diff options
Diffstat (limited to 'drivers/net/e1000e/lib.c')
-rw-r--r-- | drivers/net/e1000e/lib.c | 2487 |
1 files changed, 2487 insertions, 0 deletions
diff --git a/drivers/net/e1000e/lib.c b/drivers/net/e1000e/lib.c new file mode 100644 index 000000000000..3bbfe605e111 --- /dev/null +++ b/drivers/net/e1000e/lib.c | |||
@@ -0,0 +1,2487 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2007 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | #include <linux/netdevice.h> | ||
30 | #include <linux/ethtool.h> | ||
31 | #include <linux/delay.h> | ||
32 | #include <linux/pci.h> | ||
33 | |||
34 | #include "e1000.h" | ||
35 | |||
36 | enum e1000_mng_mode { | ||
37 | e1000_mng_mode_none = 0, | ||
38 | e1000_mng_mode_asf, | ||
39 | e1000_mng_mode_pt, | ||
40 | e1000_mng_mode_ipmi, | ||
41 | e1000_mng_mode_host_if_only | ||
42 | }; | ||
43 | |||
44 | #define E1000_FACTPS_MNGCG 0x20000000 | ||
45 | |||
46 | #define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management | ||
47 | * Technology signature */ | ||
48 | |||
49 | /** | ||
50 | * e1000e_get_bus_info_pcie - Get PCIe bus information | ||
51 | * @hw: pointer to the HW structure | ||
52 | * | ||
53 | * Determines and stores the system bus information for a particular | ||
54 | * network interface. The following bus information is determined and stored: | ||
55 | * bus speed, bus width, type (PCIe), and PCIe function. | ||
56 | **/ | ||
57 | s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) | ||
58 | { | ||
59 | struct e1000_bus_info *bus = &hw->bus; | ||
60 | struct e1000_adapter *adapter = hw->adapter; | ||
61 | u32 status; | ||
62 | u16 pcie_link_status, pci_header_type, cap_offset; | ||
63 | |||
64 | cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); | ||
65 | if (!cap_offset) { | ||
66 | bus->width = e1000_bus_width_unknown; | ||
67 | } else { | ||
68 | pci_read_config_word(adapter->pdev, | ||
69 | cap_offset + PCIE_LINK_STATUS, | ||
70 | &pcie_link_status); | ||
71 | bus->width = (enum e1000_bus_width)((pcie_link_status & | ||
72 | PCIE_LINK_WIDTH_MASK) >> | ||
73 | PCIE_LINK_WIDTH_SHIFT); | ||
74 | } | ||
75 | |||
76 | pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER, | ||
77 | &pci_header_type); | ||
78 | if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { | ||
79 | status = er32(STATUS); | ||
80 | bus->func = (status & E1000_STATUS_FUNC_MASK) | ||
81 | >> E1000_STATUS_FUNC_SHIFT; | ||
82 | } else { | ||
83 | bus->func = 0; | ||
84 | } | ||
85 | |||
86 | return 0; | ||
87 | } | ||
88 | |||
89 | /** | ||
90 | * e1000e_write_vfta - Write value to VLAN filter table | ||
91 | * @hw: pointer to the HW structure | ||
92 | * @offset: register offset in VLAN filter table | ||
93 | * @value: register value written to VLAN filter table | ||
94 | * | ||
95 | * Writes value at the given offset in the register array which stores | ||
96 | * the VLAN filter table. | ||
97 | **/ | ||
98 | void e1000e_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) | ||
99 | { | ||
100 | E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); | ||
101 | e1e_flush(); | ||
102 | } | ||
103 | |||
104 | /** | ||
105 | * e1000e_init_rx_addrs - Initialize receive address's | ||
106 | * @hw: pointer to the HW structure | ||
107 | * @rar_count: receive address registers | ||
108 | * | ||
109 | * Setups the receive address registers by setting the base receive address | ||
110 | * register to the devices MAC address and clearing all the other receive | ||
111 | * address registers to 0. | ||
112 | **/ | ||
113 | void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) | ||
114 | { | ||
115 | u32 i; | ||
116 | |||
117 | /* Setup the receive address */ | ||
118 | hw_dbg(hw, "Programming MAC Address into RAR[0]\n"); | ||
119 | |||
120 | e1000e_rar_set(hw, hw->mac.addr, 0); | ||
121 | |||
122 | /* Zero out the other (rar_entry_count - 1) receive addresses */ | ||
123 | hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1); | ||
124 | for (i = 1; i < rar_count; i++) { | ||
125 | E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0); | ||
126 | e1e_flush(); | ||
127 | E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0); | ||
128 | e1e_flush(); | ||
129 | } | ||
130 | } | ||
131 | |||
132 | /** | ||
133 | * e1000e_rar_set - Set receive address register | ||
134 | * @hw: pointer to the HW structure | ||
135 | * @addr: pointer to the receive address | ||
136 | * @index: receive address array register | ||
137 | * | ||
138 | * Sets the receive address array register at index to the address passed | ||
139 | * in by addr. | ||
140 | **/ | ||
141 | void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) | ||
142 | { | ||
143 | u32 rar_low, rar_high; | ||
144 | |||
145 | /* HW expects these in little endian so we reverse the byte order | ||
146 | * from network order (big endian) to little endian | ||
147 | */ | ||
148 | rar_low = ((u32) addr[0] | | ||
149 | ((u32) addr[1] << 8) | | ||
150 | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); | ||
151 | |||
152 | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); | ||
153 | |||
154 | rar_high |= E1000_RAH_AV; | ||
155 | |||
156 | E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low); | ||
157 | E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high); | ||
158 | } | ||
159 | |||
160 | /** | ||
161 | * e1000_mta_set - Set multicast filter table address | ||
162 | * @hw: pointer to the HW structure | ||
163 | * @hash_value: determines the MTA register and bit to set | ||
164 | * | ||
165 | * The multicast table address is a register array of 32-bit registers. | ||
166 | * The hash_value is used to determine what register the bit is in, the | ||
167 | * current value is read, the new bit is OR'd in and the new value is | ||
168 | * written back into the register. | ||
169 | **/ | ||
170 | static void e1000_mta_set(struct e1000_hw *hw, u32 hash_value) | ||
171 | { | ||
172 | u32 hash_bit, hash_reg, mta; | ||
173 | |||
174 | /* The MTA is a register array of 32-bit registers. It is | ||
175 | * treated like an array of (32*mta_reg_count) bits. We want to | ||
176 | * set bit BitArray[hash_value]. So we figure out what register | ||
177 | * the bit is in, read it, OR in the new bit, then write | ||
178 | * back the new value. The (hw->mac.mta_reg_count - 1) serves as a | ||
179 | * mask to bits 31:5 of the hash value which gives us the | ||
180 | * register we're modifying. The hash bit within that register | ||
181 | * is determined by the lower 5 bits of the hash value. | ||
182 | */ | ||
183 | hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); | ||
184 | hash_bit = hash_value & 0x1F; | ||
185 | |||
186 | mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg); | ||
187 | |||
188 | mta |= (1 << hash_bit); | ||
189 | |||
190 | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta); | ||
191 | e1e_flush(); | ||
192 | } | ||
193 | |||
194 | /** | ||
195 | * e1000_hash_mc_addr - Generate a multicast hash value | ||
196 | * @hw: pointer to the HW structure | ||
197 | * @mc_addr: pointer to a multicast address | ||
198 | * | ||
199 | * Generates a multicast address hash value which is used to determine | ||
200 | * the multicast filter table array address and new table value. See | ||
201 | * e1000_mta_set_generic() | ||
202 | **/ | ||
203 | static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | ||
204 | { | ||
205 | u32 hash_value, hash_mask; | ||
206 | u8 bit_shift = 0; | ||
207 | |||
208 | /* Register count multiplied by bits per register */ | ||
209 | hash_mask = (hw->mac.mta_reg_count * 32) - 1; | ||
210 | |||
211 | /* For a mc_filter_type of 0, bit_shift is the number of left-shifts | ||
212 | * where 0xFF would still fall within the hash mask. */ | ||
213 | while (hash_mask >> bit_shift != 0xFF) | ||
214 | bit_shift++; | ||
215 | |||
216 | /* The portion of the address that is used for the hash table | ||
217 | * is determined by the mc_filter_type setting. | ||
218 | * The algorithm is such that there is a total of 8 bits of shifting. | ||
219 | * The bit_shift for a mc_filter_type of 0 represents the number of | ||
220 | * left-shifts where the MSB of mc_addr[5] would still fall within | ||
221 | * the hash_mask. Case 0 does this exactly. Since there are a total | ||
222 | * of 8 bits of shifting, then mc_addr[4] will shift right the | ||
223 | * remaining number of bits. Thus 8 - bit_shift. The rest of the | ||
224 | * cases are a variation of this algorithm...essentially raising the | ||
225 | * number of bits to shift mc_addr[5] left, while still keeping the | ||
226 | * 8-bit shifting total. | ||
227 | */ | ||
228 | /* For example, given the following Destination MAC Address and an | ||
229 | * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), | ||
230 | * we can see that the bit_shift for case 0 is 4. These are the hash | ||
231 | * values resulting from each mc_filter_type... | ||
232 | * [0] [1] [2] [3] [4] [5] | ||
233 | * 01 AA 00 12 34 56 | ||
234 | * LSB MSB | ||
235 | * | ||
236 | * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 | ||
237 | * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 | ||
238 | * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 | ||
239 | * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 | ||
240 | */ | ||
241 | switch (hw->mac.mc_filter_type) { | ||
242 | default: | ||
243 | case 0: | ||
244 | break; | ||
245 | case 1: | ||
246 | bit_shift += 1; | ||
247 | break; | ||
248 | case 2: | ||
249 | bit_shift += 2; | ||
250 | break; | ||
251 | case 3: | ||
252 | bit_shift += 4; | ||
253 | break; | ||
254 | } | ||
255 | |||
256 | hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | | ||
257 | (((u16) mc_addr[5]) << bit_shift))); | ||
258 | |||
259 | return hash_value; | ||
260 | } | ||
261 | |||
262 | /** | ||
263 | * e1000e_mc_addr_list_update_generic - Update Multicast addresses | ||
264 | * @hw: pointer to the HW structure | ||
265 | * @mc_addr_list: array of multicast addresses to program | ||
266 | * @mc_addr_count: number of multicast addresses to program | ||
267 | * @rar_used_count: the first RAR register free to program | ||
268 | * @rar_count: total number of supported Receive Address Registers | ||
269 | * | ||
270 | * Updates the Receive Address Registers and Multicast Table Array. | ||
271 | * The caller must have a packed mc_addr_list of multicast addresses. | ||
272 | * The parameter rar_count will usually be hw->mac.rar_entry_count | ||
273 | * unless there are workarounds that change this. | ||
274 | **/ | ||
275 | void e1000e_mc_addr_list_update_generic(struct e1000_hw *hw, | ||
276 | u8 *mc_addr_list, u32 mc_addr_count, | ||
277 | u32 rar_used_count, u32 rar_count) | ||
278 | { | ||
279 | u32 hash_value; | ||
280 | u32 i; | ||
281 | |||
282 | /* Load the first set of multicast addresses into the exact | ||
283 | * filters (RAR). If there are not enough to fill the RAR | ||
284 | * array, clear the filters. | ||
285 | */ | ||
286 | for (i = rar_used_count; i < rar_count; i++) { | ||
287 | if (mc_addr_count) { | ||
288 | e1000e_rar_set(hw, mc_addr_list, i); | ||
289 | mc_addr_count--; | ||
290 | mc_addr_list += ETH_ALEN; | ||
291 | } else { | ||
292 | E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0); | ||
293 | e1e_flush(); | ||
294 | E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0); | ||
295 | e1e_flush(); | ||
296 | } | ||
297 | } | ||
298 | |||
299 | /* Clear the old settings from the MTA */ | ||
300 | hw_dbg(hw, "Clearing MTA\n"); | ||
301 | for (i = 0; i < hw->mac.mta_reg_count; i++) { | ||
302 | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); | ||
303 | e1e_flush(); | ||
304 | } | ||
305 | |||
306 | /* Load any remaining multicast addresses into the hash table. */ | ||
307 | for (; mc_addr_count > 0; mc_addr_count--) { | ||
308 | hash_value = e1000_hash_mc_addr(hw, mc_addr_list); | ||
309 | hw_dbg(hw, "Hash value = 0x%03X\n", hash_value); | ||
310 | e1000_mta_set(hw, hash_value); | ||
311 | mc_addr_list += ETH_ALEN; | ||
312 | } | ||
313 | } | ||
314 | |||
315 | /** | ||
316 | * e1000e_clear_hw_cntrs_base - Clear base hardware counters | ||
317 | * @hw: pointer to the HW structure | ||
318 | * | ||
319 | * Clears the base hardware counters by reading the counter registers. | ||
320 | **/ | ||
321 | void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) | ||
322 | { | ||
323 | u32 temp; | ||
324 | |||
325 | temp = er32(CRCERRS); | ||
326 | temp = er32(SYMERRS); | ||
327 | temp = er32(MPC); | ||
328 | temp = er32(SCC); | ||
329 | temp = er32(ECOL); | ||
330 | temp = er32(MCC); | ||
331 | temp = er32(LATECOL); | ||
332 | temp = er32(COLC); | ||
333 | temp = er32(DC); | ||
334 | temp = er32(SEC); | ||
335 | temp = er32(RLEC); | ||
336 | temp = er32(XONRXC); | ||
337 | temp = er32(XONTXC); | ||
338 | temp = er32(XOFFRXC); | ||
339 | temp = er32(XOFFTXC); | ||
340 | temp = er32(FCRUC); | ||
341 | temp = er32(GPRC); | ||
342 | temp = er32(BPRC); | ||
343 | temp = er32(MPRC); | ||
344 | temp = er32(GPTC); | ||
345 | temp = er32(GORCL); | ||
346 | temp = er32(GORCH); | ||
347 | temp = er32(GOTCL); | ||
348 | temp = er32(GOTCH); | ||
349 | temp = er32(RNBC); | ||
350 | temp = er32(RUC); | ||
351 | temp = er32(RFC); | ||
352 | temp = er32(ROC); | ||
353 | temp = er32(RJC); | ||
354 | temp = er32(TORL); | ||
355 | temp = er32(TORH); | ||
356 | temp = er32(TOTL); | ||
357 | temp = er32(TOTH); | ||
358 | temp = er32(TPR); | ||
359 | temp = er32(TPT); | ||
360 | temp = er32(MPTC); | ||
361 | temp = er32(BPTC); | ||
362 | } | ||
363 | |||
364 | /** | ||
365 | * e1000e_check_for_copper_link - Check for link (Copper) | ||
366 | * @hw: pointer to the HW structure | ||
367 | * | ||
368 | * Checks to see of the link status of the hardware has changed. If a | ||
369 | * change in link status has been detected, then we read the PHY registers | ||
370 | * to get the current speed/duplex if link exists. | ||
371 | **/ | ||
372 | s32 e1000e_check_for_copper_link(struct e1000_hw *hw) | ||
373 | { | ||
374 | struct e1000_mac_info *mac = &hw->mac; | ||
375 | s32 ret_val; | ||
376 | bool link; | ||
377 | |||
378 | /* We only want to go out to the PHY registers to see if Auto-Neg | ||
379 | * has completed and/or if our link status has changed. The | ||
380 | * get_link_status flag is set upon receiving a Link Status | ||
381 | * Change or Rx Sequence Error interrupt. | ||
382 | */ | ||
383 | if (!mac->get_link_status) | ||
384 | return 0; | ||
385 | |||
386 | /* First we want to see if the MII Status Register reports | ||
387 | * link. If so, then we want to get the current speed/duplex | ||
388 | * of the PHY. | ||
389 | */ | ||
390 | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | ||
391 | if (ret_val) | ||
392 | return ret_val; | ||
393 | |||
394 | if (!link) | ||
395 | return ret_val; /* No link detected */ | ||
396 | |||
397 | mac->get_link_status = 0; | ||
398 | |||
399 | /* Check if there was DownShift, must be checked | ||
400 | * immediately after link-up */ | ||
401 | e1000e_check_downshift(hw); | ||
402 | |||
403 | /* If we are forcing speed/duplex, then we simply return since | ||
404 | * we have already determined whether we have link or not. | ||
405 | */ | ||
406 | if (!mac->autoneg) { | ||
407 | ret_val = -E1000_ERR_CONFIG; | ||
408 | return ret_val; | ||
409 | } | ||
410 | |||
411 | /* Auto-Neg is enabled. Auto Speed Detection takes care | ||
412 | * of MAC speed/duplex configuration. So we only need to | ||
413 | * configure Collision Distance in the MAC. | ||
414 | */ | ||
415 | e1000e_config_collision_dist(hw); | ||
416 | |||
417 | /* Configure Flow Control now that Auto-Neg has completed. | ||
418 | * First, we need to restore the desired flow control | ||
419 | * settings because we may have had to re-autoneg with a | ||
420 | * different link partner. | ||
421 | */ | ||
422 | ret_val = e1000e_config_fc_after_link_up(hw); | ||
423 | if (ret_val) { | ||
424 | hw_dbg(hw, "Error configuring flow control\n"); | ||
425 | } | ||
426 | |||
427 | return ret_val; | ||
428 | } | ||
429 | |||
430 | /** | ||
431 | * e1000e_check_for_fiber_link - Check for link (Fiber) | ||
432 | * @hw: pointer to the HW structure | ||
433 | * | ||
434 | * Checks for link up on the hardware. If link is not up and we have | ||
435 | * a signal, then we need to force link up. | ||
436 | **/ | ||
437 | s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) | ||
438 | { | ||
439 | struct e1000_mac_info *mac = &hw->mac; | ||
440 | u32 rxcw; | ||
441 | u32 ctrl; | ||
442 | u32 status; | ||
443 | s32 ret_val; | ||
444 | |||
445 | ctrl = er32(CTRL); | ||
446 | status = er32(STATUS); | ||
447 | rxcw = er32(RXCW); | ||
448 | |||
449 | /* If we don't have link (auto-negotiation failed or link partner | ||
450 | * cannot auto-negotiate), the cable is plugged in (we have signal), | ||
451 | * and our link partner is not trying to auto-negotiate with us (we | ||
452 | * are receiving idles or data), we need to force link up. We also | ||
453 | * need to give auto-negotiation time to complete, in case the cable | ||
454 | * was just plugged in. The autoneg_failed flag does this. | ||
455 | */ | ||
456 | /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ | ||
457 | if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) && | ||
458 | (!(rxcw & E1000_RXCW_C))) { | ||
459 | if (mac->autoneg_failed == 0) { | ||
460 | mac->autoneg_failed = 1; | ||
461 | return 0; | ||
462 | } | ||
463 | hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n"); | ||
464 | |||
465 | /* Disable auto-negotiation in the TXCW register */ | ||
466 | ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); | ||
467 | |||
468 | /* Force link-up and also force full-duplex. */ | ||
469 | ctrl = er32(CTRL); | ||
470 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | ||
471 | ew32(CTRL, ctrl); | ||
472 | |||
473 | /* Configure Flow Control after forcing link up. */ | ||
474 | ret_val = e1000e_config_fc_after_link_up(hw); | ||
475 | if (ret_val) { | ||
476 | hw_dbg(hw, "Error configuring flow control\n"); | ||
477 | return ret_val; | ||
478 | } | ||
479 | } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | ||
480 | /* If we are forcing link and we are receiving /C/ ordered | ||
481 | * sets, re-enable auto-negotiation in the TXCW register | ||
482 | * and disable forced link in the Device Control register | ||
483 | * in an attempt to auto-negotiate with our link partner. | ||
484 | */ | ||
485 | hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n"); | ||
486 | ew32(TXCW, mac->txcw); | ||
487 | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | ||
488 | |||
489 | mac->serdes_has_link = 1; | ||
490 | } | ||
491 | |||
492 | return 0; | ||
493 | } | ||
494 | |||
495 | /** | ||
496 | * e1000e_check_for_serdes_link - Check for link (Serdes) | ||
497 | * @hw: pointer to the HW structure | ||
498 | * | ||
499 | * Checks for link up on the hardware. If link is not up and we have | ||
500 | * a signal, then we need to force link up. | ||
501 | **/ | ||
502 | s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) | ||
503 | { | ||
504 | struct e1000_mac_info *mac = &hw->mac; | ||
505 | u32 rxcw; | ||
506 | u32 ctrl; | ||
507 | u32 status; | ||
508 | s32 ret_val; | ||
509 | |||
510 | ctrl = er32(CTRL); | ||
511 | status = er32(STATUS); | ||
512 | rxcw = er32(RXCW); | ||
513 | |||
514 | /* If we don't have link (auto-negotiation failed or link partner | ||
515 | * cannot auto-negotiate), and our link partner is not trying to | ||
516 | * auto-negotiate with us (we are receiving idles or data), | ||
517 | * we need to force link up. We also need to give auto-negotiation | ||
518 | * time to complete. | ||
519 | */ | ||
520 | /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ | ||
521 | if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { | ||
522 | if (mac->autoneg_failed == 0) { | ||
523 | mac->autoneg_failed = 1; | ||
524 | return 0; | ||
525 | } | ||
526 | hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n"); | ||
527 | |||
528 | /* Disable auto-negotiation in the TXCW register */ | ||
529 | ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); | ||
530 | |||
531 | /* Force link-up and also force full-duplex. */ | ||
532 | ctrl = er32(CTRL); | ||
533 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | ||
534 | ew32(CTRL, ctrl); | ||
535 | |||
536 | /* Configure Flow Control after forcing link up. */ | ||
537 | ret_val = e1000e_config_fc_after_link_up(hw); | ||
538 | if (ret_val) { | ||
539 | hw_dbg(hw, "Error configuring flow control\n"); | ||
540 | return ret_val; | ||
541 | } | ||
542 | } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | ||
543 | /* If we are forcing link and we are receiving /C/ ordered | ||
544 | * sets, re-enable auto-negotiation in the TXCW register | ||
545 | * and disable forced link in the Device Control register | ||
546 | * in an attempt to auto-negotiate with our link partner. | ||
547 | */ | ||
548 | hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n"); | ||
549 | ew32(TXCW, mac->txcw); | ||
550 | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | ||
551 | |||
552 | mac->serdes_has_link = 1; | ||
553 | } else if (!(E1000_TXCW_ANE & er32(TXCW))) { | ||
554 | /* If we force link for non-auto-negotiation switch, check | ||
555 | * link status based on MAC synchronization for internal | ||
556 | * serdes media type. | ||
557 | */ | ||
558 | /* SYNCH bit and IV bit are sticky. */ | ||
559 | udelay(10); | ||
560 | if (E1000_RXCW_SYNCH & er32(RXCW)) { | ||
561 | if (!(rxcw & E1000_RXCW_IV)) { | ||
562 | mac->serdes_has_link = 1; | ||
563 | hw_dbg(hw, "SERDES: Link is up.\n"); | ||
564 | } | ||
565 | } else { | ||
566 | mac->serdes_has_link = 0; | ||
567 | hw_dbg(hw, "SERDES: Link is down.\n"); | ||
568 | } | ||
569 | } | ||
570 | |||
571 | if (E1000_TXCW_ANE & er32(TXCW)) { | ||
572 | status = er32(STATUS); | ||
573 | mac->serdes_has_link = (status & E1000_STATUS_LU); | ||
574 | } | ||
575 | |||
576 | return 0; | ||
577 | } | ||
578 | |||
579 | /** | ||
580 | * e1000_set_default_fc_generic - Set flow control default values | ||
581 | * @hw: pointer to the HW structure | ||
582 | * | ||
583 | * Read the EEPROM for the default values for flow control and store the | ||
584 | * values. | ||
585 | **/ | ||
586 | static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) | ||
587 | { | ||
588 | struct e1000_mac_info *mac = &hw->mac; | ||
589 | s32 ret_val; | ||
590 | u16 nvm_data; | ||
591 | |||
592 | if (mac->fc != e1000_fc_default) | ||
593 | return 0; | ||
594 | |||
595 | /* Read and store word 0x0F of the EEPROM. This word contains bits | ||
596 | * that determine the hardware's default PAUSE (flow control) mode, | ||
597 | * a bit that determines whether the HW defaults to enabling or | ||
598 | * disabling auto-negotiation, and the direction of the | ||
599 | * SW defined pins. If there is no SW over-ride of the flow | ||
600 | * control setting, then the variable hw->fc will | ||
601 | * be initialized based on a value in the EEPROM. | ||
602 | */ | ||
603 | ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); | ||
604 | |||
605 | if (ret_val) { | ||
606 | hw_dbg(hw, "NVM Read Error\n"); | ||
607 | return ret_val; | ||
608 | } | ||
609 | |||
610 | if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) | ||
611 | mac->fc = e1000_fc_none; | ||
612 | else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == | ||
613 | NVM_WORD0F_ASM_DIR) | ||
614 | mac->fc = e1000_fc_tx_pause; | ||
615 | else | ||
616 | mac->fc = e1000_fc_full; | ||
617 | |||
618 | return 0; | ||
619 | } | ||
620 | |||
621 | /** | ||
622 | * e1000e_setup_link - Setup flow control and link settings | ||
623 | * @hw: pointer to the HW structure | ||
624 | * | ||
625 | * Determines which flow control settings to use, then configures flow | ||
626 | * control. Calls the appropriate media-specific link configuration | ||
627 | * function. Assuming the adapter has a valid link partner, a valid link | ||
628 | * should be established. Assumes the hardware has previously been reset | ||
629 | * and the transmitter and receiver are not enabled. | ||
630 | **/ | ||
631 | s32 e1000e_setup_link(struct e1000_hw *hw) | ||
632 | { | ||
633 | struct e1000_mac_info *mac = &hw->mac; | ||
634 | s32 ret_val; | ||
635 | |||
636 | /* In the case of the phy reset being blocked, we already have a link. | ||
637 | * We do not need to set it up again. | ||
638 | */ | ||
639 | if (e1000_check_reset_block(hw)) | ||
640 | return 0; | ||
641 | |||
642 | ret_val = e1000_set_default_fc_generic(hw); | ||
643 | if (ret_val) | ||
644 | return ret_val; | ||
645 | |||
646 | /* We want to save off the original Flow Control configuration just | ||
647 | * in case we get disconnected and then reconnected into a different | ||
648 | * hub or switch with different Flow Control capabilities. | ||
649 | */ | ||
650 | mac->original_fc = mac->fc; | ||
651 | |||
652 | hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", mac->fc); | ||
653 | |||
654 | /* Call the necessary media_type subroutine to configure the link. */ | ||
655 | ret_val = mac->ops.setup_physical_interface(hw); | ||
656 | if (ret_val) | ||
657 | return ret_val; | ||
658 | |||
659 | /* Initialize the flow control address, type, and PAUSE timer | ||
660 | * registers to their default values. This is done even if flow | ||
661 | * control is disabled, because it does not hurt anything to | ||
662 | * initialize these registers. | ||
663 | */ | ||
664 | hw_dbg(hw, "Initializing the Flow Control address, type and timer regs\n"); | ||
665 | ew32(FCT, FLOW_CONTROL_TYPE); | ||
666 | ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); | ||
667 | ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); | ||
668 | |||
669 | ew32(FCTTV, mac->fc_pause_time); | ||
670 | |||
671 | return e1000e_set_fc_watermarks(hw); | ||
672 | } | ||
673 | |||
674 | /** | ||
675 | * e1000_commit_fc_settings_generic - Configure flow control | ||
676 | * @hw: pointer to the HW structure | ||
677 | * | ||
678 | * Write the flow control settings to the Transmit Config Word Register (TXCW) | ||
679 | * base on the flow control settings in e1000_mac_info. | ||
680 | **/ | ||
681 | static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) | ||
682 | { | ||
683 | struct e1000_mac_info *mac = &hw->mac; | ||
684 | u32 txcw; | ||
685 | |||
686 | /* Check for a software override of the flow control settings, and | ||
687 | * setup the device accordingly. If auto-negotiation is enabled, then | ||
688 | * software will have to set the "PAUSE" bits to the correct value in | ||
689 | * the Transmit Config Word Register (TXCW) and re-start auto- | ||
690 | * negotiation. However, if auto-negotiation is disabled, then | ||
691 | * software will have to manually configure the two flow control enable | ||
692 | * bits in the CTRL register. | ||
693 | * | ||
694 | * The possible values of the "fc" parameter are: | ||
695 | * 0: Flow control is completely disabled | ||
696 | * 1: Rx flow control is enabled (we can receive pause frames, | ||
697 | * but not send pause frames). | ||
698 | * 2: Tx flow control is enabled (we can send pause frames but we | ||
699 | * do not support receiving pause frames). | ||
700 | * 3: Both Rx and TX flow control (symmetric) are enabled. | ||
701 | */ | ||
702 | switch (mac->fc) { | ||
703 | case e1000_fc_none: | ||
704 | /* Flow control completely disabled by a software over-ride. */ | ||
705 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); | ||
706 | break; | ||
707 | case e1000_fc_rx_pause: | ||
708 | /* RX Flow control is enabled and TX Flow control is disabled | ||
709 | * by a software over-ride. Since there really isn't a way to | ||
710 | * advertise that we are capable of RX Pause ONLY, we will | ||
711 | * advertise that we support both symmetric and asymmetric RX | ||
712 | * PAUSE. Later, we will disable the adapter's ability to send | ||
713 | * PAUSE frames. | ||
714 | */ | ||
715 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | ||
716 | break; | ||
717 | case e1000_fc_tx_pause: | ||
718 | /* TX Flow control is enabled, and RX Flow control is disabled, | ||
719 | * by a software over-ride. | ||
720 | */ | ||
721 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); | ||
722 | break; | ||
723 | case e1000_fc_full: | ||
724 | /* Flow control (both RX and TX) is enabled by a software | ||
725 | * over-ride. | ||
726 | */ | ||
727 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | ||
728 | break; | ||
729 | default: | ||
730 | hw_dbg(hw, "Flow control param set incorrectly\n"); | ||
731 | return -E1000_ERR_CONFIG; | ||
732 | break; | ||
733 | } | ||
734 | |||
735 | ew32(TXCW, txcw); | ||
736 | mac->txcw = txcw; | ||
737 | |||
738 | return 0; | ||
739 | } | ||
740 | |||
741 | /** | ||
742 | * e1000_poll_fiber_serdes_link_generic - Poll for link up | ||
743 | * @hw: pointer to the HW structure | ||
744 | * | ||
745 | * Polls for link up by reading the status register, if link fails to come | ||
746 | * up with auto-negotiation, then the link is forced if a signal is detected. | ||
747 | **/ | ||
748 | static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) | ||
749 | { | ||
750 | struct e1000_mac_info *mac = &hw->mac; | ||
751 | u32 i, status; | ||
752 | s32 ret_val; | ||
753 | |||
754 | /* If we have a signal (the cable is plugged in, or assumed true for | ||
755 | * serdes media) then poll for a "Link-Up" indication in the Device | ||
756 | * Status Register. Time-out if a link isn't seen in 500 milliseconds | ||
757 | * seconds (Auto-negotiation should complete in less than 500 | ||
758 | * milliseconds even if the other end is doing it in SW). | ||
759 | */ | ||
760 | for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { | ||
761 | msleep(10); | ||
762 | status = er32(STATUS); | ||
763 | if (status & E1000_STATUS_LU) | ||
764 | break; | ||
765 | } | ||
766 | if (i == FIBER_LINK_UP_LIMIT) { | ||
767 | hw_dbg(hw, "Never got a valid link from auto-neg!!!\n"); | ||
768 | mac->autoneg_failed = 1; | ||
769 | /* AutoNeg failed to achieve a link, so we'll call | ||
770 | * mac->check_for_link. This routine will force the | ||
771 | * link up if we detect a signal. This will allow us to | ||
772 | * communicate with non-autonegotiating link partners. | ||
773 | */ | ||
774 | ret_val = mac->ops.check_for_link(hw); | ||
775 | if (ret_val) { | ||
776 | hw_dbg(hw, "Error while checking for link\n"); | ||
777 | return ret_val; | ||
778 | } | ||
779 | mac->autoneg_failed = 0; | ||
780 | } else { | ||
781 | mac->autoneg_failed = 0; | ||
782 | hw_dbg(hw, "Valid Link Found\n"); | ||
783 | } | ||
784 | |||
785 | return 0; | ||
786 | } | ||
787 | |||
788 | /** | ||
789 | * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes | ||
790 | * @hw: pointer to the HW structure | ||
791 | * | ||
792 | * Configures collision distance and flow control for fiber and serdes | ||
793 | * links. Upon successful setup, poll for link. | ||
794 | **/ | ||
795 | s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) | ||
796 | { | ||
797 | u32 ctrl; | ||
798 | s32 ret_val; | ||
799 | |||
800 | ctrl = er32(CTRL); | ||
801 | |||
802 | /* Take the link out of reset */ | ||
803 | ctrl &= ~E1000_CTRL_LRST; | ||
804 | |||
805 | e1000e_config_collision_dist(hw); | ||
806 | |||
807 | ret_val = e1000_commit_fc_settings_generic(hw); | ||
808 | if (ret_val) | ||
809 | return ret_val; | ||
810 | |||
811 | /* Since auto-negotiation is enabled, take the link out of reset (the | ||
812 | * link will be in reset, because we previously reset the chip). This | ||
813 | * will restart auto-negotiation. If auto-negotiation is successful | ||
814 | * then the link-up status bit will be set and the flow control enable | ||
815 | * bits (RFCE and TFCE) will be set according to their negotiated value. | ||
816 | */ | ||
817 | hw_dbg(hw, "Auto-negotiation enabled\n"); | ||
818 | |||
819 | ew32(CTRL, ctrl); | ||
820 | e1e_flush(); | ||
821 | msleep(1); | ||
822 | |||
823 | /* For these adapters, the SW defineable pin 1 is set when the optics | ||
824 | * detect a signal. If we have a signal, then poll for a "Link-Up" | ||
825 | * indication. | ||
826 | */ | ||
827 | if (hw->media_type == e1000_media_type_internal_serdes || | ||
828 | (er32(CTRL) & E1000_CTRL_SWDPIN1)) { | ||
829 | ret_val = e1000_poll_fiber_serdes_link_generic(hw); | ||
830 | } else { | ||
831 | hw_dbg(hw, "No signal detected\n"); | ||
832 | } | ||
833 | |||
834 | return 0; | ||
835 | } | ||
836 | |||
837 | /** | ||
838 | * e1000e_config_collision_dist - Configure collision distance | ||
839 | * @hw: pointer to the HW structure | ||
840 | * | ||
841 | * Configures the collision distance to the default value and is used | ||
842 | * during link setup. Currently no func pointer exists and all | ||
843 | * implementations are handled in the generic version of this function. | ||
844 | **/ | ||
845 | void e1000e_config_collision_dist(struct e1000_hw *hw) | ||
846 | { | ||
847 | u32 tctl; | ||
848 | |||
849 | tctl = er32(TCTL); | ||
850 | |||
851 | tctl &= ~E1000_TCTL_COLD; | ||
852 | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; | ||
853 | |||
854 | ew32(TCTL, tctl); | ||
855 | e1e_flush(); | ||
856 | } | ||
857 | |||
858 | /** | ||
859 | * e1000e_set_fc_watermarks - Set flow control high/low watermarks | ||
860 | * @hw: pointer to the HW structure | ||
861 | * | ||
862 | * Sets the flow control high/low threshold (watermark) registers. If | ||
863 | * flow control XON frame transmission is enabled, then set XON frame | ||
864 | * tansmission as well. | ||
865 | **/ | ||
866 | s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) | ||
867 | { | ||
868 | struct e1000_mac_info *mac = &hw->mac; | ||
869 | u32 fcrtl = 0, fcrth = 0; | ||
870 | |||
871 | /* Set the flow control receive threshold registers. Normally, | ||
872 | * these registers will be set to a default threshold that may be | ||
873 | * adjusted later by the driver's runtime code. However, if the | ||
874 | * ability to transmit pause frames is not enabled, then these | ||
875 | * registers will be set to 0. | ||
876 | */ | ||
877 | if (mac->fc & e1000_fc_tx_pause) { | ||
878 | /* We need to set up the Receive Threshold high and low water | ||
879 | * marks as well as (optionally) enabling the transmission of | ||
880 | * XON frames. | ||
881 | */ | ||
882 | fcrtl = mac->fc_low_water; | ||
883 | fcrtl |= E1000_FCRTL_XONE; | ||
884 | fcrth = mac->fc_high_water; | ||
885 | } | ||
886 | ew32(FCRTL, fcrtl); | ||
887 | ew32(FCRTH, fcrth); | ||
888 | |||
889 | return 0; | ||
890 | } | ||
891 | |||
892 | /** | ||
893 | * e1000e_force_mac_fc - Force the MAC's flow control settings | ||
894 | * @hw: pointer to the HW structure | ||
895 | * | ||
896 | * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the | ||
897 | * device control register to reflect the adapter settings. TFCE and RFCE | ||
898 | * need to be explicitly set by software when a copper PHY is used because | ||
899 | * autonegotiation is managed by the PHY rather than the MAC. Software must | ||
900 | * also configure these bits when link is forced on a fiber connection. | ||
901 | **/ | ||
902 | s32 e1000e_force_mac_fc(struct e1000_hw *hw) | ||
903 | { | ||
904 | struct e1000_mac_info *mac = &hw->mac; | ||
905 | u32 ctrl; | ||
906 | |||
907 | ctrl = er32(CTRL); | ||
908 | |||
909 | /* Because we didn't get link via the internal auto-negotiation | ||
910 | * mechanism (we either forced link or we got link via PHY | ||
911 | * auto-neg), we have to manually enable/disable transmit an | ||
912 | * receive flow control. | ||
913 | * | ||
914 | * The "Case" statement below enables/disable flow control | ||
915 | * according to the "mac->fc" parameter. | ||
916 | * | ||
917 | * The possible values of the "fc" parameter are: | ||
918 | * 0: Flow control is completely disabled | ||
919 | * 1: Rx flow control is enabled (we can receive pause | ||
920 | * frames but not send pause frames). | ||
921 | * 2: Tx flow control is enabled (we can send pause frames | ||
922 | * frames but we do not receive pause frames). | ||
923 | * 3: Both Rx and TX flow control (symmetric) is enabled. | ||
924 | * other: No other values should be possible at this point. | ||
925 | */ | ||
926 | hw_dbg(hw, "mac->fc = %u\n", mac->fc); | ||
927 | |||
928 | switch (mac->fc) { | ||
929 | case e1000_fc_none: | ||
930 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | ||
931 | break; | ||
932 | case e1000_fc_rx_pause: | ||
933 | ctrl &= (~E1000_CTRL_TFCE); | ||
934 | ctrl |= E1000_CTRL_RFCE; | ||
935 | break; | ||
936 | case e1000_fc_tx_pause: | ||
937 | ctrl &= (~E1000_CTRL_RFCE); | ||
938 | ctrl |= E1000_CTRL_TFCE; | ||
939 | break; | ||
940 | case e1000_fc_full: | ||
941 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | ||
942 | break; | ||
943 | default: | ||
944 | hw_dbg(hw, "Flow control param set incorrectly\n"); | ||
945 | return -E1000_ERR_CONFIG; | ||
946 | } | ||
947 | |||
948 | ew32(CTRL, ctrl); | ||
949 | |||
950 | return 0; | ||
951 | } | ||
952 | |||
953 | /** | ||
954 | * e1000e_config_fc_after_link_up - Configures flow control after link | ||
955 | * @hw: pointer to the HW structure | ||
956 | * | ||
957 | * Checks the status of auto-negotiation after link up to ensure that the | ||
958 | * speed and duplex were not forced. If the link needed to be forced, then | ||
959 | * flow control needs to be forced also. If auto-negotiation is enabled | ||
960 | * and did not fail, then we configure flow control based on our link | ||
961 | * partner. | ||
962 | **/ | ||
963 | s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) | ||
964 | { | ||
965 | struct e1000_mac_info *mac = &hw->mac; | ||
966 | s32 ret_val = 0; | ||
967 | u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; | ||
968 | u16 speed, duplex; | ||
969 | |||
970 | /* Check for the case where we have fiber media and auto-neg failed | ||
971 | * so we had to force link. In this case, we need to force the | ||
972 | * configuration of the MAC to match the "fc" parameter. | ||
973 | */ | ||
974 | if (mac->autoneg_failed) { | ||
975 | if (hw->media_type == e1000_media_type_fiber || | ||
976 | hw->media_type == e1000_media_type_internal_serdes) | ||
977 | ret_val = e1000e_force_mac_fc(hw); | ||
978 | } else { | ||
979 | if (hw->media_type == e1000_media_type_copper) | ||
980 | ret_val = e1000e_force_mac_fc(hw); | ||
981 | } | ||
982 | |||
983 | if (ret_val) { | ||
984 | hw_dbg(hw, "Error forcing flow control settings\n"); | ||
985 | return ret_val; | ||
986 | } | ||
987 | |||
988 | /* Check for the case where we have copper media and auto-neg is | ||
989 | * enabled. In this case, we need to check and see if Auto-Neg | ||
990 | * has completed, and if so, how the PHY and link partner has | ||
991 | * flow control configured. | ||
992 | */ | ||
993 | if ((hw->media_type == e1000_media_type_copper) && mac->autoneg) { | ||
994 | /* Read the MII Status Register and check to see if AutoNeg | ||
995 | * has completed. We read this twice because this reg has | ||
996 | * some "sticky" (latched) bits. | ||
997 | */ | ||
998 | ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); | ||
999 | if (ret_val) | ||
1000 | return ret_val; | ||
1001 | ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); | ||
1002 | if (ret_val) | ||
1003 | return ret_val; | ||
1004 | |||
1005 | if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { | ||
1006 | hw_dbg(hw, "Copper PHY and Auto Neg " | ||
1007 | "has not completed.\n"); | ||
1008 | return ret_val; | ||
1009 | } | ||
1010 | |||
1011 | /* The AutoNeg process has completed, so we now need to | ||
1012 | * read both the Auto Negotiation Advertisement | ||
1013 | * Register (Address 4) and the Auto_Negotiation Base | ||
1014 | * Page Ability Register (Address 5) to determine how | ||
1015 | * flow control was negotiated. | ||
1016 | */ | ||
1017 | ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); | ||
1018 | if (ret_val) | ||
1019 | return ret_val; | ||
1020 | ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); | ||
1021 | if (ret_val) | ||
1022 | return ret_val; | ||
1023 | |||
1024 | /* Two bits in the Auto Negotiation Advertisement Register | ||
1025 | * (Address 4) and two bits in the Auto Negotiation Base | ||
1026 | * Page Ability Register (Address 5) determine flow control | ||
1027 | * for both the PHY and the link partner. The following | ||
1028 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | ||
1029 | * 1999, describes these PAUSE resolution bits and how flow | ||
1030 | * control is determined based upon these settings. | ||
1031 | * NOTE: DC = Don't Care | ||
1032 | * | ||
1033 | * LOCAL DEVICE | LINK PARTNER | ||
1034 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | ||
1035 | *-------|---------|-------|---------|-------------------- | ||
1036 | * 0 | 0 | DC | DC | e1000_fc_none | ||
1037 | * 0 | 1 | 0 | DC | e1000_fc_none | ||
1038 | * 0 | 1 | 1 | 0 | e1000_fc_none | ||
1039 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
1040 | * 1 | 0 | 0 | DC | e1000_fc_none | ||
1041 | * 1 | DC | 1 | DC | e1000_fc_full | ||
1042 | * 1 | 1 | 0 | 0 | e1000_fc_none | ||
1043 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
1044 | * | ||
1045 | */ | ||
1046 | /* Are both PAUSE bits set to 1? If so, this implies | ||
1047 | * Symmetric Flow Control is enabled at both ends. The | ||
1048 | * ASM_DIR bits are irrelevant per the spec. | ||
1049 | * | ||
1050 | * For Symmetric Flow Control: | ||
1051 | * | ||
1052 | * LOCAL DEVICE | LINK PARTNER | ||
1053 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
1054 | *-------|---------|-------|---------|-------------------- | ||
1055 | * 1 | DC | 1 | DC | E1000_fc_full | ||
1056 | * | ||
1057 | */ | ||
1058 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
1059 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | ||
1060 | /* Now we need to check if the user selected RX ONLY | ||
1061 | * of pause frames. In this case, we had to advertise | ||
1062 | * FULL flow control because we could not advertise RX | ||
1063 | * ONLY. Hence, we must now check to see if we need to | ||
1064 | * turn OFF the TRANSMISSION of PAUSE frames. | ||
1065 | */ | ||
1066 | if (mac->original_fc == e1000_fc_full) { | ||
1067 | mac->fc = e1000_fc_full; | ||
1068 | hw_dbg(hw, "Flow Control = FULL.\r\n"); | ||
1069 | } else { | ||
1070 | mac->fc = e1000_fc_rx_pause; | ||
1071 | hw_dbg(hw, "Flow Control = " | ||
1072 | "RX PAUSE frames only.\r\n"); | ||
1073 | } | ||
1074 | } | ||
1075 | /* For receiving PAUSE frames ONLY. | ||
1076 | * | ||
1077 | * LOCAL DEVICE | LINK PARTNER | ||
1078 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
1079 | *-------|---------|-------|---------|-------------------- | ||
1080 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
1081 | * | ||
1082 | */ | ||
1083 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
1084 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
1085 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
1086 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
1087 | mac->fc = e1000_fc_tx_pause; | ||
1088 | hw_dbg(hw, "Flow Control = TX PAUSE frames only.\r\n"); | ||
1089 | } | ||
1090 | /* For transmitting PAUSE frames ONLY. | ||
1091 | * | ||
1092 | * LOCAL DEVICE | LINK PARTNER | ||
1093 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
1094 | *-------|---------|-------|---------|-------------------- | ||
1095 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
1096 | * | ||
1097 | */ | ||
1098 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
1099 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
1100 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
1101 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
1102 | mac->fc = e1000_fc_rx_pause; | ||
1103 | hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n"); | ||
1104 | } | ||
1105 | /* Per the IEEE spec, at this point flow control should be | ||
1106 | * disabled. However, we want to consider that we could | ||
1107 | * be connected to a legacy switch that doesn't advertise | ||
1108 | * desired flow control, but can be forced on the link | ||
1109 | * partner. So if we advertised no flow control, that is | ||
1110 | * what we will resolve to. If we advertised some kind of | ||
1111 | * receive capability (Rx Pause Only or Full Flow Control) | ||
1112 | * and the link partner advertised none, we will configure | ||
1113 | * ourselves to enable Rx Flow Control only. We can do | ||
1114 | * this safely for two reasons: If the link partner really | ||
1115 | * didn't want flow control enabled, and we enable Rx, no | ||
1116 | * harm done since we won't be receiving any PAUSE frames | ||
1117 | * anyway. If the intent on the link partner was to have | ||
1118 | * flow control enabled, then by us enabling RX only, we | ||
1119 | * can at least receive pause frames and process them. | ||
1120 | * This is a good idea because in most cases, since we are | ||
1121 | * predominantly a server NIC, more times than not we will | ||
1122 | * be asked to delay transmission of packets than asking | ||
1123 | * our link partner to pause transmission of frames. | ||
1124 | */ | ||
1125 | else if ((mac->original_fc == e1000_fc_none) || | ||
1126 | (mac->original_fc == e1000_fc_tx_pause)) { | ||
1127 | mac->fc = e1000_fc_none; | ||
1128 | hw_dbg(hw, "Flow Control = NONE.\r\n"); | ||
1129 | } else { | ||
1130 | mac->fc = e1000_fc_rx_pause; | ||
1131 | hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n"); | ||
1132 | } | ||
1133 | |||
1134 | /* Now we need to do one last check... If we auto- | ||
1135 | * negotiated to HALF DUPLEX, flow control should not be | ||
1136 | * enabled per IEEE 802.3 spec. | ||
1137 | */ | ||
1138 | ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); | ||
1139 | if (ret_val) { | ||
1140 | hw_dbg(hw, "Error getting link speed and duplex\n"); | ||
1141 | return ret_val; | ||
1142 | } | ||
1143 | |||
1144 | if (duplex == HALF_DUPLEX) | ||
1145 | mac->fc = e1000_fc_none; | ||
1146 | |||
1147 | /* Now we call a subroutine to actually force the MAC | ||
1148 | * controller to use the correct flow control settings. | ||
1149 | */ | ||
1150 | ret_val = e1000e_force_mac_fc(hw); | ||
1151 | if (ret_val) { | ||
1152 | hw_dbg(hw, "Error forcing flow control settings\n"); | ||
1153 | return ret_val; | ||
1154 | } | ||
1155 | } | ||
1156 | |||
1157 | return 0; | ||
1158 | } | ||
1159 | |||
1160 | /** | ||
1161 | * e1000e_get_speed_and_duplex_copper - Retreive current speed/duplex | ||
1162 | * @hw: pointer to the HW structure | ||
1163 | * @speed: stores the current speed | ||
1164 | * @duplex: stores the current duplex | ||
1165 | * | ||
1166 | * Read the status register for the current speed/duplex and store the current | ||
1167 | * speed and duplex for copper connections. | ||
1168 | **/ | ||
1169 | s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex) | ||
1170 | { | ||
1171 | u32 status; | ||
1172 | |||
1173 | status = er32(STATUS); | ||
1174 | if (status & E1000_STATUS_SPEED_1000) { | ||
1175 | *speed = SPEED_1000; | ||
1176 | hw_dbg(hw, "1000 Mbs, "); | ||
1177 | } else if (status & E1000_STATUS_SPEED_100) { | ||
1178 | *speed = SPEED_100; | ||
1179 | hw_dbg(hw, "100 Mbs, "); | ||
1180 | } else { | ||
1181 | *speed = SPEED_10; | ||
1182 | hw_dbg(hw, "10 Mbs, "); | ||
1183 | } | ||
1184 | |||
1185 | if (status & E1000_STATUS_FD) { | ||
1186 | *duplex = FULL_DUPLEX; | ||
1187 | hw_dbg(hw, "Full Duplex\n"); | ||
1188 | } else { | ||
1189 | *duplex = HALF_DUPLEX; | ||
1190 | hw_dbg(hw, "Half Duplex\n"); | ||
1191 | } | ||
1192 | |||
1193 | return 0; | ||
1194 | } | ||
1195 | |||
1196 | /** | ||
1197 | * e1000e_get_speed_and_duplex_fiber_serdes - Retreive current speed/duplex | ||
1198 | * @hw: pointer to the HW structure | ||
1199 | * @speed: stores the current speed | ||
1200 | * @duplex: stores the current duplex | ||
1201 | * | ||
1202 | * Sets the speed and duplex to gigabit full duplex (the only possible option) | ||
1203 | * for fiber/serdes links. | ||
1204 | **/ | ||
1205 | s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex) | ||
1206 | { | ||
1207 | *speed = SPEED_1000; | ||
1208 | *duplex = FULL_DUPLEX; | ||
1209 | |||
1210 | return 0; | ||
1211 | } | ||
1212 | |||
1213 | /** | ||
1214 | * e1000e_get_hw_semaphore - Acquire hardware semaphore | ||
1215 | * @hw: pointer to the HW structure | ||
1216 | * | ||
1217 | * Acquire the HW semaphore to access the PHY or NVM | ||
1218 | **/ | ||
1219 | s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) | ||
1220 | { | ||
1221 | u32 swsm; | ||
1222 | s32 timeout = hw->nvm.word_size + 1; | ||
1223 | s32 i = 0; | ||
1224 | |||
1225 | /* Get the SW semaphore */ | ||
1226 | while (i < timeout) { | ||
1227 | swsm = er32(SWSM); | ||
1228 | if (!(swsm & E1000_SWSM_SMBI)) | ||
1229 | break; | ||
1230 | |||
1231 | udelay(50); | ||
1232 | i++; | ||
1233 | } | ||
1234 | |||
1235 | if (i == timeout) { | ||
1236 | hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n"); | ||
1237 | return -E1000_ERR_NVM; | ||
1238 | } | ||
1239 | |||
1240 | /* Get the FW semaphore. */ | ||
1241 | for (i = 0; i < timeout; i++) { | ||
1242 | swsm = er32(SWSM); | ||
1243 | ew32(SWSM, swsm | E1000_SWSM_SWESMBI); | ||
1244 | |||
1245 | /* Semaphore acquired if bit latched */ | ||
1246 | if (er32(SWSM) & E1000_SWSM_SWESMBI) | ||
1247 | break; | ||
1248 | |||
1249 | udelay(50); | ||
1250 | } | ||
1251 | |||
1252 | if (i == timeout) { | ||
1253 | /* Release semaphores */ | ||
1254 | e1000e_put_hw_semaphore(hw); | ||
1255 | hw_dbg(hw, "Driver can't access the NVM\n"); | ||
1256 | return -E1000_ERR_NVM; | ||
1257 | } | ||
1258 | |||
1259 | return 0; | ||
1260 | } | ||
1261 | |||
1262 | /** | ||
1263 | * e1000e_put_hw_semaphore - Release hardware semaphore | ||
1264 | * @hw: pointer to the HW structure | ||
1265 | * | ||
1266 | * Release hardware semaphore used to access the PHY or NVM | ||
1267 | **/ | ||
1268 | void e1000e_put_hw_semaphore(struct e1000_hw *hw) | ||
1269 | { | ||
1270 | u32 swsm; | ||
1271 | |||
1272 | swsm = er32(SWSM); | ||
1273 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | ||
1274 | ew32(SWSM, swsm); | ||
1275 | } | ||
1276 | |||
1277 | /** | ||
1278 | * e1000e_get_auto_rd_done - Check for auto read completion | ||
1279 | * @hw: pointer to the HW structure | ||
1280 | * | ||
1281 | * Check EEPROM for Auto Read done bit. | ||
1282 | **/ | ||
1283 | s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) | ||
1284 | { | ||
1285 | s32 i = 0; | ||
1286 | |||
1287 | while (i < AUTO_READ_DONE_TIMEOUT) { | ||
1288 | if (er32(EECD) & E1000_EECD_AUTO_RD) | ||
1289 | break; | ||
1290 | msleep(1); | ||
1291 | i++; | ||
1292 | } | ||
1293 | |||
1294 | if (i == AUTO_READ_DONE_TIMEOUT) { | ||
1295 | hw_dbg(hw, "Auto read by HW from NVM has not completed.\n"); | ||
1296 | return -E1000_ERR_RESET; | ||
1297 | } | ||
1298 | |||
1299 | return 0; | ||
1300 | } | ||
1301 | |||
1302 | /** | ||
1303 | * e1000e_valid_led_default - Verify a valid default LED config | ||
1304 | * @hw: pointer to the HW structure | ||
1305 | * @data: pointer to the NVM (EEPROM) | ||
1306 | * | ||
1307 | * Read the EEPROM for the current default LED configuration. If the | ||
1308 | * LED configuration is not valid, set to a valid LED configuration. | ||
1309 | **/ | ||
1310 | s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) | ||
1311 | { | ||
1312 | s32 ret_val; | ||
1313 | |||
1314 | ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); | ||
1315 | if (ret_val) { | ||
1316 | hw_dbg(hw, "NVM Read Error\n"); | ||
1317 | return ret_val; | ||
1318 | } | ||
1319 | |||
1320 | if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) | ||
1321 | *data = ID_LED_DEFAULT; | ||
1322 | |||
1323 | return 0; | ||
1324 | } | ||
1325 | |||
1326 | /** | ||
1327 | * e1000e_id_led_init - | ||
1328 | * @hw: pointer to the HW structure | ||
1329 | * | ||
1330 | **/ | ||
1331 | s32 e1000e_id_led_init(struct e1000_hw *hw) | ||
1332 | { | ||
1333 | struct e1000_mac_info *mac = &hw->mac; | ||
1334 | s32 ret_val; | ||
1335 | const u32 ledctl_mask = 0x000000FF; | ||
1336 | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | ||
1337 | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | ||
1338 | u16 data, i, temp; | ||
1339 | const u16 led_mask = 0x0F; | ||
1340 | |||
1341 | ret_val = hw->nvm.ops.valid_led_default(hw, &data); | ||
1342 | if (ret_val) | ||
1343 | return ret_val; | ||
1344 | |||
1345 | mac->ledctl_default = er32(LEDCTL); | ||
1346 | mac->ledctl_mode1 = mac->ledctl_default; | ||
1347 | mac->ledctl_mode2 = mac->ledctl_default; | ||
1348 | |||
1349 | for (i = 0; i < 4; i++) { | ||
1350 | temp = (data >> (i << 2)) & led_mask; | ||
1351 | switch (temp) { | ||
1352 | case ID_LED_ON1_DEF2: | ||
1353 | case ID_LED_ON1_ON2: | ||
1354 | case ID_LED_ON1_OFF2: | ||
1355 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
1356 | mac->ledctl_mode1 |= ledctl_on << (i << 3); | ||
1357 | break; | ||
1358 | case ID_LED_OFF1_DEF2: | ||
1359 | case ID_LED_OFF1_ON2: | ||
1360 | case ID_LED_OFF1_OFF2: | ||
1361 | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
1362 | mac->ledctl_mode1 |= ledctl_off << (i << 3); | ||
1363 | break; | ||
1364 | default: | ||
1365 | /* Do nothing */ | ||
1366 | break; | ||
1367 | } | ||
1368 | switch (temp) { | ||
1369 | case ID_LED_DEF1_ON2: | ||
1370 | case ID_LED_ON1_ON2: | ||
1371 | case ID_LED_OFF1_ON2: | ||
1372 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
1373 | mac->ledctl_mode2 |= ledctl_on << (i << 3); | ||
1374 | break; | ||
1375 | case ID_LED_DEF1_OFF2: | ||
1376 | case ID_LED_ON1_OFF2: | ||
1377 | case ID_LED_OFF1_OFF2: | ||
1378 | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
1379 | mac->ledctl_mode2 |= ledctl_off << (i << 3); | ||
1380 | break; | ||
1381 | default: | ||
1382 | /* Do nothing */ | ||
1383 | break; | ||
1384 | } | ||
1385 | } | ||
1386 | |||
1387 | return 0; | ||
1388 | } | ||
1389 | |||
1390 | /** | ||
1391 | * e1000e_cleanup_led_generic - Set LED config to default operation | ||
1392 | * @hw: pointer to the HW structure | ||
1393 | * | ||
1394 | * Remove the current LED configuration and set the LED configuration | ||
1395 | * to the default value, saved from the EEPROM. | ||
1396 | **/ | ||
1397 | s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) | ||
1398 | { | ||
1399 | ew32(LEDCTL, hw->mac.ledctl_default); | ||
1400 | return 0; | ||
1401 | } | ||
1402 | |||
1403 | /** | ||
1404 | * e1000e_blink_led - Blink LED | ||
1405 | * @hw: pointer to the HW structure | ||
1406 | * | ||
1407 | * Blink the led's which are set to be on. | ||
1408 | **/ | ||
1409 | s32 e1000e_blink_led(struct e1000_hw *hw) | ||
1410 | { | ||
1411 | u32 ledctl_blink = 0; | ||
1412 | u32 i; | ||
1413 | |||
1414 | if (hw->media_type == e1000_media_type_fiber) { | ||
1415 | /* always blink LED0 for PCI-E fiber */ | ||
1416 | ledctl_blink = E1000_LEDCTL_LED0_BLINK | | ||
1417 | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); | ||
1418 | } else { | ||
1419 | /* set the blink bit for each LED that's "on" (0x0E) | ||
1420 | * in ledctl_mode2 */ | ||
1421 | ledctl_blink = hw->mac.ledctl_mode2; | ||
1422 | for (i = 0; i < 4; i++) | ||
1423 | if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == | ||
1424 | E1000_LEDCTL_MODE_LED_ON) | ||
1425 | ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << | ||
1426 | (i * 8)); | ||
1427 | } | ||
1428 | |||
1429 | ew32(LEDCTL, ledctl_blink); | ||
1430 | |||
1431 | return 0; | ||
1432 | } | ||
1433 | |||
1434 | /** | ||
1435 | * e1000e_led_on_generic - Turn LED on | ||
1436 | * @hw: pointer to the HW structure | ||
1437 | * | ||
1438 | * Turn LED on. | ||
1439 | **/ | ||
1440 | s32 e1000e_led_on_generic(struct e1000_hw *hw) | ||
1441 | { | ||
1442 | u32 ctrl; | ||
1443 | |||
1444 | switch (hw->media_type) { | ||
1445 | case e1000_media_type_fiber: | ||
1446 | ctrl = er32(CTRL); | ||
1447 | ctrl &= ~E1000_CTRL_SWDPIN0; | ||
1448 | ctrl |= E1000_CTRL_SWDPIO0; | ||
1449 | ew32(CTRL, ctrl); | ||
1450 | break; | ||
1451 | case e1000_media_type_copper: | ||
1452 | ew32(LEDCTL, hw->mac.ledctl_mode2); | ||
1453 | break; | ||
1454 | default: | ||
1455 | break; | ||
1456 | } | ||
1457 | |||
1458 | return 0; | ||
1459 | } | ||
1460 | |||
1461 | /** | ||
1462 | * e1000e_led_off_generic - Turn LED off | ||
1463 | * @hw: pointer to the HW structure | ||
1464 | * | ||
1465 | * Turn LED off. | ||
1466 | **/ | ||
1467 | s32 e1000e_led_off_generic(struct e1000_hw *hw) | ||
1468 | { | ||
1469 | u32 ctrl; | ||
1470 | |||
1471 | switch (hw->media_type) { | ||
1472 | case e1000_media_type_fiber: | ||
1473 | ctrl = er32(CTRL); | ||
1474 | ctrl |= E1000_CTRL_SWDPIN0; | ||
1475 | ctrl |= E1000_CTRL_SWDPIO0; | ||
1476 | ew32(CTRL, ctrl); | ||
1477 | break; | ||
1478 | case e1000_media_type_copper: | ||
1479 | ew32(LEDCTL, hw->mac.ledctl_mode1); | ||
1480 | break; | ||
1481 | default: | ||
1482 | break; | ||
1483 | } | ||
1484 | |||
1485 | return 0; | ||
1486 | } | ||
1487 | |||
1488 | /** | ||
1489 | * e1000e_set_pcie_no_snoop - Set PCI-express capabilities | ||
1490 | * @hw: pointer to the HW structure | ||
1491 | * @no_snoop: bitmap of snoop events | ||
1492 | * | ||
1493 | * Set the PCI-express register to snoop for events enabled in 'no_snoop'. | ||
1494 | **/ | ||
1495 | void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) | ||
1496 | { | ||
1497 | u32 gcr; | ||
1498 | |||
1499 | if (no_snoop) { | ||
1500 | gcr = er32(GCR); | ||
1501 | gcr &= ~(PCIE_NO_SNOOP_ALL); | ||
1502 | gcr |= no_snoop; | ||
1503 | ew32(GCR, gcr); | ||
1504 | } | ||
1505 | } | ||
1506 | |||
1507 | /** | ||
1508 | * e1000e_disable_pcie_master - Disables PCI-express master access | ||
1509 | * @hw: pointer to the HW structure | ||
1510 | * | ||
1511 | * Returns 0 if successful, else returns -10 | ||
1512 | * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued | ||
1513 | * the master requests to be disabled. | ||
1514 | * | ||
1515 | * Disables PCI-Express master access and verifies there are no pending | ||
1516 | * requests. | ||
1517 | **/ | ||
1518 | s32 e1000e_disable_pcie_master(struct e1000_hw *hw) | ||
1519 | { | ||
1520 | u32 ctrl; | ||
1521 | s32 timeout = MASTER_DISABLE_TIMEOUT; | ||
1522 | |||
1523 | ctrl = er32(CTRL); | ||
1524 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | ||
1525 | ew32(CTRL, ctrl); | ||
1526 | |||
1527 | while (timeout) { | ||
1528 | if (!(er32(STATUS) & | ||
1529 | E1000_STATUS_GIO_MASTER_ENABLE)) | ||
1530 | break; | ||
1531 | udelay(100); | ||
1532 | timeout--; | ||
1533 | } | ||
1534 | |||
1535 | if (!timeout) { | ||
1536 | hw_dbg(hw, "Master requests are pending.\n"); | ||
1537 | return -E1000_ERR_MASTER_REQUESTS_PENDING; | ||
1538 | } | ||
1539 | |||
1540 | return 0; | ||
1541 | } | ||
1542 | |||
1543 | /** | ||
1544 | * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing | ||
1545 | * @hw: pointer to the HW structure | ||
1546 | * | ||
1547 | * Reset the Adaptive Interframe Spacing throttle to default values. | ||
1548 | **/ | ||
1549 | void e1000e_reset_adaptive(struct e1000_hw *hw) | ||
1550 | { | ||
1551 | struct e1000_mac_info *mac = &hw->mac; | ||
1552 | |||
1553 | mac->current_ifs_val = 0; | ||
1554 | mac->ifs_min_val = IFS_MIN; | ||
1555 | mac->ifs_max_val = IFS_MAX; | ||
1556 | mac->ifs_step_size = IFS_STEP; | ||
1557 | mac->ifs_ratio = IFS_RATIO; | ||
1558 | |||
1559 | mac->in_ifs_mode = 0; | ||
1560 | ew32(AIT, 0); | ||
1561 | } | ||
1562 | |||
1563 | /** | ||
1564 | * e1000e_update_adaptive - Update Adaptive Interframe Spacing | ||
1565 | * @hw: pointer to the HW structure | ||
1566 | * | ||
1567 | * Update the Adaptive Interframe Spacing Throttle value based on the | ||
1568 | * time between transmitted packets and time between collisions. | ||
1569 | **/ | ||
1570 | void e1000e_update_adaptive(struct e1000_hw *hw) | ||
1571 | { | ||
1572 | struct e1000_mac_info *mac = &hw->mac; | ||
1573 | |||
1574 | if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { | ||
1575 | if (mac->tx_packet_delta > MIN_NUM_XMITS) { | ||
1576 | mac->in_ifs_mode = 1; | ||
1577 | if (mac->current_ifs_val < mac->ifs_max_val) { | ||
1578 | if (!mac->current_ifs_val) | ||
1579 | mac->current_ifs_val = mac->ifs_min_val; | ||
1580 | else | ||
1581 | mac->current_ifs_val += | ||
1582 | mac->ifs_step_size; | ||
1583 | ew32(AIT, | ||
1584 | mac->current_ifs_val); | ||
1585 | } | ||
1586 | } | ||
1587 | } else { | ||
1588 | if (mac->in_ifs_mode && | ||
1589 | (mac->tx_packet_delta <= MIN_NUM_XMITS)) { | ||
1590 | mac->current_ifs_val = 0; | ||
1591 | mac->in_ifs_mode = 0; | ||
1592 | ew32(AIT, 0); | ||
1593 | } | ||
1594 | } | ||
1595 | } | ||
1596 | |||
1597 | /** | ||
1598 | * e1000_raise_eec_clk - Raise EEPROM clock | ||
1599 | * @hw: pointer to the HW structure | ||
1600 | * @eecd: pointer to the EEPROM | ||
1601 | * | ||
1602 | * Enable/Raise the EEPROM clock bit. | ||
1603 | **/ | ||
1604 | static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) | ||
1605 | { | ||
1606 | *eecd = *eecd | E1000_EECD_SK; | ||
1607 | ew32(EECD, *eecd); | ||
1608 | e1e_flush(); | ||
1609 | udelay(hw->nvm.delay_usec); | ||
1610 | } | ||
1611 | |||
1612 | /** | ||
1613 | * e1000_lower_eec_clk - Lower EEPROM clock | ||
1614 | * @hw: pointer to the HW structure | ||
1615 | * @eecd: pointer to the EEPROM | ||
1616 | * | ||
1617 | * Clear/Lower the EEPROM clock bit. | ||
1618 | **/ | ||
1619 | static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) | ||
1620 | { | ||
1621 | *eecd = *eecd & ~E1000_EECD_SK; | ||
1622 | ew32(EECD, *eecd); | ||
1623 | e1e_flush(); | ||
1624 | udelay(hw->nvm.delay_usec); | ||
1625 | } | ||
1626 | |||
1627 | /** | ||
1628 | * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM | ||
1629 | * @hw: pointer to the HW structure | ||
1630 | * @data: data to send to the EEPROM | ||
1631 | * @count: number of bits to shift out | ||
1632 | * | ||
1633 | * We need to shift 'count' bits out to the EEPROM. So, the value in the | ||
1634 | * "data" parameter will be shifted out to the EEPROM one bit at a time. | ||
1635 | * In order to do this, "data" must be broken down into bits. | ||
1636 | **/ | ||
1637 | static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) | ||
1638 | { | ||
1639 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1640 | u32 eecd = er32(EECD); | ||
1641 | u32 mask; | ||
1642 | |||
1643 | mask = 0x01 << (count - 1); | ||
1644 | if (nvm->type == e1000_nvm_eeprom_spi) | ||
1645 | eecd |= E1000_EECD_DO; | ||
1646 | |||
1647 | do { | ||
1648 | eecd &= ~E1000_EECD_DI; | ||
1649 | |||
1650 | if (data & mask) | ||
1651 | eecd |= E1000_EECD_DI; | ||
1652 | |||
1653 | ew32(EECD, eecd); | ||
1654 | e1e_flush(); | ||
1655 | |||
1656 | udelay(nvm->delay_usec); | ||
1657 | |||
1658 | e1000_raise_eec_clk(hw, &eecd); | ||
1659 | e1000_lower_eec_clk(hw, &eecd); | ||
1660 | |||
1661 | mask >>= 1; | ||
1662 | } while (mask); | ||
1663 | |||
1664 | eecd &= ~E1000_EECD_DI; | ||
1665 | ew32(EECD, eecd); | ||
1666 | } | ||
1667 | |||
1668 | /** | ||
1669 | * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM | ||
1670 | * @hw: pointer to the HW structure | ||
1671 | * @count: number of bits to shift in | ||
1672 | * | ||
1673 | * In order to read a register from the EEPROM, we need to shift 'count' bits | ||
1674 | * in from the EEPROM. Bits are "shifted in" by raising the clock input to | ||
1675 | * the EEPROM (setting the SK bit), and then reading the value of the data out | ||
1676 | * "DO" bit. During this "shifting in" process the data in "DI" bit should | ||
1677 | * always be clear. | ||
1678 | **/ | ||
1679 | static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) | ||
1680 | { | ||
1681 | u32 eecd; | ||
1682 | u32 i; | ||
1683 | u16 data; | ||
1684 | |||
1685 | eecd = er32(EECD); | ||
1686 | |||
1687 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | ||
1688 | data = 0; | ||
1689 | |||
1690 | for (i = 0; i < count; i++) { | ||
1691 | data <<= 1; | ||
1692 | e1000_raise_eec_clk(hw, &eecd); | ||
1693 | |||
1694 | eecd = er32(EECD); | ||
1695 | |||
1696 | eecd &= ~E1000_EECD_DI; | ||
1697 | if (eecd & E1000_EECD_DO) | ||
1698 | data |= 1; | ||
1699 | |||
1700 | e1000_lower_eec_clk(hw, &eecd); | ||
1701 | } | ||
1702 | |||
1703 | return data; | ||
1704 | } | ||
1705 | |||
1706 | /** | ||
1707 | * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion | ||
1708 | * @hw: pointer to the HW structure | ||
1709 | * @ee_reg: EEPROM flag for polling | ||
1710 | * | ||
1711 | * Polls the EEPROM status bit for either read or write completion based | ||
1712 | * upon the value of 'ee_reg'. | ||
1713 | **/ | ||
1714 | s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) | ||
1715 | { | ||
1716 | u32 attempts = 100000; | ||
1717 | u32 i, reg = 0; | ||
1718 | |||
1719 | for (i = 0; i < attempts; i++) { | ||
1720 | if (ee_reg == E1000_NVM_POLL_READ) | ||
1721 | reg = er32(EERD); | ||
1722 | else | ||
1723 | reg = er32(EEWR); | ||
1724 | |||
1725 | if (reg & E1000_NVM_RW_REG_DONE) | ||
1726 | return 0; | ||
1727 | |||
1728 | udelay(5); | ||
1729 | } | ||
1730 | |||
1731 | return -E1000_ERR_NVM; | ||
1732 | } | ||
1733 | |||
1734 | /** | ||
1735 | * e1000e_acquire_nvm - Generic request for access to EEPROM | ||
1736 | * @hw: pointer to the HW structure | ||
1737 | * | ||
1738 | * Set the EEPROM access request bit and wait for EEPROM access grant bit. | ||
1739 | * Return successful if access grant bit set, else clear the request for | ||
1740 | * EEPROM access and return -E1000_ERR_NVM (-1). | ||
1741 | **/ | ||
1742 | s32 e1000e_acquire_nvm(struct e1000_hw *hw) | ||
1743 | { | ||
1744 | u32 eecd = er32(EECD); | ||
1745 | s32 timeout = E1000_NVM_GRANT_ATTEMPTS; | ||
1746 | |||
1747 | ew32(EECD, eecd | E1000_EECD_REQ); | ||
1748 | eecd = er32(EECD); | ||
1749 | |||
1750 | while (timeout) { | ||
1751 | if (eecd & E1000_EECD_GNT) | ||
1752 | break; | ||
1753 | udelay(5); | ||
1754 | eecd = er32(EECD); | ||
1755 | timeout--; | ||
1756 | } | ||
1757 | |||
1758 | if (!timeout) { | ||
1759 | eecd &= ~E1000_EECD_REQ; | ||
1760 | ew32(EECD, eecd); | ||
1761 | hw_dbg(hw, "Could not acquire NVM grant\n"); | ||
1762 | return -E1000_ERR_NVM; | ||
1763 | } | ||
1764 | |||
1765 | return 0; | ||
1766 | } | ||
1767 | |||
1768 | /** | ||
1769 | * e1000_standby_nvm - Return EEPROM to standby state | ||
1770 | * @hw: pointer to the HW structure | ||
1771 | * | ||
1772 | * Return the EEPROM to a standby state. | ||
1773 | **/ | ||
1774 | static void e1000_standby_nvm(struct e1000_hw *hw) | ||
1775 | { | ||
1776 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1777 | u32 eecd = er32(EECD); | ||
1778 | |||
1779 | if (nvm->type == e1000_nvm_eeprom_spi) { | ||
1780 | /* Toggle CS to flush commands */ | ||
1781 | eecd |= E1000_EECD_CS; | ||
1782 | ew32(EECD, eecd); | ||
1783 | e1e_flush(); | ||
1784 | udelay(nvm->delay_usec); | ||
1785 | eecd &= ~E1000_EECD_CS; | ||
1786 | ew32(EECD, eecd); | ||
1787 | e1e_flush(); | ||
1788 | udelay(nvm->delay_usec); | ||
1789 | } | ||
1790 | } | ||
1791 | |||
1792 | /** | ||
1793 | * e1000_stop_nvm - Terminate EEPROM command | ||
1794 | * @hw: pointer to the HW structure | ||
1795 | * | ||
1796 | * Terminates the current command by inverting the EEPROM's chip select pin. | ||
1797 | **/ | ||
1798 | static void e1000_stop_nvm(struct e1000_hw *hw) | ||
1799 | { | ||
1800 | u32 eecd; | ||
1801 | |||
1802 | eecd = er32(EECD); | ||
1803 | if (hw->nvm.type == e1000_nvm_eeprom_spi) { | ||
1804 | /* Pull CS high */ | ||
1805 | eecd |= E1000_EECD_CS; | ||
1806 | e1000_lower_eec_clk(hw, &eecd); | ||
1807 | } | ||
1808 | } | ||
1809 | |||
1810 | /** | ||
1811 | * e1000e_release_nvm - Release exclusive access to EEPROM | ||
1812 | * @hw: pointer to the HW structure | ||
1813 | * | ||
1814 | * Stop any current commands to the EEPROM and clear the EEPROM request bit. | ||
1815 | **/ | ||
1816 | void e1000e_release_nvm(struct e1000_hw *hw) | ||
1817 | { | ||
1818 | u32 eecd; | ||
1819 | |||
1820 | e1000_stop_nvm(hw); | ||
1821 | |||
1822 | eecd = er32(EECD); | ||
1823 | eecd &= ~E1000_EECD_REQ; | ||
1824 | ew32(EECD, eecd); | ||
1825 | } | ||
1826 | |||
1827 | /** | ||
1828 | * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write | ||
1829 | * @hw: pointer to the HW structure | ||
1830 | * | ||
1831 | * Setups the EEPROM for reading and writing. | ||
1832 | **/ | ||
1833 | static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) | ||
1834 | { | ||
1835 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1836 | u32 eecd = er32(EECD); | ||
1837 | u16 timeout = 0; | ||
1838 | u8 spi_stat_reg; | ||
1839 | |||
1840 | if (nvm->type == e1000_nvm_eeprom_spi) { | ||
1841 | /* Clear SK and CS */ | ||
1842 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | ||
1843 | ew32(EECD, eecd); | ||
1844 | udelay(1); | ||
1845 | timeout = NVM_MAX_RETRY_SPI; | ||
1846 | |||
1847 | /* Read "Status Register" repeatedly until the LSB is cleared. | ||
1848 | * The EEPROM will signal that the command has been completed | ||
1849 | * by clearing bit 0 of the internal status register. If it's | ||
1850 | * not cleared within 'timeout', then error out. */ | ||
1851 | while (timeout) { | ||
1852 | e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, | ||
1853 | hw->nvm.opcode_bits); | ||
1854 | spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); | ||
1855 | if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) | ||
1856 | break; | ||
1857 | |||
1858 | udelay(5); | ||
1859 | e1000_standby_nvm(hw); | ||
1860 | timeout--; | ||
1861 | } | ||
1862 | |||
1863 | if (!timeout) { | ||
1864 | hw_dbg(hw, "SPI NVM Status error\n"); | ||
1865 | return -E1000_ERR_NVM; | ||
1866 | } | ||
1867 | } | ||
1868 | |||
1869 | return 0; | ||
1870 | } | ||
1871 | |||
1872 | /** | ||
1873 | * e1000e_read_nvm_spi - Read EEPROM's using SPI | ||
1874 | * @hw: pointer to the HW structure | ||
1875 | * @offset: offset of word in the EEPROM to read | ||
1876 | * @words: number of words to read | ||
1877 | * @data: word read from the EEPROM | ||
1878 | * | ||
1879 | * Reads a 16 bit word from the EEPROM. | ||
1880 | **/ | ||
1881 | s32 e1000e_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
1882 | { | ||
1883 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1884 | u32 i = 0; | ||
1885 | s32 ret_val; | ||
1886 | u16 word_in; | ||
1887 | u8 read_opcode = NVM_READ_OPCODE_SPI; | ||
1888 | |||
1889 | /* A check for invalid values: offset too large, too many words, | ||
1890 | * and not enough words. */ | ||
1891 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | ||
1892 | (words == 0)) { | ||
1893 | hw_dbg(hw, "nvm parameter(s) out of bounds\n"); | ||
1894 | return -E1000_ERR_NVM; | ||
1895 | } | ||
1896 | |||
1897 | ret_val = nvm->ops.acquire_nvm(hw); | ||
1898 | if (ret_val) | ||
1899 | return ret_val; | ||
1900 | |||
1901 | ret_val = e1000_ready_nvm_eeprom(hw); | ||
1902 | if (ret_val) { | ||
1903 | nvm->ops.release_nvm(hw); | ||
1904 | return ret_val; | ||
1905 | } | ||
1906 | |||
1907 | e1000_standby_nvm(hw); | ||
1908 | |||
1909 | if ((nvm->address_bits == 8) && (offset >= 128)) | ||
1910 | read_opcode |= NVM_A8_OPCODE_SPI; | ||
1911 | |||
1912 | /* Send the READ command (opcode + addr) */ | ||
1913 | e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); | ||
1914 | e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); | ||
1915 | |||
1916 | /* Read the data. SPI NVMs increment the address with each byte | ||
1917 | * read and will roll over if reading beyond the end. This allows | ||
1918 | * us to read the whole NVM from any offset */ | ||
1919 | for (i = 0; i < words; i++) { | ||
1920 | word_in = e1000_shift_in_eec_bits(hw, 16); | ||
1921 | data[i] = (word_in >> 8) | (word_in << 8); | ||
1922 | } | ||
1923 | |||
1924 | nvm->ops.release_nvm(hw); | ||
1925 | return 0; | ||
1926 | } | ||
1927 | |||
1928 | /** | ||
1929 | * e1000e_read_nvm_eerd - Reads EEPROM using EERD register | ||
1930 | * @hw: pointer to the HW structure | ||
1931 | * @offset: offset of word in the EEPROM to read | ||
1932 | * @words: number of words to read | ||
1933 | * @data: word read from the EEPROM | ||
1934 | * | ||
1935 | * Reads a 16 bit word from the EEPROM using the EERD register. | ||
1936 | **/ | ||
1937 | s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
1938 | { | ||
1939 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1940 | u32 i, eerd = 0; | ||
1941 | s32 ret_val = 0; | ||
1942 | |||
1943 | /* A check for invalid values: offset too large, too many words, | ||
1944 | * and not enough words. */ | ||
1945 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | ||
1946 | (words == 0)) { | ||
1947 | hw_dbg(hw, "nvm parameter(s) out of bounds\n"); | ||
1948 | return -E1000_ERR_NVM; | ||
1949 | } | ||
1950 | |||
1951 | for (i = 0; i < words; i++) { | ||
1952 | eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + | ||
1953 | E1000_NVM_RW_REG_START; | ||
1954 | |||
1955 | ew32(EERD, eerd); | ||
1956 | ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); | ||
1957 | if (ret_val) | ||
1958 | break; | ||
1959 | |||
1960 | data[i] = (er32(EERD) >> | ||
1961 | E1000_NVM_RW_REG_DATA); | ||
1962 | } | ||
1963 | |||
1964 | return ret_val; | ||
1965 | } | ||
1966 | |||
1967 | /** | ||
1968 | * e1000e_write_nvm_spi - Write to EEPROM using SPI | ||
1969 | * @hw: pointer to the HW structure | ||
1970 | * @offset: offset within the EEPROM to be written to | ||
1971 | * @words: number of words to write | ||
1972 | * @data: 16 bit word(s) to be written to the EEPROM | ||
1973 | * | ||
1974 | * Writes data to EEPROM at offset using SPI interface. | ||
1975 | * | ||
1976 | * If e1000e_update_nvm_checksum is not called after this function , the | ||
1977 | * EEPROM will most likley contain an invalid checksum. | ||
1978 | **/ | ||
1979 | s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | ||
1980 | { | ||
1981 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
1982 | s32 ret_val; | ||
1983 | u16 widx = 0; | ||
1984 | |||
1985 | /* A check for invalid values: offset too large, too many words, | ||
1986 | * and not enough words. */ | ||
1987 | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | ||
1988 | (words == 0)) { | ||
1989 | hw_dbg(hw, "nvm parameter(s) out of bounds\n"); | ||
1990 | return -E1000_ERR_NVM; | ||
1991 | } | ||
1992 | |||
1993 | ret_val = nvm->ops.acquire_nvm(hw); | ||
1994 | if (ret_val) | ||
1995 | return ret_val; | ||
1996 | |||
1997 | msleep(10); | ||
1998 | |||
1999 | while (widx < words) { | ||
2000 | u8 write_opcode = NVM_WRITE_OPCODE_SPI; | ||
2001 | |||
2002 | ret_val = e1000_ready_nvm_eeprom(hw); | ||
2003 | if (ret_val) { | ||
2004 | nvm->ops.release_nvm(hw); | ||
2005 | return ret_val; | ||
2006 | } | ||
2007 | |||
2008 | e1000_standby_nvm(hw); | ||
2009 | |||
2010 | /* Send the WRITE ENABLE command (8 bit opcode) */ | ||
2011 | e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, | ||
2012 | nvm->opcode_bits); | ||
2013 | |||
2014 | e1000_standby_nvm(hw); | ||
2015 | |||
2016 | /* Some SPI eeproms use the 8th address bit embedded in the | ||
2017 | * opcode */ | ||
2018 | if ((nvm->address_bits == 8) && (offset >= 128)) | ||
2019 | write_opcode |= NVM_A8_OPCODE_SPI; | ||
2020 | |||
2021 | /* Send the Write command (8-bit opcode + addr) */ | ||
2022 | e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); | ||
2023 | e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), | ||
2024 | nvm->address_bits); | ||
2025 | |||
2026 | /* Loop to allow for up to whole page write of eeprom */ | ||
2027 | while (widx < words) { | ||
2028 | u16 word_out = data[widx]; | ||
2029 | word_out = (word_out >> 8) | (word_out << 8); | ||
2030 | e1000_shift_out_eec_bits(hw, word_out, 16); | ||
2031 | widx++; | ||
2032 | |||
2033 | if ((((offset + widx) * 2) % nvm->page_size) == 0) { | ||
2034 | e1000_standby_nvm(hw); | ||
2035 | break; | ||
2036 | } | ||
2037 | } | ||
2038 | } | ||
2039 | |||
2040 | msleep(10); | ||
2041 | return 0; | ||
2042 | } | ||
2043 | |||
2044 | /** | ||
2045 | * e1000e_read_mac_addr - Read device MAC address | ||
2046 | * @hw: pointer to the HW structure | ||
2047 | * | ||
2048 | * Reads the device MAC address from the EEPROM and stores the value. | ||
2049 | * Since devices with two ports use the same EEPROM, we increment the | ||
2050 | * last bit in the MAC address for the second port. | ||
2051 | **/ | ||
2052 | s32 e1000e_read_mac_addr(struct e1000_hw *hw) | ||
2053 | { | ||
2054 | s32 ret_val; | ||
2055 | u16 offset, nvm_data, i; | ||
2056 | |||
2057 | for (i = 0; i < ETH_ALEN; i += 2) { | ||
2058 | offset = i >> 1; | ||
2059 | ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data); | ||
2060 | if (ret_val) { | ||
2061 | hw_dbg(hw, "NVM Read Error\n"); | ||
2062 | return ret_val; | ||
2063 | } | ||
2064 | hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); | ||
2065 | hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); | ||
2066 | } | ||
2067 | |||
2068 | /* Flip last bit of mac address if we're on second port */ | ||
2069 | if (hw->bus.func == E1000_FUNC_1) | ||
2070 | hw->mac.perm_addr[5] ^= 1; | ||
2071 | |||
2072 | for (i = 0; i < ETH_ALEN; i++) | ||
2073 | hw->mac.addr[i] = hw->mac.perm_addr[i]; | ||
2074 | |||
2075 | return 0; | ||
2076 | } | ||
2077 | |||
2078 | /** | ||
2079 | * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum | ||
2080 | * @hw: pointer to the HW structure | ||
2081 | * | ||
2082 | * Calculates the EEPROM checksum by reading/adding each word of the EEPROM | ||
2083 | * and then verifies that the sum of the EEPROM is equal to 0xBABA. | ||
2084 | **/ | ||
2085 | s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw) | ||
2086 | { | ||
2087 | s32 ret_val; | ||
2088 | u16 checksum = 0; | ||
2089 | u16 i, nvm_data; | ||
2090 | |||
2091 | for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { | ||
2092 | ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); | ||
2093 | if (ret_val) { | ||
2094 | hw_dbg(hw, "NVM Read Error\n"); | ||
2095 | return ret_val; | ||
2096 | } | ||
2097 | checksum += nvm_data; | ||
2098 | } | ||
2099 | |||
2100 | if (checksum != (u16) NVM_SUM) { | ||
2101 | hw_dbg(hw, "NVM Checksum Invalid\n"); | ||
2102 | return -E1000_ERR_NVM; | ||
2103 | } | ||
2104 | |||
2105 | return 0; | ||
2106 | } | ||
2107 | |||
2108 | /** | ||
2109 | * e1000e_update_nvm_checksum_generic - Update EEPROM checksum | ||
2110 | * @hw: pointer to the HW structure | ||
2111 | * | ||
2112 | * Updates the EEPROM checksum by reading/adding each word of the EEPROM | ||
2113 | * up to the checksum. Then calculates the EEPROM checksum and writes the | ||
2114 | * value to the EEPROM. | ||
2115 | **/ | ||
2116 | s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw) | ||
2117 | { | ||
2118 | s32 ret_val; | ||
2119 | u16 checksum = 0; | ||
2120 | u16 i, nvm_data; | ||
2121 | |||
2122 | for (i = 0; i < NVM_CHECKSUM_REG; i++) { | ||
2123 | ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); | ||
2124 | if (ret_val) { | ||
2125 | hw_dbg(hw, "NVM Read Error while updating checksum.\n"); | ||
2126 | return ret_val; | ||
2127 | } | ||
2128 | checksum += nvm_data; | ||
2129 | } | ||
2130 | checksum = (u16) NVM_SUM - checksum; | ||
2131 | ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); | ||
2132 | if (ret_val) | ||
2133 | hw_dbg(hw, "NVM Write Error while updating checksum.\n"); | ||
2134 | |||
2135 | return ret_val; | ||
2136 | } | ||
2137 | |||
2138 | /** | ||
2139 | * e1000e_reload_nvm - Reloads EEPROM | ||
2140 | * @hw: pointer to the HW structure | ||
2141 | * | ||
2142 | * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the | ||
2143 | * extended control register. | ||
2144 | **/ | ||
2145 | void e1000e_reload_nvm(struct e1000_hw *hw) | ||
2146 | { | ||
2147 | u32 ctrl_ext; | ||
2148 | |||
2149 | udelay(10); | ||
2150 | ctrl_ext = er32(CTRL_EXT); | ||
2151 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
2152 | ew32(CTRL_EXT, ctrl_ext); | ||
2153 | e1e_flush(); | ||
2154 | } | ||
2155 | |||
2156 | /** | ||
2157 | * e1000_calculate_checksum - Calculate checksum for buffer | ||
2158 | * @buffer: pointer to EEPROM | ||
2159 | * @length: size of EEPROM to calculate a checksum for | ||
2160 | * | ||
2161 | * Calculates the checksum for some buffer on a specified length. The | ||
2162 | * checksum calculated is returned. | ||
2163 | **/ | ||
2164 | static u8 e1000_calculate_checksum(u8 *buffer, u32 length) | ||
2165 | { | ||
2166 | u32 i; | ||
2167 | u8 sum = 0; | ||
2168 | |||
2169 | if (!buffer) | ||
2170 | return 0; | ||
2171 | |||
2172 | for (i = 0; i < length; i++) | ||
2173 | sum += buffer[i]; | ||
2174 | |||
2175 | return (u8) (0 - sum); | ||
2176 | } | ||
2177 | |||
2178 | /** | ||
2179 | * e1000_mng_enable_host_if - Checks host interface is enabled | ||
2180 | * @hw: pointer to the HW structure | ||
2181 | * | ||
2182 | * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND | ||
2183 | * | ||
2184 | * This function checks whether the HOST IF is enabled for command operaton | ||
2185 | * and also checks whether the previous command is completed. It busy waits | ||
2186 | * in case of previous command is not completed. | ||
2187 | **/ | ||
2188 | static s32 e1000_mng_enable_host_if(struct e1000_hw *hw) | ||
2189 | { | ||
2190 | u32 hicr; | ||
2191 | u8 i; | ||
2192 | |||
2193 | /* Check that the host interface is enabled. */ | ||
2194 | hicr = er32(HICR); | ||
2195 | if ((hicr & E1000_HICR_EN) == 0) { | ||
2196 | hw_dbg(hw, "E1000_HOST_EN bit disabled.\n"); | ||
2197 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
2198 | } | ||
2199 | /* check the previous command is completed */ | ||
2200 | for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { | ||
2201 | hicr = er32(HICR); | ||
2202 | if (!(hicr & E1000_HICR_C)) | ||
2203 | break; | ||
2204 | mdelay(1); | ||
2205 | } | ||
2206 | |||
2207 | if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { | ||
2208 | hw_dbg(hw, "Previous command timeout failed .\n"); | ||
2209 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
2210 | } | ||
2211 | |||
2212 | return 0; | ||
2213 | } | ||
2214 | |||
2215 | /** | ||
2216 | * e1000e_check_mng_mode - check managament mode | ||
2217 | * @hw: pointer to the HW structure | ||
2218 | * | ||
2219 | * Reads the firmware semaphore register and returns true (>0) if | ||
2220 | * manageability is enabled, else false (0). | ||
2221 | **/ | ||
2222 | bool e1000e_check_mng_mode(struct e1000_hw *hw) | ||
2223 | { | ||
2224 | u32 fwsm = er32(FWSM); | ||
2225 | |||
2226 | return (fwsm & E1000_FWSM_MODE_MASK) == hw->mac.ops.mng_mode_enab; | ||
2227 | } | ||
2228 | |||
2229 | /** | ||
2230 | * e1000e_enable_tx_pkt_filtering - Enable packet filtering on TX | ||
2231 | * @hw: pointer to the HW structure | ||
2232 | * | ||
2233 | * Enables packet filtering on transmit packets if manageability is enabled | ||
2234 | * and host interface is enabled. | ||
2235 | **/ | ||
2236 | bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw) | ||
2237 | { | ||
2238 | struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; | ||
2239 | u32 *buffer = (u32 *)&hw->mng_cookie; | ||
2240 | u32 offset; | ||
2241 | s32 ret_val, hdr_csum, csum; | ||
2242 | u8 i, len; | ||
2243 | |||
2244 | /* No manageability, no filtering */ | ||
2245 | if (!e1000e_check_mng_mode(hw)) { | ||
2246 | hw->mac.tx_pkt_filtering = 0; | ||
2247 | return 0; | ||
2248 | } | ||
2249 | |||
2250 | /* If we can't read from the host interface for whatever | ||
2251 | * reason, disable filtering. | ||
2252 | */ | ||
2253 | ret_val = e1000_mng_enable_host_if(hw); | ||
2254 | if (ret_val != 0) { | ||
2255 | hw->mac.tx_pkt_filtering = 0; | ||
2256 | return ret_val; | ||
2257 | } | ||
2258 | |||
2259 | /* Read in the header. Length and offset are in dwords. */ | ||
2260 | len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; | ||
2261 | offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; | ||
2262 | for (i = 0; i < len; i++) | ||
2263 | *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i); | ||
2264 | hdr_csum = hdr->checksum; | ||
2265 | hdr->checksum = 0; | ||
2266 | csum = e1000_calculate_checksum((u8 *)hdr, | ||
2267 | E1000_MNG_DHCP_COOKIE_LENGTH); | ||
2268 | /* If either the checksums or signature don't match, then | ||
2269 | * the cookie area isn't considered valid, in which case we | ||
2270 | * take the safe route of assuming Tx filtering is enabled. | ||
2271 | */ | ||
2272 | if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) { | ||
2273 | hw->mac.tx_pkt_filtering = 1; | ||
2274 | return 1; | ||
2275 | } | ||
2276 | |||
2277 | /* Cookie area is valid, make the final check for filtering. */ | ||
2278 | if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) { | ||
2279 | hw->mac.tx_pkt_filtering = 0; | ||
2280 | return 0; | ||
2281 | } | ||
2282 | |||
2283 | hw->mac.tx_pkt_filtering = 1; | ||
2284 | return 1; | ||
2285 | } | ||
2286 | |||
2287 | /** | ||
2288 | * e1000_mng_write_cmd_header - Writes manageability command header | ||
2289 | * @hw: pointer to the HW structure | ||
2290 | * @hdr: pointer to the host interface command header | ||
2291 | * | ||
2292 | * Writes the command header after does the checksum calculation. | ||
2293 | **/ | ||
2294 | static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, | ||
2295 | struct e1000_host_mng_command_header *hdr) | ||
2296 | { | ||
2297 | u16 i, length = sizeof(struct e1000_host_mng_command_header); | ||
2298 | |||
2299 | /* Write the whole command header structure with new checksum. */ | ||
2300 | |||
2301 | hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); | ||
2302 | |||
2303 | length >>= 2; | ||
2304 | /* Write the relevant command block into the ram area. */ | ||
2305 | for (i = 0; i < length; i++) { | ||
2306 | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i, | ||
2307 | *((u32 *) hdr + i)); | ||
2308 | e1e_flush(); | ||
2309 | } | ||
2310 | |||
2311 | return 0; | ||
2312 | } | ||
2313 | |||
2314 | /** | ||
2315 | * e1000_mng_host_if_write - Writes to the manageability host interface | ||
2316 | * @hw: pointer to the HW structure | ||
2317 | * @buffer: pointer to the host interface buffer | ||
2318 | * @length: size of the buffer | ||
2319 | * @offset: location in the buffer to write to | ||
2320 | * @sum: sum of the data (not checksum) | ||
2321 | * | ||
2322 | * This function writes the buffer content at the offset given on the host if. | ||
2323 | * It also does alignment considerations to do the writes in most efficient | ||
2324 | * way. Also fills up the sum of the buffer in *buffer parameter. | ||
2325 | **/ | ||
2326 | static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, | ||
2327 | u16 length, u16 offset, u8 *sum) | ||
2328 | { | ||
2329 | u8 *tmp; | ||
2330 | u8 *bufptr = buffer; | ||
2331 | u32 data = 0; | ||
2332 | u16 remaining, i, j, prev_bytes; | ||
2333 | |||
2334 | /* sum = only sum of the data and it is not checksum */ | ||
2335 | |||
2336 | if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) | ||
2337 | return -E1000_ERR_PARAM; | ||
2338 | |||
2339 | tmp = (u8 *)&data; | ||
2340 | prev_bytes = offset & 0x3; | ||
2341 | offset >>= 2; | ||
2342 | |||
2343 | if (prev_bytes) { | ||
2344 | data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset); | ||
2345 | for (j = prev_bytes; j < sizeof(u32); j++) { | ||
2346 | *(tmp + j) = *bufptr++; | ||
2347 | *sum += *(tmp + j); | ||
2348 | } | ||
2349 | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data); | ||
2350 | length -= j - prev_bytes; | ||
2351 | offset++; | ||
2352 | } | ||
2353 | |||
2354 | remaining = length & 0x3; | ||
2355 | length -= remaining; | ||
2356 | |||
2357 | /* Calculate length in DWORDs */ | ||
2358 | length >>= 2; | ||
2359 | |||
2360 | /* The device driver writes the relevant command block into the | ||
2361 | * ram area. */ | ||
2362 | for (i = 0; i < length; i++) { | ||
2363 | for (j = 0; j < sizeof(u32); j++) { | ||
2364 | *(tmp + j) = *bufptr++; | ||
2365 | *sum += *(tmp + j); | ||
2366 | } | ||
2367 | |||
2368 | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); | ||
2369 | } | ||
2370 | if (remaining) { | ||
2371 | for (j = 0; j < sizeof(u32); j++) { | ||
2372 | if (j < remaining) | ||
2373 | *(tmp + j) = *bufptr++; | ||
2374 | else | ||
2375 | *(tmp + j) = 0; | ||
2376 | |||
2377 | *sum += *(tmp + j); | ||
2378 | } | ||
2379 | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); | ||
2380 | } | ||
2381 | |||
2382 | return 0; | ||
2383 | } | ||
2384 | |||
2385 | /** | ||
2386 | * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface | ||
2387 | * @hw: pointer to the HW structure | ||
2388 | * @buffer: pointer to the host interface | ||
2389 | * @length: size of the buffer | ||
2390 | * | ||
2391 | * Writes the DHCP information to the host interface. | ||
2392 | **/ | ||
2393 | s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) | ||
2394 | { | ||
2395 | struct e1000_host_mng_command_header hdr; | ||
2396 | s32 ret_val; | ||
2397 | u32 hicr; | ||
2398 | |||
2399 | hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; | ||
2400 | hdr.command_length = length; | ||
2401 | hdr.reserved1 = 0; | ||
2402 | hdr.reserved2 = 0; | ||
2403 | hdr.checksum = 0; | ||
2404 | |||
2405 | /* Enable the host interface */ | ||
2406 | ret_val = e1000_mng_enable_host_if(hw); | ||
2407 | if (ret_val) | ||
2408 | return ret_val; | ||
2409 | |||
2410 | /* Populate the host interface with the contents of "buffer". */ | ||
2411 | ret_val = e1000_mng_host_if_write(hw, buffer, length, | ||
2412 | sizeof(hdr), &(hdr.checksum)); | ||
2413 | if (ret_val) | ||
2414 | return ret_val; | ||
2415 | |||
2416 | /* Write the manageability command header */ | ||
2417 | ret_val = e1000_mng_write_cmd_header(hw, &hdr); | ||
2418 | if (ret_val) | ||
2419 | return ret_val; | ||
2420 | |||
2421 | /* Tell the ARC a new command is pending. */ | ||
2422 | hicr = er32(HICR); | ||
2423 | ew32(HICR, hicr | E1000_HICR_C); | ||
2424 | |||
2425 | return 0; | ||
2426 | } | ||
2427 | |||
2428 | /** | ||
2429 | * e1000e_enable_mng_pass_thru - Enable processing of ARP's | ||
2430 | * @hw: pointer to the HW structure | ||
2431 | * | ||
2432 | * Verifies the hardware needs to allow ARPs to be processed by the host. | ||
2433 | **/ | ||
2434 | bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw) | ||
2435 | { | ||
2436 | u32 manc; | ||
2437 | u32 fwsm, factps; | ||
2438 | bool ret_val = 0; | ||
2439 | |||
2440 | manc = er32(MANC); | ||
2441 | |||
2442 | if (!(manc & E1000_MANC_RCV_TCO_EN) || | ||
2443 | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) | ||
2444 | return ret_val; | ||
2445 | |||
2446 | if (hw->mac.arc_subsystem_valid) { | ||
2447 | fwsm = er32(FWSM); | ||
2448 | factps = er32(FACTPS); | ||
2449 | |||
2450 | if (!(factps & E1000_FACTPS_MNGCG) && | ||
2451 | ((fwsm & E1000_FWSM_MODE_MASK) == | ||
2452 | (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { | ||
2453 | ret_val = 1; | ||
2454 | return ret_val; | ||
2455 | } | ||
2456 | } else { | ||
2457 | if ((manc & E1000_MANC_SMBUS_EN) && | ||
2458 | !(manc & E1000_MANC_ASF_EN)) { | ||
2459 | ret_val = 1; | ||
2460 | return ret_val; | ||
2461 | } | ||
2462 | } | ||
2463 | |||
2464 | return ret_val; | ||
2465 | } | ||
2466 | |||
2467 | s32 e1000e_read_part_num(struct e1000_hw *hw, u32 *part_num) | ||
2468 | { | ||
2469 | s32 ret_val; | ||
2470 | u16 nvm_data; | ||
2471 | |||
2472 | ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); | ||
2473 | if (ret_val) { | ||
2474 | hw_dbg(hw, "NVM Read Error\n"); | ||
2475 | return ret_val; | ||
2476 | } | ||
2477 | *part_num = (u32)(nvm_data << 16); | ||
2478 | |||
2479 | ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data); | ||
2480 | if (ret_val) { | ||
2481 | hw_dbg(hw, "NVM Read Error\n"); | ||
2482 | return ret_val; | ||
2483 | } | ||
2484 | *part_num |= nvm_data; | ||
2485 | |||
2486 | return 0; | ||
2487 | } | ||