743 | adapter->stats.roc += er32(ROC); | ||
2744 | |||
2745 | if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) { | ||
2746 | adapter->stats.prc64 += er32(PRC64); | ||
2747 | adapter->stats.prc127 += er32(PRC127); | ||
2748 | adapter->stats.prc255 += er32(PRC255); | ||
2749 | adapter->stats.prc511 += er32(PRC511); | ||
2750 | adapter->stats.prc1023 += er32(PRC1023); | ||
2751 | adapter->stats.prc1522 += er32(PRC1522); | ||
2752 | adapter->stats.symerrs += er32(SYMERRS); | ||
2753 | adapter->stats.sec += er32(SEC); | ||
2754 | } | ||
2755 | |||
2756 | adapter->stats.mpc += er32(MPC); | ||
2757 | adapter->stats.scc += er32(SCC); | ||
2758 | adapter->stats.ecol += er32(ECOL); | ||
2759 | adapter->stats.mcc += er32(MCC); | ||
2760 | adapter->stats.latecol += er32(LATECOL); | ||
2761 | adapter->stats.dc += er32(DC); | ||
2762 | adapter->stats.rlec += er32(RLEC); | ||
2763 | adapter->stats.xonrxc += er32(XONRXC); | ||
2764 | adapter->stats.xontxc += er32(XONTXC); | ||
2765 | adapter->stats.xoffrxc += er32(XOFFRXC); | ||
2766 | adapter->stats.xofftxc += er32(XOFFTXC); | ||
2767 | adapter->stats.fcruc += er32(FCRUC); | ||
2768 | adapter->stats.gptc += er32(GPTC); | ||
2769 | adapter->stats.gotcl += er32(GOTCL); | ||
2770 | adapter->stats.gotch += er32(GOTCH); | ||
2771 | adapter->stats.rnbc += er32(RNBC); | ||
2772 | adapter->stats.ruc += er32(RUC); | ||
2773 | adapter->stats.rfc += er32(RFC); | ||
2774 | adapter->stats.rjc += er32(RJC); | ||
2775 | adapter->stats.torl += er32(TORL); | ||
2776 | adapter->stats.torh += er32(TORH); | ||
2777 | adapter->stats.totl += er32(TOTL); | ||
2778 | adapter->stats.toth += er32(TOTH); | ||
2779 | adapter->stats.tpr += er32(TPR); | ||
2780 | |||
2781 | if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) { | ||
2782 | adapter->stats.ptc64 += er32(PTC64); | ||
2783 | adapter->stats.ptc127 += er32(PTC127); | ||
2784 | adapter->stats.ptc255 += er32(PTC255); | ||
2785 | adapter->stats.ptc511 += er32(PTC511); | ||
2786 | adapter->stats.ptc1023 += er32(PTC1023); | ||
2787 | adapter->stats.ptc1522 += er32(PTC1522); | ||
2788 | } | ||
2789 | |||
2790 | adapter->stats.mptc += er32(MPTC); | ||
2791 | adapter->stats.bptc += er32(BPTC); | ||
2792 | |||
2793 | /* used for adaptive IFS */ | ||
2794 | |||
2795 | hw->mac.tx_packet_delta = er32(TPT); | ||
2796 | adapter->stats.tpt += hw->mac.tx_packet_delta; | ||
2797 | hw->mac.collision_delta = er32(COLC); | ||
2798 | adapter->stats.colc += hw->mac.collision_delta; | ||
2799 | |||
2800 | adapter->stats.algnerrc += er32(ALGNERRC); | ||
2801 | adapter->stats.rxerrc += er32(RXERRC); | ||
2802 | adapter->stats.tncrs += er32(TNCRS); | ||
2803 | adapter->stats.cexterr += er32(CEXTERR); | ||
2804 | adapter->stats.tsctc += er32(TSCTC); | ||
2805 | adapter->stats.tsctfc += er32(TSCTFC); | ||
2806 | |||
2807 | adapter->stats.iac += er32(IAC); | ||
2808 | |||
2809 | if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) { | ||
2810 | adapter->stats.icrxoc += er32(ICRXOC); | ||
2811 | adapter->stats.icrxptc += er32(ICRXPTC); | ||
2812 | adapter->stats.icrxatc += er32(ICRXATC); | ||
2813 | adapter->stats.ictxptc += er32(ICTXPTC); | ||
2814 | adapter->stats.ictxatc += er32(ICTXATC); | ||
2815 | adapter->stats.ictxqec += er32(ICTXQEC); | ||
2816 | adapter->stats.ictxqmtc += er32(ICTXQMTC); | ||
2817 | adapter->stats.icrxdmtc += er32(ICRXDMTC); | ||
2818 | } | ||
2819 | |||
2820 | /* Fill out the OS statistics structure */ | ||
2821 | adapter->net_stats.rx_packets = adapter->stats.gprc; | ||
2822 | adapter->net_stats.tx_packets = adapter->stats.gptc; | ||
2823 | adapter->net_stats.rx_bytes = adapter->stats.gorcl; | ||
2824 | adapter->net_stats.tx_bytes = adapter->stats.gotcl; | ||
2825 | adapter->net_stats.multicast = adapter->stats.mprc; | ||
2826 | adapter->net_stats.collisions = adapter->stats.colc; | ||
2827 | |||
2828 | /* Rx Errors */ | ||
2829 | |||
2830 | /* RLEC on some newer hardware can be incorrect so build | ||
2831 | * our own version based on RUC and ROC */ | ||
2832 | adapter->net_stats.rx_errors = adapter->stats.rxerrc + | ||
2833 | adapter->stats.crcerrs + adapter->stats.algnerrc + | ||
2834 | adapter->stats.ruc + adapter->stats.roc + | ||
2835 | adapter->stats.cexterr; | ||
2836 | adapter->net_stats.rx_length_errors = adapter->stats.ruc + | ||
2837 | adapter->stats.roc; | ||
2838 | adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; | ||
2839 | adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; | ||
2840 | adapter->net_stats.rx_missed_errors = adapter->stats.mpc; | ||
2841 | |||
2842 | /* Tx Errors */ | ||
2843 | adapter->net_stats.tx_errors = adapter->stats.ecol + | ||
2844 | adapter->stats.latecol; | ||
2845 | adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; | ||
2846 | adapter->net_stats.tx_window_errors = adapter->stats.latecol; | ||
2847 | adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; | ||
2848 | |||
2849 | /* Tx Dropped needs to be maintained elsewhere */ | ||
2850 | |||
2851 | /* Phy Stats */ | ||
2852 | if (hw->media_type == e1000_media_type_copper) { | ||
2853 | if ((adapter->link_speed == SPEED_1000) && | ||
2854 | (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) { | ||
2855 | phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; | ||
2856 | adapter->phy_stats.idle_errors += phy_tmp; | ||
2857 | } | ||
2858 | } | ||
2859 | |||
2860 | /* Management Stats */ | ||
2861 | adapter->stats.mgptc += er32(MGTPTC); | ||
2862 | adapter->stats.mgprc += er32(MGTPRC); | ||
2863 | adapter->stats.mgpdc += er32(MGTPDC); | ||
2864 | |||
2865 | spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); | ||
2866 | } | ||
2867 | |||
2868 | static void e1000_print_link_info(struct e1000_adapter *adapter) | ||
2869 | { | ||
2870 | struct net_device *netdev = adapter->netdev; | ||
2871 | struct e1000_hw *hw = &adapter->hw; | ||
2872 | u32 ctrl = er32(CTRL); | ||
2873 | |||
2874 | ndev_info(netdev, | ||
2875 | "Link is Up %d Mbps %s, Flow Control: %s\n", | ||
2876 | adapter->link_speed, | ||
2877 | (adapter->link_duplex == FULL_DUPLEX) ? | ||
2878 | "Full Duplex" : "Half Duplex", | ||
2879 | ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? | ||
2880 | "RX/TX" : | ||
2881 | ((ctrl & E1000_CTRL_RFCE) ? "RX" : | ||
2882 | ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" ))); | ||
2883 | } | ||
2884 | |||
2885 | /** | ||
2886 | * e1000_watchdog - Timer Call-back | ||
2887 | * @data: pointer to adapter cast into an unsigned long | ||
2888 | **/ | ||
2889 | static void e1000_watchdog(unsigned long data) | ||
2890 | { | ||
2891 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | ||
2892 | |||
2893 | /* Do the rest outside of interrupt context */ | ||
2894 | schedule_work(&adapter->watchdog_task); | ||
2895 | |||
2896 | /* TODO: make this use queue_delayed_work() */ | ||
2897 | } | ||
2898 | |||
2899 | static void e1000_watchdog_task(struct work_struct *work) | ||
2900 | { | ||
2901 | struct e1000_adapter *adapter = container_of(work, | ||
2902 | struct e1000_adapter, watchdog_task); | ||
2903 | |||
2904 | struct net_device *netdev = adapter->netdev; | ||
2905 | struct e1000_mac_info *mac = &adapter->hw.mac; | ||
2906 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
2907 | struct e1000_hw *hw = &adapter->hw; | ||
2908 | u32 link, tctl; | ||
2909 | s32 ret_val; | ||
2910 | int tx_pending = 0; | ||
2911 | |||
2912 | if ((netif_carrier_ok(netdev)) && | ||
2913 | (er32(STATUS) & E1000_STATUS_LU)) | ||
2914 | goto link_up; | ||
2915 | |||
2916 | ret_val = mac->ops.check_for_link(hw); | ||
2917 | if ((ret_val == E1000_ERR_PHY) && | ||
2918 | (adapter->hw.phy.type == e1000_phy_igp_3) && | ||
2919 | (er32(CTRL) & | ||
2920 | E1000_PHY_CTRL_GBE_DISABLE)) { | ||
2921 | /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ | ||
2922 | ndev_info(netdev, | ||
2923 | "Gigabit has been disabled, downgrading speed\n"); | ||
2924 | } | ||
2925 | |||
2926 | if ((e1000e_enable_tx_pkt_filtering(hw)) && | ||
2927 | (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) | ||
2928 | e1000_update_mng_vlan(adapter); | ||
2929 | |||
2930 | if ((adapter->hw.media_type == e1000_media_type_internal_serdes) && | ||
2931 | !(er32(TXCW) & E1000_TXCW_ANE)) | ||
2932 | link = adapter->hw.mac.serdes_has_link; | ||
2933 | else | ||
2934 | link = er32(STATUS) & E1000_STATUS_LU; | ||
2935 | |||
2936 | if (link) { | ||
2937 | if (!netif_carrier_ok(netdev)) { | ||
2938 | bool txb2b = 1; | ||
2939 | mac->ops.get_link_up_info(&adapter->hw, | ||
2940 | &adapter->link_speed, | ||
2941 | &adapter->link_duplex); | ||
2942 | e1000_print_link_info(adapter); | ||
2943 | /* tweak tx_queue_len according to speed/duplex | ||
2944 | * and adjust the timeout factor */ | ||
2945 | netdev->tx_queue_len = adapter->tx_queue_len; | ||
2946 | adapter->tx_timeout_factor = 1; | ||
2947 | switch (adapter->link_speed) { | ||
2948 | case SPEED_10: | ||
2949 | txb2b = 0; | ||
2950 | netdev->tx_queue_len = 10; | ||
2951 | adapter->tx_timeout_factor = 14; | ||
2952 | break; | ||
2953 | case SPEED_100: | ||
2954 | txb2b = 0; | ||
2955 | netdev->tx_queue_len = 100; | ||
2956 | /* maybe add some timeout factor ? */ | ||
2957 | break; | ||
2958 | } | ||
2959 | |||
2960 | /* workaround: re-program speed mode bit after | ||
2961 | * link-up event */ | ||
2962 | if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && | ||
2963 | !txb2b) { | ||
2964 | u32 tarc0; | ||
2965 | tarc0 = er32(TARC0); | ||
2966 | tarc0 &= ~SPEED_MODE_BIT; | ||
2967 | ew32(TARC0, tarc0); | ||
2968 | } | ||
2969 | |||
2970 | /* disable TSO for pcie and 10/100 speeds, to avoid | ||
2971 | * some hardware issues */ | ||
2972 | if (!(adapter->flags & FLAG_TSO_FORCE)) { | ||
2973 | switch (adapter->link_speed) { | ||
2974 | case SPEED_10: | ||
2975 | case SPEED_100: | ||
2976 | ndev_info(netdev, | ||
2977 | "10/100 speed: disabling TSO\n"); | ||
2978 | netdev->features &= ~NETIF_F_TSO; | ||
2979 | netdev->features &= ~NETIF_F_TSO6; | ||
2980 | break; | ||
2981 | case SPEED_1000: | ||
2982 | netdev->features |= NETIF_F_TSO; | ||
2983 | netdev->features |= NETIF_F_TSO6; | ||
2984 | break; | ||
2985 | default: | ||
2986 | /* oops */ | ||
2987 | break; | ||
2988 | } | ||
2989 | } | ||
2990 | |||
2991 | /* enable transmits in the hardware, need to do this | ||
2992 | * after setting TARC0 */ | ||
2993 | tctl = er32(TCTL); | ||
2994 | tctl |= E1000_TCTL_EN; | ||
2995 | ew32(TCTL, tctl); | ||
2996 | |||
2997 | netif_carrier_on(netdev); | ||
2998 | netif_wake_queue(netdev); | ||
2999 | |||
3000 | if (!test_bit(__E1000_DOWN, &adapter->state)) | ||
3001 | mod_timer(&adapter->phy_info_timer, | ||
3002 | round_jiffies(jiffies + 2 * HZ)); | ||
3003 | } else { | ||
3004 | /* make sure the receive unit is started */ | ||
3005 | if (adapter->flags & FLAG_RX_NEEDS_RESTART) { | ||
3006 | u32 rctl = er32(RCTL); | ||
3007 | ew32(RCTL, rctl | | ||
3008 | E1000_RCTL_EN); | ||
3009 | } | ||
3010 | } | ||
3011 | } else { | ||
3012 | if (netif_carrier_ok(netdev)) { | ||
3013 | adapter->link_speed = 0; | ||
3014 | adapter->link_duplex = 0; | ||
3015 | ndev_info(netdev, "Link is Down\n"); | ||
3016 | netif_carrier_off(netdev); | ||
3017 | netif_stop_queue(netdev); | ||
3018 | if (!test_bit(__E1000_DOWN, &adapter->state)) | ||
3019 | mod_timer(&adapter->phy_info_timer, | ||
3020 | round_jiffies(jiffies + 2 * HZ)); | ||
3021 | |||
3022 | if (adapter->flags & FLAG_RX_NEEDS_RESTART) | ||
3023 | schedule_work(&adapter->reset_task); | ||
3024 | } | ||
3025 | } | ||
3026 | |||
3027 | link_up: | ||
3028 | e1000e_update_stats(adapter); | ||
3029 | |||
3030 | mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; | ||
3031 | adapter->tpt_old = adapter->stats.tpt; | ||
3032 | mac->collision_delta = adapter->stats.colc - adapter->colc_old; | ||
3033 | adapter->colc_old = adapter->stats.colc; | ||
3034 | |||
3035 | adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; | ||
3036 | adapter->gorcl_old = adapter->stats.gorcl; | ||
3037 | adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; | ||
3038 | adapter->gotcl_old = adapter->stats.gotcl; | ||
3039 | |||
3040 | e1000e_update_adaptive(&adapter->hw); | ||
3041 | |||
3042 | if (!netif_carrier_ok(netdev)) { | ||
3043 | tx_pending = (e1000_desc_unused(tx_ring) + 1 < | ||
3044 | tx_ring->count); | ||
3045 | if (tx_pending) { | ||
3046 | /* We've lost link, so the controller stops DMA, | ||
3047 | * but we've got queued Tx work that's never going | ||
3048 | * to get done, so reset controller to flush Tx. | ||
3049 | * (Do the reset outside of interrupt context). */ | ||
3050 | adapter->tx_timeout_count++; | ||
3051 | schedule_work(&adapter->reset_task); | ||
3052 | } | ||
3053 | } | ||
3054 | |||
3055 | /* Cause software interrupt to ensure rx ring is cleaned */ | ||
3056 | ew32(ICS, E1000_ICS_RXDMT0); | ||
3057 | |||
3058 | /* Force detection of hung controller every watchdog period */ | ||
3059 | adapter->detect_tx_hung = 1; | ||
3060 | |||
3061 | /* With 82571 controllers, LAA may be overwritten due to controller | ||
3062 | * reset from the other port. Set the appropriate LAA in RAR[0] */ | ||
3063 | if (e1000e_get_laa_state_82571(hw)) | ||
3064 | e1000e_rar_set(hw, adapter->hw.mac.addr, 0); | ||
3065 | |||
3066 | /* Reset the timer */ | ||
3067 | if (!test_bit(__E1000_DOWN, &adapter->state)) | ||
3068 | mod_timer(&adapter->watchdog_timer, | ||
3069 | round_jiffies(jiffies + 2 * HZ)); | ||
3070 | } | ||
3071 | |||
3072 | #define E1000_TX_FLAGS_CSUM 0x00000001 | ||
3073 | #define E1000_TX_FLAGS_VLAN 0x00000002 | ||
3074 | #define E1000_TX_FLAGS_TSO 0x00000004 | ||
3075 | #define E1000_TX_FLAGS_IPV4 0x00000008 | ||
3076 | #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 | ||
3077 | #define E1000_TX_FLAGS_VLAN_SHIFT 16 | ||
3078 | |||
3079 | static int e1000_tso(struct e1000_adapter *adapter, | ||
3080 | struct sk_buff *skb) | ||
3081 | { | ||
3082 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
3083 | struct e1000_context_desc *context_desc; | ||
3084 | struct e1000_buffer *buffer_info; | ||
3085 | unsigned int i; | ||
3086 | u32 cmd_length = 0; | ||
3087 | u16 ipcse = 0, tucse, mss; | ||
3088 | u8 ipcss, ipcso, tucss, tucso, hdr_len; | ||
3089 | int err; | ||
3090 | |||
3091 | if (skb_is_gso(skb)) { | ||
3092 | if (skb_header_cloned(skb)) { | ||
3093 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | ||
3094 | if (err) | ||
3095 | return err; | ||
3096 | } | ||
3097 | |||
3098 | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | ||
3099 | mss = skb_shinfo(skb)->gso_size; | ||
3100 | if (skb->protocol == htons(ETH_P_IP)) { | ||
3101 | struct iphdr *iph = ip_hdr(skb); | ||
3102 | iph->tot_len = 0; | ||
3103 | iph->check = 0; | ||
3104 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, | ||
3105 | iph->daddr, 0, | ||
3106 | IPPROTO_TCP, | ||
3107 | 0); | ||
3108 | cmd_length = E1000_TXD_CMD_IP; | ||
3109 | ipcse = skb_transport_offset(skb) - 1; | ||
3110 | } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) { | ||
3111 | ipv6_hdr(skb)->payload_len = 0; | ||
3112 | tcp_hdr(skb)->check = | ||
3113 | ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | ||
3114 | &ipv6_hdr(skb)->daddr, | ||
3115 | 0, IPPROTO_TCP, 0); | ||
3116 | ipcse = 0; | ||
3117 | } | ||
3118 | ipcss = skb_network_offset(skb); | ||
3119 | ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; | ||
3120 | tucss = skb_transport_offset(skb); | ||
3121 | tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; | ||
3122 | tucse = 0; | ||
3123 | |||
3124 | cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | | ||
3125 | E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); | ||
3126 | |||
3127 | i = tx_ring->next_to_use; | ||
3128 | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | ||
3129 | buffer_info = &tx_ring->buffer_info[i]; | ||
3130 | |||
3131 | context_desc->lower_setup.ip_fields.ipcss = ipcss; | ||
3132 | context_desc->lower_setup.ip_fields.ipcso = ipcso; | ||
3133 | context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); | ||
3134 | context_desc->upper_setup.tcp_fields.tucss = tucss; | ||
3135 | context_desc->upper_setup.tcp_fields.tucso = tucso; | ||
3136 | context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); | ||
3137 | context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); | ||
3138 | context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; | ||
3139 | context_desc->cmd_and_length = cpu_to_le32(cmd_length); | ||
3140 | |||
3141 | buffer_info->time_stamp = jiffies; | ||
3142 | buffer_info->next_to_watch = i; | ||
3143 | |||
3144 | i++; | ||
3145 | if (i == tx_ring->count) | ||
3146 | i = 0; | ||
3147 | tx_ring->next_to_use = i; | ||
3148 | |||
3149 | return 1; | ||
3150 | } | ||
3151 | |||
3152 | return 0; | ||
3153 | } | ||
3154 | |||
3155 | static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) | ||
3156 | { | ||
3157 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
3158 | struct e1000_context_desc *context_desc; | ||
3159 | struct e1000_buffer *buffer_info; | ||
3160 | unsigned int i; | ||
3161 | u8 css; | ||
3162 | |||
3163 | if (skb->ip_summed == CHECKSUM_PARTIAL) { | ||
3164 | css = skb_transport_offset(skb); | ||
3165 | |||
3166 | i = tx_ring->next_to_use; | ||
3167 | buffer_info = &tx_ring->buffer_info[i]; | ||
3168 | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | ||
3169 | |||
3170 | context_desc->lower_setup.ip_config = 0; | ||
3171 | context_desc->upper_setup.tcp_fields.tucss = css; | ||
3172 | context_desc->upper_setup.tcp_fields.tucso = | ||
3173 | css + skb->csum_offset; | ||
3174 | context_desc->upper_setup.tcp_fields.tucse = 0; | ||
3175 | context_desc->tcp_seg_setup.data = 0; | ||
3176 | context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT); | ||
3177 | |||
3178 | buffer_info->time_stamp = jiffies; | ||
3179 | buffer_info->next_to_watch = i; | ||
3180 | |||
3181 | i++; | ||
3182 | if (i == tx_ring->count) | ||
3183 | i = 0; | ||
3184 | tx_ring->next_to_use = i; | ||
3185 | |||
3186 | return 1; | ||
3187 | } | ||
3188 | |||
3189 | return 0; | ||
3190 | } | ||
3191 | |||
3192 | #define E1000_MAX_PER_TXD 8192 | ||
3193 | #define E1000_MAX_TXD_PWR 12 | ||
3194 | |||
3195 | static int e1000_tx_map(struct e1000_adapter *adapter, | ||
3196 | struct sk_buff *skb, unsigned int first, | ||
3197 | unsigned int max_per_txd, unsigned int nr_frags, | ||
3198 | unsigned int mss) | ||
3199 | { | ||
3200 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
3201 | struct e1000_buffer *buffer_info; | ||
3202 | unsigned int len = skb->len - skb->data_len; | ||
3203 | unsigned int offset = 0, size, count = 0, i; | ||
3204 | unsigned int f; | ||
3205 | |||
3206 | i = tx_ring->next_to_use; | ||
3207 | |||
3208 | while (len) { | ||
3209 | buffer_info = &tx_ring->buffer_info[i]; | ||
3210 | size = min(len, max_per_txd); | ||
3211 | |||
3212 | /* Workaround for premature desc write-backs | ||
3213 | * in TSO mode. Append 4-byte sentinel desc */ | ||
3214 | if (mss && !nr_frags && size == len && size > 8) | ||
3215 | size -= 4; | ||
3216 | |||
3217 | buffer_info->length = size; | ||
3218 | /* set time_stamp *before* dma to help avoid a possible race */ | ||
3219 | buffer_info->time_stamp = jiffies; | ||
3220 | buffer_info->dma = | ||
3221 | pci_map_single(adapter->pdev, | ||
3222 | skb->data + offset, | ||
3223 | size, | ||
3224 | PCI_DMA_TODEVICE); | ||
3225 | if (pci_dma_mapping_error(buffer_info->dma)) { | ||
3226 | dev_err(&adapter->pdev->dev, "TX DMA map failed\n"); | ||
3227 | adapter->tx_dma_failed++; | ||
3228 | return -1; | ||
3229 | } | ||
3230 | buffer_info->next_to_watch = i; | ||
3231 | |||
3232 | len -= size; | ||
3233 | offset += size; | ||
3234 | count++; | ||
3235 | i++; | ||
3236 | if (i == tx_ring->count) | ||
3237 | i = 0; | ||
3238 | } | ||
3239 | |||
3240 | for (f = 0; f < nr_frags; f++) { | ||
3241 | struct skb_frag_struct *frag; | ||
3242 | |||
3243 | frag = &skb_shinfo(skb)->frags[f]; | ||
3244 | len = frag->size; | ||
3245 | offset = frag->page_offset; | ||
3246 | |||
3247 | while (len) { | ||
3248 | buffer_info = &tx_ring->buffer_info[i]; | ||
3249 | size = min(len, max_per_txd); | ||
3250 | /* Workaround for premature desc write-backs | ||
3251 | * in TSO mode. Append 4-byte sentinel desc */ | ||
3252 | if (mss && f == (nr_frags-1) && size == len && size > 8) | ||
3253 | size -= 4; | ||
3254 | |||
3255 | buffer_info->length = size; | ||
3256 | buffer_info->time_stamp = jiffies; | ||
3257 | buffer_info->dma = | ||
3258 | pci_map_page(adapter->pdev, | ||
3259 | frag->page, | ||
3260 | offset, | ||
3261 | size, | ||
3262 | PCI_DMA_TODEVICE); | ||
3263 | if (pci_dma_mapping_error(buffer_info->dma)) { | ||
3264 | dev_err(&adapter->pdev->dev, | ||
3265 | "TX DMA page map failed\n"); | ||
3266 | adapter->tx_dma_failed++; | ||
3267 | return -1; | ||
3268 | } | ||
3269 | |||
3270 | buffer_info->next_to_watch = i; | ||
3271 | |||
3272 | len -= size; | ||
3273 | offset += size; | ||
3274 | count++; | ||
3275 | |||
3276 | i++; | ||
3277 | if (i == tx_ring->count) | ||
3278 | i = 0; | ||
3279 | } | ||
3280 | } | ||
3281 | |||
3282 | if (i == 0) | ||
3283 | i = tx_ring->count - 1; | ||
3284 | else | ||
3285 | i--; | ||
3286 | |||
3287 | tx_ring->buffer_info[i].skb = skb; | ||
3288 | tx_ring->buffer_info[first].next_to_watch = i; | ||
3289 | |||
3290 | return count; | ||
3291 | } | ||
3292 | |||
3293 | static void e1000_tx_queue(struct e1000_adapter *adapter, | ||
3294 | int tx_flags, int count) | ||
3295 | { | ||
3296 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
3297 | struct e1000_tx_desc *tx_desc = NULL; | ||
3298 | struct e1000_buffer *buffer_info; | ||
3299 | u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; | ||
3300 | unsigned int i; | ||
3301 | |||
3302 | if (tx_flags & E1000_TX_FLAGS_TSO) { | ||
3303 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | | ||
3304 | E1000_TXD_CMD_TSE; | ||
3305 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | ||
3306 | |||
3307 | if (tx_flags & E1000_TX_FLAGS_IPV4) | ||
3308 | txd_upper |= E1000_TXD_POPTS_IXSM << 8; | ||
3309 | } | ||
3310 | |||
3311 | if (tx_flags & E1000_TX_FLAGS_CSUM) { | ||
3312 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; | ||
3313 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | ||
3314 | } | ||
3315 | |||
3316 | if (tx_flags & E1000_TX_FLAGS_VLAN) { | ||
3317 | txd_lower |= E1000_TXD_CMD_VLE; | ||
3318 | txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); | ||
3319 | } | ||
3320 | |||
3321 | i = tx_ring->next_to_use; | ||
3322 | |||
3323 | while (count--) { | ||
3324 | buffer_info = &tx_ring->buffer_info[i]; | ||
3325 | tx_desc = E1000_TX_DESC(*tx_ring, i); | ||
3326 | tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | ||
3327 | tx_desc->lower.data = | ||
3328 | cpu_to_le32(txd_lower | buffer_info->length); | ||
3329 | tx_desc->upper.data = cpu_to_le32(txd_upper); | ||
3330 | |||
3331 | i++; | ||
3332 | if (i == tx_ring->count) | ||
3333 | i = 0; | ||
3334 | } | ||
3335 | |||
3336 | tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); | ||
3337 | |||
3338 | /* Force memory writes to complete before letting h/w | ||
3339 | * know there are new descriptors to fetch. (Only | ||
3340 | * applicable for weak-ordered memory model archs, | ||
3341 | * such as IA-64). */ | ||
3342 | wmb(); | ||
3343 | |||
3344 | tx_ring->next_to_use = i; | ||
3345 | writel(i, adapter->hw.hw_addr + tx_ring->tail); | ||
3346 | /* we need this if more than one processor can write to our tail | ||
3347 | * at a time, it synchronizes IO on IA64/Altix systems */ | ||
3348 | mmiowb(); | ||
3349 | } | ||
3350 | |||
3351 | #define MINIMUM_DHCP_PACKET_SIZE 282 | ||
3352 | static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, | ||
3353 | struct sk_buff *skb) | ||
3354 | { | ||
3355 | struct e1000_hw *hw = &adapter->hw; | ||
3356 | u16 length, offset; | ||
3357 | |||
3358 | if (vlan_tx_tag_present(skb)) { | ||
3359 | if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) | ||
3360 | && (adapter->hw.mng_cookie.status & | ||
3361 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) | ||
3362 | return 0; | ||
3363 | } | ||
3364 | |||
3365 | if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) | ||
3366 | return 0; | ||
3367 | |||
3368 | if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) | ||
3369 | return 0; | ||
3370 | |||
3371 | { | ||
3372 | const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); | ||
3373 | struct udphdr *udp; | ||
3374 | |||
3375 | if (ip->protocol != IPPROTO_UDP) | ||
3376 | return 0; | ||
3377 | |||
3378 | udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); | ||
3379 | if (ntohs(udp->dest) != 67) | ||
3380 | return 0; | ||
3381 | |||
3382 | offset = (u8 *)udp + 8 - skb->data; | ||
3383 | length = skb->len - offset; | ||
3384 | return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); | ||
3385 | } | ||
3386 | |||
3387 | return 0; | ||
3388 | } | ||
3389 | |||
3390 | static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) | ||
3391 | { | ||
3392 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3393 | |||
3394 | netif_stop_queue(netdev); | ||
3395 | /* Herbert's original patch had: | ||
3396 | * smp_mb__after_netif_stop_queue(); | ||
3397 | * but since that doesn't exist yet, just open code it. */ | ||
3398 | smp_mb(); | ||
3399 | |||
3400 | /* We need to check again in a case another CPU has just | ||
3401 | * made room available. */ | ||
3402 | if (e1000_desc_unused(adapter->tx_ring) < size) | ||
3403 | return -EBUSY; | ||
3404 | |||
3405 | /* A reprieve! */ | ||
3406 | netif_start_queue(netdev); | ||
3407 | ++adapter->restart_queue; | ||
3408 | return 0; | ||
3409 | } | ||
3410 | |||
3411 | static int e1000_maybe_stop_tx(struct net_device *netdev, int size) | ||
3412 | { | ||
3413 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3414 | |||
3415 | if (e1000_desc_unused(adapter->tx_ring) >= size) | ||
3416 | return 0; | ||
3417 | return __e1000_maybe_stop_tx(netdev, size); | ||
3418 | } | ||
3419 | |||
3420 | #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) | ||
3421 | static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | ||
3422 | { | ||
3423 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3424 | struct e1000_ring *tx_ring = adapter->tx_ring; | ||
3425 | unsigned int first; | ||
3426 | unsigned int max_per_txd = E1000_MAX_PER_TXD; | ||
3427 | unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; | ||
3428 | unsigned int tx_flags = 0; | ||
3429 | unsigned int len = skb->len; | ||
3430 | unsigned long irq_flags; | ||
3431 | unsigned int nr_frags = 0; | ||
3432 | unsigned int mss = 0; | ||
3433 | int count = 0; | ||
3434 | int tso; | ||
3435 | unsigned int f; | ||
3436 | len -= skb->data_len; | ||
3437 | |||
3438 | if (test_bit(__E1000_DOWN, &adapter->state)) { | ||
3439 | dev_kfree_skb_any(skb); | ||
3440 | return NETDEV_TX_OK; | ||
3441 | } | ||
3442 | |||
3443 | if (skb->len <= 0) { | ||
3444 | dev_kfree_skb_any(skb); | ||
3445 | return NETDEV_TX_OK; | ||
3446 | } | ||
3447 | |||
3448 | mss = skb_shinfo(skb)->gso_size; | ||
3449 | /* The controller does a simple calculation to | ||
3450 | * make sure there is enough room in the FIFO before | ||
3451 | * initiating the DMA for each buffer. The calc is: | ||
3452 | * 4 = ceil(buffer len/mss). To make sure we don't | ||
3453 | * overrun the FIFO, adjust the max buffer len if mss | ||
3454 | * drops. */ | ||
3455 | if (mss) { | ||
3456 | u8 hdr_len; | ||
3457 | max_per_txd = min(mss << 2, max_per_txd); | ||
3458 | max_txd_pwr = fls(max_per_txd) - 1; | ||
3459 | |||
3460 | /* TSO Workaround for 82571/2/3 Controllers -- if skb->data | ||
3461 | * points to just header, pull a few bytes of payload from | ||
3462 | * frags into skb->data */ | ||
3463 | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | ||
3464 | if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) { | ||
3465 | unsigned int pull_size; | ||
3466 | |||
3467 | pull_size = min((unsigned int)4, skb->data_len); | ||
3468 | if (!__pskb_pull_tail(skb, pull_size)) { | ||
3469 | ndev_err(netdev, | ||
3470 | "__pskb_pull_tail failed.\n"); | ||
3471 | dev_kfree_skb_any(skb); | ||
3472 | return NETDEV_TX_OK; | ||
3473 | } | ||
3474 | len = skb->len - skb->data_len; | ||
3475 | } | ||
3476 | } | ||
3477 | |||
3478 | /* reserve a descriptor for the offload context */ | ||
3479 | if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) | ||
3480 | count++; | ||
3481 | count++; | ||
3482 | |||
3483 | count += TXD_USE_COUNT(len, max_txd_pwr); | ||
3484 | |||
3485 | nr_frags = skb_shinfo(skb)->nr_frags; | ||
3486 | for (f = 0; f < nr_frags; f++) | ||
3487 | count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, | ||
3488 | max_txd_pwr); | ||
3489 | |||
3490 | if (adapter->hw.mac.tx_pkt_filtering) | ||
3491 | e1000_transfer_dhcp_info(adapter, skb); | ||
3492 | |||
3493 | if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags)) | ||
3494 | /* Collision - tell upper layer to requeue */ | ||
3495 | return NETDEV_TX_LOCKED; | ||
3496 | |||
3497 | /* need: count + 2 desc gap to keep tail from touching | ||
3498 | * head, otherwise try next time */ | ||
3499 | if (e1000_maybe_stop_tx(netdev, count + 2)) { | ||
3500 | spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); | ||
3501 | return NETDEV_TX_BUSY; | ||
3502 | } | ||
3503 | |||
3504 | if (adapter->vlgrp && vlan_tx_tag_present(skb)) { | ||
3505 | tx_flags |= E1000_TX_FLAGS_VLAN; | ||
3506 | tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); | ||
3507 | } | ||
3508 | |||
3509 | first = tx_ring->next_to_use; | ||
3510 | |||
3511 | tso = e1000_tso(adapter, skb); | ||
3512 | if (tso < 0) { | ||
3513 | dev_kfree_skb_any(skb); | ||
3514 | spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); | ||
3515 | return NETDEV_TX_OK; | ||
3516 | } | ||
3517 | |||
3518 | if (tso) | ||
3519 | tx_flags |= E1000_TX_FLAGS_TSO; | ||
3520 | else if (e1000_tx_csum(adapter, skb)) | ||
3521 | tx_flags |= E1000_TX_FLAGS_CSUM; | ||
3522 | |||
3523 | /* Old method was to assume IPv4 packet by default if TSO was enabled. | ||
3524 | * 82571 hardware supports TSO capabilities for IPv6 as well... | ||
3525 | * no longer assume, we must. */ | ||
3526 | if (skb->protocol == htons(ETH_P_IP)) | ||
3527 | tx_flags |= E1000_TX_FLAGS_IPV4; | ||
3528 | |||
3529 | count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss); | ||
3530 | if (count < 0) { | ||
3531 | /* handle pci_map_single() error in e1000_tx_map */ | ||
3532 | dev_kfree_skb_any(skb); | ||
3533 | spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); | ||
3534 | return NETDEV_TX_BUSY; | ||
3535 | } | ||
3536 | |||
3537 | e1000_tx_queue(adapter, tx_flags, count); | ||
3538 | |||
3539 | netdev->trans_start = jiffies; | ||
3540 | |||
3541 | /* Make sure there is space in the ring for the next send. */ | ||
3542 | e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2); | ||
3543 | |||
3544 | spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); | ||
3545 | return NETDEV_TX_OK; | ||
3546 | } | ||
3547 | |||
3548 | /** | ||
3549 | * e1000_tx_timeout - Respond to a Tx Hang | ||
3550 | * @netdev: network interface device structure | ||
3551 | **/ | ||
3552 | static void e1000_tx_timeout(struct net_device *netdev) | ||
3553 | { | ||
3554 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3555 | |||
3556 | /* Do the reset outside of interrupt context */ | ||
3557 | adapter->tx_timeout_count++; | ||
3558 | schedule_work(&adapter->reset_task); | ||
3559 | } | ||
3560 | |||
3561 | static void e1000_reset_task(struct work_struct *work) | ||
3562 | { | ||
3563 | struct e1000_adapter *adapter; | ||
3564 | adapter = container_of(work, struct e1000_adapter, reset_task); | ||
3565 | |||
3566 | e1000e_reinit_locked(adapter); | ||
3567 | } | ||
3568 | |||
3569 | /** | ||
3570 | * e1000_get_stats - Get System Network Statistics | ||
3571 | * @netdev: network interface device structure | ||
3572 | * | ||
3573 | * Returns the address of the device statistics structure. | ||
3574 | * The statistics are actually updated from the timer callback. | ||
3575 | **/ | ||
3576 | static struct net_device_stats *e1000_get_stats(struct net_device *netdev) | ||
3577 | { | ||
3578 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3579 | |||
3580 | /* only return the current stats */ | ||
3581 | return &adapter->net_stats; | ||
3582 | } | ||
3583 | |||
3584 | /** | ||
3585 | * e1000_change_mtu - Change the Maximum Transfer Unit | ||
3586 | * @netdev: network interface device structure | ||
3587 | * @new_mtu: new value for maximum frame size | ||
3588 | * | ||
3589 | * Returns 0 on success, negative on failure | ||
3590 | **/ | ||
3591 | static int e1000_change_mtu(struct net_device *netdev, int new_mtu) | ||
3592 | { | ||
3593 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3594 | int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; | ||
3595 | |||
3596 | if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) || | ||
3597 | (max_frame > MAX_JUMBO_FRAME_SIZE)) { | ||
3598 | ndev_err(netdev, "Invalid MTU setting\n"); | ||
3599 | return -EINVAL; | ||
3600 | } | ||
3601 | |||
3602 | /* Jumbo frame size limits */ | ||
3603 | if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) { | ||
3604 | if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { | ||
3605 | ndev_err(netdev, "Jumbo Frames not supported.\n"); | ||
3606 | return -EINVAL; | ||
3607 | } | ||
3608 | if (adapter->hw.phy.type == e1000_phy_ife) { | ||
3609 | ndev_err(netdev, "Jumbo Frames not supported.\n"); | ||
3610 | return -EINVAL; | ||
3611 | } | ||
3612 | } | ||
3613 | |||
3614 | #define MAX_STD_JUMBO_FRAME_SIZE 9234 | ||
3615 | if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { | ||
3616 | ndev_err(netdev, "MTU > 9216 not supported.\n"); | ||
3617 | return -EINVAL; | ||
3618 | } | ||
3619 | |||
3620 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | ||
3621 | msleep(1); | ||
3622 | /* e1000e_down has a dependency on max_frame_size */ | ||
3623 | adapter->hw.mac.max_frame_size = max_frame; | ||
3624 | if (netif_running(netdev)) | ||
3625 | e1000e_down(adapter); | ||
3626 | |||
3627 | /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | ||
3628 | * means we reserve 2 more, this pushes us to allocate from the next | ||
3629 | * larger slab size. | ||
3630 | * i.e. RXBUFFER_2048 --> size-4096 slab | ||
3631 | * however with the new *_jumbo* routines, jumbo receives will use | ||
3632 | * fragmented skbs */ | ||
3633 | |||
3634 | if (max_frame <= 256) | ||
3635 | adapter->rx_buffer_len = 256; | ||
3636 | else if (max_frame <= 512) | ||
3637 | adapter->rx_buffer_len = 512; | ||
3638 | else if (max_frame <= 1024) | ||
3639 | adapter->rx_buffer_len = 1024; | ||
3640 | else if (max_frame <= 2048) | ||
3641 | adapter->rx_buffer_len = 2048; | ||
3642 | else | ||
3643 | adapter->rx_buffer_len = 4096; | ||
3644 | |||
3645 | /* adjust allocation if LPE protects us, and we aren't using SBP */ | ||
3646 | if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || | ||
3647 | (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) | ||
3648 | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN | ||
3649 | + ETH_FCS_LEN ; | ||
3650 | |||
3651 | ndev_info(netdev, "changing MTU from %d to %d\n", | ||
3652 | netdev->mtu, new_mtu); | ||
3653 | netdev->mtu = new_mtu; | ||
3654 | |||
3655 | if (netif_running(netdev)) | ||
3656 | e1000e_up(adapter); | ||
3657 | else | ||
3658 | e1000e_reset(adapter); | ||
3659 | |||
3660 | clear_bit(__E1000_RESETTING, &adapter->state); | ||
3661 | |||
3662 | return 0; | ||
3663 | } | ||
3664 | |||
3665 | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | ||
3666 | int cmd) | ||
3667 | { | ||
3668 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3669 | struct mii_ioctl_data *data = if_mii(ifr); | ||
3670 | unsigned long irq_flags; | ||
3671 | |||
3672 | if (adapter->hw.media_type != e1000_media_type_copper) | ||
3673 | return -EOPNOTSUPP; | ||
3674 | |||
3675 | switch (cmd) { | ||
3676 | case SIOCGMIIPHY: | ||
3677 | data->phy_id = adapter->hw.phy.addr; | ||
3678 | break; | ||
3679 | case SIOCGMIIREG: | ||
3680 | if (!capable(CAP_NET_ADMIN)) | ||
3681 | return -EPERM; | ||
3682 | spin_lock_irqsave(&adapter->stats_lock, irq_flags); | ||
3683 | if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F, | ||
3684 | &data->val_out)) { | ||
3685 | spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); | ||
3686 | return -EIO; | ||
3687 | } | ||
3688 | spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); | ||
3689 | break; | ||
3690 | case SIOCSMIIREG: | ||
3691 | default: | ||
3692 | return -EOPNOTSUPP; | ||
3693 | } | ||
3694 | return 0; | ||
3695 | } | ||
3696 | |||
3697 | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | ||
3698 | { | ||
3699 | switch (cmd) { | ||
3700 | case SIOCGMIIPHY: | ||
3701 | case SIOCGMIIREG: | ||
3702 | case SIOCSMIIREG: | ||
3703 | return e1000_mii_ioctl(netdev, ifr, cmd); | ||
3704 | default: | ||
3705 | return -EOPNOTSUPP; | ||
3706 | } | ||
3707 | } | ||
3708 | |||
3709 | static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) | ||
3710 | { | ||
3711 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
3712 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3713 | struct e1000_hw *hw = &adapter->hw; | ||
3714 | u32 ctrl, ctrl_ext, rctl, status; | ||
3715 | u32 wufc = adapter->wol; | ||
3716 | int retval = 0; | ||
3717 | |||
3718 | netif_device_detach(netdev); | ||
3719 | |||
3720 | if (netif_running(netdev)) { | ||
3721 | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); | ||
3722 | e1000e_down(adapter); | ||
3723 | e1000_free_irq(adapter); | ||
3724 | } | ||
3725 | |||
3726 | retval = pci_save_state(pdev); | ||
3727 | if (retval) | ||
3728 | return retval; | ||
3729 | |||
3730 | status = er32(STATUS); | ||
3731 | if (status & E1000_STATUS_LU) | ||
3732 | wufc &= ~E1000_WUFC_LNKC; | ||
3733 | |||
3734 | if (wufc) { | ||
3735 | e1000_setup_rctl(adapter); | ||
3736 | e1000_set_multi(netdev); | ||
3737 | |||
3738 | /* turn on all-multi mode if wake on multicast is enabled */ | ||
3739 | if (wufc & E1000_WUFC_MC) { | ||
3740 | rctl = er32(RCTL); | ||
3741 | rctl |= E1000_RCTL_MPE; | ||
3742 | ew32(RCTL, rctl); | ||
3743 | } | ||
3744 | |||
3745 | ctrl = er32(CTRL); | ||
3746 | /* advertise wake from D3Cold */ | ||
3747 | #define E1000_CTRL_ADVD3WUC 0x00100000 | ||
3748 | /* phy power management enable */ | ||
3749 | #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | ||
3750 | ctrl |= E1000_CTRL_ADVD3WUC | | ||
3751 | E1000_CTRL_EN_PHY_PWR_MGMT; | ||
3752 | ew32(CTRL, ctrl); | ||
3753 | |||
3754 | if (adapter->hw.media_type == e1000_media_type_fiber || | ||
3755 | adapter->hw.media_type == e1000_media_type_internal_serdes) { | ||
3756 | /* keep the laser running in D3 */ | ||
3757 | ctrl_ext = er32(CTRL_EXT); | ||
3758 | ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; | ||
3759 | ew32(CTRL_EXT, ctrl_ext); | ||
3760 | } | ||
3761 | |||
3762 | /* Allow time for pending master requests to run */ | ||
3763 | e1000e_disable_pcie_master(&adapter->hw); | ||
3764 | |||
3765 | ew32(WUC, E1000_WUC_PME_EN); | ||
3766 | ew32(WUFC, wufc); | ||
3767 | pci_enable_wake(pdev, PCI_D3hot, 1); | ||
3768 | pci_enable_wake(pdev, PCI_D3cold, 1); | ||
3769 | } else { | ||
3770 | ew32(WUC, 0); | ||
3771 | ew32(WUFC, 0); | ||
3772 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
3773 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
3774 | } | ||
3775 | |||
3776 | e1000_release_manageability(adapter); | ||
3777 | |||
3778 | /* make sure adapter isn't asleep if manageability is enabled */ | ||
3779 | if (adapter->flags & FLAG_MNG_PT_ENABLED) { | ||
3780 | pci_enable_wake(pdev, PCI_D3hot, 1); | ||
3781 | pci_enable_wake(pdev, PCI_D3cold, 1); | ||
3782 | } | ||
3783 | |||
3784 | if (adapter->hw.phy.type == e1000_phy_igp_3) | ||
3785 | e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); | ||
3786 | |||
3787 | /* Release control of h/w to f/w. If f/w is AMT enabled, this | ||
3788 | * would have already happened in close and is redundant. */ | ||
3789 | e1000_release_hw_control(adapter); | ||
3790 | |||
3791 | pci_disable_device(pdev); | ||
3792 | |||
3793 | pci_set_power_state(pdev, pci_choose_state(pdev, state)); | ||
3794 | |||
3795 | return 0; | ||
3796 | } | ||
3797 | |||
3798 | #ifdef CONFIG_PM | ||
3799 | static int e1000_resume(struct pci_dev *pdev) | ||
3800 | { | ||
3801 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
3802 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3803 | struct e1000_hw *hw = &adapter->hw; | ||
3804 | u32 err; | ||
3805 | |||
3806 | pci_set_power_state(pdev, PCI_D0); | ||
3807 | pci_restore_state(pdev); | ||
3808 | err = pci_enable_device(pdev); | ||
3809 | if (err) { | ||
3810 | dev_err(&pdev->dev, | ||
3811 | "Cannot enable PCI device from suspend\n"); | ||
3812 | return err; | ||
3813 | } | ||
3814 | |||
3815 | pci_set_master(pdev); | ||
3816 | |||
3817 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
3818 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
3819 | |||
3820 | if (netif_running(netdev)) { | ||
3821 | err = e1000_request_irq(adapter); | ||
3822 | if (err) | ||
3823 | return err; | ||
3824 | } | ||
3825 | |||
3826 | e1000e_power_up_phy(adapter); | ||
3827 | e1000e_reset(adapter); | ||
3828 | ew32(WUS, ~0); | ||
3829 | |||
3830 | e1000_init_manageability(adapter); | ||
3831 | |||
3832 | if (netif_running(netdev)) | ||
3833 | e1000e_up(adapter); | ||
3834 | |||
3835 | netif_device_attach(netdev); | ||
3836 | |||
3837 | /* If the controller has AMT, do not set DRV_LOAD until the interface | ||
3838 | * is up. For all other cases, let the f/w know that the h/w is now | ||
3839 | * under the control of the driver. */ | ||
3840 | if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw)) | ||
3841 | e1000_get_hw_control(adapter); | ||
3842 | |||
3843 | return 0; | ||
3844 | } | ||
3845 | #endif | ||
3846 | |||
3847 | static void e1000_shutdown(struct pci_dev *pdev) | ||
3848 | { | ||
3849 | e1000_suspend(pdev, PMSG_SUSPEND); | ||
3850 | } | ||
3851 | |||
3852 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
3853 | /* | ||
3854 | * Polling 'interrupt' - used by things like netconsole to send skbs | ||
3855 | * without having to re-enable interrupts. It's not called while | ||
3856 | * the interrupt routine is executing. | ||
3857 | */ | ||
3858 | static void e1000_netpoll(struct net_device *netdev) | ||
3859 | { | ||
3860 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3861 | |||
3862 | disable_irq(adapter->pdev->irq); | ||
3863 | e1000_intr(adapter->pdev->irq, netdev); | ||
3864 | |||
3865 | e1000_clean_tx_irq(adapter); | ||
3866 | |||
3867 | enable_irq(adapter->pdev->irq); | ||
3868 | } | ||
3869 | #endif | ||
3870 | |||
3871 | /** | ||
3872 | * e1000_io_error_detected - called when PCI error is detected | ||
3873 | * @pdev: Pointer to PCI device | ||
3874 | * @state: The current pci connection state | ||
3875 | * | ||
3876 | * This function is called after a PCI bus error affecting | ||
3877 | * this device has been detected. | ||
3878 | */ | ||
3879 | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, | ||
3880 | pci_channel_state_t state) | ||
3881 | { | ||
3882 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
3883 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3884 | |||
3885 | netif_device_detach(netdev); | ||
3886 | |||
3887 | if (netif_running(netdev)) | ||
3888 | e1000e_down(adapter); | ||
3889 | pci_disable_device(pdev); | ||
3890 | |||
3891 | /* Request a slot slot reset. */ | ||
3892 | return PCI_ERS_RESULT_NEED_RESET; | ||
3893 | } | ||
3894 | |||
3895 | /** | ||
3896 | * e1000_io_slot_reset - called after the pci bus has been reset. | ||
3897 | * @pdev: Pointer to PCI device | ||
3898 | * | ||
3899 | * Restart the card from scratch, as if from a cold-boot. Implementation | ||
3900 | * resembles the first-half of the e1000_resume routine. | ||
3901 | */ | ||
3902 | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) | ||
3903 | { | ||
3904 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
3905 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3906 | struct e1000_hw *hw = &adapter->hw; | ||
3907 | |||
3908 | if (pci_enable_device(pdev)) { | ||
3909 | dev_err(&pdev->dev, | ||
3910 | "Cannot re-enable PCI device after reset.\n"); | ||
3911 | return PCI_ERS_RESULT_DISCONNECT; | ||
3912 | } | ||
3913 | pci_set_master(pdev); | ||
3914 | |||
3915 | pci_enable_wake(pdev, PCI_D3hot, 0); | ||
3916 | pci_enable_wake(pdev, PCI_D3cold, 0); | ||
3917 | |||
3918 | e1000e_reset(adapter); | ||
3919 | ew32(WUS, ~0); | ||
3920 | |||
3921 | return PCI_ERS_RESULT_RECOVERED; | ||
3922 | } | ||
3923 | |||
3924 | /** | ||
3925 | * e1000_io_resume - called when traffic can start flowing again. | ||
3926 | * @pdev: Pointer to PCI device | ||
3927 | * | ||
3928 | * This callback is called when the error recovery driver tells us that | ||
3929 | * its OK to resume normal operation. Implementation resembles the | ||
3930 | * second-half of the e1000_resume routine. | ||
3931 | */ | ||
3932 | static void e1000_io_resume(struct pci_dev *pdev) | ||
3933 | { | ||
3934 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
3935 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
3936 | |||
3937 | e1000_init_manageability(adapter); | ||
3938 | |||
3939 | if (netif_running(netdev)) { | ||
3940 | if (e1000e_up(adapter)) { | ||
3941 | dev_err(&pdev->dev, | ||
3942 | "can't bring device back up after reset\n"); | ||
3943 | return; | ||
3944 | } | ||
3945 | } | ||
3946 | |||
3947 | netif_device_attach(netdev); | ||
3948 | |||
3949 | /* If the controller has AMT, do not set DRV_LOAD until the interface | ||
3950 | * is up. For all other cases, let the f/w know that the h/w is now | ||
3951 | * under the control of the driver. */ | ||
3952 | if (!(adapter->flags & FLAG_HAS_AMT) || | ||
3953 | !e1000e_check_mng_mode(&adapter->hw)) | ||
3954 | e1000_get_hw_control(adapter); | ||
3955 | |||
3956 | } | ||
3957 | |||
3958 | static void e1000_print_device_info(struct e1000_adapter *adapter) | ||
3959 | { | ||
3960 | struct e1000_hw *hw = &adapter->hw; | ||
3961 | struct net_device *netdev = adapter->netdev; | ||
3962 | u32 part_num; | ||
3963 | |||
3964 | /* print bus type/speed/width info */ | ||
3965 | ndev_info(netdev, "(PCI Express:2.5GB/s:%s) " | ||
3966 | "%02x:%02x:%02x:%02x:%02x:%02x\n", | ||
3967 | /* bus width */ | ||
3968 | ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : | ||
3969 | "Width x1"), | ||
3970 | /* MAC address */ | ||
3971 | netdev->dev_addr[0], netdev->dev_addr[1], | ||
3972 | netdev->dev_addr[2], netdev->dev_addr[3], | ||
3973 | netdev->dev_addr[4], netdev->dev_addr[5]); | ||
3974 | ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n", | ||
3975 | (hw->phy.type == e1000_phy_ife) | ||
3976 | ? "10/100" : "1000"); | ||
3977 | e1000e_read_part_num(hw, &part_num); | ||
3978 | ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n", | ||
3979 | hw->mac.type, hw->phy.type, | ||
3980 | (part_num >> 8), (part_num & 0xff)); | ||
3981 | } | ||
3982 | |||
3983 | /** | ||
3984 | * e1000_probe - Device Initialization Routine | ||
3985 | * @pdev: PCI device information struct | ||
3986 | * @ent: entry in e1000_pci_tbl | ||
3987 | * | ||
3988 | * Returns 0 on success, negative on failure | ||
3989 | * | ||
3990 | * e1000_probe initializes an adapter identified by a pci_dev structure. | ||
3991 | * The OS initialization, configuring of the adapter private structure, | ||
3992 | * and a hardware reset occur. | ||
3993 | **/ | ||
3994 | static int __devinit e1000_probe(struct pci_dev *pdev, | ||
3995 | const struct pci_device_id *ent) | ||
3996 | { | ||
3997 | struct net_device *netdev; | ||
3998 | struct e1000_adapter *adapter; | ||
3999 | struct e1000_hw *hw; | ||
4000 | const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; | ||
4001 | unsigned long mmio_start, mmio_len; | ||
4002 | unsigned long flash_start, flash_len; | ||
4003 | |||
4004 | static int cards_found; | ||
4005 | int i, err, pci_using_dac; | ||
4006 | u16 eeprom_data = 0; | ||
4007 | u16 eeprom_apme_mask = E1000_EEPROM_APME; | ||
4008 | |||
4009 | err = pci_enable_device(pdev); | ||
4010 | if (err) | ||
4011 | return err; | ||
4012 | |||
4013 | pci_using_dac = 0; | ||
4014 | err = pci_set_dma_mask(pdev, DMA_64BIT_MASK); | ||
4015 | if (!err) { | ||
4016 | err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); | ||
4017 | if (!err) | ||
4018 | pci_using_dac = 1; | ||
4019 | } else { | ||
4020 | err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); | ||
4021 | if (err) { | ||
4022 | err = pci_set_consistent_dma_mask(pdev, | ||
4023 | DMA_32BIT_MASK); | ||
4024 | if (err) { | ||
4025 | dev_err(&pdev->dev, "No usable DMA " | ||
4026 | "configuration, aborting\n"); | ||
4027 | goto err_dma; | ||
4028 | } | ||
4029 | } | ||
4030 | } | ||
4031 | |||
4032 | err = pci_request_regions(pdev, e1000e_driver_name); | ||
4033 | if (err) | ||
4034 | goto err_pci_reg; | ||
4035 | |||
4036 | pci_set_master(pdev); | ||
4037 | |||
4038 | err = -ENOMEM; | ||
4039 | netdev = alloc_etherdev(sizeof(struct e1000_adapter)); | ||
4040 | if (!netdev) | ||
4041 | goto err_alloc_etherdev; | ||
4042 | |||
4043 | SET_MODULE_OWNER(netdev); | ||
4044 | SET_NETDEV_DEV(netdev, &pdev->dev); | ||
4045 | |||
4046 | pci_set_drvdata(pdev, netdev); | ||
4047 | adapter = netdev_priv(netdev); | ||
4048 | hw = &adapter->hw; | ||
4049 | adapter->netdev = netdev; | ||
4050 | adapter->pdev = pdev; | ||
4051 | adapter->ei = ei; | ||
4052 | adapter->pba = ei->pba; | ||
4053 | adapter->flags = ei->flags; | ||
4054 | adapter->hw.adapter = adapter; | ||
4055 | adapter->hw.mac.type = ei->mac; | ||
4056 | adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; | ||
4057 | |||
4058 | mmio_start = pci_resource_start(pdev, 0); | ||
4059 | mmio_len = pci_resource_len(pdev, 0); | ||
4060 | |||
4061 | err = -EIO; | ||
4062 | adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); | ||
4063 | if (!adapter->hw.hw_addr) | ||
4064 | goto err_ioremap; | ||
4065 | |||
4066 | if ((adapter->flags & FLAG_HAS_FLASH) && | ||
4067 | (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { | ||
4068 | flash_start = pci_resource_start(pdev, 1); | ||
4069 | flash_len = pci_resource_len(pdev, 1); | ||
4070 | adapter->hw.flash_address = ioremap(flash_start, flash_len); | ||
4071 | if (!adapter->hw.flash_address) | ||
4072 | goto err_flashmap; | ||
4073 | } | ||
4074 | |||
4075 | /* construct the net_device struct */ | ||
4076 | netdev->open = &e1000_open; | ||
4077 | netdev->stop = &e1000_close; | ||
4078 | netdev->hard_start_xmit = &e1000_xmit_frame; | ||
4079 | netdev->get_stats = &e1000_get_stats; | ||
4080 | netdev->set_multicast_list = &e1000_set_multi; | ||
4081 | netdev->set_mac_address = &e1000_set_mac; | ||
4082 | netdev->change_mtu = &e1000_change_mtu; | ||
4083 | netdev->do_ioctl = &e1000_ioctl; | ||
4084 | e1000e_set_ethtool_ops(netdev); | ||
4085 | netdev->tx_timeout = &e1000_tx_timeout; | ||
4086 | netdev->watchdog_timeo = 5 * HZ; | ||
4087 | netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); | ||
4088 | netdev->vlan_rx_register = e1000_vlan_rx_register; | ||
4089 | netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid; | ||
4090 | netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid; | ||
4091 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
4092 | netdev->poll_controller = e1000_netpoll; | ||
4093 | #endif | ||
4094 | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | ||
4095 | |||
4096 | netdev->mem_start = mmio_start; | ||
4097 | netdev->mem_end = mmio_start + mmio_len; | ||
4098 | |||
4099 | adapter->bd_number = cards_found++; | ||
4100 | |||
4101 | /* setup adapter struct */ | ||
4102 | err = e1000_sw_init(adapter); | ||
4103 | if (err) | ||
4104 | goto err_sw_init; | ||
4105 | |||
4106 | err = -EIO; | ||
4107 | |||
4108 | memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); | ||
4109 | memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); | ||
4110 | memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); | ||
4111 | |||
4112 | err = ei->get_invariants(adapter); | ||
4113 | if (err) | ||
4114 | goto err_hw_init; | ||
4115 | |||
4116 | hw->mac.ops.get_bus_info(&adapter->hw); | ||
4117 | |||
4118 | adapter->hw.phy.wait_for_link = 0; | ||
4119 | |||
4120 | /* Copper options */ | ||
4121 | if (adapter->hw.media_type == e1000_media_type_copper) { | ||
4122 | adapter->hw.phy.mdix = AUTO_ALL_MODES; | ||
4123 | adapter->hw.phy.disable_polarity_correction = 0; | ||
4124 | adapter->hw.phy.ms_type = e1000_ms_hw_default; | ||
4125 | } | ||
4126 | |||
4127 | if (e1000_check_reset_block(&adapter->hw)) | ||
4128 | ndev_info(netdev, | ||
4129 | "PHY reset is blocked due to SOL/IDER session.\n"); | ||
4130 | |||
4131 | netdev->features = NETIF_F_SG | | ||
4132 | NETIF_F_HW_CSUM | | ||
4133 | NETIF_F_HW_VLAN_TX | | ||
4134 | NETIF_F_HW_VLAN_RX; | ||
4135 | |||
4136 | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) | ||
4137 | netdev->features |= NETIF_F_HW_VLAN_FILTER; | ||
4138 | |||
4139 | netdev->features |= NETIF_F_TSO; | ||
4140 | netdev->features |= NETIF_F_TSO6; | ||
4141 | |||
4142 | if (pci_using_dac) | ||
4143 | netdev->features |= NETIF_F_HIGHDMA; | ||
4144 | |||
4145 | /* We should not be using LLTX anymore, but we are still TX faster with | ||
4146 | * it. */ | ||
4147 | netdev->features |= NETIF_F_LLTX; | ||
4148 | |||
4149 | if (e1000e_enable_mng_pass_thru(&adapter->hw)) | ||
4150 | adapter->flags |= FLAG_MNG_PT_ENABLED; | ||
4151 | |||
4152 | /* before reading the NVM, reset the controller to | ||
4153 | * put the device in a known good starting state */ | ||
4154 | adapter->hw.mac.ops.reset_hw(&adapter->hw); | ||
4155 | |||
4156 | /* | ||
4157 | * systems with ASPM and others may see the checksum fail on the first | ||
4158 | * attempt. Let's give it a few tries | ||
4159 | */ | ||
4160 | for (i = 0;; i++) { | ||
4161 | if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) | ||
4162 | break; | ||
4163 | if (i == 2) { | ||
4164 | ndev_err(netdev, "The NVM Checksum Is Not Valid\n"); | ||
4165 | err = -EIO; | ||
4166 | goto err_eeprom; | ||
4167 | } | ||
4168 | } | ||
4169 | |||
4170 | /* copy the MAC address out of the NVM */ | ||
4171 | if (e1000e_read_mac_addr(&adapter->hw)) | ||
4172 | ndev_err(netdev, "NVM Read Error while reading MAC address\n"); | ||
4173 | |||
4174 | memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); | ||
4175 | memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); | ||
4176 | |||
4177 | if (!is_valid_ether_addr(netdev->perm_addr)) { | ||
4178 | ndev_err(netdev, "Invalid MAC Address: " | ||
4179 | "%02x:%02x:%02x:%02x:%02x:%02x\n", | ||
4180 | netdev->perm_addr[0], netdev->perm_addr[1], | ||
4181 | netdev->perm_addr[2], netdev->perm_addr[3], | ||
4182 | netdev->perm_addr[4], netdev->perm_addr[5]); | ||
4183 | err = -EIO; | ||
4184 | goto err_eeprom; | ||
4185 | } | ||
4186 | |||
4187 | init_timer(&adapter->watchdog_timer); | ||
4188 | adapter->watchdog_timer.function = &e1000_watchdog; | ||
4189 | adapter->watchdog_timer.data = (unsigned long) adapter; | ||
4190 | |||
4191 | init_timer(&adapter->phy_info_timer); | ||
4192 | adapter->phy_info_timer.function = &e1000_update_phy_info; | ||
4193 | adapter->phy_info_timer.data = (unsigned long) adapter; | ||
4194 | |||
4195 | INIT_WORK(&adapter->reset_task, e1000_reset_task); | ||
4196 | INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); | ||
4197 | |||
4198 | e1000e_check_options(adapter); | ||
4199 | |||
4200 | /* Initialize link parameters. User can change them with ethtool */ | ||
4201 | adapter->hw.mac.autoneg = 1; | ||
4202 | adapter->hw.mac.original_fc = e1000_fc_default; | ||
4203 | adapter->hw.mac.fc = e1000_fc_default; | ||
4204 | adapter->hw.phy.autoneg_advertised = 0x2f; | ||
4205 | |||
4206 | /* ring size defaults */ | ||
4207 | adapter->rx_ring->count = 256; | ||
4208 | adapter->tx_ring->count = 256; | ||
4209 | |||
4210 | /* | ||
4211 | * Initial Wake on LAN setting - If APM wake is enabled in | ||
4212 | * the EEPROM, enable the ACPI Magic Packet filter | ||
4213 | */ | ||
4214 | if (adapter->flags & FLAG_APME_IN_WUC) { | ||
4215 | /* APME bit in EEPROM is mapped to WUC.APME */ | ||
4216 | eeprom_data = er32(WUC); | ||
4217 | eeprom_apme_mask = E1000_WUC_APME; | ||
4218 | } else if (adapter->flags & FLAG_APME_IN_CTRL3) { | ||
4219 | if (adapter->flags & FLAG_APME_CHECK_PORT_B && | ||
4220 | (adapter->hw.bus.func == 1)) | ||
4221 | e1000_read_nvm(&adapter->hw, | ||
4222 | NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); | ||
4223 | else | ||
4224 | e1000_read_nvm(&adapter->hw, | ||
4225 | NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); | ||
4226 | } | ||
4227 | |||
4228 | /* fetch WoL from EEPROM */ | ||
4229 | if (eeprom_data & eeprom_apme_mask) | ||
4230 | adapter->eeprom_wol |= E1000_WUFC_MAG; | ||
4231 | |||
4232 | /* | ||
4233 | * now that we have the eeprom settings, apply the special cases | ||
4234 | * where the eeprom may be wrong or the board simply won't support | ||
4235 | * wake on lan on a particular port | ||
4236 | */ | ||
4237 | if (!(adapter->flags & FLAG_HAS_WOL)) | ||
4238 | adapter->eeprom_wol = 0; | ||
4239 | |||
4240 | /* initialize the wol settings based on the eeprom settings */ | ||
4241 | adapter->wol = adapter->eeprom_wol; | ||
4242 | |||
4243 | /* reset the hardware with the new settings */ | ||
4244 | e1000e_reset(adapter); | ||
4245 | |||
4246 | /* If the controller has AMT, do not set DRV_LOAD until the interface | ||
4247 | * is up. For all other cases, let the f/w know that the h/w is now | ||
4248 | * under the control of the driver. */ | ||
4249 | if (!(adapter->flags & FLAG_HAS_AMT) || | ||
4250 | !e1000e_check_mng_mode(&adapter->hw)) | ||
4251 | e1000_get_hw_control(adapter); | ||
4252 | |||
4253 | /* tell the stack to leave us alone until e1000_open() is called */ | ||
4254 | netif_carrier_off(netdev); | ||
4255 | netif_stop_queue(netdev); | ||
4256 | |||
4257 | strcpy(netdev->name, "eth%d"); | ||
4258 | err = register_netdev(netdev); | ||
4259 | if (err) | ||
4260 | goto err_register; | ||
4261 | |||
4262 | e1000_print_device_info(adapter); | ||
4263 | |||
4264 | return 0; | ||
4265 | |||
4266 | err_register: | ||
4267 | err_hw_init: | ||
4268 | e1000_release_hw_control(adapter); | ||
4269 | err_eeprom: | ||
4270 | if (!e1000_check_reset_block(&adapter->hw)) | ||
4271 | e1000_phy_hw_reset(&adapter->hw); | ||
4272 | |||
4273 | if (adapter->hw.flash_address) | ||
4274 | iounmap(adapter->hw.flash_address); | ||
4275 | |||
4276 | err_flashmap: | ||
4277 | kfree(adapter->tx_ring); | ||
4278 | kfree(adapter->rx_ring); | ||
4279 | err_sw_init: | ||
4280 | iounmap(adapter->hw.hw_addr); | ||
4281 | err_ioremap: | ||
4282 | free_netdev(netdev); | ||
4283 | err_alloc_etherdev: | ||
4284 | pci_release_regions(pdev); | ||
4285 | err_pci_reg: | ||
4286 | err_dma: | ||
4287 | pci_disable_device(pdev); | ||
4288 | return err; | ||
4289 | } | ||
4290 | |||
4291 | /** | ||
4292 | * e1000_remove - Device Removal Routine | ||
4293 | * @pdev: PCI device information struct | ||
4294 | * | ||
4295 | * e1000_remove is called by the PCI subsystem to alert the driver | ||
4296 | * that it should release a PCI device. The could be caused by a | ||
4297 | * Hot-Plug event, or because the driver is going to be removed from | ||
4298 | * memory. | ||
4299 | **/ | ||
4300 | static void __devexit e1000_remove(struct pci_dev *pdev) | ||
4301 | { | ||
4302 | struct net_device *netdev = pci_get_drvdata(pdev); | ||
4303 | struct e1000_adapter *adapter = netdev_priv(netdev); | ||
4304 | |||
4305 | /* flush_scheduled work may reschedule our watchdog task, so | ||
4306 | * explicitly disable watchdog tasks from being rescheduled */ | ||
4307 | set_bit(__E1000_DOWN, &adapter->state); | ||
4308 | del_timer_sync(&adapter->watchdog_timer); | ||
4309 | del_timer_sync(&adapter->phy_info_timer); | ||
4310 | |||
4311 | flush_scheduled_work(); | ||
4312 | |||
4313 | e1000_release_manageability(adapter); | ||
4314 | |||
4315 | /* Release control of h/w to f/w. If f/w is AMT enabled, this | ||
4316 | * would have already happened in close and is redundant. */ | ||
4317 | e1000_release_hw_control(adapter); | ||
4318 | |||
4319 | unregister_netdev(netdev); | ||
4320 | |||
4321 | if (!e1000_check_reset_block(&adapter->hw)) | ||
4322 | e1000_phy_hw_reset(&adapter->hw); | ||
4323 | |||
4324 | kfree(adapter->tx_ring); | ||
4325 | kfree(adapter->rx_ring); | ||
4326 | |||
4327 | iounmap(adapter->hw.hw_addr); | ||
4328 | if (adapter->hw.flash_address) | ||
4329 | iounmap(adapter->hw.flash_address); | ||
4330 | pci_release_regions(pdev); | ||
4331 | |||
4332 | free_netdev(netdev); | ||
4333 | |||
4334 | pci_disable_device(pdev); | ||
4335 | } | ||
4336 | |||
4337 | /* PCI Error Recovery (ERS) */ | ||
4338 | static struct pci_error_handlers e1000_err_handler = { | ||
4339 | .error_detected = e1000_io_error_detected, | ||
4340 | .slot_reset = e1000_io_slot_reset, | ||
4341 | .resume = e1000_io_resume, | ||
4342 | }; | ||
4343 | |||
4344 | static struct pci_device_id e1000_pci_tbl[] = { | ||
4345 | /* | ||
4346 | * Support for 82571/2/3, es2lan and ich8 will be phased in | ||
4347 | * stepwise. | ||
4348 | |||
4349 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, | ||
4350 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, | ||
4351 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, | ||
4352 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, | ||
4353 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, | ||
4354 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, | ||
4355 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, | ||
4356 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, | ||
4357 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, | ||
4358 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, | ||
4359 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, | ||
4360 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, | ||
4361 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, | ||
4362 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), | ||
4363 | board_80003es2lan }, | ||
4364 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), | ||
4365 | board_80003es2lan }, | ||
4366 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), | ||
4367 | board_80003es2lan }, | ||
4368 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), | ||
4369 | board_80003es2lan }, | ||
4370 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, | ||
4371 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, | ||
4372 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, | ||
4373 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, | ||
4374 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, | ||
4375 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, | ||
4376 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, | ||
4377 | */ | ||
4378 | |||
4379 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, | ||
4380 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, | ||
4381 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, | ||
4382 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, | ||
4383 | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, | ||
4384 | |||
4385 | { } /* terminate list */ | ||
4386 | }; | ||
4387 | MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); | ||
4388 | |||
4389 | /* PCI Device API Driver */ | ||
4390 | static struct pci_driver e1000_driver = { | ||
4391 | .name = e1000e_driver_name, | ||
4392 | .id_table = e1000_pci_tbl, | ||
4393 | .probe = e1000_probe, | ||
4394 | .remove = __devexit_p(e1000_remove), | ||
4395 | #ifdef CONFIG_PM | ||
4396 | /* Power Managment Hooks */ | ||
4397 | .suspend = e1000_suspend, | ||
4398 | .resume = e1000_resume, | ||
4399 | #endif | ||
4400 | .shutdown = e1000_shutdown, | ||
4401 | .err_handler = &e1000_err_handler | ||
4402 | }; | ||
4403 | |||
4404 | /** | ||
4405 | * e1000_init_module - Driver Registration Routine | ||
4406 | * | ||
4407 | * e1000_init_module is the first routine called when the driver is | ||
4408 | * loaded. All it does is register with the PCI subsystem. | ||
4409 | **/ | ||
4410 | static int __init e1000_init_module(void) | ||
4411 | { | ||
4412 | int ret; | ||
4413 | printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n", | ||
4414 | e1000e_driver_name, e1000e_driver_version); | ||
4415 | printk(KERN_INFO "%s: Copyright (c) 1999-2007 Intel Corporation.\n", | ||
4416 | e1000e_driver_name); | ||
4417 | ret = pci_register_driver(&e1000_driver); | ||
4418 | |||
4419 | return ret; | ||
4420 | } | ||
4421 | module_init(e1000_init_module); | ||
4422 | |||
4423 | /** | ||
4424 | * e1000_exit_module - Driver Exit Cleanup Routine | ||
4425 | * | ||
4426 | * e1000_exit_module is called just before the driver is removed | ||
4427 | * from memory. | ||
4428 | **/ | ||
4429 | static void __exit e1000_exit_module(void) | ||
4430 | { | ||
4431 | pci_unregister_driver(&e1000_driver); | ||
4432 | } | ||
4433 | module_exit(e1000_exit_module); | ||
4434 | |||
4435 | |||
4436 | MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); | ||
4437 | MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); | ||
4438 | MODULE_LICENSE("GPL"); | ||
4439 | MODULE_VERSION(DRV_VERSION); | ||
4440 | |||
4441 | /* e1000_main.c */ | ||